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Abstract. With the tremendous increase in the number of smart
phones, App stores have been overwhelmed with applications requir-
ing geo-location access in order to provide their users better services
through personalization. Revealing a user’s location to these third party
Apps, no matter at what frequency, is a severe privacy breach which
can have unpleasant social consequences. In order to prevent inference
attacks derived from geo-location data, a number of location obfusca-
tion techniques have been proposed in the literature. However, none of
them provides any objective measure of privacy guarantee. Some work
has been done to define differential privacy for geo-location data in the
form of geo-indistinguishability with l privacy guarantee. These tech-
niques do not utilize any prior background information about the Points
of Interest (PoI s) of a user and apply Laplacian noise to perturb all the
location coordinates. Intuitively, the utility of such a mechanism can be
improved if the noise distribution is derived after considering some prior
information about PoI s. In this paper, we apply the standard definition
of differential privacy on geo-location data. We use first principles to
model various privacy and utility constraints, prior background infor-
mation available about the PoI s (distribution of PoI locations in a 1D
plane) and the granularity of the input required by different types of
apps, in order to produce a more accurate and a utility maximizing dif-
ferentially private algorithm for geo-location data at the OS level. We
investigate this for a particular category of Apps and for some specific
scenarios. This will also help us to verify whether Laplacian noise is still
the optimal perturbation when we have such prior information.
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1 Introduction

Over the years, a number of mobile phone services are becoming dependent
on user’s location in order to provide a better experience, be it a dating app,
restaurant search, nearby gas stations lookup and what not. All these services
require a user to surrender her location (mostly exact coordinates) in order
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to derive accurate results. With the increasing popularity of social networks,
extracting auxiliary information about an individual has become easier than ever
before. Both of these factors have increased the likelihood of inference attacks on
the users which can have unpleasant social consequences. Therefore, revealing a
user’s location, no matter at what frequency, is a severe privacy breach [5].

The criticality of geo-location data can be estimated by the news pieces
reporting that the Egyptian government used to locate and imprison users of
Grindr–a gay dating app [4]. Grindr uses geo-location of its users in order to
provide them a perfect match in their vicinity. Most of the users have submitted
their “stats” such as body weight, height, eye color, ethnicity, preferences, on-
prep (AIDS status), extra information, etc. while creating a profile. Even half
of these values along with their geo-location, can be used to derive inferences
uniquely identifying a particular user. [6] has reported social relationship leakage
of a user through applications which use GPS data. A number of inferences can
be deduced by observing social relationships of an individual which he might
not want to disclose. Tracking location coordinates or identifying PoI s of an
individual, can characterize his mobility and can infer sensible information such
as hobbies, political, religious interests or even potential diseases [7]. All these
studies provide enough motivation for the research community to find a solution
to protect geo-location privacy.

Although geo-indistinguishability presents various appealing aspects, it has
the problem of treating space in a uniform way, imposing the addition of Laplace
noise everywhere on the map [3]. This assumption is too strict and can affect
the utility of the service. A Laplace-based obfuscation mechanism satisfying this
privacy notion works well in the case where no prior information is available.
However, most of the apps which require geo-location as input, are conditioned
with the prior of the destination or the PoI s, in general.

In this paper, we would try to investigate that whether the choice of using
Laplacian noise to perturb geo-data is optimal in the scenarios where prior infor-
mation about user’s PoI s is available. Intuitively, availability of this information
will improve the utility of the differential private mechanism but has to be con-
ditioned with some more constraints. We use the basic definition of differential
privacy as well as the first principles to model the utility and privacy constraints
in order to deduce a noise distribution for the scenario where we have a prior.

In the next section we discuss the related work done in this direction.
In Sect. 3, we clearly define the problem statement we counter in this paper.
Section 4 discusses our proposal and the contribution towards the solution of
this problem. In Sects. 5 and 6, we present our results and the future trajec-
tory of our work, respectively. In Sect. 7, we conclude our findings. After listing
the references, Appendix A and B provide the mathematical solution of our
constraints.

2 Related Work

Most of the hand held devices provide three options of allowing location access
to the installed apps, namely, Always, While using and Never. One can easily
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predict the harm which can be caused when this permission is granted Always.
On the other hand, we still want to use the service from the app, so not providing
this permission by selecting Never is not a valid choice. In such a situation, While
using option appears appropriate but can still be used by an attacker to track
the trajectory of a user. Intuitively, it is better to trust the OS which can sanitize
the geo-location data before supplying it as an input to the App.

