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Abstract. Guaranteeing that information processed in computing sys-
tems remains confidential is vital for many software applications. To
this end, language-based security mechanisms enforce fine-grained access
control policies for program variables to prevent secret information from
leaking through unauthorized access. However, approaches for language-
based security by information flow control mostly work post-hoc, classi-
fying programs into whether they comply with information flow poli-
cies or not after the program has been constructed. Means for con-
structing programs that satisfy given information flow control policies
are still missing. Following the correctness-by-construction approach, we
propose a development method for specifying information flow policies
first and constructing programs satisfying these policies subsequently.
We replace functional pre- and postcondition specifications with confi-
dentiality properties and define rules to derive new confidentiality speci-
fications for each refining program construct. We discuss possible exten-
sions including initial ideas for tool support. Applying correctness-by-
construction techniques to confidentiality properties constitutes a first
step towards security-by-construction.

1 Introduction

Modern software applications often process confidential information, such as
personal information, credit card numbers, health records etc. It is important to
enforce that this confidential information is not leaked to unauthorised access.
Language-based security mechanisms [19] allow fine-grained control over the con-
fidential information and its influence on program execution in order to prevent
such unwanted leakage. Information flow control approaches [19,20] model con-
fidentiality by defining security policies which determine how secret information
in a program may be used for computation and influence program execution.
In a very simple security policy, the set of program variables is classified into
high and low variables. Information may flow within the classes and from low to
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high variables, but not from high to low variables. This captures the intuition
that high information, i.e., confidential information, may not influence low, i.e.,
public information, or that it may not be observable or deducible from public
information. However, approaches for language-based security by information
flow control mostly work post-hoc. They classify programs into the ones which
comply to information flow policies and the ones that do not, but do not provide
means to construct programs that satisfy given information flow control policies.

Correctness-by-construction (CbC) [14] in contrast aims at developing pro-
grams in a way such that they satisfy their correctness specification by their
design and development methodology. Classical CbC as proposed by Dijkstra [10]
and others [11,16] aims at developing functional programs that are correct-by-
construction. For this purpose, a number of refinement rules are proposed that
allow refining an abstract specification into a concrete program that satisfies the
given specification. CbC programs are guaranteed to be correct in the same sense
as a proof of a mathematical theorem is guaranteed to be correct. CbC-based
development tends to minimise post-hoc quality assurance costs and thereby
reduce time to market [21].

In this paper, we propose to apply correctness-by-construction techniques
to guarantee confidentiality properties that are expressed by information flow
policies over programs leading to an approach for confidentiality-by-construction
(C14bC)1 as a first step towards security-by-construction (SbC). We replace func-
tional pre-/postcondition specifications—as traditionally used for classical func-
tional correctness—with confidentiality specifications, expressing which variables
contain secrets. Then we provide rules for each possible program construct to
refine a program by introducing such a construct, and we derive a new infor-
mation flow specification for the program statement, in the spirit of classical
CbC. In order to allow assigning secret values to public variables, we incorpo-
rate means to explicitly declassify information [17,22]. Furthermore, we discuss
extensions of C14bC as well as potential for tool support.

The remainder of this paper is structured as follows: In Sect. 2, we provide
the background on classical CbC and language-based information-flow control.
In Sect. 3, we describe our approach to confidentiality-by-construction. In Sect. 4,
we present initial ideas for tool support. Section 5 provides an overview of related
work, and Sect. 6 concludes the paper with a discussion of extensions of the
presented approach.

