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Preface

Welcome to ISoLA 2018, the 8th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, that was held in Limassol (Cyprus)
during November 5–9, 2018, endorsed by EASST, the European Association of
Software Science and Technology.

This year’s event followed the tradition of its symposia forerunners held 2004 and
2006 in Cyprus, 2008 in Chalkidiki, 2010 and 2012 in Crete, 2014 and 2016 in Corfu,
and the series of ISoLA Workshops in Greenbelt (USA) in 2005, Poitiers (France) in
2007, Potsdam (Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto
(USA).

As in the previous editions, ISoLA 2018 provided a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004 the ISoLA series of events has served the purpose of bridging the gap
between designers and developers of rigorous tools on one hand, and users in engi-
neering and in other disciplines on the other hand. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements, algo-
rithms, methodologies, and practices, ISoLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• A Broader View on Verification: From Static to Runtime and Back
(Organizers: Wolfgang Ahrendt, Marieke Huisman, Giles Reger, Kristin Yvonne
Rozier)

• Evaluating Tools for Software Verification
(Organizers: Markus Schordan, Dirk Beyer, Stephen F. Siegel)

• Towards a Unified View of Modeling and Programming
(Organizers: Manfred Broy, Klaus Havelund, Rahul Kumar, Bernhard Steffen)

• RV-TheToP: Runtime Verification from Theory to Industry Practice
(Organizers: Ezio Bartocci and Ylies Falcone)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

• Reliable Smart Contracts: State of the Art, Applications, Challenges, and Future
Directions
(Organizers: Gerardo Schneider, Martin Leucker, César Sánchez)



• Formal Methods in Industrial Practice—Bridging the Gap
(Organizers: Michael Felderer, Dilian Gurov, Marieke Huisman, Björn Lisper,
Rupert Schlick)

• X-by-Construction
(Organizers:Maurice H. ter Beek, LoekCleophas, Ina Schaefer, and BruceW.Watson)

• Statistical Model Checking
(Organizers: Axel Legay and Kim Larsen)

• Verification and Validation of Distributed Systems
(Organizer: Cristina Seceleanu)

• Cyber-Physical Systems Engineering
(Organizers: J Paul Gibson, Marc Pantel, Peter Gorm Larsen, Jim Woodcock,
John Fitzgerald)

The following events were also held:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Bernhard Steffen)
• Doctoral Symposium and Poster Session (Anna-Lena Lamprecht)
• Industrial Day (Axel Hessenkämper, Falk Howar, Andreas Rausch)

Co-located with the ISoLA Symposium were:

• RV 2018: 18th International Conference on Runtime Verification (Saddek Bensalem,
Christian Colombo, and Martin Leucker)

• STRESS 2018: 5th International School on Tool-based Rigorous Engineering
of Software Systems (John Hatcliff, Tiziana Margaria, Robby, Bernhard Steffen)

Owing to the growth of ISoLA 2018, the proceedings of this edition are published in
four volumes of LNCS: Part 1: Modeling, Part 2: Verification, Part 3: Distributed
Systems, and Part 4: Industrial Practice. In addition to the contributions of the main
conference, the proceedings also include contributions of the four embedded events and
tutorial papers for STRESS.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, the EasyConferences team for their continuous precious support
during the week as well as during the entire two-year period preceding the events, and
Springer for being, as usual, a very reliable partner in the proceedings production.
Finally, we are grateful to Kyriakos Georgiades for his continuous support for the
website and the program, and to Markus Frohme and Julia Rehder for their help with
the online conference service (EquinOCS).

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions: TU Dortmund and the University
of Limerick.

November 2018 Tiziana Margaria
Bernhard Steffen
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Rigorous Engineering of Collective
Adaptive Systems Introduction to the

2nd Track Edition

Rocco De Nicola1, Stefan Jähnichen2, and Martin Wirsing3(B)

1 IMT School for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

2 TU Berlin and FZI Forschungszentrum Informatik, Berlin, Germany
stefan.jaehnichen@tu-berlin.de

3 Ludwig-Maximilians-Universität München, Munich, Germany
wirsing@lmu.de

Abstract. A collective adaptive system consists of collaborating entities
that are able to adapt at runtime to dynamically changing, open-ended
environments and to new requirements. Rigorous engineering requires
appropriate methods and tools that help guarantee that a collective
adaptive system lives up to its intended purpose. This note gives an
introduction to the track ‘Rigorous Engineering of Collective Adaptive
Systems.’ It shortly presents the panel discussion on ‘The Meaning of
Adaptation: Mastering the Unforeseen?’ and 18 scientific contributions,
structured into six thematic sessions: Formal Modelling of Collective
Adaptive Systems, Engineering Collective Adaptive Systems, Security
and Analysis of Collective Adaptive Systems, Machine Learning and
Evolutionary Computing for Collective Adaptive Systems, and Software
Support for Programming and Modeling Collective Adaptive Systems.

Keywords: Adaptive system · Software engineering
Formal method · Rigorous method

A collective adaptive system, often also called ensemble, consists of collabo-
rating entities that are able to adapt at runtime to dynamically changing, open-
ended environments and to new requirements [1,2]. Often the entities of such
a system have their own individual properties and objectives; interactions with
other entities or with humans may lead to the emergence of unexpected phe-
nomena. Examples of collective adaptive systems are smart cities, smart traffic,
voluntary peer-to-peer clouds, robot swarms as well as socio-technical systems
and the internet of things.

Rigorous engineering of collective adaptive systems requires appropriate
methods and tools that help guarantee that a collective adaptive system lives
up to its intended purpose. This includes theories for designing and analysing
collective adaptive systems, techniques for programming and operating such
systems, rigorous methods for devising adaptation mechanisms, validation and
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-030-03424-5_1
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4 R. De Nicola et al.

verification techniques as well as approaches for ensuring security, trust and
performance.

The track ‘Rigorous Engineering of Collective Adaptive Systems’ was initially
inspired by the EU-funded research projects ASCENS [3], QUANTICOL [4]
and the coordination action FOCAS1; it is a follow-up of two other successful
tracks [5,6] on this research topic at ISOLA 2014 [7] and ISOLA 2016 [7].

The present edition attracted 18 research papers; each of them was refereed
by at least two reviewers. A main event was the panel discussion entitled ‘The
Meaning of Adaptation: Mastering the Unforeseen?’. The papers of the track are
partitioned into six thematic sessions: Formal Modelling of Collective Adaptive
Systems, Engineering Collective Adaptive Systems, Security and Analysis of
Collective Adaptive Systems, Machine Learning and Evolutionary Computing
for Collective Adaptive Systems, and Software Support for Programming and
Modeling Collective Adaptive Systems.

In the following the papers and the panel session are shortly introduced in
the order of their presentations.

Formal Modelling of Collective Adaptive Systems. In this session process alge-
braic, logical and model-based methods are used for formally modelling dynam-
ically reconfigurable architectures, ensemble requirements, and distributed
ledgers.

The paper ‘DReAM: Dynamic reconfigurable architecture modeling’ [9] by
Alessandro Maggi, Joseph Sifakis, and Rocco De Nicola introduces the DReAM
framework for modeling dynamic reconfigurable architectures. A system is under-
stood as a dynamically changing set of typed components and a system architec-
ture is characterised by a set of coordination constraints. The DReAM language
is based on the Propositional Interaction Logic [10] of the BIP framework [11]
and extends it with operations for data exchange between components and by
coordination terms for regulating interactions and reconfigurations among a set
of components. Static architectures are modeled by Interaction Logic formulas.
The main ingredient for modeling dynamic architectures is the new notion of
‘motif’ which is defined by a DReAM coordination term (cf. also the last paper
of the track [42]). The DReAM framework is implemented as a Java API together
with an execution engine.

Also the second paper ‘Dynamic logic for ensembles’ [12] by Rolf Hennicker
and Martin Wirsing studies systems that are formed by a dynamically changing
set of components. For such so-called ensembles the authors propose a dynamic
logic for specifying the global behaviour of a system by desired and forbidden
interaction scenarios. Bisimulation for ensembles is defined and it is shown that
the Hennessy-Milner property holds, i.e. that ensemble bisimulation coincides
with the logical equivalence induced by the proposed dynamic logic. A local
notion of ensemble realisation as well as a notion of correctness are defined so
that local bisimulation equivalence of process type expressions implies global
bisimulation equivalence of the corresponding ensembles.

1 http://www.focas.eu.

http://www.focas.eu
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In collective adaptive systems many parties interact and often need to
keep track of complex interactions. Distributed ledger technologies such as
Blockchains provide an electronic public transaction record of integrity without
central ownership. Ledger technologies could be viewed as an underlying mech-
anism to administer and record the manifold adaptations of a technical system
and thus provide trust and confidence to its users. In the paper ‘Modelling the
transition to distributed ledgers’ [13] Jan Sürmeli, Stefan Jähnichen, and Jeff
Sanders propose a formal model of distributed ledgers written in the specifica-
tion language Z [14]. They present a reference model for transactions and a Z
specification of centralised ledgers in an account-based setting. The model of
distributed ledgers is a refinement of the transaction model and focuses on the
structural aspects of ledgers.

Engineering Collective Adaptive Systems. This session discusses different aspects
of engineering collective adaptive systems ranging from health applications to
requirements engineering and hardware architectures.

For many diseases such as some arterial ones, physical exercise is recog-
nized to be important to improve health conditions of patients. However, some
exercises can be tiresome and cause pain to patients who may be tempted
to avoid them in absence of a supervisor. In the paper ‘A collective adaptive
socio-technical system for remote- and self-supervised exercise in the treatment
of intermittent claudication’ [15] Jeremy Pitt, Kristina Milanovic, Alexander
Coupland, Tim Allan, Alun Davies, Tristan Lane, Anna Maria Malagoni, Ankur
Thapar, and Joseph Shalhoub propose to develop and deploy a healthcare appli-
cation which provides patient exercise programmes that are both centrally organ-
ised and remotely supervised by a health practitioner, and self– organised and
self–supervised by the patients themselves. The paper discusses appropriate engi-
neering techniques for such health care applications; in particular, it addresses
Value-Sensitive Design [16], the IDEAS framework [17] and formal methods
including the event calculus [18], interaction design, the design of electronic
social capital, and the system’s ‘shared reality’.

The second paper ‘Engineering collectives of self-driving vehicles: the
SOTA approach’ [19] by Dhaminda Abeywickrama, Marco Mamei, and Franco
Zambonelli introduces SOTA, a goal-oriented requirements engineering method
for describing the overall domain and the requirements for an adaptive system.
The paper illustrates the SOTA approach by the example of a fleet of self-driving
vehicles and focuses on modeling and analysing functional and non-functional
requirements of self-adaptation, as well as on analysing which information must
be made available to a system to support its self-adaptive behavior.

The paper ‘Synthesizing capabilities for collective adaptive systems from
self-descriptive hardware devices – bridging the reality gap’ [20] by Constantin
Wanninger, Christian Eymüller, Alwin Hoffmann, Oliver Kosak, and Wolfgang
Reif addresses the gap between simulated hardware and real hardware implemen-
tations. It proposes a novel architecture for realising collective adaptive systems
on hardware devices for real world scenarios. The key idea is to equip hard-
ware devices with self-descriptions and to use these self-descriptions for finding
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appropriate devices for the required user tasks. The feasibility of the approach
is demonstrated by a case study of a sensor-based flight of a quadcopter.

Panel: The Meaning of Adaptation: Mastering the Unforeseen? The panel dis-
cussion was a main event of the track. As adaptation is the key technology for
autonomous behaviour, there was a challenging panel discussion at the previ-
ous track on how unforeseen behaviour could be managed [21]. Adaptation has
many facets and can be tackled by various so-called self–technologies. During
this year’s panel, Stefan Jähnichen as moderator and the panelists Lenz Belzner,
Tomáš Bureš, Alexander Knapp, Jeremy Pitt, and Franco Zambonelli discussed
with the audience what they consider to be the most important technologies
to help systems to adapt [22]. ‘Do you consider adaptivity to be a realistic
and desirable property of technical systems?’, ‘what is the new challenge in soft-
ware engineering for the design and implementation of adaptive systems? ’, ‘why
should artificial intelligence open new horizons to implement adaptivity? ’, ‘can
we expect machines to adapt by evolution?’ as well as ‘is there a mathematical
characterisation of adaptation?’ were some of the questions that were considered.

Testing and Safety of Collective Adaptive Systems. This session addresses test-
ing methods and fault handling techniques for self-organising adaptive and auto-
nomic systems.

Finding adequate software tests is an integral part of making adaptive sys-
tems controllable and trustworthy. The paper ‘Mutation-based test suite evolu-
tion for self-organizing systems’ [23] by André Reichstaller, Thomas Gabor, and
Alexander Knapp studies test design for self–organising systems with a mutation-
based test goal. Test execution in self-organising systems not only triggers an
observable output but may also initiate a reconfiguration influencing the results
of subsequent test cases. Similarly to the adaptation space [25], reconfiguration
is controlled by a ‘Corridor of Correct Behavior.’ The paper investigates the suit-
ability of various kinds of evolutionary algorithms for optimization and suggests
two domain–specific extensions of the classical evolutionary approach for con-
structing test suites: ‘phased extension’ reducing the number of goal evaluations
needed for optimization and ‘penguin extension’ increasing the overall fitness.
The approach is evaluated using the case study of an adaptive, self-organising
production cell.

The paper ‘Adapting quality assurance to adaptive systems: the sce-
nario coevolution paradigm’ [24] by Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and
Jan Wieg-hardt takes a more abstract view and presents a formal framework
for adaptation and testing of adaptive systems using scenarios; it also discusses
how such a framework can be used for increasing the trustworthiness of complex
adaptive systems. In particular, the work extends the system model and the
notion of adaptation space of [25] of the ASCENS project [26] by abstract defi-
nitions of self–adaptation and scenarios. A main contribution is also the concept
of scenario coevolution for making quality assurance self–adaptive to match the
capabilitiess of the self–adaptive system–under–test
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Autonomous systems are subject to faults caused by the interaction with the
environment. Often such systems are only partially observable, i.e. faults cannot
be directly detected by the system and not all actions of the system can be
observed. The third paper in this session tackles the problem of automatically
detecting and handling faults that occur in autonomic systems. In ‘Designing
systems with detection and reconfiguration capabilities: a formal approach’ [27],
Iulia Dragomir, Simon Iosti, Marius Bozga, and Saddek Bensalem propose a
systematic process for constructing a ‘Fault Detection, Isolation and Recovery
(FDIR) component’ for a concurrent timed system with partial observability.
The approach proceeds in two steps: the construction of a diagnoser for each
diagnosable fault and the construction of a controller for each recovery strategy.
An exact definition of the notion of diagnosability in the FDIR context for timed
systems is given as well as an algorithm for automatically synthesizing runtime
monitors for fault detection and recovery strategies for controller synthesis. The
approach is currently under implementation in the BIP [11] framework.

Security and Analysis of Collective Adaptive Systems. The session consists of
three papers proposing novel dynamic security rules, novel theoretically proven
model reduction techniques, and a framework for evaluating the performance of
self-organisation mechanisms.

Current concepts for security in static systems cannot easily cope with the
high degree of dynamicity of collective adaptive systems. The paper ‘Dynamic
security specification through autonomic component ensembles’ [28] by Rima Al
Ali, Tomáš Bureš, Petr Hnetynka, Filip Krijt, Frantǐsek Plášil, and Jǐŕı Vinárek
presents an approach for dynamic access control of collective adaptive systems.
Autonomic component ensembles [29] are enhanced by autonomically compos-
able and context–dependent dynamic security rules to so-called security ensem-
bles. The rules describe permitted interactions in the system and follow the
system during its evolution. For the specification of the rules, an internal Scala-
based DSL has been developed whereas for end-user usage, an external, end-user
friendly DSL is given.

For analysing the interactions between the agents of a collective adaptive sys-
tem it is often necessary to transform the system into an equivalent simpler and
more tractable one. Prominent examples for such transfomations are the Markov
Chain model reduction techniques based on lumpability (see e.g. [30]). In network
analysis, centrality measures [31] such as Google’s PageRank help to identify the
most important nodes of a network by assigning an importance measure to each
node. In the paper ‘Differential equivalence yields network centrality’ [32] Stefano
Tognazzi, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin investigate
the relationship between centrality measures and backward differential equiva-
lence, a generalisation of lumpability to general dynamical systems. They prove
that any two backward differential equivalent nodes enjoy identical centrality
measures. They also demonstrate the usefulness of this result and show that the
corresponding reduction algorithm achieves substantial reductions of real-world
networks from biochemistry, social sciences and computer engineering.
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Reconfiguring a self-organising system can improve the quality of its compu-
tations but may also be a costly activity. The third paper ‘Measuring and evalu-
ating the performance of self-organization mechanisms within collective adaptive
systems’ [33] by Benedikt Eberhardinger, Hella Ponsar, Dominik Klumpp, and
Wolfgang Reif proposes a framework enabling performance evaluation at design
time in order to select the best-fitting self-organisation mechanism. The frame-
work comprises a performance metric for distributed self-organisation mecha-
nisms and a simulation concept for measuring performance. Centralised and
localised self-organisation mechanisms are evaluated for a smart energy manage-
ment system and a self-organising production cell.

Machine Learning and Evolutionary Computing for Collective Adaptive Systems.
This session addresses the use of subsymbolic AI techniques for different collec-
tive adaptation scenarios: community energy systems, (simple) market situa-
tions, and on-demand services.

Modern energy systems comprise several local community energy systems
which produce, consume, and sell energy. The paper ‘Engineering sustainable
and adaptive systems in dynamic and unpredictable environments’ [34] by Rui
P. Cardoso, Rosaldo J. F. Rossetti, Emma Hart, David Burth Kurka, and Jeremy
Pitt models community energy systems as electronic institutions where each com-
munity is an agent, energy is treated as a common resource, and selling and con-
suming energy is governed by an operating policy. The key contributions of this
work are two optimisation methods for automatically finding appropriate policies
for this system model. The optimisation methods are based on genetic program-
ming and reinforcement learning. Simulations with these algorithms show that
the evolved policies clearly outperform the initially human-designed policy and
enable the energy system to remain sustainable over time.

The paper ‘The sharer’s dilemma in collective adaptive systems of self–
interested agents’ [35] by Lenz Belzner, Kyrill Schmid, Thomy Phan, Thomas
Gabor, and Martin Wirsing studies utility sharing of self-interested agents. Shar-
ing utility with others may incentivise individuals to consider choices that are
locally suboptimal but increase the global reward. A variant of distributed cross
entropy optimisation is used to realise utility sharing in self-interested collective
adaptive systems. The empirical results of two different market situations show
that utility sharing increases the individual and the global reward. However,
there is a dilemma: if there are defecting non-sharing agents in the group then
sharing agents may be exploited by defecting agents and defecting agents gather
more individual utility than the sharing ones. On the other hand, if too many
agents defect their individual returns are smaller than the returns they would
have got by sharing.

The paper ‘Coordination model with reinforcement learning for ensuring
reliable on-demand services in collective adaptive systems’ [36] by Houssem
Ben Mahfoudh, Giovanna Di Marzo Serugendo, Anthony Boulmier, and Nabil
Abdennadher studies decentralised services which are built and composed on-
demand and arise from the interaction of multiple sensors and devices. The bio-
inspired SAPERE coordination model [37] is extended by reinforcement learning
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techniques in order to enhance quality of service. First results show that rein-
forcement learning helps to find more meaningful service compositions and to
improve the correctness of the composition of services provided by diverse agents.

Software Support for Programming and Modeling Collective Adaptive Systems.
The last session of the track presents software support for attribute-based inter-
action, dynamic reconfiguration of architectures, and simulating urban trans-
portation systems.

In ‘Data-driven modelling and simulation of urban transportation systems
using Carma’ [38] Natalia Zon and Stephen Gilmore present a collective adaptive
systems model of an urban transportation system. The model is written in the
stochastic process algebra language Carma [39] which supports the specification
and analysis of collective adaptive systems. The results of the simulations of the
Carma model are compared with real data collected from the city bus system in
the city of Edinburgh. It is demonstrated that the simulation data are in good
agreement with those observed in the real data.

The paper ‘GoAt: Attribute-based interaction in Google Go’ [40] by Yehia
Abd Alrahman, Rocco De Nicola, and Giulio Garbi presents the first distributed
implementation of the AbC calculus for attribute-based communication [41]. It
defines an API, called GoAt, of AbC in the language Go. The API is parametric
w.r.t. the distributed infrastructure. The main contribution is the implementa-
tion of three infrastructures with cluster, ring, and tree architectures. The paper
also reports on an Eclipse plugin for GoAt programming in a high-level syntax.
By using graph colouring as case study the performance of the three infrastruc-
tures is evaluated with the result that the cluster diverges with increasing graph
size while the ring and the tree infrastructures still have acceptable performance.

The final paper of this track addresses again the dynamic reconfiguration
of architectures. In ‘Four exercises in programming dynamic reconfigurable
systems: methodology and solution in DR-BIP’ [42] Rim El Ballouli, Saddek
Bensalem, Marius Bozga, and Joseph Sifakis present Dynamic Reconfigurable
BIP (DR–BIP) as an extension of the BIP component framework [11] for pro-
gramming reconfigurable systems encompassing various aspects of dynamism.
As in the first paper of the track [9], the main concept for modeling dynamic
architectures is the notion of motif. A system is composed of several architecture
motifs, each motif consisting of a set of component instances and coordination
rules. The main concepts of DR-BIP are illustrated by four case studies from
the areas of fault-tolerant, mobile and autonomous systems.
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Abstract. Modern systems evolve in unpredictable environments and
have to continuously adapt their behavior to changing conditions. The
“DReAM” (Dynamic Reconfigurable Architecture Modeling) framework,
has been designed for modeling reconfigurable dynamic systems. It pro-
vides a rule-based language, inspired from Interaction Logic, expressive
and easy to use, and encompassing all aspects of dynamicity including
parametric multi-modal coordination with creation/deletion of compo-
nents as well as mobility. Additionally, it allows the description of both
endogenous/modular and exogenous/centralized coordination styles and
sound transformations from one style to the other. The DReAM frame-
work is implemented in the form of a Java API bundled with an execu-
tion engine. It allows to develop runnable systems combining the expres-
siveness of the rule-based notation together with the flexibility of this
widespread programming language.

1 Introduction

The ever increasing complexity of modern software systems has changed the per-
spective of software designers who now have to consider new classes of systems,
consisting of a large number of interacting components and featuring complex
interaction mechanisms. These systems are usually distributed, heterogeneous,
decentralised and interdependent, and are operating in an unpredictable environ-
ments. They need to continuously adapt to changing internal or external condi-
tions in order to efficiently use of resources and to provide adequate functionality
when the external environment changes dynamically. Dynamism, indeed, plays
a crucial role in these modern systems and it can be captured as the interplay
of changes relative to the three features below:

1. the parametric description of interactions between instances of components
for a given system configuration;

2. the reconfiguration involving creation/deletion of components and manage-
ment of their interaction according to a given architectural style;

3. the migration of components between predefined architectural styles.

c© Springer Nature Switzerland AG 2018
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Architecture modeling languages should be equipped with concepts and
mechanisms which are expressive and easy to use relatively to each of these
features.

The first feature implies the ability of describing the coordination of sys-
tems that are parametric with respect to the numbers of instances of types of
components; examples of such systems are Producer-Consumer systems with m
producers and n consumers or Ring systems consisting of n identical intercon-
nected components.

The second feature is related to the ability of reconfiguring systems by adding
or deleting components and managing their interactions taking into account
the dynamically changing conditions. In the case of a reconfigurable ring this
would require having the possibility of removing a component which self-detects
a failure and of adding it back after recovery. Added components are subject to
specific interaction rules according to their type and their position in the system.

The third aspect is related to the vision of “fluid architectures” [1] or “fluid
software” [2] and builds on the concept that applications and objects live in an
environment (we call it a motif ) corresponding to an architectural style that
is characterized by specific coordination and reconfiguration rules. Dynamicity
of systems is modelled by allowing applications and objects to migrate among
motifs and such dynamic migration allows a disciplined, easy-to-implement,
management of dynamically changing coordination rules. For instance, self-
organizing systems may adopt different coordination motifs to adapt their behav-
ior and guarantee global properties.

The different approaches to architectural modeling and the new trends and
needs are reviewed in detailed surveys such as [3–7]. Here, we consider two
criteria for the classification of existing approaches: exogenous vs. endogenous
and declarative vs. imperative modeling.

Exogenous modeling considers that components are architecture-agnostic and
respect a strict separation between a component behavior and its coordination.
This approach is adopted by Architecture Description Languages (ADL) [5]. It
has the advantage of providing a global view of the coordination mechanisms
and their properties. Endogenous modeling requires adding explicit coordination
primitives in the code describing components’ behavior. Components are com-
posed through their interfaces, which expose their coordination capabilities. An
advantage of endogenous coordination is that it does not require programmers
to explicitly build a global coordination model. However, validating a coordina-
tion mechanism and studying its properties becomes much harder without such
a model.

Conjunctive modeling uses logics to express coordination constraints between
components. It allows in particular modular description as one can associate with
each component its coordination constraints. The global system coordination
can be obtained in that case as the conjunction of individual constraints of its
constituent components. Disjunctive modeling consists in explicitly specifying
system coordination as the union of the executable coordination mechanisms
such as semaphores, function call and connectors. Merits and limitations of the
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two approaches are well understood. Conjunctive modeling allows abstraction
and modular description but it involves the risk of inconsistency in case there is
no architecture satisfying the specification.

This paper introduces the DReAM framework for modeling Dynamic Recon-
figurable Architectures. DReAM uses a logic-based modeling language that
encompasses the four styles mentioned above as well as the three mentioned
features. A system consists of instances of types of components organized in a
collection of motifs. Component instances can migrate between motifs depending
on global system conditions. Thus, a given type of component can be subject to
different rules when it is in a “ring” motif or in a “pipeline” one. Using motifs
allows natural description of self-organizing systems (see Fig. 1).

DReAM System
Migration Rules (1,2,3)

Migration Rules (2,3)Migration Rules (1,2)

Motif1
map1

b1 b3 b5
b2 b4

Component instances

@1

Coordination rules

Motif2
map2

b7
b6 b8

Component instances

Coordination rules

Motif3
map3

b9 b10 b11

Component instances

Coordination rules

C. Types:

@2 @3

Fig. 1. Overview of a DReAM system

Coordination rules in a motif involve an interaction part and an associated
operation. The former is modeled as a formula of the first order Interaction Logic
[8] used to specify parametric interactions between instances of types of compo-
nents. The latter specifies transfer of data between the components involved in
the interaction. In this way, we can characterize parametric coordination between
classes of components. The rules allow both conjunctive and disjunctive specifi-
cation styles. We study to what extent a mathematical correspondence can be
established between the two styles. In particular, we will see that conjunctive
specifications can be translated into equivalent disjunctive global specifications
while the converse is not true in general.

To enhance expressiveness of the different kinds of dynamism, each motif is
equipped with a map, which is a graph defining the topology of the interactions
in this motif. To parametrize coordination rules for the nodes of the map, an
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address function @ is provided defining the position @(c) in the map of any
component instance c associated with the motif. Maps are also very useful to
express mobility of components, in which case the connectivity relation of the
map represents possible moves of components. Finally the language allows the
modification of maps by adding or removing nodes and edges, as well as the
dynamic creation and deletion of component instances.

2 Static Architectures - The PIL Coordination Language

We introduce the Propositional Interaction Logic (PIL) [8] used to model inter-
actions between a given set of components. A system model is the composi-
tion of interacting components which are labelled transition systems, where the
labels are port names and the states are control locations. Components are com-
pletely coordination-agnostic, as there is no additional characterization to ports
and control locations beyond their names (e.g. we do not distinguish between
input/output ports or synchronous/asynchronous components).

Definition 1 (Component). Let P and S respectively be the domain of ports
and control locations. A component is a transition system B = (S, P, T ) with

– S ⊆ S: finite set of control locations;
– P ⊆ P: finite set of ports;
– T ⊆ S × P ∪ {idle} × S: finite set of transitions. Transitions (s, p, s′) are

also denoted by s
p−→ s′; p ∈ P is the port offered for interaction, and each

transition is labelled by a different port.

A component has a special port idle /∈ P that is associated to implicit loop transi-
tions {s

idle−−→ s}s∈S. This choice is made to simplify the theoretical development
of our framework. Furthermore it is assumed that the sets of ports and control
locations of different components are disjoint.

A system definition is characterized by a set of components Bi = (Si, Pi, Ti)
for i ∈ [1, n]. The configuration Γ of a system is the set of the current control
locations of each constituent component:

Γ = {si ∈ Si}i∈[1..n] (1)

Given the set of ports P, an interaction a is any finite subset of P such
that no two ports belong to the same component. The set of all interactions is
isomorphic to I(P) = 2P .

Given a set of components B1 . . . Bn and the set of interactions γ, we can
define a system γ (B1, . . . , Bn) using the following operational semantics rule:

a ∈ γ ∀p ∈ a : si
p−→ s′

i

{si}[1..n]
a−→ {s′

i}[1..n]

(2)
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where si is the current control location of component Bi, and a is an interaction
containing exactly one port for each component Bi

1.

2.1 Propositional Interaction Logic (PIL)

Let P and S be respectively the domains of ports and control locations. The
formulas of Propositional Interaction Logic PIL(P,S) are defined by the syntax:

(PIL formula) Ψ :: = p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2 (3)

where π : 2Γ �→ {true, false} is a state predicate. We use logical connectives ∨
and ⇒ with the usual meaning.

The models of the logic are interactions on P for a configuration Γ . The
semantics is defined by the following satisfaction relation |=Γ :

a |=Γ true for any a

a |=Γ p if p ∈ a

a |=Γ π if π(Γ ) = true

a |=Γ Ψ1 ∧ Ψ2 if a |=Γ Ψ1 and a |=Γ Ψ2

a |=Γ ¬Ψ if a �Γ Ψ (4)

A monomial
∧

p∈I p ∧ ∧
p∈J ¬p, I ∩ J = ∅ denotes a set of interactions a s.t.:

1. the positive terms correspond to required ports for the interaction to occur;
2. the negative terms correspond to inhibited ports or to ports to which the

interaction is “closed”;
3. the non-occurring terms are optional ports.

Note that idle ports of components can appear in PIL formulas. Given a com-
ponent with ports P and idle port idle, the formula idle ≡ ∧

p∈P ¬p, while
¬idle ≡ ∨

p∈P p.
As we can describe sets of interactions using PIL formulas, we can redefine

rule (2) as follows, where Ψ is a PIL formula.

a |=Γ Ψ ∀p ∈ a : si
p−→ s′

i

{si}[1..n]
a−→ {s′

i}[1..n]

(5)

2.2 Disjunctive vs. Conjunctive Specification Style

It is shown in [8] how a function β can be defined β : I(P ) → PIL(P, S)
associating with an interaction a its characteristic PIL formula β(a). For example,
if P = {p, q, r, s, t} then for the interaction {p, q}, β({p, q}) = p∧q∧¬r∧¬s∧¬t2.
For the set of interactions γ caused by the broadcast of p to ports q and r,
1 Components Bj not “actively” involved in the interaction will participate with their

idle port s.t. s′
j = sj .

2 For the sake of conciseness, from now on we will omit the conjunction operator on
monomials.
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β(γ) = p¬s¬t. For the set of interactions γ consisting of the singleton interactions
p and q, β(γ) = (p¬q ∨ ¬pq)∧¬r¬s¬t. Finally β({idle}) = ¬p¬q¬r¬s¬t as idle
is the only port not belonging to P .

Note that the definition of the function β requires knowledge of P . This
function can be naturally extended to sets of interactions γ: for γ = {a1, . . . , an},
β(γ) = β (a1) ∨ . . . ∨ β (an).

A set of interactions is specified in disjunctive style if it is described by a PIL
formula which is a disjunction of monomials. A dual style of specification is the
conjunctive style where the interactions of a system are the conjunction of PIL
formulas. A methodology for writing conjunctive specifications proposed in [8]
considers that each term of the conjunction is a formula of the form p ⇒ Ψp,
where the implication is interpreted as a causality relation: for p to be true, it is
necessary that the formula Ψp holds and this defines interaction patterns from
other components in which the port p needs to be involved.

For example, the interaction involving strong synchronization between p1,
p2 and p3 is defined by the formula f1 = (p1 ⇒ p2) ∧ (p2 ⇒ p3) ∧ (p3 ⇒ p1).
Broadcast from a sending port t towards receiving ports r1, r2 is defined by the
formula f2 = (true ⇒ t) ∧ (r1 ⇒ t) ∧ (r2 ⇒ t). The non-empty solutions are the
interactions t, tr1, tr2 and tr1r2.

Note that by applying this methodology we can associate to a component
with set of ports P a constraint

∧
p∈P (p ⇒ Ψp) that characterizes the set of

interactions where some port of the component may be involved. So if a system
consists of components C1, . . . , Cn with sets of ports P1, . . . , Pn respectively, then
the PIL formula

∧
i∈[1,n]

∧
p∈Pi

(p ⇒ Ψp) expresses a global interaction constraint.
Such a constraint can be put in disjunctive form whose monomials characterize
global interactions. Notice that the disjunctive form obtained in that manner
contains the monomial

∧
p∈P ¬p, where P =

⋃
i∈[1..n] Pi, which is satisfied by the

interaction where every component performs the idle action. This trivial remark
says that in the PIL framework it is possible to express for each component
separately its interaction constraints and compose them conjunctively to get
global disjunctive constraints.

It is also possible to put in conjunctive style a disjunctive formula Ψ spec-
ifying the interactions of a system with set of ports P . To translate Ψ into a
form

∧
p∈P (p ⇒ Ψp) we just need to choose Ψp = Ψ [p = true] obtained from Ψ

by substituting true to p. Given the inherent property of supporting the idle
interaction, the translated conjunctive formula will be equivalent to Ψ only if
the latter allows global idling. Consider broadcasting from port p to ports q and
r (Fig. 2). The possible interactions are p, pq, pr, pqr and ∅ (i.e. idling). The dis-
junctive style formula is: ¬p¬q¬r ∨ p¬q¬r ∨ pq¬r ∨ p¬qr ∨ pqr = ¬q¬r ∨ p. The
equivalent conjunctive formula is: (q ⇒ p) ∧ (r ⇒ p) that simply expresses the
causal dependency of ports q and r from p.

The example below illustrates the application of the two description styles.

Example 1 (Master-Slaves). Let us consider a simple system consisting of three
components: master, slave1 and slave2. The master performs two sequential
requests to slave1 and slave2, and then performs some computation with them.
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Fig. 2. Broadcast example: disjunctive vs conjunctive specification

Figure 3 shows the representation of such components.

m00

m10

m01

m11

link1

link2

link2

link1

work

(a) The master component

waiti readyi

bindi

servei

(b) The slavei component

Fig. 3. master and slavei components

The set of allowed interactions γ for the set of components
{master, slave1, slave2} can be represented via the following PIL formula using
the disjunctive style:

Ψdisj = (link1 ∧ bind1 ∧ idles2) ∨ (link2 ∧ bind2 ∧ idles1) ∨ (work ∧ serve1 ∧ serve2)

where idlesi
≡ ¬bindi ∧ ¬servei is the idle port of slavei. Alternatively, the

same interaction patterns can be modeled using the conjunctive style:

Ψconj = (link1 ⇒ bind1) ∧ (link2 ⇒ bind2) ∧ (bind1 ⇒ link1) ∧ (bind2 ⇒ link2) ∧
(work ⇒ serve1 ∧ serve2) ∧ (serve1 ⇒ work) ∧ (serve2 ⇒ work)

The two formulas differ in the admissibility of the “no-interaction” inter-
action; the conjunctive formula Ψconj allows all components to avoid interac-
tion by performing a transition over their idle ports. To allow it, the formula
idlem ∧ idles1 ∧ idles2 must be added to the chain of disjunctions in Ψdisj .
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3 Static Architectures with Transfer of Values: PILOps

We expand the PIL framework to allow data exchange between components. In
order to do so, the definition of component will be extended with local variables
and the coordination constraints will be expressed with PILOps, which expands
PIL to a notation that is inspired by guarded commands. Finally, we extend the
definitions for disjunctive and conjunctive styles and study their connections.

3.1 PILOps Components

Definition 2 (PILOps Component). Let S be the set of all component control
locations, X the set of all local variables, and P the set of all ports. A component
is a transition system B := (S,X, P, T ), where S, P and T are as in Definition 1
and X ⊆ X is a finite set local variables. As for ports and control locations, it is
assumed that sets of local variables for different PILOps components are disjoint.

A system is a set of coordinated components Bi = (Si,Xi, Pi, Ti) for i = [1, n].
The configuration Γ of a system is described by the control locations of its
components, and also the valuation function σ : X �→ V mapping local variables
to values:

Γ =
(
{si ∈ Si}i=[1..n] , σ

)
(6)

Interactions are still sets of ports belonging to different components. Using a
term of PILOps to compose components, the system configuration Γ evolves to
a new configuration Γ ′ by performing an interaction a, represented by Γ

a−→ Γ ′.

3.2 Propositional Interaction Logic with Operations (PILOps)

Let P, X and S respectively be the domains of ports, local variables and control
locations. The terms of PILOps(P,X ,S) are defined by the following syntax:

(PILOps term) Φ :: = Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ :: = p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ :: = ∅ | {δ} | Δ1 ∪ Δ2 (7)

– operators & and ‖ are associative and commutative, and & has higher prece-
dence than ‖;

– π : 2Γ �→ {true, false} is a state predicate;
– δ : 2σ �→ 2σ is an operation that transforms the valuation function σ.

The models of the logic are still interactions a on P, where the satisfaction
relation is defined by the set of rules (4) for PIL with the following extension:

a |=Γ Ψ → Δ if a |=Γ Ψ

a |=Γ Φ1 & Φ2 if a |=Γ Φ1 and a |=Γ Φ2

a |=Γ Φ1 ‖ Φ2 if a |=Γ Φ1 or a |=Γ Φ2 (8)
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In other words, the operators & and ‖ for PILOps terms are equivalent to the
logical ∧ and ∨ from the interaction semantics perspective.

Operations in Δ are treated differently: operations of rules combined with
“&” are either performed all together if the associated PIL formulas hold for
a, Γ or not at all if at least one formula does not, while for rules combined with
the“‖” operator a maximal union of operations satisfying the PIL formulas will
be executed. We indicate the set of operations to be performed for Φ under a, Γ
as �Φ�a,Γ , which is defined according to the following rules:

�Ψ → Δ�a,Γ =

{
Δ if a |=Γ Ψ

∅ otherwise

�Φ1 & Φ2�a,Γ =

{
�Φ1�a,Γ ∪ �Φ2�a,Γ if a |=Γ Φ1 and a |=Γ Φ2

∅ otherwise

�Φ1 ‖ Φ2�a,Γ = �Φ1�a,Γ ∪ �Φ2�a,Γ (9)

Two PILOps terms Φ1, Φ2 are equivalent if, for any interaction a and configuration
Γ , �Φ1�a,Γ = �Φ2�a,Γ .

Axioms for PILOps. The following axioms hold for PILOps terms:

& is associative, commutative and idempotent (10)
Ψ1 → Δ1 & Ψ2 → Δ2 = Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2 (11)
Φ & true → ∅ = Φ (12)
‖ is associative, commutative and idempotent (13)
Ψ1 → Δ ‖ Ψ2 → Δ = Ψ1 ∨ Ψ2 → Δ (14)
Ψ → Δ1 ‖ Ψ → Δ2 = Ψ → Δ1 ∪ Δ2 (15)
false → Δ ‖ Φ = Φ (16)
Absorption: Φ1 ‖ Φ2 = Φ1 ‖ Φ2 ‖ Φ1 & Φ2 (17)
Distributivity: Φ & (Φ1 ‖ Φ2) = Φ & Φ1 ‖ Φ & Φ2 (18)
Normal disjunctive form (DNF): (19)
Ψ1 → Δ1 ‖ Ψ2 → Δ2 = Ψ1 ∧ ¬Ψ2 → Δ1 ‖ Ψ2 ∧ ¬Ψ1 → Δ2 ‖ Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2

Note that PILOps strictly contains PIL as a formula Ψ can be represented
by Φ → ∅. The operator & is the extension of conjunction with neutral element
true → ∅ and ‖ is the extension of the disjunction with an absorption (17) and
distributivity axiom (18). The DNF is obtained by application of the axioms.
Note some important differences with PIL: the usual absorption axioms for dis-
junction and conjunction are replaced by a single absorption axiom (17) and
there is no conjunctive normal form.
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Operations. Operations δ in PILOps are assignments on local variables of com-
ponents involved in an interaction of the form x := f , where x ∈ X is the
local variable subject to the assignment and f : Vk �→ V, is a function on local
variables y1, . . . , yk (yi ∈ X ) on which the assigned value depends.

We can define the semantics of the application of the assignment x := f to
the valuation function σ as:

(x := f) (σ) = σ [x �→ f (σ (y1) , . . . , σ (yk))] (20)

A set of assignment operations Δ is performed using a snapshot semantics.
When Δ contains multiple assignments on the same local variable, the results
are non-deterministic.

A PILOps term Φ is a coordination mechanism that, applied to a set of
components B1 . . . Bn, gives a system defined by the following rule:

a |=Γ Φ ∀p ∈ a : si
p−→ s′

i σ′ ∈ �Φ�a,Γ (σ)
(
{si}[1..n] , σ

)
a−→

(
{s′

i}[1..n] , σ
′
) (21)

where �Φ�a,Γ (σ) is the set of valuation functions obtained by applying the oper-
ations δ ∈ �Φ�a,Γ to σ in every possible order (using a snapshot semantics).

3.3 Disjunctive vs. Conjunctive Specification Style in PILOps

We define disjunctive and conjunctive style specification in PILOps. We associate
with p ⇒ Ψp an operation Δp to be performed when an interaction involving
p is executed according to this rule. We call the PILOps term describing this
behavior the conjunctive term

[
p, Ψp,Δp

]
= (¬p → ∅ ‖ p ∧ Ψp → Δp). Δp may

be executed when p is involved in some interaction; otherwise, no operation is
executed. The conjunction of terms of this form gives a disjunctive style formula.
Consider for instance, the conjunction of two terms:
[
p, Ψp, Δp

]
&

[
q, Ψq, Δq

]
= (¬p → ∅ ‖ p ∧ Ψp → Δp)& (¬q → ∅ ‖ q ∧ Ψq → Δq)

= ¬p ∧ ¬q → ∅ ‖ p ∧ ¬q ∧ Ψp → Δp ‖ q ∧ ¬p ∧ Ψq → Δq ‖ p ∧ q ∧ Ψp ∧ Ψq → Δp ∪ Δq

The disjunctive form obtained by application of the distributivity axiom (18)
is a union of four terms corresponding to the canonical monomials on p and q
and leading to the execution of no operation, either operation Δp, Δq or both.
It is easy to see that the conjunctive and disjunctive forms below are equivalent:

&
p∈P

(¬p → ∅ ‖ p ∧ Ψp → Δp)

�

I∪J=P

( ∧

i∈I

pi ∧ Ψpi

∧

j∈J

¬pj →
⋃

i∈I

Δpi

)
where

⋃

pi∈∅
Δpi

= ∅.

The converse does not hold. Given a disjunctive specification it is not always
possible to get an equivalent conjunctive one. If we have a term of the form
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�
k∈K Ψ → Δk over a set of ports P , it can be put in canonical form and will

be the union of canonical terms of the form
∧

i∈I pi

∧
j∈J ¬pj → ΔIJ . It is easy

to see that for this form to be obtained as a conjunction of causal terms a
sufficient condition is that for each port pi there exists an operation Δpi

such
that ΔIJ =

⋃
i∈I Δpi

. That is, the operation associated with a port participating
to an interaction is the same. This condition also determines the limits of the
conjunctive and compositional approach.

Example 2 (Master-Slaves). Let us expand Example 1 by attaching data transfer
between the master component and the two slave1 and slave2 components. We
assume that the master has a buffer local variable taking the value obtained by
adding the values stored in local variables mem1 and mem2 of the two respective
slaves when they all synchronize through the ports work, serve1, serve2.

The set of allowed interactions γ does not change, but using PILOps we can
characterize the desired behaviour using the disjunctive style as follows:

Φdisj = link1 ∧ bind1 ∧ idle2 → ∅ ‖ link2 ∧ bind2 ∧ idle1 → ∅ ‖
work ∧ serve1 ∧ serve2 → buffer := mem1 + mem2

The conjunctive style version equivalent to Φdisj (except for its allowance of
the idling of all components) is the following:

Φconj =
[
link1, bind1, ∅

]
&

[
link2, bind2, ∅

]
&

[
bind1, link1, ∅

]
&

[
bind2, link2, ∅

]
&

[
work, serve1 ∧ serve2, buffer := mem1 + mem2

]
&

[
serve1, work, ∅]

&
[
serve2, work, ∅]

4 The DReAM Framework

In this Section we present the DReAM framework, allowing dynamism and
reconfiguration which extends the static framework in the following manner.
Components are instances of types of components and their number can dynam-
ically change. Coordination between components in a motif, but also between
the motifs constituting a system, is expressed by the DReAM coordination lan-
guage, a first order extension of PILOps. In motifs coordination is parametrized
by the notion of map which is an abstract relation used as a reference to model
topology of the underlying architecture as well as component mobility.

4.1 Component Types and Component Instances

DReAM systems are constituted by instances of component types. Component
types in DReAM correspond to PILOps components (see Definition 2), while com-
ponent instances are obtained from a component type by renaming its control
locations, ports and local variables with a unique identifier.

To highlight the relationships between component types and their defining
sets we use a “dot notation”:
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– b.S refers to the set of control locations S of component type b (same for
ports and variables);

– b.s refers to the control location s ∈ b.S (same for ports and variables).

Definition 3 (Component instance). Let C be the domain of instance iden-
tifiers C and B = 〈b1, . . . , bn〉 be a tuple of component types where each element
is bi = (Si,Xi, Pi, Ti).

A set of component instances of type bi is represented by bi.C = {bi.c : c ∈ C},
for 1 ≤ i ≤ n and C ⊆ C, and is obtained by renaming the set of control loca-
tions, ports and local variables of the component type bi with c, that is bi.c =
(c.Si, c.Xi, c.Pi, c.Ti). Without loss of genericity, we assume that instance iden-
tifiers uniquely represent a component instance regardless of its type.

The state of a component instance b.c is therefore defined as the pair 〈c.s, c.σ〉,
where c.σ is the valuation function of the variables c.X3. We use the same
notation to denote ports, states and variables belonging to a given component
instance (e.g. c.p ∈ c.P ) and assume that ports of different component instances
are still disjoint sets, i.e. c.P ∩ c′.P = ∅ for c �= c′.

Transitions for component instances c.T are obtained from the respective
component type transitions T via port name substitution, i.e. via the rule:

(s, p, s′) ∈ T

c.s
c.p−−→ c.s′

(22)

4.2 The DReAM Coordination Language

The DReAM coordination language is essentially a first-order extension of PILOps
where quantification over sets of components is introduced.

Given the domain of ports P, the DReAM coordination language is defined
by the syntax:

(DReAM term) ρ :: = Φ | D
{
Φ

} | ρ1 & ρ2 | ρ1 ‖ ρ2

(declaration) D :: = ∀c : m.b | ∃c : m.b | D1,D2

(PILOps term) Φ :: = Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ :: = c.p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ :: = ∅ | {δ} | Δ1 ∪ Δ2 (23)

– Declarations define the context of the term by declaring quantified (∀|∃) com-
ponent variables (c) associated to instances of a given type (b) belonging to
a motif m;

– Operators & and ‖ are the same as the ones introduced in (7) for PILOps;
– π : 2Γ �→ {true, false} is a state predicate on the system configuration Γ ;
– δ : 2Γ �→ 2Γ is an operation that transforms the system configuration Γ .

3 Notice that when writing e.g. c.s we are omitting the explicit reference to the com-
ponent type b and using a shorter notation compared to the complete one, e.g. b.c.s.
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A DReAM coordination term is well formed if its PIL formulas and associated
operations contain only component variables that are defined in its declarations.
From now on, we will only consider well formed terms.

Given a system configuration, a coordination term can be translated to an
equivalent PILOps term by performing a declaration expansion step, by expand-
ing the quantifiers and replacing component variables with actual components.

Declaration Expansion for Coordination Terms. Given that DReAM sys-
tems host finite numbers of component instances, first-order logic quantifiers
can be eliminated by enumerating every component instance of the type speci-
fied in the declaration. We thus define the declaration expansion 〈ρ〉Γ of ρ under
configuration Γ via the following rules:

〈Φ〉Γ = Φ
〈∀c : m.b

{
Φ

}〉
Γ

= &
c∗∈m.b.C

Φ [c∗/c]

〈ρ1 & ρ2〉Γ = 〈ρ1〉Γ & 〈ρ2〉Γ

〈∃c : m.b
{
Φ

}〉
Γ

=
�

c∗∈m.b.C

Φ [c∗/c]

〈ρ1 ‖ ρ2〉Γ = 〈ρ1〉Γ ‖ 〈ρ2〉Γ

〈
D1,D2

{
Φ

}〉
Γ

=
〈
D1

{ 〈
D2

{
Φ

}〉
Γ

}〉

Γ

(24)

where m.b.C is the set of component instances of type b in motif m, and [c∗/c]
is the substitution of the symbol c with the actual identifier c∗ in the associated
term.

By applying (24), any term can be transformed into a PILOps term, whose
semantics is defined in Sect. 3.2:

4.3 Motif Modeling

A motif characterizes an independent dynamic architecture involving a set of
component instances C subject to specific coordination terms parameterized by
a specific data structure called map.

Definition 4 (Motif). Let C be the domain of component instance identifiers.
A motif is a tuple m := 〈C, ρ,Map0,@0〉, where C ⊆ C is the set of component
instances assigned to the motif, ρ is the coordination term regulating interactions
and reconfigurations among them, and Map0,@0 are the initial configurations of
the map associated to the motif and of the addressing function.

We assume that each component instance is associated with exactly one motif,
i.e. m1.C ∩ m2.C = ∅.
A Map is a set of locations and a connectivity relation between them. It is the
structure over which computation is distributed and defines a system of coordi-
nates for components. It can represent a physical structure e.g. geographic map
or some conceptual structure, e.g., cellular structure of a memory. In DReAM a
map is specified as a graph Map = (N,E), where:
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– N is a set of nodes or locations (possibly infinite);
– E is a set of edges subset of N × N that defines the connectivity relation

between nodes.

The relation E defines a concept of neighborhood for components.
Component instances C in a motif and its map are related through the (par-

tial) address function @ : C → N binding each component in C to a node n ∈ N
of the map.

Maps can be used to model a physical environment where components are
moving. If the map is an array N = {(i, j)|i, j ∈ Integers} × {f, o}, the pairs
(i, j) represent coordinates and the symbols f and o stand respectively for free
and obstacle. We can model the movement of b such that @(b) = ((i, j), f) to a
position (i + a, j + b) provided that there is a path from (i, j) to (i + a, j + b)
consisting of free cells.

The configuration Γm of motif m is represented by the tuple

Γm = 〈m.C.s,m.C.σ,m.Map,m.@〉 (25)

≡ 〈{c.s}c∈m.C , {c.σ}c∈m.C ,m.Map,m.@
〉

(26)

By modifying the configuration of a motif we can model:

– Component dynamism: The set of component instances C may change by
creating/deleting or migrating components;

– Map dynamism: The set of nodes or/and the connectivity relation of a map
may change. This is the case in particular when an autonomous component
e.g. a robot, explores an unknown environment and builds a model of it;

– Mobility dynamism: The address function @ changes to express mobility of
components.

Different types of dynamism can be obtained as the combination of these three
basic types.

Reconfiguration Operations. Reconfiguration operations realize component,
map and mobility dynamism by allowing transformations of a motif configuration
at runtime.
Component dynamism can be realized using the following statements:

– create (b, n): creates an instance of type b at node n of the relevant map;
– delete (c): deletes instance c.

Map dynamism can be realized using the following statements:

– add (n): adds node n to the relevant map;
– remove (n): removes node n from the relevant map, along with incident edges

and components mapped to it;
– add (n1, n2): adds edge (n1, n2) to the relevant map;
– remove (n1, n2): removes edge (n1, n2) from the relevant map.

Mobility dynamism can be realized using the following statement:

– move (c, n): changes the position of c to node n in the relevant map.



DReAM: Dynamic Reconfigurable Architecture Modeling 27

Operational Semantics of Motifs. Terms ρ of the coordination language
are used to compose component instances in a motif. The latter can evolve
from a configuration Γm to another Γ ′′

m by performing a transition labelled with
the interaction a and characterized by the application of the set of operations
�〈ρ〉Γm

�a,Γm
iff a |= 〈ρ〉Γm

. Formally this is encoded by the following inference
rule:

a |=Γm
〈ρ〉Γm

Γm
a−→ Γ ′

m Γ ′′
m ∈ �〈ρ〉Γm

�a,Γm
(Γ ′

m)

Γm
a

Γ ′′
m

(27)

– Γm
a−→ Γ ′

m expresses the capability of the motif to evolve to a new configura-
tion through interaction a according to the simple PIL semantics of (5). By
expanding the motif configuration we have indeed:

∀c.p ∈ a : c.s
c.p−−→ c.s′ with c ∈ m.C

〈m.C.s,m.C.σ,m.Map,m.@〉 a−→ 〈m.C.s′,m.C.σ,m.Map,m.@〉
(28)

– �〈ρ〉Γm
�a,Γm

(Γ ′
m) is the set of motif configurations obtained by applying the

operations δ ∈ �〈ρ〉Γm
�a,Γm

in every possible order (evaluated using a snap-
shot semantics).

4.4 System-Level Operational Semantics

Definition 5 (DReAM system). Let B be a tuple of component types and M
a set of motifs. A DReAM system is a tuple 〈B,M,μ, Γ0〉 where μ is a migration
term and Γ0 is the initial configuration of the system.

The migration term μ is a coordination term where the operations δ are of the
form migrate (c,m, n), which move a component instance c to node n in the
map of motif m.

The global configuration of a DReAM system is simply the union of the
configurations of the set of motifs M that constitute it:

Γ =
⊔

m∈M

Γm =

〈
⋃

m

m.C.s,
⋃

m

m.C.σ,
⋃

m

m.Map,
⋃

m

m.@

〉

(29)

where we overloaded the semantics of the union operator to combine different
maps in a bigger one characterized by the union of the sets of nodes, edges and
memory locations.

The system-level semantics is described by the following inference rule:

Γm
am

Γ ′
m for m ∈ M a |=Γ ′ 〈μ〉Γ ′ Γ ′′ ∈ �〈μ〉Γ ′�a,Γ ′ (Γ ′)

Γ
a−→ Γ ′′ (30)
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– Γ ′ =
⊔

m∈M Γ ′
m;

– am ⊆ a is a subset of the global interaction a containing only ports of com-
ponent instances belonging to motif m.

By performing interaction a each motif first evolves on its own according to its
coordination term, and then the whole system changes configuration according
to the migration term μ.

The DReAM coordination language and its semantics have been implemented
in Java. The implementation involves two parts: a Java execution engine with an
associated API and a domain-specific language (DSL) with an IDE for system
modeling in DReAM. Details about the implementation as well as examples of
systems modeled in DReAM are provided in the long version of this paper [9].

5 Related Work

DReAM allows both conjunctive and disjunctive style modeling of dynamic recon-
figurable systems. It inherits the expressiveness of the coordination mechanisms
of BIP [8] as it directly encompasses multiparty interaction and extends previ-
ous work on modeling parametric architectures [10] in many respects. In DReAM
interactions involve not only transfer of values but also encompass reconfigura-
tion and self-organization by relying on the notions of maps and motifs.

When the disjunctive style is adopted, DReAM can be considered as an exoge-
nous coordination language, e.g., an ADL. A comparison with the many ADL’s
is beyond the scope of the paper. Nonetheless, to the best of our knowledge
DReAM surpasses existing exogenous coordination frameworks in that it offers
a well-thought and methodologically complete set of primitives and concepts.

When conjunctive style is adopted, DReAM can be used as an endogenous
coordination language comparable to process calculi to the extent they rely on
a single associative parallel composition operator. In DReAM this operator is
logical conjunction. It is easy to show that for existing process calculi parallel
composition is a specialization of conjunction in Interaction Logic. For CCS [11]
the causal rules are of the form p ⇒ p̄, where p and p̄ are input and output port
names corresponding to port symbol p. For CSP [12], the causal rules imple-
menting the interface parallel operator parameterized by the channel a are of
the form ai ⇒ ∧

aj∈A aj , where A is the set of ports communicating through a.
Also other richer calculi, such as π-calculus [13], that offer the possibility of

modeling dynamic infrastructure via channel passing can be modeled in DReAM
with its reconfiguration operations. Formalisms with richer communication mod-
els, such as AbC [14], offering multicasting communications by selecting groups
of partners according to predicates over their attributes, can also be rendered in
DReAM. Attribute based interaction can be simulated by our interaction mech-
anism involving guards on the exchanged values and atomic transfer of values.

DReAM was designed with autonomy in mind. As such it has some similarities
with languages for autonomous systems in particular robotic systems such as
Buzz [15,16]. Nonetheless, our framework is more general as it does not adopt
assumptions about timed synchronous cyclic behavior of components.
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The relationships between our approach and graph based architectural
description languages such as ADR [17] and HDR [18] will be the subject of
future work.

Finally, DReAM shares the same conceptual framework with DR-BIP [19].
The latter is an extension of BIP with component dynamism and reconfiguration.
As such it adopts an exogenous and imperative approach based on the use of
connectors. A detailed comparison between DReAM and DR-BIP will be the
object of a forthcoming publication.

6 Discussion

We have proposed a framework for the description of dynamic reconfigurable
systems supporting their incremental construction according to a hierarchy of
structuring concepts going from components to sets of motifs forming a system.
Such a hierarchy guarantees enhanced expressiveness and incremental modifia-
bility thanks to the following features:

Incremental modifiability of models at all levels: The interaction rules
associated with a component in a motif can be modified and composed indepen-
dently. Components can be defined independently of the maps and their context
of use in a motif. Self-organization can be modeled by combining motifs, i.e.,
system modes for which particular interaction rules hold.

Expressiveness: This is inherited from BIP as the possibility to directly
specify any kind of static coordination without modifying the involved compo-
nents or adding extra coordinating components. Regarding dynamic coordina-
tion, the proposed language directly encompasses the identified levels of dynam-
icity by supporting component types and the expressive power of first order logic.
Nonetheless, explicit handling of quantifiers is limited to declarations that link
component names to coordinates.

Flexible Semantics: The language relies on an operational semantics that
admits a variety of implementations between two extreme cases. One consists
in precomputing a global interaction constraint applied to an unstructured set
of component instances and choosing the enabled interactions and the corre-
sponding operations for a given configuration. The other consists in computing
separately interactions for motifs or groups and combining them.

The results about the relationship between conjunctive and disjunctive styles
show that while they are both equally expressive for interactions without data
transfer, the disjunctive style is more expressive when interactions involve data
transfer. We plan to further investigate this relationship to characterize more
precisely this limitation that seems to be inherent to modular specification. All
results are too recent and many open avenues need to be explored. The language
and its tools should be evaluated against real-life mobile applications such as
autonomous transport systems, swarm robotics or telecommunication systems.
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Abstract. An ensemble consists of collaborating entities that are able to
adapt at runtime. In this work we consider a particular class of ensem-
bles: an ensemble is formed by a dynamically changing set of entities
which interact through message exchange. The members of an ensemble
are instances of certain process types. They can be dynamically created
to join an ensemble on demand. We propose a dynamic logic to describe
the evolution of ensembles from a global perspective. Using the power
of dynamic logic with diamond and box modalities over regular expres-
sions of actions (involving message exchange and process creation) we
can specify desired and forbidden interaction scenarios. Thus our app-
roach is suitable to write formal requirements specifications for ensemble
behaviours. An ensemble realisation takes a local view by giving a con-
structive specification for each single process type in terms of a process
algebraic expression. Correctness of an ensemble realisation is defined
semantically: its generated ensemble transition system must be a model
of the requirements specification. We consider bisimulation of ensemble
transition systems and show that our approach enjoys the Hennessy-
Milner property. Moreover, we show that local bisimulation equivalence
of process type expressions implies global bisimulation equivalence of the
generated ensembles.

Keywords: Ensemble · Distributed system · Dynamic logic
Interaction scenario · Bisimulation · Hennessy-Milner theorem

1 Introduction

Collective adaptive systems, so-called ensembles, consist of collaborating entities
that are able to adapt at runtime. Often the participants of ensembles have their
own individual properties and objectives; interactions with other participants
may lead to unexpected reactions. Formal methods can help to ensure the quality
of ensemble systems and provide tools for modelling and analysing ensembles.

The ASCENS project has developed a systematic process for engineering
ensembles [14,15]. Abstract programming and modeling is performed in the lan-
guage SCEL [4], which is a generic, high-level language for programming auto-
nomic systems. SCEL systems are built from components and can be dynami-
cally extended by creating new components. Communication in SCEL is asyn-
chronous by accessing knowledge repositories. Another ASCENS instance is
c© Springer Nature Switzerland AG 2018
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the DEECo framework [2]; it comprises an explicit programming construct for
ensembles such that components can dynamically change their membership in
an ensemble. Interaction of ensemble members is implicit and performed via
knowledge exchange triggered by the DEECo infrastructure. Explicit message
passing between ensemble members is proposed by the Helena approach [8,12]
where an ensemble is constituted by a collection of roles played by components
of an underlying component system. The dynamic evolution of an ensemble in
Helena is generated from the role behaviours defined for each role type of an
ensemble structure.

The above mentioned approaches provide constructive descriptions of en-
semble-based systems. In this paper we add an abstract level on top by studying
property-oriented specifications - similarly to “classical” top down development
methodologies where only later concrete realisations are constructed which must
be correct w.r.t. a given requirements specification. We consider a particular class
of realisations: an ensemble realisation consists of a set of concurrent computing
entities which collaborate in peer-to-peer manner through synchronous message
exchange. The members of an ensemble are instances of certain process types.
During ensemble evolution new ensemble participants for certain process types
can be dynamically created to join an ensemble.

Specifications are written in a dynamic logic style [5] and describe collabora-
tions which are typical for a certain ensemble. Our logic is tailored to specify com-
plex interaction behaviours from a global perspective. The logic uses diamond
and box modalities equipped with regular expressions of actions, like sequen-
tial composition and iteration. Atomic actions are either interactions (when an
ensemble participant sends a message to another ensemble member) or the cre-
ation of a new instance for a certain process type. Additionally we introduce
quantification over process instances. Using the power of dynamic logic, with
all boolean connectives around, we can thus specify desired and forbidden inter-
action scenarios. Hence, our approach is suitable to write formal requirements
specifications for global, complex interaction behaviours.

Semantic structures of our logic are ensemble transition systems. The seman-
tics of an ensemble specification is given by the class of its models, i.e. by all
ensemble transition systems which satisfy the axioms of the specification. This
allows us to define a refinement relation between ensemble specifications by
model class inclusion. We define a bisimulation relation between ensemble tran-
sition systems and show that the validity of ensemble sentences is preserved
by ensemble bisimulation. Hence the semantics of an ensemble specification is
closed under bisimulation equivalence. Moreover, for image-finite ensemble tran-
sition systems the validity of the same sentences implies bisimulation; thus the
Hennessy-Milner property holds.

In the last part of this work, we study ensemble realisations and a formal
correctness notion. An ensemble realisation takes a local view and specifies a
behaviour for each single process type in terms of a process algebraic expression.
All instances of the type must respect the prescribed behaviour. The realisation is
correct, if the ensemble transition system generated from it satisfies the (logical)
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sentences of the requirements specification. Then two (bisimulation) equivalent
ensemble realisations implement the same requirements specifications. Finally,
we show that local bisimulation equivalence of process type expressions implies
global bisimulation equivalence of the generated ensembles.

A specification format similar to ensemble realisations has been studied in [7].
There the focus was on open ensembles and their composition. Here we consider
closed ensembles but, in contrast to [7], we study a logic for ensemble spec-
ifications and a correctness notion. This approach is considered as a first step
towards a semantic-based development methodology for ensemble-based systems
which later should also include open ensembles and compositionality results,
like correctness preserving compositions of ensemble realisations. Moreover, our
approach should provide a basis for specifying distributed systems of interacting
components and therefore should still be extended to allow for asynchronous
communication, like asynchronous multiparty session types [10]. In contrast to
our approach, the framework of multiparty session types is strongly influenced
by the π-calculus. It is not aimed at a logic but at process algebraic descriptions
of global interaction protocols from which realisations (in the form of sets of local
types) can be extracted by projection. An approach to specifying multiparty ses-
sions carrying a logical flavour is given by the global types in [3]. Such global
types use also compound actions, like sequential composition and iteration, and,
moreover, are able to specify unconstrained composition of parallel activities.
But they rely on a fixed number of participants and do not support modalities
and negation.

The paper is organised as follows: In Sect. 2 we define syntax and semantics
of ensemble specifications and show the invariance of sentences under ensemble
bisimulation and the Hennessy-Milner property. Then, in Sect. 3 we study correct
ensemble realisations. Some concluding remarks are given in Sect. 4.

2 Ensemble Specifications and Bisimulation Invariance

An ensemble specification describes behavioural properties of a system of col-
laborating entities. It takes a global view of an ensemble focusing on the desired
(and not desired) interactions between the participants of an ensemble and on
the creation of new ensemble members by demand. Syntactically, an ensemble
specification is built over an ensemble signature which defines a set of process
types. A process type does not yet fix a particular behaviour. It only determines
a number of input and output message types which model the interaction capa-
bilities provided by each instance of a process type. Message and process types
are defined mutually recursive as follows:

1. A message type mt is of the form mtnm(pt p) where mtnm is a (unique)
message type name and p is a formal parameter of some process type pt .

2. A process type pt = (ptnm,mtsin,mtsout) has a (unique) process type name
ptnm and sets mtsin and mtsout of input message types and output messages
types respectively supported by pt . We write mtsin[pt ] for mtsin, mtsout[pt ]
for mtsout, and mts[pt ] for mtsin ∪ mtsout.
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An ensemble signature Σ is a set of process types such that for each pt ′ ∈ Σ
and mtnm(pt p) ∈ mts[pt ′] we have pt ∈ Σ. We write mts[Σ] for the set of all
message types used in process types of Σ. In this paper we consider only closed
systems. Therefore we assume that any message type occurring as an input
in mtsin[pt ] for some pt ∈ Σ occurs also as an output in mtsout[pt ′] for some
pt ′ ∈ Σ, and conversely. Thus, for technical simplicity, we do not consider here
open ensembles as in [7] and ensemble composition.

Example 1. Throughout this paper we consider a (simplified version of a) file
transfer ensemble which runs on a peer-2-peer network supporting the dis-
tributed storage of files that can be retrieved upon request. Several peers work
together to request and transfer a file: One peer plays the role of a Requester

of the file, other peers act as Routers and the peer storing the requested file
adopts the role of a Provider. Each kind of role is modelled by a process
type whose instances can be created and run on the peer components. The
idea of the collaboration is that a requester issues a request for the address of
an appropriate provider (message type reqAddr(Requester req)). This address
request is forwarded by routers through the network until a provider is found.
Then the provider address is sent from the last active router to the requester
(sndAddr(Provider prov)). Finally, the requester asks the provider for the file
(reqFile(Requester req)) which is then sent to the requester (sndFile(Provider
prov)). It may also happen that no appropriate provider is found. In this case a
router sends a notification to the requester (notFound(Router rout)). The ensem-
ble signature of the file transfer ensemble is graphically presented in Fig. 1. The
directions of the message type arrows indicate for which process types a mes-
sage type is input or output or both. Note that for Router the message type
reqAddr(Requester req) is input and output since routers may forward address
requests to other routers.1 ��

Fig. 1. Ensemble signature for the file transfer ensemble

To specify collaborations we use atomic actions and composed actions
formed by sequential composition (;), union (+) and iteration (∗) borrowed

1 In this paper we do not model the peer components on which the processes run and
we do not include parameters for transmitting data, like files. For that purpose we
would need the general approach of the Helena framework first introduced in [8].
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from dynamic logic [5]. We assume given a countably infinite set PVar of pro-
cess instance variables. Three kinds of atomic actions are distinguished where
p, q, r ∈ PVar :

(a) a create action q := p.create(pt) describes when a process p creates
a process q of process type pt , (b) a communication action (p → q).mtnm(r)
describes when a process p sends a message to process q transmitting the identity
of process r, and (c) variable assignment p := q assigns the identity of process q to
p. In this paper we assume synchronous, binary communication. This means that
case (b) describes the simultaneous sending and receiving of the message. The
set Act(Σ) of Σ-actions α is defined by the grammar α :: = a | α;α | α + α | α∗

where a is an atomic action. The sets FV(α) of free variables and BV(α) of bound
variables of an action α are defined as expected where binding of a variable q to
process type pt can only happen via a create action q := p.create(pt).

Besides the usual propositional logic constructs ensemble formulas can com-
pare the identity of processes, they can be a modal formula with (composed)
action α or they can be existentially quantified. For any ensemble signature Σ,
the set Fm(Σ) of Σ-formulas is defined by the following grammar

ϕ :: = tt | p = q | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | ∃p:pt .ϕ

where α ∈ Act(Σ) and p, q ∈ PVar . The set FV(ϕ) of free variables of a Σ-
formula ϕ is defined as expected where binding of variables can happen by:
FV(〈α〉ϕ) = FV(α) ∪ (FV(ϕ) \ BV(α)) and FV(∃p:pt .ϕ) = FV(ϕ) \ {p}.

A Σ-sentence is a Σ-formula ϕ without free variables, i.e. FV(ϕ) = ∅. The set
of Σ-sentences is denoted by Sen(Σ). An initialisation sentence is a Σ-sentence
ϕ, which does not contain a modality 〈α〉. The set of initialisation sentences is
denoted by ISen(Σ). We use the usual abbreviations ff = ¬tt, p �= q = ¬(p =
q), ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), [α]ϕ = ¬〈α〉¬ϕ,∀p:pt .ϕ = ¬∃p:pt .¬ϕ.

For the semantic interpretation we use ensemble transition systems. In the
following we assume given, for each ensemble signature Σ, a set PId(Σ) =⋃

pt∈Σ

PId(Σ)pt being the disjoint union of countably infinite sets PId(Σ)pt of

process instance identifiers of type pt ∈ Σ. An ensemble state over Σ is a pair
σ = (pinsts, c) where pinsts =

⋃

pt∈Σ

(pinstspt) is the disjoint union of finite sets

pinstspt ⊆ PId(Σ)pt of currently existing process instances of type pt (similarly
to a heap in object-oriented systems) and c is a global control state. The set
of ensemble states over Σ is denoted by States(Σ). If σ = (pinsts, c) we write
pinsts[σ] for pinsts, pinsts[σ]pt for pinstspt and ctrl[σ] for c.

Two kinds of labels are used on transitions which interpret the syntactic
actions (a) and (b) from above by using process instance identifiers for pro-
cess instance variables. A create label j = i.create(pt) expresses that process
instance i creates a process instance j of type pt ∈ Σ. A label (i → j).mtnm(k)
expresses a message exchange where process instance i is the sender, j is the
receiver and k is the actual parameter of a message with name mtnm. The set
of Σ-labels is denoted by Lab(Σ).
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Ensemble transition systems constrain the use of labels on transitions by
appropriate conditions. For instance, in case (a), when an instance i initiates
process creation it must belong to the currently existing instances of the ensem-
ble, the new instance j cannot belong to the ensemble state before creation and
the instances in the next ensemble state are just the instances before enriched
by j such that j has the desired type pt .

Definition 1 (Ensemble transition system). Let Σ be an ensemble sig-
nature. An ensemble transition system over Σ (shortly Σ-ETS) is a tuple
T = (S, S0,Lab(Σ),−→) such that

– S ⊆ States(Σ) is a set of ensemble states,
– S0 ⊆ S is the set of initial ensemble states, and
– −→⊆ States(Σ) × Lab(Σ) × States(Σ) is a transition relation such that for

all (σ, l, σ′) ∈−→ (briefly denoted by σ
l−→ σ′) the following well-formedness

conditions are satisfied:
(a) if l is of the form j = i.create(pt) then

pinsts[σ′] = pinsts[σ] ∪ {j}, i ∈ pinsts[σ], j /∈ pinsts[σ] and
j ∈ pinsts[σ′]pt .

(b) if l is of the form (i → j).mtnm(k) then
pinsts[σ′] = pinsts[σ] and there exist a message type mt ∈ mts[Σ] of the
form mtnm(pt p) and process types pt ′, pt ′′ ∈ Σ such that

• mt ∈ mtsout[pt ′] ∩ mtsin[pt ′′], i ∈ pinsts[σ]pt′ , j ∈ pinsts[σ]pt′′ , and
k ∈ pinsts[σ]pt .

The class of all ensemble transition systems over Σ is denoted by Trans(Σ).

At next we define a satisfaction relation between ensemble transition sys-
tems and ensemble formulas. For this purpose, we have to consider environments
which map process instance variables to process instance identifiers. Let Σ be
an ensemble signature. An environment is a function e : PVar → PId(Σ). The
set of all environments over Σ is denoted by Env(Σ). Given an environment
e ∈ Env(Σ), a variable p ∈ PVar and a process instance identifier i ∈ PId(Σ),
we can update the environment e at p and write e[p �→ i] for the environment
with e[p �→ i](p) = i and e[p �→ i](q) = e(q) for q �= p.

To define the satisfaction relation for formulas of the form 〈α〉ϕ with
α ∈ Act(Σ) we lift the semantic transition relation −→ of an ETS T to envi-
ronments and use as labels (composed) actions in Act(Σ) containing process
instance variables rather than process instance identifiers. Each ensemble tran-
sition system T = (S, S0,Lab(Σ),−→) gives rise to a transition relation

→→⊆ (States(Σ) × Env(Σ)) × Act(Σ) × (States(Σ) × Env(Σ))

which is constructed according to the rules in Fig. 2.
The first two rules, (create) and (comm), have transitions of T (denoted

by −→) in their premises. The other rules deal with composed actions and have
transitions of the form →→ in their premises. Then, for any state σ of T and
environment e ∈ Env(Σ) the satisfaction of ensemble formulas in Fm(Σ) is
inductively defined by
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Fig. 2. Lifting from semantic labels to syntactic actions and environments

– T, σ, e |= tt,
– T, σ, e |= p = q if e(p) = e(q),
– T, σ, e |= ¬ϕ if not T, σ, e |= ϕ,
– T, σ, e |= ϕ ∨ ψ if T, σ, e |= ϕ or T, σ, e |= ψ,
– T, σ, e |= 〈α〉ϕ if there exists (σ′, e′) ∈ States(Σ) × Env(Σ) such that

(σ, e) α−→→ (σ′, e′) and T, σ′, e′ |= ϕ,
– T, σ, e |= ∃p:pt .ϕ if there exists i ∈ pinsts[σ]pt such that T, σ, e[p �→ i] |= ϕ.

If ϕ ∈ Sen(Σ) is a Σ-sentence the environment is irrelevant and we can write
T, σ |= ϕ. T satisfies a Σ-sentence ϕ, denoted by T |= ϕ, if T, σ |= ϕ for all
initial states σ ∈ S0.

Definition 2 (Ensemble specification and refinement). An ensemble
specification is a triple EnsSpec = (Σ,Φ, φ0) where Σ is an ensemble signature,
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Φ ⊆ Sen(Σ) is a set of Σ-sentences, called axioms of EnsSpec, and φ0 ∈ ISen(Σ)
is an initialisation axiom. A model of EnsSpec is a Σ-ETS which satisfies Φ and
φ0. The semantics of EnsSpec is given by its model class, i.e. by the class

Mod(EnsSpec) = {T ∈ Trans(Σ) | T |= ϕ for all ϕ ∈ Φ ∪ {φ0}}.

An ensemble specification EnsSpec′ = (Σ,Φ′, φ′
0) is a refinement of EnsSpec if

∅ �= Mod(EnsSpec′) ⊆ Mod(EnsSpec).

Example 2. For the file transfer ensemble introduced in Example 1 we formulate
an ensemble specification which requires (a) that there is exactly one initial
state with one process instance of type Requester and no processes instances for
the other types and (b) that a particular primary scenario and an alternative
scenario should be feasible in any realisation of a file transfer ensemble. The
initialisation axiom φ0 is

(∃req:Requester.∀req′:Requester.req′ = req) ∧
¬∃rout:Router.tt ∧ ¬∃prov:Provider.tt

In a primary scenario a requester starts the collaboration by creating a router
process (on its connected peer) and asks the router for the address of a provider.
Routers forward the request by creating a next router until a router is found
who knows where the file is located. This router creates a provider process and
sends the address of the provider to the requester. Finally, the requester asks
the provider for the file and the provider sends the file to the requester. This
scenario is specified as follows:

Let α =
rout:=req.create(Router);(req→rout).reqAddr(req);

(rout’:=rout.create(Router);(rout→rout’).reqAddr(req);rout:=rout’)∗

Let β =
prov:=rout.create(Provider);(rout→req).sndAddr(prov);

(req→prov).reqFile(req);(prov→req).sndFile(prov)

The primary scenario is then specified by the sentence

ϕ1 = ∀req:Requester.〈α;β〉tt

which is the first axiom of our ensemble specification. It allows iterations of
arbitrary (but finite) length for forwarding the request to newly created router
processes until a provider is found.

Let γ = (rout→req).notFound(rout) and ϕ2 = ∀req:Requester.[α]〈β + γ〉tt.
The sentence ϕ2 is the second axiom of our specification. It says that at any time
during a routing phase a successful delivery of the file is possible or a requester
is informed by the current router that no provider is found. Let us still note
that by relaxing the initialisation axiom we could allow the existence of several
requesters and then the semantics of the specification would allow the concurrent
execution of several file transfer ensembles at the same time. ��
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As an equivalence relation for ETSs we use ensemble bisimulation. In contrast
to the usual bisimulation relation between processes, special care must be taken
about the treatment of process instances. Similarly to [7], we abstract from
the particular names of process instances by using, for related ensemble states
σ1 = (pinsts1, c1) and σ2 = (pinsts2, c2), a bijective mapping between pinsts1

and pinsts2. More precisely, we consider process type preserving bijections κ :
pinsts[σ1] → pinsts[σ2] with κ(pinsts[σ1]pt) = pinsts[σ1]pt for all pt ∈ Σ.
Therefore, our bisimulation relation is ternary and relates ensemble states in
accordance with a bijection between their process instances.

Definition 3 (Ensemble bisimulation). Let Σ be an ensemble signature
and T1 = (S1, S1,0,Lab(Σ),−→1) and T2 = (S2, S2,0,Lab(Σ),−→2) be two
ETSs over Σ. Let Δ = {(σ1, σ2, κ) | σ1 ∈ S1, σ2 ∈ S2, κ : pinsts[σ1] →
pinsts[σ2] is bijective and process type preserving}. A bisimulation relation
between T1 and T2 is a relation R ⊆ Δ, such that for all (σ1, σ2, κ) ∈ R the
following holds:

(1.1) If σ1
j1=i1.create(pt)−−−−−−−−−−−→1 σ′

1 then there exist σ′
2 and

σ2
j2=κ(i1).create(pt)−−−−−−−−−−−−−→2 σ′

2 such that (σ′
1, σ

′
2, κ

′) ∈ R with κ′ = κ[j1 �→ j2].

(1.2) If σ1
(i1→j1).mtnm(k1)−−−−−−−−−−−−→1 σ′

1 then there exist σ′
2 and

σ2
(κ(i1)→κ(j1)).mtnm(κ(k1))−−−−−−−−−−−−−−−−−−→2 σ′

2 such that (σ′
1, σ

′
2, κ) ∈ R.

(2.1) If σ2
j2=i2.create(pt)−−−−−−−−−−−→2 σ′

2 then there exist σ′
1 and

σ1
j1=κ−1(i2).create(pt)−−−−−−−−−−−−−−→1 σ′

1 such that (σ′
1, σ

′
2, κ

′) ∈ R with κ′ = κ[j1 �→ j2].

(2.2) If σ2
(i2→j2).mtnm(k2)−−−−−−−−−−−−→2 σ′

2 then there exist σ′
1 and

σ1
(κ−1(i2)→κ−1(j2)).mtnm(κ−1(k2))−−−−−−−−−−−−−−−−−−−−−−−→1 σ′

1 such that (σ′
1, σ

′
2, κ) ∈ R.

T1 and T2 are bisimulation equivalent, denoted by T1 ∼e T2, if there exists
a bisimulation relation R ⊆ Δ between T1 and T2 such that for all σ1 ∈ S1,0

there exists σ2 ∈ S2,0 and κ0 such that (σ1, σ2, κ0) ∈ R and, conversely, for all
σ2 ∈ S2,0 there exists σ1 ∈ S1,0 and κ0 such that (σ1, σ2, κ0) ∈ R.

The following theorem shows that satisfaction of sentences is invariant under
ensemble bisimulation. The proof relies on the fact that any bisimulation relation
between two ETSs T1 and T2 can be lifted from semantic labels to syntactic
labels, i.e. actions in Act(Σ). If in addition, the two ETSs are image-finite2

then also the converse holds. Thus the modal logic for ensembles satisfies the
Hennessy-Milner property.

Theorem 1 (Invariance theorem). Let T1 and T2 be two Σ-ETSs.

(1) If T1 ∼e T2 then for any ensemble sentence ϕ ∈ Sen(Σ), T1 |= ϕ iff
T2 |= ϕ.

2 This means that in any state there are at most finitely many outgoing transitions
labelled with the same action. In particular, this means for any create action (see
Definition 1(a)), the instance j should be chosen from a finite set of new instances.
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(2) If T1 and T2 are image-finite then the converse of (1) holds, i.e. if for any
ensemble sentence ϕ ∈ Sen(Σ), T1 |= ϕ iff T2 |= ϕ holds, then T1 ∼e T2.

As a consequence of (1), the model class Mod(EnsSpec) of an ensemble spec-
ification EnsSpec is closed under bisimulation equivalence.

3 Ensemble Realisations

In this section we propose a method to realise an ensemble specification in a con-
structive way following the ideas of the specification method in [7]. An ensem-
ble realisation defines, for each process type pt of an ensemble signature Σ, a
behaviour which must be respected by all instances of pt participating in an
ensemble. Behaviours are described by process type expressions which are built
from the process constructs and actions defined by the following grammar3

P :: = nil | a.P | P1 + P2 | pt
a :: = X := create(pt) | ?mtnm(ptX) | !Y.mtnm(X)

where pt ranges over the process types in Σ, X and Y are process instance
variables and mtnm ranges over the names of message types in mts[Σ]. The
set of process type expressions over Σ is denoted by PExp(Σ). nil denotes the
null process, aP action prefix, P1 + P2 nondeterministic choice and pt process
type invocation. In contrast to atomic ensemble actions in Act(Σ), process type
expressions contain receive and send actions seen from the perspective of a sin-
gle process. A receive action ?mtnm(ptX) expresses that the current process is
enabled to receive a message with an actual value of type pt which will be stored
in the local variable X of the process. A send action !Y.mtnm(X) expresses
that the current process is enabled to send a message to the process instance,
denoted by (local) variable Y , carrying the current value of variable X as actual
parameter. A create action X := create(pt) expresses that the current process
instance is enabled to create an instance of type pt which will be stored in the
local variable X of the current process. Create actions and receive actions open
a local scope for variable X. We assume that the names of those variables are
different from the predefined variable self which can always be used as an actual
parameter to transmit the identity of a process instance for possible callbacks.

Definition 4 (Ensemble realisation). An ensemble realisation is a triple
EnsReal = (Σ,Reals , pinsts0) where Σ is an ensemble signature, Reals = {pt =
Ppt | pt ∈ Σ} is a set of process type realisations with Ppt a process type expres-
sion over Σ, and pinsts0 is a non-empty set of process instance identifiers which
exist in the initial state of ensemble execution.

The semantics of an ensemble realisation is given in terms of an ensemble
transition system. In this case the global control state c of an ensemble state

3 A more expressive syntax dealing with data and guards can be found in [12].
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σ = (pinsts, c) has a particular form: it is a function c : pinsts → LStates(Σ)
assigning to each currently existing process instance i ∈ pinsts a local state. A
local state is a pair l = (v, P ) where v is valuation of the local variables of a
process instance i and P is a process expression recording the current computa-
tion state of i. We write val[l] for v and proc[l] for P . The set of all local states
over Σ is denoted by LStates(Σ). A local variable valuation is a partial function
v : PVar → PId(Σ). The definition domain of v contains the currently available
local variables of a process instance. The set of all local variable valuations is
denoted by Val(Σ). Given a valuation v, a variable X ∈ PVar and a process
instance identifier i ∈ PId(Σ), we can update v at X and write v[X �→ i] for
the valuation with v[X �→ i](X) = i and v[X �→ i](Y ) = v(Y ) for Y �= X. The
valuation with empty definition domain is denoted by ∅.

An ensemble realisation EnsReal = (Σ,Reals , pinsts0) determines the set of
process instances when the ensemble starts its execution. This set determines
also a starting control state of the ensemble: an initial ensemble realisation state
of EnsReal is the state σ0 with pinsts[σ0] = pinsts0 and, for all pt ∈ Σ and
i ∈ pinsts[σ0]pt , ctrl[σ0](i) = (∅[self �→ i], Ppt) if pt = Ppt ∈ Reals .

In contrast to ensemble specifications (with loose semantics), an ensemble
realisation determines a unique ensemble transition system. Structural opera-
tional semantics (SOS) rules define the allowed transitions. We pursue an incre-
mental approach, similar to the Fork Calculus in [6], by splitting the semantics
into two different layers. The first layer describes how a process type expression
evolves according to the given constructs for process type expressions. The sec-
ond layer builds on the first one by defining the evolution of ensemble realisation
states.

Evolution of process type expressions: The first level formalises the progress
of a single process expression. Figure 3 defines the SOS rules inductively over the
structure of process type expressions. The rule for process type invocation relies
on a given process type realisation, which is given in an ensemble realisation.
We use the symbol ↪−→ for transitions on the process type expression level.

Fig. 3. SOS rules for process type expressions
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Evolution of Ensembles: On the next level we consider ensemble realisation
states and their transitions denoted by −→ in Fig. 4.

Fig. 4. Semantics of ensemble realisations

The transitions in Fig. 4 are derived as follows: create actions X :=
create(pt) on the process type level cause the creation of a new process instance
in a given ensemble state σ = (pinsts, c). We use the notation fresh(σ, pt) to refer
to the choice of a unique element in PIdpt which does not belong to pinstspt .
Since PIdpt is countably infinite and pinstspt is finite this is always possible.
Let us now consider communication inside an ensemble by message exchange.
In the semantics presented here we use synchronous, binary communication -
rule (comm) - where message output and message input are performed simul-
taneously when process instances are able to communicate. If several process
instances are able to communicate the choice is non-deterministic. If desired, it
would be straightforward to adapt our formalism to asynchronous communica-
tion by introducing message buffers as done in [9]. Also broadcast communication
could be easily defined by adjusting the rules appropriately.

Definition 5 (Semantics of an ensemble realisation). The semantics of
an ensemble realisation EnsReal = (Σ,Reals , pinsts0) is the ensemble transition
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system [[EnsReal ]] = (S, S0,Lab(Σ),−→) where S0 = {σ0} consists of the ini-
tial ensemble realisation state of EnsReal and S, −→ are generated from S0 by
applying the rules in Figs. 3 and 4.

Note that the rules in Fig. 4 guarantee the constraints for an ensemble tran-
sition system and preserve the condition for ensemble realisation states. In rule
(create) the local variable X of i is introduced (or updated) by assigning the
new process instance identifier to X. Similarly, in rule (comm) the local variable
X of j is introduced (or updated) by assigning the actual parameter k to X.

Two ensemble realisations EnsReal1 and EnsReal2 with the same signature
Σ are equivalent if [[EnsReal1]] ∼e [[EnsReal1]].

Our semantic notions lead to an obvious correctness definition for ensemble
specifications and their realisations:

Definition 6 (Correct ensemble realisation). Let EnsSpec = (Σ,Φ,
pinsts0) be an ensemble specification and EnsReal = (Σ,Reals , pinsts0) be an
ensemble realisation over the same signature Σ. EnsReal is a correct realisation
of EnsSpec if [[EnsReal ]] ∈ Mod(EnsSpec).

Example 3. We provide a realisation of the file transfer ensemble which satisfies
the specification in Example 2. For each of the three process types a behaviour
is defined in Fig. 5. Initially there exists exactly one process instance of type
Requester and no instances for the other process types.4 ��

Fig. 5. Realisation of the file transfer ensemble

As an immediate consequence of Theorem 1(1) we obtain:

Theorem 2 (Equivalent correct ensemble realisations). Let EnsSpec be
an ensemble specification and EnsReal1 and EnsReal2 be two equivalent ensemble
realisations. Then EnsReal1 is a correct realisation of EnsSpec if and only if
EnsReal2 is a correct realisation of EnsSpec.
4 A formal proof that the realisation is correct must be done by semantic reasoning.

Other verification techniques are an objective of future research.
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It remains the question how to prove that two ensemble realisations are equiv-
alent? The idea is to verify that for each process type pt ∈ Σ the local process
type expressions used for the behaviour definition of pt in the two ensemble
realisations are bisimulation equivalent in the usual sense of process algebra
where bisimulation is defined as follows: a bisimulation relation for process type
expressions over Σ is a relation Rp ⊆ PExp(Σ) × PExp(Σ), such that for all
(P1, P2) ∈ Rp the following holds:

(1) If P1
a

↪−→ P ′
1 then there exist P ′

2 and P2
a

↪−→ P ′
2 such that (P ′

1, P
′
2) ∈ Rp.

(2) If P2
a

↪−→ P ′
2 then there exist P ′

1 and P1
a

↪−→ P ′
1 such that (P ′

1, P
′
2) ∈ Rp.

Two process type expressions P1, P2 ∈ PExp(Σ) are bisimulation equivalent,
denoted by P1 ∼p P2, if there exists a bisimulation Rp with (P1, P2) ∈ Rp.

Finally we show that local bisimulation equivalence of process type
behaviours defined in ensemble realisations EnsReal1 and EnsReal2 implies
global bisimulation equivalence of their generated ensemble transition systems.

Theorem 3 (Proving equivalence of ensemble realisations). Let
EnsReal1 = (Σ,Reals1, pinsts1,0) and EnsReal2 = (Σ,Reals2, pinsts2,0) be two
ensemble realisations with Reals1 = {pt = P1,pt | pt ∈ Σ} and Reals2 =
{pt = P2,pt | pt ∈ Σ} resp. If P1,pt ∼p P2,pt for all pt ∈ Σ and if
there exists a process type preserving bijection κ : pinsts1,0 → pinsts2,0, then
[[EnsReal1]] ∼e [[EnsReal2]].

Proof. Let [[EnsRealk]] = (Sk, Sk,0,Lab(Σ),−→k) be the ETSs of EnsRealk, k =
1, 2. Then the following relation B is an ensemble bisimulation. B is defined by
(σ1, σ2, κ) ∈ B if the following three conditions hold:

(1) σ1 ∈ S1, σ2 ∈ S2,
(2) κ : pinsts[σ1] → pinsts[σ2] is bijective and process type preserving ,
(3) for all i ∈ pinsts[σ1] and all (v1, P1), (v2, P2) with ctrl[σ1](i) = (v1, P1) and

ctrl[σ2](i) = (v2, P2) we have
– P1 ∼p P2,
– the domains of v1 and v2 coincide, and
– κ(v1(X)) = v2(X) for all X in the domain of v1.

��

4 Conclusion

We have presented a first step towards the formal development of ensemble-based
systems. Abstract requirements specifications are based on a novel logic which
uses ideas from dynamic logic and allows us to express collaborations from the
global perspective. The logic should be useful for any kind of distributed systems
where cooperation is a central requirement. It is also useful to specify allowed
and forbidden scenarios which underlie use case driven approaches to software
development. Our logic differs from temporal logics (as used e.g. in [9] for the
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verification of Helena models) since it focuses on interactions and scenarios. Of
course, more case studies are still needed to validate the power of our logic. For
the concrete construction of ensembles we consider ensemble realisations. They
define a process algebraic expression for each process type used in an ensemble
specification. Ensemble realisations and can be directly implemented using, for
instance, the implementation framework of Helena [13].

Our approach focuses on ensembles as first-class artifacts following a clear
separation between syntax and semantics. In particular, we have shown that the
sentences of our logic are invariant under ensemble bisimulation. Moreover we
have provided a criterion for proving equivalence of ensemble realisations. There
are many aspects for future research: extending the approach to components
which can play different active roles as in Helena (and thus being adaptive by
changing roles [11]), studying open ensembles and their composition along the
lines of [7], investigating more proof methods and developing tools.

Another direction concerns the support of asynchronous, multi-cast mes-
sages. A particular powerful approach is attribute-based communication which
determines communication partners dynamically by evaluating predicates over
component attributes; see [1]. Such communication can be seen as a volatile
ensemble. Our approach, however, considers ensembles of longer durations and
more complex collaborations performed by an ensemble to pursue a particular
goal. Currently an ensemble specification describes the behaviour of one kind
of ensemble but we are interested to take up the ideas for more flexible forma-
tions of ensembles and to build a logical framework which supports the dynamic
creation of ensembles and their cooperation.

Acknowledgement. We are grateful to the reviewers of this paper for their useful
hints and remarks.
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Abstract. The emergence of Distributed Ledger Technologies and
Cryptocurrencies impacts on how transactions of various assets between
parties in highly dynamical settings – such as the Internet of Things or
Smart Cities – are modelled and implemented in several ways. We study
this transition from centralized accounts with explicit owners towards
distributed ledgers with challenge-based transaction access control. We
capture the transition in a series of linked formal specifications in Z ,
enabling the comparison between the two settings. In particular, we pro-
vide a reference model and then refine it for the respective settings.

Keywords: Distributed ledger · Blockchain · Z · Formal specification

1 Introduction

The interconnected participants of the Internet of Things – such as humans,
institutions, personal devices, sensors, containers or vehicles – autonomously
exchange values, material goods, services, privileges and data in order to reach
individual or common goals. These transactions of assets are recorded in ledgers,
and new transactions are authorised based on existing records. In highly dynamic
settings, such as in Smart Cities, participants may join and leave, and thus
the topology of the underlying network is subject to change. Moreover, partic-
ipants cooperate on a case by case basis instead of long-lasting partnerships,
forming ensembles of components [5,17]. As a result, there is a general lack of
trust between the participants, and the synchronisation of local ledgers is thus
realised by a combination of double-entry bookkeeping and settlement through
centralised trusted instances (cf. Fig. 1a).

Distributed Ledger Technologies [2,9–12,14–16,18] aim at reducing these syn-
chronisation efforts: A distributed ledger is maintained by a peer-to-peer network
based on a consensus protocol and cryptographic security measures tailored to
the given use case. Generally, the goal is to allow the participants to prove the
c© Springer Nature Switzerland AG 2018
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validity of a transaction without requiring centralised trusted parties. The role
of the distributed ledger varies based on the use case: In some cases, such as
cryptocurrencies, the ledger stores the full transaction, and the participants of
the transaction merely hold pointers and associated cryptographic keys in a
wallet. In other cases, particularly for transferring more complex assets, the dis-
tributed ledger holds merely hashes of entries of local ledgers, where the actual
transaction data is stored.

account

account

Alice BobTransaction

current state
transaction history

double-entry
bookkeeping

current state
transaction history

Alice BobTransaction t6

Transaction Ledger

t1 t2 t3 t4 t5 t6

Transaction t2

Transaction t5

Fig. 1. Different approaches to transaction management

While local ledgers and centralised trusted parties rely on accounts to control
access to assets, distributed ledgers identify participants differently (c.f. Fig. 1b):
In its most basic form, a challenge – a function in a predefined programming
language – is specified in order to guard an asset: Whoever can provide a solu-
tion for the challenge gains access. Usually, this solution contains cryptographic
methods such as hashing a public key or checking a digital signature. Smart
contracts or chain code further generalise this concept.

Hence, developing systems based on distributed ledgers varies from more tra-
ditional implementations. Moreover, given a system design for both approaches,
it is a non-trivial task to define – let alone decide – their equivalence. This is fur-
ther impeded by a plethora of implementations for distributed ledgers, varying
in scope, features and maturity.

Our contribution is to construct a link between the two approaches by a series
of specifications in the Z notation [1,13]: We start with a reference specification
(Sect. 3) that captures the common concepts and serves as a ‘greatest common
divisor’ of the two approaches. Then, we refine the specification for the provider-
based and distributed setting in Sects. 4 and 5, respectively. The main focus of
our work is the Z -specification of distributed ledgers in Sect. 5.

The scope for our specification is explained by using an example in Sect. 2.
We present first insights in Sect. 6, discuss related work in Sect. 7, and conclude
in Sect. 8.
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2 Scope

In this section, we describe the scope of our series of specifications in Sects. 3, 4
and 5 by means of an example, culminating in the lifecycle of a transaction as
visualised in Fig. 2.

pending

checked authorised

acceptedrejected

pre post

pre authorisation

consensus

logical 
inconsistency

precondition 
not met

authorisation
failed

consensus
failed

Fig. 2. The life cycle of a transaction

A transaction describes the usage or transfer of assets (e.g. material goods,
services, privileges, data) by participants (e.g. persons, institutions, cars, devices)
of a process. For example, consider an auction process [7, Chap. 9] auction where
Alice offers a product that other participants can bid on. This process contains
at least two transactions: A transaction bid where a bidder puts a bid on the
item, and a transaction payment, where the auction winner pays for the item
and gains an owner certificate.

As determined by the process and its context, in order to be consistent,
a transaction t requires a set •t of preconditions to be fulfilled. Similarly, a
transaction yields a set t• of postconditions. A precondition or postcondition
could require or indicate access to a specific asset, membership in a group, or
compliance to law. Whether the preconditions fit to the postconditions depends
on the underlying business logics.

Continuing our example, we first regard the transaction payment which will
occur after the auction winner Bob has been chosen: Bob transfers funds to
Alice. Presumably, there is a precondition solvency ∈ •payment stating that Bob
has access to the funds to be transferred, and a postcondition transferred ∈
payment• stating that Bob and Alice have lost and gained access to these funds,
respectively. Now, consider the earlier transaction bid, describing Bob’s bid on an
item offered by Alice. Here, both solvency ∈ •bid and solvency �∈ •bid are generally
feasible, and the choice depends on the exact use case. However, bidding could
require to be registered to the auction platform, so we could have a precondition
registered ∈ •bid stating that Bob is registered to the platform.

The preconditions of a transaction are generally evaluated on the global state
of a system. In a concurrent system, the preconditions likely only refer to the
local states of parts of the system. For instance, the precondition solvency could
be evaluated on some account of Bob at a specific bank – the state of other
banks or other accounts at the same bank do not influence the precondition.
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Following current developments in cryptocurrencies, solvency could instead be
evaluated on a ledger holding the transaction history of all transactions regard-
ing a given cryptocurrency. The precondition registered could be authorised by
checking user credentials, or based on the postconditions of a previously occurred
transaction register found in a ledger.

Apart from the preconditions of a transaction, the execution of a transaction
may require authorisation by network participants: Usually, access to assets is
restricted in certain ways. Sticking to the example process auction, the trans-
actions bid and payment must at least be authorised by Bob, and there could
be further restrictions: For instance, buying the item could require a license or
minimum age. If Bob transfers the funds from a bank account, he likely has
to provide credentials to prove that he owns the account in question. If Bob
instead transfers the funds in a ledger-based cryptocurrency, the authorization
process will probably look different: Instead of providing credentials, Bob will
instead solve a cryptographic challenge in order to authorise the transaction, for
instance by digitally signing a message or providing a zero-knowledge proof [8].

In a concurrent system, it could occur that a precondition of a transaction
is no longer satisfied after the transaction has been authorised in parallel. For
instance, Bob could buy more items than he could pay for on different platforms
at the same time, or could end his registration with the platform at the time
of the bidding. Thus, consensus between all relevant participants is not instant,
and thus an authorised transaction could become invalid and a roll back could be
required, possibly even invalidating further transactions. For instance, if payment
requires that a bid has been placed before, an invalidated bid may also invalidate
a subsequent payment. More so, if Bob would sell the owner certificate gained
by payment, the invalidation of the bid could issue a chain of transactions to be
invalidated.

We can summarise the life cycle of a transaction (cf. Fig. 2) by the states
pending, where some network participant has communicated the transaction to
the network, checked when the logic between preconditions and postconditions
has been confirmed, verified when the preconditions have been verified on the
respective local states, authorised after the required participants have given their
agreement, and accepted when consensus is reached in the network is reached
that it will not be invalidated. Before it is accepted, the transaction can become
rejected. Whether a rejected transaction is kept on the network is up to the
implementation and can depend on the last non-rejected state of the transaction.

The state of a transaction varies based on the observer, that is, it is differ-
ently perceived by different network participants. Hence, the current state of a
transaction is effectively a function from the network participants into the set of
states of a transaction, called a marking. Consensus then means that the state of
the transaction is the same for every network participant. We note that rejection
of already accepted transactions could be required in certain use cases. However,
this can be implemented by further transactions describing the roll back.
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3 A Reference Specification

We introduce a reference specification explaining the common concepts, from
which we will derive further refined specifications. For readers familiar with
distributed systems, the contents of this section may seem unsurprising and not
interesting on its own. However, we note that the intuition behind it is to serve
as a greatest common divisor of the two approaches compared in this paper.

3.1 Preliminaries

We formalise our specification in the Z -notation [1,13]. The notation is based on
set theory and first order logics. In addition, every object a in Z has exactly one
type T (usually, a given set, a powerset of a type, a partial function over types,
or a cartesian product of types), denoted by a : T. In the interest of space, we
omit a detailed description of the notation and recall specific notions only when
necessary.

Throughout our specification, we use the following given sets as non further
described types:

[NAME,CONDITION,DATA]

Intuitively, NAME consists of unique names for network participants,
CONDITION captures logical conditions over non-further specified domains, and
DATA describes arbitrary, non-further described data objects.

3.2 Networks and Participants

Our specification will start from networks of participants, will specify transac-
tions and their possible states as observed by participants.

A network consists of a set of participants, on our level of abstractions, only a
set of names, denoted by participants : PNAME. The set may change over time,
specifying joining and leaving participants, i.e. we may have participants ′ �=
participants.

Operations for joining and leaving can be mimicked by the appropriate set
operations, and are omitted in interest of space.

3.3 Transactions and Their States

A transaction describes the transfer of assets between partners, requiring a set
of preconditions to be fulfilled and promising a set of postconditions. A trans-
action is given by its set of partners, its set pre of preconditions, its set post of
postconditions, and a data field data. As we do not want to restrict the type
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of preconditions and postconditions at this point, we introduce the given sort
CONDITION.1 We specify that each partner must also be a network participant.

We further require immutability of sets of partners, preconditions and post-
conditions. In the schema TransactionImmutability , ΔTransaction is the con-
junction of schema transaction and the variant of Transaction where each object
a in Transaction is replaced by a ′, modeling a state change from a to a ′.

In a distributed system, the state of a transaction is not a property of the
transaction, but differs based on the observing participant. We first define pos-
sible transaction states and transitions between this states: A transaction state
can be either pending, checked, verified, authorised, accepted or rejected, denoted
by the free type declaration TSTATE ::= pnd | chk | ver | aut | acc | rej . The
state transitions must follow the binary relation �: TSTATE ↔ TSTATE, which
we define as in Fig. 2. In the following schema, (�1 ∪�2)∗ denotes the reflexive,
transitive closure of �1 ∪ �2.

A marking describes the state of a given transaction as observed by the
respective network participants. We specify this by a partial function marking :
NAME �→ TSTATE from the set of names to the set of transaction states, where
the domain dom marking of marking is a subset of the network participants.
Intuitively, participants \ dom marking is the set of network participants not
knowing the transaction, and thus not holding a state for it.

1 We remark that the preconditions and postconditions of a transaction are not to be
confused with the preconditions and postconditions of a Z schema. Identifying the set
pre with pre Transaction would require to know the preconditions at specification.
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We require that once a transaction is known to a participant, it stays known
unless the participant leaves the network. We require that each participant starts
the lifecycle of the transaction with pending, and follows the state order relation.

So far, the preconditions and postconditions of a transaction are not related.
The intuition is that transactions containing arbitrary combinations of precon-
ditions and postconditions may be submitted to the network. Other participants
will then check whether the postconditions of a transaction are backed by its
preconditions. We specify this by defining a check criterion – a set of pairs of
sets of preconditions and postconditions – and require it to be fulfilled for every
step from pnd to chk . We note that the set checked may be infinite, and thus
may in practice rather be implemented by a predicate.

4 Refinement 1: Account-Based Setting

We refine the reference specification from Sect. 3 for a provider-based system. In
a provider-based system, some network participants are providers which manage
the accounts.
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An account is managed by a provider, and owned by a set of network partic-
ipants. We specify states of accounts merely by a given set ACCOUNT STATE:

In this setting, a transaction is based on a set of accounts, whose state is mod-
ified by the transaction. The preconditions thus require certain account states,
and the postconditions promise certain account states.

We note that the outcome of a transaction is ‘deterministic’ if each ϕ ∈ post
is singleton.

We require that the accounts in a transaction are immutable.

Now, we refine the schema Marking :

A transaction in a provider-based system will only be verified if the precon-
ditions are fulfilled.

A provider will only accept if the providers of all accounts relevant to the
transaction have at least authorised the transaction. It is assumed that after all
providers have accepted the transaction, the postconditions hold.



56 J. Sürmeli et al.

5 Refinement 2: Distributed Ledgers

In this section, we refine our reference specification in three steps: We first model
transactions with their preconditions and postconditions in Sect. 5.1. We then
turn to specifying distributed ledgers containing such transactions in Sect. 5.2.
Finally, we discuss classes of distributed ledgers in Sect. 5.3.

5.1 Modelling Transactions

In a distributed ledger, each precondition of a transaction points to a post-
condition of a another transaction2. Hence, we require a scheme for uniquely
referencing postconditions. As the system is distributed, the address of a post-
condition is (at least partially) determined during insertion into the ledger. In
our specification, the address of a postcondition consists of two parts:

1. A local postcondition index i: Each postcondition of a transaction has an
index, which is unique inside the transaction. However, we can have several
different transactions with the same postcondition indices. For instance, the
postconditions could be numbered. We note that the index can be chosen
when the transaction is created, and without knowledge of other transactions.

2. A global transaction address a: Each transaction is assigned a unique address
upon insertion into the distributed ledger. For instance, one could use a times-
tamp of the insertion time, or a hash of the transaction itself. We note that
the transaction address is not necessarily known at the time of transaction
creation, but is determined during the insertion into the ledger.

Together, a and i form a globally unique identifier (a, i) for the postcondition
with index i of the transaction with address a.

As postconditions determine usage or consumption rights for assets, we need a
control mechanism to determine who may use a postcondition as a precondition.
To this end, each postcondition is guarded by a data predicate called a challenge.
Every input data evaluating the challenge to true is called a solution. Whoever
can provide a solution for the challenge of a postcondition ϕ may use ϕ for one

2 Technically, we can imagine preconditions referencing postconditions which are not
stored in the distributed ledger. We assume such ‘external’ preconditions to be stored
in the data part of the transaction.
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of their preconditions. In existing implementations, verifying a given solution is
less complex than finding one. In fact, guessing a solution is often assumed to
be intractable.

Summarising, we specify each postcondition by a pair (i �→ d) of an index
i ∈ INDEX and some data d ∈ DATA describing the postcondition. We specify
uniqueness for indices by specifying the set post of postconditions of a transaction
as a binary partial function post : INDEX �→ DATA instead of a set of pairs3.
Each postcondition (i �→ d) is guarded by a challenge challenge(i), that is, a
function DATA → B.

Accordingly, each precondition is pair (a, i) of a transaction address a, and
a postcondition index i . Moreover, for each precondition (a, i), the transaction
holds data proposal(a, i) as a proposed solution for the challenge guarding the
respective postcondition, that is, the postcondition with index i of transaction
with address a. We stress that proposal(a, i) is not necessarily a solution.

In addition to these refined notions of preconditions and postconditions, a
transaction in a distributed ledger offers a set of promises: Every pair (i , s) of
a postcondition index i and a solution s of post(i) is a promise. We note that
introducing this set is simplifying the formal model; however, the set of promises
is not to be implemented.

We note that the solution set of a challenge could be empty, that is, we could
have c(q) = false for all q : DATA. In this case, the postcondition can never be
used as a precondition, and so its index does not occur in the set of promises.
This edge case is used in some implementations such as Bitcoin to store arbitrary
data inside postconditions.

5.2 Modelling the Distributed Ledger

A distributed ledger is a collection of transactions. As explained earlier, each of
these transactions is given a unique address when inserted. Hence, we specify the
contents of a distributed ledger as a partial function tx from the set of possible
addresses into the set of transactions.

3 This is well-defined because every n-ary partial function f : A1×· · ·×An �→ A can be
conceived as the set of all tuples (a1, . . . , an , f (a)) with ai ∈ Ai for each 1 ≤ i ≤ n.
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In order to reason about the relationship between preconditions and post-
conditions of different transactions, we specify the sets of promises and require-
ments inside a ledger: A promise (a, i , s) means that the transaction tx (a) has
a postcondition index i guarded by some challenge with solution s. A require-
ment (a, i , q) means that there exist a transaction t and a precondition in t .pre
pointing to postcondition index i of transaction tx (a), and proposal q .

We visualise an example instance of the schema DistributedLedger in Fig. 3.
Transactions are displayed as rectangles, transaction addresses are written in
circles. Preconditions ((a, i) �→ q) are drawn in rounded rectangles with inscrip-
tion a〉i〉q . Similarly, postconditions (i �→ c) are drawn as rounded rectangles
with inscription i〉c. The dashed arrows visualise the respective precondition-
postcondition dependencies. For instance, precondition (1, 3) with proposal q2,1
of transaction tx (2) refers to postcondition with index 3 of transaction tx (1)
guarded by challenge c1,2.

Fig. 3. Three transactions tx (1), tx (2) and tx (3) in a distributed ledger. Preconditions
and postconditions are displayed on the left and right, respectively.

5.3 Properties of Distributed Ledgers

Based on the notions of requirements and promises, we can define a simple
notion of consistency. Intuitively, we require that every requirement is backed
by a promise, formalised by a subset relation.
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Revisiting Fig. 3, we observe: If the ledger is consistent, q2,1 is a solution
of c1,3.

So far, our specification does not enforce any kind of order on the trans-
actions inside a ledger. For practical applications, however, it is often desired
that preconditions do not ‘point into the future’. Thus, it is sensible to define
an occurrence order for the transactions. As we have a distributed setting, this
order is rather a partial order (causality) than a total order (temporal order).
However, we leave the exact specification open, and merely specify a relationship
≤ between the addresses.

In practice, ≤ is well-founded, that is, we have no infinite descending chains.
We note that this requires to have transactions with empty sets of preconditions4.

Every order ≤ on the transaction addresses in ledger of Fig. 3 satisfies tx (1) ≤
tx (2) ≤ tx (3), as the precondition of tx (2) points to postconditions of tx (1) and
the preconditions of tx (3) points to postconditions of tx (1) and tx (2).

In some use cases, some or all postconditions may only be used once, that,
is, one forbids ‘double spending’ of postconditions. In the most simple case, each
postcondition may be used only once:

The ledger in Fig. 3 is an instance of NoDoubleSpending . In contrast to that,
the ledger in Fig. 4 violates schema NoDoubleSpending , because the postcondi-
tion (1 �→ c1,1) of tx (1) is a precondition of both tx (2) and tx (3).

In a more elaborate case, one may assume a specific upper bound for each
postcondition. Inside the transaction, one could specify a function cap as a par-
tial function INDEX �→ {1, 2, 3, . . . }). Inside the ledger, one could have a partial
function ADDRESS × INDEX �→ {1, 2, 3, . . .}. This function could also be deter-
mined by capacities given in the transactions themselves. A capacity of 0 can
always be specified by using an insolvable challenge.

4 In Blockchain-jargon, these transactions are part of the ‘genesis block’.
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Fig. 4. An instance of DistributedLedger but not of NoDoubleSpending .

6 First Insights

Our formalisation of distributed ledgers focuses on the structural aspects of ver-
ifying and authorising a transaction in a distributed ledger. Our specification
lacks steps in distributed ledgers, that is, the description of how network partic-
ipants update their state of a transaction. Assuming some form of replication of
the distributed ledger on participants, we can already draw first conclusions.

Verification and authorisation in distributed ledgers do not rely on the avail-
ability of specific account providers: Every network participant who has access
to the distributed ledger can check its consistency (cf. Schema ConsistentDis-
tributedLedger), that is, whether each requirement is backed by a promise. While
consistency can be checked by only ‘going backwards’ in the history, preventing
double spending (cf. Schema NoDoubleSpending) requires to go forward as well.

Distributed ledgers provide a higher level of transparency, as the history of a
transaction is traceable for all network participants. Depending on the use case,
this could be both an advantage and a disadvantage. The guarding mechanism of
challenges enables a potential for privacy as the usage of a postcondition is not
linked to an individual. However, it might result in potential for fraud, assuming
that it is easier to guess a solution than faking identity towards a trusted party.

If the distributed ledger is replicated over the whole network, then every net-
work participant must store much more data than in an account-based approach,
where trusted parties store the accounts and transaction histories of the account
owners.

7 Related Work

Our contribution focuses on providing a general view on the approach, and
comparing it to the approach of a provider-based system. In order to provide
a general view, we abstract from specific implementations, such as Bitcoin or
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Ethereum [18]. Other work on distributed ledger technologies and their proper-
ties exist, as surveyed e.g. by [4,15]. So far, the focus has mostly been on the
protocols in use and their respective guarantees.

In [6], the authors introduce the notion of the Transaction Graph in order
to provide formal semantics for Blockchains. The approach is based on partial
orders of transactions that consume and produce states, similar to our notion
of preconditions and postconditions. We extend this work by providing a base
of comparison to provider-based systems with intermediary providers. In addi-
tion, our specification explicitly captures the authorisation process based on
challenges, which is omitted in [6]. In lieu, the authors of- [6] describe concrete
refinements of their model for Bitcoin, Ethereum and Hyperledger [2], which we
leave for future work.

Another related contribution can be found in [3]. There, the authors aim at
modeling Bitcoin transactions, capturing Bitcoin-specific mechanisms, such as
certain types of output scripts and multi-signature verifications. Our approach
is more general, and is also capable to model other distributed ledgers, however,
we leave a bigger gap between model and implementation.

8 Conclusion and Future Work

In this paper, we study the transition from provider-based systems to dis-
tributed ledgers by starting from a general specification, and refining this for
the approaches, accordingly. While the commonalities of the two approaches are
captured by the reference specification, its differences need to be studied in more
depth. We see this as first direction for future work.

Our specification does not capture dynamic aspects such as chain code/smart
contracts other than the programmatic protection of postconditions by chal-
lenges. This could be done by refining the data attribute of a transaction.

One could also further refine our specification for more concrete blockchain
implementations, such as Bitcoin or Ethereum. This would serve as an evalu-
ation of the approach, and would in addition allow to compare the specified
implementations.
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Abstract. Vascular surgeons have recognised that the condition of
many patients presenting with intermittent claudication and periph-
eral arterial disease is better treated by physical exercise rather than
endovascular or surgical intervention. Such exercise causes pain, though,
before and until the health improvements are realised. Therefore, patients
experiencing pain tend to stop doing that which causes it, unless they
are supervised performing the necessary exercise programmes. However,
supervised exercise is an extremely costly and time-consuming use of
medical resources.

