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Abstract. Patterns have greatly improved the development of programs
and software by identifying practices that could be replayed and reused in
different software projects. Moreover, they help to communicate new and
robust solutions for software development; it is clear that design patterns
are a set of recipes that are improving the production of software. When
developing models of systems, we are waiting for adequate patterns for
building models and later for translating models into programs or even
software. In this paper, we review several patterns that we have used
and identified, when teaching and when developing case studies using the
Event-B modelling language. The modelling process includes the use of
formal techniques and the use of refinement, a key notion for managing
abstractions and complexity of proofs. We have classified patterns in
classes called paradigms and we illustrate three paradigms: the inductive
paradigm, the call-as-event paradigm and the service-as-event paradigm.
Several case studies are given for illustrating our methodology.

1 Introduction

Formal methods have been used successfully for developing software-based sys-
tems especially critical systems. The correct by construct approach has played an
important role to develop and to verify systems progressively. The triptych [9–11]
approach covers three main phases of the software development process: domain
description, requirements prescription and software design. A formal notation,
namely D,S −→ R, relates three entities: D represents the domain concepts
in form of properties, axioms, relations, functions and theories; S represents a
system model; and R represents the intended system requirements. This nota-
tion states that the given domain description (D) and the system model (S)
are correct with respect to the given requirements (R) and it relates different
elements involved, when developing a solution for a given problem. The trip-
tych [9–11] D,S −→ R does not tell us how to build its three elements but it
helps to set the scene and to express the what should be defined. The modelling
process includes the use of formal techniques and the use of refinement, a key
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notion for managing abstractions and complexity of proofs. In this paper, we
propose patterns organized in classes called paradigms and we illustrate three
paradigms: the inductive paradigm, the call-as-event paradigm and the service-
as-event paradigm. Our aim is to help users, mainly students, to lean how to use
the refinement relationship when developing software-based systems.

In a book entitled How to Solve It, Pólya [33] suggests the following steps,
when solving a mathematical problem: First, understanding the problem (UP);
second, making a plan (MP); third, carrying out the plan (CP); finally, looking
back on the work by review and extend (RE).

Understanding the Problem Devising a Plan

Carrying out the PlanLooking Back

understanding

planning

solving

checking

Understanding the problem (UP) is generally related to the formalisation of
the domain of problem D and we are promoting the reuse of existing theories or
libraries. The second step making a plan (MP) can be the search of a pattern;
it may be also possible to sketch the system to build by a diagram. However,
the question is to have a list of possible so called patterns, which can be applied
and reused. Some advices of Pólya are very close to a creative point: If you can’t
solve a problem, then there is an easier problem you can solve: find it. or If you
cannot solve the proposed problem, try to solve first some related problem. Could
you imagine a more accessible related problem?. From Pólya and Gamma [21],
patterns are a key concept for solving problems in a general settlement. Moreover,
another key concept is the refinement of models handling the complex nature
of such systems: the refinement is used for constructing models or patterns.
Following Abrial et al. [22] and Cansell et al. [13], we revisit a list of patterns
which can be used for developing programs or systems using the refinement and
the proof as a mean to check the whole process and which can be a mean to
reuse former proofs in new developments.

Patterns [21] have greatly improved the development of programs and soft-
ware by identifying practices that could be replayed and reused in different soft-
ware projects. Moreover, they help to communicate new and robust solutions
for developing a software for instance; it is clear that design patterns are a set
of recipes that are improving software production. When developing (formal)
system models, we are waiting for adequate patterns for developing models and
later for translating models into programs or even software. Abrial et al. [22]
have already addressed the definition of patterns in the Event-B modelling lan-
guage and have proposed a plugin which is implementing the instantiation of a
pattern. Cansell et al. [13] propose a way to reuse and to instantiate patterns.
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Moreover, patterns intends to make the refinement-based development simpler
and the tool BART [17] provides commands for automatic refinement using the
AtelierB toolbox [16]. The BART process is rule-based so that the user can drive
refinement. We aim to develop patterns which are following Pólya’s approach in
a smooth application of Event-B models corresponding to classes of problems
to solve as for instance an iterative algorithm, a recursive algorithm [27], a dis-
tributed algorithm . . .Moreover, no plugin is necessary for applying our patterns.

We are organising patterns with respect to paradigms identified in our refi-
nement-based development. A paradigm is a distinct set of patterns, including
theories, research methods, postulates, and standards for what constitutes legit-
imate contributions to designing programs. A pattern for modelling in Event-B
is a set (project) of contexts and machines that have parameters as sets, con-
stants, variables . . . The notion of pattern has been introduced progressively in
the Event-B process for improving the derivation of formal models and for facil-
itating the task of the person who is developing a model. In our work, students
are the main target for testing and using these patterns. Our definition is very
general but we do not want a very precise definition since the notion of pattern
should be as simple as possible and should be helpful. We review several patterns
that we have used and identified, when teaching and when developing case stud-
ies using the Event-B modelling language. The modelling process includes the
use of formal techniques and the use of refinement, a key notion for managing
abstractions. Moreover, we have also identified some paradigms that can be used
and can facilitate the design of formal models.

The structure of the article is as follows. In Sect. 2, we review preliminary
material: the modelling framework. Section 3 presents the inductive paradigm,
which is illustrated in Sect. 4. In Sect. 5, we consider the call-as-event paradigm
and compare it with the inductive paradigm. A paradigm is gathering patterns
and Sect. 7 proposes the service-as-event paradigm which is a generalization
of the call-as-event paradigm. We illustrate patterns by developing a protocol
namely the Sliding Window Protocol. Section 8 concludes the paper and discusses
future works and perspectives.

2 The Modelling Framework: Event-B for Step-Wise
Development

This section describes the essential components of the modelling framework. In
particular, we will use the Event-B modelling language [1] for modelling systems
in a progressive way. Event-B has two main components: context and machine.
A context is a formal static structure that is composed of several other clauses,
such as carrier sets, constants, axioms and theorems. A machine is a formal
structure composed of variables, invariants, theorems, variants and events; it
expresses state-related properties. A machine and a context can be connected
with the sees relationship.

Events play an important role for modelling the functional behaviour of a
system and are observed. An event is a state transition that contains two main



402 D. Méry

components: guard and action. A guard is a predicate based on the state variables
that defines a necessary condition for enabling the event. An action is also a
predicate that allows modifying the state variables when the given guard becomes
true. A set of invariants defines required safety properties that must be satisfied
by all the defined state variables. There are several proof obligations, such as
invariant preservation, non-deterministic action feasibility, guard strengthening
in refinements, simulation, variant, well-definiteness, that must be checked during
the modelling and verification process.