2 Background

In this section, we provide the necessary background on classical CbC and infor-
mation flow control policies as a basis for the approach proposed in this paper.
In order to simplify the discussion and focus on the main ideas of C14bC, we
restrict programs to procedural programs that can be expressed in the guarded
command language [10].
1 The numeronym C14bC abbreviates confidentiality as C14, as there are 14 letters

after the first C.
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2.1 Classical Functional CbC

CbC [14] is a formal approach which is used to develop code incrementally.
CbC starts with an abstract program and its specification which is a Hoare
triple consisting of a precondition, an abstract statement, and a postcondition.
The program between the pre- and postconditions is specified in the Guarded
Command Language (GCL) as proposed by Dijkstra [10]. The Hoare triple T
should be read as a total correctness assertion, i.e., an assertion that if T’s
precondition holds and its abstract statement executes, then the execution will
terminate and its postcondition will hold. The triple can be stepwise evolved to
a concrete program by using refinement rules. The rules each replace an abstract
statement by more concrete ones, cf. Fig. 1. By only using correctness-preserving
refinement steps that are accurately applied, we know that the concrete program
obtained by refinement is correct by construction.

To refine the program, GCL uses five different rules—one for each of its
statements—as shown in Fig. 1. The skip statement (1) does not alter the pro-
gram. The assignment statement (2) refines an abstract statement S to an assign-
ment x := E. This refinement can only be used if the precondition P implies the
postcondition Q where x is replaced by E. A composition statement (3) splits
an abstract statement S into two statements S1 and S2 with an intermediate
condition M between both statements. In the selection statement (4), for simplic-
ity and similarity to, e.g., Java, we use an if-else-construct while the classical
formulation of GCL uses a more complex switch-like statement. If the guard is
evaluated to true, the first statement is executed, else the second one is. The
repetition statement (5) is similar. As long as the guard is evaluated to true, the
statement is executed repeatedly. The repetition statement requires an invariant
and a variant. The invariant specifies the effect of the loop and is true before
and after every loop iteration. The variant shows the termination of the loop.
It is a term which decreases monotonically and is bounded from below; here we
choose zero without loss of generality. In this discussion, we omit the refinement
rules that allow strengthening of postconditions and weakening of preconditions.

{P} S {Q} can be refined to

Skip : {P} skip {Q} iff P implies Q (1)

Assignment : {P} x := E {Q} iff P implies Q[x := E] (2)

Composition : {P} S1 ; S2 {Q} iff there is M s.t .{P} S1 {M} and {M} S2 {Q} (3)

Selection : {P} if G then S1 else S2 fi {Q} iff (4)

{P ∧ G} S1 {Q} and {P ∧ ¬G} S2 {Q}
Repetition : {P} do G → S od {Q} iff there is invariant I and variant V s.t . (5)

(P implies I) and (I ∧ ¬G implies Q) and {I ∧ G} S {I}
and {I ∧ G ∧ V = V0} S {I ∧ 0 ≤ V < V0}

Fig. 1. Refinement Rules in CbC [14]
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To give an example of how CbC-refinements work, we consider the abstract
triple {x > 0} S {x > 1}. An assignment refinement rule associated with line (2)
of Fig. 1 indicates how this triple can be refined to {x > 0} x := x + 1 {x > 1},
delivering a program that ensures the postcondition if the precondition holds.

2.2 Information Flow Control

Information flow control [19,20] can be used to establish confidentiality of pro-
gram data. A security policy defines security domains for data and determines
how information may flow between those domains. In this paper, we restrict
ourselves to a simple security policy by only considering two security domains,
secret and public, where information may flow from public to secret, but not the
other way around. The program variables are subdivided into high (secret) and
low (public) variables. The high variables contain information which must not
flow to low variables. Information in a program can flow in two ways: first, there
can be direct information flow in an assignment, e.g., l = h assigns the confiden-
tial value of h to a low variable l; second, there can be indirect information flow
through conditional statements where secret information is used in the guard of
the statement. For example, the statement if h == 0 → l := 0 else l := 1 reveals
information about the variable h. If l is zero, we know that h is also zero.

To discard programs which violate confidentiality as expressed by a security
policy, a security type system can be introduced (cf. Fig. 2) according to [19]. The
type system assigns every variable and expression a security type. E : t means
that expression E has security type t; in our case t can be either high or low. The
type system uses a security context which is an environment variable tracking
the current status of the program (high or low) to control implicit information
flow. In a high context, no assignments to low variables may occur. The typing
rules are depicted in Fig. 2. The rules define that an expression exp can always
have a high type (1), but can only have a low type if no high variables occur
in the expression (2). A skip is always typeable (3), and every expression can
be assigned to a high variable (4). If we want to assign an expression to a low
variable, the expression must be low (5). A composition of two statements keeps
the same context (6). Rules (7) and (8) are used to ensure that if the guard has
a high context, the statements are typable in a high context.