To overcome this series of problems, we propose to develop and
deploy a healthcare application which provides patient exercise pro-
grammes that are both centrally organised and remotely supervised by a
health practitioner, and self-organized and self-supervised by the patients
themselves. This demands that two dimensions of adaptation should be
addressed: adaptation prompted by the health practitioner as the patient
group improves and meets programme targets; and adaptation prompted
from within the patient group enabling them to manage their own com-
munity effectively and sustainably.

This position paper explores this application from the perspective of
engineering a collective adaptive system for a mobile healthcare applica-
tion, providing both remote- and self-supervised exercise. This requires,
on the one hand, converging recent technological advances in sensors
and mobile devices, audio and video connectivity, and social comput-
ing; with, on the other hand, innovative value-sensitive and user-centric
design methodologies, together with formal methods for interaction and
interface design and specification. The ultimate ambition is to create a
‘win-win-win’ situation in which the benefits of exercise as a treatment,
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the reduced costs of supervision, and the pro-social incentives to per-
form the exercise are all derived from computer-supported self-organised
collective action.

1 Introduction

Patients with narrowing or blockage of arteries in their legs may suffer from pain
in their legs on walking, commonly in the calf. This is caused by an inadequate
blood supply and is diagnosed as intermittent claudication.

Vascular surgeons have recognised that the condition of many patients pre-
senting with intermittent claudication and peripheral arterial disease is better
treated by exercise rather than endovascular or surgical intervention [7,8]. More-
over, there are long-lasting benefits of supervised exercise over and above revas-
cularisation, which include development of a social network, additional cardiac
training and motivational therapy [13]. The initial problem, though, is that this
exercise causes pain, before and until the health improvements are realised; but
patients experiencing pain tend to stop doing that which causes it – unless they
are supervised performing the necessary exercise programmes. Given the scale of
the problem, though, supervised exercise can be an extremely costly and time-
consuming use of medical resources, assuming that patients even have access to
a hospital-based programme.

However, recent years have seen three significant advances in ICT (informa-
tion and communication technologies): firstly, the development of low-cost sen-
sors integrated with mobile devices which can monitor activity and other health
indicators; secondly, increased connectivity which enables virtual (remote) meet-
ings with high quality audio and video; and thirdly, the widespread application
of social computing, in which people use social networking and associated tools
to develop ‘digital communities’ to address public action problems. Indeed, it
has been argued that the value of communities is that they can resolve certain
types of collective and public action situations which are resistant to purely
market-based or policy-based solutions [17]. Such situations increasingly arise in
the digital society, where the added-value of information, reciprocity or other
pro-social behaviour is indeterminate, and/or the qualitative nature of traded
services is subjective and cannot simply be measured by kilowatts, tons, etc.

We contend that the provision of supervised exercise programmes can be
construed as just such a collective action situation. Consequently, this paper
proposes to converge these developments to engineer a system to support exer-
cise programmes for the treatment of intermittent claudication. However, exten-
sive experience of rehabilitation and exercise programmes has revealed that
it is fundamental that the engineering of any health-centred computer system
should incorporate the direct social relationship between the health practitioner
and the patient group at its core; but similarly the ‘democratisation’ of such
socio-technical systems through self-organised collective choice arrangements
(i.e. those affected by ’the rules’ participate in the selection, modification and
application of those rules) can be critical to community formation, its sustain-
ability, and a successful achievement of intended goals.
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Therefore, what is required is a collective adaptive socio-technical system [10],
in which exercise programmes are organized, monitored and supervised through
the joint collaboration of both health practitioners and the patients themselves,
using a combination of both remote- and self -supervision. Two dimensions of
adaptation need to be addressed: adaptation prompted by the health practitioner
as the patient group improves and meets programme targets; and adaptation
prompted from within the patient group to manage their own community.

Engineering such a collective adaptive socio-technical system also requires
addressing a number of software engineering challenges, not least recognising
that the system must meet ’supra-functional’ requirements targeting social or
qualitative values, like improving collective public health, community well-being
or individual ‘quality of life’ measures. However, recent methodological advances
like value-sensitive design [9] also need to be taken into consideration, in con-
junction with innovative interface design to support self-governance, to visualise
community ‘well-being’ and to incentivise pro-social behaviour [24].

However, the engineers of collective adaptive of socio-technical systems, espe-
cially those underlying the digital transformation, require methodological sup-
port for significantly more complex types of design, in particular designs that
are sensitive to ‘supra-functional’ requirements’ like (human) values, possess the
capacity for continuous re-design and self-organisation, and encapsulate mech-
anisms for self-governance, knowledge aggregation and coordination that are
attuned to context, e.g. the type and scale of problem being addressed, and the
type and nature of the social relationships being digitised.

This position paper explores this issue from the perspective of designing and
implementing a collective adaptive system for a healthcare application, provid-
ing remote- and self-supervised exercise for the treatment of diseases such as
intermittent claudication, which can respond more effectively to physical exer-
cise rather than surgical intervention. The paper presents an eclectic ‘toolset’
of possible techniques that might be used to engineer such systems. Following
a (partial) envisionment of a proposed system in Sect. 2, Sect. 3 reviews two
design methodologies and Sect. 4 considers (formal) specification of three neces-
sary components of such a system: events and the effect of events; interface and
interaction design; and the design of social capital, currency, and the system’s
‘shared reality’.

Our ultimate aim is to create a ‘win-win-win’ situation in which the benefits
of exercise as a treatment, the diminished costs of supervision, and the incentives
to follow given exercise programmes are all derived from self-organised collective
action based on sound engineering of collective adaptive socio-technical systems.
Remote supervision will also improve access to this treatment in areas where no
such service is currently available, and improve availability of this treatment in
resource-poor healthcare systems, but do have access to smartphones and a com-
munications infrastructure. However, we also conclude that while there appears
to be no ‘silver bullet’ approach to rigorous engineering of collective adaptive
systems, this nevertheless presents opportunities for co-design and generativity.
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2 (Partial) System Envisionment

Addressing peripheral arterial disease is a significant and unmet clinical and
health economic need, but the treatment of intermittent claudication using
supervised exercise remains largely under-utilised due to a lack of appropri-
ate resources. In addition, we note that other medical conditions, such as dia-
betes and hypertension, can also be managed by a similar convergence of self-
supervision and ICT, and interactive self-governance. Therefore, we propose
an alternative approach based on a digital community for self-organised, self-
supervised exercise, based on: firstly: information and communication technolo-
gies (ICT), including new healthcare sensors and devices; secondly, computing
models based on self-organising socio-technical systems to provide communal
support and collective action (cf. [25]); and thirdly, structures and procedures
that reflect the different relationships in patient-patient self-organisation and the
practitioner-patient self-organisation.

In a preliminary investigation, we have experimented with the design and
envisionment of a mobile device-based app to support self-organised, self-
supervised exercise within the patient group. Example interface mock-ups for
tracks, groups and communications are illustrated in Fig. 1, illustrating the inter-
face design of a putative app which applies some ideas from gamification with
the intention to increase self-efficacy. This app is an exploration game in which
to progress, the user must exercise in real life. The user has an avatar that has
crashed on an unknown world and has been injured. In order to heal themselves
and to stay alive they must explore the area and find items such as food or
medicinal plants. To do so, the user tracks their walks through the app. Items
are awarded at the end of the session depending on how far they’ve walked. The
users can also connect through the app to find people to exercise with and, by
tracking exercise in a group, they can pick up bonus items that are too ‘heavy’
to lift alone, providing both self-supervision, monitoring and mutual verifica-
tion. If the users stick to the schedule they are rewarded, and incentivised – in
appropriate ways (see below).

Such envisionment is useful for exploratory purposes. For example, when
this lab-based envisionment was first demonstrated to healthcare professionals,
there were two observations. The first was a recommendation for a ‘first aid’
facility, for example to have some first aid tips or an SOS button on the app
that alerts emergency services. Secondly, system designers need to recognise that
this approach to ‘gamification’ (based on an avatar landing on alien planet and
needing to survive) may not be readily ‘accessible’ to the target demographic
of patients who are suffering from intermittent claudication. The concept of
an analogy or story on which the patient can put their exercise programme
in context is potentially beneficial; but system designers have to ensure that
gamification is appropriate to the user demographic.
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Therefore the overall approach to envisionment needs system designers to
work with healthcare professionals, especially when it comes to formulating an
exercise plan that can be self-created, prescribed, monitored and adapted for a
particular patient group by a qualified professional health practitioner. Partici-
patory design and user-centred systems design are standard approaches, but for
the design of gamification and self-organising socio-technical systems some other
design methods need to be considered, as discussed in the next section.

Fig. 1. App interface mock-ups for self-organised, self-supervised exercise.

3 Design Methodologies

This section reviews two design methodologies pertinent to the design of self-
organising healthcare application: one highlighting the role of user values in
design, and the other emphasising the use of digital interventions which can
support and encourage behavioural change. Both patient values and chang-
ing patient behaviour are, of course, crucial aspects of self-organised and self-
supervised exercise.

3.1 Value-Sensitive Design (VSD)

In [9], it is suggested that VSD brings forward a “unique constellation of eight
features”, which included proactive influence on technological design from an
early stage in the process; enlarging the scope of applications in which val-
ues arise as “supra-functional” requirements; the integration and iteration of
conceptual, empirical and technical investigations; enlarging the scope of val-
ues beyond co-operation and participation to include justice, welfare, virtue,
etc.; distinguishing between usability and values with ethical significance; con-
sideration of different classes of stakeholder; being an interactional theory; and
building from the psychological proposition that values are universal, if possibly
culturally relative.
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Healthcare seems to be a particularly promising test application to apply the
methodology of VSD for digital communities. For example, we can start with a
value of central interest – quality of life and patient care – and move from that
value to its implications for app interface design and context of use (remote-
and self-supervised exercise). We can next examine the roles of peer-to-peer self-
help communities and centralised practitioner-patient group communities in a
wider context, with multiple stakeholders and polycentric governance (multiple
centres of decision-making). We can identify several direct and indirect stake-
holders (e.g. patients, clinicians, health service providers, policy advisors, public
health officials, and insurance providers), and from an understanding their co-
dependence, we can start to identify and coordinate the values and benefits for
each stakeholder group.

Critically, one of the most important values in healthcare applications is
privacy and the confidential treatment of patient data. However, privacy by
design [5] can be seen as an instance of value-sensitive design, and following
these principles can help design systems with privacy as primary system require-
ment (explicitly meeting legal requirements, for example, with respect to GDPR
(General Data Protection Regulation)).

3.2 The IDEAS Framework

The rise of mHealth technologies that need to serve both healthcare provider
and patient to be efficacious, raises new questions about how best to innovate
in the mHealth era. Traditionally, the healthcare sector has relied on linear
models of innovation whereby development and commercialisation of a ‘product’
has followed basic science and applied research; this is commonly known as the
‘lab-bench to bedside’ model. This traditional approach is slow and potentially
produces products that are sub-optimal from the patient perspective.

Modern approaches to bring innovative ideas from conception to market
require an alternative approach; one that places patients (users) at the cen-
tre of the design process alongside lead clinicians. Ultimately promoting patient
responsibility and encouraging them to take control of their own collective health
outcomes [2], as well as producing products that the desired user group are likely
to use.

The IDEAS Framework (Integrate, Design, Assess and Share), as illustrated
in Fig. 2 has been proposed as a method for developing digital interventions that
lead to effective behavioural change. This approach is grounded in behavioural
theory; has an in-depth understanding of the target population, by asking “what

Fig. 2. The IDEAS design framework.



A Collective Adaptive Socio-Technical System 69

matters most” to them; products are rapidly and iteratively designed with mul-
tiple episodes of user feedback and are subjected to rigorous evaluation before
generalised dissemination [14].

4 Formal Specification

Complementing these design methodologies, there are three further aspects that
need to be considered in the design and specification of a healthcare application.
These are the formal specification of self-adaptation; the visualisation of self-
governance; and the construction of shared reality in socio-technical systems.
Each of these aspects will be discussed in turn in this section.

Section 4.1 presents a possible formalism for specifying, reasoning about and
implementing self-adaptation of the rules, which also includes normative aspects
like permission, obligation and institutionalised power [11]. Section 4.2 addresses
the issue of interface and affordance design based on the idea of interactive
self-governance, and Sect. 4.3 picks up on the incentivisation of self-supervised
exercise through the use of social capital.

4.1 Reasoning About Events

In many applications, especially those with it is often necessary to reason about
actions, constraints on actions, and the effects of actions, which in turn are
dependent on who performed the action – or rather, which person occupying a
designated role performed the action, i.e. some actions have different adaptive
effects depending on whether it was a patient or a practitioner who performed
it. This section outlines a formalism for specifying and reasoning about actions
which can be used at both design-time (e.g. for proving system properties) and
at run-time as an executable specification (e.g. for determining the validity and
computing the effects of actions).

The Event Calculus (EC). The Event Calculus (EC) [12] is a logic formalism
for representing and reasoning about actions or events and their effects. The EC
is based on a many-sorted first-order predicate calculus. For the version used
here, the underlying model of time is linear, so we use non-negative integer
time-points (although this is not an EC restriction). It is not assumed that time
is discrete (the numbers need not correspond to a uniform duration) but we
do impose a relative/partial ordering for events: for non-negative integers, < is
sufficient.

An action description in EC includes axioms that define: the action occur-
rences, with the use of happensAt predicates; the effects of actions, with the
use of initiates and terminates predicates; and the values of the fluents, with the
use of initially and holdsAt predicates. Table 1 summarises the main EC pred-
icates. EC variables, that start with an upper-case letter, are assumed to be
universally quantified unless otherwise indicated. Predicates, function symbols
and constants start with a lower-case letter.
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Table 1. Main predicates of the event calculus.

Predicate Meaning

Act happensAt T Action Act occurs at time T

initially F = V The value of fluent F is V at time 0

F = V holdsAt T The value of fluent F is V at time T

Act initiates F = V at T The occurrence of action Act at time T
initiates a period of time for which the
value of fluent F is V

Act terminates F = V at T The occurrence of action Act at time T
terminates a period of time for which the
value of fluent F is V

Where F is a fluent, which is a property that is allowed to have different
values at different points in time, the term F = V denotes that fluent F has
value V . Boolean fluents are a special case in which the possible values are true
and false. Informally, F = V holds at a particular time-point if F = V has been
initiated by an action at some earlier time-point, and not terminated by another
action in the meantime.

Events initiate and terminate a period of time during which a fluent holds a
value continuously. Events occur at specific times (when they happen). A set of
events, each with a given time, is called a narrative.

The utility of the EC comes from being able to reason with narratives. There-
fore, the final part of an EC specification is the domain-independent ‘engine’
which computes what fluents hold, i.e. have the value true in the case of boolean
fluents, or what value a fluent takes, for each multi-valued fluent. This can be
used to compute a ‘state’ of the specification in terms of the fluents representing
institutional facts. This state changes over time as events happen, and includes
the roles, (institutionalised) powers, permissions and obligations of agents, and
the protocols selected to implement a community’s operational-, collective- and
constitutional-choice rules [16].

A particularly relevant concept to formalise is of institutionalised power [11],
by which a designated agent occupying a distinguished role is empowered to
perform specific actions of conventional significance, which result in “seeing to
it that” institutional facts are true (facts which are true by agreement, or con-
vention, in the context of the institution). Examples include an agent in the role
of auctioneer in an auction house ‘decision arena’ banging a gavel and saying
“sold”, which sees to it that the auctioned lot is contracted to the highest bidder
in return for payment of the bid price; or an agent in the role of priest in the
context of a marriage ceremony ‘decision arena’ pronouncing two people “man
and wife” sees to it that they are married (according to the religious institution;
according to the state, the fact that they are married may only be true after
another act of conventional significance, for example signing a register).
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Institutionalised power is particularly important to specify because of the
different roles and relations that obtain in remote- and self-supervised exercise:
the institutionalised powers that exist between peers within the self-supervised
patient group are rather different from the institutionalised powers that exist
between the practitioner and her patients. Powers, permissions and obligations
of agents can be uniformly represented in EC using the following boolean fluents:

pow(Agent ,Action) = . . .

per(Agent ,Action) = . . .

obl(Agent ,Action) = . . .

We illustrate the formal specification of powers, permissions and obligations in
the EC in the next subsection.

Self-supervised Exercise. This section presents an example specification for
reasoning about events in the context of self-supervised exercise. We assume
(for simplicity) that there are only two roles, health practitioner and patient . A
person occupying the health-practitioner role can assign a person who is a patient
to a group, and appoint a member of that group to the role of being a supervisor
for that group. Both actions are subject to certain conditions: the assignment
to a group depends on the readiness of the patient for the exercise regime of
the group; while the appointment to the supervisor role depends on the number
of times the patient him/herself has been supervised exercising (recorded by an
exercise count ex ct). These institutionalised powers can be specified as follows:

pow(HP , assign(HP , P,G,H)) = true holdsAt T ←
role of (HP , health practitioner ,H) = true holdsAt T ∧
role of (P , patient ,H) = true holdsAt T ∧
regime(G,H) = L1 holdsAt T ∧
readiness(P,H) = L2 holdsAt T ∧
L1 ≤ L2

pow(HP , appoint(HP , P,G,H)) = true holdsAt T ←
role of (HP , health practitioner ,H) = true holdsAt T ∧
members(G,H) = M holdsAt T ∧
P ∈ M ∧
threshold(G,H) = T holdsAt T ∧
ex ct(P,G,H) = S holdsAt T ∧
S ≥ T
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When the health practitioner HP performs either an empowered assignment
or appointment action, then the results are as follows:

assign(HP , P,G,H) initiates members(G,H) = [P | M ] at T ←
members(G,H) = M holdsAt T ∧
pow(HP , assign(HP , P,G,H)) = true holdsAt T

appoint(HP , P,G,H) initiates role of (P,G,H) = supervisor at T ←
pow(HP , appoint(HP , P,G,H)) = true holdsAt T

The power to supervise, and the effect of a self-supervision can then be
specified as follows:

pow(P1 , supervise(P1, P2, G,H)) = true holdsAt T ←
members(G,H) = M holdsAt T ∧
P1 ∈ M ∧
P2 ∈ M ∧
role of (P1, G,H) = supervisor holdsAt T ∧

supervise(P1, P2, G,H) initiates exct(P2, G,H) = S at T ←
supervisions(P2, G,H) = S holdsAt T ∧
S1 = S + 1 ∧
pow(P1 , supervise(P1, P2, G,H)) = true holdsAt T

In other words, a patient P1 is empowered to supervise a patient P2 if s/he is
appointed to the role within the group by an empowered health practitioner; and
the effect of a supervision of P2 (reported by P1) is to increase P2’s exercise
count (so that when it reaches or passes the group threshold, P2 can also be
appointed to a supervisor role).

4.2 Interface and Interaction Design

In [3], we described a Serious Game called Social mPower, which investigated
how smart meters could be used to encourage pro-social behaviour and collective
action (as opposed to simply monitoring or managing electricity consumption).
Based on this work and other exemplars [23], we have derived the following inter-
face guidelines for implementing interactive self-governance in collective adaptive
socio-technical systems:

– Interface cues and affordances for collective action, indicating that partici-
pants are engaged in a collective action situation – for example the use of
avatars, and especially those which express emotions [26];

– Visualisation: appropriate presentation and representation of data, making
what is conceptually significant perceptually prominent, in particular signif-
icant events, the status of rules, the progress of protocols and the structure
of multiple organisations – for example, the status of norms and powers;
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– Social networking: fast, convenient and cheap communication channels to sup-
port the propagation of messages in a seamless, unobtrusive way – empha-
sising contextually meaningful private communication between members of
a local community known to each other, rather than global platforms that
encourage the pursuit of ‘followers’, ‘friends’ or ‘likes’ from strangers;

– Feedback: inform individuals that their (‘small’, individual) pro-social action
X contributed to some (‘large’, collective) action Y which achieved beneficial
outcome Z – for example the representation of the collective ambience or
‘mood’ according to monitored physical contributions of collective members;

– Incentives: typically in the form of social capital [19], awarded for abso-
lute/collective rather than relative/individual endeavour and achievement.

These guidelines are offered in the same ‘spirit’ as Nielsen’s ten usability
heuristics for user interface design [15], i.e. these guidelines are currently closer
to ‘rules of thumb’ than specific methodological steps. This iteration of the guide-
lines for the purposes of this position paper is at a much earlier stage of develop-
ment than Nielsen’s heuristics, and much more work is required to make them
fully operational for the increased benefit of system developers. However, in rela-
tion to the (partial) envisionment of Sect. 2, it would be possible to apply the
guidelines for future interface development.

For example, for the first guideline, various indicators of successful collective
action could be used, for example, multiple ants carrying a leaf that each on
their own could not. However, as suggested above, the use of avatars for person-
alisation, demonstrating status (e.g. through some indication of emotive state)
and cor conveying a sense of belonging could be helpful.

For the second guideline, three of the most important aspects to visualise
would be the ‘health’ status of the collective (i.e. group ‘well being’ rather than
personal health of the group members), the extent of individual contributions,
and progress towards the next ‘readiness’ level. One possible visualisation that
captures all three could be inspired by the Forest app1 Each member of the
group is represented by a tree, and the tree grows (or withers) according to
active contribution.

For the third guideline, many social media applications become unusable as
the group becomes larger. It is therefore important for the health practitioner
to maintain ‘workable’ group sizes. Furthermore, the app should support stan-
dard conversation types (or allow the user to customise such conversations). For
example, if there is a regular meeting time and place, then there should be a
screen for that week (or month’s) meeting, offering a button for indicating inten-
tion to participate (or not), and showing who is/is not currently committed to
participating. There should not be a need for sending notifications, if a member
of the group is concerned with attendance then they can consult this screen.

For the fourth and fifth guidelines, these could possibly also be achieved
through the appropriate visualisation, for example showing an animation of the
1 https://www.forestapp.cc/en/. This app encourages people to stay concentrated on

their jobs and away from their Smartphones by growing a forest through not inter-
acting with their phone during designated times.

https://www.forestapp.cc/en/
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forest growing as an historical record, but also an option to see what the forest
would have looked like without the individual’s contribution. The aim would
be to provide a better incentive to increased participation than ‘naming and
shaming’. However, the final guideline on incentives is related to a more general
concern about values, in the form of social capital, as discussed in the next
subsection.

4.3 Construction of Shared Reality

In remotely-supervised exercise, the health practitioner is in effect a centralised
controller, and orchestration of collective action can follow a ‘leader’. For the self-
supervised exercise, the patient community must instead rely on self-organisation
to achieve the necessary agreement on, or synchronisation of, collective action.
However, self-organising approaches often require other incentives to participate,
contribute, or select an action which maximises the collective, rather than indi-
vidual, utility.

One possible type of incentive is social capital. Social capital has been defined
as attributes of individuals that assist them with resolving collective action situ-
ations [18]. These attributes come in many forms, such as trustworthiness, social
networks, and institutions. However, we find that while social capital is fine as
a concept, as a term it is potentially misleading, as it suggests something that
can be owned, traded or (even worse) ‘spent’.

For example, in an experiment to examine self-organisation based on negoti-
ation and social capital, we examined a consumer exchange arena in which social
capital was represented in terms of ‘favours’ [19]. Whenever one consumer traded
a good with another which resulted in a more favourable arrangement, it counted
as a ‘favour’; moreover, if the exchange benefitted both then it counted as two
favours. Over time, the favour-based situation achieved a more optimal distribu-
tion of goods; however, the risk is that, in a less abstract formulation, the favours
could become commodified as currency. Therefore, in digital communities, there
is fundamental tension is between retaining the complexity-reducing short-cuts
offered by transactional information, which could be realised through a commu-
nity cryptocurrency, without losing the benefits of relational information that
social capital brings with it.

In self-supervised exercise, the digital representation social capital in terms
of concrete attributes or as the consequence of specific actions or event which
can be recorded with the use of the Event Calculus. However, this runs the risks
of commodifying the concept, with the concomitant loss of the actual ‘value’
or leverage that social capital has or can achieve (cf. [21]). In other words,
it is more important not to focus so much on what social capital is, but on
what social capital does; and what it does is to coordinate expectations [20]
and provide a basis for community governance [4]. Therefore, any framework for
electronic social capital which can be used to support successful collective action
in self-organising systems will need not just to define, in computational form, the
attributes that agents need to represent and reason with, but also the processes
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by which those same agents can coordinate their expectations and govern their
communities.

This is the principal requirement of a framework for electronic social capital in
a mobile healthcare application: it should define data structures for representing
attributes of agents (i.e. in objective terms such as reputation and institutions,
and subjective terms such as their social networks), and also define processes for
updating, evaluating and visualising social capital. In fact, as an axial currency,
careful consideration needs to be give to its design and deployment [22], beyond
the engineering of the collective adaptive systems itself.

Therefore, social capital, which encompasses all concepts created by insti-
tutions (such as the norms and values mentioned previously), fits within the
framework of Artificial Social Constructivism (ASC). This theory, based on the
original premise from [1], expands on the idea that language shapes society.
This idea has been highlighted previously in the medical field, specifically in
online weight loss communities, where community language is used to indicate
appropriate behaviour when members are interacting with one another [6]. ASC
proposes that by allowing human users and digital agents to educate each other
about norms of behaviour, a shared reality can be created where both the users
and the agents uphold values they find important. This is particularly important
in scenarios such as this, where the user needs to feel invested in the technology
and in its assistance to reach a common goal, here being exercise despite pain,
in order keep using it.

5 Summary and Conclusions

The accumulation of atherosclerotic disease in the lower limbs can result in
narrowing or occlusion of arteries. The resultant reduction in blood supply to
the musculature of the affected limb(s) can result in pain in the leg, distal to
diseased site, that occurs on exertion. Pain is predictably relieved by rest. This
predictable onset and offset of symptoms caused by a restricted blood supply is
known as intermittent claudication. These symptoms are often the first clinical
manifestation of peripheral arterial disease (PAD).

PAD prevalence increases with age and may be as high as 20% in popu-
lations aged over 75. The treatment of intermittent claudication includes the
management of atherosclerotic risk factors, such as smoking, hypertension, dia-
betes and hypercholesterolaemia. In addition, the National Institute for Health
and Care Excellence (NICE) recommends that patients diagnosed with intermit-
tent claudication should be offered access to a supervised exercise programme.
This consists of monitored exercise 2 h per week for at least 3 months.

Nationally, the provision of supervised exercise programmes is poor. In 2009
only 24% of vascular surgery departments had access to a supervised exercise
programme; by 2016 only a modest improvement was observed, with 39% of
departments having access. Such a lack of provision is disappointing given recent
evidence that successfully run supervised exercise programmes can be as effective
as invasive management for lower limb atherosclerosis6.
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The chronic underfunding and lack of access to supervised exercise pro-
grammes makes adherence to NICE guidelines impossible for most NHS Trusts.
Novel methods aimed at improving access to supervised exercise programmes
are required. The design and development of a remotely supervised exercise
programme delivered by a disease-specific mobile phone application would be
a novel and cost-effective method for delivering exercise therapy. The app will
allow accurate measurement of walking distances and regular remote supervision
by clinical teams who will have the ability to interact with patients by sending
messages via the app.

In this paper, we have proposed that the development of a disease-specific
application to enable remotely supervised and self-regulated exercise and the
creation of a resultant digital community will best serve the needs of healthcare
professionals and patients alike. However, the proposed system has the charac-
teristics a collective adaptive socio-technical system, and this requires:

– collectivity: we need to be polycentric, i.e. we have people and software
involved in the decision-making, and the people are “empowered” in those
decision-making processes in different ways, in particular the health practi-
tioner to patient group is a centralised one, while within the patient group
it is a decentralised (or peer-to-peer) one. Software in this case needs to be
largely data collecting but privacy preserving, and providing analytics to sup-
port the decision-making processes and for the health economics, evaluation,
etc.

– adaptivity: one of the important innovations being proposed here is the syn-
thesis of remote and self-supervision with the extra insight of adaptation in
two dimensions: adaptation initiated by the health practitioner as the capa-
bilities/health of the patient group improves with exercise, and adaptation
initiated within the patient group to incentive and visualise that progress.

However, as evidenced by the eclectic mix of design methodologies, formal
specification languages and interaction design techniques presented in this posi-
tion paper, there is no ‘silver bullet’ approach to rigorous engineering of a collec-
tive adaptive system in conjunction with the requirements of a mobile healthcare
application. There is no need to despair, though, since the corollary is increased
opportunities for co-design and most importantly, generativity (the ability for
people to fashion new tools out of existing ones that were neither expected nor
intended by the original tool’s designers [27]).
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Abstract. Future cities will be populated by myriads of autonomous
self-driving vehicles. Although individual vehicles have their own goals
to pursue in autonomy, they may also be part of a collective of vehicles,
as in the case of a fleet of vehicles of a car sharing company. Accord-
ingly, they may also be required to act in a coordinated way towards
the achievement of specific collective goals, or to meet specific city-level
objectives. This raises the issue of properly engineering the behavior of
such collective of vehicles, by properly capturing their collective require-
ments also in consideration of their individual goals, and understanding
which knowledge about the state of the collective they must be pro-
vided with. In this context, this paper shows how the SOTA model can
be a very effective tool to support the engineering of self-driving vehi-
cle collectives. SOTA, by bringing together the lessons of goal-oriented
requirements engineering, context-aware systems, and dynamical systems
modeling, has indeed the potential for acting as a general reference model
to help tackle some key issues in the design and development of complex
collective systems immersed in dynamic environments, as collectives of
self-driving vehicles are.

Keywords: Self-driving vehicles · Software engineering
Self-adaptation

1 Introduction

As we are entering the era of autonomous cars, many envision that future urban
mobility will no longer be primarily supported by private vehicles, but rather
by fleets of autonomous vehicles, either owned by private companies or by the
municipality itself, and devoted to car or ride sharing [5,8], and to the delivery
of merchandise [16]. Thus, properly organizing and managing such fleets will be
of primary importance in future cities.
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Such management will have to account the diverse and mostly unpredictable
demands of individual citizens, commercial activities, and industries. Also, it will
have to account for resource restrictions related to, e.g., availability of parking
lots and availability of charging stations (we assume the vehicles are electric
ones). In terms of objectives, the management will have to harmonize at the best
with the needs of individual vehicles (that is, of the citizens that have rented a
vehicle), the needs of the fleet (i.e., or of the company that owns the fleet) as a
whole, and possibly the specific constraints imposed by the municipality (e.g.,
in terms of traffic or pollution).

Overall, then, the management of such fleets will resemble the management of
collective adaptive systems that are called to operate in open-ended and unpre-
dictable environments [4]. Accordingly, software infrastructures in charge of the
fleet will have to become self-adaptive in their behavior [17], i.e., capable of
dynamically adapting their behavior without human supervision. Thus, they can
respond to changing situations and unexpected contingencies without suffering
malfunctionings or degrading of quality of service.

In the past few years, several research works have been devoted to identify
models [7,18], languages [6,14], and tools [2], to support the development of
collective self-adaptive software systems. However, a key issue that is still open
is the identification of general modeling frameworks to help tackling the many
complex issues associated with the proper engineering of collective self-adaptive
systems. These issues include: proper analysis and verification of functional and
non-functional requirements of self-adaptation, and the analysis and identifica-
tion of the knowledge requirements, i.e., of which information must be made
available to a system to support its self-adaptive behavior.

To tackle this issue, we previously proposed [1] a sort of “black-box” app-
roach to adaptation in which, abstracting from the actual mechanisms via which
to achieve adaptation, we questioned about “what adaptation is for” from the
viewpoint of system requirements and observable dynamic behavior of a system.
The result of this process is SOTA (“State Of The Affairs”), a robust concep-
tual framework that, by grounding on the lessons of goal-oriented requirements
engineering [12], dynamical systems modeling [20] and multidimensional context
modeling [13], can provide effective conceptual support to self-adaptive software
development.

In particular, the key idea in SOTA is to perceive a self-adaptive software sys-
tem, like the one needed for the management of collectives of self-driving vehicles,
as a sort of complex dynamic system immersed in a virtual n-dimensional phase
space, each dimension being associated to either some internal software param-
eters or some external environmental parameters of interest for the execution of
the system. The adaptive execution of the system can then be modeled in terms
of movements in such space. Functional requirements (i.e., goals) are associated
to areas of the phase space the system has to reach, non-functional requirements
are associated to the trajectory the system should try to walk through, whereas
self-adaptation is associated to the capability of the system to re-join proper tra-
jectories when moved away from it. For example, a fleet of self-driving vehicles
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could have a functional requirement of arriving at destination on time, and a
non-functional requirement of keeping the overall energy consumption below a
certain threshold.

Indeed, in the area of complex software systems, it has been extensively
argued that dynamical systems modeling can be a powerful tool to analyze the
behavior of complex systems [23], and several studies exist in that direction
(e.g., [19]). SOTA commits to the above perspective, but it adopts a totally
different endeavour. In fact, it exploits dynamical systems as a means to model
and engineer the behavioral and awareness requirements, rather than as a means
to analyze the behavior of existing systems.

The exploitation of the SOTA model in the engineering of self-adaptive sys-
tems (possibly in conjunction with, and complementing, more traditional concep-
tual tools for goal-oriented requirements engineering [12,15]), and in particular
of collective systems of self-driving vehicles, brings several advantages:

– SOTA can be used as a tool to support the process of identifying which knowl-
edge must be made available to the system and its components, and what
degree of situation awareness they should reach to support adaptivity [22];

– SOTA can be used to early assess self-adaptation requirements via model-
checking techniques [3], towards a better and more sound process of require-
ments engineering for self-adaptive systems.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the SOTA model. Section 3 shows how SOTA can be applied to a
scenario of a collective of self-driving vehicles. Section 4 discusses how SOTA
can be adopted to assess the knowledge or awareness requirements. Section 5
shows how the SOTA model can be an effective tool for the early assessment
of requirements for self-adaptive systems via model checking. Finally, Sect. 6
concludes the paper.

2 SOTA Model

SOTA builds on existing approaches to goal-oriented requirements engineer-
ing [12,15] and, for modeling the adaptation dimension, it integrates and extends
recent approaches on multidimensional modeling of context, such as the “Hyper-
space Analogue to Context” (HAC) approach [13]. In particular, such generaliza-
tion and extensions are aimed at enriching goal-oriented and context modeling
with elements of dynamical systems modeling [20], so as to account for the gen-
eral needs of dynamic self-adaptive systems and components.

The term SOTA stems from “State Of The Affairs”, which is a concept central
in SOTA. The state of the affairs of a system is intended as any characteristics of
the system itself and of the environment in which it lives and executes that may
affect its behavior and that may be relevant with respect to its capabilities of
achieving the objectives it was built for. In other words: (i) given a specific state
of the affairs, i.e., the overall situation in which the system is; (ii) given that the
state of the affairs can change due to both the internal activities of the system
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and the external dynamics of the environment; and (iii) a self-adaptive system
must be able to trigger internal activities that enable it to achieve desirable state
of the affairs (i.e., the goals or objectives it was built for) despite the external
dynamics.

2.1 SOTA Space

SOTA assumes that the current “state of the affairs” S(t) at time t, of a specific
entity e (let it be an individual component or an ensemble of components) can
be described as a tuple of n si values, each representing a specific aspect of the
current situation of the entity/ensemble and of its operational environment:

S(t) = 〈s1, s2, . . . , sn〉
As the entity executes, S changes either due to the specific actions of e or

because of the dynamics of e’s environment. Thus, we can generally see this
evolution of S as a movement in a virtual n-dimensional space S (see Fig. 1):

S = S1 × S2 × . . . × Sn

Or, according to the standard terminology of dynamical systems modeling,
we can consider S as the phase space of e and its evolution that can be caused
by internal actions or by external contingencies as a movement in such phase
space.

To model such evolution of the system in terms of “transitions”, θ(t, t + 1)
expresses a movement of e in the S, i.e.,

θ(t, t + 1) = 〈δs1, δs2, . . . , δsn〉, δs1 = (s1(t + 1) − s1(t))

A transition can be endogenous, i.e., induced by actions within the system
itself, or exogenous, i.e., induced by external sources. The existence of exogenous
transitions is particularly important to account for. In fact, the identification of
such sources of transitions (i.e., the identification of which dimensions of the
SOTA space can induce such transitions) enables identifying what can be the
external factors requiring adaptation.

2.2 Goals and Utilities

The requirements of a complex software (and more generally ICT) system can
be naturally expressed in terms of the general objectives it has to achieve, which
in turn typically decomposes into specific goals [9], to be achieved by either
individual entities of the system or ensembles of entities.

A goal by definition is the eventual achievement of a given state of the affairs.
Therefore, in very general terms, a specific goal Gi for the entity e can be rep-
resented as a specific point, or more generally as a specific area, in the SOTA
space. That is:

Gi = A1 × A2 × . . . × An, Ai ⊆ Si
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S1 
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Gpre

S3 
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Fig. 1. The trajectory of an entity in the SOTA space, starting from a goal precondition
and trying to reach the postcondition while moving in the area specified by the utility.

More specifically, a goal Gi of an entity e may not necessarily be always active.
Rather, it could be the case that a goal of an entity will only get activated when
specific conditions occur. In these cases, it is useful to characterize a goal in
terms of a precondition Gpre

i and a postcondition Gpost
i , to express when the

goal has to activate and what the achievement of the goal implies. Both Gpre
i

and Gpost
i represent two areas or points in the space S. In simple terms, when an

entity e finds itself in Gpre
i the goal gets activated and the entity should try to

move in S so as to reach Gpost
i , where the goal is to be considered achieved (see

Fig. 1). Clearly, a goal with no precondition is like a goal whose precondition
coincides with the whole space, and it is intended as a goal that is always active.

As goals represent the eventual state of the affairs that a system or compo-
nent has to achieve, they can be considered functional requirements. However,
in many cases, a system should try to reach its goals by adhering to specific con-
straints on how such a goal can be reached. By referring again to the geometric
interpretation of the execution of an entity as movements in the space S, one
can say that sometimes an entity should try or be constrained to reach a goal
by having its trajectory be confined within a specific area (see Fig. 1). We call
these types of constraints on the execution path that a system/entity should try
to respect as utilities, to reflect a nature that is similar to that of non-functional
requirements.

As goals, a utility Ui can be typically expressed as a subspace in S, and
can be either a general one for a system/entity (the system/entity must always
respect the utility during its execution) or one specifically associated to a specific
goal Gi (the system/entity should respect the utility while trying to achieve the
goal). For the latter case, the complete definition of a goal is:

Gi = {Gpre
i , Gpost

i , Ui}
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In some cases, it may also be helpful to express utilities as relations over the
derivative of a dimension. That is to express not the area the trajectory should
stay in but rather the direction to follow in the trajectory (e.g., try to minimize
execution time, where execution time is one of the relevant dimensions of the
state of affairs). It is also worth mentioning that utilities can derive from specific
system requirements or can derive from externally imposed constraint.

A complete definition of the requirements of a system-to-be thus implies
identifying the dimensions of the SOTA space, defining the set of goals (with
pre- and postconditions, and possibly associated goal-specific utilities) and the
global utilities for such systems, that is the sets:

S = S1 × S2 × . . . × Sn

G = {G1, G2, . . . , Gm}
U = {U1, U2, . . . , Up}

Of course, during the identification of goals and utilities, it is already possible
to associate goals and utilities locally to specific components of the system as
well as globally, to the system as a whole. Thus, the above sets can be possibly
further refined by partitioning them among local and global ones.

3 Engineering Collectives of Self-driving Vehicles

In this section, we exemplify how it is possible to address the problem of engi-
neering collectives of self-driving vehicles (i.e., the management of a fleet of
autonomous vehicles for car sharing services) using the SOTA approach. Such a
scenario is characterized for being immersed in unpredictable and dynamic envi-
ronment, which makes features of self-adaptation particularly important. Let us
now conceptualize the problem in detail.

– A fleet F has a set of vehicles. A vehicle Vi has a set of planned rides, i.e., R =
{R1, R2, . . . , Rn}. Each planned ride is defined by a location Li, a starting
time iT

R
S , and duration iD

R. A route alternative can be provided from ride
Ri to Ri+1 as iR

D.
– The departure time and arrival time of a vehicle are provided by iT

D
S and

iT
D
E , respectively.

– The battery state of charge or energy level of a vehicle Vi at departure time
is defined by iE

D
S , while iE

D
E specifies battery level at arrival time.

– The goal of a vehicle Vi is to arrive in time at the appointment, so that iT
D
E

<= iT
D
S , and the battery level should never run out, so it is required that

iE
D
E > 0.

– The charging of a vehicle could occur during the appointment duration.
– A set of parking lots can be present where each one is defined by a name

PLname. Similarly, a set of charging stations can be defined with each one
having a name CSname. The available parking spaces and charging stations
in location L can be defined as ParkSpotsNum and ChargeSpotsNum.
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The overall transportation system can be conceptually modeled as SOTA
entities (e) moving in the SOTA space (S). These entities could be an individual
entity (e.g., vehicle), or a group of entities (e.g., fleet of vehicles; infrastructure
resources, such as parking lots, charging stations and roads). Both vehicles and
the fleet can be modeled in terms of entities that have goals (Gi), which can be at
the individual (single vehicle) or global level (a fleet). Similarly, utilities (Ui) can
be identified, related to how such goals can be achieved, also at the individual
or global level. In the SOTA space, the locations, departure or arrival times, and
battery energy levels correspond to the dimensions of the SOTA space, while a
goal or utility can be represented as a specific point or area of the phase space.

From the point of view of a vehicle (Vi), a key goal is to reach the destination
within time and battery energy level. We can characterize this goal in terms of
a precondition and a postcondition to express when the goal has to achieve and
what the achievement of the goal implies. For example, the preconditions can be
(Gpre

i ) to check whether the list of planned rides is known; the parking lots are
assigned; the charging stations are assigned; and the battery state of charge level
is sufficient at trip start. The postcondition (Gpost

i ) can be the actual goal itself,
such as reach the destination within the time allocated and within the battery
state of charge level. In the same manner, utilities (Ui) can be identified at the
individual vehicle level, as a general one or as one associated to a specific goal
of the vehicle.

For example, Fig. 2 illustrates a portion of the case study. A vehicle Vi starting
at L0 has the goal of completing planned ride Ri and arrive at location Li (for
simplicity of drawing we consider a one dimensional spatial extend – road –
indicated by L). The figure illustrates a part of the SOTA space focusing on three
dimensions: location, time and battery level. For readability, we represent both
the 3D space and also 2D projections. The goal Gi of vehicle Vi is represented
by the blue box: the vehicle has to be at location Li at iT

R
S time, with a battery

level greater than 0. The utility Ui (i.e., non-functional requirements) of Vi is
represented by the green box: the vehicle battery level should not become too
low. The state of vehicle Vi is a point in this space and its actions describe the
red trajectory in the space: Vi reach its goal on time consuming some battery,
but remaining within the non-functional requirements/boundaries.

From the viewpoint of a fleet (F ), we can associate goals and utilities to
the system as a whole, i.e., globally. Maximizing the usage of vehicles is a key
requirement for the fleet. In this regard, we can identify two goals (Gi) for the
fleet F . They are: (i) distributing the vehicles of the fleet fairly in the city at
midnight every day; and (ii) creating and assigning trips for the vehicles. The
preconditions (Gpre

i ) for the distribute vehicles goal are checking whether the
time is midnight, and distribution of the vehicles in the city is imbalanced.
The postcondition (Gpost

i ) is the actual redistribution of the vehicles in a fair
and balanced manner. In the meantime, the precondition for the create trips
goal can be to check whether the vehicles are available before assigning trips
for them. The postconditions can be whether the rides list, parking lots and
charging stations have been assigned for the vehicles.



86 D. B. Abeywickrama et al.

Time

L

Ba ery Level

iTR
S

Vi 

L 
Li 

Time

L Time

Ba ery Level

Vi 

2D projec ons 

Li 

L0 

L0 

fully charged

L0 

Li 

iTR
S

iTR
S

Ui 

Gi 

Fig. 2. SOTA space in the case study. The figure illustrates a portion of the case study.
A vehicle Vi starting at L0 has the goal of completing planned ride Ri and arrive at
location Li. The goal Gi of vehicle Vi is represented by the blue box. The utility Ui of
Vi is represented by the green box. (Color figure online)

As for global utilities (U), these can be a general one for the fleet or one
specifically associated to a specific goal of the fleet. For example, there can be a
utility for all the vehicles in the fleet to avoid roads with tolls or avoid localities
that have disruptions. Some global utilities of the fleet which can be expressed
as relations over the derivative of a dimension are: maximize usage of vehicles
in the fleet, minimize journey time or cost, and minimize battery consumption.

As provided for a vehicle, we can identify the relevant dimensions (S) of
the state of affairs for a fleet. They are: current locations of the vehicles in the
fleet; availability of the vehicles; availability and capacity of the infrastructure
resources; battery energy levels of the vehicles; current traffic information; and
journey times and costs.

4 SOTA Space and Knowledge Requirements

The “state of the affairs” is a very general concept, and its dimensions include
anything relevant to keep a system up and running (i.e., hardware, software,
environmental features) [1]. Therefore, identifying what are the relevant dimen-
sions around which to model the SOTA space is a necessary activity towards the
building of a self-adaptive system. However, when discussing about self-adaptive
systems, such identification also directly relates to identifying: (i) the knowl-
edge (i.e., what dimensions) that must be made available to entities to enable
self-adaptation; (ii) the type of sensors (i.e., physical or virtual) that must be
available from components to gather the necessary knowledge.
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4.1 Identification

For both of them, areas Ai ⊆ Si can be expressed in terms of conditional expres-
sions over the values in Si. In the case where one dimension Si is not relevant
for either a specific goal or utility, then Ai ≡ Si.

Indeed, in many practical cases, goals and utilities involve only a limited
fraction of the state space. That is, Gi is expressed as a set of points or areas
in an m-dimensional space (with m < n), projection of the original space. If
we consider a base vector: B =< b1, b2, . . . bn >, bi ∈ {0, 1} such that bi = 0 ⇔
∀Gi ∈ G∧∀Ui ∈ U −→ Ai ≡ Si, then goals and utilities can be expressed in the
sub-dimensional space: SS = B ×S. The sub-dimensional space SS is important
because it defines what information is relevant for the system. That is, it drives
the requirements for which knowledge has to be acquired, modeled, and made
available to services.

In addition, one should also account for specific contingency situations of
SOTA that may affect the capability of a system of achieving its goal in respect
of the utilities, and that are not explicit in either G or U. It may be necessary
to identify these contingencies, identify when and how they could affect the
capability of the system, and turn these explicitly either as utility functions or
as “impossible areas”, i.e., areas of the SOTA space in which the system, however
self-adaptive, will no longer be able to achieve.

Let us examine some contingency situations with respect to a vehicle and
a fleet. As mentioned in Sect. 3, a vehicle has a goal of reaching a destination
within time and battery energy level. However, during mobility it could find that
the assigned parking lot is no longer available, or its battery level is running out.
At the same time, a fleet has a goal of creating trips for the vehicles, but a vehicle
in the fleet could leave later than its scheduled time for an appointment, thus
affecting the trips of the other vehicles in the fleet. Some of these contingency
situations could affect the capability of the system, and can be shown in the
SOTA space as impossible areas that are no longer achievable. For instance, a
fleet has a goal of distributing the vehicles of the fleet in a balanced manner in
the city at midnight every day. However, there could be a disruption in the road
due to maintenance work in a particular area of the city, which is unavoidable.
This will result in some vehicles not being distributed fairly.

So far, we assume that all dimensions in S are independent from each other;
that is, a movement in Si does not affect the positions in the other dimensions Sj .
Unfortunately, this is not always the case: the characteristics of the domain can
induce additional constraints. For instance, in a vehicle, its driving style (e.g.,
speed) and battery state of charge level are interlinked, a change in speed implies
a change in battery state of charge. Also, the list of planned rides of a vehicle
could be affected by other dimensions, such as availability of the infrastructure
resources (e.g., parking lots), and current traffic information. Similarly, in a
fleet, the locations of the vehicles could be constrained by the availability of
the infrastructure resources. Therefore, along with the identification of the goals
and utility sets G and U, it can be useful to identify constraints on the SOTA
dimensions and on the “trajectories” that a system can follow on them.
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4.2 Sensors and Virtualization

Each dimension of the SOTA space implies sensors. However, this is not an issue
per se: a number of different sensors are available to measure the most diverse
features. For example, an e-vehicle has a range of sensors to measure different
SOTA context dimensions, such as: GPS (global positioning system) sensor,
accelerometer sensors, ABS (anti-lock brake system) sensors, gyrometer sensors,
steering angle sensors, sensors in the battery, and temperature and humidity
sensors inside the vehicle.

Most of these sensors report the values in terms of numeric time series,
whereas within the SOTA space, it will be better to consider movements as
represented in values which are meaningful. The problem lies in providing ser-
vices with an appropriate view of what’s happening, i.e., leveraging the low-level
perspective of the actual sensors into that of a “virtual sensor” which is capable
of providing an appropriate view representation of the values in that dimension.
In general, virtual sensors are useful for: (i) grouping a number of physical sen-
sors for the sake of fault tolerance; (ii) converting sensor readings into relevant
information; and (iii) grouping different physical sensors allowing multi-modal
recognition capabilities. During the modeling of a system, the issue of identifying
what types of virtual sensors are required to enable and facilitate adaptation is
thus necessary to properly drive activities related to knowledge modeling and
processing. The latter is required to turn physical sensors into virtual ones.

Another important aspect of the virtualization process is that it detaches
the provisioning of the virtual information from that of the actual sensors. Let
us consider some examples of virtual sensors in the case study for a vehicle: (i)
battery state of charge: the charge level of the battery which can be determined
using the current and voltage measurements from the battery’s sensors. Similarly,
battery state of health can be calculated to indicate the overall condition of the
battery; (ii) a virtual sensor to measure dynamics of a vehicle: the angle of the
steering from the steering angle sensor can be used to determine where the front
wheels are pointed. This measurement when combined with measurements from
the yaw, accelerometer and wheel speed sensors, it is possible to measure the
dynamics of the vehicle which can be used by the stability control system of
the vehicle; (iii) climate comfort sensor: the temperature and humidity sensors
inside the vehicle can be used to calculate climate comfort level for the user,
which can be eco or maximal.

An example of a virtual sensor for the fleet is calculating and determining
whether current distribution of vehicles in a fleet is fair or imbalanced, depending
on the individual locations of the vehicles which can be acquired through their
individual GPS sensors and by the aggregation of all individual locations into a
sort of aggregate indicator of imbalance in fleet distribution.

5 Model Checking SOTA Requirements

It is possible to adopt SOTA as an effective tool to perform an early, goal-level,
model checking analysis [11] for self-adaptive systems. Our approach allows the
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developers of complex self-adaptive systems to validate the actual correctness of
the self-adaptive requirements at an early stage in the software life-cycle.

SOTA supports a simple operational model [3] that makes it possible to adapt
and apply existing model-checking techniques to goals and utilities, and thus
assess and improve requirements identification. Our target event-based model for
reasoning about goals and utilities is labeled transitions systems (LTSs), which
provides a simple formalism for compositional reasoning in architectural context.
This formalism is supported by a tool that provides a wide range of analysis
and animation capabilities. Thus, our model checking approach is based on the
formal verification, validation and simulation techniques provided by the Labeled
Transition System Analyzer (LTSA) [11], and its process calculus Finite State
Processes. The formalism that we use to model goals and utilities is Fluent Linear
Temporal Logic (FLTL) assertions. The entities–a single vehicle and a fleet–
represent the SOTA entities moving in the SOTA space. In operational terms,
this can be expressed as multiple processes or LTSs, and the overall execution
of the system modeled as a concurrent event-based one, in which the process
transitions (of an exogenous or endogenous type) correspond to movements in
the SOTA space.

As described in [3], the overall model checking process of SOTA requirements
has four main stages: requirements modeling using i* framework [21], SOTA
grammar and language, transform goals and utilities to asynchronous FLTL,
and verification. We refer the reader to [3] on details of the operationalization
of the SOTA model, and the application of the approach to simple e-mobility
examples. This paper specifically focuses on the verification stage with case study
exemplifications where model checking is applied to: (i) validate whether a set of
required preconditions and postconditions forms a complete operationalization
of a single goal (i.e., single goal operationalization); and (ii) check the satisfaction
of global goals or utilities.

5.1 Validate Single Goal Operationalization

As mentioned in Sect. 2.2, a goal Gi can be characterized by a precondition
Gpre

i and a postcondition Gpost
i . Also, a goal Gi can be associated to a utility

Ui that needs to be respected while trying to achieve Gi. In the SOTA model,
these goals and utilities are expressed as a subspace in S. For validating single
goal operationalization, we check whether a set of preconditions, postconditions
and/or a goal-associated utility forms a complete operationalization (i.e., all the
conditions in the set of preconditions, postconditions and/or a goal-based utility
are satisfied) of a requirement [3]. This is to ensure that the operationalization of
goals and utilities has been performed correctly by the engineer from the SOTA
model.

To achieve this, the assertions created for a requirement (e.g., preconditions,
postconditions) are composed with the event-based behavioral model, and then
model checking can be performed using the LTSA. If the operationalization
of the requirement is incomplete, for example, let us assume that a required
precondition has been omitted inadvertently, then the LTSA model checker will
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generate a counterexample trace identifying the error. For example, as mentioned
in Sect. 2, the reach destination goal of a vehicle (Vi) has a precondition (Gpre

i )
to check the battery state of charge is sufficient at trip start. Also, there can
be a utility (Ui) to ensure climate comfort level inside the vehicle is maintained
while the vehicle reaches its destination. The postcondition of the goal (Gpost

i ) is
the actual goal itself, which is to reach the destination within the battery state
of charge level and on time. Now assume that the precondition for this goal has
been omitted during the operationalizing process by the engineer inadvertently.
This will result in violating of the assertion created for the goal. Thus, the
model checker will generate a counterexample (error) trace annotated with the
constraints which were violated, which can be used by the engineer to identify
the error and correct the requirements model.

5.2 Validate Global Goal/Utility Satisfaction

In addition to checking single goal operationalization, we can perform model
checking to check the satisfaction of global goals or global utilities by operational
models that describe the behavior of multiple components. Such validation will
ensure that the operationalization of the global goals and utilities from the SOTA
model has been performed correctly by the engineer. For this, we check whether
a set of goals or utilities forms a complete operationalization (i.e., all the goals
or utilities are satisfied) of a global requirement. In SOTA terms, such validation
means the checking the requirements of the set of goals G or utilities U :

G = {G1, G2, . . . , Gn}, |G| > 1

U = {U1, U2, . . . , U
e
n}, |U| > 1

For example, in the case study, a global goal (G) for the fleet is to maximize
usage of vehicles. This global goal can be composed of two goals on distributing
the vehicles of the fleet fairly in the city at midnight every day; and creating and
assigning trips for the vehicles. In another example, the global utility to avoid
roads with tolls for the fleet can be composed of the utilities of individual vehicles
in the fleet. To validate these, the assertions created for the goals and utilities
can be composed, and then model checking can be performed by the LTSA to
check the overall satisfaction of the global goal or utility. If the operationalization
is incomplete, for instance, a required goal or utility has been omitted by the
engineer, the LTSA will produce an error trace which can be used by the engineer
to locate the error and correct it.

In this manner, by performing validation of single and global goal operational-
ization, we identify any incompleteness of the SOTA goal-oriented requirements
model. However, a typical problem that may occur in goal-oriented modeling is
that an inconsistency or an implicit requirement [10] can result in a deadlock in
the specification, as discussed next.
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5.3 Detect Inconsistencies

An inconsistency in the specification could occur due to several reasons. These
can be (i) if the postcondition of a goal does not imply its precondition then
the system might be in a state where the postcondition Gpost

i is true but the
precondition Gpre

i is not true. So the goal needs to be satisfied but it is not,
leading to an inconsistency; (ii) if the operational model is derived from con-
flicting goals. Therefore, it is important to detect inconsistencies in the SOTA
operational model as deadlocks.

To illustrate an example of the first type, in the e-mobility case study, let
us consider that the reach destination goal of a vehicle Vi has a precondition
(Gpre

i ) to check whether a parking lot and a charging station have been assigned.
There could be a situation where the precondition of the goal is not satisfied,
i.e., charging station has not been assigned for the trip. This is although the
vehicle is able to reach the destination within the time and energy levels (i.e.,
the postconditions Gpost

i are satisfied).
As for the inconsistencies that occur from conflicting goals, let us consider

two entities SC1 and SC2 that are to be composed into an ensemble or group
of entities SCE. First, assume that SC1 and SC2 have two shared goals Gi and
Gj , which share the same n-dimensional SOTA space S. The preconditions of
the two goals overlap but the postconditions do not overlap. That is:

Gpre
i ∩ Gpre

j �= ∅ ∧ Gi ∩ Gj = ∅

Therefore, both these goals could be activated and pursued at the same time in
two paths in the SOTA space S, and this should not be the case. Second, assume
that SC1 and SC2 have two goals Gi and Gj and the goals’ preconditions and
postconditions both overlap. That is:

Gpre
i ∩ Gpre

j �= ∅ ∧ Gi ∩ Gj �= ∅

Therefore, both these goals could be activated and pursued at the same time in
the same direction of the SOTA space S. We can perform LTSA model checking
to detect such inconsistencies that arise from conflicting goals as deadlocks in the
specification. Next in order to describe the inconsistencies that can occur from
conflicting goals, two examples from the e-mobility case study are provided.

For the first conflicting goals situation, assume that there are two vehicle
entities (V1 and V2) of the fleet F , which have been composed into an ensemble.
Let us consider that these two vehicles have been assigned to the same user for a
trip that has two planned rides (R1 and R2). That is, vehicle V1 has been assigned
a ride R1 to travel to the first appointment at location L1, and afterwards vehicle
V2 has a ride R2 to travel to the second appointment at location L2. Here, both
vehicles (V1 and V2) can have the same preconditions at the trip start, such as
they are available at the time of trip creation. However, now assume that during
mobility, if vehicle V1 reaches an insufficient level of battery charge level, and
it is not able to reach location L1 in time, then the postconditions of both V1

and V2 entities do not match any more. That is, the goals of these entities will
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be conflicting. In such a situation, the system may be in a state where both
operations could take place in two paths, thus leading to an inconsistency.

On the other hand, for the second conflicting goals situation, consider two
vehicles V1 and V2 of a fleet F that have been assigned to the user for the same
trip. Here, both vehicles will have overlapping preconditions and postconditions
as they require to reach the same destination within the time allocated. Here the
system could be in a state where both operations taking place towards the same
direction, which should not be the case. This is because there is no next state that
will satisfy both the postconditions of the two goals. These inconsistencies in the
SOTA operational model can be overcome, first through the explicit modeling
of additional constraints to handle them, and then composing them with the
event-based behavioral model and performing LTSA model checking.

6 Conclusions and Future Work

Future fleets of self-driving vehicles will be examples of collective adaptive sys-
tems that are required to act in a coordinated way towards the harmonized
achievement of both individual and collective goals. This paper presented the
SOTA approach for the engineering of such kind of systems, focusing in particular
on proper analysis and modeling of functional and non-functional requirements
of self-adaptation, and the analysis and identification of which information must
be made available to a system to support its self-adaptive behavior.

Future work will exploit the results of the SOTA modeling as a guide towards
the adaptive identification of the most suitable coordination patterns for a fleet
of self-driving vehicles, depending on their current operating conditions.
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Abstract. In the field of collective adaptive systems (CASs) robotic
applications are mostly executed in a simulated environment with simu-
lated hardware and abstract capabilities due to their complexity. These
simulated systems usually cannot be applied in reality without major
modifications. We propose an approach to bridge the gap between
abstract capabilities and the execution of concrete capabilities on real
hardware through a semantic description of the hardware itself, its
drivers, interfaces and capabilities, enabling the realization of CAS in
the real world. With a plug and play mechanism for hardware modules
and the semantic description it is now possible to develop a CAS with-
out committing to a concrete set of hardware and, moreover, the set of
hardware to the requirements of the system.

1 Introduction

Collective systems exist in almost all areas of nature [6] (e.g., flocks of birds,
herds of animals) and technology [20] (e.g., computer networks, robot teams).
All of these systems have the common characteristic that groups of individ-
ual agents provide more functionality than each individual. Besides collective
approaches, adaptive approaches can be added to manage even more complex
problems. An example for a collective system is a group of ants carrying one big
leaf on a narrow surface. If there are gaps on the forest floor, adaptive systems
are needed to react to the environmental influences, like building a bridge out
of other ants [28]. Such compound systems are called collective adaptive sys-
tem (CAS) [21]. Mobile robots are typically used for the illustration of CASs on
real hardware (e.g., [12,14,18]). These systems mostly use robots that are heav-
ily customized for accomplishing specific tasks. For example, Unmanned Aerial
Systems (UAS) equipped with gas sensors are used to find chemical clouds [23]
or for the detection of forest-fires infrared cameras are mounted to UAS [10]. One
problem of such systems is that they are very inflexible and must be redesigned
c© Springer Nature Switzerland AG 2018
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in case of changing requirements or new use cases. In this case hardware specific
code, mostly written in C or C++, must be altered or rewritten.

This paper proposes an approach for the reconfiguration of robot hardware
at runtime without the need to alter or rewrite hardware specific code. There-
fore a plug and play mechanism with semantic self-descriptions of the hardware
modules is used. These self-descriptions include static information about the
hardware (e.g., weight of a hardware module) in form of properties. In addition,
executable capabilities (e.g., “measure temperature”) of a hardware module are
deposited in the self-description of each hardware module. Capabilities can be
either provided by a single hardware element (e.g., a quadcopter has the capabil-
ity “fly”) or by a combination of multiple hardware elements through combining
their self-descriptions (e.g., a quadcopter with a GPS sensor has the capability
“fly to position”). This information about hardware modules allows the devel-
opment of CASs without committing to a specific set of hardware. The goal is
to create a system in which each hardware module supplies interfaces to capa-
bilities, which can be executed by agents within a CAS, rather than creating
an agent with a fixed set of capabilities. In order to realize such a system, an
adapter for devices (i.e., sensors and actuators) is created to enrich the hardware
with semantic annotations and a common interface to provide capabilities for
the usage in CASs. We call these systems “Self-Descriptive Devices” (SDDs).

In sum, this paper contains the following contributions for facilitating the
use of hardware devices within CASs:

(1) Storage and usage of distributed properties;
(2) Methods for the automatic provision of capabilities for agents;
(3) Determination of appropriate hardware for capabilities;
(4) Task fulfillment through combined capabilities;

As a running example various hardware modules (i.e., quadcopter that can be
equipped with multiple modular sensor modules) are used to demonstrate the
advantages of the developed technique. Each SDD, no matter if it is a quad-
copter or a sensor module, provides a self-description. In case of a quadcopter,
it has properties like “maximum payload” and “weight” and capabilities like
“fly to position”. Furthermore these simple capabilities of multiple SDDs can
be composed to more complex capabilities of the whole system. For example
capabilities like “sensor-based flight” can be created out of the capability “fly
to position” of the quadcopter and the capability “measure sensor value” of a
mounted sensor module.

This paper is structured as follows: Sect. 2 describes which objectives the
paper pursues. In Sects. 3 and 4 the structure and realization of SDDs in CASs
is described. Afterwards the architecture and realization are evaluated in a case
study (Sect. 5). Section 6 shows related research fields and Sect. 7 finally con-
cludes the paper.
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2 Objectives and Challenges

The objective of our approach is to establish an architecture for multi-agent
applications in the field of collective adaptive systems with real modular hard-
ware. In view of the variety of possible applications, a common denominator
must be found. In many projects, e.g., [5,7,24,25] the term capability is used
for interactions with (simulated) hardware. For example the project of Preece
et al. [25] use the term to define if a camera can be mounted on an UAS with the
semantic annotation “can mount” for every camera type. This interpretation of
capability is only indirectly coupled with real hardware and serves as descriptive
information to define the properties of the UAS. From our point of view, a prop-
erty qualifies static information like, e.g., physical specifications (e.g., geometric
models, weight, ...) or hardware specific limitations (e.g., sensor accuracy, motor
speed, ...). The storage, distribution and usage of properties is a fundamental
challenge in this paper and serves to give an appropriate answer to the hardware
device, regarding the question:

(1) “What am I?”

Projects like Knowrob [31] use the term capability to describe executable
procedures. For example, the annotation “grab cup” can be executed and an
industrial robot starts the appropriate procedure. This procedure in turn uses
properties (e.g., pictures, geometric details and grasp pattern) to support the
automated execution. This interpretation of capabilities with dependencies to
properties is also used in this paper. For example, a UAS with the properties
“payload” and a mounted sensor with the property “weight” has to determine
if the capabilities “fly to position” or “fly direction” are feasible (e.g., weight
is lower than the payload). This example illustrates the dependency between
the capability “fly” and the property “weight”. The capability “fly to position”
can further use the “battery capacity” in combination with the “weight” and
“power consumption” to estimate the “flight time”. The challenge lies in linking
the capabilities to executable processes with a common interface for the usage
as well as providing a mechanism for the creation and usage of dependencies
between properties and capabilities. These dependencies give an answer to the
question:

(2) “Am I capable of doing it?”

The description of hardware with properties and the access of its function-
ality with capabilities have to be established on real hardware. Every hardware
element should provide its self-description i.e., its properties and capabilities.
One objective is to offer capabilities over several hardware parts. For example,
a quadcopter must be equipped with a distance sensor to offer the capability
“sensor-based flight”. To realize such configurable robots with self descriptive
hardware elements in real world applications, various challenges must be over-
come. For a common physical interface, the hardware elements must on the one
hand be able to handle multiple physical interfaces in order to support a large
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set of components like sensors, actuators and combinations thereof. On the other
hand the hardware elements must offer a common communication interface for
the exchange of corresponding values between them. This communication inter-
face should also be used for the exchange of capabilities and properties. For
the programming of an agent, the capabilities and properties must be traceable
to the corresponding hardware element and actual configuration of hardware
elements (e.g., the quadcopter should use a mounted sensor for the capability
“sensor-based flight”). This information answers the question:

(3) “With what should I do it?”

Projects like [15,17,29] combine the capabilities of multiple agents, e.g., sev-
eral mobile robots pull a child, while one single robot can not apply the force
to pull it. In this example the user task “carry child” can be divided into sev-
eral agent tasks “carry subject” which the combination of agents has to solve.
This task decomposition of user tasks into agent tasks with coordination mech-
anisms between agents is not in the scope of this paper. However, we want to
establish a mechanism to enable the agent to solve the task with a combination
of capabilities. The agent task should express the requirements in an abstract
manner (e.g., sensor based flight to position). The information, which sensors
and actuators (e.g., position sensor, quadcopter) are needed and the procedure
how they interact (e.g., fly to position combines a position sensor with the flight
capability of a quadcopter) is one challenge, which is focused on in this paper.
The definition of abstract requirements for the instantiation of capabilities with
distributed properties finally leads to the question:

(4) “What am I supposed to do?”

For simulated environments as well as real hardware.

3 Concept

This paper provides an architecture for the realization of multi-agent applications
in the field of collective adaptive systems with real, modular hardware, as shown
in Fig. 1. To give an overview over the proposed system, we start with the user
of the multi-agent system, who is able to define so called User Tasks. These
are tasks that can only be handled by a set of agents, for example “fly triangle
formation to position 1 m over ground for 15 min”. Such tasks are decomposed
into multiple Agent Tasks that can be assigned to a single agent of the multi-
agent system, e.g., “sensor-based flight to position 1 m over ground for 15 min”.
For the decomposition of the user tasks, a distributed multi-agent reasoning
system is used in our overall architecture, presented in Kosak et al. [22]. After
the agent task has been assigned to an agent the advantages of our proposed
system come into play. The following paragraphs address the questions from the
previous section with an analog equation.



98 C. Wanninger et al.

Fig. 1. Structure of the entire system from a given task of the user over the decompo-
sition into capabilities to the selection of the required hardware.

With the requirements defined in the agent task, the agent searches for a
blueprint in a set of predefined blueprints that can cover these requirements
(Blueprint Matching (4)). Blueprints are a schematic representation of composed
capabilities and depict how capabilities may be interconnected to more complex
capabilities. For example, a task “sensor-based flight to position 1 m over ground”
can be composed of the basic capabilities “fly to position” and “measure”. With
the help of the appropriate blueprints, the decomposition of a task into single
basic capabilities is realized.

After the decomposition of a task into individual capabilities, the agent is
capable of searching for hardware that possesses these capabilities and can fulfill
the given task. This step is called Hardware Matching (3). In our example,
we have a quadcopter that has a capability “fly to position” and a distance
sensor that has a capability “measure distance to ground”. From the information
of the hardware’s capabilities, the agent can determine with which hardware
configuration it can fulfill the task.

Before execution of the task, a final check is made to ensure the agent is
able to fulfill the task with the given hardware. For this check we use Property
Matching (2), which guarantees that the constraints of each hardware module are
met, for example if the task has the constraint that the sensor-based flight must
last at least 15 min. Consequently, the system must check whether the desired
flight duration can be achieved by the given set of hardware. For this check
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several properties (i.e., “weight”, “power consumption” and “battery capacity”)
of each attached hardware module are used.

After the concept of the entire system has been presented, the distribution
of the concept to the individual hardware modules is described. Every agent in
our CAS is composed of one Logic Device (LD) and a set of Self-Descriptive
Devices (SDDs) as shown in Fig. 2. An SDD is a device which consists of the
actual hardware, for example a distance sensor, and a Self-Description Adapter
(SDA), which is responsible for the self-description of the hardware component.
The SDA includes the communication interface, the semantic datasheet for self-
description of the hardware with its capabilities and properties (1) and a driver
to interact with the specific hardware for using its capabilities. Thus, SDDs
provide the information used for the hardware and property matching of the
system.

Semantic Description 
of the entire system

Execution Environment

Communication Interface

Logic Device

Hardware 
(e. g. Sensor)

Self-Description Adapter

Hardware DriverSemantic Datasheet

Communication Interface

Self-Descriptive Device

Hardware 
(e. g. Quadcopter)

Self-Description Adapter

Hardware DriverSemantic Datasheet

Communication Interface

Self-Descriptive Device

Fig. 2. Schematic structure of the system for our running example. This system is
comprised of a quadcopter-SDD, a sensor-SDD and an Logic Device (LD).

An LD is a device which maintains a runtime environment for the execution
of capabilities of multiple SDDs and provides an interface to the agent and thus
represents an independent subsystem. LDs have a set of predefined blueprints
that can be used to find a suitable hardware set and to utilize this blueprint with
the real capabilities of the selected hardware for the execution of the agent task.
Both LD and SDD communicate with each other over connections using wired
or wireless interfaces. The communication interface is used on the one hand to
transmit the semantic datasheets and on the other hand to query sensor values
and set commands for actuators. One of the main components of an LD is the
semantic description of the whole subsystem. This means all self-descriptions of
each SDD are sent to the LD, where they are joined to form a complete knowledge
base. For the execution of capabilities, we also need an execution environment,
that can interact with mobile robots, actuators and sensors. For example, one
agent of a CAS (e.g., mobile robot) consists of one LD and several sensor and
actuator SDDs. In the quadcopter example, we use a single board computer
attached to the quadcopter which runs an LD. This SDD has a connection to a
quadcopter SDD and some sensor SDDs.
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4 Implementation

The following section details the implementation of the four main concepts
involved in the realization of SDD and LD: (Sect. 4.1) Distributed knowl-
edge, (Sect. 4.2) Hardware and Property Matching, (Sect. 4.3) Blueprints and
(Sect. 4.4) Deployment and Execution of Capabilities.

4.1 Distributed Knowledge

In order to create a common knowledge base of all SDDs connected to one LD,
the distributed information of each SDD must be collected and processed. The
information on properties and capabilities of each SDD is stored in form of a
“Resource Description Framework” (RDF) ontology (e.g., the Semantic Sensor
Network Ontology [3] for sensor data), where only the instances are specified
in the self-description of the SDD. The abstract form of the ontology, which
contains the classes and associations between them, is exclusively stored on the
LD. To establish a common knowledge base, the abstract ontology is completed
by the concrete instances of each SDD. To this end, the framework Jena [2] is
used to merge the different ontologies. Therefore, a combination of multiple SDDs
communicate with one LD which they are connected to by physical interfaces to
transfer the knowledge. This collected knowledge is then available for the agent
of a CAS. In addition to the merging of semantic data sheets, there is even the
possibility of adding additional information to the ontology itself by inserting
RDF-Triples with “Simple Protocol And RDF Query Language” (SPARQL) [26]
INSERT statements. This extensibility is crucial due to the incredible variety of
sensors and actuators (e.g., a new type of sensor is used). With such INSERT
statements the user is able to add classes as well as instances to the ontology as
needed.

4.2 Hardware and Property Matching

The created knowledge base can be used to find the required hardware to fulfill a
given task. Therefore SPARQL queries are used to search for SDDs with specific
capabilities or properties. By using SPARQL filter functions, the system is not
only able to search for hardware devices which have a certain capability, but
the search can be restricted even more precisely with help of the associated
properties of a capability. For example if a task needs the capability “measure”,
it can be specified which value should be measured or with what accuracy the
value is measured. These constraints of capabilities can be added by the user of
a task by adding SPARQL filter functions to the task definition. After the search
for and filtering of capabilities, the agent is able to use the found hardware for
the execution of the task. If multiple SDD possibilities are found, the agent is
even able to choose which hardware is most suitable for the task. If no suitable
set of SDDs is found, the user is informed that no matching hardware devices
were found for the execution of the given task.
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If a set of SDDs is found, which is able to fulfill the given task, the property
matching is executed. Therefore constraints of capabilities and constraints given
by the user or agent tasks are considered. Constraints of capabilities may be for
example that the capability “fly to position” can only be executed with a take-off
weight of 1 kg. Task constraints may be for example that the sensor-based flight
must last at least 15 min. This constraint check is realized through SPARQL
queries. For the constraints of the take-off weight, the sum of the weight of
all SDDs is queried and checked if its under 1 kg. The second example is more
complex. For the calculation of the flight time, a function can be created that
depends on “weight”, “power consumption” and “battery capacity” of the entire
system. Once all constraints are satisfied the execution starts, otherwise the user
gets notified.

4.3 Blueprints

Between the abstract formulation of a requirement of a task (e.g., “sensor-based
flight to position”) and the decomposition into individual capabilities, a lack of
information exists. This lack is eliminated by using blueprints to describe how
to compose individual capabilities to more complex capabilities.

Fig. 3. Extract of the blueprint “sensor-based flight to position” with the capabilities
“measure” and “fly to Position” and a logic component “calculate height”

Figure 3 shows an example of a blueprint for the composed capability “sensor-
based flight to position”. A blueprint consists of multiple semantic components
(dashed boxes) which describe actions that can be executed. These actions can
be capabilities or logical components, like calculation components (e.g., “calcu-
late height”) which in turn have control flow ports (boxes without description)
as well as a data flow ports (boxes with names) and can be used to interconnect
the semantic components. Control flow ports are used to set the order of exe-
cution while data flow ports serve to transfer data between multiple semantic
components. In our example, the capability “measure” is used to influence the
“height” parameter of the capability “fly to position”. Each data flow port has
a semantic description, which means it knows its content, its data type and its
unit. For example, the capability “measure” in a blueprint, can be represented
by a semantic component with a data flow port “sensor value” which measures
distance values in meters.

Through this semantic description, the logical components are able to adjust
their logic. To give an example, it makes a difference if a distance sensor or a
temperature sensor (value must be mapped) is connected to the semantic com-
ponent “calculate height”. In both situations, the sensor value must be converted
into a height in meters. As described in Sect. 3, the placeholder of the blueprint
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is filled with concrete capabilities if capable SDDs are found in the hardware
matching. After all capability placeholders of the blueprint are filled, the com-
posed capability can be executed.

4.4 Deployment and Execution of Capabilities

Agents use blueprints to define which capabilities they need to execute their task.
The blueprints must decide at runtime, which concrete hardware they use, thus a
mechanism is necessary to load interfaces to enable the execution of capabilities.
For this reason, a loading mechanism for hardware specific interfaces was created,
that is capable of using semantically annotated code fragments. These fragments
are Linked Open Data [34] compliant, stored in HTML sites and are linked to
the appropriate self-description of the individual SDDs.

Figure 4 shows the deployment of a system with a quadcopter SDD, a sensor
SDD and an LD. As described in Sect. 4.1 the LD includes the knowledge base
consisting of the abstract ontology and the self-description of each SDD. The
self-descriptions are sent to the LD when the SDD is added to the system. If the
execution of a capability is required, a SPARQL query is used to get a URI for
the code fragments of the SDD driver. Subsequently these code fragments are
downloaded from the web or a snapshot, which is directly stored in an SDD, com-
piled at runtime and integrated into the Robotics API [30], which is responsible
for the control of the sensors and actuators. Afterwards these fragments can be
executed. All code fragments contain interfaces for the execution of capabilities
within an SDD. For example, a sensor SDD has a function getSensorValue()
or a quadcopter SDD has a function flyToPosition(Position).

Because of the modularity, the system is able to exchange real SDDs for
simulated SDDs and vice versa. So it makes no difference if it works on real or
simulated hardware. Thereby the system is even capable of executing capabilities
on a combination of simulated and real hardware devices.

LD

Quad
SDD

Sensor
SDD

OrangePI

Odroid

WEB HTML
JAVA-Code

Ontology
RDF

Ontology
RDF

Ontology
RDF

SPARQL Robotics API

Sensor

Actuator

Semantic Execution Hardware

getSensorValue()

flyToPosition(Position)

<<include>>

<<include>>

query ontology get link of SDD driver

get code fragments of SDD driver

Fig. 4. Deployment of the running example with two SDDs and one LD
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5 Proof of Concept

To show the feasibility of our approach and to implement a CAS in reality,
several SDD prototypes were developed. These SDD prototypes consist of the
actual hardware module (e.g., a sensor) and a single-board computer, which is
responsible for the control of the hardware, the self-description of the hardware
component and provides a wireless communication interface for the communica-
tion with the LD. These two components are encapsulated in a 3D printed case
with a plug connection to enable the combination of several SDDs with an LD
to an overall system (see Fig. 5).

Fig. 5. Hardware prototype of an SDD adapter (a) for sensors and actuators. The
used hardware is an Orange PI Zero with Wireless LAN in a custom 3D printed case
with magnetic connectors. Prototype of a distance sensor SDD with an SR04 distance
sensor (b). Prototype of a quadcopter SDD (c) with magnetic connectors for two SDD
prototypes

The running example “sensor-based flight of a quadcopter” is used to deter-
mine whether our approach answers the questions mentioned in Sect. 2. By merg-
ing the distributed self-descriptions of each SDD to an overall knowledge base we
can answer the question “What am I?”. By using constraints in form of SPARQL
queries and filters, the agent is able to define constraints for the execution of
tasks. With these constraints the system is able to answer the question “Am I
capable of doing it?”. It has been shown that the system is even capable of select-
ing hardware or giving suggestions to the user which hardware should be used
for the execution of a task. For example, if there are requirements like “measure
temperature” the system will select a temperature sensor SDD or otherwise will
inform the agent that no matching sensor SDD was found. This answers the
question “With what should I do it?”. The Question “What am I supposed to
do?” is answered by blueprints, which are used for the decomposition of tasks
into a set of capabilities. After all questions have been resolved and a suitable
hardware configuration has been found, the task can be executed.

With the developed system it is possible to use values of a sensor SDD to
influence the behaviour of actuators like a quadcopter SDD. Figure 6a shows the
flight of a quadcopter that adjusts its height according to the measured distance
to the ground with a distance sensor SDD, with the blueprint shown in Fig. 3.
As a test setup a quadcopter SDD equipped with an LD and a distance sensor
SDD flew along a specified route with obstacles. For the navigation of the route,
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Fig. 6. Case study: sensor-based distance flight

an indoor tracking system was used, which also recorded the exact position of
the quadcopter, as shown in Fig. 6b. To validate the suggestion of SDDs, the
capability “sensor-based flight” can be executed with distance sensor SDDs as
well as with temperature sensor SDDs. The sensor-based temperature flight is
comparable to a kind of thermometer. If the measured temperature increases or
decreases the distance of the quadcopter to the ground matches the change.

By merging the self-descriptions of each SDD of an agent, it is possible to
generate an added value for the overall system. Because the total weights, power
consumptions and power reserves are known for each SDD, it is possible to
calculate the average flight time of a quadcopter. Through the plug and play
mechanism of the SDDs, it is possible to calculate the flight time dynamically
depending on the current configuration of the system.

Figure 7 shows the comparison between the calculated flight time and the
actually measured flight time with different takeoff weights of a quadcopter.
From this data a function was derived, which predicts the flight time depending
on the weight of the combined system with additional LDs. Hence, it is possible
to evaluate the constraints whether a capability can be performed for a given
duration as required in the example from Fig. 1.



Synthesizing Capabilities for CASs from Self-descriptive Hardware Devices 105

Fig. 7. Comparison between calculated and measured flight time with multiple runs
with different weights

6 Related Work

The following section will investigate related work in relevant research fields
emphasizing potentials as well as limitations in the context of Self-Descriptive
Device (SDD). The presented architecture for SDDs addresses two areas: self
awareness and modular hardware.

Due to many different protocols and storage possibilities for sensor data,
common ontologies such as the Semantic Sensor Network Ontology [3] have been
utilized. The advantage of the semantic storage in ontologies is primarily the
usage of semantic reasoners (e.g., queries as described in Subsect. 4.2). In the field
of geographic research, where many sensors are used to validate weather models,
this ontology is used to convert stored binary data into semantically annotated
data (e.g., [4,8,11,33]). The approach of Dibley et al. [13] goes one step further
with a hardware adapter where this conversion takes place. In contrast to the
architecture presented in this paper only sensors are semantically annotated and
a transfer to capabilities is not in the focus of these approaches.

The project Cubelets [16] focuses the influence of measurements on corre-
sponding actuators. Every sensor or actuator in this project is separated into
one modular hardware element with a common physical interface. The commu-
nication is instead very primitive. Every sensor provides a value between 0 and
255 which is in turn used by the actuators. With this mechanism, primarily
intended for educational purposes, reactive robots or systems can be built, how-
ever predefined processes (e.g., drive to position) are not possible. The idea of
combined capabilities, derived from several hardware elements is focused on in
the projects [9,29], in which homogeneous hardware is combined to gain loco-
motive capabilities. Heterogeneous aspects like e.g., combining a sensor with an
actuator are not considered in these projects.

The robot operating system (ROS) [27] is a middleware for robots which
allows publish-subscribe as well as service oriented communication mechanisms.
In ROS, sensors and actuators can be integrated and tested within a simula-
tion environment as well as on real hardware. The project H-ROS [1] aims to
simplify the connection between hardware elements with a common interface for
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communication in an ID-based plug and play manner. Each module must be
plugged into a backbone, which is connected with a so called cognition. Within
the cognition, the offered services of other connected H-ROS modules can be
used in programs. Semantic annotations with dependencies on capabilities, as
described in Sect. 3 are not in the focus of this project.

The project Knowrob [31] defines executable capabilities based on sensor
information performed by (industrial) robots. Abstract capabilities (e.g., grab
cup), geometric information (e.g., sensor position) as well as knowledge derived
from observations of humans are stored within a common knowledge base built
upon Semantic Web techniques. The abstract capabilities use this knowledge to
subdivide themselves into executable robot motions. This subdivision is similar
to the decomposition of capabilities. Modular self-descriptive devices as well
as combined capabilities described in Subsect. 4.3 are not in the scope of this
project.

To the best of our knowledge the combination of self description in a system
of modular hardware with a capability interface for agents within a CAS is novel.

7 Conclusions

In this paper we have proposed an architecture for the realization of collective
adaptive systems (CASs) on hardware devices for real world scenarios. With this
architecture, we are able to fulfill tasks by analyzing the given requirements.
Through the self-description and the plug and play mechanism of each Self-
Descriptive Device (SDD), we are capable to compile a detailed description of
the composed total system. Using this detailed description of properties and
capabilities of each hardware component, it is possible to compose capabilities
in a semantically correct way according to blueprints. The agent can use the
blueprint on the one hand to execute the capabilities if they can be instantiated
with the current set of hardware and on the other hand get a suggestion if the
actual hardware can not handle it. If a system can handle a defined task it can
execute this task in a simulated environment as well as on real hardware or even
in a mixed reality. With an increasing amount of data the system can give further
useful information about the system, like for example the rough estimation of the
flight time mentioned in Sect. 5. This consistent and expandable architecture is in
our point of view an important basis for the creation of CASs with real hardware
in the real world.

Future research will focus on the autonomous reconfiguration of agents
through the automatic exchange of SDDs with recommender techniques. Asso-
ciated with this, predictive maintenance of SDDs will be examined. So the SDD
can give information about its condition and if it is defective, it can be replaced
autonomously e.g., to facilitate long term measurements with quadcopters and
replaceable intelligent batteries. A first approach for the resource allocation on
agent level is presented in Hanke et al. [19]. Nevertheless, future work will focus
on the parallel execution of blueprints allocated to the same resources based on
a previous work [32].
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Abstract. This short paper gives an introduction to a panel held as part
of the track on ‘Rigorous Engineering of Collective Adaptive Systems’ at
ISOLA 2018. The discussion was structured on the basis of twenty ques-
tions ranging from the evolution and universality of autonomous systems
to correctness, reliability, and legal issues. ‘Do you consider adaptivity
to be a realistic and desirable property of technical systems?’, ‘what is
the new challenge in software engineering for the design and implemen-
tation of adaptive systems?’, ‘why should artificial intelligence open new
horizons to implement adaptivity?’, ‘can we expect machines to adapt
by evolution?’ as well as ‘is there a mathematical characterisation of
adaptation?’ were some of the questions that were considered. For all
questions, the paper also indicates related work.

Keywords: Adaptation · Autonomy · Software engineering
Artificial intelligence

The panel discussion on ‘The Meaning of Adaptation: Mastering the Unfore-
seen?’ was focused on the prospects and the state-of-the-art in engineering adap-
tive and autonomous systems. Stefan Jähnichen (TU Berlin) as moderator and
the panelists Lenz Belzner (Maiborn Wolff), Tomáš Bureš (Charles University
Prague), Alexander Knapp (University of Augsburg), Jeremy Pitt (Imperial Col-
lege London), and Franco Zambonelli (University of Modena and Reggio Emilia)
discussed this controversial topic based on a list of twenty questions presented
in the following. The panel discussion was a follow-up of the panel at ISOLA
2016 [1] entitled ‘Adaptation to the Unforeseen: Do we Master our Autonomous
Systems’ [2]. Some of the questions had been discussed on the previous panel
but were still considered important and relevant to be discussed again.

More than 50 years ago, Zadeh wrote that ‘it is very difficult – perhaps
impossible – to find a way of characterising in concrete terms the large variety
of ways in which adaptive behaviour can be realised’ [3]. Also today there are
c© Springer Nature Switzerland AG 2018
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different definitions of the notion of adaptive system [4]. In a ‘black-box view’
it refers to systems with the property to adapt and react to changing environ-
ments (see e.g. [5,6]) or more generally, to all situations occurring during its life
time, correctly and reliably. In a ‘white-box view’ an adaptive system ‘is char-
acterised by its ability to change its control rules through experience, [...] this
means that understanding observed differences in behaviour can be approached
only by looking at the internal changes in the mechanics of a system’ [7] or sim-
ilarly, that an adaptive program ‘has a distinguished collection of control data
that can be modified at run-time. [8]’ These definitions address different aspects
of the notion of adaptation. This led to the first question for the panel.

Q1: What is your notion of adaptivity? Can you explain the term or even give
a definition?

A collective adaptive system, often also called ensemble, consists of collaborating
entities that are able to adapt at runtime to dynamically changing, open-ended
environments and to new requirements [9,10]. Examples are robot swarms and
socio-technical systems such as smart city or smart health care applications. In
such a system we can distinguish the behaviour of the individual entities and
the behaviour of the whole system.

Q2: In a collective adaptive system do you see a difference between the adap-
tivity of the elements and of the system as a whole?

Without much doubt, the term ‘adaptive’ identifies one of the most challenging
topics we currently explore. The question comes up whether such a behaviour is
feasible, implementable, or even desirable.

Q3: Do you consider adaptivity to be a realistic and desirable property of tech-
nical systems?

Q4: Can you give some examples of applications for which adaptivity is not just
desired but essential?

Q5: Is there a formal/mathematical characterisation of adaptivity? If not, can
you envisage such a characterisation?

A formal or mathematical characterisation is probably considered a useful tool.
However, the effort to build such a model and make it known and usable is
definitely hard work (see e.g. [11]). The main question might be whether or not
it is worthwhile to develop such a model and what it could be used for. Main
implementation techniques are control loops, optimisation, learning and statis-
tical techniques [12–14] as well as methods for restructuring and reconfiguration
(e.g. in this volume [15–18]). For collective adaptive systems such techniques
need to be extended to consider many entities [13,14]; in addition, the different
forms of interaction have to be taken into account (see in this volume [19]).

Q6: For you, what are the basic techniques for implementing an adaptive sys-
tem? And which techniques are needed when many components are involved
that can dynamically change the interaction strategy?
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Adaptivity is not just a new term as many of our systems show adaptive
behaviour based on long researched and implemented control theory [20]. How-
ever, it seems that nowadays the notion of adaptivity has reached a new level
based on technologies from Artificial Intelligence (AI).

Q7: What is the relationship of adaptivity to control theory and how AI may
open new horizons for the implementation of adaptivity?

The successes of IBM Watson in the Jeopardy quizz show [21] and of artificial
neural networks in the Go competition [22] made AI and in particular machine
learning the new buzzwords in order to solve problems. On a more technical level,
AI methods are also used for engineering collective adaptive systems (see e.g. in
this volume [23–25]). However, in many aspects, AI just relies on progresses in
statistics and is heavily related to the notion of probability which immediately
raises questions of reliability and even more importantly of trustworthiness and
security (see e.g. [26–29]). AI is also considered to be a huge step forward towards
human intelligence taken up by machines [30,31]. Humans have the ability to
adapt to many different and even unforeseen states, but can we expect our
systems to show a similar behaviour?

Q8: How do you think AI can be used to implement adaptivity? Is achieving a
behaviour with a high probability sufficient to guarantee trustworthiness
and security of our systems?

Q9: The term machine learning is provocative as it suggests that machines can
learn similar to human beings. What is your view on machine learning and
how does it distinguish from human learning?

Q10: What are the most appropriate formalisms in machine learning for engi-
neering collective adaptive systems?

Current software engineering approaches might not be sufficient as unforeseen
functionalities may be needed in order to react correctly in all circumstances;
issues such as self-adaptation, awareness and evolution have to be taken into
account [14]. As also addressed in the contributions of this track, the well-
known software engineering processes—be they agile or waterfall—have to be
adapted [32–34]; adequate requirements [35], specification [36–38], design [39–
41], analysis [43,44], verification [42], testing [45], and security techniques [46]
will have to be considered (for a comprehensive approach see [47]).

Q11: What are the new challenges in software engineering for the design and
implementation of adaptive systems? In addition, what do ‘adaptive
software engineering’, ‘adaptive testing’ and ‘adaptive verification’ mean
to you?

Q12: Can specific modelling techniques, programming concepts and verification
methods help building adaptive systems? If yes, how?

Q13: How can so-called non-functional properties like security and performance
be handled?
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Our computers are commonly considered as being the most flexible and, in this
sense, the most adaptive systems mankind has ever invented and, observing
how computers penetrate all our life and take control in almost all applica-
tions, we have to acknowledge at least the ubiquity and universal applicability
of computing equipment. Obviously, the underlying reason for being adaptive
and universal originates from the very simple basic mechanism to manipulate
binary numbers and the ongoing minimization technologies for electronic circuits.
However, more importantly, for offering adaptiveness, we need programmability
of such machines relying on human intelligence and creativity, and on human
abilities to master complexity by exploiting mathematics and computer science
technologies.

Q14: Humans seem to adapt by evolution. Can we expect machines to adapt
by evolution, too? What could be the meaning of evolution in a technical
context?

In today’s technologies the term ‘autonomous’ plays a major role. It denotes a
system which performs its task without human intervention like e.g. automatic
lawn mowers, smart home equipments, driverless train systems, or autonomous
cars [48]. The most challenging question which comes up when following the
life cycle of the term autonomy is the potential to construct a system which
behaves and operates similarly to or even better than a human being. The cur-
rent technology has not got so far (see e.g. [49]), and personally, we doubt it
will ever do. However, we think it is needed to discuss how far the boundary
towards such behaviours could be pushed and whether autonomic operations
at least in a certain context can be offered with highest safety guarantees and
thrustworthiness.

Q15: Do you envision a universal autonomous system? Will robots ever be able
to substitute human interaction?

Q16: What are the means to establish trust in autonomous systems?

It is difficult to imagine that a human being can build a system that adapts to all
and above all to all unforeseen situations – since the term ‘unforeseen’ describes
circumstances that man has not foreseen. If we restrict ourselves to some foreseen
unforeseen behaviours which we might be able to handle [11,50], we have to
consider a problem of completeness. Did we cover the whole set of behaviours
or did we omit some? This, of course, raises questions of complexity, as the
number of such situations might be close to infinity and thus, not foreseeable
at all. In order to handle such complexity, we have to restrict the adaptability
of our systems to a certain context in which we are able to capture all different
behaviours, or which at least enables us to classify and cluster such situations.
Smart home environments [51] which rely on a small number of sensors and
autonomous trains [52] may be examples of such contexts.

Q17: Can you imagine other contexts in which autonomous behaviour could
play a dominant role?
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However, autonomous systems are on their way and will definitely make it into
our daily life. Autonomous cars are already seen on our streets and the first
severe accidents prove that they are not as safe as we had hoped. Thus, scientists
call again for more maths and formalisms in their development, but obviously
proving the correctness of an autonomous system is much harder than in the
standard, non-autonomous case. [53]. It is not just a matter of logic and logical
proofs but it has to incorporate statistical evidence, too, and, last but not least,
it has to integrate the physical properties of such systems, like acceleration,
loss of weight or the compression of gas under pressure. In our view, in order to
capture autonomicity in a safe and reliable way, in the near future there will be a
convergence of modeling and development techniques based on logical, statistical,
and numerical methods which also involve the explicit treatment of physical
properties of a system (cf. [27,29]). But there are already strong signs that this
is taking place. Methods such as statistical model checking or probabilistic model
checking are mixing some of the aspects mentioned above (see e.g. [42,54,55]).

Q18: Do you expect autonomous systems to be more vulnerable against mali-
cious attacks? If yes, how do you propose to handle security issues?

Besides the mentioned technical properties, another, often neglected aspect are
public laws and regulations systems have to conform with [56]. Adaptation will
probably make it more difficult to handle such non-functional requirements and
request strict (and probably new) methods to prove conformance. For exam-
ple, engineers are currently arguing that the most severe obstacles to drive
autonomously on our streets are not technical but of legal nature, and concern
warranty and guilt (see e.g. [57]).

Q19: How would you propose to cover legal and warranty issues in the develop-
ment and dissemination phases of (collective) adaptive systems?

Coming back to the initial discussion, many novel applications such as
autonomous systems, smart city infrastructures, or smart health applications
do exhibit some degree of adaptation.

Q20: Which systems do you consider being the cutting edge application to intro-
duce adaptability as an outstanding and highly requested feature?

The term adaptation refers to the property of systems to adapt and react cor-
rectly and reliably to all situations occurring during their life time. To ensure
reliability, safety and security of adaptive systems novel rigorous engineering
techniques are needed where AI approaches as well as mathematical and foun-
dational methods do play a prominent role. Governments should address the
risks and the unintended consequences of using adaptive systems by introducing
laws and regulations about liability, privacy and cybersecurity and by developing
specific strategies for handling the risks for the environment and for the possible
losses of jobs.
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Abstract. We consider test design as an optimization problem. The
challenge is to find a set of test cases, the so-called test suite, that opti-
mizes two quantifiable requirements: First, the effort needed for test exe-
cution should be minimal; a given test budget usually sets a maximum for
the size of the test suite. Second, the test suite should maximize the score
of a given test goal estimating its error detection capability, e.g., by the
use of coverage or risk metrics. This paper studies test design for testing
self-organizing systems with a mutation-based test goal. Equipped with
a reconfiguration mechanism, this kind of a distributed system adapts
its internal structure and thus its behavior to changing environmental
conditions at run time. Test execution at a time step t consequently not
only triggers an observable output at t+1, but might also bring about a
reconfiguration of the system under test influencing the result of subse-
quently executed test cases. Formalizing the evolving sequential decision
problem of test case executions by dependency graphs, in which we try
to find optimal sets of paths for the mutation-based goal, we investigate
the suitability of various kinds of evolutionary algorithms for optimiza-
tion. All of the considered algorithms are evaluated using a concrete case
study of an adaptive, self-organizing production cell.

1 Testing Self-Organizing Systems

“Testing is the process of executing a program with the intent of finding
errors” [21]. Since exhaustively executing a program with all imaginable inputs
I is in practice not feasible, it is up to the tester to choose a subset I ′ ⊂ I
which is expected to find most of the errors. This challenge, generally referenced
as test design, can be seen as a problem of optimization: Given a goal function
Γ : 2I → R that quantifies the expectation of detected errors for all possible sub-
sets of inputs, we strive to find the optimal I ′ ⊂ I with |I ′| = k, where k denotes
the maximum number of permitted executions, that fulfills the constraints in
time and cost. Since general solutions for this subset selection problem are com-
putationally expensive – exhaustive search would need

(|I|
k

)
goal evaluations
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Fig. 1. Fundamental setup of self-organizing systems: Distributed software agents
(often embedded in physical machines) continually interact with their environment
(denoted by arrow type ❶). The joint system behavior is strongly influenced by inter-
agent communication (❷) through message passing. If an agent detects an environmen-
tal fault hindering the current system approach, it triggers a reorganization mechanism
(❸) which computes and distributes a new valid configuration.

– it is common to solve specific instances with heuristic approaches that build
on domain-specific knowledge.

Self-organizing (SO) systems [8] are distributed systems with the particu-
lar characteristic that they are able to adapt their internal structure at run
time to changing environmental conditions; see Fig. 1 for the fundamental setup.
This kind of self-adaptation builds on an internal system state which is spread
over the physically distributed agent components and, when necessary, is mod-
ified by a so-called reorganization mechanism computing and distributing an
adapted agent component configuration in a central or again distributed man-
ner by message passing. Reorganizations are triggered by monitoring the current
configuration and the environment. In the Restore Invariant Approach (RIA) [17]
a “corridor of correct behavior” (CCB) is used which is described by invariants
and where imminent leaving of the corridor results in a reorganization.

Though affecting the actual run-time behavior, the internal states and con-
figuration of an SO system usually are not accessible from outside the system
boundaries; changes to the system configuration rather are the indirect result
of reorganization triggerings than the direct product of a reaction to an input.
For testing an SO system and, in particular, solving the resulting optimization
problem, the limited influence of the tester on the system configuration hence
raises implications on the test goal and the test strategy:

1. Test goal : The expectation of detected errors for a set of test inputs is strongly
associated with the (expected) system reaction on them. The current system
state shall consequently have the same influence on Γ as on the reaction.
Given the internal state space Ssys we get the new signature ΓSO : 2I×Ssys →
R.

2. Strategy : An input i ∈ I at time step t influences future system states by possi-
bly triggering previously unforeseen reconfigurations. Test execution at t thus
influences the score, as we call the evaluation of Γ for particular inputs, of
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Algorithm 1. Mutation-based test suite evaluation
Require: p ≡ reference version of the program under test

O ≡ set of mutation operators
S ≡ mutation score function

1 function killed(π) � π: test case input sequence of length |π|
2 Kπ ← ∅ � map of killed mutants, indexed by mutants
3 for all o ∈ O do
4 m ← mutated version of p by application of o
5 reset system state
6 for t ← 1..|π| do � iterate through time steps
7 eff ← p.execute(π(t))
8 effm ← m.execute(π(t))
9 if eff �= effm then

10 Kπ[m] = (eff , effm) � mutant killed
11 break � continue with next mutation operator

12 return Kπ � return killed mutants

13 function ΓM(TS) � TS: test suite of test input sequences
14 K ← ∅ � map of killed mutants, indexed by test input sequences
15 for π ∈ TS do � iterate through test input sequences
16 K[π] ← killed(π)

17 return S(K) � return mutation score

the following inputs. Test design evolves from an ad hoc towards a sequential
decision problem: optimization needs to take into account dynamic interac-
tions between the tester and the system under test (SuT). In consequence,
our test goal ΓSO needs to consider input sequences π : T → I over time steps
T = [1..|T |] starting from an initial system state σ0 ∈ Ssys instead of sets of
pairs of inputs and system states: ΓSO : 2IT → R.

For the first implication we previously investigated a mutation-based test goal
for SO systems [23]. Following the classic mutation testing technique [9], it deter-
mines how many of the mutants that simulate the effect of communication errors
during reorganization a test suite reveals. Here, we consider a slightly modified
goal not only taking into account the number, but also the effect of revealed
mutants on the CCB, which leads to a weighted mutation score (Sect. 2). For
solving the resulting optimization problem for the second implication, we study
the eligibility of meta-heuristic search approaches, or, more concretely, of custom
variants of classical evolutionary algorithms. We present a novel evolutionary
mutation as well as a recombination operator that are particularly suitable for
solving sequential optimization problems (Sect. 3), but may also be useful for var-
ious applications beyond test design. An evaluation of the proposed approaches
by means of a concrete case, testing a self-organizing, adaptive production cell,
shows promising results (Sect. 4). Encouraged by those results and considering
related approaches and challenges (Sect. 5), we are planning several combinations
and extensions of the presented approaches in the future (Sect. 6).
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Fig. 2. Corridor of correct behavior

2 A Mutation-Based Test Goal

The mutation testing approach [9] supplies a direct operationalization for the
principal goal of finding faults (as effects of errors) through detecting failures: A
reference version of the program under test p and a set of mutation operators O
that mimic particular, common errors are assumed given. Modified versions of
p are generated by applying the operators from O. These so-called mutants of
p simulate the effect of introduced errors and thus potentially comprise faults.
Each of the mutants is executed with each of the test cases from a test suite
recording those mutants that show an effect deviating from the effect of p; such
a mutant is said to be killed by the test case. Finally, for evaluating the test
suite, a mutation score function S is applied to the record of killed mutants.

Algorithm 1 outlines this mutation-based test suite evaluation ΓM(TS) for a
test suite TS of sequences of test cases from the inputs I each of length at most
|T |. In particular, it considers the case that the execution of one test case in a
sequence influences the outcome of the next. We denote the execution of program
q with a test case tc ∈ I on the current system state of Ssys by q.execute(tc)
returning the observable effect of the resulting state. ΓM(TS) first records the
mutation results for each π ∈ TS and then applies the score function S to the
computed map of killed mutants. For a test case sequence π, killed(π) executes
the program p and each mutant resulting from O from a freshly reset system
state with π comparing the effects until either the sequence is completed or the
mutant has been detected.

While a classical mutation score function would simply return the over-
all number of killed mutants, we suggest a more fine-grained categorization of
observed effect deviations leading to a weighted mutation score. This categoriza-
tion builds on a basic SO architectural concept: the corridor of correct behavior
(CCB), for which the remainder of this section suggests appropriate assignments
of O and S for testing SO systems.

2.1 The Corridor of Correct Behavior

Our mutation-based testing approach for SO systems assumes that the behav-
ioral specification of the system under test is, or can be, formalized by the Restore
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Invariant Approach (RIA) [17]. Initially introduced as a generic formalism for the
specification and the implementation of Organic Computing systems, the RIA
and the underlying CCB also proved useful in enabling systematic and auto-
matic tests for SO systems [11]. The CCB guides reorganization in the RIA with
logical predicates describing wanted properties of internal and external states.
The conjunction of those predicates yields an invariant for the system’s speci-
fied run-time behavior. Instead of continuously trying to optimize a quantifiable
goal, reorganization is only performed if the invariant is broken, i.e., the CCB is
left. The reorganization mechanism is assumed to restore the invariant through
reorganization then, such that the system can continue to work as expected.

The invariant (see Fig. 2) considers both, the environmental state space Senv

as well as the internal state space Ssys. As soon as changing environmental con-
ditions violate the invariant, reorganization is triggered by a monitoring mech-
anism. There are two cases in which the invariant remains broken after reor-
ganization: There might be no possibility for “healing”, i.e., re-establishing the
invariant by reorganization at all. Since we can say that this is caused by higher
force (the system cannot directly control Senv), this case is not as relevant for
testing. The other case, however, is relevant as it indicates the existence of errors:
if there was a possibility for re-establishing the invariant, but the reorganization
mechanism did not do that. By testing we strive to reveal this latter case.

The CCB allows us to concentrate the test effort on the reorganization mech-
anism, as this ensures that the system behavior complies with its specification
at run time: A test case tc now amounts to choosing an environmental state, i.e.,
Senv becomes the test input space I. Testing the program p of the reorganiza-
tion mechanism by executing tc in the current system state, i.e., implementing
p.execute(tc), then involves three steps:

1. Establish the particular environmental state tc which, in combination with
the current system state violates the invariant.

2. Observe the system’s reaction and its effect on the overall state.
3. Evaluate and, where appropriate, classify the effect against the corridor.

2.2 Mutation Operators

Successful reorganization requires correct state perception by the agents, correct
computation of internal state adaptations by the reorganization mechanism, and
correct realization of the delivered adaptation tasks by the agents. Since all of
these critical routines are interconnected through message passing between the
agents and the reorganization mechanism, a common cause for system failures are
errors in communication. In [23] we elaborated the following exemplary mutation
operators which are able to mimic those typical reorganization errors:

– Lost Reconfiguration Message (LRM): As soon as an agent finds that a pred-
icate of the invariant is violated it should normally send a reconfiguration
message to trigger the reconfiguration mechanism. This mutation operator
suppresses such messages, such that there might be no reconfiguration in
spite of an incorrect system configuration.
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– Needless Reconfiguration Message (NRM): The inverse of an LRM: A par-
ticular agent signals the violation of a predicate, although there actually is
none. Consequently, unnecessary reconfiguration steps might be triggered.

– False Reconfiguration (FR): This operator mimics the loss of a message that
was sent by the reconfiguration mechanism to trigger adaption. In conse-
quence, one agent will (maybe erroneously) retain its previous internal state
– this could result again in an incorrect system configuration.

For SO systems, we thus choose the set O of mutation operators to consist of
LRM, NRM, FR instantiated to each agent.

2.3 A Weighted Mutation Score

Considering Algorithm 1, the final score for TS is determined by a function S
which assesses deviations in the observed effects when testing p and when testing
the generated mutants. In its classic form, the score simply counts the number
of mutants killed by TS:

Sc(K) = |M(K)| with M(K) = {m | ∃π ∈ TS .K[π][m] �= ∅} . (1)

Besides this classic mutation score we suggest an extension for testing with the
CCB, which additionally takes the severity of killed mutants into account. This
might be seen as rewarding the test suite for revealing preferably serious failures.
The idea behind such a risk markup is that the more serious failures revealed
by systematic testing, the lower the probability that such serious failures occur
in real operation (cf. [22]).

Considering the CCB we build the severity levels on a classification of possible
test results (as we call the effect observed after executing a program with a
test case): If test execution results in reorganization, i.e., the reorganization
mechanism transferred a state outside the corridor to the inside again, we assign
the result to the class reorg . Otherwise, we assign it to ¬reorg . Function C :
Eff → {reorg ,¬reorg} determines the class of an effect in Eff . Comparing the
effects eff and effm as they are gained in Algorithms 1 and 1 of Algorithm1,
we quantify the severity levels of the four possible permutations with a severity
function Sev : Eff × Eff → R:

Sev(eff , effm) =

⎧
⎪⎨

⎪⎩

1 if C(eff ) = C(effm)
2 if C(eff ) = reorg ∧ C(effm) = ¬reorg
3 if C(eff ) = ¬reorg ∧ C(effm) = reorg

(2)

The first case is obviously the most harmless one. If a test case triggers reor-
ganization in both program versions (or in neither), we can argue that no real
failure was detected. However, as the mutant has been killed (cf. Algorithm 1
in Algorithm 1), we still assign a slight severity score. The remaining cases indi-
cate that the killed mutant simulated a real failure. In the second case, no valid
state was established even though this would be possible. Such a failure would
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require human intervention in real operation. The third case, where a valid state
was established even though this should be impossible, implies even higher costs
in real operation, as it mostly results in a contradiction between software and
hardware. The quantified severity levels are the basis for the weighted mutation
score

Sw(K) =
∑

m∈M(K)
Agg(�Sev(K[π][m]) | π ∈ TS�) , (3)

where Agg aggregates the multiset of severities observed when a single mutant
was killed by more than one test case occurring TS. The operator Agg can be
instantiated, e.g., with

∑
or max. We suggest to use

∑
if the errors simulated

by the mutation operator are assumed to be transient, which means that the
error does not always trigger a failure if covered. For the others, the persistent
errors, we suggest to use max.

3 Evolutionary Test Strategies

Given a mutation-based test goal ΓM as it is implemented in Algorithm 1 and
instantiated with mutation operators O and mutation score function S, just as
described in the previous section, the challenge is now to find a test suite TS
that optimizes this goal in terms of the obtained score. We further demand that
|TS| conforms with a predefined maximum number of investable time steps k
such that if each test sequence of TS has a length of (at most) |T |, k = |TS| · |T |.
In case of a self-organizing SuT the search for such a test suite has to face the
following two challenges:

1. The effects of test cases in terms of killed mutants are dependent on the full
history of previously executed test cases in a test sequence due to reconfigura-
tions as adaptations to these previous environmental influences; in particular,
executing a test case influences the future scores. The search space for the
optimal test suite is thus given by a dependency graph with the initial system
state as root, effects and their killed mutants as nodes, and the test cases as
edges; see Fig. 3 for a small example.

2. Each evaluation of a test suite TS is at the cost of k · |O| program executions
at worst. The only factor that we can influence for practicability is thus the
number of evaluations that has to be kept to a minimum.

These challenges give rise to a general optimization problem: find a number of
paths through a graph in the most efficient way, such that their collected nodes
optimize a given goal. For the aggregation by

∑
, when disregarding that test

suites are sets, a single best path could just be repeated, and optimization would
be reduced to the well-established problem of finding a single path with maxi-
mum score [20]. The aggregation operator max, however, directly considers sets
of nodes for evaluation and is sensitive to duplicates; greedy approaches itera-
tively choosing the single best rated path are doomed to fail. We now report
on some experiments with different evolutionary algorithms for mastering this
problem. Utilizing the new technique of phased evolution (cf. Sect. 3.2) we man-
age to cut the number of needed goal evaluations; endowing the evolutionary
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initial

eff1{m0[2],m2[1]} eff2{m4[2]}

eff3{m2[3],m5[1]}

eff4{m1[1]} eff5{m3[1],m6[1],m8[1]} eff6{m9[3],m7[1]}

eff7{m2[1],m6[2],m7[3]}

tc1 tc2

tc3 tc7

tc4
tc5

tc6

Fig. 3. Exemplary dependency graph with seven test cases tc1, . . . , tc7 annotated by
the set of killed mutants respectively. The numbers in squared brackets denote the
severity of killed mutants. The best test suite of size |TS| = 2 for max-aggregation
comprises of the two sequences π4 = 〈tc2, tc3, tc6〉 and π5 = 〈tc2, tc7〉 scoring 14.
For

∑
-aggregation, however, the best test suite with |TS| = 2 is {π3, π5} with π3 =

〈tc2, tc3, tc5〉 with a score of 19.

mutation and recombination operators with domain specific semantics derived
from a similarity function between test cases, we leverage the classical evolu-
tionary algorithm to cope with the data structure of test sequences in penguin
evolution (cf. Sect. 3.3).

3.1 Evolutionary Algorithms

Evolutionary algorithms are a wide-spread probabilistic optimization tech-
nique [12]. As they do not require a gradient on the solution space to be com-
putable, they are often used in the automatic generation of test cases for soft-
ware [20,26]. In more recent years, the research community considered the issue
of whole test suite generation, in which the aim of applying an evolutionary algo-
rithm is not to find the most important test cases but instead to find the ideal
combination of test cases that make up a concise but approximately complete
test suite for a given software [13].

We first discuss the basis of an evolutionary process for whole test suite
generation, which we will augment in the following sections. Any evolutionary
algorithm works on a set of solution candidates, also called individuals. In our
case, a single individual TS represents a whole test suite. The set of currently
considered individuals is also called a population P and thus forms a subset of
the domain of all possible test suites. As is usual for evolutionary algorithms,
we set a fixed limit |P | = m on the population size. Furthermore, we employ
a fixed limit of execution time (measured in evaluations or generations as we
discuss later) instead of a quality threshold as would be possible as well. However,
especially for our later experiments we are most interested in the comparison of
the quality of various approaches within a given time frame, as for software
testing the requirement is more likely formulated to produce the best test suite
within the available time rather than to produce a test suite as fast as possible.



126 A. Reichstaller et al.

Algorithm 2. Evolutionary Algorithm for Test Suite Generation
Require: n ≡ maximum amount of generations

m ≡ maximum amount of individuals in the population
rrecomb, rmut, rhyper ≡ rates of evolutionary operators
evaluate ≡ fitness/objective function
rnd ≡ random number generator on codomain [0, 1]
generate ≡ genetic operator that randomly generates a test suite
mutate ≡ genetic operator that randomly applies small changes to a test suite
combine ≡ function that combines two test sequences to produce a new one
select parent ≡ randomized function returning a mating candidate in a population

1 P ← ∅
2 for j = 0, . . . , m − 1 do � Random Initialization

3 P ← P ∪ {generate()}
4 for i = 0, . . . , n − 1 do
5 for all TS ∈ P do � Recombination
6 if rnd() < rrecomb then

7 mate ← select parent(P )

8 child ← (null)|TS|
9 for k = 0, . . . , |TS| − 1 do

10 child [k] ← TS[k] or mate[k] or combine(TS[k],mate[k])

11 P ← P ∪ {child}
12 for all TS ∈ P do � Mutation

13 if rnd() < rmut then
14 P ← P ∪ {mutate(TS)}
15 for all TS ∈ P do � Hypermutation
16 if rnd() < rhyper then

17 P ← P ∪ {generate()}
18 while |P | > m do � Selection
19 P ← P \ {argminTS∈P evaluate(TS)}
20 return argmaxTS∈P evaluate(TS) � Result

Algorithm 2 shows the typical structure of such an evolutionary algorithm. It
starts with a random initialization and repeats its other operations for a fixed
amount of times n. Each of these repetitions is also called a generation. We will
discuss the various operators in greater detail now.

Random Initialization. This step generates the initial population by generating
random test suites. Note that generate is not a mathematical function as it
returns a newly generated object each time it is called. We use the term genetic
operator for common evolutionary operations that use random effects.

