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Abstract. Object detection methods based on deep models and multi-
scale features have achieved the state-of-the-art performance. However,
since each feature layer operates independently, several issues such as
box-in-box detections and less effective performance on small objects
need to be addressed. In this paper, we tackle these issues by integrating
contextual and semantic information from higher layer features into the
prediction layer. Existing methods adopting similar ideas mostly apply
full top-down modules, which may increase computational loads signifi-
cantly. Instead, we present an efficient while general local top-down mod-
ule, in which each prediction layer is integrated only with the upsam-
pled features from its two succeeding layers. Experimental results show
that the proposed algorithm performs favorably against the state-of-
the-art methods on the VOC, COCO and HollywoodHeads datasets,
while introducing little computational overhead. Compared with meth-
ods using full top-down modules, the proposed algorithm achieves compa-
rable or higher accuracy while operates at a higher frame rate. The code
is available at https://github.com/Hshihua/Local-Top-Down-Detection-
Network.
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1 Introduction

Object detection plays a pivotal role in image understanding that can be applied
to numerous applications, e.g., image indexing and retrieval, image and video
understanding, among others. Recent progress in object detection has been
mainly based on deep Convolutional Neural Networks (CNNs). Existing CNN
based object detection approaches can be categorized into two groups, based on
image regions [1,14] or bounding boxes [10,11].

Among the state-of-the-art detection methods, the single shot multibox
detector (SSD) approach [10] is fast and robust to scale variations because it
makes use of multiple convolution layers for object detection. Although the SSD
method performs well in terms of speed and accuracy, there are several issues
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that need to addressed. First, each layer in the feature pyramid of the SSD
method is used independently as an input to the classifier network. Thus, the
same object can be detected at multiple scales, which is known as box-in-box
detections. Second, the first prediction layer has a smaller receptive field than
others and thus has less context and weak semantic information. This is the
main reason that the SSD method is less effective in detecting small objects.

In contrast to the existing bottom-up CNN models, top-down modules that
forward information from top layers to lower layers have been shown to be critical
for achieving the state-of-the-art performance. The top-down modules introduce
abstract semantic information and context into lower level layers for better box
classification [3,9,15] by continually upsampling features from the uppermost
layer of the bottom-up pyramid to the lowest prediction layer. This operation
does not stop until the finest resolution level of the feature pyramid has been
reached. As such, approaches with such top-down modules may entail heavy
computational loads.

In this paper, we show that it is possible to solve the problems of detectors
using multi-scale feature maps by adding a simple and efficient Local Top-Down
Module (LTD) that integrates the information from two succeeding convolutional
layers instead of all the upper convolutional layers while introducing much less
computational cost. For concreteness, we use the SSD detector as the baseline
method with the proposed LTD module.

The contributions of this paper are summarized as follows:

— To solve the typical problems of detecting objects using multi-scale features,
we propose a local top-down module to integrate high level semantic infor-
mation and context into the lower prediction layers, which differs from the
widely used full top-down module.

— Our method obtains significant improvement over the SSD method on differ-
ent benchmark datasets. Compared with detectors using full top-down mod-
ules, our approach gets comparable or even higher accuracy.

— Our method runs at 37 FPS on a single 1080 GPU for images of 300 x 300
pixels, which is significantly faster than most existing detectors using full
top-down modules.

2 Related Work

ConvNet Based Object Detectors. With significant progress of deep learning
on large scale object recognition [4,5], numerous detection methods based on
ConvNet have been proposed. Two-stage or region-based methods such as Faster
R-CNN [14] and R-FCN [1] achieve high accuracy but with high computational
loads. On the other hand, one-stage or region-free detectors such as YOLO [11,
12] and SSD [10] perform efficiently and accurately. The SSD [10] and YOLO9000
[12] methods do not entail the computationally expensive processes to generate
region proposals while performing favorably against the state-of-the-art two-
stage detectors. The recently proposed one-stage detector RefineDet [18] retains
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the merits of both one-stage and two-stage approaches by introducing an anchor
refinement module that is able to filter out negative anchors as well as adjust
the locations and sizes of anchors.

