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Abstract. Synthesizing photo-realistic images has been a long-standing
challenge in image processing and could provide crucial approaches for
dataset augmentation and balancing. Traditional methods have trou-
ble in dealing with the rich and complicated structural information of
objects resulting from the variations in colors, poses, textures and illumi-
nation. Recent advancement in Deep Learning techniques presents a new
perspective to this task. The aim of our paper is to apply state-of-the-
art generative models to synthesize diverse and realistic high-resolution
images. Extensive experiments have been conducted on celebA dataset, a
large-scale face attributes dataset with more than 200 thousand celebrity
images, each with 40 attribute labels. Enlightened by existing structures,
we present stacked Auxiliary Classifier Generative Adversarial Networks
(Stack-ACGAN) for image synthesis given conditioning labels, which
generates low resolution images (e.g. 64 × 64) that sketch basic shapes
and colors in Stage-I and high resolution images (e.g. 256 × 256) with
plausible details in Stage-II. Inception scores and Multi-Scale Structural
Similarity (MS-SSIM) are computed for evaluation of the synthesized
images. Both quantitative and qualitative analysis prove the proposed
model is capable of generating diverse and realistic images.

Keywords: High-resolution image synthesis · Deep learning
Generative adversarial networks

1 Introduction

Generating photo-realistic images in high resolution is a challenging task,
which has enormous applications in scenarios including datasets augmentation
and computer-aided design and manufacturing, etc. However, even the most
advanced generative models fail to generate plausible images with conditional
information, especially in high resolution, due to the fact that objective data
space is multi-modal. In other words, there are many possible images that cor-
rectly match specific conditional labels.
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Recently, Generative Adversarial Network (GAN) [1] attracts great attention
in the field of image synthesis and a large number of GAN variants ([2]) are pro-
posed to be proficient of generating shaper images. However, due to the unstable
training of GAN, most existing GAN networks generate relatively low-resolution
images (e.g. 64× 64) and the details and object parts added by super-resolution
approaches are limited so that large detects in the low-resolution images can
hardly be rectified. Therefore, synthesizing high-resolution images with photo-
realistic details remain to be a pending challenge.

To solve this problem, we propose Stacked Auxiliary Classifier Generative
Adversarial Network (Stack-ACGAN) which divides the synthesis process into
two stages. Instead of directly generating high-resolution images, the generator
in Stage-I ACGAN produces a 64 × 64 facial image (Fig. 1(a)) conditioned on
given attribute labels and a random noise vector. Conditional labels constrain the
image to match corresponding attributes while the random vector encodes other
features except for those specified in labels. We observed that the low-resolution
images look coarse and suffer from defects such as shape distortion and absence of
details. On top of the Stage-I ACGAN, we build Stage-II ACGAN to generate
high-resolution images (Fig. 1(b)) given the drafts from Stage-I ACGAN and
conditional attribute labels. The aim of Stage-II ACGAN is correcting defects
and generating more realistic details. It is much simpler than generating high-
resolution images from scratch since Stage-II ACGAN only need to deal with
the attributes omitted in Stage-I and correct defects.

Fig. 1. The comparison between results in Stage-I and Stage-II. The attributes given
to images from top to bottom are “man with mustache”, “man”, “woman smiling”
and “woman not smiling”, respectively. (a) Given conditional attribute labels, Stage-I
ACGAN sketches primitive outlines and colors of human faces, yielding low resolution
images. (b) Stage-II ACGAN takes Stage-I results and conditional attribute labels as
inputs, and generates high resolution images with photo-realistic details.

The major contribution of our paper is proposing the Stack-ACGAN that is
capable of generating realistic high-resolution images conditioned on attribute
labels. In comparison with existing generative models, our Stack-ACGAN suc-
ceed in synthesizing images with compelling details, proved by an inception score
[3] of 1.56 while the mean inception score of ground-truth images in celebA
dataset [4] is 1.84. In addition, we evaluate the diversity of samples generated
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using the Multi-Scale Structural Similarity (MS-SSIM) indices [5]. The MS-SSIM
of samples from Stack-ACGAN is 0.65 while the training data has a MS-SSIM
of 0.67, indicating that our model generates images as varied as real datasets.