� exp : high
h /∈ Vars(exp)

� exp : low
[ct] � skip [ct] � h = exp (1–4)

exp : low
[low] � l = exp

[ct] � S1 [ct] � S2

[ct] � S1; S2
� exp : ct [ct] � S

[ct] � while exp do S
(5–7)

� exp : ct [ct] � S1 [ct] � S2

[ct] � if exp then S1 else S2
(8)

Fig. 2. Security Type System [19]
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3 Confidentiality-by-Construction

In this section, we present the confidentiality-by-construction (C14bC) approach
by providing a specification framework and refinement rules for the basic high-
low security policy as described in Sect. 2.2. Essentially, the C14bC approach
re-casts the typing rules of the security type system (cf. Fig. 2 in [19]) in a
constructive fashion, thereby enabling the construction of programs that preserve
the desired security policy ab initio rather than rejecting a program as non-
compliant ex post facto.

3.1 C14bC Refinement Rules

In the following, we present refinement rules for all five statement types of the
GCL to enforce the basic high-low information flow policy. In Fig. 3, we define
the basic notation we use for defining the refinement rules.

A triple {Hpre}S{Hpost}[η] in C14bC defines the following: The set of high
variables before execution of the statement S is captured in Hpre, the set of
high variables after execution of statement S is Hpost, the confidentiality level η
classifies the confidentiality context for the execution of the statement S, which
in our case can be either high or low. So a triple {Hpre}S{Hpost}[η] can be read
as: if a program S is executed in a program state that satisfies Hpre, i.e. where
the variables in Hpre are classified as high, then the program will finish in a
program state that satisfies Hpost, i.e., the high variables are contained in Hpost,
while in confidentiality level η. Note that we are not concerned with termination
here, so the triple can either refer to partial or total correctness.

The confidentiality level η is necessary to reason about implicit information
flow in selection and repetition statements. If the if-condition or loop-guard con-
tains high variables, the following program block is executed in a high-context,
as its execution depends on the high variables contained in the if-condition or the
loop-guard. Thus, at confidentiality level high, assignments to variables classi-
fied as low are forbidden, as this would implicitly reveal confidential information.
For the considered high-low security policy, we additionally enforce the invari-
ant Hpre ⊆ Hpost (i.e., variables can not be degraded to a lower confidentiality
level). As the assignment statement creates explicit information flow, the assign-
ment statement is the only statement where the set of high variables in the
post-condition can be extended. We also assume the implicit frame condition
that all program variables in Vars that are not classified as high are classified
as low variables.

We now proceed by defining the C14bC refinement rules for the five possible
GCL statements. Refining a triple in C14bC means that we refine an abstract
statement S in a triple {Hpre}S{Hpost}[η] into a more concrete statement such
that the more concrete statement satisfies the same specification w.r.t. the confi-
dential variables in Hpre and Hpost. However, if the refinement is by a repetition
or selection statement, the confidentiality level may change to reflect indirect
information flow introduced. In our approach, once the confidentiality level has
switched to high it will stay high for all subsequent refinements. The refinement
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Vars Set of program variables
pre, post ⊆ Vars Sets of variables classified as high

S Statement (from the GCL)
x ∈ Vars Program variable

E, G Expressions over the program variables in Vars
Vars(E) ⊆ Vars Set of variables occurring in expression E
η ∈ {high, low} Confidentiality level

{ pre}S{ post}[η] C14bC triple

Fig. 3. Basic notions for C14bC

rules presented below are formulated in a way that the refinement property holds
if the side conditions of the rules are satisfied.

The statement skip applies the identity function to the current state in a
program. In compliance with our information flow policy, any statement regard-
less of the current confidentiality level can be refined to statement skip without
changing the set of high variables.