SSD Based Object Detectors. Numerous methods based on the SSD method
have been developed. To generate high quality bounding boxes, Ren et al. pro-
pose the RRC scheme [13] by introducing a recurrent rolling convolution architec-
ture over multi-scale feature maps to construct object classifiers and bounding
box regressors. This method achieves the state-of-the-art performance on the
KITTI dataset based on the IoU threshold of 0.7. Based on the observation that
detecting small objects without enlarging the image requires more context infor-
mation, the DSSD method [3] augments the ResNet [4] based SSD approach with
deconvolution layers to introduce additional large-scale context. Recently, the
R-SSD method [6] presents a feature concatenation structure that fully exploits
the relationship among layers in the feature pyramid through pooling and decon-
volution. By using the deconvolution module, both DSSD and R-SSD methods
obtain about 1% performance gain over the SSD approach on the PASCAL VOC
dataset.

Top-Down Module for Object Detection. Recent detection methods adopt
top-down modules to add context and decode abstract but semantic information
into low level feature maps for better box classification based on Faster R-CNN
[14]. Lin et al. [9] propose a top-down model with lateral connections to construct
semantic feature pyramid and achieve significant performance gain with a single
model. In [8], Kong et al. use reverse connection with objectness of a prior
network to combine fine-grained details with highly abstract information, which
obtains performance gain in accuracy and speed. The TDM [15] method uses
a top-down network that handles the selection and integration of contextual
information and low level features. On the other hand, some recent methods are
developed based on the SSD detector. The DSSD scheme [3] uses a deconvolution
module with feature integration based on element-wise products. In the BlitzeNet
[2] method, the ResSkip block is used to integrate feature maps from bottom-up
and top-down streams with skip and residual connection. We note the above-
mentioned methods all adopt full top-down module to construct top-down or
backward feature pyramids.

3 Proposed Algorithm

Our goal is to improve the accuracy of object detectors using multi-scale features
via a local top-down module. We implement our work based on the SSD method.
Figure 1 illustrates the overall architecture of the proposed approach.

In the following, we first justify the necessity of using a local top-down mod-
ule, and then describe the proposed local top-down module in details.

3.1 Main Ideas

The SSD method [10] is constructed based on a truncated base network that
ends with several convolutional layers by adding a serial of progressively smaller



68 S. Huang et al.

@Xl ==
10x19 10x10 %5 33 3 5 N
- S 1909

38x38

e T
: o [ Ceoncat D
Feature Maps @ Local Top-Down Module | ne1_2x

Fig. 1. Architecture of the proposed network.

convolutional layers. Each added layer together with some of the earlier base
network layers are used to predict scores and corrections for the predefined
default bounding boxes. However, the SSD method (or other detectors that uti-
lize bottom-up multi-scale features) does not exploit the information between the
lower layers and upper layers, e.g., the pathway that introduces more semantic
information and context from high level features into low level ones. In particu-
lar, we show that not all the information propagated backward from the higher
layers is useful for lower layers.

Considering the case that the input to a detector is an image of 300 x 300
pixels and an object to be detected is of 30 x 30 pixels, it is likely that the object
can be detected on the 38 x 38 feature maps as there are much stronger activations
in this layer than the others that can help locate this object effectively. However,
in general the semantic information of such an object begins to vanish after the
10 x 10 feature maps (300 : 30 = 10 : 1), and the pixels within this object may
then become the context of the other larger objects. Therefore, feature maps
with resolution smaller than 10 x 10 are of little help in detecting this object. In
other words, the most useful semantic information only exists in the next two
higher layers (10 x 10 and 19 x 19 in this case) of the prediction layer (38 x 38 in
this case). Furthermore, as the next two higher layers already have much larger
receptive fields, they can provide sufficient context to the prediction layer.

Regarding the box-in-box detection issue, we observe that the scale of the
outside box is usually at most 2 to 3 times the scale of the inside box, mean-
ing that the visual information within three consecutive layers (4 times scale
difference) is sufficient to solve this problem effectively.

As such, the effective top-down semantic and context information should be
within local ranges (e.g., involving three feature layers), rather than the whole
feature pyramid. Thus, we propose to use a local top-down module to propagate
the upper layer information to the lower layers (e.g., within two to three layers).

