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Abstract. For developers of assisted or automated driving systems,
gaining specific feedback and quantitative figures on the safety impact
of the systems under development is crucial. However, obtaining such
data from simulation of their design models is a complex and often time-
consuming process. Especially when data of interest hinge on extremely
rare events, an estimation of potential risks is highly desirable but a non-
trivial task lacking easily applicable methods. In this paper we describe
how a quantitative statement for a risk estimation involving extremely
rare events can be obtained by guiding simulation based on reinforcement
learning. The method draws on variance reduction and importance sam-
pling, yet applies different optimization principles than related methods,
like the cross-entropy methods against which we compare. Our rationale
for optimizing differently is that in quantitative system verification, a
sharper upper bound of the confidence interval is of higher relevance
than the total width of the confidence interval.

Our application context is deduced from advanced driver assistance
system (ADAS) development. In that context virtual driver simulations
are performed with the objective to generate quantitative figures for the
safety impact in pre-crash situations. In order to clarify the difference of
our technique to variance reduction techniques, a comparative evaluation
on a simple probabilistic benchmark system is also presented.

1 Introduction

The global volume of road traffic is growing faster than ever. This contrasts with
the ongoing effort to reduce the number of deadly injured people in road traffic.
The EU commission announced the ambitious target of halving the overall num-
ber of road deaths in the EU by 2020 starting from 2010 at a number of 27.000 [4].
But Eurostat, the statistical office of the EU, states at a total number of 26.100
people who died in road accidents in 2016, which indicate that it is still a long
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way to their target [5]. Many research institutes and the automotive industry are
working hard on new Advanced Driver Assistance Systems (ADAS) in particular
for the pre-crash phase to reduce the number of traffic victims. While some emer-
gency braking systems from different car manufacturers are already available on
the market, harmonized development methods for design, evaluation and assess-
ment of pre-crash systems, which should speed up the development process, are
still nascent [11]. Harmonized methods within a model-based design approach
shall support the ADAS developer and ensure that the final implementation
meets its safety target, thus leading to shorter time-to-market. While exhaustive
formal verification of ADAS and their interaction with a human driver is far
out of scope due to their complex model structures, which overburden current
formal verification frameworks both with respect to the expressiveness of the
modeling languages supported and to scalability, a simulation-based approach
can in principle be used to validate an assistance system and provide a quan-
titative estimation of potential risks1. The extreme scarceness of actually haz-
ardous situations in human-operated road traffic (e.g., more than 1.64 × 106 km
between accidents involving human injuries according to [16]), however, requires
adequate identification and statistical treatment of extremely rare situations,
which can be achieved by criticality-driven guided simulation [13]. Within this
paper, we add quantitative error margins to the quantitative figure provided by
such guided simulation. We furthermore demonstrate the superiority compared
to naive sampling, especially concerning tightness of the upper bounds of the
confidence intervals as relevant to statistical model checking. Additionally we
compare different guiding strategies within a rare event simulation by bench-
marking them against each other on a simple hybrid-state probabilistic process.
The aim is to characterize the performance of different guiding algorithms, pro-
viding a rationale for selecting the most appropriate algorithm.

2 Background and Related Work

Estimating rare event frequencies in complex domains is a frequent problem in
empirical evaluations. Established approaches employ variance reduction tech-
niques [10] avoiding intractable scaling with respect to the number of samples
necessary to characterize rare events. In simulation-based studies, methods like
importance sampling, importance splitting, etc., render rare events more likely
than in direct Monte Carlo (MC) simulation, because the sample size, i.e., the
number of simulations grows too large when the event probability tends to zero.
The individual research contributions, however, differ in their application con-
texts and the transferability to other domains.

In this paper we focus on approaches based on importance sampling (IS).
The basic idea of importance sampling is to draw the samples according to a
proposal distribution rather than their native distribution and re-normalize the
statistics obtained afterwards using importance weights. The expectation E[g]

1 Like in formal verification we have to assume the model used for simulation is correct.
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of a random variable g estimated by N samples using importance sampling is

Ê[g] =
1
N

∑N

i=1
g(Xi) w(Xi),

where w(x) = p(x)/q(x) is the likelihood ratio with p(x) being the original
probability of the sample x and q(x) the probability assigned to the sample
when it is generated according to the proposal instead.

The most challenging problem of IS is to find a proposal q such that the
variance of the IS estimator is significantly smaller than the variance from pure
MC estimation. In [7,8] the authors present different variants of adaptive impor-
tance sampling (AIS) for the validation of ADAS illustrated on a simple adaptive
cruise control problem. All variants have in common that they draw an initial
number of N samples (a batch) before they derive an adapted proposal distribu-
tion based on a kernel density estimator. A problem of the approach is that he
indicator function used to determine whether a critical event has occurred is only
interpreted in a binary way (true or false). Consequently, potential information
about the closeness to the rare event cannot be used and adaptation stays unin-
formed till the first random hits of the rare event. Despite this weakness of the
approach, the authors demonstrate that AIS can increase simulation efficiency
roughly a tenfold in their problem context.

