
GPU_MF_SGD: A Novel GPU-Based
Stochastic Gradient Descent Method

for Matrix Factorization

Mohamed A. Nassar(&), Layla A. A. El-Sayed, and Yousry Taha

Department of Computer and Systems Engineering, Alexandria University,
Alexandria, Egypt

eng.mohamedatif@gmail.com, labohadid@gmail.com,

taha@alexu.edu.eg

Abstract. Recommender systems are used in most of nowadays applications.
Providing real-time suggestions with high accuracy is considered as one of the
most crucial challenges that face them. Matrix factorization (MF) is an effective
technique for recommender systems as it improves the accuracy. Stochastic
Gradient Descent (SGD) for MF is the most popular approach used to speed up
MF. SGD is a sequential algorithm, which is not trivial to be parallelized,
especially for large-scale problems. Recently, many researches have proposed
parallel methods for parallelizing SGD. In this research, we propose
GPU_MF_SGD, a novel GPU-based method for large-scale recommender
systems. GPU_MF_SGD utilizes Graphics Processing Unit (GPU) resources by
ensuring load balancing and linear scalability, and achieving coalesced access of
global memory without preprocessing phase. Our method demonstrates 3.1X–
5.4X speedup over the most state-of-the-art GPU method, CuMF_SGD.

Keywords: Collaborative filtering (CF) � Matrix factorization (MF)
GPU implementation � Stochastic Gradient Descent (SGD)

1 Introduction

Recently, recommender systems have become a popular tool used in various appli-
cations including Facebook, YouTube, Twitter, Email services, News services and
Hotel reservation applications [1–5]. In recommender systems, users get a list of
suggested items (i.e. movies, friends, news, advertisements, products, etc.). One of the
most important challenges that face recommender systems is suggesting accurate
recommendations in real-time [6–8].

Recommender systems can be categorized into non-personalized filtering, content-
based filtering (CBF), collaborative filtering (CF) and matrix factorization techniques
[1, 3, 9–15]. Non-personalized recommender systems suggest items to a user based on
average of ratings given to the items by other users. This category of recommender
systems is trivial in terms of implementation, but it lacks personalization where rec-
ommended items are the same for all users regardless of their profile [1, 4, 13]. In CBF,
items are suggested to a user based on items rated previously by the user. CBF rep-
resents items and users’ behaviors as features to find similarity between users’

© Springer Nature Switzerland AG 2019
K. Arai et al. (Eds.): FICC 2018, AISC 887, pp. 271–287, 2019.
https://doi.org/10.1007/978-3-030-03405-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03405-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03405-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03405-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-03405-4_18

preferences and items. Defining features that represent items and users’ behaviors is a
major problem in CBF [1, 14, 16]. CF is a process of suggesting items based on users’
collaboration or the similarity between items [1, 3, 9, 10]. CF overcomes the issue of
CBF features representation. However, CF cannot suggest items when there are no
similarities between users or items. Moreover, CF performs slowly on huge datasets
[17–20]. MF, a dimensionality reduction technique, is an advanced technique for
recommender systems where the representation of users and items uses the same latent
features. Predicting ratings is simply performed by the inner product of user-item
feature vector pairs [1, 11, 14]. MF has many advantages over CF for the following
reasons: (1) Computations required for predictions are so simple and have negligible
time complexity; (2) high accuracy is guaranteed even if there is no similarity between
users or items; and (3) MF is scalable for large-scale recommender systems.

In MF, rating matrix R of m � n is factorized into two low-rank feature matrices P
(m �k) and Q (k �n), such that R ’ P �Q where k is the number of latent features, m
and n are numbers of users and items respectively. Figure 1 shows an example of
matrix factorization where the following optimization rule has to be applied.

min
P;Q

X
u;vð Þ2R ru;v � pTu qv

� �2þ kP puk k2þ kQ quk k2
� �

; ð1Þ

where :k k is the Euclidean norm, ðu; vÞ 2 R are the indices for users’ ratings, kP and
kQ are the regularization parameters for avoiding over-fitting. (1) is a difficult opti-
mization problem [11, 16, 17]. To find P and Q, i.e. to build the model, it is required to
perform expensive computations [21, 22].

Building/rebuilding the model of users’ ratings is complex in terms of computa-
tions. Therefore, many researches are directed to design fast and scalable techniques to
solve (1) [7, 8, 23–32].

Three main algorithms Coordinate Descent (CD), Alternate Least Square (ALS),
and SGD are proposed to solve matrix factorization problem efficiently [7, 33, 40, 41].
CD is shown to be vulnerable to stuck into local optima [22]. Authors in [7, 33] show
that SGD is constantly converged faster than ALS.

