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Abstract. The article provides an introduction to the track: Towards a
Unified View of Modeling and Programming, organized by the authors of
this paper as part of ISoLA 2018: the 8th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation.
A total of 19 researchers presented their views on the two questions: what
are the commonalities between modeling and programming languages?,
and should we strive towards a unified view of modeling and program-
ming? The idea behind the track, which is a continuation of a similar
track at ISoLA 2016, emerged as a result of experiences gathered in the
three fields: formal methods, model-based software engineering, and pro-
gramming languages, and from the observation that these technologies
share a large common part, to the extent where one may ask, does the
following equation hold:

modeling = programming
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1 Introduction

Since the 1960s we have seen a tremendous amount of scientific and method-
ological work in the fields of program modeling and specification, as well as the
creation of numerous programming languages. In spite of the very high value of
this work, however, this effort has found its limitation by the fact that we do not
have a sufficient integration of these languages, as well as of methods and tools
that support the development engineer in applying the corresponding techniques
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and languages. A tighter integration between specification and verification log-
ics, graphical modeling notations, and programming languages could have many
benefits.

In a (possibly over) simplified view, as an attempt to impose some structure
on this work, we will distinguish between three lines of work: formal methods,
model-based software engineering, and programming. The first formal methods
appeared in the 1970ties, and subsequently have included formalisms such as
VDM [8,9,22], CIP [6], Z [59], Event-B [2], ASM [25], TLA+ [41], Alloy [34],
and RAISE [24], as well as theorem proving systems such as Coq [5], Isabelle [49],
and PVS [54]. These formalisms, usually referred to as specification languages,
are based on mathematical concepts, such as functions, relations, set theory,
logics etc. A specification typically consists of a signature, which is a collection
of names and their types, and axioms over the signature, constraining the values
that the names can denote. A specification as such denotes a set of models, each
providing a binding of values to the names, satisfying the axioms. Such formal
methods usually come equipped with proof systems, such that one can prove
properties of the specifications, for example consistency of axioms, or that certain
theorems are consequences of the axioms. A common characteristic of these
formalisms is their representation as text, defined by context-free grammars, and
their formalization in terms of semantics and/or logical proof systems. In parallel,
we have seen several model checkers appearing, such as SPIN [30] and UPPAAL
[61]. These usually prioritize automated and efficient verification algorithms over
expressive specification languages. Exceptions are more recent model checkers for
programming languages, including for example Java PathFinder (JPF) [29].

Starting in the 1980s, the model-based software engineering community
developed graphical formalisms, most prominently represented by UML [53]
and later SysML [52]. These formalisms, usually referred to as modeling lan-
guages, offer graphical notation for defining data structures as ‘nodes and edge’
diagrams, and behavioral descriptions by diagrams such as state machines and
message sequence diagrams. These formalisms specifically address the ease of
adoption and understanding amongst engineers. It is clear that these techniques
have become more popular in industry than formal methods, in part likely due
to their graphical and seemingly more light-weight nature. However, these for-
malisms are complex (the standard defining UML is much larger than the defini-
tion of any formal method or programming language), are incomplete (the UML
standard for example has no expression-language, although OCL [1] is a recom-
mended add-on), and they lack commonly agreed upon standardized semantics.
This is not too surprising as UML has been designed on the basis of an intuitive
informal understanding of the semantics of its individual parts and concepts,
and not under the perspective of a potential formal semantics ideally covering
the entire UML. This leaves users some freedom of interpretation, in particular
concerning the conceptual interplay of individual model types, but often leads to
misunderstandings. Nevertheless, it has been perceived to be sufficient in prac-
tice in order to support tool-based system development, such as, e.g., (partial)
code generation.
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Historically, programming languages have evolved over time, starting with
numerical machine code, then assembly languages, and transitioning to higher-
level languages with Cobol and Fortran in the late 1950s. Numerous program-
ming languages have been developed since. The C programming language has
since its creation in the early 1970s conquered the embedded software world in
an impressive manner. Later efforts, however, have attempted to create even
higher-level languages. These include languages such as Java and Python, in
which collections such as sets, lists, and maps are built-in, either as constructs or
as systems libraries. Especially the academic community has experimented with
functional programming languages, such as ML [46], OCaml [50], and Haskell
[37], and more recently with the integration of object-oriented programming and
functional programming, as for example in Scala [55].

If we view each formalism in the above mentioned formalism classes as a set
of abstract language constructs, it is likely that different formalisms will have
elements (language constructs) that are not in common. Each formalism has
advantageous features not owned by other formalisms. However, what is perhaps
more important is that these formalisms for specification and modeling, from
now on for simplicity referred to with the common term: modeling languages,
and programming seem to have many language constructs in common, and to
such an extent that one can ask the controversial two questions: what are the
commonalities between modeling and programming languages?, and should we
strive towards a unified view of modeling and programming? It is the goal of
the track to discuss the relationship between modeling and programming, with
the possible objective of achieving an agreement of what a unification of these
concepts would mean at an abstract level, and what it would bring as benefits on
the practical level. Note that this discussion is not meant to favor one view (that
modeling = programming) over the other (that modeling �= programming). The
track is a continuation of a first track on the same topic, held at ISoLA 2016
[15].