The work of Zuliani et al. in [20] presents an approach exploiting the cross-
entropy (CE) method [14] for generating approximately optimal biasing densities
for statistical model checking of hybrid systems. Their approach comprises two
steps: First they use the CE to determine a proposal density function which
empirically minimizes the Kullback-Leibler divergence to the optimal proposal
density. Then importance sampling with that proposal is performed to estimate
the expectation E[g] of a random variable g. In order to demonstrate that the
proposed method is applicable to stochastic hybrid systems, the authors applied
the cross-entropy method to a Simulink-Stateflow example of a fault-tolerant
avionics system. It is shown that by increasing the sample size, the relative
error (RE) decreases and that with a feasible sample size of 104 it is possible
to estimate probabilities in the order of 10−14 with reasonable accuracy (RE =
0.24). Although CE provides a theoretical basis for selecting proposal distribu-
tions adaptively, the effectiveness of such an approach depends heavily on well
chosen parameterization of the proposal distributions and additional algorithmic
parameters such as batch-size and an appropriately guessed “tilting parameter”
providing an initial proposal yielding informative rare-event rates in step 1.

Both the aforementioned approaches do draw on empirical estimates of the
variance or cross-entropy obtained from a binary evaluation (satisfaction or vio-
lation of a requirement by a sampled trace) of an initial batch of samples, which
likely remains uninformative in the case of extremely rare events, which have
to be found first before that statistics becomes informative. The focus of our
work reported here in contrast is on means helping to find such rare events even
in an initial batch. To this end, we employ a continuous approximation of the
binary trace evaluation that statistical model checking targets and exploit this
approximation in guiding the simulation. Such continuous approximations can
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either be derived from continuous interpretations of temporal logic [2,6] or from
risk functions known from traffic psychology [15].

Jegourel et al. in [9] present an importance-sampling framework combining
symbolic analysis with simulation to estimate expected costs in stochastic priced
timed automata (SPTA). The framework is integrated into UPPAL SMC. Its first
step is a symbolic reachability analysis in order to identify states never leading
to trace completions satisfying the desired property. This is feasible as SPTA, in
contrast to stochastic hybrid automata, have a decidable qualitative reachability
problem which can be represented as a zone-based graph permitting identifica-
tion of such “dead end” states. In a second step, that knowledge is exploited
for pruning expansion of such states in the simulations underlying statistical
model checking (SMC). This reduces variance compared to crude Monte-Carlo
(MC) simulation as all simulations only expand potentially satisfying states. To
estimate effectiveness of the approach the authors compare the empirical vari-
ance with that of direct MC simulation. While the empirical variance typically is
reduced, the method induces considerable overhead for set-up, state-exploratory
analysis of models, and additional storage and simulation costs.

The method does unfortunately not transfer to our problem domain as it,
first, would require a full white-box model of the ADAS and environment not
normally available when OEMs or tier-1 suppliers cooperate with subordinate
suppliers in automotive and, second, as SPTA are not expressive enough to model
the full-fledged feedback dynamics involving non-linear system dynamics, non-
linear control, and human cognition. The UPPAAL benchmarks provided do also
feature a very limited number of discrete locations (some tens of locations) which
is considerably below the enormous size of the discrete state-space spanned by
cognitive architectures [18] as used in our setting.

3 Application Context

As a specific application context we are interested in estimating the probability
of causing a critical situation as a result of the cognitive load induced by cooper-
ation with an advanced driver assistance system (ADAS) in automobiles. This is
a crucial question in ADAS design, as the expected positive safety impact of such
a system may easily become negated by additional cognitive load induced by the
ADAS. Such cognitive load stems from effects like disturbance and distraction,
effort for interpretation of system reactions and interventions, effort for mode
tracking, or even mode confusion, all of which are standard side effects of assis-
tance and automation. Hazardous effects induced by such systems are, however,
a small additive risk and thus at least as rare as fatal hazards in normal driving.
Without appropriate importance sampling, model-based simulation studies, as
in Monte Carlo statistical model checking, are consequently bound to fail due to
the excessive number of simulation traces necessary for a reasonable statistics.
The problem with applying importance sampling is that it is in general unclear
how to modify proposal probabilities in order to enhance the rare-event statis-
tics in these settings: disturbances by the ADAS, e.g., will only impact safety
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if occurring at very specific moments, as the human driver (or its substitution
by a validated cognitive model) generally is very effective in canceling out tem-
porary deviations from an optimal track. The problem thus is to find and then
emphasize in probability those few situations where overall risk is sensitive to
interaction with the ADAS.