Fig. 1. An example of matrix factorization where m = 4, n = 4, k = 2 [7].

272 M. A. Nassar et al.

Moreover, SGD is also more practical in systems where new ratings are progres-
sively entered into the system [7]. Therefore, we focus on improving SGD in this paper.

The basic idea of SGD is to randomly select a rating ru,v from R where u and v are
the indices of R. Then, pu and qv variables are updated by the following rules:

pu puþ c eu;vqv � kPpu
� � ð2Þ

qv qvþ c eu;vpu � kQqv
� � ð3Þ

Where, eu;v is the difference between the actual rating ru,v and predicted ratings
pTu qv and c is the learning rate. Then another random instance ru,v is selected, and pu
and qv are updated by applying rules (2) and (3), respectively. After finishing all
ratings, the previous steps are repeated till reaching accepted Root Mean Square Error
(RMSE) [11]. The time complexity per iteration of SGD is O(|µ|k), where |µ| is number
of ratings. The overall SGD procedure takes hours.

It is worth to mention that there are two main streams to improve the performance of
SGD. The first stream focuses on improving statistical properties to reduce the required
iterations to converge [34–37]. The second stream works on improving computations
per iteration by proposing efficient parallel SGD methods [6–8, 30, 38–42].

In this research, we focus on the second stream where state-of-the-art parallel SGD
for MF researches mainly categorized in terms of system type into (1) shared-memory
systems; and (2) distributed systems. Shared-memory systems are more efficient than
distributed systems as distributed systems depend on network connection bandwidth
and SGD requires aggregation of parameters/data at the end of each iteration [7, 43–
45]. Nowadays, all shared-memory systems are heterogeneous which includes GPUs
and/or Field-programmable Gate Arrays (FPGAs) to accelerate computationally
intensive applications [46–50]. Generally, GPU has better performance that FPGA for
floating-point-based applications like SGD [46, 48], as GPU comes with native
floating-point processors.

Our objective is to propose an efficient parallel SGD method based on GPU,
GPU_MF_SGD, which:

• Provides a high scalable SGD implementation i.e. achieves linear scalability when
increasing the level of parallelism.

• Utilizes GPU resources, and ensures coalesced access of GPU global memory.
• Achieves load balancing across processing elements.
• Overcomes any preprocessing phase.
• Accesses ratings randomly in parallel.
• Reduces the probability of overwriting occurrence by processing the datasets

through a predefined number of steps per iteration.

The remainder of the paper is organized as follows. In Sect. 2, we discuss existing
parallelized SGD methods for MF. In Sect. 3, we present GPU_MF_SGD, our pro-
posed efficient parallel method. Experiments and results are discussed in Sect. 4.
Finally, conclusion and future work are discussed in Sect. 5.

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 273

2 Background

Although SGD is a sequential algorithm, many researches have proposed parallel
efficient methods for it. Throughout this section, we discuss the state-of-the-art parallel
SGD methods for MF and provide main issues associated with each one.

2.1 Hogwild

It was observed that for randomly selected ratings, the updates of feature matrices P and
Q are independent, not sharing same row or column, under the condition of high sparse
rating matrix R. Figure 2 shows examples of dependent and independent updates.

In Hogwild [41], concurrent threads randomly select ratings from R and update P
and Q. To avoid updating dependent ratings in the same time, synchronization (atomic
operation) is required. Figure 3 shows updating sequence of two threads where red dot
indicates that two dependent random ratings are accessed and processed simultane-
ously. Hogwild showed that synchronization is not required when R is very sparse and
the number of concurrent threads is small compared to the number of ratings.

Hogwild was proposed for shared memory systems; however, it has many issues as
follows:

• Memory discontinuity where random access of shared memory degrades system
performance.

• Inapplicability on GPU where random accesses to global memory is so expensive
on GPUs.

Fig. 2. Examples of independent updates (ratings B and C) and dependent updates (ratings A
and C) [38].

274 M. A. Nassar et al.

2.2 FSGD

FSGD [22] aimed to overcome overwriting issue and memory discontinuity by intro-
ducing the following techniques:

• Partitioning rating matrix R. FSGD divides R into blocks and assigns indepen-
dent blocks to threads.

• Lock-free scheduling. Once a thread finishes processing a block, the scheduler
assigns a new block, which satisfies the following two criteria. First, it is a free
block. Second, the number of past updates is the smallest among all free blocks.

• Partial random method. To overcome the issue of memory discontinuity, FSGD
simply accesses rating within blocks sequentially, but blocks selection is performed
randomly.

• Random shuffling of R and sorting blocks. FSGD overcomes the issue of
imbalanced distribution of ratings across blocks by random shuffling ratings and
sorting partitioned blocks.

