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Abstract. Suffering from respiratory motion and drift, radiotherapy requires
real-time and accuracy motion tracking to minimize damage to critical structures
and optimize dosage delivery to target. In this paper, we propose a robust tracker
to minimize tracking error and enhance the quality of radiotherapy based on
two-dimensional ultrasound sequences. We firstly develop a scale adaptive
kernel correlation filter to compensate deformation. Then the filter with an
improved update rule is utilized to predict target position. Moreover, displace-
ment and appearance constrains are elaborately devised to restrict unreasonable
positions. Finally, a weighted displacement is calculated to further improve the
robustness. Proposed method has been evaluated on 53 targets, yielding 1.13 ±

1.07 mm mean and 2.31 mm 95%ile tracking error. Extensive experiments are
performed between proposed and state-of-the-art algorithms, and results show
our algorithm is more competitive. Favorable agreement between automatically
and manually tracked displacements proves proposed algorithm has potential for
target motion tracking in abdominal radiotherapy.
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1 Introduction

Motion in the abdomen is worth accounting for during radiotherapy image guided
intervention [1] and focus ultrasound surgery [2]. The motion induced in abdominal
organs is mainly due to breathing motion, drift and surgical instruments. Therefore,
motion tracking of abdominal target is crucial to minimize the damage to surrounding
crucial structure and optimize dosage delivery to target.

Respiratory gating is one of the most conventional approach to deal with abdomen
motion, whereas it potentially increases treatment time [3]. Motion modeling like
implanting fiducial markers to target region [4] is an alternative method, but it is
usually at the expense of healthy tissue. Tracking base on medical image e.g. magnetic
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resonance (MR), ultrasound (US) generally becomes a superior to localize abdomen
target. De Senneville [5] generates an atlas of motion fields based on magnitude data of
temperature-sensitive MR acquisitions. They suppose that motion of target region is
periodic and can be estimated in the next moment, so it just recovers deformation
caused by periodic component. 4D MR [6] is also introduced to respiratory motion
reconstruction, but low signal-to-noise ratio and additional high cost must be consid-
ered in clinical practice. US is an appealing choice for abdominal target tracking, by
contrast, as it has high temporal resolution and sub-millimeter spatial resolution along
the beam direction.

Recently several literatures focus on tracking hepatic landmark and reconstructing
liver motion of free breathing. Block matching [7], optical flow [8], particle filter [9],
image registration and mechanical simulation [10] are widely investigated. Meanwhile
temporal regularization [7] and distance metric [10] are also introduced to reject false
tracking results. While some results have achieved a great process, many limitations
remain to be discussed like tradeoff between real-time and accuracy, as well as
robustness for acoustic shadowing and large deformation due to out-of-plane motion.

Our tracking approach is motivated by kernel correlation filter (KCF) [11], which
achieves a fast and high performance on Visual Tracker Benchmark [12]. KCF provides
an effective solution for translation, but its performance would degrade because of the
scale and deformation of targets. Li et al. [13] suggests an effective scale adaptive
scheme. Without discussing update strategy adequately, however, better tracking results
cannot be remerged in US sequence. Besides, we integrate intensity feature, namely
speckle patter, to proposed tracking frame as it includes much information about
anatomical structure. In fact, if all the speckle patterns are stable, target motion can be
easily reconstructed. Unluckily, speckle patterns are not identical because of out-of-
plane motion and acoustic shadowing [14]. Moreover, similarity metrics is another
important ingredient in proposed method. While mutual information (MI) has been
suggested to be the most suitable metric for US to US match, high computation limits its
usage in real-time target tracking. In this work, normalized cross-correlation (NCC) is
chosen as it is easy to implement and effective to perform block matching.

In this work, we propose a real-time, robust tracking algorithm to compensate target
motion in abdominal radiotherapy. Our contributions mainly focus on four aspects: first,
we propose a scale adaptation strategy to alleviate deformation and scale change. Second,
an improved update rule for proximate periodic motion is applied to reducing accumu-
lation error in long-term tracking. Third, we integrate displacement and appearance
constrains to proposed method in order to restrict unreasonable target prediction. And
fourth, we suggest to use weighted displacement to determine target displacement.