Recombination. We chose a variant of recombination that grants the chance to
recombine to each individual (irregardless of its fitness), but chooses its respec-
tive mate with respect to higher fitness. Effectively, we found this to be a good
compromise between allowing exploration (using all individuals for recombina-
tion) and exploitation (favoring the better ones). The former is guaranteed by
applying a fixed chance rrecomb for the choice of any individual for recombination.
The randomized function select mate performs the latter by iterating over the
population, returning the nth-fittest individual with probability 2−n. We then
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first create an empty test suite (i.e., containing no test sequences but already of
required size |TS|) in the variable child . We then iterate over the number of test
suites that is used for all our suites and complete the child by performing one
random choice of three operations with equal probability (as denoted by the or
operator): (a) we reuse the test sequence of the first (randomly chosen) parent,
or (b) we use the test sequence of the second (chosen according to fitness) par-
ent, or (c) we call a special function combine that builds a new test sequence
out of the test sequences stemming from both parents. We show in Sect. 3.3 how
to effectively implement such a function. Leaving out option (c) entirely would
result in a more standard evolutionary algorithm that still manages to produce
effective (but not as good) test suites (see Sect. 4.2). The recombination can then
be considered as a standard uniform crossover at the whole suite level.

Even though recombination is a common step integral to almost all evolu-
tionary algorithms, we did not present it as a black-box genetic operator but
put a bit of its implementation into the description in Algorithm2 to accurately
describe how our implementation of select mate fits in. The function combine
thus does not accurately represent the whole genetic operation “recombination”
the way mutate and generate do.

Mutation. Each individual is subject to mutation with a chance of rmut. When
chosen, the mutate operator generates a new individual through small random
changes to the original. It is not obvious how a small change can be accurately
quantified or guaranteed in the domain of test suites. It is, however, important
that mutation operates on a small scale as it is our main exploratory operator
and large mutations may (systematically) jump over some solutions. We tackle
this problem in Sect. 3.3. An alternative to caring about the “smallness” of the
changes is to just pick a random test sequence of the suite and re-generate it
through random walk within the dependency graph starting at a randomly cho-
sen point in the test sequence, which results in a rather big change with each
mutation. We compare these approaches in Sect. 4.2. Note that in contrast to
some evolutionary algorithms (and biological evolution), we only add mutated
individuals to the population instead of having them replace their original coun-
terparts.

Hypermutation. During the hypermutation step, we simply generate new indi-
viduals at random disregarding the previous course of evolution, and add them
to the population. For this purpose, we use the same generate operator as in the
random initialization step. Adding these new individuals increases exploratory
behavior and thus helps prevent getting stuck in local optima. In parallel to the
other operators (and their respective application rates), we base the amount of
generated individuals on the population size |P | and the given parameter rhyper.
In fact, the phases extension discussed in Sect. 3.2 turns the evolutionary algo-
rithm into a dynamic optimization problem, for which the use of hypermutation
has been highly suggested [16].

Selection. In the selection step we simply choose the m best individuals to keep
for the next generation. For the description in Algorithm2 we choose a notation
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that does not need to introduce list slicing, although the implementation uses a
computationally more efficient functional equivalent to the algorithm presented
here.

Result. Finally, we return the best individual found in the last population of
the last generation. This is also the best individual found overall, as all of our
operations in the steps within each generation only add new individuals but
never overwrite their parents. The fitness function evaluate in our case applies
ΓM to the TS. As long as we do not change its semantics this means that we
always keep the best individuals around. This feature is called elitism within
the field of evolutionary algorithms. While the search process is (even without
elitism) expected to strive for better individuals anyway, elitism ensures that it
is monotone, as we will see in Sect. 4.2.

3.2 Phases Extension

Having discussed the basic functionality of our evolutionary algorithm for test
suite generation, we now introduce the first of two extensions to it. This extension
considers improving the performance of the search. We show in Sect. 4.2 that it
manages to produce comparable results with roughly half the goal evaluations.

Generally speaking, we can observe that there is a noticeable relation between
the fitness of a test suite TS and the fitness of a single test sequence π ∈ TS, i.e.,
the fitness of the suite {π}. As discussed, the best test suite of x test sequences
(with maximum length |T |) will usually not consist of the x best rated test
sequences, as these will likely overlap in killed mutants and thus have poor
overall coverage. However, it seems intuitive to start with one of the best rated
test sequences and then build a suite around it. We could thus split the test
suite generation problem into various sub-problems of iteratively finding test
sequences given certain constraints (from previously found test sequences). But
evolutionary algorithms provide us with a much more elegant approach, which
we call phase-based evolution: we adjust the objective of the evolutionary process
and the data structure of its individuals during the progression of evolutionary
search. We start our evolutionary process with individuals that contain test
suites TS ∈ P of size |TS| = 1, i.e., all test suites only contain a single test
sequence. We run this evolutionary search for the best single test sequence for a
while: if we eventually want to search for a test suite TS of size |TS| = x after n
generations, we run this reduced search problem for roughly n

x generations. Then
we augment all individuals to represent a test suite with two test sequences by
adding a randomly generated test sequence to each individual. We proceed to
expand the problem domain of the search every n

x generations until generation n,
having actually employed the original fitness function for a size x test suite only
for the last 1

n generations. This approach works well in case the time of each of
these evolutionary phases does run long enough to find reasonable results but not
long enough to fully converge. The evolutionary search thus hits a point where it
has a rough idea about the best single test sequence but still has multiple open
options. At this point, it proceeds to search for a larger test suite, with limited
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option for the first spot of a test suite. Using the phases extension, we can cut
the total amount of goal evaluations roughly in half, since the average test suite
is only x+1

2 test sequences in size throughout the course of evolution.

3.3 Penguin Extensions

The second extension targets two points: (1) “merging” two test sequences into
one within the combine function and (2) applying meaningfully small changes in
the search domain of test suites within the mutate operator. The main problem
of both is the handling of test case dependencies: Two test sequences π1 and
π2 cannot simply be combined by attaching the tail of π2 to the head of π1 (as
in the traditional one-point crossover operation [12]), since the configurations
in the second half of π2 might not conform to those of the first half of π1. We
utilize a method we call penguin recombination instead. Its name is inspired by
an imaginary instance of our evolutionary algorithm being used to compute the
evolution of animals, where dependencies in combination and mutation can be
observed as well. If we consider two test sequences as different species such as a
parrot and a fish, we notice that they cannot meaningfully recombine through
crossover; but, inspired by nature, we can at least evolve the parrot to another
bird that is most similar to the fish, resulting in perhaps a penguin. For applying
this metaphor to the test sequences considered, we utilized a notion of similarity
which we introduced in [23].

Similarity Between Test Sequences. We showed that faults that result from errors
which are emulated by the mutation operators mentioned in Sect. 2.2 have no
influence on one another, as they are distributed over different entities that are
only connected through message passing. This basically means that a fault in
the source code of one agent does not affect the path passed through control
flow of another. We showed that we are in this case able to determine which of
all the possibly generated faults F (as result of applying mutation operators) a
test case would generally cover [23]. We can thus represent a test case by a label
vector, a binary vector v of length |F |, with vi = 1 if the fault Fi is covered and
vi = 0 otherwise. Such a vector can be viewed as indicator for the path taken
through the distributed control flow in an SO system in response to the input
of an executed test case. Building on this insight we proposed a dissimilarity
metric comparing two test cases based on their label vectors v1 and v2:

Dist(v1, v2) = |{l ∈ {1, . . . , n} | v1[l] �= v2[l]}| . (4)

The more dissimilar two test cases are w.r.t. (4) the more fruitful it might be to
execute them both instead of only one of them. Writing tc.v for the label vector
of test case tc, we extended this metric for assessing the representativeness or
similarity of whole test sequences π1 and π2, i.e., paths through the dependency
graph by

Rep(π1, π2) =
∑

tc2∈π2
mintc1∈π1 Dist(tc1.v, tc2.v) . (5)
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Penguin Recombination. Using this path distance, two test sequences π1 and π2

can be combined as follows: we cut a part of the beginning of π1 at a random
length, resulting in the incomplete test sequence πA

1 so that πA
1 ;πB

1 = π1 for
some πB

1 . There now exist multiple paths that may follow, of which πB
1 is one

possibility. Of all the possibilities πB
1 , πB

1
′
, . . . within the current configuration

at πA
1 , we compute their similarity to πB

2 , which is the second part of π2 after
cutting off π2 at the same length as π1. We choose the most similar completion
πB

1
∗ ∼ πB

2 to produce a new test sequence π3 = πA
1 ;πB

1
∗. This test sequence has

a similar setup as π1 but after a certain point tries to mimic as many features
of π2 as possible, i.e., become as much of a fish as a parrot can.

Penguin Mutation. The mutation operator is implemented analogously, almost
as a recombination of a test sequence π with itself. We cut off π at some random
point, resulting in πA;πB = π. Furthermore, we cut off the first test case of
πB , resulting in πB

orig;π
C = πB. We then add one test case at random to πA,

which we name πB
rand, and make sure that πB

rand �= πB
orig. From that point on, we

complete πA;πB
rand by generating the test sequence πC∗ ∼ πC . We return the

mutated test sequence π′ = πA;πB
rand;πC∗ with only a single test case changed

and afterwards trying to mimic the original π as closely as still possible. We
argue that this is the minimal (and still general) mutation one can implement
for the domain of test sequences.

4 Evaluation

We evaluated the presented approaches by means of a concrete case study of a
self-organizing, adaptive production cell. After describing the case considered in
Sect. 4.1 we will provide the results in Sect. 4.2.

4.1 Case Study: An Adaptive Production Cell

We consider evolving a test suite for a self-organizing, adaptive production cell.
As depicted in Fig. 4, the considered setup comprises four robots (R1, R2, R3,
R4) and three mobile carts (C1, C2, C3). The robots are equipped with tools
and corresponding capabilities such as Drill, Insert, Tighten, and Polish. The
carts are able to carry workpieces along given routes. Each of the robots can be
associated with a particular role which lets it apply a sequence of capabilities on
present workpieces. The self-organizing production cell’s behavior at a point in
time t is thus determined by the overall role allocation and cart routes in t. A
corridor of correct behavior (cf. Sect. 2.1) monitors the satisfiability of tasks in
the presence of environmental faults, such as a broken driller for a specific robot.
Triggered by violations an SO mechanism calculates and distributes a new valid
configuration at run-time.

Testing the SO mechanism in the described setup means to simulate envi-
ronmental faults by use of test drivers in order to subsequently evaluate the
established, new configuration of the cell. While the inputs of a single test case
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R2

R1 R3

DI

ID

TPTD

C2C1

R4

PC3

(a) The resource flow starts to the left where R1

drills a hole into incoming workpieces. Work-
pieces are successively transported by C1 , C2 ,
and C3 . The robots apply their tools. Once R4 is
done, the workpieces leave the system.

R2

R1 R3

DI

ID

TPTD

C2C1

R4

C3

¬polish

(b) After R4 loses its polish tool, the resource
flow is reconfigured: R3 is taking over the previ-
ous role of R4 .

Fig. 4. A schematic overview of the self-organizing robot cell case study. The task is
to apply the drill, insert, tighten, and polish capabilities to all incoming workpieces.
Each robot’s available tools are shown to its right with D, I, T, and P; the currently
allocated ones are underlined. (a) shows an exemplary configuration of the robot cell.
As depicted in (b), faults result in tool losses that self-organization can cope with by
reconfiguring the resource flow.

are defined by a fixed number of environmental faults (55 in our case), a test
sequence starting at a fixed role allocation with no activated faults, sequentially
activates the faults defined by the comprised test cases. The result of a test case
depends on the current role allocation, which can be viewed as an internal sys-
tem state, and this current role allocation is established by the preceding test
cases. The dependency graph of test cases hence is connected by role allocations
before and after the test case execution. For our experiments, we generated the
test suite to minimize by use of the S# framework [10] resulting in a graph with
7524 test cases as nodes and 8 884 634 edges in between them.

4.2 Results

For evaluation we applied our approach to the mentioned dependency graph.
We tested a standard evolutionary algorithm evolving a test suite as well as
both of our extensions individually and their combination. We also ran baseline
experiments using random search. We used a population of size m = 50 evolving
for n = 1000 generations. We produced test suites of (eventual) size x = 10
from our test data comprising test sequences of length up to |T | = 10, i.e.,
k = 100. We chose rrecomb = 0.3 and rmut = rhyper = 0.1 for the hyperparameters
providing a lot of random exploration to the algorithm favoring generality of our
results over sample efficiency. The total computation time of all evolutionary
processes included in the test was 1.6 h on a machine with an Intel Core i7
processor at 2.9 GHz and 16 GB of memory. The results are shown in Figs. 5(a)
and (b). It can be clearly seen that the phases extension eventually achieves very
similar results to both non-phase-based variants, but with considerable savings
in computational resources. Furthermore, it is also evident that both penguin
variants outperform their non-penguin counterparts. Again, this validates our
approach and shows that the additional knowledge given to the algorithm in
form of the similarity function pays off with better end results.
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(a) Performance evaluation of evolutionary test generations strategies compared to a random
baseline. The penguin recombination and mutation manages to produce better results than the
naı̈ve approach. Interestingly, for both cases, about the same quality of results can be reached
using the phased evolutionary algorithm with significantly less computational effort, see Fig. 5b.

(b) The same experiment as in Fig. 5a plotted against the number of test sequence evaluations
performed. It can be seen that the phase-based extension uses only about half the evaluations
compared to the standard approach, reaching about the same performance earlier in the case of the
penguin variant.

Fig. 5. Performance evaluation results
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5 Related Work

Extensive use of adaptivity, such as self-organization, necessitates research on
adequate methods of engineering them reliably [8,28]. Finding adequately pow-
erful software tests is an integral part of making adaptive systems controllable
and trustworthy [1,3,6], even though some new methods regarding, e.g., run-
time testing [4,7,14], need to be developed. The concept of simultaneously using
machine learning methods to generate the adaptivity of the SuT as well as the
power of the test suite has been sketched for neural networks as adversarial
learning [2,19].

We considered test suites for self-organizing systems, and the application of
evolutionary algorithms for their generation w.r.t. a mutation-based test goal.
While it seems quite common to use fault-based techniques for evaluating the
quality of test suites [5,24,29], the huge majority of approaches, including the
cited ones, applies other test goals for actual generation or the minimization
process. This might be due to the high costs for goal evaluation, which we were
able to reduce by the phases extension. The mutation operators and the case
study were taken from our previous work, where we considered the test suite
reduction problem for SO systems [23]. Also the severity-based mutant weighting
was inspired by our previous work in which we approached the task of risk-based
interoperability testing using reinforcement learning [22].

Here, we made use of search-based testing techniques [20] for generating test
suites which are adequate w.r.t. a mutation-based test goal. Within the field
of evolutionary algorithms, test case generation has been researched for some
time [20,26] with whole suite generation sparking interest more recently [13].
Using evolutionary algorithms for dynamically changing problems has been envi-
sioned from their very beginning [12,27]. Some approaches have already intro-
duced dynamics into originally non-dynamic problems in order to improve the
quality of the search result [15,25]. These also use measurements related to the
similarity between individuals in their evaluation, which may then change over
time as the population changes. Similarity has been incorporated into the recom-
bination process e.g. in [18], though on a different level than in our approach,
viz. at the level of mate selection mirroring biological evolution.

6 Conclusion

We suggested two domain specific extensions of a classical evolutionary app-
roach on constructing test suites of given length w.r.t. a mutation-based test
goal for testing self-organizing systems. The first, the phased extension, reduced
the number of goal evaluations needed for optimization, the second, the penguin
extension, was shown to increase the overall fitness attained. Both aspects are
highly relevant for test suite construction. Though our evaluation just consid-
ered a single concrete case, testing a self-organizing production cell, we expect
to be able to generalize our findings in future. Applications to be considered
include code-level test sequence and test suite generation. With respect to the
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presented mutation-based test goal the future plan is to combine the severity-
based weighting scheme of mutants suggested here with the concept of higher-
order mutants for self-organizing systems that we investigated previously [23].
Also here we envision several cut points with practice-oriented applications, such
as test suite minimization and construction for distributed systems, waiting for
being explored.
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Abstract. From formal and practical analysis, we identify new chal-
lenges that self-adaptive systems pose to the process of quality assurance.
When tackling these, the effort spent on various tasks in the process of
software engineering is naturally re-distributed. We claim that all steps
related to testing need to become self-adaptive to match the capabilities
of the self-adaptive system-under-test. Otherwise, the adaptive system’s
behavior might elude traditional variants of quality assurance. We thus
propose the paradigm of scenario coevolution, which describes a pool
of test cases and other constraints on system behavior that evolves in
parallel to the (in part autonomous) development of behavior in the
system-under-test. Scenario coevolution offers a simple structure for the
organization of adaptive testing that allows for both human-controlled
and autonomous intervention, supporting software engineering for adap-
tive systems on a procedural as well as technical level.

Keywords: Self-adaptive system · Software engineering
Quality assurance · Software evolution

1 Introduction

Until recently, the discipline of software engineering has mainly tackled the pro-
cess through which humans develop software systems. In the last few years, cur-
rent break-throughs in the fields of artificial intelligence and machine learning
have enabled new possibilities that have previously been considered infeasible or
just too complex to tap into with “manual” coding: Complex image recognition,
natural language processing, or decision making as it is used in complex games
are prime examples. The resulting applications are pushing towards a broad
audience of users. However, as of now, they are mostly focused on non-critical
areas of use, at least when implemented without further human supervision.
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Software artifacts generated via machine learning are hard to analyze, causing
a lack of trustworthiness for many important application areas.

We claim that in order to reinstate levels of trustworthiness comparable to
well-known classical approaches, we need not essentially reproduce the principles
of classical software test but need to develop a new approach towards software
testing. We suggest to develop a system and its test suite in a competitive setting
where each sub-system tries to outwit the other. We call this approach scenario
coevolution and attempt to show the necessity of such an approach. We hope
that trust in that dynamic (or similar ones) can help to build a new process for
quality assurance, even for hardly predictable systems.

Following a top-down approach to the issue, we start in Sect. 2 by introduc-
ing a formal framework for the description of systems. We augment it to also
include the process of software and system development. Section 3 provides a
short overview on related work. From literature review and practical experi-
ence, we introduce four core concepts for the engineering of adaptive systems in
Sect. 4. In order to integrate these with our formal framework, Sect. 5 contains
an introduction of our notion of scenarios and their application to an incremental
software testing process. In Sect. 6 we discuss which effect scenario coevolution
has on a selection of practical software engineering tasks and how it helps imple-
ment the core concepts. Finally, Sect. 7 provides a short conclusion.

2 Formal Framework

In this section we introduce a formal framework as a basis for our analysis. We
first build upon the framework described in [1] to define adaptive systems and
then proceed to reason about the influence of their inherent structure on software
architecture.

2.1 Describing Adaptive Systems

We roughly adopt the formal definitions of our vocabulary related to the descrip-
tion of systems from [1]: We describe a system as an arbitrary relation over a
set of variables.

Definition 1 (System [1]). Let I be a (finite or infinite) set, and let V = (Vi)i∈I

be a family of sets. A system of type V is a relation S of type V.

Given a System S, an element s ∈ S is called the state of the system. For
practical purposes, we usually want to discern various parts of a system’s state
space. For this reason, parts of the system relation of type V given by an index
set J ⊆ I, i.e., (Vj)j∈J , may be considered inputs and other parts given by
a different index set may be considered outputs [1]. Formally, this makes no
difference to the system. Semantically, we usually compute the output parts of
the system using the input parts.

We introduce two more designated sub-spaces of the system relation: situa-
tion and behavior. These notions correspond roughly to the intended meaning
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of inputs and outputs mentioned before. The situation is the part of the sys-
tem state space that fully encapsulates all information the system has about
its state. This may include parts that the system does have full control over
(which we would consider counter-intuitive when using the notion of “input”).
The behavior encapsulates the parts of the system that can only be computed
by applying the system relation. Likewise, this does not imply that the system
has full control over the values. Furthermore, a system may have an internal
state, which is parts of the state space that are neither included in the situation
nor in the behavior. When we are not interested in the internal space, we can
regard a system as a mapping from situations to behavior, written S = X

Z� Y
for situations X and behaviors Y , where Z is the internal state of the system S.
Using these notions, we can more aptly define some properties on systems.

Further following the line of thought presented in [1], we want to build sys-
tems out of other systems. At the core of software engineering, there is the
principle of re-use of components, which we want to mirror in our formalism.

Definition 2 (Composition). Let S1 and S2 be systems of types V1 = (V1,i)i∈I1

and V2 = (V2,i)i∈I2 , respectively. Let R(V) be the domain of all relations over V.
A combination operator ⊗ is a function such that S1⊗S2 ∈ R(V) for some family
of sets V with V1,1, ..., V1,m, V2,1, ..., V2,n ∈ V.1 The application of a combination
operator is called composition. The arguments to a combination operator are
called components.

Composition is not only important to model software architecture within our
formalism, but it also defines the formal framework for interaction: Two systems
interact when they are combined using a combination operator ⊗ that ensures
that the behavior of (at least) one system is recognized within the situation of
(at least) another system.

Definition 3 (Interaction). Let S = S1 ⊗ S2 be a composition of type V of
systems S1 and S2 of type V1 and V2, respectively, using a combination operator
⊗. If there exist a V1 ∈ V1 and a V2 ∈ V2 and a relation R ∈ V1 × V2 so that for
all states s ∈ S, (proj(s, V1), proj(s, V2)) ∈ R, then the components S1 and S2

interact with respect to R.

We can model an open system S as a combination S = C ⊗ E of a core
system C and its environment E, both being modeled as systems again.

Hiding some of the complexity described in [1], we assume we have a logic L
in which we can express a system goal γ. We can always decide if γ holds for a
given system, in which case we write S |= γ for γ(S) = �. Based on [1], we can
use this concept to define an adaptation domain:

Definition 4 (Adaptation Domain [1]). Let S be a system. Let E be a set of
environments that can be combined with S using a combination operator ⊗. Let
1 In [1], there is a more strict definition on how the combination operator needs to

handle the designated inputs and outputs of its given systems. Here, we opt for a
more general definition.
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Γ be a set of goals. An adaptation domain A is a set A ⊆ E × Γ . S can adapt
to A, written S � A iff for all (E, γ) ∈ A it holds that S ⊗ E |= γ.

Definition 5 (Adaptation Space [1]). Let E be a set of environments that can
be combined with S using a combination operator ⊗. Let Γ be set of goals. An
adaptation space A is a set A ⊆ P(E , Γ ).

We can now use the notion of an adaptation space to define a preorder on
the adaptivity of any two systems.

Definition 6 (Adaptation [1]). Given two systems S and S′, S′ is at least as
adaptive as S, written S � S′ iff for all adaptation spaces A ∈ A it holds that
S � A =⇒ S′ � A.

Both Definitions 4 and 5 can be augmented to include soft constraints or
optimization goals. This means that in addition to checking against boolean goal
satisfaction, we can also assign each system S interacting with an environment
E a fitness φ(S ⊗E) ∈ F , where F is the type of fitness values. We assume that
there exists a preorder � on F , which we can use to compare two fitness values.
We can then generalize Definitions 4 and 5 to respect these optimization goals.

Definition 7 (Adaptation Domain for Optimization). Let S be a system. Let
E be a set of environments that can be combined with S using a combination
operator ⊗. Let Γ be a set of Boolean goals. Let F be a set of fitness values and
� be a preorder on F . Let Φ be a a set of fitness functions with codomain F . An
adaptation domain A is a set A ⊆ E × Γ × Φ. S can adapt to A, written S � A
iff for all (E, γ, φ) ∈ A it holds that S ⊗ E |= γ.

Note that in Definition 7 we only augmented the data structure for adaptation
domains but did not actually alter the condition to check for the fulfillment of
an adaptation domain. This means that for an adaptation domain A, a system
needs to fulfill all goals in A but is not actually tested on the fitness defined
by φ. We could define a fitness threshold f we require a system S to surpass in
order to adapt to A in the formalism. But such a check, written f � φ(S ⊗ E),
could already be included in the Boolean goals if we use a logic that is expressive
enough.

Instead, we want to use the fitness function as soft constraints: We expect
the system to perform as well as possible on this metric, but we do not (always)
require a minimum level of performance. However, we can use fitness to define
a fitness preorder on systems:

Definition 8 (Optimization). Given two systems S and S′ as well as an adap-
tation space A, S′ is at least as optimal as S, written S �A S′, iff for all
(E, γ, φ) ∈ A it holds that φ(S ⊗ E) � φ(S′ ⊗ E).

Definition 9 (Adaptation with Optimization). Given two systems S and S′, S′

is at least as adaptive as S with respect to optimization, written S �∗ S′ iff for
all adaptation domains A ∈ A it holds that S � A =⇒ S′ � A and S �A S′.



Adapting Quality Assurance to Adaptive Systems 141

Note that so far our notions of adaptivity and optimization are purely exten-
sional, which originates from the black box perspective on adaptation assumed
in [1].

2.2 Constructing Adaptive Systems

We now shift the focus of our analysis a bit away from the question “When is
a system adaptive?” towards the question “How is a system adaptive?”. This
refers to both questions of software architecture (i.e., which components should
we use to make an adaptive system?) and questions of software engineering (i.e.,
which development processes should we use to develop an adaptive system?).
We will see that with the increasing usage of methods of artificial intelligence,
design-time engineering and run-time adaptation increasingly overlap [2].

Definition 10 (Adaptation Sequence). A series of |I| systems S = (Si)i∈I with
index set I with a preorder ≤ on the elements of I is called an adaptation
sequence iff for all i, j ∈ I it holds that i ≤ j =⇒ Si �∗ Sj

Note that we used adaptation with optimization in Definition 10 so that a
sequence of systems (Si)i∈I that each fulfill the same hard constraints (γ within a
singleton adaptation space A = {{(E, γ, φ)}}) can form an adaptation sequence
iff for all i, j ∈ I it holds that i ≤ j =⇒ φ(Si ⊗ E) � φ(Sj ⊗ E). This is the
purest formulation of an optimization process within our formal framework.2

Such an adaptation sequence can be generated by continuously improving a
starting system S0 and adding each improvement to the sequence. Such a task
can both be performed by a team of human developers or standard optimization
algorithms as they are used in artificial intelligence. Only in the latter case, we
want to consider that improvement happening within our system boundaries.
Unlike the previously performed black-box analysis of systems, the presence of
an optimization algorithm within the system itself does have implications for the
system’s internal structure. We will thus switch to a more “grey box” analysis
in the spirit of [3].

Definition 11 (Self-Adaptation). A system S0 is called self-adaptive iff the
sequence (Si)i∈N,i<n for some n ∈ N with Si = S0 ⊗Si−1 for 0 < i < n and some
combination operator ⊗ is an adaptation sequence.

Note that we could define the property of self-adaptation more generally by
again constructing an index set on the sequence (Si) instead of using N, but
chose not to do so to not further clutter the notation. For most practical pur-
poses, the adaptation is going to happen in discrete time steps anyway. It is also
important to be reminded that despite its notation, the combination operator ⊗
2 Strictly speaking, an optimization process would further assume there exists an opti-

mization relation o from systems to systems so that for all i, j ∈ I it holds that
i ≤ j =⇒ o(Si, Sj). But for simplicity, we consider the sequence of outputs of the
optimization process a sufficient representation of the whole process.
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does not need to be symmetric and likely will not be in this case, because when
constructing S0 ⊗ Si−1 we usually want to pass the previous instance Si−1 to
the general optimization algorithm encoded in S0.3 Furthermore, it is important
to note that the constant sequence (S)i∈N is an adaptation sequence according
to our previous definition and thus every system is self-adaptive with respect to
a combination operator X ⊗ Y =def X. However, we can construct non-trivial
adaptation sequence using partial orders � and ≺ instead of � and �. As these
can easily be constructed, we do not further discuss their definitions in this
paper. In [1] a corresponding definition was already introduced for �.

The formulation of the adaptation sequence used to prove self-adaptivity nat-
urally implies some kind of temporal structure. So basing said structure around
N implies a very simple, linear and discrete model of time. More complex tem-
poral evolution of systems is also already touched upon in [1]. As noted, there
may be several ways to define such a temporal structure on systems. We refer
to related and future work for a more intricate discussion on this matter.

So, non-trivial self-adaptation does imply some structure for any self-adaptive
system S of type V = (Vi)i∈I : Mainly, there needs to be a subset of the type V ′ ⊆
V that is used to encode the whole relation behind S so that the already improved
instances can sufficiently be passed on to the general adaptation mechanism.

For a general adaptation mechanism (as we previously assumed to be part
of a system) to be able to improve a system’s adaptivity, it needs to be able to
access some representation of its goals and its fitness function. This provides a
grey-box view of the system. We remember that we assumed we could split a
system S into situation X, internal state Z and behavior Y , written S = X

Z� Y .
If S is self-adaptive, it can form a non-trivial adaptation sequence by improving
on its goals or its fitness. In the former case, we can now assume that there
exists some relation G ⊆ X ∪ Z so that S |= γ ⇐⇒ G |= γ for a fixed γ in
a singleton-space adaptation sequence. In the latter case, we can assume that
there exists some relation F ⊆ X ∪ Z so that φ(S) = φ(F ) for a fixed φ in a
singleton-space adaptation sequence.

Obviously, when we want to construct larger self-adaptive systems using self-
adaptive components, the combination operator needs to be able to combine
said sub-systems G and/or F as well. In the case where the components’ goals
and fitnesses match completely, the combination operator can just use the same
sub-system twice. However, including the global goals or fitnesses within each
local component of a system does not align with common principles in software
architecture (such as encapsulation) and does not seem to be practical for large
or open systems (where no process may ensure such a unification). Thus, con-
structing a component-based self-adaptive system requires a combination oper-
ator that can handle potentially conflicting goals and fitnesses. We again define
such a system for a singleton adaptation space A = {{(E, γ, φ)}} and leave the
generalization to all adaptation spaces out of the scope of this paper.

3 Constructing a sequence Si := Si−1 ⊗ Si−1 might be viable formulation as well, but
is not further explored in this work.
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Definition 12 (Multi-Agent System). Given a system S = S1 ⊗ ... ⊗ Sn that
adapts to A = {(E, γ, φ)}. Iff for each 1 ≤ i ≤ n with i, n ∈ N, n > 1 there is
an adaptation domain Ai = {(Ei, γi, φi)} so that (1) Ei = E ⊗ S1 ⊗ ... ⊗ Si−1 ⊗
Si+1 ⊗ ... ⊗ Sn and (2) γi = γ or φi = φ and (3) Si adapts to Ai, then S is a
multi-agent system with agents S1, ..., Sn.

For practical purposes, we usually want to use the notion of multi-agent
systems in a transitive way, i.e., we can call a system a multi-agent system
as soon as any part of it is a multi-agent system according to Definition 12.
Formally, S is a multi-agent system if there are systems components S′, R so
that S = S′ ⊗ R and S′ is a multi-agent system. We argue that this transitivity
is not only justified but a crucial point for systems development of adaptive
systems: Agents tend to utilize their environment to fulfill their own goals and
can thus “leak” their goals into other system components. Not that Condition
(2) of Definition 12 ensures that not every system constructed by composition
is regarded a multi-agent system; it is necessary to feature agents with (at least
slightly) differing adaptation properties.

For the remainder of this paper, we will apply Definition 12 “backwards”:
Whenever we look at a self-adaptive system S, whose goals or fitnesses can be
split into several sub-goals or sub-fitnesses we can regard S as a multi-agent
system. Using this knowledge, we can apply design patterns from multi-agent
systems to all self-adaptive systems without loss of generality. Furthermore, we
need to be aware that especially if we do not explicitly design multi-agent coor-
dination between different sub-goals, such a coordination will be done implicitly.
Essentially, there is no way around generalizing software engineering approaches
for self-adaptive systems to potentially adversarial components.

3 Related Work

Many researchers and practitioners in recent years have already been concerned
about the changes necessary to allow for solid and reliable software engineering
processes for (self-)adaptive systems. Central challenges were collected in [4],
where issues of quality assurance are already mentioned but the focus is more
on bringing about complex adaptive behavior in the first place. The later research
roadmap of [5] puts a strong focus on interaction patterns of already adaptive
systems (both between each other and with human developers) and already
dedicates a section to verification and validation issues, being close in mind to
the perspective of this work. We fall in line with the roadmap further specified
in [6–8].

While this work largely builds upon [1], there have been other approaches to
formalize the notion of adaptivity: [9] discusses high-level architectural patterns
that form multiple inter-connected adaptation loops. In [10] such feedback loops
are based on the MAPE-K model [11]. While these approaches largely focus on
the formal construction of adaptive systems, there have also been approaches
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that assume a (more human-centric or at least tool-centric) software engineering
perspective [12–15]. We want to discuss two of those on greater detail:

In the results of the ASCENS (Autonomous Service Component ENSembles)
project [2], the interplay between human developers and autonomous adaptation
has been formalized in a life-cycle model featuring separate states for each the
development progress of each respective feedback cycle. Classical software devel-
opment tasks and self-adaptation (as well as self-monitoring and self-awareness)
are regarded as equally powerful contributing mechanisms for the production of
software. Both can be employed in junction to steer the development process.
In addition, ASCENS built upon a (in parts) similar formal notion of adaptiv-
ity [3,16] and sketched a connection between adaptivity in complex distributed
systems and multi-goal multi-agent learning [17].

ADELFE (Atelier de Développement de Logiciels à Fonctionnalité Emer-
gente) is a toolkit designed to augment current development processes to account
for complex adaptive systems [18,19]. For this purpose, ADELFE is based on
the Rational Unified Process (RUP) [20] and comes with tools for various tasks
of software design. From a more scientific point of view, ADELFE is also based
on the theory of adaptive multi-agent systems. For ADELFE, multi-agent sys-
tems are used to derive a set of stereotypes for components, which ease modeling
for according types of systems. It thus imposes stronger restrictions on system
design than our approach intends to.

Besides the field of software engineering, the field of artificial intelligence
research is currently (re-)discovering a lot of the same issues the discipline of
engineering for complex adaptive systems faced: The highly complex and opaque
nature of machine learning algorithms and the resulting data structures often
forces black-box testing and makes possible guarantees weak. When online learn-
ing is employed, the algorithm’s behavior is subject to great variance and testing
usually needs to work online as well. The seminal paper [21] provides a good
overview of the issues. When applying artificial intelligence to a large variety of
products, rigorous engineering for this kind of software seems to be one of the
major necessities lacking at the moment.

4 Core Concepts of Future Software Engineering

Literature makes it clear that one of the main issues of the development of
self-adapting systems lies with trustworthiness. Established models for check-
ing systems (i.e., verification and validation) do not really fit the notion of a
constantly changing system. However, these established models represent all the
reason we have at the moment to trust the systems we developed. Allowing the
system more degrees of freedom thus hinders the developers’ ability to estimate
the degree of maturity of the system they design, which poses a severe diffi-
culty for the engineering progress, when the desired premises or the expected
effects of classical engineering tasks on the system-under-development are hard
to formulate.

To aid us control the development/adaptation progress of the system, we
define a set of principles, which are basically patterns for process models. They
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describe the changes to be made in the engineering process for complex, adaptive
systems in relation to more classical models for software and systems engineering.

Concept 1 (System and Test Parallelism). The system and its test suite should
develop in parallel from the start with controlled moments of interchange of
information. Eventually, the test system is to be deployed alongside the main
system so that even during runtime, on-going online tests are possible [22]. This
argument has been made for more classical systems as well and thus classical
software test is, too, no longer restricted to a specific phase of software devel-
opment. However, in the case of self-learning systems, it is important to focus
on the evolution of test cases: The capabilities of the system might not grow as
experienced test designers expect them to compared to systems entirely realized
by human engineering effort. Thus, it is important to conceive and formalize
how tests in various phases relate to each other.

Concept 2 (System vs. Test Antagonism). Any adaptive systems must be sub-
ject to an equally adaptive test. Overfitting is a known issue for many machine
learning techniques. In software development for complex adaptive systems, it
can happen on a larger scale: Any limited test suite (we expect our applica-
tions to be too complex to run a complete, exhaustive test) might induce certain
unwanted biases. Ideally, once we know about the cases our system has a hard
time with, we can train it specifically for these situations. For the so-hardened
system the search mechanism that gave us the hard test cases needs to come up
with even harder ones to still beat the system-under-test. Employing autonomous
adaptation at this stage is expected to make that arms race more immediate and
faster than it is usually achieved with human developers and testers alone.

Concept 3 (Automated Realization). Since the realization of tasks concerning
adaptive components usually means the application of a standard machine learn-
ing process, a lot of the development effort regarding certain tasks tends to shift
to an earlier phase in the process model. The most developer time when applying
machine learning techniques, e.g., tends to be spent on gathering information
about the problem to solve and the right setup of parameters to use; the training
of the learning agent then usually follows one of a few standard procedures and
can run rather automatically. However, preparing and testing the component’s
adaptive abilities might take a lot of effort, which might occur in the design and
test phase instead of the deployment phase of the system life-cycle.

Concept 4 (Artifact Abstraction). To provide room for and exploit the sys-
tem’s ability to self-adapt, many artifacts produced by the engineering process
tend to become more general in nature, i.e., they tend to feature more open
parameters or degrees of freedom in their description. In effect, in the place of
single artifacts in a classical development process, we tend to find families of
artifacts or processes generating artifacts when developing a complex adaptive
system. As we assume that the previously only static artifact is still included in
the set of artifacts available in its place now, we call this shift “generalization” of
artifacts. Following this change, many of the activities performed during develop-
ment shift their targets from concrete implementations to more general artifact,
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i.e., when building a test suite no longer yields a series of runnable test cases but
instead produces a test case generator. When this principle is broadly applied,
the development activities shift towards “meta development”. The developers are
concerned with setting up a process able to find good solutions autonomously
instead of finding the good solutions directly.

5 Scenarios

We now want to include the issue of testing adaptive systems in our formal
framework. We recognize that any development process for systems following
the principles described in Sect. 2 produces two central types of artifacts: The
first one is a system S = X

Z� Y with a specific desired behavior Y so that it
manages to adapt to a given adaptation space. The second is a set of situations,
test cases, constraints, and checked properties that this system’s behavior has
been validated against. We call artifacts of the second type by the group name
of scenarios.

Definition 13 (Scenario). Let S = X
Z� Y be a system and A = {(E, γ, φ)}

a singleton adaptation domain. A tuple c = (X,Y, g, f), g ∈ {�,⊥}, f ∈ cod(φ)
with g = � ⇐⇒ S ⊗ E |= γ and f = φ(S ⊗ E) is called scenario.4

Semantically, scenarios represent the experience gained about the system’s
behavior during development, including both successful (S � γ) and unsuccessful
(S � γ) test runs. As stated above, since we expect to operate in test spaces we
cannot cover exhaustively, the knowledge about the areas we did cover is an
important asset and likewise result of the systems engineering process.

Effectively, as we construct and evolve a system S we want to construct and
augment a set of scenarios C = {c1, ..., cn} alongside with it. C is also called a
scenario suite and can be seen as a toolbox to test S’s adaptation abilities with
respect to a fixed adaptation domain A.

While formally abiding to Definition 13, scenarios can be encoded in various
ways in practical software development, such as:

Sets of data points of expected or observed behavior. Given a system S′ = X ′ �
Y ′ whose behavior is desirable (for example a trained predecessor of our system
or a watchdog component), we can create scenarios (X ′, Y ′, g′, f ′) with g′ =
� ⇐⇒ S′ ⊗ Ei |= γi and f ′ = φi(S′ ⊗ Ei) for an arbitrary amount of elements
(Ei, γi, φi) of an adaptation domain A = {(E1, γ1, φ1), ..., (En, γn, φn)}.

Test cases the system mastered. In some cases, adaptive systems may produce
innovative behavior before we actively seek it out. In this cases, it is helpful
to formalize the produced results once they have been found so that we can
ensure that the system’s gained abilities are not lost during further development

4 If we are only interested in the system’s performance and not how it was achieved,
we can redefine a scenario to leave out Y .
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or adaptation. Formally, this case matches the case for “observed behavior”
described above. However, here the test case (X,Y, g, f) already existed as a
scenario, so we just need to update g and f (with the new and better values)
and possibly Y (if we want to fix the observed behavior).

Logical formulae and constraints. Commonly, constraints can be directly
expressed in the adaptation domain. Suppose we build a system against an
adaptation domain A = {(E1, γ1, φ1), ..., (En, γn, φn)}. We can impose a hard
constraint ζ on the system in this domain by constructing a constrained adap-
tation domain A′ = {(E1, γ1 ∧ ζ, φ1), ..., (En, γn ∧ ζ, φn)} given that the logic of
γ1, ..., γn, ζ meaningfully supports an operation like the logical “and” ∧. Like-
wise a soft constraint ψ can be imposed via A′ = {(E1, γ1,max(φ1, ψ), ), ...,
(En, γn,max(φn, ψ))} given the definition of the operator max that trivially fol-
lows from using the relation � on fitness values. Scenarios (X ′, Y ′, g′, f ′) can
then be generated against the new adaptation domain A by taking pre-existing
scenarios (X,Y, g, f) and setting X ′ = X,Y ′ = Y, g = �, f = ψ((X � Y ) ⊗ E).

Requirements and use case descriptions (including the system’s degree of fulfilling
them). If properly formalized, a requirement or use case description contains all
the information necessary to construct an adaptation domain and can thus be
treated as the logical formulae in the paragraph above. However, use cases are
in practical development more prone to be incomplete views on the adaptation
domain. We thus may want to stress the point that we do not need to update
all elements of an adaptation domain when applying a constraint, i.e., when
including a use case. We can also just add the additional hard constraint ζ or
soft constraint ψ to some elements of A.

Predictive models of system properties. For the most general case, assume that
we have a prediction function p so that p(X) ≈ Y , i.e., the function can roughly
return the behavior S = X � Y will or should show given X. We can thus
construct the predicted system S′ = X � p(X) and construct a scenario
(X, p(X), g, f) with g = � ⇐⇒ S′ ⊗ E |= γ and f = φ(S′ ⊗ E).

All of these types of artifacts will be subsumed under the notion of scenar-
ios. We can use them to further train and improve the system and to estimate
its likely behavior as well as to perform tests (and ultimately verification and
validation activities).

Scenario coevolution describes the process of developing a set of scenarios
to test a system during the system-under-tests’s development. Consequently,
it needs to be designed and controlled as carefully as the evolution of system
behavior [23,24].

Definition 14 (Scenario Hardening). Let c1 = (X1, Y1, g1, f1) and c2 = (X2, Y2,
g1, f2) be scenarios for a system S and an adaptation domain A. Scenario c2 is
at least as hard as c1, written c1 ≤ c2, iff g1 = � =⇒ g2 = � and f1 ≤ f2.
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Definition 15 (Scenario Suite Order). Let C = {c1, ..., cm} and C ′ =
{
c′
1, ...,

c′
n

}
be sets of scenarios, also called scenarios suites. Scenario suite C ′ is at least

as hard as C, written C � C ′, iff for all scenarios c ∈ C there exists a scenario
c′ ∈ C ′ so that c ≤ c′.

Definition 16 (Scenario Sequence). Let S = (Si)i∈I , I = {1, ..., n} be an adap-
tation sequence for a singleton adaptation space A = {A}. A series of sets
C = (Ci)i∈I is called a scenario sequence iff for all i ∈ I, i < n it holds that Ci

is a scenario suite for Si and A and Ci � Ci+1.

We expect each phase of development to further alter the set of scenarios
just as it does alter the system behavior. The scenarios produced and used
at a certain phase in development must match the current state of progress.
Valid scenarios from previous phases should be kept and checked against the
further specialized system. When we do not delete any scenarios entirely, the
continued addition of scenarios will ideally narrow down allowed system behavior
to the desired possibilities. Eventually, we expect all activities of system test to
be expressible as the generation or evaluation of scenarios. New scenarios may
simply be thought up by system developers or be generated automatically.

Finding the right scenarios to generate is another optimization problem to
be solved during the development of any complex adaptive system. Scenario
evolution represents a cross-cutting concern for all phases of system development.
Treating scenarios as first-class citizen among the artifacts produced by system
development thus yields changes in tasks throughout the whole process model.

6 Applications of Scenario Coevolution

Having both introduced a formal framework for adaptation and the testing of
adaptive systems using scenarios, we show in this section how these frameworks
can be applied to aid the trustworthiness of complex adaptive systems for prac-
tical use.

6.1 Criticality Focus

It is very important to start the scenario evolution process alongside the system
evolution, so that at each stage there exists a set of scenarios available to test
the system’s functionality and degree of progress (see Concept 1). This approach
mimics the concept of agile development where between each sprint there exists
a fully functional (however incomplete) version of the system. The concept of
scenario evolution integrates seamlessly with agile process models.

In the early phases of development, the common artifacts of requirements
engineering, i.e., formalized requirements, serve as the basis for the scenario evo-
lution process. As long as the adaptation space A remains constant (and with
it the system goals), system development should form an adaptation sequence.
Consequently, scenario evolution should then form a scenario sequence for that
adaptation sequence. This means (according to Definition 16), the scenario suite
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is augmented with newly generated scenarios (for new system goals or just more
specialized subgoals) or with scenarios with increased requirements on fitness.5

Ideally, the scenario evolution process should lead the learning components on
the right path towards the desired solution. The ability to re-assign fitness pri-
orities allows for an arms race between adaptive system and scenario suite (see
Concept 2).

Augmenting Requirements. Beyond requirements engineering, it is necessary to
include knowledge that will be generated during training and learning by the
adaptive components. Mainly, recognized scenarios that work well with early
version of the adaptive system should be used as checks and tests when the sys-
tem becomes more complex. This approach imitates the optimization technique
of importance sampling on a systems engineering level. There are two central
issues that need to be answered in this early phase of the development process:

– Behavior Observation: How can system behavior be generated in a realis-
tic manner? Are the formal specifications powerful enough? Can we employ
human-labeled experience?

– Behavior Assessment: How can the quality of observed behavior be adequately
assessed? Can we define a model for the users’ intent? Can we employ human-
labeled review?

Breaking Down Requirements. A central task of successful requirements engi-
neering is to split up the use cases in atomic units that ideally describe singular
features. In the dynamic world, we want to leave more room for adaptive sys-
tem behavior. Thus, the requirements we formulate tend to be more general
in notion. It is thus even more important to split them up in meaningful ways
in order to derive new sets of scenarios. The following design axes (without
any claim to completeness) may be found useful to break down requirements of
adaptive systems:

– Scope and Locality: Can the goal be applied/checked locally or does it involve
multiple components? Which components fall into the scope of the goal? Is
emergent system behavior desirable or considered harmful?

– Decomposition and Smoothness: Can internal (possibly more specific) require-
ments be developed? Can the overall goal be composed from a clear set of
subgoals? Can the goal function be smoothened, for example by providing
intermediate goals? Can subgoal decomposition change dynamically via adap-
tation or is it structurally static?

– Uncertainty and Interaction: Are all goals given with full certainty? Is it
possible to reason about the relative importance of goal fulfillment for specific
goals a priori? Which dynamic goals have an interface with human users or
other systems?

5 Note that every change in A starts new sequences.
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6.2 Adaptation Cooldown

We call the problem domain available to us during system design the off-site
domain. It contains all scenarios we think the system might end up in and may
thus even contain contradicting scenarios, for example. In all but the rarest cases,
the situations one single instance of our system will face in its operating time will
be just a fraction the size of the covered areas of the off-site domain. Nonetheless,
it is also common for the system’s real-world experience to include scenarios not
occurring in the off-site domain at all; this mainly happens when we were wrong
about some detail in the real world. Thus, the implementation of an adaptation
technique faces a problem not unlike the exploration/exploitation dilemma [25],
but on a larger scale: We need to decide, if we opt for a system fully adapted
to the exact off-site domain or if we opt for a less specialized system that leaves
more room for later adaptation at the customer’s site. The point at which we
stop adaptation happening on off-site scenarios is called the off-site adaptation
border and is a key artifact of the development process for adaptive systems.

In many cases, we may want the system we build to be able to evolve beyond
the exact use cases we knew about during design time. The system thus needs
to have components capable of run-time or online adaptation. In the wording
of this work, we also talk about on-site adaptation stressing that in this case
we focus on adaptation processes that take place at the customer’s location
in a comparatively specific domain instead of the broader setting in a system
development lab. Usually, we expect the training and optimization performed on-
site (if any) to be not as drastic as training done during development. (Otherwise,
we would probably have not specified our problem domain in an appropriate
way.) As the system becomes more efficient in its behavior, we want to gradually
reduce the amount of change we allow. In the long run, adaptation should usually
work at a level that prohibits sudden, unexpected changes but still manages to
handle any changes in the environment within a certain margin. The recognized
need for more drastic change should usually trigger human supervision first.

Definition 17 (Adaptation Space Sequence). Let S be a system. A series of
|I| adaptation spaces A = (Ai)i∈I with index set I with a preorder ≤ on the
elements of I is called an adaptation domain sequence iff for all i, j ∈ I, i ≤ j it
holds that: S adapts to Aj implies that S adapts to Ai.

System development constructs an adaptation space sequence (c.f. Concept
4), i.e., a sequence of increasingly specific adaptation domains. Each of those
can be used to run an adaptation sequence (c.f. Definition 10) and a scenario
sequence (c.f. Definition 16, Concept 2) to test it.

For the gradual reduction of the allowed amount of adaptation for the system
we use the metaphor of a “cool-down” process: The adaptation performed on-
site should allow for less change than off-site adaptation. And the adaptation
allowed during run-time should be less than what we allowed during deployment.
This ensures that decisions that have once been deemed right by the developers
are hard to change later by accident or by the autonomous adaptation process.
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6.3 Eternal Deployment

For high trustworthiness, development of the test cases used for the final system
test should be as decoupled from the on-going scenario evolution as possible,
i.e., the data used in both processes should overlap as little as possible. Of
course, following this guideline completely results in the duplication of a lot
of processes and artifacts. Still, it is important to accurately keep track of the
influences on the respective sets of scenarios. A clear definition of the off-site
adaptation border provides a starting point for when to branch off a scenario
evolution process that is independent of possible scenario-specific adaptations
on the system-under-test’s side. Running multiple independent system tests (cf.
ensemble methods [26,27]) is advisable as well. However, the space of available
independently generated data is usually very limited.

For the deployment phase, it is thus of key importance to carry over as much
information as possible about the genesis of the system we deploy into the run-
time, where it can be used to look up the traces of observed decisions. The
reason to do this now is that we usually expect the responsibility for the system
to change at this point: Whereas previously, any system behavior was overseen by
the developers who could potentially backtrack any phenomenon to all previous
steps in the system development process, now we expect on-site maintenance
to be able to handle any potential problem with the system in the real world,
requiring more intricate preparation for maintenance tasks (c.f. Concept 3). We
thus need to endow these new people with the ability to properly understand
what the system does and why.

Our approach follows the vision of eternal system design [28], which is a
fundamental change in the way to treat deployment: We no longer ship a single
artifact as the result of a complex development process, but we ship an image of
the process itself (cf. Concept 4). As a natural consequence, we can only ever add
to an eternal system but hardly remove changes and any trace of them entirely.
Using an adequate combination operator, this meta-design pattern is already
implemented in the way we construct adaptation sequences (c.f. Definition 10):
For example, given a system Si we could construct Si+1 = X

Z� Y in a way so
that Si is included in Si+1’s internal state Z.

As of now, however, the design of eternal systems still raises many unan-
swered questions in system design. We thus resort to the notion of scenarios
only as a sufficient system description to provide explanatory power at run-time
and recommend to apply standard “destructive updates” to all other system
artifacts.

7 Conclusion

We have introduced a new formal model for adaptation and test processes using
our notion of scenarios. We connected this model to concrete challenges and
arising concepts in software engineering to show that our approach of scenario
coevolution is fit to tackle (a first few) of the problems when doing quality
assurance for complex adaptive systems.
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As already noted throughout the text, a few challenges still persist. Perhaps
most importantly, we require an adequate data structure both for the coding
of systems and for the encoding of test suites and need to prove the practical
feasibility of an optimization process governing the software development life-
cycle. For performance reasons, we expect that some restrictions on the general
formal framework will be necessary. In this work, we also deliberately left out
the issue of meta-processes: The software development life-cycle can itself be
regarded as system according to Definition 1. While this may complicate things
at first, we also see potential in not only developing a process of establishing
quality and trustworthiness but also a generator for such processes (akin to
Concept 4).

Systems with a high degree of adaptivity and, among those, systems employ-
ing techniques of artificial intelligence and machine learning will become ubiq-
uitous. If we want to trust them as we trust engineered systems today, the
methods of quality assurance need to rise to the challenge: Quality assurance
needs to adapt to adaptive systems!
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Abstract. The design of functionally correct autonomous systems
which operate in an unknown environment and that satisfy reliability,
availability, maintainability, and safety (RAMS) requirements is a chal-
lenge. In this paper we focus on the detection and reconfiguration features
these systems must provide. Indeed, evolving in an unknown environment
can invalidate the assumptions made during the design phase. In partic-
ular, different hardware components might fail and provide erroneous
inputs to the system, which will pass in a degraded mode where the
expected RAMS do not hold anymore. Such faults need to be detected
as early as possible and reconfiguration strategies must be applied to
bring the system back into a nominal mode where the RAMS are satis-
fied. We propose an automated design process based on formal methods
to develop Fault Detection, Isolation and Recovery (FDIR) components
targeting partially observable timed systems. We describe how to auto-
matically synthesize runtime monitors, design reconfiguration strategies,
and obtain full-fledged FDIR components. We illustrate the approach on
a case study inspired from autonomous robotics applications.

1 Introduction

Mission- and safety-critical systems must satisfy a plethora of important Reli-
ability, Availability, Maintainability and Safety (RAMS) properties, which is a
hard problem to establish at design time. The reason is two-fold: (i) the built
systems are very complex and verification techniques do not always scale on real-
life applications, and (ii) such systems often work in unknown environments that
may not satisfy at execution time the assumptions made at design time. This
is the case of autonomous systems that execute in an environment subject to
faults and failures. For instance, a hardware component might overheat, which
leads the entire system in a degraded mode and where the above mentioned
requirements do not hold anymore.

This work has been supported by the HORIZON 2020 PROGRAMME Strategic
Research Cluster (SRC) (awards #730080 and #730086).
Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 155–171, 2018.
https://doi.org/10.1007/978-3-030-03424-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03424-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-03424-5_11


156 I. Dragomir et al.

A desired functionality of safety-critical systems in general, and autonomous
systems in particular, is to detect and handle systematically and dynamically
the faults that have occurred. The handling of such faults could be either sim-
ple by giving control of the system to a human user or complex by applying
predefined strategies for recovery. Autonomous systems usually fall in the latter
case, where they should implement without any external intervention complex
recovery strategies that aim to bring the system back into a safe state where
RAMS hold again. This involved functionality is implemented by Fault Detec-
tion, Isolation and Recovery (FDIR) components, which extend such systems
with adaptive and collaborative features. On one hand, the adaptive aspect is
inherent to the definition of FDIR components that steer the system opera-
tion depending on environment and specific operating conditions. On the other
hand, the collaborative aspect arises as various subsystems and FDIR are gen-
erally interacting together for achieving a common goal. At system level, such
subsystems are components while the goals are maintaining individual RAMS
properties. At mission level, goals can be more involved and concern high-level
objectives.

An FDIR component runs in parallel with the system, and (i) detects faults
as early as possible with respect to their occurrence and (ii) executes a prede-
fined recovery strategy with respect to the detected fault. The extended system
can contain one or multiple FDIR components, which can have a monolithic or
hierarchical architecture, can be centralized or distributed, or any combination.
The process of designing/implementing FDIR components is ad-hoc, based on
one’s full understanding of the system under design, the component to be pro-
duced and the system’s (possibly textual) specification. This implies considering
a large number of faults and failures, their interactions and effects on the system,
which raises correctness and completeness questions.

We answer such problems by proposing a methodology based on formal meth-
ods to build FDIR components. The aim is to automatically derive correct FDIR
components from the design of the system under study with faults, the RAMS
requirements it must satisfy and the recovery strategies to be applied in case of
faults. We describe how to automatically synthesize runtime monitors for fault
detection, design the recovery strategies for controller synthesis and obtain full-
fledged FDIR components. Moreover, we tackle the above problems in the con-
text of timed systems and partial observability, where faults cannot be directly
detected by the system and not all of the system’s actions can be observed.
We illustrate the approach and its feasibility on an excerpt of an industrial
autonomous robotics application.

Paper Structure. We formalize timed systems with partial observability (for the
FDIR context) in Sect. 2. In Sect. 3 we describe the methodology for designing
FDIR components as a subprocess of the general system design. The algorithms
for diagnoser synthesis and controller implementation for our definition of timed
systems are given and illustrated in Sects. 4 and 5, respectively. We discuss the
work related to the methodology as well as the diagnoser and controller synthesis
problems in Sect. 6 before concluding.
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2 Timed Systems

We consider a system modeled as a network of timed automata (TA) [2]. Before
formally defining timed automata, we introduce some notations.

Let X be a finite set of variables called clocks. A clock valuation is a mapping
v : X → R+. We write 0 for the valuation of all clocks of X to 0. Given δ ∈ R+,
(v+δ)(x) = v(x)+δ. For r ⊆ X, v[r] is the reset of clocks in r, i.e., the valuation
defined by v[r](x) = v(x) if x �∈ r and v[r](x) = 0 otherwise. Let Φ(X) be the
set of convex constraints on X given by the grammar ϕ ::= true|x < c|x ≤ c|x =
c|x > c|x ≥ c|ϕ ∧ ϕ, with c ∈ Q+. Given a constraint g ∈ Φ(X) and a valuation
v, we write v |= g if g is satisfied by the valuation v.

Definition 1 (Timed automaton). A timed automaton (TA) A is a tuple
(L, l0,X, Inv , Σ,E) where L is a finite set of locations, l0 ∈ L is the initial
location, X is a finite set of clocks, Inv : L → Φ(X) is a function associating
to each location some clock constraint, Σ = Σc

o ⊕ Σu
o ⊕ Σs

u ⊕ Σf
u is a finite set

of actions separated into observable/unobservable (denoted with subscript) and
controllable/uncontrollable (denoted with superscript) as explained below, and
E ⊆ L × Φ(X) × Σ × 2X × L is the transition relation.

A timed automaton is a finite automaton enriched with a set of real-valued
clocks that allow to measure time delays. In this computational model, time
passes at the same rate for all clocks, i.e., ẋ = 1. Time elapse is restricted in

each location with a clock constraint. A transition, usually denoted by l
[g] a−−−→

r
l′,

moves from a location l to a location l′ by executing an action a ∈ Σ. The
transition is enabled and can be fired only when the current valuation of clocks
satisfies the guard g ∈ Φ(X). Besides the executed action, a transition can also
perform resets on the specified set r ⊆ X of clocks.

With respect to the definition given in [2], the main difference is the par-
tial observability condition. It is modeled by the two types of actions a TA
can define: observable actions Σo and unobservable actions Σu. The observable
actions are further refined into controllable ones Σc

o and uncontrollable ones Σu
o .

The controllable observable actions act as “actuators” for the FDIR component,
while uncontrollable observable actions act as “sensors” for fault detection. The
unobservable actions are also refined into regular ones (also called silent) Σs

u

and faulty ones Σf
u . Silent actions correspond to internal computations often

denoted by τ . Fault actions are those that model the different types of faults of
a component. Please note that all the above sets are disjoint. By taking Σc

o = ∅,
Σs

u = {τ} and Σf
u = ∅, we obtain the usual definition of TA with silent actions.

The definition from [18,29] is obtained for Σc
o = ∅, Σs

u = {τ} and Σf
u = {f}.

The semantics of a timed automaton is a Timed Transition System (TTS).
A state of the TA is a pair (l, v) ∈ L × R

X
+ that consists of a discrete location

l ∈ L and the current valuation of all clocks v. The initial state is the pair (l0,0).
From a state (l, v) such that v |= Inv(l), the TA can progress either by a discrete
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transition (i.e., an action) or by letting time elapse. The transition relation −→
of the corresponding TTS is generated by the following rules:
1. For a ∈ Σ, (l, v) a−→ (l′, v′) if l

[g] a−−−→
r

l′ such that v |= g, v′ = v[r], and

v′ |= Inv(l′).
2. For δ ∈ R+, (l, v) δ−→ (l, v′) if v′ = v + δ, v |= Inv(l) and v′ |= Inv(l).

A run ρ of A from a state (q0, v0) is a possibly infinite sequence ρ =
(q0, v0)

δ0−→ (q0, v0 + δ0)
a1−→ (q1, v1) . . .

an−−→ (qn, vn) δn−→ . . . where ∀i, qi ∈ L,
ai ∈ Σ, δi ∈ R+, vi : X → R+, vi+1 = vi + δi or vi+1 = vi[ri] depending on the

incoming transition and qi
[gi] ai+1−−−−−→

ri

qi+1 (∈ E). The set of executions of A from a

state s is denoted by RunsA(s). The set of runs of A is RunsA = RunsA((l0,0)).
We say that a run is f-faulty, denoted faulty(ρ, f), if ∃i such that ai = f . For
a run ρ, let time(ρ) =

∑
i δi, the sum of all delays in ρ. If ρ is an infinite run,

then time(ρ) is the limit of the sum (possibly ∞). We say that ρ is non-Zeno if
time(ρ) = ∞ and Zeno otherwise.

The trace of a run ρ with respect to a set of observable actions Σ′
o, denoted

traceΣ′
o
(ρ), is the sequence δ0a1δ1a2 . . . anδn . . . made only of time elapse and

observable actions, i.e., ∀i, ai ∈ Σ′
o and δi ∈ R+. If Σ′

o = Σo (all the observables
of a system), we obtain the usual trace definition.

A system is given by the parallel composition of the different timed automata
it models. This means that the automata execute in parallel and synchronize on
the common observable actions. We assume that the sets of clocks, silent actions
and fault actions are mutually disjoint. This condition can be easily satisfied by
renaming the common clocks or actions.

Definition 2 (Parallel composition). Let Ai = (Li, l
i
0,Xi, Inv i, Σ

i, Ei), i ∈
{1, 2}, be two TA such that X1∩X2 = ∅, (Σs

u)1∩(Σs
u)2 = ∅ and (Σf

u)1∩(Σf
u)2 =

∅. Their parallel composition denoted A1 ‖ A2 is the TA (L, l0,X, Inv , Σ,E)
where
– L = L1 × L2,
– l0 = (l10, l

2
0),

– X = X1 ∪ X2,
– Inv : L → Φ(X), Inv(l1, l2) = Inv(l1) ∧ Inv(l2),
– Σ = Σc

o ⊕ Σu
o ⊕ Σs

u ⊕ Σf
u with Σj

i = (Σj
i )1 ∪ (Σj

i )2, (i, j) ∈
{(o, c), (o, u), (u, s), (u, f)},

– E ⊆ L × Φ(X) × Σ × 2X × L is the set of transitions given by
• (l1, l2)

[g1∧g2] a−−−−−−→
r1∪r2

(l′1, l
′
2) if a ∈ Σ1 ∩ Σ2, l1

[g1] a−−−→
r1

l′1 and l2
[g2] a−−−→

r2
l′2,

• (l1, l2)
[g1] a−−−→

r1
(l′1, l2) if a ∈ Σ1 \ Σ2 and l1

[g1] a−−−→
r1

l′1, and

• (l1, l2)
[g2] a−−−→

r2
(l1, l′2) if a ∈ Σ2 \ Σ1 and l2

[g2] a−−−→
r2

l′2.

Running Example. Figure 1 presents a fragment of an autonomous system case
study1 that will be used as the running example throughout this paper. This
1 The case study presented here is inspired from an autonomous robotics system. The

original system contains more components, behavior and requirements.
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Fig. 1. An example of an autonomous cruise controller system with faults during com-
munication. (Color figure online)

system aims to transfer and dispatch motion commands from an automated
cruise controller to the actual navigation system and a logger.

The system is modeled as a network of five communicating timed automata
as follows. The cruise controller sends in every [0, P ) time interval the motion
command to be executed.2 This request travels through a bus to a dispatcher.
The dispatcher sends the request to the navigation controller which is responsible
for its mechanical execution. Additionally the request is stored in a logger for
debugging purposes, possibly through replay.

The bus models a 2 element memory and has the following behavior. Once
it receives a motion request and it is not busy, it can delay the request transfer
up to P . In that case it waits for the next period of the cruise controller and
“restarts” its behavior. This behavior describes the nominal mode of the bus
and is depicted by the states in black in Fig. 1 (from l0 to l2). However, the bus

2 For simplicity we abstract here the actual motion commands (possibly represented
as multiple parameters of the motion, motion′, and cmd actions, respectively), and
their mechanical execution.
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could be busy and the motion request is delayed for transfer at P or in the next
period [0, P ). We then consider the bus to pass in a degraded mode depicted
by the states in blue (from l3 to l6). During the transfer another request can be
received. If both are handled before P , the bus has recovered and goes back to
the nominal mode. Otherwise it stays in the degraded mode. While transferring
the request, the bus can experience some hardware issues and fails denoted by
the fault action in the automaton. In this case the bus goes into the fail mode
depicted by the l7 red state, and in which the received requests are either delayed
after 2P , lost or multiplied.

The dispatcher assumes the nominal behavior of the bus: it receives requests
steadily, within the [0, 2P ) period. If this requirement is not satisfied (due to
a faulty behavior of the bus), the dispatcher must stop transferring requests
(action halt). This means that the received motion commands are ignored until
the network is reinitialized (action reinit) and the dispatcher is aware of it
(action repair). The above description corresponds to the FDIR specification.

3 A Formal Approach for Designing FDIR Components

The design of FDIR components is a sub-process of the general system design,
as illustrated in Fig. 2. The methodology we propose includes several manual
activities related to the design of the system that allow obtaining the inputs
needed for the automated synthesis of FDIR components. These activities are
suggested for system engineering by different standards, such as EECS standards
[21] for space applications.

The main input of the methodology is the safety requirements. The first activ-
ity consists of building a system design from requirements and system descrip-
tion (i.e., what the system should do), which we call requirements analysis. The
obtained design is usually made of two parts: the nominal model and the fault
model. The nominal model defines the system architecture and its behavior in
a “correct” environment (i.e., an environment that behaves accordingly to the
assumptions). In this case, the nominal behavior should satisfy by default the
(safety) requirements it is derived from. The fault model complements the nom-
inal one by describing which faults components can manifest and what is the
expected behavior after a fault occurrence. Usually the two models are obtained
separately, since the fault model requires additional study of the fault specifi-
cations (e.g., of the hardware platform). Then, the two models are assembled
into the extended model by merging techniques, which is used for FDIR design.
For the sake of simplicity, we consider in the following that the output of the
requirements analysis activity is the extended model.

Example. Figure 1 depicts the extended model of the case study, as the bus
component models both nominal and faulty behavior. The nominal behavior
consists of forwarding the motion request in the [0, 2P ) period – the nominal
and degraded modes. The faulty behavior delays, loses or multiplies the motion
requests after a fault – the fail mode.
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Fig. 2. Proposed formal approach for automated FDIR components design.

The second activity is the Partitioning & Allocation. Its aim is to associate
the system requirements to the elements that must satisfy them, such as com-
ponents, (sub-)systems or mission phases. As a result, the FDIR architecture is
designed in relation to the system architecture and both nominal and fault-
related requirements. The FDIR architecture can be centralized/distributed,
monolithic/hierarchical or any combination. Please note that depending on
the FDIR architecture, the automated design of FDIR component can become
an undecidable problem, e.g., the decentralized partial observability control
problem [30].

Example. For the case study in Fig. 1, the requirement to satisfy is that motion′

command is issued within one period in the best case and within two periods
in the worst case. This deadline can be missed only in the case of a fault, when
the bus becomes unresponsive and all messages are delayed after 2P , and the
dispatcher should not transfer any request. In consequence, the requirement is
associated with the bus and dispatcher components. The FDIR component archi-
tecture we consider is a centralized flat one consisting of one diagnoser and one
controller connected to the bus and dispatcher components.

The third and last activity is the Objectives & Strategies. From the FDIR
architecture and the system requirements, an FDIR specification describing the
recovery policy is derived. The recovery policy is defined at system level by
objectives and at component level by strategies. Objectives are related to the
system requirements for the fault model, i.e., required behavior in the presence
of failures. Strategies usually contain the functional steps to be performed given
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the fault and the objective to achieve. The aim of a strategy is to bring the
system back in a good (safe) state after faults, where the RAMS hold.

Example. In the running example the objective is to stop the dispatcher until the
bus is reinitialized and the correctness of the motion′ requests can be assumed.
The strategy to apply is the following: halt the dispatcher immediately after a
fault is detected, reinit the bus and inform the dispatcher about the bus status
(action repair).

Once all the inputs are clearly specified, the first automated step is diag-
noser(s) synthesis. A diagnoser is a component that runs in parallel with the
system and gives verdicts whether a fault has occurred or not yet. A diagnoser is
synthesized for each fault (type) that can be detected. A fault f can be detected
if the system satisfies the diagnosability condition: given a set of observable
actions, there are no nominal and faulty executions (labeled with f) that have
the same trace. Please note that possibly not all faults need to satisfy this con-
dition, just as diagnosers do not have to be synthesized for all faults. Indeed,
only a subset of the fault actions set could be relevant with respect to the safety
requirements to ensure. These faults can be identified through model-based safety
assessment techniques [14], such as building the fault tree (i.e., Boolean combi-
nations of faults). Additionally, statistical model-checking could be applied to
identify those faults most likely to happen. Describing how to perform safety
assessment is outside the scope of this paper.

The second automated step is the controller synthesis which can be performed
if the system’s faults are diagnosable and the diagnosers have been synthesized.
When a diagnoser detects a fault, an alarm is raised which triggers a controller.
The controller is a component running in parallel with the system and imple-
menting the recovery strategies specified for the fault (type). Its aim is to bring
the system back to states/modes where the safety requirements hold. This step
synthesizes a controller from the specified recovery strategies and with respect
to the system and diagnoser(s) behaviors, thus ensuring the FDIR objectives.

Finally, the diagnosers and controllers are assembled into the FDIR compo-
nent from which code is generated (in C++ for example). The generated code
can be deployed and run online with the actual system implementation.

This approach is general enough to be applied for both untimed and timed
systems, only the synthesis algorithms need to be adapted to the corresponding
case. In the following we describe the algorithms for diagnoser and controller
synthesis for timed systems with partial observability as formalized in Sect. 2,
and we illustrate them on the example from Fig. 1. These algorithms and the
approach are currently under implementation in the BIP framework [5].

4 Formal Detection and Synthesis

A fault f can be detected by a diagnoser if the system is f -Σ′
o-diagnosable.

Intuitively, a system is f -Σ′
o-diagnosable if there are no executions having the

same trace with respect to a set of observables Σ′
o where one is labelled with
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the fault and the other not. With the notation from Sect. 2, the diagnosability
condition is formalized as follows.

Definition 3 (f-Σ′
o-diagnosability). Let S be a system represented as a TA,

f ∈ Σf
u and Σ′

o ⊆ Σu
o . S is f-Σ′

o-diagnosable if ∀ρ ∈ RunsS such that
faulty(ρ, f), �ρ′ ∈ RunsS such that ¬faulty(ρ′, q) and traceΣ′

o
(ρ) = traceΣ′

o
(ρ′).

Please note in the definition above the minimality condition on the observ-
ables for fault detection: the set of observables is at most the set of uncontrol-
lable observables of the system, i.e, Σ′

o ⊆ Σu
o . Additionally, the controllable

observables should not be considered for the fault detection as those are actions
commanded by the controller. If they would be taken into consideration for
diagnosability, a circular behavioral dependency between the diagnoser and the
controller could be created at runtime.

The algorithm for checking f -Σ′
o-diagnosability consists of the following

steps:

1. Compute a copy A of S such that uncontrollable actions not in Σ′
o become

silent actions and controllable actions and the corresponding transitions are
removed from the TA: A = (LA, lA0 ,XA, InvA, (Σu

o )A ⊕ (Σs
u)A ⊕ (Σf

u)A, EA)

with (Σu
o )A = Σ′

o, (Σs
u)A = (Σu

o \Σ′
o)⊕Σs

u and EA = E \{l
[g] a−−−→

r
l′|a ∈ Σc

o}.
2. Compute a copy B of A such that f is removed from the set of

faults, clocks, silent and fault actions are renamed with respect to A,
and all transitions labeled with f are removed from E. Formally, B =
(LB , lB0 ,XB , InvB , (Σu

o )B ⊕ (Σs
u)B ⊕ (Σf

u)B , EB) with XB unique w.r.t. A,
(Σu

o )B = Σ′
o, (Σs

u)B = (Σu
o \ Σ′

o) ⊕ Σs
u unique w.r.t. to A, (Σf

u)B = Σf
u \ {f}

unique w.r.t. A, and EB = EA \ {l
[g] f−−−→

r
l′}.

3. Compute A ‖ B and check that ∀ρ ∈ RunsA‖B such that faulty(ρ, f), ρ is
Zeno.

This algorithm is performed independently for every fault that might occur in
the system (possibly only the relevant ones obtained through safety assessment).

Intuitively, the algorithm synchronizes two copies of the model from which
the transitions labeled with controllable actions are removed. The copy A is the
behavior with faults projected on the set of observables Σ′

o. The copy B is similar
except the transitions labeled with the fault under study f are removed. The
synchronization of A and B gives two types of executions: Zeno and non-Zeno.
If a common execution labeled with f is non-Zeno, it means that the distinction
of which execution was actually performed – with f from A or without f from
B – cannot be made by the diagnoser. In contrast, if all runs ρ labeled with f
are Zeno, the diagnoser is able to make the distinction after time(ρ).

The definition and algorithm for checking diagnosability are similar to the
ones in [18,29] for timed systems. The difference comes from the splitting of
observable actions into controllable and uncontrollable, and the removal of con-
trollable actions such that diagnosability does not depend on actions enforced
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by a controller as explained above. As these changes are linear in the number of
actions considered, it follows from [29] that it runs in PSPACE.

The running example from Fig. 1 has the following actions based on the
components ports: Σc

o = {reinit, halt, repair}, Σu
o = {motion,motion′, cmd},

Σs
u = {τ, τ ′} and Σf

u = {fault}. By taking Σ′
o = {motion′}, the system is fault-

Σ′
o-diagnosable. In the construction above, all runs ρ labeled with fault will

reach the location (l7, l5) or (l7, l6) of the composition and time(ρ) = 2P . There-
fore, such executions are Zeno and the system is diagnosable. The action motion′

gives in fact the minimal set of sensors for detecting a fault. Any extended subset,
e.g., monitoring also motion, preserves the diagnosability condition.

If a fault action satisfies the diagnosability condition, a diagnoser can be
synthesized for its detection. Intuitively, a diagnoser monitors the observables
on which diagnosability has been checked and raises an alarm when the states
the system is in are marked as error. The diagnoser can be viewed, in general, as
the TA obtained through determinization of the system under study and with
respect to the specified observables Σ′

o and Σc
o. Determinization of TA is an

undecidable problem [2,31], except for some classes [4,13,25,28]. In consequence,
an algorithm for on-the-fly determinization of a copy of the system with marked
faulty locations is generated. This algorithm is inspired from [18,29], and the
differences are discussed below.

As mentioned, the diagnosis algorithm works on a copy of the system with
marked faulty locations. Each location is associated with two bits: 0 if no fault
has occurred and 1 otherwise. The transition relation is also duplicated: tran-
sitions labeled with an observable or silent action keep the bit of the source
location, while transitions labeled with a fault change the bit to 1.3 This modi-
fication is needed since the faults of the system are unobservable, and therefore
the detection is based on the system state. We call this copy the diagnosis model
and it is formalized as follows.

Definition 4 (Diagnosis model). The diagnosis model S′ for f-Σ′
o-

diagnosable S is the TA (L′, (l0, 0),X, Inv ′, Σc
o ⊕ Σ′

o ⊕ {τ}, E′) where L′ =
L × {0, 1}, Inv ′(l, n) = Inv(l) and E′ is given by the relation:

– (l, n)
[g] a−−−→

r
(l′, n) for n ∈ {0, 1} if l

[g] a−−−→
r

l′ and a ∈ Σc
o ⊕ Σ′

o

– (l, n)
[g] τ−−−→

r
(l′, n) for n ∈ {0, 1} if l

[g] a−−−→
r

l′ and a ∈ (Σu
o \Σ′

o)⊕Σs
u⊕(Σf

u\{f})

– (l, n)
[g] τ−−−→

r
(l′, 1) for n ∈ {0, 1} if l

[g] f−−−→
r

l′

The algorithm implemented by the diagnoser is given in Algorithm1. We
denote by W the set of current states for monitoring. Initially, this set consists
of all states of the diagnosis model DM reachable in 0 time by firing only τ
actions (i.e., former unobservable and observable actions on which the detection
does not depend). Additionally, a Boolean variable b modeling whether a fault
has been raised is set to false.
3 Please note that for simplicity of the diagnoser algorithm, all silent and fault actions

are renamed as τ in Definition 4.
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Algorithm 1. Timed diagnoser implementation loop.
Input: Diagnosis model DM = (L × {0, 1}, (l0, 0), X, Σo ∪ {τ}, E),

timeout ∈ R+, x �∈ X clock

1 W ←− {s ∈ L × R
X
+ | ρ = (l0, 0,0)

τ∗−→ s ∧ time(ρ) = 0}
2 while true do
3 b ←− false
4 while true do
5 if ∀s ∈ W. s = (l, 1, v) and ¬b then
6 raise alarm
7 b ←− true

8 end
9 x ←− 0

10 await (action a) or (x = timeout)
11 if a is restart then

12 W ←− {(l, 0, v) | ∀s ∈ W.ρ = s
(δ/τ)∗−−−−→ (l, n, v) ∧ time(ρ) = x}

13 break

14 else
15 if action a then

16 W ←− {s′′ | ∀s ∈ W. ρ = s
(δ/τ)∗−−−−→ s′ a−→ s′′ ∧ time(ρ) = x}

17 else

18 W ←− {s′ | ∀s ∈ W. ρ = s
(δ/τ)∗−−−−→ s′ ∧ time(ρ) = timeout}

19 end

20 end

21 end

22 end

The diagnoser main implementation loop is given next. The current states
are checked for being faulty, i.e., the bit 1 is set in the diagnosis model for all of
them. If it is the case and no alarm has been raised so far (b is false), the latter is
triggered. In both cases, the diagnoser keeps monitoring the system: (i) a clock
x is set to 0 and (ii) an action a or the lapse of time to timeout is observed. For
an observation a, x will contain the time elapse since the last match. In the case
of a matched a, the diagnoser computes the next states of the system as follows:
first it fires all internal actions τ such that the entire execution time takes x
time units; then it fires the event a and updates the set of reached states. If the
event a is the specific action restart of the controller, the bit is additionally set
to 0 for all computed states. If no event is observed in a timeout period, the set
of reachable states is again updated by firing all internals during the predefined
timeout period.

Example. For the case study in Fig. 1, the diagnoser has a timeout value of
2P . Indeed at moment 2P , the only state reachable is (l7, 1, 2P ), at which the
alarm action is raised. We give in Fig. 3 a symbolic representation as TA for this
diagnoser.



166 I. Dragomir et al.

The difference between Algorithm 1 and the algorithm from [18,29] is mainly
related to the FDIR setting and the controller component. While in [18,29] a
valid diagnoser consistently outputs alarm once a fault is detected, our algorithm
allows for a restart of the monitoring. This is due to the implementation of a con-
troller which handles faulty behavior and brings the system into safe states. To
ensure that the fault detection happens from states coherent with the actual sys-
tem states after a restart, the diagnoser monitors also the controllable observable
actions defined for the controller. Finally, for a more detailed discussion about
the implementation of diagnosers, the reader is referred to [29].
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Fig. 3. Components of the synthesized FDIR component.

5 Implementing Reconfiguration Strategies

Once a fault is detected, a controller takes charge to bring the system back
into safe states. This controller, if one exists, can be automatically synthesized
just as the diagnoser. The construction of the controller is based on the system
under study including diagnosers, FDIR specification (recovery strategies), and
requirement(s) describing the safe state after a fault.

There are several works in the literature tackling controller synthesis algo-
rithms from logical specifications (e.g. untimed automata built from LTL formu-
las [24]). The (safety) requirement is expressed in some logic and the algorithm
works only on the system under study. This problem is known to be a hard one,
and even undecidable in some cases [20,22]. In the FDIR context, we make use
of the recovery strategies contained in the FDIR specification which define the
functional steps to apply in case of a fault. An incomplete controller is manually
built from these strategies, and refined and validated on the system.

We consider the incomplete controller to be modeled as a TA. This automa-
ton is structurally refined by using the appropriate alarm and restart of the
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diagnoser, and adding a transition labeled with restart as last step of the mod-
eled recovery strategy. This transformation is needed to be able to inform the
corresponding diagnoser that the detected fault has been handled and to uphold
the reactive aspect of these systems.

Example. On the running example, the recovery strategy describes that once
the fault is detected, the dispatcher must stop transferring requests until the
bus is reinitialized and it is aware of it. The functional sequence derived from
this specification is halt followed by reinit and repair . This sequence is triggered
by alarm from the diagnoser and informs its execution by action restart. The
execution of the controller is enforced by invariants which deactivate time elapse.
The corresponding TA is given in Fig. 3.

The validity of a controller is checked with respect to the set of safe states
to be reached modeled by the safety requirement. This can be achieved through
model-checking the system including the FDIR component with respect to the
safety requirement. As this is a reachability problem of the safe states, the vali-
dation effort of a controller is in PSPACE.

Example. In our example, the safety requirement is that the bus has been reini-
tialized and the dispatcher is aware of it. The safe states projection on the two
components consists of (l0, l0). With respect to this requirement the controller
proposed in Fig. 3 is valid.

Once the controller has been validated, code (e.g., in C++) can be gener-
ated. This code can be obtained independently for the diagnoser(s), controller(s)
or the full-fledged FDIR component. Under the assumption of code generation
correctness, the FDIR implementation can be deployed on the platform together
with the actual system and its online expected behavior is met.

6 Related Work

How to build correct FDIR components from complete system specifications is
a recent topic of interest in the literature [10,32]. FDIR components are usually
obtained through ad-hoc processes and need extensive testing to ensure their
correctness for mission and safety-critical applications. In this paper we propose
the use of formal methods to tackle this issue and obtain correct-by-construction
FDIR implementations.

Our approach is similar to the one in [10]. The main differences cover
the domain of application and code generation feature. This paper considers
real-time systems represented as timed automata, while in [10] systems are
untimed and represented as symbolic transition systems. Therefore, the algo-
rithms applied for synthesis are different. The focus of [10] is on the safety
assessment [9] with timed failure propagation models, which are modeled by the
user. In our approach, safety assessment is not mandatory as diagnosability can
be checked for all fault types and diagnosers can be synthesized for all of them.
However, safety assessment can be performed with respect to the given safety
requirements based on automatically generated fault trees. The artifacts give
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information about the subset of faults that need to be detected and the mini-
mal subset of sensors needed. Additionally, risk analysis can be performed along
safety assessment using statistical model-checking (available in the BIP frame-
work). The recovery strategies from [10] are modeled in a flavor of Linear Tempo-
ral Logic (LTL) [26], while we consider them specified as timed automata which
is arguably more intuitive and expressive for modeling. Finally, our approach
allows to generate code for the FDIR implementation, which is not considered
in [10].

The two synthesis problems considered here – diagnoser and controller syn-
thesis – have however been studied independently of the FDIR context. For
example, [27] describes the diagnosability problem for one and multiple faults,
and introduces the notion of fault type for untimed systems. [19] describes a
framework for diagnoser synthesis in the untimed case and from LTL specifi-
cations. In [6,7], runtime verification for 3-value Timed LTL is used for fault
detection.

In the context of timed diagnoser synthesis, the most related works to ours
are the ones from [11,16,18,29]. As described in Sect. 4, the main differences
consist of the representation of a system to accommodate FDIR components and
the adaptation of the algorithms to this representation. More specifically, in our
framework a system defines both controllable and uncontrollable observables,
and diagnosability is checked on a subset of uncontrollable observables. The
controllable actions are however monitored by the diagnoser, in order to ensure
the correct restart of the detection once the recovery strategy is successfully
applied. This feature of the diagnoser allows enforcing FDIR capabilities on
reactive systems, different to [29] where a diagnoser is considered valid if it does
not change the verdict after a detected fault.

The controller synthesis problem is studied in several works that use a more
general formalism than ours. The usual approach is a game-based one: the prob-
lem is seen as a game between the environment (playing uncontrollable actions)
and the controller [17]. In the untimed case, the general problem with specifica-
tions given as LTL formulas is well understood and decidable, but usually not
tractable, even though some work has been done towards applicability of the
algorithms [24]. An approach that is closer to ours in the untimed case, building
a controller by adding transitions to an incomplete one under safety and liveness
requirements, is considered in [3].

The timed case is much more involved, and the decidability of the problem
heavily relies on parameters such as partial observability, access to (un)limited
resources, and type of specifications [12,15,20]. For example, in [23] a controller is
synthesized from a template by parameter instantiation, while [8,22] use Timed
Computational Tree Logic [1] specifications.

7 Conclusion

In this paper we present an approach based on formal methods for the correct-
by-construction design of FDIR components. This approach performs several
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manual steps for obtaining the inputs required: the system under study con-
sisting of both the nominal and the faulty behavior, the recovery strategies and
requirements to satisfy modeled as automata. The approach proceeds by syn-
thesizing an FDIR component in two steps: (i) a diagnoser is generated for each
diagnosable fault and (ii) a controller is produced for each recovery strategy by
completion of its incomplete representation as automaton. The FDIR component
is validated by model-checking techniques and code (e.g., in C++) is generated
as FDIR implementation. This implementation can be deployed with the system
for the online detection and enforcement of safety requirements.

The proposed approach can be applied for both untimed and timed systems.
We define the notion of diagnosability in the FDIR context for timed systems and
we propose algorithms for the automated generation of full-fledged timed FDIR
components. We illustrate the approach and the algorithms on an autonomous
system case study with faults during communication.

The approach presented here is currently under implementation in the BIP
framework and validation in two real-life case studies from our industrial part-
ners. As future work we are interested in validating and comparing the synthe-
sized FDIR implementation with respect to developer written ones, as means
to quantify this approach with respect to standard FDIR coding ones. In order
to optimize the synthesized FDIR implementations, we are interested to study
model-based safety assessment with statistical model-checking techniques and in
the context of stochastic faults.

On a more general note, we are interested in devising a pattern-based lan-
guage for modeling recovery strategies, and a synthesis or learning algorithm
for building the controller. This language could be extended and used for spec-
ifying data-/state-based safety requirements as inputs, besides the event-based
ones considered in this paper. This would require the introduction of a dynamic
observer as a filter for the FDIR component, to transform the data-/state-based
property into an event-based one. Ideally, the previously mentioned algorithm
will perform this step automatically. Finally, we are interested in considering
more complex FDIR architectures as targets (e.g., distributed ones) and adapt
the algorithms to such cases.
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Abstract. One of the key properties of autonomic component systems is their
dynamicity and context-dependence of their behavior. In contrast to systems
with a static architecture, their components interact and collaborate in an ad-hoc
fashion depending on their internal state and location, the state of other com-
ponents and their locations, timing and history of events/state of external (un-
controlled) environment. This high degree of dynamicity collides with
traditional approaches to security, which typically rely on static hierarchies of
roles and a static assignment of roles. To address this problem, we formulate
security rules which are autonomically composable and context-dependent; in
their evolution, they follow the dynamicity and context-dependence of the
autonomic components. Based on our previous work with autonomic compo-
nent ensembles, we show how ensembles can be exploited to define security
rules to control interactions in a system of autonomic components.

Keywords: Smart systems � Autonomic components � Component coalitions
Component ensembles � Architecture description language

1 Introduction

A trend common to all modern systems that can be seen as systems of cooperating
autonomic components is the high-degree of interconnectedness and dynamically
evolving and changing structure and behavior. This is common for various domains
including smart buildings, smart traffic, smart production, etc. All these systems sig-
nificantly increase their value by aggregating and exploiting data from different sources
and typically also of different governance. Furthermore, they are open and dynamic in
the sense that they admit integration with other systems, which further increases their
value. Connected with adaptivity, as the property that allows them to continuously
monitor their state and context, these systems often also dynamically reconfigure
themselves and establish ad-hoc cooperation with other systems so as to address the
situation at hand. Examples of this are numerous spanning cases like rescue robots that
dynamically form cooperation groups to perform rescue operations, UAVs or UUVs
performing collective navigation survey of a designated area, and vehicles cooperating
in parking and other maneuvers. In the domain of smart buildings (which is the case we
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borrow from our projects), this can be sensors and various smart devices which
cooperate towards the goal of reducing energy consumption via smart HVAC (heating,
ventilation and air-conditioning) and towards the goal of ensuring physical security by
monitoring the movement and responsibilities of persons and controlling the physical
access by means of smart door locks.

A common challenge in these systems is the security (both digital and physical).
Obviously, the ability to cooperate across system and governance boundaries is one
part of the problem. The other part of the problem is the dynamicity that stems from the
adaptation of a system to its current context. As part of this adaptation, the cooperating
components (robots, cars, devices, suppliers, etc.) as well as the security requirements
may change. A rather common example of a context-dependent security requirement is
the one of emergency exit doors which in normal operation are supposed to stay closed,
but should be opened in case of an emergency. More complex examples include
allowing data exchange among components only if the components are part of the same
process (e.g., robots sharing information about a victim whom they are trying to rescue,
or cars sharing driving intent in case they are involved in an overtaking maneuver).

The presence of dynamicity (in peers and security requirements themselves) sig-
nificantly complicates the challenge of ensuring security. While the current state of the
art has a number of approaches to cope with security in static systems (e.g., role-based
access control, rule set-based access control, graph-based access control), they cannot
easily cope with a high-degree of dynamicity. Even approaches that have been
developed to take context into account (e.g., context-based access control, attribute-
based access control), do not easily count with dynamicity and context involving a
coordinated action of multiple components and the potential uncertainty that comes as
the results of adaptive and complex systems.

In this paper, we formulate an approach to autonomically composable and context-
dependent security rules that follow the dynamicity and context-dependence of the
autonomic components a system is composed of. We base our work on our previous
work on autonomic component ensembles [3]. We define a new type of security
ensembles that describe permitted interactions in the system and follow the system
during its evolution. We complement this with an approach to match ensembles to the
current state of the system so as to resolve the binding of dynamic security rules to
current situations and to generate the set of actions permitted at a given moment given
the components in the system and their context. In this course, we allow also modeling
components that are not controlled by the system (e.g., humans and 3rd party com-
ponents) where the state of a component is not directly observable, but instead has to be
derived.

The paper is structured as follows. In Sect. 2, the running example is described.
Section 3 presents our approach to dynamic security specification through autonomic
component ensembles while in Sect. 4 we describe a user-oriented external DSL for
ensemble and security specifications. In Sect. 5, related work is discussed and Sect. 6
concludes the paper.
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2 Running Example

In the rest of the paper, as a particular example on which we illustrate our approach, we
use the following real-life scenario with dynamically evolving physical security con-
straints. Let us imagine a software development company in which developers work in
parallel on several projects. Each of these projects is for a different customer and each
of them is assigned to a different team of developers. To ensure the protection of
customers’ intellectual property, the development teams are distinct and, additionally,
security constraints dictate that developers from different teams must not communicate
with each other and they are not allowed to stay in the same room (working rooms or
lunch rooms). To address these constraints, the developers are guided (via their mobile
phones or smart-watches or a similar device) as to in which rooms in the company
building they can stay.

In order to make the code examples in the following sections easily readable, we
limit the scenario as follows. The company building contains a set of Rooms separated
by Doors. The Rooms are of three different types – Lunchrooms (marked L1–L3),
Corridors (C1–C3) and Working rooms (W1–W3). Each of the Lunchrooms and
Working rooms has a capacity depicting the number of persons allowed in that room
(each Working room and Lunchroom has in our scenario capacity of 2 while Corridors
have infinite capacity). There are two development teams A and B – each of the
developers belongs to one of them. A developer is always in one of the following two
modes – WantingToEat and Working; when in the Working mode, he/she should be in
a Working room and similarly for the WantingToEat mode and a Lunchroom.

The situation is depicted in Fig. 1 (figures in this section are actual screenshots
from a simulator of the scenario we have developed to illustrate the approach). The
shape distinguishes the team affinity of the developer (a circle or square); the color
distinguishes the mode (blue for the Working state while orange for the WantingToEat
one). The developer’s label (in the circle or square) shows an ID of the developer (A1,
A2, …, B1, B2, …) and an assigned room (it is possible that no room is assigned).

The goal of the system is to control which room a developer is permitted to enter
while ensuring the security and space constraints. Namely, the rules are as follows:

1. Developers from different teams must not meet in Working rooms or Lunchrooms.
2. The number of developers assigned to a room must not exceed its capacity.
3. Utility of the Lunchrooms and Working rooms is maximized, i.e., the number of

developers in the WantingToEat mode assigned to Lunchrooms and the number of
developers in the Working mode assigned to Working rooms is maximized (with
respect to the first rule).

The behavior of the developers has the following phases:

1. Each Developer may change his/her current mode. The probability of switching to
the other mode increases with time spent in the current mode.

2. The system assigns rooms to Developers while maximizing its Utility (i.e., effi-
ciency of the rooms’ utilization).

3. The assigned room is communicated to the particular Developers.
4. The developer tries to move to the assigned room.
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5. To move to an adjacent room, the Developer passes through a Door, which opens
only for a Developer with the assigned room.

6. Simultaneously, the Door can reject passing if the Developer would end up in a
Lunchroom or Working room with a Developer from a different team. While this
may be seen as redundant, it is necessary due to the dynamicity of the system and
due to the inability of the system to directly enforce behavior of the developers
(who are humans and thus beyond direct control of the system; the system can only
ask them to do something – e.g., to have a lunch in a given room – but it has no
means to force them). For example, there may arise a situation depicted on Fig. 2 –

the A1 developer moves to the W1 room while the B1 developer changed his/her
mode and obtained a new room assignment (the L1 room), however for some reason
he/she still remains in W1 and thus A1 cannot enter W1.

Fig. 1. Scenario map picturing rooms and developers
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3 Ensembles for Security

To describe and reason about security in dynamic systems, such as the one presented in
the running example, we extend our approach to autonomic component ensembles [3,
4]. The principal idea behind autonomic component ensembles is to represent system
entities (e.g., persons, devices, robots, machines, rooms, doors, etc.) as components and
cooperation and coalitions among the entities as ensembles. In our model, an ensemble
is specified as a type, which is instantiated (potentially multiple times) for cooperation
in given situations. Being context-dependent, an instance of an ensemble is typically
localized temporally and spatially.

From the semantics perspective, a component represents an autonomous (poten-
tially mobile) entity, which has its own state (we use term knowledge). A component
performs periodic activity in which it senses the environment (updating its knowledge),
performs computation and actuation.

Fig. 2. Entry for the developer A1 to roomW1 is rejected due to the presence of the developer B1
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An ensemble is a group of components formed to perform joint goal or coordinate
some activity. Members of an ensemble are established dynamically at runtime. An
ensemble is determined by its membership condition – a predicate over components’
types and knowledge. Ensembles can be hierarchically decomposed into further sub-
ensembles. The semantics is that members of a sub-ensemble must be members of the
parent ensemble too. This way, a top-level ensemble defines the goal of the system as a
whole. A component can be a member of multiple ensembles at the same time, which
naturally reflects the fact that a component may be part of a number of functionally
orthogonal cooperations.

To give an example from the robot coordination domain, an ensemble is for
instance a group of three robots that collectively transport an item. The ensemble
condition selects from the available robots with the right type of a gripper three robots
that are the closest to the item to be transported. Once formed, the ensemble is then
responsible for computation of coordinated movement, such that robots maintain a
formation needed to transport the item.

In the case of using ensembles for modeling and controlling security, we follow the
same idea. The difference however is that while in the example with the robots, we
used the ensemble prescriptively to control the robot collaboration, in this paper, we
use ensembles to describe existing types of situations and collaborations. Thus instead
of specifying coordinated actions of components, we specify what data are allowed to
be shared among particular components in an ensemble. Contrary to defining static
hierarchies of permissions, the security rules carried by ensembles are dynamic because
they are dynamically instantiated along with ensembles to reflect dynamic situations
bound to temporal and spatial context.

Similarly to our previous work, we complement the specification with a framework
that utilizes a CSP solver (Choco solver in particular) to resolve ensembles – that
means to determine which ensemble instances to create and which components to
assign to them.

3.1 Concepts and Semantics

To illustrate the semantics and to allow for rapid experiments with variations of the
semantics, we developed a Scala internal DSL for specification and resolution of
ensembles. The implementation can be found at http://github.com/d3scomp/tcoof-
security. Though the DSL may not be first choice for specifications which are supposed
to be provided by end-users (we sketch an alternative end-user oriented specification in
Sect. 4), it has exact semantics based on Scala language.

In the Scala DSL, we model all components and ensembles as classes. In our
scenario, the components are Rooms and Developers. The cooperation among com-
ponents is modeled via ensembles. In our scenario, it is the Lunch group, which is a
group of developers that share the same lunchroom.

The specification of the running example in our Scala DSL is shown in Fig. 3.
Lines 4–9 define the various types of rooms. A Room is determined by its type, name
and capacity. Lines 11–16 specify the Developer component. A Developer is deter-
mined by their name and the team to which they belong. Additionally, a developer has
a mode, which distinguishes the intent of the developer. In our example, we model only
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two modes: Working and WantingToEat. As components represent beyond-control-
entities (components’ behavior is not directly controlled by the system), the specifi-
cation does not contain any functional code of components.

The main idea of the specification comes in the description of the LunchGroup
ensemble. The ensemble gives permission to developer to enter a particular Lunch
room while making sure that they can fit in the room and that members of two different

Fig. 3. Example of using TCOOF-ADL in partitioning agents to rooms
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teams cannot meet in the same lunchroom. At the same time, it also optimizes the
allocation of lunchrooms to developers, such that the lunch rooms are utilized to the
maximum extent.

The LunchGroup ensemble is given on lines 19–39. The ensemble is qualified by
the lunchroom (the room is given as a parameter to the ensemble class). This means
that there will be one potential instance of the ensemble per LunchRoom. An important
aspect here is the potentiality. This means that the instance of the ensemble will be
considered in constructing the ensembles, but it does not have to be constructed in the
end (e.g., if there are not enough developers to occupy all lunchrooms).

The ensemble specifies which entities take part in it. In our case, one entity is the
room which qualifies the ensemble, the other entities are the particular developers
which are allowed to the particular room. The developers are specified via the role
construct on lines 23–24. This says that the ensemble will have a role which comprises
the developers that want to eat. Technically, we use the standard collection operators
and lambda functions to filter components based on their mode. The components
assigned this way form a domain for the role. Particular developers will be then
selected from this domain such that all other conditions (e.g., constraints on capacity,
exclusivity of teams, etc.) are met.

The conditions based on which the particular components are chosen in the roles
are given in the “membership” section of the ensemble (lines 26–39). It states that all
developers selected for the role “developers” should belong to the same team and that
their number has to fit the room capacity.

Generally, it is possible to have multiple roles in the ensembles (e.g., if one wanted
to distinguish between developers and testers) and to state relationships between the
roles (e.g., set relationships like that components selected for one role should be also
present in another role of the same ensemble instance).

The optimization of the selection is driven by the utility function (lines 34–36). In
our example, we use a simple utility function that equals to the number of developers in
an ensemble. As the whole system utility is computed as a sum of utilities over all
ensemble instances, this leads to maximizing the number of developers which are
assigned to a lunchroom and given access to it. Note, however, that if there are more
developers than the overall capacity of the lunchrooms, there will remain some
developers without access to any lunchroom. This naturally corresponds to a conges-
tion situation where some developers will simply have to wait until others are finished
with their lunch.

The relationship between ensemble instances is established by a root ensemble
called System (lines 41–53). Here we exploit the hierarchical structure of ensembles
and assume a single root ensemble, which is a singleton, in which all other ensembles
are (transitively) nested. As a parent to the LunchGroup ensemble instance, the root
ensemble specifies the potential instances of LunchGroup ensembles and specifies
constraints over the ensembles. In our case, we create one potential LunchGroup
ensemble instance per room (lines 43–45) and posit that the LunchGroups should be
mutually disjoint in terms of developers they contain (lines 47–50).

The structure that has been specified via the DSL is then resolved by our framework
that internally utilizes the CSP solver. The resolution creates the LunchGroup ensemble
instances and assigns Developer components to them.
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Finally, the security is specified via statements in ensembles (line 38). The
statements are formed as triples: subject, object, permission. The subject and

object refer to entities grouped by the ensemble. In our case, it gives access to
developers that have been selected by the ensemble resolution as members of a par-
ticular LunchGroup to enter the corresponding lunchroom.

4 End-User DSL

In the previous section, we have presented the ensemble concepts, and the running
example via our Scala-based TCOOF-ADL language. While an internal DSL hosted in
a general-purpose programming language such as Scala certainly has its advantages –
most prominently a fast prototyping loop as well as the power and the tooling of a
mature language – it also has several notable drawbacks. Since there is no explicit new
grammar and infrastructure, we are limited to modeling the newly introduced concepts
by using the features of the host language; ideally, the mapping is fairly clean (e.g.,
components to classes), but in some cases this repurposing of the host language fea-
tures to unintended use cases results in an API that is downright cumbersome to use. At
the same time, since all code used in the internal DSL is a general Scala code, there are
no additional compile-time checks that could be enforced and that could inform the
end-user when they are using the ensemble concepts in ways they should not.

Being well aware of this impracticality of internal DSL for end-user usage, we have
been also developing an external, end-user friendly DSL with explicit grammar in
parallel to the more feature-prototyping focused TCOOF-ADL. This DSL, named the
Ensemble Definition Language (EDL for short) [10], is being developed using the
Eclipse language development tools, namely the Xtext1 grammar definition language,
as well as the Xtend2 programming language. In this section, we show the extension of
EDL for security, named EDL-S. The EDL-S is not intended to capture all the nuances
of a large-scale system architecture; instead, it is positioned as a focused declarative
specification of the types of ensembles that can exist in the system, the constraints they
must satisfy, and how to decide which ensembles the system should form at runtime –
mapping almost exactly to the part of the specification that must be written by the end-
user to capture the security rules that should be enforced by the system.

Precisely describing all the first-class concepts in EDL-S is out of the scope of this
paper; however, an illustration of EDL-S possibilities is shown in Fig. 4 describing a
part of the running example. In particular, the focus is on the assignment of developers
to lunchrooms, as discussed in Sect. 3. The specification starts with two entity defi-
nitions – essentially interfaces prescribing data properties – representing the two types
of entities relevant to the assignment: the developers and the lunchrooms. Note that
there is no notion of how the entities operate – whether backed by regular components,
or components representing beyond-control entities is irrelevant for the assignment,
providing nice low coupling with the rest of the system. The assignment rules

1 http://www.eclipse.org/Xtext/.
2 http://www.eclipse.org/xtend/.
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themselves are represented by the ensemble specification starting on line 14. Line 15
declares that all lunchroom assignments must have a unique lunchroom (represented by
the construct). The specification then defines a single role on line 18 by the name

, representing a list of developers assigned to this specific lunchroom, the
choice of which is restricted by the where construct to only include developers cur-
rently interested in eating (since this particular EDL-S fragment concerns only
lunchroom assignment) as an optimization for solving. The constraints constructs are
then used to restrict the number of assigned developers by the capacity of the particular
room (line 20), as well as to prohibit developers from different teams in a single room
(line 21). The requirement for optimality in terms of maximal room usage is repre-
sented by the fitness construct, specifying that the benefit of an assignment is gauged
by how many developers have been assigned to the room in question (line 22). Finally,
the security is specified via statements (line 24), similarly as in the TCOOF-
ADL code in Fig. 3.

As can be seen from the example, the focused nature of the EDL-S provides a
compact, highly legible declarative specification that is much better suited for the end-
user than the internal DSL is, allowing us to naturally capture the ensemble concepts as
first-class language entities. In addition to ease of use, the explicit grammar provides us
with more possibilities compared to a hosted implementation – of course, this comes at
the cost of more development effort, as any extra feature must first be implemented.
Since the concepts’ precise semantics are now captured directly, the language can be
much more restrictive, allowing for more powerful compile-time checks and resulting
guarantees as to what the user can write without getting a compilation error. At the
same time, this restrictiveness enables smarter auto completion, again with more
comfort potential for the end-user. Being language independent, the specification can

Fig. 4. Example of using EDL-S in partitioning agents to rooms
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theoretically be compiled into a multitude of languages and platforms, enabling
interoperability – though we currently generate Java code and use JVM as the backend.
The additional compilation step also enables us to reason about the specification itself
and use code generation to support advanced features. Overall, having a focused DSL
for specification of the assignment rules provides us with a lot of flexibility and comfort
for the end-user, and a clean separation from the operational logic of the system, which
can be handled by the TCOOF-ADL implementation.

5 Related Work

Commonly, there are two perspectives for dealing with dynamic security – at design-
time by analyzing access rights and security policies, and at runtime by using security
enforcement. In both perspectives, there are many aspects that can influence security
management and thus there are a number of approaches dealing with it.

Regarding design-time, there are approaches based on UML. For example, authors
in [8, 9] define UML profiles allowing for expressing security concerns in a designed
system. While the profile in [9] targets general systems, the profile in [8] targets SOA
and is built over UML extensions for SOA. Both the profiles primarily target secure
transfer of objects in a system, nevertheless they do not cope with highly-dynamic
systems. The work in [1] combines both design-time and run-time perspectives as it
defines its UML profile for security concerns but also defines an aspect-based approach
of applying security at runtime. As the previous profiles, the approach does not cope
with highly-dynamic systems.

A very close related area is access control and access permission for shared
resources. In [16], the authors propose a modeling approach OrBAC (Organization
Based Access Control), which allows expressing user permission specifications in
dynamically changing environment of a Virtual organization (dynamically shared
resources of physical organizations). The approach deals with dynamicity of resources;
however, by themselves, the permissions are static with fixed sets of roles, contexts,
etc. A similar approach used in [11] for security management in networks where the
access control permissions and data flows are described using Role-Based Access
Control (RBAC) model. In comparison, our approach allows for modeling beyond-
control entities (humans, etc.) in the same way as regular components are modeled and
thus we can deal with the uncertainty that is an inherent part of autonomic systems.

To deal with security in autonomic systems, it is necessary to take into consider-
ation the system context. In [13], a survey of current (2009-2015) context-aware
middlewares, especially targeting IoT like systems, is presented. The context itself is
typically managed by ontology-based models [20]. In general, security (and privacy)
issues are targeted only by a minority (three out of eleven) of these middlewares and
primarily, only basic security aspects like user identification and authorization have
been dealt with. From the security point of view, the most advanced is FlexRFID [6],
which uses Role-Based Access Control model (similarly as the approaches discussed
above).

In [5], both the context and uncertainty are targeted by adaptive security policies.
The approach depends on context-aware role-based access control, which provides
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dynamicity within given permissions after evaluating the current situation. The
uncertainty here is related to security threats and resource access and it is captured by
using stochastic models. However, the approach does not deal with communication and
interplay among multiple entities.

In [21], a conceptual design that enables building of security mechanisms for
mobile self-aware devices is presented. The proposed design contains three sybsys-
tems: (i) meta-level for self-awareness, (ii) extended meta-level for security mecha-
nisms, and (iii) base-level for resources. The meta-level subsystems are responsible for
the realization of self-awareness and provide actual security rules for the base-level
subsystem. In general, the whole structure is similar to a MAPE-K loop. The whole
approach primarily targets only devices like mobile phones and their security aspects
like access control and virus/malware detection.

The security management framework dynSMAUG is presented in [12]. The
cornerstone of the framework is the concept of a situation, which is described in the
form of “when situation and conditions then security actions”. Situations are calculated
based on processing of series of events in a system. The security policies (authorization
decision, obligations,…) in actions are expressed via the XACMLv3 language [18].
The concept of situations has high expressivity and allows for capturing dynamic
constraints like time, location, workflows, etc. However, the framework deployment
architecture primarily considers sensors-actuators systems only and does not explicitly
consider beyond-control entities.

Another approach is described in [14] and it proposes contextual contracts defining
privacy and quality-of-context (QoC) agreements. For modeling heterogeneous QoC
criteria, the approach relies on QoCIM meta-model [15]. The framework primarily
targets privacy in IoT systems and thus considers only producer-consumer-like
architectures (in fact in the same manner as the previous framework).

An approach for dynamic policy adaptation is presented in [19]. A policy is
understood as a tuple of a label function (partitioning the business space into regions)
and a ranking function (provide a quantitative value of the desirability of a state). Thus,
the policies can be applied to almost any feature in a system (nevertheless the authors
explicitly consider features like security and resource allocation). The approach is
based on automated learning of actual policies while human users express the policies
in terms of higher level goals. The approach is more on the conceptual side and, as the
authors claim, it focuses more on the theoretical part of the problem.

To deal with the uncertainty in trust management, the paper [22] applies fuzzy logic
for the definition and evaluation of trust. The actual trust policies are generated from
the fuzzy logic based rules. Authors target federate trust management over service-
oriented architecture, which considers building trustworthiness cross
domains/organizations with adapting to context and requirements. Also, the authors
claim that uncertainty cannot be treated as a probability and thus cannot be described
by a probability model; however, the claim is not further detailed and explained in the
paper.

Regarding the ensembles themselves, there exist several frameworks based on
them. Helena [7], JRESP [17] and DEECo [3] are examples of such frameworks. Also,
AbaCuS [2] can be considered here even though it is not strictly an ensemble-based
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framework however it is built on the same principles. None of these frameworks
consider security aspects and/or has been used to deal with security issues.

6 Conclusion

In this paper, we have presented an approach to autonomically composable and
context-dependent dynamic security rules. These rules follow the dynamicity and
context-dependence of the autonomic components a system is composed of. The whole
approach is based on autonomic component ensembles, which are groups of compo-
nents dynamically formed to perform joint goals or coordinate some activity and thus
they are an ideal concept to capture dynamic rules.

For specification of the rules, an internal Scala-based DSL has been developed
(available at http://github.com/d3scomp/tcoof-security). This DSL primarily allows for
fast and rapid prototyping however it might be hard to use for end-users without
programming skills. Thus we have developed an end-user oriented external DSL which
explicitly captures the concept of ensembles. The main downside of this DSL is its
complex and time-consuming development.

The presented approach is not limited to our DSLs only but can be applied in any
technology and/or framework that is based on the concept of ensembles.

As an ongoing work, we plan to further extend possibilities of TCOOF-ADL (and
also of EDL) to capture more complex security rules. Also, we are applying the
approach in projects in which we are participating.
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Abstract. One of the most distinctive features of collective adaptive
systems (CAS) is the presence of many individuals which interact with
each other and with the environment, giving rise to a system-level
behaviour that cannot be analyzed by studying the single agents in iso-
lation. The interaction structure among the individuals of CAS is often
captured by networks where nodes denote individuals and edges interac-
tions. Understanding the interplay between the network topology and the
CAS dynamics calls for tools from network theory in order, for instance,
to identify the most important nodes of a network. Centrality measures
address this task by assigning an importance measure to each node, a
possible example being the famous PageRank algorithm of Google. In
this paper we investigate the relationship between centrality measures
and model reduction techniques, such as lumpability of Markov chains,
which seek to reduce a model into a smaller one that can be processed
more efficiently, while preserving information of interest. In particular,
we focus on the relation between network centrality and backward differ-
ential equivalence, a generalization of lumpability to general dynamical
systems. We show that any two backward differential equivalent nodes
enjoy identical centrality measures. By efficiently obtaining substantial
reductions of real-world networks from biochemistry, social sciences and
computer engineering, we demonstrate the applicability of the result.

Keywords: Networks · Centrality measures · Model reduction
Efficient algorithms

1 Introduction

More and more often we are facing systems consisting of a large number of enti-
ties, each with its own status, goals, and dynamics, which interact with each
other (and with the environment) giving rise to an emergent behaviour, i.e. the
system-level dynamics, that cannot be directly inferred by studying single indi-
viduals in isolation. Systems with such distinctive features are often referred to
as collective adaptive systems (CAS). Given the importance of the interactions
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in CAS, one possible approach to their analysis consists in conveniently repre-
senting the interaction structure in the form of a network, enabling a plethora
of analysis techniques widely used in network theory [32].

Examples of networks arise in many real-world applications, with possible
examples being collaboration, gene regulation, trust, internet and social net-
works. Identifying important components and structural properties of networks
is crucial, and it has enjoyed substantial interest during the last decades, com-
bining such diverse fields as graph theory, algebra and dynamical systems. Cele-
brated insights include, but are not limited to, small world phenomena and the
concept of scale-free networks. Among many established notions, we focus on
centrality measures [32] and exact role assignment [40].

Centrality measures are a common tool to identify nodes with a high impact
in a network. Instead, exact role assignment (also known as regular equivalence),
has been used since the late seventies [26,40] to formalize the idea “that nodes
who occupy the same social position relate in the same ways with other nodes
who are themselves in the same positions” [40]. Using the lingo of computer sci-
ence, regular equivalence corresponds to the classic notion of bisimulation [2,25]
and can be therefore computed efficiently by the partition refinement algorithm
of Paige and Tarjan [33], whose running time is linear in the numbers of edges
and logarithmic in the number of nodes. Surprisingly, it was not before 2003 that
this fact has been observed [26], allowing one to avoid the usage of the cubic
time algorithm CATREGE from 1993 [26].

The partition refinement algorithm of Paige and Tarjan was also key in
the development of efficient model reduction algorithms for quantitative models
[20,36]. The main idea behind model reduction is to relate the original dynami-
cal model in a formal way to a reduced dynamical model such that a solution of
the reduced model allows one to draw formal conclusions about the solution of
the original model. In [16,38], the original algorithm [33] has been extended to
efficiently compute the coarsest lumpable partition [7] of a Markov chain. In a
similar vein of research, [2] presented an extension to probabilistic bisimulation
in the style of Larsen and Skou [25]. The original algorithm [33] has been recently
extended to efficiently compute the coarsest differential equivalence [10–12], a
model reduction technique for systems of ordinary differential equations (ODEs)
that are a natural modeling language for biochemical models [8,17], dependable
systems [6,19] and analytical performance models [5,24]. In particular, [9,13,14]
introduced a partition refinement algorithm that efficiently computes the largest
differential equivalence.

The present work relates centrality measures, model reduction techniques and
efficient algorithms. More specifically, by applying differential equivalence to the
linear dynamical system that is induced by the adjacency matrix of a graph,
we observe that any two differential equivalent nodes enjoy the same eigenvec-
tor, Katz and PageRank centrality. The relevance of the result is demonstrated
by efficiently computing substantial reductions (that yields coarse quotient par-
titions with large blocks) of published real-world networks, including protein
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interaction networks, scientific collaboration networks, routing networks, email
networks and networks capturing YouTube.

Paper Outline. Section 2 reviews the background material, while Sect. 3 relates
backward differential equivalence to centrality measures. Section 4, instead, fea-
tures an extensive experimental evaluation on real-world networks. Section 5
concludes the paper.

2 Background

Notation. Let V be a finite index set and let RV denote the set of functions from
V to R. Elements of RV and R

V×V are called vectors and matrices, respectively.
The set of variables is denoted by {xi | i ∈ V}. A partition of V is denoted by
H, its blocks by H. Partition H′ refines partition H if for every H ′ ∈ H′ there
exists some H ∈ H such that H ′ ⊆ H.