The paper is organized as follows. Section 2 presents arguments for the view
that modeling fundamentally differs from programming. Section 3 presents argu-
ments for the opposite view that modeling strongly overlaps with programming.
Section 4 discusses the role of domain-specific languages. Section 5 provides an
overview of the papers submitted to, and presented at, the track. Finally, Sect. 6
concludes the paper.

2 Differences Between Modeling and Programming

There is clearly a close relationship between formal modeling and programming.
Every program can be seen as a formal model, and we can furthermore derive a
number of limited perspective models (abstractions) from it, such as data flow
descriptions, control flow models, and architecture models [13]. It can be argued,
however, that there are a number of very elementary differences between model-
ing and programming. It is e.g. generally considered a good principle to separate
the formalization of problems (what) and their solutions (how), as later expressed
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in an implementation, analogous to e.g. what happens in the engineering field.
There are indeed some arguments for this separation.

Programming is traditionally algorithm oriented, relying on an operational
semantics of the programming language. This means that when programming
one has to bring what one wants to express into such an operational form (this is
of course to a lesser extent the case for logic programming languages such as Pro-
log). Modeling can involve looseness, in the form of non-determinism and under-
specification. Programming languages usually only support non-determinism
indirectly, through concurrency or calls of random-functions. Modeling languages
often support some form of first-order (or higher-order) logic, permitting quan-
tification over infinite sets, which of course is not possible in a programming
language. Finally, when writing programs, in some cases one has to deal with
particularities of the execution platform. A clear example is assembler programs.

Related to this observation is the fact that algorithmic languages need some
concept of iteration or recursion, which has to be captured by a fixpoint theo-
retic semantics. For models we usually do not need fixpoint theory, in general,
although there are exceptions. In programming, one cannot avoid to deal with
issues of termination, and even worse, of nontermination. This marks the bor-
derline between universal programming languages and pure modeling languages
for which execution is not considered.

A particular aspect of the algorithmic focus is that of efficiency and com-
putational complexity. These are usually purely algorithmic notions in relation
to programs. When modeling, we can use constructs which are not executable,
and even if they are, we might not care very much about the question. It is
an accepted view point that one should usually not consider the efficiency of a
model. We can only talk about the efficiency of an algorithm.

The essential idea behind programming languages is that they are tradition-
ally meant for communication between humans and the machine. In contrast,
most modeling languages are for the communication between humans for the
clarification of ideas, to understand a problem and its solution. This is of course
a truth with modifications. New programming languages attempt to make pro-
grams yet easier to write and read by humans, and some modeling languages
focus on efficiency calculations.

In the programming world there are very few accepted programming
paradigms. These include procedural programming, object-oriented program-
ming, functional programming, and logic programming. In modeling there seems
to be a much larger variety of paradigms. These include e.g. ontologies, class
diagrams, state charts, activity diagrams, sequence diagrams, timed automata,
model-based formal specification languages (where one uses collection types such
as sets, lists, and maps to build other types), algebraic specification (using
equations between terms for specifying semantics), differential equations, etc.
The playing field seems much larger. An important distinction here is between
discrete systems (e.g. state machines) and continuous systems (e.g. speed and
acceleration), e.g. modeled with differential equations, as encountered in cyber
physical systems.
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An interesting observation is that in the model-based engineering community,
where formalisms are mostly graphical, there is less emphasis on concrete syntax,
and more emphasis on abstract syntax. However, since abstract syntax is often
itself represented as diagrams, it becomes somewhat of a challenge to precisely
define what the ‘modeling language’ is. Although we do see this as an issue, we
also recognize that the focus on abstract syntax rather than concrete syntax, as
is done in the programming language community, may have advantages.

3 Similarities Between Modeling and Programming

Programming languages are indeed meant for description of data and algorithms
in a way that machines can execute. However, programming languages have
evolved over six decades since the conception of Fortran in the mid 1950ties,
and today’s high-level programming languages provide language constructs that
can be used for modeling and not just implementation. Let’s take a simple exam-
ple. When Algol 60 was defined as the first committee programming language,
the members of the committee decided not to standardize input and output.
At that time, input and output was considered as an unimportant technical
detail. Today, however, many applications are interactive. Therefore, the flow
of input and output between different distributed programs is of a completely
different and of a much more important nature. What was considered as unim-
portant in Algol during its initial design, is important today. Support for inter-
active programming is today supported in most newer programming languages,
e.g. through the notion of actors, and is important for modeling as well. Other
evolving programming concepts include object-oriented programming, functional
programming, and advanced type systems, and specifically the combination of
these concepts.

