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Abstract. This tutorial presents and motivates various malware detec-
tion tools and illustrates their usage on a clear example. We demonstrate
how statically-extracted syntactic signatures can be used for quickly
detecting simple variants of malware. Since such signatures can easily be
obfuscated, we also present dynamically-extracted behavioral signatures
which are obtained by running the malware in an isolated environment
known as a sandbox. However, some malware can use sandbox detection
to detect that they run in such an environment and so avoid exhibiting
their malicious behavior. To counteract sandbox detection, we present
concolic execution that can explore several paths of a binary. We con-
clude by showing how opaque predicates and JIT can be used to hinder
concolic execution.

1 Introduction

Context. Malicious software known as malware is a growing threat to the secu-
rity of systems and users. The volume of malware is dramatically increasing
every year, with the 2018 Cisco report estimating a 12 times increase in mal-
ware volume from 2015 to 2017 [5]. For this reason, effective and automated
malware detection is an important requirement to guarantee system safety and
user protection.

Malware signatures. Signature-based malware detection refers to the use of dis-
tinctive information known as signatures to detect malware. An extraction pro-
cedure is performed on an unclassified binary file to extract its signature, this
signature is then compared against similar signatures of malware to determine
whether the unclassified binary’s signature indicates malicious behavior. The
simplest kind of signatures are syntactic signatures [28,30] that detect malware
based on syntactic properties of the malware binaries (like their length, entropy,
number of sections, or presence of certain strings). Alternatively, behavioral sig-
natures [28,30] can be based on behavioral properties of malware (like their
interaction with the system and its network communications).
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Static analysis. Syntactic signatures can be easily extracted from binaries using
static analysis [28], i.e. analyzing the binary without having to execute it e.g. by
disassembling the binary or by scanning it for specific strings. Importantly, mal-
ware detection based on statically-extracted syntactic properties is in practice
the only technique fast enough to be used for on-access malware detection, which
is why antivirus software are typically based on this type of analysis. However,
obfuscation techniques [16] exist that modify the binary code to change its syn-
tactic properties and make it harder to analyze by static analysis while keeping
the same behavior. We present static malware detection based on syntactic sig-
natures in Sect. 2.

Dynamic analysis. Due to the weaknesses of static signatures, behavioral sig-
natures are used to counter obfuscation techniques that change the malware’s
syntactic properties but not its behavior. A common technique to analyze a
binary’s behavior is dynamic analysis [28] consisting of executing the malware
and observing its effects on the system. To avoid infecting the analyst’s system
and to prevent the malware from spreading, the malware is commonly executed
in a sandbox, i.e. a protected and isolated environment that has been instru-
mented to be easy to analyze and restore after infection. However, malware can
implement sandbox detection techniques to determine whether they are being
executed in a sandbox, in which case the malware avoids exhibiting its malicious
behavior and often delete itself. We present dynamic malware detection based
on behavioral signatures in Sect. 3.

Concolic analysis. The main limitation of dynamic analysis is that it extracts
and analyzes only one of the possible execution paths of the analyzed binary,
e.g. the one that avoids exhibiting malicious behavior. To address this limi-
tation, concolic analysis (a portmanteau of CONCrete symbOLIC) [9,25] has
been developed to extract a binary file’s behavior while covering as many of the
binary’s possible execution paths as possible. Concolic analysis maintains a sym-
bolic representation of the constraints found during its analysis, and relies on
an external SMT solver to simplify such constraints and determine whether the
possible paths can actually be executed or correspond to dead code. However,
malicious techniques can be used to highly complicate the conditional constraints
of the code, exponentially increasing the size of the symbolic representation and
hindering concolic analysis. We present concolic malware detection based on
behavioral signatures in Sect. 4.

For the sake of clarity and safety we will not work on a real malware. We
provide in Fig. 1 a very simple C program that prints “I am evil!!!” to standard
output, and we will treat this as malicious behavior. This simplification allows
us to showcase various detection and obfuscation techniques in the rest of the
paper. Unless otherwise stated, all examples are compiled using gcc with default
settings, on an AMD64 GNU/Linux machine.
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1 #include <stdio.h>
2
3 int malicious_behaviour (){
4 printf("I�am�evil !!!\n");
5 }
6
7 int main(int argc , char **argv){
8 malicious_behaviour ();
9 }

Fig. 1. The running example of fake malware written in C that will be used throughout
the paper.

2 Static Analysis: Syntactic Pattern Matching

Syntactic signatures are used to classify binaries by looking at particular patterns
in their code. Due to the simplicity of syntactic pattern matching, these tech-
niques tend to be very fast in practice. In this section, we present the principles
of syntactic pattern matching, then illustrate the approach with three different
tools. We then explain how binaries can be obfuscated against such detection
techniques and show a very simple case of obfuscation for our running example.