If we succeed in finding such a proposal distribution, then importance sam-
pling improves our statistics by investigating more samples in “interesting”
regions of the sample space. If the goal is enhanced accuracy of the estimated
expectation of a random variable, where enhanced accuracy is interpreted as a
narrow confidence interval, then the way to go with the proposal distribution
is variance reduction. Techniques like adaptive importance sampling under the
cross-entropy method or importance splitting address this issue with different
algorithmic means.

It should be noted that improving accuracy of an expectation estimate is
correlated with, yet not identical to improving the reliability of the related
SMC-based quantitative safety verdict: in statistical model checking, we exploit
a confidence interval E ∈ [a, b] with confidence c, where E is the expecta-
tion/probability of an outcome violating the requirement specification, to decide
with confidence c whether E ≤ θ for a safety target θ. For answering this ques-
tion, only the upper bound b of the confidence interval is of importance; a confi-
dence interval E ∈ [a′, b′] with b′ < b would thus convey more information even
it were wider than [a, b]. We conclude that variance reduction is not necessar-
ily the most effective mode of designing a proposal distribution in importance
sampling and design two experiments for benchmarking a reinforcement learning
approach more greedily searching for samples violating the safety specification.
The benchmarks are as follows:

Cognitive Driver Model in the Loop: In this example, we set up a heteroge-
neous co-simulation comprising a cognitive architecture instantiated to simulate
a human car driver, an off-the-shelf interactive driving simulator providing real-
time simulation and rendering of driving dynamics and environment, and a side
task representative of ADAS distraction (see [13] for details). The cognitive
driver model contains a variety of sub-components ranging from models of per-
ception and motoric action, short-term memory for perceived items, long-term
memory for procedural knowledge, driving skills at the control-theoretic layer
modeled by differential or difference equations, to rule-based behavior recur-
sively decomposing complex tasks into conditional sub-tasks and finally skills. It
has been validated against extensive sets of observed behavior from 17 human
drivers [18,19]. In our simulation scenario, it is driving along 1,1 km of a wind-
ing road with curve radii between 375 m and 750 m and has the obligation to
keep track and a target speed close to the speed limit. The environment for
this driving scenario was modeled in the interactive driving simulator SILAB
[17] which provides real-time visualization of the environment, visualization of
the road, environmental traffic (not used in this experiment), and an interac-
tive car model incorporating a realistic car kinematics which the virtual driver
model then steers. During simulation the attention of the driver (model) has
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to alternate between three competing goals: (1) Keep the car in the middle of
the lane. (2) Keep a constant speed of 100 km/h as closely as possible. (3) As
soon as possible solve some side tasks displayed in varying time intervals on an
in-vehicle display at the center console. The third goal is a typical proxy used
by cognitive psychologists as a representative for interactions of the driver with
an ADAS installed in the center console of the car.

To meet the requirements of all goals, the visual and cognitive attention has
to alternate between these three tasks and their respective areas of interest (road
through windscreen and mirrors, speedometer, in-vehicle display). If insufficient
attention is paid to keeping the car within the lane, the driver might cross
the lane border which might lead to critical situations. A highly critical point
within the scenario was added by placing a bridge over the road (see Fig. 1). The
pillar of the bridge is placed 2.5 m away from the center of the right lane, which
therefore corresponds to the expected distance between car and pillar when the
car is passing the bridge during normal drive. We learned from näıve sampling
using a pure MC strategy that the distance between the car and the bridge
pillar was above 2.4 m in 7,272 out of 10,000 runs and furthermore that nearly
all (namely 9994 of 10,000) deviations from the middle of the lane stayed well
within the lane boundaries, irrespective of the driver model being distracted by
performing the secondary task. The closest distance to the bridge pillar which
could be observed during the whole simulation batch of 10,000 simulation runs
was about 0.7 m, which is still far from a hit of the pillar and occurred only two
times in 10,000 runs. The likelihood that corrective actions by the driver saves
the situation after a distraction thus is overwhelmingly high; so high indeed that
a simulation time of 1 week, which the 10,000 runs amounts to, cannot reveal a
single accident (not even a near-accident) caused by the side task representing
ADAS interaction. Pure MC simulation consequently is inapt of quantifying the
safety impact of ADAS interaction in this rather typical traffic scenario. Taking
as a verification goal the Signal-Temporal-Logic-like [2] formula

�(||(x, y) − (px, py)|| > 0.5m), (1)

where x and y represent the current longitudinal and lateral position of the car
and px and py the corresponding positions of the bridge pillar, näıve statistical
model checking would after a week simulation time estimate the likelihood of
violation as zero. Unfortunately, this does also mean that such a simulation batch
would remain completely uninformative for adaptive importance-sampling.

