
Privacy Preserving Computation in Home
Loans Using the FRESCO Framework

Fook Mun Chan1(B), Quanqing Xu1, Hao Jian Seah2, Sye Loong Keoh2,
Zhaohui Tang3, and Khin Mi Mi Aung1

1 Data Storage Institute, A*STAR, Singapore, Singapore
{chanfm,Xu Quanqing,Mi Mi AUNG}@dsi.a-star.edu.sg

2 University of Glasgow, Glasgow, UK
woohaa3630@hotmail.com, SyeLoong.Keoh@glasgow.ac.uk
3 Singapore Institute of Technology, Singapore, Singapore

Zhaohui.Tang@singaporetech.edu.sg

Abstract. Secure Multiparty Computation (SMC) is a subfield of cryp-
tography that allows multiple parties to compute jointly on a function
without revealing their inputs to others. The technology is able to solve
potential privacy issues that arises when a trusted third party is involved,
like a server. This paper aims to evaluate implementations of Secure Mul-
tiparty Computation and its viability for practical use. The paper also
seeks to understand and state the challenges and concepts of Secure Mul-
tiparty Computation through the construction of a home loan calculation
application. Encryption over Multi Party Computation (MPC) is done
within 2 to 2.5 s. Up to 10 K addition operations, MPC system performs
very well and most applications will be sufficient within 10K additions.

Keywords: Privacy · Secure multiparty computation
FRamework for Efficient Secure COmputation (FRESCO)

1 Introduction

Traditional methods of aggregating data for computing on a function relies on a
trusted third party to perform the function. Consider the example of data ana-
lytics. Data analytics can only be done when an organization collects personal
data about their users. This creates a huge privacy issue as companies can gain
private insights of individuals based on such data, especially if this data is aggre-
gated from multiple sources [1]. A simple example would be shopping habits of
customers; a company can derive a person’s health through the products that
they buy. If a person constantly buys products that remove acne, data analyt-
ics can reveal that this person has acne, which is something that an individual
might not want to reveal to a public entity.

Secure Multiparty Computation is a field of cryptography that explores joint
computation of a function with inputs from different parties while keeping each
party’s inputs private. Secure Multiparty Computation can resolve these privacy
c© Springer Nature Switzerland AG 2019
K. Arai et al. (Eds.): FICC 2018, AISC 887, pp. 90–107, 2019.
https://doi.org/10.1007/978-3-030-03405-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03405-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-03405-4_7

Privacy Preserving Computation in Home Loans 91

issues as it generalizes the existence of a trusted third party into the security of
cryptographic protocols. Research into specific fields like data mining [2] have
been done with the same motivation, and shows the wide ranging use cases of
the field. Secure Multiparty Computation is a subset of cryptography that has
been not been used practically due to efficiency. However, recent developments
in Secure Multiparty protocols have made it more efficient and more viable for
practical implementation.

The aim of this paper is to create an application using a Secure Multi Party
Computation (MPC) framework to compute home loan installments. This
application will then be used to evaluate the MPC framework and determine
the viability of MPC in practical usage. During the process of deciding to buy
a home, buyers would calculate the required costs to determine if they are eli-
gible and able to afford, which requires private inputs from different parties.
The intention of this paper is to evaluate the use of the FRESCO (a FRame-
work for Efficient Secure COmputation) MPC framework in its current state and
implementations of its Secure Multi Party Computation protocols. The focus is
on usability and implementation of the framework. Since practical implementa-
tions of Secure Multiparty Computation are relatively new and undocumented,
this paper seeks to implement a sample scenario to verify usability of current
frameworks that implement Secure Multiparty Computation.

The rest of the paper is organized as follows. Section 2 describes the con-
cepts and developments of Secure Multiparty Computation. Section 3 explores
the context of home loans. Section 4 defines the identified requirements that a
Home Loan Calculation application should fulfill. Section 5 describes the sys-
tem design. Section 6 details the phases and description of the implementation
of the Home Loan Calculation Application. Section 7 discusses the experiments
conducted to evaluate the implementation of FRESCO. Section 8 concludes this
paper and potential future work.

2 Related Work

2.1 Secure Multiparty Computation

The concept of Secure Multiparty Computation was introduced by Yao in his
paper introducing the classic millionaires’ problem [3]. More specifically, Yao
presents the problem as a generalized problem involving the use of multiple
parties. Given a function f(xi · · ·xn) and number of parties n, can function f
be computed among the n participants among themselves such that each person
Pi only knows its own input xi and the output of function f? Yao’s proposed
solution for this problem in the paper is a secure two party protocol.

Yao’s solution is based on party P1 giving P2 a list of possible values, with P2

inputting his values into the list of possible values, upon which is returned to P1

who is then able to securely evaluate a boolean function f(x1, x2) by selecting
the correct entry in the list of values to evaluate the function. While his solution
is a two party secure computation, his generalization of the problem opened the
idea of secure multiparty computation and contextualized it. There are two main

92 F. M. Chan et al.

secure multiparty computation approaches: circuit garbling and secret sharing
schemes. Before explaining further on Secure Multiparty Computation concepts,
some terms must be defined. This section explains the terminologies that will be
used in describing protocols for the rest of the paper.

