
A Deep Structure-Enforced Nonnegative
Matrix Factorization for Data

Representation

Yijia Zhou1 and Lijun Xu2(B)

1 Dalian Neusoft University of Information,
Dalian 116023, Liaoning, People’s Republic of China

zhouyijia@neusoft.edu.cn
2 Dalian Maritime University,

Dalian 116026, Liaoning, People’s Republic of China
lijun xu@dlmu.edu.cn

Abstract. In this paper, we focus on a deep structure-enforced non-
negative matrix factorization (DSeNMF) which represents a large class
of deep learning models appearing in many applications. We present a
unified algorithm framework, based on the classic alternating direction
method of multipliers (ADMM). For updating subproblems, we derive
an efficient updating rule according to its KKT conditions. We conduct
numerical experiments to compare the proposed algorithm with state-
of-the-art deep semi-NMF. Results show that our algorithm performs
better and our deep model with different sparsity imposed indeed results
in better clustering accuracy than single-layer model. Our DSeNMF can
be flexibly applicable for data representation.

Keywords: Deep matrix fatorization · Alternating direction method
Data representation

1 Introduction

Matrix factorization techniques have found great utility in various data-related
applications, such as in signal and image processing and in machine learning
tasks, primarily because they often help reveal latent features in a dataset. In
recent years, Non-negative Matrix Factorization (NMF) is a widely-used method
for finding meaningful representations of nonnegative data and has been proven
useful in dimension reduction of images, text data and signals, for example. The
family of NMF algorithms has been successfully applied to a variety of areas,
like environmetrics [1], microarray data analysis [2,3], document clustering [4],
face recognition [5,6], speech recognition [7], hyperspectral image unmixing [8,9],
blind audio source separation [10], etc. Moreover, NMF has been extended into
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a number of variant forms, allowing for various structures or regularized models,
most of which demonstrate distinct advantages in local feature extraction or
data representation learning.

The work of Lee and Seung [11] demonstrates that NMF models tend to
return part-based sparse representations of data, which has popularized the use
of and research on NMF-related techniques. In particular, various NMF-inspired
formulations add different regularization or penalty terms to promote desired
properties, such as sparsity patterns or orthogonality in addition to nonnega-
tivity (see [12–18], for example). Besides, graph-regularized NMF versions have
also been explored. For example, Cai et al. [19] proposed a graph-regularized
NMF by incorporating prior information of samples into the typical NMF. This
helps to keep the original topological structure of data after being projected into
a subspace and usually leads to better clustering results.

Semi Non-negative Matrix Factorization (Semi-NMF) [20], as one of the most
popular variants of NMF, was proposed to extend NMF by relaxing the factor-
ized basis matrix to be real values. This practice allows Semi-NMF to learn new
lower-dimensional features from the data that have a convenient clustering inter-
pretation and have a wider application in the real world than traditional NMF.
Moreover, it has shown that it is equivalent to k-means clustering, and that in
fact, this NMF variants are expected to perform better than k-means clustering
particularly when the data is not distributed in a spherical manner.

Although there have been extensive variants of NMF, most of them remain to
be single-layer models, hence can only capture one level of data features. Most
recently, deep learning is becoming increasingly popular and has been demon-
strated to be powerful in learning data representation. Inspired by the success
of training deep architectures, Multi-layer NMF (see [21,22] for example), Deep
Semi-NMF [23], Deep Orthogonal NMF [24], Sparse Deep NMF [25], Deep Non-
smooth NMF [26], etc. have been proposed by stacking one-layer variants of
NMF into multiple layers to learn hierarchical relationships among features or
hierarchical projections. Since these deep (multi-layer) models can extract high
level data representations and yield intuitive interpretations for features gener-
ated in each layer, they have been successfully applied to many areas, such as
recommender systems [27], image clustering [28], neural network [29], speech sep-
aration [30], matrix completion [31], for example. However, these models are only
designed for specific problems with certain intuitive structures. In this paper, we
focus on a unified deep structure-enforced NMF in data representation, which
imposing desired properties (like sparsity, orthogonality, for example) in addition
to nonnegativity. A specific algorithmic approach to solve the deep structure-
enforced NMF is further studied and can be applicable to a range of easily
projectable structures.

This paper is organized as follows. In Sect. 2, we introduce the deep structure-
enforced NMF (DSeNMF) and propose a new ADMM-based algorithm frame-
work for solving DSeNMF. Section 3 contains several numerical experiments com-
paring the proposed algorithm with Deep Semi-NMF and single-layer matrix
factorization on MNIST digit dataset. Finally, we conclude this paper in Sect. 4.