In our setting, we instead added a simulation guide into the simulation frame-
work that employs a by-now standard continuous interpretation [2,6] of formula
(1), namely the minimum over time (due to the � operator) of the distance
to the bridge pillar (due to term ||(x, y) − (px, py)||) minus the —in the con-
text of minimization irrelevant— offset 0.5m, as a continuous objective function
to be minimized. Such minimization then is achieved by modifying the prob-
abilities associated to the various probabilistic elements of the cognitive driver
model, which are introduced to reflect human behavior in a psychologically plau-
sible way. These probabilistic elements serve to emulate the variations in human
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Fig. 1. Distance of bridge pillar to the center of the lane in the driving scenario

behavior which were observed when performing simulator studies with human
drivers. They go down to the level of deciding at a rate of 20 Hz between options
for gaze attention. Such decision are taken in a goal-directed manner, yet are
far from deterministic. They exhibit stochasticity, with the mutual probabilities
of the options being assigned situationally based on cognitive priorities between
competing processes. The number of probabilistic decisions taken during a car
ride of 1,1 km thus is enormous, and it is a search for the needle in the haystack to
identify those which actually impact safety. For a deeper look into the underly-
ing concepts and the architecture of the cognitive driver model itself, the reader
is referred to [12].

The strategy of the simulation guide is to increase the probability of situations
which lead to small distances between the car and the bridge pillar by applying
reinforcement learning by the TUTS algorithm [13] explained in Sect. 4. An
evaluation of another 10,000 runs using TUTS in the scenario demonstrated that
nearly 10% of the simulation runs had a distance smaller than 0.5 m to the bridge
pillar, thus being highly critical and violating formula (1). After thus improving
the rate of critical situations revealed, we are able to derive a reasonable statistics
and thus a quantitative risk statement in a subsequent step, see Sect. 4.

Randomly Bouncing Ball: Since the above simulation setup is rather complex
and since it seems useful to compare the approach to other guiding strategies
as well as to pure Monte Carlo sampling, we compared different approaches
on a much simpler benchmark where we can compute the ground truth and
its variance along the stochastic elements. Therefore we took a simple stochastic
bouncing ball which starts from an initial height falling down towards a reflective
surface. When hitting the floor, the rebounce of the ball is scattered due to a
rebound angle varying stochastically within a fixed range. Thus the ball can
bounce along an axis in a fixed direction but with different heights and horizontal
speeds in between resulting from the varying modes of deflection (see Fig. 2).

The ballistic curve of the ball is defined by following the equation:

x(t) = x(0) + vt cos(θ) y(t) = y(0) + vt sin(θ) − 1
2
gt2, (2)

where θ and v are given by the initial velocity vector v0 as follows:

θ = arctan(v0) v = ||v0||2 (3)
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Fig. 2. Two random trajectories of the bouncing ball

Given the initial velocity vector and position, we can therefore calculate when
the ball hits the ground (y(t) = 0) the next time. When this happens, we reverse
sign of the velocity vector’s y-coordinate, damp the speed with a factor ρ and
add a random perturbation to the resulting angle to model an irregular surface.
More precisely, the velocity vector at any point in time is given by

v(t) =
∂(x(t), y(t))

∂t
= (v cos(θ), v sin(θ) − gt) . (4)

In particular, we are interested in the next time tn+1 of hitting the surface.
This time is given by setting the y-coordinate to zero:

tn+1 =

√(
sin(θ)v

g

)2

+
2y(tn)

g
+

v sin θ

g
(5)

To bounce, dampen, and perturb the angle, we simply set the speed and
angle at the next time tn+1 as follows:

||v(tn+1)||2 = ||v(tn)||2ρ θ(tn+1) = η (6)

Here, η is a random perturbance. For simplicity, we choose a random (uni-
form) perturbation from a pre-specified list: η ∼ U{η1, . . . , ηm}.

Next we define the rare event : we are interested in the probability that the
ball will hit a small range on the surface (e.g. a hole), described by height 0
and a small interval for the x-coordinate. When the interval is sufficiently small,
the probability of reaching this target is equal to the probability of drawing an
exactly defined sequence of angles for each bounce on the surface.