This point can in particular be illustrated by the large similarity between
the modern programming language Scala [55], first appearing in 2004, and the
long standing tried and proved VDM specification language [8,9,22], developed
three decades earlier in the mid 1970ties, and in particular its subsequent object-
oriented version VDM++ [22]. There are in fact very few language constructs
in VDM++, which one will not find in Scala, largely concerned with infinite
structures, namely existential and universal quantification over infinite sets (e.g.
∀x : Z . P (x)), and set comprehensions over infinite (e.g. {f(x) | x : Z . P (x)}).
In our experience, however, practical applications of VDM existential/univer-
sal quantifications are usually over finite sets (e.g. ∀x ∈ S . P (x) for some
finite set S), and similarly for set comprehension (e.g. {f(x) | x ∈ S . P (x)}).
Such finite quantifications and comprehensions over collections exist also in a
language such as Scala (e.g. S. forall (x ⇒ P(x)) and for (x ← S) yield f(x)).
VDM also supports design by contract, meaning pre/post conditions on functions
and class invariants. However, such concepts have found their way into program-
ming languages, e.g. in Eiffel [19]. VDM finally supports predicate subtypes (e.g.
type N = {x : Z | x ≥ 0}). This kind of construct is now seen in programming
languages supporting dependent types, such as Agda [3] and Idris [32].
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If we consider UML/SysML, we can notice that an important part of
UML/SysML is class diagrams, which essentially are class definitions with dec-
larations of variables and methods specified with pre/post conditions, and occa-
sionally code, plus constraints, typically written in OCL, which is a functional
programming equivalent. These concepts can easily be represented in a program-
ming language. Similar observations can be made about state charts, which fun-
damentally is a programming concept. It is not clear why we call the description
of an algorithm by a state machine modeling and the description of the same
algorithm by a program not necessarily modeling. Sequence diagrams are not
directly representable as an executable programs. However, a sequence diagram
can be considered as a property that a program execution has to obey. In that
sense such a sequence diagram can be turned into a monitor of the executing
system once built (a temporal assertion).

We have above argued that programming languages can handle finite data
structures, and that these are useful and very common in modeling. However,
so-called wide spectrum languages have been developed supporting a continuum,
from models independent from any computational or algorithmic nature, to pro-
grams. In such systems one can establish and prove a refinement relation between
a description at a higher level and a description at a lower level. We already men-
tioned VDM, which is an example of such a wide-spectrum language. Another
example is the CIP-L language of the CIP system [6], where a full fledged pro-
gramming language, comprising different programming styles such as functional
as well as procedural programming, is integrated with non-executable constructs
from set theory and predicate logic.

In summary, it seems worthwhile for the modeling community to benefit from
the long chain of developments in programming languages, most of which have
been tried and tested in the field. Not only past developments but also new
developments, such as integrating programming, specifications, and proofs as is
done in type theoretic languages such as Agda and Idris, and other systems such
as Dafny [42] and Why3 [10]. Likewise, in the opposite direction, programming
language design probably already have been and will be influenced by specifica-
tion languages. Furthermore, it seems that program visualization techniques (of
static structure as well as of executions) could help bringing modeling and pro-
gramming closer together. Finally, extensible programming languages supporting
the development of domain-specific language (DSL) constructs in addition to or
restricting a programming language seems to be an important topic. The next
section goes into more detail on the topic of DSLs.

4 Domain-Specific and Aspect-Oriented Languages

The perhaps major difference one could identify between programming and mod-
eling languages is the level of abstraction: modeling languages explicitly support
the focus on a specific aspect while ignoring others. Section 2 mentions com-
putability, complexity and performance as examples. This difference essentially
vanishes when looking at aspect-oriented [40] and domain-specific programming
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[23,39]. In particular, aspect-oriented programming aims at a modular treatment
of (so-called crosscutting) concerns, whereas domain-specific languages (DSLs)
can be considered a means to generalize this form of modularity, both concep-
tually and technically:

– conceptually, one can consider a certain aspect as a particular domain, e.g.,
the domain of a specific kind of security, dependability, or traceability.

– technically, weaving can be considered as a very specific feature of a code
generator that, e.g., merges a domain-specific/aspect program into code of
the overall system.

In this sense, DSLs are much more than a way for supporting efficient pro-
gramming by, e.g., factoring out boilerplate code. E.g., the Language-Oriented
Programming [18,64] approach (LOP) as followed by the Racket team [21] is
based on DSLs to support what they call the ultimate goal of programming
language research, namely to deliver software developers tools for formulating
solutions in the languages of problem domains.” (cf. Fig. 1).

Fig. 1. A script in the Racket-based Video language (reprinted from [4]).

Clearly, the racket team addresses programmers, or even super-programmers,
capable of mastering various (programming) languages. This requirement is a
little bit relaxed in the projectional editing approach [62] as most prominently
provided by JetBrains’ Meta Programming Systems (MPS) [35], which allows
one to integrate DSLs that are not purely textual, e.g., spreadsheets and tables.
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Language-Driven Engineering (LDE) goes even further by considering DSLs
as a new way to impose a new kind of modularity which enables the cooperative
development even of non-programmers with different mindset and education
[60]. These people can be enabled to participate in the development process
using adequate DSLs perhaps designed as enrichments of well-known application-
level modeling languages, like P&ID diagrams, timing diagrams, process models,
electrical wiring diagrams, timed automata, Markov chains, or whatever such
users wish to use to support full code generation. Figure 2 displays a few of the
languages we used in our industrial projects.