Rule 1 (Skip)
{Hpre} S {Hpost}[η] is refinable to {Hpre} skip {Hpost}[η].

Assignments represent typical direct information flow where information flows
directly from one location to another. Refining a statement S to the assignment
x := E is possible in the following cases: (a) if the confidentiality level is high or
the expression E comprises high variables, then the assigned variable x has to be
a high variable after the execution of the assignment, i.e., x ∈ Hpost; or (b) if the
confidentiality level is low or the expression E comprises only low variables, then
the set of high variables remains unchanged. For instance, {h} l := h ∗ 2 {h} does
not comply with our policy, since variable l must be high after the assignment
(i.e., {h} l := h ∗ 2 {h, l}).

Rule 2 (Assignment)
{Hpre} S {Hpost}[η] is refinable to {Hpre} x := E {Hpost}[η] iff
(η = high or Vars(E) ∩ Hpre �= ∅) implies Hpost = Hpre ∪ {x}.
In a composition statement, the two single statements are executed sequentially.
Therefore, there has to be an intermediate condition denoting the high variables
and the confidentiality level after the execution of the first statement which then
serves as precondition specification for the second statement. The composition
statement S1;S2 itself does not change the current confidentiality level for its
composed statements S1 and S2.

Rule 3 (Composition)
{Hpre} S {Hpre}[η] is refinable to {Hpre} S1; S2 {Hpost}[η]
if there exists H′ ⊆ Vars such that
{Hpre} S1 {H′}[η] and {H′} S2 {Hpost}[η] and Hpre ⊆ H′ ⊆ Hpost
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The selection statement may give rise to implicit information flow if the if-guard
contains high variables such that the confidentiality level has to be adapted to
prevent insecure implicit information flow. Hence, the selection statement deter-
mines the confidentiality level of its sub-statements S1 and S2. We distinguish
two cases. If the confidentiality level of the statement to be refined is high or
the guard of the selection statement contains high variables, we have to set the
confidentiality level of the sub-statements to high. In the other case, the confiden-
tiality level of the sub-statements is low. To give an example, the selection state-
ment {h} if h == 1 → l := 1 else skip fi {h} does not comply with our security
policy because the guard comprises a high variable, and therefore the confiden-
tiality level is set to high for the sub-statement, such that the assignment to a
low variable is forbidden or the variable l has to become high as well.

Rule 4 (Selection)
{Hpre} S {Hpre}[η] is refinable to {Hpre} if G → S1 else S2 fi {Hpost}[η] if

(i) (η = high or Vars(G) ∩ Hpre �= ∅)
implies {Hpre} S1 {Hpost}[high] ∧ {Hpre} S2 {Hpost}[high]

(ii) (η = low and Vars(G) ∩ Hpre = ∅)
implies {Hpre} S1 {Hpost}[low ] ∧ {Hpre} S2 {Hpost}[low ]

The considerations for the confidentiality level of the repetition statement
are similar as for the selection statement. If the confidentiality level of the
statement to be refined is high or the loop-guard comprises high variables,
the confidentiality level of the loop body is set to high. If the confidentiality
level of the refined statement is low and the guard excludes high variables,
the confidentiality level of the loop body is set to low. In this way, we can
prevent insecure implicit information flow for loops (the same as for selec-
tion statements). As an example, consider the following repetition statement:
{h}do h > 0 → l := l + 1; h := h − 1 od {h}. From the value of the low vari-
able l, an attacker can infer the value of the high variable h, therefore the
confidentiality level is high and the assignment l := l + 1 is either forbidden or
the variable l has to be included in the high variables.

Rule 5 (Repetition)
{Hpre} S {Hpre}[η] is refinable to {Hpre}do G → S1 od {Hpost}[η] if

(i) (η = high or Vars(G) ∩ Hpre �= ∅) implies {Hpre} S1 {Hpost}[high].
(ii) (η = low and Vars(G) ∩ Hpre = ∅) implies {Hpre} S1 {Hpost}[low ].