2 Method

2.1 The KCF Tracker

In KCF tracker, Henriques et al. [11] suppose that the cyclic shifts version of
base sample is approximate the dense samples over the base sample. Take one-
dimension data x ¼ x1; x2; . . .; xn½ � for example, a cyclic shift of x is defined as
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Px ¼ xn; x1; x2; . . .; xn�1½ �: Therefore, all the cyclic shift samples, Puxju ¼ 0; . . .;f n�
1g; can be concatenated to form sample matrix X; which also called circulant matrix as
the matrix is purely generated by the cyclic shifts of x: This matrix has a helpful
property that all the circulant matrices can be formulated as follows:

X ¼ FHdiag Fxð ÞF ð1Þ

Where, F is the Discrete Fourier Transformation (DFT) matrix. FH is the Hermitian
transpose of F. Benefit from the decomposition of circulant matrix, it can be used to the
solution of linear regression. Moreover, the objective function of linear ridge regression
can be written as:

minw
Xn

i
f xið Þ � yið Þ2 þ k wk k ð2Þ

Where, f is linear combination of basis samples, f xð Þ ¼ wTx: The ridge regression

has a close-form solution, w ¼ XTX + kI
� ��1XTy: The solution can be rewritten with

Eq. 1, ŵ� ¼ x̂� � ŷ
x̂� � x̂ þ k

: Where, x̂ ¼ Fx donates the DFT of x; x̂� is the complex-

conjugate of x̂; � denotes element-wise multiplication. So during the process of
extracting patches explicitly and solving a general regression problem, this step can
save much computational cost. In order to construct a more powerful classifier in case
of non-linear regression, Henriques et al. [11] adopt a kernel tracker,
f zð Þ ¼ wTz ¼ Pn

i¼1 aiK z; xið Þ. Then dual space confident a can be learned as follows:

â� =
ŷ

k̂
xx þ k

ð3Þ

kxx is defined as kernel correlation. Similar to the linear classifier, the dual coef-
ficients are learned in Fourier domain. y is a regression target vector in Fourier domain
and has the same size with x; k is regularization weight in ridge regression. Note that
the search window, which is the size of x; has 2.5 times the size of the target in the
implementation of KCF. In case of Gaussian kernel function, the kernel correlation can
be denoted as:

kxx
0
= exp � 1

r2 xk k2 + x0k k2
� �

� 2F�1 x̂� x̂0�ð Þ
� �

ð4Þ

Where F�1 denotes inverse Fourier transform.
In detection step, the regression function Eq. 5 is applied to predict the position of

target where the maximum regression value locates.

f̂ zð Þ = k̂
~xz

� ��
�â ð5Þ

Where ~x denotes basic data template to be learned in the model; z is the candidate
patch, which has the same size and location with x in next frame. When we transform
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f̂ zð Þ back into the spatial domain, the translation with respect to the maximum response
is considered as the displacement of the tracked target.

2.2 Scale Adaptive KCF

Deformations and scale variations of targets is potential to increase the tracking error
and reduce robustness, even fail. However, these negative factors are common in
abdominal targets. In our clinical practice, there are two situations leading to target
deformation. First, with the contraction and relaxation of the diaphragm in free
breathing situation [15], the hepatic targets would suffer from deformation. Second,
because of free breathing and drift, the appearance of cross section between ultrasound
beam and targets would change. In this part, we propose a scale adaptive strategy to
compensate these deformations and scale variations.

Suppose that the size of search window sets as sT ¼ sx; sy
� �

; we define a scaling
pool g ¼ g1; g2; . . .; gmf g to expand search range to different scale space, which can be
donated as ~sT ¼ gisx; gjsy

� �jgi; gj 2 g;
� 	

: Because the dot-product requires the search
window with the fixed size in kernel correlation filter, we resize ~sT into the fixed size of
sT using bilinear-interpolation. Note that our proposed scale adaptive method is dif-
ferent from Li’s work [13], which adopts s^T ¼ gisTjgi 2 gf g: Therefore, the response
R gi;gj
� �

in difference scale space can be calculated.

R gi;gj
� � ¼ F�1f̂ z gi;gj

� �� � ð6Þ

Where z gi;gj
� �

is the sample patch resampled by scaling pool and the size of
z gi;gj
� �

is gisx; gjsy
� �

; which is subsequently resized to the fixed size of sT.

2.3 Improved Update Rule for Approximate Periodic Motion

According to Eq. 5, there are two sets of coefficient should be update. One is dual
space coefficient a; another is basic template ~x: Original update rule is realized by
combining new filter with old one linearly as Eq. 7 illustrates.

