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Abstract. Philippou and Kouzapas have proposed a privacy-related
framework, consisting of (i) a variant of the π-calculus, called Privacy
Calculus, that describes the interactions of processes, (ii) a privacy pol-
icy language, (iii) a type system that serves to check whether Privacy
Calculus processes respect privacy policies. We present an executable
implementation of (a version of) it in the programming/specification
language Maude: we give an overview of the framework, outline the key
aspects of its implementation, and offer a simple example of how the
implementation can be used.
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1 Introduction

1.1 Related Work

In recent years, the advancement of technology has posed a great threat to
privacy. As a result, privacy enforcement needs relevant tools that protect user
privacy and detect potential or actual breaches. A long-term goal that follows
from these concerns and has attracted some interest recently is to have sound
and efficient formal systems that can be used in practice to reason about privacy-
related properties of information systems and enforce privacy requirements.

[6] defines a framework which uses type checking and a custom variant of
the π-calculus, in order to reason about data on the Web, particularly the data
expressed with standards such as RDF. [13] defines a rather expressive formal
system based on epistemic logic, tailored to reasoning about the privacy policies
of social networks. Another formal framework for privacy, which is the basis of
the present paper, is described in [8] and its extensions [7,9,15]; it consists of
privacy policies and processes/systems of a variant of π-calculus, bridged with
a type checker. Moreover, since privacy policies share some common properties
with access control policies, there have been attempts to extend access control
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policies, in order to be usefully applicable for privacy purposes; such an exten-
sion, which has influenced our work, is P-RBAC [1,11,12].

Maude is a powerful tool with many uses. We opted for it due to its firm math-
ematical foundations (equational and rewriting logic), its executable semantics,
and its reflective character, which simplifies proving properties of specifications in
the same framework they are defined; it is also claimed to be rather efficient [10].
We believe that having executable implementations of the frameworks defined
can aid in applying them at greater scale and, thus, in spotting difficulties in their
widespread use. In addition, one could use automatic theorem proving on such
implementations to mechanically prove useful properties of their specifications.

1.2 Overview

The work we present here has mostly been carried out as part of a diploma
thesis [16] in the School of Applied Mathematical and Physical Science of the
National Technical University of Athens, supervised by Prof. Petros Stefaneas.
The main contributions of the thesis were (i) the extension of the framework of [7]
(privacy policy language, processes/systems of π-calculus, type checker), mostly
by the incorporation of the concept of conditions and (ii) the implementation
of the (extended) framework in Core Maude. The first part has been presented
in [15], but the essential parts of it will be summed up here (in some cases, there
have been improvements; we indicate them and compare them with [15]).

The code of the specification is not included in this paper (for lack of space),
but can be found in http://users.ntua.gr/gpitsiladis/isola2018/privacy.maude.
It is split into several modules in order to facilitate its reading and its future
examination with Maude tools, such as the Church-Rosser Checker and the Suf-
ficient Completeness Checker [4, Sect. 1.3]. The code of the running Example
(Examples 1, 2, and 3 below) is in http://users.ntua.gr/gpitsiladis/isola2018/
example-sales.maude.

As depicted in Fig. 1, the framework (and, hence, the tool) is split into three
parts: Privacy Calculus, privacy policy language, and type system. The Privacy
Calculus, using the construct of Systems, models the code of the application
whose privacy properties are under scrutiny. The privacy policy language models
rules and policies regarding privacy as Privacy Policies. The type system, using
the construct of Γ -Environments to model information about the environment
the code is running in, checks (using the function �) syntactic well-formedness
of Systems and, more importantly, with the help of the internal construct of
Θ-Interfaces (which are the types of Systems), checks (using the relation |=)
compliance of Systems (hence application code) to Privacy Policies.

The structure of the paper closely follows the structure of the framework:
Sect. 2 describes the privacy policy language, Sect. 3 describes the Privacy Cal-
culus, and Sect. 4 describes the type checker that can be used to test systems of
the Privacy Calculus for policy compliance; each of these sections is split into
a subsection describing the mathematical specification of the respective part of
the framework and a subsection describing its implementation in Maude (design
choices, sort and operator declarations, and example of usage). Finally, Sect. 5
contains concluding remarks and possible directions for future work.

http://users.ntua.gr/gpitsiladis/isola2018/privacy.maude
http://users.ntua.gr/gpitsiladis/isola2018/example-sales.maude
http://users.ntua.gr/gpitsiladis/isola2018/example-sales.maude
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Fig. 1. The structure of the framework. It is comprised of three parts: the Privacy
Calculus, a privacy policy language, and a type system. Each contains a construct to
model application code, privacy policies, and execution environment respectively. The
framework can check for the syntactic well-formedness of code and for its compliance
to a privacy policy.