3.2 Declassification

According to the high-low security policy considered in this paper, we are not
allowed to assign an expression comprising high variables to a low variable. How-
ever, in order to develop meaningful applications, it may sometimes be necessary
to allow some information flow from high values to low values. This, however,
needs to be made explicit and might need some kind of declassification [17,22]
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such that the initial secret is not directly deducible. In order to allow declassi-
fication in the above sense, we extend our refinement rules with a specific rule
for declassification. We introduce a function to declassify a high expression, so
that the assignment of the declassified expression to a low variable is valid. The
declassification function on an expression should be used with care and not lead
to a leak in confidentiality. The concrete declassification operation performed
depends on the application context. In general, it is assumed that declassification
removes some secret information such that the secret is not (easily) deducible
from the declassified data. For example, if a password is encrypted (and thus
declassified), the encrypted value can be assigned to a low variable. By applica-
tion of a declassification operator to the expression used in an if-condition or a
loop-guard before executing the selection or repetition statement, respectively,
also implicit information flow can be avoided.

The declassification operation modifies the assignment rule of the C14bC
framework. In the case of an assignment, if the assigned expression comprises
high variables or the confidentiality level of the specification is high, the assigned
variable has to be contained in the set of high variables of the post-condition
((η = high or vars(E) ∩ Hpre �= ∅) implies x ∈ Hpost). With declassification, we
alter the condition to (η = high or (¬isDecl(E) and Vars(E)∩Hpre �= ∅)) implies
x ∈ Hpost. The predicate isDecl(E) checks if the expression is declassified. Only
if we do not declassify the expression and the expression comprises high variables,
the assigned variable x has to be a high variable in the post-condition as well.
These considerations give rise to a modified assignment rule for declassification.
This refinement rule only makes sense if it is applied at a low confidentiality
level, if the assigned variable is a low variable and if the declassified expression
indeed contains high variables.

Rule 6 (Declassification Assignment)
{Hpre} S {Hpost}[low] is refinable to {Hpre} x = declassify(E) {Hpost}[low]
iff x �∈ Hpre and Vars(E) ∩ Hpre �= ∅).

3.3 Example

In Listing 1, we show an example for C14bC. The program checks if the user
wants to pay, and if this is the case, a valid credit card number is required. In
the end, the masked credit card number is passed to an output variable.

To construct the program, we start with an abstract program
{Hpre} S {Hpost}[low] where both sets (Hpre, Hpost) are empty. The refinement
steps are shown in Fig. 4. Note that we only add program variables to the set
of high variables in the postcondition if that is required by the refinement rules
in order to keep track of where information flow actually occurs. In this sense,
we are treating the refinement rules rather like transformation rules. Of course,
the variables added to the set of high variables in the postcondition need to
be added to the postconditions up the refinement hierarchy as well in order to
establish a proper refinement relationship. A way to allow expressing informa-
tion flow policies without having to refer to concrete variables in the program
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during refinement would be to introduce ghost variables [2] for the set of high
variables in the pre- and postcondition whose value is an symbolic expression
that can be dynamically updated. We leave this to future work.

1 boolean low paymentAction := true;
2 if (paymentAction) {
3 int high creditCard := getNumber ();
4 while (! valid(creditCard )) {
5 creditCard = getNumber ();
6 }
7 String low output := declassify(mask(creditCard );
8 } else {
9 skip