3.2 Local Top-Down Module

Figure 2(a) shows our building block that constructs the local top-down feature
maps for the n-th prediction layer, which are the concatenation of the bottom-
up Conv n, upsampled Conv n + 1 and Conv n + 2 features. Specifically, the
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Fig. 2. Variants of the local top-down module. The difference lies in the block after
deconvolution. (a) The convolutional block is integrated with the element-wise sum
block (used in the proposed network); (b) all are convolutional blocks; (c) all are
element-wise sum blocks.

Conv n+1 feature maps are first upsampled to the same spatial resolution as their
pervious layer (Conv n) maps while being reduced to d channels via a learned
deconvolution layer (d = 128 in our implementation). In case of information
divergence and the aliasing effect of upsampling, the upsampled features are
convolved with 3 x 3 kernels before being concatenated to the Conv n maps.

The Conv n + 2 maps need to be upsampled twice before the concatenation.
For the first deconvolution operation, they are processed in the same way as Conv
n+1 maps (i.e., deconv 4 conv). The resulting features are used to construct the
top-down maps of the Conv n+ 1 layer and then upsampled for the second time.
Because the semantic information contained in the Conv n + 2 layer is diluted
significantly after two continuous upsampling operations, the results are summed
element-wisely with the Conv n maps (which undergo a 1 x 1 convolutional
layer to reduce the channel dimension) to enhance the upampled features. The
resulting features are finally concatenated to the bottom-up Conv n maps to
form the local top-down feature maps for the n-th prediction layer.

In the proposed LTD module, for each prediction layer, the number of feature
channels is increased for just two times that of the upsampled features, i.e., 2d
(256 in our implementation). This is much smaller than that in the top-down
module used by the R-SSD [6] method, which increases the feature dimension
for up to 2304 channels. In addition, in our LTD module, the dimension of
upper layer feature maps is reduced before they are merged with the prediction
layer, whereas for the full top-down module, such as the DSSD scheme, feature
channels need to be increased for certain layers before integration so as to make
the element-wise product operation feasible through the whole feature pyramid.
Hence, our LTD module is more efficient than these full top-down modules.
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We also introduce two variants of the proposed LTD module to justify the
design. For the first model, each deconvolution operation is followed by a convo-
lution operation (Fig.2(b)). For the second model, each deconvolution operation
is followed by an element-wise addition with the corresponding bottom-up maps
(Fig. 2(c)). Ablation studies with different local top-down modules are shown in
Table 3 and discussed in Sect. 4.1.

3.3 Loss Function and Training

To illustrate the merits of the proposed local top-down module, we use the
same settings as the SSD method including the data augmentation scheme, loss
function, default boxes, and the means of matching default boxes to ground
truth bounding boxes. We use activations of each layer in the local top-down
pyramid to predict the class probability distribution and regress the coordinates
of the default boxes.

4 Experimental Results

We evaluate the proposed algorithm against the state-of-the-art object detection
methods on the PASCAL VOC 2007, PASCAL VOC 2012, MS COCO and
HollywoodHeads datasets [17]. We also carry out ablation studies on the VOC
2007 dataset to better demonstrate the effectiveness of each component. All the
hyperparameters are set according to the SSD method unless otherwise specified.

4.1 Results on the VOC 2007 Dataset

For the VOC 2007 dataset, all models are trained on the VOC 2007 trainval +
2012 trainval and evaluated on the VOC 2007 test set. The training process takes
120k iterations with initial learning rate being 1072, which is then decreased to
10~* at 80k steps and to 107° at 100k steps. The detection performance of all
evaluated methods is presented in Table 1. Overall, the proposed algorithm gains
more than 2% improvement over the SSD method, and outperforms the others
when the input image size is either 300 x 300 or 512 x 512 pixels.

We also carry out ablation studies to analyze the proposed method using the
VOC 2007 datasets. The results are shown in Tables2, 3 and 4 and discussed
in the following. Unless specified explicitly, all the results are based on input
images of 300 x 300 pixels.

