
On the Difficulty of Drawing the Line

Steve Boßelmann, Stefan Naujokat(B), and Bernhard Steffen

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{steve.bosselmann,stefan.naujokat,steffen}@cs.tu-dortmund.de

Abstract. The paper considers domain-specific tool support as a means
to turn descriptive into prescriptive models, and to blur the difference
between models and programs, and even between developers and users.
Conceptual underlying key is to view the system development as a deci-
sion process which increasingly constraints the range of possible system
implementations and Domain-Specific Languages (DSLs) as a means to
freeze taken decisions on the way towards a concrete realization. This
way naturally comprises both programming and modeling aspects. In
fact, considering all interactions that influence the behaviour of the sys-
tem as development turns GUIs into DSLs and makes it even hardly
possible to draw the line between developers and users. We will illustrate
this viewpoint in the light of the development of the Equinocs system,
Springer’s new editorial service.

Keywords: Modeling · Metamodeling · Programming
Domain-specific languages · Language-oriented programming
Language-driven engineering · Code generation · Model transformation

1 Introduction

There is a general tendency that structures and categorizations considered obvi-
ous in the past often get blurred in the course of deeper investigation. E.g., the
separating line between control and data path, traditionally clearly defined, is
today often profitably moved by changing the level of interpretation, and even
the gender classification has recently moved from a binary to a continuous spec-
trum. A similar trend can also be observed when considering the role, structure,
and pragmatics of modeling/specification languages on the one, and program-
ming languages on the other side: Originally, there was a quite clear distinction
between the typically very abstract loose and descriptive modeling and the much
more concrete and prescriptive programming. This distinction was also clearly
reflected in their role: Modeling aimed at the description of what a system is
supposed to do (in particular, this description should not force the programmer
to overspecify), and programming should aim at the description of an efficient
solution, the how. Technically, this was reflected by modeling languages to sup-
port certain logics, whereas programming tended to be more imperative. With
the evolution of more and more involved compilation and synthesis techniques

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11244, pp. 340–356, 2018.
https://doi.org/10.1007/978-3-030-03418-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03418-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-03418-4_20


On the Difficulty of Drawing the Line 341

Fig. 1. Evolution of mindset in the past decades: from how to what

this clear categorization got blurred.1 Figure 1 sketches this evolution, which
indicates the steady move towards more and more abstract system description
organized in a how/what cascade.

This cascaded abstraction influenced the development of increasingly higher-
level modeling and programming languages as well as their support frameworks
and infrastructures: defining a system’s behavior at the level of electric current
and voltage is almost impossible, leading to the introduction of numerous well-
defined abstractions in the design of hardware components: transistor level, gate
level, register transfer level, up to the instruction set level, which was the first
abstraction offered to humans to “interact” with the machine by programming
it. The instruction set of a CPU was in fact the basis for assembler languages,
which in the fifties and sixties were regarded as extremely high-level abstractions
of the underlying hardware. The successive raise from one level to the next built
a systematic discipline to map the higher-level concepts stepwise down to the
electrical level, where each program, each instruction, each clock cycle level oper-
ation are eventually executed. Assembler languages introduced the “thinking in
commands” perspective, and thereby the imperative programming paradigm.

1 In the hardware domain, synthesizing circuits from logical descriptions is actually
standard since many decades! [11].



342 S. Boßelmann et al.

Today, they typically form the lowest abstraction level modern computer scien-
tists are willing to consider.

The enormous development of programming and modeling languages [3,4]
of the last 50 years equipped programming languages with concepts, metaphors,
and mechanisms that allow programmers to focus more and more on describing
the intended functionality (the what) directly at the upper level, rather than
having to deal with implementation details like inner structures, specific machine
characteristics or the economic use of storage (the how). The more complex the
addressed platform, the greater is the benefit of this approach. A good example
here are modern Web applications which require the configuration of a com-
plicated stack of technologies [1]. Another example are cross-cutting concerns
like security and real time behaviour [2,18]. Enhanced development frameworks
allow developers also here to focus on the required functionality, while the other
concerns are taken care of during code generation and deployment, e.g., in an
aspect-oriented fashion [13]. This ongoing development is, in fact, not so differ-
ent from the well-established steps that decoupled programming from electrical
level considerations.

