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Abstract. Despite the substantial progress in the area of deductive
program verification over the last years, it still remains a challenge to
use deductive verification on large-scale industrial applications. In this
abstract, I analyse why this is case, and I argue that in order to solve
this, we need to soften the border between models and code. This has
two important advantages: (1) it would make it easier to reason about
high-level behaviour of programs, using deductive verification, and (2) it
would allow to reason about incomplete applications during the develop-
ment process. I discuss how the first steps towards this goal are supported
by verification techniques within the VerCors project, and I will sketch
the future steps that are necessary to realise this goal.

1 The Problem: Scaling Deductive Program Verification

Deductive program verification is a technique to prove the correctness of a pro-
gram w.r.t. its specification, which is given in terms of pre- and postconditions of
the methods occurring in the program, following the Design-by-Contract princi-
ple [20]. Typically deductive program verification uses (an extension or variant
of) Hoare logic [12] or dynamic logic [8] as its underlying verification technique.

Over the last years, enormous progress has been made on the use of such
deductive program verification techniques for non-trivial examples, such as for
example the discovery of a bug in Timsort [11], the verification of a Linux’s USB
keyboard driver [25], the verification of avionics software [7], and the various
VerifyThis challenges (see e.g., [14,17]). There are many different factors that
have contributed to this progress, such as:

– the increase in power of automated provers,
– efficient use of multi-core hardware for formal verification tools,
– developments in specification languages, and
– the development of new verification theories, such as the use of concurrent

separation logics to reason in a modular way about concurrent programs [3,
18,21].

Of course, there exist other formal analysis techniques that provide a much
higher level of automation than deductive program verification, but the attrac-
tiveness of deductive program verification lies in that (1) it can be used to reason
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about a very large and flexible class of program properties, and (2) it allows to
reason about programs with an unbounded state space, and in particular about
parametrised programs, i.e., it is possible to prove that a method void m (int
n) respect its specification for any possible value of its parameter n.

Therefore, I believe it is important to investigate why the use of deductive
program verification on large-scale industrial examples remains difficult, and
what can be done to improve this situation. To understand why the use of
deductive program verification remains difficult, many different reasons can be
given, but I believe the most important ones are the following.

– Applications are often simply too large to handle, and the verifier lacks the
overview of the complete application. Deductive program verification is tra-
ditionally quite closely connected to the concrete code, and as a result, it can
be difficult to reason about the application at a suitable level of abstraction,
because too many low-level details have to be dealt with.

– Deductive program verification typically requires a high number of auxil-
iary annotations (loop invariants, intermediate assertions), which require a
detailed understanding of the code and of the verification process.

– For large applications, if we wish to use deductive program verification during
the development process, when not all components are available yet, typically
the deductive program verification tools require at least some stubs (for exam-
ple, method contracts for the unimplemented methods) for the missing parts
before the available components can be verified.

– To reason about global system properties (which is necessary if we wish to
show that the program requirements are fulfilled) we need to have some way
to reason about the missing components as well.

– As mentioned above, deductive program verification techniques are developed
for pre-postcondition-style specifications, which usually do not match well
with how high-level program requirements are expressed. We need formal
techniques to connect these two levels of specifications.

In this position paper, I propose to work on the unification of models and
code, to provide a solution to this problem. I will then sketch the first steps
towards this solution, which we are currently developing within in the VerCors
tool set. Finally, I will conclude by outlining further research challenges that
need to be addressed to fully achieve my proposed solution.

2 The Solution: Unification of Models and Code

I believe that to make the use of deductive program verification on large-scale
industrial examples possible, we need to soften the border between program and
model (or global/high-level specification). Ideally, one can have different views on
the components of an application, see Fig. 1 for a visualisation. First of all, there
should of course be a code view, which is executable and deterministic, and which
provides many low-level details. But one also needs to have a specification view
on the same component, which is high-level, declarative and abstract, possibly
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Fig. 1. Multiple views on a system component

non-deterministic, and leaves out many details. And many more different views
for the same component should be possible: a high-level specification view can
be refined into a more detailed, but still declarative model, which can further
be refined into an executable model and finally into a code view. And this code
view might be further refined, into a program that is further optimised, e.g. for
performance or memory usage.