Literature proposes different ideas to perturb geo-location data. [10] proposes
the idea of spatial and temporal cloaking which uses k–anonymity, l–diversity
and p–sensitivity. Other spatial obfuscation mechanisms proposed in [11,12,14]
reduce the precision of the location information before supplying it to the ser-
vice. Most of these techniques are not robust and are also detrimental to utility
functions [1] as they are based on very simple heuristics such as i.i.d. location
sampling or sampling locations from a random walk on a grid or between points
of interest. The generated location traces using these techniques, fail to capture
the essential semantic and even some basic geographic features. Techniques such
as spatial cloaking perturb the exact location of the user but do not provide any
privacy guarantee. Additionally, they are not resistant to probability based infer-
ence attacks [9]. Thus, there exists some knowledge gap between these techniques
and the desired characteristics of a location perturbation mechanism.

Differential privacy holds a good reputation in providing a privacy guarantee
by adding carefully calibrated noise which also maintains an acceptable level of
utility. Geo-indistinguishability proposed in [2], defines a formal notion of pri-
vacy for location-based systems that protect user’s exact location, while allowing
approximate information–typically needed to obtain a certain desired service to
be released. It formalizes the intuitive notion of protecting the user’s location
within a radius r with a level of privacy l that depends on r, and corresponds to a
generalized version of the well-known concept of differential privacy. The authors
in [2] claim that adding Laplace noise, can perturb data effectively. As pointed
out in [8], the utility of a differentially private mechanism can be increased if
some prior information is available about the user. Also in [13], a generic prior
distribution π, derived from a large user dataset is used to construct an efficient
remap function for increasing the utility of the obfuscation algorithm. Clearly,
if we can gather some information about PoI s of a user, it can help us to pro-
vide a more useful result. However, this information leakage (prior distribution
available publicly) is useful for the adversary to design his remap function over
the output of a differentially private mechanism. Therefore, the privacy bounds
would require some alteration and intuitively, use of Laplace noise might not be
an optimal choice.

3 Problem Statement

In this section, we elaborate the problem statement considered in this paper.
Since geo indistinguishability is a flavor of differential privacy for geo location
data, it does not take into account various factors such as (1) π: denotes the priori
probability distribution (prior), which is relative to the user and her knowledge,
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i.e. user’s PoI history [8]; (2) ψ: denotes the priori probability distribution rel-
ative to OS’s knowledge about the location of the PoI s, for instance, location
of restaurants (= PoI ) relative to the current location. Since most of the LBS
require the user to provide the “destination location”, (through which OS can
determine ψ), this information can help the OS to perturb the original location
in a biased way (towards the PoI ) and therefore maximize the utility of the
mechanism. Clearly, with the knowledge about ψ, we can have a set of linear
constraints and can use them to determine whether Laplace is still the best
choice or do we need to have some new noise distribution.

In the next section, we will begin by stating the basics and then will use first
principles to model various privacy and utility constraints in order to derive a
noise distribution.

4 Proposed Solution

First we define the basic structure of the problem by stating the mathematical
construct for prior, privacy and utility goals of the mechanism. Then we define
the example problem and present the privacy and utility constraints.

PoI prior (ψ): For multiple PoI s located at L1, L2, ... from the actual location i,
the prior is defined as the distribution of these PoI s, denoted by ψ = {L1, L2, ...}
Privacy: We use [2] to define the notion of privacy, i.e., for any user located
at point i, she enjoys ρ-privacy within a radius r. More precisely, by observing
z, the output of the mechanism K when applied to i (as compared to the case
when z is not available), does not increase the attacker’s ability to differentiate
between i and j (|i − j| ≤ δ and j lies inside the circle of radius r centered at i)
by more than a factor depending on ρ (ρ = ε.r).

Utility: We propose that a differentially private mechanism for geo-location
data is utility maximizing if the output of a Location Based Service (LBS) does
not change if the input given to it is the perturbed location (as compared to the
output when the input is the original location). The output of a LBS depends
on the type of query it answers and the scope of these queries is vast. However,
in this paper we restrict ourselves to 2 queries:

Query 1: Get me the nearest PoI, my distance to it and provide the option
to navigate to it.