(1) Oblivious Transfer: In Oblivious Transfer, the sender sends a list of infor-
mation to the receiver, while remaining unaware of what information that it has
transferred. The construction below of solution is an example of Oblivious Trans-
fer. Oblivious transfer is also used as a cryptographic primitive in many secure
multiparty protocols.

An example of oblivious transfer is the 1 of 2 oblivious transfer. In this pro-
tocol, there is a sender Alice and receiver Bob. Bob desires a message from Alice,
but does not wish Alice to know which information that Bob has requested [4].
Such a protocol can be implemented with any public key encryption. Generally,
this protocol requires a few prerequisites. Alice as the sender has msg0 and msg1
messages that could potentially be the message that Bob desires. Bob has a bit
b that corresponds to the message that he desires from Alice and does not want
to let Alice knows which message he wants. The protocol can be implemented
using any public key encryption schemes. This protocol has been generalized to
a 1 out of n oblivious transfer where there can be more than two inputs [5].

(2) Circuits: Logic Circuits are a model of computation for cryptography. A
logic circuit is defined by their size depth i.e the length of their longest path.
Logic circuits are also circuits whose operations are in Boolean [6]. They are
often referred to Boolean Circuit in the cryptography literature.

2.2 Homomorphism

Gentry proposed a fully homomorphic scheme in his paper using lattices [7]. He
defined fully homormophic public encryption scheme as a scheme that contains
the functions: (1) fkeygen that generates the key, (2) fencrypt that encrypts a
plaintext, (3) fdecrypt that decrypts a cipher text, and (4) fcompute that com-
putes a circuit based on input ciphertext generated by fencrypt and outputs a
ciphertext c that is result of the circuit. In addition to these functions, such a
scheme should support any circuit. Gentry also describes different kinds of homo-
morphisms based on the lattice structure. These homomorphisms are additive
homomorphism and multiplicative homomorphism [7].

(1) Additive Homomorphism: Generally a scheme is additively homomorphic
when plaintext values x and y satisfy the following condition:

fencrypt
(
x
)

+ fencrypt
(
y
)

= fencrypt
(
x + y

)

The property implies that any addition of cipheri, · · · , ciphern ciphertexts
using the same encryption scheme gives the same result when computing the
plaintext.

(2) Multiplicative Homomorphism: A scheme is multiplicative homomorphic
when plaintext values x and y satisfy the following condition:

fencrypt
(
x
) × fencrypt

(
y
)

= fencrypt
(
x × y

)

Privacy Preserving Computation in Home Loans 93

The property implies that any multiplication of cipheri, · · · , ciphern cipher-
texts using the same encryption scheme gives the same result when computing
the plaintext.

2.3 Yao’s Garbling Circuit

Yao’s influence for secure multiparty computation was extended further with his
proposals to solve his original millionaire’s problem. Known as Yao’s Garbling
Circuit, it relies on the use of circuits as a model of computation for computing
a function. Using circuits, the idea is to encrypt the circuit to be computed,
creating a “garbled” version of the circuit [8].

Yao’s protocol starts with the garbling/encryption of the circuit. In this case
we assume Alice and Bob, with Alice being the “garbler” and Bob being the
“evaluator”. Alice provides the circuit on which to compute on, which is garbled
by her. Alice will send the garbled circuit and use the oblivious transfer primitive
to send her garbled inputs to Bob. Bob then decrypts the circuit to obtain the
encrypted outputs. Alice and Bob then communicate to reveal the final value of
the output. Basically, the idea of the protocol is to provide a way to compute
a function where values obtained on a circuit wire would not be revealed, with
the exception of the output wire’s value [9].

2.4 Shamir’s Secret Sharing Scheme

Shamir [10] introduced a problem first formulated by Liu [11] as a background to
his paper. Secret Sharing is a cryptographic primitive dealing with the problem
of sharing a secret among n parties such that the secret can only be revealed upon
combining t number of shares from the parties. Shamir’s scheme is a threshold
scheme, or a

(
k, n

)
threshold scheme [10]. Given the secret S divided into n

parts, the following properties apply:

(1) Reconstructible: Knowledge of k parts of the secret can easily reconstruct
S,

(2) Secrecy: Knowledge of k−1 parts of the secret do not allow reconstruction
of S; furthermore all permutations of S is possible at k-1 parts.

Since Shamir’s scheme is based on interpolation of polynomials, every share
of secret value u �u� is a point of f

(
x
)
. Given also a sharing of another secret v

as �v� and n number of parties we observe:

�u + v�i = �ui� + �vi�

u + v = Funcdec
(
�u + v�i, �u + v�i+1,�u + v�n

)

Adding different shares of different secrets creates a new share based on the
sum of the secrets. When these secrets are shared with at least k parts, then we
can compute the real value of the sum of the two secret values [12].