2.1 Centrality Measures

Given a directed graph G = (V, E), the adjacency matrix A ∈ R
V×V is obtained

by setting Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 if (i, j) /∈ E. Note that we
can cover undirected graphs by ensuring that (i, j) ∈ E if and only if (j, i) ∈
E. Our discussion on centrality measures follows standard literature, see for
instance [32].

Eigenvector Centrality. For each node i ∈ V, the corresponding eigenvector
centrality x∗

i is defined as the average of eigenvector centralities of all nodes
reachable from i, i.e., x∗

i = 1
λ

∑
j∈V Ai,jxj , where 1

λ is some positive constant.
More formally, one requires the following.

Definition 1. The centrality measure of an adjacency matrix A is well-defined
if there exists a unique λ∗ > 0 and a unique non-negative x∗ ∈ R

V such that
Ax∗ = λ∗x∗ and ‖x∗‖ = 1.

The centrality eigenvector is often computed by the power iteration method,
introduced next.

Definition 2. Fix a graph G = (V, E) and let A ∈ R
V×V denote the underlying

adjacency matrix. Then, given some nonzero vector x0 ∈ R
V , the power iteration

sequence (xk)k is given by xk+1 = Axk/‖xk‖ for all k ≥ 0.

The power iteration method is known to converge under the following common
assumption.

(H) Assume that A has a unique largest eigenvalue λ∗ that has a unique non-
negative eigenvector x∗ with ‖x∗‖ = 1.

Armed with (H), the following can be proven if x0 = 1, where 1i := 1 for all
i ∈ V.
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Theorem 1. Under the assumption of (H), the centrality eigenvector is well-
defined and the power iteration sequence (xk)k converges, as k → ∞, to the
centrality eigenvector when x0

i = 1.

Proof. Thanks to (H), the power iteration method is known to converge to x∗

whenever 〈x∗, x0〉 
= 0, see [18]. Since x∗ is a non-negative eigenvector, we can
pick i∗ ∈ H∗ such that x∗

i∗ > 0. With this, it holds that 〈x∗, x0〉 =
∑

i x∗
i ≥

x∗
i∗ > 0 because x∗ is non-negative.

Katz Centrality. Eigenvector centrality may not be well-defined. Katz centrality
addresses this problem by adding a predefined value β > 0 to each centrality.
More formally, Katz centrality is given by x∗

i = α
∑

j∈V Ai,jxj +β, where α > 0
is some constant. Ultimately, this can be rewritten to x∗ = (I − αA)−11, where
β can be set to 1 without loss of generality.

Similarly to eigenvector centrality, Katz centrality is not obtained by solving
the linear system x∗ = (I − αA)−11 directly. Instead, the following iterative
computation is used.

Theorem 2. Assume that ‖αA‖ < 1. Moreover, set x0 := 1 and xk+1 :=
αAxk +1 for all k ≥ 0. Then, (xk)k converges to the Katz centrality as k → ∞.

PageRank Centrality. A potential disadvantage of Katz centrality and eigen-
vector centrality is that nodes with high centrality propagate their authority to
their peers. PageRank centrality accounts for this fact by dividing the propa-
gated centrality by the number of outgoing edges of a node. More formally, the
PageRank centrality is given by x∗

i = α
∑

j∈V Ai,j
xj

dj
+ β, where dj denotes the

degree of node j ∈ V. By removing nodes which have no outgoing edges, we may
assume without loss of generality that dj ≥ 1 for all j ∈ V. With this, it holds
that x∗ = (I −αD−1A)−11, where D is the degree matrix, i.e., Di,j = di if i = j
and Di,j = 0 otherwise.

The following holds true.

Theorem 3. Define x0 := 1 and xk+1 := αD−1Axk +1 for all k ≥ 0 and some
0 < α < 1. Then, (xk)k converges to the Pagerank centrality as k → ∞.

It is known that D−1A defines a discrete-time Markov chain with
‖D−1A‖∞ = 1. The coefficient α is commonly known as damping factor and
is usually set to 0.85.

2.2 Backward Differential Equivalence

We next provide a brief introduction to backward differential equivalence (BDE),
a model reduction technique for dynamical systems [9,14]. For the benefit of
presentation we restrict ourselves to linear dynamical systems in discrete time,
even though the actual theory is stated for nonlinear continuous time dynamical
systems.
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Definition 3. Fix the discrete time system xk+1 = Axk with initial condition
x(0) and a partition H of the index set V.
– Let UH ⊆ R

V be the linear subspace of vectors that are uniform on H, that
is, UH = {x ∈ R

V | xi = xj ,H ∈ H, i, j ∈ H}.
– A partition H is BDE if UH is an invariant space of A, i.e., if A(UH) ⊆ UH.

Example 1. Let us consider the dynamical system xk+1 = Axk given by

xk+1
1 = 0.5xk

2 + 0.5xk
3 (1)

xk+1
2 = 0.5xk

2 + 0.5xk
1

xk+1
3 = 0.5xk

3 + 0.5xk
1

The matrix underlying the above dynamical system is given by A = ((0.0, 0.5,
0.5), (0.5, 0.5, 0.0), (0.5, 0.0, 0.5))T , where T denotes the transpose of a vector. It
is not hard to see that H = {{1}, {2, 3}} is a BDE of xk+1 = Axk. ♦

We next present BDE reduction in the context of linear dynamical systems.

Definition 4. Assume that H = {H1, . . . , Hm} is a BDE partition of the
dynamical system xk+1 = Axk.

– For any H ∈ H, fix some representative iH ∈ H of H and let V̂ = {iH | H ∈
H} denotes the set of representatives underlying H.

– For any set I ⊆ V, let 1I ∈ R
V be such that 1I(i) = 1 if i ∈ I and 1I(i) = 0

otherwise.
– The reduced dynamical system x̂k+1 = Âx̂k with x̂ ∈ R

V̂ arises from A in two
steps. First, eliminate the equations of non-representative variables. After-
wards, replace any xj by its representative, i.e., replace any xj with x̂iH

when j ∈ H and H ∈ H. In matrix language, this corresponds to Â =
(1{iH1}, . . . ,1{iHm})T · A · (1H1 , . . . ,1Hm

).

Example 2. Let us reduce (1) in the case when iH1 = 1 and iH2 = 2. We first
remove the equation of x3 because H2 = {2, 3}. Afterwards, we replace any x1

with x̂1, any x2 with x̂2 and any x3 with x̂2. From this we obtain x̂k+1
1 = x̂2 and

x̂k+1
2 = 0.5x̂1 + 0.5x̂2. It is not hard to see that this corresponds to x̂k+1 = Âx̂k

when Â is computed using the algebraic expression from Definition 4:

Â =
(

1 0 0
0 1 0

)
⎛

⎝
0.0 0.5 0.5
0.5 0.5 0.0
0.5 0.0 0.5

⎞

⎠

⎛

⎝
1 0
0 1
0 1

⎞

⎠ =
(

0.0 1.0
0.5 0.5

)

♦

The relation between the original and the reduced dynamical system is as
follows [12].
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Theorem 4. The following holds true.

– A partition H is a BDE of xk+1 = Axk if and only if x0 ∈ UH implies
xk ∈ UH for all k ≥ 0.

– Let H be a BDE of xk+1 = Axk. Then, if x̂0
iH

= x0
iH

for all H ∈ H and x̂

denotes the solution of the BDE reduction x̂k+1 = Âx̂k subject to x̂0, it holds
that x̂k

iH
= xk

iH
for all k ≥ 0 and H ∈ H.

Theorem 4 ensures that the original dynamical solution can be obtained by solv-
ing the reduced dynamical system whenever the initial condition x0 is uniform
on H, i.e., when x0 ∈ UH.

Proof. See [9,37, Theorem 3].

Example 3. If x0 = (0.2, 0.4, 0.4), then the solution of (1) satisfies xk
2 = xk

3 for
all k ≥ 0. Moreover, if x̂0

1 = 0.2, x̂0
2 = 0.4, x̂k+1

1 = x̂k
2 and x̂k+1

2 = 0.5x̂k
1 + 0.5x̂k

2 ,
it holds that x̂k

1 = xk
1 and x̂k

2 = xk
2 = xk

3 for all k ≥ 0. ♦

The following result ensures that there exists a unique coarsest BDE partition
H that yields the best possible reduction.

Proposition 1. For a given dynamical system xk+1 = Axk, there exists a coars-
est BDE partition H. That is, for any BDE partition H′ of xk+1 = Axk, it holds
that H′ refines H.

Proof. See [9, Theorem 3].

The coarsest BDE partition can be computed efficiently [9,14] as stated next.

Theorem 5. There exists a partition refinement algorithm that needs O(|A| ·
log(|V|)) steps to compute the coarsest BDE partition of xk+1 = Axk, where
A ∈ R

V×V and |A| denotes the number of non-zero entries in A.

Proof. See [9, Theorem 3].

Remark 1. The section discusses BDE in the context of linear dynamical sys-
tems. We wish to point out, however, that [12] captures nonlinear dynamical
systems of the form xk+1 = F (xk). In particular, the partition refinement algo-
rithm from [14] generalizes to the case when F is given in terms of multi-variate
polynomials and enjoys a polynomial time and space complexity in the number
of monomials present in F .

2.3 Stochastic Lumpability

We next provide an account on lumpability of Markov chains [7] and relate it to
BDE.
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Definition 5. Given a set of nodes V, we define the following.

– A transition matrix P ∈ R
V×V satisfies pi,j ≥ 0 and

∑
k pi,k = 1 for all

i, j ∈ V.
– For an initial probability distribution π0 on V, the transient probabilities of

the discrete time Markov chain (DTMC) induced by P are given by (πk+1)T =
(πk)T P .

– A partition H is an exactly lumpable partition of P when, for all k > 0,
πk ∈ UH for all initial probability distributions π0 ∈ UH and t ≥ 0.

The entry pi,j corresponds to the transition probability from state i into state j.
The original matrix from Example 2 is an example of a transition matrix.

The next result is well-known in the area of Markov chains [7].

Theorem 6. A partition H is an exactly lumpable partition of a transition
matrix P if and only if, for any H,H ′ ∈ H and i, j ∈ H it holds that∑

k∈H′ Pk,i =
∑

k∈H′ Pk,j.

Theorem 6 states essentially that H is an exactly lumpable partition whenever
the cumulative transition probabilities from block H ′ into any two nodes of block
H coincide.

Similarly to BDE, it is possible to define a reduced transition matrix P̂ which
underlies an exactly lumpable partition H of P .

Theorem 7. For an exactly lumpable partition H of P , set P̂iH ,iH′ :=
∑

k∈H Pk,iH′ for all H,H ′ ∈ H. Then, P̂ defines a lumped DTMC with states
{iH | H ∈ H} whose transient probabilities π̂ satisfy π̂k

iH
= πk

iH
for all H ∈ H

and k ≥ 0 if the initial probability distribution obeys π0 ∈ UH.

It can be proven that BDE coincides with exact lumpability on the domain of
DTMCs.

Theorem 8. Let P be a transition matrix and H a partition of V. Then, H is
an exactly lumpable partition of P if and only if H is a BDE of PT .

Proof. In [12] it has been shown that this is true for continuous time Markov
chains (CTMCs). Any CTMC can be turned into a DTMC (and vice versa) while
preserving many important properties, including lumpability [7]. This shows the
statement.

Remark 2. The transpose in Theorem 8 is due to the fact that probabilities are
commonly denoted as row vectors instead of column vectors. Because of this, the
dynamical system of π is given by (πk+1)T = (πk)T P , while that of x is given
by xk+1 = Axk.

There are established algorithms for the efficient computation of the coars-
est exactly lumpable partition of a Markov chain [16,38]. In fact, the partition
refinement algorithm from [9,14] can be seen as an extension of [16,38] to general
dynamical systems. While the specialized algorithm [16,22] has been reported
to outperform the more general algorithm [9], the complexity bounds of both
algorithms coincide for Markov chains [9].
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2.4 Exact Role Assignment

We start by giving the definition of exact role assignment [26,40].

Definition 6. Given a symmetric adjacency matrix A ∈ {0, 1}V×V and i ∈ V,
let N+(i) denote the out-neighbors of i, that is N+(i) := {j ∈ V | (i, j) ∈ A}. A
surjective mapping r : V → V̂ with V̂ ⊆ V is an exact role assignment if, for all
i, j ∈ V, r(i) = r(j) implies r(N+(i)) = r(N+(j)).

The following result allows one to express exact role assignment as a bisimulation.

Theorem 9. Given a symmetric adjacency matrix A ∈ {0, 1}V×V and a parti-
tion H of V, set r(i) = iH when i ∈ H for H ∈ H.

– r is an exact role assignment if and only if for all H,H ′ ∈ H and i, j ∈ H, it
holds that

∑
k∈H′ Ai,k =

∑
k∈H′ Aj,k.

– It holds that
∑

k∈H′ Ai,k =
∑

k∈H′ Aj,k if and only if
∑

k∈H′ Ak,i =∑
k∈H′ Ak,j is valid.

Remark 3. The sum criterion of the exact role assignment resembles the exact
lumpability from Theorem 6 because P = AT , see Theorem 8 and Remark 2.
Note, however, that A is not a stochastic matrix, as required by exact
lumpability.

3 Centrality and Model Reduction

Clustering techniques such as minimal cut [1], normalized cut [35] or k-means [39]
clustering have been studied substantially in the past. In [30] normalized cut has
been related to the eigenvector corresponding to the second largest eigenvalue
of the transition matrix P of the normalized Laplace matrix.

The following results shows that BDE is a natural generalization of exact
role assignment (and exact lumpability, as has been already observed in [12]).

Theorem 10. Let A ∈ R
V×V (in particular, A may have negative entries) and

H a partition of V.
(i) H is a BDE of xk+1 = Axk if and only if, for all H,H ′ ∈ H and i, j ∈ H,

it holds that
∑

k∈H′ Ai,k =
∑

k∈H′ Aj,k.
(ii) In the case when A is an adjacency matrix of an undirected graph, H is a

BDE of xk+1 = Axk if and only if, for all H,H ′ ∈ H and i, j ∈ H, it holds
that

∑
k∈H′ Ai,k =

∑
k∈H′ Aj,k and

∑
k∈H′ Ak,i =

∑
k∈H′ Ak,j.

(iii) In the case when A is an adjacency matrix of an undirected graph, H is a
BDE of xk+1 = Axk if and only if H is an exact role assignment.

Proof. Since H is a BDE of A, it holds that A · 1H′ ∈ UH which in turn implies
1{i} ·A ·1H′ = 1{j} ·A ·1H′ . This yields the first claim. The second claim follows
trivially thanks to A = AT . The third claim is a direct consequence of Theorem 9
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Additionally to the graph theoretical characterization of BDE from
Theorem 10, we next show that any two nodes of a BDE block enjoy identi-
cal Katz, pagerank and eigenvector centrality.

Definition 7. Fix a non-negative matrix A and assume that the diagonal of the
degree matrix D, given by dii =

∑
j �=i Ai,j, is positive.

– Let H be a BDE of xk+1 = Axk and let Â denote the corresponding BDE
reduction. Then, the reduced power iteration sequence (x̂k)k is given by x̂0 :=
1̂ and x̂k+1 = Âx̂k for all k ≥ 0, where 1̂iH = 1 for all H ∈ H.

– Let H be a BDE of xk+1 = Axk and let Â denote the corresponding BDE
reduction. Then, for any 0 < α < ‖A‖, the reduced Katz sequence is given by
x̂0 := 1̂ and x̂k+1 := αÂx̂k + 1̂ for all k ≥ 0.

– Let H be a BDE of xk+1 = D−1Axk and let Â denote the corresponding BDE
reduction. Then, for any 0 < α < 1, the reduced Pagerank sequence is given
by x̂0 := 1̂ and x̂k+1 := αÂx̂k + 1̂ for all k ≥ 0.

Similarly to the case of ODE systems, the original sequences can be obtained
from the reduced ones.

Theorem 11. Fix a non-negative matrix A, assume that the diagonal of the
degree matrix D is positive and let H be a BDE of xk+1 = Axk.

(i) H is also a BDE of xk+1 = D−1Axk, where D denotes the degree matrix
of A.

(ii) For any centrality measure from Definition 7, x∗ ∈ UH and the corresponding
reduced sequence (x̂k)k converges to x̂∗ ∈ R

V̂ , where x̂∗
iH

= x∗
iH

for all H ∈ H
(in the case of eigenvector centrality, we additionally require (H)).

Proof. Note that Theorem 10 implies
∑

k∈H′ Ai,k =
∑

k∈H′ Aj,k for all H,H ′ ∈
H and i, j ∈ H. This yields di =

∑
H′∈H

∑
k∈H′ Ai,k =

∑
H′∈H

∑
k∈H′ Aj,k =

dj . With this, we infer that H is a BDE of xk+1 = D−1Axk. In the following
we prove the statements concerning reduced sequences. Eigenvector centrality:
The fact that H is a BDE of xk+1 = Axk ensures that A(UH) ⊆ UH. Hence,
the power iteration sequence remains in UH and the statement follows from
Theorem 1. Katz centrality: Similarly to eigenvector centrality, we know that
A(UH) ⊆ UH. Since 1 ∈ UH, we obtain xk+1 = αAxk + 1 ∈ UH whenever
xk ∈ UH and Theorem 2 yields the claim. Pagerank centrality: Since H is a BDE
of xk+1 = D−1Axk, we conclude that D−1A(UH) ⊆ UH. Arguing as in the case
of Katz centrality and invoking Theorem 3 instead of Theorem 2, we obtain the
claim.

Theorem 11 states that members of the same group have the same centrality
measure regardless whether Katz, pagerank or eigenvector centrality is used. The
computation of the centrality measures via the reduced sequence is outlined in
Algorithm 1. Note also that (i) implies that the coarsest BDE H of A is the
coarsest (ordinarily) lumpable partition of the transition matrix D−1A, see [7].
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Require: Non-negative matrix A, numerical threshold > 0.
procedure COMPUTECENTRALITYVIAREDSEQUENCE(A)

η ← ∞
x̂old ←
Â ← ComputeCoarsestReduction(A) See Theorem 5
while η ≥ do

x̂ ← ComputeNextSequenceElement(Â, x̂old)
η x̂ − x̂old

x̂old ← x̂
end while
x∗ ← Expand(x̂) ∗

i := x̂∗
iH

for all H ∈ H, i ∈ H
return x∗

end procedure

Fig. 1. Centrality computation via reduced sequence.

Hence, it is in principle possible to apply the specialized partition refinement
algorithms for Markov chains [16,22,38] instead of the one for general dynamical
systems [9]. We wish to stress, however, that the proof of this fact requires the
notion of BDE and Theorem 11.

Theorem 11 yields the following.

Corollary 1. Exact role assignment yields Katz, pagerank and eigenvector
centrality.

As pointed out earlier, eigenvectors of adjacency matrices are crucial for
clustering. The eigenvectors of the BDE reduction Â will provide only a proper
subset of all eigenvectors in general. In particular, it is not clear how to check
whether the subset contains the k largest eigenvector without considering the
original matrix.

We wish to stress the following.

Remark 4. While it is known that exact role assignment preserves certain alge-
braic properties such as eigenvalues [26], we are not aware of any result that
would establish that exact role assignment preserves Katz, pagerank and eigen-
vector centrality.

4 Experimental Results

In this section we present the results of our experimental evaluation on some
real world case studies [15,29]. We measure the performance of our approach in
terms of model reduction ratio.

Implementation and Environment. The input is the adjacency matrix A of a
graph G = (V, E). In Theorem 5 an efficient algorithm is presented to compute
the coarsest BDE, such algorithm is implemented in the tool ERODE (Evalua-
tion and Reduction of ODEs) [13]. The experimental evaluation hereby presented
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has been performed using a Matlab prototype linked to ERODE which was used
to compute the reduced models. We present results on directed and undirected
graphs. All the experiments ran on a machine with an Intel Xeon E7-4830v4,
with a 64-bits architecture at 2 GHz, 14 cores, 112 CPUs and 500 GB of RAM.

The Instances. In order to provide some real-world case studies we ran our pro-
posed reduction technique on some networks obtained from the SNAP (Stanford
Large Network Dataset Collection) and the Florida Sparse Matrix collection
repositories.

We first present the undirected graphs instances:

– GD06-Theory : this is a hierarchical network with 3 levels, proposed in a
graph design contest as an “artificially symmetric” one. The main node is
connected to 9 children nodes, each of which is connected to 9 children nodes.
With this design there are exactly 3 classes if we partition with respect to
the centrality measures, because all of the grandchildren will have the same
score (the lowest). Intuitively, this shows that a natural interpretation of the
blocks is obtained from our proposed methodology. We remark that, although
it is hard to find real-world examples which are exactly symmetric like this
particular instance, Table 2 shows that we achieve good reductions on real-
world networks.

– Yeast protein interaction network : this network was developed by Barabasi
et al. [21] in order to study the interaction between proteins in yeast.

– Collaboration networks: we have four different collaboration networks that
belong in this category. In our results we present a collaboration network in
the field of general relativity research from Arxiv [28], the Erdős collabora-
tion network [4] and two different co-authorship networks from Citeseer. It
has been shown in [3,34] that this type of collaboration networks obtained
from real-world problems tend to have an hierarchical structure; this confirms
that we obtain good reductions with our notion of reduction on hierarchical
networks.

– Autonomous Systems: these networks are obtained from routing networks,
these networks reduce well and include one autonomous system from the
SNAP repository which contains 733 different daily snapshots of the same
graph [27]. In Table 2 we present only one of those instances as they have a
similar rate of reduction to one another. This is expected as this graph is a
stable network (i.e., there is no drastic change in the network from one day to
another). This same concept applies to the Oregon routing network instance.

– Enron email network : this is a classic benchmark of a network obtained
by tracking the email interactions between the members of the Enron
Corporation [23].

– YouTube: this is a network of interactions between YouTube channels [31].

The aforementioned case studies are the subset of the datasets on which our
technique proved to be the most efficient on in terms of reduction. We present
the results with respect to the reduction ratio. The reduction ratio is defined as
the ratio of the size of the reduced model and the size of the original model. The
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Table 1. Case studies results

Undirected Graphs

Instance Original size Reduced size Reduction ratio

GD06-Theory 102 3 2.94%

Yeast protein interaction network 1871 1091 58.31%

Collaborations in General Relativity 5243 3394 64.73%

Erdős collaboration network 5535 1902 34.36%

Autonomous system (SNAP) 6475 3691 57.00%

Oregon routing network 10671 5484 51.39%

Autonomous system (Florida) 22964 11935 51.97%

Enron email network 36693 20418 55.65%

Dictionary 39328 26994 68.64%

Caida routers 192245 150463 78.27%

Citeseer coauthorship network 227321 155593 68.45%

Citeseer copaper network 434103 150316 34.63%

YouTube 1134891 684011 60.27%

results are presented in Table 2. Each row represents an instance from the list
presented in the last paragraph. We show its original size, its reduced size and
the reduction ratio.

We obtain considerable reductions for networks of different sizes. We wish to
stress again that the reduction is exact, meaning that two nodes are in the same
block if and only if they exactly have the same eigenvector centrality score. This
is the reason behind the fact that the best reduction is obtained from the instance
GD-06 : as explained earlier, this instance was built artificially and its property of
having a symmetric defined three-level hierarchical structure induces a partition
which is composed by three blocks, one per level. In real world networks it is rare
that two or more nodes share exactly the same centrality score because of the
fact that real world networks do not have a particularly symmetrical hierarchical
structure due to the inhomogeneous nature of interactions between peers. Despite
of this, we are able to produce good reductions, particularly in networks that
arise from academic collaborations. The intuitive reason is that these types of
collaboration tend to have a more regular and symmetric hierarchical structure;
therefore the chances of two nodes having exactly the same eigenvector centrality
scores are higher.
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Table 2. Case studies results

Directed Graphs

Instance Original size Reduced size Reduction ratio

Glossary 73 41 56.16%

Graph Design ’96 112 6 5.36%

PhDs in computer science 1883 225 11.95%

Kohonen citation network 4471 766 17.13%

EPA web pages 4733 598 12.63%

Gnutella p2p network 6302 2208 35.04%

Wikipedia who-votes-on-whom 8299 4216 50.80%

EVA corporate inter-relationships 8498 215 2.53%

California web search 9665 1817 18.80%

Stanford CS web 9915 3657 36.88%

Gnutella p2p network (I) 10880 4340 39.89%

Gnutella p2p network (II) 26519 6741 25.42%

Enron email traffic 69245 7437 10.74%

Epinions trust network 75889 41055 54.10%

Slashdot social network 82169 57561 70.05%

Stanford web graph 281905 129335 45.88%

CNR web crawl 325558 85419 26.24%

Notre Dame web graph 325730 49952 15.34%

Berkely.edu + stanford.edu web 685252 292492 42.68%

Flickr web crawl 820879 370145 45.09%

.eu domain web crawl 862665 341687 39.60%

Google web graph 916429 354624 38.70%

.in domain web crawl 1382909 333283 24.10%

Wikipedia pages 1634990 1116472 68.29%

Similarly, we provide a set of directed graphs case studies:

– Academic instances: PhD in Computer Science and Kohonen citation net-
work arise from academic real-world examples. The first instance describes a
network where an edge from node i to node j means that i is a PhD student
of j while the latter describes a network of citations.

– Web infrastructures: different instances of web infrastructure are presented.
EPA web pages, Gnutella p2p network, Stanford Computer Science, Stanford
web graph, CNR web, Notre Dame web, Berkley and Stanford domains, Euro-
pean domain web, Google web, Indian domain web, Flickr web and Wikipedia
all fall in this category. The main underlying theme of all these instances is
that are generated from world wide web problems. Nodes represent web pages
while directed edges from one node to another are hyperlinks. Some instances
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appear more than once in Table 2 (for example, Gnutella p2p network appears
multiple times), as we present the results on the same network infrastructure
on different days. Differently from the undirected instances, these directed
instances are not stable and they present differences in size and structure on
different days.

– Enron: differently from the instance provided in its undirected version, here
we link together two nodes with the meaning of i has sent a mail to j.

– Social Networks: we present some benchmarks on trust networks and social
networks. Such instances are the following: Wikipedia who-votes-on-whom,
Epinions trust network and Slashdot social network. The first is a network
in which an edge has a source node i and a target node j if i voted for
j. The Epinions trust network describes the relationship between users of
epinions.com. This social network is a general consumer review website where
members can decide whether to trust the reviews of other members. The
trust relationships form the web of trust which is then combined with review
ratings to determine which reviews are shown to a user. Last, slashdot.org is
a technology-related news website that features user-submitted and editor-
evaluated news. In 2002 Slashdot introduced the Slashdot Zoo which allowed
users to tag each other as friend or foes. The presented instance captures
those relationships obtained in February 2009.

5 Conclusions and Future Work

In this paper we have related network centrality to differential equivalence,
a model reduction technique that generalizes stochastic lumpability. We have
shown that differential equivalence coincides with the exact role assignment on
undirected graphs and that differential equivalent nodes have the same Katz,
pagerank and eigenvector centrality. The relevance of the result was demon-
strated by efficiently computing substantial reductions of published real-world
networks, including protein interaction networks, scientific collaboration net-
works, routing networks, email networks and networks capturing YouTube.

Future work will focus on the development of approximate notions of differ-
ential equivalence and the study of already established notions of ε-lumpability
and near-lumpability of Markov chains. Thanks to the theory established in this
paper, this will naturally lead to approximate exact role assignments. The need
for an approximate version of exact role assignments is motivated by the fact
that nodes on the “periphery” of a network are often distinguished by differential
equivalence while featuring almost identical centrality measures.
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Abstract. By restructuring and reconfiguring itself at run-time, a col-
lective adaptive system (CAS) is able to fulfill its requirements under
uncertain, ever-changing environmental conditions. Indeed, this process
of self-organization (SO) is of utmost importance for the ability of the
CAS to perform. However, it is hard to design high-performing SO mech-
anisms, because the environmental conditions are partially unpredictable
at design time. Thus, a crucial aid for the development of SO mechanisms
is a tool set enabling performance evaluations at design time in order to
select the best-fitting mechanism and parametrize it. We present a met-
ric for measuring the performance of an SO mechanism as well as a
framework that enables evaluation of this metric. The proposed metric
is evaluated for different kinds of SO mechanisms in two case studies: a
smart energy management system and a self-organizing production cell.

1 Performance of Self-Organization Mechanisms

The performance of software denotes its capabilities in its execution. These capa-
bilities might be determined either by a theoretical analysis or by an experimen-
tal evaluation. In general, two measures are of interest: the solution quality and
the time taken to achieve the solution [11]. Whereas theoretical analysis are based
on abstraction, theorems, and proofs in order to find an asymptotic bound on
the dominant operation under a worst-case or average-case mode, experimen-
tal evaluation relies on execution, logging, and measuring according to a set of
metrics. The knowledge gained from the performance analysis, theoretical as
well as experimental, is used for engineering efficient and effective software. The
gain for the engineers highly depends on the quality of the analysis.. However,
achieving a high quality for the analysis is a challenging task [11]. Theoretical
as well as experimental analysis are foremost challenged when the system under
evaluation is indeterministic, highly parallel, interactive, or highly dependent on
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unforeseeable run-time conditions. All these aspects are characteristics of col-
lective adaptive systems (CAS) [4]. A CAS uses its abilities to reconfigure and
restructure itself at run-time in order to cope with an ever-changing environ-
ment. Self-organization (SO) mechanisms are used to fulfill this reconfiguration
and restructuring task. An important aspect, that is exploited by most of the SO
mechanisms (cf. [1]), is that mostly that process can be carried out locally, i.e.,
in a small part of the overall system. This makes the SO mechanisms scalable
and effective which has a great impact on the overall system performance. How-
ever, it is far from obvious how to design and implement the best performing
SO mechanism for a certain system, because SO mechanisms have to operate
under ever-changing environmental conditions that are partially unpredictable
at design time. This demands a powerful performance analysis to support this
task. In our approach, we face the challenge by focusing on an experimental
analysis, following van Dyke Parunak and Brueckner [15], who argue that there
is a need of experimental evaluation of SO mechanisms, because the concepts of
theoretical analysis are stretched to their limits given that the majority of SO
systems are formally undecidable.

This paper contains the following contributions for measuring and evaluating
the performance of SO mechanisms within CAS: (1) A performance metric for
distributed SO mechanisms; (2) a simulation concept for measuring performance;
(3) a framework for performance evaluation incorporating these two concepts;
(4) an intensive evaluation of different mechanisms within different systems.

The rest of the paper is structured as follows: We introduce our two case
studies in Sect. 2. The performance metrics of SO mechanisms are derived in
Sect. 3. Section 4 describes our evaluation framework that is used to evaluate the
metrics. Within the framework we evaluate the two cases studies according to
the introduced metrics in Sect. 5. Section 6 places the contribution of this paper
into the related work and Sect. 7 finally concludes the paper.

2 Case Studies

We use two different case studies with different SO mechanisms throughout this
paper as well as in our evaluation. First, a self-organizing production cell and
second, a self-organizing smart grid. Both are categorized as CAS, according
to [4]. Our first case study represents the class of systems with discrete SO
mechanisms and the second case study the class of continuous SO mechanisms.
Discrete SO mechanisms are working on a discrete input space, e.g., a tool that
breaks and forces a reconfiguration, and continuous SO mechanisms are working
on a continuous input space, e.g., a quality rating index where the system’s
configuration depends on.

2.1 Self-Organizing Production Cell

Future production scenarios demand for much more flexibility [12] than today’s
shop floor design to cope with the trend towards small series production, individ-
ualized products and the reuse of production stations for different tasks. These
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future CAS will integrate SO mechanisms to resolve the tasks of decentralized
decision making, to optimize the systems structure, and to autonomously react
to component failures at runtime increasing the system’s robustness. We envi-
sion self-organizing production cells, where the production stations are modern
robots equipped with toolboxes and the ability to change their tools whenever
necessary (self-awareness). They are connected via mobile carts that are able to
carry workpieces and to reach robots in any order. Thus, the production cell is
able to fulfill any task which corresponds to tools (capabilities) available in the
cell. This is possible due to the SO mechanisms that reconfigures the carts and
robots in a way that the tools are applied to the workpieces in the correct order.

2.2 Self-Organizing Virtual Power Plants in Smart Grids

The wide-spread installation of weather-dependent power plants as well as the
bunch of new consumer types like electric vehicles put a lot of strain on power
grids. To save expenses, gain more flexibility, and deal with uncertainties, future
autonomous power management systems have to take advantage of the full
potential of dispatchable prosumers1 by incorporating them into the scheduling
scheme. Further, aleatoric uncertainties have to be anticipated when creating
schedules and compensated for locally to prevent their propagation through the
system. To meet the challenges of future power management systems, Steghöfer
et al. [18] presented the concept of Autonomous Virtual Power Plants (AVPPs)
which represent self-organizing groups of two or more power plants of various
types that form a CAS. The organizational structure represents a partitioning,
i.e., every power plant is a member of exactly one AVPP, which is established
and maintained by a (partitioning-based) SO algorithm. AVPPs autonomously
adapt their structure to changing internal or environmental conditions, they are
able to live up to the responsibility of maintaining an organizational structure
enabling the system to hold the balance between energy supply and demand.
In particular, if an AVPP repeatedly cannot satisfy its assigned fraction of the
overall demand or compensate for its local uncertainties, it triggers a reconfigu-
ration of the partitioning. To cope with the vast number of dispatchable power
plants, the concept of AVPPs proposes a scalable, hierarchical structure in which
AVPPs act as intermediaries. This system decomposition reduces the number of
dispatchable power plants each AVPP controls resulting in shorter scheduling
times for each AVPP and the overall system.

3 Performance Metric for Distributed SO Mechanisms

In our previous work [6], we evaluated in-depth performance metrics given by the
literature regarding their ability to cope with SO algorithms and mechanisms.
For this purpose, we implemented the six most promising metrics and applied
them to an SO mechanism. The results was, that none of the investigated metrics

1 We use the term “prosumer” to refer to producers as well as consumers.
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were fully capable to judge the performance of an SO mechanism. Thus, we
derived a set of requirements that metrics have to fulfill [6]:

Req. 1: The locality of SO mechanisms has to be taken into account and the
aspects of time and solution quality have to be evaluated within the subsystems
(changing over run-time) that are differently affected by the SO mechanisms,
e.g., one subsystem can be reconfigured while another one keeps on working.
Furthermore, it is important to be able to assess the performance of the entire
system based on the performance of the subsystems.

Req. 2: Since SO mechanisms have control over the system’s structure, their
performance strongly influences those of the entire system. So the overhead of
a reconfiguration can be worthwhile if it sufficiently improves the behavior of
the controlled system. Consequently, a metric has to take the benefit of the
reconfiguration into account.

Req. 3: The interpretation of a value provided by a metric strongly depends on
the current state of the system. In self-organizing systems, the possible values
for the solution quality can change over time. For instance, a solution quality
of 0.7 would be optimal if possible values were defined by the interval [0, 0.7]
but quite bad if they stem from the interval [0, 200]; the same applies to the
parameter time. Consequently, there is a need for dynamic boundaries for the
evaluation—a result from the ever-changing environment of SO mechanisms.

We used these requirements in order to form a metric that is able to cope
with decentralized SO mechanisms, is defined locally, respects the benefit of a
reconfiguration, and handles dynamic boundaries. The performance of a system
is composed of two parts: time performance and quality performance. Thus the
performance p of a system sys is defined by the following metric:

p(sys) = wt · tp(sys) + wq · qp(sys), (1)

where wt +wq = 1 has to be fulfilled. The factors wt and wq enable to weight the
importance of the time quality tp(sys) and the quality performance qp(sys). The
codomain of the metric is [0, 1], where a greater value means a better performance
of SO mechanism. The system sys consists of agents (resp. components) a ∈ sys
which are controlled by the SO mechanism that is analyzed in r ∈ R evaluation
runs.

3.1 Time Performance of SO Mechanisms

Evaluating the time performance tp(sys) requires a clear definition of what the
time performance of an SO mechanism is. For classical analysis of time per-
formance the answer is: the duration from execution to the appearance of the
output. [11] Applying that approach to SO mechanisms is not sufficient, since we
have to deal with two aspects (1) SO algorithms are mostly anytime algorithms
that are terminated after a certain time and (2) the performance is also depicted
by the time to a next reconfiguration. This is due to the fact, that the time per-
formance of the controlled system is effected by the SO mechanism as it might
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be slowed down or stopped, that effect needs to be respected, too. Consequently,
we are not directly interested in the time to a solution we are interested in its
time impact, i.e., the time used for SO compared to the time where the system
runs without disturbances. Due to the characteristics of SO mechanisms there is
no single point where the time could be measured, because SO mechanisms solve
problems in a distributed fashion. Thus, the calculation is for instance achieved
by building a coalition of components that are capable to solve the problem
without the rest of the system. This is the case in the production cell case study
where a group of robots is able to find a new configuration if a capability, e.g.,
a drill, is broken. The measurement is consequently no central affair. The time
of reconfiguration, i.e, the time involved in finding a new system configuration,
needs to be measured for each agent a ∈ sys as follows:

tp(a, r) = 1 −
∑

s∈r reconfigurationTime(r, a, s)
duration(r)

, (2)

where the time performance is measured by calculating the ratio of the time
needed for reconfiguration for a single agent a in a run r consisting of s steps,
given by reconfigurationTime(r, a, s) in unit of time, to the duration of the run
r where the measurement has taken place, supplied by duration(r) in the same
unit of time. This is different in two ways from evaluating classical mechanisms
or algorithms, like in [11]: the measurement is a time ratio and is measured
locally. The metric value of Eq. (2) is prorated with the resulting values of all
agents a ∈ sys in order to gain the time performance of the system by computing
the average of all values:

tp(r, sys) = avgsys
a tp(a, r) (3)

The concrete average function influences the result and has to be chosen with
care. The same average function is applied to compute the time performance
of the system tp(sys) by prorating the results of all evaluation runs r ∈ R as
follows:

tp(sys) = avgR
r tp(r, sys) (4)

The codomain of tp(sys) as well as tp(r, sys) and tp(a, r) is [0, 1], and a value
close to 1 indicates a better achieved time performance.

3.2 Quality Performance of SO Mechanisms

The quality performance qp(sys) determines how good the particular solutions
of an SO mechanism have been. However, judging the quality of a solution is
highly dependent on the particular SO mechanism as well as the system and its
environment. This is due to the fact that the quality is measured according to the
influence of the SO mechanism on the controlled system. The SO mechanism in
the production cell case study controls which robot and which cart has to carry
out which task. It consequently influences the ability of the system to produce
workpieces and effects the overall output resp. throughput. The quality of the SO
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mechanism is determined by the throughput, the number of processing actions,
that the system is able to apply within an evaluation run. This value can be
measured locally for each robot, that is processing a workpiece, and then aggre-
gated for the entire system. The SO mechanism in the energy grid case study
clusters resp. anti-clusters the power plants into virtual power plants. The opti-
mality of this decision could be measured by the mix value of the virtual power
plants. The solution quality is evaluated by measuring the domain-dependent
quality function quality(r, a) for an evaluation run r of each agent a ∈ sys. As
the measured value is dependent upon the context it is normalized by the value
which is the best possible one:

qp(r, a) =
quality(r, a)

qualitymax(r, a)
(5)

To prorate qp(r, a) for all a ∈ sys the average is built according to

qp(r, sys) = avgsys
a qp(r, a) (6)

The codomain of qp(r, a) as well as qp(r, sys) is [0, 1], and a value close to 1
indicates a better achieved quality, since 1 would imply that the maximum per-
formance has been reached. In order to form the proration for qp(sys) different
average functions might be appropriate, as described for the time performance
before. Thus, qp(sys) is defined as follows:

qp(sys) = avgR
r qp(r, sys) (7)

4 Performance Evaluation Framework

In order to measure and evaluate the performance of an SO mechanism it is
of utmost importance to establish a test bed where the performance of the
mechanism can be analyzed in a systematic, comprehensible, and representa-
tive fashion. For the implementation of an according framework we rely on the
requirements derived in [6] that encompass the following two main concerns:

Req. 4: The framework’s components should support the generation of evalua-
tion runs, the simulation itself, and the application of performance metrics.

Req. 5: In order to achieve significant results, the evaluation must comprise
simulation runs that induce an environmental behavior reflecting likely con-
ditions under which the SO mechanisms have to operate.

We base our evaluation framework shown in Fig. 1 on the previously devel-
oped testing approaches [5,7], that have originally been used for functional test-
ing. Basically, it consists of an Evaluation Suite Generator, an Execution,
and a Monitoring and Evaluation component. The model-based approach is
used in all fragments, which is enabled by having executable as well as change-
able models. The overall evaluation framework consists of a static and a dynamic
part. The static part is used for enabling automated execution as well as auto-
mated evaluation. The dynamic part is used for generating evaluation suites.
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Fig. 1. The UML component diagram shows the essential components of the evaluation
framework, consisting of two main components.

Based on a description of the System Configuration the Evaluation Suite
Generator derives different possible System Configurations for evaluation.
The Evaluation System is afterwards started by initializing the static part that
uses Agents to set up the environment of the SO mechanism that is plugged into
the evaluation framework. The Evaluation Runs are generated and executed
in the same step (we follow an online testing approach for the evaluation of the
performance that enables arbitrary length of evaluation runs). Each action of the
SO mechanism is monitored and evaluated due to the implemented performance
metrics. The overall evaluation is mainly driven by environmental changes, i.e.,
changes in the controlled environment of the investigated SO mechanism. In
the production cell scenario such a change might be a faulty robot or drill that
causes the SO mechanism to reconfigure the production cell. For the energy grid
scenario a change can be a fluctuation in the production of a power plant due
to a changing weather condition of the solar plant leading to a change in the
fulfillment degree of the previously calculated schedule that in turn causes the
SO mechanism to reconfigure the AVPP.

4.1 Generating Unbiased Evaluation Runs

In order to supply significant results (fulfilling Req. 5 ), the evaluation runs need
to be comprehensible and representative. To illustrate this challenge, let’s con-
sider the following example in the production cell scenario: There is only one
robot actively using a drill; if the environmental change is to damage the drill,
that causes a reconfiguration. However, if the time performance is computed
based on the time passed since the last reconfiguration, the environmental action
has a direct influence on the performance result of the investigated SO mecha-
nisms. The correlation is unintended, since the evaluation should not influence
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the outcome, the system under evaluation should be the only influence factor.
But, it is not possible to completely diminish this influence factor within a simu-
lation. To get the best results there are two solutions: (1) to evaluate the system
with every combination of environmental conditions or (2) to select the most rep-
resentative combination of environmental conditions which represent the reality
best. Due to the complexity of the environment it is not possible to follow option
(1).

There is a necessity to select a representative combination of environmental
conditions, i.e., take samples for all possible combination. The result from that
sample is a set of evaluation runs. For these evaluation runs we compute a
metric, based on Eq. (1). If this metric value is equal to the metric value for
option (1) it is called unbiased. An unbiased metric value with a low number of
samples is called efficient [14]. Sampling could be performed in different manners
with different effects. There is the possibility to select random samples from
the abstract environment states. Random sampling implies that each possible
environmental change has the same probability of being chosen at any stage
during the sampling process to become part of the evaluation run. However,
that does not fully reflect the reality of the environment that is modeled and
from which the states are sampled. This is the case for the production cell as
well as the energy grid scenario: The failure rates of the production tools, on the
one site, and the weather conditions for the power plants, on the other side, are
nonuniform in their occurrences if real world processes are observed. There are
probability distributions that describe the failure rates, that are well investigated
in the field of reliability engineering [13], namely mean-time-to-failure rates as
well as mean-time-to-repair rates.

4.2 Modeling the Environment for Evaluating the Performance
of SO Mechanisms

Our approach uses a model representation of the environment, where we abstract
from concrete states to classes of states. We use a Markov chain model describing
how likely it is that a sequence of states occurs or that a state occurs after a
particular state, similar to our previous approach [5] where we formed so called
environmental profiles. That means there are not just the weather conditions
rainy, sunny, and cloudy, but there is also the information whether it is possible
to have rainy weather after sunny weather and how probable it is. The models
are distinguished by the class of SO mechanism. For an SO mechanism with a
discrete input space, we apply failure models, from the reliability theory, used
for a fault injection approach (cf. [7]). The faults are injected into the controlled
environment of the SO mechanism. For an SO mechanisms with a continuous
input space, we apply the approach of environmental profiles. The first delivers
samples as a set of faults (also an empty set is possible) that should be injected
and the latter delivers a set of environmental changes. The resulting evaluation
runs are used as representative combinations of environmental conditions which
represent the reality best and address Req. 5.
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4.3 Integrating the Evaluation Sequence Selection in the Evaluation
Framework

In the evaluation framework (cf. Fig. 1) these models are used to feed the Envi-
ronment Simulator by generating Eval Runs in the Evaluation Suite Gen-
erator. The approach is building upon a model-based testing approach, as
described in [5,7], allowing for describing the different parts of the SO mech-
anism and its environment in order to generate evaluation sequences. The mod-
eling language used at hands is S# [8], an executable modeling language, that is
equipped with the ability to execute the model. The execution has direct influ-
ence on the Agents controlled by the mechanism under evaluation. This online
evaluation run generating process allows for endless execution runs. To select the
number of all evaluation steps in all runs to be executed, we use the following
formula that allows selection of the length by defining the acceptable estimation
error Δμ [14]:

n ≥ z2 σ2

(Δμ)2
, (8)

where n is the number of all evaluation steps in all runs, z is the standard normal
distribution (SND) value (taken from an SND table) of the expected distribution,
and σ2 is the to be estimated standard deviation (SD) by taking n evaluation
runs. For our evaluation the acceptable estimation error might be ±1% with
an confidence interval of 95%. The confidence interval states the probability
that the expected metric value p(sys) is within a given symmetric interval of
[p(sys)−b; p(sys)+b] where b is called the confidence border. The actual selection
of the value b := zσp(sys) ≡ z σ√

n
is defined by the expected SD and z as the

corresponding value of the SND that is expected. Indeed, the number n is the
actual number we would like to know and it could be determined by Eq. (8)
given the confidence interval and the acceptable estimation error. However, the
value σ2 is unknown, since it is the also unknown SD to be estimated by the
evaluation runs. Thus, we have to use a rather gross estimate of σ2. In order
to play it safe, σ2 should be set to 0.25, leading to a rather to big estimate
for the value n, since this the maximum value to be selected [14]. So we select
σ2 = 0.25 and have the following equation to be solved having given z = 1.96
by taking the value form the SND table and the confidence interval of 0.95:
n ≥ z2 σ2

(Δμ)2 = 1.962 0.25
0.012 = 9604.

5 Evaluation

We used two different self-organizing systems for evaluating the accomplishments
of our metric as described in Sect. 3 and the evaluation framework specified in
Sect. 4. Within this evaluation we answer the following research questions:

RQ 1: Is it possible to determine differences in the SO mechanisms’ performance
during the assessment of the performance of the entire CAS?
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RQ 2: SO mechanisms have great impact on the overall performance of the
controlled system. Is it possible to quantify this impact reasonably for SO mech-
anisms?

RQ 3: SO systems are faced with an ever-changing environment; their perfor-
mance depends on the current run time setting of the system. Are these dynamic
performance boundaries reflected in the performance evaluation in a way to pro-
vide a comprehensive analysis?

RQ 4: The simulation environment might influence the outcome. Is the eval-
uation framework able to establish conditions for continuous and discrete SO
mechanisms that are able to produce comparable results in different settings?

These research questions are derived from a set of requirements for metrics
and performance evaluation of SO mechanisms, that we developed in [6]. We
selected the case studies as they represent the two different input spaces of SO
mechanisms, described in Sect. 2. Thus, we are able to demonstrate the two
different possible instance of the evaluation framework. In order to investigate
the metric in depth for each case study we used several different SO mechanisms.

5.1 Local and Central Reconfiguration in an SO Production Cell

In the production cell case study, we compare a central SO mechanism working
with global knowledge with a coalition-formation mechanism with local knowl-
edge only. The centralized mechanism always stops the entire system when a
configuration deficiency is detected. It removes the current configuration entirely,
computes a new configuration and distributes it. The localized mechanism on
the other hand forms a coalition of agents, starting with the agent that detected
the problem. It recruits more and more neighbouring agents, until the agents in
the coalition are able to solve the problem at hand among themselves. Only the
configurations of those agents within the coalition that must necessarily change
their roles is updated. Both mechanisms employ the same algorithm to find a
solution within their set of available agents. They differ in the selection of those
agents as well as in the method of distribution for the computed solution.

Evaluation Setting. We evaluate both mechanisms within three different
setups of the production cell case study: firstly, a setup with few agents (6 robots,
4 carts), and high redundancy with regards to available capabilities (each robot
has ≈66.7% of the existing capabilities), we refer to this setup as FA/HR below;
secondly, a setup with more agents (10 robots, 4 carts), and low redundancy
(40%), referred to as MA/LR; and lastly one with more agents (10 robots, 4
carts), and high redundancy (70%), MA/HR. Each model is simulated with
both algorithms in several simulation runs. Within each run, environment faults
are activated and deactivated randomly according to their respective MTTF
and MTTR. For greater comparability, we simulate the systems with the same
random seeds, i.e, expose both algorithms to the same environmental conditions.

The numbers of the evaluation are shown in Table 1. As the shown data is
aggregated over 100 runs with 1000 steps each, the shown number are showing
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the average value. As outlined in Sect. 4, the concrete choose of the average
function is up to the test engineer. One way of choosing is to get more insights
in the data. The data is, for this purpose, first tested on normal distribution.
The Shapiro-Wilk test, performed on the data, showed p-value< 0.05 which is
indicating a nonparametric data set for the measurements. For nonparametric
data, it is hard to select a good fitting average functions. For the given data set
the arithmetic mean was evaluated as well as the median. The arithmetic mean
is selected in the case when additions of the values is meaning full, while the
median is more focused on clustering the data in two equal sized data heaps.
That makes the arithmetic more prone to outliers compared to the mean value.
Thus, the expectation would be, that the values differ, as we have no normal
distribution. However, both values are almost equal for all the data. Leading to
the assumption that the data is tightly clustered, which is the case. The data
as we process it in the metrics is well suited by addition as an average function.
Thus, the following data plots the arithmetic average value as the chosen average
function. Indeed, it is of further interest to investigate the dispersion of the
data. This gives more insights on the state of the data given. A measures for
the dispersion is the range of data given. However, for the arithmetic mean the
standard deviation (SD) is the average of choice. Indeed, the SD is prone to a
normal distribution. However, the data is tightly clustered around the mean,
thus, we opt for the SD in the statistics, delivering the best insight on the
dispersion of the given data set. For the further results the different results of the
different configurations and the different settings have being tested according to
the independence of the results. Due to the fact that no distribution is assumed
at the given data set the Mann-Whitney-Wilcoxon test has been performed
to show the independency. The Mann-Whitney-Wilcoxon test resulted in a p-
value < 0.05. Thus, the following discussion of the value is grounded on the given
independency.

Discussion of the Evaluation Results

RQ 1: The results of our evaluation as shown in Table 1 clearly indicate that the
centralized mechanism yields greater quality, i.e., allows for greater throughput.
This is surprising, as one would expect the locality of the coalition-formation
mechanism to yield better results, since it allows some parts of the system to
be reconfigured while other parts keep working. However, this effect was not
pronounced enough in our case study to overcome the negative aspects: the
coalition has only a subset of the centralized mechanism’s knowledge, and it
will always prefer a localized solution, leading to little division of labor. On the
other hand, we can see that the coalition-formation mechanism has better time
performance, i.e., the relation between working time and reconfiguration time
for individual agents is better. This shows the benefit of not involving every
agent in every reconfiguration. The coalition-formation is much more efficient in
this respect, for the smallest model almost twice as efficient as the centralized
mechanism. As a result, agents can perform more production steps between two
subsequent reconfigurations. In reality the effect on performance would be even
more pronounced because physically stopping production costs more time than
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Table 1. Evaluation results for the two SO mechanisms “Centralized”, and “Coalition-
Formation” with different production cell setups. All values are averages over evaluation
runs with 100 steps each; values in parenthesis denote SDs.

Mechanism Centralized Coalition-Formation

Model FA/HR MA/LR MA/HR FA/HR MA/LR MA/HR

tp(sys)
0.9728

(3e − 3)

0.8579

(4e − 4)

0.8596

(1e − 2)

0.9963

(6e − 4)

1.0000

(3e − 5)

1.0000

(2e − 6)

qp(sys)
0.5909

(0.03)

0.9432

(0.06)

0.7022

(0.04)

0.4987

(0.03)

0.7560

(0.04)

0.5779

(0.04)

p(sys)
wt = 0.5, wq = 0.5

0.7819 0.9005 0.7809 0.7475 0.8780 0.7889

p(sys)
wt = 0.1, wq = 0.9

0.6291 0.9347 0.7180 0.5484 0.7804 0.6200

p(sys)
wt = 0.9, wq = 0.1

0.9347 0.8664 0.8439 0.9466 0.9756 0.9577

#Modified Roles per
Reconf.

7.85

(2.65)

16.67

(6.67)

13.73

(5.06)

8.41

(3.83)

11.74

(11.17)

10.71

(7.51)

#Reconf. /
#Involved Agents
per Reconf.

0.45

(0.12)

0.52

(0.13)

0.46

(0.12)

0.88

(0.16)

0.74

(0.19)

0.76

(0.20)

#Steps between
Agent Reconf.

6.87

(6.91)

1.99

(2.41)

3.10

(3.41)

12.84

(21.53)

3.83

(5.10)

6.04

(9.49)

it does in our simulation. Similarly, changing role allocations would correspond
to physical tool changes, also requiring great amounts of time. For larger models,
the coalition mechanism outperforms the centralized mechanism in this respect
as well. We measured the time performance locally for each agent, compute a
performance for the complete evaluation run and approximate results for the
entire system through a series of runs. The quality is measured similar as the
number of processing steps applied by agents within a run, this information is
gathered locally for each agent and then aggregated. Hence, to answer RQ 1,
two different mechanisms are comparable despite their different views on the
overall system (local and central). The metrics deliver a clear indication of the
advantages of the different mechanisms.

RQ 2: The solution quality can be weighted higher or lower in order to consider
the SO mechanism’s influence on the system performance. This enables us to
control the influence of the quality parameter with the time parameter. The
quality is best measured in the MA/LR setting, that indicates, that the quality
is depended from the actual setting as well. Nevertheless, it is still possible
to quantify a recent difference between the quality of the centralized and the
coalition setting. That undermines an effect, that is assumed for decentralized
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mechanisms: it is often stuck to local optima. This effect is reasonably quantified
here.

RQ 3: Our metric can also account for the dynamic performance boundaries of
SO (RQ 3 ). Remember that the quality ratings equal the system’s actual pro-
ductivity, measured by production actions, e.g., drill, compared to the maximal
possible productivity. For the maximal possible quality as referenced in Eq. (6),
we executed a system run for each setup without any environment faults. For the
FA/HR setting of 484 production actions was achieved, 336 production actions
for the MA/LR setting, and 343 production actions for the MA/HR setting. One
step can encompass at most one production action, hence this value abstracts
from the concrete time required. Thus, a larger system with low redundancies
is prone to be less productive due to long transits. Here, the same initial sys-
tem configuration is used for calculating the maximum quality as well as for
starting the evaluation. That initial configuration encompasses, amongst other
things, the initial role allocation (i.e., which robot and which cart is applying
which capability) of the system. However, when the system encounters a faulty
environment, the maximal throughput in ideal conditions may in many cases be
unreachable even with the best SO mechanism, which explains the relatively low
scores for both algorithms.

Further, high time performance ratings can be achieved by both algorithms:
even though a faulty environment leads to more time spent on reconfigurations,
it influences the total simulation time in the same manner, thus limiting its
influence on the quotient. By assigning a lower weight to the quality ratings, we
can account for this imbalance to some extent. Similarly, there exists a certain
disconnect between the time required for processing steps in our simulations
and in reality, the former being much lower. This disconnect does not exist for
reconfiguration times, and therefore it affects the time performance as defined
in Eq. (2). However, it does so equally for both compared mechanisms.

Hence, while the absolute values in the simulation differ from the realization
in a real hardware application scenario the metric has to be taken with a grain of
salt for the quantitative comparison, the relation between the two mechanisms
remains still the same and thus still allows for a fair qualitative comparison. In
order to give a more complete picture, we also included the number of discrete
steps the system makes between two reconfigurations involving the same agent,
on average.

RQ 4: Lastly, we consider the evaluation system’s influence on our results in
RQ 4. The SD for time performance and quality in our evaluation results is low,
less than 0.01 for time performance, and less than 0.06 for the quality rating. We
can thus assume the results are unbiased. The high SDs for per-reconfiguration
results (the last three rows) is expected: the amount of necessary reconfigura-
tion changes and the frequency of reconfigurations depend on the respectively
occurring environment faults, whose frequency and impact vary greatly.
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5.2 Self-Organized Creation of Virtual Power Plants in Smart Grids

For the evaluation within the self-organized creation of virtual power plants in
a smart grid we used an SO mechanism called PSOPP [2] (Particle Swarm
Optimizer for the Partitioning Problem). The PSOPP is a particle swarm opti-
mizer that partitions a set of agents representing a (sub)system into pairwise
disjoint and non-empty groups. These groups constitute the (sub)system’s con-
figurational structure. Feasible organizational structures can be described by
so-called partitioning constraints that restrict the number and the size of these
groups. PSOPP is an anytime algorithm and a metaheuristic that optimizes the
groups’ composition with respect to an objective function. In our evaluation,
PSOPP is used to optimize the groups’ composition in each so-called separate
AVPPs of a hierarchically structured system.

Evaluation Setting. We executed 100 generated evaluation runs, each com-
prising 300 evaluation steps leading to a size of the evaluation run that is bigger
than the smallest useable size calculated using Eq. (8). In order to investigate
two different SO mechanisms we instantiated the PSOPP algorithm with two
different settings: (1) In the setting PSOPP HP, PSOPP established partition-
ings according to an homogeneous partitioning objective function defined in [2].
(2) In the setting PSOPP k-means, PSOPP established heterogeneous partition-
ings according to the well-known k- means objective function. All evaluation
runs have been performed in a distributed cluster of 12 computers with an Intel
Core-i5 CPU and 4GB RAM for about a week. We performed each setting on
a predefined system structure consisting of 1, 2, and 5 separate subsystems and
1000 controlled power plants within the system that are clustered to AVPPs
by the SO mechanism. Each subsystem has one instance of the investigated SO
mechanism (PSOPP HP or PSOPP k-means).

The results of our evaluation are summarized in Table 2. Having a closer look
at Table 2 the performance metric p(sys) (cf. Eq. (1)) is shown for all instances
with three different configurations according to their weights, a balanced weight-
ing, a favor for quality, and a favor for time. As we computed the data from 100
different evaluation runs by using the arithmetic mean value with the according
SD. The selection of the average function here followed the same approach as
described in the setting of the production cell. The investigated data are also
not normal distributed, but tightly clustered, making the mean value a good
fit for describing the data. The normal distribution was tested and the p-value
resulted in <0.05. Further, the independency between the values to compare
was test by the Mann-Whitney-Wilcoxon test with a resulting p-value< 0.05.
Overall we have observed very slight variants of the performance over the runs
and observed no big outliers.

Discussion of the Evaluation Results

RQ 1: A first observation is that the decrease of agents involved in the recon-
figuration has a rather low impact on the tp(sys) value in both types of SO
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Table 2. Evaluation results for the two settings “PSOPP HP” and “PSOPP k-means”
with different numbers of AVPPs. All values are averages over evaluation runs with
300 steps; values in parenthesis denote SD.

Setting PSOPP HP PSOPP k-means

#Separate
Subsystems

1 2 5 1 2 5

tp(sys) 0.87

(0.11)

0.86

(0.27)

0.90

(0.02)

0.02

(0.002)

0.02

(0.004)

0.02

(0.007)

qp(sys) 0.96

(0.02)

0.96

(0.01)

0.96

(0.01)

0.99

(0.01)

0.99

(0.01)

0.99

(0.01)

p(sys)

wt = 0.5, wq = 0.5

0.92

(0.07)

0.91

(0.15)

0.94

(0.02)

0.51

(0.03)

0.51

(0.05)

0.51

(0.09)

p(sys)

wt = 0.1, wq = 0.9

0.95

(0.04)

0.95

(0.05)

0.95

(0.01)

0.89

(0.03)

0.89

(0.06)

0.89

(0.10)

p(sys)

wt = 0.9, wq = 0.1

0.88

(0.04)

0.87

(0.19)

0.91

(0.02)

0.12

(0.02)

0.12

(0.03)

0.12

(0.06)

#Reorganized

Separate

Subsystems

1.05

(0.32)

2.88

(0.88)

11.01

(1.98)

141.57

(17.93)

244.11

(43.11)

501.36

(113.11)

#Reconfigured

Agents per Reconf.

1000.00

(0.00)

696.78

(400.14)

252.47

(288.34)

1000.00

(0.00)

734.74

(335.52)

499.51

(284.18)

mechanisms. That effect is also shown in the number of reorganizations per-
formed in the different setting compared with the involved number of agents in
a reorganizations. The more separate subsystems the less agents are on average
involved in a reorganization, but also the more reorganizations are necessary
for keeping up the goals of the SO mechanism. This seems to be an effect of
the decentralized knowledge that is lower than the central knowledge and thus
leads to a higher need for reconfigurations. This effect is reflected in the metric,
by having almost the same value despite a changing subsystem size. These local
effects are handled in the metric. Same for qp(sys), all values have been gathered
locally. The value for the quality function for PSOPP HP setting is stating how
similar the AVPPs are in their composition. Thus, the goal it the minimization
of the SD of the average state values of the power plants in each AVPPs. For
the k-means setting the similarity of the average state is the measure of quality
for each AVPP. For qp(sys), in the HP and the k-means setting, a similar effects
are shown as for the time performance: the increasing number of separate sub-
systems has no impact on the quality of the system. Measuring the performance
locally is consequently able to judge over the global system without neglecting
the structure of the system and the SO mechanisms.
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RQ 2: Having p(sys) for the two different SO mechanism in the scenario we can
clearly observe that the homogeneous partitioning is in favor. That reflects the
fact that homogeneous partitioning is more robust than k-means, as described
by Anders et al. [2]. However, the robustness has a slight price in quality, that is
overall more optimal with k-means (see the qp(sys) values). Nevertheless, that
comes with a high price of a very poor tp(sys) result. To achieve a better rating
for PSOPP k-means a possible allocation of the weights is wt = 0.03, wq = 0.97.
However, it is not recommended to choose such a strong favor for one part of
p(sys) since it ignores one of the two important performance factors. Thus, to
answer RQ 2 the benefit can be considered and even more the influence can be
steered individually.

RQ 3: The answer to RQ 3 is shown in the fact that we observed fluctuations
throughout the evaluation runs within the maximum. That is different from the
production cell case study, where the maximum for the quality performance was
computed for a run not for a step. In this case study the maximum value is
dynamically calculated at each step for a single subsystem. Since the value is
depended from the current state of the controlled power plants in a subsystem.
That is highly necessary to normalize the different achievements in the different
system steps.

RQ 4: RQ 4 questions whether the results are adequate regarding the conditions
under which they were measured. This question is hard to answer with the
resulting data, since we have no gold standard to compare with. However, our
argumentation of Eq. (6) indicates that we have an accuracy of at least 0.95 for
the measurements. The inaccuracy of 0.05 is within the variation of the p(sys)
value according to the SD and consequently negligible. Thus, we have established
an adequate evaluation framework.

6 Related Work

In [6], we provided an overview on performance metrics for SO mechanisms and
evaluated their abilities. We identified several metrics for adaptation (resp. self-
adaptation) algorithms in the literature. And only very few that are focused on
SO as we described it in [6]. As is the case with classical algorithms, the metrics
can be clustered into time-oriented metrics and solution-quality-oriented metrics.
The research survey of Villegas et al. [20] as well as the criteria for the evaluation
of self-* systems of Kaddoum et al. [9] are time-oriented metrics that reflect the
relationship between time for adaptation and working time. The performance
metrics of Becker et al. [3], Tarnu and Tiemann [19], Reinecke et al. [17], and
Kantert et al. [10] address the solution quality of the algorithm.

Time-Oriented Metrics: The metrics WAT [9], A [20], and U [20] rely on the
ratio between working time and adaptivity time resp. the mean time to fail and
the mean time to recover. All three focus on the impact of the adaptation on
the working system and reflect the stability as well as the robustness of the
configurations established by the SO mechanism. Unfortunately, the locality of
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SO mechanisms is neglected by the three metrics. Thus, a reconfiguration in a
small part of the system is rated as an adaptation period of the entire system as is
for a reconfiguration within a huge part of the system. In our approach we address
this issue by measuring locally. Considering only the time-oriented metrics, it
is possible that an SO mechanism, that causes the system to work inefficiently
is rated very good in terms of time if it generates a robust structure. Such a
metric is not sufficient to rate the performance of an SO mechanism with all
its responsibilities. Therefore, we combined time-oriented metrics with solution-
quality-oriented metrics to rate the overall performance of an SO mechanism.

Solution-Quality-Oriented Metrics: To rate the performance of an SO mecha-
nism, the optimality of its solution plays a crucial role. The metrics proposed
in [3,19] are quite similar in how they measure the normalized fitness of the
SO mechanism over time. Challenges that arise during the evaluation of SO
mechanisms with the metrics defined in [3,19] are mainly caused by the locality
of the SO mechanisms. This is a major difference to the adaptation algorithm
considered in [3] as well as in [19] who regard a central approach of only one
adaptation algorithm within the entire system. In case of multiple subsystems,
as is the case with our energy grid scenario, the metrics could be applied to the
separate subsystems, but it is not obvious how to calculate the performance for
the overall system. The Ad metric [17] intends to smooth the development of the
fitness value. Alas, the metric shows some bad side effects, as elaborated in [6].
Thus, it is hard to use the value for performance evaluation. Quantifying how
robust an achieved solution of an SO mechanism is is the focus of [10]. That is
measured by how fast the mechanisms are able to recover from disturbances and
attacks from outside.

This metric is describing the quality performance by the time for regaining
a target output of the system. This approach is, in contrast to our approach,
focused on robustness against external attacks. A similar approach was made
by Pitt et al. [16], focusing on the aspects of procedural justice as a values for
participation, transparency and balancing in an CAS. Compared to the here
presented approach [16] is focused on openness and transparency, we are a more
generic approach. Indeed, one possibility is to include the metrics of [16] as the
quality measure (Eq. (7)) in our approach.

7 Conclusion

We provide a tool set for measuring and evaluating the performance of SO mech-
anisms. This tool set is able to support the engineering process of developing suit-
able SO mechanisms for collective adaptive systems (CAS). As we have shown
in our evaluation (Sect. 5), different kinds of SO mechanisms for different kinds
of systems can be easily compared and rated, enabling to choose and optimize a
suitable solution. One important contribution, that is extending the state of the
art, is that our metric is able to fully exploit the local behavior of distributed
SO mechanisms for time performance as well as quality performance. Reflecting
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ever-changing environmental conditions was important for the evaluation frame-
work to select the most representative evaluation runs as well as for rating the
achieved solution of the SO mechanism.

There are still some limitations to our approach. The metrics have the advan-
tage of aggregating the performance of the SO mechanisms, but that aggregation
is sometimes hiding information about the cause of the resulting performance.
Furthermore, the quality performance must be defined by the user of the metric,
we are not able to offer a gold standard for SO mechanisms here. Consequently,
the results have to be judged by a skilled SO engineer and need some qualified
input. Nevertheless, the framework and the development metrics have proven as
a valuable tool for assessing the performance of SO mechanisms within CAS.

Acknowledgment. This research is sponsored by the research project Testing self-
organizing, adaptive Systems (TeSOS) of the German Research Foundation.
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figuration for self-organizing resource-flow systems based on local knowledge. In:
Proceedings of the 8th IEEE International Conference and Workshops on Engi-
neering of Autonomic and Autonomous Systems (EASe 2011), pp. 20–31. IEEE
(2011)

2. Anders, G., Siefert, F., Reif, W.: A particle swarm optimizer for solving the set
partitioning problem in the presence of partitioning constraints. In: Proceedings of
the 7th International Conference on Agents & AI (ICAART) (2015)

3. Becker, M., Luckey, M., Becker, S.: Performance analysis of self-adaptive systems
for requirements validation at design-time. In: 9th ACM SIGSOFT International
Conference on Quality of Software Architectures (QoSA 2013). ACM (2013)

4. Belzner, L., Hölzl, M., Koch, N., Wirsing, M.: Collective autonomic systems:
towards engineering principles and their foundations. In: Steffen, B. (ed.) Trans-
actions on Foundations for Mastering Change I. LNCS, vol. 9960, pp. 180–200.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1 10

5. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Knapp, A., Reif, W.: An
approach for isolated testing of self-organization algorithms. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive
Systems III. Assurances. LNCS, vol. 9640, pp. 188–222. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-74183-3 7

6. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Reif, W.: A research
overview and evaluation of performance metrics for self-organization algorithms.
In: Proceedings of the 9th International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, pp. 122–127. IEEE (2015)

7. Eberhardinger, B., Habermaier, A., Seebach, H., Reif, W.: Back-to-back testing of
self-organization mechanisms. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS
2016. LNCS, vol. 9976, pp. 18–35. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47443-4 2

8. Habermaier, A., Eberhardinger, B., Seebach, H., Leupolz, J., Reif, W.: Runtime
model-based safety analysis of self-organizing systems with S#. In: 2015 IEEE
International Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), pp. 128–133. IEEE (2015)

https://doi.org/10.1007/978-3-319-46508-1_10
https://doi.org/10.1007/978-3-319-74183-3_7
https://doi.org/10.1007/978-3-319-47443-4_2
https://doi.org/10.1007/978-3-319-47443-4_2


220 B. Eberhardinger et al.
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Abstract. Electronic institutions are socially-inspired multi-agent sys-
tems, typically operating under a set of policies, which are required to
determine system operation and to deal with violations and other non-
compliant behaviour. They are often faced with a dynamic population
of agents, social network, and environment and their policy should suit
this context. However, there is usually a large space of possible sys-
tem policies, but no tractable systematic method to find an appropri-
ate policy given a joint state of the population, social network, and the
environment. We have developed a model of an energy system which
encompasses several inter-connected community energy systems. We pro-
pose two methods, an offline and an online procedure, which enable
this system model to approximately optimise its performance through
adaptation and evolution of its operating policy. The policies evolved
by our procedures clearly outperform a baseline policy we have designed
by hand. Both procedures return policies which are appropriate for a
system, given some performance criterion, without a human designer’s
intervention. This could lay the foundations for the development of a new
methodological paradigm for the engineering of collective adaptive sys-
tems based on the convergence of electronic institutions and evolutionary
computing.

1 Introduction

Some agent systems are socially-inspired: they are governed by rules and poli-
cies (are “rule-based” or “norm-governed”) and the agents form virtual societies,
referred to as electronic institutions (EIs). These are typically open systems –
with heterogeneous and autonomous agents – with no central control or decision-
making, and may be characterised by a dynamically changing environment. They
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should ideally have mechanisms for dealing with unpredictable changes, respond-
ing adequately when the performance is deteriorating, enabling sustainability
and durability. In order to determine their operation and to prevent undesir-
able or non-compliant behaviour, a possible consequence of their openness to
autonomous agents acting on behalf of third parties, these systems must have a
policy in place. Examples of the EI paradigm include sensor networks, robotic
swarms, and smart grids.

When this type of system is used to manage the access to a shared resource,
the problem is referred to as common-pool resource (CPR) management. Ostrom
[14] presents several design principles for enduring institutions in the context of
CPR management, including the notion that policies should be mutable in order
to suit the environment. Some authors have proposed mechanisms to opera-
tionalise these principles and apply them to the design of EIs [18], while also
drawing other concepts from political and economic science to enable the agents
to both self-govern and self-organise the adaptation of policies in the face of
potentially unpredictable changes in the environment, such as distributive jus-
tice [18,19] and knowledge management [17]. Self-governing and self-organisation
both imply the active participation of the actors within an EI in the decision-
making process.

Other approaches for dealing with dynamic environments have been inspired
by Biology. Methods have been proposed to adapt autonomic components using
evolutionary computing (EC) techniques as a response to environmental changes,
e.g. [4,5]. These components exhibit cognition, namely learning and decision-
making abilities, leading to collective self-awareness. Evolutionary approaches
have also been used in other contexts. For example, genetic programming (GP)
has been widely used to provide approximate solutions to optimisation problems,
e.g. [2], and to evolve and adapt rules of different sorts over multiple time scales
in the face of a problem space whose structure changes dynamically, e.g. [9,20].

Integrated community energy systems (CESs) may be viewed as EIs for the
management of a CPR. They integrate distributed energy resources, such as pho-
tovoltaic cells and wind turbines, into local energy systems, meeting some or all
of the local energy demands. The local energy systems are connected to a wider
regional/national grid and local communities are not just passive consumers,
but also active prosumers who generate and supply energy and may provide
services to the larger system. This system has a dynamically changing environ-
ment: it faces fluctuations in the availability of resources, load, and demand over
time, caused by seasonality, geographic location, and shifts in weather patterns,
amongst other factors. The literature on CESs is mostly devoted to optimisa-
tion models for the planning and integration of these systems. In this project,
we have modelled and simulated an energy system consisting of many inter-
connected CESs and proposed methods for automatically constructing system
policies.

Our top-level goal is to explore how adaptation through evolution of policies
can assist the design of collective adaptive systems which remain sustainable
over time when faced with a dynamically changing environment, since policy
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modification mechanisms are necessary in order to cope with potentially unpre-
dictable environmental changes. In a norm-governed system, a single policy may
not be appropriate for all situations. For example, an energy system could have
the following modes of operation: decentralised (peer-to-peer) when demands
are low, with all the energy being produced by the local communities; cen-
tralised when the system is overloaded, with communities trading exclusively
with the regional/national grid; or a hybrid approach for normal levels of load
and demand. Besides this, surprising events could occur which result in dete-
rioration of the performance, rendering the current policy no longer fit. This
is expected to be the case in energy systems with several distributed energy
resources across multiple communities: weather can be unpredictable and unsta-
ble, affecting the production rate of intermittent renewable resource converters
such as solar panels and wind turbines. Ideally, systems should be able to recover
from performance losses after a reasonable number of time steps. In general, there
could be a very large space of possible system policies. There is no systematic
way of finding an appropriate policy given a joint state of the population of
agents, their social network, and the environment [16]; it may not be tractable
or possible to search the entire space of possible policies exhaustively.

Our research question is whether we can use GP to generate, adapt, and
evolve policies under which systems operate in order to ensure that they remain
sustainable over time. The specific problem we have addressed in this project is to
automatically find operating policies which are approximately optimal for a given
system according to some performance criterion – i.e., policies we would consider
appropriate. This could assist designers in building systems for which it is hard
to come up with a policy leading to good performance and which may be faced
with a dynamic environment requiring constant modification and adaptation of
policies. Even a human expert might lack not only the knowledge necessary to
determine whether a given policy will result in good performance or to compare
alternative policies, but also the creativity needed to design sufficiently good
policies. The “ideal” policy for a given system may be counter-intuitive to a
person, but an heuristic search over the space of possible policies, which is the
base of what we propose in this work, is not sensitive to that.

In order to address the problem specified above, we have started by creating
a model of an energy system in which several communities produce and consume
energy and used it to run simulations to observe how different policies behave.
We have used binary decision trees to represent policies. The key contributions
of this work are two optimisation methods for automatically finding appropriate
policies for this system model. The first one is an offline procedure which returns
a policy that approximately optimises system performance using GP. The second
method is an online procedure which evolves and adapts a population of policies
over time by applying them to the system in turn and using performance history
to increasingly improve the general quality of the policies in each new generation,
drawing inspiration from reinforcement learning (RL) techniques. Results show
that the policies resulting from these procedures clearly outperform a baseline
policy which we have designed by hand.
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The modelling approach we propose and the procedures we have implemented
and tested for finding approximately optimal policies could provide the founda-
tions for the development of a new methodological paradigm for the engineering
of collective adaptive systems. The results are encouraging and provide insight
into the effects of adaptation and innovation, through evolution of a set of poli-
cies, on the sustainability of a distributed system for CPR management, applied
to the context of CESs. This work is also innovative in the sense that it brings
together the paradigms of socially-inspired and biologically-inspired computing,
as we have drawn notions from EIs when modelling a system in which energy is
treated as a CPR and have used GP to evolve and adapt its policy.

This paper is structured as follows. In Sect. 2, we discuss relevant background
to this work, focusing on EIs, EC and GP, and CESs. In Sect. 3, we provide a
description of the steps we have followed and the methods we have implemented.
In Sect. 4, we discuss experimental results. In Sect. 5, we present the main con-
clusions which have emerged from this work and reflect on directions for future
research.

2 Background

In a position paper, Pitt and Hart [16] proposed the integration of the socially-
inspired design patterns of EIs with the biologically-inspired techniques used
in EC and GP to adapt and innovate the policy of a system as a response
to dynamic and unpredictable changes in the environment. In this section, we
review some key concepts which have enabled the implementation of this app-
roach. In Sect. 2.1, we explore the notion of EIs. In Sect. 2.2, we review some work
on EC and GP. In Sect. 2.3, we present concepts and issues related to CESs.

2.1 Electronic Institutions

Agent-based systems which are governed by rules and policies – for example, for
managing collective resources – are referred to as electronic institutions (EIs).
Agents form societies and often seek individual goals, as well as common objec-
tives. In open systems, agents are heterogeneous and may not comply with the
system policy. Self-organisation means that a certain system is able “to change its
organisation without explicit command during its execution time” [6]. This con-
cept has been applied to many fields, among which multi-agent systems (MASs)
[22].

Ostrom [14] proposes a view of self-organising institutions for the manage-
ment of CPRs, in which the rules of an institution govern the appropriation and
provision of shared resources and should be mutable by other rules and adapt-
able to suit the environment. Ostrom also identifies eight design principles for
the management of CPRs in enduring self-organising institutions after arguing
that, unlike predicted by game theory, CPR management does not necessarily
result in a “tragedy of the commons”, in which a group of self-interested and
rational agents eventually depletes a shared resource.
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Pitt et al. [18] axiomatise these principles, expressing them in logical form.
This formal specification is used to implement a test bed to show that they
result in enduring EIs for the management of CPRs. They note that a strat-
egy resulting in a sub-optimal distribution in the short term might prove better
in the long term if the resource is not depleted. They analyse the problem of
allocating endogenous resources with an implementation of the Linear Public
Good (LPG) game [7]. They resort to a framework which enables the specifica-
tion of a protocol stack which agents can use to alter the policies of a system at
runtime [1]. The specification space is formally defined by a number of degrees
of freedom, such as the allocation method (ration, queue, etc.). The rules are
formalised using Event Calculus [12], which is an action- and event-oriented lan-
guage. The experimental results show that the principles defined by Ostrom do
entail enduring management of CPRs in self-organising EIs.

The principles, however, do not explicitly concern a notion of fairness and
justice. Pitt et al. [15] build on this work by analysing the mechanisms influenc-
ing the fairness of the result of a resource allocation. Agents self-organise the
allocation process by participating in a voting procedure. The authors note that
an outcome which is unfair at a given time step could be part of a sequence of
fair cumulative outcomes, a notion which is important for economies of scarcity.
Rescher [19] presents the concept of distributive justice, identifying several ways
of distributing resources based on legitimate claims. Pitt et al. draw inspira-
tion from Rescher’s work to study mechanisms which influence the fairness of
a resource allocation procedure, with the LPG game being once again used as
an example application. The results reveal robustness to purposeful violations.
Among the assessment metrics used are the number of remaining agents in a
cluster of the LPG game, the utility for the agents, and the fairness of the allo-
cation method.

2.2 Evolutionary Computing and Genetic Programming

Evolutionary Computing (EC), in its broader sense, draws inspiration from bio-
logical evolution to solve problems, involving population-based stochastic search
approaches [2]. Genetic Programming (GP) is based on Darwin’s theory of evo-
lution and the mechanisms it describes, namely natural selection, evolving solu-
tions to problems according to the principle of “survival of the fittest”. These
approaches have been widely used to find approximate solutions to many opti-
misation problems, as well as classification problems. Since it has been used to
evolve rules, which can be functions, heuristics, or other sorts of decisions, it
seems appropriate to apply GP to the evolution and adaptation of the operating
policy of a system.

Sim et al. [20] describe an innovative hyper-heuristic system. They propose
a lifelong machine learning (LML) system called NELLI, which learns contin-
uously over time using prior knowledge, applying it to a combinatorial opti-
misation problem. An Artificial Immune System (AIS) encompasses heuristics
and problems interacting in a network, with problems viewed as pathogens and
heuristics as antibodies. The key idea is that the problems “provide a minimal



226 R. P. Cardoso et al.

representative map of the problem space” and each heuristic solves a niche of
problems. The system continuously generates new heuristics in response to a
stream of incoming problems and it was applied to the 1D bin-packing problem.
The results show that it is efficient and scalable, outperforming human-designed
heuristics, and adapting efficiently to unseen problems.

Hart and Sim [9] describe NELLI-GP, the successor of NELLI. They address
the Job Shop Scheduling Problem (JSSP), in which several operations are sched-
uled for execution in multiple machines. Heuristics are sequences of rules and
they propose an ensemble of heuristics which are evolved using GP, with base-
line dispatching rules as building blocks. The rules themselves are formulated as
trees of operations, returning a real value which determines the priority of an
operation. GP is used to evolve new heuristics to be included in the ensemble,
as well as new rules to be part of the sequence of dispatching rules which make
up a heuristic. The results show that using an ensemble is preferable over a
single heuristic and that the system generalises well from the training set. The
ensembles are reusable: after being fitted to a data set, they can be used with a
different one (adaptation). Their system outperforms other scheduling rules and
hyper-heuristic approaches for the JSSP.

2.3 Community Energy Systems

Integrated community energy systems (CESs) are “a modern development to
reorganise local energy systems to integrate distributed energy resources and
engage local communities” [11]. They ensure self-supply of energy and are also
capable of supplying the larger energy system. Local communities are no longer
considered passive consumers, but rather active prosumers who also produce
energy. Following the motto “think globally, act locally”, CESs can help tackle
global energy and climate challenges. However, they face challenges; energy gen-
eration using intermittent renewable resources is difficult to forecast. Flexible
generation can be achieved with conventional fuels.

Much of the literature on this subject is concerned about the planning and
optimisation of integrated CESs. Huang et al. [10] review methodologies and
software which address community energy planning (CEP). Linear (LP) and
non-linear programming (NLP) are common techniques to obtain solutions to
this optimisation problem, although many approximation algorithms, such as
genetic algorithms (GAs), have also been developed [3].

2.4 Summary

In this section, we have reviewed some approaches which have been proposed
so far to deal with unpredictable changes in dynamic environments. Among the
references on EIs, there is a focus on the application of concepts from social, polit-
ical, and economic science, such as self-organisation, self-governance, distributive
justice, or knowledge management, to digital organisations as a mechanism for
enabling their actors to collectively adapt and modify policies. The literature
on EC includes studies of how different biologically-inspired techniques may be
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used to adapt autonomic components, such as agents, and their social network
as a response to environmental changes. A relevant concept in this context is col-
lective self-awareness, which is achieved when the agents are capable of learning
from past experience and making decisions autonomously. We have also reviewed
several applications of GP to a number of problems, e.g. optimisation. Rules of
different sorts are represented as trees and are evolved using GP. The sources
on CESs are mainly concerned with planning this sort of system and optimising
energy consumption, making use of tools for modelling and simulation. The ulti-
mate goal of our work has been to draw inspiration from the concepts discussed
in the reviewed literature to propose a new methodological paradigm for the
design of collective adaptive systems. In particular, we have explored methods
for approximately optimising policies in an EI using GP.

3 Methodology

This section describes the methodological approach followed in this work for the
modelling and simulation of an energy system which is capable of adapting its
policy over time.

3.1 Model

The first step towards answering the research question we propose in this work,
whether adaptation and innovation of the policy of a system through evolution
are capable of leading to improved endurance and sustainability, has been to
model an energy system encompassing several CESs. In this model, energy is
treated as a CPR and communities are modelled as agents; they have energy
demands and can generate energy from a number of renewable sources. Three
sources of renewable energy have been considered, namely solar power, wind
turbines, and hydropower converters.

Communities have neighbours and are part of an energy system. The energy
system can also generate and feed energy to compensate for any lack of self-
generated power. Communities are able to trade energy amongst themselves,
using a simplified version of the Contract Net Protocol [21], and with the central
system. At each time step, the energy system uses the current operating policy
to determine the mode of operation of the system for that time step, as explained
in detail in Sect. 3.2. Figure 1 summarises the domain model of the system.

At each time step, the utility of the energy allocation method is calculated
for each community, taking into account the costs of importing energy, both
from other communities and the central system, and storing energy produced
in excess, as well as the revenues from exports. The cumulative satisfaction for
community i at time step t is calculated with the most recent utility value, ui

t,
as follows:

sit = (1 − w) × sit−1 + w × ui
t, with si0 = 0 (1)

The w parameter weights the importance of past satisfactions and the current
utility when updating a community’s satisfaction.
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Fig. 1. Domain model of the energy system

3.2 Representation, Innovation, and Adaptation of Policies

Given the need to evolve and adapt the operating policy of the system, we
represent it with decision trees. At each time step, the policy is applied in order
to determine a mode of operation. In our model, the mode of operation has three
degrees of freedom:

– What the communities should do with the energy they have produced at the
current time step: either use it to satisfy their own demands (self-supply) or
sell it all to the central system.

– In the case of self-supply, what the communities should do with any excess of
energy: sell to the central system; store as much as capacity allows and sell
the excess; trade it with neighbours and sell the excess; store, trade, and sell;
or trade, store, and sell.

– If any demands have not been satisfied, the central system will ensure they are
met by first reselling the energy which has been purchased from the communi-
ties and producing energy on demand (accounting for production costs) when
necessary. The communities receive the energy according to several possible
criteria: greatest demand, greatest production, lowest satisfaction, random,
or ration.

For each degree of freedom, a decision tree selects one of the possible values
with which it can be instantiated. There are therefore 2× 5 × 5 = 50 possible
modes of operation at each time step. The inner nodes of the tree test the
values of system-wide variables which are collected at each time step, returning
a Boolean value (i.e., the decision trees are binary). Based on the literature
about EIs, CPR management, and CESs, as well as on knowledge regarding the
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system model we have created, we have selected the following system variables
to be collected and tested at each time step:

– Number of communities (fixed)
– Average satisfaction across all communities
– Total energy production at the communities
– Total self-supply of energy
– Average difference between self-supplied energy and demand
– Average difference between current assets (energy produced and stored) and

demand
– Number of unsatisfied agents (negative satisfaction)
– Total energy stored
– Total demand
– Total difference between current assets (energy produced and stored) and

demand
– Average capacity left
– Gini index of satisfaction inequality

As a first step, we devised a default policy whose performance could be
compared to that of the operating policies which are evolved by the procedures
discussed in this paper. Figure 2 shows the default decision tree for selecting
what the communities should do with the energy they produce (the first degree
of freedom), as an example of the type of decision trees which are evolved and
manipulated by our procedures.

Satisfaction < 0

Unsatisfied > N/4

self-supply

Gini ≥ 0.75

self-supply sell

Production + Stored > Demand

self-supply

Gini ≥ 0.75

self-supply sell

T

T

F

T F

F

T

F

T F

Fig. 2. Default decision tree encapsulating rules which determine what the communities
should do with the energy they have produced at each time step.

We considered two approaches for approximately finding an optimal policy
for the system. The first approach is GP optimisation and is detailed in Sect. 3.3.
The second approach consists of adapting and evolving policies in runtime and
is explained in Sect. 3.4.

3.3 Offline Procedure

In order to find an optimal operating policy a priori, we implemented a GP
algorithm which evaluates alternatives by running the model with each of a
population of policies for the number of time steps corresponding to a week
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(168, since time steps represent hours). A performance metric is calculated as
follows, where satisfaction and the proportion of unsatisfied agents are averaged
out after a week has passed:

performance = α × average satisfaction
− β × average proportion of unsatisfied agents

(2)

The α parameter determines how much the average satisfaction favours the
performance measure and the β parameter determines how much the average
proportion of unsatisfied agents penalises it (α > 0 and β ≥ 0). An initial popu-
lation of operating policies (each a tuple with three decision trees, one for each
degree of freedom) is generated randomly using “ramped half and half” [13].
In GP optimisation, the set of function nodes is usually finite; in this case, the
set of possible inner nodes for the decision trees is theoretically infinite, so we
randomly initialise a large set of function nodes at the start of the procedure.
At each iteration of the optimisation procedure, the operating policies are eval-
uated in parallel by running instances of the same model for 168 time steps (a
week) and computing a performance value. The performance values are then
used as fitness values to evolve a new generation using standard GP operations,
namely reproduction, crossover, and mutation, which are described by Koza [13].
Reproduction randomly selects individuals to be copied to the following gener-
ation with a probability which should grow monotonically with respect to the
fitness value (we have used Softmax probabilities). The crossover operation ran-
domly selects pairs of individuals, again with a probability which is higher the
higher their fitness, and crosses them element-wise, each element being a tree
in the triple which makes up an operating policy. The mutation operation also
selects individuals based on their fitness and creates new individuals by replacing
parts of their trees with randomly generated subtrees; its goal is to introduce
variability when searching for new solutions. The procedure keeps track of the
best operating policy it has found so far and returns it after a certain number
of generations have been evolved. This policy is the one which led to the great-
est performance value after running the model, and therefore is approximately
optimal. This procedure is described in pseudocode by Algorithm1.

3.4 Online Procedure

Adapting and evolving policies in runtime poses further challenges. When search-
ing the space of possible operating policies in order to optimise system perfor-
mance, we do not have a way of assigning a fitness value to alternative policies
in order to compare them a priori, as would be necessary to implement “hill
climbing” or other local search methods. The performance of a policy must be
measured by first running the model with it for a certain amount of time. The
method we propose draws inspiration from both GP and RL. An initial popu-
lation of operating policies is randomly generated using the “ramped half and
half” method and a policy is selected when the model starts running. A deci-
sion is made periodically about which operating policy in the current population
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Algorithm 1. Finding an optimal policy a priori using GP
Choose model params to generate instances of the same model
Choose parameters for the initial population: max dt depth gen, n dt each,
max ot depth gen, n ot each
Choose parameters for evolution: max dt depth, copy perc, cross perc, mut perc,
elitist
Choose number of iterations: N
population ← generate initial population(max dt depth gen, n dt each,
max ot depth gen, n ot each)
max fit ← −∞
best policy ← ∅
for Gen = 1, Gen ≤ N ; Gen ← Gen + 1 do

fits ← ∅
for policy ∈ population do

model ← Model(params)
model.set policy(policy)
for i = 0, i < WEEK DURATION , i ← i + 1 do

model.step()
end for
fit = model.get average fitness() (Eq. 2)
if fit > max fit then

max fit ← fit
best policy ← policy

end if
fits ← fits ∪ {(policy,fit)}

end for
population ← evolve new generation(population,fits, max dt depth, copy perc,
cross perc, mut perc, elitist)

end for
return best policy

should be tried. An operating policy is selected every 24 time steps (hours) based
on Softmax probabilities calculated from the current fitness values. After a pol-
icy i has been put in use for 24 time steps, a reward is calculated based on the
observed performance:

rti = performancet (3)

The observed system performance, performancet, is calculated as in Eq. 2,
considering the average satisfaction and average proportion of unsatisfied agents
over the most recent 24 time steps. The fitness value of a policy i, fiti, is initialised
to 0. After applying policy i on the system for 24 time steps, its fitness value is
updated as follows:

fiti ←
{

rti if the policy had not yet been tried
(1 − Ω) × fiti + Ω × rti otherwise

(4)



232 R. P. Cardoso et al.

Ω is the learning rate, weighting the importance of the most recent reward
to the overall fitness of the operating policy. At each 336 time steps, two weeks’
time, the fitness values are used to evolve a new generation of operating policies,
using standard GP techniques as those described earlier. In order to promote
variability among the members of the population, new random policies are added
to each generation, besides those resulting from the reproduction, crossover, and
mutation operations; this is the hypermutation step proposed by Grefenstette
[8] and it is introduced here because the population size should be small1. When
calculating Softmax probabilities for selecting policies to be tried on the sys-
tem, we have found it beneficial to divide all fitness values by a temperature
parameter, which is a positive value that is decremented over time, divided by
2 every 168 time steps (a week’s time) until it reaches 1. This is intended to
promote early exploration of many different policies and thereby to prevent pre-
mature convergence to good but sub-optimal policies. The population size is also
decreased linearly over time. If an elitist strategy is employed, the best policies
found so far are guaranteed to be passed on to the following generation, thus
becoming increasingly likely to be selected as less and less exploration takes
place. A high-level pseudocode description of this runtime procedure is given in
Algorithm 2.

This approach does, in our view, address the problem of reconciling the
following:

– We want to evolve and adapt the current set of policies, converging to an
approximately optimal performance.

– We are unable to know how good a policy is until it has been tried on the
system model.

– Policy selection and adaptation must be done in runtime; the system must
not backtrack after trying a policy and policies must be tried sequentially.

The method we propose is intended to be a mechanism for enabling explo-
ration of different policies, ideally converging to policies which maximise perfor-
mance. Past history is taken into account when iteratively updating the fitness
values of the operating policies which have been tried, drawing inspiration from
RL techniques in the sense that we reward good policies and penalise bad policies
after their performance on the system has been observed. The GP part of the
procedure is the search method, intended to find a population of policies which
approximately optimise system performance by taking the iterative updates to
the fitness values into account.

1 Testing policies every 24 time steps and evolving a new generation every two weeks’
time means that a maximum of only 14 policies out of each generation can be tested.
Fitness values are initialised to 0, which could be an overestimation. Large population
sizes would cause many policies not to be tested, which could result in many bad
policies being added to following generations. Hypermutation promotes variability
in smaller populations.
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Algorithm 2. Evolving a population of operating policies in runtime
Choose model params
Choose parameters for the initial population: max dt depth gen, n dt each,
max ot depth gen, n ot each
Choose parameters for evolution: max dt depth, copy perc, cross perc, mut perc,
elitist, lr, initial temperature, gen threshold
model ← Model(params)
population ← generate initial population(max dt depth gen, n dt each,
max ot depth gen)
current policy ← select random policy(population)
model.set policy(current policy)
temperature ← initial temperature
fits ← ∅
initial population size ← len(population)
population size ← initial population size
generation ← 1
while not terminated do

model.step()
if timestep mod DAY DURATION = 0 then

reward ← model.get last avg fitness()
fitness ← update fitness(current policy, reward) (Eq. 4)
if current policy not in fits then

fits ← fits ∪ {(current policy,fitness)}
else

Update fits with (current policy,fitness)
end if
current policy ← select random policy(population,fits, temperature)
model.set policy(current policy)

end if
if timestep mod WEEK DURATION = 0 ∧ temperature > 1 then

temperature ← max(temperature/2, 1)
end if
if timestep mod (2 × WEEK DURATION) = 0 then

if generation > gen threshold∧population size > initial population size/2
then

population size ← max(population size − initial population size/3,
initial population size/2)

end if
population ← evolve new generation(population,fits, population size,
max dt depth, copy perc, cross perc, mut perc, elitist)
generation ← generation + 1

end if
end while
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4 Experimental Results

In this section, we present and discuss the results of the experiments we have
carried out with our system model and proposed methods.

4.1 Performance of the Offline Optimisation Procedure

Regarding the offline procedure for the optimisation of a single operating policy a
priori, experiments have been carried out as an attempt to answer the following
questions:

1. For the same model instance, to what extent is the quality of the evolved
policy (in terms of the resulting system performance) robust with respect to
the stochastic nature of the optimisation procedure?

2. For the same model instance, are the solutions obtained with different runs
of the optimisation procedure similar in terms of their consequences, i.e., are
the same modes of operations applied in the same context?

In order to answer these questions, the optimisation procedure described in
Sect. 3.4 was run 30 times on the same model, each time returning an operating
policy which approximately maximises the performance metric given by Eq. 2,
with α = 1 and β = 5. At each time step, each community’s satisfaction was
updated with w = 0.5 (refer to Eq. 1). The decision trees in the initial popu-
lation had a maximum depth of 3, with a maximum permissible depth of 5 for
new trees resulting from crossover. The initial population size is 182 and, when
evolving a new generation, 10% of the new population results from the repro-
duction operation, 40% from crossover, and 50% from mutation. This parameter
setting is summarised in Table 1. The median maximum performance value after
30 executions of the procedure was 8.122. The sample standard deviation was
2.94 × 10−2, which shows that there is little variation in the maximum perfor-
mance value when running the procedure several times. This enables us to con-
clude that the procedure is indeed robust with respect to the stochastic nature
of GP, as the performance of the solutions found is approximately the same for
the same model when comparing different executions. The performance value
obtained for the same model with our default policy was 3.519, showing how
hard it is for a system designer to find an optimal policy and the usefulness of
the optimisation procedure. The policy obtained using GP (approximate) opti-
misation results in a clearly better performance when compared to the default
policy we designed.

In order to answer the second question, we then took each of the 30 operating
policies obtained and compared the modes of operation selected at each time
step. Recall that a mode of operation is given by instantiating the three degrees of
freedom mentioned in Sect. 3.1. We then counted the number of unique modes of
operation selected at each time step; the median value was 5. This means that, in
2 While this would be a small population size for many GP problems, we have empir-

ically determined it to be appropriate in this case.
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Table 1. Parameters for the experiments with the offline optimisation procedure

α 1

β 5

w 0.5

max dt depth gen 3

max dt depth 5

initial pop size 18

copy perc 0.1

cross perc 0.4

mut perc 0.5

elitist False, apply the reproduction operation (probabilistic
copy of individuals)

the case of our system model, there are several locally optimal policies, resulting
in different sequences of modes of operation, yielding approximately the same
system performance. There is, however, a certain degree of similarity between
these sequences, given the median value of 5 out of a possible maximum of 30
unique modes of operation at each time step (given that there are 50 possible
modes, as mentioned in Sect. 3.2). Table 2 summarises the results obtained after
30 runs of the offline optimisation procedure.

Table 2. Results after 30 runs of the offline optimisation procedure (baseline default
policy for comparison)

Median maximum performance 8.122

Sample standard deviation of the maximum performance 2.94 × 10−2

Median number of unique modes of operation at each time step 5

Performance with the baseline default policy 3.519

All solutions obtained from different runs have approximately the same per-
formance value. However, the fact that these solutions are fairly diverse in terms
of the sequences of modes of operation in which they result3, as discussed above,
indicates that they are, in fact, local optima and that there could be an even
better solution which the procedure has failed to find. We began the discussion
in this paper by claiming that it is hard to find an optimal policy given a certain
environment. Indeed, since the mode of operation chosen at a given time step
will affect future performance in the case of our system model, we would have
3 This refers to functional diversity (a sequence of modes of operation is a consequence

of applying one or more policies to the system over time), rather than structural
diversity (the shape of the trees which make up a policy).
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to consider all possible sequences of modes up until a certain time step, select
one which maximises performance, and then come up with a set of rules which
results in that sequence. This is a combinatorial problem which quickly becomes
intractable as the final time step grows and this formulation is only applicable
to cases where the final time step is bounded; in real-world cases, the system is
continuously running and our online method for adaptation and evolution of the
operating policy in runtime seems more useful.

4.2 Performance of the Online Optimisation Procedure

The offline optimisation procedure returns a single policy which has been eval-
uated on the system for 168 time steps (a week). The online procedure, on the
other hand, tests several policies on the system over time for a number of time
steps corresponding to many weeks, with one policy affecting the performance
of subsequent policies. In this section, we try to compare the performance of
the online procedure to that of the offline procedure by calculating an average
weekly performance (last 168 time steps), but the reader should keep in mind
that the performance metrics for both procedures are not exactly the same.
Regarding the online optimisation procedure, experiments have been carried out
as an attempt to answer the following questions:

1. Is the system able to improve its performance over time by evolving and
adapting its policy?

2. For the same model instance, does the system usually converge to approx-
imately the same performance as the one obtained by running the offline
optimisation procedure?

In order to answer the questions above, we have executed the online proce-
dure upon the same model instance 30 times. At each time step, average daily
(last 24 time steps) and weekly (last 168 time steps) performance values have
been calculated, with the goal to see how many times the weekly performance
successfully converged to a value close to 8, which is the approximately optimal
value found by the offline procedure. Again, α = 1, β = 5, and w = 0.5. The
maximum depth for the decision trees is the same as before. The initial popula-
tion size is 12, the initial temperature is 320, Ω = 0.5, and, when evolving a new
generation, 20% of the new population is the result of copying individuals using
an elitist strategy, 10% is the result of crossover, 10% is the result of mutation,
and the remaining 60% are new policies generated randomly with the intention
of introducing more variability and preventing early convergence to sub-optimal
policies. This parameter setting is summarised in Table 3.

Figure 3 shows the weekly performance after 1800 time steps for each of the
runs. The performance values tend to be close to the one reported in Sect. 4.1,
which means that the online procedure does usually converge to the same per-
formance as the one obtained with the offline procedure. These are good results,
considering that the procedure is essentially testing several policies in runtime,
optimising by means of trial and error. However, convergence is expected to
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Table 3. Parameters for the experiments with the online optimisation procedure

α 1

β 5

w 0.5

max dt depth gen 3

max dt depth 5

initial pop size 12

initial temperature 320

Ω 0.8

copy perc 0.2

cross perc 0.1

mut perc 0.1

elitist True

depend on how easy it is to find an optimal system policy in a particular prob-
lem domain. We argue that it is more important to converge to a population of
good policies than it is to find an optimal policy, even though the method did
converge to the hypothetically optimal performance (the one obtained with the
offline optimisation procedure) in most of the tests which have been carried out.

Fig. 3. Weekly performance after 1800 steps for each of the 30 runs of the online
procedure

The graph of Fig. 4 shows how the daily and weekly performance values
evolve over time for one of the runs, in which the performance converged to a
value close to the performance obtained with the offline procedure. The graph
shows that the procedure is able to improve system performance over time. With
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some initial instability caused by exploration of several different policies (due to
a larger value of the temperature parameter), the weekly fitness increases over
time, converging to a value close to 8. Online adaptation and evolution of system
policies seems to have more practical advantages if we realistically assume that
the system behaviour over time is not known, or hard to predict, a priori and
that the system is running continuously, without a bounded final time step.
These assumptions seem appropriate for real-world use cases of EIs.

Fig. 4. Daily (last 24 time steps) and weekly (last 168 time steps) performance when
adapting and evolving the operating policy in runtime.

5 Conclusions and Future Work

This paper describes in detail our research into how adaptation through evolu-
tion of policies can assist the design of collective adaptive systems which remain
sustainable over time in the face of dynamic environments that may change
unpredictably. The problem we have addressed has been to find operating poli-
cies which are approximately optimal for a system, given some performance
criterion. We have modelled an energy system encompassing several integrated
CESs where each community is an agent and energy is treated as a CPR. We
have proposed mechanisms which enable this system model to optimise its per-
formance over time through adaptation and evolution of its operating policy.
The results show that these optimisation procedures are useful and could lead
to a better understanding of mechanisms which enable a system to remain sus-
tainable over time. The policies evolved by our procedures clearly outperform
the policy we have initially designed ourselves.

The representation of system policies has been a key issue throughout the
modelling of the system. Representing the policies with binary decision trees has
enabled us to apply GP operations when generating and evolving them. This
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representation is also appropriate for drawing explanations about the output of
our optimisation procedures. The trees can easily be translated into a sequence
of potentially nested if-then-else rules, which may help human designers to
gain insight about the system operation and what makes a good policy, enabling
them to construct better policies themselves or to provide more useful “building
blocks” for the procedures to find policies automatically.

The methods we have presented return policies which are appropriate for a
system, given some performance criterion, without a human designer’s interven-
tion. The contributions of this work are highly significant, since our proposal,
for which we presented a proof of concept, could lay the foundations for the
development of a new methodological paradigm for the engineering of collective
adaptive systems based on the convergence of electronic institutions and evolu-
tionary computing. Our approach could be used to assist system designers, so
far required to rely mostly on their own intuition, in systematically finding good
policies, which could generally lead to better performance and provide support
for adaptation mechanisms in the face of non-deterministic changes in dynamic
environments. In future work, we would like to look into increasing the com-
plexity of the energy system model which we have created in this project and
to further study our optimisation procedures, applying them to other problem
domains and exploring other heuristic approaches besides GP.
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Abstract. In collective adaptive systems (CAS), adaptation can be
implemented by optimization wrt. utility. Agents in a CAS may be self-
interested, while their utilities may depend on other agents’ choices.
Independent optimization of agent utilities may yield poor individual
and global reward due to locally interfering individual preferences. Joint
optimization may scale poorly, and is impossible if agents cannot expose
their preferences due to privacy or security issues.

In this paper, we study utility sharing for mitigating this issue. Shar-
ing utility with others may incentivize individuals to consider choices
that are locally suboptimal but increase global reward. We illustrate our
approach with a utility sharing variant of distributed cross entropy opti-
mization. Empirical results show that utility sharing increases expected
individual and global payoff in comparison to optimization without util-
ity sharing.

We also investigate the effect of greedy defectors in a CAS of shar-
ing, self-interested agents. We observe that defection increases the mean
expected individual payoff at the expense of sharing individuals’ payoff.
We empirically show that the choice between defection and sharing yields
a fundamental dilemma for self-interested agents in a CAS.

1 Introduction

In collective adaptive systems (CAS), adaptation can be implemented by opti-
mization wrt. utility, e.g. using multi-agent reinforcement learning or distributed
statistical planning [1–5]. Agents in a CAS may be self-interested, while their
utilities may depend on other agents’ choices. This kind of situation arises fre-
quently when agents are competing for scarce resources. Independent optimiza-
tion of each agent’s utility may yield poor individual and global payoff due to
locally interfering individual preferences in the course of optimization [6,7]. Joint
optimization may scale poorly, and is impossible if agents do not want to expose
their preferences due to privacy or security issues [8].

A minimal example of such a situation is the coin game [9] (cf. Fig. 1. Here,
a yellow and a blue agent compete for coins. The coins are also colored in yellow
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or blue. Both agents can decide whether to pick up the coin or not. If both
agents opt to pick up the coin, one of them receives it uniformly at random. If
an agent picks up a coin of its own color, it receives a reward of 2. If it picks up
a differently colored coin, it gets a reward of one. Each agent wants to maximize
its individual reward. If agents act purely self-interested, then each agent tries
to pick up each coin, resulting in suboptimal global reward. However, if rewards
can be shared among agents, then agents will only pick up coins of their own
color. They receive a share that is high enough to compensate for not picking
up differently colored coins. This increases individual and global reward alike.

There are many examples for this kind of situation. For example, energy
production in the smart grid can be modeled in terms of a CAS of self-interested
agents. Each participant has to decide locally how much energy to produce. Each
agent wants to maximize its individual payoff by selling energy to consumers in
the grid. However, the price is depending on global production. Also, global
overproduction is penalized. Routing of vehicles poses similar problems. Each
vehicle wants to reach its destination in a minimal amount of time. However,
roads are a constrained resource, and for a globally optimal solution, only a
fraction of vehicles should opt for the shortest route. In both scenarios, the
ability of agents to share payoff may increase individual and global reward alike.

Fig. 1. Two agents competing for a coin: if agent 1 (yellow) on the left side happens
to get the coin it will get a reward of +1 whereas agent 2 (blue) will get a reward of
+2 for it. If there is a fifty-fifty chance for an agent to get the coin when both agents
are trying to collect it, the expected values are 0.5 for agent 1 and 1 for agent 2 when
both agents independently optimize their utility. In contrast, if there is the possibility
to share reward then agents could learn to do the following: agent 1 (yellow) resists to
collect the coin. That increases the blue agent’s probability for getting a reward to 1.
The blue agent transfers reward (e.g. 1) to the yellow agent. This leaves agents with
expected values of 1 each and therefore defines a strong Pareto improvement compared
to the former outcome. (Color figure online)

In this paper, we study distributed optimization with utility sharing for miti-
gating the issue of contrasting individual goals at the cost of expected individual
and global reward. To illustrate our ideas, we propose a utility sharing variant
of distributed cross entropy optimization. Empirical results show that utility
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sharing increases expected individual and global payoff in comparison to opti-
mization without utility sharing.

We then investigate the effect of defectors participating in a CAS of sharing,
self-interested agents. We observe that defection increases the mean expected
individual payoff at the expense of sharing individuals’ payoff. We empiri-
cally show that the choice between defection and sharing yields a fundamental
dilemma for self-interested agents in a CAS.

The paper makes the following contributions.

– We motivate utility sharing as a means to mitigate conflicts and increase
expected individual and global reward in CAS of self-interested agents.

– We propose distributed optimization with sharing (DOS) as an algorithm to
realize utility sharing in self-interested CAS.

– We evaluate DOS empirically, showing that it increases individual and global
reward in expectation.

– We investigate the effect of defecting, non-sharing individuals in a group of
self-interested sharing agents. We show that the choice between defection
and cooperation yields a fundamental dilemma for self-interested agents in
collective adaptive systems.

The remainder of the paper is structured as follows. In Sect. 2 we discuss
related work. We introduce DOS in Sect. 3. We discuss our empirical results and
the Sharer’s Dilemma in Sect. 4. We conclude in Sect. 5.

2 Related Work

In general, we see our work in the context of collective adaptive systems (CAS)
[2,3] and multi-agent systems [10]. In particular, we are interested in CAS where
agents are adaptive through optimization of actions of policies wrt. a given indi-
vidual or global utility function. These settings can for example be modeled
in terms of distributed constrained optimization problems [11], or as stochastic
games [12].

Searching for optimal actions or learning policies can be done by open- or
closed-loop planning, potentially enhanced with learned components such as
search exploration policies or value functions [5,13–16]. Another approach for
learning optimal policies in multi agent domains such as CAS is multi agent
reinforcement learning (MARL) [1,17] and its modern variants based on deep
learning for scaling up to more complex domains [4,18,19]. A recent example
of planning-based deep MARL combines open-loop search and learned value
functions in fully cooperative multi-agent domains [5].

In the case of self-interested agents, the Coco-Q algorithm was proposed [20].
Coco-Q has been evaluated for discrete two-player matrix games, and requires
explicit knowledge of other agents’ utilities. In some sense, our study of sharing
in CAS extends the Coco-Q approach to continuous optimization with more
than two agents. Also, we model the amount sharing as a free parameter to be
learned in the course of optimization.
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In the context of a research on emergent social effects in MARL [6,7,9,21], a
recent report investigated the effects of inequity aversion and utility sharing in
temporally extended dilemmas [22]. The authors state that “it remains to be seen
whether emergent inequity-aversion can be obtained by evolving reinforcement
learning agents” [22]. Our current work is a first step into this direction, and
shows that the question of whether to share or not poses a dilemma in and
for itself, at least in the case of stateless optimization (in contrast to learning
policies).

3 Distributed Optimization with Sharing

We model decision making in a CAS as a stochastic game (X,N,A, p,R) [12].

– X is a finite set of states.
– N = {0, ..., n} is a finite set of agents.
– A = ×i∈NAi is a set of joint actions. Ai is a finite set of actions for agent i.
– p(x′|x, a) is a distribution modeling the probability that executing action

a ∈ A in state x ∈ X yields state x′ ∈ X.
– R = {ri}i∈N , ri : X × A → R is a set of reward functions, one for each agent.

In the following, we assume X = {x} consists of a single state, and ∀a ∈ A :
p(x|x, a) = 1. As x is unique, we will not consider it in further notation.

We assume that ri is available to agent i in terms of a generative model that
may be queried for samples a, e.g. a simulation of the application domain. Each
agent only has access to its own reward function, but does not know the reward
functions of other agents.

The task of a self-interested agent i is to find an action that maximizes its
payoff. However, its payoff ri(a), a ∈ A in general depends on the choices of
other agents. One way to deal with this dependency is to perform optimization
jointly for all agents, that is maxa∈A :

∑
i∈N ri(a). However, in a CAS with

self-interested agents, each participant tries to maximize its individual reward.
Also, in many situations participating agents would not want to expose their
individual reward functions to others due to privacy or security issues [8]. In
these situations, joint optimization wrt. global reward is not feasible. Note that
optimization of self-interested individuals is non-stationary due to changes in
others’ choices as they optimize for themselves.

3.1 Reward Sharing

We define agents’ utilities as ui. We consider the two different cases we are
interested in:

1. Individual, purely self-interested optimization
2. Self-interested optimization with the option to share individual rewards

Pure Self-interest. When optimizing independently and purely self-interested,
ui(a) = ri(a).
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Sharing. Sharing agents choose a share si ∈ R, si ≥ 0 additionally to ai. We
denote the joint shares by s = ×i∈Nsi. Given n agents, a joint action a ∈ A and
a joint share s ∈ R

n, si ≥ 0 for all i, we define individual agents’ utility ui for
distributed optimization with sharing as follows.1

ui(a, s) = ri(a) − si +

∑
j,j �=i sj

n − 1
(1)

Shares are uniformly distributed among all other agents. There are no bilat-
eral shares. Note that this sharing mechanism is an arbitrary choice.

For example, sharing yields the following utilities for two agents.

u0(a, s) = r0(a) − s0 + s1

u1(a, s) = r1(a) − s1 + s0

3.2 Distributed Optimization with Sharing

We now give a general formulation of distributed optimization with sharing
(DOS). DOS is shown in Algorithm1. Each agent maintains a policy πi(ai),
i.e. a distribution over actions and shares. It is initialized with an arbitrary
prior distribution. A rational agent wants to optimize its policy such that the
expectation of reward is maximized: maxEari(a), where a ∼ ×i∈Nπi(ai). Note
that optimization of an individual’s policy depends on the policies of all other
agents. Also note that policy optimization of self-interested individuals is non-
stationary due to changes in others’ policies as they optimize for themselves.

After initialization, DOS performs the following steps for a predefined number
of iterations.

1. Each agent samples a multiset of nsample actions from its policy and commu-
nicates it to other agents.

2. A list of joint actions is constructed from the communicated action lists of
other agents.

3. The utility of each joint action is determined according to Eq. 1.
4. The policy is updated in a way that increases the likelihood of sampling

high-utility actions and shares.

After niter iterations, each agent samples an action and a share from its
policy, executes the action, and shares reward accordingly. The resulting joint
action yields the global result of DOS.

3.3 Cross-Entropy DOS

In general, DOS is parametric w.r.t. modeling and updating of policies πi. As
an example, we instantiate DOS with cross entropy optimization [23]. We label
this instantiation CE-DOS.
1 We can account for the change of signature of ui by extending the action space Ai

of each agent accordingly: As,i = Ai × R, As = ×i∈NAs,i.
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Algorithm 1. Distributed Optimization with Sharing (DOS)
1: initialize πi for each agent i
2: for niter iterations do
3: for each agent i do
4: sample nsample actions and shares ai, si ∼ πi

5: broadcast sampled actions and shares

6: for each agent i do
7: build joint actions a = ×i∈Nai and shares s = ×i∈Nsi
8: clip si such that 0 ≤ si ≤ ri(a)
9: determine utility ui(a, s) according to Eq. 1

10: update πi to increase the likelihood of high-utility samples

11: for each agent i do
12: execute ai and share si(a) sampled from πi

For CE-DOS, we model a policy π as isotropic normal distribution N (μ, σ).
I.e., each parameter of an action is sampled from a normal distribution that
is independent from other action parameter distributions. Note that it is also
possible to model policies in terms of normal distribution with full covariance,
but the simpler and computationally less expensive isotropic representation suf-
fices for our illustrative concerns. As prior CE-DOS requires initial mean μ0 and
standard deviation σ0 for a policy (cf. Algorithm2, line 1). I.e. initial actions
before any optimization are sampled as follows.

ai ∼ N (μ0, σ0) (2)

Updating a policy (cf. Algorithm1, line 12–15) is done by recalculating mean
and variance of the normal distribution. We want the update to increase the
expected sample utility. For each of niter iterations, we sample nsample actions
and shares ai, si ∼ πi from each agent’s policy, and build the corresponding joint
actions a = ×i∈Nai and shares s = ×i∈Nsi.