Despite the popularity of FSGD, it has a complex preprocessing phase, which
includes a complex scheduler, random shuffling of ratings and sorting each block by
user identities.

2.3 GPUSGD

GPUSGD [6] proposed SGD method based on matrix blocking using GPU. It divides a
rating matrix R into blocks, which are mutually independent, and their corresponding
variables are updated in parallel. Independent blocks run simultaneously using thread
blocks of GPU. Authors prove that all independent ratings inside each block can be
tagged with the same tag number. Therefore, a preprocessing phase which includes
tagging and sorting ratings is required to provide coalesced access and independent
updates. The experimental results show that GPUSGD performs much better in
accelerating the matrix factorization compared with the existing state-of-the-art parallel
methods. However, GPUSGD suffers from intensive prepossessing phase (tagging,
sorting and partitioning) and load imbalance through GPU blocks and threads.

Fig. 3. An example shows updating sequences of two threads in Hogwild [40].

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 275

2.4 CuMF_SGD

CuMF_SGD [7] is the most recent parallelized SGD method based on GPU. Two
equivalent schemes in terms of accuracy and performance (Batch-Hogwild and
Wavefront-update) were proposed. CuMF_SGD overcomes complexity and consumed
time to schedule blocks when the number of thread blocks becomes large. CuMF_SGD
utilizes GPU resources using half-precision (2 bytes), which does not affect the
accuracy and improves memory bandwidth. In addition, it accesses global memory in
coalesced manner.

CuMF_SGD exploits the spatial data locality using L1 cache. Preprocessing phase
is necessary to shuffle ratings and partitioning data into batches. Wavefront-update
reduces the existing complex scheduling schemes [21, 22], which maintains two-
dimensional lookup table to find the coordinate (row and column) to update.
Wavefront-update uses only one-dimensional lookup which only maintains columns.
Figure 4 shows an example of four concurrent thread blocks (workers) working on R,
which is partitioned, into 4 � 8 blocks. At first iteration (waive), workers are assigned
to independent blocks and update the status of columns in the lockup. After processing
the independent blocks, workers need to check the status of the columns before pro-
cessing other blocks. Wavefront-update requires preprocessing phase of partitioning
and maintains a scheduler. In addition, the scheduler cannot maintain the same number
of updates per block if ratings are not uniformly distributed across blocks [22].

Throughout this section, we introduced the recent existing parallel methods to
enhance SGD for MF. In addition, we highlighted the main issues associated with each
method. In the following section, we discuss our novel GPU-based method, which aims
to overcome the main issues.

3 A Novel GPU-Based SGD Method for MF

According to the most recent researches and existing recommender systems, we can
summarize the following observations.

Fig. 4. Wavefront-update example where each parallel worker is assigned to a row and a
randomized column update sequence [7].

276 M. A. Nassar et al.

• Observation 1. SGD for MF is memory bound i.e. the number of floating point
operations is lower than the number of memory accesses by 37% in SGD [7].
Consequently, memory access utilization directly affects the performance of the
SGD. In addition, proposing efficient GPU method can improve the performance of
SGD as GPU has higher memory bandwidth and inter-device connection speed
compared with CPU.

• Observation 2. All proposed methods neglect a considerable execution time of the
preprocessing phase. Recent proposed methods [6–8, 30] consist of preprocessing
phase and processing phase. Preprocessing phase includes one or more of the
following procedures: shuffling dataset, partitioning the dataset into blocks, sorting
partitioned dataset and/or scheduling execution of dataset blocks using a complex
scheduler. For the most recent method CuMF_SGD [7], we found that around 40%
of the overall execution time (preprocessing time + processing time) is spent in
preprocessing phase for 20 M MovieLens dataset when k = 32 and running on
NVIDIA Tesla K80 [51]. Therefore, overcome preprocessing phase enhances the
overall performance of recommender systems.

• Observation 3. Rating matrices for recommender systems are highly sparse.
For 20 M Movielens, Netflix, Yahoo and Hugewiki datasets, matrix densities are
0.11%, 1.17%, 0.29% and 0.15% respectively.

• Observation 4. Random parallel processing of the rating matrix R does not
affect the accuracy when R is very sparse and the number of threads is lower
than the number of ratings. Hogwild [40] proved that overwriting issue, which
may occur because of random parallel processing of the rating matrix R, does not
require atomic operations and does not affect the accuracy.

• Observation 5. Existing methods suffer scalability issues [7]. Due to the complex
scheduler and/or required synchronization between processing elements, existing
methods scale only to a limited number of processing elements/threads.