The paper is organized in the following order. Firstly, existing methods for
image synthesis are presented and compared in the background section. Secondly,
we introduce the basic knowledge about Generative Adversarial Networks. Then
we propose our Stack-ACGAN for conditional image synthesis, explaining how
the network works and elaborating the training details. We also show the facial
images generated in both stages, together with both quantitative and qualitative
analysis of experimental results. At last, we summarize the whole paper and add
some follow-up works that might be worth trying in the future for better results.

2 Background

Generative models for images synthesis have recently received significant atten-
tion, especially in the last decade. The main objective of image synthesis is to
synthesize desired images, e.g. photo-realistic, artistic, or high-resolution pictures
via given constraints in some semantic domains. These well-studied generative
models fall into two categories: parametric and non-parametric.

Non-parametric approaches, whose major idea is searching for matched nat-
ural images in existing database, have been widely used in texture synthesis [2],
super-resolution [6] and scene completion [7].

Although extensively studied, parametric models haven’t achieved much suc-
cess in generating plausible images until recently. With the emergence of deep
learning techniques in the last few years, remarkable progress has been made.
Reed et al. [8] proposed to solve visual analogies by learning to map images to
neural embeddings and decode the representation after vector arithmetics. Com-
pared to this deterministic approach, Variational Auto-encoder (VAE) [9] was
presented by formulating the problem as a probabilistic graphical model whose
aim is to fit an approximate inference model to the intractable posterior. Another
method called the Deep Recurrent Attentive Writer (DRAW) model was pro-
posed by Gregor et al. [10], which focuses on generating house numbers images
by combining recurrent VAE and attention mechanism. As a typical instance
of autoregressive models, Pixel Recurrent Neural Networks (PixelRNN) [11] uti-
lizes the strong learning ability of deep neural networks to model the conditional
distribution in the pixel space, also yielding appealing results.

Recently, Generative Adversarial Network (GAN) [1] attracts great attention
in the field of image synthesis and a large number of GAN variants are proved
to be capable of generating shaper images. Build upon these models, image
synthesis with conditional information has also been explored. Generally, the
conditional information appears in the form of attributes, class labels or text
descriptions ([11–15]). Research has also been conducted on generating images
conditioned on images, such as photo-editing [14] and super-resolution [16,17].
However, most methods generate relatively low-resolution images(e.g. 64 × 64)
and the details and object parts added by super-resolution approaches are limited
so that large detects in the low-resolution images can hardly be rectified.
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3 Preliminaries of Generative Adversarial Networks

Generative Adversarial Networks (GAN) [1], whose training is game-theoretic,
provide an attractive and promising alternative for modeling complex data dis-
tribution. The architecture of GAN consists of two parts, which are generator
and discriminator, respectively.

As a generative model, GAN interprets data as samples from a high-
dimensional probabilistic distribution. By setting up a game between two neural
networks, the generator (e.g. deconvolutional neural network) is trained to gen-
erate data to fool the discriminator while the discriminator (e.g. convolutional
neural network) is trained to tell real data from fake (generated) data. The
adversarial learning method is applied so that the generator and discriminator
can compete, encouraging each other to learn to perform better on its own target
while eventually improve the whole network.

Mathematically, given real samples x and noise z that is randomly sampled
from normal Gaussian distribution, to learn the generator’s distribution pg from
real training data distribution pdata, we first denote the prior of noise z as pz(z),
then refer to the mapping from noise to data space by G(z; θg), where function
G is modeled by a multilayer neural network with parameters θg. Likewise, we
define D(x = real; θd) as the probability of input x to be classified as real data,
where function D corresponds to discriminator with parameters θd.