When we take this approach, there are two crucial requirements:

1. we need techniques to connect the views at all the different levels, and this
connection needs to be provably correct, and

2. we need to be able to compose the components at all different view levels, i.e.
it should be possible to “build” an application, where some of its components
are only described by a high-level specification, and to combine these with
code-level components, in order to reason about properties of the application
as a whole, as visualised in Fig. 2.

There already exists some work on refinement between different views, such as
done in VDM [5,10,15], Z [16], or EventB [1]. However, most of these approaches
focus on refinement between different models, and if they go all the way to exe-
cutable code, typically the code is extracted from a low-level model description,
which is close to the code in spirit, but the connection between the code and the
low-level model is not proven correct. Two exceptions that I am aware of are:

Fig. 2. Global verification with multiple component views
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(1) the work by Dalvandi et al. [9], which aims at extracting code and annota-
tions from an Event-B-model and then proving these correct using Dafny, and
(2) the work of Tran-Jörgensen et al. [26], which generates JML annotations
from VDM specifications.

Also, in the nineties early ideas on the transformation from models to pro-
grams, and from program to program have been developed, see e.g. [6,22,24].
These existing ideas need to be studied carefully, and it needs to be investigated
if and how they can be incorporated in the current state-of-the-art deductive
program verification tools.

Finally, also the work on the CompCert project, see e.g. [4,19] can be a source
of inspiration. In this project, a verified tool chain for C is developed in Coq.
However in the approach I advocate, also practical verification and applicability
to different programming languages should be a major driving force.

3 First Steps: The VerCors Approach

Within the VerCors tool set, we have started to develop techniques to support
this idea. In particular, we allow to specify an abstract model view of a compo-
nent using process algebra, and then we use an extension of concurrent separa-
tion logic to prove that the concrete code behaves according to this model [23],
while model checking technology can be used to derive global properties of the
program from the process algebra models.

To illustrate this idea, let us consider the small code example in Fig. 3. Sup-
pose we have a shared variable x protected by a lock lck, and two threads that
manipulate x: one thread multiplies x by 4, the other thread adds 4 to x. The
specifications of the two threads capture the thread’s behaviours abstractly:
assuming that the behaviour of the thread before this method call was equal to
the process algebra term H (written Hist(H)), execution of the method adds the
action mult(4) or add(4) to this behaviour (where H.a denotes a process algebra
term H, followed by action a, see the thread postconditions in lines 4 and 16).

1 class Mult extends Thread {

2
3 //@ requires Hist(H);

4 //@ ensures Hist(H.mult(4));

5 public void run() {

6 //@ action mult(4) {

7 lock(lck);

8 x = x * 4;

9 unlock(lck);

10 //@ }

11 }

12 }

13 class Add extends Thread {

14
15 //@ requires Hist(H);

16 //@ ensures Hist(H.add(4));

17 public void run() {

18 //@ action add(4) {

19 lock(lck);

20 x = x + 4;

21 unlock(lck);

22 //@ }

23 }

24 }

Fig. 3. Example: abstract behaviour specifications
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1 //@ assume true;

2 //@ guarantee x == \old(x) * k;

3 action mult(k);

4
5 //@ assume true;

6 //@ guarantee x == \old(x) + k;

7 action add(k);

Fig. 4. Example action specifications

The action annotations (lines 6–10, and lines 18–22) inside the method body
indicate the concrete code fragments that corresponds to the abstract actions.
Given the action specifications that describe the effect of the actions mult and
add in Fig. 4, we use our program logic to prove that the action implementations
behave as specified.