• Observation 6. Load Imbalance is the reason of imbalance in ratings distri-
bution across dataset blocks. Recommender systems are highly dynamic systems
[52] where the number of ratings, number of users and number of items are
changing over time. Partitioning rating matrix into blocks and assigning them
uniformly across processing elements lead to load imbalance and therefore non-
utilized resources.

Based on the mentioned observations, we introduce an efficient SGD method for
MF based on GPU, GPU_MF_SGD. Before discussing the proposed method, it is
worth to mention that the representation of the rating matrix R is Coordinate list
(COO) [53] i.e. R is represented as one-dimensional array of length l where l is number
of ratings in R. Each entry of R has structure r_entry (u, i, r), where u is user identity, i
is item identity and r is the rating of user u to item i. Figure 5 shows the code of the
GPU_MF_SGD kernel. We describe the algorithm throughout the following main
optimization techniques.

• Shared memory utilization. Instead of accessing rating matrix R randomly from
global memory (memory discontinuity) [40], we utilize shared memory which is
two orders of magnitude faster than global memory access to shuffle R and
improves system performance as follows [54–56]. We configure each thread block

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 277

to have th_size threads and shared memory array (sh_rating) with predefined length
(no_r_b) where no_r_b/th_size = st (Step 4). st is the number of iterations required
for each thread block to process sh_rating. There are two main reasons behind the
idea of processing sh_rating in st steps as follows: (1) to utilize resources as for each
thread block, the available shared memory size is multiple of the available threads;
and (2) to reduce matrix density by (100/st)%, thus reducing the probability of
dependent updates. Shuffling R is guaranteed by coalesced access to global memory
and random accesses to sh_rating using offline calculated array of random numbers
(rand) (Steps 5, 7, 8, 9). Figure 6 shows an example of loading R to the shared
memory of two thread blocks where st = 2, l = 8 and th_size = 2. It can be shown
that two levels of shuffling are performed with negligible time complexity, as
(1) each thread loads two ratings into shared memory; first rating is from the first
half of R and the second rating is from the second half of R; and (2) each thread
accesses shared memory randomly.

• Coalesced Access of P and Q. Although threads access ratings from shared
memory in a coalesced manner (Steps 19, 20, 21), readings and writings for rows of
P and Q are performed randomly which degrade performance drastically. To
overcome this issue, we configure each consecutive 32 threads to complete

Fig. 5. The exemplify code of GPU_MF_SGD Kernel with highlighted optimization techniques
where K = 64.

278 M. A. Nassar et al.

computations of a rating (Steps 23, 24, 26, 27). Figure 7 shows two examples of
non-coalesced and coalesced access of P rows where th_size = 2 and k = 2.

• Warp shuffle [6, 57]. Instead of using shared memory to synchronize and broadcast
dot product results of p and q, we use warp shuffle to broadcast the result of the dot
product results (Steps 29 to 34). The warp shuffle has better performance than
shared memory as (1) it uses extra hardware support; (2) register operations are
faster than shared memory operations; and (3) there is no need to synchronize
between threads [7].

• Instruction level parallelism (ILP) [7]. For K > 32, each thread is responsible for
K/32. Instructions order is considered to maximize the ILP (Steps from 23 to 40).

Fig. 6. An example of the process of loading rating array R into shared memory of thread
blocks.

Fig. 7. Examples of non-coalesced and coalesced access for P.

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 279

• Half-precision. As SGD for MF is a memory-bounded algorithm, any enhancement
for memory access will improve the performance. New GPU architecture offers
storage of half-precision (2 bytes) which is fast to be transformed to float and does
not affect the accuracy [7] (Steps 26, 27).

• Warp divergence avoidance [58]. GPU has performance penalties with condi-
tional statements as different paths of executions are generated. GPU_MF_SGD
does not contain conditional branches, which improves overall performance.

• No preprocessing phases. All existing methods have a computational intensive
preprocessing phase, which includes sorting, partitioning, random shuffling,
scheduling, etc. to ensure independent updates, random access, and load balance.
GPU_MF_SGD does not include any preprocessing phase as we guarantee a high
probability of independent updates for P and Q by random access of ratings and
processing R in predefined steps.

• Linear Scalability. If we increase the number of threads, GPU_MF_SGD theo-
retically achieve linear scalability. Unlike existing methods, they lack scalability
due to required synchronization and/or scheduling [6, 7, 22, 40].

Figure 8 shows a code of GPU_MF_SGD overall procedure. First, we grid the
GPU into one-dimensional thread blocks with a size of l=no r b, and organize each
thread block into 1D threads of size th_size (Steps 4, 5). Then, calling for kernel
execution is performed (Step 7). Finally, calculation of RMSE is performed (Step 9).
Steps 7, 9 are repeated until reaching accepted RMSE.