2.1 Principle

Signatures are defined by attributes and properties which describe some object of
analysis. In the context of binary analysis, syntactic signatures refer to sequences
of bytes that describe proprieties such as file checksum [1], type, API calls [11],
etc.

For instance, once it is verified that a given binary follows the format of
a Portable Executable (PE) file [21], other properties such as imported and
exported functions, base addresses of the section headers, debug information,
presence & features of standard binary sections, and physical & virtual addresses
can be easily extracted due to the way the PE header format is defined.

This information can provide a rich understanding of how the binary is
expected to run on the system as well as contextual information, such as the
date on which the binary was (supposedly) compiled. However, as easily as this
information can be extracted, it is also easy to modify or corrupt this information
in order to mislead analysis [18].

To hinder syntactical analysis, an adversary can employ obfuscation tech-
niques to conceal the syntactical properties of the original malware sample. Such
techniques comprise simple ones such as packing, a technique to to compress
the executable code as plain data and uncompress it only at runtime, or more
advanced ones such as polymorphism and virtualization [26].

Despite their limitations [22], static syntactic signatures are largely employed
in malware analysis. For example, ClamAV [6] allows the usage of syntactic
signature in the YARA [23] format for protection against malicious files, and
VirusTotal [32] provides an interface that takes YARA signatures to lookup
matching files throughout its whole database.
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Some of the biggest advantages of static signatures are the fact that they are
very lightweight, cheap, and capable to capture architecture-dependent binary
file attributes like binary section names and sizes. However, it is non-trivial to
create and maintain syntactic signatures that: are specific enough to match only
to the intended malware family; but not so specific that minor variants of the
malware are not detected.

We now present some of the most popular tools for syntactic pattern match-
ing including their signature formats, and discuss in more details their limita-
tions.

2.2 Example Tool: PEiD

PEiD1 is a tool for the detection of PE malware, packers, and compilers. Despite
being already discontinued, PEiD is still largely used and sometimes updated by
the users community.

PEiD defines an underlying grammar that allows the creation of new match-
ing rules. This way, the inclusion of new rules to address a new malware, packer,
or compiler does not depend on updating the tool and permits researchers to
conveniently create and share rules.

As a first example, rules for .NET objects are displayed below.

1 [.NET DLL -> Microsoft]
2 signature = 00 00 00 00 00 00 00 00 5F 43 6F 72 44 6C 6C
3 4D 61 69 6E 00 6D 73 63 6F 72 65 65 2E 64 6C 6C 00 00 ??
4 00 00 FF 25
5 ep_only = false
6
7 [.NET executable -> Microsoft]
8 signature = 00 00 00 00 00 00 00 00 5F 43 6F 72 45 78 65
9 4D 61 69 6E 00 6D 73 63 6F 72 65 65 2E 64 6C 6C 00 00 00

10 00 00 FF 25
11 ep_only = false
12
13 [.NET executable]
14 signature = FF 25 00 20 40 00 00 00 00 00 00 00 00 00 00
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 00 00 00 00 00 00 00 00 00 00 00 00 00 00
17 ep_only = true

Each rule starts with a string identifier between square brackets, which is
displayed to the user whenever the rule is matched. The signature line contains
the signature definition as a byte array that is expected to match with the file
content, where ?? is used to match any byte. Finally, the ep only line indicates
whether the rule is expected to match only the bytes at the binary’s entry point
or anywhere in the file.

The following PEiD rule detects our running example from Fig. 1.

1 [2018 -ISOLA -Tutorial -> PEiD]
2 signature = 49 20 61 6d 20 65 76 69 6c 21 21 21
3 ep_only = false

1 https://www.aldeid.com/wiki/PEiD.

https://www.aldeid.com/wiki/PEiD
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The signature matches the byte array that corresponds to the string “I am
evil!!!”, not limiting the match to the entry point (since ep only = false). The
command below shows that the string is present in the compiled binary for the
malware.

1 $ hexdump -C malware_version1 | grep evil

2 000005 e0 01 00 02 00 49 20 61 6d 20 65 76 69 6c 21 21 21 |....I am evil !!!|

1 #include <stdio.h>
2 #include <wchar.h>
3
4 int malicious_behaviour (){
5 wprintf(L"I�am�evil !!!\n");
6 }
7
8 int main(int argc , char **argv){
9 malicious_behaviour ();

10 }

Fig. 2. Our fake malware example, using wide characters to avoid simple string detec-
tion.

To easily bypass this detection the malware author can slightly change the
malware to store the string using wide characters instead of ASCII characters
(which does not change the malware’s behavior). This modification is depicted
in Fig. 2. In this case, looking for string “I am evil!!!” in the usual format will
not work anymore. The command below shows that the string is detected only
if specifically looking for wide characters.

1 $ hexdump -C malware_version2 | grep evil
2 $ strings -e L malware_version2 | grep evil
3 I am evil !!!