Batch Normalization. Although batch normalization is a useful method in
training deep models, it is not used in the SSD method. In this work, we add
the batch normalization layer to convolutional layers from the last convolutional
layer of the backbone until the last convolutional layer of the detection network.
The experimental results show that this can increase the mAP for 0.8% on the
VOC 2007 test set.

Backbone Network. We replace the VGGNet in SSD and our method with
the MobileNet and ResNet-101 models as the backbone convolutional network to
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Table 1. Detection results on the PASCAL VOC dataset. To exclude the effect of
the different testing environments on the inference speed, the R-FPS metric is used to
measure the relative processing speed of each SSD-based detector compared with that
of the SSD detector running in the same environment. The letters M and P denote the
Titan X Maxwell and Pascal architectures respectively. Bold fonts indicate the best

Method Backbone |mAP(%) FPS|R-FPS GPU

VOC 2007| VOC 2012
two-stage:
Faster R-CNN [14]| VGGNet | 73.2 70.4 7 TITAN X(M)
R-FCN [1] ResNet101 |80.5 77.6 9 TITAN X(M)
DeNet-101 [16] ResNet-101|77.0 73.9 33 Tesla P100
CoupleNet [19] ResNet101 |81.7 80.4 9.8 TITAN X(P)
one-stage:
YOLOv2-352 [12] |Darknet  |73.7 - 81 |- TITAN X(M)
SSD300 [10] VGGNet | 77.2 75.8 46 |- TITAN X(M)
R-~SSD300 [6] VGGNet |78.5 76.4 35 |57% | TITAN X(P)
Blitznet300 [2] | ResNet-50 |78.5 75.4 24 |52% | TITAN X(M)
DSSD321 [3] ResNet-101 | 78.6 76.3 15.3]33% | TITAN X(M)
YOLOv2-544 [12] |Darknet | 78.6 73.4 40 |- TITAN X(M)
SSD512 [10] VGGNet | 79.8 78.5 19 |- TITAN X(M)
Blitznet512 [2] | ResNet-50 |80.7 79.0 19.5|103% | TITAN X(M)
R-SSD512 [6] VGGNet 80.8 - 16.6 66% | TITAN X(P)
DSSD513 [3] ResNet-101 |81.5 80.0 6.3 133% |TITAN X(M)
Ours300 VGGNet |79.4 76.7 37 185% |GTX1080
Ours512 VGGNet 81.8 79.7 16.7 |87% | GTX1080

analyze the generalibility of the proposed algorithm. Table 2 shows the evaluation
results with different backbone networks. Note that our method obtains at least
2% performance gain over the SSD method for different backbone networks. For
the MobileNet, our method achieves about 4% gain. These results demonstrate
the proposed method can be integrated with different backbone networks.

Variants of the LTD Module. To better understand the design options of
the proposed local top-down module, we implement three variants as shown in
Fig. 2. Table 3 shows the detection results of these variants. Note that the module
with all element-wise sum blocks performs the worst while the proposed model
based on convolution and element-wise performs best. These results show that
the adopted model with convolution and summation operation performs better
than the model with pure convolution or summation operations.

Number of Upsampled Convolutional Layers. Table4 shows the detec-
tion results when different number of succeeding upsampled convolutional layers
are integrated with the prediction layer. When incorporating three upsampled
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Table 2. Detection performance with different pre-trained backbones.

Backbone Method | mAP (%)
MobileNet [5] | SSD 68.3
ours 72.3
VGGNet [7]  |SSD | 77.2
ours 79.4
ResNet-101 [4] | SSD 73.3
ours 75.5

Table 3. Comparison of detection performance with different local top-down modules.

Input size | LTD Module mAP(%)

300 x 300 | all-elementwise-sum 78.9
all-conv 79.3
conv-and-sum (Proposed) | 79.4

512 x 512 | all-elementwise-sum 81.4
all-conv 81.5

conv-and-sum (Proposed) | 81.8

layers, the Conv n + 3 feature maps additionally undergo a 3 x 3 convolution,
a deconvolution and an element-wise sum operation after those processing steps
for the Conv n + 2 features. The results in Table4 show that incorporating the
upsampled feature maps from the two succeeding convolutional layers performs
best, which justifies our design and proves that layers that are far away from the
prediction layer does not help in achieving better detection performance.