During training, the goal for discriminator D is maximizing the probabilities
of classifying real samples x as real and generated data G(z; θg) as fake.

max
θd

Ex∼pdata
[log(D(x; θd))]+ (1)

Ez∼pz
[log(1 − D(G(z; θg); θd))] (2)

The objective for generator G is minimizing the probabilities of classifying
generated data G(z; θg) as fake.

min
θg

Ez∼pz
[log(1 − D(G(z; θg); θd))] (3)

Therefore, the objective function for GAN is to combine them together.

min
θg

max
θd

Ex∼pdata
[log(D(x; θd))]+ (4)

Ez∼pz
[log(1 − D(G(z; θg); θd))] (5)

4 Stacked Auxiliary Classifier Generative Adversarial
Networks

In order to synthesize photo-realistic facial images in high resolution according to
conditional attribute labels, we propose stacked Auxiliary Classifier Generative
Adversarial Network (Stack-ACGAN) which stacks one ACGAN on the top of
the other. The network architecture is shown in Fig. 2.
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Fig. 2. The architecture of the proposed Stack-ACGAN. Stage-I ACGAN draws a low-
resolution image conditioned on attributes labels and a random noise vector. Stage-II
ACGAN takes and rectifies the results from Stage-I and synthesize high-resolution
images with more realistic details by relearning on the conditional attribute labels.

4.1 Stage-I ACGAN

Instead of directly generating high-resolution images, the generator of Stage-I
ACGAN produces a 64 × 64 facial image conditioned on given labels and a ran-
dom noise vector. Conditional labels constrain the image to match corresponding
attributes while the random vector encodes other features except for those spec-
ified in labels. For instance, assume we intend to generate images with attributes
of “Male” and “Smiling”, the result show great diversity. It might be a smiling
man in hat or a smiling man with blond wavy hair or even a smiling man in
sun glasses. The low-resolution image from stage-I sketches the basic outline and
expression of human faces together with some defects and blurry details.

Model Architecture. As shown in Fig. 2, for the generator, a Nz dimen-
sional random noise vector z is sampled from normal Gaussian distribution (e.g.
z ∼ N(0, I)) and then concatenated with conditional labels c before being sent
into the Stage-I generator. After a series of upsampling blocks, an image I0(e.g.
G0(z, c)) of size W0 × H0 is generated.

For the discriminator, both the real images Ireal and synthesized images I0
is processed by a series of downsampling blocks until the spatial size of feature
maps becomes W2 ×H2 ×N2. Then feature maps are fed to two branches of net-
work. In one branch, a fully-connected layer uses the features to perform binary
classification to tell whether the input image is real or not. In the other branch,
an auxiliary classifier is trained to predict which class the image belongs to.
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Model Training. Stage-I ACGAN trains discriminator D0 and generator G0

by alternatively maximizing LD0 and LG0 . e input image is real or not. In the
other branch, an auxiliary classifier is trained to

LS = EIreal,c∼pdata
[log(D0(Ireal = real; θd))]

+ Ez∼pz,c∼pdata
[log(D0(G0(z, c; θg)) = fake; θd)]

(6)

LC = EIreal,c∼pdata
[log(D0(Ireal = c; θd))]

+ Ez∼pz,c∼pdata
[log(D0(G0(z, c; θg) = c; θd))]

(7)

max
θd

LD0 = LC + LS (8)

max
θg

LG0 = LC − LS (9)

4.2 Stage-II ACGAN

Speaking from experience, low-resolution samples synthesized by Stage-I
ACGAN fail to show enough compelling details and may be distorted. We suggest
that visual information is omitted more or less when we sample random noise
vectors as encoded representations of natural images. To regain the features lost
in the first stage, we build a Stage-II ACGAN upon the existing framework.

On the basis of Stage-I outputs, Stage-II ACGAN attempts to correct defects
and capture omitted information by relearning the conditional labels, yielding
W1 × H1high-resolution (e.g. 256 × 256) images with more concrete details.

Model Architecture: For the generator, the input is low-resolution images I0
generated in Stage-I together with conditional labels c. The images are firstly
down-sampled to get feature maps with spatial size of W3 × H3 × N3. In the
mean time, the attribute labels adopted in stage-II is transformed to a tensor
by spatially replication to W3 × H3 × Nc. The feature maps and label tensor
are concatenated along the channel axis before a 1× 1 convolutional layer joints
the information of image and label together. The joint representation encourages
the Stage-II generator to extract previously ignored features for the purpose of
providing vivid details and correcting defects. Before processed by a series of
upsampling blocks, the joint representation goes through several residual blocks
[18] which enriches the level of features by adding more stacked layers. As a
consequence, the generator in Stage-II ACGAN is much deeper than that in
Stage-I, yielding plausible images in high-resolution.