2 The Privacy Policy Language

The privacy policy language of our tool is a slightly more mature version of the
one in [15, Sect. 2], which itself extends the language of [7, Sect. 3] with conditions
and splits the notion of groups into users and roles, in the spirit of [11].

2.1 Mathematical Specification

Policies are specified on top of some basic notions: (i) groups (split in users and
roles), (ii) purposes, and (iii) data types (or basic types). Groups are character-
isations of entities that can act upon private data. The concept of purposes is
vital when dealing with privacy issues [2, Sect. 1]. Data types are types (such as
Age, Time) of private or not private data. Each data type X can be granted with
a finite data value set DX that serves for the formation of conditions; a condition
is either a statement that a data type has (or has not) a specific value or a con-
junction of such statements; for example, AgeRange �= under18∧Consent = Yes.

A policy maps each of the (private) basic types in its domain to a hierarchy
of purpose-endowed groups and a permission function, which grants permissions
to group-purpose pairs; the available permissions in our tool (which can easily
be adapted to the needs of different applications) are read, write, access,
discG where G can be any group. All (unconditional) permissions can become
conditional, by appending to them the keyword if and a condition.
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Conditions can be partially ordered by the “strictness” relation ≤, that is
c1 ≤ c2 iff for each data type X appearing in c2, X also appears in c1 and
the values of X satisfying c1 also satisfy c2. This induces a partial order ≤
on (conditional) permissions, where p1 ≤ p2 iff p1 = p2 or p1 is p2 with some
extra condition(s). This, in turn, induces a preorder � on permission sets, where
P1 � P2 iff P2 contains an upper bound for each element of P1.

2.2 Implementation and Usage

All the above are easily (if carefully) implemented in membership equational
logic. For the sets of purposes, hierarchies, permissions, data types, and data
type values (and, later, names, types, and groups), we include the parametric
SET module available in Maude, instantiated with the corresponding sort. The
sets of data types and data type values get all their operators renamed, so as to
avoid clashes with further importations of sets of their supersorts. Also, the sets
of permissions and purposes get their constructing operator _,_ renamed to __.

Example 1. Suppose we are modelling a company whose privacy policy with
regard to marketing contains the clause “Personal information of customers may
be disclosed to third parties if the customer gives their consent. Personal infor-
mation of customers under thirteen years old will never be disclosed to third par-
ties.” and we consider the private data of a single user named Alice. The entities
that interest us in this case are of course Alice and the marketing department,
but also the server and database of the company. Alice and the server act for the
purpose of purchasing a product, the database acts for the purpose of storage,
and the marketing department acts for the purpose of marketing.

First, we have to start a new module (or several modules) that includes those
components of the tool that we wish to use. The main modules of interest are:

– PRIVACY-TYPE-CHECKER, a functional module that provides everything
needed for type checking Privacy Calculus systems against policies,

– UNIVERSE, a functional module that defines the sorts containing application-
specific information (Group, DataType, Purpose, etc.), so we have to extend
it when using the tool.

Inside our module, we have to define the groups, purposes, and data types
we are going to use. In our example, the groups are: a user Alice, the roles
of the company (Company, Server, DB, MarketingDpt), and the roles Clients,
ThirdParty; since hierarchies need to have a single root, we employ the role
Comp&Clients. So, we declare

ops Company Comp&Clients DB MarketingDpt ThirdParty Server
Clients : −> Role [ctor] .

op Alice : −> User [ctor] .