Fig. 2. Examples of DSLs: (1) Piping & Instrumentation Diagram [66], (2) Flow
Graph [66], (3) Probabilistic Timed Automata [48], (4) Hierarchical Scheduling Sys-
tems [16], (5) OMG’s Case Management CMMN [65], (6) EasyDelta Pick and Place
DSL [7], and (7) Place/Transition Net [47] (reprinted from [60]).

While the LDE approach aims at enriching typically graphical domain lan-
guages1, like the ones shown in Fig. 2, in order to define an external DSL for
which full code can be generated, the LOP approach, as presented in [21], aims
at capturing domain-specific features by establishing tailored internal domain-
specific languages (there called embedded DSLs or eDSLs) on top of LISP/Racket

1 Which are very popular in practice, as “pictures are (often) worth a thousand words”.
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(see, e.g., Fig. 1)2. As a consequence, the addressed software developers are
clearly programmers, while it is the goal of LDE to provide tailored (graphi-
cal) languages that allow application experts without programming knowledge
to act themselves as software developers. In this sense, the Racket approach
appears as a programming approach, LDE as a modeling approach, and the pro-
jectional editing approach as a hybrid. This illustrates the flexibility of DSLs
to support the system development both at the modeling and the programming
level. The work presented in [12] goes even at step further by considering DSLs
as a means for transforming typical programming tasks into modeling activities
which blurs the difference between modeling and programming.

5 Contributions to ISoLA 2018

The papers submitted to the UVMP track are introduced below, grouped into
subsections according to the sessions of the track. Within each session the
papers are ordered to provide a natural flow of presentations. Section 5.1 (On
Modeling and Programming) provides an overview of the concepts of model-
ing and programming, and presents a wide spectrum of views of their relation-
ship. Section 5.2 (Formal Methods and Proofs) focuses on the role of proofs,
which establish the formal relationship between modeling and programming.
Section 5.3 (Modeling as Programming) examines more closely the degree to
which modeling can be considered as a programming activity. Section 5.4 (The
Application Perspective) relates the discussion of modeling versus programming
to real world phenomena. Section 5.5 (Tailoring Languages) discusses the role of
domain-specific languages.

5.1 On Modeling and Programming

Jones [36] (On Modeling and Programming), argues that the term ‘model’ is
used in several very different ways in computer science: analytic, in fields like
physics to explain observed natural phenomena to reproduce results, experiments
and insights; synthetic, as in computer science and engineering addressing con-
structed artifacts built to satisfy problem specifications; and in mechanization
of established hand procedures. He argues that all three views are defensible and
productive, but lead to very different ways of thinking. He focuses on modeling
as used in the analytic and synthetic contexts. The paper introduces the concept
of programming and different types of modeling but then concentrates very much
on classical models related to formal systems and to programs. It treats issues of
computability and complexity and discusses also the paradigms of computer sci-
ence including the empirical, the mathematical, and the engineering paradigm.
It concludes by saying that modeling has several meanings and purposes.
2 The difference between internal and external DSLs can be sketched as follows: an

internal DSL is added (e.g. via API functionality) to a host language, which is usually
a general-purpose programming language, while an external DSL comes with its own
syntax that is completely independent of already existing languages.
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Elaasar [20] (Definition of Modeling vs. Programming Languages), explains
how mainly graphical modeling languages and programming languages have orig-
inated in different communities, with different requirements. This has lead to
differences in how modeling languages and programming languages are defined.
This discussion is centered around the concepts of abstract syntax, concrete syn-
tax, semantics, and software APIs, and the point is e.g. made, that the differences
have lead to different tooling. A main observation is that while programming lan-
guage developers usually focus on concrete syntax, modeling language developers
focus on an abstract syntax, which may have numerous concrete syntaxes, such
as a textual syntax and a graphical syntax. The points are illustrated with a case
study, the definition of an ontology modeling language. It is finally argued, that
modeling and programming languages seem to move towards a common point,
with interesting perspectives what concerns e.g. common tooling.

Hallerstede, Larsen, and Fitzgerald [26] (A Non-unified View of Modeling,
Specification, and Programming), argue that modeling and programming serve
different purposes, and that care should be taken to distinguish them during
development. They argue that a unified notation and method would become
overly complex. Especially with many stakeholders it would be unrealistic to
impose a unified set of methods and languages. The view is presented that exe-
cutability is in tension with specification abstraction, and that using specifica-
tion abstractions in programs makes them inefficient and limits their usefulness.
Specific features mentioned, that are seen in specification languages but not
explicitly in programming languages, include looseness (allowing many imple-
mentations) and quantification over infinite sets. It is mentioned, that formal
methods tools with advantage can interact with traditional programs, e.g. a
program can call a constraint solver.