Fig. 8. Exampify code of GPU_MF_SGD overall procedure.

4 Experiments and Results

We implemented GPU_MF_SGD using Compute Unified Device Architecture
(CUDA). Different types of public datasets are used to evaluate performance and
accuracy. It is worth to mention that we compared our results with state-of-the-art GPU
method, CuMF_SGD [7] for the following reasons:

• CuMF_SGD outperforms all existing shared memory methods by 3.1X – 28.2X.
• CuMF_SGD source code is publicly available, unlike other existing GPU methods.
• CuMF_SGD has less computational complexity for preprocessing phase compared

with other implementation.
• CuMF_SGD has consistent results and graphs, unlike other existing GPU methods.

280 M. A. Nassar et al.

4.1 Experimental Setup

We executed both implementations (CuMF_SGD and GPU_MF_SGD) on high-
performance computing service (HPC) provided by the Bibliotheca Alexandria [66].
Table 1 shows specifications of the used platform.

We used common public datasets: MovieLens [59], Netflix [60, 61] and Yahoo!
Music [62, 63]. Table 2 shows details of datasets used in experiments. We extracted
10% test random sample from different datasets using GraphLab [64, 65].

The setup parameters for GPU_MF_SGD are as follows. We set th_size to be 1024,
which is the maximum number of threads available per thread block for GPU. In
addition, we chose st to be 2 to shuffle dataset and achieve a high level of sparsity with
reasonable complexity performance. Regarding SGD parameters for both CuMF_SGD
and GPU_MF_SGD, we used common parameters used by previous work. For learning
rate, we used the same learning rate scheduling technique used by [30], where st, the
learning rate at iteration t, is reduced using the following formula:

st ¼ a
1þ b : t1:5

ð5Þ

a is the initial learning rate and b is a constant parameter. The parameters are shown in
Table 3.

Table 1. Specifications of the used platform

RAM size 128 GB Operating system CentOS 6.8

Number of CPUs 2 Scheduler Slurm [67]
GPU used NVIDIA Tesla K80 Number of GPU devices 2

Table 2. Details about the datasets used in experiments

Dataset MovieLens Netflix Yahoo!Music

M 138493 480189 1823178
N 27278 17770 136735
K 32 64 128
Training set 18000236 90432454 646084797
Test set 2000027 10048051 71787199

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 281

4.2 Scalability Study

To study the scalability of both methods, we used the number of updates per second as
the performance metric [7]:

update=s ¼ #Iterations�#Samples
Elapsed Time

ð6Þ

where # Iterations, # Samples and Elapsed Time indicate the number of iterations,
number of ratings in R, and execution time in seconds, respectively.

Scalability study of CuMF_SGD and GPU_MF_SGD for the MovieLens dataset is
shown in Fig. 9. We have two curves for CuMF_SGD (CuMF_SGD_Pro and
CuMF_SGD_Pre) where in CuMF_SGD_Pro, the elapsed time is only GPU execution
time, and in CuMF_SGD_Pre, the elapsed time is execution time plus preprocessing
time. GPU_MF_SGD implementation shows linear scalability while CuMF_SGD has
limitations in terms of scalability.

Table 3. The parameters used per dataset

Dataset k a ß

MovieLens 0.05 0.08 0.3
Netflix 0.05 0.08 0.3
Yahoo!Music 0.05 0.08 0.2

Fig. 9. # updates/s for different methods versus #threads for MovieLens.

282 M. A. Nassar et al.

4.3 Training Time Speedup

We measured training time until convergence to an accepted RMSE [68, 69] (0.93,
0.92, 1.23) for MovieLens, Netflix, and Yahoo!Music respectively). Table 4 shows
training times and GPU_MF_SGD speedup over both CuMF_SGD_Pro and
CuMF_SGD_Pre.

Results show that GPU_MF_SGD is 3.1X – 5.4X, 3.4X – 5.3X and 3.3X – 4.4X
faster than CuMF_SGD for MovieLens, Netflix, and Yahoo!Music respectively.
Generally, GPU_MF_SGD outperforms CuMF_SGD by 3.1X to 5.4X for all datasets.

Table 4. Training times and GPU_MF_SGD speedup

Dataset CuMF_SGD_Pro CuMF_SGD_Pre GPU_MF_SGD GPU_MF_SGD speedup

CuMF_SGD_Pro CuMF_SGD_Pre

MovieLens 0.56 s 0.98 s 0.18 s 3.1X 5.4X
Netflix 4.34 s 6.70 s 1.26 s 3.4X 5.3X

Yahoo!
Music

49.08 s 66.1 s 15 s 3.3X 4.4X

Fig. 10. Convergence speed for different datasets.