Each agent evaluates sampled actions and shares according to its utility
ui(a, s). From the set of evaluated samples of each agent, we drop a fraction
ψ ∈ (0, 1] of samples from the set wrt. their utilities. That is, we only keep high
utility samples in the set. We then compute mean and variance of the action
parameters in the reduced set, and use them to update the policy. A learning
rate α ∈ (0, 1] determines the impact of the new mean and variance on the
existing distribution parameters: E.g. let μt and σt be the mean and standard
deviation of a normal distribution modeling a policy at iteration t, then

μt+1 = (1 − α)μt + αμnew

σt+1 = (1 − α)σt + ασnew

where μnew and σnew are mean and standard deviation of the elite samples. We
require a lower bound σmin on the standard deviation of policies in order to
maintain a minimum amount of exploration.

The hyperparameters of CE-DOS are thus as follows.
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– A stochastic game (X,N,A, p,R)
– Number of iterations niter

– Number of samples nsample from the policy at each iteration
– Prior mean μ0 and standard deviation σ0 for policies
– Lower bound σmin on the policy standard deviations
– Fraction ψ ∈ (0, 1] of elite samples to keep
– Learning rate α ∈ (0, 1]

Algorithm 2. Cross Entropy DOS
1: Intitialize πi ← N (μ0, σ0) for each agent i
2: for niter iterations do
3: for each agent i do
4: sample nsample actions and shares ai, si ∼ πi

5: broadcast sampled actions and shares

6: for each agent i do
7: build joint actions a = ×i∈Nai and shares s = ×i∈Nsi
8: clip si such that 0 ≤ si ≤ ri(a)
9: determine utility ui(a, s) according to Eq. 1

10: keep ψ · nsample elite samples a, s with highest utility
11: compute μnew and σnew from ai, si in the elite samples
12: μt+1 ← (1 − α)μt + αμnew

13: σt+1 ← (1 − α)σt + ασnew

14: σt+1 ← max(σt+1, σmin)
15: πi ← N (μt+1, σt+1)

16: for each agent i do
17: ai, si ∼ πi

18: execute ai and share si

4 Experimental Results and the Sharer’s Dilemma

We experimentally analyzed the effects of sharing in collective adaptive systems
of self-interested agents.

4.1 Domains

We evaluated the effect of sharing utilities with CE-DOS in two synthetic
domains. In these domains, a CAS of self-interested agents has to balance indi-
vidual and global resource consumption (or production, respectively).

For example, the energy market in the smart grid can be modeled as a CAS of
self-interested agents. Each participant has to decide locally how much energy to
produce. Each agent wants to maximize its individual payoff by selling energy to
consumers in the grid. Therefore, each agent would like to maximize its individual
energy production. However, the selling price per unit is typically non-linearly
depending on global production. For example, global overproduction is penalized.
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There are a number of corresponding real world problems, for example energy
production and consumption in the smart grid, traffic routing, passenger distri-
bution to individual ride hailing participants, cargo distribution on transport as
a service, routing of packets in networks, distribution of computational load to
computers in a cluster, and many more.

We now define two market models (simple and logistic) as domains for eval-
uating the effects of sharing in CAS of self-interested agents.

Simple Market. We model individual and global production, and use their
relation for calculating utilities in such a scenario. We set Ai = R

1 as individual
agents’ action space, ai ∈ Ai models the production amount. The sum

∑
i∈N ai

models the global production.
We define the reward of each agent as the relation of its own individual

resource consumption to the global resource consumption. I.e. the reward cor-
relates to an agents market share. We introduce a slope parameter ξ to control
the utility slope of individual and global consumption.

ri(a) =
ai

(∑
j∈N aj

)ξ
(3)

In this setup, a rational agent would like to increase its own consumption
until saturation. I.e. a monopoly is able to produce cheaper than two small
producers, and therefore an inequal production amount unlocks more global
reward. If all agents act rationally by maximizing their individual ai, in general
the corresponding equilibrium is not equal to the global optimum.

Logistic Market. We modeled another market scenario for investigating the
effects of sharing in CAS of self-interested agents. As before, each agent has
to choose the amount of energy to use for production of a particular good. I.e.
Ai ∈ [.1, 4], as in the simple market domain. Note that this is an arbitrary choice.

Each agent has a logistic production curve pi : Ai → [0, 1] as a function
of its invested energy. For example, this models different production machine
properties. The logistic curve pi is given as follows.

pi(ai) =
1

1 + e−c(ai−o)
(4)

Here, c ∈ R defines the steepness of the logistic function, and o ∈ R determines
the offset on the x-axis.

Global production prod is the sum of individual production
∑

i pi(ai). A price
function (i.e. an inverse logistic function) defines the price per produced unit,
given global production prod .

price(prod) = 1 − 1
1 + e−c(prod−o)

(5)
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The reward for an agent is defined as the product of its produced units and
the global price.

ri(a) = pi(ai) · price(prod) where prod =
∑

j∈N

pj(aj) (6)

Figure 2 shows an example of production and price functions in the logistic
market domain.

Fig. 2. Example production functions (left) and global price function (right) in the
logistic market domain.

4.2 Setup

For our experiments, we used the following setup of CE-DOS.2

– We consider a stochastic game with n agents, that is N = {1, ..., n}.
– We set n = 10, n = 50 and n = 100 in our experiments.
– Individual action spaces were set as Ai = [.1, 4]. We clipped actions when

sampling them from the policy.
– We define the individual reward functions by Eq. 3 or Eq. 6, respectively.
– We set the number of iterations niter for CE-DOS to 100.
– We draw nsample = 100 samples from the policy per iteration for each agent.
– We set the prior mean μ0 = 0 and standard deviation σ0 = 1.
– We set the fraction of elite samples ψ = 0.25.
– We set the learning rate α = 0.5.
– We set the minimal policy standard deviation σmin = 0.2.

We sampled domain parameters uniformly from the following intervals.

– We sampled the slope parameter ξ from [2, 4] in the simple market domain.
– We sampled logistic steepness c and offset o from [1, 3] for all production and

cost functions in our experiments with the logistic market domain.

2 Code available online: https://github.com/lenzbelzner/sharers dilemma.

https://github.com/lenzbelzner/sharers_dilemma
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We varied the number of sharing agents to measure the effect of defecting
(i.e. non-sharing) agents that participate in the stochastic game together with
sharing individuals.

Note that for the results we report here, we clipped the sharing values such
that agents are only able to share up to their current reward, i.e. si ≤ ri(a) for a
given a ∈ A. In general, other setups with unbound sharing are possible as well.

4.3 Effect of Sharing on Global Reward

Figure 3 shows the mean global utility gathered for varying numbers of shar-
ing agents. We can observe that the fraction of sharing agents correlates with
global utility. We also see that the effect of sharing increases with the number
of participating agents.

Figure 4 shows the mean individual shared value for the corresponding exper-
imental setups. We can see that the amount of shared value correlates with global
reward. I.e. the more value shared, the higher the global reward. We also see that
the number of participating agents correlates with the effect of sharing.

4.4 Sharer’s Dilemma

Figure 5 shows the Schelling diagrams for the corresponding experiments. A
Schelling diagram compares the mean individual utility of sharers and defec-
tors based on the global number of sharing agents [24]. We can see that agents
that choose to defect gather more individual utility than the sharing ones.

The shape of the Schelling diagrams in Fig. 5 shows that sharing in collective
adaptive systems with self-interested agents yields a dilemma in our experimental
setups.

Should an individual agent share or defect?

There is no rational answer to this question for an individual self-interested
agent. If the agent chooses to share, it may be exploited by other agents that
are defecting. However, if the agent chooses to defect, it may hurt its individual
return by doing so in comparison to having chosen to share.

Note that the amount of sharing is a free parameter to be optimized by DOS.
This means that all behavior we observe in our experiments is emergent. The
combination of available resources, interdependency of agents’ actions and the
ability to share lets agents decide to share with others based on their intrinsic
motivation.

Our results illustrate a potential reason for emergence of cooperation and
inequity aversion in CAS of only self-interested agents. They also give an expla-
nation to the existence of punishment of individuals that exploit societal coop-
eration at the cost of sharing individuals’ and global reward.
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Fig. 3. Global utility gathered for varying numbers of sharing agents in the simple
market (left column) and logistic market (right column) domains. 10 agents (top row),
50 agents (center row) and 100 agents (bottom row) in total. Solid line shows empirical
mean of 10 experimental runs, shaded areas show .95 confidence intervals. Best viewed
on screen in color. (Color figure online)
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Fig. 4. Mean individual shares for varying numbers of sharing agents in the simple
market (left column) and logistic market (right column) domains. 10 agents (top row),
50 agents (center row) and 100 agents (bottom row) in total. Solid line shows empirical
mean of 10 experimental runs, shaded areas show .95 confidence intervals. Best viewed
on screen in color. (Color figure online)
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Fig. 5. Schelling diagrams showing mean individual utility for defectors and sharers,
for varying numbers of sharing agents in the simple market (left column) and logistic
market (right column) domains. Note the log scale on the y-axis. 10 agents (top row),
50 agents (center row) and 100 agents (bottom row) in total. 10 experimental runs.
Best viewed on screen in color. (Color figure online)
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5 Conclusion

We summarize the ideas in this paper, discuss limitations and implications of
our results, and outline venues for further research.

5.1 Summary

In collective adaptive systems (CAS), adaptation can be implemented by opti-
mization wrt. utility. Agents in a CAS may be self-interested, while their utilities
may depend on other agents’ choices. Independent optimization of each agent’s
utility may yield poor individual and global payoff due to locally interfering indi-
vidual preferences in the course of optimization. Joint optimization may scale
poorly, and is impossible if agents do not want to expose their preferences due
to privacy or security issues.

In this paper, we studied distributed optimization with sharing for mitigat-
ing this issue. Sharing utility with others may incentivize individuals to consider
choices that are locally suboptimal but increase global reward. To illustrate our
ideas, we proposed a utility sharing variant of distributed cross entropy optimiza-
tion. Empirical results show that utility sharing increases expected individual
and global payoff in comparison to optimization without utility sharing.

We also investigated the effect of defectors participating in a CAS of sharing,
self-interested agents. We observed that defection increases the mean expected
individual payoff at the expense of sharing individuals’ payoff. We empirically
showed that the choice between defection and sharing yields a fundamental
dilemma for self-interested agents in a CAS.

5.2 Limitations

A central limitation of CE-DOS is its state- and memoryless optimization. In
our formulation of utility sharing self-interested agents optimize an individual
action and share that maximizes their utility. However, our formulation does not
account for learning decision policies based on a current state and other learning
agents. In this case, the utility of each agent would also depend on concrete
states, transition dynamics and potentially also on models agents learn about
other participants [25,26].

As there is no temporal component to the optimization problems that we
studied in this paper, it is also not possible to study the effect of gathering
wealth in our current setup. We think that the dynamics of sharing in temporally
extended decision problems may differ from the ones in stateless optimization.
For example, corresponding observations have been made for game theoretic
dilemmas, where optimal strategies change when repeating a game (in contrast
to the optimal strategy when the game is only played once) [27]. Similar research
has been conducted in the field of reinforcement learning, however not accounting
for utility sharing so far [6].
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We also want to point out that exposing shares eventually provides ground for
attack for malicious agents [8]. Albeit indirectly, exposed shares carry informa-
tion about individual utility landscapes, allowing attackers to potentially gather
sensitive information about agents’ internal motivations. Agents in critical appli-
cation domains should consider this weakness when opting to share.

5.3 Future Work

In future work, we would like to transfer our approach to temporally extended
domains and model sharing in CAS with multi-agent reinforcement learning.
Hopefully, this would enable studying sharing and the Sharer’s Dilemma in more
complex domains.

We also think that there are many interesting options for realizing sharing
besides equal distribution as formulated in Eq. 1. For example, our formulation
does not allow for bilateral shares or formation of coalitions. Also, we would be
interested to study the effect of wealth on emergent cooperation and defection.
Another interesting line would be to investigate the effects of punishment in
CAS of self-interested agents.

As an application domain, it would be interesting to exploit the duality of
planning and verification. For example, agents utility could model individual
goal satisfaction probability. Sharing could be used to increase individual and
global goal satisfaction probability in CAS.
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Abstract. Context-aware and pervasive systems are growing in the
market segments. This is due to the expansion of Internet of things (IoT)
devices. Current solutions rely on centralized services provided by servers
gathering all requests and performing pre-defined computations involv-
ing pre-defined devices. Large-scale IoT scenarios, involving adaptation
and unanticipated devices, call for alternative solutions. We propose here
a new type of services, built and composed on-demand, arising from the
interaction of multiple sensors and devices working together as a decen-
tralized collective adaptive system. Our solution relies on a bio-inspired
coordination model providing a communication platform among multi-
agent systems working on behalf of these devices. Each device provides
few simple services and data regarding its environment. On-demand ser-
vices derive from the collective interactions among multiple sensors and
devices. In this article, we investigate the design and implementation
of such services and define a new approach that combines coordination
model and reinforcement learning, in order to ensure reliable services
and expected quality of services (QoS), namely convergence of composi-
tion, of coherent result and convergence of learning. We present an IoT
scenario showing the feasibility of the approach and preliminary results.

Keywords: Reliable services · Coordination model
Collective adaptive system · Bio-inspired systems
On-demand services · Multi-agent learning · Reinforcement Learning

1 Introduction

The next generation of advanced infrastructures will be characterized by the
presence of complex networks of pervasive systems, composed of thousands of
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heterogeneous devices, sensors and actuators consuming and producing high-
volumes of interdependent data. Sensors are becoming smarter, cheaper and
smaller. They are equipped with increased memory and processing capabilities.
In this context, services span wide pervasive systems, involving a very large
number of multiple devices. The limited computing resources in sensor networks
demand a light service implementation.

Fog and edge-computing solutions [27] already challenge centralized solutions
by pushing some of the computation away from central servers and closer to the
devices themselves. There is still a need to accommodate large-scale scenarios,
to adapt to arriving or departing devices, and to ensure reliability and expected
quality of services.

Our vision to meet these requirements consists in moving to a fully decentral-
ized system, working as a collective adaptive system, with the three following
characteristics: (1) dynamic services composed and provided on-demand; (2)
such services result from the multiple interactions of the devices involved in the
production of the services and working as a decentralized collective adaptive
system; (3) use of reinforcement learning for ensuring reliability.

Coordination models [33] provide a natural solution for scaling up such sce-
narios. They are appealing for developing collective adaptive systems work-
ing in a decentralized manner, interacting with their local environment, since
the shared tuple space on which they are based is a powerful paradigm to
implement bio-inspired mechanisms (e.g. stigmergy) for collective interactions.
Coordination infrastructures provide the basic mechanisms and the necessary
middleware to implement and deploy collective adaptive systems. Therefore, our
proposal is based on a bio-inspired coordination model that ensures communica-
tion and tasks’ coordination among heterogeneous, accommodating adaptation
to continuously changing devices. It implements some rules that autonomous
entities (devices) employ to coordinate their behavior, usually following infor-
mation gathered from their local environment.

Our previous work on self-composition of services [12,13,26], also based on a
bio-inspired coordination model, exploits syntactic means only (i.e. shared key-
words for input, output types) as a basis for building on-the-fly chains of services,
out of web services, sensors’ data geographically dispersed over a city. We didn’t
consider reliability of provided services in terms of results or convergence. In this
paper, to tackle reliability, we extended the coordination model with reinforce-
ment learning, specifically tackled IoT scenarios and addressed reliability and
QoS. Section 2 discusses related works. Section 3 presents background informa-
tion on the coordination model and reinforcement learning from which our work
derives from. Section 4 presents our coordination model and its extension with
reinforcement learning (RL). Section 5 then presents our approach to compose
reliable services on-demand followed by a scenario with a practical use case in
Sect. 6. Section 7 discusses implementation and deployment, as well as current
results. Finally, we come to a conclusion and future work in Sect. 8.
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2 Related Works

Orchestration [24] is an automated arrangement, coordination, and management
of services. It relies on an orchestrator who sequentially invokes services by using
the “invoke” and “reply” function in order to provide a combined response. It
depends totally on the composition schema which means a low level of robustness
and no-fault tolerance. Choreography [25] is an interaction between multiple
services without passing by a central control. Every service executes its part of
work according to other services. They use the “send” and “receive” function to
communicate and to provide a composite service.

The static character of these traditional composition approaches has been
recently challenged by so-called dynamic service composition approaches involv-
ing semantic relations [29], and/or Artificial Intelligence planning techniques
[31]. Early works on dynamic building or composing services at run-time include
spontaneous self-composition of services [21]. One of the main challenges of these
approaches is their limited scalability and the strong requirements that they
pose on the details of service description. Evolutionary approaches such as those
based on Genetic Algorithms (GA) have also been proposed for service com-
position [7], motivated by the need of determining the services participating in
a composition that satisfies certain Quality of Service (QoS) constraints [3]. In
relation with non-functional properties, Cruz Torres et al. [10] propose to con-
trol composition of services aiming at maintaining a specified Quality of Service
of the composition (end-to-end) despite any perturbances arising in the system.
This approach uses ant colony optimization to disseminate and retrieve QoS in
an overlay network of available services, which then serve as a basis for select-
ing services in a composition. McKinley [19] proposes parameters’ adaptation
by dynamic re-composition of software during its execution, such as switching
behaviors and algorithms or adding new on-the-fly behavior. Supporting tech-
nologies include aspect-orientation, computational reflection (introspection), and
component-based design.

Coordination models have proven useful for designing and implementing dis-
tributed systems. They are particularly appealing for developing self-organizing
systems, since the shared tuple space on which they are based is a powerful
paradigm to implement self-organizing mechanisms, particularly those requir-
ing indirect communication (e.g. stigmergy). Previous coordination model are
deployed on one node (device), such as Linda [14], an early coordination model
initially designed for only one node, or distributed across several nodes such as
TuCSoN [22] based on Linda, TOTA [17] and Proto [4]. These coordination are
often inspired from nature. As said above, our previous work on self-composition
of services [12,13] relies on a bio-inspired coordination model, but exploits syn-
tactic means only to perform self-composition.

Multi-agent learning solutions are appealing since they help adapting to com-
plex and dynamically changing environments. This is particularly true for con-
current multi-agent learning where a given problem or search space is subdivided
into smaller problems and affected to different agents. Issues with concurrent
learning relate to appropriate ways to dividing feedback among the agents, and
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the risk of agents invalidating each other’s adaptation [23]. Recent work on
constructivist learning approaches, inspired from cognitive sciences, attempt at
removing pre-defined goals, avoiding objective functions [18]. Other approaches,
such as the Self-Adaptive Context-Learning (SACL) Pattern [15] involve, or each
entity (e.g. device), a set of dedicated agents collaborating to learning contexts
and mapping the current state of agents perceptions to actions and effects.

To the best of our knowledge, no approach currently combines learning, coor-
dination model, and self-composing (built on-demand) services.

3 Background Knowledge

3.1 Coordination Model

The concept of a coordination model [8] depicts the way a set of entities interact
by means of a set of interactions. A coordination model consists of : the enti-
ties being coordinated, the coordination rules, to which entities are subjected
during communication processes and the coordination media, that identifies con-
veyed data and its treatment. Our work derives from the SAPERE model [32],
a coordination model for multi-agent pervasive systems inspired by chemical
reactions [11]. It is based on the following concepts:

1. Software Agents : active software entities representing the interface between
the tuple space and the external world including any sort of device (e.g.
sensors), service and application.

2. Live Semantic Annotations (LSA): Tuples of data and properties whose value
can change with time (e.g. temperature value injected by a sensor is updated
regularly).

3. Tuple space: shared space (i.e. coordination media) containing all the tuples
in a node. There is one shared space for each node (node could be a raspberry
pi, Waspmote, etc).

4. Eco-laws: chemical-based coordination rules, namely: Bonding (for linking an
agent with a data that he referred to, was waiting for, concerns it, etc.); Aggre-
gation (for combining two or more LSAs value, such as keeping maximum,
minimum values, averaging values, filtering values, etc.); Decay or Evapo-
ration (regularly decreasing the pertinence of data and ultimately removing
outdated data); Spreading (for propagating LSAs to neighboring nodes).

3.2 Reinforcement Learning

Reinforcement Learning algorithms are machine learning algorithms for deci-
sion making under uncertainty in sequential decision problems. The problems
solved by RL are modeled among others through a Markov Decision Process
(MDP) [28]. MDP is defined as a 4-tuple

〈
S,A,R, T

〉
. It defines a set of states

S, a set of actions A, a reward function R, and a state-transition function T .
In RL, an agent is immersed in an unknown environment. The agent is then

asked to learn how to behave optimally (taking optimal actions) via a trial-and-
error process. The learning process is as follows: (i) The agent is asked to select
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an action in a given environment state; (ii) The selected action is executed
and the environment rewards the agent for taking this action using a scalar
value obtained via the reward function; (iii) The environment performs a state
transition using the state-transition function leading to a new environment state
and a new learning step. The goal of the agent is to maximize the reward it gets
from the environment by learning which action leads to the optimal reward. The
policy followed by the RL agent that drives the selection of the next action is
nothing more than a function that selects an action in a given environment state.
Mathematically, such a policy is written π(state) → action. An important aspect
of the RL learning process is called exploration vs. exploitation. Operating with
the current best choice (i.e., exploit) can capitalize on the current optimal action,
while “exploring” can discover new actions that can outperform the best choice
so far [28]. The ε-greedy and the Boltzmann exploration are popular exploration
algorithms that consider those two aspects. For a more detailed survey of RL
techniques and exploration algorithms, the reader can refer to [16].

Multi-Agent Reinforcement Learning (MARL) is an extension of the RL
framework where multiple (in contrast with the standard RL framework) agents
work in either in fully-cooperative, fully-competitive, or mixed manner [6]. In
the service composition problem, agents have to cooperate (i.e., coordinate) to
yield the most suitable results. The proposed approach is a simple mixed MARL
algorithm as the reward is not the same for all the agent for a single query [6].
Indeed, in a non-stationary problem, such as the one tackled herein, convergence
is not guaranteed as an agent’s reward depends also on the action of other agents.
However, we expect more sophisticated MARL algorithm (such as Win-or-Learn
Fast Policy Hill Climbing [6] and its variants [9]) to increase performance of our
approach. The study of such algorithms is left for future work.

3.3 QLearning

Herein, we decided to employ QLearning [30] as a RL algorithm. QLearning is
one of the most popular model-free RL algorithm. This decision has been driven
by the good performance reached by QLearning in many different fields [2,5,20]
and the wide availability of libraries that propose a QLearning implementation.
To learn the optimal policy, QLearning agents iteratively approximate Q(s, a)
(the expected reward for taking an action a in state s). Agents update the current
approximation of Q(s, a) after each learning step [28] using the expected reward
of the next greedy action. QLearning uses two parameters: α ∈

[
0, 1

]
(learning

rate) and γ ∈
[
0, 1

]
(discount factor). The approximation of Q(s, a) is used by

the agent’s exploration algorithm to drive the selection of their next actions.

4 Coordination Model with Reinforcement Learning

Our coordination model derives from the original SAPERE coordination model.
We equipped the software agents entities of the model with a Reinforcement
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Fig. 1. SAPERE Coordination Model enhanced with RL

Learning (RL) module to trigger reactions with the Live semantic annotations.
The coordination model with reinforcement learning is shown on Fig. 1.

Software agents are sensitive to LSAs being injected in the tuple space. Their
values trigger some agent’s behavior, which then starts some computation. The
result of this computation can be diverse and multiple: the agent instructs some
actuator to provide some effect in the environment (e.g. closing windows); the
agent may inject a new tuple of data in the tuple space (e.g. the average value of
temperatures); or update an LSA value (e.g. providing an updated value for noise
levels). Coordination of the different agents occurs through this indirect retrieval
and injection of property in the shared tuple space (some agents waiting for
some properties provided by other agents to start, continue or finish their work).
Such kinds of models are efficient in a dynamic open system (such as pervasive
scenario), where agents can communicate asynchronously without having global
knowledge about the system and its participants. Agents can join or leave the
system at any moment.

In our model, everything is assimilated to services: a sensor feeding data is
a service, an actuator opening/closing blinds is a service. Software agents act as
wrappers, actually providing the service on behalf of these entities. They also
serve to provide, at run-time, reliable self-composed services using reinforcement
learning. This helps to refine the returning results and ensure a given quality of
services.

As said above, agents are enhanced with a reinforcement learning module.
Spontaneous service composition, as envisaged in this paper, involves many
agents and is the result of their collective interactions. Thus, the learning mod-
ule in each agent serves to steer the collective adaptive system towards the most
meaningful or towards the correct composition of services provided by the diverse
agents (among all possible combinations) and so to avoid multiple answers, some
of which not pertinent for the requester.

In this paper, we decided to employ the ε-greedy reinforcement learning algo-
rithm [16]. This algorithm has a probability ε to select a random action and a
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probability 1− ε to select the action that maximizes the value of the approxima-
tion of Q(s, a). ε-greedy ensures a permanent exploration which is necessary in
case of erratic environment. However, a high ε value will lower the QoS, whereas
a small ε value will lower the capability of the system to adapt to changes in the
spatial services. Therefore, choosing a suitable value of ε is critical. Agents will
learn through feedback and adapt their behavior via QLearning. Each agent has
two actions to take {react, not react}. After each composition, the requester will
receive some responses and is asked to choose the right one. As it is a sequential
composition, a backward is attributed to the set of agents : {Ai},∀i ∈ {1, .., n}
where n, being the number of agents that participated to that particular service
composition. The agents will then take the action that maximize their reward.
Our model is formed by:

– States : set of properties of agent i;
– Actions : {react, not react};
– Exploration algorithm : ε-greedy;
– Q function : Q : S × a → R, where:

Qi
t+1(st, at) = Qi

t(st, at) + α × (Ri
t+1 + γ × maxa(Qi

t(st+1, a)) − Qi
t(st, at)))

∀i ∈ {1, .., n}, where n is the number of agents that have participated on the
service composition, t is the current time, st is the state at time t in which
the agent took action at, and st+1 is the next state reached by the agent after
taking action at.

Each software agent has to solve a sequential decision-making problem as each
agent has to decide whether a reaction is required regarding the partial compo-
sition schema (sequence of properties to reach the requested output type). This
is formalized as an MDP as follows:
S: The set of states is composed of all the possible combinations of composition
schemas. Herein, states are modeled as sequence of interactions (see partial com-
position schema in Fig. 4). A state is said terminal when it contains a property
that matches the output type indicated in the query.
A: The set of actions is composed of two actions: {react, not react}. For an agent,
reacting (resp. not reacting) to a partial composition schema means adding (resp.
not adding) its basic service information to the schema. Reacting consists in both
updating its LSA and completing the schema.
R: After completion of a query, the agent that submitted the original query
is in charge of selecting among all the final schemas produced by the system
the ones he wants to keep as results. The agents that have participated in at
least one selected schema are rewarded with +1, while those that have reacted
and contributed to only non selected schemas are rewarded with −1. A gradient
reward might help to avoid long schema solutions as further partial composition
schemas are less rewarded. However, sparse rewards are known to slow down
learning. Thus, a continuous reward function could be an alternative. Finally, in
RL, reward function are tricky to choose and depends on the problem.
T : The state-transition function. In the present approach, the environment starts
with the agent query. Whenever an agent reacts to a composition schema, it
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adds its basic service information to the state leading to the creation of a new
state, i.e. in addition to updating its LSA with one or more values, it updates
the composition schema. Reacting to composition schemas triggers reactions
with LSAs. The goal of each RL agent is to participate efficiently in the right
compositions in order to build the correct schemas, thus providing a reliable
service with a coherent result.

5 Service Composition

Each agent, acting as a wrapper for a device, is represented by one LSA. An LSA
specifies two sets: a set of properties that the agent provides (i.e. they correspond
to the service provided by this agent) which we note P, and a set of other services
(i.e. properties provided by other agents as services) to which the agent wants
to be alerted to (i.e. to bond), which we note S.

Both properties P and services S are provided as a set of < key : value >
pairs. An LSA has the following structure:

LSA:: == {P = [< key1 : v1 >, . . . , < keyn : vn >],
S = [< svc1 : v1 >, . . . , < svcm : vm >]}

It is important to note that: keyi are property names the agent can provide to
the system, while svcj are property names to which the agent wants to bond to,
i.e. wants to be alerted to as soon as corresponding values are injected in the
LSA space. Values vi can be of different nature:

– ∅: a value can be temporarily empty, due for instance to the Evaporation
eco-law that removes the value. This can be the case for temperature sensor
whose value is no longer valid after a certain time.

– {v}: a single value presenting the value that the agent inserts in the coor-
dination space as the service it provides. For instance, an agent working on
behalf of a temperature sensor provides the value of the temperature;

– {vi,1, . . . , vi,n}: a vector that contains a list of value such as GPS coordinates.
– a matrix that contains many lists of values such as multi-dimensional coordi-

nates.
– ∗: a special character that represents the request from the agent to bond with

the corresponding property.

Depending on how the LSA is composed and when the agent injects or updates
the LSA, we distinguish the following cases:

– LSA = {[< key1 : v1 >, . . . , < keyn : vn >]}: the LSA contains properties
only. In this case, the agent provides only an atomic service and does not
require further interaction or information with/from other agents. The agent
regularly updates the values;

– LSA = {[< svc1 : ∗ >, . . . , < svcm : ∗ >]}: the LSA contains bonding with
specified services only. In this case, the agents wish to be alerted as soon
as one or more of the properties corresponding to the specified services is
injected in the LSA space;
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– LSA = {[< key1 : v1 >, . . . , < keyn : vn >], [< svc1 : ∗ >, . . . , < svcm :
∗ >]}: an LSA injected under this form corresponds to a request for one
or more services or a self-composition of services, able to provide outputs
corresponding to property names: < svc1 : ∗ >, . . . , < svcm : ∗ >, and
provided as the result of having injected an input corresponding to property
names: < key1 : v1 >, . . . , < keyn : vn >. We consider this type of LSA, a
query LSA. It corresponds to a request for a service to be provided on-demand
through self-composition.

In this paper, we are concerned by the query case, once an agent injects a
query for a given property, how the different other agents collectively interact
by providing part of the requested service, how the whole service self-composes
and the output result is finally provided to the agent that originally injected
the query. Once an LSA is updated (e.g. with a new value), or a new LSA is
injected in the tuple space, other LSAs present in the same tuple space will
react to it, if their respective LSA specify they have to be sensitive (i.e. to bond)
to the provided properties. Figure 2 shows five agents: Agent0 to Agent4. This
example starts with Agent0 injecting a query LSA, providing an input value a
for property A, and expecting an output of type D. Each LSA in the tuple space
may then react to one or many properties. Second, LSA of Agent1 provides no
value for property of type B at the moment, but wants to be alerted to any value
injected in the system of type A (S = [< A : ∗ >]). Therefore, this LSA bonds
with the one of Agent0 (diamond arrow). Agent1 is then informed of the value
a. Upon receiving this value, Agent1 after an internal computation, provides a
value for B, say b. Figure 3 shows the unfolding of the different LSAs of this
example. The process then continues with Agent2 and Agent4 both sensitive
to property B. In turn they each update their LSAs, Agent2 with a value for
property C, let’s say c, and Agent4 for property D, let’s say d. At this point,
Agent0 is informed through bonding of the value d provided by Agent4. The
process continues with Agent3, sensitive to property C, and upon the value c,
provides the value d′ for property D. Agent0 is also informed of that value since it
bonds with any value for property D. Following this logic, services self-compose
via indirect communication between LSAs, on-demand following LSAs updates.
As shown by both Figs. 3 and 4, different compositions and results can arise
from the collective interactions of the agents. In addition to providing several
different values, some of these values may not be in relation to the original input,
even though they correspond to the output property. In Fig. 5, we have generated
random services and varied the number of agents. Each agent provides one service
in this case. The average composition schema significantly increase in number
when we increase the agents’ number. This is the reason why we enhanced agents’
capabilities with a RL module. Thus, they understand (semantically) when they
should intervene or react to an incoming LSA (or not) even when services in LSAs
matches their expected input. Indeed, collective interactions among agents do
not consider the semantics of users’ queries, thus leading to multiple responses.
Then, we add a RL module in each agent to prune non-suitable results and to
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Fig. 2. On-demand service composition

Fig. 3. Agents behavior

Fig. 4. Composition services graph



Coordination Model with Reinforcement Learning 267

provide reliable responses. Now, our problem can be modeled as a graph of states
providing different paths between graph nodes (see Fig. 4).

A composition schema is a concatenation of properties type, corresponding
to the unfolding of the services composition. We say that a composition schema
is partial when the input property is present but the output property is not yet
reached. We say that a composition schema is final when it starts with the input
property and ends with the output property.

Fig. 5. Possible composition schemas

Fig. 6. Compose on-demand service
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6 Scenarios

An on-demand service results from the collective interactions of a series of agents,
each providing a portion of the final requested service. It arises from the self-
composition of the diverse services provided by the agents at run-time. The
query is first analyzed by agents which are sensitive to the input properties. One
or many QLearning agents will check their approximated Q(s, a) and decide
to react (or not) based on their exploration algorithm. If they decide to react,
they provide the corresponding LSA and update the partial composition schema.
The process continues until the production of a terminal state which is a final
composition schema that ends with the requested property name.

A user is a human being or another system, for which an agent works
on behalf to, and that is able to provide a feedback on the provided result.
Agents learn through user’s feedback and adapt their behavior consequently.
Once a composition is completed, the user receives one or more final compo-
sition schemas and is asked to choose the right ones. A backward reward is
attributed to all agents that have participated in the service composition. To
do so, the system uses the composition schemas. Figure 6 shows a basic sce-
nario of service composition located inside a given computational node: (i) the
user starts by injecting a query asking “How much is the intensity of light on
the 4th floor?”; (ii) the user’s query is transformed into the correct format,
with a Natural Language Understanding (NLU) system, then injected into the
tuple space (see Section for more details on NLU). As a result Agent0 injects
LSA= {[< Floor : 4 >], [< Light : ∗ >]}; (iii) agents collectively interact, finally
providing two final composition schemas, one going through Agent1 and Agent2
providing the information about sensor giving the level of light in the corridor
at the fourth floor, and the sensor itself providing the value for light intensity
(Floor, Sensor, Light); a second composition schema going through a service
providing the information about a light bulb at the fourth floor, and the light
bulb itself answering it is switched off (Floor,Bulb, Light); (iv) the user then
evaluates the system’s responses by rewarding positively the schema provided
by the sensor giving the level of light, and negatively the one provided by the
light bulbs; (v) the two rewards (positive and negative) propagate back to the
agents following the two composition schemas.

Agents that have participated in a composition schema, update their LSA
with two information. First, the partial composition schema and second a
specific request for bonding with the future reward. Regarding the partial
composition, Agent0 injects a request to bond with the composition schema
< CompositionSchema : ∗ >, Agent1 injects < CompositionSchema :
Floor, Sensor >, Agent2 updates it and injects < CompositionSchema :
Floor, Sensor, Light >, while Agent3 injects < CompositionSchema :
Floor,Bulb > and Agent4 < CompositionSchema : Floor,Bulb, Light >.
Agent0 then bonds with both the results and the final composition schemas.

Regarding the rewards, agents injects a request for bonding. Agent1 injects
< FloorSensor : ∗ >, Agent2 injects < FloorSensorLight : ∗ >, while Agent3
injects < FloorBulb : ∗ > and Agent4 < FloorBulbLight : ∗ >. Once the
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user provides its rewards, it updates its LSA with as many partial schema as
the length of the schema. In this case, it will inject the following information:
< FloorSensor : +1 >, < FloorSensorLight : +1 >, and < FloorBulb : −1 >,
< FloorBulbLight : −1 >. Through bonding, the respective agents will then
collect their own reward and update their Q and R matrix. The right and left
side of Fig. 6 show the respective agents updating their Qi and Ri function based
on the received reward.

7 Implementation, Deployment and Results

We designed and deployed a smart node equipped with the coordination platform
enriched with reinforcement learning.

7.1 Implementation and Deployment

We attached to the node a set of basic services, as shown in Fig. 7. Our system
is composed of:

– Raspberry pi 3: we used Raspberry pi to host all sensors and devices.
– SAPERE middleware enriched with reinforcement learning: we deployed our

coordination model, presented above, with five agents each equipped with a
RL module as discussed in the previous sections. Each agent is ready to learn
when it should react or not.

– Z-wave controller Gen 5: we use the Z-wave protocol to ensure communication
with sensors. It uses low-energy radio waves and has a wide communication
range.

– Z-wave smart led light bulb: the bulb is used as an actuator where the light
intensity can be adjusted by the bulb.

– Multi-sensor Gen 6: This provides a continuous sensing of motion, light, tem-
perature, humidity, vibration and UV level.

– Natural Language Understanding (NLU) system: the NLU is able to extract
the correct entities and intent from different questions and provides a more
natural communication experience for a human user. An NLU system was
implemented to transform users’ questions into right query format under the
form of an LSA. We used “Rasa nlu” for intent classification and entity extrac-
tion. We wrote some questions examples and then trained the system to be
able to extract the same entities and intent from different questions. The
entities will be considered as the input property and the intent as the output
property. For instance, “How much is the intensity of light on the 4th floor?”
and “What is the light’s level on the floor number four?” will both lead to a
query LSA of the form: {[< Floor : 4 >], [< Light : ∗ >]}.

We implemented the scenario presented in Fig. 6 with four agents providing each
a set of services. In our example, Agent1 provides the corresponding sensor for a
given floor. Agent2 provides the light intensity of a given sensor. Agent3 provides
the corresponding bulb name for a given floor. Finally, Agent4 provides the light
intensity of a given bulb.
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Fig. 7. IoT node implementing our scenario

7.2 Results

Composition convergence: Our system needs to provide reliable responses.
Defining the output property’s type helps agents returning an answer for the
expected property. The collective interaction among the agents produces all the
possible composition schemas, including the right solution, when the system is
such that such a solution exists. Learning is then needed to select the right
answer among all possible answers (see Fig. 5).

Fig. 8. Learning rate

Convergence towards a correct result: Through learning, the agents pro-
gressively update their behavior by following what they have learned based on
users’ feedback. The collective adaptive system will then converge towards the
correct composition, i.e. the one actually expected by the user.

Learning convergence: It is provided through the analysis of the learning
parameters. As presented above, each agent learns the right partial schema that
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should be returned to the user. The system should converge after few users’
feedback. As shown in Fig. 8, when the learning rate α is close to 1, our system
learns faster than when α is smaller. Therefore, in our implementations we chose
a value of 0.9 for α.

These preliminary results need to be confirmed and extended in large-scale
scenarios under a vast variety of cases.

8 Conclusion

On-demand services present a new generation of services providing innovation for
the software industry. Coordination models have an impact on the forthcoming
IoT and Smart cities scenarios. In this paper, we show how agents collaborate to
compose on-demand services using RL and a bio-inspired coordination model.
This increases the quality of services in various practical applications [26]. In
the future, we will investigate large-scale scenarios, first inside a single node,
then on multiple nodes. This will permit to confirm or revisit our preliminary
results on convergence of learning and convergence towards correct results. This
will also provide a higher-level of complexity, involving other services such as
Spreading, Gradient or Chemotaxis [11]. We will focus, during service composi-
tion, on guaranteeing and maintaining non-functional properties in a distributed
network such as availability, reliability or performance. These aspects should
be calibrated dynamically. For example, the Spreading service can adapt the
distance of spreading, while the Evaporation service can adapt its evaporation
frequency. Due to the stochastic aspect of our environment, parameters need
to be adapted at run-time. Learning will adjust parameters related to service
composition depending on the requested QoS [1], such as privacy, availability or
performance.
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Abstract. Public transportation systems of different degrees and com-
plexity are widely employed in cities around the world. Well-organised
and efficient public transportation reduces traffic and the time spent
commuting to work. In addition, more people choosing public transport
rather than personal cars has a positive impact on reducing the number
of vehicles on city roads: lessening their effect on climate change, improv-
ing air quality, and reducing noise pollution. Modelling and simulation
of urban transportation systems is one way of analysing the influence
that a variety of factors have on the overall functioning of the system. In
this paper we present a Collective Adaptive Systems (CAS) model of an
urban transportation system. We compare aspects of real data collected
from a city bus system in the city of Edinburgh, UK, with the results of
simulations of the CAS model constructed in the carma language. The
simulations show results which are in good agreement with the real-world
data, leading us to believe that the model could have useful predictive
powers and thus provide an environment for experimentation with pos-
sible changes to the design of the system.

Keywords: Collective Adaptive Systems · Urban transportation
Stochastic modelling

1 Introduction

Modern urban transportation systems must be designed to have adaptive capa-
bilities built-in because they need to respond to the unexpected events and
circumstances which unfold as the delivery of the service progresses during the
working day. This is particularly the case for bus services, where timetabled
public transport must share the road network with private transport users who
publish no timetable of their journeys and commuting plans and whose use of
the road can depend on variables as diverse as the weather conditions, public
holidays, and sporting events.

Set against this backdrop of hard-to-predict capacity availability of the under-
lying network, public transportation service providers must meet local or gov-
ernmental requirements on quality-of-service as expressed through performance
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metrics such as percentiles of on-time departures or arrivals, excess waiting times,
buses-per-hour requirements, and other measures [1]. In order to meet quantita-
tive targets such as these, public transport systems must have both local (point-
of-view) and global (locus-of-control) adaptability, allowing system stakeholders
to make both micro-scale service decisions (such as bus drivers speeding up,
slowing down, or waiting at bus stops) and macro-scale decisions (such as shift
operators re-routing buses, cancelling service instances, or deploying additional
buses to cope with an unexpected surge in demand).

Human decision making is both in-the-loop within these systems, typically
making locally autonomous micro-scale decisions, and outside-the-loop, typically
making global macro-scale control decisions. Seen in this way, public transport
systems can be viewed as collective adaptive systems, where (sometimes unex-
pected) behaviour emerges from the local interactions between actors in the sys-
tem who are sharing resources when collaborating to meet common goals, even
as they may be sometimes competing over resources in their efforts to satisfy
individual priorities.

Modern smart transport systems are data-rich, making informed macro-scale
decision making possible. Each vehicle in the fleet is equipped with GPS receivers
and communications infrastructure to allow them to regularly report their loca-
tion back to a vehicle tracking system. This automatic vehicle location (AVL)
data provides anyone with access to the data with real-time oversight of the
location of each vehicle in the fleet, making it possible to design applications
which predict bus arrival times, and to compute metrics which provide statis-
tical summaries of system performance in terms of key performance indicators
which are of interest to system stakeholders.

Deeper insights into the causes of problems in service delivery can be obtained
by combining data from several independent open data sources. This combina-
tion of data sets provides a different perspective on the use of the road network,
allowing us to make a more detailed model which would not be possible if working
from a single source of data. For the model in this paper, we have combined AVL
data which was obtained from the Transport for Edinburgh company [10] with
long-run average data on traffic intensity from the Tom Tom satellite navigation
service [13]. These are two genuinely independent data sources, the real-time
vehicle location system on the buses does not provide data to the Tom Tom
network, which harvests data from their own propriety hardware installed in
private vehicles.

In order to analyse a real-world example of a problem in this domain, we
constructed a formal model of the system of interest in the modelling lan-
guage carma (Collective Adaptive Resource-sharing Markovian Agents) [5,6]
and studied it via simulation. In contrast to logic-based explicit state-space anal-
ysis approaches, such as probabilistic model-checking [2] with model-checkers
such as Storm [3] and PRISM [4], simulation provides no absolute guarantees of
correct behaviour but it scales to allow the construction of very detailed spatial
models of systems such as the location-accurate bus route which we have mod-
elled here. In contrast to blended approaches such as statistical model-checking,
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we have found using simulation directly with CARMA to be a more effective
tool for communication of results to system stakeholders, largely because of
the absence of difficult-to-understand logical characterisations of system proper-
ties, and the avoidance of the attendant formal machinery of verification-based
approaches.

2 The Carma Language

At its core, carma is a value-passing process calculus which supports both
attribute-based broadcast communication and unicast communication between
agents. Agents have defining attributes and a local store which records their cur-
rent state. Agents can perform activities either individually, or through unicast
cooperation with another agent, or through broadcast cooperation with a col-
lective of agents which is formed dynamically at run-time via attribute-based
selection. Broadcast activities are decorated with a star suffix (as in move* ) to
distinguish them from unicast activities. Agent instances can be both created
and destroyed as the simulation unfolds.

carma builds on a long tradition of work on stochastic process calculi and
incorporates ideas from the ensemble-based modelling language SCEL [7], which
in turn inspired the development of the core calculus AbC [8] which focuses on
a minimal set of primitives to describe attribute-based communication.

All activities in carma have an associated rate which limits how frequently
they can occur as time elapses during the simulation execution. Rates can be
defined by arbitrary functions which allow us to model detailed distributions of
events as determined from measurement data and other sources. Probabilistic
execution of activities can also be specified.

carma models are executed via the carma Eclipse Plug-in [9], a fully-
featured development environment for carma which provides project structure
for carma projects, a syntax-aware editor which is fully integrated into the
Eclipse platform, efficient simulators for the language, and a reporting frame-
work to provide plotting capabilities for results within the modelling platform
itself.

In addition to these analysis tools, the carma Eclipse Plug-in also provides
a data modelling layer on top of the carma process calculus. This language,
CaSL, (carma Specification Language), supplements the core process calculus
with data types such as integer, real and boolean, and data structures such as
arrays and records. The addition of this data modelling layer on top of the core
process calculus facilitates type-checking and static analysis of models which
leads to detection and correction of errors in models in a way which is not
possible in untyped process calculi.

The modelling advantages of having this additional expressive power in the
language do not necessarily become obvious when working with smaller exam-
ple models, but its benefits become clear when working with larger and more
complex models, especially those which need to be maintained and updated over
time. We have found this facility to be invaluable for catching modelling errors



Data-Driven Modelling and Simulation of Urban Transportation Systems 277

on several occasions and we believe that the added clarity which the model has
through the use of data types and data structures makes it easier to explain to
other stakeholders in the project, some of whom are not experts in process calculi
and formal languages.

3 Carma Model

3.1 Locations

Coordinate System. In our model, we use locations extracted from the real
data provided to us by Transport for Edinburgh. The Transport for Edinburgh
API represents a location by its geographical latitude and longitude. In order
to reduce computation time when working with location datasets, we decided
to translate these to the Universal Transverse Mercator (UTM) system. In this
system a location is given by the tuple (easting, northing, UTM zone number,
UTM zone letter). Easting and northing coordinates are equivalent to x and y
coordinates on a plane, and the origins of the x and y axes depend on the UTM
zone number. In our model we are considering only the city of Edinburgh. It lies
in a single UTM zone (30U). This means that we do not need to take the zone
number into account when performing computations. The easting and northing
values give us enough information to process the data.

In the rest of this paper we refer to the easting and northing values as the
x and y coordinates. (It should be noted that when applying this modelling
technique to a different city one needs to take into account the possibility that
the considered area lies in more than one UTM zone.)

The easting and northing coordinates are expressed in the units of metres,
and so are all the distances in the presented paper, unless stated otherwise.

Data Types. Each location in the model is represented by the tuple (id,x,y).
The id of a location is a unique identifier of a given location.

In the data from the Transport for Edinburgh API, locations are represented
using latitude and longitude values from a continuous domain, as the buses move
continuously and a given bus can be found using GPS at any location at the time
of sampling. In our model, we represent movement as sequences of steps between
discrete locations. These consist of locations of bus stops as well as any number
of points on the way between two adjacent stops.

Looking up Data Inside the Model. The location data within the model is usually
requested in the same sequence as a bus would traverse these points on its jour-
ney. For example, if a given model contains only those locations that represent a
stop, each Bus entity would attempt to look them up one by one in the order in
which they appear on that particular service’s timetable. For this reason we map
the original bus stop unique identifiers from the API sourced data into a different
set of unique identifiers associated with a particular carma model name-space



278 N. Zon and S. Gilmore

domain. In this way, we can ensure that for each service, the identifiers of loca-
tions which the bus is due to traverse, are represented by incrementing integers.
This means that, conveniently, if a given bus is currently at the location with
id==i, its next location has the identifier id==i+1.

Records in carma are indexed, and in our model the index represents the
id of a given location. There are two records, x and y, for storing the x- and y-
coordinate values of each location.

3.2 Departures

In our model, new Bus components need to be instantiated with a rate that
reflects the departures of buses from the initial stop in the real data. A common
pattern shared by the timetables shows buses departing less frequently in the
morning and evening hours, and more frequently during the day, however the
exact pattern of departures differs from service to service.

In the carma system, we model the departure timetables using a function
which returns a transition rate for triggering an action that results in instantiat-
ing a new Bus component at a starting location. This rate should be dependent
on the time of the day in a way that reflects the data in the timetables.

In order to obtain the rate of transition for the Bus component instantiation,
we will use a function that returns the period of bus departure occurrences given
a certain time of the day. This function is calculated from the list of departure
times on a timetable (there is a timetable for every given day of the week, service
and destination).

One way to calculate an approximate value of the period of bus departure
events, is to look at the differences between consecutive bus departures in a
certain range of time around the time for which the period is being calculated.
For example, when calculating the frequency of bus departures at 12 am, we
take a mean of the time differences between consecutive buses departing between
9 am and 3 pm.

Another approach is to calculate a weighted average of the differences
between bus departure times, with the weight being proportional to the time
difference between the considered departures and the time of sampling. For
example, when calculating the frequency of bus departures at 12 am, we take
into account all of the time differences between consecutive buses that can be
calculated from the available data. However the closer their time is to 12 am, the
higher the weight associated with their value when calculating the average. In
other words, this formula is a weighted average of differences between consecutive
bus departure events and the weight is the distance [in the unit of time] between
the average value of the two departures whose difference we are calculating, and
the point of sampling.

The comparison of the two methods described above is presented in Fig. 1.
The graph is based on the timetables of two stops which are the starting locations
of service number 5 to Hunter’s Tryst. The early morning departures start at
Brunstane, while the rest of departures start at The Jewel. The vertical lines
represent actual departure times, as sampled from the timetables.
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Fig. 1. The period of bus departures per time of day calculated using a simple average
over 3 h, and using the weighted average method.

In the simulation results presented later in this paper, we used a model based
on the period function generated using the weighted average method.

3.3 Movement

Changing Locations. In the presented model, a Bus is a carma component
having two states, “ON ROAD” and “AT STOP”. The state graph representing
its behaviour is shown in Fig. 2.

Fig. 2. The internal state diagram of the Bus component.

In the “ON ROAD” state, the Bus component can perform a transition which,
depending on the value of the predicate expression, has two possible outcomes:

– the Bus component updates its store to reflect its new location; or
– the Bus component is removed from the system.

In the carma model this is represented by two actions, “move*” and “finish*”.
Performing either of them results in exiting the “ON ROAD” state. If the “move*”
action is triggered, the bus enters the “AT STOP” state. In the other case, the
bus has reached its destination, and the component is removed from the system.
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In this manner, each of the Bus components traverses a number of locations
on its route, until arriving at the destination. The continuous nature of movement
of real-world vehicles is modelled using this step-based discrete approach.

When in the state AT STOP, the Bus component needs to perform the
handleStop action in order to transition to the ON ROAD state. This action
simulates the additional waiting time a bus takes when passengers are leaving
and boarding. This transition’s rate depends on the kind of location the bus is
currently at. When in this state, the bus component can be in one of the two
situations:

– the current location in the store is a stop
– the current location in the store is a point on the route but not a stop.

If the location is just a point on the route and not a bus stop, the action has a
fast rate, which means its delay time can be ignored and we may assume that
it is triggered instantaneously. In the other case, the rate has a constant value
which reflects the waiting time.

Speed. The average speed at which a bus is moving is modelled by adjusting
the rates of the “move*” and “handleStop*” actions of the Bus component in the
carma system.

The rate of the “move*” action depends on the distance between the current
and next location as well as the current value of traffic. The “handleStop*” action
has a constant rate, but it only results in delays in locations which are stops.

3.4 Limitations of the Carma Implementation

Because of the limitations that the syntax of CASL imposes on defining mea-
sures, the data obtained for the analysis couldn’t be extracted directly from
the carma simulation in the usual way. Each carma model for the purpose of
simulation is translated to the Java programming language. This is done auto-
matically, each time a carma file is saved in the Eclipse IDE.

One set of data that is not directly available through CASL, is the exact
values of store variables of all components in the system, at any given time. In
CASL, it is only possible to define measures that return the average, minimum or
maximum from the set of sampled values. In order to obtain the complete data,
sampled at each step of the simulation, the generated Java project was post-
processed to save the following information, after each Bus component performs
an action:

– bus identifier
– current time
– bus start time
– bus current location (x, y)

This post-processing was performed automatically using Python scripts (avail-
able for download at [12]).
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4 Application of the Model

4.1 Real World Data Source

The Transport for Edinburgh company [10] has provided us with access to the
REST API that can be used to obtain data gathered from their bus system. The
data used for the purpose of this research is relevant to the routes, timetables
and live vehicle locations of bus services provided by Lothian Buses [11], a bus
operator within the Transport for Edinburgh company. The data consists of
JSON-formatted text files which can be requested from the following endpoints:

– stops (the latest information on bus and trams stops served by Transport for
Edinburgh [10], including fields such as name of the stop, available services,
destinations, and its geographical location)

– services (the information on each available service’s name, destination,
routes, and stops)

– timetables (the full timetable information per stop, including the list of
services with corresponding departure times)

– journeys (the list of expected stops and corresponding departure times for
a given service leaving from a particular start stop at a particular time and
arriving at a particular destination point)

– stop-to-stop timetables (timetables in the form of journeys between two
stops which share a route, for a requested time)

– service status (up-to-the-minute information about disruptions affecting
services in real time)

– live vehicle locations (real time information on the position of currently
active vehicles)

The comprehensive documentation can be found at https://tfe-opendata.
readme.io/.

Locations and Points on Routes. The objects ascribed location values are
either bus stops or points on the route. The points on the route are included
to preserve the shape of the bus route, which, when reconstructed using only
stop locations may be missing important information such as road turns. In this
paper the term “points on routes” is used to collectively refer to bus stops as
well as other points the route whose locations are included in the Transport
for Edinburgh API data. In the API data, each location is represented by its
geographical latitude and longitude.

Bus Stops. Apart from their locations, bus stops have been additionally given
a unique identifier and a name, for example “Shandwick Place”.

Services. The services API endpoint provides information about all the exist-
ing services - including their names, destinations, and routes.

https://tfe-opendata.readme.io/
https://tfe-opendata.readme.io/
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Live Vehicle Locations. The live vehicle locations endpoint of the Transport
for Edinburgh Open Data API provides snapshots of the bus system at the
time of request. This information includes the geographical location of all the
currently active buses, as well as the next stop on their journey.

4.2 Traffic

The Tom Tom Traffic Flow [13] service is a service provided by the Tom Tom
company, dedicated to providing traffic information in a number of large cities
around the world. The service offers live traffic data as well as historic traffic
data gathered from Tom Tom GPS devices in vehicles on roads.

The traffic data is available in the following three formats:

– Live Traffic Level: a measure of traffic level per time, expressed as a percent-
age, and described on the service website [13,14] as “Indication of the current
severity of traffic congestion on monitored roads in the city area compared
to the normal expected congestion level. Includes highways, major roads and
minor roads.”

– Live Traffic Speed: a measure of the average vehicle speed in the unit of
km/h, per time. The service also provides a value of “optimal speed”, that is
the average speed of vehicles when no traffic is present.

– Live Traffic Reports: provides information on the causes of increased conges-
tion, classified into three categories: roadworks, jams and closures.

In our model, we used the data from the Live Traffic Speed service, as pre-
sented in Fig. 3. To lessen the probability that an incident (roadwork, closure)

Fig. 3. The average speed of a vehicle in The City of Edinburgh, expressed as a frac-
tion of the optimal speed. The data shows a congestion peak at 9 am and a smaller
congestion peak at 5 pm. On that particular day, the optimal vehicle speed was equal
to 25.5 mph (41 km/h), represented by 1.0 on the graph above.
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not included in the simulation would affect the results, we used data from a day
in which all the causes of increased congestion were categorised as “jams” in the
Live Traffic Reports service.

4.3 Instance of the Model: Service Number 5 to Hunter’s Tryst

In order to create an instance of the model, we used data collected from buses
on the route of Lothian Buses’ service number 5 to Hunter’s Tryst, using the
weekday timetables (that is, excluding Saturdays, Sundays and Bank Holidays).

This route has 124 points on routes, 58 of which are stops.
We applied the same measures to the data obtained from the Lothian Buses

API and from the simulation of our carma model.
We compare the real-world data with the model using the number of active

buses per time of day. This measure depends on two aspects of the system:

– the frequency at which new buses are introduced into the system
– the length of time a bus remains in the system.

In this case, both of these characteristics are time-dependent and at the same
time independent of each other.

The results obtained from the simulation correspond well to the real-world
data. The greatest disagreement can be observed in the initial stage of the system
evolution (morning hours). This discrepancy may be explained by the artefacts
of the real data: many vehicles that are to start their service only later in the
day appear as active in the system as soon as the GPS mechanism is switched
on. In the presented graphs we removed the buses that appear as active before
the first departure time of the timetable, however further and more selective
data cleaning needs to be performed to eliminate this inconsistency in the later
morning hours.

An interesting observation can be made about the influence of the traffic on
the number of active buses. In the simulation instance without traffic (i.e. the
speed depends only on the distances), shown in dark blue in Fig. 4, the number
of active buses is underestimated in the time ranges 9:00 am–11:30 am, 4:00
pm–9:00 pm and overestimated between 2:00 pm and 3:00 pm. In the simulation
with traffic (shown in dark red), the trend seems to be reversed for the time
ranges 9:00 am–11:30 am and 2:00 pm–3:00 pm. This means that if the influence
of traffic was smaller by a particular amount, the simulation would fit the data
with greater accuracy. The reason for the traffic to have a smaller influence on
buses, than it has on other vehicles (those equipped with Tom Tom GPS devices,
which are the source of the traffic information) is probably the fact that buses
can travel along privileged bus lanes. If we assume that a majority of vehicles
used by Tom Tom for data gathering do not travel in such lanes, this discrepancy
can be explained by the lower average speed of those vehicles than that of buses.

Between 7:45 pm and 12:00 am the inclusion of traffic seems to have a neg-
ligible effect on the simulation, and the active buses count is underestimated by
both simulation instances in the time range 7:30 pm–9:30 pm.
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Fig. 5. The average journey length for each pair of bus stops on the route arriving at
the destination stop between 5:30 pm and 6:30 pm. Panel (A): real data, panel (B):
simulation, panel (C): absolute difference between data and simulation.

In the last time segment, both simulation instances seem to align with the
real-data results very well.

An hour long snapshot of the system taken between 5:30 pm and 6:30 pm
can be seen in Fig. 5. The x and y axes represent bus stops, which are indexed
with integers, and sorted by the order they appear along the route. The colour of
each pixel represents the average journey time from the stop designated by the
x-axis value to the stop designated by the y-axis value. The striped pattern of
discontinuities, which can be observed on all plots, are more pronounced in the
simulation results. This is because they are the results of accumulated delayed
or early departures of a bus from consecutive bus stops on the journey. In real
life, when a bus arrives at the stop too early, the driver waits until the timetable
departure time before continuing, minimising the overall value of headway. In
this simulated model that mechanism was not represented. For this reason, we
can observe that on some journeys, the duration times have been shifted for all
consecutive arrival stops.

5 Conclusions

In this paper we applied the recently-created carma process calculus to model
an urban transportation systems. The challenges of this technique originate from
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the continuous nature of the real-world data being represented in a discrete and
stochastic modelling environment. The patterns one might expect to observe
when viewing the system from a high-level and simplified perspective, are often
distorted by numerous factors that influence the real-world data. For this reason,
a stochastic model will always be an abstract interpretation of the considered
system. The challenge therefore is to extract a generic paradigm that can describe
a given instance with a satisfiable accuracy, while at the same time remaining
applicable to a range of other instances.

The simulations based on the presented modelling approach result in patterns
which are in good agreement with those observed in the real data. An interesting
feature of the Transport for Edinburgh transportation system which emerged
from comparing the data with simulation, is the fact that traffic influences buses
to a lesser extent than other vehicles (presumably because of the existence of
bus lanes).

This good agreement between simulation results produced by the model and
real-world behaviour means that experiments with the model can be used to
effectively evaluate potential modifications to the real-world system, or to check
the accuracy of other descriptions, as in [15].
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Abstract. The attribute-based interaction paradigm has been proposed
as an appropriate tool to program the interactions of Collective Adaptive
Systems where a group of components can interact according to their
run-time properties and the environment they operate in. It has been
shown that the novel paradigm is very expressive by means of encoding
other well-known interaction paradigms. However, the question on the
tradeoff between its expressiveness and its efficiency, when implemented
to program distributed and collective systems, is still to be answered. In
a previous work, we proposed three distributed communication infras-
tructures to handle message exchange for the attribute-based paradigm
and we proved their correctness. In this paper, we describe an actual
implementation of these infrastructures in Google Go. We describe an
attribute-based programming API, named GoAt, that is parametric with
respect to the infrastructure that mediates the interaction between com-
ponents and an Eclipse plugin for GoAt to program in a high-level syn-
tax which can be automatically used to generate formally verifiable Go
code. Finally, we discuss the performance of the API by considering a
non-trivial case study.

1 Introduction

Attribute-based communication [6] is a new interaction paradigm that has been
proposed to mitigate the shortcomings with existing interaction paradigms when
dealing with Collective-Adaptive Systems (CAS). The paradigm offers high level
interaction primitives that are specifically designed to program the interactions
of CAS at a reasonable level of abstraction. In essence, it permits a group of
partners to collectively interact by considering their run-time properties. Com-
munication takes place anonymously in an implicit multicast fashion without a
prior agreement between the interacting partners. This means that rather than
agreeing on a specific name or channel to interact, partners are selected according
to their satisfaction of specific predicates. This anonymity of interaction allows
programmers to secure scalability, dynamicity, and open-endedness more easily.

A kernel calculus, named AbC [2], for attribute-based communication has
been proposed. The idea is to permit the construction of formally verifiable
CAS systems by relying on a minimal set of interaction primitives. AbC ’s
primitives abstract from the underlying coordination infrastructure (i.e., they
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 288–303, 2018.
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are infrastructure-agnostic). In AbC , components anonymously interact and
exchange messages based on mutual interests. Message transmission is non-
blocking while reception is not. Each component has a set of attributes to rep-
resent its run-time status. Communication actions (both send and receive) are
decorated with predicates over attributes that partners have to satisfy to make
the interaction possible. The interaction predicates are also parametrised with
local attribute values and when such values change, the interaction groups may
change, and thus introducing opportunistic interactions between components.

The AbC calculus proved to be very powerful in terms of encoding other
well-known interaction paradigms, like channel-based [12], group-based [8], and
publish/subscribe-based [13]. However, the question on the trade-off between
its expressiveness and its efficiency, when implemented to program distributed
and collective systems, is still to be answered. Some centralised implementations
have been proposed in [3,11], but any centralised solution may not scale with
CAS dynamics and thus becomes a bottleneck for performance. A distributed
approach is definitely preferable for large systems. However, the correctness of
the overall behaviour of distributed solutions is often not obvious especially when
the order of message delivery is important (which is the case for AbC ).

One solution is to rely on existing protocols for total-order broadcast to
handle message exchange. However, these protocols are mostly centralised [10]
or rely on consensus [22]. Centralised solutions have always scalability and effi-
ciency problems, while consensus approaches are not only inefficient [22] but also
impossible in asynchronous systems in the presence of even a single component’s
failure [14]. Consensus algorithms also assume that components know each other
and can agree on a specific ordering. However, this contradicts the main design
principles of the AbC calculus where anonymity and openendedness are crucial
factors. Since AbC components are agnostic to the infrastructure, they cannot
participate in establishing a total ordering. Thus, we need an infrastructure that
guarantees total ordering seamlessly and without involving the interacting com-
ponents.

In [5], we have developed a theoretical foundation for three distributed coor-
dination infrastructures for message exchange and proved their correctness with
respect to the original semantics of AbC [2]. The main contribution of this paper,
is the actual implementation of these infrastructures and the evaluation of their
performance by means of a non-trivial case study. We implemented the three
infrastructures in Google Go [1] because we believe that Go is more appropriate
to deal with CAS due to its clean concurrency model. In essence, we provide
an Attribute-based API for Go, named GoAt with the goal of using the AbC
primitives to program the interaction of CAS applications directly in Go. The
actual implementation of GoAt fully relies on the formal semantics of AbC and
is parametric with respect to the infrastructure that mediates interactions. We
provide a one-to-one correspondence between the AbC primitives and the pro-
gramming constructs of GoAt. We also provide an Eclipse plugin for GoAt to
permit programming in a high-level syntax which can be analysed via formal
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methods by relying on the operational semantics of AbC . Once the code has
been analysed, the GoAt plugin will generate formally verifiable Go code.

The rest of this paper is structured as follows: In Sect. 2, we present the
GoAt API and its main features. In Sects. 3 and 4, we show how to program
a distributed graph colouring algorithm in GoAt and we briefly comment on
the Eclipse plugin while in Sect. 5, we provide a performance evaluation of the
infrastructures by measuring the execution time of the graph colouring algo-
rithm. Finally, in Sect. 6 we conclude our work, discuss future directions, and
briefly discuss related works.

2 A Go Attribute-Based Interaction API

GoAt is a distributed programming API for supporting attribute-based interac-
tion directly in Google Go [1,19]. Go is a new programming language, developed
by Google to handle the complexities of networked systems and massive compu-
tation clusters, and to make working in these environments more productive. It
supports concurrency and inter-process communication through a compact set
of powerful primitives and lightweight processes, called goroutines.

Go has an intuitive and lightweight concurrency model with a well-
understood semantics. It extends the CSP model [15] with mobility by allowing
channel-passing, like in π-calculus [18]. However, channel-passing in Go is pos-
sible only locally between goroutines. Go also supports buffered channels with
a finite size. When the buffer size is 0, goroutines block execution and can only
communicate by means of synchronisation. Otherwise, channels behave like mail-
boxes in Erlang which is, however, actor-based [4], and for interaction, it relies
on identities rather than on channels.

The generality and the clean concurrency model of Go make it an appropriate
language for programming CAS. Thus, we integrated attribute-based interaction
in Go via the distributed GoAt API to move the mobility of Go concurrency to
the next level. In what follows, we present the API syntax and describe the actual
implementation of the distributed coordination infrastructure in Google Go.

2.1 The Programming Interface

The main programming constructs of the GoAt API are reported in Fig. 1. A
component is the main building block of a GoAt system; each component con-
tains a set of processes, defining its behaviour, and a set of attributes, defining
its run-time status and contextual data. A GoAt system consists of a collec-
tion of GoAt components and is called Herd. Components execute in parallel
and exchange messages only through message passing. In Fig. 1, Part 1, we show
how to define a GoAt component, connect it to an infrastructure, and manipulate
its attribute values. The method NewComponent(Agent,Environment) takes an
infrastructure agent Agent, an attribute environment Environment and creates a
GoAt component. Components are parametric with respect to the infrastructure
that mediates their interactions and the programmer needs only to connect to an
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Fig. 1. The GoAt API.

existing infrastructure’s agent. Currently three types of infrastructures are sup-
ported, namely Cluster, Ring, and Tree. An infrastructure’s agent can take three
different constructors depending on the type of infrastructure in use. The agent
takes as input the network address of the infrastructure being used and serves as
an interface between a GoAt component and the communication infrastructure.
For this reason, the syntax of a GoAt component is completely “data-centric”
in the sense that components exchange messages only based on mutual inter-
ests and are completely unaware of the network addresses of each other. The
attribute environment of a component is defined as a map from attribute iden-
tifiers to their values. The attributes of a component can be retrieved and set
via the methods Comp(attribute) and Set(attribute, value) respectively. In Fig. 1,
Part 2, the method Start is used to assign a behaviour to a GoAt component and
also to start its execution. This method takes a finite number of parallel pro-
cesses ... Process and execute them within the scope of the current component.
Notice that the code inside the Start method represents the actual behaviour of
a component.
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The generic behaviour of a GoAt process is implemented via a Go function
as reported in Fig. 1, Part 3. This function takes a reference to a GoAt process
and executes its commands. Notice that beside GoAt commands, which will be
explained later, the usual loop and branching statements of Go can also be used.
Furthermore, in Fig. 1, Part 4, we define the available GoAt commands.

The main communication actions, send and receive, are implemented via
Send(Tuple,Predicate) and Receive(acceptfunc(attr ∗ Attributes,msgTuple)bool)
respectively. The send method communicates a tuple of values, Tuple, to com-
ponents whose attributes satisfy the predicate Predicate. The receive method
accepts a message and passes it to a boolean function that checks if it satis-
fies the receiving predicate of a component. We also provide two other versions
of the send action: a side-effect send SendUpd and a guarded side-effect send
GSendUpd. The former has immediate attribute updates once executed and the
latter can also be guarded by a predicate Guard that blocks the execution until
the guard is satisfied.

The Spawn method is used to dynamically create new processes and execute
them in parallel with the main process at run time. The method Call(Process)
implements a process call. The awareness operator, implemented via the meth-
ods WaitUntilTrue(Predicate), blocks the execution of a process until predicate
Predicate is satisfied. The non-deterministic choice of several guarded processes
are implemented via the method Select(cases ...selectcase). This method takes a
finite number of arguments of type selectcase, each of which is composed of an
action guarded by a predicate and a continuation process as shown in the syntax
of a case. When the guarding predicate of one branch is satisfied, the method
enables it and terminates other branches. Finally in Fig. 1, Part 5, the predicates
Equals,And, Belong, and Not correspond to =, ∧, ∈ and ¬ respectively. Other
standard predicates are also available.

2.2 A Distributed Coordination Infrastructure

The semantics of the AbC calculus states that a component can interact with
others by performing a one-to-many send operation. The group addressed by
the message is determined by the predicates on both the sender and the receiver
sides. Only components that satisfy the sending predicate and are interested in
the content of the message will receive it. Otherwise they will just discard the
message and stay unchanged. Send and receive operations might have immedi-
ate side effects by updating local attribute-values. The original semantics of AbC
assumes atomic message-exchange and a message is delivered to all parallel com-
ponents in a single step. Once the message is delivered to all components running
in parallel, it is the responsibility of individual components to use or discard
the message. Message transmission is non-blocking, but reception is blocking.
For instance, a component can still send a message even if there is no receiver
(i.e., all the targeted components discard the message); a receive operation can,
instead, only take place through synchronisation with an available message. The
full operational semantics of AbC can be found in [2]. These semantics relies on



GoAt: Attribute-Based Interaction in Google Go 293

synchronisation, and abstracts from an underlying coordination infrastructure.
However, any reasonable implementation need to be asynchronous.

In this section, we consider a Go implementation of three distributed coor-
dination infrastructures for managing message exchange of the GoAt API. We
will refer to them as cluster, ring, and tree infrastructures. These infrastructures
model faithfully the parallel composition operator of the AbC calculus. Our app-
roach consists of labelling each message with an id that is uniquely determined at
the infrastructure level. Components execute asynchronously while the seman-
tics of the parallel composition operator is preserved by relying on the unique
identities of exchanged messages. In essence, if a component wants to send a mes-
sage, it sends a request to the infrastructure for a fresh id. The infrastructure
replies back with a fresh id and then the component sends a data message (the
actual message) labeled with the received id. A component receives a message
only when the difference between the incoming message’s id and the id of the
last received message is 1. Otherwise the message is added to the component
waiting queue until the condition is satisfied.

The projection of a GoAt system with respect to a specific component is
reported in Fig. 2. It mainly consists of three parts: the component part, the
agent part, and the infrastructure part. The agent provides a standard inter-
face between a GoAt component and the underlying coordination infrastructure
and mediates message-exchange between them. Actually, the agent hides the
details of the infrastructure where the component is connected and separates
the behaviour of a component from that of the underlying coordination infras-
tructure.

Fig. 2. A Component interface to a GoAt system

In what follows, we will describe the implementation details and the dynamics
of our distributed coordination infrastructures.



294 Y. Abd Alrahman et al.

The Component. As reported in Fig. 2, a GoAt component consists of a
behavioural part represented by its running processes and an interface to deal
with the infrastructure’s agent connected to it. The interface consists of three
entities: the Input handler, the Msg dispatcher, and the Msg ID handler. The
Input handler is used to collect all incoming messages from the infrastructure’s
agent, forward reply messages to the Msg ID handler, and forwards the rest to
the Msg dispatcher.

The Msg dispatcher stores a message until all messages with less id have been
sent/delivered. Once this condition is satisfied, the Msg dispatcher forwards the
message to a process. If it accepts, the message is considered to be delivered;
otherwise, the Msg dispatcher forwards the message to another process. The
procedure continues until either the message is accepted by some process or all
processes have rejected the message. In both cases, the message is considered
to be delivered and the new id is notified to the Msg ID handler. It should
be noted that any changes to the attribute environment during the decision
of accepting or rejecting the message can be only committed if the message is
accepted, otherwise they will be rolled-back.

Furthermore, when a process wants to send a message, it requests a fresh id
from the Msg ID handler. The handler forwards the request to the infrastruc-
ture’s agent. While the process is waiting to send its message, it will reject any
dispatched messages. Once a reply message with a fresh id is received, the Msg
ID handler will forward it to the process only when all messages with less id
have been sent/delivered. The process can now manipulate the attributes envi-
ronment and send a new message to the Msg ID handler which will forward it
to the infrastructure’s agent. All attribute updates are committed and the msg
dispatcher is notified about the new id.

The Coordination Infrastructures. These infrastructures are responsible for
forwarding messages to components and also for issuing fresh message ids. Each
kind of infrastructure consists of a set of server nodes that are logically connected
in a specific way and collaborate to deliver sent messages to all connected com-
ponents except for the sender. The implementation details of each infrastructure
are reported below:

– Cluster Infrastructure. The cluster infrastructure consists of a registration
node and a set of servers sharing a counter node and an input queue. A GoAt
component needs to register itself through its own infrastructure’s agent to
the cluster. The agent contacts the registration node which will forward its
network address to all cluster’ servers. The agent forwards its component mes-
sages to the input queue of the cluster. A cluster server gets a message from
the input queue which acts as a synchronisation point. If the message is a
request for a fresh id, the server asks for a fresh id from the counter node and
sends a reply back to the requester; otherwise the message is forwarded to all
agents connected to the cluster except for the sender. This kind of infrastruc-
ture is a straightforward generalisation of a centralised implementation where
only a single server is responsible for forwarding and sequencing messages.
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– Ring Infrastructure. The ring infrastructure consists of a registration node
and a set of servers sharing a counter node. The difference here is that each
server has its own input queue and is responsible for a group of agents in the
infrastructure. Also the ring servers are organised in a logical ring. Upon reg-
istration, an agent is only registered to one server (a parent) in the ring. This
server will be the only interface for the agent to interact with the infrastruc-
ture. The fact that agents are assigned to specific servers allows us to re-use
the same TCP connection. This would avoid unnecessary delays caused by
re-establishing the connection every time a message is exchanged. The agent
forwards its component messages to the input queue of its parent server. A
ring server gets a message from its input queue: if it is a request message, the
server asks for a fresh id from the counter node and sends a reply back to the
requester, otherwise the message is forwarded to all agents directly connected
to this server except for the sender. The message is also forwarded to its
neighbour in the ring. When a server receives a message from its neighbour,
it will accept the message only when its id is greater than the id of the last
message processed at this server, otherwise the message is discarded.

– Tree Infrastructure. The tree infrastructure consists of a registration node
and a set of servers organised in a logical tree. The unique root of the tree
is the only server that is responsible for generating fresh message ids. As the
case with the ring, each server is responsible for a group of agents and has its
own input queue. The agent forwards its component messages to the input
queue of its parent server. The server gets a message from its input queue: if
it is a request message and the server is the root of the tree, the server assigns
it an id and sends a reply back to the requester, otherwise the server forwards
the message to its own parent until the message reaches the root. Every time
a request message traverses a server, it records its address in a linked list to
help trace back the reply to the original requester with a minimal number
of messages. If the server receives a reply message, it will forward it to the
address on top of the message’s linked list storing the path. Finally, if a data
message is received, it will be forwarded to all connected agents and servers
except for the sender.

3 Case Study: A Distributed Variant of Graph Colouring

In this section we show how to use the programming constructs of the GoAt
API to program a distributed variant of the graph colouring algorithm [16] in
an intuitive and easy way. We render the problem as a typical CAS scenario
where a collective of agents, executing the same code, collaborate to achieve a
system-level goal without any centralised control.

The problem consists of assigning a colour (an integer) to each vertex in a
graph while avoiding that two neighbours get the same colour. The algorithm
consists of a sequence of rounds of colour selection. At the end of each round at
least one vertex is assigned a colour. A vertex, with identity id. uses messages of
the form (“try”, c, r, id) to inform its neighbours that at round r it wants to select
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colour c and messages of the form (“done”, c, r, id) to communicate that colour
c has been definitely chosen at the end of round r. At the beginning of a round,
each vertex selects a colour and sends a try-message to all of its neighbours N.
A vertex also collects try-messages from its neighbours. The selected colour is
assigned to a vertex only if it has the greatest id among those that have selected
the same colour in that round. After the assignment, a done-message (associated
with the current round) is sent to neighbours.

Each vertex can be rendered as a GoAt component where the behaviour of
a component is defined as the interleaving behavior of four co-located processes
F, T, D and A. Process F forwards try-messages to neighbours, T handles try-
messages, D handles done-messages, and A is used for assigning a final colour.
The overall algorithm can be realised by running all GoAt components (repre-
senting the vertices of the graph) in parallel.

The attribute environment of a vertex relies on the following attributes to
control the behaviour of a vertex: The attribute “round” stores the current
round while “used” and “constraints” are sets, registering the colours used by
neighbours and possible conflicting colours respectively. The attribute “counter”
counts the number of try-messages collected by a component while “send try”
is used to enable/disable forwarding of messages to neighbours. Attribute
“assigned” indicates if a vertex is assigned a colour while “colour” is a colour
proposal. Finally, attributes id and N are used to represent the vertex id and
the set of neighbours, respectively. These attributes initially have the following
values: round = 0, constraints = used = ∅, send = tt, and assigned = ff. It should
be noted that new values for these attributes can only be learnt by means of
message exchange among vertices.

Below, we describe the local behaviour of a single GoAt component. To avoid
verbosity, we omit all auxiliary functions, but we comment on their behaviour.

Process F, reported below, proposes a colour. If a vertex is not assigned a
colour and the value of attribute send try is true, the process sends a try mes-
sage to its neighbours identifying them by the predicate Belong(goat.Comp(“id”),
goat.Receiver(“N”)). The try message contains a try label, the proposed colour,
the current round, and the id of this vertex. The proposed colour is the smallest
colour that has not yet been selected by neighbours (not in used). The function
Evaluate(minColorNot, goat.Comp(“used”)) is used to propose a colour. As side
effects, the attribute colour is assigned the new colour and the attribute send try
is set to false.

1 func processF(proc ∗goat.Process) {
2 for {
3 proc.GSendUpd(goat.And(goat.Equals(goat.Comp(”assigned”), false),

goat.Equals(goat.Comp(”send try”), true)), goat.NewTuple(”try”, goat.Evaluate(minColorNot,
goat.Comp(”used”)), goat.Comp(”round”), goat.Comp(”id”)), goat.Belong(goat.Comp(”id”),
goat.Receiver(”N”)),

4 func(attr ∗goat.Attributes){
5 attr.Set(”colour”, minColorNot(attr.GetValue(”used”)))
6 attr.Set(”send try”, false) })
7 }}
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Process T deals with try-messages of the form (“try”, y, z, tid) as mentioned
before. If the current round equals the round attached in the message z then
the received message has been originated by another component performing the
same round of the algorithm and we have two cases (Lines 12–19). The first case
is executed when the id of the vertex is greater than the id of the message tid,
i.e., the sender has an id smaller than the id of the receiver. In this case, the
message is ignored (there is no conflict), simply the counter of received messages
is incremented. In the second case, the received colour is recorded to check the
presence of conflicts. The value of y is added to constraints and the counter is
incremented by 1. If z is greater than the current round, as in (Lines 21–32), then
the received message has been originated by a component executing a successive
round and two possible alternatives are considered (thisId > tid or thisId < tid).
In both cases, round is set to z, send try and counter are updated accordingly,
and constraints is set to the value of y if thisId < tid.

1 func processT(proc ∗goat.Process) {
2 for {
3 proc.Receive(func(attr ∗goat.Attributes, msg goat.Tuple) bool{
4 if msg.IsLong(4) && msg.Get(0) == ”try” {
5 y := msg.Get(1)
6 z := msg.Get(2).(int)
7 tid := msg.Get(3).(int)
8
9 thisRound := attr.GetValue(”round”).(int)

10 thisId := attr.GetValue(”id”).(int)
11
12 if thisRound == z {
13 if thisId > tid {
14 attr.Set(”counter”, attr.GetValue(”counter”).(int) + 1)
15 return true
16 } else if thisId < tid {
17 attr.Set(”counter”, attr.GetValue(”counter”).(int) + 1)
18 attr.Set(”constraints”, add(attr.GetValue(”constraints”), y))
19 return true
20 }
21 } else if thisRound < z {
22 if thisId > tid {
23 attr.Set(”round”, z)
24 attr.Set(”send try”, true)
25 attr.Set(”counter”, 1)
26 attr.Set(”constraints”, goat.NewTuple())
27 return true
28 } else if thisId < tid {
29 attr.Set(”round”, z)
30 attr.Set(”send try”, true)
31 attr.Set(”counter”, 1)
32 attr.Set(”constraints”, goat.NewTuple(y))
33 return true
34 }
35 }
36 }
37 return false
38 })}}

Process D, below, is used to receive done-messages of the form
(“done”, y, z, tid) where y is the assigned colour, z is the attached round, and
tid is the sender id. These are sent by components that have reached a final
decision about their colour. We have two cases: either the attribute round is < z
or ≥ z. In both cases, the used colour is registered in used and the counter done
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is incremented. However, In the second case, private attributes are updated to
indicate the startup of a new round (z).

1 func processD(proc ∗goat.Process) {
2 for {
3 proc.Receive(func(attr ∗goat.Attributes, msg goat.Tuple) bool{
4 if msg.IsLong(4) && msg.Get(0) == ”done” {
5 if attr.GetValue(”round”).(int) < msg.Get(2).(int) {
6 attr.Set(”round”, msg.Get(2))
7 attr.Set(”constraints”, goat.NewTuple())
8 attr.Set(”send try”, true)
9 attr.Set(”counter”, 0)

10 }
11 attr.Set(”done”, attr.GetValue(”done”).(int) + 1)
12 attr.Set(”used”, add(attr.GetValue(”used”), msg.Get(1)))
13 return true
14 } else {
15 return false
16 }})}}

Process A, reported below, is used to assign a final colour to a vertex. It
can only be executed when messages from neighbours (which are not assigned
colours) have been received and no conflict has been found (i.e., the colour is
neither in used nor in constraints). When the above conditions are satisfied, mes-
sage (“done”, colour, round + 1, id) is sent to neighbours, the attribute Assigned
is set to true, and the process terminates.

1 func processA(proc ∗goat.Process) {
2 proc.GSendUpd(goat.Equals(goat.Evaluate(canAssign, goat.Comp(”counter”), goat.Comp(”N”),

goat.Comp(”done”), goat.Comp(”colour”), goat.Comp(”constraints”), goat.Comp(”used”)),
true), goat.NewTuple(”done”, goat.Comp(”colour”), goat.Evaluate(inc, goat.Comp(”round”)),
goat.Comp(”id”)), goat.Belong(goat.Comp(”id”), goat.Receiver(”N”)),

3 func(attr ∗goat.Attributes){attr.Set(”assigned”, true)})
4 }

4 The Eclipse Plugin for GoAt

In this section, we would like to briefly comment on the Eclipse plugin we have
developed for GoAt. The main goal of the GoAt plugin is to permit programming
in a high-level syntax (i.e., the syntax of the original calculus AbC ).

Fig. 3. The GoAt plugin

This syntax can be then analysed via formal meth-
ods by relying on the operational semantics of the AbC
calculus. Once the code has been analysed, the GoAt
plugin will generate formally verifiable Go code. In this
paper, we focus on the implementation part and we will
consider verification tools for future works.

Figure 3 shows the project explorer of a GoAt plugin
project. The source folder src consists of two main files:
the infrastructure file with .ginf extension and the
system file with .goat extension. The infrastructure file
is used to create an infrastructure which can be of three
types: cluster, ring, and tree. We also support local concurrency. The system file
contains the actual GoAt specifications and a reference to the infrastructure that
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mediates the interaction between GoAt components. Once these files are saved,
the GoAt plugin automatically generates Go code in the src-gen folder. We
plan to integrate, in the near future, formal tools and rely on static analysis to
inspect GoAt specifications before code generation.

Below, we show how Process F in Sect. 3 would be written using the Eclipse
plugin. Clearly, the syntax is clean and less verbose which helps the modellers
to focus on the problem they are trying to solve rather than worrying about
complicated syntactic constructions.

process F {
loop{

if(comp.send try && !comp.assigned)
send{”try”, minFeasibleColor(comp.used), comp.round, comp.id}@(comp.id in receiver.N)[
comp.send try := false,

comp.colour := minFeasibleColor(comp.used)];
}}

Other examples can be found in the WebPage1 of GoAt. There, we also show
how to program a complex and sophisticated variant of the well-known problem
of Stable Allocation in Content Delivery Network (CDN) [17] using the GoAt
plugin. We show that although our solution is more open and less-restrictive,
the complexity of our solution is still comparable to the original one adopted by
Akamai’s CDN; one of the largest distributed systems available.

5 Performance Evaluation

In this section, we evaluate the performance of the GoAt coordination infrastruc-
tures by measuring the execution time of the case study introduced in Sect. 3.
However, since it is very difficult, if not impossible, to perform statistical analysis
on real distributed systems when the number of involved participants is large,
like in the scenarios considered in this section, we model our infrastructures in
terms of Markov processes [20] and evaluate their performance. More detailed
evaluation where stress tests are used to measure how the infrastructures per-
form can be found in [5]. There we measure the average-message delivery time
and also the throughput and we consider some simple scenarios to measure the
performance at steady-state. Here the focus is on evaluating the performance
when more complicated scenarios are considered.

We consider the state of a Markov process to represent possible infrastruc-
ture configurations, while the transitions (that are selected probabilistically) are
associated with events on messages. We consider three types of events: a new
message sent by a component; a message transmitted from a server to another
in the infrastructure; a message locally handled by a node (i.e. removed from an
input/waiting queue). Each event is associated with a rate that is the parameter
of the exponentially distributed random variable governing the event duration.
We have developed an AbC simulator2 and we performed various experiments
to study the performance of our infrastructures.
1 The GoAt API:https://giulio-garbi.github.io/goat/.
2 The simulator: https://github.com/giulio-garbi/AbCSimulator vertex.

https://giulio-garbi.github.io/goat/
https://github.com/giulio-garbi/AbCSimulator_vertex
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Fig. 4. The execution time of graph colouring.

To perform the simulation we need to fix three parameters: the component
sending rate λs; the infrastructure transmission rate λt; and the handling rate
λh. In all experiments, we fix the following values: λs = 1.0, λt = 15.0, and
λh = 1000.0 and we rely on kinetic Monte Carlo simulation [21].

We consider infrastructure configurations with 31 server nodes and we con-
sider graphs of 62, 155, 217, 279, and 310 vertices. We run the simulation which
computes the average execution time needed to compute a solution of the graph
colouring scenario. The simulation results of all graphs are reported in Fig. 4.

The results suggest that when the size of the graph (i.e., the number of
vertices) is small, all infrastructures almost have a similar performance. However,
as we increase the size of the graph, the results show drastic changes. Notice
that increasing the number of vertices in a graph also implies that the number
of exchanged message will increase proportionally because more vertices will
participate in the colour selection. Clearly, as the size of the graph increases the
cluster diverges while the ring and the tree infrastructures still have comparable
performance. Of course, the tree still has less execution time and it is (∼ 7)
times faster than the cluster and (∼ 1.5) times faster than the ring. So, clearly
the tree infrastructure exhibits the best performance while the cluster one is the
worst.

The cluster’s performance degrades drastically when the number of vertices
increases and this is not the case for the ring or the tree. The confidence intervals
also get tighter as we go from the cluster to the ring and the tree. This indicates
less variability of samples around the mean and thus more accurate results.
On the other hand, the confidence intervals of the cluster are loose and show
higher variability around the mean. Actually, the main reason why the cluster’s
performance degrades is that in the cluster all server nodes share the same input
queue while in the tree and the ring each server node has its own queue. So when
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the number of messages increases the size of the input queue of the cluster grows
proportionally while the load is distributed on different input queues in the ring
and the tree. Thus, as the number of messages grows very high, the input queues
of the ring and the tree will be filled with messages to be delivered concurrently
while the cluster will still deliver messages in its input queue almost sequentially.

We can conclude that the cluster infrastructure can be useful for moderate-
sized systems while the ring and the tree ones are more appropriate for large
and geographically distributed systems.

6 Concluding Remarks and Related Work

We developed a programming API, named GoAt, to exploit the main interaction
primitives of the AbC calculus directly in Go. The actual implementation of the
API fully relies on the formal semantics of AbC and is parametric with respect
to the coordination infrastructure that manages the interaction between com-
ponents. Actually, we provided a one-to-one correspondence between the AbC
primitives and the programming constructs of GoAt. We used the GoAt API to
program a distributed variant of the graph colouring problem and commented
about the simplicity of its use. We have developed three distributed coordina-
tion infrastructures to support distributed programming and we evaluated their
performance by measuring the execution time of a graph colouring scenario.
The simulation results showed that while the ring and the tree infrastructures
have comparable performances, the cluster infrastructure does not perform well
when the number of interacting components becomes large. We also developed
an Eclipse plugin for GoAt to permit programming in a high-level syntax which
is less verbose and helps programmers to focus on the problem they want to
solve rather than worrying about complicated syntactic constructions.

We consider the tools that we have developed so far as a starting point
for integrating formal tools that analyse the GoAt plugin code and ensure that
it satisfies specific properties before code generation. We also plan to enhance
the implementation of our infrastructures by considering fairness and reliabil-
ity issues. We would like also to consider the challenging problem of verifying
collective properties of GoAt code.

We conclude this paper by relating our work to existing approaches. For
implementations of attribute-based interaction, we refer to the Java-based [3]
and the Erlang-based [11] implementations. As we mentioned before, these imple-
mentations are centralised while we are aiming at distributed ones. For imple-
mentations of total order broadcast protocols, we would like to mention (1) the
fixed sequencer approach [10], (2) the moving sequencer approach [7], and (3)
the privilege-based approach [9]. The first approach is centralised and relies on
a single sequencer of messages. We can consider our cluster infrastructure as a
natural generalisation of this approach where instead of a single server, many
servers collaborate to deliver messages. The second approach is similar to our
ring infrastructure with the only exception that the role of the sequencer is
transferred between the ring servers. This is achieved by circulating a specific
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token between ring servers. However, the liveness of this approach depends on
the token and fairness is hard to achieve if one server has a larger number of
senders than the other servers. Finally, the third approach relies on consensus
between components to establish a total order. As mentioned before, consensus-
based approaches are not suitable for open systems and they are hard to achieve
in case of component failures.
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Abstract. DR-BIP is an extension of the BIP component framework
intended for programming reconfigurable systems encompassing various
aspects of dynamism. A system is built from instances of types of com-
ponents characterized by their interfaces. The latter consist of sets of
ports through which data can be exchanged when interactions take place.
DR-BIP allows the description of parametric exogenous interactions
and reconfiguration operations. To naturally model self-organization and
mobility of components, a system is composed of several architecture
motifs, each motif consisting of a set of component instances and coor-
dination rules. The use of motifs allows a disciplined management of
dynamically changing coordination rules. The paper illustrates the basic
concepts of DR-BIP through a collection of four non-trivial exercises
from different application areas: fault-tolerant systems, mobile systems
and autonomous systems. The presented solutions show that DR-BIP is
both minimal and expressive allowing concise and natural description of
non-trivial systems.

Keywords: Architectural motifs · Components
Reconfigurable systems

1 Introduction

Modern computing systems exhibit dynamic and reconfigurable behavior. They
evolve in uncertain environments and have to continuously adapt to changing
internal or external conditions. This is essential to efficiently use system resources
e.g. reconfiguring the way resources are accessed and released in order to adapt
the system behavior in case of faults or threats, and to provide the adequate
functionality when the external environment changes dynamically. In particular,
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mobile systems are becoming important in many application areas including
transport, telecommunications and robotics.

There exist two complementary approaches for the expression of dynamic
coordination rules. One respects a strict separation between component behav-
ior and its coordination. Coordination is exogenous in the form of an archi-
tecture that describes global coordination rules between the coordinated com-
ponents. This approach is adopted by numerous Architecture Description
Languages (ADL) (see [8] for a survey). The other approach is based on endoge-
nous coordination by explicitly using primitives in the code describing the behav-
ior of components. Most programming models use internalized coordination
mechanisms. Components usually have interfaces that specify their capabilities
to coordinate with other components. Composing components boils down to
composing interfaces. This approach is usually adopted with formalisms based
on process calculi, such as [1,10–12].

The obvious advantage of endogenous coordination is that programmers do
not have to explicitly build a global coordination model. Consequently, the
absence of such a model makes the validation of coordination mechanisms and
the study of their underlying properties much harder. Exogenous coordination
is advocated for enabling the study of the coordination mechanisms and their
properties. It motivated the development of 100+ ADLs [16].

There exists a huge literature on architecture modeling reviewed in detailed
surveys classifying the various approaches and outlining new trends and needs
[8,9,15–17,19,22]. However, there is currently no clear understanding about how
different aspects of architecture dynamism can be captured. We consider that
the degree of dynamism of a system can be characterized as the interplay of
dynamic change in three independent aspects.

– The first aspect requires the ability to describe parametric system coordi-
nation for arbitrary number of instances of component types. For example,
systems with m Producers and n Consumers or Rings formed from n identical
components.

– The second aspect requires the ability to add/delete components and manage
their interaction rules depending on dynamically changing conditions. This is
needed for a reconfigurable ring of n components e.g. removing a component
which self-detects a failure and adding the removed component after recovery.
So adding/deleting components implies the dynamic application of specific
interaction rules.

– The third aspect is currently the most challenging. It meets in particular, the
vision of “fluid architectures” or “fluid software” [22] which entails a virtual
computing experience allowing services to seamlessly roam and continue their
activities on any available device or computer. Applications and objects live
in an environment which is conceptually an architecture motif. They can be
dynamically transported from one motif to another.

Supporting migration of components allows a disciplined management of dynam-
ically changing coordination rules. For instance, self-organizing systems may
adopt different motifs to adapt their behavior to meet a global property.
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The paper proposes the Dynamic Reconfigurable BIP (DR-BIP) framework,
which encompasses all these three aspects of dynamism. DR-BIP is an exten-
sion of BIP [3,4]—a framework encompassing rigorous design captured as the
interplay of behavior, interaction and priorities for static systems—and Dy-
BIP [7]—a former extension for handling dynamic interactions. DR-BIP follows
an exogenous approach respecting the strict separation between behavior and
architecture. It directly embraces multiparty interaction [6]. It characterizes a
dynamic architecture as a set of interaction rules implemented by connectors
and a set of configuration rules. Although it does not allow ad hoc dynamism,
it directly covers all kinds of dynamism at runtime [8]: programmed dynamism,
adaptive dynamism, and self-organizing dynamism. It provides support for com-
ponent/motif creation and removal at runtime. In addition, it directly supports
component migration from one motif to another. It supports both programmed
and triggered reconfiguration as defined in [9]. The big advantage of using motifs
is that when a component joins a motif, its interactions with other components
are dictated by both its behavior and the interaction rules in its new motif. So,
a motif is a “world” where components live and from which they can migrate
to join other “worlds” [22]. DR-BIP shares the same conceptual framework with
DReAM [13], which uses an extension of interaction logic with data transfer and
reconfiguration. The main difference with DR-BIP is the possibility to express
coordination as a conjunction of constraints.

The paper is organized as follows. Section 2 provides a brief overview of the
key DR-BIP concepts, namely architectural motifs and motifs-based systems.
Section 3 presents DR-BIP models and execution results for use case systems
exhibiting different degrees of dynamism. Finally, Sect. 4 presents conclusions
and future work directions.

2 DR-BIP Overview

The DR-BIP framework is designed to cover the practical needs for the design
of dynamic systems, and therefore, fulfill specific requirements for rigorous mod-
eling and analysis. It allows to:

– specify architectural constraints/styles, i.e. define architectures as parametric
operators on components guaranteeing by design specific properties,

– describe systems with evolving architectures, i.e. define system architecture
that can be updated at runtime using dedicated primitives,

– support separation of concerns, i.e. keeping separate the component behavior
(functionality) from the system architecture to avoid blurring the behaviors
with information about their execution context and/or reconfiguration needs,

– provide sound foundation for analysis and implementation, i.e. rely on a
well-defined operational semantics, leveraging on existing models for rigor-
ous component-based design.
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2.1 Motifs for Dynamic Architectures

In DR-BIP, a motif is the elementary unit used to describe dynamic architec-
tures. A motif encapsulates (i) behavior, as a set of components, (ii) interaction
rules dictating multiparty interaction between components and (iii) reconfigu-
ration rules dictating the allowed modifications to the configuration of a motif
including the creation/deletion/migration of components.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1. Motif Concept

Reconfiguration rules

Map H

when |B| ≤ 10
do x := B.create(C,idle),

n:=H.extend(), D(x) := n

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) D(x2)
sync x1.out x2.in

b3

Fig. 2. Motif Example

Motifs are structurally organized as the deployment of component instances
on a logical map as illustrated in Fig. 1. Maps are arbitrary graph-like structures
consisting of interconnected positions. Deployments relate components to posi-
tions on the map. The definition of the motif is completed by two sets of rules,
defining interactions and reconfiguration actions of the following generic forms:

interaction-rule ::= reconfiguration-rule ::=
sync-rule-name(formal-args) ≡ do-rule-name(formal-args) ≡

[ when rule-constraint ] [ when rule-constraint ]
sync interaction-ports do reconfiguration-action+

[ interaction-guard →
interaction-action+ ]

Both sets of rules are interpreted on the current motif configuration. Formal-
args denotes (sets of) component instances and defines the scope of the rule.
Rule-constraint defines the conditions under which the rule is applicable. Con-
straints are essentially boolean combinations on deployment and map constraints
built from formal-args. An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (interaction-guard) and the associated
interaction actions (interaction-action). The guard and the action define respec-
tively a triggering condition and an update of the data of components partici-
pating in the interaction. Finally, a reconfiguration rule defines reconfiguration
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actions (reconfiguration-action) to update the content of the motif. Such actions
include creation/deletion of component instances, and change of their deploy-
ment on the map as well as change of the map itself, i.e. adding/removing map
positions and their interconnection.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

...

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Reconfiguration rules

Fig. 3. Motif-based System Concept

Figure 2 illustrates the proposed motif concept for describing a dynamic ring
architecture. Three components b1, b2, b3 are deployed into a three-position
circular map. Given the deployment function D, the interaction rule reads as
follows: for components x1, x2 deployed on adjacent nodes D(x1) �→ D(x2) con-
nect their ports x1.out and x2.in

1. This rule defines three interactions between
the components namely {b1.out b3.in}, {b3.out b2.in}, and {b2.out b1.in}. The
reconfiguration rule allows to extend the ring by adding one more component.
The rule is applicable as long as the number of component instances |B| is
less than 10. When executed, a new component x is created with initial state
idle (x := create(C, idle)), a new node n is added to the circular map H
(n := H.extend()) and the component x is deployed on the node n (D(x) := n).

The reason for choosing maps and deployments as a mean for structuring
motifs is their simplicity. On one hand, maps and deployments are common
concepts, easy to understand, manipulate and formalize. On the other hand,
they adequately support the definition of arbitrarily complex sets of interactions
over components by relating them to connectivity properties (neighborhood,
reachability, etc.). Moreover, maps and deployments are orthogonal to behav-
ior. Therefore they can be manipulated/updated independently and they also
provide a very convenient way to express various forms of reconfiguration. Both
maps and deployments are implemented as dynamic collections of objects, with
specific interfaces, in a similar way to standard collection libraries available for
standard programming languages.
1 The dot operator is used interchangeably to access a component’s port/data, and

to access a motif’s components/deployment/map, and to apply primitives over a
motif’s deployment/map.
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2.2 Motif-Based Systems

Several types of motifs may be defined separately by specifying the types of
hosted components, parametric interactions and reconfiguration rules. Then,
systems are described by superposing a number of motif instances of certain
motif types. In this manner, the overall system architecture captures specific
architectural/functional properties by design.

Systems are defined as collections of motifs sharing a set of components as
depicted in Fig. 3. Each motif can evolve independently of the others, depending
only on its internal structure and associated rules. Furthermore, several motifs
can synchronize all together to jointly perform a reconfiguration of the system.
Coordination between motifs is therefore possible either implicitly by means of
shared components or explicitly by means of inter-motif reconfiguration rules.

The inter-motif reconfiguration rules allow joint reconfiguration of several
motif instances. They also allow two additional types of actions, respectively
creation and deletion of motif instances, and exchanging component instances
between motifs.

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 4. An example: system reconfigurations

Figure 4 provides an overall
view on the structure and evo-
lution of a motif-based system.
The initial configuration (left)
consists of six interacting com-
ponents organized using three
motifs (indicated with dashed
lines). The central motif con-
tains components b1 and b2 con-
nected in a ring. The upper
motif contains components b1,
c1, c2, c3, with b1 being con-
nected to all others. The lower motif contains connected components b2, c4.
The second system configuration (in the middle) shows the evolution following a
reconfiguration step. Component c3 migrated from the upper motif to the lower
motif, by disconnecting from b1 and connecting to b2. The central motif is not
impacted by the move. The third system configuration (right) shows one more
reconfiguration step. Two new components have been created b3 and c5. The
central motif now contains one additional component b3, interconnected along
b1 and b2 forming a larger ring. Furthermore, a new motif is created containing
b3 and c5.
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2.3 Execution Model

b b

m

m

α
Interaction

Reconfiguration ρ

Behavior

Configuration

Fig. 5. Reconfiguration vs Interaction Steps

The behavior of motif-based
systems in DR-BIP is defined
in a compositional manner.
Every motif defines its own set
of interactions based on its local
structure. This set of interac-
tions and the involved compo-
nents remain unchanged as long
as the motif does not execute a
reconfiguration action. Hence in
the absence of reconfigurations, the system keeps a fixed static architecture and
behaves like an ordinary BIP system. The execution of interactions has no effect
on the architecture. In contrast to interactions, system and/or motif reconfigura-
tions rules are used to define explicit changes in the architecture. However, these
changes have no impact on components, i.e. all running components preserve
their state although components may be created/deleted. This independence
between execution steps is illustrated in Fig. 5.

Our prototype implementation of DR-BIP includes a concrete language to
describe motif-based systems and an interpreter (implemented in JAVA) for the
operational semantics. The language provides syntactic constructs for describing
component and motif types, with some restrictions on the maps and deployments
allowed2. The interpreter allows the computation of enabled interactions and
(inter-motif) reconfiguration rules on system configurations, and their execution
according to predefined scheduling policies (interactive, random, etc.).

3 Four Exercises

We present hereafter four exercises for programming dynamic reconfigurable sys-
tems. We provide tentative solutions using the DR-BIP formalism and evaluate
their performance at executing dynamically changing configurations.

3.1 Dynamic Token Ring System

b2
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b5
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b1

b3

b6in out

out out
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outout
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in
in

in
in

in

in

busy

idle

D

H

B

C

Fig. 6. Dynamic Token Ring

A token ring consists of two or more
identical components interconnected
using uni-directional communication
links according to a ring topology.
A number of tokens are circulating
within the ring. A component is busy
when it holds a token and idle oth-
erwise. A component can do spe-
cific internal actions depending on
2 Maps are restricted to simple graphs

e.g., chain, cyclic, star.
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its state, busy or idle. It can receive a token from the incoming link only its
idle and send its token on the outgoing link only when its busy. A token ring is
dynamic if idle components are allowed to leave the ring at any time leaving at
least two components in the ring. and new idle components are allowed to enter
the ring at any time (as long as the maximal allowed ring size is not reached).
A token ring system consists of one or more, pairwise disjoint, token rings. A
token ring system is dynamic if every ring is dynamic, and moreover, two rings
are allowed to merge into a single one provided their overall size is not exceeding
the maximal allowed ring size.

The behavior of component instances and the structure of the ring motif are
graphically illustrated in Fig. 6. The map H is a ring of locations, i.e. an instance
of a circular linked list type. The deployment D assigns components to locations
in a bijective manner.

Interactions are defined by the rule sync-ring-inout(x1, x2 : C), which con-
nects the out port of a component x1 to the in port of the component x2 deployed
next to it on the map. The motif reconfiguration is defined by two rules. The rule
do-ring-insert creates a new component in the ring. The rule do-ring-remove(x :
C) removes an idle component x from the ring, provided it contains more than 2
components. Finally, the inter-motif reconfiguration rule do-ring-merge merges
two ring instances y1, y2 into a single ring, whenever their sets of component
instances are disjoint and together do not exceed 10.

sync-ring-inout(x1, x2 : C) ≡ when D(x1) �→ D(x2)
sync x1.out x2.in

do-ring-insert() ≡ do x := B.create(C, idle), n := H.extend(), D(x) := n
do-ring-remove(x : C) ≡ when |B| ≥ 3 ∧ x.idle

do n := D(x), B.delete(x), H.remove(n)
do-ring-merge(y1, y2 : Ring) ≡ when y1.B ∩ y2.B = ∅ and |y1.B| + |y2.B| ≤ 10

do B = y1.B ∪ y2.B, D = y1.D ∪ y2.D, H = merge-cycle(y1.H, y2.H),
create(Ring, (B, H, D)), delete(y1), delete(y2)

Note that we use specific map primitives init, extend, remove, merge-cycle
to respectively initialize, extend by one new location, remove one location and
merge two cyclic maps. The map predicate · �→ · denotes the connection relation
between locations.

Figure 7 illustrates the execution of a dynamic ring system initialized with
10 ring motifs, each having 2 component instances. At each step, either an inter-
action or a reconfiguration (either within a motif or an inter-motif reconfigura-
tion) is randomly executed. We remark that the number of ring motif instances
decreases along the execution as idle components are removed and rings are
enabled to merge into a single ring. The number of component instances varies
across the execution between 6 and 20 as the do-ring-insert and do-ring-remove
reconfiguration rules are executed.

Figure 8 summarizes the execution of the dynamic ring system for different
initial configurations. We evaluate the performance and track the system evolu-
tion while varying the number of initial rings from 10 to 100. Each configuration
is simulated for 1000 random steps. As the system grows in size and the com-
putation of enabled interactions and reconfigurations gets more complex, the
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Fig. 7. Dynamic ring system evolution across 1,000 steps
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Fig. 8. Dynamic token ring system measurements - the x-axis indicates the number of
rings in the initial configuration. The meaning of y-axis is indicated at the top

execution time increases reaching a maximum of 14 s (first plot). The average
ratio of the number of executed interactions vs reconfigurations along the run is
around 0.45 (second plot). Finally, the minimum and maximum number of motif
and component instances are depicted in the third and fourth plots.

3.2 Dynamic Multicore Task System
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Fig. 9. Multicore Task System

A multicore task system consists of
a fixed n × n grid of interconnected
homogeneous cores, each executing
a finite number of tasks. Every task
is either running or completed; run-
ning tasks may execute on the asso-
ciated cores and get eventually com-
pleted. The load of a core is defined
as the number of its associated tasks,
both running and completed. A mul-
ticore task system is dynamic if the
overall number of tasks and their
allocation to cores may change over
time. More specifically, new running tasks may enter the system at the core c11
and completed tasks may be withdrawn from the system at the core cnn. More-
over, any task is allowed to migrate from its core to any of the neighboring cores
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(left, right, top or bottom) in the grid, provided the load of the receiving core is
smaller than the load of the departing core minus some constant (K).

Figure 9 presents the overall structure of the motif-based system for four
cores. We distinguish two types of atomic components, namely Task and Core.
Multiple cores are interconnected together in a motif of type Processor. The
interconnecting topology reflects the platform architecture (e.g., a 2 × 2 grid in
the figure) and is enforced using a similar grid-like map and deployment. An
additional CoreTask motif type is used to represent every core with its assigned
tasks.

The interactions in the system are defined within the CoreTask motif. The
execution of a task by the core and the task completion are represented by the
rules:

sync-coretask-exec(x1 : Core, x2 : Task) ≡ sync x1.work x2.exec
sync-coretask-fin(x : Task) ≡ sync x.fin

The migration of a task from one core to another is modeled using an inter-motif
reconfiguration rule which involves three distinct motifs. A task x3 migrates from
motif y1 (of type CoreTask) to motif y2 (of type CoreTask) if the core x1 of y1 is
connected to the core x2 of y2 (according to the processor motif Processor) and
if the number of tasks in y1 exceeds the number of tasks in y2 by constant K:

do-migrate(y1, y2 : CoreTask, y3 : Processor, x1, x2 : Core, x3 : Task) ≡
when 〈 y1 : x1 ∈ B 〉 ∧ 〈 y2 : x2 ∈ B 〉 ∧ 〈 y3 : D(x1) �→ D(x2) 〉 ∧

|y1.B| > |y2.B| + K ∧ x3 ∈ y1.B
do y2.migrate(x3), y1.delete(x3)

To simplify notations in reconfiguration rules, we rely hence forth on sandwiching
constraint/guard/action with angle brackets to specify the scope. For example
〈y1 : x1 ∈ B〉 is a constraint stating that x1 is a component instance in motif y1.

0 1,000 2,000 3,000

5

10

15

20
c11

c33

c12c21

c13
c22c31
c23c32

c11 c12 c13
c21 c22 c23
c31 c32 c33

Fig. 10. Task load across 3000 steps

Figure 10 illustrates the execu-
tion of the dynamic multicore task
system with 3 × 3 cores for 3000
steps. Each core is initialized with a
random load between 1 and 20. The
constant K is set to 3, hence tasks
are allowed to migrate to neighbor-
ing cores (left, right, top or bot-
tom) that differ in task load by at
least 3 tasks. The cores c11, and
c33 are used to respectively create
new tasks and withdraw completed
tasks. These two cores retain the
maximum and minimum load. As
tasks migrate, the task load of cores
converges and balances along the
execution having at most a differ-
ence of 3 tasks between neighbor-
ing cores. For example, in core c21
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the task load increased from 6 to 14. As expected the cores (c21, and c12) clos-
est to c11 maintain a high load and as we move away from c11 the core’s load
gradually decreases. This highlights the task migration process cascading from
the top left core to the bottom right core.

Figure 11 illustrates the evolution of the dynamic multicore task system for
different initial configurations. We vary the number of cores in the processor
from 4 to 36 cores. Each core is initialized with a random load as discussed
above. The system initial size varies between 46 and 482 component instances
as depicted in the figure. Each configuration is simulated for 1000 random steps.
As the number of cores increases in size the execution time increases reaching
a maximum of 7.3 s. The motif instance count remains constant across each
configuration, however the component instance count varies as tasks are being
created and deleted once completed. Also note that the average ratio of executed
interactions vs reconfigurations is 0.7, since the task load converges to a similar
value across cores and less task migrations (i.e. reconfigurations) are required.
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Fig. 11. Dynamic multicore task system measurements - the x-axis indicates the num-
ber of motifs in the initial configuration (i.e. n2 + 1 for n = 2, 3, 4, 5, 6). The meaning
of y-axis is indicated at the top

3.3 Autonomous Highway Traffic System

This exercise is inspired from autonomous traffic systems for automated high-
ways [5]. The system consists of a single-lane one-way road where an arbitrary
number of autonomous homogeneous self-driving cars are moving in the same
direction, at different cruising speeds. Cars are organized into platoons, i.e.
groups of cars cruising at the same speed and closely following a leader car.
Platoons may dynamically merge or split. A merge takes place if two platoons
are close enough, i.e. the distance between the tail car of the first platoon and
the leader car of the second is smaller than some constant K. After the merge,
the speed of the new platoon is set to the speed of the first platoon. A platoon
may split when an arbitrary car requests to leave the platoon e.g., in order to
perform some specific maneuver. After the split, the leading platoon will increase
its speed by 2% whereas the tail platoon will reduce its speed by 2%.



Exercises in Dynamic Reconfigurable System Programming 315

...

move

Platoon

......
Platoon

Road

speed

...ci ci+1 cj

split

setSpeed

Car

setSpeed

ack split

move getSpeed

split

move
pos = pos + v · Δt

getSpeed

setSpeed ack split
v = v · 1.02

[...] split
v = v · 0.98

Fig. 12. Automated Highway Traffic System

Figure 12 illustrates the
motif-based system in DR-
BIP. We use a compo-
nent type Car to model the
behavior of a car. Each car
maintains its position pos
and speed v. The position
pos is updated on the move
transition. Transitions set-
Speed and ack split are used
by leader cars only to
respectively define the pla-
toon speed and acknowl-
edge a platoon split. Sim-
ilarly, transitions getSpeed
and split are used by fol-
lower cars only to respectively synchronize on the leader speed and initiate a
platoon split.

The Road motif type contains all cars without additional structuring. The
Platoon motif type is structured as a chain of cars. The map of the platoon motif
is a (dynamic) linear graph of locations and the deployment assigns a single car
to every position of the map. The Road motif defines a single interaction by the
rule sync-road-move, which synchronizes the move ports of all cars and therefore
performing a joint update of their positions. The Platoon motif defines several
interactions by the rules sync-platoon-speed and sync-platoon-split. The first rule
synchronizes the speed of the leading car with the speed of all follower cars. The
second rule allows any follower car to initiate a split maneuver and become a
leader in a newly created platoon.

sync-road-move(X : Car) ≡ when X=B sync X.move
sync-platoon-speed(x : Car, X : Car) ≡ when X=B \ x ∧ D(x) = H.head

sync x.setSpeed X.getSpeed do X.v = x.v

sync-platoon-split(x1, x2 : Car) ≡ when D(x1) = H.head ∧ x1 �= x2

sync x1.ack split x2.split

Two reconfiguration rules do-platoon-merge and do-platoon-split handle the
merging and the splitting of platoons respectively:

do-platoon-merge(y1, y2 : Platoon, x1, x2 : Car) ≡
when 〈y1 : D(x1) = H.tail〉 ∧ 〈y2 : D(x2) = H.head〉 ∧ |x1.pos −x2.pos| < K
do B := y1.B ∪ y2.B, H := append(y2.H, y1.H), D := y1.D ∪ y2.D,

create(P, (B, H, D)), delete(y1), delete(y2)
do-platoon-split(y : Platoon, x : Car) ≡

do 〈y : H1 := H.sublist(0, D(x)), B1 := D−1(H1), D1 := D.restrict(H1),
H2 := H.sublist(D(x), H.length), B2 := D−1(H2), D2 := D.restrict(H2) 〉,
create(P , (B1, H1, D1)), create(P , (B2, H2, D2)), delete(y)

Note that we use specific map primitives head, and tail which point to the position
of the leader and tail of a platoon, namely the beginning and the end of the list.
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Furthermore, we use the primitive append which appends and links two maps
of type linked list together. Finally, the primitive sublist and length creates a
sublist from a linked list and returns the length of the list respectively. The
primitive restrict restricts a deployment keeping only the deployment mappings
of components in a given map and removes the rest.