A new rule could be created to match wide-chars, however requiring a whole
new rule for this illustrates one of the biggest limitations of PEiD rules: the lack
of flexibility in the rule grammar. For instance, the most recent PEiD database2

uses 829 rules (out of 3714) just to define version 1.25 of the VMProtect3 packer.

2.3 Example Tool: DIE

Another tool to match pattern in files is DIE4, which stands for “Detect It Easy”.
DIE supports a JavaScript-like scripting language for signatures. DIE allows the
creation of flexible rules by using matching conditions, despite being limited by
the lack of a well-defined code pattern for rule creation.

An example of a DIE rule is shown below.

2 https://handlers.sans.org/jclausing/userdb.txt.
3 http://vmpsoft.com/.
4 https://github.com/horsicq/Detect-It-Easy.

https://handlers.sans.org/jclausing/userdb.txt
http://vmpsoft.com/
https://github.com/horsicq/Detect-It-Easy
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1 // DIE’s signature file
2
3 init("protector","PE�Intro");
4
5 function detect(bShowType ,bShowVersion ,bShowOptions)
6 {
7 if(PE.compareEP("8B04249C60E8 ........5 D81ED ........
8 ���������������������80BD ..........0 F8548"))
9 {

10 sVersion="1.0";
11 bDetected =1;
12 }
13
14 return result(bShowType ,bShowVersion ,bShowOptions );
15 }

The rule matches files protected with PE Intro, which is detected by an
expected sequence of bytes at the entry point. The rule starts by declaring a
new signature at “init” and then by proving a description of the rule in the
“detect” function.

Like PEiD, DIE has a simple flag (PE.compareEP) determining whether to
look for byte arrays at the entry point. DIE uses “.” as wildcards to match any
byte. Rule matching is indicated by the variable bDetected, which is set to 1.

DIE also support more sophisticated rules that depends on multiple condi-
tions and code reuse as in the rule below.

1 // DIE’s signature file
2
3 includeScript("rar");
4
5 function detect(bShowType ,bShowVersion ,bShowOptions)
6 {
7 detect_RAR(1, bShowOptions );
8 return result(bShowType ,bShowVersion ,bShowOptions );
9 }

Among the main drawbacks of DIE are: its rule syntax, which is very verbose
and requires an ad-hoc script for each rule, and also DIE’s lack of documenta-
tion. Furthermore, DIE lacks features like annotations and well-defined modular
interfaces.

2.4 Example Tool: YARA

A more modern tool and the current de facto standard is YARA [23]. YARA
rules are defined using a JSON-like format and are meant to provide greater
flexibility than PEiD and DIE rules. A YARA rule consist of strings (possibly
including binary strings) and conditions that determine whether to trigger the
rule. Furthermore, YARA rules provide annotations that simplify rule descrip-
tion, enable referencing between rules, and use modules that describe high-level
file properties.

In our running example, both versions of the code in Fig. 1 and in Fig. 2 can
be matched using a single YARA rule.
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1 rule 2018 ISOLATutorialYara {
2 meta:
3 description = "Example�of�YARA�rule�for�ISOLA�2018"
4 strings:
5 $ascii_string = "I�am�evil !!!"
6 $wide_string = "I�am�evil !!!" wide
7 condition:
8 $ascii_string or $wide_string
9 }

This example shows that the YARA rule format is more readable than PEiD’s
or DIE’s and also that it can cover both wide and ASCII characters with a single
rule. Still, the YARA grammar allows for even more straightforward description
of the rule using multiple annotations for a single string.

1 rule 2018 ISOLATutorialYaraSimpler {
2 meta:
3 description = "Simpler�YARA�rule�for�ISOLA�2018"
4 strings:
5 $evil_string = "I�am�evil !!!" wide ascii
6 condition:
7 $evil_string
8 }

YARA provides many high-level modules allowing to include higher level
properties in rules, like file size or entropy5.

However, with small modifications to the code an adversary can bypass detec-
tion without changing any malicious behavior. One way to achieve this result is
depicted in Fig. 3. In this version, the targeted string will not be contiguously
placed in memory, therefore all the YARA rules above for the running example
will fail to match.

1 #include <stdio.h>
2
3 int malicious_behaviour (){
4 printf("I�am");
5 printf("�evil !!!\n");
6 }
7
8 int main(int argc , char **argv){
9 malicious_behaviour ();

10 }

Fig. 3. Our fake malware sample, with broken strings to avoid string-based detection.

These simple obfuscation techniques illustrate the limitations of syntactic
signatures, showing a toy example of how malware can be modified to avoid
syntactic pattern matching. It is easy for malware creators to create new versions
of their malware that avoid syntactic pattern matching [20].