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 283

4.4 Convergence Analysis

Figure 10 shows the RMSE on test set with respect to the training time. It is obvious
that our method converges faster than CuMF_SGD and achieves better RMSE for all
datasets.

Therefore, GPU_MF_SGD is considered as the fastest SGD method for MF
because it can do more updates per second, as shown in Fig. 9. Unlike all previous
methods including CuMF_SGD, GPU_MF_SGD utilizes shared memory and does not
require any preprocessing phase.

5 Conclusions and Future Work

In this research, we proposed GPU_MF_SGD, which is GPU-based innovative parallel
SGD method for MF. Unlike previous methods, GPU_MF_SGD does not require any
preprocessing phase like sorting and/or random shuffling of the dataset. In addition,
GPU_MF_SGD does not require any complex scheduler for load balancing of datasets
across computational resources. In GPU_MF_SGD, utilization of computational
resources, high scalability, and load balance are achieved. Our empirical study shows
that GPU_MF_SGD provides the highest number of updates per sec and considered as
the fastest method. Evaluations on common public datasets show that GPU_MF_SGD
runs 3.1X – 5.4X faster than CuMF_SGD.

In GPU_MF_SGD method, we did not spend much effort in parameters tuning. We
suggest studying different optimization techniques for parameter selection as a future
work. Furthermore, it would be extremely interesting to study the possibilities to
overcome the limitation of GPU global memory i.e. the size of ratings is bigger than
global memory size. Therefore, for future work, scaling up our proposed method to run
on multiple GPUs [6, 7, 70–72] is an interesting research point.

References

1. Ricci, F., et al.: Recommender Systems Handbook. Springer, New York (2011)
2. Ekstrand, M.D., et al.: Collaborative filtering recommender systems. Found. Trends Hum.

Comput. Interact. 4(2), 81–173 (2011)
3. Poriya, A., et al.: Non-personalized recommender systems and user-based collaborative

recommender systems. Int. J. Appl. Inf. Syst. 6(9), 22–27 (2014)
4. Aamir, M., Bhusry, M.: Recommendation system: state of the art approach. Int. J. Comput.

Appl. 120, 25–32 (2015)
5. Recommender System. https://en.wikipedia.org/wiki/Recommender_system. Accessed 11

July 2017
6. Jin, J., et al.: GPUSGD: a GPU-accelerated stochastic gradient descent algorithm for matrix

factorization. Concurr. Comput. Pract. Exp. 28, 3844–3865 (2016)
7. Xie, X., et al.: CuMF_SGD: parallelized stochastic gradient descent for matrix factorization

on GPUs. In: Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM (2017)

284 M. A. Nassar et al.

https://en.wikipedia.org/wiki/Recommender_system

8. Li, H., et al.: MSGD: a novel matrix factorization approach for large-scale collaborative
filtering recommender systems on GPUs. IEEE Trans. Parallel Distrib. Syst. 29(7), 1530–
1544 (2018)

9. Nassar, M.A., El-Sayed, L.A.A., Taha, Y.: Efficient parallel stochastic gradient descent for
matrix factorization using GPU. In: 2016 11th International Conference for Internet
Technology and Secured Transactions (ICITST). IEEE (2016)

10. Wen, Z.: Recommendation system based on collaborative filtering. In: CS229 Lecture Notes,
Stanford University, December 2008

11. Leskovec, J., et al.: Mining of Massive Datasets, Chap. 9, pp. 307–340. Cambridge
University Press, Cambridge (2014)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009)

13. Kaleem, R., et al.: Stochastic gradient descent on GPUs. In: Proceedings of the 8th
Workshop on General Purpose Processing Using GPUs, pp. 81–89 (2015)

14. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User
Model. User Adap. Inter. 22(1), 101–123 (2012)

15. Anastasiu, D.C., et al.: Big Data and Recommender Systems (2016)
16. Melville, P., Sindhwani, V.: Recommender systems. In: Sammut, C., Webb, G.I. (eds.)

Encyclopedia of Machine Learning, pp. 829–838. Springer, New York (2011)
17. Kant, V., Bharadwaj, K.K.: Enhancing recommendation quality of content-based filtering

through collaborative predictions and fuzzy similarity measures. J. Proc. Eng. 38, 939–944
(2012)

18. Ma, A., et al.: A FPGA-based accelerator for neighborhood-based collaborative filtering
recommendation algorithms. In: Proceedings of IEEE International Conference on Cluster
Computing, pp. 494–495, September 2015

19. Anthony, V., Ayala, A., et al.: Speeding up collaborative filtering with parametrized
preprocessing. In: Proceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, Australia, August 2015

20. Gates, M., et al.: Accelerating collaborative filtering using concepts from high performance
computing. In: IEEE International Conference in Big Data (Big Data) (2015)