In this paper we discuss a, in a sense, more radical trend and its impact:
moving from universal languages to domain-specific or even purpose-specific lan-
guages. We illustrate that adequate specialization combined with tailored tooling
allows one to simplify the required languages to a point that even application
experts without any programming knowledge can express their intents in a way
that corresponding solutions can be automatically generated without sacrificing
non-functional properties like dependability, efficiency, and security. Conceptual
backbone is our Language-Driven Engineering (LDE) [9,19] approach, which can
be explained as a discipline of DSL orchestration.

After sketching the LDE background and philosophy in Sect. 2, Sect. 3 dis-
cusses LDE-oriented language refinement along the development of Springer’s
Equinocs system, before we conclude with a discussion of the approach and
directions for future research in Sect. 4

2 LDE: Background and Philosophy

Modeling, specification, programming: drawing clear lines between these notions
seems impossible. As clearly pointed out by Völter [23], usual criteria like exe-
cutability, looseness, textual, graphical, and abstraction, give tendencies, but
do not lead to accurate classification. We go even a step further and see the
distinction between prescriptive and descriptive as a matter of purpose and per-
spective. Consider climate models, mentioned by Völter as clearly out of scope
of prescriptive model-driven approaches: Good descriptive models for climate
are naturally ideal prescriptive models for corresponding simulators, which, in a
sense, make the original climate models even executable!



On the Difficulty of Drawing the Line 343

Fig. 2. Comparison: meta levels in classic programming vs. domain-specific approaches

In principle, also the most abstract descriptions2 can become executable when
regarded in a specific context: the graphical model of a calender turns into a pre-
scriptive specification when, e.g., defining travel schedules, and typical (product)
configurators use numerous similarly abstract and domain-specific descriptions
as prescriptive modeling components for search and filtering.3 In fact, the whole
idea of domain-specific (modeling) languages (DSLs) [8,16] can be regarded as
a way to automatically make abstract description operational.4 Of course, this
requires to establish adequate corresponding (execution) landscapes, powerful
enough to adequately interpret the abstract input description.5

Language-Oriented Programming (LOP) [5,6,24] exploits this observation
by offering to develop DSLs within appropriate meta environments – often
called Language Workbenches [7] – in order to also address stakeholders without
(explicit) programming expertise (cf. Fig. 2). Impressive is here the projectional
editing functionality of JetBrains MPS [12], which allows, e.g., business people

2 here to be understood as descriptive models, as any form of description can be
interpreted that way.

3 For a car configurator, (descriptive) images of a car, are often used to support the
adequate selection (prescription).

4 Please understand ‘operational’ as ‘lives up to its purpose in a corresponding
realization’.

5 Traditional correctness-by-construction methods fit in here as well. In fact, there is
no clear conceptual difference between this DSL-‘enactment’ and a compiler. Only
the level of application is different.



344 S. Boßelmann et al.

Fig. 3. Continuous system development with language-driven engineering

to contribute tabular data as part of a larger system in the ‘Excel’-like fashion
they are used to. LOP typically results in a waterfall-like ‘meta workflow’ where
required additional DSLs are provided before the actual systems development
starts.

Language-driven engineering (LDE) [9,19] goes a step further by consider-
ing the development of tailored DSLs as essential continuous part of the system
development and evolution process (cf. Fig. 3). E.g., our LDE-based development
of the Equinocs system6 proceeds by co-evolution of the metamodeling environ-
ment Cinco [17] for easier generation of (graphical) domain-specific languages,
of DIME [1], our dedicated (graphical) DSL-specific7 integrated development
environment (IDE),8 and of Equinocs itself.

This co-evolution requires elaborate means for maintaining coherence, e.g.,
to allow one to (easily) migrate existing Equinocs versions into new versions of
DIME and existing DIME versions into new versions of Cinco in a way that
exploits the new features of DIME, an Eldorado for generative programming and
model-to-model transformations.9 In this context, it is important to distinguish
three flavours of language evolution:

– In an upgrading form (e.g. Java 7 to Java 8). Often, at least when this happen
as natural extension, migration is not an issue at all.