Figure 13 illustrates the evolution of the system involving 200 cars along
2000 sampled steps. Each line describes a configuration of the system. We show
13 sampled nonconsecutive configurations. A thin black rectangle represents a
platoon. Its length is proportional to the number of cars contained. Its position
in the line corresponds to its position on the road. For reference, we show the
evolution of a particular car by highlighting it in yellow. Initially, all the cars
belong to the same platoon. As the system evolves the initial platoon splits into
several platoons, which then keep splitting/merging back, etc.

Fig. 13. Automated highway traffic evolution along few steps

Figure 14 summarizes the execution of several initial configurations. We eval-
uate the performance and track the system evolution while varying the number
of cars in the initial platoon from 200 to 600 cars. Each configuration is simu-
lated for 3000 random steps. Notice that the component instance count remains
constant across each configuration as cars only rearrange within different pla-
toons. However the motif instance count varies as platoons merge/split. Finally,
execution time increases reaching a maximum of 5 min and the average ratio of
executed interactions vs reconfigurations is 0.77.
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Fig. 14. Measurements on automated highway traffic systems
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3.4 Self-Organizing Robot Colonies

This exercise is inspired by swarm robotics [18]. A number of identical robots are
randomly deployed on a field and have a mission to locate an object (the prey)
and to bring it near another object (the nest). The robots know neither the posi-
tion of the nest nor the position of the prey. They have limited communication
and sensing capabilities, i.e. they can display a status (by turning on/off some
colored leds) and can observe each other as long as they are physically close in
the field. We consider hereafter the swarm algorithm proposed in [18]. In a first
phase, the robots self-organize into an exploration path starting at the nest. The
first robot detecting the nest initiates the path, i.e. stops moving and displays
a specific (on-path) status. Any robot that detects (robots on) the path, begins
moving along the path towards its tail, explores a bit further its neighborhood
and gets connected as well (i.e. becomes the new tail, stops moving and displays
the on-path status). Two cases may occur, either no new robot gets connected
to the path within some delay, hence the tail robot disconnects and moves ran-
domly (away from the path), or the tail robot detects the prey and the second
phase starts. The path stays in place while additional robots converge near the
prey. When enough robots have converged, they start pushing the prey along
the path towards the nest. The path gets consumed, and the system will stop
when the prey gets close enough to the nest.

We model the first phase of the algorithm above using three different types
of components and three different types of motifs as illustrated in Fig. 15. The
Arena motif contains all the robots, the nest and the prey component instances.
No map and deployment are used as no specific architecture is enforced by this
motif. This motif defines a global tick interaction used to model the synchronous
passage of time within the system. Whenever the tick interaction is triggered
the robots update their positions, i.e. they move on the field.

Chain

Neighborhood

Arena

Neighborhood

r1

r2

r3

r4

r5

r6

r7

r8

r9

p : Prey

n : Nest

ri : Robot

Fig. 15. Self-organizing robot colonies

For every robot,
its Neighborhood
motif is used to
represent its visi-
bility range, i.e. the
set of robots phys-
ically close to it
in the field. This
motif uses a star-
like location map.
The inner robot
is deployed at the
center and the vis-
ible neighbors on
the leaves. The motif defines a set of binary observe status interactions which are
used by the inner robot to collect all the available information from its neigh-
bors. Finally, the Chain motif represents the exploration chain linking robots to
the nest. It uses a linear map to deploy the robots belonging to the chain. This
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motif defines a set of binary next prev interactions which are used to communicate
along the chain.

For this example, reconfiguration is used to redefine the content of the Neig-
borhood and Chain motifs. For the former, as robots are moving in the field,
they continuously enter or leave the visibility range of other robots. We use two
inter-motif reconfiguration rules to update the neighborhood information:

do-neighborhood-enter(y1 : Neighborhood, y2 : Arena, x1, x2: Robot) ≡
when 〈y1 : D(x1) = H.center ∧ x2 �∈ B〉 ∧ 〈y2 : x2 ∈ B 〉 ∧ dist(x1, x2) ≤ Rmin

do y1.migrate(x2), 〈y1 : n := H.extend(), D(x2) := n 〉
do-neighborhood-leave(y1 : Neighborhood, x1, x2: Robot) ≡

when 〈y1 : D(x1) = H.center ∧ x2 ∈ B〉 ∧ x1 �= x2 ∧ dist(x1, x2) ≥ Rmax

do 〈y1 : n := D(x2), B.delete(x2), H.remove(n) 〉
The rules above describe the reconfiguration allowing any robot x2 to enter
(resp. leave) the neighborhood y1 of any different robot x1 whenever the dis-
tance between x1 and x2 is smaller than Rmin (resp. greater than Rmax). The
evolution of the chain is also described by reconfiguration. At any time, the tail
can disconnect or a robot can connect if its close enough to the tail.

do-chain-connect(y1 : Chain, y2 : Neighborhood, x1, x2 : Robot) ≡
when 〈y1 : D(x1) = H.tail ∧ x2 �∈ B 〉 ∧ 〈y2 : D(x1) = H.center ∧ x2 ∈ B〉

do y1.migrate(x2), 〈y1 : n = H.extend(), D(x2) := n 〉
do-chain-disconnect(y1 : Chain, x1 : Robot) ≡

when 〈y1 : D(x1) = H.tail 〉 ∧ 〈y1 : x1.timeout = true 〉
do 〈y1 : n := D(x1), B.delete(x1), H.remove(n) 〉

4 Discussion

The paper presents the DR-BIP framework as well as its basic structuring con-
structs and their application to programming real-life systems. We show that the
proposed framework is minimal and expressive allowing concise modeling. This
is achieved by a methodology supporting incremental description through strict
separation of concerns. Describing a system as a superposition of motifs allows
enhanced flexibility and abstraction. Each motif is a specific dynamic architec-
ture with its own coordination rules. So membership in a motif determines the
way a component interacts with other components and the reconfiguration rules
it is subject to. This is achieved in particular through maps which are refer-
ence structures used to naturally express mobility and dynamically changing
environments.

DR-BIP has been designed with autonomy in mind. The examples on
Autonomous highway traffic system and Self-organizing robot colonies demon-
strate the power of its structuring concepts. Designing systems as a superposition
of motifs (architectures) with their own coordination rules tremendously simpli-
fies the description of autonomous behavior. At the conceptual level, motifs
correspond to “modes” whose behavioral content may change through compo-
nent migration and can also be transformed by using higher level coordination
rules.
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To the best of our knowledge, there is no exogenous coordination language
such as an ADL addressing all these modeling issues in such a methodologi-
cally rigorous manner. DR-BIP has some similarities with simulation and pro-
gramming frameworks for autonomous mobile systems which nonetheless adopt
significant domain-specific restrictions such as Buzz [20,21].

Future work aims at showing that DR-BIP is expressive enough to directly
encompass various coordination mechanisms, in particular unifying the model-
ing of distributed actor-based systems and thread-based shared memory systems.
This can be achieved by considering threads as a special type of mobile compo-
nents using maps as a shared memory structure. In addition, we aim to study
parametric verification techniques for specific types of architectures (motifs) and
combine them with correct-by-construction techniques based on the composition
of architectures [2]. A formal definition of the DR-BIP is provided in report [14].
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Abstract. New technologies such as cloud and multi-core computing,
as well as the large number of devices connected to the Internet make
concurrency and distribution the main pillars that computerized systems
rely on. However, developing consistent concurrent and distributed sys-
tems characterized by high performance is notoriously difficult. This in
turn makes assuring the correctness of such systems challenging, due
to interleavings of actions that may lead to non-deterministic concur-
rency faults, possible failure of components and processes, but also due
to possible resource restrictions and unpredictable latencies in network
communication. The track on Verification and Validation of Distributed
Systems aims to discuss key challenges that need to be addressed in order
to enable the efficient and scalable assurance of distributed systems, as
well as present methods and tools that bear the promise to achieve the
latter.

1 Motivation and Track Overview

Distributed systems enjoy the benefits of resource sharing, autonomy, by con-
trolling locally stored data, and availability. The connectivity of the Internet has
led to a complete merging of the virtual and physical worlds, in cyber-physical
systems (CPS) and the Internet-of-Things (IoT). Features such as concurrency,
fault tolerance, and safety are fundamental to distributed applications, hence
addressing the associated challenges that such features incur when designing
and analyzing modern distributed systems is critical. Most prominent design and
implementation challenges come from the need of managing both concurrency
and being resilient to all sorts of failures, as well as of handling unpredictable
communication delays, while ensuring the system’s safety and reliability. More-
over, nowadays we expect distributed systems to be more responsive to the ever-
changing needs of its users, more scalable in response to constant or unexpected
usage, and more automation-centric to increase manageability.

To meet the above expectations, we have to adjust the correctness assurance
formal techniques to cope with them. At ISoLA 2018, the track on Verification
and Validation of Distributed Systems (VVDS) consists of five contributions that
focus on proposing formal analysis techniques and solutions aimed at tackling
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 323–326, 2018.
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notoriously difficult problems such as verification of parameterized fault-tolerant
distributed protocols, concurrent code, timed distributed transactions, as well
as ensuring reliability of IoT devices, and safety of complex CPS via testing.

Promising results have been obtained by applying model checking [3], bounded
model checking [5], Hoare-style reasoning [8], as well as model-based testing [9]
and theorem proving [10] to verify concurrent programs, and distributed appli-
cations and algorithms. However, more research efforts are needed to increase
the efficiency and scalability of formal assurance methods, as well as make them
applicable to IoT and complex CPS. In the following, we briefly describe each
of the VVDS track contributions, including a short account of their respective
novelty and results.

2 Verification of Distributed Algorithms and Concurrent
Programs

The first contribution “ByMC: Byzantine Model Checker”, by Igor Konnov and
Josef Widder [4], presents a tool, ByMC, which applies Satisfiability Modulo
Theories (SMT)-based bounded model-checking to verify parameterized fault-
tolerant distributed algorithms (e.g. voting algorithms). The tool is parame-
terized in the number of processes out of which a fraction may fail or behave
Byzantine, meaning that they do not obey the protocol. In this work, the authors
present the parallel extension of their sequential version of the Byzantine Model
Checker, which allows the parallel execution of SMT queries in a computer clus-
ter. Such an extension improves the scalability of verification, enabling the formal
verification of complex fault-tolerant distributed algorithms, under arbitrary fail-
ure semantics. The input model of ByMC is encoded in (parametric) Promela,
which can be automatically transformed in a threshold-automata model for ver-
ifying threshold-based algorithms. The authors conduct an experimental evalu-
ation in which they compare the sequential and parallel verification techniques
on various benchmarks, using both automatically generated threshold-automata
models, as well as hand-coded ones. The results show that manual abstractions
created by experts are verified significantly faster than the automatically-built
ones.

The second contribution “Static code verification through process models”,
by Sebastiaan Joosten and Marieke Huisman [6], introduces a novel technique
of verifying concurrent programs, which combines separation logic and model
checking, by introducing a specification-only variable, called ghost variable, to
describe the program state and enable an intuitive way of capturing state invari-
ants and program properties. The ghost variables are in fact event structures
that can only be updated by adding events, never by removing them from the
structure. The parallel program is modeled in a process-algebra-like style, with
processes constraining the event structures by describing their development via
class invariants that can be verified by model checking. The proposed tech-
nique enables a more intuitive verification style of concurrent programs, and the
authors show three possible ways of verifying program invariants, on a semaphore
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lock-unlock program: by using thread permissions, via rely-guarantee mecha-
nisms, or by thread-specific event structures.

3 Testing Distributed Transactions, IoT and
Cyber-Physical Systems

The third contribution “Effective Test Suite Design for Detecting Concurrency
Control Faults in Distributed Transaction Systems”, by Simin Cai, Barbara Gal-
lina, Dag Nyström, and Cristina Seceleanu [2], proposes a mutation-based testing
methodology for generating test suites that can expose lock-based concurrency
control (CC) faults in distributed transaction systems. The goal is to find a
manageable set of test cases able to detect unwanted interleavings that violate
isolation. The inputs to the test cases are generated delays at design level, which
can be then used to configure the delays at the implementation level, and the
outputs are verdicts on whether unwanted interleavings have occured or not,
after logs inspection. The methodology assumes high-level specifications of work
units, including lock operations and inter-operations delays, as well as of the
concurrency control algorithm, which are transformed into a network of timed
automata checkable with UPPAAL against queries that encode required isola-
tion properties. The transaction specification is mutated by applying selected
mutation operations that describe common CC faults (e.g., remove lock, change
lock type, change lock position etc.). By carrying out reachability analysis on
the resulting mutated network of stopwatch timed automata, test cases are gen-
erated as clock constraints solvable by state-of-the-art SMT solvers that return
solutions that kill as many mutants as possible.

The fourth contribution “Towards automated testing of the Internet of
Things: Results obtained with the TESTAR tool”, by Mirella Mart́ınez, Anna
Isabel Esparcia-Alcázar, Tanja Vos, Pekka Aho, and Joan Fons i Cors [7],
presents an extension of the TESTAR tool, used previously for automated test-
ing of graphical interface software, to support IoT testing. The authors show the
first results of applying TESTAR for testing various IoT devices used by a smart-
home application. The smart home can access a set of physical devices (resources)
offered on an IoT platform. TESTAR uses an extensible plugin architecture that
has been extended in this work with a plugin able to test the interaction with
the resources of the smart home, by executing the HTTP methods used by the
RESTful API that allows one to access such resources. The plugin implements
three modes of execution specific to web service behavior, and their respective
oracles as regular expressions. Running TESTAR on the smart home application
has revealed 4 reproducible faults, out of which one has already been corrected.

The fifth contribution “Quantitative Safety Analysis of a Coordinated Emer-
gency Brake Protocol for Vehicle Platoons”, by Carl Bergenhem, Karl Meinke,
and Fabian Ström [1], introduces a new methodology for estimating safety-
related quantitative parameters of cooperating CPS, which uses learning-based
testing implemented in the tool LBtest. In this work, LBtest has been applied
to estimate the minimum safe global time headway for a vehicle platoon, under
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a specific coordinated emergency braking protocol, assuming perfect communi-
cation first, and then stochastic packet loss. The methodology and LBtest use
active automaton learning to generate queries about a black-box system under
test (SUT), which are then executed on the SUT as test cases. By observing
the SUT for each test case, an automaton behavioral model of the SUT is incre-
mentally built in polynomial time, based on the saved observations. This model
(even if incomplete) can then be model checked (in NuSMV) against a require-
ment specified in temporal logic (propositional linear temporal logic), and test
cases can be extracted from the counterexamples returned by the model checker,
with false negatives being filtered out.
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Abstract. In recent work [10,12], we have introduced a technique for
automatic verification of threshold-guarded distributed algorithms that
have the following features: (1) up to t of processes may crash or behave
Byzantine; (2) the correct processes count messages and progress when
they receive sufficiently many messages, e.g., at least t + 1; (3) the num-
ber n of processes in the system is a parameter, as well as t; (4) and the
parameters are restricted by a resilience condition, e.g., n > 3t.

In this paper, we present Byzantine Model Checker that implements
the above-mentioned technique. It takes two kinds of inputs, namely,
(i) threshold automata (the framework of our verification techniques) or
(ii) Parametric Promela (which is similar to the way in which the dis-
tributed algorithms were described in the literature).

We introduce a parallel extension of the tool, which exploits the par-
allelism enabled by our technique on an MPI cluster. We compare per-
formance of the original technique and of the extensions by verifying
10 benchmarks that model fault-tolerant distributed algorithms from
the literature. For each benchmark algorithm we check two encodings: a
manual encoding in threshold automata vs. a Promela encoding.

1 Introduction

In recent work [10–12] we applied bounded model checking to verify reachabil-
ity properties of threshold-based fault-tolerant distributed algorithms (FTDA),
which are parameterized in the number of processes n and the fraction of faults t.
FTDAs typically work only under arithmetic resilience conditions such as n > 3t.
Our methods allow us to do parameterized verification of sophisticated FTDAs
[3,5,6,18,20,21] that have not been automatically verified before. Our bounded
model checking technique produces a number of queries to a Satisfiability Modulo
Theories solver (SMT). These queries correspond to different execution patterns.
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1 // n processes follow the code:
2 input ui ∈ {0, 1};
3 send ui to all;
4 wait until some value vi ∈ {0, 1}
5 is received �n+1

2 � times;
6 decide on vj ;

Fig. 1. Näıve Voting algorithm
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2 · (nsnt1 + f) ≥ n+ 1

Fig. 2. A threshold automaton for Näıve Voting

In [12], we conjectured that, by design, this technique allows many SMT
queries to be checked in parallel. In this paper, we present a parallel extension
of ByMC that executes SMT queries in a computer cluster.

The contributions of this paper are as follows:

1. We present the tool ByMC 2.4.1 that implements sequential and parallel ver-
ification [10,12]. The parallel verification is implemented with MPI (Message
Passing Interface).

2. We introduce the details of the parallel extension of the technique and perform
experimental evaluation, both for the sequential and parallel versions of the
tool.

3. We report the experimental results both for the abstractions that are auto-
matically constructed from Promela code (as in [10,12]) and for manual
abstractions in terms of threshold automata, which we use as a direct input for
the first time. Our experiments show that explicit modeling of fault-tolerant
distributed algorithms with threshold automata leads to a dramatic speed up
in most cases.

2 Distributed Algorithm Example: Näıve Voting

In order to describe what kind of distributed algorithms our tool ByMC is
designed for, we start with a simple threshold-guarded algorithm. In this section,
we take the point of view of an algorithm designer and apply the arguments
that can be found in the distributed algorithms literature [1,16]. Consider a dis-
tributed system of n processes, whose goal is to unanimously decide on a binary
value v ∈ {0, 1}. We would like to design a distributed algorithm that satisfies
the following three properties1:

– Agreement. No two correct processes decide on different values (0 and 1).
– Validity. If a correct process decides on a value v ∈ {0, 1}, then there is a

process i, whose initial value ui equals v.
– Termination. All correct processes eventually decide.

Figure 1 shows a näıve attempt to solve this problem by majority voting.
As usual in the distributed algorithms literature, we give a solution in pseudo-
code, which is supposed to work as follows. Each process starts with a binary
1 Agreement, validity, and termination are typical properties of consensus [1,16].
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value ui ∈ {0, 1} and sends ui to all processes, including itself. When a process
receives a value v ∈ {0, 1} from a majority of processes, it decides on v.

Does Näıve Voting satisfy agreement, validity, and termination? Unfortu-
nately, the pseudo-code does not provide us with sufficient detail to answer the
question: Assumptions about the process scheduler, message-delivery, possible
faults, etc. are missing. For instance, if messages can be lost, a process may never
receive sufficiently many messages to get over the guard in line 4. Thus we have
to specify systems assumptions. Let us consider an asynchronous model [1,16]
with crashes and Byzantine faults [19]:

– Asynchronous computations. Every correct process is scheduled infinitely
often, and there are no assumptions on the relative processor speeds. The
process steps are interleaved.

– Reliable communication. The processes communicate via message passing.
Every message sent by a correct process is eventually delivered, although
there are no timing or ordering assumptions about message delivery.

– Faults. A fraction f of processes may fail. For instance, they can crash or
behave Byzantine — the faulty processes do not follow the algorithm. There
is an upper bound t ≥ f on the number of faults. We assume n > 3t for the
Byzantine faults, and n > 2t for the crash faults.

Manual proofs. Below, we manually reason about the algorithm’s correctness.
Such proofs are common in the distributed algorithms literature, cf. [21,22,24].

Validity. We consider the Byzantine case here, which is more complicated.
In order to decide on a value v in line 6, a correct process has to receive �n+1

2 �
messages carrying v. By the assumption on the number of faults (n > 3t and
t ≥ f), we have f < �n+1

2 �, and if a process decides on v in 6, there is at least
one correct process that has sent the value v in line 3. Thus, the algorithm
satisfies “Validity”.
Agreement. Whether the algorithm satisfies “Agreement” depends on the
considered fault model:

– No faults or crash faults. By line 4, a process has to receive the same value
from �n+1

2 � distinct processes. Since 2 ·�n+1
2 � > n, and each process sends

only one value (line 3), no two processes i, j : 1 ≤ i < j ≤ n can reach
line 6 with different values vi �= vj . Thus, the processes cannot decide
differently, and agreement is satisfied.

– Byzantine faults. When f > 0, the Byzantine processes can send value 0
to a process i and value 1 to a process j : j �= i. If the initial states
of the correct processes are split into two equal sets, that is, n − f =
2 · |{k ∈ {1 . . . n} : k is correct and uk = 0}|, then the processes i and j
reach line 6 with the values vi = 0 and vj = 1. As a result, agreement
can be violated, and a verification tool must produce a counterexample.

Termination. Assume that there are no faults (f = 0) and the initial states
are equally partitioned, that is, n = 2 · |{k ∈ {1 . . . n} : k is correct and uk =
0}|. No process can pass beyond line 4, as none of the initial value sets form a
majority. Therefore, Näıve Voting violates liveness, namely, “Termination”.
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This subtle bug renders the algorithm useless! A tool should thus not only
check invariants, but also find counterexamples to liveness specifications.

The manual proofs are tricky, as they combine several kinds of reasoning:
temporal reasoning, local reasoning about process code, global reasoning about
the number of messages, correct and faulty processes, etc. Our tool ByMC auto-
matically proves temporal properties (or finds counterexamples) of distributed
algorithms that (i) communicate by sending to all, and (ii) contain actions that
are guarded by comparison of the number of received messages against a linear
combination of parameter values (e.g., for a majority).

3 Inputs: Parametric Promela and Threshold Automata

The algorithm in Fig. 1 looks quite simple. However, as one can see from the
assumptions on, e.g., faults and communication in Sect. 2, many details (that
are often deemed “non-essential” by algorithm designers) are missing in the
pseudo code. Our tool addresses this challenge by supporting two formal lan-
guages that are tailored for modeling of threshold-guarded distributed algo-
rithms and the system assumptions: parametric Promela [8,9] and threshold
automata [11]. Parametric Promela offers modeling that closely mimicks the
behavior of the pseudo code statements, whereas threshold automata are an
abstraction that allows for efficient model checking techniques [10,12]. When
given code in parametric Promela, ByMC internally applies data abstraction to
construct a threshold automaton, as explained in [13]. However, the automat-
ically computed threshold automata are usually much larger than those con-
structed manually by a distributed algorithms expert. For this reason, the user
can directly give a threshold automaton as the input to the tool.

3.1 Parametric Promela

Promela is the input language of the Spin model checker [7]. As it is designed to
specify concurrent systems, several features are suitable for capturing distributed
algorithms. However, Spin is a finite state model checker, and so Promela only
allows us to specify finite state systems. We have thus extended Promela in order
to have a parametric number of processes and faults, etc. In the following we
will discuss some of our extensions.

Figure 3 shows a model of the Näıve Voting algorithm from Fig. 1. This exam-
ple contains all the essential features of parametric Promela. In line 2, we
declare parameters: the number of processes n, the number of Byzantine pro-
cesses f , and the minimal size of a majority set, that is, �n+1

2 �. In line 3, we
declare two shared integer variables nsnt0 and nsnt1 that store the number of
zeroes and ones sent by the correct processes. The expressions assume(...) in
lines 4–5 restrict the choice of parameter values.
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1 #define V0 0 // likewise, V1 is 1, SE is 2, D0 is 3, D1 is 4
2 symbolic int n /∗ nr. of correct ∗/, f /∗ nr. of faulty ∗/, majority; // majority size
3 int nsnt0, nsnt1; // counters for 0s and 1s sent by the correct processes
4 assume(n > 1 && n > 3 ∗ f); // the resilience condition restricts faults
5 assume(n + 2 == 2 ∗ majority || n + 1 == 2 ∗ majority); // majority = �n+1

2 �
6 active[n − f] proctype Proc() { // run n − f correct processes
7 // control state: initialized with 0 (V0), initialized with 1 (V1),
8 // sent the value (SE), decided on 0 (D0), decided on 1 (D1)
9 byte pc = V0, next pc = V0;

10 // counters for received 0s and 1s
11 int nrcvd0 = 0, nrcvd1 = 0, next nrcvd0 = 0, next nrcvd1 = 0;
12 if :: pc = V0; // non−deterministically initialize with 0 or 1
13 :: pc = V1; fi;
14 do :: atomic { // a single indivisible step
15 havoc(next nrcvd0); havoc(next nrcvd1); // forget variable values
16 // update message counters (up to f messages from the Byzantine processes)
17 assume(nrcvd0 <= next nrcvd0 && next nrcvd0 <= nsnt0 + f);
18 assume(nrcvd1 <= next nrcvd1 && next nrcvd1 <= nsnt1 + f);
19 // compute the new state and send messages, if needed
20 if :: pc == V0 −> next pc = SE; nsnt0++; // send 0
21 :: pc == V1 −> next pc = SE; nsnt1++; // send 1
22 :: pc == SE && next nrcvd0 >= majority −> next pc = D0; // decide on 0
23 :: pc == SE && next nrcvd1 >= majority −> next pc = D1; // decide on 1
24 :: pc == SE && next nrcvd0 < majority && next nrcvd1 < majority
25 −> next pc = SE; // wait for more messages
26 :: pc == D0 || pc == D1 −> next pc = pc; // self−loop
27 fi;
28 // update local variables
29 pc = next pc; nrcvd0 = next nrcvd0; nrcvd1 = next nrcvd1;
30 next pc = 0; next nrcvd0 = 0; next nrcvd1 = 0;
31 } od; // next step
32 }
33 // atomic propositions
34 atomic ex D0 = some(Proc:pc == D0); atomic ex D1 = some(Proc:pc == D1);
35 atomic all decide = all(Proc:pc == D0 || Proc:pc == D1);
36 atomic ex V0 = some(Proc:pc == V0); atomic ex V1 = some(Proc:pc == V1);
37 atomic in transit0 = some(Proc:nrcvd0 < nsnt0);
38 atomic in transit1 = some(Proc:nrcvd1 < nsnt1);
39 // LTL formulae
40 ltl agreement { [](!ex D0 || !ex D1) }
41 ltl termination { (<>[](!in transit0 && !in transit1)) −> <>all decide }
42 ltl validity0 { <>(ex D0) −> ex V0 }
43 ltl validity1 { <>(ex D1) −> ex V1 }

Fig. 3. Modeling Näıve Voting in Parametric Promela

The behavior of the n − f correct processes is modeled in lines 6–32. To
describe a process state, we introduce the following local variables:

– pc to store the algorithm’s control state, that is, whether a process is ini-
tialized with values 0 and 1 (i.e., pc=V0 and pc=V1 resp.), sent a message
(pc=SE), decided on values 0 and 1 (i.e., pc=D0 and pc=D1 resp.)



332 I. Konnov and J. Widder

– nrcvd0 and nrcvd1 to store the number of zeroes and ones received from the
correct and Byzantine processes; and

– next-state variables next pc, next nrcvd0, and next nrcvd1 that are used to
perform a process step.

An initial process state is chosen non-deterministically in lines 12–13.
A single process step is encoded as an atomic block in lines 14–31, which cor-

responds to an indivisible receive-compute-send step. In lines 15–18, a process
possibly receives new messages: by invoking havoc(x), we forget the contents of a
variable x, and by writing assume(e), we restrict the variable values to those that
satisfy a logical expression e. Note that the statements havoc and assume do not
belong to the standard Promela; they belong to parametric Promela and are
inspired by the similar statements in Boogie [2]. Lines 20–27 encode the compu-
tations that can be found in pseudo-code in Fig. 1. Like in Promela, a process
non-deterministically picks an option of the form “:: guard -> actions”, if
guard evaluates to true, and executes actions.

To specify temporal properties, we first define atomic propositions in lines 34–
38. The keywords some and all correspond to existential and universal quantifi-
cation over the processes; they belong to parametric Promela. In lines 40–43,
define LTL formulas that capture the properties of consensus (cf. Sect. 2).

Promela code in Fig. 3 models the informal pseudo code of Näıve Voting. Note
that the manual translation from pseudo code is straightforward, except for one
thing: It may seem more honest to maintain sets of sent and received messages,
instead of storing only integer message counters such as nrcvd0 and nsnt0. It
has been proven that modeling with sets is equivalent (bisimilar) to modeling
with message counters [14]. Obviously, modeling with message counters produces
smaller transition systems (cf. [9]).

3.2 Threshold Automata

Our code in parametric Promela has several features: (i) each atomic step is
encoded as an imperative sequence of statements, (ii) and the processes explic-
itly store the number of received messages in local variables such as nrcvd0
and nrcvd1. One can argue that this level of detail is not necessary, and it makes
the verification problem harder. Threshold automata are a more abstract model
for threshold-guarded fault-tolerant distributed algorithms [11], as they enable
guarded transitions as soon as sufficiently many messages have been sent. Intu-
itively, the reception variables nrcvd0 and nrcvd1 are bypassed by such model-
ing. In this section, we introduce threshold automata in a way that explains
how automata capture local transitions of individual processes. The semantics
of threshold automata are then defined via counter systems in Sect. 4 that model
runs of collections of processes, that is, distributed computations.

We model Näıve Voting with the threshold automaton shown in Fig. 2. Its
code in the .ta input format of ByMC is shown in Fig. 4. We are running
n− f instances of the threshold automaton; each instance is modelling a correct
process. The automata operate on shared variables such as nsnt0 and nsnt1, which



ByMC: Byzantine Model Checker 333

1 thresholdAutomaton Proc {
2 local pc; /∗ control locations:
3 in V0 and V1, initialized with 0 and 1 resp.,
4 in D0 and D1, decided on 0 and 1 resp., in SE, sent the initial value ∗/
5 shared nsnt0, nsnt1; /∗ the number of 0s and 1s sent by the correct processes ∗/
6 parameters N, T, F; /∗ parameter variables ∗/
7 assumptions (0) { N > 3 ∗ T; T >= F; T >= 1; } /∗ resilience condition ∗/
8 locations (0) { locV0: [0]; locV1: [1]; locSE: [2]; locD0: [3]; locD1: [4];}// local states
9 inits (0) { /∗ initial constraints ∗/

10 (locV0 + locV1) == N − F; locSE == 0; locD0 == 0; locD1 == 0;
11 nsnt0 == 0; nsnt1 == 0;
12 }
13 rules (0) { /∗ a set of rules ∗/
14 /∗ send message 0 (resp. 1) when initialized with value 1 (resp. 1) ∗/
15 0: locV0 −> locSE when (true) do { nsnt0’ == nsnt0 + 1; nsnt1’ == nsnt1; };
16 1: locV1 −> locSE when (true) do { nsnt0’ == nsnt0; nsnt1’ == nsnt1 + 1; };
17 2: locSE −> locD0 /∗ decide on value 0 ∗/
18 when (2 ∗ (nsnt0 + F) >= N + 1) do { unchanged(nsnt0, nsnt1); };
19 3: locSE −> locD1 /∗ decide on value 1 ∗/
20 when (2 ∗ (nsnt1 + F) >= N + 1) do { unchanged(nsnt0, nsnt1); };
21 /∗ self loops ∗/
22 4: locSE −> locSE when (true) do { unchanged(nsnt0, nsnt1); };
23 5: locD0 −> locD0 when (true) do { unchanged(nsnt0, nsnt1); };
24 6: locD1 −> locD1 when (true) do { unchanged(nsnt0, nsnt1); };
25 }
26 specifications (0) { /∗ LTL formulas ∗/
27 agreement: [](locD0 == 0 || locD1 == 0);
28 validity0: <>(locD0 != 0) −> locV0 != 0;
29 validity1: <>(locD1 != 0) −> locV1 != 0;
30 termination:
31 <>[](locV0 == 0 && locV1 == 0 && (2 ∗ nsnt0 < N + 1 || locSE == 0)
32 && (2 ∗ nsnt1 < N + 1 || locSE == 0))
33 −> <>(locD0 != 0 || locD1 != 0);
34 }
35 } /∗ Proc ∗/

Fig. 4. A threshold automaton for Näıve Voting in the .ta format

can be only incremented. A threshold automaton resides in a local state from a
finite set L, e.g., in our example, L = {V0,V1,SE,D0,D1}. A rule (corresponding
to an edge in Fig. 2) can move an automaton from one local state to another,
provided that the shared variables in the current global state satisfy the rule’s
threshold guard, e.g., 2·(nsnt0+f) ≥ n+1. If a rule is labeled with an increment of
a shared variable, e.g., nsnt0++, then the shared variable is updated accordingly.
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4 Theoretical Background

4.1 System

We assume fixed three finite sets: the set L contains the local states, the set Γ
contains the shared variables that range over non-negative integers, and the
set Π contains the parameters that range over non-negative integers.

Configurations Σ and I. A configuration is a vector σ = (κ,g,p), where σ.κ is
a vector of counter values, σ.g is a vector of shared variable values, and σ.p = p
is a vector of parameter values. In σ.κ we store for each local state �, how many
processes are in this state. All values are non-negative integers. In every initial
configuration global variables have value zero, and all “modelled” processes are
in initial locations. If specifications do not limit the behavior of faulty processes
(which is typically the case with Byzantine faults), we only model the correct
processes explicitly, while the impact of faulty processes is modelled as non-
determinism in the environment.

Threshold Guards are defined according to the following grammar:

Guard :: = Int · Shared ≥ LinForm | Int · Shared < LinForm
LinForm:: = Int | Int · Param | Int · Param + LinForm
Shared :: = 〈a variable from Γ 〉
Param:: = 〈a variable from Π〉
Int :: = 〈an integer〉

Transition relation R. A transition is a pair t = (rule, factor) of a rule of the
TA and a non-negative integer called the acceleration factor, or just factor for
short. If the factor is always 1, this corresponds that at each step exactly one
processes takes a step, that is, interleaving semantics. Having factors greater
than 1 permits a specific form of acceleration where an arbitrary number of
processes that are ready to execute a rule can do that at the same time.

Transition t is applicable (or enabled) in configuration σ, if the guard of t.rule
evaluates to true, and σ.κ[t.from] ≥ t.factor . Configuration σ′ is the result of
applying the enabled transition t to σ, and write σ′ = t(σ), if

– σ′.g = σ.g + t.factor · t.u and σ′.p = σ.p
– if t.from �= t.to then

• σ′.κ[t.from] = σ.κ[t.from] − t.factor ,
• σ′.κ[t.to] = σ.κ[t.to] + t.factor , and
• ∀� ∈ L \ {t.from, t.to} it holds that σ′.κ[�] = σ.κ[�]

– if t.from = t.to then σ′.κ = σ.κ

Finally, the transition relation R ⊆ Σ × Σ of the counter system is defined
as follows: (σ, σ′) ∈ R iff there is a rule r ∈ R and a factor k ∈ N0 such that
σ′ = t(σ) for t = (r, k).

Observe that configurations, transitions, guard, etc. can be encoded in linear
integer arithmetic.
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Table 1. The syntax of ELTLFT-formulas [10]: pform defines propositional formulas,
and ψ defines temporal formulas. We assume that Locs ⊆ L and guard ∈ Φrise ∪ Φfall.

4.2 Safety and Liveness Specifications

Using counter systems, we can also easily express the temporal properties, e.g.,
those of Näıve Voting. To this end, for every local state � ∈ L, we introduce a
proposition “κ� = 0”, which tests that there are no processes in �. Since threshold
automata do not explicitly track received messages, the assumption of reliable
communication is modeled as a fairness assumption over local states and actions.
The following formula captures the required fairness, that is, (i) eventually all
processes leave their initial state V0 or V1, and (ii) if threshold guards become
true, then eventually all processes fire the corresponding rules and thus evacuate
the local state SE (the latter implication is written as disjunction):

FG
(
κV0 = 0 ∧ κV1 = 0

∧(2 · nsnt0 < n + 1 ∨ κSE = 0) ∧ (2 · nsnt1 < n + 1 ∨ κSE = 0)
)

(RC)

Agreement (A), Validity (V), and Termination (T) can be written as follows:

G (κD0 = 0 ∨ κD1 = 0) (A)

F (κD0 �= 0) → κV0 �= 0 ∧ F (κD1 �= 0) → κV1 �= 0 (V)

RC → F (κV0 = 0 ∧ κV1 = 0 ∧ κSE = 0) (T)

In [12], we have introduced a bounded model checking technique with SMT
that checks reachability in counter systems of threshold automata for all combi-
nations of the parameters. We proved that if a configuration is reachable, then
there is a short schedule that reaches this configuration. As a result, bounded
model checking is a complete method for reachability checking in our case. In [10],
this technique was extended to ELTLFT — a fragment of ELTL(F,G), which allows
us to verify safety and liveness of counter systems of threshold automata. The
syntax of ELTLFT is given in Table 1. We use this logic to express counterexam-
ples, that is, negations of the safety and liveness specifications from above.

For instance, the negation of agreement and termination in Equations (A)
and (T) fit into ELTLFT, and can be written as follows:

F (κD0 �= 0 ∧ κD1 �= 0) (NA)
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RC ∧ G (κV0 �= 0 ∨ κV1 �= 0 ∨ κSE �= 0) (NT)

Technically, the negation of the formula for validity given in Equation (V)
does not belong to the fragment ELTLFT. However, it can be easily rewritten as
two formulas, for the values of i equal to 0 and 1:

F (κDi
�= 0) ∧ κVi

= 0 (NVi)

5 Parameterized Model Checking by Schema
Enumeration

Our verification technique consists of the following steps: From the ELTLFT speci-
fications, our tool enumerates all shapes counterexamples can have. Each of these
shapes is encoded as an SMT query, and using SMT solvers, our tool checks for
each shape, whether there exists a run of the system that has this shape. Such
a run would then be a witness to the violation of a specification.

Consider the agreement property (A) of Näıve Voting. A counterexample is
a run of the system that starts in an initial state and satisfies its negation:

F (κD0 �= 0 ∧ κD1 �= 0)

Each counterexample thus (i) satisfies the constraints for initial states, and
(ii) is a sequence of applicable transitions, that (iii) end up in a state where
(κD0 �= 0 ∧ κD1 �= 0) holds. Indeed checking (A) boils down to checking reach-
ability of a state that satisfies (κD0 �= 0 ∧ κD1 �= 0). Our technique from [12]
enumerates all shapes of such counterexamples.

The central notion is a simple schema:

{pre}r∗
1 , . . . , r∗

k{post}
where pre, post ⊆ are constraints that encode evaluation of guards, and con-
straints on the counters (e.g., κD0 �= 0). Thus, the schema captures that pre
holds, then some transitions with rules r∗

1 , . . . , r∗
k are executed to reach a state

where post holds. We denote a simple schema by S. A schema is then a concate-
nation of simple schemas S1, S2, . . . Sk, for some k.

For our example, the technique from [12] would generate among others, a
schema like the following

S1, S2, S3 =
{κV0 + κV1 = n}r∗

1 , . . . , r∗
4

{2 · (nsnt0 + f) ≥ n + 1}r∗
1 , . . . , r∗

4

{(2 · (nsnt0 + f) ≥ n + 1), (2 · (nsnt1 + f) ≥ n + 1)}r∗
1 , . . . , r∗

4

{(2 · (nsnt0 + f) ≥ n + 1), (2 · (nsnt1 + f) ≥ n + 1), (κD0 �= 0 ∧ κD1 �= 0)}
that is, initially, all of the n processes are in the initial locations V0 and V1, then
after application of some rules one of the threshold guards becomes true, then
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after another application of some rules both guards are true and finally a bad
state is reached. The SMT solver now has to find whether an executions exists
that has that form. This is done by replacing each Kleene star by a distinct
variable that encodes how often a rule r is applied.

A different schema can be obtained by changing the order in which the two
threshold guards become true. In general each possible order generates a different
schema. The number of different schemas to be checked is factorial in the number
of guards [12]. As our benchmarks have only a small number of guards, the
number of calls to the SMT solver is still practical.

5.1 Checking a Single Lasso Schema with SMT

In [10] we prove that for our counter systems, a counterexample to a liveness
specification has lasso shape, that is:

S1 . . . Sk(Sk+1 . . . Sk+m)ω

In this way we obtain a finite representation of an infinite execution, which
again can be checked with an SMT solver.

Thus, our tool generates multiple schemas: for each safety or liveness spec-
ification, a different schema is obtained by changing the order in which the
threshold guards become true. A detailed algorithm for constructing schemas is
presented in [10, Fig. 10]. In a nutshell, the algorithm constructs a graph that
represents the partial order on when propositions and threshold guards evalu-
ate to true in an execution, e.g., the one in Fig. 5. Each linear extension of this
partial order then defines a sequence on which propositions and guards become
true. Two neighboring elements in the sequence are the pre and post of a simple
schema; the concatenation of all these simple schemas is the schema our tool
checks for satisfiability.

Fig. 5. The graph constructed from the automata guards and formula (NV0)

Our tool encodes each schema in SMT and then calls a back-end solver
in order to check whether the schema generates a counterexample. In [10], we
explained the SMT encoding. As the schemas are independent, these checks can
be done in parallel. We have implemented and exploited this feature in [15]. As
[15] was concerned with synthesis, we did not discuss the effects of parallelization
there. In the following we discuss and compare the sequential and the parallel
approaches.



338 I. Konnov and J. Widder

Sequential Schema Enumeration. In the sequential mode, the schemas are simply
checked one-by-one until either a counterexample is found, or all schemas have
been enumerated and no counterexample has been found. (Detailed pseudo-code
of the function check one order can be found in Fig. 10 of [10].)

1 for each linear order � of graph G {
2 if check one order(TA, ϕ, G, �) = witness(SMT model)
3 report SMT model as a counterexample
4 }
5 report specification holds

Parallel Schema Enumeration. In the MPI mode, the tool runs as a system of N
processes, one per CPU; the physical arrangement of the CPUs depends on the
cluster configuration. Every process is assigned a unique value rank from 0 to
N −1: The process with rank = 0 is the master, whereas the other processes are
the workers. Every process is enumerating the schemas as in the sequential mode
but checks a schema only if the schema’s sequence number i matches the rule:
(i mod N) = rank . In order to terminate quickly when one process has found
a bug, the workers asynchronously communicate with the master. After leaving
the loop, the workers communicate with the master to deliver a counterexample,
if one was found. For presentation, we assume that the master can send to and
receive messages from itself.

1 i := 0; found := false
2 for each linear order � of graph G {
3 if rank = i and check one order(TA, ϕ, G, �) = witness(SMT model)
4 found := true
5 send BUG to master // notify the master
6 if received BUG from any
7 if rank = master { send BUG to all } // notify the workers
8 break
9 i := i + 1

10 }
11 results = gather found master // the workers send their ’found’ flags to the master
12 if rank = master {
13 if ∃w : results[w] = true
14 send WITNESS<w> to all // pick one counterexample and declare it a witness
15 if w = master report SMT model as a counterexample
16 else { receive CEX<model> from w; report model as a counterexample }
17 else { send WITNESS<⊥> to all; report specification holds }
18 } else {
19 receive WITNESS<w> from master
20 if w = rank { send CEX<SMT model> to master } // I am the witness
21 } // finish and clean up stale MPI messages on exit
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6 Benchmarks and Experiments

Byzantine model checker is written in OCaml. Its source code and the virtual
machines are available from the tool web page 2. For the experiments conducted
in this paper, we used Z3 4.6.0 [4] as a back-end SMT solver, which was linked
to ByMC via Z3 OCaml bindings.

Table 2. The experiments with the sequential (SEQ) and parallel (MPI) techniques on
two kinds of inputs: Promela (white rows) and threshold automata (gray rows). The
sequential experiments were run with GNU parallel [23] at AMD OpteronR© 6272, 32
cores, 192 GB. The MPI benchmarks were run at Vienna Scientific Cluster 3 using
16 nodes × 16 cores (256 processes). The symbol “�” indicates timeout of 24 h.

# Input Case Threshold Schemas Time, seconds Mem, GB

Automaton length SEQ MPI SEQ MPI

FTDA (if more than one) |L| |R| |Φrise| |Φfall| number avg avg max avg

1 frb - 7 14 1 0 5 34 1 - - 0.1 -

2 frb hand-coded TA 4 9 1 1 70 38 1 - - 0.1 -

3 strb - 7 21 3 0 18 72 1 - - 0.1 -

4 strb hand-coded TA 4 8 2 0 38 22 1 - - 0.1 -

5 nbacg - 24 64 4 0 90 243 6 - - 0.1 -

6 nbacg hand-coded TA 8 16 0 1 5 54 1 - - 0.1 -

7 nbacr - 77 1031 6 0 517 2489 523 - - 0.7 -

8 nbacr hand-coded TA 7 16 0 1 18 63 1 - - 0.1 -

9 aba n+t
2 = 2t + 1 37 202 6 0 1172 850 659 12 13 1.0 0.2

10 aba n+t
2 > 2t + 1 61 425 8 0 5204 2112 53992 1440 1442 7.2 0.6

11 aba hand-coded TA 5 10 2 2 542 57 14 - - 0.1 -

12 cbc �n
2 � < n − t ∧ f = 0 164 2064 0 0 2 8168 1603 290 290 9.3 0.2

13 cbc �n
2 � = n − t ∧ f = 0 73 470 0 0 2 1790 27 9 9 0.6 0.1

14 cbc �n
2 � < n − t ∧ f > 0 165 2072 0 1 4 10213 10024 4943 4943 18.8 0.5

15 cbc �n
2 � = n − t ∧ f > 0 74 476 0 1 4 2258 273 47 47 1.5 0.1

16 cbc hand-coded TA 7 14 0 1 5 56 1 - - 0.1 -

17 cf1s f = 0 41 280 4 0 90 770 45 5 8 0.2 0.1

18 cf1s f = 1 41 280 4 1 523 787 257 6 6 0.4 0.1

19 cf1s f > 1 68 696 6 1 3429 2132 10346 29 29 3.8 0.2

20 cf1s hand-coded TA 9 26 3 3 13700 122 687 6 8 2.1 0.1

21 c1cs f = 0 101 1285 8 0 251 460 331 38 38 0.8 0.1

22 c1cs f = 1 70 650 6 1 448 303 239 11 11 0.4 0.1

23 c1cs f > 1 101 1333 8 1 2100 404 1865 89 89 1.3 0.4

24 c1cs hand-coded TA 9 30 7 3 3.2 · 106 ≈ 400 979 981 17.3 1.6

25 bosco �n+3t
2 � + 1 = n − t 28 152 6 0 20 423 4 3 4 0.1 0.1

26 bosco �n+3t
2 � + 1 > n − t 40 242 8 0 70 1038 29 6 6 0.2 0.1

27 bosco �n+3t
2 � + 1 < n − t 32 188 6 0 20 476 4 4 4 0.1 0.1

28 bosco n > 5t ∧ f = 0 82 1372 12 0 3431 27 265 35 35 0.3 0.4

29 bosco n > 7t 90 1744 12 0 3431 179 1325 52 52 1.0 0.6

30 bosco hand-coded TA 8 20 3 4 3429 43 82 4 4 0.2 0.1

2 http://forsyte.at/software/bymc.

http://forsyte.at/software/bymc
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In earlier work [9], we encoded our benchmarks in Parametric Promela, using
a shared variable to record the number of processes that have sent a message,
and using for each process a local variable that records how many messages a
process received. For this modeling we presented a data abstraction and counter
abstraction in [8]. To compare later verification techniques with these initial
results, we kept that encoding, although the newer techniques rest on a more
abstract model of threshold automata, which have finitely many local states.

The threshold automata constructed by data abstraction are significantly
larger than threshold automata constructed by a human expert. To see the influ-
ence of these modeling decisions on the verification results, we manually encoded
our benchmarks as threshold automata. These benchmarks are available from
our benchmark repository 3. Table 2 compares the size of the threshold automata
that are: (1) produced automatically by abstraction and (2) hand-coded. The
essential features of the automata are: the number of local states |L|, the number
of rules |R|, and the numbers of the guards |Φrise| and |Φfall|, that is, the guards
of the form x ≥ . . . and x < . . . respectively. Moreover, due to data abstraction,
we had to consider several cases that differ in the order between the thresholds.
They are mentioned in the column “Case”.

Table 2 shows the verification results for benchmarks in Promela as well as
threshold automata. We ran the sequential schema enumeration (SEQ, [10]) and
the parallel schema checking technique (MPI) that is presented in this paper. The
parallel experiments were run at Vienna Scientific Cluster using 256 CPU cores.
For each benchmark, we picked the most challenging specifications — many of
them are liveness properties — and show experimental results for them. (Need-
less to say, we did not run the MPI technique on the benchmarks that could
be enumerated with the sequential technique in seconds.) Two columns show
the essential features of the enumerated schemas: “number” displays the total
number of explored schemas, and “length avg” displays the average length of
schemas. For both techniques, we report the computation times and maximal
memory usage during a run. For the MPI experiments, we report the average
time per CPU core (column “MPI avg”) as well as the maximum time per CPU
core (column “MPI max”). The deviation from the average case is negligible.

As expected, the hand-coded benchmarks are usually verified much faster.
Interestingly, the manually constructed threshold automaton for one-step con-
sensus (c1cs [3]) has more threshold guards than the abstract one: We had to
more accurately encode algorithm’s decisions, crash faults, and fairness. The
sequential technique times out on this benchmark. The parallel technique takes
about seven times longer than with the automatic abstraction.

The parallel technique benefits from running on multiple cores, though the
actual gains from parallelism depend on the benchmark. As in our experiments
the verification times of a single schema negligibly deviate from the average case,
the uniform distribution of schemas among the nodes seems sufficient. However,
one can construct threshold automata that produce schemas whose verification

3 https://github.com/konnov/fault-tolerant-benchmarks/tree/master/isola18.

https://github.com/konnov/fault-tolerant-benchmarks/tree/master/isola18
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times significantly vary from each other. We conjecture that an implementation
with a dynamic balancer would make better use of cluster resources.

7 Conclusions

We presented our tool ByMC, and compared its sequential verification imple-
mentation to its parallel one. Moreover, by experimental evaluation we showed
that manual abstractions give us threshold automata that can be verified signif-
icantly faster than those that result from automatic abstraction.

We observe that the sizes of the manually constructed threshold automata are
not significantly larger than the (manually crafted) models of round-based dis-
tributed consensus presented in [17]. In their theory, threshold-guarded expres-
sions also play a central role. Our gains in efficiency in this paper—due to manual
encodings—show that the discrepancy was a result of automatic abstraction and
not of the technique that uses threshold automata as its input.

We needed from one to three hours per benchmark to specify and debug a
threshold automaton, while it usually took us less than 30 min to specify the
same benchmark in Parametric Promela. The most difficult part of the encod-
ing with threshold automata was to faithfully express fairness constraints over
shared variables and process counters. In case of Parametric Promela, fairness
constraints were much easier to write, as one could refer to the shared and local
variables, which count the number of sent and received messages respectively.

Acknowledgments. We are grateful to our past and present collaborators Annu
Gmeiner, Marijana Lazić, Ulrich Schmid, and Helmut Veith, who contributed to many
of the described ideas that are now implemented in ByMC.
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Abstract. In this extended abstract, we combine two techniques for
program verification: one is Hoare-style static verification, and the other
is model checking of state transition systems. We relate the two tech-
niques semantically through the use of a ghost variable. Actions that
are performed by the program can be logged into this variable, build-
ing an event structure as its value. We require the event structure to
grow incrementally by construction, giving it behavior suitable for model
checking. Invariants specify a correspondence between the event struc-
ture and the program state. The combined power of model checking and
static code verification with separation logic based reasoning, gives a
new and intuitive way to do program verification. We describe our idea
in a tool-agnostic way: we do not give implementation details, nor do we
assume that the static verification tool to which our idea might apply is
implemented in a particular way.

1 Introduction

We recognise two powerful ways of reasoning about concurrent and distributed
programs: one can use concurrent separation logic and Hoare-style reasoning,
or one might see the program and its environment as a state transition system
and use model checking. For reasoning about concurrent and distributed sys-
tems, Hoare-style reasoning [7] has been applied successfully [5]. Using different
forms of transition systems to model concurrent and distributed systems goes
back a long way [9] and can often be a more intuitive method. Neither of these
approaches individually is a silver bullet for reasoning about concurrent and
distributed programs. Our contribution lies in presenting how to get both tech-
niques: We present a technique to describe program behavior through an event
structure, and use properties provable through model checking those descrip-
tions to verify the program using Hoare-style reasoning. Although we do not
know whether this combination actually strengthens the verification framework
(in the sense of being able to prove more properties), we do believe that the
combination makes the verification framework easier to use, by virtue of being
able to combine the two techniques as needed.

c© Springer Nature Switzerland AG 2018
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As a running example, consider this pseudocode that uses a simple spinlock:

1 global boolean la ; // true if lock is available, thus not locked
2 void thread(){
3 // acquire lock
4 boolean success = false ;
5 while (! success){
6 success = compare and swap( la,true,false ) ;
7 }
8 assert ( la == false); // we have the lock
9 // release lock

10 la = true;
11 }

We will give invariants I that describe that la is set and unset as a lock and
unlock action is preformed. In particular, we focus on showing that the Hoare-
logic statement {I}compare and swap( l,true,false ){I} is valid. We will use model
checking to show this.

The approach to verification of programs is as follows: we first tie the behavior
of the program to an event structure, by adding ghost code that builds the event
structure. For the example, this describes the lock and unlock events. This event
structure is then, through an invariant, constrained to a process that describes
allowed behaviors of the program. For the example, the process is one where locks
and unlocks alternate arbitrarily often. To automatically prove this invariant, we
use additional invariants that describe the relation of program variables to the
event structure. For the example, this ties the value of the variable la to the state
of the event structure. By using techniques from model checking, we can then
prove both invariants. This allows us to then use the invariants in a Hoare-logic
style proof.

The example is a typical concurrent program: the method of synchronisa-
tion, a compare and swap, assumes a single shared memory, and there are no send
and receive commands as one expects in distributed code. We present concur-
rent code for simplicity and presentation purposes. The principle to combine
reasoning about code with the use of transition systems directly generalizes to
distributed systems. Typical challenges one encounters with distributed systems,
like heterogeneity, faults in links or nodes, and dynamic topologies, are orthog-
onal to this paper. Existing solutions for dealing with faults [6] or dynamic
topologies [13] use abstract models, describing them in some form of transition
system. We therefore consider these challenges and solutions out of scope, but
highly relevant: proving the same properties at the code level requires making a
link between the abstract level and the actual code, which we demonstrate here.

This paper illustrates an idea on how to verify examples like the one men-
tioned above, rather than giving an implementation. We hope it is an inspiration
to authors of verification tools that apply Hoare-style reasoning. Indeed, we our-
selves intend to implement the ideas outlined here in Vercors [3], which is such
a tool. However, the best way to implement the idea varies widely from tool
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to tool. We therefore consider it useful to describe the general idea in a paper
separate from its implementation details.

As we are combining Hoare-style proofs and model checking, there is plenty
of related work to mention. We describe the work that is most closely related to
this paper: concurrent separation logic, model checking, and abstract models.

Concurrent Separation Logic. Hoare-style reasoning is proving a Hoare-triple
{P}S{Q} for the program S. The triple {P}S{Q} states that if {P} holds
before running S, then {Q} holds after the execution of S. Separation logic
gives a default notion of how the program can be composed: The frame-rule
states that if {P}S{Q} is proven, then also {R ∗ P}S{R ∗ Q} holds. Here R ∗
indicates that the environment in which S is run can be extended by a disjoint set
of properties R. In many practical examples, different threads work on different
memory, and concurrent separation logic gives a convenient way to reason about
such programs.

Concurrent separation logic can sometimes be adapted to new or uncon-
ventional synchronisation mechanisms as well. The thesis by Amighi nicely illus-
trates that some synchronisation mechanisms can fit into a separation-logic based
line of reasoning [2]. A clever encoding of the synchronisation primitives allows us
to reason about programs that use them. In some cases, one can even verify some
of the synchronisation mechanisms themselves. In contrast to Amighi’s thesis,
this work presents a uniform way to verify those synchronisation mechanisms, as
well as those for which verification has not been possible with techniques from
concurrent separation logic.

Model Checking. If a program is modeled as a state machine, model checking
can be used to establish which properties hold. Not all programs lend them-
selves to this: unbounded loops, recursion and weak-memory models pose chal-
lenges. Recent advances have made model checkers more powerful in these areas:
Komuravelli et al. show how to use SMT-based model checkers for the verifica-
tion of loops and recursion [8]. Model checking has been adapted to reason with
weak-memory models effectively [1,15]. Calcagno et al. use model checking in a
modular way, modeling the environment of a thread such that it can be used
as a specification of that thread later [4]. This work aims to bring these recent
improvements of model checkers to the static code verification domain.

Abstract Models. This paper generalizes previous work on abstract models as
proposed by Oortwijn et al. [10,11]. In the work of Oortwijn, the contract for a
method states which actions may or will be taken by that thread. We generalize
this by storing the associated actions in a ghost variable.

An important difference between our work and the work of Oortwijn is how
invariants are treated: in the work of Oortwijn et al. pre- and postconditions
are specified for actions. From these conditions, some invariants follow. We start
by specifying invariants, from which pre- and postconditions follow. In partic-
ular, we specify processes in the form of an invariant as well, simplifying their
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presentation. Simultaneously, we potentially increase the applicability of verifi-
cation methods.

Contribution. We combine separation logic and model checking by adding a
ghost variable that expresses part of an event structure of the program. A ghost
variable is a specification-only variable, for the sake of static verification. It can
help describe the program state, but it should not exist at runtime. As such, ghost
variables aren’t allowed to influence the program flow. However, ghost variables
can be used to state invariants and properties of the program conveniently.

In contrast to conventional ghost variables, we introduce event structure
ghost variables in a way that it gives us additional properties. An event structure
is a partially ordered multiset of actions. Our event structure ghost variables can
only be updated by adding events at the end of the structure: events that are
added must be larger than some maximal element. This restriction means that
events are never removed, the structure never shrinks, and for each event, the
set of events preceding it is fixed throughout the program execution.

The power of introducing such a variable comes from its use in invariants. An
invariant is a property that must be satisfied initially, and is preserved by each
atomic action. Consequently, one assumes the invariant is satisfied before an
atomic action. For our lock example, we could describe that our event structure
must be a prefix of lock, unlock, lock, . . .. A model checker can then tell us that
if we are in a state in which lock just happened, the next action will be unlock.
Similarly, we can say that la is true if and only if the event structure is in the
language (lock unlock)∗. The combination of these invariants lets us reason about
attainable values of program variables.

The contribution of this work is the description of an event structure ghost
variable, as well as an indication on how one might implement them into static
checkers and model checkers. By using a ghost variable, as in this work, we
naturally tie into existing verification paradigms.

Section 2 describes the event structure variable we introduce. Section 3
describes how such a variable can be related to a process. In Sect. 3.3 we give
ways in which to tie the variable in with a system talking about invariants. We
conclude in Sect. 4.

2 Using an Event Structure Variable

This section introduces event structures. The purpose of event structures is to
capture a program run at an abstraction level that fits reasoning about processes,
which we introduce later.

In what follows, we assume that a set of actions A is given. The purpose of
these actions is that they will correspond to program events, but this is left to
the modeler: Event structures capture actions as a partially ordered multiset of
actions (actions can occur multiple times). The ghost code describes how the
actions are added to the event structure. We proceed by defining what an event
structure is.
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0

acquire 1 unset2

set3

release4

Fig. 1. An example event structure

Executions are modeled by an event structure (E, l,�), which is a set of
events E and a partial order on events �. Events are labeled by a set of actions.
The function l : E → 2A gives the set of labels for each event. If E ⊆ E′ for some
event structure (E′, l,�), we write lE and �E for l and � restricted to the set
E, such that (E, lE ,�E) is again an event structure. The idea of using an event
structure for reasoning about concurrent programs was introduced by Vaughan
Pratt in 1986 [12], and we incorporate it for use in a Hoare-style setting.

Figure 1 shows a possible event structure. The nodes indicate events, which
are numbered so we can talk about them later. An arrow from node e1 to e2

indicates e1 �e2, and the set of labels l(e) is written next to each node, omitting
the {} curly brackets. Arrows that follow from transitivity of � are not drawn.
The intuition behind an event structure is that � represents the order in which
events, and therefore actions, occur.

Construction. We construct event structures in one of three ways: Initialisation,
extending an existing structure by a single subsequent action, and by combining
parallel events. None of these operations removes anything from event structures,
so they grow monotonically, and only through subsequent events. In other words:
if e takes the value of an event structure (E′, l′,�′), then at any later point e
holds a value (E, l,�) such that E′ ⊆ E, lE′ = l′, �E′ = �′, and for an event
i ∈ E, i′ ∈ E′ such that i �∈ E′, we have i′ �� i. This monotonicity is important
for reasoning about event structure variables.

Initialisation. Initialisation happens through declaring a variable as an event
structure. The variable initializes to an event structure where the set of events
is the empty set (this uniquely defines l and � too). We use the following syntax
for this: var e = new EventStructure();.

Extension. If S = {s1, s2, . . . , sn} ⊆ A is a set of actions and e is a ghost variable
that holds the event structure (E, l,�), then e can be extended by an event with
labels S. Let t be a fresh event. We can think of t as a unique timestamp, or as a
counter that increases every time we use it. We ensure that t is larger than any
of the events in the structure to which we add it. Fresh means that for any two
sets of events E1 and E2 appearing in our program, any common events must
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have been created at the same point in our program. In particular, freshness
implies t �∈ E. We define l′ : E ∪{t} → 2A by l′(t) = S and l′(i) = l(i) for i ∈ E.
We define �′ by t �′ i for i ∈ E ∪ {t}, and i �′ j ⇔ i � j for i, j ∈ E. Then the
new value of e after extending it with an event with labels S is (E ∪ {t}, l′,�′).
We use v.add(s1, s2, . . . , sn) ; as syntax for this.

Parallel events. To hand off an event structure to a forked thread, it is allowed
to make a copy of a ghost variable indicating an event structure v. We write
var w = v.copy(); for this. Any subsequent adding of events to v or w happens in
isolation from each other as described above.

Parallelism becomes visible in the thread structure when threads are joined
again, and we will use union to join the corresponding event structures. We
argue that the ordinary set union suffices: Let (E1, l1,�1) and (E2, l2,�2) be
events structures. Note that since we only added fresh events, we can define
l : E1 ∪ E2 → 2A by l(i) = l1(i) for i ∈ E1 and l(i) = l2(i) for i ∈ E2, as any
element i ∈ E1 ∩ E2 must have been created with the same labels: l1(i) = l2(i).
We write l1 ∪ l2 for l defined this way. Similarly, �1 ∪ �2 is again a poset by
similar reasoning about freshness. Consequently (E1 ∪ E2, l1 ∪ l2,�1 ∪ �2) is
again an event structure. We write v.union(w); to add the structure of w to v,
after which v holds the value as described above.

An Example Program. We show how to combine the constructions mentioned,
to create event structures through ghost code. The code below creates the event
structure of Fig. 1 as the final structure for v.

1 var v = new EventStructure();
2 v.add();
3 var w = v.copy();
4 w.add(acquire) ; v.add(unset);
5 v.union(w);
6 v.add(set) ; v.add( release ) ;

Note that despite the suggestion of parallelism in the acquire and the unset

action, we did not actually use a parallel program to do so. However, changing
the execution order of w.add(acquire) ; and v.add(unset); would create a similar
event structure (equal up to isomorphism).

3 Relation to Processes

Our goal of using a ghost event structure variable is to constrain it by using a
class invariant. We introduce processes to constrain the event structures, as a
process describes the development of an event structure in an intuitive way.

For ghost variable v and a process P , the invariant inPrefix (v,P ) ; will indicate
that at any time, the event structure e that is the value of v, e ∈ prefix (P ) holds.
To explain what is meant by prefix (P ), we introduce the language in which to
write P , in Sect. 3.1. We relate event structures to processes by defining what it
means for an event structure to be valid for a process, and define the function
prefix , in Sect. 3.2.
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3.1 Processes

A process P is defined using process variables, actions, the empty process,
sequential and parallel composition, and nondeterministic choice. Process vari-
ables are written A,B, . . . ∈ P. We write a, acquire, . . . ∈ A to denote actions.
We write P,Q, . . . for processes. A process variable A is defined by stating a
declaration of the shape A = P , where P is an expression of the shape:

P ::= A | a | ε | P ·Q | P ‖ Q | P + Q

We require all process variables to be declared exactly once1. The precedence
of the operations is · over ‖ over + , so ((P ·Q) ‖ R) + S does not need any
parenthesis.

Here is an example of two process declarations:

B = (set + unset) ‖ B + ε;
C = acquire·B·release;

Process B models any number of arbitrarily ordered setting and unsetting
actions. Process C models a process in which such an arbitrary set of actions
happens between an acquire and a release.

3.2 Valid and Prefix Event Structures

We define validity to be able to relate event structures to processes. The defi-
nition will also be used to define a prefix. We inductively define what it means
for an event structure to be a valid structure for a process, given a context of
process variable declarations:

– If (E, l,�) is a valid event structure for the process P , and the process variable
A ∈ P is declared as A = P , then (E, l,�) is valid for A.

– Let (E, l,�) be an event structure with exactly one event: {e′} = E, and
l(e′) = a. Then (E, l,�) is valid for a.

– An event structure (E, l,�) for which ∀e ∈ E.l(e) = {}, is valid for ε.
– If (E, l,�) is an event structure, E1 ∪ E2 = E with E1 and E2 disjoint,

(E1, lE1 ,�E1
) is valid for P and (E2, lE2 ,�E2

) is valid for Q, then (E, l,�)
is valid for P ‖ Q. If additionally ∀e1 ∈ E1, e2 ∈ E2. e1�e2, then (E, l,�) is
valid for P ·Q.

– If (E, l,�) is an event structure that is valid for P , then (E, l,�) is valid for
P + Q, as well as for Q + P .

– Nothing else is a valid event structure for a process.

1 Because how validity is defined in the next section, a process defined as A = A
is equivalent to the process for which no event structures are valid, not even the
empty one.
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We could extend the language for processes (say with hiding operations), as
well as the event structure (say with a conflict relation), as long as the model
checker we use to reason about validity of event structures supports the added
constructions.

For l′ and �′ such that ({0, 1, 2, 3, 4}, l′,�′) is the event structure indicated
in Fig. 1, we get: The event structure ({3}, l′{3},�

′
{3}) is a valid event structure

for B. Consequently, the event structure ({0, 1, 3, 4}, l′{0,1,3,4},�
′
{0,1,3,4}) is a valid

event structure for C. However, ({0, 1, 2, 3, 4}, l′,�′) is not a valid event structure
for C. It is, however, a valid event structure for B ‖ C.

When reasoning about programs, we describe partial executions, which we
also relate to processes. A prefix encompasses this idea. A prefix is an event
structure that could be extended to become a valid event structure for a process
P : Let (E, l,�) be a valid event structure for P . Take E′ ⊆ E such that it is
upward closed with respect to �, that is: if e′ ∈ E′, e ∈ E and e�e′, then e ∈ E′.
Then (E′, lE′ ,�E′) is a prefix event structure for P . The set of all such prefixes is
written prefix (P ). Similarly, the set of all valid event structures for P is written
valid(P ).

3.3 Using Invariants

We use an invariant system to reason about the state of program variables in
relation to a ghost variable. The invariants we consider are checked after every
change to shared variables: In a valid program, all invariants hold before and
after every atomic action. This fine-grained level of invariants allows us to relate
processes to a program state. We illustrate this with an example of a lock.

In a program with a spinlock, a single boolean la indicates the availability
of the lock. If the lock is available, a thread may atomically compare and swap
la from true to false. That thread is then responsible for eventually releasing
the lock by setting it back to true. We can model the lock with a very simple
process:

L = ε + lock·unlock·L
We use a global variable p to keep track of our locking process. Code for obtaining
the lock could look like this (replacing lines 4 to 7):

1 boolean success = false ;
2 while (! success){
3 success
4 = ( compare and swap( la,true,false )
5 /∗@ atomically {
6 if (\ result ) {e.add(lock);}
7 } ∗@/
8 ) ;
9 }
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Here the atomic compare and swap operation is executed as a single atomic
action together with our ghost code. The block starting with /∗@ and ending
with @∗/ is ghost code, and is to be ignored by a compiler, but is ‘virtually’ exe-
cuted in symbolic analysis of the code. We put extra brackets around this single
atomic action for clarity. This means no other threads can interleave between the
compare and swap and the ghost code on line 6. The \ result on line 6 refers to
the return value from the compare and swap operation. Note that we cannot use
success yet, as the write to success does not happen until after this atomic action.
A verifier checks that the expression preceding line 6 is indeed atomic, and the
code in line 6 is valid ghost code in that it does not change any non-ghost parts.

Now we wish to verify that this code actually maintains e ∈ prefix (L). That
is: the event structure in the variable e is a valid prefix of the process described
by L. For this code, that means we need to show that when e.add(lock) ; is
virtually executed, the value of e is such that adding an event with the label
lock preserves the invariant. The invariant guarantees that e is in the prefix of
L, but that does not suffice to prove what we need to show: The event structure
({0, 1}, λx.lock,≤) where ≤ is the standard order on natural numbers is not in
the prefix of L, but can be reached after e.add(lock) ; if the original value of e was
({0}, λx.lock,≤), which is in the prefix of L. This situation should not occur,
because of how la relates to e, but we have not made this explicit yet. We do so
in another invariant.

The invariant e ∈ valid(L) ⇔ la describes that la is true if and only if the
value of e is an event structure in L. As we do the atomic compare and swap, we
can prove that both invariants are maintained by case analysis: If the compare
and swap fails, la is unchanged and so is e. Since the invariants holds before
the compare and swap, it also does after it. For the other case, the compare and
swap succeeds. This means that before the atomic action, la was true. Therefore,
we must have been in an accepting state of L per our second invariant. We are
allowed to do the lock action from that state, which establishes e ∈ prefix (L).
Additionally, we will end up in a non-valid state of L by doing this action. As
la is false after the atomic action, we also established e ∈ valid(L) ⇔ la. This
shows that the two stated invariants are preserved. The reasoning required to
establish this, can be stated as an isolated model checking problem.

Note that our reuse of L in the invariant e ∈ valid(L) ⇔ la is a bit of a lucky
coincidence. The processes lock·unlock·L and lock + lock·unlock·L all have the
same prefixes as L, so we could have used them in the first invariant. However,
they differ in valid(L), so they would not be suitable for the invariant that
fixes la. In certain cases, one would need to write a separate process for different
invariants.

3.4 Limitations and Extensions

We illustrate a limitation of our approach by the same example of a lock. This
time, we focus on the release of the lock, rather than the acquire. We could use the
same solution as for the lock, but there is a subtlety: While an acquire requires
a compare and swap operation, a release can be done with the unconditional



352 S. Joosten and M. Huisman

assignment la=true;. Our approach can be extended in several ways, which we
will sketch now. We end this section by briefly discussing which option would be
the best choice to implement in an existing tool.

The invariant we need to prove the unconditional release preserves the invari-
ant is as follows: Only the thread or process that acquired the lock is allowed
to release it. We can state this invariant in terms of permissions: every thread
can do a lock action, after which it obtains permission to do an unlock action.
Another way to state this invariant is in terms of a rely-guarantee invariant: all
threads must guarantee to do a lock before any unlock. Finally, we could change
the definition of our process to a thread-oriented version, making explicit which
thread does the lock in the process.

Using Permissions. For using permissions, we assign permissions to actions. This
ties in nicely to verification tools that already use permissions. The idea is to
introduce a new permission (or resource), which we call can unlock. In an imple-
mentation, the permission itself can be left undefined, or the write permission
to an arbitrary heap location can stand in its place. We will give this permission
to the thread that can perform an unlock action, which means we will need to
prove that at most one thread can get that permission.

In this solution, add pre- and postconditions to e.add(lock) and e.add(unlock):
As a postcondition for e, you gain the permission can unlock. The permission
can unlock is a precondition to adding the unlock event to e. Aside from the
invariants, adding a lock event to e has no preconditions, and adding the unlock
has no postconditions. It follows from e ∈ prefix (L) (by model checking L) that
the number of outstanding can unlock permissions is at most one. Crucially, this
means that at most one thread has the can unlock permission. This should allow
us to prove that no unlock events are added to e as long as we hold can unlock.

Using rely-guarantee. Using a rely-guarantee mechanism, we state that every
thread, and therefore also the environment of a single thread, must do a lock
before an unlock. Together with the invariant e ∈ prefix (L), this means that the
environment of some thread cannot do an unlock after our thread performed a
lock. For this approach to work one needs to tie the execution of threads to that
of method calls: When a thread is forked, it gets assigned a process that acts as its
contract. Assigning a process to a forked thread as a method is worked out under
the name ‘abstract models’ as currently implemented in the tool Vercors [11].
A similar principle might be usable to also state properties about the envi-
ronment of a thread. Indeed, the combination of using separation logic and
rely/guarantee based reasoning has been proposed by Vafeiadis et al. [14].

Thread-Specific Event Structures. Finally, one could add a ghost event structure
variable t(n) for each thread n. For each of these variables, we have t(n) ∈
prefix(L). Each thread n gets exclusive access to t(n). Additionally, we add an
invariant that states that e is an interleaving of all t(n). This solution works the
same way as the solution of using permissions, with the difference that having
write access to a t(n) that contains a lock event here takes the role of having the
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can unlock permission. Again, the invariants collectively guarantee that only one
thread at a time has this permission.

This solution seems to be really close to what we described in this paper
so far. The main addition is to be able to express the composition of a set of
thread-specific variables t(n). We can use the union command, which does this for
two variables. However, we need to compose an unbounded number of variables,
rather than two as with union. This seemingly small detail hinders the use of
model checkers at the place where we intend to use them.

Future Directions. In this section, we described three ways to verify correctness
of the unlock. Each has its own benefits: there is a clear path for the imple-
mentation of the first solution, the second solution seems to best match existing
literature, and the third solution seems to constitute the smallest change in the
language of existing tools. We do not know whether the most convenient solution
is among these three, or which of these would be the best for a tool user. We
hope to discuss these directions with the participants of ISoLA 2018.

4 Conclusions and Future Work

We described the use of a new kind of ghost variable to help verify programs
in an intuitive way. This gives us a way to reason about programs as if they
were state machines, in a way that allows us to choose the abstraction level
ourselves. Invariants allow us to tie programs into program variables, such that
the reasoning also helps us to state properties about the program based on that
reasoning.

We believe the ideas in this paper can be implemented by combining model
checking and existing static verification tools, but have not yet worked out all
necessary details on how to do so. Details on how to do this in Vercors remain
future work. We hope this paper inspires readers to come up with different ways
of implementing these ideas in other tools as well.

A future direction of research is to determine whether we can use this app-
roach to verify properties that can only be stated on a process level, like the
linearizability of methods. Linearizability is an important property for high per-
formance libraries. To prove it, one would associate each method of a certain
class with a single action. We would like to be able to assert that regardless of
how we call these methods in instance of that class, the event structure vari-
able registers each of those actions exactly once, sequentially. Furthermore, the
sequential execution of the corresponding methods should give the same state for
the instance. A proof of linearizability of a set of methods allows us to treat those
methods as atomic actions themselves, giving an extra opportunity of making
proofs more modular.
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Abstract. Concurrency control faults may lead to unwanted interleav-
ings, and breach data consistency in distributed transaction systems.
However, due to the unpredictable delays between sites, detecting con-
currency control faults in distributed transaction systems is difficult. In
this paper, we propose a methodology, relying on model-based testing
and mutation testing, for designing test cases in order to detect such
faults. The generated test inputs are designated delays between dis-
tributed operations, while the outputs are the occurrence of unwanted
interleavings that are consequences of the concurrency control faults.
We mutate the distributed transaction specification with common con-
currency control faults, and model them as UPPAAL timed automata,
in which designated delays are encoded as stopwatches. Test cases are
generated via reachability analysis using UPPAAL Model Checker, and
are selected to form an effective test suite. Our methodology can reduce
redundant test cases, and find the appropriate delays to detect concur-
rency control faults effectively.

1 Introduction

In many modern software systems, data are partitioned in several nodes across
the network, and accessed by concurrent distributed transactions with read and
write operations. Without proper control, concurrent transactions may interleave
and access data arbitrarily, which may lead to inconsistent data. For instance,
in a distributed automation system, whose configuration data are partitioned
on different sites, a transaction may update the configuration data D1 on site
S1 and data D2 on site S2, based on their current values. If another transaction
modifies D2 exactly before the former’s update, the configurations may end up
inconsistent. To avoid this, the transaction manager often ensures the isolation
property, that is, the absence of a specified set of transaction interleavings that
cause data inconsistency [1].

To achieve this, lock-based Concurrency Control (CC) techniques are often
applied by the transaction manager to prevent unwanted interleavings [3]. Such
type of CC regulates transactions to acquire and release locks on data at specific
c© Springer Nature Switzerland AG 2018
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Fig. 1. Observation of isolation violation depending on delays

times, and resolves the conflict when two transactions request the same lock
simultaneously. In the previous example, one proper way to guarantee isolation
could be to lock both D1 and D2 until the modification is completed, so that no
other transactions can interfere. Consequently, every transaction behaves to its
caller as if it was the only one executed in the system.

In this paper, we focus on detecting CC faults in a distributed transaction
system with lock-based concurrency control. CC faults are commonly found
and notoriously challenging to detect in software systems [20]. Common CC
faults include, for instance, misplaced locks, or erroneous time of releasing locks
[14,18]. The consequence could be the violation of the isolation requirements,
that is, the occurrence of undesired interleavings of the concurrent transactions.
To detect the CC faults, the implemented system are usually tested by execut-
ing the distributed transactions, and monitoring the occurrence of the undesired
interleavings in the transaction logs. A fault is detected when such undesired
interleavings are observed. Due to the various communication delays between
different nodes, however, such undesired interleavings may not be observed, even
in the presence of CC faults. In order to illustrate the impact of delays, let us
consider two transactions, T0 and T1, from the previous example. T0 updates
D1 and D2 by reading and write D1 on site S1, and after some delay, followed
by reading and write D2 on S2. T1 reads D2 and then modifies its value. The
isolation property forbids the following sequence of operations: T0 reads D2, T1
reads D2, T0 writes D2, T1 writes D2, because T1 bases its write on an interme-
diate value of D2. While a proper CC algorithm would be to lock both D1 and
D2 during the execution of T0, we assume that the developer has made a mistake
by forgetting to lock D2. However, isolation violation may not be observed with
this fault. As shown in Fig. 1a, the unwanted interleavings does occur that T1
reads D2 before the final modification by T0, and can be observed by the tester.
However, if the delay is shorter, as shown in Fig. 1b, the unwanted interleavings
do not occur, and thus the fault is not exposed to the tester.

Traditionally, a common testing technique is to insert random delays between
the operations of the transactions, and test the violation of isolation [11,13].
However, even though a large set of various delays can be used as test inputs,
it is still difficult to ensure the coverage of the unwanted interleavings. Finding
a relatively small set of test cases, which is manageable yet able to expose as
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many unwanted interleavings as possible, remains challenging for detecting CC
faults of distributed transactions.

To address this challenge, in this paper we propose a methodology for finding
an effective test suite that can expose the CC faults. The inputs of the test
cases are designated delays between operations at design level, which can be
used to configure the delays in the implemented system in a controlled testing
environment. Instead of randomly chosen delay values, we propose techniques
to generate a set of values for the inserted delays as inputs, such that the CC
faults can be exposed. The outputs are whether or not the predefined unwanted
interleavings that violate isolation have occurred, which can be examined in the
logs. The techniques central to this methodology are model-based testing [21]
and mutation testing [16]. We define a set of mutation operators, each altering
the transaction specification by introducing a common CC fault. For instance,
one mutant operator could change the specification by removing the locking of a
data. We model the transaction specification, as well as its mutants, as networks
of UPPAAL Timed Automata (TA) [19], in which the delays are encoded as
stopwatches [7]. Test cases including the designated delays are generated from
the models via reachability analysis.

The process of applying our methodology is listed as follows. (i) We specify
the work units consisting of the operations on the distributed data, the delays
between these operations, as well as the lock operations, in a high-level descrip-
tion language. In addition, we specify the requirements of desired isolation,
which are the interleavings to be prevented by CC. (ii) By extending a mod-
eling framework for concurrent transactions in our previous work [6], we model
the distributed transaction system as a network of UPPAAL TA, and formalize
these isolation properties in Computational Tree Logic (CTL) [8], which can be
checked rigorously by the UPPAAL Model Checker (MC) [19]. (iii) The specifi-
cation in (i) is mutated by applying the mutation operators, based on which we
create a series of mutant TA models that model the common CC faults. (iv) We
generate diagnostic traces for each mutant model via reachability analysis and
obtain test cases from the traces, which are used to form an effective test suite
that can kill all the mutants with a minimal number of test cases.

The remainder of the paper is organized as follows. Section 2 recalls the
background knowledge of this paper, including model-based and mutation test-
ing, UPPAAL TA and the UPPAAL tools. Section 3 presents the details of our
methodology. In Sect. 4, we apply our methodology to a case study, followed by
a comparison with related work in Sect. 5. In Sect. 6, we conclude the paper and
outline our future work.

2 Background

In this subsection, we present the background knowledge of this paper, that is,
a brief overview of model-based and mutation testing in Sect. 2.1, as well as
UPPAAL timed automata and the UPPAAL tools in Sect. 2.2.
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2.1 Model-Based Testing and Mutation Testing

Model-based testing [21,27] encompasses the processes and techniques to per-
form testing based on behavioral or architectural models of the System Under
Test (SUT). A generic process of model-based testing consists of the following
major steps. (1) Create a model of the SUT. (2) Decide the test selection cri-
teria to guide test generation. (3) Define the high-level test case specifications.
(4) Generate the test cases that satisfy the test case specifications. (5) Run the
generated test cases, manually or automatically.

Mutation testing [16] is a fault-based technique to provide criteria for select-
ing the effective test cases. Mutants, which represent common faults, are created,
upon which the candidate test cases are executed. Combined with model-based
testing, the mutants are also models generated from the original system model
using pre-defined mutation operators. A good test case should be able to distin-
guish the mutated behaviors from the original behavior. An effective test suite,
selected from the candidate test cases, should be able to kill as many mutants
as possible, with a minimal number of test cases.

2.2 UPPAAL Timed Automata and the UPPAAL Tools

In this paper we use Timed Automata (TA) [2] to model the distributed trans-
action system. A Timed Automaton (TA) is a finite-state automaton extended
with clock variables with real-type values. These clock variables progress syn-
chronously, and are used to model the progress of time in a system. UPPAAL
[19] is the state-of-art model checker for verifying TA-based models of real-time
systems.

Figure 2 shows two TA, A1 and A2, in UPPAAL. A1 has two locations, L1
and L2, and has defined a clock variable c to keep track of the elapsed time. An
directed edge connects these two locations, meaning the it is possible to transit
from L1 and L2. When a TA reaches a location, it can non-deterministically
choose to delay at the same location, or take a transition to another location
following an edge. An invariant, which is a propositional formula over clock
variables, may be associated with a location to set an upper-bound on the delay.
In Fig. 2, the invariant c <= 10 on L1 indicates that A1 may delay at L1 at
most until c equals 10 time units. A guard, which is also a predicate of variables,
may be associated with an edge as the required condition to take the transition.
In this example, the guard c > 5 ensures that the transition from L1 and L2
can be taken only if the value of c is bigger than 5. During a transition, TA can
take actions, as associated with the edge, to update the values of the variables.

The automaton A1 and A2 form a network of TA via parallel composition
(“||”). The two TA can perform handshake synchronization via the channel chan.
The “!” denotes the sender of the signal in the synchronization, and the “?”
denotes receiver. In the example, A1 sends a signal via chan when it transits
from L1 to L2. Meanwhile, A2 receives the signal and takes the transition from
location L3 back to L3.
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Fig. 2. A network of UPPAAL TA Fig. 3. An UPPAAL TA with
stopwatch

The requirements to be satisfied can be formalized in the UPPAAL query
language, which is a decidable subset of TCTL (Timed Computational Tree
Logic) [19]. These formalized requirements can then be verified exhaustively and
automatically by the UPPAAL model checker. In this paper we will use the
following queries:

– A [ ] P : P always holds for all possible execution paths (invariance property).
– E <> P : There exists a path in which P eventually holds (reachability

property).

P is a logic expression that may contain clock constraints, and logical opera-
tors such as “and”, “or”, “not” and “imply”. In case an invariance property fails,
UPPAAL can provide a trace leading to the violation as a counter-example of
the property. If a reachability property is satisfied, UPPAAL also returns a trace
that leads to the state where P holds. Such traces contain the state transitions
as well as the bounds of clock variables in each state. For more details about
UPPAAL, we refer to the literature [19].

In this paper, we also use an extended version of UPPAAL TA, augmented
with stopwatches [7]. Stopwatches allow clocks to be stopped at locations, so that
the values of the clock variables do not progress. Figure 3 shows an UPPAAL TA
with stopwatch. The invariant c2′ == 0 assigns the rate of the clock variable c2
to be 0. By doing this, as long as automaton A2 stays at location L3, the value
of c2 is never changed.

UPPAAL has been used for generating test cases [15]. The system under test
is modeled in UPPAAL TA, in which test inputs and outputs are encoded in the
model. By executing UPPAAL queries that formalize the testing goal, testers
can utilize the diagnostic traces returned by UPPAAL to form test sequences,
which may consist of synchronizations, discreet transitions and time delays.

3 A Model-Based Testing Methodology for Isolation
Violation

In this section we present our proposed methodology for testing isolation vio-
lation in a distributed transaction system with lock-based CC. We first give
an overview of our methodology, after which we explain the major steps and
techniques in details.
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3.1 Overview

We assume that a distributed transaction is a sequence of atomic operations
that may access data located in different sites, and as a whole should satisfy
data consistency requirements. Among them, the isolation requirements claim
the avoidance of a particular set of interleavings of concurrency transactions.
The transaction manager implements a CC algorithm with locking and unlock-
ing mechanisms over the distributed data partitions. The delays between nodes,
while their actual values unpredictable, are bounded with maximum and min-
imum values, which is reasonable for many distributed systems, such as auto-
motive and factory automation systems. The maximum and minimum response
times of the operations on each data item is also known a priori. While the sys-
tem is tested, designated delays can be deliberately inserted between operations,
and the interleavings can be examined by checking the transaction logs.

Our model-based testing methodology consists of four major steps, which are
presented in Fig. 4, and listed as follows:

1. Specify the work units with bounded delays, the CC operations, as well as
the isolation requirements, in a high-level description language.

2. Construct a network of UPPAAL timed automata for the work units as well as
the concurrency control algorithm. Formalize the specified isolation properties
in UPPAAL queries. Verify that the isolation properties are satisfied by the
current design, using UPPAAL MC.

3. Mutate the transaction specification using the mutation operators presented
in Sect. 3.4, and construct TA models with stopwatches for the mutants.

4. Generate an effective test suite from the mutant models.

The details of the steps are presented in the following subsections.

Fig. 4. Our proposed methodology
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3.2 Step 1: Specification of Transactions and Isolation

Our methodology starts with the specification of the distributed transactions
and the isolation properties. We assume a high level language is selected, which
is able to specify the sequence of operations in the work unit of the transaction,
the nodes where the data are located, the response times of the operations, as
well as the lock and unlock operations. The language can also specify the delay
bounds between operations, which is calculated by the designer based on the
communication delays between nodes. For instance, Listing 1.1 and 1.2 specify
transaction T0 and T1, respectively, in a generic exemplary high-level language.
T0 updates configuration D1 and D2 on site S1 and S2, respectively. T1 reads
configuration D2, and then modifies it after a calculation based on the read value.
In this description language, “delay” specifies the bounded delay value between
operations, with the lower and upper bounds in brackets. “Read” and “write”
specify the data operations, while “calculate” specifies calculations in the client.
The minimum and maximum response time of the operations are specified in
the brackets as well. “On” specifies the sites. “Lock” and “unlock” specifies the
CC operations. “Begin” and “commit” specify the boundary of the transaction,
respectively.

The isolation property is specified as the avoidance of a set of unwanted
interleavings. Such interleavings could be described as a sequence of operations,
such as: T0 reads D2, T1 reads D2, T0 writes D2, T1 writes D2.

Listing 1.1. Specification of T0

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D1 on S1
unlock D2 on S2
commit

Listing 1.2. Specification of T1

begin
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
calculate [2, 3]
delay [1, 4]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D2 on S2
commit

3.3 Step 2: Construction of TA Models for the Correct Specification

Our modeling framework for the distributed transaction system is adapted from
an existing modeling framework for real-time concurrent transaction systems [6].
We extend the original model with the possibility to model distributed data
partitions as well as delays between operations introduced by the distribution.

Assuming a distributed transaction system intended to achieve the isolation
that avoids k unwanted interleavings, we model the system as a network of
UPPAAL TA, denoted as N , defined as follows:

N ::=A0 ||...||An−1 ||ACCManager ||O0 ||...||Ok−1,
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where A0, ..., An−1 are the work units TA of transactions T0, ..., Tn−1,
ACCManager is the CCManager automaton, and O0, ..., Ok−1 are the TA of
IsolationOservers that observe the unwanted interleavings, respectively. A work
unit automaton models the work unit, that is, the operations of a transaction,
as well as the delays between them. An IsolationObserver is an automaton that
monitors the occurrence of transaction executions that lead to violation of the
isolation property. The CCManager automaton models the selected lock-based
concurrency control algorithm.

Figure 5 shows the work unit automaton skeleton. The begin location rep-
resents that the transaction actually starts, while commit trans represents the
end of the transaction. After the start, the work unit performs a set of read,
write or calculation operations, modeled by the instantiated operation patterns
(Fig. 6). We extend the original pattern [6] for distributed transactions in two
aspects. First, each read/write operation is performed atomically on a partition.
This is modeled by a shared variable cs[partition] for each partition. When an
operation is performed, it sets cs[partition] to 1, so that other operations on
this partition are blocked until the current one has finished. The other extension
is the modeling of delays between operations caused by the distributed com-
munication. The time of delay for operation k is modeled by the clock variable
Delay k. The operation may delay for at most MAX DELAY k time units, and
must delay for at least MIN DELAY k time units. Each operation starts from
the start operation location, and moves to operation. Before moving to opera-
tion done, it may stay at operation for at most WCRT time units, representing
its worst-case response time; and for at least BCRT time units, representing its
best-case response time. The work unit may also interact with the CCManager in
order to acquire and release locks, which is modeled by the instantiated locking
and unlocking patterns (Figs. 7 and 8). The synchronization channel lock[ti][di]
models the locking request for data Dj sent by transaction Ti. The channel
unlock[ti][di] and grant[ti][di] represent the unlocking and granting messages,
respectively. These patterns are similar to the ones in [6].

The CCManager is modeled using the CCManager skeleton proposed pre-
viously [6] (Fig. 9). It models the behavior of the concurrency control manager
in managing lock requests and releases, following a selected algorithm. When a
locking request is received via the lock[ti][di] channel, the CCManager evaluates
the situation using a user-defined function satisfyPolicy(), and decides if it sends
a grant signal, or refuses the request. When the CCManager receives a unlock
signal, it picks the next transaction in the waiting queue (if any), and grants it
the lock.

A violation of isolation can be seen as the occurrence of a series of inappro-
priate events, and is monitored by an IsolationObserver, which is modeled using
the skeleton presented in Fig. 10. When the events occur in the specified order,
the model eventually reaches the isolation violation location.

As the violations of isolation are modeled using IsolationObservers, the ver-
ification of properties is equal to checking the isolation violation locations are
not reachable. This can be specified in UPPAAL query language and checked
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Fig. 5. The UPPAAL automaton skeleton of a work unit

Fig. 6. Operation pattern extended with delay

by the UPPAAL model checker. The following query specifies that the isolation
property, that is, the violations encoded by the IsolationObservers will never
occur:

A[] (not IsolationObserver1.isolation violation) ...
and (not IsolationObserverk.isolation violation).
The outcome of this step is a design of distributed transactions, including

the work units and the CC manager, that are proven to satisfy the specified
isolation properties.
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Fig. 7. Locking pattern Fig. 8. Unlocking pattern

Fig. 9. The UPPAAL automaton skeleton of CCManager

Fig. 10. The UPPAAL automaton skeleton of IsolationObserver

3.4 Step 3: Generation of Mutant Specifications and Models

Inspired by the existing work on mutation testing for concurrency bugs
[5,14,18,25], which have proposed mutation operators that represent common
CC faults in various implementation platforms and programming languages, we
define a set of mutation operators for the high-level description language, listed
in Table 1. Among them, “Remove lock”, “Add lock” and “Remove unlock” mod-
els the common errors that developers may forget to lock/unlock data, or put
on unnecessary locks. “Change lock type” is a useful operator for CC algorithms
applying more than one type of locks. “Change lock position” and “Change
unlock position” adjust the duration when the data are locked, which captures
the error of erroneous length of critical sections.

As examples, Listings 1.3, 1.4 and 1.5 present three mutant specifications,
respectively. Mutant 1 applies the “Remove lock” operator, as shown in Listing
1.3, which removes the lock before reading D2 in T0. Mutant 2 applies the
“Change unlock position” operator, moves the unlocking of D2 in T0 to before
writing D2 (Listing 1.4). We apply “Change lock position” to create mutant 3,
which moves the locking of D2 in T1 to before the writing of D2, but after the
calculation (Listing 1.5).
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Table 1. Mutation operators for created specifications with CC faults

Mutation operator Change in the correct specification

Remove lock Remove a line with “lock” operation for a shared data

Add lock Add a line with unnecessary “lock” operation for a data

Remove unlock Remove a line with necessary “unlock” operation for a locked data

Change lock type Change the type of lock

Change lock position Move the line with a lock operation to another position

Change unlock position Move the line with an unlock operation to another position

Listing 1.3. Mutant 1

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
--Remove lock
//lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
write D2 on S2 [1, 2]
delay [1, 6]
unlock D1 on S1
unlock D2 on S2
commit

Listing 1.4. Mutant 2

begin
delay [1, 10]
lock D1 on S1
read D1 on S1 [1, 1]
delay [1, 10]
write D1 on S1 [1, 2]
delay [1, 8]
lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
--Change unlock position
unlock D1 on S1
write D2 on S2 [1, 2]
delay [1, 6]
--Change unlock position
// unlock D1 on S1
unlock D2 on S2
commit

Listing 1.5. Mutant 3

begin
delay [1, 8]
--Change lock position
//lock D2 on S2
read D2 on S2 [1, 1]
delay [1, 8]
calculate [2, 3]
delay [1, 4]
--Change lock position
lock D2 on S2
write D2 on S2 [1, 2]
delay [1, 6]
unlock D2 on S2
commit

The TA models of the mutant specifications are constructed using the same
technique as presented in Sect. 3.3. However, in order to generate test cases with
delays, the actual delay values need to be captured in the trace. We achieve this
by adapting the models with stopwatches, as shown in Fig. 11. The rule is that,
for each delayk location, only the kth clock is allowed to progress, while all other

Fig. 11. Modified operation pattern for mutant models
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clock variables Delay n (n �= k) is set to stop, which is done by Delay n’==0 in
the invariants of this location. In other locations, all clocks are set to stop using
stopwatches in the same way. The purpose is that, a clock variable for delay
only progresses during its delay period, so that the delay values are preserved
in the diagnostic trace. The output of this step is a set of mutant models, each
representing a mutant specification with CC faults.

3.5 Step 4: Generation of Effective Test Suite

For each mutant model, we use UPPAAL tool to verify the following query:
E <> IsolationObserver.isolation violation.
UPPAAL then generates a trace that leads to the location isolation violation,

if this location is reachable. At the end of the trace, the clock constraints at
location isolation violation encode the bounds of values of the clock variables,
which represent the feasible ranges of delays that can lead to the violation.
Since the clock constraints are simple linear inequalities between variables and
integers, it is easy to solve them using modern tools, such as Microsoft Z3 SAT
solver [10].

We propose an algorithm to generate the effective test suite. If we use CSi to
denote the set of clock constraints of mutant Mi, the delay values as the solution
set of CSi are then the test inputs that can lead to the violation, therefore killing
Mi. Ideally, the effective test suite contains only one test case, which is the set
of delay values that satisfy CS1 ∧ ...∧CSk. Therefore, our algorithm starts with
looking for one solution for CS1 ∧ ... ∧ CSk (line 3, when i equals 1). If such
a solution cannot be found, we try to find a larger test suite, by dividing the
constraint set into smaller groups, and finding a solution for each group. For
instance, let us consider that i equals 2, meaning that we try to find a solution
containing two sets of delay values, one set satisfying CS1 ∧ ...∧CSm, the other
satisfying CSm+1 ∧ ... ∧ CSk. From line 12 to line 23, the algorithm iterates all
possible two-group partitions, and tries to find a solution set for each. For each
group in the partition, the algorithm tries to solve the constraints using Z3 (line
15), and records the solution (line 17). If every group in the current two-group
partition is solvable, the algorithm returns the solutions as the minimum set of
delays that forms the test suite (line 24, in this case the suite contains exactly
two test cases). If any group is found unsolvable, the algorithm skips the current
two-group partition, and tries another one (line 20). If no two-group partition is
solvable, which means there does not exist a two-case test suite, the algorithm
continues with a possible three-group partition (increment i in line 3), trying to
find a test suite that contains three test cases. Using this algorithm, the effective
test suite will have at most m test cases, in which each for one of the mutants;
and at least 1 test case, which is able to kill all mutants.
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Algorithm 1. Algorithm to find the effective test suite
1: function find effective suite():
2: The constraint set of m mutants CS := {CS1, ..., CSm}
3: for i ∈ [1,m] do
4: SOLUTIONS := solve k partition of CS(i)
5: if SOLUTIONS �= NULL then
6: return SOLUTIONS
7: end if
8: end for
9: return NULL

10:
11: function solve k partition of CS(k):
12: for each k-partition Sk of CS do
13: SOLUTIONS := {}, solved := true
14: for each constraints group Si

k in Sk do
15: try solving Si

k using Z3
16: if Si

k is solvable and solution SOLUTIONi is found then
17: SOLUTION := SOLUTION ∪ SOLUTIONi

18: else
19: solved := false
20: break
21: end if
22: end for
23: if solved == true then
24: return SOLUTIONS
25: end if
26: end for
27: return NULL

4 Illustrative Example

To illustrate our proposed methodology, we present an running example, based
on the aforementioned transactions in Listings 1.1 and 1.2 in an unmanned
loading system on a construction site [17]. This system consists of an autonomous
wheel loader, an autonomous dump truck, and a controller, each equipped with
a computer, and connected by real-time industrial wireless communication. In
a typical scenario, the controller configures the planned job information (paths,
locations, etc.) for the truck and wheel loader, which are stored in their respective
databases. The wheel loader autonomously discovers and scoops the piles in its
surroundings, and dumps them into the truck. The wheel loader may also adjust
its working path, in order to avoid obstacles in its working surroundings. All data
are protected by CC that requires the corresponding locks in order to access the
data.

In this scenario, we consider two transactions. Started by the controller,
transaction T0 updates the next location of the truck (denoted as D1) in the
truck’s local system (denoted as S1), followed by updating the planned location
and path (D2) in the wheel loader (S2). Transaction T1, started by the wheel



368 S. Cai et al.

loader, reads D2 from S2, calculates a new value, and then modifies D2. The
isolation requirement demands the avoidance of the following sequence: T0 reads
D2, T1 reads D2, T0 writes D2, T1 writes D2, which indicates that, the wheel
loader using old data computes a new path, which overwrites the planned path.
Consequently, the truck goes to the newly planned location while the wheel
loader may goes to the old one and miss the truck. We apply our proposed
methodology to generate a test suite for testing the CC faults that can lead to
the violation of isolation.

4.1 Specification of Transactions and Isolation

The first step is to specify the transactions and the isolation requirement. T0 and
T1 are specified in Listing 1.1 and 1.2, respectively. The isolation requirement
is formulated as follows: the following sequence of operations, T0 reads D2, T1
reads D2, T0 writes D2, T1 writes D2, should never occur.

4.2 Construction of TA Models for the Correct Specification

We model the transactions and CC in UPPAAL timed automata. The automaton
of T0, as an example, is presented in Fig. 12. It is constructed by composing the
instantiated operation, locking and unlocking patterns with the work unit skele-
tons. An IsolationObserver is created to monitor the occurrence of the unwanted
interleavings, as presented in Fig. 13. Isolation is verified by UPPAAL using the
following query:

A[] (not IsolationObserver.violation).
The time and memory consumed by UPPAAL for the verification are 0.015 s

and 28316 KB, respectively.

4.3 Generation of Mutant Specifications and Models

We use the mutation operators proposed in Table 1 to manually generate mutant
models. In this case study, we create three mutants, which are specified as List-
ings 1.3, 1.4 and 1.5 in Sect. 3.4. The TA models of these mutant specifications
are also constructed.

4.4 Generation of Effective Test Suite

We use the query in Sect. 3.5 to generate diagnostic traces for the mutant models,
and obtain the constraints on the clock variables representing the delays. The
time and memory consumed for the checking of each mutant, respectively, are
as follows: M1 (0.014 s and 28488 KB), M2 (0.007 s and 28388 KB), M3 (0.015 s
and 28492 KB). The constraint sets for mutants M1, M2 and M3 are listed in
Listings 1.6, 1.7, and 1.8, respectively.
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lock D1

read D1

write D1

lock D2

read D2

write D2

unlock D1,D2

Fig. 12. The UPPAAL model of T0

Fig. 13. The UPPAAL model of IsolationObserver that monitors the unwanted inter-
leavings
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Listing 1.6. CS 1

3≤T0.Delay_1≤20
3≤T0.Delay_2≤15
1≤T0.Delay_3≤8
1≤T0.Delay_4≤8
1≤T0.Delay_5≤6
10≤T1.Delay_1≤20
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_1 -T1.Delay_1≥-17
T0.Delay_1 -T1.Delay_1≤0
T1.Delay_1 -T0.Delay_2≥4
T1.Delay_1 -T0.Delay_2≤17
T1.Delay_1 -T0.Delay_3≥8
T1.Delay_1 -T0.Delay_3≤19
T1.Delay_3 -T0.Delay_5≥-5
T1.Delay_3 -T0.Delay_5≤2

Listing 1.7. CS 2

3≤T0.Delay_1≤20
3≤T0.Delay_2≤6
1≤T0.Delay_3≤2
1≤T0.Delay_4≤5
1≤T0.Delay_5≤6
T1.Delay_1 ==10
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_4 -T1.Delay_2≥-3
T0.Delay_4 -T1.Delay_2≤1
T0.Delay_5 -T1.Delay_3≥-3
T0.Delay_5 -T1.Delay_3≤3

Listing 1.8. CS 3

3≤T0.Delay_1≤20
3≤T0.Delay_2≤15
1≤T0.Delay_3≤8
1≤T0.Delay_4≤8
1≤T0.Delay_5≤6
10≤T1.Delay_1≤20
1≤T1.Delay_2≤4
1≤T1.Delay_3≤4
1≤T1.Delay_4≤4
T0.Delay_1 -T1.Delay_1≥-17
T0.Delay_1 -T1.Delay_1≤0
T1.Delay_1 -T0.Delay_2≥4
T1.Delay_1 -T0.Delay_2≤17
T1.Delay_1 -T0.Delay_3≥8
T1.Delay_1 -T0.Delay_3≤19
T0.Delay_5 -T1.Delay_3≥0
T0.Delay_5 -T1.Delay_3≤3

Algorithm 1 is applied to find the effective test suite. The combined constraint
set CS1∧CS2∧CS3 is solvable using Z3, which returns the solution, which is the
designated delays as inputs of one test case that kills all mutants1. Therefore,
the effective test suite contains one test case, as shown in Table 2.

Table 2. Test inputs of the test case in the effective test suite

Test input variable Value

T0.Delay 1 3

T0.Delay 2 3

T0.Delay 3 1

T0.Delay 4 1

T0.Delay 5 1

T1.Delay 1 10

T1.Delay 2 1

T1.Delay 3 1

T1.Delay 4 1

4.5 Discussion

Our methodology generates a set of delays between operations, which can be
utilized to create concrete test cases for a particular implementation, considering
its architecture and testability characteristics. For instance, if the tested system
is instrumented with configurable delayed operations on each individual site and
synchronized clocks across all sites, a concrete test sequence with designated
delays from the abstract test case can be achieved.

1 We used the online Z3 tool provided by Microsoft (https://rise4fun.com/z3) in this
running example. The time to resolve the constraints was less than one second.

https://rise4fun.com/z3
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Scalability is one important issue for the verification of distributed transac-
tions, which may involve data items over many partitions. As a result, the model
may include large numbers of operations, delays and synchronization signals that
lead to state explosion for exact model checking. Another characteristic of dis-
tributed system is the probabilistic behavior, for which we may only know the
probabilistic distribution, rather than exact bounds of the delays in the system.
In both cases, we need to adapt the modeling language from UPPAAL TA to
UPPAAL stochastic timed automata, in which the probability of delays can be
encoded and analyzed by statistical model checking using UPPAAL SMC [9].
More scalable than exact model checking, statistical model checking can esti-
mate the probability of the violation of isolation with a given confidence level,
via stochastic simulation. Values of designated delays can be generated auto-
matically using statistical simulation provided by UPPAAL SMC.

In this example, we manually generate UPPAAL models for the distributed
transaction system specification, as well as its three mutants by applying three
mutant operations directly. In practice, induced from domain knowledge in con-
currency faults and distributed transaction systems, selected mutation operators
can be combined and applied multiple times on a transaction. For instance, the
“Change lock type” operator may be applied together with the “Change lock
position” operator in one or many locking operations in a transaction. This may
result in a large number of mutants and requires considerable modeling effort.
Therefore, tool automation is important for the application of our methodology
in practice, which should assist the testers to specify the mutated specifications
easily, and generate UPPAAL models automatically. We consider it feasible to
automate the generation of models by a tool, thanks to the modularization of
our modeling framework. The tool should also automate the extraction of clock
constraints from the diagnostic traces, as well as the resolution of the constraints
with Z3, which is also possible. Tool support for our methodology is considered
as our future work.

5 Related Work

Testing for concurrency design faults in database systems, and in software sys-
tems in general, has attracted considerable attention in recent years. Much of the
effort has been dedicated in detecting the interleavings that could lead to con-
sistency violations, and executing such interleavings in a controlled way. Deng
et al. [11] have proposed techniques for testing isolation violations of concurrent
transactions in database systems. They propose to use dataflow analysis tech-
niques to identify the schedules, which are ordered operations, that can lead to
violations. These schedules are then executed as test cases by the target database
system. The delays between operations are neglected in this work. In our work,
on the contrary, we generate not only the schedules, but also the delays between
the operations, which are an important factor for isolation in a distributed trans-
action system. We also propose to use mutation testing to find an effective
test suite. Park et al. have proposed the CTrigger method for testing atomicity
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violation bugs [24]. In their work, unserializable interleavings that lead to con-
currency bugs are identified by a set of profiling runs of the target program. Such
interleavings are ranked by their probabilities of occurrence, used as a selection
metric for pruning the test suite. Similar to CTrigger, the CHESS tool proposed
by Musuvathi et al. [22] also identify race conditions by a small number of runs.
In the race-directed random testing (RACEFUZZER) framework proposed by
Sen [26], the author has applied dynamic data race detection algorithms [23]
to compute the interleavings with potential data races, and used a scheduler to
execute and evaluate these interleavings at run time. Blum and Gibson [4] have
proposed a stateless model checking framework called QUICKSAND to examine
the interleavings at runtime. Contrary to these work, our framework proposes
the identification and selection of delays, which is a common issue for testing
distributed system, that can lead to unwanted interleavings. Our methodology
is based on abstract models of the system, which can be automatically processed
by existing model checking tools.

Mutation testing has been recognized as a promising technique for prun-
ing test cases for concurrent systems. Deniz et al. [12] have proposed a mutation
library for Multicore Communication API (MCAPI), targeting multicore embed-
ded systems. Mutation operators are introduced for concurrent communication
messages. Gligoric et al. [14] have created mutants for multithreaded code in
their MutMut tool. Mutation operators have been proposed for various design
and implementation languages, such as SystemC [25], C/C++ [18] and JAVA
[5]. Our work shares the same objective and concepts of mutation testing with
these mentioned work, and gets inspired by the existing classification of concur-
rency control errors. However, as we focus on the mutation at the model level,
our mutation operators are more abstract, rather than concrete operations in
specific programming languages as in most of the existing work.

6 Conclusions and Future Work

In this paper, we proposed a model-based testing methodology for designing
test cases for concurrency control faults in distributed transaction systems. The
test inputs are delays between distributed operations, while the outputs are
the occurrence of isolation violations, which are consequences of CC faults. We
model the transaction system, as well as the isolation violations, in UPPAAL
TA. We create a set of mutated models that model the common CC faults, based
on which we generate test cases via reachability analysis. A minimal set of test
cases that can kill most mutants is generated, which forms the effective test
suite.

One of our future work is to develop tool automation for our methodology,
including automated mutation and model generation, and test case generation
and selection. We also consider to investigate the application of statistical model
checking, in order to improve the scalability and deal with probabilistic behav-
iors of distributed systems. The extension of the methodology for other types of
concurrency bugs, such as deadlock, and other properties of distributed trans-
actions, such as atomicity, is another interesting direction.
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Abstract. As the Internet of Things (IoT) becomes a reality, the need of
ensuring the security and reliability of massively interconnected devices
becomes a pressing necessity. A means of satisfying this need would be
automated testing of IoT devices; however, this presents many difficul-
ties, such as the lack of standards, multitude of manufacturers, restricted
capabilities (such as power), etc.

In this work we present the first results on using TESTAR tool for
automating IoT testing of smart home devices. TESTAR is a tool for
automated testing at the Graphical User Interface (GUI) level of an
application. The tool uses the Accessibility API the obtain information
about the GUI and derive actions that can be executed in test sequences.
Many IoT systems use the REST API to access the resources that com-
pose the system. Consequently, this paper looks into IoT system testing
as a natural field for extending the TESTAR philosophy from GUI (Acce-
sibility) to IoT (REST) APIs.

The results show the potential of TESTAR in this new environment.

Keywords: Automated testing · Internet of Things · IoT

1 Introduction

The number of devices connected to the Internet has experienced a tremendous
growth in the recent past and it is expected to keep growing. Gartner [15] fore-
casts that this number will reach 26 thousand million by 2020. We are already
being witnesses of this, as connected vehicles, homes, cities and health monitors
have made their appearance in the past few years [6].

The popularity of the Internet of Things (IoT) stems from the fact that it
has the potential to change the way we work and live. However, its uptake may
be hindered by the cost of devices, as consumers see them as a non-essential
expense [4]. At the same time, it is necessary to ensure the reliability of the
c© Springer Nature Switzerland AG 2018
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devices connected as a malfunction could have a very negative impact, even
endangering lives.

Automated testing is already an important part of the software development
cycle, but it becomes crucial in ensuring security and reliability of IoT devices, as
well as reducing development costs. However, testing the IoT presents many chal-
lenges [8] stemming from the distributed functionalities and services, resource
restrictions (such as limitations in memory, processing power, bandwidth and
battery life), and the performance of the network communications.

Control layer

Physical layer

Arduino

Actuators
Button
Light
Ventilator
Alarm
Gradual light
Blinds
Door lock

Sensors
Light
Temperature
Sound
Humidity
Proximity
Vibration
Contact
Movement
Closed Door
Open Door

Raspberry Pi

RESTful
Services

Fig. 1. Smart home architecture

In this paper we present the first results obtained when applying the
TESTAR1 tool [16] for automated testing of various IoT devices, in the context
of a smart home. TESTAR has already been applied successfully to automate

1 www.testar.org.

www.testar.org
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software testing at the graphical user interface (GUI) level in various organisa-
tions [1,3,10,12,16]. This paper will present the results of its application to an
IoT system as a natural field for extending the TESTAR philosophy from GUI
(Accesibility) to IoT (REST) APIs.

The rest of the paper is structured as follows. Section 2 summarises the chal-
lenges and existing work carried out in IoT testing. In Sect. 4 we describe the
TESTAR tool and the modifications that were necessary in order to adapt it to
support IoT testing. Section 6 describes the smart home case study, the proce-
dure carried out for experimentation and the results obtained. Finally, in Sect. 7
we provide conclusions and outline areas for future work.

2 IoT Systems and Testing

Although different definitions for the term IoT can be found, they all have in
common the fact that IoT tries to integrate the physical world with the virtual
world of the Internet. The physical objects that you can interact with are the so-
called “Things” of the IoT, or as defined in [9], the entities of interest. In order to
interact with these physical objects, we need devices that can be either attached
or embedded into the entities (constituting the so-called intelligent things), or
installed into the environment to be monitored. Among these devices we find,
for example, RFID readers, sensors, actuators, embedded computers and even
mobile devices. These devices usually host resources that provide a link to the
entities of interest and, for example, provide information about things (including
performance capabilities).

Embedded systems have been around for a long time. However, tradition-
ally these systems were self-contained and could work in isolation. As the IoT
becomes popular, the need for connected objects “conversing” with each other
to properly function is changing the considerations that need to be taken into
account. As stated in [14], developers must consider ways to streamline device-to-
device (D2D) and device-to-server (D2S) communication, and take into account
the human interaction resulting of our everyday objects being connected to the
Internet.

Therefore, testing IoT devices shares the problems encountered when testing
both embedded and distributed systems. Moreover, the heterogeneity and the
large scale of objects [17] increase the number of challenges when trying to ensure
their security and reliability.

According to OWASP IoT Top Ten (www.owasp.org), insecure cloud inter-
faces need to be considered in order to greatly improve the security of any IoT
product. This involves the assessment of API and cloud-based web interfaces.
Testing an API requires the use of software to send calls and process the response
given by the system. An overview of API testing can be found in [7,13]. In this
work, we present a different approach based on automated scriptless testing.
Through our approach, given a valid specification of the System Under Test
(SUT), the calls made to interact with it will be automatically derived. Thereby
unattended testing will be enabled.

www.owasp.org
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3 The Smart Home

The smart home we test in this paper has a series of physical devices (things)
offered on an IoT [5] platform through a set of RESTful [11] services. An overview
of the architecture is illustrated in Fig. 1. The IoT platform has a microcontroller
(from Arduino) to which the different electronic devices that offer capacities to
perceive external situations and to act on the physical world are connected. The
microcontroller is also connected to a reduced low-cost computer (Raspberry
Pi) that functions as a connection gateway for the physical devices and hosts
the IoT accessibility platform based on RESTful services. These services can
be consumed by various customers, including laptops and smartphones, and
anything else that is part of the IoT and wants to communicate with the resources
available in the smart home.