Moreover, the program logic can also be used to verify that a process algebra
term describes the global behaviour of the program. Suppose we have a main

method, which starts the two threads and then waits for them to terminate.
We can prove that the behaviour of this main method is to execute the mult
and the add action in any order (see the postcondition in line 2 below, where
P + Q denotes a non-deterministic choice between P and Q and empty denotes
an empty history). Finally, we can use existing model checking technology to
reason about this abstract model, combined with the action specifications, to
derive that the possible final values of variable x are 4 and 16.

1 //@ requires Hist(empty) & x == 0;

2 //@ ensures Hist(mult(4).add(4) + add(4).mult(4));

3 public void main(...) {

4 Thread t1 = new Mult(); Thread t2 = new Add();

5 t1.fork(); t2.fork();

6 t1.join(); t2.join();

7 }

This example is very simple, but we have used the same approach on larger
and non-terminating programs [2,23,27].

4 Future Steps

The approach described above is still in its early stages. To fully realise the goal
to have a seamless integration of code and models, more work is needed. I believe
that the theory of how to make a connection between different levels of abstract
models is reasonably well-understood [1,5,15,16], but to make a provably correct
transformation from model (or high-level specification) to code is less clear.
There are approaches to generate a model from code, but correctness of the
extraction is then typically a meta-property, and cannot be proven for the model
and code directly (and thus, in particular depends on whether the extraction is
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correctly implemented1). There also exists work on (provably correct) model-to-
code generation, see e.g. [28], but the generated code is still very close to the
model, and needs to be improved to achieve a reasonable performance.

Therefore, I believe we need to address the following research challenges:

– we need to further develop refinement techniques that from an abstract model
can generate annotated and verifiable code, where it is important that the
generated code can be executed efficiently;

– we need techniques to prove that a program that is transformed to optimise it
for performance remains correct after the transformation, see [13] for further
ideas;

– we need to consider whether it is possible to automatically derive a model or
abstract view from a concrete program; and

– we need to further develop the abstract model theory for concurrent software,
in particular making the abstract models compositional, such that it is pos-
sible to reason about the global behaviour of a system that is composed of
both abstract models and concrete code components.

Acknowledgements. The author is supported by NWO VICI 639.023.710 Mercedes
project.

References

1. Abrial, J.-R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press (2010)

2. Amighi, A., Blom, S., Huisman, M.: VerCors: a layered approach to practical ver-
ification of concurrent software. In PDP, pp. 495–503 (2016)

3. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. LMCS 11(1) (2015)

4. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5 1

5. Bjørner, D.: The vienna development method (VDM). In: Blum, E.K., Paul, M.,
Takasu, S. (eds.) Mathematical Studies of Information Processing. LNCS, vol. 75,
pp. 326–359. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09541-
1 33

6. Bowen, J.P., Olderog, E.-R., Fränzle, M., Ravn, A.P.: Developing correct systems.
In: Fifth Euromicro Workshop on Real-Time Systems, RTS 1993, Oulu, Finland,
22–24 June 1993, Proceedings, pp. 176–187. IEEE (1993)

7. Brahmi, A., Delmas, D., Essousi, M.H., Randimbivololona, F., Atki, A., Marie, T.:
Formalise to automate: deployment of a safe and cost-efficient process for avionics
software. In: Embedded Real-Time Software and Systems (ERTS2) (2018)

8. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier, North-Holland (1974)

1 Of course, a similar argument can be made here, but the advantage is that if the
annotated code is available, correctness can be reverified by other tools.

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33


On Models and Code 117

9. Dalvandi, M., Butler, M.J., Rezazadeh, A.: Transforming Event-B models to Dafny
contracts. In: Proceedings of the 15th International Workshop on Automated Ver-
ification of Critical Systems (AVoCS 2015), Volume 72 of Electronic Communica-
tions of the EASST (2015)

10. Dawes, J.: The VDM-SL Reference Guide. Pitman (1991)
11. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
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