The declaration of purposes is simple:

ops purchase storage marketing : −> Purpose [ctor] .
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As for data types, we have Alice’s private data: Age and Consent, with specific
value sets, and OrderData, with no specific value set. OrderData is declared as
op OrderData : −>PrivateDataType [ctor], Age is declared as

op Age : −> PrivateDataType [ctor] .
sort AgeValues .
subsort AgeValues < PrivateDataValue .
ops under13 over13 : −> AgeValues [ctor] .
eq domain(Age) = under13 over13 .
eq var(under13) = Age .
eq var(over13) = Age .

and Consent (with values yes and no) is similar. If we had a non-private data
type (such as Time), we would follow the same procedure, using DataType instead
of PrivateDataType and DataValue instead of PrivateDataValue.

We can now model the policy at hand. For ease of presentation, we will use the
same hierarchy for all private data types. Hierarchies are built with the operator
_:_ ‘[_ ‘] : Group Set{Purpose} NeSet{Hierarchy} ∼> Hierarchy, but short-
hands are provided for cases where there is no purpose or no subhierarchy. Thus,
the hierarchy of our example can be defined as follows:

op H : −> Hierarchy . eq H =
Comp&Clients[

Clients : purchase [Alice []],
Company [

DB : storage,
Server : purchase,
MarketingDpt : marketing

],
ThirdParty [MarketingDpt : marketing]

].

Note that hierarchies can have cycles, but a group is not permitted to appear in
its subhierarchy. The privacy policy of the company can be defined as follows:

op sales-policy : −> Policy . eq sales-policy =
OrderData >> H,

p(marketing, MarketingDpt) = access
disc ThirdParty if Age =/= under13 /\ OwnerConsent ==

yes,
p(purchase, Server) = read access write disc Company,
p(purchase, Alice) = read write access disc Comp&Clients

; Age >> H,
p(marketing, MarketingDpt) = access read,
p(storage, DB) = access write disc Company,
p(purchase, Alice) = read write access disc Comp&Clients

; OwnerConsent >> H,
p(marketing, MarketingDpt) = access read,
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p(storage, DB) = access write disc Company,
p(purchase, Alice) = read write access disc Comp&Clients .

Note that conditions bind to the nearest permission; for example, sales-policy
states that the marketing department can access order data (for marketing pur-
poses) unconditionally, but can only disclose it to third parties (for the same
purpose) if two conditions hold. Note also that any permission not given explic-
itly is not allowed by the policy.

3 The Privacy Calculus

Privacy Calculus is a version of (typed) π-calculus with the group construct
of [3]. In our tool, we use it as presented in [15, Sect. 3], with the addition of
CINNI [18] and some alterations in its semantics described below.

3.1 Mathematical Specification and Implementation in Maude

Syntax. For names of channels, hereafter ranged over by x, y, z, in order
to tackle the usual issues with name binding, we employ CINNI: consider an
(infinitely countable) set of name IDs (ranged over by a, b); each name ID can
be turned into an (indexed) name by subscripting it with a non negative integer,
referring to the bindings for the same ID we have to skip. In the Maude imple-
mentation, we use Qid as the source of name IDs (by specifying subsort Qid <
NameId) and add an operator _‘{_‘} : NameId Nat −>IndexedName [ctor] to

signify subscripting. We also include all data values as names in our calculus,
thinking of them as constants: subsort DataValue < Name.

One of the principal goals of CINNI is to define name substitution (declared as
op ‘[_:=_‘] : NameId Name −>Subst [ctor] and op __ : Subst Name −>Name)
elegantly; it also defines the shiftup, shiftdown and lift operators, behaving
is as described in Table 1, all of which are constructors of the sort Subst.

Table 1. Behaviour of the operators shiftup, shiftdown and lift. a and b are different
name labels. subst is some term of sort Subst. It is defined in [18, p. 6] and also
described in [19, Table 1].

Types, hereafter denoted by T , are defined recursively: data types are types
and for each group G and type T , G[T ] is a type; intuitively, G[T ] means a
channel belonging to group G carries data of type T . For example, the term
Company[Comp&Clients[Age]] is a channel (to be used by members of group
Company) that carries names of channels (to be used by members of group Comp
&Clients) carrying data of type Age.
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Programmes of privacy calculus are defined in two levels: processes (denoted
by P ) and systems (denoted by S):

1. The processes 0, P1|P2, !P , (ν a : T )P , x(a : T ).P , x〈y〉.P and [x = y] (P1 ; P2)
are standard constructs of π-calculus: the empty process (does nothing), the
parallel composition of two processes, the (unbounded) replication of a pro-
cess, the binding of a name (thought of as creation of a channel), the input
process (a is a placeholder for a name to be received by P through x), the
output process (output y through x and then continue as P ), and the con-
ditional (if the names x and y are equal, then proceed as P1, else proceed
as P2).