The output should be the nearest PoI and the approximate/effective distance
to it when a perturbed input location is provided to the LBS

Query 2: Get me the nearest PoI and my distance to it.
The output should be the nearest PoI and the approximate/effective distance

to it when a perturbed input location is provided to the LBS
Query 3: Get me the list of PoIs starting from the nearest to the farthest.
The output of this query is to provide the list of the PoIs, from the nearest

to the farthest, such that the order of the output list is same when a perturbed
location input is provided or when exact location was provided.
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Fig. 1. 1-Dimensional scenario.

4.1 Example Problem

For the sake of simplicity, we begin with a 1-Dimensional example prob-
lem (Fig. 1) in which a user Alice is located at a point i and the point of interest
is the restaurant located at L distance from her. Further, we shift the origin
at i, so we can denote the coordinates of the destination as (L, 0) and we can
write ψ = {L}. Alice wants to have ρ level of privacy within a distance r from
(0, 0). We define privacy level ρ within a linear distance r on both sides of the
original location instead of a circle with radius r just to suit our 1 D model.
We also want to ensure ρ0 level of privacy outside this region. For differential
privacy to hold, we consider a mechanism K, conditioned with ψ, which takes
location i as input and produces output z from the output space S ⊆ E, (E is
1-D Euclidean plane). S in this case includes all the points lying on the x-axis.
Intuitively, availability of a prior ψ, will help us to provide a better output but
will not affect the privacy constraints.

Privacy Constraints: The privacy constraints for our mechanism (both
queries) are as follows:

(i) P (i, z, ψ) > 0; ∀z;

The probability of outputting any points in the output space when the
mechanism is applied on the input location i should be non zero

(ii)
∑∞

z=−∞ P (i, z, ψ)=1;

Probability values must sum to 1, given that for our case z ∈ S ⊆ E. S in
this case includes all the points lying on the x-axis

(iii) P (i,K(i) ∈ S, ψ) ≤ eρ.P (j,K(j) ∈ S, ψ), for two points i and j with
|i−j| ≤ δ;

Differential Privacy constraint derived from the definition [2], where ε is
related to user defined level of privacy ρ as ρ = ε.r

Utility Constraints

(1) Query 1 and 2: For better understanding of the solution, we categorize the
apps into two classes–Class A: Apps which output the nearest restaurant,
the distance to it and also have the feature of providing navigation to this
PoI. Class B : Apps which output the nearest restaurant and the distance
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to it but do not provide navigation facility (and do not show the original
location of the user). The logic behind having these two classes is that the
utility constraints are more relaxed in the Class A apps since the output
space is less restricted and we can have the same distance to the PoI from
a number of places. While in case of Class B Apps, the App should have to
be supplied with a point closer to the original location because it will need
a starting point for the navigation to start. Summarizing,
Query 1– Apps which will take perturbed user location as input and output
the nearest PoI, the distance to it and will provide them the option to start
navigation (Class B).
Query 2– Apps which will take perturbed user location as input and output
the nearest PoI and the distance to it (no navigation) (Class A).
• Query 1:

(i) P (i, z, ψ) > P (i,−z, ψ); where ‘−z’ denotes the points in the opposite
direction of the prior ψ

(ii) Minimize the distance between the output point and the original loca-
tion, for maximum utility

• Query 2 :
(a) i ≤ z ≤ L

(i) P (i, z, ψ) > P (i, z1, ψ); z < z1
(ii) Minimize||L − i| − |L − z||

(b) L ≤ z ≤ 2L
(i) P (i, z, ψ) > P (i, z1, ψ); z > z1
(ii) Minimize||L − i| − |z − L||

(c) −∞ ≤ z ≤ i
(i) P (i, z, ψ) > P (i, z1, ψ); z > z1
(ii) Minimize||L − i| − |L − z||

(d) 2L ≤ z ≤ ∞
(i) P (i, z, ψ) > P (i, z1, ψ); z < z1
(ii) Minimize||L − i| − |z − L||