5 http://yara.readthedocs.io/en/v3.5.0/modules.html.

http://yara.readthedocs.io/en/v3.5.0/modules.html
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2.5 Limitations: Obfuscating Against Syntactic Pattern Matching

In order to avoid pattern matching, it is common to use generic techniques like
obfuscation in which important strings, parts of the code or even the whole
code are transformed into some obfuscated representation. Generally, malware
authors use obfuscation to hide information like the address of their Command
& Control (C&C) server, targeted business, eventual credentials hardcoded into
the sample, etc.

Figure 4 shows how our running example from Fig. 1 can be modified to
remove any plain representation of the string targeted in our previous example.
The commands below show that the string “I am evil!!!” is not contained in the
file in either its ASCII or wide format.

1 $ strings malware_version4 | grep evil
2 $ strings -e L malware_version4 | grep evil

In this example, the string “I am evil!!!” is XORed with the keystream
“ISOLA-TUTORIAL-2018” resulting in the following byte array "0x00 0x73
0x2e 0x21 0x61 0x48 0x22 0x3c 0x38 0x6e 0x73 0x68 0x4b". The byte
array is hardcoded along with the keystream so as to recover the original string
whenever needed. Despite being an insecure practice to store the ciphertext along

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 char *keystream = "ISOLA -TUTORIAL -2018";
6 char *obf = "\x00\x73\x2e\x21\x61\x48\x22\x3c\x38\x6e\x73\x68\x4b";
7
8 char *xor(char *str){
9 int i;

10 char *cipherstr;
11 int len = strlen(keystream );
12 cipherstr = malloc(len * sizeof(char ));
13 for(i = 0; i < len; i++) {
14 cipherstr[i] = str[i] ^ keystream[i];
15 if(cipherstr[i] == ’\n’) {
16 cipherstr[i + 1] = ’\0’;
17 break;
18 }
19 }
20 return cipherstr;
21 }
22
23 int malicious_behaviour (){
24 int i;
25 //char *str = "I am evil !!!\n";
26 char *str = xor(obf);
27 printf("%s", str);
28 }
29
30 int main(int argc , char **argv){
31 malicious_behaviour ();
32 }

Fig. 4. Our fake malware sample, with XOR-obfuscated strings to avoid string-based
detection.
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with the key, the main intention of malware creators is to remain undetected until
infection, rather than long term security.

The same idea can be achieved with other encryption methods. Nevertheless,
one strategy employed to detect such cases is to pattern match constants defined
in their algorithms, as shown below for a constant used by AES.

1 rule RijnDael_AES
2 { meta:
3 author = "_pusher_"
4 description = "RijnDael�AES"
5 date = "2016 -06"
6 strings:
7 $c0 = { A5 63 63 C6 84 7C 7C F8 }
8 condition:
9 $c0

10 }

Another possibility is to completely obfuscate the code by changing the syn-
tactic structure of the binary. The commands below show how to compile the
binary statically and how to pack it with UPX, and how this changes the syn-
tactic properties of the binary without modifying its behavior.

1 $ gcc -static -o malware_version4 malware_version4.c
2 $ upx -3.94 - amd64_linux/upx -f malware_version4 \
3 -omalware_version4_upx
4 $ readelf -h malware_version4 | tail -n 2
5 Number of section headers: 33
6 Section header string table index: 30
7 $ readelf -h malware_version4_upx | tail -n 2
8 Number of section headers: 0
9 Section header string table index: 0

10 $ ./ malware_version4
11 I am evil !!!
12 $ ./ malware_version4_upx
13 I am evil !!!

As we have seen, syntactic properties are easy to extract, however, since they
are easily modifiable without changing the malicious behavior of the binary, they
are also easy to bypass. This has a major impact on the effectiveness of syntactic
signatures.

Hence, behavioral signatures have to be used to detect malware based on
their behavior, since behavior is harder to automatically obfuscate. The next
section explains how to extract behavioral signatures dynamically by executing
the malware samples in a sandbox.

3 Dynamic Analysis: Sandbox Execution

Dynamic analysis refers to techniques that rely on executing a sample to analyze
it. Sandbox execution lets the malware execute in an isolated environment, while
tracking the malwareś behavior. Contrarily to the syntactic pattern matching
methods presented in the previous section, this section builds a signature based
on malware behavior which is resistant to syntactic obfuscation.
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3.1 Principle

In order to provide an isolated environment, sandboxes typically rely on virtual
machines (VMs) [10]. VMs exploit the fact that a processor can theoretically
be simulated by a program. The Operating System (OS) running on a virtual
machine is usually called the Guest while the OS running on the real hardware
is usually called the Host.

In the context of malware detection, a sandbox isolates the effects of an
untrusted binary to a VM, i.e. to the Guest OS without affecting the Host OS. In
practice, some vulnerabilities in VMs [24] or in processors [33] may compromise
such isolation. A snapshot of the state of the Guest is taken before each malware
analysis, and the Guest is restored to this snapshot after the analysis.