2. The system G : u [P ] declares that a process P is running on behalf of group
G for the purpose u (the group G is bound). The system R [S] declares that
the system S is running on behalf of role R (the group R is bound). Finally,
the systems 0, (ν a : T )S, S1 ‖ S2 act like the respective processes (we use ‖
instead of | for the parallel composition of systems).

The declaration of the above definitions in Maude is mostly straightforward.
As explained in [4, Sect. 14.2.6], 0 being the identity element of parallel com-
position could (and would) lead to non termination, so we use sorts NeProcess
and NeSystem of non empty processes/systems to avoid this issue. We then have
to declare how operators behave with respect to these subsorts; for example:

op (‘(v_:_‘)_) : NameId Type Process −> Process [frozen(3)] .
op (‘(v_:_‘)_) : NameId Type NeProcess −> NeProcess [ctor ditto] .

Notice the usage of frozen in all the declarations of operators that form pro-
cesses and systems. As seen later, in the operational semantics of π-calculus, the
next step of a process/system happens at the root of its syntactic tree (of course,
it may then propagate to subterms). Without the frozen attribute, rewriting
(that is, operational steps) could be triggered in subterms of a process/system.

In the declaration of parallel composition, we also use the equational
attributes assoc comm id, which specify properties that normally are part of
the structural congruence of π-calculus. These attributes allow Maude to identify
processes/systems with the same behaviour; since they are built-in, using them
is more computationally efficient than specifying explicitly the corresponding
rules of structural congruence.

For ease of usage, when defining processes/systems, we sometime want to
write a instead of a0; since NameId is not a subsort of Name and we do not wish
to introduce an extra operator, we add special cases of constructor operators;
for example:

op (‘[_==_‘]‘(_;_‘)) : NameId Name Process Process −> NeProcess
[frozen(3 4)] .

eq [A == X](P1 ; P2) = [A{0} == X](P1 ; P2) .

For ease of reading, some operators are written differently in Maude: 0 become
0P and 0S, x(a : T ).P becomes in x(a : T). P, and x〈y〉.P becomes out x(y). P.
For the conditional, we declare shorthands for cases where one of the branches
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is the empty process. Finally, we define a normal form for condition checking: if
a name is compared to a constant, the constant is written after the name.

As usual, we define the operator fn that collects the names free in a pro-
cess/system. Its declaration is simple, except for name binders, where we have
to use shifting; for example:

eq fn((v A : T) P) = [shiftdown A] delete(A{0}, fn(P)) .

Moreover, we define the operators fg and bg for free and bound groups.
For name substitution and other CINNI operations, we have an operator __

: Subst Process −>Process (similarly for systems) that carries CINNI opera-
tions to free names. As specified by CINNI, name binders need lifting; for exam-
ple: eq SUBST (in X(A : T). P) =in (SUBST X)(A : T). [liftup A SUBST] P.

Semantics. As is usual, our discussion of π-calculus semantics commences with
structural congruence, i.e. a relation that identifies syntactically different pro-
cesses/systems with identical intended behaviour. The structural congruence of
our calculus is simple: it states that (i) α-equivalent constructs are congruent, (ii)
parallel composition is associative commutative, with the empty process/system
as identity element, (iii) binding a name or group in the empty process/system
leaves us with the empty process/system, and (iv) replicating the empty process
leaves us with the empty process. As explained above, we included part (ii) in
the declaration of some operators; since CINNI takes care of name bindings,
α-equivalence can be silently ignored with no problems; the rest can be dealt
with by adding some equalities, such as eq ! 0P =0P and eq (v A : T) 0S =0S.

Note that the structural congruence of [3] includes rules regarding group
binding; as explained in [8, pp. 3–4], since we give extra privacy-related meaning
to the binding of a group, we have to omit the one stating that the binding of
a group in a (non-empty) system can be omitted when the group is not used in
the system. Due to this peculiarity of our structural congruence, the operational
semantics of privacy calculus is better defined as a labelled transition semantics.