~xtþ 1 = l ~xtþ 1 + 1� lð Þ ~xt
âtþ 1 = l âtþ 1 + 1� lð Þ ât

(
ð7Þ

Where l is the linear interpolation factor.
While the update rule above achieves impressive success for nature video tracking,

it is so sensitive that cannot support for long-term tracking in our work. An explanation
is that Eq. 7 pays more attention to learn new characteristics from a new image. Once
ultrasound images suffer from noise severely, like acoustic shadowing and speckle
decorrelation, the performance of online classifier could degrade largely. With prior
knowledge that motion of liver is approximate periodic in free breathing, the target in
first frame would also appear in subsequent sequence. Therefore, an improved update
rule for long-term tracking of approximate periodic motion is proposed as Eq. 8 shows:
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~xtþ 1 = b ~x1 + 1� b� lð Þ ~xtþ 1 + l ~xt
âtþ 1 = b â1 + 1� b� lð Þ âtþ 1 + l ât

(
ð8Þ

Where b is recurrence factor.

2.4 Restricting Unreasonable Target Prediction

Though NCC has been a popular similarity measure in specking tracking, it still suffers
from acoustic shadowing, speckle decorrelation and other artifacts. Here, in order to
alleviate these adverse effect, we provide displacement and appearance constrains to
restrict unreasonable target prediction.

Displacement Constrain. In clinical ultrasound image guided abdominal radiother-
apy, we notice that the target displacement in two consecutive frames is very small
(<3 mm, acquisition frequency is 13–23 Hz). So a displacement cost function is
employed to restrict unreasonable prediction. Suppose that D ¼ Dx gi;gj

� �
;Dy gi;gj

� �� �
is the displacement prediction and R dijjdij 2 D

� �
is corresponding response map,

therefore, the response with displacement constrain can be expressed by:

Rdis gi; gj
� � ¼ R gi; gj

� � � exp �Dx2 þDy2

rdis

� �
ð9Þ

Where rdis is the bandwidth of displacement constrain.

Appearance Constrain. For alleviating the unreasonable matching from NCC, we
also employ a set of confidence response to determine target displacement instead of
selecting the displacement that the best response locates. Supposing the threshold of
confidence response is happ, the appearance constrain can be expressed as Eq. 10
shows.

Rapp
dis gi; gj

� � ¼ Rdis gi; gj
� �

; if Rdis �max Rdisf g � happ
0; others



ð10Þ

With constrains of displacement and appearance, the best scale space can be

determined by maximize the average response Rapp
dis gi;gj

� �
in Eq. 10:

argmaxRapp
dis gi; gj

� � ð11Þ

2.5 Weighted Displacement

Motivated by Carletti’s work [9], a weighted displacement is calculated to enhance the
robustness of proposed tracking algorithm. The displacements used to calculate
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weighted displacement are from Eq. 10, namely rij 2 Rapp
dis gi; gj

� �
: Finally the target

displacement can be determined in adjacent frames.

�d ¼

PM
i¼1

PN
j¼1

rijdij

PM
i¼1

PN
j¼1

rij

ð12Þ

Note that d is the displacement in best scale space, we get the real displacement dr
by performing scale inverse transformation with scale parameters from Eq. 11.
Therefore, by combining the target position in last frame pold and displacement dr, new
target position pnew in current frame can be determined.

pnew ¼ pold þ dr ð13Þ

Finally, the overall algorithm is summarized into Algorithm 1
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3 Experiments and Results

3.1 Dataset and Parameter Settings

Datasets and Resource. Our 2D liver ultrasound sequences are provided by MICCAI
2015 Challenge on Liver Ultrasound Tracking (CLUST) [16] training database, and it
consists of five different datasets CIL, ETH, ICR, MED1 and MED2. Each dataset is
acquired by different scanner with different image resolution (0.30–0.55 mm) and
acquisition frequency (13–23 Hz). Besides, our code is implemented using MATLAB
R2017b on an Intel Core i7-4910MQ CPU @ 2.90 GHz.

Parameter Settings. The parameters in our algorithm come from two parts. One is
from the original KCF tracker and we adopt the default parameters as [11] recom-
mends. The learning rate k in Eqs. 2 and 3 sets to 10�4 ; the r used in Gaussian
function Eq. 4 sets to 0.2; the linear interpolation factor l in Eq. 8 sets to 0.1; and the
size of search window is 2.5 times to the size of target. Another part is from our
contributions, which is used to ensure proposed tracker more accuracy and robust. We
adopt scaling pool with the suggestion from our experienced radiologist g ¼
0:85; 0:90; 0:95; 1:00; 1:05; 1:10; 1:15f g: And the recurrence factor b in Eq. 8, band-

width of displacement rdis in Eq. 9 and the threshold of confidence response happ in
Eq. 10 set to 0.15, 10 and 0.95 respectively. Parameters are same for all following
experiments.