The analysis of a binary in a sandbox relies on observations at various levels.
Based on these observations, the binary is labeled or given a score which indicates
whether it is likely to be malware. Typically, a sandbox observes the memory,
interactions with the Guest OS, and network activity of the executed binary.

The memory is analyzed by dumping it to a file. This dump can be obtained
by taking a snapshot of the VM during execution, which by design stores the
full VM memory for resuming it. Tools such as Memoryze6 and dumpit7 are able
to capture and save the full memory image of a physical machine or VM. The
memory dump can then be analyzed a posteriori with dedicated tools such as
Volatility [8,17]. Such analysis tools list the processes running, the opened ports,
and the state of the windows registry at the time the memory was dumped. In
particular, it is possible to retrieve artifacts such as uncompressed or unen-
crypted binaries that are temporary stored in the memory and can be analyzed
further.

In order to observe the processes running in the sandbox, the binary can be
launched with a debugger to observe all the steps done in the execution of the
binary. Another option is to observe the execution by recording the system and
library calls, along with their argument values. These calls track what the binary
is actually doing in the system, since any action on the system (e.g. writing to
a file, changing a registry key, sending a network packet, etc.) has to be done
via such a call. Some techniques define various patterns of calls [2,4] (see [3] for
a comparison of different kind of patterns) or rely on system call dependency
graphs [14] to represent and recognize (malicious) behaviors. Such approaches
often involve machine learning to classify the calls of an unknown binary based
on patterns learned on known malware and cleanware. The software in charge of
observing the processes (debugger and/or process monitor) needs to be running
in the sandbox as well.

Finally, the network behavior of the malware can be observed from outside
the sandbox, by looking at the traffic on the virtual network card of the sand-
box. Also, the monitoring process in the sandbox can save the keys used for
TLS traffic, in order to decrypt HTTPS packets. Depending on the context, the

6 https://www.fireeye.com/services/freeware/memoryze.html.
7 https://my.comae.io/login.

https://www.fireeye.com/services/freeware/memoryze.html
https://my.comae.io/login
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analyst can fake the Internet (i.e. reply with standard packets for each protocol)
or monitor and block the traffic while allowing access to the real Internet. The
latter approach is potentially more dangerous (i.e. a malware could potentially
infect another system) but may enable some particular behavior that are not
observable otherwise.

3.2 Example Tool: Cuckoo

Cuckoo8 is an open-source sandbox written mainly in Python. In the sandbox,
the Cuckoo agent handles the communication with the Host. The agent receives
the binary to analyze as well as the analysis module, written in Python. The
analysis module is in charge of performing the required observation from within
the sandbox. Since the analysis module is uploaded to the sandbox along with
the sample to execute, the agent can handle several types of analysis.

The default analysis module monitors and registers the system calls made
by the binary to analyze and all its children processes. This information is then
used to produce a score indicating whether the binary is malicious.

While analysis commands can be submitted from the command line, Cuckoo
also features a web interface allowing the user to submit files to analyze and to
receive the results of the analysis. We focus here on behavioral analysis since it
is complementary to the syntactic analysis techniques presented in the previous
section. Cuckoo includes YARA, which can also be used on the binary or its
memory during the execution of the binary.

Fig. 5. End of the behavioral analysis report from Cuckoo for our malware sample in
Fig. 3

Figure 5 shows the end of the call trace for the example from Fig. 3. In the
trace, we can see that the argument passed to “write”, which is the lower level
call used for implementing “printf”, is the string “I am evil !!!”. This is sufficient
to recognize the malicious behavior, even if syntactic signatures were unable to
detect it. Of course, our malicious behavior is oversimplified here and is kind of
trivial to recognize.
8 https://cuckoosandbox.org/.

https://cuckoosandbox.org/
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3.3 Limitations: Anti-Sandboxing Techniques

Some malicious binaries may try to attack the sandbox. A common approach is
to try to detect that they are being run in a sandbox, and hide their malicious
behavior in that case. If a sandbox is detected, the malware can try to crash it,
like AntiCuckoo9 does, or even try to infect it [33].

Most malware won’t try to attack the Host of a sandbox because their goal is
to remain hidden. A sample that would crash or take over the Host of a sandbox
would indeed be immediately classified as highly suspicious. In fact, malware
samples commonly delete themselves if they detect a sandbox. Therefore, we
will focus here on detecting that the current execution is within a sandbox.

There are various techniques to detect that the current environment is a
virtual environment. For instance, the default name of hardware devices in Vir-
tualBox contains the string “VirtualBox”, which can be easily detected. In a
similar way, interrogating the features of the CPU via the x86 instruction cpuid
can provide evidence of a virtual environment. Additionally, some malicious
binaries analyze the documents and the activity of the user and don’t execute
if the number of documents is abnormally low. See [13] for more examples of
sandbox detection and [31] for the sandbox detection techniques used by the
recent Rakhni malware.