We solve these constraints in the Appendix A and B.
(2) Query 3: In these queries, the app outputs the list of the PoI s, from

the nearest to the farthest, such that the order of the output list is same
when a perturbed location input is provided and when exact location was
provided. For the sake of discussion, we describe a more realistic scenario
to handle the case with multiple PoIs, (query example: multiple Mexican
restaurants in Los Angeles near me). For this situation, we need to redefine
utility so that the output of the mechanism K aligns itself with the actual
output of the LBS (the spatial order of the restaurants should not change).
If L1, L2, and L3 are the 3 PoIs | L1 < L2 < L3, relative distance from
i, and K(i) = z | L1 < L2 < L3, relative to z is still valid, then the value
P (K(i) = z) should be maximized while also minimizing | z − i |.
Here we define tolerance limit m, which is the distance from the starting
point such that if we output point z within this space, the ordering of the
output remains intact. Since the PoI s are at different distances in the two
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directions (+x−axis,−x−axis), there will be two different tolerance limits–
for the +x (m+) and for −x (m−). The probability of outputting z should
be maximum within this region satisfying the Minimize|z − i| constraint
and after m+ and m−, there will be a steep decline (not zero) because it
destroys the utility (making it 0 will decrease privacy).
Based on above, the utility constraints are as follows:

(i) Minimize |z − i|
(ii) P (i,m− ≤ z ≤ m+, ψ) > P (i, z > m+, z < m−, ψ)

However, there can be multiple factors which can govern the outcome for this
case. For instance, the output location should be in the direction where there
are more PoI s or closeness of certain PoI s to the original location. Taking these
factors into consideration, the complexity of this case increases and therefore,
we skip the representation and the solution of the constraints for query 3 as our
future work.

5 Results and Discussion

In this section, we draw graphs for probability distribution for the output points
for query 1 and query 2 which can be used to add noise to the original location.
We use ρ = ln2, which implies that a user wants ρ level of privacy within some
distance r and as described earlier, ρ = ε.r. Based on the derivation in Appendix
A and B, we have the maximum probability value p ≤ 0.48 for this case while
using the approximation parameter α = 4. Using these values, we have Fig. 2 for
query 1 and Fig. 3 for query 2. As predicted, the curve in Fig. 3 is symmetrical
about the destination prior at point (L, 0). Analyzing the above results, the
differential privacy constraints help to provide a privacy guarantee while our
assumption about the knowledge of PoI distribution (to LBS) has helped us
to derive a noise distribution which is more realistic and utility maximizing.
Evidently, if noise is added from the curve derived above, the probability of
outputting the perturbed location is near its original location and biased towards
the destination. This is logically correct and is utility maximizing as a user
is more interested in getting a realistic estimate of the distance/time to the
destination. Further, in order to tune the result according to the user preference
we can also have a parameter λ which is the tolerance a user allows in the
result (in terms of time/distance with the result obtained from LBS without
perturbation).

Comparing to the case where Laplacian noise is used, the probability of
outputting a location in the opposite direction of the destination is equally likely
as it is near the destination which can destroy the utility by predicting a point
which is twice as far from the destination. However, it is important to note that in
this paper we have focussed on a 1 D scenario and a single PoI, in order to prevent
complexity and to start a discussion about having a utility based mechanism so
as to make it a win win situation for the service providers as well as users caring
for their privacy. Also, it creates a single point of accountability– in this case
the OS which is responsible for performing perturbation before handing over the
coordinates to the LBS.
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Fig. 2. Probability distribution of output points for query 1.

Fig. 3. Probability distribution of output points for query 2.

6 Future Scope

Differential privacy offers the mathematical guarantee that a user’s data is safe
from both the classes of privacy breaches– evident as well as inferred. However, its
applicability has been restricted by the complexity of deployment and the utility-
privacy tradeoff. In this paper, we have proposed that an optimum solution is
feasible to the data privacy problem if we design the linear program having
utility and privacy constraints based on the kind of the application for which
that data is potentially utilized.

More specifically, as our future work, we plan to take into account multiple
factors which can be used to define the output solution for multiple PoI s (query
3 ). Further, we would want to extrapolate this work for 2 dimensions and then
for 3 dimensions so that it is applicable to the real location data.