4 Simulation Guiding

As mentioned in the previous section, our guiding method explained subse-
quently differs from variance reduction techniques in that it tries to guide towards
rare events even if such have not yet been encountered, while the latter adapt
once a non-zero initial statistics has been obtained. In order to explain the dif-
ference, we expose the underlying algorithms in the following.
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The TUTS Algorithm: In order to obtain a quantitative estimate of the prob-
ability that a severe event happens in the driving example, we employed the
TUTS algorithm from [13]. TUTS requires a continuous function indicative of
(in the sense of roughly correlated to) the criticality c̃ of a simulation run. Such
functions can either be designed by the user, or sensible criticality functions from
traffic psychology [15] may be used, or quantitative interpretations of temporal
logic specifications [2,6] can be employed.

A user-defined criticality threshold τ defines the separation between accept-
able and unacceptable situations. The TUTS algorithm attempts to guide the
simulation into a region close to the threshold τ , where the variance of satisfac-
tion of the binary verification goal is high if the threshold τ used coincides with
the borderline between satisfaction and violation. It therefore employs a tree
representing all simulation runs observed so far, and it tries to assign adequately
modified probabilities to the decisions in that tree. Note that the use of such
a tree allows to assign different probabilities to the same decision at different
time instants: a move from state v1 to state v2 may happen multiple times along
a run, yet may be assigned different probabilities by the guiding algorithm at
different times. This property is extremely relevant for the setting of cognitive
architectures as, to take our example, the decision whether to address the side
task is drawn some thousand times within a single test drive, yet only a handful
of those decision points has measurable influence on the risk — some raising risk
(distractions in the unknown critical distance before the bridge), others lowering
risk (slightly earlier distractions, which reduce the probability of again engaging
into the side task during the critical moments).

Fig. 3. Event tree spanned by the options o∗. b records the history of the probabilistic
choices o∗ along the path.

In the course of the simulation, let C(v) be the set of criticality values that
have been observed in all simulation runs that passed the node v of the above
tree. As an example consider the event tree on the right side of Fig. 3. Being
in node v0, the simulation guide’s aim is to give preference, in the sense of
boosting its likelihood, to an action (in the example o1 = 0 or o1 = 1 are the
possible actions) that more likely results in a criticality close to τ . We measure
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the closeness to τ using a studentization of the observed deviations according
to the distribution of the observations C(v), i.e., calculate the z-score of the
distance to τ as follows:

z(v) =
τ − μ(C(v))

σ(C(v))

To increase the likelihood of observing a criticality of τ when passing v, the
guide should prefer options which lead to small absolute z-scores. This is done
in a probabilistic way by appropriately putting weight on all options that the
guide can select. A weight w(v) is defined for each node v already existing in
the tree.2 The function t : V × O −→ V defines the parent-child relationship in
the tree: t(v, o) gives the node that is reached when action o is selected while in
node v.

The guiding algorithms uses the weights of the nodes to modify the prob-
abilistic selection of actions from the current set of actions Õ. In detail, the
probability of selecting action o ∈ Õ if the current node is v is defined as:

Pv(o) =
w(t(v, o))∑

p∈Õ

w(t(v, p))
. (7)

This means that options that lead to highly weighted child nodes are selected
with higher probability. Therefore the nodes with low z-values should have high
weights. The weights are defined by:

w(v) =
1

(|z| + 1)f(vp)
(8)

Unless v has been visited twice, σ(C(v)) does not exist and z is undefined.
Therefore, if any selectable child node has not yet been visited twice, the guide
selects one of these randomly with their original probability assigned by the
unmodified probabilistic model. In this way the guide explores each branch at
least two times before deciding about its relative boost factor in the further
exploration. The f(vp) exponent is used to adjust the weights the more confi-
dence is gained about the distribution of criticality values in C(v). Hereby vp is
the parent node of v such that each sibling uses the same exponent.

Especially for nodes at the top of the event tree the variance of criticality
values σ(C(v)) is high and sibling nodes often have similar mean values μ(C(v)).
These nodes are at the beginning of the simulations. Many subsequent decisions
influence the criticality of a simulation. This results in high variances wide confi-
dence intervals for early nodes. In order to take the confidence about the z-values
into account the function f is used. This function should rise with the empirical
precision of the z-values and lead to a spreading of weights, the more confident

2 Note that hitherto unseen paths in the tree can arise during simulation due to the
probabilistic nature of the model being simulated. Therefore, the set of nodes in the
tree grows incrementally.
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we are in the z-values. For our use case scenario we used a simple definition with
free parameters a and b used to adjust the search speed:

f(vp) = a + b · nmin, (a, b = 0.5) (9)

where nmin represents the minimal number of visits of any v|vp is parent.