1 #include <stdio.h>
2
3 int hv_bit (){
4 int cpu_feats =0;
5 __asm__ volatile("cpuid"
6 : "=c"(cpu_feats) // output: ecx or rcx -> cpu_feats
7 : "a"(1)); //input: 1 -> eax or rax
8 return (cpu_feats >> 31) & 1;
9 }

10
11 void malicious_behaviour (){
12 printf("I�am");
13 printf("�evil !!!\n");
14 }
15
16 void benign_behaviour (){
17 printf("I�am�nice.\n");
18 }
19
20 int main (){
21 int i,a;
22 a=hv_bit ();
23 if ( a > 0) {
24 benign_behaviour ();
25 } else {
26 malicious_behaviour ();
27 }
28 return 0;
29 }

Fig. 6. Our fake malware sample, including sandbox detection.

9 https://github.com/David-Reguera-Garcia-Dreg/anticuckoo.

https://github.com/David-Reguera-Garcia-Dreg/anticuckoo
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For our running example, we provide in Fig. 6 a C program that relies on a
low-level instruction to discriminate between a virtual environment and a non-
virtual one. The cpuid argument provide an assembly-level way to interrogate
the processor about its features, in order, for instance, to use optimized instruc-
tions if available. In particular, when the register eax is set to one before cpuid
is called, it returns various information about the processor. Notably, the high-
est bit of the register ecx is set to 1 if the current execution is controlled by
an hypervisor (i.e. a virtual machine). See [12] for the specification of the cpuid
instruction.

The function hv bit leverages this behavior to output that particular
bit. The cryptic inline assembly code is specified using the GNU syntax:
asm volatile ( <code> : <outputs> : <inputs> ). The code is simply

the cpuid instruction (line 6), the output specifies that the register c (here ecx
or rcx) should be put in the variable named cpu feats (line 7) and finally the
input specifies that the register a (here eax or rax) is set to 1 (line 8). The
returned value is the bit 31 of the cpu feats variable (the binary and zeroes the
bits that were originally at position 32–64 in the rcx register, if any). Finally,
the main function executes the malicious behavior only if the hv bit function
returns 0 (we’re not in a hypervisor).

Fig. 7. End of the behavioral analysis report from Cuckoo for our malware sample in
Fig. 6

Figure 7 shows the output of Cuckoo when analyzing a binary obtained from
the code in Fig. 6. As expected, the hypervisor bit is set to one and the output in
this version is “I am nice.” which corresponds to the benign behavior. However,
running the same program on a non-virtual machine will print “I am evil !!!”
showing that the malicious behavior executes in that case.

An expensive way to detect whether a sample is trying to evade a sand-
box is to compare its behavior in different contexts [15], such as in a VM, in a
hypervisor, on a bare metal machine (i.e. an isolated machine) and on an emula-
tion platform. However, the various tests performed by modern malware such as
Rakhni [31] would hide the malicious behavior in most of these contexts, based
on the environment. For instance, Rakhni has a list of more that 150 names of
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tools used for process monitoring and analysis; if one of the running processes
is in that list, Rakhni will hide its malicious behavior.

Note that these sandbox detection techniques succeed because dynamic anal-
ysis by sandboxing aims at executing only a single execution path of the malware
binary analyzed. Hence, by prefixing the malicious behavior with multiple checks
on the execution environments, malware creators can guarantee that the mali-
cious behavior will be executed only if the system is not a sandbox, is used by a
real user, does not have an antivirus software installed, and so on. To circumvent
this protection, we need to follow these environment checks in the execution of
the binary and ask, what does the malware do when the check succeeds and
what does it do when the check fails? Only by exploring both possible execution
paths we can arrive at analyzing the malicious behavior. This is the basic idea
behind concolic analysis, described in the next section.

4 Concolic Analysis: Symbolic Execution

Concolic analysis does not execute the binary but rather simulates it, with the
aim of covering as many of the execution paths as possible of the binary. This
increases the probability of detecting malicious behavior that would not be exe-
cuted in a sandbox due to sandbox detection techniques.

In concrete execution, variables are assigned with concrete values that are re-
evaluated whenever some assignment statement is reached during the execution.
In symbolic execution, variables are symbolic, i.e. are assigned with a set of
constraints representing a set of possible concrete values.

In practice, as the execution of the program proceeds, symbolic variables
accumulate constraints on the possible values of the concrete variables, whereas
concrete variables keep only the last actual assigned value. Therefore, symbolic
execution does not scale as well as symbolic execution.

In symbolic execution, conditional statements are evaluated not just as True
or False as with concrete execution, but as satisfiable or unsatisfiable instead.
This means that, for a given symbolic variable on a given conditional statement,
if it is possible to satisfy both the conditional statement and its negation, the
execution will take both paths, whereas in concrete execution only one of them
would be taken.

As a result, while concrete execution is able to traverse only one trace of
execution at a time, symbolic execution can traverse multiple traces of execu-
tion simultaneously. Thus, concolic execution aims to combine the efficiency and
scalability of concrete execution with high code coverage of symbolic execution.