94 F. M. Chan et al.

3 Background of Home Loans

This section details the background of home loans in Singapore. Described in
this section includes the context and scenario needed to make the application
work.

3.1 Overview of Home Loan Privacy

In Singapore, property agents are service people who help home buyers with the
financial paperwork when purchasing a home. These property agents also help
consult potential buyers on the home that they wish to buy, which includes the
financial aspect of affording the home. Typically, this presents privacy problems,
as the calculation of the amount requires information that intrudes on the privacy
of the home buyer

(
i.e., savings

)
. In addition, when a property agent consults a

buyer based on the financial aspects of the potential home purchase, the lender(
i.e., banks

)
of any potential loan taken is not involved in the consultation.

Finally, in Singapore, the social security system CPF can help pay for part of
the home cost.

These entities
(
buyer, bank,CPF

)
are required for accurate computation of

a home purchase, but they are not connected together; to do so would incur
privacy loss on the part of the buyer, as the full calculation would reveal private
information the user has in the three entities. The rest of this section shall
elaborate on the details of the overview that is presented. Section 3.2 explains
the overview in Singapore’s context and Sect. 4 will show the high level overview
of the application.

3.2 Context

In Singapore, up to 80% of the population stay in public housing built by the
government, also known as HDB flats1. There are also different kinds of HDB
flats, with different prices for each. While there are also a sizable number of
population who possess private housing, the application will explore the purchase
of public housing flats as it is a more general case for a higher percentage of the
population in Singapore. In addition, we can also generalize the scenario into a
more global context.

The model for this application is using the Singapore housing context.
This application uses Singapore’s public housing payment model and conditions(
HDB flats

)
for buying a flat to compute home loan installments. The rest of

the section shall explain the concepts of the scenario in more detail.
(1) Central Provident Fund: In Singapore, the Central Provident Fund(

CPF
)

is a social security system that helps working Singapore Citizens and
Permanent Residents

(
PR

)
to save enough for their retirement. The scheme also

provides the use of a citizen’s/PR’s funds for certain purposes like housing and
health care.
1 http://www10.hdb.gov.sg/eBook/AR2016/key-statistics.html.

http://www10.hdb.gov.sg/eBook/AR2016/key-statistics.html

Privacy Preserving Computation in Home Loans 95

CPF also allows use of funds for purchase of a house. In particular, a buyer
of a HDB home can pay part of the cost of the house using their funds held in
CPF. The amount of which can be paid is dependent on various factors, most
notably that it cannot exceed the amount that a user has in his account with
CPF.

(2) Total Debt Servicing Ratio And Monthly Debt Servicing Ratio: In
Singapore, a condition for being able to take a loan from the bank is the Total
Debt Servicing Ratio

(
TDSR

)
2. TDSR is a loan limit using a person’s monthly

income. For Singapore, the TDSR cap is 60% of a person’s monthly income that
a user can use to service his monthly debt repayments3.

In HDB loans, the monthly debt servicing ratio (MSR) applies instead. How-
ever, they are both similar; the difference is that the cap is different at 30%
and only applies for HDB flats. We choose to generalize all debt upper bound
calculation as MSR in the application.

(3) Downpayment: The purchase of a HDB flat can be separated into two
portions: the downpayment and the loan. This section will explain the downpay-
ment portion of the scheme. When purchasing a HDB flat, a buyer can choose
either a HDB housing loan or a bank loan. Since they are both loans operating
on similar principles, this section shall explain the HDB loan as a example for
explanation.

HDB requires that if a bank loan is taken to pay for the purchase of a HDB
flat then the buyer has to pay 20% of the purchase price as downpayment. Of this
20%, at least 5% of the purchase price must be paid in cash, with the balance is
payable using the buyer’s CPF funds under the CPF scheme for public housing.

(4) Home Loan: This section will explain the loan portion of the loan scheme
that we are using. Home loans are amoritizing loans. Amoritizing loans work by
calculating interest on a annual basis. The interest is calculated by taking the
outstanding amount owed and multiplying it by the interest. HDB loans are fixed
rate loans pegged to the CPF interest rate. To calculate the monthly installment,
we use the Equated Monthly Installment formula. The formula reads as follows:

A = P · 1 − (1 + r)n

(1 + r)n − 1

where, A is the monthly installment, P the principal/outstanding amount, r the
interest rate and n the repayment period in months.

4 Requirements

This section will state the structure and purpose of the application created in
this paper.

2 http://www.mas.gov.sg/news-and-publications/media-releases/2013/mas-introduc
es-debt-servicing-framework-for-property-loans.aspx.