Event-B allows us modelling a complex system gradually using refinement.
The refinement enables us to introduce more detailed behaviour and the required
safety properties by transforming an abstract model into a concrete version. At
each refinement step, events can be refined by: (1) keeping the event as it is;
(2) splitting an event into several events; or (3) refining by introducing another
event to maintain state variables. Note that the refinement always preserves a
relation between an abstract model and its corresponding concrete model. The
newly generated proof obligations related to refinement ensures that the given
abstract model is correctly refined by its concrete version. Note that the refined
version of the model always reduces the degree of non-determinism by strength-
ening the guards and/or predicates. The modelling framework has a very good
tool support (RODIN) for project management, model development, conducting
proofs, model checking and animation, and automatic code generation. There
are numerous publications and books available for an introduction to Event-B
and related refinement strategies [1].

Since models may generate very tough proof obligations to automatically
discharge, the development of proved models can be improved by the refinement
process. The key idea is to combine models and elements of requirements using
the refinement. The refinement [7,8] of a machine allows us to enrich a model
in a step-by-step approach, and is the foundation of our correct-by-construction
approach. Refinement provides a way to strengthen the invariant and to add
details to a model. It is also used to transform an abstract model into a more
concrete version by modifying the state description. This is done by extending
the list of state variables, by refining each abstract event into a corresponding
concrete version, and by adding new events. The next diagram illustrates the
refinement-based relationship among events and models:

I(x) x x′ I(x′)

J(x, y) y y′ J(x′, y′)
�

�ae(x,x′)

�

�

�ce(y,y′)

�

We suppose that an abstract model AM with variables x and invariant I(x)
is refined by a concrete model CM with variables y and gluing invariant J(x, y).
The abstract state variables, x, and the concrete ones, y, are linked together by



Modelling by Patterns for Correct-by-Construction Process 403

means of the, so-called, gluing invariant J(x, y). A number of proof obligations
ensure that (1) each abstract event of AM is correctly refined by its correspond-
ing concrete version of CM , (2) each new event of CM refines skip, which is
intending to model hidden actions over variables appearing in the refinement
model CM . More formally, if BA(ae)(x, x′) and BA(ce)(y, y′) are respectively
the abstract and concrete before-after predicates of events, we say that ce in
CM refines ae in AM or that ce simulates ae, if one proves the following state-
ment corresponding to proof obligation: I(x) ∧ J(x, y) ∧ BA(ce)(y, y′) ⇒
∃x′ · (BA(ae)(x, x′) ∧ J(x′, y′)). To summarise, refinement guarantees that the
set of traces of the abstract model AM contains (modulo stuttering) the traces
of the concrete model CM .

The next diagram summarises links between contexts (CC extends AC);
AC defines the set-theoretical logical and problem-based theory of level i called
T hi, which is extended by the set-theoretical logical and problem-based theory
of level i called T hi+1, which is defined by CC). Each machine (AM , CM)
sees set-theoretical and logical objects defined from the problem statement and
located in the contexts models (AC, CC). The abstract model AM of the
level i is refined by CM ; state variables of AM is x and satisfies the invariant
I(x). The refinement of AM by CM is checking the invariance of J(x, y) and
does need to prove the invariance of I(x), since it is obtained freely from the
checking of AM .

I(x) AM AC T hi

J(x, y) CM CC T hi+1

�SEES

�
REFINES

�SEES

�
EXTENDS

The management of proof obligations is a technical task supported by the
RODIN tool [2], which provides an environment for developing correct-by-cons-
truction models for software-based systems according to the diagram. Moreover,
the RODIN platform integrates ProB, a tool for animating Event-B models and
for model-checking finite configurations of Event-B models at different steps of
refinement. ProB is used for checking deadlock-freedom and for helping in the
discovery of invariants.

3 The Inductive Paradigm

First at all, we analyse the inductive paradigm using the refinement and we
develop specific patterns. A computation is often characterised by the effective
computing of a value of a sequence of values. The problem is to define the
sequence of values and then to find a process for computing the value of a mem-
ber of the sequence. The methodology is based on the case studies developed
in the last decade and is the result of observations when teaching students how
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to use Event-B and its refinement. Two questions are stated: how to model for
getting an iterative algorithm computing a value defined by a given sequence at a
given rank? and can we have a set of automatically discharged proof obligations
as large as possible? The question is to define the sequence corresponding to the
problem to solve and the sequence is giving the way for constructing the required
value. The invariant is a very important part and is derived from analysis of
the problem. The global pattern called the iterative pattern is sketched by the
following diagram where machines and contexts are PREPOST, COMPUTING,
PREALGO, ALGO, ALGOPC and C0. The context C0 contains the description
of the problem which is the sequence (of values) defining the problem and the
refinement is linking the machines. The last machine is ALGOPC which is trans-
lated into an algorithm algorithm.. The context C0 is enriched while the model
is progressively refined.

ALGOPC

ALGO

PREALGO

COMPUTING

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

Fig. 1. The iterative pattern

CONTEXT C0
SETS

U
CONSTANTS

x, v, d0, f, D
AXIOMS

axm1 : x ∈ N

axm25 : D ⊆ U
axm24 : f ∈ D → D
axm23 : d0 ∈ D
axm2 : v ∈ N → D
axm3 : v(0) = d0
axm4 : ∀n·n ∈ N ⇒ v(n + 1) = f(v(n))
th1 : Q(d0, d) ≡ (d = v(x))

The context C0 is defining the sequence
v which is used for expressing the post-
condition Q(d0, d) with the precondition
P (d0). The post-condition Q(d0, d) is
equivalent to d = v(x) where the sequence v
is defined using d0 as initial value of v. The
theorem th1 should be proved in the con-
text C0 and it states that the sequence v is
soundly defining the problem. th1 expresses
that the requested value d exists and the
sequence provides an inductive process for
computing it.
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MACHINE PREPOST
SEES C0
VARIABLES

r
INVARIANTS

inv1r ∈ D
EVENTS
INITIALISATION

BEGIN
act1 : r :∈ D

END
EVENT computing

BEGIN
act1 : r := v(x)

END
END

The theorem th1 is validating the definition of the
result r to compute. The event computing is express-
ing the contract of the given problem. The step from
the context to the machine PREPOST is redefining
the contract in a machine. The domain D is any pos-
sible domain and not only N but it may be a complex
domain with multiple dimensions. We will illustrate
it by a very simple problem that is the computation
of the function n2 using the addition operator.