For the discriminator, the architecture is very similar to that of Stage-I
ACGAN except that more convolutional layers is used in downsampling blocks
since the input size is larger.

Model Training: When training Stage-II ACGAN, Stage-I ACGAN is fixed.
Similarly, Stage-II ACGAN trains discriminator D0 and generator G0 by alter-
natively maximizing LD0 and LG0 . The objective function is defined as fol-
lows. What is different from Stage-I is that L1-norm is applied in LG0 to force
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structural coherence between high-resolution output I1(e.g. G1(I0, c)) and low-
resolution input I0. We adopt L1-norm rather L2-norm in consideration of pre-
venting blurry results.

LS = EIreal,c∼pdata
[log(D1(Ireal = real; θd))]

+ EI0∼G0(z,c),c∼pdata
[log(D1(G1(I0, c; θg)) = fake; θd)]

(10)

LC = EIreal,c∼pdata
[log(D1(Ireal = c; θd))]

+ EI0∼G0(z,c),c∼pdata
[log(D1(G1(G0(z, c), c; θg) = c; θd))]

(11)

LI = −EIreal,c∼pdata,I0∼G0(z,c)||Ireal − I0||1 (12)

max
θd

LD0 = LC + LS (13)

max
θg

LG0 = LC − LS + LI (14)

4.3 Experimental Details

(1) Stage-I ACGAN: The upsampling blocks are made up of 5×5 deconvolutions
with stride 2. Batch normalization [19] and ReLU activation [20] are used after
every deconvolution except the last one. The down-sampling blocks consist of
5×5 convolutions with stride 2 nd Leaky ReLU activation. Batch normalization
are applied in every layer except the last one. Two fully-connected layers output
the probabilities of being real and the probabilities of matching each attribute,
respectively.

In correspondence to the terminology in Fig. 2, Nc = 100,W0 = H0 = 64,
W2 = H2 = 4, N2 = 512. For training, we alternatively train D0 and G0 for
50 epochs. In each step, the generator updates twice while the discriminator
updates once to make sure they both are in the same pace. All networks are
trained using ADAM solver with batch size 64 and an initial learning rate of
0.0002. The learning rate is decayed to half of its previous value every 20 epochs.
(2) Stage-II ACGAN: The difference between Stage-I and Stage-II networks
lies in three major parts. In the first place, the generator in Stage-II encodes the
input images by a series of down-sampling blocks, yielding latent representations
of features. In the second place, 16 residual blocks are applied to increase the
depth of network with the aim of extracting more detailed features. In the third
place, the discriminator in Stage-II perform dimensionality reduction by add
1 × 1 convolutional layers. A bottleneck residual blocks is also used to reduce
the parameters.

By default,W1 = H1 = 256,W3 = H3 = 16, N3 = 256. During training,
we fix the pretrained Stage-I ACGAN which generates input images for Stage-II
ACGAN. The discriminator D1 and generator G1 are alternatively optimized for
10 epochs. All networks are trained using ADAM solver with batch size 64 and
an initial learning rate of 0.0002, which is later decayed by half every 5 epochs.
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4.4 Results and Analysis

We first demonstrate the samples generated from stage-I ACGAN with specific
attributes in Fig. 3.

Fig. 3. Random samples generated by stage-I ACGAN. Labels for the first two rows
are “Female”, “Smiling”. Labels for the second two rows are “Female”, “Not smiling”.
Labels for the third two rows are “Male”, “Smiling”. Labels for the last two rows are
“Male”, “Not smiling”

We can see that nearly all the images succeed in matching the correspond-
ing attributes suggested by conditional labels. However, similar to the samples
generated by DCGAN, the synthesized images in Stage-I suffer severe distortion
sometimes (e.g. image in row 3, column 2) and only capture primitive shapes
and colors of human faces. In conclusion, Stage-I ACGAN fails to generate high-
resolution and high-quality images but manages to generate images with specific
attributes.

Next, we present the refined samples generated from Stage-II ACGAN in
Fig. 4.