3 http://housingloansg.com/hl/resources/housing-loan-guide/tdsr-and-msr.

http://www.mas.gov.sg/news-and-publications/media-releases/2013/mas-introduces-debt-servicing-framework-for-property-loans.aspx
http://www.mas.gov.sg/news-and-publications/media-releases/2013/mas-introduces-debt-servicing-framework-for-property-loans.aspx
http://housingloansg.com/hl/resources/housing-loan-guide/tdsr-and-msr

96 F. M. Chan et al.

4.1 Problem Statement

Calculating the financial details of buying a new HDB flat is often a complicated
process that requires private data of the buyer (i.e., savings, debt) from many
different sources. These private data should ideally be secured from any other
parties other than the buyer himself. However, current methods of calculation
still require knowledge of the private values to allow actual calculation to happen.
These problems are somewhat mitigated as the parties involved are segregated
from one another, only using the output (i.e., Yes or No for checking if savings are
enough) of each party to carry on the calculation. While this ensures the secrecy
aspect, this can only be done when the actual purchase of home happens, a buyer
would not be able to calculate the estimated costs securely as he needs to reveal
information to a property agent for him to get consultation on his potential
purchase.

4.2 The Solution

We aim to solve individual privacy by aggregating the three entities (CPF, Bank,
Buyer) data for calculating estimated loan installment amount. This aggrega-
tion of private data will be done via the use of Secure Multiparty Computation
techniques. The data we wish to protect are the buyer’s monthly salary, CPF
amount in CPF, savings and debt that are recorded in banks. Secure Mul-
tiparty Computation is a relatively new field of cryptography, and we analyze
the potential uses of implementations of SMPC frameworks at its current state
using this problem as a model to evaluate.

4.3 Parties

The three entities that were identified for the solution are: (1) CPF ; (2) Buyer ;
and (3) Bank. Each party other than the buyer is required to provide some private
details that they cannot share with any other party to calculate the monthly
installment when purchasing a property selected by the buyer. In Sect. 4.4, a
high level description of what calculations need to be done is detailed, from
which we can infer which values each party is require to provide for calculating
a home loan’s monthly installment.

In our solution, a trusted third party is not desired in computing the home
loan; the only parties are the parties listed in this section, and they jointly
compute the calculation together.

(1) CPF: CPF only needs to provide one value: Amount Usable in CPF
account. This value must remain secret, as the the amount that a buyer can use
from his account must not be known to the bank. The value is needed as it is
required for calculating the downpayment for a HDB flat.

(2) Buyer: The buyer party is required to provide the following values: (1)
30% of their monthly salary; (2) Repayment period in months; (3) Minimum
amount of money for downpayment for chosen HDB flat; (4) Minimum amount of
money required in CPF for the chosen HDB flat; (5) Maximum amount loanable

Privacy Preserving Computation in Home Loans 97

for the chosen HDB flat. The only value here that needs to be secret is the
buyer’s 30% of monthly salary. The remaining values can be public, as they are
based on the buyer’s choice of HDB flat. Those values are needed to calculate
the monthly installment of a loan, and to verify the buyer’s eligibility for a loan.

(3) Bank: The bank is required to provide the following values: (1) Buyer’s
Existing Debt; (2) Buyer’s Savings; and (3) Interest of loan. All the values from
the bank except interest are required to be secret, as these are private details of
the buyer. Interest is needed to calculate the loan’s monthly installment.

4.4 Calculating a HDB Home Loan’s Monthly Installment

Based on the context described in Sect. 3.2, there are several preconditions for
getting a HDB home loan. They are as follows:

(1) The Total Debt Servicing Ratio/Monthly Debt Servicing Ratio threshold.
(2) Amount of cash the buyer has on hand to pay the downpayment.
(3) The CPF funds usable to pay the downpayment.

A buyer has to ensure that he does not exceed the TDSR/MSR threshold,
has enough money he has on hand and also enough money that he can use in his
CPF account before he can be eligible to buy a HDB flat. Based on the context,
we can detail the steps required to calculate a home loan.

(1) Determine TDSR/MSR limit and see if loan is allowed to be acquired.
(2) Determine if buyer’s CPF funds and cash on hand is enough to pay the 20%

downpayment.
(3) Calculate the monthly installment using the Equated Monthly Installment

formula.
(4) Add the calculated installment value to existing debt and recheck TDSR.

5 System Design

Two experimental versions and a prototype of the home loan calculation appli-
cation were created in this paper, in accordance to the requirements discussed in
Sect. 3. This section details the different phases during the implementation and
the decisions made on evaluating the technology used.

5.1 Overview

The system architecture is shown in Fig. 1. The system implementation was
conducted in phases. These phases were:

(1) Evaluation of Protocols in FRESCO (as discussed in Sect. 2).
(2) Implementation of a simple interest calculation application prototype.
(3) Implementation of a amortizing loan calculation application prototype.

98 F. M. Chan et al.

Fig. 1. System architecture.

The implementation was conducted in the order shown above. Firstly, the
frameworks Sharemind [13] and FRESCO were shortlisted and evaluated for
use in implementing the requirements as discussed in Sect. 4. After choosing the
framework, the protocols used in the framework were evaluated for use, with
attempts to create simple prototypes and functions; this protocol evaluation will
be discussed in Sect. 6.1. After that, true implementation of the requirements as
discussed in Sect. 4 were created using the protocol. Two implementations were
created, as proof of concept implementations because of technical reasons that
will be discussed in Sect. 7.