The smart home tested in this paper, being a system for academic purposes
[5], has a basic security mechanism through which only users with valid creden-
tials can modify the status of resources. There are 17 available resources (10
sensors and 7 actuators), and each one of them has its own identifier (ID) and
specific functionalities that determine the ways it can be interacted with. The
resources and their corresponding functionalities available in the smart home
and the interactions that they accept are showed in Table 1.

Table 1. Resources of the smart home with their interactions and functionalities

Resources Functionality Interactions

Light sensor, Temperature sensor
Sound sensor, Humidity sensor
Proximity sensor

Numeric set, read

Vibration sensor, Contact sensor
Movement sensor, Closed door sensor
Door lock, Push button
Fan, Light, Alarm

Bistate on, off
toggle, read
pulseOn, pulseOff

Blinds Movement open, close
stop, stepOpen
stepClose, movePosition
moveNamePosition, up
down, stepUp
stepDown, read

Gradual light Dimmer set%, set0x
setAng, read

The REST API [11] that allows us to access the resources of the Smart
Home, explicitly and consistently use HTTP methods. The following associa-
tion is established between create, read, update and delete (CRUD) and the
corresponding HTTP methods:

– POST is used to create a resource on the server
– GET allows you to obtain an available resource
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– PUT is used to carry out updates of a resource
– DELETE allows you to delete an available resource

RESTful resources perform stateless communications. An application or
client of a REST web service includes, between the header and the body of
the HTTP request, all the necessary data to generate a response, so that each
request works in isolation. This allows to improve the performance of the service
and, since there is no need to synchronize session data with external applications,
the design and implementation of server-side components is simpler. RESTful
services are resource oriented and each has a uniform resource identifier (URI).
The different URIs serve both as the name and address of a resource. In addition,
they must be simple, predictable and easy to understand in a way that favors the
fact that developers can predict what is being targeted and even derive related
resources. The coding format of the data exchanged between an application and
the service must be standard such as the extensible markup language (XML) or
JavaScript Object Notation (JSON).

Since the transfer protocol is HTTP, the error codes and exceptions of HTTP
must be used, we have listed them below in Table 2.

Table 2. HTTP response codes

CODE Description

1xx Informative response

2xx Correct request

3xx Redirections

4xx Client errors

5xx Server errors

4 The TESTAR tool

TESTAR is a tool for automated testing at the Graphical User Interface (GUI)
level [2]. We will first show the philosophy of this tool to make clear how it
has been adapted to test the RESTful implementation of the Smart Home. To
explain the high level logical flow of TESTAR tool, it performs the following steps
(also shown in Fig. 2) to test a given System Under Test (SUT) at the GUI level:

1. Start the SUT;
2. Obtain the current State (when testing GUIs the State is represented by a

widget tree that is obtained through the Operating System’s Accessibility
API, which has the capability to detect and expose a GUI’s widgets, and
their corresponding properties, such as: display position, widget size, ancestor
widgets, etc.);

3. Derive a set of available actions that a user could execute in a specific state
of the SUT (for example: clicks, text inputs, mouse gestures);
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4. Select one of the available actions (randomly or using some search-based or
other type of optimization criteria);

5. Execute the selected action;
6. Apply the available online state oracles to check (in)validness of the new GUI

state. If a fault is found, stop the SUT (7) and save a re-playable sequence
of the test that found the fault. If not, keep on testing if more actions are
desired within the test sequence.

Fig. 2. TESTAR testing flow

The default behaviour of TESTAR includes random selection of actions and
implicit oracles for the detection of the violation of general-purpose system
requirements:

– the SUT should not crash,
– the SUT should not find itself in an unresponsive state (freeze), and
– the UI state should not contain any widget with suspicious titles like error,
problem, exception, etc. The suspicious titles can be configured in TESTAR
through its settings Dialog and the Suspicious titles functionality.

During testing, TESTAR stores all the information about the visited states
in a Graph database. Consequently, after testing the tester can define offline
oracles that query the database foe failure patterns.

TESTAR adopts the hypothesis that the majority of GUIs are conceptually
very similar. The only thing that varies is the underlying technology and the
look and feel. But if sufficient State information is available, such as: the types,
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positions and properties of all widgets on the screen, then testing an iPhone App
is not much different from testing a Windows desktop application or a website.

TESTAR’s abstraction layer and the extensible plugin architecture (see Fig. 3)
makes it highly technology agnostic. The plugins deal with the process of fetching
the state information and executing actions for different platforms. The abstrac-
tion layer has a uniform interface that allows to access the UI state information
in a standardised way. It allows to simulate end user input in the form of clicks,
drag and drop operations, swipes, pinches, audio input, etc, in order to oper-
ate the UI. The abstraction layer abstracts from different technologies, shields
other components from technological details and allows testers to concentrate
on strategic parts of sequence and test suite generation.

Abstraction Layer Test Execution Control
Test Oracle

Interaction Model

Plugin1 Plugin2

APIs

Test Execution Environments

Accesibility 
API

REST
 API

Windows

Apple

Android

etc

Smart 
Home

Fig. 3. Abstraction layer and the extensible plugin architecture of TESTAR

To implement the necessary plugins and obtain the State information, TES-
TAR needs to know which resources are available in order to interact with them.
For testing at the GUI level, the Accessibility API of the Operating System pro-
vides enough information. However, when switching to IoT systems, the Acces-
sibility API is no longer useful. In this case, we were able to use the REST
API that accesses the resources in the Smart Home. Consequently, we had to
develop the plugins that contained the specification how to test the interaction
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with the resources of a smart home to give TESTAR the information it needs for
action selection, text execution and test oracles. To illustrate the plugin archi-
tecture and the work done in this paper, the new components we implemented
for TESTAR are highlighted with the dotted square in Fig. 3.

5 TESTAR for IoT

5.1 Actions

TESTAR for IoT is able to execute the four HTTP methods, discussed in Sect. 1,
that are associated with CRUD operations. This means, plugin1 (from Fig. 3)
consist of an Action interface for TESTAR that is implemented by Java classes
GET, PUT, POST and DELETE.

5.2 Derive Actions for Test Execution and Oracle Verdicts

With the aim to improve the user experience and the range of possibilities of this
new approach, for plugin2 we have implemented three different modes of execu-
tion together with their respective oracles (in the form of regular expressions)
for each one of them. These modes have been designed taking into account the
intrinsic behaviour of web services.

Positive Tests. For positive tests (or happy path tests), all feasible actions
will be derived. An authentication token will be provided when this is required
for correct execution. The default oracle for these tests are based on TESTAR
Suspicious Titles functionality, that checks if the received response has a HTTP
response code that corresponds to an error (4xx and 5xx, as explained in Sect. 3).
If there is a match, TESTAR will consider that the current sequence found is a
failure.

Negative Tests. For negative tests, we will derive actions that try to update
resources (PUT’s from the REST API) in an invalid way. By doing so, we are able
to check whether invalid actions will cause any danger or incorrect behaviour.
For example, in a Smart House you are not supposed to open the window when
the air-conditioning is on. There is a field in the Dialog of TESTAR to indicate
the expected response when those kind of actions occurred. If the server response
does not matches the expected expression (expected HTTP error code), TESTAR
will consider that the current sequence found a failure.

Unauthorized Tests. Unauthorized Tests contain actions that need authenti-
cation parameters to be correctly executed. However, they will be executed with-
out passing the required authentication token. This allows us to check whether
at some point it is possible to interact with the API without the required identi-
fication. As in the Negative Tests mode, there is a field in the Dialog of TESTAR
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to specify the expected response when those kind of actions are executed. If
the server response does not match the given expression (expected HTTP error
code), TESTAR will consider that the current sequence found a failure.

6 Experiments and Results

6.1 Procedure

After having the plugins for the smart home developed, TESTAR had to be
configured according to the needs of the System Under Test (SUT). First of
all, we indicated which actions require authentication parameters. For the smart
home, only the PUT method needs authentication so we indicated a valid token
in order to give TESTAR the required credentials to execute those PUT actions.

After that, we filled the simple oracles that came with TESTAR taking into
account the following information provided by domain experts:

– When executing actions without the required token, the appropriate response
of the server must be 401 Unauthorized.

– For those actions derived in the Negative Tests mode we can expect either
400 Bad Request or 405 Method Not Allowed.

– For all other cases, we used the oracle that comes by default for the Positive
Tests mode.

Since the Smart Home does not allow Delete nor Options actions, we needed
to modify the protocol of TESTAR in order to let it know that we expect a 405
Method not Allowed as the response for those kind of actions. Another approach
will be to tell the tool that it should not derive those actions, but we decided
to test them in order to know if something unexpected happens when trying to
execute them.

After all the configuration parameters were established, we proceeded to run
TESTAR using the three different testing modes.

6.2 Results

After our firsts runs we already discovered a fault in which when trying to
interact with the Gradual Light with a feasible action, the server response was
Method Not Allowed instead of indicating that the resource had been success-
fully updated. This error appeared each time a run was executed and the selected
action implied the Gradual Light Resource. After communicating this to the
team in charge of implementing the smart home, they discovered that an error
was made when declaring the supposed functionality for that resource. After-
wards, that fault was correctly solved.

Once more test were executed, we discovered a different kind of fault in which
some resources were no longer available and a 404 Not Found was received when
trying to interact with them.
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Moreover, we noticed that after executing several actions and receiving a 404
error when trying to access a resource that was not available, the server stopped
responding and a time out fault was found by TESTAR. However, the server
seemed to establish itself when some time passed.

On the other hand, we noticed that in the Negative Tests mode, when trying
to update the Gradual Light (which is a dimmer) with a toggle (an interac-
tion characteristic of bistate resources), the given response was not as expected.
Instead of a Method Not Allowed or a Bad Request Message we received an
Internal Server Error.

Finally, we tried the Unauthorized Tests mode with two different setups: 5
sequences of 100 actions and 5 sequences of 300 actions. Therefore, a total of
2000 actions without the required authorization parameters were executed and
the smart home behaved as expected through all of them.

7 Conclusions and Further Work

Testing IoT is an important an challenging task. In this work, we have presented
the first approach of TESTAR for testing IoT devices. The tool has proved to
be successful testing the communication with the resources provided by a smart
home through a REST API. Once the plugin that specifies what kind of actions
can be executed for a determine SUT was implemented, TESTAR offered an
automated way of generating and executing tests.

To summarize the results, we have found a total of 4 reproducible faults
among the firsts executions of the tool. One of them (The Gradual Light not
accepting feasible actions) has already been successfully corrected after being
communicated to the team in charge of the smart home. Meanwhile the other
three will need further investigation.

Future work will involve different IoT devices accessed through a REST API
in order to ensure that the same procedure can be applied. Moreover, we will try
to extend TESTAR in order to support other communication protocols beyond
REST API.
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TAR: from academic prototype towards an industry-ready tool for automated test-
ing at the user interface level. In: Canos, J.H., Gonzalez Harbour, M. (eds.) Actas
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Abstract. In this paper, we present a general methodology to estimate
safety related parameter values of cooperative cyber-physical system-of-
systems. As a case study, we consider a vehicle platoon model equipped
with a novel distributed protocol for coordinated emergency braking.
The estimation methodology is based on learning-based testing; which is
an approach to automated requirements testing that combines machine
learning with model checking.

Our methodology takes into account vehicle dynamics, control algo-
rithm design, inter-vehicle communication protocols and environmental
factors such as message packet loss rates. Empirical measurements from
road testing of vehicle-to-vehicle communication in a platoon are mod-
eled and used in our case study. We demonstrate that the minimum
global time headway for our platoon model equipped with the CEBP
function scales well with respect to platoon size.

Keywords: Vehicle platoon · Learning-based testing · Co-CPS
Safety boundaries · Quantitative analysis · Coordinated braking

1 Introduction

A vehicle platoon (or road train) is a collection of vehicles that coordinate and
collaborate to reach goals such as traveling to a certain destination, while also
improving e.g. safety, fuel economy and driver comfort. One challenge for pla-
toon design is coordination of a platoon-wide emergency brake by means of a
distributed protocol (CEBP). The overall goal is to avoid collisions within the
platoon while still performing braking as efficiently (i.e. with as high decelera-
tion) as possible. To justify the deployment of a CEBP solution it is necessary to
quantitatively analyse its behaviour, especially properties that impact on safety.

In this paper, we introduce a new methodology to estimate quantitative
parameters related to safety properties of cooperating cyber-physical systems
(Co-CPS). Our approach is based on the method of learning-based testing (LBT)
c© Springer Nature Switzerland AG 2018
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[21]. We illustrate this methodology by estimating safety related parameters of
a platoon model that includes a novel CEBP algorithm. This case study is in
many ways generic. It therefore supports the claim that our parameter estimation
methodology could be extended to a wider variety of cyber-physical system-of-
systems through the use of simulators and virtualised environment modeling.
This is one goal of the EU project Safe Cooperating Cyber-Physical Systems
using Wireless Communication (SafeCOP1).

In a platoon, the lead vehicle can be manually driven and the followers (one or
more) follow the leader automatically; using control algorithms for longitudinal
and lateral motion. The target inter-vehicle headway is small enough (e.g. <1 s)
that dependable communication is required for the platoon to be safe. A platoon
capable vehicle has the technologies (e.g. communication) to lead or follow in a
platoon. Issues concerning positioning, e.g. accuracy and reliability of GPS and
security, are out of scope here.

A platooning system can be considered to be a cooperative cyber-physical
system-of-systems (Co-CPS). This is because vehicle-to-vehicle (V2V) communi-
cation is an enabler for the technology [32]. Failures in a platoon (e.g. poor V2V
communication) could potentially cause physical harm. Safety analysis for Co-
CPS introduces many technical challenges. Basic problems include the system
size, and the existence of black-box third-party components, which can make it
technically infeasible to perform a full static analysis (see e.g. the conclusions on
platooning of [17]).

For this reason, learning-based testing (LBT) [21] is an interesting contri-
bution to safety studies of Co-CPS. LBT combines promising aspects of both
testing, simulation and model based analysis. By inferring black-box abstractions
of a complex system, as well as using parallel simulation to accelerate learning,
we can obtain approximate but accurate results with a good degree of scalability.

LBT uses machine learning to reverse engineer multi-vehicle system-of-
system (SoS) models. These SoS models can then be subject to glass-box analysis
techniques, such as model checking, to check violation of safety requirements.
Previously in [22], we have used LBT to analyse platooning systems from the per-
spective of qualitative safety properties, such as vehicle collisions. In this paper
we extend the scope of LBT to quantitative estimation of safety related param-
eters. We show how to use LBT to numerically estimate an minimum value of
an SoS parameter such that a given system safety property is not violated. This
will typically be a parameter that can be tuned to optimise a specific product for
some desired performance. Thus it might be overtuned in a way that can com-
promise safety or is inappropriate for an environment in some (possibly rare)
scenario.

A pertinent example of parameter estimation arises in our platooning case
study. Here inter-vehicle distance and time gaps are typically reduced to a min-
imum in order to save fuel. The question arises: what is the minimum value
that could be chosen for all inter-vehicle gaps such that no crashes occur due to
vehicles being too close? This minimum value is influenced by many factors, not

1 See www.safecop.eu.

www.safecop.eu
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only in the vehicle design itself, but also by environmental factors such as V2V
communication packet loss.

Our approach to quantitative parameter estimation involves performing mul-
tiple LBT sessions to efficiently refine an estimate interval. This computation-
ally intensive analysis becomes more feasible when simulators, models and the
appropriate machine learning algorithms are executed on inexpensive multi-
core hardware, which is increasingly available. We define a specific method for
parameter estimation using LBT. We then illustrate it by applying it to study
our distributed CEBP algorithm integrated in a platoon simulator. The CEBP
algorithm is an exemplar of the Co-CPS paradigm of decentralised distributed
control. An optimal design for a CEBP is influenced by many factors such as
pre-existing platoon control algorithms, underlying physical dynamics models,
inter-vehicle communication protocols and environmental features.

Although many safety hazards impacted by CEBP could be studied, in this
paper we focus on the safety hazard due to message packet loss arising from radio
interference. We estimate the minimum global time headway for different platoon
sizes under both perfect communication and stochastic packet loss. This is the
minimum time headway between all platoon vehicles that allows collision free
motion. By extending the learning time of LBT, we can improve the reliability
of this estimate to any given level.

The stochastic packet loss model we use is based on empirical data from
V2V communication measurement during physical road tests with a platoon.
This stochastic packet loss model, a communication protocol model and a CEBP
implementation are then integrated with the platoon simulator described in [22]
to model communication and vehicle dynamics performance. The main emphasis
of our work however is on the analysis methodology itself, and not the problem
of fully accurate platoon modeling. Since we use black-box learning methods,
only platoon behavior, and not architecture or code structure are inferred. Thus
our LBT approach can be transferred to more complex platoon models without
difficulty.

1.1 Related Work

A platooning system for trucks with focus on fuel efficiency is presented in [20].
A brief survey of other vehicle platooning systems is given in [3]. Cooperative
adaptive cruise control (CACC) is a similar technology to platooning, but has
its focus entirely on maintaining steady-state longitudinal control. Emergency
braking in a platoon is also studied in [13]. Here, a dedicated communication pro-
tocol and a novel controller (including control topology), that takes into account
packet losses, is investigated. Assumptions of bounded packet losses are made
to be able derive bounds of headway. In [31] different CACC strategies are eval-
uated regarding headway using simulation. Several different parameters associ-
ated with uncertainty are considered, including packet loss. An event-triggered
control scheme and communication strategy is developed for platooning in [8].

Examples of static analysis applied to platooning problems where the collision
free property is studied are [7,9]. In [17] it is shown that verifying vehicle code
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does not scale well to the entire system-of-systems, and a mixed top-down and
bottom up verification strategy are applied.

Some (but not all) of the problems encountered in message packet loss in
Sect. 6 are related to compression waves within platoon simulations. Hence they
are somewhat related to the well-known phenomenon of string instability. The
effects of string stability and a networked control system have been studied in
[25]. Here an analytical approach of string stability is presented for a CACC
application; where each vehicle is controlled by its predecessor. Quantitative
results are given through an approach based on an analytical method. Commu-
nication deficiencies are described in terms of a Maximum Allowable Transmis-
sion Interval and Maximum Allowable Delay, rather than as a stochastic model
of packet loss. Safety is interpreted as string stability, rather than the crash
condition of zero distance between vehicles.

In [30] an analytical framework is presented which links the wireless chan-
nel characteristics with the probability of crash in a two vehicle emergency-
brake scenario. The maximum tolerable delay, between the beginning of the
emergency braking by the preceding vehicle and the moment the following vehi-
cle starts braking, is found. The developed CPS analysis approach is applied
to demonstrate how V2V communication packet losses and communication
delays impacts safe inter-vehicular distance for specified kinematic parameters of
vehicles movements.

1.2 Organisation of the Paper

The rest of the paper is organised as follows. Section 2 presents measurement
of V2V communication in a platoon of trucks during road tests, providing the
basis of our communication model. Section 3 presents our novel CEBP algorithm.
Section 4 presents a methodology for quantitative safety analysis using learning-
based testing. Section 5 presents the platoon simulator used for safety analysis of
our CEBP algorithm. Section 6 presents the results of our quantitative analysis
of the minimum global time headway under conditions of packet loss. Finally,
conclusions and future work are given.

2 Road Testing

In this section we describe details and results of a measurement campaign2 within
the Relcommh project [18] to establish packet loss levels in different platoon
driving scenarios. These measurements of V2V communication were done using
a platoon of four trucks, (c.f. Fig. 1).

The motivation for this section is twofold. On the one hand, we wish to show
in Sect. 6 how the reliability of quantitative safety analysis results for SoS is
influenced by the accuracy of environmental modeling. On the other hand, there
2 The measurements were done while the first author was employed at RISE −

The Swedish Research Institute (previously SP − Technical Research Institute of
Sweden).
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is a need in the literature to increase understanding of the environment that
a platoon is designed for. In the light of results of this section, we can point
out some unrealistic assumptions made in the literature. Our measured results
suggest that the low packet error rate used in [31] and assumption of no packet
loss in [8] are overly optimistic.

In our measurement campaign, at each periodic message broadcast (10 Hz)
from the leader truck, the perceived packet error rate (PER) at each of the fol-
lowing vehicles was measured. In Table 1, the PER is presented for three different
scenarios. Messages were 500 bytes long and 5.9 GHz V2V devices according to
ETSI standards [10] were used. Each truck had a left and right antenna from
which it could send and receive. Therefore, two PERs are given: communication
left-to-left and right-to-right. Differences between the two PERs can be moti-
vated with differences in the immediate surrounding of either side of the vehicle.
For example, on the left side of the motorway there is a metal safety barrier that
separates the two traffic directions. This may impact PER. A motorway scenario
and Tunnel scenarios were measured at 80 km/h vehicle speeds, with 20 m and
20–50 m inter-vehicle distance respectively. In the Parked scenario, the platoon
was parked in a platoon formation with a 10 m gap between each truck. The
PER between the LV and FV1 is denoted PERbase. First-order linear regres-
sion was used to calculate the projected average increase in PER for each vehicle
hop (right most column in the table). This model was then incorporated into the
platooning simulator. One result (11.14 %) could be anomalous as it falls outside
the expected trend of increasing PER as the distance between communicating
vehicles (LV to FVi) increases.

Table 1. Packet error rates (Upper: left-left, Lower: right-right)

LV to FV1 LV to FV2 LV to FV3 Average increase

Motorway 3.67%
2.72%

18.03%
5.93%

40.91%
22.13%

18.62%
9.70%

Motorway
tunnel

6.39%
6.82%

5.85%
6.74%

11.16%
11.47%

2.39%
2.32%

Parked 0.57%
2.39%

5.89%
14.05%

22.13%
11.14%

10.78%
4.37%

In all measured scenarios there were instances of consecutive packet loss
(CPL). For the E4 motorway (left to left antenna) scenario the following was
found: CPL1 = 61.53 % (single lost packet), CPL2 = 36 % (two lost packets in a
row), CPL3 = 1.6 %, CPL4 = 0.8 %, CPL4..k = 0.87 %. The percentages indicate
the distribution of a certain CPL, when there is a packet loss. The largest CPL
(longest blackout, k) was eight packets in a row. This implies that the assumed
bounds on packet loss in [13] are somewhat optimistic (at most three and five
consecutive packets lost are investigated).
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We note that the outcome of packet loss measurements depends on several
factors such as the radio equipment, antennas, placement and environment. Fur-
ther details of measurements in the road tests are found in [18].

Fig. 1. Communication scheme in the tests. LV denotes Lead Vehicle. FVi denotes
Following Vehicle i

3 A Coordinated Emergency Brake Protocol

In this section, a protocol for Coordinated Emergency Brake (CEBP) is pre-
sented. The goal of the protocol is to coordinate vehicles in an emergency brake
scenario to ensure safety (no crashes). An emergency brake can be initiated by
any vehicle in the platoon. Here it is assumed that the platoon of N vehicles
is formed and no vehicles are joining or leaving. It must be ensured that the
last vehicle receives the brake command and actuates first. Braking can com-
mence at the last vehicle directly when it receives the “E-brake request” mes-
sage. The braking vehicle then sends an acknowledgement (ACK) forward with
an “E-brake ACK” message. Preceding vehicles can thus start to brake when
the ACK from succeeding vehicles arrives. E.g. FV2 cannot brake until ACK is
received from FV3 indicating that it has started to brake. This is illustrated in
Fig. 2. Each vehicle also maintains a “brake-anyway”-time-out timer. When the
timer expires, the vehicle will brake directly and signal this, with an “E-Brake
directly” message, to the other vehicles. The value of the time-out corresponds

Fig. 2. An E-brake command from the LV. The acknowledgement then propagates
back to the LV − from back to front.
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to the expected latency for a returning ACK. Message sending can be done with
event-triggered directed broadcast, i.e. there is a sender and an explicit receiver,
but the message may be overheard by other vehicles within the platoon. In this
case, a vehicle can prepare its brakes in anticipation of the ACK from succeeding
vehicle.

We assume that vehicles entering the platoon cannot be sorted according
to deceleration capability. Instead, other sorting goals may have priority; such
as destination or aerodynamic performance. Not having a sorting procedure at
vehicle join implies that a brake strategy, i.e. the description of how vehicles
will brake in the event of an emergency brake, must be found in another way. A
simple way is to limit braking of the platoon according to the vehicle with least
deceleration capability, as is done in [24]. Alternatively, an algorithm could find
cliques of vehicles in the platoon that will brake together with a lowest common
brake capability. In Fig. 2 the actual deceleration capabilities are shown for an
example platoon, e.g. −8 m/s2 for the lead vehicle. As vehicles join the platoon,
brake cliques will be formed, e.g. Clique 1 = (LV, FV1, −4 m/s2), Clique 2 =
(FV2, FV3, −5 m/s2). The agreed deceleration of cliques increases towards the
rear, implying that the last clique will brake the most. Note that this implies a
voluntary reduction of deceleration capability in some vehicles. An algorithm for
finding the brake strategy in the platoon is left for future work. CEBP assumes
that a brake strategy has been decided and all vehicle will brake equally. The
members and order of the platoon are known.

Our CEBP algorithm has been implemented and integrated into each vehicle
in the platooning simulator of [22]. It has been studied using our quantita-
tive safety analysis method described in Sect. 4 and the results are presented in
Sect. 5.

3.1 Pseudo Code

Pseudo code for the CEBP is presented in Algorithm 1. Vehicles are indexed by
Vi where i ≡ 0 is the lead vehicle (first vehicle, also denoted LV) and i ≡ 1..N −1
are the following vehicles (also denoted FV, e.g. where FV1 implies i = 1). The
last vehicle is VN−1 (also denoted e.g. FV3 for N = 4). The algorithm, that
is described in the pseudo-code, is executed in each vehicle in the platoon. The
index i is static in each vehicle, i.e. in each instance of the algorithm. This implies
that each vehicle knows its identity and hence its position in the platoon. An E-
brake command is assumed to come from an external system or to be manually
initiated.

Some comments regarding the code in Algorithm 1 are appropriate: On line
11, directly receiving an “E-brake request” implies that Vi is the last vehicle.
This is because any vehicle that requests to E-brake will do so by sending to the
last vehicle. On line 25, an ACK is sent by a vehicle that did “brake directly”.
This is because there could be preceding vehicles that are waiting for the ACK. If
the ACK was not sent then the preceding vehicles can start to brake only after
their time-out counters expire. On line 24 and 25 the messages are repeated
e.g. until the algorithm is reset. On line 5 an alternative is possible. Instead of
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Algorithm 1. CEBP - Loop in every vehicle
1: if Ego Vehicle Vi wants to e-brake then
2: send “E-brake request” to the last vehicle in the platoon VN−1

3: end if
4: if “E-Brake directly” is received by Ego Vehicle Vi then
5: send “E-brake request” to the last vehicle in the platoon VN−1

6: end if
7: if Ego Vehicle Vi (has sent “E-brake request” command) or (overheard “E-brake

request” or “E-brake ACK” from Vj) then
8: prepare brake system
9: Start Timeri

10: end if
11: if “E-brake request” is received by Ego Vehicle Vi from a preceding vehicle Vj ,

where j ∈{0..i-1} then
12: Ego Vehicle Vi actuate e-brake strategy
13: send “E-brake ACK” to the next preceding vehicle Vi−1

14: end if
15: if “E-brake ACK” is received by Ego Vehicle Vi from next succeeding vehicle Vi+1

then
16: Ego Vehicle Vi actuate e-brake strategy
17: Stop Timeri
18: if i > 0 and has not already sent an “E-brake ACK” to preceding then
19: send “E-brake ACK” to the next preceding vehicle Vi−1

20: end if
21: end if
22: if Timeri has expired then
23: Ego Vehicle Vi actuate e-brake strategy
24: send “E-Brake directly” to succeeding vehicles Vj , where j∈{i+1..N-1}
25: send “E-brake ACK” to the next preceding vehicle Vi−1

26: end if
27: if Timeri is started then
28: decrease Timeri
29: end if

EBR/ACK, a vehicle that receives “E-brake directly” could also do “E-brake
directly”.

4 An LBT Methodology for Quantitative Safety Analysis

In this section, we review some fundamental principles of learning-based testing
(LBT). We then show how these methods can support a quantitative approach
to safety analysis

4.1 Learning-Based Testing (LBT)

We begin by reviewing the fundamental principles of learning-based testing
(LBT) as these have been implemented in our research tool LBTest. The earliest
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version of this tool (LBTest 1.x) has been described in [23]. The current tool
architecture of LBTest 3.x is presented in Fig. 3. This is a concurrent software
architecture designed to support LBT on multi-core hardware. Such hardware
supports the parallel execution of machine learning queries in multiple threads,
where each thread executes a copy SUTi of the system under test (SUT) (c.f.
Fig. 3). This approach reduces both the simulation time and the learning time, as
the learning algorithm itself can also be parallelized. Examples of computation
time improvements by such parallelisation have been shown in [22]. By increasing
the throughput of data, a larger data set becomes available for machine learning.
This increases the accuracy or convergence of the final learned model and hence
the reliability of quantitative parameter estimates. For analysing complex Co-
CPS behaviors, we believe that concurrency is essential. Since the design of the
architecture in Fig. 3 has been discussed in [22], we focus on the basic principles
of LBT here.

Fig. 3. LBTest 3.x concurrent learning architecture

LBTest uses active automaton learning aka. regular inference (see e.g. [14])
to generate queries about a black-box SUT. These queries are then executed on
the SUT as test cases, and the SUT behaviour is observed for each test case. In
an iterative and incremental process, the test cases and the SUT observations
are saved and used to build up a behavioral model of the SUT in polynomial
time [1]. This model is an automaton or state machine model.

For requirements testing, partial and incomplete models of the SUT can
already be subjected, in the early stages of testing, to model checking against a
temporal logic requirement specification. Thus, even before the learning process
is complete, errors can be found in the SUT. This fact is important for large
and complex SUTs such as Co-CPS, where it might not be possible to learn
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a complete model in any reasonable timescale, even with the use of multi-core
technology. In LBTest, propositional linear temporal logic3 (PLTL) is used as
the requirements modeling language. This particular logic has the advantage
that test cases can easily be extracted from the model checker, and used to filter
out false negatives as we will show. LBTest makes use of a loosely integrated
symbolic checker NuSMV [6]. We are also developing a more tightly integrated
explicit state model checker for efficiency reasons. These two processes of learning
and model checking may be interleaved, an idea first suggested in [26]. Then
they incrementally build up a sequence M1,M2, ... of models of the SUT, while
generating and executing requirements test cases on each model Mi. However,
for large and complex Co-CPS this interleaved approach is too inefficient, and
model checking is then only performed on the final model. In Sect. 6 we have
used model checking on the final model only. Thus no bias to the model from
model checking and counterexample construction can exist.

To separate true negatives (genuine SUT errors) from false negatives (arti-
facts of an incompletely learned model) it is necessary to validate each counter-
example to a requirement generated by the model checker. For this we can: (i)
extract a test case representing the counter-example4, (ii) execute it on the SUT,
(iii) apply an equality test that compares the observed SUT behavior with the
predicted bad behavior from the model, and (iv) automatically generate the test
verdict (pass, fail) from step (iii).

The soundness of learning-based testing as an analysis method relies on the
soundness of the underlying model checker, and the soundness of equality testing.
The completeness of LBT as an analysis method relies on the completeness of
the underlying model checker, as well as convergence results about the learning
algorithms which are used (see [14]). However, within practical case studies of
large complex systems it may not be possible for learning to be completed in
any reasonable time frame (see e.g. [11]). This problem is significant for Co-
CPS. Therefore, development of LBTest has focused on incremental learning
algorithms that can generate incomplete approximating models of the SUT in
small increments.

To measure the test coverage achieved by learning-based testing we currently
use a probably exactly correct (PEC) model of learning convergence as follows. In
Fig. 3, a stochastic equivalence checker is shown. This checker empirically esti-
mates the behavioral accuracy of the final learned model Mfinal for replicating
the behavior of the SUT on a randomly chosen set of input sequences. For this,
the input sequences are executed both on the SUT and the model. We then mea-
sure the percentage of behaviorally identical output sequences generated by both.
This learning convergence model is more restrictive than the probably approxi-
mately correct (PAC) convergence model of [29]. There are two motivations for

3 Recall that propositional LTL extends basic propositional logic with the temporal
modalities G(φ) (always φ), F(φ) (sometime φ) and X(φ) (next φ). Other derived
operators and past operators may also be included. See e.g. [12] for details.

4 Infinite counter-examples to LTL liveness formulas are truncated around the loop,
and the weaker test verdict warning may be issued.
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this: (i) our automaton learning framework does not readily support notions of
approximate equivalence between data values, and (ii) for software safety anal-
ysis exact equality of data values (inputs or outputs) is often a pre-requisite to
infer failed test cases.

4.2 Quantitative Parameter Estimation

A qualitative safety analysis of platooning using LBT was given in [22]. Here
we extend this previous approach to quantitative parameter estimation. We are
interested to estimate the minimum values of numerical system parameters (such
as inter-vehicle distance and time headway) which lie on the boundary between
safe and unsafe system behavior.

More precisely, in quantitative parameter estimation, the problem is to esti-
mate the minimum value vmin of some continuous SUT parameter p such that
an LTL safety property prop is not violated. The parameter p could be an input
variable, or a system constant that must be set to an optimal value. Now p
may or may not explicitly appear in the formula prop but it should be able to
influence its truth value (see e.g. the formula 1 in Sect. 6).

If we can assume that the safety property prop varies monotonically with p,
then this allows us to use a binary chop search to iteratively halve an estimate
interval vmin ∈ [vi

true, v
i
false] for i = 0, ..., n. Here, vi

true is the current upper
bound where prop is true and vi

false is the current lower bound where prop is
false. The search begins from two initial endpoints [v0

true, v
0
false] that can be

obtained by conservatively over-estimating and under-estimating the value of
vmin.

For a binary chop search, as usual we iterate the boundary search process by
refining one of the endpoints. Thus: (i) vi+1

true := vi
true + vi

false/2 if LBT cannot
find a counterexample to prop on the midpoint up to a given learning convergence
value. Otherwise: (ii) vi+1

false := vi
true + vi

false/2. Then we carry forward into the
next iteration the other endpoint vi+1

false := vi
false in case (i) and vi+1

true := vi
true

in case (ii) respectively. This process is iterated until a desired interval accuracy
[vn

true, v
n
false] is achieved.

Refinement of the boundary vi
true is of course problematic here, since just

because a counterexample has not been found by LBT, this does not mean that
it does not exist. This is particularly true if the learned models are incomplete.
Therefore, we emphasize that our methodology is a parameter estimation tech-
nique based on systematic testing, and not a verification technique. As such, our
methodology provides an alternative to a traditional Monte-Carlo estimation of
vmin. However, we believe there are three significant advantages to our approach
compared with Monte-Carlo techniques, based on the use of machine learning.

(1) The explicit construction of a model using machine learning gives a more
powerful artifact than simply a set of execution traces (as used in Monte
Carlo estimation). This model allows us to analyze complex requirements
properties, including safety, fairness and liveness issues. These properties
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cannot be semantically evaluated on traces alone, i.e. they are global prop-
erties of a model.

(2) Convergence estimates for the model give more insight into reliability of the
estimate for vmin than simply measuring the size and statistical significance
of a randomly chosen Monte Carlo sample set. This fact is easily demon-
strated, for if complete learning succeeds then a Monte Carlo approach is
never aware of this and will underestimate the statistical significance of the
result. A related aspect to this is the third advantage.

(3) The random query set associated with a Monte Carlo estimate contains
significant redundancy when compared with a query set generated by active
automaton learning. Said differently, random querying is a very inefficient
way to learn the structure of an automaton.

5 A Platooning Simulator

The simulator implements a model for each platoon vehicle behaviour as well as
a communication framework for inter-vehicle (V2V) communication modelled on
the IEEE 802.11p protocol. The platooning simulator is capable of simulating an
N -vehicle platoon travelling in one dimension along a roadway. It is an extension
of the simulator presented in [22]. No steering model (i.e. lateral movement) is
currently present in the simulator. This extension is part of ongoing research
into more general spatio-temporal logic requirements modeling for Co-CPS, see
e.g. [19].

5.1 The Vehicle Model

A key control algorithm in the platooning simulator is the longitudinal posi-
tion controller. For this, we have implemented several published ACC algorithms
which control the CACC component of each vehicle (see [28] for detailed descrip-
tions of each). The specific ACC evaluated in Sect. 6 is Kakade’s algorithm [16],
which was chosen for its simplicity and a basic tendency to propagate com-
pression waves. We were interested to know whether this effect, in combination
with message packet loss, could disturb emergency braking, and whether LBTest
could discover such a problem.

In the simulator there is a detailed model of vehicle braking. This includes
a complete industrial model of a brake-by-wire subsystem featuring: (i) global
brake torque distribution to individual wheels, (ii) ABS functionality based on
slippage detection, and (iii) a friction model for tyres based on slippage rate using
common physical parameter values. The simulator also includes e.g. odometry
and V2V communication. The most relevant missing models are engine, power-
train and suspension models. While these models could easily be added by using
an industrial simulator such as TruckMaker [15] (which is ongoing research) they
would not invalidate the basic methodology of this paper.

Environment models in the simulator deal with air resistance and road fric-
tion. We assume a constant road friction value for simplicity. A message packet
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loss model, based on the data of Sect. 2 was used. To provide deterministic and
repeatable behavior (with the exception of packet loss), the simulator is based
on synchronous execution of all vehicle components. The fundamental simula-
tion cycle is one millisecond, which provides adequate simulation accuracy for
the control algorithms.

5.2 The Communication Model

The communication framework assumes wireless broadcast and point-to-point
multi-hop communication between the vehicles in the platoon. A slotted TDMA
scheme based on ideas from [5] is implemented: To avoid communication colli-
sions, each vehicle Vi is allowed to transmit only in its own TDMA slot.

As communication is broadcast-based, receiving vehicles can loose packets
independently during a broadcast operation. Thus a packet can be received by
one vehicle and lost by another. For example a broadcast from the LV is correctly
received at FV1 and FV2, but not FV3, see Fig. 1. In a platoon of N vehicles,
for any sender Vi and receiver Vj (where 0 ≤ i, j ≤ N − 1, i �= j) let d = |i − j|
correspond to the distance between the sender and receiver. The probability P in
percent of a message being lost is P (message lost) = PERbase+increase·(d−1).
Note that with the values from the road test, the probability of message loss
(from the LV to the last vehicle) is 100% in a platoon of eight vehicles or more;
hence every message is lost (unless e.g. multi-hop communication is used).

6 A Case Study in Quantitative Safety Analysis

In this section, we present a case study of applying our quantitative parame-
ter estimation method. The aim was to estimate the minimum safe global time
headway for a platoon which has two modes of behavior: high speed cruising and
emergency braking.

The local time headway hwi(t) between two consecutive platoon vehicles Vi

and Vi+1 at time t is the time which would be needed for Vi+1 to cross the
gap which exists between Vi and Vi+1 at time t5. This local dynamic parameter
measures the inter-vehicle gap in terms of time rather than distance. As a runtime
parameter to the CACC of Vi+1, its driver can set a desired value HW i for
hwi(t), according to relevant safety and fuel economy criteria. Typical values
for HW i are in the range 1.5 to 2.0 seconds [4]. This desired value HW i is
then maintained by the CACC. Peturbations to hwi(t) through lead vehicle V0

actions, will lead to short term deviations of hwi(t) from HW i, which should be
smoothed out by its CACC.

We are particularly interested to estimate system-of-system parameters. For
this purpose, we assume that each platoon vehicle Vi adopts the same common
global time headway HW , so that HW = HW i. Now we can ask: what is the
smallest value HWmin we can choose for HW which ensures safe driving for

5 Assuming Vi+1 maintains its speed at time t.
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all vehicles Vi under all possible modes of behavior6? By safe driving, we can
assume as a minimum condition crash-free driving, but obviously this criterion
could be strengthened. The value HWmin we term the minimum safe global time
headway. An estimate of HWmin is easily obtained by LBT if communication
between vehicles is perfect, as the SUT is then completely deterministic.

When communication is imperfect then message packet loss is modeled
stochastically and the SUT is no longer deterministic. Although most model
checkers (including NuSMV) cope well with non-determinism, currently, LBTest
uses ML algorithms for deterministic automata only. To address this learning
problem we inferred a set of deterministic models which support analysis of the
average case behavior of the SUT. This seems pertinent, as the worst case SUT
behavior involves catastrophic loss of all message packets. An alternative for
future research would be to directly apply ML algorithms for non-deterministic
or even probabilistic automata. (See Sect. 7.)

The integration of two control algorithms for high-speed cruising and emer-
gency braking requires corresponding integration testing to ensure that no
unwanted interactions can occur between these algorithms. In principle, high-
speed cruising can bring the entire platoon to a state where emergency braking
cannot be carried out safely. Such problems (if they occur) might be addressed
by choosing a larger global time headway, so that unsafe states were no longer
reachable. Thus one way to structure integration testing is to view it as an esti-
mation problem for HWmin such that platooning is safe for both cruising and
emergency braking with high probability.

To conduct parameter estimation for HWmin, the following protocol was
implemented in LBTest. As in [22], we focused on emulating the lead driver
behavior, since all follower vehicles autonomously adapt to this. Each test case
tc for an N -vehicle platoon consisted of a sequence tc = (r1, r2, ..., rλ) of lead
driver accelerator, brake or emergency brake commands rj . Each such command
was one of: (i) a brake command (-1.88 m/s2), (ii) an accelerate command (1.25
m/s2), (iii) a neutral command (0 m/s2), or (iii) an emergency brake command
(-2.22 m/s2). The initial estimate of HWmin was bounded between 0.5 and 2.0
seconds.

For each test case tc = (r1, r2, ..., rλ), the length λ and torque requests rj

were chosen dynamically both by the learning algorithm and the equivalence
checker. For efficiency reasons, model checking was not used until after learn-
ing was concluded. Thus model checking counterexamples did not influence the
analysis. The test case length λ took an average value of 18.3. On average, ran-
dom test cases amounted to 2.3% of the entire test set. This compares with
100% in the case of Monte Carlo parameter estimation. Thus 97% of test cases
were generated deterministically by ML to explore the state space of the SUT.
The communication wrapper loaded and executed each test case tc. Each torque

6 Clearly HWmin is a function of the many individual parameters of each vehicle
Vi such as its weight, braking power etc. Different values of HWmin will thus
be obtained if individual vehicle parameters are changed. For simplicity, we have
assumed a homogeneous platoon, i.e. all vehicle parameters are the same. .
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request value rj was maintained constantly for a nominal 5 seconds (5000 sim-
ulation cycles). Thus the length of the simulation corresponding to tc was 5λ
virtual seconds. The values chosen for λ were sufficient to reach high cruising
speeds, in excess of 120 km/h.

The principle SUT output recorded for the test case tc was the time sequence
of inter-vehicle gaps xi

r,0, . . . , x
i
r,λ, for each pair of vehicles Vi, Vi+1. Here, the

time sequence term xi
r,t, for 0 ≤ t ≤ λ, represents the gap between the host-

target pair, Vi and Vi+1 measured at the end7 of 5t virtual seconds (i.e. 5000t
simulation cycles). The continuous values of each distance observation xi

r,t were
partitioned within the communication wrapper into three discrete equivalence
classes:

good, tooClose, crash,

based on host and velocity dependent distance boundaries.
To represent the physical system state of the platoon we also observed the

lead vehicle velocity values v1
0 , . . . , v

1
λ and acceleration values a1

0, . . . , a
1
λ at the

same observation times. These continuous valued observations were partitioned
into 1 km/h and 1 km/h2 equivalence classes.

During test sessions, each test case constructed by LBTest brought the entire
platoon into a high speed cruising mode (using a sequence of non-random or
random acceleration and braking commands). The test case would then issue the
emergency brake command e followed by a sequence of neutral commands 08.
By alternating brake and acceleration commands, each test case could establish
different global dynamics in the platoon at the moment of emergency braking.
For example, by choosing to evaluate the simple PID algorithm for CACC of [16],
we were able to observe compression waves where some vehicles were decelerating
while others were accelerating. When the choice of global time headway HW fell
below the minimum safe global headway HWmin then at least one failed test case
could be observed. Since some of these failed test cases exhibited compression
waves, we concluded that compression is an important non-linear dynamic for
certain CACC designs. This observation concurs with the extensive literature
regarding string stability and ACC design, e.g. [27].

The safety requirement for collision free travel was expressed in LTL as

always(
N−1∧

i=0

Gapi > 0 ). (1)

This formula expresses that a platoon of size N is safe, since Gapi represents
the i-th inter-vehicle time headway between vehicles Vi and Vi+1. Notice that
the time headway t is not explicitly represented in this formula. Nevertheless,
t clearly influences Requirement 1 as too short a headway leads to crashes.
7 It is also possible to use SUT observations between the output cycles by thresholding.

This can yield greater accuracy, but this approach was not taken here.
8 These terminating neutral commands 0 were redundant by the design of CEBP, but

extended the test case until the platoon was stopped.
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Furthermore, t monotonically influences 1, since every platoon trajectory with
a minimum time headway t is also a legitimate trajectory for a minimum time
headway of t′ ≥ t. So parameter estimation using a bisection method is valid for
this problem.

Fig. 4. Minimum safe global time headway HWmin for different platoon sizes N and
two packet loss rates.

The minimum safe global time headway HWmin was estimated for two dif-
ferent wireless communication scenarios. In the first, perfect data transmission
was assumed in order to derive a baseline time headway value. In the second, the
packet loss model (c.f. Sect. 5) with parameters derived from the measurements
of packet loss described in Sect. 2 was used. PERbase and average increase per
vehicle hop was chosen from the motorway scenario: 3.67 % and 18.6 % respec-
tively. These values were the basis for a linear regression model to calculate the
probability of a packet being lost.

The minimum safe global time headway HWmin for these two scenarios was
estimated for platoon sizes N = 2, ..., 6 to study its variation with platoon size.
The results can be seen in Fig. 4. Significant is the observation that in both
scenarios HWmin reaches a maximum value. This can be interpreted to mean
that both the CACC and CEBP algorithms are scalable to large platoon sizes.

7 Conclusions

In this paper we have addressed a challenge in the area of cooperative cyber-
physical systems (Co-CPS) which is to quantitatively estimate safety related
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parameters for a system-of-systems. An inherent problem here is the signifi-
cant system complexity which calls for novel analysis techniques that can even
deal with the case where components may be “black box”, i.e. their design and
construction are not always known. Thus a black-box approach to parameter
estimation based on learning-based testing (LBT) has been applied, and imple-
mented using the tool LBtest.

To illustrate and evaluate our approach we have presented a case study in the
area of vehicle platooning. This case study consisted of a platooning simulator
integrated with a CEBP - a distributed protocol for coordinated emergency brak-
ing. The minimum safe global time headway for this platooning simulator was
found for different platoon sizes, both with and without lossy communication.

Future research could expand this case study, for example by considering
the effects of time variant communication quality, and compare schemes, such
as multi-hop communication, to improve packet reception. This would increase
probability of reception, but latency will scale with the number of hops. We
could also study the behavior of non-homogeneous platoons.

Future research could also improve the efficiency and accuracy of the LBT
algorithms used here in the case of non-deterministic SUT behavior. For such
behavior, it is possible to directly implement machine learning algorithms for
non-deterministic and probabilistic automata (see e.g. the survey [2]). This would
avoid the need to estimate parameter values using several experiments. Further-
more, by learning probabilistic automaton models it may even be possible to
estimate the statistical distribution of a parameter value by means of statisti-
cal model checkers such as PRISM [33]. Finally, our LBT approach could be
empirically compared with Monte Carlo based approaches, regarding accuracy
and reliability of parameter estimates.
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20. Liang, K.Y., Mårtensson, J., Johansson, K.H.: Heavy-duty vehicle platoon forma-
tion for fuel efficiency. IEEE Trans. Intell. Transp. Syst. 17(4), 1051–1061 (2016)

21. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5 11

https://doi.org/10.1007/978-3-319-06644-8_4
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-41707-8_11
https://doi.org/10.1007/978-3-642-41707-8_11
https://ipg-automotive.com/pressmedia/media-library/
https://doi.org/10.1007/978-3-642-21768-5_11


404 C. Bergenhem et al.

22. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2 9

23. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, ICST 2013, pp. 447–454. IEEE Computer
Society (2013)

24. Murthy, D.K., Masrur, A.: Braking in close following platoons: the law of the
weakest. In: 2016 Euromicro Conference on Digital System Design (DSD), pp.
613–620, August 2016

25. Oncu, S., Van de Wouw, N., Heemels, M., Nijmeijer, H.: String stability of inter-
connected vehicles under communication constraints. In: 2012 IEEE 51st Annual
Conference on Decision and Control (CDC), pp. 2459–2464. IEEE (2012)

26. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). https://doi.
org/10.1007/978-0-387-35578-8 13

27. Swaroop, D., Hedrick, J.: String stability of interconnected systems. IEEE Trans.
Autom. Control 41, 349–357 (1996)

28. Trochez, D., Tsakalos, A.: Adaptive cruise control implementation with constant
range and constant time-gap policies. Master’s thesis, KTH Royal Institute of
Technology, EECS School (2017)

29. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
30. Vinel, A., Lyamin, N., Isachenkov, P.: Modeling of V2V communications for C-ITS

safety applications: a CPS perspective. IEEE Commun. Lett. PP(99), 1 (2018)
31. van Willigen, W.H., Schut, M.C., Kester, L.J.H.M.: Evaluating adaptive cruise con-

trol strategies in worst-case scenarios. In: 2011 14th International IEEE Conference
on Intelligent Transportation Systems (ITSC), pp. 1910–1915, October 2011

32. Willke, T.L., Tientrakool, P., Maxemchuk, N.F.: A survey of inter-vehicle com-
munication protocols and their applications. Commun. Surveys Tuts. 11(2), 3–20
(2009). https://doi.org/10.1109/SURV.2009.090202

33. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1109/SURV.2009.090202


Cyber-Physical Systems Engineering



Cyber-Physical Systems Engineering:
An Introduction

J. Paul Gibson1(B), Peter Gorm Larsen2, Marc Pantel3,
John Fitzgerald4, and Jim Woodcock5
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Abstract. Cyber-Physical Systems (CPSs) [1] connect the real world
to software systems through a network of sensors and actuators in which
physical and logical components interact in complex ways. There is a
diverse range of application domains [2], including health [3], energy
[4], transport [5], autonomous vehicles [6] and robotics [7]; and many of
these include safety critical requirements [8]. Such systems are, by defi-
nition, characterised by both discrete and continuous components. The
development and verification processes must, therefore, incorporate and
integrate discrete and continuous models.

The development of techniques and tools to handle the correct design
of CPSs has drawn the attention of many researchers. Continuous mod-
elling approaches are usually based on a formal mathematical expression
of the problem using dense reals and differential equations to model the
behaviour of the studied hybrid system. Then, models are simulated in
order to check required properties. Discrete modelling approaches rely on
formal methods, based on abstraction, model-checking and theorem prov-
ing. There is much ongoing research concerned with how best to combine
these approaches in a more coherent and pragmatic fashion, in order to
support more rigorous and automated hybrid-design verification.

It is also possible to combine different discrete-event and continuous-
time models using a technique called co-simulation. This has been sup-
ported by different tools and the underlying foundation for this has been
analysed. Thus, the track will also look into these areas as well as the
industrial usage of this kind of technology.
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Keywords: Formal methods · Verification · Modelling · Discrete
Continuous

In this year’s thematic track, we include papers that cover theoretical
advances, ongoing research, industrial case-studies and tool/method develop-
ment. The track will also include a session concerned with current challenges
and research directions.

In Intelligent Adaption Process in Cyber-Physical Production Systems [9] (in
this issue), the authors report on production and logistics systems, used in the
manufacturing industry, and how Cyber-Physical Production System Models
will help industry to improve on the key aspect of adaption—the production
and logistics systems can be adapted more frequently, more precisely and more
quickly when cyber-physical production systems are supporting the adaption
process.

The article Model-Based Systems Engineering for Systems Simulation [10]
(in this issue) propose a methodology for integrating simulation systems devel-
opment with products systems engineering. This offers a better management
and reuse of the various environment and mock-up models during system devel-
opment. This general approach is independent both of the actual methods and
tools used to model the system and of the simulation environment.

In Scenario-based validation of automated driving systems [11] (in this issue),
the paper presents techniques for formalising test scenarios for automated driving
systems. To assess the safety of such systems, all potentially critical situations
have to be considered. The number of relevant scenarios is very large therefore
testing must rely heavily on virtual, largely automatized exploration of scenario
spaces. For that, classes of scenarios have to be described formally. The con-
tribution delineates a general approach to safety assessment by virtual testing.
It discusses in particular the nature and building blocks of a formal scenario
language and the construction of test specifications.

In Engineering of Cyber-Physical Systems in the automotive context: case
study of a range prediction assistant [12] (in this issue), the authors present a
case study addressing the development of an assistant for estimating the range
of an electric vehicle. The approach is based on the methodology and tools from
the EU Horizon 2020 INTO-CPS project [13]. The paper promises an outlook on
the development of similar tool chains for automotive planning. In summary, the
paper shows that flexible and integrated tool-chains that rely on open standards
for data exchange are key to efficient development of CPSs in the automotive
domain.

The article Testing Avionics Software: Is FMI up to the Task? [14] (in this
issue) compares the FMI and RT-Tester test engine architectures in the context
of safety-critical avionics software. To do this, it uses one principal case study: a
version of an aircraft controller application, synthesised from an existing system
requirement.

The article Co-simulation: the Past, Future, and Open Challenges [15] (in
this issue) provides an interesting historical overview of co-simulation, together
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with a couple of recent example of co-simulation technology, and some selected
discussion points on directions in which the technology might evolve in future.

In Lessons Learned Using FMI Co-Simulation for Model-based Design of
Cyber Physical Systems [16] (in this issue), the authors provide a critical analy-
sis of the pros and cons of using FMI for model integration when co-simulation
CPSs. The case study - a building Heating, Ventilation and Air Conditioning
(HVAC) system – illustrates very well the advantages and disadvantages of the
approach based on FMI.
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Abstract. Current developments towards the buyer’s market and related trends
such as more diversified production programs, shorter product life cycles and
more volatile fluctuations in demand are leading to an increasingly dynamic and
complex business environment. For this reason, productions and logistics sys-
tems face even more frequent adaptions. In order to react to these challenges in a
structured manner, a sequential adaption process with six individual phases was
developed. This paper points out, that production and logistics systems can be
adapted more frequently, more precisely and quicker when cyber-physical
production systems (CPPS) are supporting the adaption process. In particular,
the availability of real-time feedback data from production and logistics pro-
cesses in CPPS has proven to be advantageous for a more intelligent adaption
process. In addition, the requirements for an intelligent adaption process are
formulated based on these new technological possibilities. The paper especially
focuses on the logistics and production technical aspects of the adaption process
and the adaption object. On the one hand, possible applications of CPPS
technologies are presented for each of the six phases, on the other hand, this
paper analyzes the overall impact on the whole adaption process when indi-
vidual CPPS technologies are used.

Keywords: Adaption process � Adaption intelligence
Cyber-physical production system � Flexibility � Transformability
Logistics � Production

1 Introduction

Today, actors in the manufacturing industry are challenged to satisfy consumers’
requirements of more individualized products, which leads to a higher variety of
products for the companies. This development towards “lot size one” production is a
good example of an external influence factor that is currently crucial for the manu-
facturing market and can force a production to change completely. Other instances of
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factors that companies should react to are order fluctuations, technical progress, leg-
islative amendment, or changes in the own business strategy [1, 2].

A study by Staufen AG reports an example of successful adaption in the German
industrial market. The study shows that one fifth of the industrial companies are already
able to produce products in lot size one with the cost level of serial production [3]. This
example indicates that companies must react flexibly and quickly to their environment
to remain competitive under changed external conditions. That means, that they must
adjust their production and logistics processes permanently [2]. Due to this continuous
adaption needs, the concept of flexibility and transformability has been established in
literature. Besides, in literature a structured adaption procedure with six steps is defined
to determine a process for effective modifications [4].

The current technological developments towards an increasing digitization of
production processes called Industry 4.0 or Internet of Things (IoT) have major
potential for helping companies to observe and adapt their production systems in the
manufacturing industry [5, 6]. An essential element of Industry 4.0 are cyber-physical
systems (CPS). CPS contain embedded systems as well as electro technical and
mechanical components. They use sensors to record physical data in real time and can
also influence physical processes [5]. Using global digital networks, the CPSs are
connected with each other and can use data and services worldwide [5]. CPS in
production are defined as cyber-physical production systems (CPPS) and include, for
example, intelligent work equipment or smart warehouse systems that are networked
via information and communication technologies. This new level of quality and
quantity of response data enables dynamic and self-organized supply chains, which can
be optimized in a real-time by adapting various factors [5]. For instance, actors in
manufacturing industry establish the more frequent use of smart and decentralized
production and logistics systems, which can be also used in a more intelligent adaption
process.

In Delbrügger et al. [4], we have already introduced preconditions for providing a
fast and precise adaption with the six-step adaption process in all areas of a manu-
facturing system under the influence of a dynamic and complex environment. We
especially elaborated, which requirements shall be fulfilled by the adaption team, the
adaption process and the adaption object to be adaption intelligent. Based on this
previous publication and due to the gradually spread of CPPS in the manufacturing
industry, it is now interesting to determine the potential of CPPS for supporting the
adaption process in terms of adapting a production and logistics system more fre-
quently, more precisely and quicker. Therefore, the purpose of this work is to analyze
the adaption process in its individual six phases regarding the possible use of the
upcoming CPPS technologies in each step. In addition to possible applications of these
modern technologies in each step, we will analyze the overall impact on the whole
adaption process when CPPS technologies are used. Whereas our previous paper
provided a general overview, including a wide range of disciplines and discussing the
adaption object, the adaption process and the adaption team, the current study focuses
in detail on the logistics and production technical point of view. In addition, the paper
concentrates on CPPS technologies for the adaption process and the adaption object.

After the introduction in section one, including the current challenges in the
manufacturing industry, the paper presents the adaption process underlying this work
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and an overview of terms and concepts for flexibility and transformability in the second
section. Section three constitutes the main part of the paper, which is divided into six
subsections according to the six steps of the adaption process. It begins with the first
phase of observation. Then the analysis and evaluation phase are examined in more
detail. Especially the conjunction between the observation phase and the analysis and
evaluation phase will be discussed, which in the future may change with the gradual
implementation of CPPS in factories. Afterwards, CPPS tools for planning and decision
support are discussed in the sections on planning and decision. In the two final phases
“Implementation” and “Impact”, the CPPS instruments supporting the realization and
control of adaption measures are discussed, before summarizing the findings of this
approach and giving a future research perspective in the last section.

2 Flexibility, Transformability and Adaption Process

The stronger the influence factors which have been described in the previous section
and the more factors repeatedly disturb the market balance, the more dynamic and
complex is the company’s environment [7]. These factors, which can have an influence
on a production and can force a company to an adaption, are described in the literature
as drivers of change. Drivers of change can be subdivided into internal and external,
whereas the external drivers of change can further be classified into company-specific
and those caused by the company’s environment. As illustrated in Fig. 1, to these three
categories, drivers of change which are repeatedly mentioned in the literature can be
assigned [8, 9].
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Fig. 1. Concept of flexibility and transformability in response to adaption requirements through
internal and external drivers of change [acc. to 9, 40–42]
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Although there are many different drivers of change, they only affect manufacturing
systems via specific channels (see Fig. 1). Drivers of change have an impact on the
company through the five channels of time, product, cost, quantity and quality.
Through these channels, a company reacts with flexibility and transformability with the
help of transformation enablers [8]. If a factory system can be adapted without any
major expenditure of time or money to counteract drivers of change, the literature uses
the term flexibility. Flexibility measures represent reversible changes in the system
configuration within existing flexibility corridors [10] (Figs. 1 and 2). In contrast,
transformability is always connected with investments of additional time and costs and
includes irreversible adaption measures that surpass existing flexibility corridors.
A factory system is classified as highly changeable if it offers the potential to act
beyond previously conceived organizational and technical structures using its process,
structural and behavioral variability and while requiring as few additional investments
as possible [10]. From the system theory point of view, the reaction to drivers of
change with flexibility represents a structural linkage, so that only the relations between
the system elements are changing. An example is a change in material flow due to a
change in the order flow. In contrast, adaption measures in the context of trans-
formability not only change the element relations, but also their properties and func-
tions in such a way that new structures and systems are created. One example is a
change in the form of production when switching from shop floor production to line
production [10].

Transformation enablers form the basis for adaption processes in production. They
provide opportunities to react quicker to drivers of change with transformability.
Simple examples of transformation enablers are shelving units that are positioned on
rolls and thus enable a quick change of the production layout. Another example are
flexible work time models with which different workloads can be handled [12].
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Fig. 2. Flexibility corridors and transformability with the six phases of the adaption process
[acc. to 16, 43, 44]
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In order to evaluate the influences of drivers of change on a factory system and to
identify adaption needs, besides the internal and external drivers of change, the sys-
temrelevant parameters of an enterprise must be analyzed. These internal key perfor-
mance indicators (KPIs) are all related to different so-called types of flexibility. Each
type of flexibility is described by at least one parameter or a qualitative factor. If a
quantitative description of the flexibility type is possible, upper and lower flexibility
limits can be assigned to the KPIs that describe the flexibility type. Figure 2 shows an
illustration of a flexibility corridor. The different types of flexibility interact with each
other. An extensive itemization of flexibility types was listed by Luft [13].

For both drivers of change and flexibility types, limits can be set for warning and
intervention. There is a need for adaption if at least one of the KPIs of the internal or
external company’s environment exceeds the predefined limits or if a flexibility cor-
ridor limit is reached in the case of the flexibility types. Another possibility is to react to
potential changes in the environment before they arise by forecasting of the parameters.
However, this way involves a higher risk because it is not certain whether the progress
of the KPIs will fulfil the prediction [14, 15].

In order to be able to react to drivers of change, i.e. to the development of KPIs, a
structured procedure was developed according to Fig. 2. The procedure to initiate
adaptions is divided into six phases which together represent the adaption process,
which is based on works of Morales, Dormayer and Hopfmann [16–18]. The six phases
included are of iterative nature and are not necessarily run through completely each
time, since an adaption only needs to be initiated in the event of a critical change in the
parameters that are relevant to the system. Further details to this iterative nature can be
found in Delbrügger et al. [4]. The six steps of the adaption process described in Fig. 2
are explained in more detail in the following Sect. 3. For each of the steps, CPPS
technologies will be identified that support and accelerate the transformation enablers.
The theoretical findings are illustrated by practical examples.

Other authors also analyzed the combination of transformability and technologies
of the industry 4.0. For example, Zäh et al. [19] found that elements of the digital
factory which are already implemented in the factories are suitable for supporting
changes and with that also the traditional concept of flexibility and transformability
which was also presented in this section. Furthermore, Schel [20] for instance notes that
IT particularly support transformability of productions when they are adaptable
themselves through a modular, expandable and standardized structure. But to the best
of our knowledge, there is no approach which highlights how CPPS technologies can
support each of the six steps of the introduced adaption process.

3 Adaption Process in Cyber-Physical Production Systems

This section presents the potentials of CPS for the adaption process sequentially along
the six phases (see Fig. 2), in order to adapt a production and logistics system more
frequently, more precisely and quickler [4].

Intelligent Adaption Process in Cyber-Physical Production Systems 415



3.1 Observation

The aim of the classical phase of monitoring of the factory adaption process (see
Fig. 2) is to systematically assess the drivers of change causing a need for adaption and
to analyze and evaluate their effects on all systemrelevant parameters [4]. It is necessary
to use suitable models to characterize the significance of the influencing factors of the
factory system and to reduce the perception time by using suitable instruments for
monitoring and evaluation. The central task of the observation phase, which initiates
the adaption process, is to acquire all operating conditions of the production and
logistics system in the form of feedback data. The generated data pool represents the
basis for a subsequent evaluation within the phases of analysis and evaluation of
adaption requirements. The quality and quantity of the feedback data are of funda-
mental importance for the perception of changes in the production and logistics system
and can decisively support this.

A joint study by leading german production engineering institutes [21] has
examined the current state for the collection of feedback data in the industrial envi-
ronment. The key finding of this study is that all sizes of companies, especially small
and medium-sized enterprises, have deficits in automated acquisition and use of
feedback data [9]. It has been shown that at least Enterprise Resource Planning
(ERP) systems are currently used as the central instrument for managing enterprise data
in most industrial companies (94%) [21]. The enterprise data managed by the ERP
system can basically be divided into relatively static master data and much more
dynamic transactional data, whereby both types of data are kept up-to-date by status
feedback from the production [21].

In contrast to managing the data by ERP systems, the study has revealed regarding
data collection, that production data and machine data acquisition systems (PDA-/
MDA-systems) with spreads of 52% and 37% are the most established methods for
generating feedback data on the process control level [21]. Thereby in industrial
practice, these two systems are mainly used to link machines and systems with IT.
Machine data acquisition is the collection of technical feedback data, which is carried
out directly at the sensors or controls of the production plants. In the course of pro-
duction data acquisition, the collection of order and personnel data as well as the
primary processing of the collected data is realized in addition to MDA-systems [22].
Typical feedback data is the start and end of a manufacturing process (including time
stamps), interruptions and runtime of a machine, manufacturing or assembly orders,
resource utilization and the number of pieces produced [22].

The collection of feedback data is carried out at least partly manually by 80% of the
companies surveyed, whereby mostly (with 71% of the manual feedback) PDA systems
are used. 43% of the participating companies fear to invest in automated data acqui-
sition solutions and prefer to collect the feedback data manually. Almost half of the
companies (49%) collect feedback data automatically, depending on the process, at
least in some areas. A complete substitution of manual data acquisition systems with
solutions for fully automated feedback data acquisition such as Radio Frequency
Identification (RFID) technology is not yet widespread (8%) in the industrial envi-
ronment and is only used by selected large companies [21].
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The current technological advancement towards interconnected, CPPS enables the
automated provision, acquisition and evaluation of relevant feedback data of the pro-
duction and logistics processes in real time [23]. For the successive integration of an
existing machine park into the company-internal data network, retrofitting measures
enable the demand-oriented retrofitting of corresponding sensors and actuators.
A central prerequisite for networking a factory system is the interoperability of the data
interfaces of the various production plants and logistical objects [23].

This innovative form of data diversity and quality generates a significantly
increased transparency along the entire value chain. The aim of an intelligent moni-
toring phase is the advantageous use of this increased data diversity in order to derive
adaption needs on the one hand more well-founded and on the other hand directly,
without performance-reducing latencies (see Fig. 2). In the context of automated data
acquisition, the observation phase and the analysis and evaluation phase largely merge
with each other because of the automatic possibilities for processing data. Hence, the
“production factor” data is of great importance in general, which will continue to
increase in the future against the background of the current industrial digitization
efforts. The targeted use of data is already a significant competitive factor.

3.2 Analysis and Evaluation

The analysis and evaluation phase processes the data and prepares it for the planning
phase. For this purpose, real-time data availability in CPPS enables to create a digital
shadow, which is a complete digital image of the physical processes based on the
collected feedback data [24]. The digital shadow provides the data basis for integral
analysis and evaluation processes. Through target-group-specific visual and statistical
data aggregation, for example in the form of KPI, the digital shadow empowers
enhanced decision-making competence [24–26]. Especially controlling as well as
production planning and control benefit from this databased support.

According to Humm and Wietek [27] and Fasel and Maier [28] the analysis of large
amounts of data and its conversion into profitable information and knowledge is often
subsumed under the terms Business Analytics, Business Intelligence or Big Data
Analytics. These collective terms characterize all data evaluation methods, which aim
to recognize relationships, correlations and patterns, to develop forecasts and to define
action measures based on an existing data framework. Evans [29] classifies Big Data
Analytics in the consecutive phases Descriptive Analytics, Diagnostic Analytics,
Predictive Analytics and Prescriptive Analytics (see Fig. 3).

Descriptive Analytics still addresses the phase of observation, which was described
in the last subsection. Descriptive Analytics therefore focuses on data collection using
the digital shadow to increase process transparency. The objective is to identify and
quantify relevant drivers of change and also to collect and preprocess the feedback data
from the production and logistics system. For the operationalization of qualitative
influencing variables, the fuzzy logic represents a potential solution [29].

Diagnostic analytics (or: Inquisitive Analytics [30]) describes recognition of pat-
terns and correlations within data to identify cause-effect relationships and thus it can
be explicitly assigned to the phase of analysis and evaluation described in this section.
In this context, an intelligent adaption process models the relationship between relevant
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drivers of change, channels and parameters considered in order to derive interdepen-
dencies within the factory system. Diagnostic Analytics thus provides an important
contribution to the causal analysis in the phase of monitoring. Furthermore, the use of
tools of diagnostic analytics like neural networks offers application potential for
weighting the significance of individual drivers of change on a factory system. These
depict the system’s behavior under the influence of various drivers of change. The
informative value of this tool increases with growing data volume due to the ability of
self-learning [29].

The third step, Predictive Analytics, aims to forecast future developments both
within the production and within logistics system based on patterns and correlations
identified and the relevant drivers of change of the business environment. The forecast
of the influencing factors allows to monitor the development of system-relevant
parameters permanently, and to evaluate them proactively based on the systems’ per-
formance and flexibility. On the basis of past data, it could be predicted, for example,
whether strong fluctuations in the workloads are a merely seasonal phenomena or
whether they imply a sustainable need for adaption of capacities. Thus, methods of
predictive analytics are mainly used in the analysis and evaluation phase and partly in
the planning phase. The forecasting of future developments serves as a basis for
planning, particularly when scheduling adaption measures.

Prescriptive Analytics uses the forecasts of predictive analytics as a basis for
deriving measures during the planning phase. In this way, operational, tactical and
strategic management is also supported in the form of an assistance system when
deciding on the implementation of adaption measures [25]. But first of all, this section
continues with the phase of analysis and evaluation of the adaption process.

Obtaining and applying knowledge about the structural interdependencies of pro-
duction and logistics systems are relevant throughout the entire adaption process and
are key characteristics of an intelligent adaption process. Without an understanding of
the complex and dynamic interdependencies between drivers of change and the indi-
vidual system elements as well as individual elements among each other, it is not
possible to derive adaption requirements in a targeted manner or to plan counter-
measures precisely. For further view on the structural relationships and the effects of
drivers of change on factory systems, have a look at the current works by Bertsch [31],
Schmitt and Gloeckner [9], Klemke [32], Luebkemann [33] and Besenfelder [34].
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In addition, the factory structure also has a significant influence on the dynamic
behavior of a factory system, as it determines the material flows in production deci-
sively. The achievement of a high logistical efficiency and thus the resulting manu-
facturing costs when operating an existing factory structure are essentially determined
by the production control. The production control is challenged to implement
increasingly volatile specifications of the production planning on the shop floor. Due to
different configurations, the production control has a certain flexibility in order to adapt
the production to changed requirements according to the best possible target
achievement. As already indicated, the use of CPPS enables the practical implemen-
tation of a significantly increased flexibility and short-cycle adaptability of production
control through real-time data availability and direct feedback. A specific feature of this
flexibility are defined performance bounds that limit the compensation of changes in
production requirements by the control system.

Schuh et al. [35] has shown that these performance bounds are strongly dependent
on the factory structure. This means that the factory structure has a significant influence
on the inherent flexibility potential of a production and logistics system. In this context
an intelligent adaption process always strives to exploit the full flexibility potential of a
system using various configurations of control parameters before economically inten-
sive adaption measures in the field of transformability become necessary to change the
factory structure or resource configuration. Therefore, the entire flexibility potential of
the system and the interactions between the flexibility types must be fully known.

Adaption requirements cannot be completely identified by deviations between
target and actual values of the four classical logistical target values. Instead, it requires
an extended view of the system status by evaluating other characteristic parameters,
such as process and transition time and transport intensity, i.e. the material flow in real-
time. To enable an intelligent adaption process to identify adaption needs semi-
automated, an assistance system consisting of an objective evaluation system for dri-
vers of change is required. Gille and Zwißler [36] provide an initial approach of an
evaluation system.

When analyzing and assessing adaption needs, it is necessary to consider both the
level of individual resources and the level of related resources (resource pool). In this
context, the adjective “related” describes resources, which are used jointly in a defined
factory area and have identical processing capabilities. The following example is
descended from production logistics and illustrates the connection or difference
between individual resources and the resource pool: An Automated Guided Vehicle
(AGV), which is used in the area of assembly for material supply, represents a single
resource. If several vehicles with identical transport capabilities are used for material
supply in the above-mentioned assembly area, they form a resource pool, which in this
context can be referred to as a material supply system. Such a material supply system
needs to be identified in the phase of analysis and evaluation. With the help of CPPS it
becomes much easier to display and then recognize these relations.

Depending on the type of flexibility or the related corridor model to be analyzed, it
is important to choose a reasonable resource level. To clarify this statement, the
introduced example from above is used: Within the material supply system, the situ-
ation may arise that the limits of the capacitive flexibility corridors of single vehicles
are exceeded or not reached, while the aggregate capacitive flexibility corridor of the
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resource pool has no exceeding of the corridor boundaries. Seebacher [37] defines the
capacitive flexibility of an object as its quantitative performance capability. The
described effect of a temporary transgression or shortfall might derive from the static
linkage of AGVs with workstations. Increasing volatile material demands at the
workstations can lead to over- or underload conditions of individual transport vehicles.
In the case of this example, the analysis of both resource levels reveals an unbalanced
use of flexibility potentials. Instead of initiating adaption measures and expanding the
resource pool with additional transport vehicles, the objective of the analysis and
evaluation phase is to demonstrate that it might be advantageous to implement an
intelligent use of existing capacitive flexibility potentials.

3.3 Planning

If predictive analytics methods during the analysis and evaluation phase show that the
course of a relevant parameter in the future will be outside the corresponding flexibility
corridor at resource pool level, which means there is no longer sufficient flexibility
potential available, it is important to immediately plan appropriate adaption measures.
By realizing adaption measures, the flexibility corridor can be shifted, or its size can be
modified.

The planning phase includes identification, concretization and evaluation of
potential adaption measures. The objective of identification is to derive adaption
measures which influence the flexibility corridor in the way that the corridor boundaries
encompass the predicted development of parameters. To deliberately modify the
flexibility corridor, it is possible to use both individual measures and a bundle of
measures, which means the use of various individual measures at the same time. Unless
it is made an explicit distinction, an adaption measure includes the possibility to be a
bundle of measures in the further course. The concretization step extends the identified
adaption measures by time and cost information, which means the required time and
costs to implement an adaption measure. The subsequent evaluation quantifies the
efficiency of an adaption measure using the cost-benefit analysis in consideration of the
impact on other corridor models.

As already indicated, when planning adaption measures it should be considered that
due to complex interdependencies within the factory structure, the implementation of a
measure usually does not only affect one type of flexibility but also several types of
flexibility or rather their corridor boundaries (see Fig. 4).

For example, if a need for adaption has been identified in the area of capacitive
flexibility of a particular resource pool, the initiation of an adaption measure for
optimizing the capacitive flexibility corridor boundaries may also lead to a shift of the
corridor boundaries of other types of flexibility, such as the expansion flexibility [38].

As already described during the monitoring phase, the cross-system interaction
mechanisms within a factory structure are usually very complex and dynamic.
Therefore, the connections between an adaption measure and the resulting impacts on
different flexibility corridors can neither be “manually” overviewed nor analytically
described. However, an adaptive-intelligent system has an assistance system connected
with the CPS which provides case-specific options for action as part of the measure
planning. A focus here is on emphasizing the interdependencies of the impact of
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measures which arise in case of bundles of measures. The planning must therefore not
be limited to measures for eliminating the identified difference between existing and
future performance respectively cost profile but has to take into account all system
elements and their connections of the considered system.

Based on the transfer of a real production process into the virtual world in the form
of the digital shadow, a digital twin can also be created as the basis for the described
assistance system. A digital twin is a simulation-enabled and real-time data driven
process model of the structures and operations of the real factory environment which
can generate additional or future data [24]. In contrast to the digital shadow, a digital
twin can already be designed before the physical systems and includes not only per-
formance descriptions but also future orders and system loads [39]. The simulation
capability of the digital twin enables the automated recognition of (future) deviations
from target settings. Furthermore, it serves as “virtual testbed” by simulating the
implementation of various individual measures or bundles of measures and evaluating
their impacts on changes in corridor boundaries, or by examining the influence of
control measures. Thus, the digital twin is the basis for a decision support system, so
that a precise adaption planning in complex logistical structures becomes reality [45].

Due to the complex and dynamic structural connections between the factory sub-
systems, the multi-criteria evaluation of adaption measures represents the most chal-
lenging step of the planning phase. The evaluation is based on a company-specific
weighting of the time and cost information determined in the concretization step as well
as the four logistical target values. The data basis for evaluation of the logistical target
values comes from an experimental examination within the digital twin. In the first step
of the experimental examination, the adaption measure, which needs to be evaluated, is
integrated into the virtual factory model. In the second step, the system behavior is
simulated by taking into account the adaption measure, in order to be able to quantify
the four logistical target values in the subsequent third step. All identified and specified

Fig. 4. Schematic representation of the interdependencies between different flexibility corridors
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adaption measures must run through the described procedure model. The adaption-
measure-specific quantifications of the logistical target values (results of the procedure
model) as well as the time and cost information resulting from the concretization step
are subjected to a joint multi-criteria evaluation in the last step of the planning phase.

For the sake of completeness, a supplement must be made which further increases
the complexity of the evaluation mechanism. For simplification, the above-mentioned
explanations on the evaluation of adaption measures assume that the parameter courses
of a corridor model are not influenced by the measures taken, which means they are
considered to be independent of those. However, reality shows that the implementation
of adaption measures has an impact not only on the shape of the flexibility corridors but
also on the course of the parameters considered. In addition to the shift of flexibility
corridor boundaries, abrupt changes in the course of parameters may occur when an
adaption measure is taking effect. These changes in the course of parameters may in
turn require adaption measures elsewhere in the system. When evaluating adaption
measures, it is important to consider these dependencies in the simulation environment.
The generated evaluation results represent the output of the planning phase as well as
the input for the subsequent decision phase.

3.4 Decision

In the decision phase, an adaption measure or a bundle of adaption measures has to be
selected. The multi-criteria-evaluated adaption measures of the planning phase form the
basis for the decision. Depending on the generated evaluation results an appropriate
decision level is defined. Adaption measures, which have comparatively little impact
on the factory system or rather on the logistical target values and which furthermore
can be implemented cost-effectively and rapidly, are likely to be assigned to a system
autonomous decision level. In this context, system autonomous means that the decision
regarding the implementation of an adaption measure is made independently by the
affected subsystems of the factory and thus without any human intervention. Cost-
intensive decisions which have a corresponding impact on the factory system will still
require human intervention.

As a general rule, the decision to implement an adaption measure should be made
as early as necessary, but as late as possible. This basic rule minimizes the risk of
wrong decisions and thus also of bad investments. The digital twin is used to imple-
ment this basic rule. Due to the experimental simulation properties, the adaption
measures can be projected scenario-based into the future within the digital twin. This
procedure allows the identification of an optimal decision point at which a timely
implementation of the adaption measure can still be ensured and the uncertainty
concerning the future course of parameters can be minimized.

Autonomous decisions of a system regarding the implementation of adaption
measures require a corresponding infrastructure. The following example gives an
insight on how such an infrastructure could be designed, but it makes no claim to
completeness: An infrastructure suitable for making system autonomous decisions
should include that the factory subsystems, which are affected by the adaption, are able
to directly contact the machine suppliers in order to independently retrieve the adaption
measures developed during the planning phase (e.g. adding a single device or an entire
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process module). In order to reduce the delivery times of the technical units which are
required to implement an adaption measure, business models based on the principle of
a consignment warehouse are conceivable. In doing so, machine suppliers would stock
certain, previously defined technical equipment units inside the customer’s factory,
which can autonomously be retrieved and used by the corresponding subsystems of the
factory if required. Expenses are only charged to the customer if the equipment units
held in the consignment warehouse are actually used. The procedure described above is
about the outsourcing of technical flexibility to machine suppliers and thus about a
“consignment warehouse of technical flexibility” for the customer. The consideration
of change enablers in the design of technical equipment (e.g. modularity) supports the
implementation of the described concept. The speed of provisioning can be integrated
into the machine price with an appropriate bonus. On the side of machine suppliers,
again, industry 4.0 technologies such as forecasts can be used to estimate requirements
and thus provide parts as far as possible in line with the demand and in the appropriate
quantities.

3.5 Implementation

During the implementation phase, the selected adaption measure or the selected bundle
of measures has to be implemented. The digital twin can also be used to support in this
phase. For example, it can be used to carry out a virtual commissioning before the real
implementation of the measures take place. The virtual commissioning can generate
time and cost savings during the subsequent real implementation of the adaption
measure.

Another possibility to increase the efficiency of the implementation phase is the use
of an automated initial master data management. In this case, the initial master data of
the process which is influenced by the implementation of the measures is determined in
advance by simulation. If the adaption measure to be implemented is e.g. the devel-
opment, implementation and commissioning of an additional production facility, the
initial master data of the facility can already be determined by simulation before its real
commissioning and be stored on the corresponding facility computing unit. As soon as
the real commissioning is completed and the facility can be integrated into the existing
production network, the initial master data is automatically sent to the corresponding
information receiver, e.g. to the ERP system.

The availability of an always up-to-date factory image can generate additional
benefits. Thus, the non-productive times of the real commissioning can be reduced
because for example media supply points in the digital image are directly visible or are
even actively highlighted in a context-specific view. The given example shows that in
the context of the real implementation of measures, wasting processes such as search
processes can be reduced or in the best case completely eliminated by using the digital
factory image. In order to ensure real-time availability of the current status with regard
to the implementation of the measures, the responsible commissioning engineer can for
example be equipped with a smart device (e.g. Tablet PC). The commissioning engi-
neer’s input combined with the technical functions of the device offer amongst others
the seamless utilization of the following modules:
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• Project management: always up-to-date overview of time and cost trend (always up-
to-date project status)

• Digital factory image: influences on the digital image caused by the implementation
of the adaption measure (e.g. layout changes) are automatically transferred into the
virtual model (always up-to-date virtual factory image)

• Fault management: if complications occur during the implementation of the mea-
sures, the digital image can be used to examine solution alternatives on short notice.
If, for example, a technical facility cannot be built at the planned location for a
variety of reasons, alternative installation locations as well as the associated impacts
on surrounding trades can directly be examined and evaluated.

3.6 Impact

If the implementation of an adaption measure or a bundle of measures can be com-
pleted, a corresponding impact will occur in the processes influenced by the measure.
Via various data collection points, the impact of an adaption measure is recorded and
automatically sent to the digital twin. Within the simulation image, the impact leads to
changes in the course of flexibility corridor boundaries and parameters. By means of
quantitative validation, it can be checked whether the impact that has occurred reflects
the target state defined in the planning phase. The validation results are integrated into
the knowledge management of the adaption process in the form of empirical values and
can be taken into account in future planning phases.

Depending on the type of the implemented adaption measure, the number of data
points, which need to be considered for the up-to-dateness of the digital twin, changes
(e.g. new production facility, technical expansion module) or remains constant (e.g.
replacement of an existing with a more powerful facility module). With the integration
of the new data collection points and the impact of an adaption measure, the circle of
adaption intelligence is closed and the new or changed data is recorded in the obser-
vation phase again.

4 Conclusion and Outlook

The paper investigated that adaption in CPPS can be done more frequently, quicker and
more precisely than in classical systems. There is a growing need for this development
to an intelligent adaption process considering the increasingly dynamic and complex
business environment. For this reason, first, the corridor model and the six-step
adaption process was presented as a fundamental concept for dealing with a dynamic
and complex environment within the company. On this basis the paper demonstrated
how the current technological developments in the context of industry 4.0 can help to
address these challenges along every step of the six-step process of adaption. It has
been shown that the potential of real-time data availability of cyber-physical systems is
a key component for increased adaptability. A data-driven digital image of the factory
system supports the adaption process in every phase. In particular, the monitoring
phase is massively supported by feedback data from production when it comes to
perceiving changes and deciding on adaption requirements. This is particularly
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reflected in the significantly increased speed and precision of demand detection. The
higher precision achieved by the data-supported derivation of adaption needs is also
due to an improved utilization of inherent flexibility potentials through production
planning and control. Furthermore, it was shown that future adaption needs can also be
predicted based on methods of predictive analytics. Since the structural interdepen-
dencies of production and logistics systems are very complicated and the effects of
adaption measures therefore cannot be viewed holistically by humans, the adaption
process is supported in the planning and decision phase by an assistance system based
on a digital twin of the production and logistics system. This enables to investigate the
various effects of adaption measures on different types of flexibility and the course of
the parameters considered by means of simulation. In addition, the implementation
phase can be supported in CPPS by virtual commissioning, initial master data man-
agement and context-specific factory views. All these described capabilities charac-
terize an intelligent adaption process of a production and logistics system against the
background of current technological and market developments.

This article is very visionary and forward-looking. In the future, it will be necessary
to establish the remarks mentioned in practice by first demonstrating the applicability
and cost-effectiveness in a first step with the help of use cases. However, there are
numerous hurdles in companies that have to be overcome. For the use of the above-
mentioned statements, appropriate preconditions and structures for the applicability in
companies must first be created in future research.
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Abstract. Model-Based Systems Engineering and early simulation
based Validation & Verification are now key enablers for managing the
complexity in the development of modern complex systems like Cyber-
Physical Systems. Models provide a formal account of system require-
ments and design decisions. Model simulation enables both design explo-
ration and design versus requirements correctness assessment. Model
simulation activities rely on Simulation Systems (i.e. systems that exe-
cute the model simulation). System execution environment models play
a key role during these activities. Appropriate models must be devel-
oped for each kind of analysis conducted during Validation & Verifica-
tion. More and more often, complex Systems Engineering is conducted in
Extended Enterprises and the simulation activities are performed using
partial models that must be completed with mock-up models for miss-
ing parts of the system. The development of Simulation Systems is thus
costly and error prone and would benefit from the same Systems Engi-
neering principles that are applied to the product. We propose a method-
ology for a seamless integration of the Simulation Systems development
in the Products Systems Engineering. This method imports the available
elements from the models of the system and its environment, from the
Systems Engineering for Product space to a dedicated Systems Engineer-
ing for Simulation space. The required mock-up models are then defined
in the Systems Engineering for Simulation space. As a result, we target
a better management and reuse of the various environment and mock-up
models in the various simulation activities during the development of the
same product. This proposal is independent both of the actual methods
and tools used to model the system and of the simulation environment.

1 Introduction

The use of MBSE (Model-Based Systems Engineering) and early simulation-
based V&V (Validation & Verification) offers effective means to handle the com-
plexity of real-life industrial development projects. Regularly, such projects need
to combine several engineering fields in the context of EE (Extended Enterprise)
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where many stakeholders are involved such as Cyber Physical Systems (CPS).
In this context, the simulation activities are often performed in an ad-hoc man-
ner depending on the project, the involved partners, etc. To our knowledge and
understanding, there exists no common reference methodology helping the var-
ious engineers involved in the product development in making the best choices
seamlessly and efficiently for the simulation activities. Our work aims at filling
this gap by proposing a methodology that specifically addresses the simulation
and its needs. This paper provides a first draft of this methodology illustrated
through a realistic case study.

This paper first provides insights on approaches that achieve early simulation-
based V&V in the context of MBSE in common industrial settings, in particular
within the MOISE (MOdels and Information Sharing for System engineering in
Extended enterprise) project of the IRT-SE (Institut de Recherche Technologique
Saint Exupéry – Institute of Technology Saint Exupéry), where our work takes
place. One key aspect is that these activities are nowadays mostly conducted in
EEs where many stakeholders target an efficient cooperation while protecting
their know-how (usually named wrongly IP (Intellectual Property) which is a
legal term that may only cover partly the stakeholder purpose). Thus, the various
parts of the systems models are built in a concurrent engineering manner and
simulation activities are conducted on partial models that must be completed
with mock-up models for missing parts of the system. These models must also
be completed with environment models whose content depends on the kind of
validation and verification activities that are conducted relying on simulation.
The building of these Simulation Systems (SS) is thus, in itself, costly and error
prone and would benefit from the same SE (Systems Engineering) principles that
are applied to the product.

Our contribution advocates the use of a rigorous methodology to build SSs
tailored for its specific needs. We introduce such a methodology, by adapting to
SSs development, many principles specific to SE. In this context, a particular
attention is given to the representation of the environment that plays a key role
in the simulation. Particularly, for needs that are specific to simulation activities,
its representation must be carefully handled and shall be included to a certain
degree in the modelling. Our approach is generic and potentially compatible with
various actual system development and simulation technologies.

The rest of this paper is organized as follows: in Sect. 2, we present exist-
ing efforts for simulation-based early V&V in the industry, in particular in the
MOISE project, as well as our running example: the AIDA inspection drone
that will be used throughout the rest of the paper. Section 3 overviews the prin-
ciples of our generic methodology for performing simulation in the context of
MBSE, which is detailed in Sect. 4 with illustrations from the AIDA case study.
Section 5 presents the expected benefits for the use of a rigorous methodology
for SSs development and gives some directions for future work.
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2 Context Presentation

2.1 Industrial Concerns

MBSE and early V&V are now key enablers for the development of complex CPSs
in many application domains like transportation [1–3]. Model simulation is an
effective approach for early V&V, allowing design decisions to be assessed earlier
in the product life cycle. The duration and costs of the system development can
thereby be reduced [4–6].

According to [7], simulation-based design is a “process in which simulation is
the primary means of design evaluation and verification”. Given the increasing
complexity of the systems and in order to manage the structural complexity of
the systems simulations, [8] proposes a MBSE [9] method to integrate simulation
activities in the development process of complex systems. This approach seems
all the more relevant in the concurrent design of systems involving multiple engi-
neering domains such as: mechanical, hydraulic, electrical, etc. parts. Depending
on the point of view to be assessed, different simulation activities allow to esti-
mate, and/or to refine the different interactions between components [7,8].

While aiming at time and development costs reductions, [2] focuses on issues
related to the integration, verification, validation and qualification of the sim-
ulation models. To reduce the potential ambiguities between system engineers
and domain experts in charge of simulation model development, [2] adds a new
actor in the process called “Model Architect” that coordinates the various MBSE
activities. This new actor should have a multidisciplinary vision of the product
whose architecture is under design and some knowledge in simulation technolo-
gies used for modeling the various parts of the architecture.

In [2], the authors propose an ontological DSL (Domain Specific Lan-
guage), MIC (Model Identity Card), that covers the needs of various application
domains, including the specification of interfaces and the building of simulation
models. This DSL targets all the actors of the models, unfortunately it does not
integrate a precise account of the behavior of simulation models. To overcome
this, [10,11] use the concept of MoI (Model of Intention), defined as a model
based approach to request and specify model(s) or simulation(s) for a specific
scenario.

The combination of MIC and of MoI proposed by [10,12] allows to fill the gap
existing between the requirements for the simulation performed by the system
architect and the implementation of all the required simulation models, therefore
reducing the problems related to their integration.

The importance of the simulation for early V&V of requirements and design
while protecting IP in EEs is highlighted by the presence of a standard dedi-
cated to the implementation of such SSs - the FMI (Functional Mock-up Inter-
face) standard [13]. The co-simulation part of this standard (FMI 2.0), allows to
implement multi-simulations [14] or heterogeneous simulations [15] (see Fig. 1-a),
while preserving the IP in simulation models [14]. This IP protection only allows
the supplier to visualize the content of its own models and not the one of the
others (see Fig. 1-b).
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Fig. 1. Collaborative and private aspects of the FMI 2.0 standard (from [13]).

Furthermore, in order to build distributed simulations, [15] creates a bridge
between FMI and the HLA (High-level architecture) standards [16,17]. In the
same purpose, [18] extends the FMI 2.0 standard and supplies a tool (inde-
pendent of HLA) to implement the simulations on distributed and multi-core
architectures.

However, as far as we know, there is no common reference process offering a
global and structured vision that allows to implement co-simulation platforms
for systems models.

To address this, we advocate that the use of MBSE is meaningful not only for
the development of the products, but also for the development of the SSs used
during the development of the products. The current contribution illustrates how
MBSE can be used for the development of the simulation tools and what are the
expected associated models specific to the simulation.

The proposed method for the development of executable simulation models
is generic with respect to product and SS development Methods and Tools. This
is achieved by clearly separating concerns related to the (i) Systems Engineering
for the Product under development, (ii) Systems Engineering for the Product
Model Simulations, and (iii) simulation execution and results analysis. This sep-
aration can be expressed, for example, in this way: SEPS (Systems Engineering
for Product Space) could rely on the MBSE method CESAM for developing the
product, while SESS (Systems Engineering for Simulation Space) could rely on
the ARCADIA method for developing the SS required for the simulation activi-
ties during the product development. Modelica [19], C, C++, Java languages, for
example, could be used for implemented the various mock-ups, in the simulation
execution space.

The core ideas, of this proposal, are that (i) each model simulation can be
a project in itself, with its own constraints and costs; (ii) MBSE can also be
applied to these simulation projects; and (iii) commonalities and building blocks
can be reused for the different models involved in the development of the same
product. Indeed, the development of a product using MBSE involves many dif-
ferent models that may be assessed using simulation. This results in a family of
related, yet distinct, models that are conjointly developed and assessed as they
are all involved in the development of the same product. Their assessment is
done through various simulations which subsequently may require specific sim-
ulation models and tools. In this particular context, building blocks developed
for the various simulation projects could be reused in the same manner as reuse
occurs in SE.
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2.2 The MOISE Project

The approach presented in this paper takes part in the MOISE project within
the IRT-SE in Toulouse (France), with industrial partners, consulting companies,
tools vendors and public research institutes (e.g., ISAE, IRIT, LAAS-CNRS, S/C
ONERA).

MOISE develops a collaborative MBSE in EEs with the aim to both improve
the development activities and reduce their costs. For this, in MOISE we consider
requirement validation and design verification, for embedded systems, to enable
seamless co-engineering between industrial partners and to manage requirements
waterfall with agility and continuity. Furthermore, in MBSE, designers must
ensure that the models that they have built are a correct expression of the
design they had in mind. This is a specific kind of model validation that occurs
each time a formal language is used to express human ideas. This is similar to
requirement validation as the ideas a designer has in mind when he is building a
model are similar to the informal requirements given by the user at the beginning
of a project.

One of the key goals of the project is to reduce V&V costs by using early
model simulation activities. The purpose of our proposal is to ease the devel-
opment of SSs using MBSE and reduce the associated costs by improving reuse
both in the transfer of models from product to simulation space [20] and in
between the SSs built for the various models involved in the development of the
same system.

2.3 The AIDA Inspection Drone Case Study

To illustrate our method, we apply it on a use case targeting an inspection drone
that moves around a plane on the runway before take off (see Fig. 2). Its purpose
is to support the pilot in the mandatory inspection of the aircraft before each
flight. This drone should (i) quicken the pilot inspection task and (ii) improve its
precision, by scrutinizing not-visually-accessible parts of the plane (e.g., the top
of the wings, fuselage, . . . ), in order to detect irregularities, such as forgotten
caps on sensors, ill closed trap doors, or mechanical defects such as thunderclaps
or impacts of hail.

This drone should be manually controlled following predefined paths (drone
flight plans), with enhanced automated safety capacities to avoid hurting ground
staff. For this purpose, the drone is aware of the cartography of the plane and
of the location of the points of interest to be scrutinized. The drone is equipped
with various sensors: vision system, GPS locator, and a radar, for a greater
precision, to ensure a sufficient safe distance with respect to the plane and the
ground staff.

To enable the diagnostic in case of malfunction, the flight data are saved
locally and transferred in real-time to the ground. Moreover, the operator can
watch live images taken by the drone, to make sure that control points do not
present any irregularities, and adapt the drone flight plan if needed.
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Fig. 2. External Walk around a plane.

3 The V Cycle and Simulation Activities

3.1 Overview

The main purpose of our work is to ease the simulation-based early V&V activ-
ities in MBSE. Let’s recall the distinction between Validation and Verification:
According to Boehm, Validation targets building the right product (i.e. the prod-
uct that fits the user needs – the implicit requirements that are the source for
writing the product specification) and Verification targets building the product
right (i.e. the product that satisfies its explicit requirements – the product speci-
fication). Thus, if the product is correct (i.e. has been verified), Validation mainly
targets detecting an erroneous translation from the implicit requirements in the
user mind to the explicit requirements – the product specification. This analysis
must involve the user. A first assessment may be conducted without the user in
the loop: checking that the explicit requirements are complete and consistent.
When the development process involves several phases that each have explicit
requirements and expected results, these definitions needs to be adapted to be
applied to each phase: Phase Verification assesses the compliance of the results
with respect to the requirements; and Phase Validation assesses the requirements
(completeness and consistency). When all phases have been conducted, Verifica-
tion is complete whereas final Validation activities are still needed for the user
to accept the product. The IEEE Standard Glossary of Software Engineering
Terminology states that Verification is “The process of evaluating a system or
component to determine whether the products of a given development phase sat-
isfy the conditions imposed at the start of that phase” and that Validation is
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“The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements”.
This user part of the validation can be extended to any human activities con-
ducted in a development that require translating the implicit human ideas to
explicit documents. In MBSE, these documents are expressed as models. Thus,
Model Validation assesses that the model is a correct rendering of the ideas
the developer had in mind, whereas Model Verification checks that the resulting
model satisfies the explicit requirements, that are most of the time also expressed
as models resulting from the previous phases. This can even be extended to doc-
uments that have no formal semantics (e.g. natural language, drawing, etc.)
used as requirements. Formal Model Validation assesses that a formal model is a
correct rendering of an informal document, whereas Formal Model Verification
assesses that a formal model satisfies explicit requirements available as formal
models.

One of the oldest and most common life-cycle model for system development
processes is the V-Model. This is a theoretical model that was never applied
as it was defined. It consists of sequential process phases, where each phase
must be completed before the next one begins. The V-Model is rather common
in the manufacturing industry such as aviation, automobile, and many others
where there exists usually three main phases: product, systems and equipments.
A product combines several systems that integrates various equipments. Each
phase consists of sequential process steps defined in the development method
used. For example, ARCADIA experimented in MOISE relies on the Require-
ment, Function, Logical and Physical steps.

On the theoretical side, which has almost never been applied as is, the left
side of the V corresponds to the development of the product and the right side
of the V corresponds to the various V&V activities.

Before the introduction of MBSE, the left hand side of the V-Model roughly
corresponded to the product development with very little efficient V&V activi-
ties conducted. Indeed, only proofreading could be conducted as the results of
each steps where semi-formal graphical or textual documents targeting human
readers. The right hand side of the model covered test-based V&V of the equip-
ments; then equipments integration and test-based V&V of the systems; systems
integration and, in the end, test-based V&V of the product.

Its use could raise problems of diverse natures as most of the efficient V&V
activities were only conducted quite late when the various equipments needed
for a product had been implemented. It often resulted in the late discovery of
Requirement, Functional, Logical or Physical issues during the integration of
the various validated and verified equipments. For minor issues, minor changes
in the requirements, design and implementation may be possible, while staying
efficient and cost effective. However, in some situations, issues discovered during
late V&V activities will require major architecture changes or local patches to
circumvent and prevent the problem. In all cases, this leads to increased costs
and delays in delivery, additional maintenance difficulties, and potentially the
addition of new weaknesses.
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Furthermore, architecture exploration suffered from the same issues. Either,
it was conducted early in the development by humans based on document read-
ing. It was usually far from optimal for complex systems. Or, it was conducted
later using tests based on the implemented equipments. But, this led to very high
costs as all the equipments required by all the variants of the architecture had to
be developed and all the variants of the architecture also had to be implemented.

Last, design document proofreading is not well adapted to IP protection in
EE. Indeed, in order to conduct a V&V activity using proofreading, the designer
needs to have access to all documents related to the system he designed including
the ones built in other enterprises.

To prevent this, the introduction of MBSE and early V&V was shown to be of
precious help and is currently being deployed in most manufacturing industries.
MBSE enforces the writing of formal models in each step of each phases instead
of semi-formal documents, and the assessment of these models using simulation-
based testing. These assessments allow the early validation of requirements and
verification of design steps. Furthermore, it allows validating the models written
by the designers to assess that they are a correct rendering of the ideas he had
in mind. The early V&V can take various forms, such as model exploration
and structural analysis. That would allow to check for instance that there is
no isolated communication port and that the direction of communication paths
is unambiguous, thus detecting issues in the architecture that would only be
detected in the integration V&V activities.

The actual interpretation of the V cycle depends on the abstraction level
at which we consider the system. Figure 3 provides the product, system and
equipment views that correspond to the main engineering phases.

At the highest level of abstraction – the one covered by the upper left part
of the V-Model – the customer needs are expressed and coarse models of the
environment of the future product are required to validate the expression of these
needs. An exploratory phase is usually conducted to assess the appropriate use of
new technologies (see Fig. 3, phase 1) with respect to previous similar products.

The exploratory phase must respond to questions like: (i) what kind of mate-
rial should be used for its physical parts: steel, aluminum, carbon, composite
fiber? (ii) what is the worse case of winds the drone will be submitted to? (iii)
can the AIDA drone be protected from radio or EMC interference? To answer
these questions, material models or environment models (atmospheric, radio,
EMC (Electromagnetic compatibility)) should be simulated with more or less
precise description of known and already identified interactions with the system
to be studied.

This phase handles the expression of customer needs. For example, in AIDA
(see Sect. 2.3), the drone shall conduct an inspection around the plane to detect
irregularities.

In this exploratory phase, simulation can be used to illustrate high-level
behaviour, under the form of textual requirements using customer vocabulary, or
sequence, activity, or state diagrams: operational scenarios that will be executed
in front of the user that can accept or not the simulated behaviour. For instance,
the procedure of drone intervention around the plane needs to interact with
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the pilot, the meteorological data provider, and eventually the control tower.
These diagrams allow to precisely define the order of interaction with different
stakeholders, and simulation can be used to validate it.

In this exploratory phase, the environment models must have the appropriate
accuracy to assess that models, within this phase, reflects really its intended
semantics and behavior. The environment models, in the simulation, could be
later refined to better capture reality.

The second phase of the V-Model (see Fig. 3, phase 2) is the system phase
that takes into account higher-level requirements stemming from the previous
phase in order to express operational requirements associated with the various
systems to be designed in order to build the final product. This is an essential
part, that represents the core of our work, although our proposal is generic
enough to be applied to the other phases. Models and activities involved in this
phase will be provided in the following sections of this contribution.

The equipment phase (see Fig. 3, phase 3) focuses on the underlying hardware
platform and the associated deployed software. It is developed on the basis of
the requirements produced at the system phase (phase 2). In the context of
simulation, at this stage we target particularly accurate simulations. That could
cover the simulation of a processor whose behaviour is described at the clock
cycle level of accuracy, the simulation of a communication protocol taking into
account the physical layers of the OSI standard, etc.

This last kind of simulation is not addressed in this paper, but our pro-
posal could be easily adapted to handle such constraints, usually involving HIL
(Hardware In the Loop).

3.2 MBSE-RFLP Method

The MBSE approach, used for the AIDA use case, relies on the RFLP (Require-
ment, Functional, Logical, Physical) general methodology that drives many
industrial methods and tools, like the ARCADIA methodology [21] and the
associated CAPELLA toolset. With this toolset, during the development of the

Fig. 3. Global V cycle and focus on system development layer.
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system models, it is possible to build several kind of architecture correspond-
ing to each layer (see Fig. 3, phases 2.1 to 2.4). These models, in each layer,
can be assessed through simulation, both to check that models reflect the sys-
tem designer intention (validation) and that models satisfy the requirements
expressed in the previous layer (verification).

The first step of the System phase, Operational Analysis, analyzes the oper-
ational requirements issued from the Product phase and builds corresponding
models that will drive the following steps of the System phase. These models
can be validated using simulation.

To meet the operational requirements expressed in these first models, the next
step is the “System Architecture design” that mostly consists in refining models
from the previous phase. The obtained architecture shall meet the requirements
of the operational layer, which can be assessed through V&V. Newly defined
functions and their communications interfaces (see Fig. 3, phase 2.2) adds new
requirements to be met by the next steps.

When this functional architecture is complete and mature enough, it may
be significant to group similar elements into common and specific functions,
providing logical components (as it is the case with the Allocation functions
from Figs. 8, 9 and 10). This results in an intermediate architecture layer (the
Logical layer in Fig. 3, phase 2.3) situated between the functional layer expressed
above and the physical layer to which these logical functions will be allocated.
This logical layer can ease the deployment and the assignment of components
(more precisely, their inner functions) to the equipments in the physical layer.

Finally, the physical layer specifies the physical architecture of the equipment,
as well as deployment and inter-dependency links. Additional requirements are
added to this layer to specify/constrain component deployment, communication
means and interfaces between them (see Fig. 3, phase 2.4).

The principles of the MBSE method used previously are quite similar to other
approaches like CESAM [22]. Therefore, the MOISE approach can be adapted
to other methods.

4 Proposed Approach

Building the required tools for a specific model simulation activity can be expen-
sive. It is submitted to temporal constraints related to the development process
and associated steps. In a common industrial frame, this kind of simulation
project involves numerous specialists and may require the building of a specific
simulation platform with a significant computing power.

This contribution advocates that it is possible and meaningful: (i) to apply
system engineering principles to Simulation Systems (see Fig. 4), (ii) to handle
the models for simulation as autonomous objects, and (iii) to take into account
separately its support of execution, including the computing power and its spa-
cial distribution, within the various stakeholders in the EE, that participate in
the development of the product whose models must be simulated (see Fig. 6).
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Fig. 4. Global View of the methodology, without processing platform allocation.

Fig. 5. Data transfer from ES product space to ES simulation space. (Color figure
online)

4.1 Model-Based Systems Engineering for Simulation

MBSE helps the system engineer in assessing the relevance of the system archi-
tecture and the compliance with the desired system properties. The same results
can be expected from its application to Simulation Systems. Our proposal has
the particularity that both methodologies (e.g., CESAM [22], ARCADIA [21],
. . . ) are independent: the one used for the development of the simulation system
can be different from the one used for the design of the product.

The clear separation between the Systems Engineering for the Product and
the Systems Engineering for the Simulation offers numerous advantages. The
main benefit of our approach is that it offers flexibility and adaptability. Dili-
gent to the (cultural) context of the companies involved, it allows to comply to
the methods and the working habits of the involved people and facilitates the
collaboration of the various actors involved in the development and simulation.
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Fig. 6. Content of the simulation physical layer.

4.2 Systems Engineering Product Space

The SEP (Systems Engineering for Product) space is the entry point of our
method. It relies on models to represent the various aspects involved in the sys-
tem design phase of the product. To illustrate our point, we use the MBSE-RFLP
design method, as explained in Subsect. 3.2. The system engineer in charge of
the product plays the role of the System Architect. By acting on the four layers,
he will be able to use simulation, throughout the design cycle to assess that
the obtained models correctly capture his purpose, and are conforming to the
models from the previous phases: operational architecture for the requirements,
functional architecture of the provided services, components in the logical archi-
tecture and allocation of these logical components in the physical architecture.

4.3 Simulator Systems Engineering Space

Each simulation project for each simulation V&V activity in the SEP space
will be developed in the SES (Systems Engineering for Simulation) space. The
system engineer in charge of the simulation project is called the SA (Simulation
Architect). SA has the choice of the most appropriate method of conception. To
illustrate more easily our proposal, we have chosen the same design method as
the one from the SEP: the MBSE-RFLP method. It is also in this space that
the SA specifies the inputs/outputs of simulation models and shares them for
execution on the simulation platform of each stakeholder (see Fig. 6).

4.4 Models Simulation Execution Space

This space is dedicated to the management, integration and execution of exe-
cutable simulation models. These activities can be facilitated by the use of co-
simulation standards like FMI. Due to space limitations, we do not address the
specifics of this space in this contribution.
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4.5 Simulation Architect

The SA should have some particular skills, such as: (a) have a wide knowledge
of the various domains being simulated, and (b) be open minded and endowed
with communication skills [2]. Indeed, typically the simulation involves different
actors that are each expert in their field of activity. The SA is the interface
between the System Architect and these experts involved in the implementation
of the simulation models. The SA performs in the SES space and the models
simulation execution space and thus will also communicate with people in charge
of the infrastructure of the simulation, in the various companies. Let us mention,
for example, the people in charge of the implementation of computers and OS, of
the security of the internal and external networks, of the management of physical
access rights to the hardware and software.

4.6 Simulation: From Its Request to Its Execution

The description of the process proposal is generic, regardless of the system design
method used, and of the selected layer in the SEP space: Operational (OP),
Functional (Fun), Logical (Logic) or Physical (Physic) as illustrated in Fig. 4:
Product Space.

The starting point is the System Architect needs to assess properties of the
product’s architecture. Therefore, he transmits all the information needed to the
SES space. Figure 5 illustrates the information flow between the functional layer
of the product and the operational layer of the SES space.

Fig. 7. Evolution between Product Space & Simulation Space.

Our approach is illustrated using the AIDA drone use case introduced in
Sect. 2.3. With respect to Fig. 7-a, the drone is the System of Interest whose
architecture is currently being designed and must be assessed using simulation.
The System Architect is currently assessing the behavior of the “Move” function
(see Fig. 8, Product Model) present in the System of Interest at the “Func” layer
of the SEP space (see “Func” layer in Figs. 4 and 5). The“Move” function shall
control correctly the position and the speed of the drone.
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To perform a simulation, the System Architect provides some information to
the SA:

– the system architecture model. With respect to our case study, it includes
the “Move” function and all the directly related functions (“Compute Actual
Position and Speed”, “Inertial Central”, “Compute Next Position and Speed”,
“Receiver GPS”)

– test scenarios models describing the interactions between the “System Engi-
neer” actor and the System of Interest during the simulation

– requirements for traceability
– a prescriptive semantic model of the function to be simulated. In our case, this

corresponds to a model of the execution semantics of the “Move” function,
as an UML activity or state diagram, or as a Modelica or Simulink model, or
even as software code, etc.

– environment models requirements. In our case (see Fig. 8-Product Model), the
System Engineer asks to include in the simulation, the “Provide Signal from
GPS Environment” and “Create Lift force from Atmosphere Environment”
models.

The System Architect transfers all these information to the SES space, as one
can see in Figs. 4 and 5).

The SA handles these data as requirements, and places them in the dedicated
operational layer for simulation (see Fig. 5).

From these elements, he begins to build the simulation system functional
architecture whose purpose is the simulation of the “Move” function (see Fig. 5:
OP → Func). This layer imports functions from the “Product Model”, provides
functions to describe environments and the scenario for simulation.

The SA models the internal environment (turquoise blue) as a family of func-
tions, currently under development, directly or indirectly connected to the func-
tion of interest. In this “Internal Environment”, the output and input of func-
tions, directly connected to function of interest, describes the expected behaviour
of the function of interest and are thus considered as correct by construction.
For the AIDA use case, functions placed in “Internal Environment” are “Inertial
Central”, Compute Actual Position & Speed”.

For instance, the “Compute Next Position & Speed” function is not part of
the “Internal environment” because, this function has already been designed and
the associated validated and verified models are already available.

The external environment model describes the environment of the System of
Interest at an appropriate level of detail to ensure the expected quality of the
analysis. These models can be reused, with eventual refinements, from previous
simulation (see Fig. 5).

In the SEP space, the GPS satellite sends signals to the GPS receiver. How-
ever, for simulation purposes, we do not need to provide details of the relations
between GPS signal and the GPS receiver. Thus, in our example, the path “Pro-
vide signal” and “Receiver GPS” from SEP are modeled in SES space by the
simpler “Position & Speed” function of the “GPS Environment”.
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The System of Interest of the simulation is the “Move” function which is
identified in dotted red line in Fig. 8. All the other simulated functions are drawn
with full red or green line.

Fig. 8. From product SE Space to Simulator SE. (Color figure online)

When the successive refinements of the functions reach a precise enough
description in functional layer for the assessment under way, these functions (see
Fig. 9) are assigned to the components of the logical layer (see Fig. 10).

However, before actually assigning them to a logical layer, the refinement of
Fig. 9 can be interpreted in two ways: (i) It may be a refinement provided by the
system architect. In this case, the SA must rely on this refinement instead of the
container “Move” function. If needed, the System Architect must provide the
Prescriptive Semantic Model for the refined function (the intended behaviour),
(ii) It may also be a Model of Intention represented by the functions: “Regulation
Pos&Speed”, “Compute Motor Speed”, “Regulation ith Motor Speed” and “Cre-
ate Rotation ith Motor”. The SA keeps the “Move” function unchanged, retrieves
the Prescriptive Semantic Model from the System Architect, and forwards it to
the experts in the Simulation Execution space.

In our case study, we consider that it is a simple refinement. The logical
layer groups related functions as “logical components”. The relation used for
the grouping depends on the purpose of the model designer. For example, in

Fig. 9. Detail of “Move” function, in simulation SE Space. Env Functions in Turquoise
Blue. (Color figure online)
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Fig. 10. Allocation of functions to logical components. Internal&External Env in
Turquoise Blue. (Color figure online)

the SES, the notion of component is preserved, to which is added the notion of
business domain (mechanical, electrical, etc.). The component becomes a logical
and specialized container for a particular business domain.

In the Fig. 10, we can see functions grouped in logical components from our
example: Functions “Inertial Central” and “Compute Actual Position & Speed”
are grouped in the logical component “LC3.4 Compute Position & Speed”,
“Compute Next Position & Speed” in “LC2.1 Fly Plan Exec(ution)” for example.

The physical layer (see Fig. 6) allows expressing the EEs elements: the entities
(companies), the physical execution supports (Execution Unit, down to possibly,
Processors and associated Threads), the communication means (Networks), and
the simulation models. In this layer, the SA will deploy the inner functions of
Logical Components using, for example, FMU (Functional Mock-up Unit) on
the execution platform. These FMU are placed in companies, on their simula-
tion platforms. As evoked in the state of the art, FMUs have a standardized
communication interface, and the model comes in the form of an executable
binary.

At this point, the SA engineer has taken into account the model from the
space of SE, set up the necessary environments of simulation, refined the func-
tions, created Logical Components, defined the hardware structure of simulation
and assigned inner functions of Logical Components to Physical Components
FMU-type on Execution Units, located in companies (see Fig. 11 for the AIDA
use case simulation of the “Move” function.). Red lines correspond to Commu-
nication Links between Execution Units of different Extended Enterprises. The
Global Master algorithm manages exchange data between Local Master, placed
on Execution Units of each Enterprise. The Local Master drives the execution
of its attached FMU.

It remains for the SA to transform scenarios of the requested tests, as sim-
ulation scenarios that will drive the execution. The purpose is to integrate the
environments of simulation, to specify the order of execution, in order to provide



Model-Based Systems Engineering for Systems Simulation 445

Fig. 11. Allocation of inner functions of LComponents to FMU, in Physical Layer.

the necessary data for the “Move” functions of the product model (see Fig. 4).
For instance, a requirement for the environment could be: “a wind of Northwest
sector and speed of 5 knots”, or “a fog with visibility of 20 m”.

This diversity of approaches leaves to the experts the choice of the most
appropriate model, still respecting the inputs/outputs of the FMI interface.