Following the refinement-based approach, we
introduce a refinement which is expliciting the com-
putation process using the sequence v as a guide for

reasoning. The refinement is the introduction of a very expensive variable vv
recording and storing successive and necessary values of the sequence v.

The variable vv is storing the value s of v and it may appear very inap-
propriate. However, the goal is to structure the proof process and to introduce
modelling variables which will be hidden later in the final refinement. The invari-
ant is simply expressing the relationship between mathematical values of v and
modelling variable of vv. k defines the domain of vv which is evolving during
the process. The properties of variables are derived from the relationship which
exists by the definition of the computation process:

(1) vv ∈ N 
→ D
(2) k ∈ N

(3) ∀i·i ∈ dom(vv) ⇒ vv(i) = v(i)
(4) dom(vv) = 0 .. k
(5) k ≤ x

Proofs obligations are discharged with a light interaction. The refinement is
a progressive process and is progressing to a model close to an implementation.
The refinement machine computing has a new event step updating the variable
vv and the event computing is made more concrete by using the guard over the
index k.

EVENT INITIALISATION
BEGIN

act1 : r :∈ D
act3 : vv := {0 
→ d0}
act5 : k := 0

END

EVENT computing
REFINES computing,
WHEN

grd1 : x ∈ dom(vv)
THEN

act1 : r := vv(x)
END

END

EVENT step
WHEN

grd1 : x /∈ dom(vv)
THEN

act2 : vv(k + 1) := f(vv(k))
act4 : k := k + 1

END

Now, we have to add a new refinement which is preparing the final transfor-
mation. The idea is to make the task of the proof assistant easier and to explain
how the invariant is built in a progressive way. A new variable cv is used for
storing the last computed value of the sequence v: cv ∈ D and cv = vv(k).
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EVENT INITIALISATION
BEGIN

act1 : r :∈ D
act3 : vv := {0 
→ d0}
act5 : k := 0
act8 : cv := d0

END

EVENT computing
REFINES computing
WHEN

grd1 : k = x
THEN

act1 : r := cv
END

EVENT step
REFINES step
WHEN

grd1 : k < x
THEN

act2 : vv(k + 1) := f(vv(k))
act4 : k := k + 1
act5 : cv := f(cv)

END

Proof obligations are discharged without toil, thanks to the incremental
refinement. The statement vv(k + 1) := f(vv(k)) is simulated by the new state-
ment cv := f(cv). The new refinement is hidden the modelling variable vv. The
variables r, cv and k are modelling the computation according to the safety
properties: (1) cv = v(k) (2) k ≤ x (3) 0 ≤ k. Events are modified by hiding the
variable vv and correspond to the pattern.

EVENT INITIALISATION
BEGIN

act1 : r :∈ D
act5 : k := 0
act8 : cv := d0

END

EVENT computing
REFINES computing
WHEN

grd1 : k = x
THEN

act1 : r := cv
END

EVENT step
REFINES step
WHEN

grd1 : k < x
THEN

act4 : k := k + 1
act6 : cv := f(cv)

END

The final step is to derive an algorithm corresponding to the two events. A
further refinement introduces the control variable called pc and we obtained the
operational semantics based on relations between variables and primed variables.

Listing 1.1. Function derived from pattern for the sequence v

type (D) f ( int x )
{ int r , k , cv , or , ok , ocv ;

r=0;k=0; cv=0; or=0;ok=k ; ocv=cv ;
while (k<x )

{
ok=k ; ocv=cv ;
k=ok+1;
cv=f ( ocv ) ;

}
r=cv ; return ( r ) ; }

The produced algorithm can be now checked using another proof environment
as for instance Frama-C [34]. The inductive property of the invariant is clearly
verified and is easily derived from the Event-B machines. The verification is
not required, since the system is correct by construction but it is a checking of
the process itself. Abrial [1] has addressed the question of developing sequential
algorithms and has proposed a list of transformations of Event-B models; our
Event-B project (or pattern) based on Abrial’s case studies has added intermedi-
ate refinements and has identified model variables from programming variables.
We have developed the project called ITERATIVE-PATTERN; the project is
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the pattern itself and in the next section we apply it by specialising it for
specific problems. The specialization leads to choose a sequence corresponding
to the problem to solve and to complete the project ITERATIVE-PATTERN.

4 Applying the Iterative Pattern

The iterative pattern (see Fig. 1) can be applied by importing the previous
project called ITERATIVE-PATTERN. We do not use the pattern plugin and
the technique developed by Abrial and Hoang [22] and choose a solution which is
simpler to apply with the RODIN platfom. The current project is then enriched
by the definition of the sequence of the problem to solve. The user should find a
way to express the problem by a sequence v over the domain D. The sequence v
is a key point and it should be related to the required post-condition. A theorem
should be derived in the context C0. We are considering two examples illustrating
how the iterative pattern can be instantiated.

4.1 Example 1: x2 and x3 Without Toil

Computing the value x2 for any natural number x without using the multi-
plication operator and using the addition operator, is a well known algorithm
which is based on a simple observation. The value (i + 1)2 is developed into
i2 + 2 ∗ i + 1 and the sequence v is defined as follows from this equality:
v(i + 1) = v(i) + 2 ∗ i + 1 and then each term is defined as a term of another

sequence

⎧
⎨

⎩

v(i + 1) = v(i) + w(i) + 1
w(i + 1) = w(i) + 2
u(i + 1) = u(i) + 1

In fact, the sequence v is defined with the help of two auxiliary sequences
namely w and u. We can apply the iterative pattern by rewriting the previous
definitions of sequence as follows:

⎛

⎝
v(i + 1)
w(i + 1)
u(i + 1)

⎞

⎠ =

⎛

⎝
v(i) + w(i) + 1
w(i) + 2
u(i) + 1

⎞

⎠ =

⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
v(i)
w(i)
u(i)

⎞

⎠ +

⎛

⎝
1
2
1

⎞

⎠

The domain D is Z × Z × Z and the sequence A is simply defined by:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀i ∈ N : A(i) =

⎛

⎝
v(i)
w(i)
u(i)