Cross-Entropy Method: Cross-entropy [14] is a method which uses adaptive
importance sampling (AIS) to adjust the current proposal distribution (denoted
by its density, or probability mass function q) such that it converges to the opti-
mal proposal distribution. Here, optimal means that a single sample is sufficient
to estimate the expectation of interest exactly. The resulting estimator therefore
has zero variance. As this optimal proposal, however, is not available, the cross-
entropy method estimates this optimal proposal based on the samples already
drawn. To evaluate the proximity of the current proposal to this estimation, the
Kullback-Leibler divergence is used. As the Kullback-Leibler divergence is also
called cross-entropy, the method is called AIS using cross-entropy.

Instead of reviewing the cross-entropy method in general, we illustrate its
application to the bouncing ball. Let pi denote the probability under the bounc-
ing ball model to draw the i-th possible angle ηi. Under the stochastic bouncing
ball model, angles are independent across time-points. Hence the probability of
a trace of multiple angles xt, t = 1 . . . , T is simply given by the product over∏

t piδ(xt, ηi). Here δ denotes the Kronecker-delta, which evaluates to 1 if xt = ηi

and 0 else. Similarly, we chose q to represent the probability of drawing different
angles. As the occurrence of the rare event effectively couples the random events
across time, it might be beneficial to allow for inter-time-dependency within the
proposal distribution. However, as this increases the number of parameters expo-
nentially, we use the same independence assumption also for the proposal distri-
bution. Specifically, in order to analytically compute the cross-entropy update,
we use the following parameterization of q:

q(x) =
exp(γiδ(x, ηi))∑

k exp(γk)
(10)

The probability of generating a particular angle x ∈ {η1, . . . ηm} can thus be
adjusted by choosing different values of γ. γ can be interpreted as the natural
parameter of the exponential family with δ(x, ηi) as the sufficient statistics, which
enables us to easily compute updates of the parameters γ, see below.

In the first step, N0 simulation runs are drawn using the current proposal
qn. Here N0 is a free parameter of the algorithm, to which we refer to as the
batch-size. Each of these simulation runs have an associated criticality value
ci. For the bouncing ball example, we used the Euclidean distance between the
vector of sampled angles to the (known) vector of angles that would lead to the
bouncing ball hitting the small area associated with the rare event. Using this
criticality, the cross-entropy method now selects the α-most critical simulation
runs, i.e., the index set

Iα := {i : |{j : cj < ci}| ≤ αN0} (11)
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This index set in turn is used to estimate the optimal proposal distribu-
tion q∗, i.e., the proposal that would lead to a zero-variance estimator3. Due
to the exponential family form of our representation, we only need to compute
the empirical means of the sufficient statistics to compute new parameters γ
to obtain an updated proposal. This in turn is due to the fact that moment
matching is equivalent to minimizing the Kullback-Leibler divergence between
the empirical zero-variance distribution and the proposal across different param-
eter settings of the proposal, see [14].

Hence, the new parameters γn+1 of the proposal distribution can be set by
calculating the empirical averages of the sufficient statistics, where we have to
account for the re-weighting according to the current proposal distribution qn.

γn+1
i =

1
|Iα|

∑
k∈Iα

1
Tk

∑Tk

t

p(xk
t )

qn(xk
t )

δ(xk
t , ηi) (12)

Here, xk
t denote the (random) choices at time k within the k-th trace of the

generated batch. Note that we can use the inner sum
∑

t as we assume inde-
pendence and therefore treat each draw along the k-th trace equally. Having
new parameters and thus a new proposal distribution qn+1, we can use this new
distributions to generate a new batch of samples of size N0.

Using this update, the parameters capture the frequencies with which differ-
ent choices η occurred within the α most critical traces of the generated batch.
This information in turn is used to generate those choices more frequently within
the next batch. However, even if the certain frequencies have not been observed,
due to the exponential structure, the corresponding probability would never be
set to zero. Therefore, using this parametrization, we cannot converge to an
optimal distribution completely ignoring certain choices unless we use arbitrary
large batch-sizes.

5 Confidence Intervals

In order to compare results of different simulation guiding techniques, we need to
be able to calculate their confidence intervals (CI), as explained in this section.

Binomial Confidence Interval. For computing the confidence interval of the näıve
estimator, we employ the simple binomial CI, also known as the Clopper-Pearson
confidence interval, or exact confidence interval [1].