– As DSL specialization. In this case it makes a lot of sense to define the
semantics of the specialized language via translation to the original language,

6 The next version of Springers Online Conference Service.
7 In [19] we introduced the term mindset-specific IDE, and the acronym mIDE to

indicate that DSLs are more than just means for purpose-specific simplification.
New mindsets are powerful means to reach ‘out of the (traditional) box’.

8 DIME comprises currently four graphical DSLs.
9 This requirement may remind of the situation of frameworks that have to explicitly

deal with round-trip engineering, a problem that is overcome by frameworks following
a full (code) generation policy.



On the Difficulty of Drawing the Line 345

with the advantage that reusing the available code generator for that language
immediately provides a code generator for the specialized language [21]. On
the other side, migration is typically quite constraint and complicated, but
typically also only required in a very restrictive fashion as part of a (major)
refactoring activity.

– As service oriented extension with new dedicated languages in the way dis-
cussed in [19], which can be regarded as a light-weight language specialization
technology generalizing the idea of component libraries, with an intent remi-
niscent of the ideal of projectional editing of MPS.

LDE considers all these forms of evolution as part of the product develop-
ment/system life cycle. In a sense, this generalizes the idea of ‘a software system
is never finished’ to its entire development and evolution scenario. Everything
co-evolves, the meta-metamodels for defining tailored DSLs, the DSLs, the sys-
tem itself, as well as the infrastructure the system is supposed to run on. In
this highly agile approach, the roles of metamodels, models, specifications, and
programs converge, however, as part of an overall scenario that is characterized
by diversification: We envisage the number of languages involved in individual
projects to radically grow. In particular, we envisage that the use of graphical
notation will lead to a tighter integration of domain experts into the system/ap-
plication development process, as it is typically more intuitive and helps sup-
porting the intended mindsets and purpose. We will discuss our corresponding
visions, options, and the state of the art along the Equinocs development in the
remainder of this paper.

3 Application Example: The Equinocs Development

In the following, we sketch LDE-oriented language refinement in the context of
the development of Equinocs – Springer’s new online conference management
system that handles all phases of a conference, from setup over submission to
review and proceedings production. Equinocs is entirely developed in a model-
driven way with DIME, a tool that provides dedicated modeling languages for
the development of complex multi-user Web applications.

Modeling Web applications with DIME is done by defining user interactions,
the presentation and organization of the GUI, as well as eventually required
permissions to access data or perform actions. DIME provides specific modeling
languages for the creation of these aspect-specific models:

– Interaction processes manage the user interactions with the application,
like page transitions including the data flow between different pages.

– GUI models define the appearance of pages in the Web application. They
comprise basic UI components to display various types of content (text fields,
images, etc.) as well as structural components to define panels, blocks, grid
layouts, etc. Furthermore, data input via forms can be modeled with respec-
tive components for content-specific form fields.



346 S. Boßelmann et al.

– Data models are used to model the actual domain by means of various data
types with attributes as well as (bidirectional) associations between them.

The basic building blocks of models in DIME are based on a component
model called Service-Independent Building Blocks (SIBs) [20] that either are
basic components or reference hierarchically to other models in the workspace.
While the so-called Native SIBs wrap native implementations like service calls to
an API, those SIBs that hold references to other models in the workspace enable
the reuse of models. In DIME, process models and GUI models can be nested
inside each other in a hierarchical fashion, both mutually as well as within models
of the same type. In the context of GUI models, this enables the easy creation and
encapsulation of recurrent complex components, like forms. Regarding process
models, a clean process architecture arises from the use of sub-processes via
Process SIBs and the integration of user interfaces happens likewise via GUI
SIBs.

From DIME models, the running application is fully generated by a powerful
code generator. Beyond that, DIME is itself generated in a model-driven way
from models of the domain ‘modeling language development’. The tool that
provides editors for those models, as well as the required code generator, is our
Cinco framework, which provides specific modeling languages, the Meta Graph
Language (MGL) and the Meta Style Language (MSL), for the definition of both
the structure as well as the visualization of graph models. Finally, in this line of
modeling and code generation, Cinco is built upon the frameworks provided by
the Eclipse Modeling Project [10,22]. Already here, we see two things:

1. Modeling is used – like programming – for the development of a program,
tool or system.

2. The user of one level can be a developer of another: users of DIME are devel-
opers of the Equinocs system and the developers of DIME are users of the
Cinco framework.