In all its other versions, privacy calculus is presented with early semantics,
but its implementation would either lead to a state explosion (since the pos-
sible messages that can be received by a process are infinite) or require some
workaround, as in [19, pp. 7–8]. As a consequence, we employ late semantics,
which avoids this issue; incidentally, [14, p. 35] states “experimental evidence
indicates that proof systems and decision procedures using the late semantics
are slightly more efficient”.

Labels for labelled transition semantics are built as follows: τ is the silent/in-
ternal action, x(a) is input, x〈y〉 is output and (ν y : T )x 〈y〉 is bound output;
all names are free, except for y in (ν y : T )x 〈y〉. The rules of our semantics are
presented in Fig. 2.

The primary aim of our tool is to statically check whether a system adheres
to a policy; as a consequence, we need not have implemented the semantics of
Privacy Calculus in Maude. However, we did implement it, aiming for a more
complete tool and for the ability to study the behaviour of a Privacy Calculus



Implementation of Privacy Calculus and Its Type Checking in Maude 485

Fig. 2. The rules of labelled transition semantics.

system using Maude’s search command [4, Sect. 5.4.3], something that might
turn out to be useful in applications. The semantics can be found in a rewrite
module called PRIVACY-CALCULUS-SEMANTICS. For its implementation, we use
some ideas from [19, Sect. 3–4]:

1. A one-step transition F
l−→ F ′ is encoded as a rewrite F =>{l} F’; in order

for this kind of expressions to be well-defined, we have to define a sort
ActProcess, as follows (and similarly for systems):

sort ActProcess . subsort Process < ActProcess .
op ‘{_‘}_ : Label ActProcess −> ActProcess [frozen(2)] .

The interesting cases of (Congr) are taken care of by CINNI (which reduces
α-equivalence to bound name selection) and Maude (via the equations and
equational attributes defining structural congruence). The other rules of Fig. 2
are just transcribed in the chosen form; for example:

crl [CondF] : [X == Y] (P1 ; P2) => {l} P2’
if X =/= Y /\ P2 => {l} P2’ .

2. The operator that builds objects of ActProcess is declared using the frozen
attribute, so as to control rewrites (as described above on page 7). Conse-
quently, a mechanism must be provided explicitly for multi-step transitions;
for processes, it suffices to provide the following code, with AP a variable of
ActProcess (transitions of systems are similar):
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sort TraceProcess .
subsort TraceProcess < ActProcess .
op ‘[_ ‘] : Process −> TraceProcess [frozen] .
crl [reflP] : [ P ] => {l}P’ if P => {l}P’ .
crl [transP] : [ P ] => {l}AP

if P => {l}P’ /\ [ P’ ] => AP /\ AP =/= [ P’ ].

Objects of sort TraceProcess trigger rules transP and reflP. Operator [_]
prevents infinite regressions where rules are used as conditions to themselves,
a situation that would result if we just defined Process to be a subsort of
TraceProcess.

3.2 Usage

In applications, Privacy Calculus will most probably be used as an intermediate
language between the code in need of privacy analysis and the modules that will
check adherence to policies. However, at this stage, one has to model the situation
directly in π-calculus and provide the resulting system to the framework. This
is achieved by defining (as in Example 1) the groups, purposes, data types, and
data values in use and then synthesising the system that describes the behaviour
to be analysed.

As discussed above, one can use Maude’s search (or rewrite) command to
find possible transitions of a system, although searching can take a lot of time
for large system. Of course, this requires that the module specifying the system
includes the rewrite module PRIVACY-CALCULUS-SEMANTICS.

Example 2. In the context of Example 1, the system S below contains (among
other subsystems that have been replaced with ellipses for ease or presentation)
a subsystem for the marketing department that reads the consumer’s age and
consent, checks their values, and (if the conditions hold) gets the order data and
forwards it through an unknown channel.

op S : −> System . eq S =
Comp&Clients[(v ’order : Comp&Clients[Comp&Clients[OrderData]])(

Company[
(v ’userage : Company[Company[Age]])
(v ’usercons : Company[Company[OwnerConsent]])
(v ’orderdata : Company[Company[OrderData]])(