5.2 Investigation of the FRESCO Framework

FRESCO is a framework that is designed for users to easily write prototypes
based on secure computation. It allows rapid and simple application and protocol
suite development as well as a flexible design pattern with support for large and
efficient computations4. FRESCO abstracts the idea of different protocol suites
to create a plug and play framework. This is achieved by FRESCO’s Protocol
Producer/Consumer Pattern.

(1) Usability: FRESCO is a framework that is easily extensible and flexible;
users can define a protocol that they wish to use to evaluate a certain function.
In that sense, protocols are decoupled from application development; developers
just need to specify a function like addition that they wish to calculate with-
out knowing about its specifics. FRESCO envisions that applications using this
pattern can be run on multiple different protocol suites, using common opera-
tions to act as a abstraction from the protocols when developing. FRESCO is a
relatively new framework that has been around since 2015. Currently it is in its
first unstable version, version 0.1.0. It uses SCAPI as the underlying networking
protocol for use in its application and currently has three protocol suites that
are implemented.

(2) Protocols: These protocol suites are:

• the Dummy protocol suite,
• the BGW Protocol suite,
• the SPDZ protocol suite.

4 http://fresco.readthedocs.io/en/latest/intro.html.

http://fresco.readthedocs.io/en/latest/intro.html

Privacy Preserving Computation in Home Loans 99

The Dummy protocol suite has no security and is used as a measure for the basis
overhead of FRESCO. The BGW and SPDZ protocols will be explored in the
later sections of this section.

The BGW protocol is a protocol used in the FRESCO framework. Proposed
by Ben-or et al. [14]. It is a protocol which describes a way to implement secure
multiparty computation for several logical operators. In particular, they defined
circuits for addition and multiplication, and created a secret sharing scheme
that would be secure in presence of an adversary [15]. The protocol is based
on Shamir’s Secret Sharing Scheme; in particular, BGW tweaks certain rules of
Shamir’s schemes so that they can compute operations using shares generated
by the scheme. In general, secure computation in BGW consists of three steps:

(1) Input Sharing Stage: In the input sharing stage, each party Pi creates a
share �ui� using threshold t+ 1 where t < n/2 and distributes them among
the parties.

(2) Computation Stage: In this stage, parties jointly compute a function f
using the values they hold. the function f

(
xi,xn

)
will return a output

�outi�. Each �outi� is a sharing of the true value out. The function to be
computed and their behavior depends on the formula to be calculated.

(3) Output Reconstruction Stage: In this stage, parties collude and com-
municate to reconstruct the output out by using shares of �outi� from all
parties P0, , , , Pn parties. If only one party is required to know the output,
all parties send shares to the party that is only allowed to know the output.

SPDZ is a protocol that was developed in 2012. It is implemented in the
FRESCO framework. The protocol differs from the BGW scheme in several
ways, notably in the use of Message Authentication Code (MAC) for authenti-
cating shares, and the use of a somewhat homomorphic scheme

(
SHE

)
during

preparation of values to be computed in the protocol [16]. However SPDZ is
also a secret sharing scheme, like BGW. Computing operations like addition
and multiplication is different as compared to BGW with some novel notable
concepts. In particular SPDZ consists of a two phase protocol: (1) Preprocessing
Phase; and (2) Online Phase.

(3) Contrasting design philosophies: Sharemind is a commercial application
design for commercial usage. In contrast, FRESCO is open source, which allows
anyone who wishes to use or contribute to the framework instant access. Since
the system is time bounded, FRESCO’s instant usability clearly is better suited.
In addition, Sharemind’s design is as a framework that provide a full suite of
functions for secure multiparty computation; this means that any application
written with Sharemind must be in Sharemind’s context. FRESCO, however,
envisions itself as a plug and play component in a larger application. In this
case, FRESCO is better suited for the system’s purpose, as we also seek to
evaluate the general use of secure multi party computation frameworks.

100 F. M. Chan et al.

6 System Implementation

6.1 Evaluation of Protocols in FRESCO

FRESCO is a platform for secure multiparty computation protocol implementa-
tions. In this section, the protocols implemented in FRESCO 0.1.0 are evaluated
and one protocol will be chosen for the implementation of the home loan cal-
culation application as described in Sect. 4. There are three secure multiparty
computation protocols that are implemented in FRESCO. They are: Dummy,
BGW protocol and SPDZ protocol. The dummy protocol is a protocol that is
used for measuring FRESCO’s overhead. It provides zero security and thus not
usable for the actual home loan calculation application for the system.

A major problem in FRESCO is that it does not allow decimals in the
framework. This applies to both SPDZ and BGW. The SPDZ and BGW proto-
cols were evaluated against each other to determine which of the two protocols
were to be used in implementing the requirements as described in Sect. 4. The
implementation for both were studied by creating a prototype application that
does simple addition and multiplication. These efforts are detailed in this section.