342 Y. Zhou and L. Xu

2 Deep Structure-Enforced Nonnegative Matrix
Fatorization Model

The general structured-enforced matrix factorization (SeMF) model (1) is firstly
proposed in the earlier work in [32]. That is, decomposing a given data matrix
M ∈ R

p×n into two factors Z ∈ R
p×k and H ∈ R

k×n which belong to Z and H,
respectively,

min
Z,H

1
2
‖M − ZH‖2F s.t. Z ∈ Z, H ∈ H, (1)

where ‖ · ‖F is Frobenius norm, and Z and H are subsets of Rp×k and R
k×n,

respectively. Obviously, the model (1) is a single-layer matrix factorization. Thus,
it can only do one-layer feature extraction even utilizing more structures. In prac-
tice, it is common that complex data objects have hierarchical features, each of
which denotes a different level of abstract understanding of the objects. It is
therefore meaningful to develop corresponding models with a deep architecture,
which allows to discover the hierarchy of data. It is well known that NMF is
widely used both in single-layer and in multi-layer data representation. To this
end, we propose a deep structure-enforced version for nonnegative matrix fac-
torization by extending model (1).

Similar to the general multi-layer framework, the Deep Structure-enforced
NMF (DSeNMF) model is presented to factorize M ∈ R

p×n into the multiplier
of m + 1 nonnegative matrices, as follows:

min
{Zi≥0}m

i=1,Hm≥0

1
2
‖M − Z1Z2 · · · ZmHm‖2F s.t. Zi ∈ Zi, Hm ∈ H, (2)

where Z1 ∈ R
p×k1 , {Zi ∈ R

ki−1×ki}m
i=2, Hm ∈ R

km×n, {Zi}m
i=1 and H are struc-

ture subsets with proper dimensions. In our model, prior knowledge are explic-
itly enforced as constraint sets {Zi}m

i=1 and H whose members possess desirable
matrix structures allowing “easy projection”. In practice, the most useful struc-
tures of this kind include, but are not limited to, nonnegativity, normality and
various sparsity patterns. Many deep NMF models can be represented by the
DSeNMF (2) with different structure constraints, see Sparse Deep NMF, Deep
Orthogonal NMF, Deep Semi-NMF as mentioned above, for example.

To make it more intuitive, one can split the model (2) into the following
factorizations:

M ≈ Z1H1,

H1 ≈ Z2H2,

...
Hm−1 ≈ ZmHm,

(3)

where {Zi}m
i=1 and {Hi}m

i=1 satisfy proper constraints, respectively. This formu-
lation can intuitively illustrate that deep model (2) allows for a hierarchy of m
layers of implicit representations of data. In other words, not only most multi-
layer and deep matrix factorizations is derived from the formulation (3), but
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also most algorithms for (2) are designed by solving (3) layer by layer. In the
beginning of approaches, the objective data matrix are multi-factorized only by
solving (3) one round layer by layer. Obviously, these approaches are inefficient
since the factor matrices in former layers are useless for subsequent layer factor-
izations. Therefore, the popular scheme is utilizing the layer by layer technique
as initialization or pre-training, then fine-tuning all layers by alternating updat-
ing factor matrices one by one. Now, we propose a novel approach based on
alternating direction algorithm framework to solve the non-convex problem (2).

2.1 An Alternating Direction Algorithm for the Proposed DSeNMF

As introduced in the work [32,33], an alternating direction and projection
method solves single layer structure-enforced matrix factorization (SeMF) effi-
ciently. Motivated by the algorithms in [32,33], we propose a novel way to tackle
multi-layer or deep matrix factorizations. To facilitate an efficient use of alter-
nating minimization, we introduce auxiliary variables {Ui}m

i=1 and Vm in order
to separate {Zi}m

i=1 and Hm from structure constraints {Zi}m
i=1 and H, respec-

tively. Consider the following model equivalent to (2),

min
{Zi≥0,Ui}m

i=1,Hm≥0,Vm

1
2
‖M − Z1Z2 · · · ZmHm‖2F

s.t. Zi − Ui = 0, Ui ∈ Zi, i = 1, · · · ,m,

Hm − Vm = 0, Vm ∈ H,

(4)

where {Ui}m
i=1 and Vm have the same dimension size with {Zi}m

i=1 and Hm,
respectively. The augmented Lagrangian function of (4) is

LA({Zi, Ui, Λi}m
i=1,Hm, Vm,Π)

= 1
2‖M − Z1Z2 · · · ZmHm‖2F +
∑m

i=1 Λi • (Zi − Ui) + Π • (Hm − Vm)

+
∑m

i=1
αi

2 ‖Zi − Ui‖2F + β
2 ‖Hm − Vm‖2F ,

(5)

where {Λi}m
i=1,Π are Lagrangian multipliers with equal-size of {Zi}m

i=1,Hm,
respectively, and ({αi}m

i=1, β) ≥ 0 are penalty parameters for equality con-
straints, respectively. Note that the scalar product “•” of two equal-size matrices
X and Y is the sum of all element-wise products, i.e., X • Y =

∑
i,j XijYij .