⎞

⎠

∀i ∈ N : A(i + 1) =

⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ A(i) +

⎛

⎝
1
2
1

⎞

⎠

The sequence A is a vector of sequences satisfying properties related to the
post-condition and these properties should be proved using the proof assistant:
∀i ∈ N : A(i)1 = i ∗ i, ∀i ∈ N : A(i)2 = 2 ∗ i and ∀i ∈ N : A(i)3 = i. The
notation A(i)j denotes the j-th component of the vector A(i). Finally, we obtain
the following function which is checked using Frama-C.
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Listing 1.2. Function derived from pattern power2

#include < l im i t s . h>
/∗@ requ i r e s 0 <= x ;

r e qu i r e s x∗x <= INT MAX ;
ensures \ r e s u l t ==x∗x ;

∗/
int power2 ( int x )
{ int r , k , cv , cw , or , ok , ocv , ocw ;

r=0;k=0; cv=0;cw=0; or=0;ok=k ; ocv=cv ; ocw=cw ;
/∗@ loop in va r i an t cv == k∗k ;

@ loop in va r i an t k <= x ;
@ loop in va r i an t cw == 2∗k ;
@ loop a s s i gn s k , cv , cw , or , ok , ocv , ocw ; ∗/

while (k<x )
{

ok=k ; ocv=cv ; ocw=cw ;
k=ok+1;
cv=ocv+ocw+1;
cw=ocw+2;}

r=cv ; return ( r ) ; }

The same process can be applied for computing x3 and we use the equality
(i + 1)3 = i3 + 3i2 + 3i + 1. We introduce intermediate sequences and identify
the following sequences:

– z0 = 0 et ∀n ∈ N : zn+1 = zn + vn + wn

– v0 = 0 et ∀n ∈ N : vn+1 = vn + tn
– t0 = 3 et ∀n ∈ N : tn+1 = tn + 6
– w0 = 1 et ∀n ∈ N : wn+1 = wn + 3
– u0 = 0 et ∀n ∈ N : un+1 = un + 1

⎛

⎜
⎜
⎜
⎜
⎝

z(i + 1)
v(i + 1)
t(i + 1)
w(i + 1)
u(i + 1)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

zi + vi + wi

v(i) + t(i)
t(i) + 6
w(i) + 3
u(i) + 1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 1 01 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

z(i)
v(i
t(i)
w(i)
u(i)

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0
0
6
3
1

⎞

⎟
⎟
⎟
⎟
⎠

The domain D is Z × Z × Z × Z × Z and the sequence B is simply defined by:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i ∈ N : B(i) =

⎛

⎜
⎜
⎜
⎜
⎝

z(i)
v(i
t(i)
w(i)
u(i)

⎞

⎟
⎟
⎟
⎟
⎠

∀i ∈ N : B(i + 1) =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 01 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

B(i) +

⎛

⎜
⎜
⎜
⎜
⎝

0
0
6
3
1

⎞

⎟
⎟
⎟
⎟
⎠

.
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The sequence B is a vector of sequences satisfying properties related to the
postcondition and these properties should be proved using the proof assistant:
∀i ∈ N : B(i)1 = i ∗ i ∗ i. The notation B(i)j denotes the j-th component of
the vector B(i). Finally, we obtain the following function which is checked using
Frama-C.

Listing 1.3. Function derived from pattern power3

#include < l im i t s . h>

/∗@ requ i r e s 0 <= x ;
r e qu i r e s x∗x∗x <= INT MAX ;
ensures \ r e s u l t ==x∗x∗x ;

∗/
int power3 ( int x )

{ int r , ocz , cz , cv , cu , ocv , cw , ocw , ct , oct , ocu , k , ok ;
cz=0; cv=0;cw=1; ct =3;cu=0; ocw=cw ; ocz=cz ;
oct=ct ; ocv=cv ; ocu=cu ; k=0;ok=k ;

/∗@ loop inva r i an t cz == k∗k∗k ;
@ loop inva r i an t cu == k ;

@ loop inva r i an t cv+c t==3∗(cu+1)∗(cu+1);

@ loop inva r i an t cz+cv+cw==3∗(cu+1)∗(cu+1)∗(cu+1);
@ loop inva r i an t cv== 3∗cu∗cu ;

@ loop inva r i an t cw == 3∗cu+1;

@ loop inva r i an t k <= x ;
@ loop as s i gn s ct , oct , cu , ocu , cz , ocz , k , cv , cw , r , ok ;

@ loop as s i gn s ocv , ocw ; ∗/
while (k<x )

{
ocz=cz ; ok=k ; ocv=cv ; ocw=cw ; oct=ct ; ocu=cu ;

cz=ocz+ocv+ocw ;

cv=ocv+oct ;
c t=oct+6;

cw=ocw+3;
cu=ocu+1;

k=ok+1;}
r=cz ; return ( r ) ; }

In this case, the loop invariant is inductive but Frama-C does not prove
it completely. This is not the case with the RODIN platform which is able to
discharge the whole set of proof obligations. However, the Event-B model is using
auxiliary knowledge over sequences used for defining the computing process. The
most difficult theorem is to prove that ∀n ∈ N : zn = n ∗ n ∗ n. The second
example is a new algorithm for computing n3 with only addition operator and
it is based on sequences which are defined from the equality simplifying (i+1)3.
The technique can be applied for the computation of ik for any k.

4.2 Example 2: The Fibonacci Family

We consider a function f ∈ Z × Z × Z → Z defined the complete set of natural
numbers and an infinite sequence of natural values defined using a inductive
definition as follow:
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– u0 ∈ N

– u1 ∈ N

– ∀n ∈ N : un+2 = f(un, un+1)

The inductive definition is considering not only the last previous element of the
sequence but two last previous terms. We use an expression for reformulating
the problem to solve and introduce a sequence f defined as follows:

– F1 ∈ N × N where F1 = (u0, u1)
– ∀n ∈ N : n 
= 0 :(

Fn+1 = g(Fn)
g(Fn) = (f((Fn−1)1, (Fn−1)2), f((Fn)1, (Fn)2)) = ((Fn)2, f((Fn)1, (Fn)2))

The reformulation leads to the general format of the iterative pattern and
it indicates also the necessity to have a specific variable for keeping the two
previous values: cv is containing a pair.

Listing 1.4. Function derived from pattern fibo

type (D) f i b o ( int x )
{ int r , k , cv , or , ok , ocv ;

k=0; cv=(u0 , u1 ) ; ok=k ; ocv=cv ;
while (k<x )

{ ok=k ; ocv=cv ;
k=ok+1;
/∗ cv=g ( ocv ) ;
cv= ( ocv 2 , f ( ocv 1 , ocv 2 ) ) ; }

r=cv ; re turn ( r ) ; }

In the algorithm, the variable cv is a pair keeping the two last values and we
denote ocv i the i-th component of ocv.