... || ThirdParty[MarketingDpt : marketing [
in ’userage(’age : Company[Age]). in ’age(’x : Age).
in ’usercons(’cons : Company[OwnerConsent]).
in ’cons(’y : OwnerConsent).
[’ x =/= under13][’y == yes]

in ’orderdata(’d : Company[OrderData]).
out ’linktotp(’d). 0P

]] || ... ) ]
|| Clients[Alice : purchase[...]]
) ] .
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The search command may be used as follows (after loading the tool and the
module(s) defining S):

> search S =>! S’:ActSystem .

gives all the possible single-step transitions of S, while

> search [10,1] [S] =>+ {silent}S’:ActSystem .

gives 10 possible multi-step transitions of S with a silent transition as their last
step. Due to the rule of transitivity in our specification of multi-step transitions,
the second numerical argument to search is irrelevant, since the search tree
always has depth 1; for the same reason, using =>! may lead to non-terminating
computation (since there are non-terminating systems), so one has to use =>+
for searching multi-step transitions.

4 The Type Checker

The type checker enforces the well-formedness of processes/systems and stati-
cally extracts their types, which describe the permissions needed in a structured
form that also logs the relevant groups and purposes. The extracted information
can then be compared to a privacy policy to check the adherence of a system to
it. In [7], it is proved that the type checker is safe, in the sense that it does not
flag non-adherent systems as adherent; as argued in [15], this property is not
violated by the addition of conditions in the manner presented here.

4.1 Mathematical Specification

Type checking is based on Γ -Environments, Δ-Environments, and Θ-Interfaces.
Γ -Environments map (free) channel names to types and store the groups

and conditions in scope; they serve to check the syntactic well-formedness of
processes/systems and extract their type. Γ -Environments can be appended (if
they contain different names and groups) with the operator ·.

Δ-Environments are the types of processes; they map private data types to
permission sets. Δ-Environments can be appended (if the types in their domain
are different) with · and combined with �. A condition can be added to a Δ-
Environment with ⊕. Functions Δr and Δw create default Δ-Environments,
according to the type T given as argument; these should probably be tailored
for specific applications, depending mainly on the basic permissions included; in
our tool, where the basic permissions are read, access, write, and disc , we
have opted for the following definitions, where t signifies some private data type:

Δr(T ) =

⎧
⎪⎨

⎪⎩

t : read if T = t

t : access if T = G[t]
∅ otherwise

, Δw(T ) =

⎧
⎪⎨

⎪⎩

t : write if T = G[t]
t : disc G if T = G[G′[t]]
∅ otherwise

Θ-Interfaces are the types of systems; they map private data types to pairs
of a linear single-purpose group hierarchy and a permission set. They can be
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appended with ;. We can add a group to their hierarchies with �. Given a group
G, a purpose u, and a Δ-Environment Δ, we can form the Θ-Interface G [u]⊕Δ.

The rules of the type system, presented in Fig. 3, are mostly as in [15, Fig. 3].
Rules (Out), (ParP), (ParS), (Nil), (Rep), (ResGP), and (ResGS) remain as
before. CINNI affects (In), (ResNP), and (ResNS). Rules (CondC) and (GCond)
have replaced the equivalent (CondA), (CondB). Comparison of two arbitrary
names (note that this does not provide any information about the condition
holding) is handled by (CondV). Finally, (Name) is split to (VName), (CName),
since types of constants are known a priori.

x ∈ DX

Γ x
(CName) [shiftup a Γ ] · a0 : T [T ]

Γ x(a : T ). Δr(T )
(In)

fg(T ) ⊆ dom(Γ ) x /∈ X DX

Γ · x : T x
(VName)

[shiftup a Γ ] · a0 : T

Γ (ν a : T )
(ResNP)

Γ op ∈ {=, =}
Γ · (x op y) (x op y) ⊕ Δ

(GCond)
[shiftup a Γ ] · a0 : T

Γ (ν a : T )
(ResNS)

Γ · (X = y) P1 1 Γ · (X = y) P2 2 Γ ∈ DX

Γ [x = y] (P1 ; P2) 1 Δ2

(CondC)

Γ P1 1 Γ P2 2 Γ ∈ X DX

Γ [x = y] (P1 ; P2) 1 Δ2

(CondV)

Γ 0 ∅ (Nil)
Γ
Γ !P (Rep)

Γ [T ] Γ

Γ x̄ y . Δw G[T ]
(Out)

Γ P1 1 Γ P2 2

Γ P1 | P2 Δ1 Δ2
(ParP)

Γ S1 1 Γ S2 2

Γ S1 | S2 Θ1; Θ2
(ParS)

Γ · G
Γ G [P ] u G[u] Δ

(ResGP) Γ · R
Γ R [S] R Θ

(ResGS)

Fig. 3. The rules of the type system.