(1) SPDZ: A prototype of SPDZ was attempted to evaluate the protocol
for use in the system. During the attempt to build the prototype, flaws in the
implementation of SPDZ was discovered. These flaws are:

• The preprocessing phase was not implemented fully in SPDZ.
• The utility class cannot parse specified SPDZ options properly.

A working prototype of SPDZ was attempted but not completed, as the
actual implementation of SPDZ in FRESCO is incomplete; while FRESCO has
a method that lets a trusted party to generate the preprocessing requirements,
using this third party would violate privacy as we do not want the values from
each party to be known to any other party other then the party inputting the
values itself.

A prototype was created successfully for BGW that does simple addition
and multiplication. However, just like SPDZ, flaws in the implementation of the
protocol was discovered. These flaws are:

• Negative values are not supported in BGW due to implementation bugs.
• The framework’s utility class is unable to parse user specified BGW options

due to bugs.
• If a computation returns a negative value it returns the modulus −

(negativevalue).

These bugs and problems will be further explained later in Sect. 6.3.
(2) Choice of protocol: BGW was chosen as the protocol to use in FRESCO

as it is the only protocol that does not require any other party then the ones
identified in Sect. 4. In addition, the SPDZ implementation in FRESCO is still
a work in progress; examination of the implementation shows that even though
a method of doing the preprocessing phase is implemented, it is not a proper
implementation but a placeholder for a future full implementation of the pre-
processing phase.

Privacy Preserving Computation in Home Loans 101

6.2 Actual Implementation of Application

There are two home loan calculation applications that were produced for this
system. One is based on a simple interest scheme, and the other is based on a
amortizing interest scheme. This section presents the implementation of the
home loan application. Firstly, the definitions of each component required for
the home loan application will be first described as follow. This will be followed
by the actual explanation of the application workflow in Sect. 6.3, which lists the
components of the application in the order that it happens.

Firstly, to simplify the explanation of the implementation of the application,
we shall define some terms. We define the BGW protocol stages as:

• the Input Sharing Stage as Stageinput
• the Computation Stage as Stagecompute

• the Output Reconstruction Stage as Stageoutput

Here, we define the terms relevant to the parties involved as detailed in Sect. 4.
We define the inputs from the party buyer as follows:

• 30% of monthly salary as salary
• Repayment Period as Paymentperiod
• Chosen Flat’s minimum cash required as requiredcash
• Chosen Flat’s minimum CPF amount needed as CPFNeeded
• Chosen Flat’s maximum loanable as MaxLoanable

For the party bank, we define the inputs:

• Buyer’s Existing Debt as Debt
• Buyer’s Savings as Savings
• Interest rate of Loan as interest

For the party CPF we define its input amount usable in cpf account as
CPFUsable.

6.3 Application Workflow

Two versions of the home loan calculation application were created for the sys-
tem. The only difference between the two is the calculation of the monthly install-
ment, namely, simple interest and amortizing interest schemes. Apart from
the formula used to calculate the interest, the two versions are the same. This
section will detail the generic application work flow for both versions and
detail the differences where it happens.

(1) Assumptions of Application: This home loan calculation application
will work under a few assumptions based on the bugs that were identified in
FRESCO’s implementation of BGW. They are:

• savings ≥ requiredcash
• if the result of any computation is more than 60,000,000,000, it is a negative

value. This value is defined as bound

102 F. M. Chan et al.

We assume that when a buyer wants to calculate the home loan cost using
the application, he should know that he has enough money in his savings to
calculate his costs required.

To address the bug of BGW returning the modulus, we assume any number
above a certain threshold is a negative value. We take the number 60,000,000,000
for our threshold as it is sufficiently high enough such that it is improbable that
the value returned by modulus − 60, 000, 000, 000 is a realistic number.

(2) Gathering Input: The application will first require users to identify them-
selves. This is done through a command line interface, requiring users to input a
number that identifies the party that the user is. Each party runs on a different
address port based on their party identification ID. The network address for the
three different parties in the application is set in the code; all parties are required
to know the address of all other parties so that they can share their inputs with
each other for the Computation Stage.

After specifying the party, the user of the application will be prompted to
enter values based on the party that they have identified as. For example, a
user of an application who identifies himself as the CPF party has to input
the CPFusable amount. Although discussed in Sect. 4 some parties’ values need
not be secure, the application will still use the networking implementation in
FRESCO to simplify the implementation. At the end of this part, each party
should have their values usable in this stage.

(3) Calculating the home loan: After gathering all inputs required, we use
FRESCO’s networking implementation to invoke Stageinput for secret sharing
the inputs among all parties. Using these inputs, we begin the actual secure
computation to determine the home loans, as shown in Fig. 2.

Fig. 2. FRESCO-based home loan calculator application.

The payment for a loan can be divided into the 20% downpayment and 80%
loanable amount. In the 20% downpayment, at least 5% is required to be paid

Privacy Preserving Computation in Home Loans 103

by cash, with the rest being payable by a buyer’s CPF account. This 5% is a
lower bound, and can be higher if the buyer wishes so.