Both observations show that trying to draw a clear line seems impossible. Should
this even be tried? Or should we strive for more levels of language development,
so that with each level, the domain of the target system is more and more
narrowed until we reach the finally desired system? Of course, such a more fluent
approach only works efficiently with a powerful support framework. Most of the
challenges (some of which we will discuss in the following) are not yet solved with
any of the available language workbench systems. We already address some with
the Cinco ecosystem, but believe that the modeling/programming community
needs to team up for this ambitious aim.

In the following, three examples from the context of Equinocs, which motivate
the provision of new UIs as DSLs, will be presented.

3.1 Report Form Language

In the Equinocs system, reviewers fill out report forms to provide their assess-
ment for each paper they have been assigned to. These reports can be accessed



On the Difficulty of Drawing the Line 347

Data

GUI

Process

Fig. 4. DIME models for report creation

by the members of the conference committee and make up the basis for decision
making. Hence, the UI created by the developers comprises a page for creating
and editing a report (report form) as well as a page for presenting the actual
result (report details). To keep the following example simple, let us assume that
this report form consists of only a single field Comment to hold a free text.
Figure 4 shows the required models in DIME for the realization of this report
form in Equinocs. The GUI model holding the form is embedded in the interac-
tion process. Both models reference the type Report from the data model. While
the process model requires this reference for the definition of the data flow, the
GUI model uses it to link the form field Comment with the data type’s attribute
comment to express where the field’s value should be saved.

Let us now assume that we endeavour to extend the report form by intro-
ducing an additional field assessment to hold one of the discrete values reject,
accept or indifferent. This would be helpful to provide a condensed overview for
the conference committee. Based on the models so far, this is realized by the
Equinocs developers through the following steps:

S1 Extend the data model of the application by means of adding a new attribute
assessment to the data type Report.

S2 Add an additional input field to the UI model of the report form and link it
with the newly created attribute assessment.

S3 Add an additional display field to the UI model of the report detail page.



348 S. Boßelmann et al.

Save Submit

Show 'Evaluation'

The paper should be accepted.

Comment

Cancel

AcceptEvaluation

High

Create Report

IF

IF

CONFIGURATION TIME RUNTIME

Fig. 5. Report form configuration

From a language-centric point of view, what we create and maintain this
way, is a very restricted DSL for reports to be used by reviewers in the running
Equinocs system. In particular, any request for new form fields actually is a
change request for the report DSL communicated from system users to system
programmers, i.e., a language management issue spanning the two layers of sys-
tem runtime and system design. We will discuss some of the implications derived
from this still simple example in more detail. In particular, we will illustrate how
a user role morphs more and more into a developer role.

Implications Towards the System Level. The prominent disadvantage of
the depicted approach of changing the report form on the system design level
is that this would have immediate effect on all managed conferences after the
re-deployment of the system, although not all organizers of all conferences would
consider the changes as a welcome improvement. Typical management systems
for conferences or journals have more complex forms, with often more than
10 fields like ‘confidence of the reviewer’, ‘in scope for the topic of the confer-
ence’, ‘novelty in the field’, or even ‘quality of language’. The perception of these
feature-rich solutions totally differs, as some may find it absolutely necessary,
while others consider it highly annoying. However, it is almost natural to intro-
duce conference settings to hold options for the organizers to turn these features
on or off, either at initial configuration time or even on demand at runtime.

In the UI, these settings can be realized with a simple check box for each of the
report form fields, named with something like ‘Show <field.name>’ (cf. Fig. 5).



On the Difficulty of Drawing the Line 349

From a language-centric point of view, what we just introduced, is a DSL for
report forms to be used by system users like the conference organizers. Though
we have already introduced a report DSL for reviewers above, the abstraction
layer of this report form DSL differs, as the latter can be used to change the
former. The ability to change the report DSL has so far been reserved for the
system developers. But we shifted parts of the definition of the report DSL from
programming level to the system level by introducing a new restricted DSL for
that purpose and handing it over to the system users.