Bootstrap Confidence Intervals. When applying importance sampling, the orig-
inally binomial distribution is modified to a multinomial one, as samples are
no longer evaluated with just 0 (safe run) or 1 (safe or bad run), but with a
plethora of different importance weights. In order to calculate an approxima-
tion of the corresponding CI, we compute bootstrap confidence intervals [3].
In order to compute bootstrap confidence intervals for an estimator on samples
3 Note that, due to the finite amount of samples used, this is only an approximation.
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Fig. 4. Estimated probabilities and 99% confidence intervals for approaching the bridge
pillar closer than a specified critical distance. Blue: näıve SMC, green: TUTS guiding.
(Color figure online)

S0 = (x1, . . . , xn), one creates multiple samples of the same size by drawing from
{x1, . . . , xn} with replacement. On these re-sampled samples one then computes
the variability of the estimator evaluated on each of the re-samples. Specifi-
cally, let S1, . . . Sm new samples be obtained via re-sampling and let f be the
estimator which takes as argument a sample and provides the estimate as an
output. To obtain a 1−α confidence interval, one then orders the estimator out-
puts f(S1), . . . , f(Sm) from lowest to highest. The confidence interval in turn is
then given by [f(Sl), f(Su)], where l and u are the indices corresponding to the
(α/2)m and (1 − α/2)m entries in the ordered list respectively.

6 Results

In the driving example, a critical event Xi occurs whenever the distance between
car and bridge pillar falls below a specified distance. The likelihood p̂ can be
computed using the unbiased importance sampling estimator

p̂ ≈ 1
N

∑N

i=1

({
1, if xi is critical
0, else

)
p(xi)
q(xi)

, xi ∼ qi.

N represents the number of simulation runs, p(xi) the original probability and
q(xi) the weighted probability of xi when simulated under measure q.

To show the likelihood of different criticalities, we plot in Fig. 4 the estimated
probabilities and 99% confidence intervals for approaching the bridge pillar closer
than a specified critical distance. The results have been computed independently
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Fig. 5. Randomly bouncing ball with 1,000 samples per batch and 10,000 repetitions.
Left: Histogram of the frequency of selecting different bounce angles η.
Right: Frequency of reporting a hit probability of at most p, counted over 10,000
independent SMC runs of 1,500 samples each. (Color figure online)

using näıve Monte Carlo SMC (blue graph) and TUTS guiding (green graph).
The latter obviously presents two significant enhancements:

1. Significantly better assessment of critical distances below 0.7 m, which rep-
resent the rare events in the scenario. The smallest distance was recorded at
approx. 0.1 m with an estimated probability of 5×10−13 and the correspond-
ing 99% bootstrap confidence interval spanning [10−15, 10−11]. In the same
regime, näıve sampling can only provide 99% confidence that the probability
is below 7 × 10−4.

2. Tighter upper bounds on the likelihood of reaching critical distances above
0.7 m. A quantitative safety specification like “the likelihood of getting closer
than 1 m to the bridge pillar should be less than 10−4” can thus be verified
with 99% confidence by TUTS, while näıve sampling remains inconclusive.
Näıve sampling well reports tighter lower bounds than TUTS, but these are
of no use in quantitative verification: both acceptance and refutation of quan-
titative safety targets depend on whether the threshold is exceeded by the
upper bound of the confidence interval.

This comparison demonstrates that deliberately asymmetric CIs can be bene-
ficial within statistical verification: preferring sharp upper bounds of CIs over
narrowing the CIs would be a sensible optimization goal for sampling strategies
in statistical model-checking.

We can demonstrate this effect also by a threefold comparison on the bounc-
ing ball example, where we compare näıve sampling, adaptive importance sam-
pling driven by cross-entropy, and TUTS guiding. The left part of Fig. 5 demon-
strates that TUTS actually employs a significantly different importance sampling
strategy than the cross-entropy method. This strategy leads to higher hit rates,
as witnessed by Table 1. This higher hit rate, at correspondingly lower impor-
tance weight assigned to each hit, generates a steeper increase of the distribution
of test outcomes around the true probability, as depicted in the right part of
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Table 1. Hits to target achieved over 10,000 batch runs of 1,000 samples each.

Algorithm Batches featuring ≥ 1 hit Total number of hits

Näıve Monte Carlo sampling 648 671

AIS driven by cross-entropy 3909 5452

TUTS guiding 4840 25867

Fig. 5. This graph shows for each algorithm the frequency (counted over 10,000
independent runs of 1,500 samples each) of reporting a hit probability below
the threshold given on the horizontal axis. Due to quantization, näıve sampling
is inapt of computing any positive probability less than 1