Note that proposed method needs image patches as initialization. Therefore, we
generate a rectangular region manually with the guidance of experienced radiologist in
the first frame. During online tracking process, the center of rectangular region is
recorded and then used to evaluate tracking performance.

3.2 Tracking Results

We employ Euclidean distance suggested by Organizers of CLUST [16] to evaluate the
tracking performance. In our experiments, we compute errors between each manual
annotation and the output of proposed algorithm, and then mean, standard deviation
(SD), 95%ile and maximum errors are counted. Additionally, processing speed is
estimated by counting frames that are tracked per second (FPS).

Performance Evaluation on CLUST. Firstly, we evaluate the performance of pro-
posed tracking algorithm using the five datasets of CLUST database. The number of
objects means the total objects being tracked in corresponding dataset. The following
Table 1 shows the tracking error distribution of each dataset and the total 2D ultra-
sound sequences respectively.

Comparison Proposed with Baseline Algorithm. Then a performance comparison
experiment is performed between proposed and baseline algorithm, and the results are
shown in Fig. 1.

Compared with baseline algorithm, proposed method achieves state-of-the-art
results with mean decreasing by 78.8% (from 5.33 mm to 1.13 mm), 95%ile error
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decreasing by 77.1% (from 10.08 mm to 2.31 mm) and maximum error deceasing by
82.8% (from 66.10 mm to 11.37 mm) respectively.

Comparison Proposed with State-of-the-art Algorithms. Extensive comparison
experiments are performed among our tracker and some state-of-the-art trackers. The
following Table 2 gives a summary of tracking error distribution. It is worth men-
tioning that we compare these algorithms whose tracking performance is also evaluated
on CLUST training database. Compared with TMG [17], RMTwS [17] and Hybrid
[18], proposed algorithm achieves a competitive accuracy with maximum tracking
error decreasing by 40.4%–47.8%, which means it would provide a more effective
guidance for clinical operation. Experimental results also indicate our tracker is more
real time than the existing state-of-the-art trackers.

Table 1. A summary for performance evaluation on CLUST. All tracking errors are in
millimeters and processing speed is presented by frames per second.

Dataset No. objects Mean SD 95%ile Maximum FPS

CIL 3 0.99 1.16 2.02 3.61 20.33
ETH 16 0.89 0.60 1.73 4.18 23.57
ICR 12 1.00 0.54 2.31 6.23 23.14
MED1 19 1.39 1.62 2.74 11.37 22.21
MED2 3 1.38 2.04 3.01 7.88 31.00
Total 53 1.13 1.07 2.31 11.37 23.22

Fig. 1. Tracking errors comparison between proposed and baseline algorithm on CLUST. Left
is mean tracking error; middle is 95%ile error; right is maximum error.

Table 2. Comparison of published results with our tracking results. All tracking errors are in
millimeters and processing speed is presented by frames per second.

Algorithms Mean SD 95%ile Maximum FPS

Proposed 1.13 1.07 2.31 11.37 17–34
TMG [17] 1.17 0.89 2.61 21.78 8–23
RMTwS [17] 1.12 0.81 2.19 21.78 3–16
Hybrid [18] 0.80 0.80 1.85 19.08 8–32

An Online Learning Approach for Robust Motion Tracking 447



3.3 Experimental Analysis

In this section, we first perform an ablation analysis to understand the benefit of scale
adaptive strategy. Then a detailed parameters analysis are performed to find out the
effectiveness of improved update rule (Eq. 8) and appearance/displacement (Eqs. 9 and
10) constraints.

Ablation Study About Scale Adaptive Strategy. Deformation is common in liver
ultrasound sequence. In this part, we perform a comparison experiment between non-
rigid (with Eq. 6) and rigid (without Eq. 6) tracking. Results are shown in Fig. 2.

Compared with rigid tracking, non-rigid tracking achieves a better performance
with mean decreasing by 20.4% (from 1.42 mm to 1.13 mm), 95%ile error decreasing
by 19.5% (from 2.87 mm to 2.31 mm) and maximum error deceasing by 18.1% (from
13.88 mm to 11.37 mm) respectively. That means non-rigid deformation should be
considered seriously in precise radiotherapy.