4.1 Principle

To illustrate the difference between concrete and symbolic execution, we will use
the following toy example.

In this example, x is taken as a user input and then it is tested on being
non-negative and a root for x2 − 3x− 4. If x satisfies both conditions, then the
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1 #include <stdio.h>
2
3 /*
4 Trial and error to find a solution for x^2 - 3x - 4 = 0 for x >= 0
5 */
6 int main() {
7 int x;
8 printf("Let’s�try�to�solve�x^2�-�3x�-�4�=�0�for�x�>�0.\n");
9 printf("Enter�a�value�for�x:�");

10 scanf("%5d", &x);
11 if(x * x - 3 * x - 4 == 0) {
12 if(x >= 0)
13 printf("%d�is�a�positive�root.\n", x);
14 else
15 printf("x�has�to�be�positive .\n");
16 }
17 else
18 printf("%d�is�not�a�root.\n", x);
19 }

Fig. 8. Sample code for a trial and error root solution.

printf at line 12 is reached and we say that the execution succeeded, otherwise
the execution failed.

This example’s concrete execution is straightforward: a value is assigned to
x, then it is checked for being a root and non-negative. It is very efficient to test
whether the input satisfies both conditions or not, however it is not equally easy
to find one value for x in which the execution succeeds.

Using concrete execution it is possible to find an x for which the execution
succeeds randomly taking values for x and executing the program. However, this
approach might succeed with a very low probability, and when there is no root
for the equation, this approach will run end forever. Two traces of execution (for
x = −1 and x = 0) are displayed in Fig. 9.

In contrast, it is possible to use symbolic execution to explore traces of exe-
cution in a more structured way. Using symbolic execution, x is assigned to a
symbolic variable which will accumulate constraints along different execution
paths. The equality for x2 − 3x− 4 = 0 is met when x = −1 or x = 4, therefore
it follows:

– Line 11 will be reached only if x is constrained to one of the root values (i.e.
−1 or 4). For any other case, the execution will reach line 17.

– Line 12 is reached only if x is constrained to root values (line 10) and if it is
positive (line 11), otherwise line 14 is reached.

Hence the execution succeeds and line 12 is reached only if x = 4. Figure 10
depicts how symbolic execution proceeds with the constraints of each path and
is able to build a tree of execution traces, extending the single execution trace
explored by concrete execution.

4.2 Example Tool: angr

angr [27] is a tool enabling concolic execution of binaries, written in Python and
composed of different modules.
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Fig. 9. Example of concrete traces of trial and error root solution.

Fig. 10. Example of symbolic tracing of trial and error root solution.
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– CLE: stands for “CLE Loads Everything” and is responsible for loading bina-
ries and libraries.

– Archinfo: contains architecture-specific information.
– PyVEX: Python module to handle VEX, which is an intermediate represen-

tation that enables angr to work on different architectures.
– Claripy: module that interfaces with a constraint solver.

The execution starts by loading the binary, using the CLE module. To do so,
CLE needs information about the architecture the program is target for, which
is provided by Archinfo.

Once the binary is loaded, the angr symbolic execution engine coordinates
the symbolic execution. The analysis unit of angr’s analysis is the basic block,
defined as a continuous sequence of code that has no branching (such as jumps
or calls), and for each basic block angr creates a new state. A state contains the
program’s memory, registers, file system, and any other so-called “live data”.

angr’s execution evolves in steps. Each step transforms the current active
states into their successor states. Constraints accumulated from past basic block-
s/states are solved whenever some instruction depends on a symbolic variable
(e.g. memory address). If the current state ends up in a conditional jump, angr
evaluates the condition against the current constraints and proceed as follows.

– If both the conditional and its negation are satisfiable, angr creates two new
successors states, one for each of the two possible states.

– If only one of the conditional and its negation is satisfiable, angr creates only
one new successor state.

– If neither the conditional nor its negation are satisfiable, angr marks the state
as deadended and terminates its execution.

Constraints are solved by SMT solvers interfaced by Claripy. Currently, the
default SMT solver used is Microsoft’s Z3, however others can be plugged into
angr by writing an appropriate Claripy backend.

The procedure above is able to emulate a bare metal environment, including
abstractions provided by the underlying operating system, such as files, network,
processes and others. In order to fulfill these abstractions, angr includes a module
called SimOS, which provides all the required OS objects during the analysis.

Finally, to allow angr to work with multiple architectures, instead of running
concolic analysis on instructions charged by CLE, these instructions are first
lifted to the VEX intermediary representation before the analysis is done. Mul-
tiple architectures can be lifted to VEX without any loss in the overall analysis.