21. Wang, Z., et al.: A CUDA-enabled parallel implementation of collaborative filtering. Proc.
Comput. Sci. 30, 66–74 (2014)

22. Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factorization with
distributed stochastic gradient descent. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM (2011)

23. Chin, W.-S., et al.: A fast parallel stochastic gradient method for matrix factorization in
shared memory systems. ACM Trans. Intell. Syst. Technol. 6(1), 2 (2015)

24. Zastrau, D., Edelkamp, S.: Stochastic gradient descent with GPGPU. In: Proceedings of the
35th Annual German Conference on Advances in Artificial Intelligence (KI’12), pp. 193–
204 (2012)

25. Shah, A., Majumdar, A.: Accelerating low-rank matrix completion on GPUs. In:
Proceedings of International Conference on Advances in Computing, Communications
and Informatics, December 2014

26. Kato, K., Hosino, T.: Singular value decomposition for collaborative filtering on a GPU. IOP
Conf. Ser. Mater. Sci. Eng. 10(1), 012017 (2010)

27. Foster, B., et al.: A GPU-based approximate SVD algorithm. In: Proceedings of the 9th
International Conference on Parallel Processing and Applied Mathematics, vol. 1, pp. 569–
578. Springer, Berlin (2012)

28. Yu, H.-F., et al.: Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 41
(3), 793–819 (2014)

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 285

29. Yu, H.F., Hsieh, C.J., et al.: Scalable coordinate descent approaches to parallel matrix
factorization for recommender systems. In: Proceedings of the IEEE 12th International
Conference on Data Mining, pp. 765–774 (2012)

30. Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S.V.N., Dhillon, I.: NOMAD: non-locking,
stochastic multi-machine algorithm for asynchronous and decentralized matrix completion.
Proc. VLDB Endow. 7(11), 975–986 (2014)

31. Yang, X., et al.: High performance coordinate descent matrix factorization for recommender
systems. In: Proceedings of the Computing Frontiers Conference. ACM (2017)

32. Zadeh, R., et al.: Matrix completion via alternating least square (ALS). In: CME 323 Lecture
Notes, Stanford University, Spring (2016)

33. Tan, W., Cao, L., Fong, L.: Faster and cheaper: parallelizing large-scale matrix factorization
on GPUs. In: Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2016 (2016)

34. Aberger, C.R.: Recommender: An Analysis of Collaborative Filtering Techniques (2016)
35. Papamakarios, G.: Comparison of Modern Stochastic Optimization Algorithms (2014)
36. Toulis, P., Airoldi, E., Rennie, J.: Statistical analysis of stochastic gradient methods for

generalized linear models. In: International Conference on Machine Learning, pp. 667–675
(2014)

37. Toulis, P., Tran, D., Airoldi, E.: Towards stability and optimality in stochastic gradient
descent. In: Artificial Intelligence and Statistics, pp. 1290–1298 (2016)

38. Zhou, Y., Wilkinson, D., et al.: Large-scale parallel collaborative filtering for the Netflix
prize. In: Proceedings of International Conference on Algorithmic Aspects in Information
and Management (2008)

39. Xie, X., Tan, W., Fong, L.L., Liang, Y.: Cumf_sgd: fast and scalable matrix factorization
(2016). arXiv preprint arXiv:1610.05838. https://github.com/cuMF/cumf_sgd

40. Tang, K.: Collaborative filtering with batch stochastic gradient descent, July 2015. http://
www.its.caltech.edu/*ktang/CS179/index.html

41. Niu, F., et al.: HOGWILD!: a lock-free approach to parallelizing stochastic gradient descent.
In: Advances in Neural Information Processing Systems, pp. 693–701, June 2011

42. Gemulla, R., et al.: Large-scale matrix factorization with distributed stochastic gradient
descent. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 69–77 (2011)

43. Zhang, H., Hsieh, C.-J., Akella, V.: Hogwild++: a new mechanism for decentralized
asynchronous stochastic gradient descent. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 629–638. IEEE (2016)

44. Zhang, C., Ré, C.: Dimmwitted: a study of main-memory statistical analytics. Proc. VLDB
Endow. 7(12), 1283–1294 (2014)

45. Udell, M., et al.: Generalized low rank models. Found. Trends Mach. Learn. 9(1), 1–118
(2016)

46. CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/
#axzz4FH9nydq8. Accessed 5 Sept 2016

47. Nunna, K.C., et al.: A survey on big data processing infrastructure: evolving role of FPGA.
Int. J. Big Data Intell. 2(3), 145–156 (2015)