Figure 3 shows an instance to compare the results from non-rigid and rigid
tracking. The target position calculated by rigid tracking yields larger deviations, by
contrast, the positions from proposed method are more accurate and robust.

Fig. 2. Tracking error distributions (mm) for proposed non-rigid and rigid tracking method. Left
is mean error; middle is 95%ile error, right is maximum error.

Fig. 3. An example for showing deviation between non-rigid and rigid tracking. Images are both
from CIL-01 #1 in CLUST. Left is the 675th frame and right is the 1182nd frame.
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Parameters Analysis. There are four parameters, g; rdis; happ; b
� �

; needing more dis-
cussion. Among them, scaling pool g can be designed when the deformation of target is
estimated. And we also can determine rdis by magnitude of target motion and fre-
quency of image acquisition. However, happ and b are assigned empirically. In this part,
we investigate the effect when we change the threshold of confidence response and
recurrence factor. Without loss of generality, we choose happ 2 0:90; 0:95; 1:00½ � and
b 2 0:10; 0:15; 0:20½ � to perform parameters analysis on CLUST training database.
Here, mean and 95%ile tracking errors, as regardful indicators for our project, are
chosen to evaluate the results of parameters analysis. Results are shown in Fig. 4 and
Table 3.

Therefore, recurrence factor is a crucial parameter in proposed algorithm. A smaller
b has a terrible effect on long-term tracking (like b ¼ 0:10; see Fig. 4). But a larger one
would also enlarge tracking error by unduly limiting learning ability for proposed
method. Besides, a smaller or larger happ are not a wise chose, which would potentially
introduce more unreasonable position or be not adaptive for artifacts well respectively.
Therefore, (0.15, 0.95) is a better combination for accuracy and robust tracking in our
project.

Fig. 4. The results of parameters analysis on CLUST. Left is results of mean error and right is
results of 95%ile error with parameters b; happ

� �
changing.

Table 3. Statistic results of mean and 95%ile errors (mm) with b; happ
� �

changing.

b; happ
� �

(0.10,0.90) (0.10,0.95) (0.10,1.00) (0.15,0.90) (0.15,0.95)

mean
95%ile

1.45
3.23

1.43
3.36

1.53
3.54

1.24
2.54

1.13
2.31

b; happ
� �

(0.15,1.00) (0.20,0.90) (0.20,0.95) (0.20,1.00)

mean
95%ile

1.26
2.65

1.24
2.56

1.18
2.43

1.32
2.78
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4 Conclusion and Discussion

In this paper, we present a 2D real-time tracking approach, which consists four steps
namely (1) initial target regions selection, (2) tracking with scale adaptive kernel
correlation filter, (3) displacement and appearance constrains, and (4) weighted dis-
placement. The initial target regions are generated by our experienced radiologist. Then
we train an online classifier to predict targets position. Because deformation of targets
can lead to error accumulation in learning phase, we employ adaptive scale strategy to
mitigate this adverse effect. Considering US images suffer from acoustic shadowing
and speckle decorrelation, NCC is more susceptible to bias. We employ displacement
and appearance constrains to constrict unreasonable position prediction by carefully
investigating the motion extents of landmarks in liver under free breathing. Further-
more, with prior knowledge that target motion in liver is approximately periodic under
free breathing, we revise the update rule by introducing a recurrence factor to improve
robustness in long-term tracking. Finally, inspired by success of particle filter in noise
circumstance, we obtain new target positions by calculating weighted displacement.

However, we just adopt single feature to realize target tracking. Accuracy and
robustness for proposed method may continue to improve by combining other image
features like texture and shape, which is a major research direction for future work.
Also, similarity metrics is a core ingredient for target tracking. While a large of sim-
ilarity metrics have been proposed in computer vision community, there are no clear
rules about how to select the most suitable one but to try them in different condition.

There are several avenues of future work that would potentially improve proposed
method. Integrating texture feature into our tracking method would be helpful to
improve accuracy. And adaptive recurrence factor strategy will be investigated to
improve robustness for long-time tracking.

In conclusion, we propose an online learning approach for robust and real-time
motion tracking in liver ultrasound sequences and evaluate it on five different datasets.
Favorable agreement between automatically and manually tracked displacements,
along with real-time processing speed prove that proposed algorithm has potential for
target motion tracking in abdominal radiotherapy.
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