However, we wish to check if the CPF account has enough money to be able
to afford the house. We do so by the following formula fcheckCPF :

CPFusable + (savings − downpayment) − CPFneeded

We also wish to determine the monthly installment for a amortizing home
loan. We do so by the following formula famortize:

A = P · r(1+r)n

(1+r)n−1

where r = interest/12/100 and n = Paymentperiod.
This formula requires division and exponential functions, both of which are

not defined in the BGW protocol nor implemented in FRESCO. We solve this
by doing the calculation using values that are opened and known to the public,
where traditional Java has functions for division and exponentials. We thus have
to reveal the values interest, paymentperiod and the result of fcheckCPF .

Alternatively, in another version of the application we use a simple interest
loan calculation. This formula fsimple is

P×r
n

Finally, we also wish to compute the TDSR of a buyer. We do so by the
formula ftdsr:

salary − debt − monthlyinstallment

Algorithm 1 shows how the functions that are securely computed after the
parties provide their respective inputs. All parties have shares of every input
(line 4).

Because of operation limitations of the protocol, we have to compute famortize

and ftdsr using secret values made public. This computation will happen after
Algorithm 1. Algorithm 2 details how the application considers if a buyer is
eligible to buy a flat and the calculations required.

The application algorithm starts with Algorithm 1 and then Algorithm 2.
These algorithms describe the amortizing interest version of the home loan
application. For the simple interest version, the difference is adding a step to
Algorithm 1 to calculate loanable×interest and in Step 2 of Algorithm 2; replace
the formula with fsimple. Figure 3 shows the activity diagram of the application.
Computation of the loan is done not in FRESCO’s MPC framework, the reasons
of which are explained in Sect. 6.3.

7 Performance Evaluation

This section discusses the evaluation of the feasibility of using the FRESCO
framework to build a full application. We conduct an Efficiency Evaluation
to decide if the computational overhead of FRESCO is suitable for use in a

104 F. M. Chan et al.

Algorithm 1. High level description of Application Secure Computation Imple-
mentation
1: All parties input their values and identities into the application.
2: All parties invoke Stageinput to secret share their inputs among all parties.
3: Calculating using BGW - the steps in this section is done in a secure way.
4: We construct a circuit Ccomputecpf to compute fcheckCPF by setting CPFexcess ←

CPFusable + (savings − downpayment) − CPFneeded.
5: We then construct a circuit CrevealCPF to reveal the secret value CPFexcess.
6: We compute the amount loanable by constructing a circuit Cloanable computing

loanable ← MaxLoanable − CPFexcess.
7: We then construct a circuit Crevealloanable to reveal the secret value loanable.
8: Finally, we wish to compute ftdsr. Since installment is not known until the full

computation is computed, first construct circuit Cloanlimit computing loanlimit ←
salary − debt.

9: Construct circuit Creveallimit that reveals the secret value loanlimit.
10: Construct circuit Creveal that reveals secret values paymentperiod, interest
11: Glue the circuits together in the order Ccomputecpf , CrevealCPF , Cloanable,

Crevealloanable, Cloanlimit, Creveallimit and evaluate them.

Fig. 3. Activity diagram of the home loan computation application.

Algorithm 2. High level description of Application Non Secure Implementation
Require: Algorithm 1 was complete prior to this algorithm.
Ensure: Output that reveals the installment of the loan if buyer is eligible.
1: After Algorithm 1, we have revealed values CPFexcess, loanable, loanlimit,

paymentperiod and interest.
2: Compute famoritize using paymentperiod, loanable and interest by installment ←

loanable interest(1+interest)paymentperiod

(1+interest)paymentperiod−1
.

3: Compute TDSR TDSR ← loanlimit − installment.
4: Check if downpayment > bound. If so this means that the downpayment is insuffi-

cient. Return an error message informing user that CPF is insufficient and exit.
5: Check if TDSR > bound If returns true then this means that TDSR is a negative

value, which means the user cannot get another loan. Return an error message that
TDSR has been exceeded.

6: If none of the conditions evaluate to true, return the installment value installment
to the user.

Privacy Preserving Computation in Home Loans 105

full fledge application. The experiments were conducted on a machine with the
following specs: Windows 10 Home with Intel Core i7-4720HQ Processor, 16 GB
RAM and JVM heap size 2 GB. An evaluation was done on the efficiency of
the framework. This was done by two experiments, measuring the time for
encrypting values for secret sharing and measuring the time taken for
computing an operation.

7.1 Measuring Time Taken for Encrypting Values

In this experiment, FRESCO’s secret sharing implementation is evaluated. In
particular, the time taken to encrypt a value for secret sharing is evaluated.
In addition, we wish to evaluate if high values could be efficiently transformed
to its encrypted secret shared form. The experiment was conducted by coding a
custom test application that only encrypts the values that are retrieved from the
various parties, with time measurement using Java’s System.currentTimeMillis()
function. A variable scale was used to scale up the values, in order to determine
if higher values would yield different timings of the function.