10 }

Listing 1. C14bC example for credit card payment

The first statement, on line 1 of the listing, is an assignment. The assignment
is introduced by using the composition and the assignment rule (ref. 1 and 2).
The composition splits the program into the first statement and the rest. In
line 1, a constant is assigned to a low variable which stays low. This is possi-
ble without problems at any confidentiality level. By introducing the selection
statement of lines 2–10 (ref. 3), the confidentiality level stays low because the
guard does not comprise a high variable and the level was low before. The skip
statement of the else branch in line 9 is introduced by refinement 4. The sets of
variables and the confidentiality level are unaffected. The assignment in line 3
is introduced by refinement 5 and 6. A composition statement is needed to split
the program. In line 3, we assign a value to a variable creditCard. We assume
that getNumber is a high expression. We have to ensure that creditCard is in
the post set of high variables. This propagates up to the composition statement.
The variable creditCard (cC in the high variable sets in Listing 1) is added:
{} TS1 {cC}[low] ∧ {cC} TS2 {cC}[low]. The repetition statement of lines 4–6 is
introduced by using refinement 7 and 8. A composition statement is needed, so
the assignment in line 7 can be created. The repetition statement changes the
confidentiality level. We have a guard which comprises a high variable, so the
level is raised to high for all sub-statements. For the assignment in line 5 (ref. 9),
the variable creditCard has to be in Hpost which is the case. The assignment
in line 7 (ref. 10) is inside the scope of the selection statement, but outside the
scope of the repetition statement. It has the low confidentiality level of the selec-
tion statement and the intermediate composition statements. Here, we assign a
high to a low variable. This violates our assignment Rule 2. With declassification
in Rule 6, we allow this assignment since the credit card number is masked.
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{} S {}[low]

{} S1 {}[low] ∧ {} S2 {}[low]

{} paymentAction := true; {}[low] {} if G → TS else FS fi {}[low]

{} skip {}[low]
{} TS1 {cC}[low] ∧
{cC} TS2 {cC}[low]

{} creditCard := getNumber();
{cC}[low]

{cC} TS21 {cC}[low] ∧
{cC} TS22 {cC}[low]

{cC} output := declassify(mask(
creditCard)); {cC}[low]

{cC}do G → LS od {cC}[low]

{cC} creditCard := getNumber();
{cC}[high]

(ref. 1) composition for S

(ref. 2) assignment for S1

(ref. 3) repetition for S2

(ref. 4) assignment for FS(ref. 5) composition for TS

(ref. 6) assignment for TS1 (ref. 7) composition for TS2

(ref. 8) repetition for TS21 (ref. 10) assignment for TS22

(ref. 9) assignment for LS

Fig. 4. Refinement steps for the credit card payment example

4 Tool Support

In order to make C14bC applicable to larger programs, we need to provide tool
support. Currently, we are developing tool support for classical functional CbC
by providing an IDE-like development environment for deriving programs in a
CbC-based fashion in a textual and graphical manner2.

This tool support can be easily extended with the above ideas to cover C14bC.
From an analysis and verification point of view, C14bC specifications are easier
to check and analyse than functional CbC specifications. For functional CbC
specifications, we need a way to verify functional Hoare triples over assignments
and establish variants and invariants over repetition statements. For this task,
we can use a program verification tool, such as the KeY prover [2]. For C14bC

2 https://github.com/TUBS-ISF/CorC.

https://github.com/TUBS-ISF/CorC
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Fig. 5. Graphical representation in the C14bC editor

specifications, as presented in this paper, it is sufficient to be able to statically
analyse the variables contained in expressions and to reason about their usage
in the program while maintaining their classification as high and low program
variables. Of course, if we apply a richer programming language with side effects,
we need more sophisticated static program analysis techniques to reason about
the respective information flow.

In Fig. 5, we show what the editor could look like. The lines 4–7 from the
example in Listing 1 are shown. We have a composition statement at the top,
containing the high variable creditCard in the intermediate- and postcondi-
tion. The statement TS1 is refined to a repetition statement, and the other
statement is refined to an assignment. The assignment contains the assign-
ment output := decl(mask(creditCard)). In the repetition statement, invari-
ant, guard and variant (needed for functional CbC) can be specified. The pre-
and postcondition contain again the high variable creditCard. The inner loop
statement is refined to an assignment.