4.3 On Proofs Summary

Applying the iterative pattern requires to replay the proofs by instantiating the
constants of the problem. The new model is solving a specific problem and we
should prove extra theorems to derive the final post-condition as for instance
∀n ∈ N : zn = n ∗ n ∗ n. The progressive design of models facilitates the proofs
as we have noticed for the function power3: Frama-C was not able to discharge
any proof of the loop invariant. In the case of Fibonacci, the development of the
solution using Event-B and the refinement show that the resulting function is
correct by construction and the use of Frama-C is not possible since we need to
prove that r contains a value of the sequence: Frama-C necessitates the definition
of a theory with definition of Fibonacci sequence.
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5 The Call-as-Event Paradigm

The inductive paradigm and the iterative pattern are using a sequence of values
in a domain D and the computation process is based on the recording of the
values of the sequence. In the case of the call-as-event paradigm, the pattern is
based on the link between the occurrence of an event and a call of a function or
procedure or method satisfying the pre-condition and post-condition respectively
at the call point and the return point. The context C0 defines the sequence of
values and the definition of the sequence is used as a guide for the shape of events.
The definitions of sequence are reformulated by a diagram which is simulating the
different cases when the procedure under development is called namely P (x, r).

start ∧ x ∈ N

start ∧ x ∈ N start ∧ x ∈ N

end ∧ x ∈ N ∧ r = u(x)

end ∧ r = u(0)

reccall ∧ tr = u(x − 1)

end ∧ r = u(x)

x = 0 x �= 0

P(0,r): x = 0

P(x-1,tr): x �= 0

P(x,r): x �= 0

Fig. 2. Organisation of the computation in a recursive solution using assertion diagram

The diagram is derived from the Event-B model called ALGOREC and is a
finite state diagram. It includes a liveness proof very close to the proof lattices
of Owicki and Lamport [32]. We use special names for events in the diagram:
P(0,r): x = 0 stands for the event observed when the procedure P(x,r) is called
with x=0; P(x-1,tr): x 
= 0 models the observation of the recursive call of P;
P(x,r): x 
= 0 stands for the event observed when the procedure P(x,r) is called
with x 
= 0. P(0,r): x = 0 and P(x,r): x 
= 0 are refining the event computing
which is observed when the procedure P is called.



412 D. Méry

MACHINE ALGOREC
REFINES PREPOST
SEES C0
VARIABLES

r, pc, tr
INVARIANTS

art : pc ∈ L
inv1 : tr ∈ D
inv2 : pc = callrec ⇒ tr = v(x − 1)
inv3 : pc = end ⇒ r = v(x)

The refinement is an organisation of the
inductive definition using a control variable
pc. The control variable pc is organising the
different steps of the computations simu-
lated by the events. The invariant is derived
directly from the definitions of the interme-
diate values. Proof obligations are simple to
prove. It remains to prove that the values of
the sequence v correspond to the required
value in the post-condition.

EVENT P(x,r):x=0
REFINES computing
WHEN

grd1 : x = 0
grd2 : pc = start

THEN
act1 : r := d0
act2 : pc := end

END

EVENT P(x-1,tr):x/=0
WHEN

grd1 : pc = start
grd2 : x �= 0

THEN
act1 : tr := v(x − 1)
act2 : pc := callrec

END

EVENT P(x,r):x/=0
REFINES computing
WHEN

grd1 : pc = callrec
THEN

act1 : r := f(tr)
act2 : pc := end

END

The machine is simulating the organisation of the computations following
two cases according to the Fig. 2. The first case is the path on the left part of
the diagram and is when x is 0 and the second case if when x is not 0.

The first path is a three steps path and is labelled by the condition x =
0 an d the event P(0,r):x=0. The event P(x,r):x=0 is assigning the value d0
to r according to the definition of u(0). It refines the event computing in the
abstraction. The third step is an implication leading to the postcondition.

The second path is a four steps path and is labelled by the condition x 
=
0, then the event P(x-1,r):x 
= 0 is modelling the recursive call of the same
procedure. Finally the event P(,r):x 
= 0 is refining the event computing. The call
as event paradigm is applied when one considers that one event is defining the
specification of the recursive call and the user is giving the name of the call to
indicate that the event should be translated into a call. The EB2RC plugin [15]
generates automatically a C-like program.

The model ALGOREC is simple to checked. Proof obligations are simple,
because the recursive call is hiding the previous values stored in the variable vv
of the iterative paradigm. The prover is much more efficient.

The recursive pattern is linked to a diagram which is helping to structure
the solution. We have labelled arrows by guards or by events. The diagram
helps to structure the analysis based on the inductive definitions. Following this
pattern, we have developed the ERB2RC plugin based on the identification of
three possible events. When a pre/post specification is stated, the program to
build can be expressed by a simple event expressing the relationship between
input and output and it provides a way to express pre/post specification as
events. The first model is a very abstract model containing the pre/post events.
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ALGOREC

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

REFINES

Fig. 3. The recursive pattern

Since the refinement-based process requires an idea for introducing more
concrete events. A very simple and powerful way to refine is to introduce a more
concrete model which is based on an inductive definition of outputs with respect
to the input.

A first consequence is that the concrete model is containing events
which are computing the same function but corresponding to a recur-
sive call expressed as events (EVENT rec%PROC(h(x),y)%P(y)). The event
EVENT rec%PROC(h(x),y)%P(y) is simply simulating the recursive call of the
same function and this expression makes the proofs easier. The invariant is
defined in a simpler way by analysing the inductive structure and a control vari-
able is introduced for structuring the inductive computation. We have identified
three possible events to use in the concrete model:

EVENT
e

WHERE
� = �1
g�1,�2 (x)

THEN
� := �2
x := f�1,�2 (x)

END

EVENT
rec%PROC(h(x),y)%P(y)

ANY y
WHERE

� = �1
g�1,�2 (x, y)

THEN
� := �2
x := f�1,�2 (x, y)

END

EVENT
call%APROC(h(x),y)%P(y)

ANY y
WHERE

� = �1
g�1,�2 (x, y)

THEN
� := �2
x := f�1,�2 (x, y)