Fig. 4. Results from measuring time taken for encrypting the values.

The results were then plotted out in a graph in Fig. 4. Figure 4 shows that
the time taken to encrypt the data remains a constant regardless of how the
values are scaled; This implies that the secret sharing implementation of BGW
by FRESCO is a constant time implementation, which is quite efficient as the
time taken is also quite low.

7.2 Measuring Time Taken for Computing Addition

In this experiment, the potential overhead of operations in FRESCO’s BGW
implementation was evaluated. For this experiment, the addition operation was
selected for evaluation. The experiment also evaluates and verifies if more addi-
tion operations would lead to cause an exponential overhead during computation.

106 F. M. Chan et al.

The experiment was conducted with a custom application that does addi-
tion according to Algorithm 3. In addition, another application was created to
compute simple addition using the same idea as Step 3 of Algorithm 3 but in a
non secure traditional way in Java for comparison and context to the time of the
application. A scaling factor of 10 was used to increase the number of additions
for the experimentation.

Algorithm 3. Addition Method for Experimentation
Require: Number of times addition is to be done defined as rounds.
1: Invoke Stageinput to get a value val to compute addition.
2: Start Timer.
3: Create a circuit C to based on the number of rounds specified.
4: This is done using a for loop and assigning val = val + val for each round.
5: Execute circuit C.
6: Stop timer and print out time taken.

The result of the experiment was plotted onto a graph shown in Fig. 5. The
results show that having more additions seem to be a exponential in time. Com-
pared to traditional addition in Java, the time overhead cost of addition in BGW
is noticeably higher, but still efficient. Efficiency only peaks at 1 million addi-
tion operations, which is a upper bound that is hard to reach for a conventional
application.

Fig. 5. Results from measuring time taken for computing addition.

8 Conclusion and Future Work

The aim of this paper was to implement a MPC scenario and use it to evaluate the
practicality of existing MPC frameworks. Encryption over MPC is done within
2 to 2.5 s. Up to 10,000 addition operations, MPC system performs very well
and most applications will be sufficient within 10,000 additions. We believe that
this aim was sufficiently achieved, but more work can be done to evaluate more

Privacy Preserving Computation in Home Loans 107

frameworks and their implementations. Secure Multiparty Computation is a field
that has indirect links to other sections of cryptography. We believe that elements
of MPC, like secret sharing, can be used in tandem with other cryptographic
techniques to enhance them, like key management schemes. In addition, MPC is
based on homomorphic properties. The recent advances in Fully Homomorphic
Encryption (FHE) is also a potential avenue of further study.

References

1. Katal, A., Wazid, M., Goudar, R.: Big data: issues, challenges, tools and good
practices. In: 2013 Sixth International Conference on Contemporary Computing
(IC3), pp. 404–409. IEEE (2013)

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: ACM Sigmod Record,
vol. 29, no. 2, pp. 439–450. ACM (2000)

3. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science SFCS 2008, pp. 160–164. IEEE (1982)

4. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

5. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 245–
254. ACM (1999)

6. Savage, J.E.: Models of Computation. Addison-Wesley, Reading, vol. 136 (1998)
7. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC,

vol. 9, no. 2009, pp. 169–178 (2009)
8. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium

on Foundations of Computer Science, pp. 162–167. IEEE (1986)
9. Lindell, Y., Pinkas, B.: A proof of security of yaos protocol for two-party compu-

tation (2006)
10. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
11. Liu, C.L.: Introduction to Combinatorial Mathematics (1968)
12. Beimel, A.: Secret-sharing schemes: a survey. In: International Conference on Cod-

ing and Cryptology, pp. 11–46. Springer (2011)
13. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-

preserving computations. In: European Symposium on Research in Computer Secu-
rity, pp. 192–206. Springer (2008)

14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

15. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Advances in Cryptology-CRYPTO 2012,
pp. 643–662. Springer (2012)

	Privacy Preserving Computation in Home Loans Using the FRESCO Framework
	1 Introduction
	2 Related Work
	2.1 Secure Multiparty Computation
	2.2 Homomorphism
	2.3 Yao's Garbling Circuit
	2.4 Shamir's Secret Sharing Scheme

	3 Background of Home Loans
	3.1 Overview of Home Loan Privacy
	3.2 Context

	4 Requirements
	4.1 Problem Statement
	4.2 The Solution
	4.3 Parties
	4.4 Calculating a HDB Home Loan's Monthly Installment

	5 System Design
	5.1 Overview
	5.2 Investigation of the FRESCO Framework

	6 System Implementation
	6.1 Evaluation of Protocols in FRESCO
	6.2 Actual Implementation of Application
	6.3 Application Workflow

	7 Performance Evaluation
	7.1 Measuring Time Taken for Encrypting Values
	7.2 Measuring Time Taken for Computing Addition

	8 Conclusion and Future Work
	References