This is an excellent example to stress that switching the abstraction layer
from the modeling language (report DSL) to the metamodeling language (report
form DSL) does not necessarily mean to switch from system level to program-
ming level. The language shift is more fluid and different parts of a language’s
definition might even be allocated on separate levels, as illustrated by this spe-
cific example.

Providing a DSL for report forms to be used by conference organizers adds
flexibility for the latter at the cost of clarity and control on the programming
level. While so far, the developers of the system had known exactly which fields
exist in the report form, they now have to deal with the fact that some may
not exist. Any business logic of the system that relies on values from one of
the fields needs to be rebuilt in a more robust manner to not fail if they are
missing. As an example, consider the logic of the system asserting that papers
can only be accepted if at least one report exists whose value for assessment is
other than reject. In general, if the system so far behaved differently depending
on the current value of a specific field, it now has to first check whether such a
value exists and behave predictable otherwise. The possible absence of a value
imposes constraints for defining the corresponding business logic.

What if we continue to shift control over the report DSL from programming
level to system level? Although the conference organizers can decide which fields
are shown in the report forms, which fields are available at all is still predefined
by the system developers. In particular, the workflow to add a completely new
field on demand has not changed much. It still would require a change request
addressed to the developers and the latter to run through the transformation
steps listed above. As an alternative, we might transfer even more power to the
system users by allowing them to create new form fields on demand, thereby
extending the report DSL used by the reviewers. The required UI for the confer-
ence configuration (i.e., the report form DSL) would then need to be extended
by a form for the organizers to change the list of available report form fields,
including the feature to remove existing fields or create completely new ones (cf.
Fig. 6). The latter can be achieved in multiple ways based on different restric-
tions. We might allow to only create fields of a specific type, e.g. those holding
a pre-defined set of possible values (e.g., enum literals). In this case, provid-
ing a name for the field as well as the actual list of possible values is enough.
Alternatively, we might hand over the definition of the value type of a form field,
thus adding the definition options for text, boolean or integer values.



350 S. Boßelmann et al.

Create Report

Save Submit

The paper should be accepted.

Comment

Cancel

FOR
Form Fields Add

Evaluation Delete

Delete

CONFIGURATION TIME RUNTIME

< values >< name >

Fig. 6. Report form field creation

Again, these design decisions have so far been reserved for the system develop-
ers. And just like we discussed above, this transformation means more flexibility
for the system users, but even less clarity and control for the system developers.
While so far the developers had to respect that some fields of the report form
may not be used at runtime, they now have to deal with the fact that (a part
of) the report form is not even known at design time. What remains is kind of
a meta-level perspective that tells them there may exist fields, the types they
may have as well as the types of possible values. However, the remaining control
over these features is hardly enough to be used as a basis to define meaningful
business logic of the system. It is impossible to define system behavior based on
the value of fields from which the developers do not know whether they exist.
However, we might counteract this development by means of providing another
specific DSL for the system users to define such behavior that depends on the
actual values of report form fields. We will pick up this idea again in Sect. 3.3
where we exemplarily discuss the introduction of such a language.

From an abstract language-centric perspective, we have outlined a stepwise
top-down transfer of control over a DSL from system design level to system
level (cf. Fig. 7). It is easy to see that with increasing control comes increasing
flexibility, in exchange for complexity. We have achieved that the report DSL
can now be manipulated by the system users. But what would be an adequate
way to do so? We argue that whether the increased complexity is manageable for
the system users depends on the language they use. Using the instruments of the
system developers requires knowledge and skills that span the handling of types
and attribute definitions, i.e., knowledge that is traditionally associated with the
programming domain. On the contrary, a DSL specialized to the definition of
forms can provide an intuitive user interface and at the same time hide most of
the complexity (type definitions, etc.) underneath. We might either create a DSL



On the Difficulty of Drawing the Line 351

ReportForm DSL

Report DSL

languageOf

Report

languageOf

GUI DSL

languageOf

PC Chair

Reviewer

usedBy

usedBy

creates

creates

Developer
creates

usedBy

Development level

System level

Fig. 7. Top-down DSL creation

by means of a Web form with distinct input fields, or a graphical DSL to build a
visual model of the report form. However, both languages can be understood as
restricted versions of the DSLs at system design level, as DIME’s GUI models
already comprise components for this very task. But the restricted versions focus
solely on those components that are necessary to define a form by means of only
including the different types of form fields that the conference organizers should
be able to create.