Lethbridge and Algablan [43] (Using Umple to Synergistically Process Fea-
tures, Variants, UML Models and Classic Code), describe a methodology for
modeling variants such as product lines, and features, using the same master
syntax as design models that are used for modeling classes, states, and compos-
ite structures. The extension to Umple is achieved by introducing mixset, that
allows for creation of mixins composed from multiple locations in a textual code-
base. Impressively, this approach allows for multiple programming languages to
be embedded and generated from the design models. This work enables improved
analysis, documentation generation, and reviewing/testing of models, design and
code. It is particularly impressive that the work presented also allows for sepa-
ration of concerns between various aspects of models to exist, while maintaining
benefits of modeling, analysis, and code generation.

5.2 Formal Methods and Proofs

Börger [11] (Why Programming Must Be Supported by Modeling and How),
argues that including abstract modeling concepts in terms of high-level pro-
gramming language constructs into programming environments is not sufficient
to bridge the numerous abstraction levels that software development typically
passes on its way from requirements to code. Rather, an appropriate modeling
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framework (a design and analysis method and a language) is required that allows
one to successively refine ground models comprising the user-level requirements in
order to bridge the gap between descriptions understandable by the main stake-
holders to executable code realizing the expected behavior. This is concretized
in the realm of Abstract State Machines.

Huisman [31] (On Models and Code - A Unified Approach to Support
Large-Scale Deductive Program Verification), points out that despite substan-
tial progress in the area of deductive program verification over the last years,
it still remains a challenge to use deductive verification on large-scale industrial
applications. The classical reasons for why this is the case are mentioned, includ-
ing the size of applications, and the need for users to provide loop invariants.
However, in addition to these issues, problems are mentioned such as the need
to reason about missing components, and the need for other specification for-
malisms than traditional pre-postcondition-style specifications. The suggestion
is an approach based on a provable refinement relation defined between different
levels in a model/program. Amongst important research topics are mentioned
code generation from higher level models, support for optimization refinement,
derivation of models from code, and support for compositional modeling and
programming.

Ionescu, Jansson, and Botta [33] (Type Theory as a Framework for Modelling
and Programming), propose type theory as a suitable framework for both mod-
eling and programming. They show that it meets most of the requirements put
forward in [14]. First and foremost, type theory supports specifying program
properties as types, and programming and proving that (functional) programs
meet their types. Type theory is compared to ZFC set theory, which is recalled to
be a problematic foundation for computer science. Examples mentioned of sys-
tems based on type theory include NuPRL, Coq, Agda, Idris, and Lean. Type
theory is not only considered as a foundation for programming but for math-
ematics in general, and as such can be used for example to encode continuous
mathematics, useful for modeling of cyber physical systems. It is emphasized
that type theory is particularly well suited for meta-programming, including
definition of embedded DSLs.

O’Connor, Chen, Susarla, Rizkallah, Klein, and Keller [51] (Bringing Effort-
less Refinement of Data Layouts to COGENT), states that the COGENT sys-
tems programming language has enabled modeling of certain aspects of operat-
ing systems very effectively, but the gap between the current implementations
and modeling capabilities/approaches is vast. The work attempts to solve an
extremely difficult, and relevant problem with modeling for operating systems by
narrowing the gap between the C data structures that are used profusely in oper-
ating systems, and the algebraic data types of COGENT. The data description
language presented enables the programmer and modeler to effectively model
the system and then verify properties about the system. The work presented
is not only combining the various aspects of modeling, programming, and most
importantly, verification, but, it is also paving the way for potentially creating
operating systems using a waterfall design methodology, which, has mostly been
a holy grail for system engineers and designers.
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5.3 Modeling as Programming

Cleaveland [17] (Programming is Modeling), argues that programming is, in par-
ticular in the domain of embedded systems, a modeling activity, as it typically
happens at a quite high level of abstraction, far away from the physical level.
This tendency is supported by development languages that increasingly pro-
vide domain-specific features further abstracting from the physical reality. On
the other hand he argues that modeling is much more general than program-
ming, here seen as merely addressing the operational behavior, emphasizing that
he regards the ‘is’ in the title as clearly asymmetric. The paper closes with dis-
cussing the implications of viewing programs as models, programming languages
as meta models, and abstraction as a way to enforce structure.

Sestoft [57] (Programming Language Specification and Implementation), is
presenting two examples concerned with programming language specification
and implementation, illustrating the differences and similarities between model-
ing and programming. The first example is that of spreadsheets, and the evalu-
ation of cell formulas. An operational+axiomatic semantics is presented, and it
is shown how the operational semantics can be programmed in F#. It is shown
that non-determinism in the specification may reflect run-time non-determinism
in the implementation as well as under-specification. A cost semantics (specifica-
tion) of spreadsheets is then presented, which would be difficult to represent in
F#. The second example is a semantics of Ada written in VDM in the 1980ties,
which is shown to be representable in F#, thus making the point that what was
considered a specification in VDM in 1980 now looks much like an implementa-
tion in a functional language.