5 Related Work

The CbC approach to software construction was pioneered by Dijkstra, Hoare
and others and based on weakest precondition semantics [10,11,16]. Kourie and
Watson [14] propose a light-weight version of this approach. In [21], we have
proposed a combination of CbC and post-hoc verification in order to obtain the
best of both worlds. The approach should not be confused with other concepts
that carry the same name, such as the correctness-by-construction (CbyC) pro-
moted by Hall and Chapman [13]. Their CbyC is a software development process
where formal modeling techniques and analyses are used for different develop-
ment phases, in order to detect and remove any defects that do occur as early as
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possible after introduction [8]. Another approach to correctness-by-construction
is the Event-B framework [1] where automata-based system specifications are
refined by provably correct transformation steps until an implementable pro-
gram is obtained [15].

Language-based information flow security is a broad field in the literature;
for a survey or earlier work consult [19]. The main approaches essentially rely on
static or dynamic program analysis [18], such as taint analysis [7], or security type
systems [20] etc. Some approaches combine information flow control with logic-
based or Hoare-style program logics. An early effort was made by Andrews and
Reitman [6], who proposed a compile-time certification technique for information
policies with multiple security levels based on a Hoare-style semantics. Their
work also covers programs beyond the sequential ones we cover, i.e., involving
parallelism and semaphores. However, their approach is a post-hoc one, unlike
our by-construction approach. Amtoft and Banerjee [4] formulated compositional
intraprocedural analyses of conditional information flow, which served as the
basis for a formulation of Hoare-style contracts for conditional information flow
for SPARK Ada [5].

The first paper to reformulated information flow properties as a deductive
verification problem in a program logic was [9]. Hähnle et al. [12] show how a
type system ensuring confidentiality can be embedded into a form of dynamic
logic. The setting is once again one focused on post-hoc verification, with an
eye to using the KeY theorem prover. This paper, to the best of our knowledge,
is the first to propose constructive CbC style reasoning for information flow
properties by means of a refinement-based approach such that by a sequence
of small, incremental refinement steps, a program is obtained that preserves
security policies by construction.

6 Conclusion and Future Work

The presented approach on C14bC can be seen as a first step in the direction
of security-by-construction. In this paper, we only focus on confidentiality and
base our considerations on a simple programming language. There are several
directions to extend this work:

– Besides evaluation of the practical applicability and scalability on larger scale
case examples, we also have to formally verify the correctness and complete-
ness of our C14bC construction approach. This includes formulating the ideas
in a formal refinement framework and proving the soundness against the corre-
sponding type system-based approaches. Furthermore, we should investigate
the benefits of C14bC when combined with post-hoc verification and analysis
approaches, similar to the work presented in [21].

– We can extend the programming language constructs that are considered for
deriving a program. In order to achieve modularity of our approach, we can
integrate a refinement rule that introduces a method call and thus allow mod-
ular refinement of the program into several methods. However, in that, we
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have to be careful about side effects and appropriate frame conditions. Fur-
thermore, we can lift the presented approach to object-oriented programs, fol-
lowing information flow control approaches for object-oriented languages [3].

– By considering security policies in information flow as specifications for
integrity (rather than confidentiality), we can also provide an approach for
integrity- or trust-by-construction. To this end, we label program variables
as trusted and untrusted (in contrast to high and low) and only allow infor-
mation to flow from trusted to untrusted, but not vice versa, as this would
allow untrusted information to influence trusted information. In essence, this
is the same set-up as the high-/low security policy considered in this paper,
i.e., the presented framework directly lends itself to trust-by-construction.

– Additionally, we can make the presented C14bC approach generic with respect
to the information flow policy. In the paper, we have only focused on a very
simply high/low security policy with the possibility to declassify data. How-
ever, for practical applications, it might be necessary to introduce several
security layers and more fine-grained security policies. To this end, the refine-
ment rules presented in this work need to be generalised with respect to the
security policies they can operate on.

– In this paper, C14bC is considered in isolation. We focused on confidential-
ity specifications only, for ease of presentation. However, we can of course
combine functional CbC with C14bC in order to derive a functionally correct
program that also complies to the desired security policy. Technically, this is
a combination of the classical functional pre-/post-conditions and refinement
rules with the C14bC pre/post-conditions and refinement rules laid out in
this paper.
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