Fig. 4. Refined samples generated by stage-II ACGAN on the basis of results from
Stage-I ACGAN. To be noticed, the generated 256× 256 images are resized to 64× 64
for evident comparison with images from Stage-I.
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We observe that the images from Stage-II outputs match all the conditional
attribute labels. Meanwhile, the results are in 4× higher resolution than those in
Stage-I, reflecting more convincing details. For instance, the facial image in row
6, column 1 presents a plausible side face, which is generally hard to generate
in the case of Stage-I ACGAN. The reason for this is that Stage-II ACGAN
focuses on completing details based on the drafts from Stage-I, which is a lot
easier than generating side faces from a random vector. Thus, we conclude that
photo-realistic image synthesis can be achieved by multiple stages synthesis.

By interpolation on the latent representations in generator, we produce the
gradation patterns from one face to another in Fig. 5.

Fig. 5. Comparison between interpolations in Stage-I (a,c) and Stage-II (b,d).

Apart from visually comparing and analyzing the synthesized images, we also
adopt quantitative metrics for evaluation of the discriminability and diversity of
images generated in both stages.

As the measurement of discriminability of synthesized images, inception
score [3] is adopted for evaluation, which correlated well with human visual
system. By applying the inception-v3 model [21] to each generated image, we
get the conditional label distribution p(y|x). For realistic images that con-
tains meaningful objects, this distribution has a low entropy. The marginal
p(y) =

∫
p(y|x = G(z))dz should have high entropy. Therefore, the metric called

inception score is defined as ExKL(p(y|x)||p(y)). The mean inception scores from
three sets, which are 100 images from celebA dataset, 100 images from stage-I
ACGAN outputs and 100 images from Stage-II ACGAN outputs respectively,
are listed in Table 1. As the figures indicate, both stages are capable of gener-
ating relatively convincing and varied images while the results in Stage-II is a
little bit better than that in Stage-I.

Another quantitative method we use is Multi-scale Structural Similarity (MS-
SSIM), which is created under the assumption that human visual system is
considered to be highly adapted for structural feature extraction. The values
of MS-SSIM indices of a pairs of images measure the similarity between them.
Therefore, the larger the indices are, the more varied images are generated.
Results in Table 2 shows that the diversity of generated samples in stage-I and
stage-II are in the same level of images in dataset, proving the Stack-ACGAN
architecture is proficient in generating varied images.
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Table 1. Inception scores of images from celebA dataset, Stage-I ACGAN and Stage-II
ACGAN

Image source Inception score

celebA dataset 1.84 + 0.31

Stage-I ACGAN 1.53 + 0.26

Stage-II ACGAN 1.56 + 0.29

Table 2. MS-SSIM of Images from celebA dataset, Stage-I ACGAN and Stage-II
ACGAN

Image source MS-SSIM index

celebA dataset 0.672

Stage-I ACGAN 0.652

Stage-II ACGAN 0.634

5 Conclusion

In this paper, we propose stacked Auxiliary Classifier Generative Adversarial
Networks (Stack-ACGAN) for photo-realistic images synthesis. The proposed
method decomposes the synthesis process into two separate stages. Stage-I
ACGAN sketches the basic outlines and colors of the object with constraints from
conditional attribute labels. Afterwards, Stage-II ACGAN corrects the defects in
Stage-I results and adds more photo-realistic details. Extensive quantitative eval-
uation are conducted to show proficiency of our proposed method. In comparison
to existing conditional generative models, our method is capable of generating
higher resolution images (e.g., 256× 256) with more convincing details.

As for future work, we believe more attention should be devoted to the fol-
lowing two aspects. During experiments we have observed severe mode collapse
in the second stage of Stack-ACGAN before preventing it by adopting one-sided
label smoothing and dropout tricks. Therefore, it is worthwhile to figure out a
general scheme to stabilize the adversarial training in the future. Moreover, we
wonder if plausible images in higher resolution (e.g. 1024 × 1024 or even higher)
can be generated simply by stacking more GANs on top of the others. Dozens
of experiments need to be conducted to check the convergence of those models
and the discriminability and diversity of results.
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