Havelund and Joshi [28] (Modeling in Scala), present two examples in using
the Scala programming language for modeling. The first example is a refor-
mulation in Scala of a conceptual model of what a relational database is, first
formalized four decades ago in the VDM specification language. The similarity
between the two formalizations is used as an argument that a modern program-
ming language today has the a large intersection with what considered a formal
specification language then. The second example is a reformulation of a space-
craft controller, first formalized two decades ago in the Promela language of the
SPIN model checker. The modeling illustrates the use of an internal DSL for
hierarchical state machines, and a randomized scheduler written in 50 lines of
code, that detects the same four errors detected by SPIN. The argument is made
that a high-level programming language can be used for modeling, and that fur-
ther integration of modeling and programming is desirable, with support for DSL
development, visualization, and verification.

Madsen and Møller-Pedersen [44] (This is Not a Model), argue for merg-
ing modeling and programming within the same language, and mention the
object-oriented (modeling and) programming languages SIMULA and Beta as
examples of languages designed with this objective. It is pointed out that one of
the original advantages of object-orientation, introduced with SIMULA, was
that the same concepts and language mechanisms could be used for analy-
sis, design, and programming. This is contrasted to mainstream modeling and



Towards a Unified View of Modeling and Programming 15

programming approaches where different languages are used for modeling and
for programming. The paper defines a model as being the execution of a pro-
gram, where the program itself is the model description. This is in contrast to
traditional modeling languages such as UML, where the collection of diagrams is
considered the model. It is advocated that more focus should be on tool support
for viewing program executions, including visual techniques such as e.g. sequence
diagrams.

5.4 The Application Perspective

Hatcliff, Larson, Belt, Robby, and Zhang [27] (A Unified Approach for Model-
ing, Developing, and Assuring Critical Systems), present an architecture-centric
approach for development of embedded real-time systems, that emphasizes the
use of a formally specified architecture as the ‘scaffolding’ through which differ-
ent modeling and programming activities are organized. An open-source medical
device, a Patient-Controlled Analgesic (PCA) infusion pump, is used as a con-
crete example. The distinction between ‘models’, ‘specifications’, and ‘programs’
is blurred. The approach is specifically based on the Architecture and Analysis
Definition Language (AADL). Behaviors of components can be expressed and
verified, either in the state machine notation BLESS, or programmed in conven-
tional style using Slang, a dialect of the Scala programming language supported
by verification. BLESS state machines are translated into Slang. Slang is trans-
lated into C and C++.

Smyth, Schulz-Rosengarten, and Hanxleden [58] (Towards Interactive Com-
pilation Models), describe the impact of considering compilation between hier-
archies of implementation languages as a domain that deserves its dedicated
domain-specific development environment: Modeling the entire development pro-
cess itself on a meta-model level extends the possibilities of the model-based
approach to guide the developer not only by supporting the refinement of tools
for model creation, but also debugging, optimization, and prototyping of new
compilations. The paper reports on experiences gathered while working on the
model-based reference compiler of the KIELER SCCharts project which, in par-
ticular, illustrates the impact of considering meta modeling as part of the pro-
gram development.

Margaria [45] (From Computational Thinking to Constructive Design with
Simple Models) argues that the most important aspect of the educational revolu-
tion imposed by Computational Thinking is the “doing” part in the sense of cre-
ating a habit of designing the logic of any project or endeavor in terms of simple
models. The advocated modeling-oriented teaching approach is based on years of
experience with middle and high school students, beginner students in computer
science, and with students of other disciplines. They all have been introduced
successfully to CS or programming via constructing simple, yet executable mod-
els in the form of short courses, bootcamps, and semester-long courses in various
locations and settings. Unlike coding, the model-oriented approach promises to
be scalable, and adequate to provide the general public of professionals with
the kind of familiarity with computational concepts that can be a game changer
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for the societal diffusion of basic computing-related comprehension and design
skills. This perspective identifies dissemination of Computational Thinking as a
new criterion for separating programming from modeling.

5.5 Tailoring Languages

Selić [56] (Design Languages: A Necessary New Generation of Computer Lan-
guages) argues that with the increased demand for so-called ‘smart’ systems
required to interact with the physical world in ever more complex ways, we are
witnessing a corresponding growth in the complexity of their embedded soft-
ware. The first part of this paper examines in detail the primary inadequacies of
current mainstream programming technologies, which renders them unsuitable
for addressing modern software applications. This is followed by a discussion
of emerging trends in computer language development, which point to a new
generation of programming languages, referred to herein as design languages.3

The primary technical requirements for these new languages are explained. The
paper tackles an important problem, namely that of the future development of
programming languages in a world full of cyber-physical systems and distributed
computer applications.