To evaluate the inference time, we test the SSD method and ours on the VOC
2007 dataset with a single 1080 GPU. For input images of 300 x 300 pixels, the
proposed method runs at 37 FPS while the SSD scheme runs at 43.6 FPS. For
input images of 512 x 512 pixels, the proposed method runs at 16.7 FPS while
the SSD scheme runs at 19.2 FPS. By introducing the local top-down module,
the speed difference is no more than 15%. More run-time evaluation results
with other methods are shown in Table 1, which demonstrates that our method
introduces much less overhead than the other SSD based detectors, except for
the BlitzNet512 detector. Note that the BlitzNet512 uses the ResNet50 as the
backbone, which is 2 times faster than the VGG backbone used by us, and the
mAP of BlitzNet is 1.1% lower than our method.

Table 4. Results for integration with different number of succeeding upsampled con-
volutional layers.

# upsampled layers | 0 1 2 3
mAP (%) 77.2179.179.4 78.7
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4.2 Results on the VOC 2012 Dataset

We also test our method on the PASCAL VOC 2012 dataset. For VOC 2012 test
set, we train our network on data consisting of PASCAL VOC 2007 trainval, 2007
test and 2012 trainval. The training process takes 240k iterations with initial
learning rate being 1073, which is decreased to 10~* at 160k steps and to 10~°
at 200k steps.

The detection results are shown in Table 1. We see that our method gains
0.9% and 1.2% improvement over the SSD method and compares favorably
against the other state-of-the-art object detectors. Note that the performance
gap between our method and the DSSD method becomes smaller than that on
the PASCAL VOC 2007 test set. Specifically, when the input is about 300 x 300
pixels, the mAP gap between our method and the DSSD scheme is 0.4%, while
the gap is 0.8% on the VOC 2007 dataset; When the input is around 512 x 512
pixels, the DSSD method outperforms our method by 0.3%. We think the main
reason behind this is that DSSD is based on the deeper ResNet101 [4] backbone
and the complicated classifiers, which can benefit more from the larger amount
of training data than the VGGNet [7] used in our method. This assert can be jus-
tified by the fact that the SSD detector with the ResNet101 backbone performs
worse on PASCAL VOC 2007 test set than the SSD with the VGGNet backbone,
but better on PASCAL VOC 2012 test set and MS COCO test-dev2015 data.

4.3 Results on the MS COCO Dataset

We conduct experiments on the MS COCO 2015 dataset where the models are
trained on the trainval35k set and evaluated on the test-dev. The training process
takes 400k iterations with the initial learning rate being 103, which is decreased
at 280k and 360k steps to 10~% and 107> respectively. We report the standard
COCO metrics including AP (averaged over IoU thresholds), AP5g and APz5
(measured under IoU threshold of 0.5 and 0.75 respectively). In addition, we
present the COCO AP on objects of small, medium, and large size (namely,
APs, AP]\/[7 and APL)

Table5 shows the detection performance of different detectors on the MS
COCO dataset. Note that both SSD321 and DSSD methods achieves better
mAP than our algorithm. However, most the performance gain is from the
deeper ResNet-101 backbone network and strong classifiers. When comparing
the SSD321 with the DSSD321, although the deconvolution module of DSSD
achieves 1.2% improvement for small object detection, it does not improve the
overall accuracy of SSD, i.e., the performance of DSSD is inferior to SSD in
detecting medium- and large- size objects. On the other hand, our method
consistently outperforms the SSD scheme significantly under all the evaluation
conditions.

4.4 Results on the HollywoodHeads Dataset

As heads usually correspond to small objects in images and head detection is
useful for various applications, we evaluate our method on the HollywoodHeads
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Table 5. Detection performance on the MS COCO test-dev2015.