Once extracted, a Θ-Interface can be tested for conformance to a policy with
the operator |= of [15, Sect. 4]. In effect, given a policy P and a Θ-Interface
Θ, P |= Θ iff for each private data type in Θ used by a set of groups for a
purpose, the set of permissions exercised is bounded above (according to �) by
the permissions granted by the policy to the game groups for the same purpose
and data type.

As proved in [15, Sect. 5], the operators |= and � can be jointly used to
test a process for errors, in a suitable sense of the terms “error” and “test”.
In particular, define a system S to be an error with respect to policy P and
Γ -Environment Γ (notation errorP,Γ (S)) iff it does not type-check or it is going
to violate the policy in its next operation (this can be decided statically, by
inspecting the outermost input/output subterms of S; see [15, Definition. 4] for
a formal definition). Then, by the definitions of error, |=, and �, it follows that
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|= and � offer a semi-decision procedure that ensures error-free behaviour (with
respect to Γ and P).

Theorem 1. Let S be a system and P a policy. If there is a Γ -Environment Γ
such that Γ � S 	 Θ and P |= Θ, then ¬errorP,Γ (S).

Moreover, the above property survives transitions, as demonstrated by the fol-
lowing theorem.

Theorem 2. Let S be a system and P a policy. Suppose that, after an arbitrary
number of transitions, S becomes S′. If there is some Γ -Environment Γ such
that Γ � S 	 Θ and P |= Θ, then there is an extension Γ ′ of Γ such that
¬errorP,Γ ′(S′).

Proof sketch. The ordering � of permission sets induces an ordering � of
Δ-Environments and Θ-Interfaces, with the property that if a Θ-Interface
respects a policy, then all “smaller” Θ-Interfaces respect the same policy. More-
over, if Γ � S 	 Θ and S

l−→ S′, then there exists some extension Γ ′ of Γ such
that Γ ′ � S′ 	 Θ′ and Θ′ � Θ.

4.2 Implementation and Usage

For the implementation of the above, one mostly has to translate the specification
to Maude. For the operators �, ⊕, and � we use the plain symbol +. The
empty Γ -Environment, Δ-Environment, and Θ-Interface are identity elements of
their respective appending –and, moreover, the empty Δ-Environment is also the
identity element of �–, so we use sorts of non empty environments, for the reasons
explained in [4, Sect. 14.2.6]. Type checking is implemented as a partial function
that given a Γ -Environment and a name (resp. process; system) returns its
resulting type (resp. Δ-Environment; Θ-Interface); for example, (ParP) becomes:

eq GAMMA |- NEP1 | NEP2 =
(GAMMA |- NEP1) + (GAMMA |- NEP2) [label ParP] .

and (CondC), stating that the type of a condition check is the combination of the
types that result from its branches if we add to the Γ -Environment the (positive
or negative, according to the branch) condition holding, but only in case y is a
data value and the type of x is the data type of y, becomes:

ceq GAMMA |- [X == Y] (P ; P’) =
(GAMMA . cond:((GAMMA |- Y) == Y) |- P )

+ (GAMMA . cond:((GAMMA |- Y) =/= Y) |- P’)
if Y :: DataValue /\ GAMMA |- Y = GAMMA |- X [label CondC] .

We can then specify an operator compatible : Policy GEnvironment System
−>Bool that tries to extract the type of the given system and, if successful,
checks its satisfaction against the given policy using the operator |=.
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Example 3. Suppose we want to know whether the system of Example 2 abides
to the privacy policy of Example 1.