Karsai [38] (From Modeling to Model-based Programming), starts with con-
trasting the limitations of ‘classical’ model-based design, e.g., in the UML-
style, with the strong support domain-specific modeling frameworks like Mat-
lab/Simulink provide, in particular, to their non-IT users. Karsai then addresses
the question why ‘truly’ domain-specific software development which enables
application experts to participate in the development process is still far from
being (widely) accepted. The two main reasons given are the typically enor-
mous effort for developing domain-specific development environments and lack
of corresponding educations. The author proposes to address the first problem
by enhancing the corresponding tooling and the second by adapting the soft-
ware engineering curricula. The paper focuses on concretizing the corresponding
vision by reporting on first experiences and successes.

Voelter [63] (Fusing Modeling and Programming into Language-Oriented Pro-
gramming: Our Experiences with MPS) argues that modeling and programming,
considered from the model-driven perspective, where models are automatically
transformed into the real system, cannot be categorically distinguished. How-
ever, the two have traditionally emphasized various aspects differently, making
each suitable for different use cases. After introducing 10 criteria and weight-
ing to what extent they apply to either direction (modeling or programming),
language-oriented programming with JetBrains MPS is presented as a hybrid
approach, whose projectional editing and language modularity features provide
powerful means to building domain-specific modeling tools. The main body
of the paper presents discussions and examples from various projects for how
those 10 criteria are addressed in MPS. As MPS itself is largely bootstrapped

3 Design languages are essentially DSLs, as discussed in Sect. 4.
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(i.e., built with itself), the very same criteria also apply to the meta level, explain-
ing the choice of acronym which stands for Meta Programming System.

Bosselmann, Naujokat, and Steffen [12] (On the Difficulty of Drawing the
Line) discuss the relationship between modeling and programming as a continu-
ously evolving entity. It is a general tendency that structures and categorizations
considered obvious in the past often get blurred in the cause of deeper inves-
tigation. E.g., the separating line between control and data path, traditionally
clearly defined, is today often profitably moved by changing the level of inter-
pretation, and even the gender classification has recently moved from a binary
to a continuous spectrum. Domain-Specific Languages (DSLs), assumed here to
come with corresponding rich tooling, are considered as a driver for a similar
tendency when it comes to distinguishing between descriptive and prescriptive
models, between model and program, or even between developer and user. Con-
ceptual underlying key is to view the system development as a decision process
which increasingly constrains the range of possible system implementations, and
DSLs as a means to freeze taken decisions on the way towards a concrete real-
ization. This way naturally comprises programming and modeling aspects. In
fact, considering all interactions that influence the behavior of the system as
‘development’ turns GUIs into DSLs and users into developers. The pragmatics
of this approach is illustrated in the light of the development of the Equinocs
system, Springer’s new editorial service.

6 Conclusion

We provided an introduction to the ISoLA 2018 track: Towards a Unified View
of Modeling and Programming, discussing the possible unification of modeling
and programming, the arguments against it, the arguments for it, and the role
of domain-specific languages versus general purpose languages. Finally, we pro-
vided a summary of the 19 contributions to the track. The arguments against a
unification of modeling and programming focus on certain features that cannot
be implemented, are hard to implement, or are usually not seen in programming
languages, such as under-specification, non-determinism, quantification over infi-
nite sets, or continuous mathematics as found in cyber physical systems. An
important argument is, that many interest groups may have different views on
what formalisms are useful, and that designing a ‘silver bullet’ will not work. The
arguments for a unification center around the observation that high-level pro-
gramming languages tend to get closer and closer to modeling languages due to
their abstractions, and that support for domain-specific extensions of program-
ming languages will address some of the concerns raised against a unification.

Whichever way one sees this question, one can probably agree that more uni-
fication is possible than what can be observed in current practice, as formalisms
in the different communities – viewed at an abstract level – already share many
language constructs. However, the question remains, whether a single unified
approach or just a unification of concepts should be strived for. After all, there
are many (potentially conflicting) concerns that need to be taken into account:
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– Allow for high-level as well as low-level programming.
– State properties of programs, as predicates, or as refinement relations between

levels of abstraction, supported by formal proofs and testing.
– Textual as well as graphical syntax for programs/models.
– Visualization of executions.
– Support for meta-programming and design of domain-specific languages.
– Harmonize tooling technologies used in the different communities.