Please note, the definition of data types must not be part of the report form
DSL as there is no need to change the data model explicitly. Required data types
as well as the relations between form fields and associated type attributes can be
generated, as each form field matches a unique attribute of the already existing
data type Report. New form fields can trigger the creation of new attributes
automatically. However, these semantics have to be defined and assured by the
Equinocs developers along with the definition of the form DSL, as the mapping of
its language constructs on the applications’ data model is still their responsibility.

Increase vs. Decrease of Expressive Power. The report form example
describes a stepwise increase of the expressive power of the DSL, reaching from
no control at all over configuration-based activation/deactivation of pre-defined
form fields up to fully customized field types with respective sets of possible
values. The driving motivation is restricting the DSL to ensure that the outcome,
i.e., the model created by the user on the next level, represents a manageable
artifact that can be integrated into the system. However, we could very well have
chosen an opposite approach, i.e., starting with few restrictions and decreasing
the expressive power by means of adding constraints on demand. Although we
might hand over the full power of a general purpose programming language
like Java, in practice, we would strive for a language that is more tailored to



352 S. Boßelmann et al.

the application domain. For the report form example, the GUI DSL in DIME
would have been a suitable starting point. With this, users on the system level
can create components to extend the report form10. However, without additional
constraints, they might as well create other UI components apart from those that
fit into forms. Hence, it is advisable to restrict the GUI DSL to elements that
actually can be integrated into forms, i.e., form fields and other content-related
components like texts, images, etc. as well as components to add structure.

The difference between both approaches to create a DSL is apparent. A
stepwise increase of expressive power aims at restricting the users of the language
as much as possible, initially starting with only a few alternatives to choose from.
In contrast, a stepwise decrease strives for providing as much freedom as possible,
thereby trying to assure with appropriate constraints that the outcome is still
valid by means of being integratable into the system context.

Implications Towards the Meta Level. We have just discussed the cre-
ation of a form DSL as a solution for the conference organizers to build their
own report forms for reviewers. In this setting, we investigated the Equinocs
application on the system level in relation to the modeling environment DIME
on the development level. In the next subsection, we switch the perspective to
investigate DIME on the system level in relation to Cinco on the development
level.

3.2 Automatic Generation of Forms

To keep the example simple, let us consider the initial state of the Equinocs
application as described at the beginning of the previous section. Here, changes
to the report forms can only be done by the developers of Equinocs, i.e., within
the DIME modeling environment. It is easy to see that in this scenario the
transformation steps S1 to S3 listed above (changes to the data model, report
form and report detail) would have to be repeated (or reverted) for any change
requests regarding the extension (or reduction) of the report form fields, i.e., the
report DSL. Although the development effort is relatively small, this approach
means repetitive work for the developers. Reusing model elements like the UI
components for the form fields would only reduce the effort but cannot eliminate
the necessity of running through these steps over and over again. This is due
to a mismatch between the intent of the Equinocs developers and what can be
expressed in the DIME languages available for designing the Equinocs system.
These languages let them define a Report data type with attributes (Data DSL)
and form fields (GUI DSL), as well as which form field is related to which of
these attributes.

However, what they actually need to express is that certain attributes of the
Report data type are relevant for creating or editing reports and that respec-
tive form fields should be displayed at runtime for this exact purpose. But
10 As Equinocs is a Web application, here we assume that a suitable Web editor for

the GUI DSL exists to be easily integrated.