END

6 Applying the Recursive Pattern

Applying the recursive pattern is made easier by the first steps of the itera-
tive pattern. In fact, the context C0 and the machine PREPOST are the starting
points of the iterative pattern as well as the recursive pattern. We use the compu-
tation of the function x2 and we obtained the following refinement of PREPOST.
Figure 2 is the diagram analysing the way to solve the computation of the value
of u(x) following the call-as-event paradigm.
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MACHINE square
REFINES specquare
DoubSEES control0
VARIABLES

r, c, tr
INVARIANTS

inv1 : r ∈ N

inv2 : c = end ⇒ r = n ∗ n
inv3 : c = callrec ⇒ n �= 0
inv4 : c = callrec ⇒ tr = (n − 1) ∗ (n − 1)
inv5 : c ∈ C
inv6 : tr ∈ N

inv7 : c = end ⇒ r = n ∗ n
inv8 : c = end ∧ n �= 0
⇒tr = (n − 1) ∗ (n − 1) ∧ r = tr + 2 ∗ (n − 1) + 1
inv9 : c = callrec ⇒ n ∗ n = tr + 2 ∗ (n − 1) + 1

EVENT INITIALISATION
BEGIN

act1 : r := 0
act2 : c := start
act3 : tr :∈ N

END
EVENT square0
REFINES square(n;r)

WHEN
grd1 : c = start
grd2 : n = 0

THEN
act1 : c := end
act2 : r := 0

END

EVENT squaren
REFINES square(n;r)

WHEN
grd1 : c = callrec

THEN
act1 : r := tr + 2 ∗ (n − 1) + 1
act2 : c := end

END
EVENT rec%square(n-1;tr)

WHEN
grd1 : c = start
grd2 : n �= 0

THEN
act1 : c := callrec
act2 : tr := (n − 1) ∗ (n − 1)

END

The variable c is modelling the control in the dia-
gram. We introduce control points correspond-
ing to assertions in the labels of the diagram
as C = {start, end, callrec}. Three events are
defined and the invariant is written very easily
and proofs are derived automatically. The event
rec%square(n-1;tr) is the key event modelling the
recursive call. In the current example, we have
modified the machine by using directly the fact
that v(n) = n ∗ n and normally we had to use
the sequence following the recursive pattern and
then we had to derive the theorem v(n) = n ∗ n.

Proofs are simpler and invariants are eas-
ier to extract from the inductive definitions. The use of Frama-C shows that
the proofs are also very simple in the case of a recursive algorithm. Missing
expertise in using Frama-C leads to the introduction of auxiliary lemmas as
((x − 1) + 1)2 = (x − 1)2 + 2x + 1. In this example, we do not use the event
like call%APROC(h(x),y)%P(y) but the event is clearly a call for another proce-
dure or function. For instance, when a sorting algorithm is developed, you may
need an auxiliary operation for scanning a list of values to get the index of the
minimum. It means that we have a way to define a library of models and to use
correct-by-construction procedures or functions. In [15], we detail the tool and
the way to define a library of correct-by-construction programs.

7 The Service-as-Event Paradigm

The next question is to handle concurrent and distributed algorithms correspond-
ing to different programming paradigms as message-passing or shared-memory
or coordination-based programming. Jones [23] develops the rely/guarantee con-
cept for handling (possible and probably wanted) interferences among sequential
programs. Rely/guarantee intends to make implicit [4,12] interferences as well as
cooperation proofs in a proof system. In other methods as Owicki and Gries [31],
the management of non-interference proofs among annotated processes leads to
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a important amount of extra proof obligations: checking interference freeness
is explicitly expressed in the inferences rules. When considering an event as
modelling a call of function or a call of a procedure, we implicitly express a
computation and a sequence of state. We [30] propose a temporal extension of
Event-B to express liveness properties. The extension is a small bridge between
Event-B and TLA/TLA+ [24] with a refinement perspective. As C. Jones in
rely/guarantee, we express implicit properties of the environment on the protocol
under description by extending the call-as-event paradigm by a service-as-event
paradigm. In [5,6], the service-as-event paradigm is explored on two different
classes of distributed programs/algorithms/applications: the snapshot problem
and the self-healing P2P by Marquezan et al. [26]. The self-healing problem is
belonging to the larger class of self-� systems [18].

In previous patterns, we identify one event which simulates the execution of
an algorithm either as an iterative version or as a recursive version. Figures 1
and 3 separate the problem to solve into three problem domains: the domain
for expressing pre/post specifications, the domain of Event-B models and the
domain of programs/algorithms. The translation function generates effective
algorithms producing the same traces of states. We are now introducing pat-
terns which are representatives of the service-as-event paradigm.

7.1 The PCAM Pattern

Coordination [14] is a paradigm that allows programmers to develop distributed
systems; web services are using this paradigm for organising interactions among
services and processes. In parallel programming, coordination plays also a cen-
tral role and Foster [20] has proposed the PCAM methodology for designing
concurrent programs from a problem statement: PCAM emphasizes a decom-
position into four steps corresponding to analysis of the problem and leading to a
machine-independant solution. Clearly, the goal of I. Foster is to make concurrent
programming based on abstractions, which are progressively adding details lead-
ing to specific concurrent programming notation as, for instance MPI (http://
www.open-mpi.org/). The PCAM methodology identifies four distinct stages
corresponding to a Partition of identified tasks from the problem statement and
which are concurrently executed. A problem is possibly an existing complex C or
Fortran code for a computing process requiring processors and concurrent execu-
tions. Communication is introduced by an appropriate coordination among tasks
and then two final steps, Agglomeration and Mapping complete the methodol-
ogy steps. The PCAM methodology includes features related to the functional
requirements in the two first stages and to the implementation in the two last
stages. I. Foster has developed the PCAM methodology together with tools for
supporting the implementation of programs on different architectures. The suc-
cess of the design is mainly due to the coordination paradigm which allows us
to freely organise the stages of the development.

The PCAM methodology includes features related to the functional require-
ments in the two first stages and to the implementation in the two last stages.
The general approach is completely described in [28].

http://www.open-mpi.org/
http://www.open-mpi.org/
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Problem Specification model

Task model

Communication modelDistributed Algorithm

formalisation

partitioning

solving

programming

checking

We consider the two first stages (Partitioning, Communication) for produc-
ing state-based models satisfying functional requirements and which will be a
starting point for generating a concurrent program following the AM last suffix.
We have described a general methodology for developing correct by construction
concurrent algorithms and we have developed a solution specified by a unique
event.