Finding a good balance between all those aspects without overloading individual
solutions clearly provides lots of challenges for future research.
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10. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64. Wroc�law, Poland, August 2011

11. Boerger, E.: Why programming must be supported by modeling and how. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 89–110. Springer,
Cham (2018)

12. Bosselmann, S., Naujokat, S., Steffen, B.: On the difficulty of drawing the line.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 340–356.
Springer, Cham (2018)

13. Broy, M.: On architecture specification. In: Tjoa, A.M., Bellatreche, L., Biffl, S.,
van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp.
19–39. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 2

14. Broy, M., Havelund, K., Kumar, R.: Towards a unified view of modeling and pro-
gramming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
238–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 17

http://www.omg.org/spec/OCL/2.4
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://hdl.handle.net/2003/34106
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/978-3-319-73117-9_2
https://doi.org/10.1007/978-3-319-47169-3_17


Towards a Unified View of Modeling and Programming 19

15. Broy, M., Havelund, K., Kumar, R.: Towards a Unified View of Modeling and
Programming (Track Summary). In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
part 2. LNCS, vol. 9953, pp. 3–10. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47169-3 1

16. Chadli, M., Kim, J.H., Larsen, K.G., Legay, A., Naujokat, S., Steffen, B.,
Traonouez, L.M.: High-level frameworks for the specification and verification of
scheduling problems. Softw. Tools Technol. Transfer (2017)

17. Cleaveland, R.: Programming is modeling. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11244, pp. 150–161. Springer, Cham (2018)

18. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
JetBrains onBoard Online Magazine 1 (2004). http://www.onboard.jetbrains.com/
is1/articles/04/10/lop/

19. Eiffel (2015). http://www.eiffel.com
20. Elaasar, M.: Definition of modeling vs. programming languages. In: Margaria, T.,

Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 35–51. Springer, Cham (2018)
21. Felleisen, M.: A programmable programming language. Commun. ACM 61(3), 62–

71 (2018)
22. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs

For Object-oriented Systems. Springer, Santa Clara (2005). https://doi.org/10.
1007/b138800

23. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press
(2011). http://books.google.de/books?id=ri1muolw YwC

24. George, C., et al.: The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead (1992)

25. Gurevich, Y., Rossman, B., Schulte, W.: Semantic Essence of AsmL. Theor. Com-
put. Sci. 343(3), 370–412 (2005)

26. Hallerstede, S., Larsen, P.G., Fitzgerald, J.: A Non-unified view of modelling, spec-
ification and programming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11244, pp. 52–68. Springer, Cham (2018)

27. Hatcliff, J., Larson, B.R., Belt, J., Robby, Zhang, Y.: A unified approach for mod-
eling, developing, and assuring critical systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11244, pp. 225–245. Springer, Cham (2018)

28. Havelund, K., Joshi, R.: Modeling in Scala. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11244, pp. 184–205. Springer, Cham (2018)

29. Havelund, K., Visser, W.: Program model checking as a new trend. STTT 4(1),
8–20 (2002)

30. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Boston (2004)
31. Huisman, M.: On models and code - a unified approach to support large-scale

deductive program verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11244, pp. 111–118. Springer, Cham (2018)

32. Idris. https://www.idris-lang.org
33. Ionescu, C., Jansson, P., Botta, N.: Type theory as a framework for modelling and

programming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244,
pp. 119–133. Springer, Cham (2018)

34. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2012)

35. JetBrains: Meta Programming System. https://www.jetbrains.com/mps
36. Jones, N.D: On modeling and programming. In: Margaria, T., Steffen, B. (eds.)

ISoLA 2018. LNCS, vol. 11244, pp. 22–34. Springer, Cham (2018)
37. Jones, S.L.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, Cambridge (2003)

https://doi.org/10.1007/978-3-319-47169-3_1
https://doi.org/10.1007/978-3-319-47169-3_1
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.eiffel.com
https://doi.org/10.1007/b138800
https://doi.org/10.1007/b138800
http://books.google.de/books?id=ri1muolw_YwC
https://www.idris-lang.org
https://www.jetbrains.com/mps


20 M. Broy et al.

38. Karsai, G.: From modeling to model-based programming. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 295–308. Springer, Cham (2018)

39. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press, Hoboken (2008)

40. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

41. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Pearson Education Inc., London (2002)

42. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

43. Lethbridge, T.C., Algablan, A.: Using umple to synergistically process features,
variants, UML models and classic code. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11244, pp. 69–88. Springer, Cham (2018)

44. Madsen, O.L., Møller-Pedersen, B.: This is not a model. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 206–224. Springer, Cham (2018)

45. Margaria, T.: From computational thinking to constructive design with simple
models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
261–278. Springer, Cham (2018)

46. Milner, R., Tofte, M., Harper, R. (eds.): The Definition of Standard ML. MIT
Press (1997). ISBN 0-262-63181-4

47. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transfer (2017)

48. Naujokat, S., Traonouez, L.-M., Isberner, M., Steffen, B., Legay, A.: Domain-
specific code generator modeling: a case study for multi-faceted concurrent systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 481–498.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9 33

49. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

50. OCaml. http://caml.inria.fr/ocaml/index.en.html
51. O’Connor, L., Chen, Z., Susarla, P., Rizkallah, C., Klein, G., Keller, G.: bringing

effortless refinement of data layouts to COGENT. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11244, pp. 134–149. Springer, Cham (2018)

52. OMG: SysML. http://www.omg.org/spec/SysML/1.3
53. OMG: UML. http://www.omg.org/spec/UML/2.5
54. PVS. http://pvs.csl.sri.com
55. Scala. http://www.scala-lang.org
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