On the Difficulty of Drawing the Line 353

this requires addressing metamodel concepts of DIME’s Data language, e.g.,
by means of a for-each construct in GUI models to iterate over attributes of
data types. Additionally, as some attributes might be irrelevant in this spe-
cific context, some kind of filter mechanism would have to be established, along
with a feature to enhance the Data model with some sort of ‘UI cues’. Without
going into further detail, we realize that a solution for this issue would definitely
require changes to the modeling languages in DIME, i.e., changes on the meta-
model level from the perspective of the Equinocs developers. Along with these
additional syntactical elements, a model generator that generates GUI models
for default forms might save the developers a great deal of work.

From this example, we can see that although the affected levels of abstrac-
tion differ, this constellation is very similar to the one depicted above regarding
change requests for the report DSL. The only difference is the perspective, as
now DIME is on the system level in relation to Cinco on the development level.

3.3 Conference Flow Language

The previous examples both show how the transfer of power over (parts of) a
specific DSL can blur the line between development level and system level, as
along with control over the DSL responsibilities are shifted from one level to the
other. To illustrate this point further, we now introduce a new user role along
with a new DSL into the system design process.

In the current implementation of Equinocs, the flow of a conference – i.e.,
which phases exist, when they are triggered, and what happens in each of them
– is determined by the Equinocs developers in those process models that define
the application’s business logic. Additionally, some variation points are added
into these processes, to reflect that the flow slightly differs depending on config-
uration parameters set by the conference organizers, like the minimum number
of reviewers per paper or the decision for allowing a rebuttal phase.

As already discussed, the GUI for setting these configuration parameters can
be understood as a DSL for the conference organizers to ‘program’ the behav-
ior of the conference system. However, this DSL limits conference organizers
to the options foreseen by the Equinocs developers and new demands regard-
ing more expressive power result in increased complexity on both the system
level as well as the development level. In fact, with more configuration parame-
ters, the conference flow, which is spread across various process models already,
becomes increasingly cluttered due to conditional branching to cover all possible
conference flow alternatives.

The LDE way to address this problem is to introduce a dedicated DSL that
is particularly tailored towards the definition of conference flows together with
a code generator that guarantees the requirements on both the system level as
well as the development level. In particular, this DSL may comprise constructs
to decide on per-paper phase transitions based on the actual form field values of
associated reports, as introduced in Sect. 3.1.

This scenario directly leads to the idea of also adding an additional role to
the system design process: experts that know the domain of ‘running confer-



354 S. Boßelmann et al.

ences’ and thus are suitable to define conference flows. This qualification profile,
however, is neither matched by the typical conference organizer – as learning a
dedicated DSL to run a conference is something that very few, if any, conference
organizers are willing to do – nor by the typical developer, which in our scenario
is expert for modeling Web applications with DIME.

Actually, for the future of Equinocs, we foresee that Springer’s support team
is capable of realizing the conference organizers’ needs using such a dedicated
flow DSL. But in which stage of the system design process would the definition
of the conference flow be integrated? We can find good arguments for integrating
this task into the development process, just as we do for shifting it to the system
runtime. The best solution might even be to allow it into both levels. This
illustrates that drawing a line between developers and users is as difficult as
between programming and modeling, and that a corresponding distinction very
much depends on the observer’s perspective.

4 Conclusion and Perspectives

We have argued that domain-specific tool support has the potential to serve
a means to turn descriptive into prescriptive models, and to blur the differ-
ence between models and programs, and even between developers and users.
Underlying mindset is to view the system development as a decision process
which increasingly constraints the range of possible system implementations
and Domain-Specific Languages (DSLs) as a means to freeze taken decisions
for future development and evolution. The corresponding development paradigm
LDE (for Language-Driven Engineering), introduces a novel cooperative devel-
opment paradigm that is tailored to specifically address all stakeholders, and it
emphasizes that what is to be considered a model or a program is a matter of
perspective.

We have illustrated the pragmatics of this viewpoint in the light of the devel-
opment of the Equinocs system, Springer’s new editorial service, by showing how
the power of a user can incrementally be enhanced to turn her stepwise into
a more and more powerful developer. In addition, we have sketched how the
development of Equinocs could profit from the evolution of DIME, Equinocs’
underlying development environment.