1500 . As the actual hit
probability is considerably smaller than 1

1500 at 0.000064 (marked by the red per-
pendicular line), näıve sampling is likely to report a massive underestimate of 0;
this happens on approx. 91.2% of the runs. Being based on importance sampling,
both TUTS and AIS can yield probability estimates close to the actual proba-
bility and are thus more informative. For the small sample size underlying the
graph (≤2, 000 per batch) TUTS is significantly less likely to generate consider-
able underapproximations below 0.000042, thus reducing the false-positive rate
when employing acceptance thresholds in that range. TUTS also has by a fair
margin the highest probability of generating relatively exact approximations:
Some 3,340 estimates provided by TUTS fall into the range of ±25% around
the true probability, while AIS features only 2,065 within that range (and näıve
sampling none). As might be expected, the likelihood of massive underestima-
tion by AIS decreases when AIS is given significantly more time for adaptation
by increasing batch sizes. For the bouncing ball example we found this to hap-
pen when batch sizes considerably exceed 2,000. In that regime, AIS starts to
outperform TUTS concerning the number of massive underestimates generated,
though TUTS continues to yield the steepest curve around the true probability.
Given that the rare events in our actual application domain of ADAS are mul-
tiple orders of magnitude more rare than for the bouncing ball, it is, however,
unclear whether the corresponding batch sizes guaranteeing convergence of AIS
would be a practical option. The faster initial convergence of TUTS seems an
interesting property to explore.

7 Conclusion

Within this article, we have extended the TUTS guiding algorithm for identify-
ing extremely rare events in statistical model checking [13] by rigorous confidence
bounds. We argue that within quantitative verification contexts, not the actual
width of the confidence bounds is relevant, but tightening the single bound rele-
vant to the verification problem. In verification contexts this is the upper bound
on violating the requirement or, equivalently, the lower bound on satisfaction.
This implies that classical means of variance reduction in importance sampling
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frameworks tend to aim at the wrong goal, namely achieving a precise prob-
ability estimate by reduction of the width of the confidence interval, which is
correlated with, yet not identical to the goal of tightening the single bound
of the confidence interval that is of relevance to verification. A complex traffic
benchmark from the development of advanced driver assistance systems provides
witness of this effect: here TUTS guiding provides much sharper upper bounds
on accident probabilities throughout the whole regime even though providing
relatively wider confidence intervals than näıve sampling in parts of the regime
(cf. Fig. 4). As simulation guiding by the optimal adaptive importance sam-
pling method, namely the cross-entropy approach, could not be realized on this
complex example, we addressed a second, artificial example of a bouncing ball,
where we compared näıve sampling, adaptive importance sampling guided by the
cross-entropy method, and TUTS guiding. The results confirm that the TUTS
algorithm provides a sampling scheme that converges rapidly even for batch
sizes that are small relative to the actual probability. For such small batches,
it outperforms both näıve sampling and the cross-entropy method. Beneficial
combinations with the latter, where TUTS would foster fast early convergence
and the cross-entropy method could then take over, remain an issue of further
research.
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S.: Importance sampling for stochastic timed automata. In: Fränzle, M., Kapur,
D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 163–178. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47677-3 11

https://doi.org/10.1007/978-3-642-15297-9_9
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52010DC0389
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52010DC0389
http://ec.europa.eu/eurostat/documents/2995521/7734698/7-18112016-BP-EN.pdf
http://ec.europa.eu/eurostat/documents/2995521/7734698/7-18112016-BP-EN.pdf
https://doi.org/10.1007/11560647_17
https://doi.org/10.1007/978-3-319-47677-3_11


Quantitative Risk Assessment via Guided Simulation for Rare Events 321

10. Kahn, H.: Use of different Monte Carlo sampling techniques, p. 766 (1955)
11. Page, Y., et al.: A comprehensive and harmonized method for assessing the effec-

tiveness of advanced driver assistance systems by virtual simulation: the P.E.A.R.S.
initiative. In: The 24th International Technical Conference on the Enhanced Safety
of Vehicles (ESV). NHTSA, Gothenburg (2015)

12. Puch, S., Wortelen, B., Fränzle, M., Peikenkamp, T.: Using guided simulation to
improve a model-based design process of complex human machine systems. In:
Modelling and Simulation, ESM 2012, pp. 159–164. EUROSIS-ETI, Essen (2012)

13. Puch, S., Wortelen, B., Fränzle, M., Peikenkamp, T.: Evaluation of drivers inter-
action with assistant systems using criticality driven guided simulation. In: Duffy,
V.G. (ed.) DHM 2013. LNCS, vol. 8025, pp. 108–117. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39173-6 13

14. Rubinstein, R.: The cross-entropy method for combinatorial and continuous opti-
mization. Methodol. Comput. Appl. Probab. 1, 127–190 (1999)

15. Vogel, K.: A comparison of headway and time to collision as safety indicators.
Accid. Anal. Prev. 35(3), 427–433 (2003)

16. Vorndran, I.: Unfallstatistik - Verkehrsmittel im Risikovergleich. DESTATIS
(2010). https://www.destatis.de/DE/Publikationen/WirtschaftStatistik/Monatsa-
usgaben/WistaDezember10.pdf? blob=publicationFile

17. WIVW GmbH: Fahrsimulationssoftware SILAB. https://wivw.de/de/silab
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