Figure 11 from [29] depicts the relationship between the different modules.
To illustrate the benefits of concolic analysis, we use the code example in

Fig. 8. Running a full automated analysis with angr, it is possible to verify that
angr reaches 3 final states (i.e. deadended states), corresponding to the leaves of
the execution tree presented in Fig. 10.

Figure 12 shows the commands required to perform the analysis. It is possible
to check that for each one of the three deadended states, the analysis reached a
different line of the original code (corresponding to a different printed message).
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Fig. 11. Relationship between angr modules.

Fig. 12. Example of angr analysis on trial and error root solution.

For a given state, stdin can be accessed through posix.dump(0) while stdout
can be accessed by posix.dump(1). Hence it is straightforward to verify that the
execution succeeds if x = 4.

4.3 Limitations: Symbolic Explosion

The ability to explore all the possible traces of a given binary is one of the core
advantages of concolic execution. However, this can be exploited by malware
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authors to generate a binary for which concolic execution has a huge number of
possible paths. For instance, starting the binary by a sequence of n conditional
jumps depending on a value that is not treated as concrete by the symbolic exe-
cution will possibly create 2n traces. The malware author can use this technique
to try to fill the memory of the machine running the symbolic execution. A way
to mitigate that technique is not to a breadth-first search (BFS) for ordering the
exploration of the reachable states.

Another weakness of symbolic execution is the constraint solver. Indeed,
some malware include opaque predicates that are commonly used to hinder static
analysis [19]. A simple example is to write a complicated conditional jump whose
condition always evaluates to true, so that at runtime only one branch of the
conditional jump is taken, but static analysis requires a lot of effort to conclude
that the predicate is always true. In the context of symbolic execution, such
predicates might become very complex expressions involving several symbolic
variables. These predicates will be analyzed by the constraint solver, forcing the
solver to use a large amount of resources (time and memory) to try to solve the
constraint. If the constraint solver runs out of resources the concolic execution
has to analyze both paths, and complex dead code (possibly including more
opaque predicates) can be inserted in the path that is never selected at runtime
to hinder the analysis.

Finally, symbolic execution also struggles with just-in-time (JIT) code, i.e.
code that writes the next instructions to execute in the memory just before
executing them. If some of the written instructions are symbolic at the time of
writing, the execution now faces the problem of having a symbolic instruction
to execute. One expensive solution would be to list all instructions that meet
the constraint of the symbolic instruction and try each of them. Otherwise the
symbolic execution can be stopped at this point or miss some branches [34]. A
similar problem is encountered whenever the address of a jump is symbolic.

For our running example, we use Tigress [7] to produce an obfuscated version
of the code from Fig. 6. The commands presented in Fig. 13 yields a a.out exe-
cutable that is obfuscated against symbolic execution. When trying to analyzing
the executable with angr, the tool will execute without terminating.

1 echo "#include�\"$TIGRESS_HOME/jitter -amd64.c\"" > tmp.c
2 cat malware_version5.c >> tmp.c
3 tigress --out=malware_version5.c \
4 --Environment=x86_64:Linux:Gcc :4.6 \
5 --Transform=Jit --Functions=main tmp.c

Fig. 13. Command using Tigress to builds a version of the code of Fig. 6 using JIT
compilation to obfuscate the code, to prevent angr from analyzing it.

5 Conclusion

This paper presents different techniques to perform malware detection based on
different kinds of signatures: syntactic signatures by static analysis; and behav-
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ioral signatures by dynamic and concolic analysis. Each technique is presented
with a simple example, and with an example of how to counter it based on its
limitations.

The techniques are presented in increasing order of complexity, and justified
by the fact that each one is effective against the techniques hindering the previous
one.

– Syntactic pattern matching is hindered by packing and obfuscation.
– Packed and obfuscated malware can be analyzed by dynamic execution in a

sandbox.
– Sandboxes can be prevented from observing malicious behavior by sandbox

detection.
– Sandbox detection can be countered by concolic execution.
– Concolic execution can be prevented from finding interesting execution

branches by opaque predicates and JIT compilation.

However, in practice the different costs of these techniques mean that even sim-
ple ones like string-based static detection should not be discarded. YARA is
widely used by security researchers, and in fact it is common to complement
reports on new malware with YARA rules able to detect such malware, exactly
because YARA is an efficient and optimized tool for pattern matching whose
cost is negligible compared to the cost of starting a sandbox or a concolic binary
execution engine.

Hence, all of the tools and techniques presented are useful to security analysts
in different scenarios. Binaries that are detected as suspicious but not defini-
tively malicious by static analysis, for instance because they employ packing
and other obfuscation techniques, can be analyzed in a sandbox to characterize
their behavior. Were the sandbox to fail due to sandbox evasion, the analyst
can employ concolic analysis, and so on. Advanced malware can require multiple
tools and significant analysis time by an expert before it is thoroughly dissected
and understood, but this can lead to the creation of syntactic and behavioral
rules to automatically detect new samples of the malware in the future without
having to repeat the analysis.
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