Method ‘Training data|Backbone |Input Size ‘AP ‘AP50 ‘AP75 ‘APS ‘APM ‘APL
two-stage:

Faster-RCNN [14] | trainval VGGNet |~ 1000 x 600|21.9 |42.7 |- - - -
R-FCN [1] trainval ResNet101|~ 1000 x 600{29.9 |51.9 |- 10.8 |32.8 |45.0
DeNet-101 [16]  |trainval35k |ResNet101/512 x 512 31.9 |50.5 [34.2 |9.7 |34.9 |50.6
CoupleNet [19]  |trainval ResNet101 |~ 1000 x 600/33.1 |53.5 |35.4 |11.6 [36.3 |50.1
one-stage:

YOLOv2 [12] trainval3bk |DarkNet 544 x 544 21.6 |44.0 [19.2 |5.0 |22.4 |35.5
SSD300 [10] trainval35k |VGGNet [300 x 300 25.1 |43.1 |25.8 6.6 [25.9 |41.4
SSD321 [3] trainval35k |ResNet101|321 x 321 28.0 |45.4 |29.3 (6.2 |28.3 |49.3
DSSD321 [3] trainval35k |ResNet101|321 x 321 28.0 |46.1 [29.2 |7.4 |28.1 |47.6
SSD512 [10] trainval35k |VGGNet |512 x 512 28.8 148.5 |30.3 |10.9 |31.8 |43.5
SSD513 [3] trainval35k  |ResNet101|513 x 513 31.2 |50.4 |33.3 |10.2 |34.5 |49.8
DSSD513 [3] trainval35k |ResNet101|513 x 513 33.2/53.3 |35.2 |13.0 [35.4 |51.1
Ours300 trainval35k |VGGNet 300 x 300 27.5 147.7 |28.1 |9.2 |28.7 |43.0
Ours512 trainval35k |VGGNet [512 x 512 31.3 |53.1 |32.5 |14.3|33.5 |45.4

Table 6. Experimental results on the HollywoodHead test set.

Method Training data | mAP (%)
Baseline [17] | training set | 72.7
SSD300 [10] | validation set | 70.0
Ours 300 validation set | 75.6

dataset [17]. This dataset contains 369,846 human heads annotated in 224, 740
frames from 21 Hollywood movies. The movies vary in genres and contain dif-
ferent time epochs. The training set contains 216,719 frames, the validation set
consists of 6,719 frames and the test set is composed of 1,302 frames.

In this experiment, we use the validation set as the training set to train SSD
and our method, as the original training set is large that either determining
the proper train parameters or the training process itself is computationally
prohibitive. We set the learning rate to be 0.01 for the first 16k iterations, 107*
for the next 4k iterations and 10~° for the last 4k iterations. Table 6 shows that
our method outperforms both the detectors in [17] and the SSD method, even
when the detector in [17] is trained on a much larger training set.

4.5 Visual Illustration of the Detection Results

Figure 3 shows some examples of the detection results of SSD and our algorithm,
when the threshold of the detection confidence score is 0.6 for both methods. The
first two rows show the detection results on the VOC and MS COCO datasets
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Fig. 3. Illustration of the detection results. The first and second rows show some
improved results of our method (right) over SSD (left) on the VOC, COCO and Hol-
lywoodHeads datasets. The last row shows some failure cases of our method.

and next two rows display the results on the HollywoodHeads datasets. Overall,
the proposed LTD method can deal with some difficult detection cases such as
box-in-box, small objects and occlusion better than the SSD scheme. The last
row of Fig.3 illustrates some failure cases of our method. There are occasional
missing detections, inaccurate box localizations and false positives caused by
various reasons. The missing and inaccurate detections in the first two images
are mainly due to the ambiguous appearance of the objects. In the third failure
case, the false positive detection occurs due to the fact that the shape formed by
the belt happens to look like a surfboard while the person on top of it and the
sea form a reasonable context to support its existence. In the fourth image, the
laptop is also detected as a TV due to the similarity between the two classes.
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5 Conclusion

In this paper, we present a local top-down module to solve the problems of
object detectors with multi-scale features. Although the proposed approach is
simple, i.e., only concatenating the features upsampled from the two succeeding
convolutional layers with the current prediction layer, it is effective and efficient
in achieving performance gain on large datasets based on the SSD method. The
proposed LTD module can be applied to other detection frameworks that utilize
multi-scale features. Our future work is to incorporate the proposed LTD module
into other state-of-the-art object detectors such as RON [8].
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