First, we have to specify a proper Γ -Environment, giving a type to all names
free in the system and containing all groups and conditions within the scope
of which we are implicitly working; in our case, we use Gamma =’linktotp{0}
: ThirdParty[Company[OrderData]], since ’linktotp{0} is free in S. We then

load the tool and our module(s) and write

> red compatible(sales-policy, Gamma, S) .

to the Maude prompt, which in our case returns

rewrites: 10962 in 4ms cpu (3ms real) (2740500 rewrites/second)
result Bool: true

and, thus, we are confident that our system respects the policy. If we remove
the condition checks of S above (making it violate the policy), we observe that
compatible returns false.

Several factors can cause the outcome of compatible to be false:

– The policy, the Γ -Environment, or the system may be syntactically invalid;
in this case, either (probably) our module will not be accepted by Maude or
the problematic term will have a kind but not a sort.

– The policy may be ill-formed (i.e. containing multiple subpolicies for the
same data type or a subpolicy for a non-private data type or an ill-formed
hierarchy); in this case, it will have a kind but not a sort.

– The system may be ill-formed; in this case, the outcome of Gamma |- S, where
Gamma is our Γ -Environment will have a kind but not a sort; in particular, it
will be a fail term pointing to the problematic subterm of S.

– The system may not respect the policy.
– The system may respect the policy (semantically), but its syntax may falsely

indicate otherwise (for example, it may contain a branch that violates the
policy but will never be reached).

5 Conclusion

5.1 Successes and Limitations

As (hopefully) is demonstrated by the running example, the framework we
present can be used to check conformance of privacy-related applications with a
wide range of (conditional) policies. The type checker can assure the user that
a system is safe to use (in the context given, modelled by a Γ -Environment),
a property that has been proved as a (meta)theorem of our type system. The
specification in Maude is fully executable and closely follows the mathematical
one, making it easier to reason about.

However, the privacy policy language is still less expressive and realistic than
might be needed in practice. The language we described is not well-suited for
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multi-user environments, although this can probably be alleviated by introducing
variables in policies and hierarchical data. [9] has already extended the frame-
work to better accommodate anonymised data, identification, and storage of
private data in databases.

Powerful as they may be, verification techniques, such as type checking,
require non-trivial effort from the user, who has to model the real-world scenario
in a way that fits the language of the formal framework in use. This severely
restricts their application outside critical systems and calls for solutions bridging
theory with practice.

Admittedly, the Privacy Calculus is too abstract for use in actual applica-
tions. In order for our framework to be useful, one must find some solution to
bridge actual code-writing with this level of abstraction. One possibility would
be to provide a compiler that transforms programmes in widely used languages,
such as Java, to Privacy Calculus. In environments where it can be enforced
that all private data will be handled by a specific (software) entity, it might be
possible to include Privacy Calculus in the design of the libraries that manage
private data handling. Certainly, some aspects, such as the particular groups,
purposes, and data types, but also the specific permissions that can be reasoned
about, will always have to be adapted to each case (or kind of cases) separately.

Of course, static verification has limits. An issue that has been mentioned
in [8, p. 15] is that, in principle, group membership may change over time in
ways that can interfere with static analysis. In addition, complex cases may
render type checking impractical. Also, it is possible that a system may be safe
for reasons having to do with its semantics, but static analysis alone may flag
it unsafe. For such reasons, static and runtime approaches to verification should
be combined.

5.2 Future Work

The work we presented here can be extended in many directions.
Maude is a very powerful tool, whose capabilities are far wider that what we

have used so far. Its reflective character (that is, the fact that specifications can
themselves be handled as data in other Maude modules) has been used to create
a number of useful tools for the examination of the properties of modules [5,
Sect. 21.1]. We could use these tools to mechanically prove that our specification
has some desirable properties (for example, termination of type checking, validity
of equational properties corresponding to soundness of type checking), even while
it gets extended with more features.

Besides the features added in [9] we mentioned above, the framework can be
extended in many ways. For example, Universal P-RBAC [12] uses the construct
of obligation (that is, an action that must precede or follow the usage of pri-
vate data) and gives hierarchical structure to purposes and data; both ideas are
certainly useful in real-world situations regarding privacy. [17] provides a taxon-
omy of kinds of privacy violations; it can be (and has been) used as a source of
inspiration for the creation of policies.
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Eventually, that is when the framework and the tool have reached a certain
maturity, it will be valuable to empirically evaluate their expressibility and their
efficiency in a real-world scenario.
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