48. Nassar, M.A., El-Sayed, L.A.A.: Radix-4 modified interleaved modular multiplier based on
sign detection. In: International Conference on Computer Science and Information
Technology, pp. 413–423. Springer, Berlin (2012)

49. Nassar, M.A., El-Sayed, L.A.A.: Efficient interleaved modular multiplication based on sign
detection. In: IEEE/ACS 12th International Conference of Computer Systems and
Applications (AICCSA), November 2015

286 M. A. Nassar et al.

http://arxiv.org/abs/1610.05838
https://github.com/cuMF/cumf_sgd
http://www.its.caltech.edu/%7ektang/CS179/index.html
http://www.its.caltech.edu/%7ektang/CS179/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4FH9nydq8
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4FH9nydq8

50. Karydi, E., et al.: Parallel and distributed collaborative filtering: a survey. J. ACM Comput.
Surv. 49(2), 37 (2016)

51. Ma, X., Wang, C., Yu, Q., Li, X., Zhou, X.: A FPGA-based accelerator for neighborhood-
based collaborative filtering recommendation algorithms. In: 2015 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 494–495. IEEE (2015)

52. http://www.nvidia.com/object/tesla-k80.html. Accessed 22 July 2017
53. Lathia, N.: Evaluating collaborative filtering over time. Ph.D. thesis (2010)
54. Sparse Matrix. https://en.wikipedia.org/wiki/Sparse_matrix#Storing_a_sparse_matrix.

Accessed 12 Feb 2017
55. http://supercomputingblog.com/cuda/cudamemoryandcachearchitecture/. Accessed 26 June

2017
56. GPU memory types – performance comparison. https://www.microway.com/hpc-tech-tips/

gpu-memory-types. Accessed 5 Sept 2015
57. Pankratius, V., et al.: Fundamentals of Multicore Software Development. CRC Press, Boca

Raton (2011)
58. del Mundo, C., Feng, W.: Enabling efficient intra-warp communication for fourier

transforms in a many-core architecture. In: Proceedings of the 2013 ACM/IEEE
International Conference on Supercomputing (2013)

59. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In:
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing
Units, p. 3. ACM (2011)

60. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans.
Interact. Intell. Syst. 5(4), 19 (2016)

61. Gower, S.: Netflix prize and SVD, pp. 1–10. http://buzzard.ups.edu/courses/2014spring/
420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf (2014)

62. Bennett, J., Lanning, S.: The Netflix prize. In: Proceedings of KDD Cup and Workshop,
p. 35 (2007)

63. Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! music dataset and KDD-
Cup’11. In: Proceedings of KDD Cup 2011, pp. 3–18 (2012)

64. Zheng, L.: Performance evaluation of latent factor models for rating prediction. Ph.D.
dissertation, University of Victoria (2015)

65. Low, Y., et al.: GraphLab: a new parallel framework for machine learning. In: Proceedings
of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI-10,
pp. 340–349, July 2010

66. Chin, W.-S., et al.: A learning-rate schedule for stochastic gradient methods to matrix
factorization. In: PAKDD, pp. 442–455 (2015)

67. https://hpc.bibalex.org/. Accessed July 2017
68. https://slurm.schedmd.com/. Accessed July 2017
69. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L.,

Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 257–297. Springer,
Boston (2011)

70. Ginger, T., Bochkov, Y.: Predicting business ratings on yelp report (2015). http://cs229.
stanford.edu/proj2015/013_report.pdf

71. Hwu, W.: Efficient host-device data transfer. In: Lecture Notes, University of Illinois at
Urbana-Champaign, December 2014

72. Bhatnagar, A.: Accelerating a movie recommender system using VirtualCL on a
heterogeneous GPU cluster. Master thesis, July 2015

GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method 287

http://www.nvidia.com/object/tesla-k80.html
https://en.wikipedia.org/wiki/Sparse_matrix#Storing_a_sparse_matrix
http://supercomputingblog.com/cuda/cudamemoryandcachearchitecture/
https://www.microway.com/hpc-tech-tips/gpu-memory-types
https://www.microway.com/hpc-tech-tips/gpu-memory-types
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf
https://hpc.bibalex.org/
https://slurm.schedmd.com/
http://cs229.stanford.edu/proj2015/013_report.pdf
http://cs229.stanford.edu/proj2015/013_report.pdf

	GPU_MF_SGD: A Novel GPU-Based Stochastic Gradient Descent Method for Matrix Factorization
	Abstract
	1 Introduction
	2 Background
	2.1 Hogwild
	2.2 FSGD
	2.3 GPUSGD
	2.4 CuMF_SGD

	3 A Novel GPU-Based SGD Method for MF
	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Scalability Study
	4.3 Training Time Speedup
	4.4 Convergence Analysis

	5 Conclusions and Future Work
	References