7.2 The Distributed Pattern

Section 5 introduces the call-as-event paradigm which is based on an implicit
relationship between a procedure/function call and an event. The main idea is to
analyse a problem as a pre/post specification which is then refined by a machine
corresponding to the simulation of a recursive function or procedure. The class
of algorithms is the class of sequential algorithms and there is no concurrent or
distributed interpretation of an event. However, an event can be observed in a
complex environment. The environment may be active and should be expressed
by a set of events which are simulating the environment. Since the systems under
consideration are reactive, it means that we should be able to model a service
that a system should ensure. For instance, a communication protocol is a service
which allows to transfer a file of a process A into a file of a process B.

Figure 4 sketches the distributed pattern. The machine SERVICE is mod-
elling services of the protocol; the machine PROCESS is refining each service
considered as an event and makes the (computing) process explicit. The machine
COMMUNICATION is defining the communications among the different agents
of the possible network. Finally the machine LOCALALGO is localizing events of
the protocol. The distributed pattern is used for expressing phases of the target
distributed algorithm (for instance, requesting mutual exclusion) and to have a
separate refinement of each phase. We sketch the service-as-event paradigm as
follows. We consider one service. The target algorithm A is first described by a
machine M0 with variables x satisfying the invariant I(x).

The first step is to list the services e S =̂ {s0, s1, . . . , sm} provided by the
algorithm A and to state for each service si a liveness property Pi � Qi. We
characterise by Φ0 =̂ {P0 � Q0, P1 � Q1, . . . , Pm � Qm}. We add a list of
safety properties defined by Σ0 = {Safety0, Safety1, . . . , Safetyn}. An event
is defined for each liveness property and standing for the eventuality of e by a
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LOCALALGO

COMMUNICATION

PROCESS

SERVICE service description

distributed algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

REFINES

REFINES

REFINES

Fig. 4. The distributed pattern

fairness assumption which is supposed on e. Liveness properties can be visualised
by assertions diagrams helping to understand the relationship among phases.

The second step is its refinement M1 with variables y glued properties in by
J(x, y) using the Event-B refinement and using the REF refinement which is
defined using the temporal proof rules for expanding liveness properties. P � Q
in Φ0 is proved from a list of Φ1 using temporal rules. For instance, P � Q
in Φ0 is then refined by P � R,R � Q, if P � R,R � Q � P � Q. If we
consider C as the context and M as the machine, C,M satisfies P � Q and C,M
satisfies �Safety. We use a temporal semantics relating contexts, machines and
properties [30]. The link called LIVE expresses the satisfaction relationship. The
next diagram is summarising the relationship among models.

M0C0 L0

M1C1 L1

SEES

SEES

EXTENDS REFINES REF

LIVE

LIVE

Liveness properties can be gathered in assertions diagrams which are already
used for the recursive pattern in Fig. 2. For instance, P

e−→ Q means that

– ∀x, x′ · P (x) ∧ I(x) ∧ BA(e)(x, x′) ⇒ Q(x′)
– ∀x · P (x) ∧ I(x) ⇒ (∃x′ · BA(e)(x, x′))
– ∀f 
= e · ∀x, x′ · P (x) ∧ I(x) ∧ BA(f)(x, x′) ⇒ (P (x′) ∨ Q(x′))

P
e−→ Q expresses implicitly that tyhe event e is under weak fairness. Each

liveness property Pi � Qi in Φ0 is modelled by an event:
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EVENT ei =̂ WHEN Pi(x) THEN x : |Qi(x′) END

We can add some fairness assumption over the event:

– Pi
ei−→ Qi with weak fairness on e (WFx(ei)),

– Pi
ei=⇒ Qi, with strong fairness on e (SFx(ei)).

If we consider the leader election protocol [3], we have the following elements:

– Sets: ND (set of nodes).
– Constants: g is acyclic and connected (acyclic(g) ∧ connected(g)).
– Variables: x = (sp, rt) (sp is a spanning tree of g).
– Precondition):

P (x) =̂ sp = ∅ ∧ rt ∈ ND
– Postcondition: Q(x) =̂ spanning(sp, rt, g)

We can express the main liveness property: (sp = ∅ ∧ rt ∈ ND) �

spanning(sp, rt, g) and we define the machine Leader0 satisfying the liveness
property:

EVENT election0 =̂
BEGIN

sp, rt : |spanning(sp′, rt′, g)
END

C0 Leader0
SEES�� LIVE �� (WFx(election0), {P � Q})

We have introduced the service specification which should be refined sepa-
rately from events of the machine M0. The next refinement should first intro-
duce details of a computing process and then introduce communications in a
very abstract way. The last refinement intends to localise the events. The model
LOCALALGO is in fact an expression of a distributed algorithm. A current work
explores the DistAlgo programming language as a possible solution for translat-
ing the local model into a distributed algorithm. Liu et al. [25] have proposed
a language for distributed algorithms, DistAlgo, which is providing features for
expressing distributed algorithms at an abstract level of abstractions. The Dis-
tAlgo approach includes an environment based on Python and managing links
between the DistAlgo algorithmic expression and the target architecture. The
language allows programmers to reason at an abstract level and frees her/him
from architecture-based details. According to experiments of authors with stu-
dents, DistAlgo improves the development of distributed applications. From our
point of view, it is an application of the coordination paradigm based on a given
level of abstraction separating the concerns.
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7.3 Applying the Distributed Pattern

The distributed pattern (Fig. 4) is applied for the famous sliding window protocol.
The service description is expressing that a process P is sending a file IN to a
process Q and the received file is stored in a variable OUT. The service is simply
expressed by the liveness property (at(P, s) ∧ IN ∈ 0..n → D) � (at(Q, r) ∧
OUT = IN) and the event EVENT communication =̂ WHEN at(P, s) ∧
IN ∈ 0..n → D THEN OUT := IN END is defining the service. at(P, s)
means that P is at the sending statement called s and at(Q, r) means that Q
is at the receiving statement r. The context C0 and the machine SERVICE are
defined in Fig. 4. The next step is to decompose the liveness property using
one of the possible inference rules of the temporal framework as transitivity,
induction, confluence of the leadsto operatior. In this configuration, we have to
introduce the computation process which is simulating the protocol. Obviously,
we use and induction rule to express that te file IN is sent item per item and
we introduce sending and receiving events and the sliding events. In the new
machine PROTOCOL, variables are OUT, i, chan, ack, got and satisfied the
following invariant:

INVARIANTS
inv1 : OUT ∈ N 
→ D
inv2 : i ∈ 0 .. n + 1
inv3 : 0 .. i − 1 ⊆ dom(OUT ) ∧ dom(OUT ) ⊆ 0 .. n
inv7 : chan ∈ N 
→ D
inv8 : ack ⊆ N

inv9 : got ⊆ i .. i + l ∩ 0 .. n
inv10 : got ⊆ N

inv12 : dom(chan) ⊆ 0 .. i + l ∩ 0 .. n
inv13 : got ⊆ dom(OUT )
inv14 : ack ⊆ dom(OUT )
inv16 : 0 .. i − 1 � OUT = 0 .. i − 1 � IN
inv17 : chan ⊆ IN
inv18 : OUT ⊆ IN
inv19 : ack ⊆ 0 .. i + l ∩ 0 .. n

Name Total Auto Inter

isola-swp 124 101 23
C0 1 1 0
SERVICE 4 2 20
PROCESS 63 51 12
WINDOW 19 13 6
BUFFER 21 18 3
LOCAL 16 16 0

The variable got is simulating a window identified by the values between i
and i+l in the variables chan, got and ack. The sliding window is in fact defined
by the variable i which is sliding or incrementing, when the value OUT(i) is
received or equivalently when iinack. The events are send, receive, receiveack,
sliding together with events which are modelling possible loss of messages. The
machine PROCESS is simulating the basic mechanism of the sliding window
protocol and is expressing the environment of the protocol. The next refinement
WINDOW is introducing an explicit window variable satisfying the invariant
w ∈ N →D∧w ⊆ chan∧dom(w) ⊆ i..i+l. The events are enriched by guards and
actions over the variable window. The window variable is still an abstract view
of the window which is contained in a buffer b. The buffer b is introduced in the
refinement called BUFFER. The new variable b is preparing the localisation and
introduced the explicit communications: b ∈ 0 .. l →D ∧∀k ·k ∈ dom(b)⇒ i+k ∈
dom(w) ∧ b(k) = w(i + k) ∧ ∀h·h ∈ dom(w) ⇒ h − i ∈ dom(b) ∧ w(h) = b(h − i).
The visible variables of the machine are OUT, i, chan, ack, got, w and b and in
the next refinement, we obtain a local modle called LOCAL with OUT, i, chan,
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ack, got and b: the window is not part of the implementation of the protocol.
The events are localised by hiding the variable w and the final model can now be
transformed into the Sliding Window Protocol. The proof obligations summary
shows that proof obligations for the machine PROCESS correspond to the main
effort of proof, when the induction is introduced. However, we have not checked
the liveness properties using the temporal proof system namely TLA and it
remains to be effectively supported by the toolbox for TLA/TLA+. We use the
temporal proof rules to as guidelines for decomposing liveness properties while
we are refining events in Event-B. The technique has been already used for
developing population protocols [30].

8 Conclusion and Perspectives

The refinement-based modelling technique combines modelling and proving
through discharging proof obligations. Our contribution is to assist anyone who
wants to obtain a completely checked Event-B project for a given problem with
less toil. The toil is related to the use of the RODIN platform. The tool is a real
and useful proof companion but it requires a specific skill in proof development.

Following the ideas of Pólya, we enrich the library of patterns for providing
guidelines for defining fully proved Event-B models, when considering problems
to solve defined by explicit inductive definitions. The iterative pattern (Fig. 1) is
not defining the solution of the problem and it requires to prove that the com-
puted term of the sequence is satisfying the postcondition. In our example, we
have to prove the property v(n) = n2 which is the key of the verification process
with the definition of an invariant. The iterative pattern gives a very general
invariant which should be improved for the specific problem. The summary of
proof obligations shows that the refinement helps in the proof process. The proof
of the property v(n) = n2 is probably the most complicated task and the user
is focusing on this main question. The invariants of the Event-B models can be
reused in the verification using Frama-C, for instance, and the verification of the
resulting algorithm is a confirmation of the translation.

The recursive pattern (Fig. 3) gives also a different way to discover the invari-
ant and to discharge generated proof obligations. It improves the proof process
as well as the definition of the invariant which is a reformulation of the induc-
tive definition. The relationship between the iterative invariant and the recursive
invariant is to explicit but a perspective is to have an effective process for deriv-
ing the iterative invariant from the recursive invariant. The motivation is to help
in the definition of iterative solution. Another choice was to prove that the trans-
lation of a recursive solution into an iterative solution is correct and we used this
argumentation in our paper in the call-as-event technique [29].

The call-as-event paradigm (Fig. 3) is generalised by the service-as-event
paradigm which is based on a correspondence between temporal leadsto oper-
ator and events. The idea is to generalise the notion of call by the notion of
service which is more appropriate for modelling distributed applications. The
idea is based on the use of a graph of assertions (see Fig. 2 for the recursive pat-
tern). Such a graph is close to the proof lattice of Owicki and Lamport [32] and
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we have developed self-� systems using these diagrams and the service-as-event
paradigm [5]. The Event-B models contain both events corresponding to the
system under development. and the environment. When considering the service-
as-event paradigm, liveness properties play the role of guidelines for refining
machines.

Archives of Event-B projects are available at the following link
http://eb2all.loria.fr and are used by students of the MsC programme
at Université de Lorraine and Telecom Nancy. The mechanization of the liveness
part should be done and is part of the perspectives. The distributed pattern can
be adapted for given computation models as we have done for the local computa-
tion model [19]. Finally, the translation from Event-B models into a distributed
algorithm should be improved and we plan to explore distributed programming
languages with a high level of abstraction as for instance DistAlgo [25].
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coloring of forests in dynamic networks. Comput. Sist. 21(4), 863–881 (2017)
20. Foster, I.T.: Designing and Building Parallel Programs - Concepts and Tools for

Parallel Software Engineering. Addison-Wesley, Reading (1995)
21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)
22. Hoang, T.S., Fürst, A., Abrial, J.-R.: Event-B patterns and their tool support.

Softw. Syst. Model. 12(2), 229–244 (2013)
23. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
24. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.

16(3), 872–923 (1994)
25. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-

rithms. ACM Trans. Program. Lang. Syst. 39(3), 12:1–12:41 (2017)
26. Marquezan, C.C., Granville, L.Z.: Self-* and P2P for Network Management -

Design Principles and Case Studies. Springer Briefs in Computer Science. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-1-4471-4201-0
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