LDE and the imposed viewpoint on specifications, (meta) models, and pro-
grams has also reached (even undergraduate) teaching [15]. Experience shows
that the traditional distinctions do not at all show up when confronting stu-
dents directly with our perspective-driven viewpoint.

Currently, we are working on making LDE widely accessible, e.g., by pro-
viding a corresponding Web-based development environment [14], and by suc-
cessively strengthening the domain-specific development support. Following the
open-source philosophy, we hope to attract users and co-developers in order to
establish an LDE community.



On the Difficulty of Drawing the Line 355

References

1. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
809–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 60

2. Boßelmann, S., Neubauer, J., Naujokat, S., Steffen, B.: Model-driven design of
secure high assurance systems: an introduction to the open platform from the
user perspective. In: Margaria, T., Solo, M.G.A. (eds.) The 2016 International
Conference on Security and Management (SAM 2016). Special Track “End-to-end
Security and Cybersecurity: From the Hardware to Application”, pp. 145–151.
CREA Press (2016)

3. Broy, M., Havelund, K., Kumar, R.: Towards a unified view of modeling and pro-
gramming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
238–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 17

4. Chatley, R., Donaldson, A., Mycroft, A.: The next 7000 programming languages.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science: State of the
Art and Perspectives, LNCS, vol. 10000. Springer (2018, to appear)

5. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
JetBrains onBoard Online Magazine 1 (2004). http://www.onboard.jetbrains.com/
is1/articles/04/10/lop/

6. Felleisen, M. et al.: A programmable programming language. Commun. ACM
61(3), 62–71 (2018)

7. Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-
guages?, June 2005. http://martinfowler.com/articles/languageWorkbench.html.
Accessed 10 Apr 2018

8. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press,
New York (2011)

9. Gossen, F., Margaria, T., Murtovi, A., Naujokat, S., Steffen, B.: DSLs for decision
services: a tutorial introduction to language-driven engineering. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018, LNCS 11244, pp. 546–564. Springer, Cham (2018)

10. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston (2008)

11. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms, 1st edn.
Springer, Boston (1996). https://doi.org/10.1007/0-387-31005-3

12. JetBrains: Meta Programming System. https://www.jetbrains.com/mps/.
Accessed 10 Apr 2018

13. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

14. Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Naujokat, S., Steffen, B.:
A tutorial introduction to graphical modeling and metamodeling with cinco. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018, LNCS 11244, pp. 519–538. Springer,
Cham (2018)

15. Margaria, T.: From computational thinking to constructive design with simple
models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, LNCS 11244, pp. 261–
278. Springer, Cham (2018)

16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

17. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. 20(3), 327–354 (2017)

https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1007/978-3-319-47169-3_17
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/0-387-31005-3
https://www.jetbrains.com/mps/
https://doi.org/10.1007/BFb0053381


356 S. Boßelmann et al.

18. Naujokat, S., Neubauer, J., Margaria, T., Steffen, B.: Meta-level reuse for mastering
domain specialization. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 218–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3 16

19. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science: State of the Art and Perspectives, LNCS,
vol. 10000. Springer (2018, to appear)

20. Steffen, B., Margaria, T.: METAFrame in practice: design of intelligent network
services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol.
1710, pp. 390–415. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48092-7 17

21. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
LNCS Trans. Found. Mastering Chang. (FoMaC) 1(1), 22–46 (2016)

22. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

23. Voelter, M.: Fusing modeling and programming into language-oriented program-
ming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, LNCS 11244, pp. 309–339.
Springer, Cham (2018)

24. Ward, M.P.: Language oriented programming. Softw. Concepts Tools 15(4), 147–
161 (1994)

https://doi.org/10.1007/978-3-319-47169-3_16
https://doi.org/10.1007/978-3-319-47169-3_16
https://doi.org/10.1007/3-540-48092-7_17
https://doi.org/10.1007/3-540-48092-7_17

	On the Difficulty of Drawing the Line
	1 Introduction
	2 LDE: Background and Philosophy
	3 Application Example: The Equinocs Development
	3.1 Report Form Language
	3.2 Automatic Generation of Forms
	3.3 Conference Flow Language

	4 Conclusion and Perspectives
	References