Besides the aforementioned files, he will forward to each company involved
in the co-simulation, the data regarding the configuration of the appropriate
algorithm (global/local master) that are provided in the physical layer and the
simulation scenario. These data provide useful information to enable compa-
nies to schedule their own simulations. These local algorithms executed in each
company must allow to send and receive all the intermediate data of the sim-
ulation toward the algorithm controlling the simulation from a global point of
view (global master). At the end, the SA distributes the appropriate resulting
simulation data towards the concerned companies.

5 Conclusion and Future Work

This contribution proposes an approach to improve the integration of early sim-
ulation in the model based systems engineering development life-cycle in the
context of extended enterprises. The proposed approach is generic, thus inde-
pendent of any particular system development methods or tools. We illustrate
and discuss our approach using the AIDA drone case-study for plane inspection.

The major benefit of this approach is to put the simulation at the core of
the development process, by carefully defining its own development steps and
positioning it against the overall product development. Moreover, our approach
contributes to a better organization of the development, by making explicit
links between simulation models and other models built during development.
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Also, there is a significant reuse potential within the models dedicated to the
simulation architecture. As a result the V&V activities can become more efficient
and explore a large spectrum of situations for the same cost.

The benefits and potential improvements in the current development process
introduced by our proposal come in different forms: with respect to the organi-
zation of the work, to architecture exploration and simulation of the product, as
well as in terms of re-use of the simulation architecture models.

The major interest of this approach is to ensure the independence between
various categories of models: models issued from the system engineering devel-
opment, models issued from the SE of the simulation, and models created for the
simulation execution itself. Additionally, information on the traceability between
these models is explicitly stored. Our proposal does not enforce any particular
methods or tools for system development. By defining adequate model transfor-
mations between the various modeling tools, the stakeholders can use the SE
tools and methods that best fit their needs. The same analysis stands for the
company responsible for the design and the integration of the simulation. This
approach also allows to clearly separate the responsibilities between the design
of the product and the design of the simulations in a “don’t be both judge and
jury” spirit (independence between specification, implementation and verifica-
tion usually required by certification bodies).

Another advantage of our proposal is to be able to successively reuse (partial)
models and results of the previous simulations for similar systems. That would be
the case for instance for models of functions, components, hardware equipment,
or simulation architecture. Similarly, it is possible to reuse or refine executable
mock-ups or FMU. This approach facilitates the set up of exploratory simulations
for architectures, and allows to conduct partial simulations of the product that
may be later refined.

The clear separation between the product and simulation spaces will provide
a high flexibility in the construction of the simulation platform: knowing part-
ners interested in the design, it is possible to model and then create gradually,
the simulation platform, inside and between partners, in accordance with the
available budget.

Environment models are key elements for simulation. We intend to explore
and to specify attributes needed to give a precise account of their nature.
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Abstract. To assess the safety of automated driving systems (ADS), all
potentially critical situations have to be considered. One way to do so is to test
the function performance in scenarios which lead to these situations. A scenario
is a description of an evolution of traffic situations, consisting of snapshots
capturing important intermediate states and operators specifying what happens
between these states.
The number of relevant scenarios is very large, even if the ADS is supposed

to operate in a restricted domain. Therefore, testing must rely heavily on virtual,
largely automatized exploration of scenario spaces. For that, classes of scenarios
have to be described formally, to enable the dynamic generation of test cases.
The contribution delineates a general approach to safety assessment by virtual

testing. It discusses in particular the nature and building blocks of a formal
scenario language and the construction of test specifications.

Keywords: Safety assessment � Testing of automated driving functions
Formal test specification

1 Introduction

To assess the safety of an automated driving system (ADS), its behavior has to be
checked in all potentially critical situations. There are very many such situations, even
for systems with a restricted operational driving domain (ODD). This makes it
impossible to use standard, manual procedures of safety assessment. Most of it will
have to be automated, so that classes of events are explored without human interaction.

1. The ongoing research project PEGASUS (“Project for the Establishment of Gen-
erally Accepted quality criteria, tools and methods as well as Scenarios and Situ-
ations for the release of highly-automated driving functions”) studies how to
establish the safety of an ADS on the example of a function called “highway pilot”.
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The highway pilot shall be able to drive automatically on a highway, if conditions
are in the ordinary range, i.e., not too challenging (weather. traffic density, etc.). It is
thus a function of SAE level 3 (conditional driving automation) [1]

In PEGASUS, such classes of events are described by so-called logical scenarios.
A scenario [2] in general resembles a movie storyboard. It describes a traffic event by a
number of snapshots, Each snapshot captures velocities and positions of traffic par-
ticipants, the road and its furniture, and external conditions like weather. Additionally,
information of how one snapshot develops into the next is given. The notion of a
scenario according to [2] covers a wide range from highly abstract, imprecise, to very
detailed, concrete descriptions of a single evolution in traffic.

A logical scenario shall formally describe a class of scenarios. It consists of

• A “storyboard” fixing the sequence of discrete events.
• Discrete and numerical parameters with associated distributions of the probabilities

of their occurrence.

In this way, a logical scenario captures a whole class of concrete traffic evolutions.
At least in principle, it is possible to compute the cumulated risk which results from

an active ADS in that class of traffic evolutions. And if the ODD is fully covered by
logical scenarios, this enables the desired risk assessment.

However, there is yet no agreed precise definition of a logical scenario. It is not
clear how they should be formalized. There are several difficulties to be overcome. One
is, that a test scenario must be open to the actions of the system under test. Therefore,
its parameters cannot be fixed. Further, the trajectories of other traffic participants
should also be somewhat flexible, to adjust to the test object’s behavior.

This paper contains an approach to tackle this and other problems. It sketches the
constituents and the operators of a language for expressing logical scenarios. And it
discusses aspects of structuring of the set of logical scenarios to cover the full ODD of
an automation like the highway pilot. Furthermore, it delineates what results might be
expected from an exploration of the scenario space by simulation, and how these results
could contribute to a safety assessment of the AVS.

Though this paper refers to the project PEGASUS and draws on its developments,
what is laid out here does not constitute results of the project itself, nor does it
constitute an agreed position. Instead, the concept of introducing a precise layer
specifying test cases is taken up, and a proposal is made how this might be realized in a
hopefully useful way. Different as well as somewhat similar approaches are considered
in the project.

2 Definitions

The paper [2] gives an overview over approaches, concepts and terms for describing
traffic evolutions, and proposes a set of definitions which shall form a basis for a unified
taxonomy. These definitions are not yet fully precise. So the need for a language to
formally capture relevant classes of traffic evolutions remains.
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The following section recalls the proposal from [2], and extends this with some
elaborations of that coming from the PEGASUS project.

2.1 Basic Definitions

Scene. A scene describes a snapshot of the traffic and environment constellation. This
includes both dynamic and static elements.

Situation. A situation is a scene from the perspective of one traffic participant, i.e., a
subjective scene.

The elements which make up a scene or situation can be assigned to four categories
(after [3]).

Description Levels

• L1: Street level (permanent): Geometry, topology, composition, street furniture
• L2: Street level (temporary modifications): construction sites etc.
• L3: Dynamic objects: traffic participants (mostly), types, dynamics
• L4: Environment: Weather, lighting

This classification goes well with many practical purposes. L1 comprises the
content of (digital) maps. L2 also concern the traffic space, but will usually not be
represented in maps. L3 makes up the traffic which deploys itself on the static space
from L1 and L2. The last level, L4, is also dynamic in nature and comprises all other
factors having an impact on the traffic evolution. Together, by specifying a scene or
situation on all four levels, the scene or situation can be described.

Descriptions of traffic evolutions result by conjoining scenes. These are then sce-
narios, which will get the most attention in this paper.

Scenario. Scenarios represent traffic evolutions. They are defined by linking scenes.
The linking need not be linear, it may also be branching.

The semantics of a scenario is a set of time series. Each time series represents a
traffic evolution.

For scenarios that are to be used to specify or test the behavior of an ADS, it is
necessary to identify an ego vehicle in the scenarios. A test scenario would for instance
bring some situation with potential for criticality to pass, which the ego vehicle shall
resolve.

Figure 1 shows the main scenes (snapshots) of a cut-in scenario. The ego vehicle
(red, E) follows a leading vehicle (green, F). It is overtaken by another (blue, C) in
Scene 1. After that, C changes to the lane of the ego vehicle (Scene 2 and 3).

Scenarios, and also scenes and situations, need not always be specified in all detail.
Indeed, it is very useful to start with imprecise specifications to get an idea how to
structure the possible traffic events in which the ADS is supposed to operate. A sce-
nario might be rather open to different behaviors of ego vehicle. Thus, one scenario
may represent a large number of evolutions in real traffic. This is elaborated in the
following section.
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2.2 An Abstraction Hierarchy of Scenario Notions

In the PEGASUS project, a hierarchy of three levels of scenarios of different degrees of
abstraction is used. The following definitions of functional, logical and concrete sce-
narios constitute one of the proposals which are being considered. These definitions are
based on [2].

Functional Scenario. A functional scenario is an abstract, imprecise description of a
type of traffic evolutions. It defines the main maneuvers and events of one evolution.

For instance, the functional scenario “cut-in” captures evolutions in which a vehicle
enters the lane of the ego vehicle in front of it.

Functional scenarios are mainly used to derive more precise scenario specifications.
For the PEGASUS use case “highway pilot”, a number in the order twenty functional
scenarios is considered.

Concrete Scenario. A concrete scenario fixes a start scene, and provides as many
details for the evolutions following it as possible.

This definition is not yet precise. “As many details as possible” leaves room for
different interpretations. This is motivated by the fact that concrete scenarios are
intended to be used for different purposes.

In PEGASUS, two variants of concrete scenarios are being employed. One is the
representation of measured data, real world or simulation. Then, a concrete scenario
captures a unique sequence of events. But not all parameters might be known, or
known exactly. It may even occur that vehicles appear in the middle of a concrete

Fig. 1. Illustration of a cut-in scenario (Color figure online)

452 H. Hungar



scenario, or vanish. The other variant of concrete scenarios are test cases. Then, the
parameters of the ego vehicle are not fixed (they may be bounded, though), and the
other vehicles might react to it. Such a test case may even capture different sequences
of events. For instance, if the ego vehicle may choose between braking or changing
lanes to resolve some situation, the test case can contain different continuations. With
the help of functions measuring criticality (e.g. accident probability and severity), the
result of a test run can be evaluated and enter a computation estimating the risk level of
an ADS. This will be explained in more detail in Sect. 3.

Logical scenarios are more abstract than concrete scenarios and more concrete and
precise than functional scenarios.

Logical Scenario. A logical scenario defines precisely a class of concrete scenarios. It
begins with a start scene. The permitted concrete instantiations of the elements of the
four description levels are given in the form of parameter spaces. The occurrence
frequency of instantiations (start scene and evolution) may be given in the form of
probability distributions.

In PEGASUS, logical scenarios are mainly used to precisely specify tests.
A functional scenario will be covered by a number of logical scenarios. Also, more
general than tests, logical scenarios can also precisely capture requirements. By pro-
viding occurrence probabilities, the requirements can be made quantitative, detailing a
risk level to be achieved.

The project uses an extension of OpenSCENARIO [4] in combination with
OpenDRIVE [5] to denote logical scenarios. Details are not yet completely fixed. This
paper is concerned with the denotation of the third level of scenarios (L3), the dynamic
objects. Compatible with considerations in PEGASUS, maneuver macros are proposed
as important language features for that purpose. Before these macros are presented in
detail, the subsequent chapter gives a short overview of test goals and procedures to
motivate the way tests are going to be defined.

3 Testing to Determine the Safety Level (of Automated
Driving)

3.1 Test Goal

Testing is usually employed to check that a set of requirements is satisfied by an
implementation. That is true of testing to determine the safety level of AVS, as well.
But the first difficulty here is the absence of a detailed specification. The AVS shall be
rather safe, at the very least it shall not cause more accidents (fatalities, injured persons)
than a human performing comparable driving tasks. Each OEM will have some
operational rules for the driving function to guide the development. But that the
implementation of the rules will achieve a certain safety level cannot be guaranteed
beforehand.

The approach which is followed is to determine the safety level afterwards, without
considering the “rules”, which might constitute an inconsistent set, anyhow. Also, the
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ADS will not be compared to the human driver on a case-by-case basis. Currently, not
enough data about human behavior in safety-relevant situations are available. Also,
systematic and legal difficulties would have to be solved to do that (defining an
acceptable “human reference” would require a consensus among many stakeholders).
Instead, the risk incurred by the automation is determined, or, more to the point,
estimated by systematic testing.

The underlying notion of risk is similar to that employed by insurance companies. It
is, roughly said, the product of accident probability and accident severity. Severity is
measured in terms of injuries and fatalities. The probability is related to the exposure to
critical situations and the ability to handle them.

The general risk level of human driving is more or less known from accident
statistics. So there is a reference for the global level, even though single cases cannot be
reliably assessed. The technical goal for the test campaign is to estimate the cumulated
risk over all situations which might be encountered. A more detailed goal might be set,
e.g. by categorizing the situations into a number of classes. This does not change the
general approach, which can be characterized as the computation of the risk integral
over a large class of traffic evolutions.

3.2 Test Procedure

Figure 2 illustrates how such a risk integral might be computed approximatively. On
the left, an exemplary function is depicted. This function has two parameters, distance
and velocity difference. Its values represent the risk, which combines accident proba-
bility, severity and occurrence probability. The cumulative risk is the volume below the
function graph. This volume is to be approximately measured by tests.

The red columns in the graphics on the right represent tests. Each test determines a
risk value for a particular set of parameter values. This is taken as approximation of the
risk for a small range of parameter values, which gives the base area of the column.
From that and the measured risk, the volume of the column is computed. By adding up
these volumes, an estimate of the cumulated is computed. This resembles the Riemann

Fig. 2. Illustration of a risk computation (Color figure online)
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definition of the integral of a function. The estimate gets more precise, if more tests are
run and the base areas of the columns are reduced. In areas with low or zero risk, which
will make up most of space, the parameter spacing can be enlarged to make the
computation more efficient.

To realize this concept of risk computation in a practically useful procedure, several
difficulties have to be overcome. One is, that a very large number of tests have to be
performed. In reality, there are many more than two parameters to a test scenario. The
space to be covered is thus very large, and no critical situation should be overlooked.
Also, the system under test acts in a socio-physical environment. This entails, that the
test specification is not easy to derive-it is not per se digital and discrete in nature.

Since the number of tests to be performed is large, simulation plays a key role in
testing. For that, the driving automation control is embedded into a computer simu-
lation of traffic environment. Today, one cannot rely on simulation alone, as its results
are of limited validity. The validity aspect will not be treated in this paper. Instead, the
problem of how to denote and derive tests will be considered. To handle the large
number of tests, automation is needed in generating them, while there is no simple,
computer usable form available capturing the environment evolution which make up
the stimuli for the test cases. The proposed solution to the test specification problem
relies on a notion of logical scenarios.

4 Formalizing Test Specifications

4.1 Requirements

We consider by which means the traffic dynamics (L3 according to the definition of
description levels) may be represented. As we want to specify tests, there is always a
distinguished ego vehicle representing the system under test. This has a specific role in
a scenario, as its actions must not be restricted, while the other vehicles adapt their
behavior to that of the ego car. Examples will be taken from highway traffic, but this is
no general restriction.

A logical scenario stands for a set of concrete scenarios. These concrete instanti-
ations should be rather realistic in the form and mode in which the traffic participants
do act. Longitudinal and lateral control should follow real behavior patterns. And the
collection of logical scenarios shall cover the full set of relevant traffic evolutions.
Thus, it must include complex ones like the scenario from Fig. 3.

Fig. 3. Conflicting lane changes (Color figure online)
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The scenario starts in a stable situation where E (red, ego vehicle) follows L (green)
at a constant velocity. T (yellow) on the middle lane is going at the same velocity, with
a distance which would permit E to change to the middle lane. The vehicle C (blue) on
the left lane is much faster, but in the beginning far behind T.

The situation gets interesting when L decelerates. In reality, this might be due to a
slower vehicle in front of L on the right lane (indicated by the other, unnamed, yellow
vehicle). The reason for L getting slower is not important for the test scenario-the
vehicle in front of L would usually not be visible to E. As a reaction to that, the
automated vehicle E might be provoked to change lanes to be able to keep the desired
speed. Then, C comes into play. Unnoticeable to E, it overtakes T at a high speed and
starts to change to the middle lane form the left. Now a potentially dangerous situation
has arisen, and an emergency reaction from E is required. It might not be easy to return
to the right lane, as L might have a much lower velocity now.

Of course, E could, instead of changing to the middle lane, stay on the right lane
and brake. This would be a safe decision. But even automated vehicles will strive to
keep up a desired velocity. So the outcome cannot be predicted without very detailed
knowledge about the internal decision procedures, or, to be on the safe side, without
testing.

This scenario is far more complex than the simple cut-in scenario from Fig. 1, but
there will be even more involved scenarios to be tested. To enact such action sequences
without of course having control of the system under test, the environment vehicles
must be precisely regulated.

Summarizing the considerations above, the means to define test have to satisfy the
following three requirements

• Completeness: There are means to produce every situation which may be
encountered by the ADS

• Realism: The test sequences must be realistic to produce valid data for a risk
assessment

• Reactivity: The traffic environment must adapt to the ego vehicle behavior to be
able to produce complex sequences

4.2 Approach

Reactivity entails that a scenario description includes features of a control program.
This work elaborates particularly on this aspect. Basic building blocks of a scenario
description are maneuver macros controlling elementary actions of the environment
vehicles.

There are many approaches to describe traffic sequences. Very often, the catalogue
of driving maneuvers from [6] is taken as a starting point. This catalogue comprises 17
maneuvers. These include following a lead vehicle and overtaking another vehicle.
Each car trip can be divided into sections where each section is characterized by one
maneuver. This approach is descriptive in nature, it does not aim at actually producing
the behavior. To achieve that, the maneuvers have to be split into smaller units, and
these must be made more precise, defining trajectories depending on discrete and
numeric parameter values.

456 H. Hungar



Using such macros, a scenario is described by

• A start scene which defines the initial setting, including a start macro for each
vehicle

• Conditions which control the changing between macro controlling the current
behavior of a car

• Exit and completion conditions which define when to abort or finish a test run

Such a scenario is essentially a program which controls the execution of a test run.
Predefined maneuver macros will help to give those “programs” a clear structure and
ease their implementation in test tools.

4.3 Building Blocks of Formal Scenario Specifications

A macro is given by a name, which characterizes the maneuver type, and a set of
execution parameters. In that, it resembles a method or procedure. On call, it produces a
vehicle trajectory.

Parameters are

• A geometry type of the trajectory (discrete). Examples are straight or sinusoidal.
These may be numerically modified, e.g. by specifying deviations from the tra-
jectory shape.

• Timing/control of the longitudinal and lateral movements (numeric). Examples are
the time to complete a maneuver like a lane change, or the distance to other
vehicles. Complex macros will permit a detailed control of the execution, or might
even include complex controllers like an adaptive cruise control

• Exit conditions in the form of a list of conditions. For instance, the lane change of
vehicle C in an extension of the scenario of Fig. 3 might be broken off, depending
on the relative position to the ego vehicle.

Such macros should be defined to be able to express all (relevant) regular and
irregular maneuvers. It is useful to have simple macros even for behaviors which is
subsumed by more complex ones. This helps in making test specifications compre-
hensible and traceable.

4.4 Scenario Specification Operators

In a logical scenario, the global course of action is described by calling and arranging
maneuver macros. It has a set of global parameters which can be used within the logical
scenario. The global parameters have defined range. Range boundaries may depend on
other bounds, provided the dependency graphs is acyclic.

For the start scene, all vehicles are initialized by defining position and velocities.
Each vehicle but the ego vehicle is assigned a maneuver macro. Positions, velocities
and macro parameters may of course be derived from global scenario parameters.

Each time a maneuver macro is terminated, a new one is assigned to the respective
vehicle. This is done in a global control loop, which observes termination and exits of
macros. The assignment of a new macro may depend on the global traffic state as well
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as on the termination/exit condition of the previous macro. Again, global scenario
parameters may be used.

Additionally, on the global level, conditions for terminating or breaking off a test
run are specified. These may coincide with respective conditions of macros, but may
also depend directly on the traffic state. One particular termination condition identifies
accidents.

4.5 Constructing Test Scenarios: An Example

Considering the conflicting lane change example from Fig. 3, most of the macros
needed to define the scenario are rather simple. Vehicle T (yellow) and L (green) start
with following their respective lane at a constant velocity. T keeps this behavior
throughout the scenario. L, on the other hand, initiates the build-up of the critical
situation by decelerating. This also is rather easy to specify. The most challenging task
in specifying the scenario is to get the right velocity and timing for C to get to the
conflict in case E will be provoked to change lanes. The best way to do this will most
likely be an intelligent control of the speed of C which takes the viewpoint of E into
account.

It is obvious that it will not be possible to construct the scenario without some
testing or, for adherents of formal methods, some other means of studying the
semantics of the logical scenario. In other words: A logical scenario describing a
complex evolution is like a program, and few nontrivial programs are correct without
being tested.

4.6 Frequencies

To complete a test specification, information about the occurrence probabilities should
be added to logical scenarios. These are in general multi-variate probability distribu-
tions over the parameters of a scenario. The semantics of the probabilities will be in
“occurrence per travel distance”. Together with an occurrence probability of the set of
scenarios represented by the logical scenario, this would permit a quantitative inter-
pretation of test results as indicated in Sect. 3.2.

For the numeric parameters, a multivariate Gaussian distribution should cover most
relevant cases. This would be specified by expectation values and a covariance matrix.
In practice, for most cases the data basis necessary to define reasonably precise values
is lacking today. Expert estimations may replace data, but their validity will of course
be questionable. In other words, it will be very difficult to even come up with a valid
specification of the test specification necessary to start the computation of
Sect. 3.2. N.B., that even in cases where good frequency estimations are available, to
represent probabilities by multivariate Gaussian distributions requires the logical sce-
nario to have a rather smooth variance over the parameter space. Disruptions from
different discrete decisions within the scenario would almost surely lead to more
complex occurrence distributions. Thus, logical scenarios should either have a “simple”
structure, or one would have to resort to other distributions and representations. These
might take the form of discretized “bin” distributions.
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5 Test Definitions

5.1 Formal Representation of Test Cases

The instantiations of the logical scenario result from assigning concrete values to the
global parameters.

To be able to execute one of the tests specified by the logical scenario, the acti-
vation conditions of the automation must be taken into account. If the automation can
be activated under conditions which are true in each instance of the start scene, one can
use the instantiation directly as a test case. If not, an initiation sequence which leads to
the start scene has to be added. This, again, should be done in the style of a logical
scenario. In other words, a general test specification like e.g. one for the highway pilot
in PEGASUS, will often have to be adapted to the specifics of the system under test.
This may be necessary even within a particular development, where the test specifi-
cation is composed at a stage where not all details of the system are fixed (or get
modified in a later stage).

Given logical scenarios adapted to the system under test, each set of parameter
values gives rise to a concrete test case. The outcome of a test run is, other than in
simpler settings, not a pass or fail. Instead, we get one of the following

1. A regular termination, with or without dangerous situations having occurred
2. An break of the execution resulting from an exit condition becoming true
3. An accident leading also to a break of the execution

As these results contribute differently to the overall risk integral, they form the
implicit evaluation criteria of the test cases. The accident evaluation is another ingre-
dient for practical testing which is difficult to provide. There are estimation functions
for potential injuries and fatalities, but their prediction accuracy is limited.

5.2 Generating Test Cases

Despite the problems of coming up with a perfect test specification, tests can be run
once the ranges of the parameter values of logical scenarios are fixed. However, the
number of parameters, even for simple scenarios, makes the test space very large.
A scenario like the cut-in from Fig. 1 might be formalized with, e.g., ten numeric
parameters. Therefore, to cover the parameter space with a reasonably close mesh will
result in billions of test cases. To avoid to have to run all these, the generation of test
cases must be done in a clever way.

The generation should be done dynamically, taking the results of performed sim-
ulations into account. I.e., as long as all risk indicators report zero risk, a large spacing
between parameter sets is chosen. Fortunately, by far, the critical regions will be small,
and the most parameter sets will result in uncritical evolutions. But when the criticality
indicators shows a rise, the spacing is reduced, and bulges of the criticality function are
measured precisely.

Thus, test case generation will be done by an intricate algorithm in close cooper-
ation with the simulation itself. If simulations of different degree of precision are
available, also the choice of the simulation variant will go into the integrated procedure.
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6 Summary and Outlook

This paper discussed methods and means to construct test specifications for automated
driving systems. It is proposed to use logical scenarios in the formal specification.
A logical scenario stands for a large number of concrete test cases, which can be
derived by systematic variations of the free parameters. Internally, a logical scenario
has a program-like structure, with control elements and maneuver macros as basic
building blocks.

These test specifications are used first in comprehensive simulations, covering the
ODD of the ADS by a large number of virtual tests. In later stages of testing, the
simulation itself, respectively, its results will have to be validated. For that, the logical
scenarios will have to be turned into a form suitable for guiding an execution on a
proving ground. This aspect has not been considered, here. Also, several aspects of
scenarios like environmental influences have not been addressed. This will have to be
done in future work. Even the level of dynamic traffic elements, which was the focus of
this work, certainly needs further elaboration. To be able to express all relevant traffic
evolutions, a comprehensive catalogue of maneuver macros will have to be defined.

Other topics in the field of test specifications are questions of systematic derivations
of the specification, the test process itself and, last but not least, the assessment of test
results.
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Abstract. Cyber-Physical Systems (CPS) are complex systems that
combine features from different domains, such as control engineering,
mechanical engineering or software engineering. Development of such
CPS requires methods and tools from various disciplines, using differ-
ent formalisms. Furthermore, for efficient development of these CPS, the
engineering tools ideally support the whole development cycle and the life
cycle of the CPS. This calls for a Systems Engineering approach to tackle
the complexity of the engineering task under the constraints of short
time-to-market. This paper presents a case study on the development of
a CPS in the automotive context, where an assistant for estimating the
range of an electric vehicle is developed. This case study illustrates the
benefits of a modern tool-chain that is based on the Systems Engineering
approach. In addition, an outlook is given on the development of simi-
lar tool-chains for the domain of automotive production planning. The
benefits from applying open tool-chains in the engineering of CPS in the
automotive domain is discussed.

1 Introduction

Cyber-Physical Systems (CPS) can be described as complex systems that com-
prise controllers and their logic, as well as the surrounding physical elements,
such as sensors or actuators, and also additional data sources, such as data from
cloud services. Due to their complexity, design of these systems requires knowl-
edge and tools from various disciplines. While it might be possible to develop
such systems in a single framework or methodology, it is not very likely to hap-
pen in industrial practice. This is because many systems use legacy parts, such
as models or code, and developers tend to prefer the languages and formalisms
they have experience in. Therefore, it is important to enable interoperability
of tools and workflows to increase efficiency of the development process. Tool-
chains which integrate various specialized tools are becoming more and more
important in industries that develop complex systems [12].

One major industry where CPS play an important role is the automotive
industry, which is investing significant resources into smarter products and
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 461–476, 2018.
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production systems. In the vehicles themselves, subsystems are increasingly con-
nected among each other, vehicles are connected with other vehicles, infrastruc-
ture or a backend. In automotive production, constantly increasing requirements
on flexibility of plants, due to more product variants add to the goals of lower
cost of the production planning and production itself. Therefore, both areas for
CPS development within the automotive industry are discussed in this paper.

The first part of this paper presents a case study of a CPS development from
the automotive domain, which was developed in the INTO-CPS project [5].
The case study develops a system for route planning, in particular for electric
vehicles. While electric vehicles are beginning to gain significant market shares,
one of the main concerns is the lack of range, and the currently scarce density
of re-charging stations, combined with the rather long duration of a battery
re-charge. The goal of this case study is to develop a system that is able to
realistically predict the energy consumption of a given route, and consequently
indicate to the driver if the remaining range is sufficient or not. This case study
is developed as part of the INTO-CPS project. In this project, a tool-chain is
created for the model-based design of CPS. The tools are using the Functional
Mock-up Interface (FMI) standard in its version 2.0 [1].

In the remainder of this paper, an approach to design of CPS in the context of
automotive production is given. This approach is being developed in the ENTOC
project, which is briefly summarized below. Together, both application areas
demonstrate the common requirements, and some of the differences, for tool-
chains that enable engineers to efficiently develop CPS.

2 Case Study: Electric Vehicle Range Assistant

This paper presents mainly a case study that develops functions for vehicles, in
particular electric vehicles. Its goal is to create an assistant system for estimating
the range of an electric vehicle, based on a vehicle model and real data from
the environment, such as route topology or weather. Furthermore, the range
estimation is dynamic, as it takes changes in the initial assumptions into account,
and influences the vehicle behavior accordingly. However, the focus of this work is
on the development methodology, and less on the actual accuracy of the results.
While the model for the longitudinal dynamics has been validated previously, a
complete validation is out of the scope of this work.

The case study can be considered a Cyber-Physical System because it con-
tains local intelligence and autonomy in the vehicle. This is assisted by informa-
tion about its environment typically derived from a cloud context (here, infor-
mation on weather and traffic/route) and the logic depends upon the physical
dynamics of the electric vehicle. A part of the system is transferred seamlessly
from a simulation model to real hardware (here, as Raspberry Pi) and simulated
with the remainder of the system.

Since the case study was developed as part of the INTO-CPS project [5],
one aim was to evaluate the INTO-CPS tools and methods. Here this is in
particular the Co-simulation Orchestration Engine (COE), which is a FMI 2.0
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compliant master algorithm that allows coupling of continuous-time (CT) and
discrete-event (DE) models in a Co-simulation setup [5,6]. Furthermore, the
system was modeled in SysML, using the CPS-extension of the Modelio tools
[11]. The models themselves were created using Matlab1, 20-sim2, C++ and
Overture3 [2].

2.1 Scenarios

The overall case study of automotive range prediction was developed in two
main scenarios. In the first scenario, the start and end point are determined
once, and the calculation of the vehicle dynamics is performed for this static
route, returning the remaining battery charge at the end of the trip. Therefore
this scenario is labeled “offline”, since it does not take any changes during the
actual trip into account.

The second scenario is more dynamic, as it takes unforeseen changes in the
actual trip into account, by monitoring some relevant parameters. Consequently,
this scenario is labeled “online”. Furthermore, it closes the feedback loop, by
allowing to modify the driving style in an attempt to drive more economically,
if the calculation shows that the remaining range is too low. Development of
strategies for more economic driving is however out of the scope of this paper.
Finally, a part of the system is executed on real hardware and coupled to the
Co-simulation.

Offline Scenario. The goal of this scenario is to create a realistic simulation of
the energy consumption of a trip with a pre-determined route, taking weather
data into account. Weather data, such as temperature is particularly relevant
for Air Conditioning and the heating system of the vehicle, which is a consumer
of energy that should not be neglected.

The overall system structure of this scenario is depicted as a SysML connec-
tions diagram in the following Fig. 1. It shows three SysML blocks that constitute
the system, the Route calculation, the Longitudinal dynamics and the Weather
data, and the signal flows between these blocks.

The calculation of the vehicle dynamics is performed by the longitudinal
dynamics model, which is implemented in Matlab. The longitudinal dynamics of
the vehicle is modeled with the total vehicle force Fvehicle opposed by the aero-
dynamic drag Fair, the rolling resistance Froll and the downhill force Fincline.
The total force needed to overcome the resistance forces to reach a desired veloc-
ity profile vvehicle is transformed into torque Tout and speed ωout demand. This
is modeled by the differential equation 1, which is a form of Newton’s second law
of motion, such that the acceleration (dv over dt) of the vehicle with mass m
is equal to the sum of forces acting on the vehicle. The force that is generated

1 See https://www.mathworks.com/products/matlab.html.
2 See http://www.20sim.com.
3 See http://overturetool.org.

https://www.mathworks.com/products/matlab.html
http://www.20sim.com
http://overturetool.org
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Fig. 1. SysML connections diagram for the “offline” scenario.

by the engine (Fvehicle) is positive, while aerodynamic drag Fair, the rolling
resistance Froll and the downhill force Fincline have a negative sign.

m
dv

dt
= Fvehicle − Fair − Froll − Fincline (1)

The total force needed to overcome the resistance forces to reach a desired
velocity profile vvehicle is transformed into torque Tout and speed ωout demands
as per

Tout = Fvehiclerdyn (2)

with the wheel radius rdyn and

ωout =
vvehicle
rdyn

. (3)

The electrical motor is modeled as a permanent magnet AC E-motor. In the
E-motor component the mechanical power requirements

Pmot,mech = Tmotωmot (4)

are converted into an electrical performance requirement Pin,el model by a look-
up table, which also includes the energy losses.

The motor power requirements Pin,el along with the power requirement com-
ing from the auxiliary components are passed to the battery module.

The battery is modeled as a resistance capacitance model (RC) as described
in [4]. The variation in the state of charge of the battery ΔSOC was estimated



Engineering of Cyber-Physical Systems in the Automotive Context 465

using the widely used Coulomb counting method [9]. This approach takes the
discharging current of a battery I(t) and integrates it over time Δt as

ΔSOC =
I(t)
Qn

Δt (5)

where the nominal capacity Qn represents the maximum amount of charge that
can be stored in the battery. While the Coulomb counting method is known to
have some shortcomings (e.g. losses or parasitic reactions need to be taken into
account, regular re-calibration is necessary, since it is only a cumulative method,
not an absolute measure for the SoC), it is considered to be a sufficient approach
for SoC modelling in the context of this work.

The route model generates a velocity and altitude profile for a given start
and end point of a route. The start and end destination are obtained from a
request to the Google Maps REST API and coupled to the Co-simulation via
Matlab, and can therefore be characterized as a CT model. Google provides
a list of alternative routes consisting of multiple road segments characterised
by parameters like distance, estimated duration and GPS coordinates. For each
of the road segments a velocity profile is then generated. The velocity profile
is estimated by ramps and constant functions under the constraint that the
segment’s distance is traveled in the given time. The slopes of the ramp functions
are restrained by the characteristic acceleration curve of the electrical vehicle
that will travel along the given route. Further, the altitude profile is calculated
based on the GPS coordinates.

To provide realistic conditions for the A/C control, the most relevant envi-
ronmental parameters (ambient temperature, air pressure, air humidity and
cloudiness) are generated for a given route by the weather module. Latitude
and longitude coordinates previously generated by the route planning (see pre-
vious section) are taken as input and forwarded to the OpenWeatherMap API,
and the resulting data is processed with Matlab, and can therefore be considered
a CT model. The weather information along the route is then estimated based
on the data gathered from the weather station nearest to the coordinate points.
The solar radiance Q is then calculated as a function of the solar zenith angle
θs for given time and location and the air mass Mair.

The solar zenith angle θs can be calculated as described in [10] and the air
mass as

Mair =
−rEarth cos(θs) +

√
(rEarth + h)2 − r2

Earth sin(θs)2

h
(6)

with the radius of the Earth rEarth and the atmospheric height h. The solar
radiation can be then calculated as

Q = So
cos(θs)
Mair

(7)

with the solar constant S0. When the cloudiness parameter is taken into account,
the solar radiation becomes

Qcloudiness = Q(1 − 0.75 cloudiness3.4) (8)
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To demonstrate the plausibility of the simulation, a route in the vicinity of
Stuttgart (Germany) was chosen for a simulation. The route on the map section,
the velocity profile and the altitude profile calculated for this route is shown in
Fig. 2. The Co-simulation was performed using the INTO-CPS application4 and
the COE.

Fig. 2. Velocity and altitude profile for a route of 35 Km in the vicinity of Stuttgart.
The route consists here of a country road only, and thus the velocity is stable at
70 km/h, while the altitude varies between 450 m and 850 m above sea level.

The simulation results for the vehicle state are plotted below in Fig. 3. Ini-
tially, the vehicle speed is around 25 km/h, since the route is on an inner city
road. After the first kilometer, the route leads onto a country road for the remain-
der of the trip. The figure also shows that the vehicle is able to follow the set
velocity closely, despite the slope of the road shown in the previous Fig. 2. As
there is no gearbox considered in this electric vehicle, the motor speed follows
exactly the vehicle speed. The battery voltage starts at around 330 V and drops
finally to around 310 V. Along the trip, the voltage oscillates within a range of
about 10 V, due to the acceleration and recuperation that is required by the
profile of the road. As expected, the battery SoC (State of Charge) drops from
initially 100% to approximately 70% at the end of the trip.

The temperatures that are calculated from the air conditioning module are
displayed in Fig. 4. Initially, the temperature of the air inside the vehicle is 20 °C,
while the temperature outside is 5 °C (e.g. when the vehicle was parked in a
4 See https://github.com/INTO-CPS-Association/into-cps-application.

https://github.com/INTO-CPS-Association/into-cps-application
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Fig. 3. Simulation results for vehicle speed, motor speed, battery voltage and SoC.

garage in winter). The setpoint for the temperature controller is 23 ◦C. While
the temperature of the air inside the vehicle quickly rises, the fixtures (e.g. the
seats) only heat up slowly. At the same time, the temperature at the windows
and at the vehicle case drops quickly and reaches a steady state at 7 ◦C.

Online Scenario. To allow more flexibility, the online scenario extends the
offline scenario with more functionality, to allow dynamic adaptation of the vehi-
cle’s behaviour. Here, this consists of two additional parts: an “alarm system”
to monitor the vehicle’s state, and a module to alter the gas pedal curve to
influence the acceleration, and hence the energy consumption.

The SysML connections diagram of the online scenario is shown below in
Fig. 5. Here, deviations from the predicted route and scenario are monitored
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Fig. 4. Simulation results for temperatures inside and outside the vehicle.

Fig. 5. SysML Connections Diagram for the “online” scenario.

by the Alarm system. The Prediction module is able to re-initialize the Co-
simulation once the Alarm System has triggered a new calculation after a devi-
ation was detected. In addition, one part of the system, the gas pedal controller,
was first developed as a model (in 20-sim), and later transferred to hardware (a
RaspberryPi 3) and connected to the Co-simulation by using 20-sim4C5.

The purpose of the Alarm System is to monitor the state of the vehicle, in
terms that are relevant for the route assistant that is developed in this case study.
It consists of four functions which monitor the state of the battery (i.e. the SoC),
the traffic, the weather and the route. If any of these changes, the simulation
is reset, to take the changed conditions into account. The state diagram of this

5 See http://www.20sim4c.com.

http://www.20sim4c.com
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alarm system is displayed in Fig. 6. The Alarm-System is implemented in VDM-
RT, using the Overture tool. The model is exported as stand-alone Functional
Mock-up Unit (FMU), using the Overture FMI extension6.

Fig. 6. State diagram of the alarm system.

The default state is SignalMonitoring, in which the alarm system continu-
ously checks the vehicle parameters. If any of these is out of its boundaries, the
Co-simulation is re-started. If the driver decides to take a different route than
the proposed one, the route needs to be calculated before these values then are
handed over to the weather module, for delivering the weather values to the Co-
simulation. A sudden change in weather conditions also triggers the restart of
the weather module, and in consequence of the Co-simulation. If the measured
velocity of the vehicle is on average significantly lower than the planned velocity,
a traffic jam is assumed, which requires a re-start of the Co-simulation as well.
Finally, if certain vehicle parameters (such as the battery SoC) suddenly change,
the new values need to be taken into account.

In a first step, this scenario was implemented to evaluate the correct func-
tion of the Alarm System and a newly developed “COE wrapper”, that shall re-
start the route prediction after the detection of an event by the Alarm System.
This is shown in the Fig. 7 below. Here, the predicted SoC and the “real” SoC

6 See https://github.com/overturetool/overture-fmu.

https://github.com/overturetool/overture-fmu
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Fig. 7. Selected results for a nested simulation run, using the COE wrapper.

(although this also comes from a simulation, in this stage) are plotted over simu-
lation time. The system is manipulated in such a way that the vehicle uses more
energy than is predicted, by using a negative reduction factor for the gas pedal,
in effect increasing speed, and thereby energy consumption. The Alarm Sys-
tem monitors the difference between the predicted SoC and the “real” SoC. At
t = 535 s, the difference becomes greater than 3%, and triggers an alarm. This
alarm generates the RecomputeRoute signal, which re-initializes the range pre-
diction with the current values. Therefore, at the next time step, the predicted
SoC is the same as the measured SoC in the previous step. This demonstrates
the correct functioning of the Alarm System, and the subsequent triggering of a
new simulation run by the COE wrapper.

Another example of the Alarm System in conjunction with the nested Co-
simulation is shown in Fig. 8 below. Here, the longitudinal and lateral position
of the vehicle is plotted, both for the predicted route (red diamonds) and the
simulated position (blue line). The simulation starts at the position in the middle
of the figure, indicated with “Start”. However, the driver chooses an alternative
route and the vehicle moves in the opposite direction of the predicted route,
towards the lower left side of the figure. It should be noted that the vehicle
position is here also simulated, but in principle this position can be either set in
a driving simulator, or measured in a real vehicle.

Once the deviation between predicted and simulated position is reaching a
threshold, which corresponds here to approximately 500 m, an alarm is triggered,
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Fig. 8. Vehicle position (predicted and simulated) with a deviation detected by the
Alarm System and subsequent re-initialisation of the Co-simulation. (Color figure
online)

and the Co-simulation is re-initialized with the current position of the vehicle as
a new start position. This is indicated in Fig. 8 with the arrow in the lower-left
corner. In the subsequent steps, the simulated values correspond to the predicted
values. Towards the end of this trip, the velocity decreases, as indicated by the
lower distance between the points (at constant simulation step size). It should
be noted, that the threshold of 500 m is used here merely for illustration, and
can be easily adapted.

The model for the gas pedal adaptation was first modeled in 20-sim and
evaluated in a Co-simulation. Then, the model was transferred to a Raspberry
Pi, which is running a real-time operating system (Xenomai Linux, see https://
xenomai.org/). The model for the gas-pedal adaptation is running on the hard-
ware, and receiving its inputs from 20-sim4C, which in turn communicates with
the COE.

This scenario therefore demonstrates how the INTO-CPS tool-chain can be
used to develop embedded systems (here, for the adaptation of the gas-pedal
curve) in multiple steps, with very little effort to change the tools, models or
methods.

Using the 20-sim4C extension, the model for adapting the gas pedal curve was
deployed onto a Raspberry Pi 3. The following Fig. 9 shows a simple scenario,
where the acceleration is constantly increased until t = 80s. At t = 50s, the
parameter “ReductionLevel” is increased from 5 to 10. This is shown on the

https://xenomai.org/
https://xenomai.org/
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Fig. 9. Screenshot of the HiL simulation. On the left hand side the signals that are
calculated on the Raspberry Pi are shown, on the right hand side the simulated signals
are shown.

right-hand side. The left-hand side of the figure shows the corresponding signals
as they are calculated on the Raspberry Pi, where the “deliveredPower out” is
reduced correspondingly at t = 70 s. Note that the input from the simulation
is only started approximately 20 s after the Raspberry is initialized, which is
leading to the delay in time between the right and the left plot.

This demonstrates that a model that was developed in a purely virtual setting
(also described as “Model-in-the-Loop”) can be easily transferred to a Hardware-
in-the-Loop setting, using 20-sim4C and the INTO-CPS tool-chain.

To summarize, in the online scenario new components were added to the
system, which allowed more flexibility in the simulation, and close a feedback
loop between calculated range and vehicle behavior. Furthermore, a part of the
system was transferred to a hardware platform and coupled to the simulation.
For these tasks, the INTO-CPS tool-chain was used and integrated seamlessly
into the existing work-flow and the models from the offline scenario.

2.2 Evaluation of the Model-Based Co-simulation Approach

In the case study that was described above, several aspects of model-based engi-
neering of Cyber-Physical Systems were evaluated. It should be noted that the
focus of this study was on the evaluation of the method and less on the accuracy
of the modeling itself. For example, the battery model that was chosen here is
fairly simple and does not account for effects such as battery aging.

The design begins with high-level design of the system in SysML. Here, the
CPS extension of Modelio allowed a smooth transition between the SysML con-
nections diagrams, and the modeling and simulation tools. The connections dia-
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gram, which describes the signal flow between the single models, was imported
into the INTO-CPS application, and the FMI ModelDescription.xml files were
imported into respectively Overture or 20-sim. This seamless connection of the
different tools makes the iterative development very efficient. Legacy models, or
those models that are implemented in a different tool (here in Matlab) can be
easily integrated into the workflow through the use of the FMI standard.

Furthermore, development in teams is facilitated by the Co-simulation app-
roach in general, and by the INTO-CPS tool suite in particular. Each model
can be developed, tested and refined individually without disturbing the overall
development process. Since the INTO-CPS tool suite supports versioning sys-
tems, such as SVN or Git, this is facilitated even more. Similar observations were
made in other case studies using the INTO-CPS technologies [7,8].

In summary, the INTO-CPS tool suite is well suited for the development of
systems such as the one shown in this case study.

3 Automotive Production

Another related field with strong focus on CPS development is the engineering of
automotive production lines, and here in particular virtual engineering and vir-
tual commissioning of production plants. One major goal here is the increase of
virtual development, to minimize downtime of the actual production facility by
maximizing the outcome of the virtual planning. Furthermore, the whole process
chain, from gathering the requirements to the production line and its compo-
nents, through engineering and commissioning, to operation and maintenance,
shall be integrated more closely to take advantage of the data that is generated,
such as requirements, models or measurements.

In the context of automotive production, the CPS as a whole is the con-
troller and the different machines and robots in a given production cell that are
coordinated by this controller. Most of the components are standard parts from
suppliers, and the task of the production planner is integration of these physical
or logical components into a larger system, and designing the control logic for
that system.

Regarding the engineering tool-chain, the requirements and constraints of an
(automotive) production environment differ from the development of automotive
functions and the products themselves. Most parts of a production plant, such as
robots, motors or other moving parts, are commercial off-the-shelf components
which are bought from suppliers. Thus the engineering is not concerned about
detailed development of parts, but rather focuses on geometric placement of
the parts inside a production line and the control programs for the controllers
running the stations. To avoid collisions of moving parts and decrease the need for
adjustments during ramp-up of a new model, the geometry of each station as well
as its control need to be designed as detailed as possible. The processes for design
of production lines are typically more standardized than for the development of
automotive functions. Therefore, tool-chains for CPS development in the field
of automotive production are more focussed on CAD layout tools and the whole
engineering process, compared to tool-chains for automotive functions.
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3.1 ENTOC Approach

The ITEA project “ENTOC” (Engineering tool-chain for Efficient and Iterative
Development of Smart Factories)7aims at offering solutions for the issues that
were outlined in the previous paragraph. Similar to the INTO-CPS project, the
main goal of ENTOC is integration of the engineering tool-chain for development
of complex systems, such as production plants [3].

In particular the technical goals of ENTOC are:

– formalization of requirements for automated test generation
– developing ways to package mechatronic components in standardized formats

and distribute them
– enabling of simulation of standardized component models
– continuous use and update of engineering data throughout the lifecycle of

commissioning, operation and maintenance

Some aspects of ENTOC are very similar to the INTO-CPS project. This
is in particular the integration of simulation tools to couple simulation models
of components (such as motors or controllers), using the FMI standard as a
common data and interface format. Another important aspect of INTO-CPS is
traceability, which aims at linking engineering artifacts, such as requirements, to
others, such as models, simulation results or test runs. While INTO-CPS relies
on the tools to communicate with each other for exchanging the relevant data,
ENTOC integrates the links between requirements, models or simulation results
already in the packaging format that contains models, requirements and geome-
try. In contrast to INTO-CPS however, ENTOC does not rely on a model-based
approach, which focusses on SysML, but rather on a common packaging format,
which contains all the relevant engineering data. Furthermore, the distribution
of component models requires a new business model, which is rarely the focus
of technically oriented research. The feedback of changes during operation and
maintenance is also a special feature of the ENTOC approach, which particularly
has the engineering process and the lifecycle of production plants in mind. Both
approaches can also work at different ends of the same application spectrum. Sin-
gle components can be developed in the model-based fashion in the INTO-CPS
approach. When a validated model of the overall system is created (as an FMU),
it can in principle be enriched with AutomationML data, and then distributed
via the ENTOC distribution store, using the format that is being developed in
ENTOC.

4 Conclusions

This paper presents the challenges in development of CPSs in the automotive
domain, and presents attempts for solutions, given at the example of a case
study. This case study develops a system for route planning, which represents

7 See http://entoc.eu/.

http://entoc.eu/
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a CPS, using tools and methods from the INTO-CPS project. This shows that
CPS development benefits from integrated and flexible approaches, as they are
realized in the INTO-CPS tool chain. In this case, this integration is demon-
strated by usage of standards as interface between different tools, such as the
Functional Mock-Up Interface 2.0 standard. Flexibility is incorporated into the
tool-chain by allowing a number of different tools, thereby supporting the use
of legacy models. Different scenarios are derived from the same set of initial
models. The possibility to run a part of the system on hardware (the Hardware-
in-the-Loop approach), and its support through the INTO-CPS tool-chain, is
also demonstrated in the framework of this case study. The core parts of the
INTO-CPS technology are now further developed and maintained by the non-
for-profit INTO-CPS Association (see www.into-cps.org).

Beyond the case study, an outlook on CPS development in the domain of
automotive production is given by the example of the ENTOC project. There,
similar requirements exist for the tool-chains that are used to develop controllers
of production cells. Due to domain-specific differences however, the project has a
different approach and focus. These differences are not so much on a fundamental
technical level, but rather on the process level. Therefore, tools and technologies
can be used in various domains.

In summary, flexible and integrated tool-chains that rely on open standards
for data exchange are key to efficiently develop Cyber-Physical Systems in the
automotive domain.
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Abstract. This paper compares two test engine architectures, one based
on the RT-Tester test system, and one based on FMI, and analyzes how
these different approaches satisfy the needs for verification and validation
of safety-critical avionics software. The study is based on an aircraft con-
troller application, which motivates the requirements to the test engine
designs.

1 Introduction

For almost two decades, Verified Systems has developed and produced real-time
test engines dedicated to hardware-in-the-loop (HIL) testing of aircraft con-
trollers. The design of these test engines, and of course also the design of compet-
ing products, has always addressed the problem of testing a cyber-physical sys-
tem in a co-simulating environment, long before terms such as co-simulation [5]
have been adopted by industry and academia. Aircraft controllers frequently
embed numerous different applications on a single device and are connected to
different hardware interfaces. Devices such as cabin controllers manufactured
by Airbus for contemporary Aircraft, for example, include more than 50 differ-
ent applications, and are connected to the aircraft via CAN bus, discrete I/O,
AFDX, and special-purpose buses such as topline or middleline. They are con-
nected to hundreds of separate devices, which are installed somewhere in the
aircraft, and contain safety-critical as well as not so safety-critical functionality.

Such controllers are inherently cyber-physical by definition. Clearly, to test
and verify such controllers in HIL tests, it is necessary to simulate the inter-
action of the controller with hardware devices, and exercise the interaction of
the controllers with external devices in certain scenarios. For example, a set of
smoke detector devices could be connected to an aircraft controller via CAN bus,
and a natural test would be to exercise the behavior of the system if startup of
one of the smoke detectors is delayed, for whatever reason. The interaction of
these controllers with external devices that implement some logic on their own
has always posed the need for co-simulating these devices in parallel to the test
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execution; otherwise, meaningful tests of the aircraft controller would hardly be
possible.

FMI [2] has become an established standard for co-simulation of systems
composed from a set of components, which provides notions for encapsulating
the behavior of the components—components are merely visible via their exter-
nal interfaces—and controlling the timing of the interactions between the com-
ponents. Co-simulation standards promise improved collaboration through the
entire supply chain, and enable frequent integration of devices while the system
or certain subsystems are still under development. From our own perspective as
a vendor for special-purpose test systems and simulations, FMI and comparable
industrial standards are highly relevant, which raises the question whether FMI
could serve as the basis for a HIL testing architecture for aircraft controllers,
which necessitates support for parallel, real-time discrete event techniques [4].
This is the topic of this paper.

The contribution of this paper is a comparison of our traditional test system
architecture with one based on FMI. It discusses some of the core challenges
that we are facing when testing aircraft controllers, how our test engines address
these challenges, and how they fit into the FMI approach. The presentation is
based on a fictitious application, which is nevertheless strongly inspired by a
system that can be found in many contemporary aircraft families.

The remainder of this paper is structured as follows. First, Sect. 2 introduces
our case study application and the system architecture, followed by a set of
requirements for tailored HIL test engines in Sect. 3. The key contribution of
this paper, namely the comparison of our established test engine architecture
and one based on FMI is located in Sect. 4. This section also discusses to what
extent the requirements sketched in Sect. 3 can be satisfied using either approach.
Finally, the paper concludes with an overview of related work in Sect. 5 and a
discussion in Sect. 6.

2 Worked Example

Let us start this discussion with an example application that is inspired by a
system used in contemporary aircrafts. Suppose one of the purposes of an aircraft
controller is to control and monitor the interaction between heating controllers
and at least one human-machine interface (HMI), and the aircraft controller is
connected to these devices via CAN bus and AFDX (ARINC 664), respectively.
The purpose of such a system is to avoid icing in cargo compartments during
flight. Each heating controller is directly connected to a set of up to 32 heaters.
Further, an electrical load supervisor unit is connected to the aircraft controller
via AFDX bus. This unit has the ability to autonomously switch all heating
devices into a power-save mode. The overall architecture of the system is depicted
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in Fig. 1. For the example, we focus on a small subset of the functionality of this
system:

– Each HMI displays the current temperature of each heater and allows to
control the target temperature. To do so, it sends AFDX commands to the
aircraft controller sporadically, and cyclically receives AFDX status messages
from the aircraft controller.

– Each heater sporadically receives a target temperature from the aircraft con-
troller via CAN bus (corresponding to the selection on the HMI device), and
cyclically returns the selected target temperature and the current temper-
ature to the aircraft controller via CAN bus, and whether the heater is in
power-save mode. Each heater controls its physical heating behavior depend-
ing on these two values.

– Each heating unit monitors the health status of the directly connected heaters
and cyclically sends status data to the aircraft controller via CAN.

– The electrical load supervisor sporadically sends a power-save command to
the aircraft controller via AFDX, which forwards the command to the HMI
via AFDX and to all heating panels via CAN.

This is an extremely simplified subset of the functionality, yet involves suffi-
cient components and dependencies to be considered complex already. An addi-
tional challenge stems from the fact that the layout of the device connections is

Fig. 1. Architecture of the system under test including external devices
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configurable. For instance, one aircraft may have six heating controllers installed,
each of which is connected to 16 heaters, whereas another aircraft may have only
two heating controllers with a differing number of heating panels.

A typical test cases for this application would then, for example, cover the
following scenario:

– The aircraft controller boots successfully and detects all connected heating
devices.

– On the HMI, the target temperature for each heater is manually increased to
the maximum value and then decreased to the minimum value. It is expected
that the heating devices receive the correct temperature selection. During this
step, the temperature changes of the heating devices are simulated, and it is
expected that the HMI displays the correct values.

– A power outage is simulated and all heaters are turned off. The HMI shows
a warning message and indicates that all heaters are turned off.

3 Test System Requirements

Both, the application to be tested and the domain of the application, impose
certain requirements on feasible test engines. First of all, it must provide hard
real-time guarantees in order to enable predictable and reproducible tests. From
the application domain, it is necessary that the overall test system is qualifiable,
which means that it must be possible to show—with reasonable effort—that
the system is fit for use in certification-related verification activities for avionics
software. The applicable avionics development standards RTCA DO-178B and
RTCA DO-178C prescribe certain guidelines for when a test system is fit for use
in development processes. For example, one of the core requirements is that the
test system—just like other development software—is deterministic, which may
provide an unsurmountable gap for application of off-the-shelf FMI solutions in
practice.

REQ-REALTIME. The test engine must support hard real-time.
REQ-QUALIFIED. The test engine must be qualifiable according to RTCA

DO-178B [7] and/or RTCA DO-178C [8].
REQ-AUTOMATED. All tests have to be executed automatically.

Additional requirements emerge from the system under test, its components
and its hardware interfaces. During tests, the different heating devices, the HMI
and the electrical load supervisor shall be simulated by the test engine, but
proper hardware buses shall be used to connect to the system under test, that is,
the aircraft controller. Much computational power is required to serve interfaces
such as AFDX, which necessitates network of computational nodes within the
test engine; otherwise, it would not be possible to fulfill all tasks in real-time.

REQ-CAN. The test engine must be connected to a CAN bus and serve the
CAN bus in real-time.



Testing Avionics Software: Is FMI up to the Task? 481

REQ-AFDX. The test engine must be connected to an AFDX bus and serve
the AFDX bus in real-time.

REQ-DISCRETES. The test engine must be connected to a discrete I/O
interface.1

REQ-SIM. The test engine must support simulation of (virtually) arbitrary
external hardware devices.2

REQ-DISTRIBUTED. Due to the heavy computation load involved in serv-
ing AFDX buses etc. it must be possible to spread the hardware connections
for AFDX and CAN to different computations in the test engine.

REQ-CONFIG. It must be straightforward to configure the simulations and
hardware connections for a specific test.3

REQ-SCHEDULING. The different components of a test (such as heating
controller simulations or the HMI simulation) need to executed in predictable
order using adaptable scheduling policies.4

4 Test Engine Architectures: Comparison

So far, we have discussed the structure of the SUT and domain-specific require-
ments to a suitable test engine. However, how the test engines can be designed
differs significantly depending on the underlying technology. This section dis-
cusses two different approaches to test engine architectures.

4.1 RT-Tester Test Engines

The RT-Tester test engines developed by Verified Systems can be seen as a
cluster of standard desktop computers (called cluster nodes), each of which runs
a modified Linux kernel in order to provide real-time guarantees. The cluster
nodes are connected via InfiniBand, which is a serial low-latency bus that can
reach transfer rates of up to 2,5 GBit/s. Each cluster node runs an RT-Tester
installation, which is a test software specifically developed for these test engines.
There are two noteworthy peculiarities of RT-Tester, which are important to the
overall test engine design.

1 Handling of discrete I/O is necessary to start or reset the aircraft controller. Without
discrete I/O, automated testing is thus not possible.

2 Controlling external devices is essential to reach the test goals, for instance, verify the
stability of the SUT with respect to unexpected timings of incoming CAN messages.

3 The devices connected to the aircraft controller are configured via software param-
eters, and different tests may have to exercise different parameter settings. The
parameter settings include, for example, the number of heating controllers and the
association of heaters to heating controllers. It must therefore be possible to straight-
forwardly adapt the set of simulations, as well as simulation parameters and the order
in which these simulations are executed, for each single test.

4 A predictable order is necessary since the different simulations and checkers running
on the test engine may depend on one another.
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– RT-Tester provides signals and channels as a communication mechanism both
between test components running on a single cluster node as well as test com-
ponents running on different cluster nodes. The advantage of this approach
is that tests and simulations do not differ depending on the layout of the test
engine, but only the test configuration file has to be adapted.

– RT-Tester provides its own process and thread handling functionality as fol-
lows: A lightweight process (LWP) is the RT-Tester counterpart to a typical
process. However, an LWP consists of a fixed number of abstract machines
(AMs), which are essentially threads. The threads are predictably scheduled
using a round-robin strategy and the scheduler is configurable with respect
to timings.

A typical structure for one of the RT-Tester based test engines is given in Fig. 2.
The test engine consists of four cluster nodes. The first one is solely responsible
for serving the AFDX interface. It runs an LWP which consumes the incoming
signals from other cluster nodes and provides the connection to the AFDX bus.
Likewise, the second cluster node handles the CAN bus and the discrete I/O
interface. The remaining two nodes run the simulations and the test driver,
which stimulates the SUT. All cluster nodes are connected via InfiniBand and
communicate via the built-in communication channels and signals.

A test configuration then merely consists of a test driver implementation
(the stimulations of the inputs of the SUT and checks for the outputs) and a
configuration file, which specifies which cluster node executes which LWPs. The
LWP configuration can simply be adapted in order to enable additional heater
simulations, for example, or disable the HMI simulation. Similar architectures are
used for the verification of a variety of aircrafts, including the Airbus A350XWB
or the Airbus A380, and have proven both powerful and flexible.

However, one of the drawbacks of the architecture is that it is cumbersome
to exchange components. For instance, if one would replace the simulation of
heaters by real heater devices, this would amount to significant effort.

4.2 FMI-Based Architecture

By way of comparison, a test engine architecture based on FMI promises interest-
ing benefits. For example, the encapsulation of devices (or simulations thereof)
allows to easily replace simulations against real hardware devices. An FMI mas-
ter algorithm could handle the distribution of signal values, and access to the
entire hardware interface of the aircraft controller could be encapsulated within a
functional mockup unit (FMU), which thereby provides a unified interface to the
functionality of the aircraft controller. A potential test engine architecture based
on FMI is depicted in Fig. 3. As opposed to the architecture sketched before,
there is no direct connection between the simulation nodes (cluster nodes #2
and #3) and the hardware interfaces (cluster nodes #1 and #2). Data exchange
between the simulations and the hardware interface is established via the Aircraft
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Fig. 2. Test engine architecture using RT-Tester

Interface FMU, which provides an interface to the aircraft controller interfaces5.
For example, if a heater simulation FMU sends a status message to the aircraft
controller via CAN, then this status message becomes visible at the interface of
the heater FMU and is transmitted to the Aircraft Interface FMU via the FMI
master. Observe that there is intentionally no connection between cluster nodes
#1 and #2 and the InfiniBand bus. The exchange of data between the Aircraft
Interface FMU and these two cluster nodes is internal to the FMU, and thus
independent of how the different FMUs interact with each other via the FMI
Master. Of course, this could be implemented via InfiniBand.

Let us discuss a possible example of how data flows through the architecture
in Fig. 3. Assume that the test driver stimulates the HMI so that a temperature
for a heater is selected. This stimulation is sent from cluster node #3 to the
FMI engine running on the FMI Master Node, which returns the stimulation
to the HMI simulation running on cluster node #3. The HMI simulation then
generates an AFDX signal, which is sent to the FMI engine and forwarded to
the Aircraft Interface FMU. This FMU then internally communicates the signal

5 Please note that this is one possibility for defining the interface to the actual aircraft
controller. It would likewise be possible to summarize the interfaces to a specific
hardware device in one FMU, or to structure the interfaces based on applications.
This decision, however, does not influence the principled architecture.
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to cluster node #1, which sends it to the aircraft controller through the AFDX
interface.

Overall, the approach promises to improve the exchange of components while
a system is tested. For instance, the manufacturer of a heater device could pro-
vide FMUs generated from design models or FMUs providing access to the
actual hardware devices. This is advantageous since virtually no knowledge
about the test engine is required to integrate external FMUs into the test
engine, thereby promising improved maintainability and extendability. However,
the above example already indicates a significant communication overhead since
all signals, even though the affected FMUs may be running on the same cluster
node, are communicated through a centralized FMI master node. Of course, this
stems from the distributed nature of the described architecture, and could to
some extent be mitigated by using many-core nodes with less communication
overhead. However, providing real-time guarantees on many-core operating sys-
tems kernels is challenging, and such nodes will still suffer from computational
overload if complex high-frequency hardware interfaces such as AFDX need to
be handled.

Fig. 3. Possible test engine architecture based on FMI
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4.3 Analysis

Two core requirements, namely REQ-REALTIME and REQ-QUALIFIED,
stem directly from the targeted application domain. While it is certainly possible
to implement or generate FMUs that provide real-time guarantees, we are not
aware of any such FMI master implementation. Indeed, if hard real-time require-
ments are define for an FMI master, then these are not dissimilar to requirements
for a real-time operating system kernel6. It is certainly possible to replace the
logical notion of time prescribed by the FMI standard by a physical one, with
the use of appropriate synchronization mechanism. However, timeliness of serv-
ing the Aircraft Interface FMU, which is connect to the hardware device drivers,
is critical. Further, to the best of our knowledge, none of the existing commercial
or non-commercial FMI master implementations come with a tool qualification
(or tool qualification kit) for the applicable avionics standards.

These are major obstacles that prevent the application of FMI to
certification-related verification activities in the avionics domain. Tool quali-
fication for an FMI master is time-consuming, but not considered risky. The
situation differs for REQ-REALTIME. As argued before, the process archi-
tecture in RT-Tester consists of a form of processes and threads, which are
scheduled using a round-robin strategy, so as to guarantee predictability of test
execution. There is no principled need for sequential execution of threads within
a process, but one that stems from the complexity of the target system. Con-
temporary aircraft controllers frequently define hundreds of thousands of signals,
and if each thread were to filter the relevant signals from all signals, significantly
higher computing power would be required. A practical solution is to filter the
signals once, and then make the filtered results available to all threads, thereby
drastically reducing the runtime. It is not obvious how this approach fits into
schemes such as the one proposed by FMI.

From a business perspective, significant research efforts and development
investments are required to satisfy the requirements REQ-REALTIME and
REQ-QUALIFIED. An overview of how the different architectures satisfy the
requirements is given in Table 1.

5 Related Work

There has been significant research interest in taking the co-simulation frame-
work from plain model-in-the-loop scenarios further to software-in-the-loop and
hardware-in-the-loop problems. The latter one, applying FMI [2] to domains
with strict real-time requirements, can still be considered an open problem. An
excellent overview of the state-of-the-art in co-simulation and FMI is given in [5].
Co-simulation has, of course, been applied to problems with strict timing require-
ments. To name just one example, special-purpose solutions have been applied
to the ISS [3]. As argued in the introduction, the technique of co-simulation has

6 Observe that this requirement is strongly related to predictable scheduling and a
suitable scheduling policy, as specified by requirement REQ-SCHEDULING.
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Table 1. Satisfaction of test engine requirements by each architecture

Requirement RT-Tester FMI

REQ-REALTIME Yes No

REQ-QUALIFIED Yes No

REQ-AUTOMATED Yes Yes

REQ-CAN Yes Yes

REQ-AFDX Yes Yes

REQ-DISCRETES Yes Yes

REQ-SIM Yes Yes

REQ-DISTRIBUTED Yes Yes

REQ-CONFIG Yes Yes

REQ-SCHEDULING Yes No

to some extend been applied in industry before the term was coined, but to the
best of our knowledge always based on dedicated solutions. The RT-Tester based
test engine discussed in this paper is one such instance.

Real-time capability of co-simulation is a problem on two somewhat sepa-
rate levels. Each FMU has to satisfy hard real-time requirements, which can be
achieved by simply embedding a real-time capable process within an FMU. A
related problem is that of determining or estimating the worst-case execution
time of FMUs, as discussed in [9].

As an ongoing research effort, the ACOSAR project [1] shall be mentioned.
The expressed goal of this project is to define a so-called Advanced Co-Simulation
Interface, which shall both ease the configuration workload for co-simulation
setups and support the real-time domain. As a related project, INTO-CPS [6] has
focussed on the integration of different development phases—such as modeling,
design space exploration, and testing—into a tool-chain based on FMI. Real-time
testing, however, has not been addressed during the course of the project.

6 Concluding Discussion

FMI has been developed as a standard for model-in-the-loop or software-in-the-
loop simulations and tests and has received high visibility in both academia and
industry. By way of contrast, this paper addresses the issue of applying FMI to
the problem of hardware-in-the-loop testing and simulation for hard real-time
systems, namely avionics system. In this domain, the application of dedicated
solutions, developed with the specifics of the application domain in mind, still are
the defacto standard. FMI and competing solutions are compelling, yet contain
some gaps for which no definite solution was found. It will be interesting to
observe the impact of current research projects on the state-of-the-art used in
industry, and how it will impact the industrial practice in the future, especially
with respect to real-time guarantees and the integration of scheduling policies
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into co-simulation frameworks. A timeliness guarantee for one FMU is one issue
that has been addressed, but the more compelling and challenging one is from
our perspective the timeliness of the entire test system, built from a collection of
FMUs. In test engines based on RT-Tester, structuring the tests using lightweight
processes and abstract machines combined with scheduling strategie has proven
powerful. Integrating such mechanisms in order to control the co-simulation and
provide hierarchies of FMUs appears promising.
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Abstract. Model-Based Design is an effective way to carry out Cyber-
Physical Systems (CPS) development. One of the main sets of challenges
in CPS projects is dealing with the highly heterogeneous nature of the
development teams. These challenges can be brought to the forefront by
focusing on model integration through standards, such as the Functional
Mockup Interface (FMI). We report on a case study of the application
of an FMI-based workflow to the development of a Heat Ventilation
and Air Conditioning (HVAC) system of a building. We report on ten
challenges and lessons learned when using the FMI standard, focusing on
collaborative aspects and model integration. As a conclusion we provide
recommendations and examples for dealing with the CPS development
challenges assessing to that end the importance of the FMI standard.

1 Introduction

One of the main challenges of Cyber-Physical System (CPS) development is deal-
ing with the highly heterogeneous nature of the development teams – in terms
of technical background, discipline, tools, and work methodology [14]. The use
of Model-Based Design (MBD) and simulation tools is an important part of
CPS development, common to most disciplines. However, for an efficient devel-
opment process, it is import to integrate the work of these disciplines early and
frequently. In this context, standards for coupling together models and simula-
tions such as the Functional Mockup Interface (FMI) [2] become an important
part of CPS development [1,6,7].

FMI is appealing to industry [15] due to the simple interface and the growing
number of tools that support it.1 For organizations such as UTC, that have a sig-
nificant knowledge and technical information captured in models, understanding
1 FMI-compatible tools can be found at http://fmi-standard.org/tools/.
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the capabilities of the FMI and its role in CPS development becomes essential.
To this end, in order to assess the potential of the FMI, we have carried out a
large case study for the development of a building Heating, Ventilation and Air
Conditioning (HVAC) system.

The case study was developed as part of the EU H2020 INTO-CPS
Project2 [12]. It was built with the INTO-CPS FMI-based tool chain, so that
model integration through co-simulation is a first class citizen in the development
process.

The main contribution of this paper is an evaluation of the FMI for CPS
development in the form of a series of issues encountered, lessons learned, and
guidelines and recommendations for dealing with them.

In the remainder of this paper, we provide background information on FMI
and the associated INTO-CPS tool chain in Sect. 2. We describe the building
HVAC system under development in Sect. 3. Section 4 presents the core contri-
bution of the paper – experiences with the FMI standard. Finally, we conclude
in Sect. 5.

2 Background

A CPS can be defined as an integration of computation with physical processes.
It consists of networked embedded systems and devices that monitor and control
physical process, based on feedback loops, where physical phenomena affect and
are affected by computations [5].

One of the approaches to CPS development is based on co-simulation frame-
works with standards such as the FMI. The FMI is a tool-independent stan-
dard to support both model exchange and co-simulation of dynamic models
using a combination of XML-files and compiled C-code [2]. Under the FMI co-
simulation, models are exported as Functional Mockup Units (FMUs) – stan-
dalone components with descriptions that specify the inputs and outputs of the
model. Co-simulations are executed with a master algorithm that coordinates
the exchange of data between FMUs and the progress of the overall co-simulation
time. In the INTO-CPS project, the implementation of the master algorithm and
the execution of co-simulations are handled by a tool called the Co-Simulation
Orchestration Engine (COE).

The INTO-CPS project backbone is based upon the FMI standard. As shown
in Fig. 1, the INTO-CPS workflow offers a combination of CPS analysis features
spanning from requirements traceability through to co-simulation results and
generated source code. The entry point for the workflow is through the develop-
ment of a SysML model of the system and its requirements – in this case using
Modelio3– in order to for the CPS to be decomposed into tractable blocks. The
INTO-CPS SysML profile defines architecture and internal block diagrams that
will support the engineer in describing the connections between the CPS. From

2 https://into-cps.github.io/.
3 http://www.modelio.org/.

https://into-cps.github.io/
http://www.modelio.org/
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Fig. 1. INTO-CPS Workflow from requirements through to co-simulation results and
generated source code

the SysML artefacts, the engineer automatically generates the system’s multi-
model which describes the system in terms of FMUs and connections between
them. Additionally, FMI model descriptions are generated to be imported into
the various modelling tools that will elaborate the constituent models of the
system. Legacy FMUs can also be accommodated by importing the associated
model descriptions into the SysML description. Thus, it is possible to compose
system models from a mix of new and pre-existing CPS elements. The reader
can refer to [8] for additional information related to the INTO-CPS workflow.

As already mentioned, the multi-model is analyzed primarily through co-
simulation purpose, but a series of additional features complement the analy-
sis of the CPS. These include model-based testing, code generation that pow-
ers Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) co-simulations
(e.g. using 20-sim 4C). The engineer is able to configure these analyses through
the INTO-CPS application depending on system-level requirements. Starting
from the traceability feature, the workflow allows the engineer to track, log and
validate each constituent model of the system and its requirements, by providing
all necessary information back to the engineer. In cases where multiple, auto-
mated co-simulation executions are needed e.g. for parameter tuning, then the
engineer can use the Design Space Exploration (DSE) technique [10]. At the same
time, test automation and model checking are also employed in the INTO-CPS
workflow for obtaining coverage and verification results from the CPS elements.
After building a system using the INTO-CPS SysML profile, the engineer is
able to launch model-based testing activities that generate evidence of system
correctness. Co-simulations can be re-executed based on generated test traces
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(wrapped as FMUs) and monitored using Liner Temporal Logic (LTL) formulas
to ensure that user-defined constraints are respected. Finally, bounded model
checking of the system is also enabled via state-chart representations of the con-
stituent models DE and abstracted CT models, giving also the opportunity for
the generation of verification results of certain CPS properties.

3 Case Study

As a reference for the application of a FMI-based workflow, we focused on a
building case study. This case study is based on the modelling and the thermal
analysis of a building and its HVAC system which accounts for the control of
the indoor temperature. The system is illustrated in Fig. 2. The implemented
HVAC model describes a 1052 m2 office building supplied by a hydronic system
in cooling mode. As shown in Fig. 2, the building consists of 3 rooms, one of them
larger and composed by two zones. The HVAC system has 3 main components:

– Fan Coil Units (FCUs), responsible for controlling the temperature of each
room by using the fan to direct air through the coil to cool the air, and then
flowing it back into the room.

– a chiller, responsible for providing cold water to the FCUs in the occupied
spaces,

– an Air Handling Unit (AHU), responsible for providing and circulating air to
the system and maintaining indoor fresh air requirements.

Fig. 2. Detailed schematic of building HVAC case study
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For each room, the FCU works off a user-defined set point and drives the temper-
ature of the room towards the desired set point. To represent the entire system,
we developed several models using different tools and later exported as FMUs to
be coupled together in a co-simulation environment. Further details about the
various models described in this section can be found in [13]. The main models
and FMUs are listed and described below:

– Plant modeled in Dymola
– FCU controller modeled in Simulink
– Supervisor modeled in VDM-RT/Overture
– System Decomposition and connections in SysML (omitted from this paper)

The Plant model represents an actual building site in Montluel, France. It
is composed by the building envelope, the air volumes and by various HVAC
components (Chiller, AHU, FCUs and water and air pipes). It accounts for all
the relevant fluid flows and heat transfer phenomena, and thus it shows a quite
high level of complexity especially the HVAC devices such as the Chiller. The
model of the building is a simplified representation of the actual building in
which the 71 FCUs are grouped into 4 groups - one per zone. Each indoor space
is modelled as single air volume and supplied by one large FCU equivalent to the
sum of the FCUs in the corresponding zone. This model was created in Dymola
2016, which is a commercial tool based on Modelica language and supports FMI
2.0 standard. It is composed by 11278 unknowns and equations and based on
proprietary Modelica libraries that accounts for years of UTC experience in
thermal modeling, dealing with building HVAC systems. The calibration and
validation of the model were then performed using actual data from the existing
building.

The FCU controller model was created in Simulink and used to control the
respective FCU. It is a standard Proportional-Integral (PI) controller that acts
both on the water valve position, thus allowing less/more cold water to supply
the FCU, and on the speed of the fan responsible for the air circulation inside
the unit. The controller was calibrated taking into account specific requirements
on temperature control in buildings. The choice of Simulink as the tool used to
model the controller is a standard practice in UTC. Currently, Simulink does not
support the FMI standard natively, for this reason, we used the FMI Toolbox for
MATLAB/Simulink with the FMI Coder Addon from Modelon.4 While the tool
supports co-simulation FMU export, it does not support multi-instance FMUs.
As the system is composed of 4 FMU controllers, we exported four identical
FMUs (one for each equivalent FMU) in four separate files.

The Supervisor is modelled in VDM-RT/Overture5 and consists of roughly
540 lines of formal specification. The role of the supervisor is to provide super-
visory control strategies, i.e. to coordinate the FCU controllers to achieve a
better temperature control inside the building. These actions include: defining
an FCU as master (and possibly redefine it, if faults are detected), distributing
4 http://www.modelon.com/products/fmi-tools/fmi-toolbox-for-matlabsimulink/.
5 http://overturetool.org/.

http://www.modelon.com/products/fmi-tools/fmi-toolbox-for-matlabsimulink/
http://overturetool.org/
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set points from masters to slaves, and ensuring that any set point in the FCUs
is within certain maximum and minimum bounds. The supervisor also performs
fault detection action by monitoring the difference in room temperatures and set
points. Communication between the FCUs and the supervisor is also modelled
within the VDM-RT model.

All models are exported according to the FMI standard and used for co-
simulation based on a dedicated master algorithm – the INTO-CPS COE
– according to the INTO-CPS workflow. To evaluate the performance and
behaviour of the models when integrated together, we performed a set of co-
simulations, using the INTO-CPS platform. We investigated a range of different
conditions through several scenarios representing a variety of boundary condi-
tions and situations where the system may operate, i.e. a wide variation in the
external temperature or a different building occupancy profile.

We defined a baseline scenario, thus considering standard conditions, as the
reference for further analysis, and then, to evaluate the co-simulation results,
we consider 2 main metrics: the total energy consumption associated with the
operation of the HVAC systems and the thermal discomfort inside the building.
We also evaluated the behaviour of the control strategy in the presence of a fault
in one of the FCU controller. The Supervisor was able to detect the fault and act
accordingly to mitigate the impact on the temperature inside the corresponding
zone. A more detailed discussion about the co-simulation results can be found
in [13].

Among all the defined scenarios, we used the baseline scenario to explore HIL
co-simulation capabilities. The 4 FCUs controllers were deployed to the Zynq-
7000 System-on-Chip using Simulink functionalities to generate the code from
the model. We also used the 20-Sim 4C6 tool to import an FMU with source
code, to cross-compile it for a Raspberry-Pi 3 and to deploy it to the board.
With both solutions, we were able to directly communicate with the INTO-CPS
COE in real-time.

4 Experiences

In this section, we discuss and reflect our conclusions and experiences of working
with FMI-based tool chains for the design and development of CPSs. We group
our experiences into several challenges and include practical recommendations
on how to address each. The section focuses on methodological, process and
occasional tool challenges that we have experienced in the course of developing
our case study.

4.1 Design Erosion

In the INTO-CPS approach, one begins CPS design by modelling the system
architecture at a high level using SysML. This design is then distributed to the

6 http://www.20sim.com/products/20sim4c.html.

http://www.20sim.com/products/20sim4c.html
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various developers who will work on the constituent models that make up the
CPS design. In the INTO-CPS tool chain, FMI model description files can be
exported from the SysML design. The configuration of FMI co-simulations an
also be derived from this design. However, neither step is mandatory – it is
possible to develop constituent models without the model description, and it is
also possible to configure co-simulations without the SysML design.

Because FMI model descriptions detach the SysML design from the con-
stituent models, there is a threat that individual constituent model developers
are unaware or simply do not care about the SysML design. This can particularly
affect larger heterogeneous teams where individual members are only responsi-
ble for a single constituent model. As a result, the project can be affected by
design erosion due to the constituent models violating the SysML design. These
violations can range from minor errors such as different FMI variable names to
more serious ones such as different sets of FMI inputs and outputs.

Recommendation 1: It is important for a project to have a common CPS
design description that is central and shared by all project members. This design
should evolve over time, but these evolutions should be visible and agreed upon
by all members. Ideally, this design should be enforced through distribution and
adherence to constituent model specifications through FMI model descriptions.
Where the tools do not mandate this, it should be a project policy to do so
nonetheless. Tools that do not support importing of FMI model descriptions
should be avoided if at all possible. The primary design artefact shared across
the team is the connections diagram for the case study, shown in Fig. 3.

Fig. 3. FMU Connections in the building case study, realised as a SysML INTO-CPS
Connections diagram.

4.2 Undocumented Assumptions

FMI co-simulations rely heavily on the exchange of numerical values between the
FMUs wrapping each constituent model. These values are represented as C types
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– for example, an FMI real is a C double. However, in the models these numeric
values may have restrictions on them – for example, there may be a minimum
limit that must be respected, or the value must be within a certain range.

While the FMI standard enables setting a minimum and maximum limit
on a value, these are for information purposes – to signal warnings during a
co-simulation. Constituent models may have no way of knowing what restric-
tions will be placed on their output variables when they are received. While
some kinds of restrictions may be documented in the FMI model description,
we have thus far not encountered tools that enable us to place these restric-
tions in place when designing the system. Likewise, the modelling tools for each
constituent model do not take this information into account when importing a
model description nor do they statically check for it when generating FMUs.
Though, it must be said that this last point cannot always be checked stati-
cally. Another issue lies with the units of the exchanged variables. Internally,
different tools or constituent models may use different units. When values are
exchanged between FMUs, it is important that they are converted. Once again,
the FMI standard has a feature for defining the units of exchanged variables.
However, thus far we have observed that the tools we are using do not employ
this feature and simply exchange generic Reals or Integers. Therefore, we have
found that FMI-based CPS development is particularly vulnerable to these kinds
of undocumented assertions. This is aggravated by the fact that CPS teams are
highly heterogeneous and the “default” units and values may not be the same for
all disciplines which leads to a higher likelihood of incompatible undocumented
assumptions on multiple sides.

Recommendation 2: To combat undocumented assumptions slipping through
the FMI tool chain, all restrictions, units and other kinds of assumptions must be
properly documented. Ideally, this should be done in the main design document
or SysML model. If this is not possible, an independent document containing the
assumption should be created. This document must be shared and accessible by
all partners. From a tooling perspective, such assumptions should be encoded
in the constituent models and the FMI interface. Ideally, these assumptions
would be statically checked before generating FMUs. In addition, when such
assumptions are violated, warnings should be issued in a co-simulation so that
unexpected results may more easily be diagnosed. An example of mismatched
assumptions occurred in our project due to temperature unit mismatches. We
were building a heating scenario, but the temperature was dropping away from
the set point throughout the simulation. This was because the plant model was
outputting temperatures in Kelvin and the FCU controller model was considering
set points in Celsius – in this case 281.85 K/18.7 C. Therefore, the temperature
continuously lowers as the FCU is working towards a much lower set point than
it should be.

4.3 FMU Coordination

In FMI-based CPS design projects of significant size, the project will be car-
ried out by a heterogeneous team whose members have expertise in different
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fields. As such, it is unlikely that there will be any single team member that has
detailed knowledge or understanding of every constituent model and its associ-
ated notation and tools. Indeed, this is one of the purposes of FMI – to provide
an abstraction layer for interacting with other models. Therefore, for many team
members, other constituent models will be treated as blackboxes and interac-
tions with the model will be done exclusively using its generated FMUs. However,
when doing CPS development, individual constituent models will have to change
quite frequently. These changes may affect other models and even the system
level connections. Nevertheless, the changes may be “hidden” inside the FMU
blackbox. Thus, it is not easy for the developer of one constituent model to
understand what has changed in a given FMU and if he should “upgrade” to
the new version of the FMU or not.

Thus, it is important that the FMUs used in a project be properly docu-
mented and versioned in order to avoid coordination issues. We have experienced
many variations of the following question: “Which version of the FMU am I sup-
posed to use?” This issue can be further complicated if FMUs are copied locally,
and each project member has their own workspace. On the other hand, a shared
workspace is very vulnerable to changes in one FMU introducing errors in the
co-simulation due to unexpected or poorly understood changes.

Recommendation 3: To combat coordination and synchronisation issues with
FMU files, a project should have a central archive of FMUs. FMUs in this archive
should be properly documented and versioned. Members can download and sub-
mit FMUs to this archive. For complex project teams, a service of some sort
may be deployed. For smaller projects, it can be something as simple as a local
version control repository. For our case study, FMUs were initially stored in a
structured shared folder with README.txt files providing relevant information.
Having a common shared folder was helpful in synchronization, but version con-
trol on the FMU was missed.

4.4 Constituent Model Validation

When using FMI-based CPS design and development, the complete behaviour
of the system will only emerge at the co-simulation level. This also holds for
some constituent models that are so dependent on their inputs and outputs
that their standalone behaviour is either meaningless or cannot be simulated.
This makes it quite challenging to ensure that the constituent model is being
developed correctly and evolving without regressions. If one needs to perform
FMI co-simulations to validate every change to the model, two issues arise. First,
it will significantly increase the validation loop since it will involve generation
of an FMU and execution of a co-simulation. Second, and perhaps worse, the
constituent model becomes dependent on other models in order to evolve. This
removes the ability to effectively develop multiple constituents models in parallel
which is one of the significant advantages of FMI.

Recommendation 4: There must be a validation strategy in place for each
constituent model in the CPS design. This strategy needs to enable standalone
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and independent validation of each constituent model in the context of its tool.
This validation strategy should also be such that it is easily reproducible by any
other project member to assist in diagnosing co-simulation for FMU issues. It is
difficult to provide generic recommendations for validation strategies since the
strategy will depend on the features and capabilities of each modelling tool. How-
ever, in our experience, we have found that most validation strategies employ
test doubles such as Mocks or Stubs to represent the parts of the system that are
being modeled in other constituent models. As an example of validation strategy,
we show an excerpt of VDM-RT test classes in Listing 1.1, where the environ-
ment behaviour which is provided by the plant FCU is replaced by a simplistic
MockEnv class. While this environment is too simple to properly evaluate con-
troller performance, it does enable executing basic unit tests to provide initial
validation and error detection for the VDM model.

Listing 1.1: Exceprt from mock environment class.

4.5 FMU Integration

In an FMI-driven workflow, integration of models is an integral part of the
project. Indeed, it is one of the main objectives of a project. This is desirable,
as we want to catch problems in the interactions between the modelled systems
as soon as possible. However, integration brings its own set of challenges that
must be addressed. Many of them are minor technical issues (such as an incor-
rectly working exporter), others are larger and related to one of the challenges
highlighted in this article.

All integration issues can be handled, but it takes time and effort, and if
not addressed in an efficient and timely manner, they will add up over time and
compromise the project. It is worth highlighting that certain domain experts
come from disciplines where integration is not a significant concern so that they
may be particularly vulnerable to integration pitfalls.
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Recommendation 5: Consider model FMUs integration from the beginning
of a project. Attempt to integrate models as early as possible, even if they are
not fully working and results are not yet correct. On the other hand, even if
the underlying models are working correctly, plan for significant troubleshooting
activities while integrating FMUs. Ideally, use an automation server to auto-
matically generate FMUs and co-simulate them whenever changes are checked
in to models. If this is not possible, a good fall back is to check in modified
FMUs and automate the co-simulation only. Manual execution is also possible,
but requires significant discipline. In our case study, the INTO-CPS workflow
helped ensure alignment of FMI signals from the beginning, so integration was a
matter of continuously communicating and updating signals and ports across the
team, using a simple iterative process illustrated in Fig. 4. On the other hand,
we sometimes faced issues with models that would not export correctly (due to
usage of unsupported language constructs).

Model Update

Design Update 
(FMI Signals)

Notify update to 
team

Update additional 
models

Testing / 
Co-Simulation

Fig. 4. FMI update and integration process.

4.6 Model FMI Maturity

It can sometimes occur that we are working on models that are poorly suited
to be exported as FMUs. This can happen because important parameters or
signals are not exported, or model variable names are incomprehensible or one
of the other challenges highlighted in this paper. Exporting variables can be
particularly challenging since certain signals or parameters may be located quite
“deep” in the model and require significant effort to expose via FMI. Having a
well-defined architecture, as suggested in Sect. 4.1 can help mitigate this, but in
highly iterative settings (where the architecture changes) or when working with
legacy models, this challenge cannot sometimes be avoided. We have found that
domain experts from certain disciplines are not used to these concerns and are
particularly liable to be affected or cause this issue.

Recommendation 6: Develop a notion for model maturity/quality for FMI
export. It should account for aspects such as naming conventions, signal and
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parameter accessibility, absence of “magic” constants, and so forth. Ideally, the
notion of maturity should be formalised and mechanised so that it can be stati-
cally checked by tools. If that is not possible, a check-list can provide a reasonable
alternative, but it can become tedious to go through it very frequently in highly
iterative processes. For our case study, we used the Jenkins7 automation server
to run jobs that tested the VDM-RT model and generated the associated FMU.
The trend showing build results and durations for this job is shown in Fig. 5.

Fig. 5. Jenkins build results for VDM FMU job.

4.7 Naming Conventions

The FMI supports annotation of model variables through the definition of units,
types8 and textual descriptions. However, we have found limited support for
these features across tools. Therefore, we often found ourselves having to connect
variables using only their names and base types. In this case, the name of the
variable becomes an important source of information. However, variable names
were often inconsistent and following conventions from different disciplines which
were not always known to the whole project team.

Recommendation 7: Have a standard set of rules and conventions for naming
FMI variables, across the organization and specialized for projects as necessary.
These conventions must be communicated and acknowledged by the entire team.
The naming convention should strike a balance between providing useful infor-
mation and being clean and concise. The central design document is a natural
place to document naming conventions.
7 https://jenkins.io/.
8 Type definitions can only specialize existing types.

https://jenkins.io/
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As an example, one of the naming conventions for the building case study
are that all signals have the same name on both ports (except for the FCUs)
and that Signal names should be: [AreaName] [ValueExchanged]( Unit).

4.8 Modelling Communication

Communication modelling across multiple FMUs is in general challenging, due
to the nature of the FMI protocol and its general unsuitability for modelling
(DE)-intensive phenomena and high-level abstractions such as messages or API
calls. While there are various approaches to handle it, each has their drawbacks.
Approaches that extend the standard can be an effective way to address the
issue, but broad tool support would be key. They should become part of the
standard.

Recommendation 8: If communication is a significant part of the project, a
pure FMI solution may not be well-suited. Consider other modelling options, or
a coordination environment with native network modelling capabilities. If this is
not possible and it is necessary to model communication through the FMI, we
recommend developing a strategy before diving into the models and investigating
the various trade-offs beforehand.

As an example, in our case study, we modelled communications across FMI
using a set of multiple inter-connected ports to represent highly abstract com-
munication – see [4] for a more detailed description of this aspect of the com-
munications aspects case study.

4.9 FMI Exporting

The FMU export feature is in general robust, but the exporting of models as
FMUs can be a challenge under certain conditions. Firstly, we are naturally
bound by the availability and coverage of the export tools. While coverage is
broad, we occasionally had to work around a missing exporter or feature cover-
age.

Certain tools (such as Dymola or Simulink) posses the ability to link models
with native code (sometimes in the form of a DLL). Exporting these kinds of
models into working FMUs can be a large challenge, due to lack of clarity in
documentation and poor co-simulation error messages (often core dumps). These
issues can be dealt with, but they are a large source of frustration and often
outside the typical skillset of many disciplines involved in the projects.

Another potential issue is handling 32 and 64-bit FMUs, but this can be
handled by a good coordination environment. There is also a wide variety of
exporter options (such as solver selection) that can impact co-simulation results,
so it is important to be aware of them and have someone on the team with
knowledge of these options. As an example, see the FMI export options for
Dymola in Fig. 6.

Recommendation 9: Be aware that FMU exports may not work out of the box.
Check exporter availability and coverage of the project models. Be particularly
wary of legacy models, or models that use native code.
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(a) FMI options
(b) License setup options

Fig. 6. Dymola options menus.

4.10 Co-simulation Project Versioning

In co-simulation projects, there are many kinds of sources and generated arte-
facts such as models, simulation, and co-simulation results, FMUs, and configu-
ration files. Tracking and synchronising versions of all these artefacts can be a
big challenge, particularly since sets of versions are interconnected around work-
ing co-simulations. It is often necessary to quickly return to a prior version of a
model in order to modify or correct it for the purposes of a co-simulation. An
FMU repository (suggested in Sect. 4.3) can help mitigate some of these prob-
lems, but version control across the project sources is essential. However, the
heterogeneous nature of the team means that different members have different
practices and habits when it comes to version control, so it is not guaranteed
that the team will adopt consistent version control practices without explicit
guidance.

Recommendation 10: All models and relevant source files should be tracked
using a version control system. To ensure smooth coordination, a single repos-
itory housing all models and sources in a structured layout is preferable. This
means the chosen version control system should feature excellent branching and
collaboration features.

In our project, we struggled to stabilize version control across the project
due to existing repositories for some models and differing practices across the
team. Towards the end project, we started to adopt Git [3].
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5 Conclusion

We have presented a report on industrial experiences with FMI co-simulation
drawn from the development of a building HVAC system. These experiences have
been synthesized as a series of challenges and associated recommendations when
working with co-simulation. Overall, we have found co-simulation helps signifi-
cantly with CPS development. One of the main challenges in CPS development
is ensuring early integration of systems and through co-simulation it is to carry
out integration form the beginning of a project and use MBD techniques. Being
able to integrate a wide amount of tools is also very valuable, particularly for
organizations such as ours that have significant existing IP in certain notations.
The broad tool support also allows all the different stakeholders to use the tools
they already know and like, which speeds up development, reduces the barrier
to entry and allows more people to contribute effectively to a CPS development.

On the other hand, the handling of DE phenomena such as communication
is limited. While it is possible to work around these limitations, it introduces
challenges. For projects where DE analysis such as communication is key, FMI
should be complemented with extensions or additional tools as part of a larger
tool kit. Several possibilities exist [11], but we must be careful not to rely on
extensions that lockout significant tools.

Finally, it is worth noting that while FMI co-simulation helps bring integra-
tion activities to the forefront, integration brings its own set of challenges of
a project. Some of these challenges are compounded by the multi-disciplinary
nature of CPS teams. However, there are several approaches to handle this, such
as continuous integration [9], that can be adopted to CPS development.

Acknowledgments. This work is supported by the INTO-CPS H2020 project: Inte-
grated Tool Chain for Model-based Design of Cyber-Physical Systems. Funded by the
European Commission-H2020, Project Number:664047.
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always been challenges related to ensuring a common understanding of
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malisms (e.g., state machine models for software-based controllers, and
differential equations for physical sub-systems). In such a hybrid set-
ting, it makes sense to examine how to combine different kinds of models
in ways that enable a well-founded analysis of the interaction between
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Co-simulation has been proposed as a way forward by different stake-
holders in different disciplines. It is a technique to couple multiple simu-
lation tools, so that the interactions with, and within, a coupled system
can be simulated through the cooperation of these tools.

In this paper, we: provide an historical overview of the different facets
of co-simulation; describe examples of industrial applications; identify
the emerging trend and the challenges (both theoretical and practical)
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1 Introduction

Integration—the interconnection of the components that comprise a system—
is identified as a major source of problems in the concurrent development of
complex engineered systems [62]. This is because each component is developed
with assumptions and/or incomplete knowledge about other components of the
system, which later turn out to be wrong [63].

To tackle these challenges, there is a need for improved development cycles,
with better tools, techniques, and methodologies [65]. While modeling and sim-
ulation has been successfully applied to reduce development costs, it falls short
in fostering more integrated development processes [7]. To see why, note that
a model of the complete system is required for simulation, and consider the
following obstacles:

– Accurately simulating a complete system model might be difficult. For exam-
ple, the transient simulation of digital circuits is difficult because there are
sub-circuits whose dynamics change significantly faster than others [49], forc-
ing the simulation to be run at a prohibitively high level of detail.

– Heterogeneous systems are best modelled with a mix of formalisms [66] or
example, consider a power window system [56], present in the majority of the
vehicles produced today. It includes both software elements (best modelled
with a Statechart like formalism), and physical elements (best modelled with
differential equations based formalism).

– Subsystem models might be costly. In systems that encompass subsystems
produced by external suppliers, the licensing costs required to get access to
models might be too high, due to the Intellectual Property. For example,
consider the exhaust gas recirculation water handling system, reported in
[55], where the dirty water is pumped to a water treatment center (externally
developed) to be purified and reused. As claimed by the authors, having
higher fidelity models of each of the subsystems would allow the engineers to
design better control strategies.

– Models of subsystems might be black boxes. At later stages in the devel-
opment process, prototypes for subsystems may be coupled to models of the
remaining subsystems, to enable global validation of the system. For example,
the validation of the power window controller might be done by simulating
the controller in a computer, and connecting it to a real motorized window
[18], which is considered a black box from the point of view of the controller.
Other black boxes include inductive models of subsystems, produced from
extensive physical experimentation. For example, an anti-lock braking sys-
tem controller might be validated against black box wear and tear models of
the braking pads, to evaluate its performance when the effectiveness of these
subsystems decreases [21].

A prospective concept to address the above challenges, and unleash the full
potential of simulation, is collaborative simulation, also known as co-simulation
[40]. This concept concerns coupling of models created in different formalisms
and makes it possible to simulate the entire system by simulating its constituents
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and exchanging data between them. Thus, the behavior of a coupled system is
computed by the communication of multiple simulation tools, each responsible
for computing the behavior of a constituent subsystem [30,44,51]. Each simula-
tor is broadly defined as a black box capable of exhibiting behaviour, consum-
ing inputs and producing outputs. Examples of simulators include dynamical
systems being integrated by numerical solvers [12], software and its execution
platform [16], dedicated real-time hardware simulators (e.g., [34]), physical test
stands (e.g., [69, Fig. 3]), or human operators (e.g., [13, Fig. 24], [53, Fig. 6]).

Co-simulation foments a more integrated development process by allowing
different teams to observe how their subsystem behaves when coupled to the rest
of the system (full system analysis), while reusing the work made by the other
teams. Furthermore, it improves the relationship between external suppliers and
system integrators, where the system integrators can use virtual surrogates of
the subsystems produced by the suppliers, to test their adequacy. With the
appropriate Intellectual Property protections, these virtual surrogates can even
be provided by the supplier, for increased validity.

In order to run a co-simulation, all that is required is that the participating
simulation tools expose the outputs and consume the inputs, of the allocated
subsystem over simulated time. The same loose requirements that make co-
simulation great to integrate many different simulation tools, also raise difficult
challenges.

In the following sections, we explore those challenges by first providing an
historical overview of co-simulation, then examples of industrial case studies,
and finally the emerging trend.

2 The Facets of Co-simulation: Historical Overview

Co-simulation is not a new concept. Instead, it is the aggregation of multiple
research trends that were sparked by the advances in computer simulation tech-
niques, and the increased demands on this field. In the following paragraphs, we
summarize some of the main milestones that lead to the facets of co-simulation.
Figure 1 situates these in time.

1 2 3 5 6 7 8 9 10 11 10 1312 144

1980s 1990s 2000s 2010s

Fig. 1. Timeline of co-simulation milestones. From 1970s up to 2015.
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2.1 Late 70s and 80s

1 To the best of our knowledge, the first discrete event synchronization algo-
rithms were published in the late seventies [39], around the same time that
Lamport [42] published his seminal paper regarding the ordering of events in
distributed process networks. Discrete event simulators compute the behavior
of a system by isolating the most important events and computing the state
evolution of the system from one event to the next [23]. The state evolution
evolves discontinuously, with each discontinuity being caused by an event. In this
paradigm, a coupled system can be broken down into subsystems that exchange
events, which then are simulated in parallel, each in a separate process. Since
processes run in parallel, and react to incoming events by updating their state,
and potentially sending events, it is important to ensure the correct synchro-
nization of the subsystems, so that no event happening at time ti is processed
by a subsystem which is at time t > ti.

Around the same time, in the continuous simulation domain, new challenges
were being uncovered. The main difference between the continuous and discrete
event simulation domain lies in the fact that the state of a continuous system
evolves continuously over time. Simulators of continuous systems that run in
digital computers cannot compute every point of its state. Instead, they rely in
the smoothness of these systems (coming from physical laws), to approximate
the state evolution at countable points in time [12]. The fundamental tradeoff is:
the closer one wants the time points to be, the more accurate the approximation
is, but the higher the performance cost.

2 In the late seventies and early eighties, as electrical circuits increased
in size, their simulation algorithms were becoming a bottleneck in the develop-
ment process because of the long simulation times. Practitioners noticed that, for
sufficiently large circuits, only a small fraction of the subsystems had actively
changing voltage levels, at any point in time. This led to the development of
simulation techniques that, in a similar way to their discrete event based coun-
terparts, only computed a new state of each subsystem when its outputs had
changed significantly [49]. Additionally, to exploit parallelism and reduce numer-
ical instabilities, the waveform relaxation techniques were introduced. In these,
during a computation interval t → t + H, each subsystem was assigned to a
simulator which approximated its solution in that interval, using whatever sim-
ulation step size was required to keep the approximation error of that subsystem
within tolerance. Then the simulators exchanged the solution trajectories, and
were asked to re-compute the same interval, using the updated input trajectories.

These techniques made possible the simulation of large scale circuits because
they exploited parallel computers, and naturally supported subsystems with dif-
ferent dynamics: systems which changed slowly where more quickly driven to
convergence, and with larger simulation step sizes. Additionally, these techniques
were subject to extensive numerical analysis [47], highlighting their interesting
theoretical properties.
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3 In the late eighties, the release of the Time Warp Operating System repre-
sented the optimistic facet in parallel discrete event simulation. It acknowledged
that the performance of a parallel discrete event simulation could be increased
by allowing the different processes to simulate as fast as they could, and correct-
ing causality violations. The corrections are made by rolling back the processes
to a state that is consistent with the time of the event that caused the violation.

4 The performance of optimistic discrete event synchronization algorithms
was such that it sparked the research into large scale simulations with humans
interacting in realistic environments created by collaborating simulators. Devel-
oped during the 80s, SIMNET was dedicated to military trainings involving
thousands of simulators representing, for instances tanks or helicopters [48]. It
encompasses an architecture and protocol to implement the optimistic synchro-
nization of simulators in a distributed environment, with real-time constraints.
In order to keep a reasonable level of accuracy and realism, one of the inno-
vations is the concept of dead-reckoning models. A dead-reckoning model is a
computationally lightweight version of some other model, whose purpose is to
be used by interested simulators when there is a failure of communication, or
when the synchronization times are far apart.

2.2 90s

5 In the early nineties, coordination languages emerged (e.g., Linda [6], Man-
ifold [4]). These focused on the specification of the interaction between different
parts of the system. According to [25], “Coordination is the process of build-
ing programs by gluing together active pieces”. A system designer defines one or
more coordination model(s) to specify how the system models interact with each
other.

During the same period, the software architecture research field proposed lan-
guages to abstract, structure, and reason about complex systems. One example is
the Architecture Description Languages (ADL) [24]. An ADL description usually
specifies a system in terms of components and interactions among those compo-
nents. Such languages helped (1) to clarify structural and semantics difference
between components and interactions, (2) to reuse and compose architectural
elements, (3) to identify/enforce commonly used patterns (e.g., architectural
styles).

Coordination languages and ADLs have common objectives [52]. They
build/understand/analyse a system based on “components” possibly written in
different languages and connectors (which include the specification of the inter-
action/coordination).

In 1990, United Airlines ordered 34 Boeing 777s, the first aircraft to be devel-
oped with concurrent engineering [37,38]. The design was communicated fully in
digital form, later aptly named a DMU (Digital Mockup Unit [3]), using CAD
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tools to showcase the different views of the system. This central repository of
information served many purposes: (i) every team could consult the specifica-
tions of the subsystems made by any other team; (ii) simulations could be carried
out periodically, to detect problems in the design; (iii) both the assembly and
maintenance phases of the system could affect the design phase, by running
simulations of repairs and assembly.

This milestone represented an increase in the information that is taken into
account for the design of the product. It now did not come only from require-
ments, but also from other stages of the life-cycle of the system: manufacturing,
assembly and maintenance. The milestone also highlights the many different
purposes for which models of systems have to be available, and new kinds of
simulations.

6 As digital circuits became more complex, they comprised microproces-
sors running software. This field spawned the need for hardware/software co-
simulation [57], highlighting the heterogeneity facet. Before using co-simulation,
software developers had to develope their code with little information about the
underlying hardware, leading to painful integration efforts later on. Thanks to
the coupling of circuit emulators and the software execution, they were able to
quickly identify miscommunication errors before building hardware prototypes.

In the field of physical system simulation, researchers realized that there
should be a standardized way of representing physical system models, so that
there could be easily coupled to form complex systems [50]. This was called the
DSBlock (Dynamical System Block) standard [50]. This proposal later inspired
a widely adopted standard for co-simulation: the Functional Mockup Interface
standard. 7 While the composition of DSBlocks still needed a solver, and is
therefore not strictly considered co-simulation, this was a milestone in high-
lighting the need for standardization for continuous system co-simulation, which
was also identified as a research priority [67]. 8 SIMNET evolved into the
DIS (Distributed Interactive Simulation) standard [35], for discrete event based
co-simulations.

As embedded systems were enhanced with communication capabilities,
researchers noticed that the simulation of these distributed systems should not
always be run at the same level of detail. Instead, the designers should be able
to choose the level of detail they wanted for each embedded system: from the
highest level of detail (circuit simulation), to the lowest (software simulation).
This highlights the facet of multi-abstraction co-simulation, and identified the
main issues in coupling simulators that were in different levels of abstraction.
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2.3 2000s

9 The early 2000s was marked by multiple reported applications of co-
simulation being used in industrial case studies [5,43]. These had in common one
facet: two simulators were coupled, each specialized in one domain, in a feedback
loop. 10 For example, in [5] the authors reports on the study of the interaction
between the pantograph (a mechanical structure on top of a train, connecting it
to the electric grid), and a catenary (over hanging cable that transmits electricity
to the train). A flexible body simulator was used to compute the behavior of the

catenary, and a multi-body simulator was used for the pantograph. 12 In the
meantime, the DIS standard, and its protocols, were generalized to non-real time
applications, in what became the HLA (High Level Architecture) standard [1].

11 In order to ensure the correctness of coordinated heterogeneous model
simulations, the Ptolemy and the Modhel’x projects proposed to expose some
information about the behavioral semantics of languages (named Model of
Computation) [9,20]. Then, they defined adaptations so that they could be
co-simulated.

13 In 2008, the MODELISAR project published the FMI (Functional
Mockup Interface) standard [7], whose essential contribution to co-simulation
was the concept of Intellectual Property protection. It was an evolution of the
DSBlock proposal, but recognizing that each subsystem might need its own sim-
ulator. This standard is widely adopted in industry1 [58], where the simulation
of externally supplied components can be costly due to high licensing costs.

Although there was some research about the coordination of black-box phys-
ical system simulators before the FMI Standard was published (e.g., [5,31,41],
and other references in [29]), it does not standardize the synchronization protocol
between simulators. The main reason is that, as in continuous system simulation,
there is no one-fits-all simulation algorithm. This is in contrast to discrete event
simulation, where the implementations of the DIS and HLA standards provide
everything to run the co-simulation.

2.4 2010s

The current decade is marked by several applications of co-simulation across
many domains (see, e.g., [29,59]), the Digital Twin [26] concept, and an effort
to systematically study co-simulation, with the publication of surveys [30,32].

14 The Digital Twin extends the DMU concept not just to the design and
assembly phases of the system, but also to the maintenance. The essential idea
is to use high fidelity models of the system, calibrated from sensory information
collected during its operation, to affect how the system should operate, predict
failures, schedule maintenance, etc.

1 http://fmi-standard.org/.

http://fmi-standard.org/
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3 Applications

3.1 Exhaust Gas Recirculation (MAN Diesel and Turbo)

MAN Diesel & Turbo (MDT) is one of the largest producers of two-stroke com-
bustion engines with distributed embedded control system. Due to new emis-
sions legislation on NOx, the systems that reduce the emission of this gas need
to be improved. Since the development is split between different departments,
using different tools, with limited sharing of models, co-simulation was applied
to maximize reuse of models [55].

The work in [55] describes an exhaust gas recirculation system, and a water
handling system. The purpose is to clean and recirculate exhaust gas to a ship
engine intake manifold. The exhaust gas is cleaned by spraying water into it,
and allowing the mixture to cool down and flow into a receiving tank. Then, the
(dirty) water is pumped to a water treatment center (externally developed) to
be purified and reused.

The initial approach consisted of developing the control system in an in-
house application framework, that simulated both the control system and the
physical models of the ship engine. While the traditional setup allows for simu-
lation, the physical models are often implemented at a lower level of detail than
e.g. Matlab/SimulinkR© models. The co-simulation approach, based on the FMI
standard, coupled the in-house application to MATLAB, so that higher fidelity
physical models could be used. They believe that, had this approach been used
from the start, then a water tank overflow problem could have been discovered
before running the software on an expensive engine test bench.

3.2 Driverless Lawn Mower (Agro Intelligence)

Another application of co-simulation is the development of a steering controller of
an industrial size driverless lawn mower [22]. Besides aiding in the development of
the control and navigation system of the lawn mover, co-simulation was applied
to investigate alternative designs that would otherwise be both costly and time-
consuming to test with physical prototypes.

The co-simulation scenario consisted of three parts: a simulator representing
the vehicle dynamics, a simulator representing the control algorithm and a sim-
ulator to convert values between the two. Additionally, each alternative design
was projected in a 3D animation based on the game engine Unity, that it could
be visually inspected by designers and clients.
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To make sure the co-simulation results were valid and accurate, an initial
prototype was conceived and tested. Afterwards, multiple designs were evaluated
with co-simulation, to find the optimal look-ahead distance and velocity. The
simulation results for multiple look-ahead distances, and fixed velocity, are shown
in Fig. 2.

Fig. 2. Simulated trajectories for look-ahead distance with velocity 1 m/s [54]

4 Emerging Trend and Challenges

4.1 Towards Full Virtualization

Throughout the history of co-simulation, a common trend emerges: a gradual
shift towards the virtualization of not just the design of the system, but also
assembly, operation, and maintenance.

The virtualization of the design of the system has been one of the primary
uses of co-simulation, backup by concurrent engineering processes.

The virtualization of the assembly reflects an increased demand in the infor-
mation that should be taken into account at the design phase, with concepts like
the Digital Mockup Unit.

Complex systems that need interaction with human operators require train-
ing interfaces. Marked by military training simulators, the virtualization of oper-
ation refers to the creation of complex training environments at almost no cost
by leveraging the same co-simulation scenarios used in the design phase. As an
example towards this future, we highlight the design of a motion compensated
crane [14], by ControlLab, where the crane operators are trained using a virtual
reality environment (see Fig. 3).



Co-simulation: The Past, Future, and Open Challenges 513

Fig. 3. 3D real-time simulation of a motion compensated crane. Taken from [14].

Finally, extending the lifespan of systems, and reducing their downtime
through the virtualization of their maintenance, is becoming a priority. This
means that co-simulation can be combined with advanced sensors to create smart
monitors (Digital Twins) that predict failures.

4.2 Challenges

The historical overview, and main trend identified, can be used to highlight
some of the challenges that researchers and industry will need to overcome in
the upcoming years.

We divide these challenges into four categories: Design Space Exploration
(DSE), X-in-the-Loop Co-simulation, Incremental Testing/Certification (IT/C),
and Education.

Design Space Exploration consists of the systematic analysis and evaluation
of different designs over a parameter space. When the evaluation involves running
a co-simulation, then ensuring that co-simulations can be run quickly, accurately,
and respecting the physical constraints of the system.

Since the results of these simulations are typically not inspected by experts, it
is crucial that these can be trusted. To this end, we highlight the need to ensure
that each configuration of the system is valid, and the need for the co-simulation
to preserve any properties that the configuration of the system satisfies.

Validity refers to whether the composition of subsystem models (induced
by the co-simulation scenario) reflects a physically meaningful coupled system
[17,70]. This property is important because physical system models have many
implicit assumptions, and their combination may violate those assumptions,
purging their predictive value. For example, in [60] the authors ran a ques-
tionnaire through several experts in various domains of physics, asking them to
identify the implicit assumptions in a simple model of a particle moving in a vis-
cous medium. No expert was able to identify all the 29 assumptions, identified
by their combined expertise.
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The evolution of many engineered systems can be summarized by their evo-
lution from one equilibrium to another [19], and it is important that their cor-
responding co-simulations reflect this property. While analyses have been devel-
oped that enable the automated verification of this property for continuous co-
simulations (see [30, Sect. 4.3] and references thereof), there are many open chal-
lenges with the co-simulation of hybrid systems [27], and adaptive co-simulations
[28].

X-in-The-Loop refers to co-simulations that are restricted in time and comput-
ing resources, due to the presence of human operators, animation requirements,
or physical subsystems. In this context, there is a need for simulators which can
provide contracts with timing guarantees on their computation time, based on
the inputs and parameterization.

IT/C consists of the co-simulation activities that are applied as part of con-
current engineering activities, where the models of each subsystem are refined
over time and integrated frequently. We highlight the need for co-simulations
that provide formal guarantees on the accuracy of the behavior that is com-
puted. Since the definition of correct co-simulation is elusive and depends on
the domain of application, each simulator should provide some form of contract.
It should be possible to obtain an abstraction of each simulation units that is
appropriate to the kind of contracts defined. Existing research could be used as
a starting point [8,11,36,46].

Once each simulator provides formal guarantees, then the orchestration algo-
rithm should ensure that the composition of those contracts, and other formal
properties, can be satisfied. As highlighted by works on heterogeneous simula-
tions and more recently in [45], the way to orchestrate the different simulators
can lead to incorrect results. This is especially true when discrete models (with
frequent and natural discontinuities) are in the loop since a minor change in
timings can result in different behavior (let consider for instance a double click
versus two consecutive clicks).

To illustrate, consider a simulator that guarantees that there are no more
than one discontinuity every 10 s. Then, depending on similar contracts satisfied
by other simulators, a similar kind of contract could be satisfied by the co-
simulation.

Education refers to those challenges that are of non-technical nature, but are
nonetheless crucial to attain the full virtualization vision.
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In order for companies to adopt co-simulation there are several concerns that
hinder the theoretical possibilities from being employed in practical setting. One
of these is the protection of intellectual property, which limits the information
that is available for a given simulation unit. It is not an issue in itself, but it is
an issue when considering other desirable properties of co-simulation, e.g. per-
formance. For example, [61] describes two master algorithms, one that allows
parallel computation but is limited in its applicability, and another that is less
limited in applicability but requires a sequential execution. However, the infor-
mation required to choose the optimal master algorithm in this case is not avail-
able. Similarly, [64] concerns precompiling a master algorithm optimised for a
given scenario, but this also requires information, that is not available in a black
box implementation.

Another challenge is related to the current co-simulation standards. This is
described in [10], which puts forth several requirements for hybrid co-simulation,
such as superdense time, and relates them to the FMI standard. In general, time
representation is a very important aspect of co-simulation, and [15] presents
several extensions to FMI. One of these is that in theory several theorems uses
real numbers, which has infinite precision. However, these are often represented
as numbers with finite precision.

Finally, proper integration with existing development processes. Co-
simulations are initiated by different users with different backgrounds. This is
not just about pushing a button and getting results: there is a need to integrate
robust co-simulation frameworks into existing tools, such that each different
kind of user can use the most comfortable tool as a front end to run the co-
simulations, and that user understand what he is doing. To this end, education
and technology transfer are crucial steps.

5 Conclusion

Co-Simulation holds the promise to unleash the full potential of simulation.
However, it is not a new concept. In this paper we present the historical events
that resulted in what is today known as co-simulation. These highlight a trend
towards the virtualization of every interaction with complex systems. Based on
this trend, we identify several exciting challenges that lie ahead.
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