7 Conclusion

In this paper, we have worked on improving the utility of a differentially
private mechanism for geo-location data. We have used the notion of geo-
indistinguishability to provide differential privacy guarantee for geo-location
data and at the same time, we have used the prior information available to the
OS about the PoI s in order to improve the utility of the mechanism. Through
mathematical formulation of the problem and solving the linear system of con-
straints, we have derived the probability distribution of the output points, which
can be used to add noise to the original input location accordingly. Through our
results, it is clear that Laplace is not the optimal choice for geo location queries
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conditioned with a prior and with our mechanism we have strived for maximum
utility for 2 queries. We have further discussed our future work which lays the
trajectory of what we plan to do next in order to have an optimum solution
for the real world geo-location data. According to the best of our knowledge,
this is the first paper which takes prior information about PoI s into considera-
tion and maximizes the utility of the geo-location perturbation mechanism while
providing ρ level of privacy to the user.

Acknowledgement. We would like to thank Dr. Aleksandra Korolova for being the
guiding light throughout the course of this paper.

Appendix A

The domain D and range R is the x-axis discretized with step δ. Let p be the
maximum value that should occur at the original location i = (0, 0). The proba-
bility values for output points z at points ∈ (δ,∞) are smaller than p but greater
than points ∈ (−δ,−∞).

i\z −∞ . . . −δ 0 δ . . . +∞
-∞
...

-δ p

0 ↓ p ↑
δ p

...

∞

Now using the privacy constraint–

∑∞
z=−∞ P (i, z, ψ)=1

∑−δ
z=−∞ P (i, z, ψ) + p +

∑∞
z=δ P (i, z, ψ) = 1 ... (1)

or A + B + C = 1

A =
∑−δ

z=−∞ P (i, z, ψ);B = p;C =
∑∞

z=δ P (i, z, ψ)

For C, we can use differential privacy constraint-

P (i,K(i)=z,ψ)
P (j,K(j)=z,ψ) ≤ eρ; |i − j| ≤ δ



72 A. Palia and R. Tandon

i = (0, 0), P (0, 0, ψ) = p and j = (δ, 0) so we can write P (δ, z, ψ)–

P (δ, z, ψ) ≤ p.e−ρ

For P (2δ, z, ψ), we have–

P (2δ, z, ψ) ≤ p.e−2ρ and in general,

P (xδ, z, ψ) ≤ p.e−xρ, therefore we can rewrite C in Eq. (1) as

∑∞
x=δ p.exρ ... (2)

For part A of Eq. (1), we have P (0,−δ, ψ) < P (0, δ, ψ) < p. With utility
constraint of min.|z − i|, along with the constraint of having higher probability
of outputting points in the direction of prior, we can say that after some point
αδ it would be better to output points near the original location i either in the
direction opposite to the prior, i.e.,

P (0,−δ, ψ) ≥ P (0, αδ, ψ) = p.e−αρ.
While maintaining the differential privacy constraint for the points

−δ,−2δ, ..., we can write–

P (0,−δ, ψ) ≥ e−ρ.P (0,−2δ, ψ), or

p.e−αρ.eρ ≥ P (0,−2δ, ψ) and in general–

e(x−α)ρ.p ≥ P (0,−(x − 1)δ, ψ), therefore we can write A in Eq. (1) as∑
x=−∞−δ e(x−α)ρ.p ... (3)

Combining (1), (2) and (3)-

∑
x=−∞−δ e(x−α)ρ.p + p +

∑∞
x=δ p.exρ ≤ 1

Solving this with δ = 1 we get,
p ≤ (1−e−ρ)

1+e−(α+1)ρ

Appendix B

For query 2, using the constraints we can write–

∑∞
z=−∞ P (i, z, ψ)=1

∑−δ
z=−∞ P (i, z, ψ) + p +

∑L
z=δ P (i, z, ψ) +

∑2L
z=L P (i, z, ψ) + p

+
∑∞

z=2L P (i, z, ψ) = 1 ... (1)
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or A + B + C + D + E + F = 1

Since we are interested in the magnitude of the probability, for the sake of
simplicity, we can safely apply same approximation before i and after 2L, and
using the symmetry around L, we can write–

p ≤ 1
e−αρ+e−2α.L.ρ

1−e−αρ +2+
2.e−ρ[1−(e−ρ.L)]

1−e−ρ

or approximately– p ≤ (1−e−ρ)
2(1+e−(α+1)ρ)

, when δ = 1
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