The alternating direction method of multiplier (ADMM) [34,35] for (4) is
derived by successively minimizing the augmented Lagrangian function LA with
respect to {Zi}m

i=1,Hm, {Ui}m
i=1 and Vm, one at a time while fixing others at

their most recent values, and then updating the multipliers after each sweep
of such alternating minimization. The introduction of the auxiliary variables
{Ui}m

i=1 and Vm makes it easy to carry out each of the alternating minimization
steps. Specifically, these steps can be written in the following forms,
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Z+
j ≈ arg min

Zj≥0
LA({Zi, Ui, Λi}m

i=1,Hm, Vm,Π), j = 1, 2, · · · ,m, (6a)

H+
m ≈ arg min

Hm≥0
LA({Z+

i , Ui, Λi}m
i=1,Hm, Vm,Π), (6b)

U+
j = PZj

(Z+
j + Λj/αj), j = 1, 2, · · · ,m, (6c)

V +
m = PH(H+

m + Π/β), (6d)
Λ+

j = Λj + αj(Z+
j − U+

j ), j = 1, 2, · · · ,m, (6e)

Π+ = Π + β(H+
m − V +

m ). (6f)

where PZj
(PH) stands for the projection onto the set Zj (H) in Frobenius norm,

and the superscript “+” is used to denote iterative values at the new iteration.

Updating Rule for Zj . We fix the rest of the factor matrices and minimize
the cost function with respect to Zj . The Zj-updating subproblem (6a) actually
can be rewritten as

min
Zj

1
2
‖M − ΦjZjΨj‖2F + Λj • (Zj − Uj) +

αj

2
‖Zj − Uj‖2F

s.t. Zj ≥ 0,

(7)

where Φj = Z1Z2 · · · Zj−1 and Ψj = Zj+1 · · · ZmHm. Let Γ be the lagrangian
multiplier for constraint Zj ≥ 0, the Lagrangian function of (7) is

L =
1
2
‖M − ΦjZjΨj‖2F + Λj • (Zj − Uj) +

αj

2
‖Zj − Uj‖2F + Γ • Zj .

The partial derivative of L with respect to Zj is

∂L
∂Zj

= ΦT
j ΦjZjΨjΨ

T
j + αjZj − ΦT

j MΨT
j − αjUj + Λj + Γ.

Using the Karush-Kuhn–Tucker (KKT) conditions ΓikZjik = 0, we get the fol-
lowing equations respect to the (i, k)-th element:

(
ΦT

j ΦjZjΨjΨ
T
j + αjZj − ΦT

j MΨT
j − αjUj + Λj

)
ik

(Zj)ik = 0.

This equation leads to the following updating rule:

(Z+
j )ik = (Zj)ik

(ΦT
j MΨT

j + αjUj − Λj)ik

(ΦT
j ΦjZjΨjΨT

j + αjZj)ik
, (8)

and it can be rewritten as

Z+
j = Zj � [(ΦT

j MΨT
j + αjUj − Λj) � (ΦT

j ΦjZjΨjΨ
T
j + αjZj)], (9)

where � and � denote component multiplications and divisions,respectively.
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Updating Rule for Hm . We can derive the Hm-updating rule of (6b) in a
similar way. We omit the derivative procedure and directly write updating rule
for (i, k)-th component of Hm:

(H+
m)ik = (Hm)ik

(ΦTM + βVm − Π)ik

(ΦTΦHm + βHm)ik
, (10)

where Φ = Z+
1 Z+

2 · · · Z+
m. Namely,

H+
m = Hm � [(ΦTM + βVm − Π) � (ΦTΦHm + βHm)], (11)

where � and � denote component multiplications and divisions, respectively.
Since we update Zj and Hm by component multiplications and divisions

instead of involving inverse matrices, the dominant computational tasks at each
iteration are the matrix multiplications. Therefore, our updating scheme posses
much lower complexity than inverting matrices.

Based on the formulas in (6), (9) and (11), we can implement the following
ADMM algorithmic framework so long as we can compute the projections in
steps (6c) and (6d).

Algorithm 1. ADMM Framework for DSeNMF
Input: M , each layer dimension ki, i = 1, · · · , m, maxiter > 0 and tol > 0.
Output: {Zi}m

i=1 and Hm.
Set {αi}m

i=1, β > 0.
H0 = M ;
for i = 1 to m do

Zi, Hi ← SeMF(Hi−1, ki) \\ Initialization.
end
for k = 1 to maxiter do

Update ({Zi, Ui, Λi}m
i=1, Hm, Vm, Π) by the formulas in (6), (9) and (11).

if stopping criterion (12) is met then
output {Zi}m

i=1 and Hm, and exit.
end

end

We use the following practical stopping criterion: for given tolerance tol > 0,

|fk − fk+1|
|fk| ≤ tol, (12)

where fk = ‖X − Zk
1Zk

2 · · · Zk
mHk

m‖F , Zk
i is the k-th iterate for the variable Zi,

and so on. For the sake of robustness, in our implementation we require that
the above condition be satisfied at three consecutive iterations. In other words,
we stop the algorithm when data fidelity does not change meaningfully in three
consecutive iterations.
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3 Experimental Results

In this section we test the proposed model on MNIST dataset to show that our
Deep SeNMF is able to learn better high-level representations of data than a
single one-layer structure-enforced NMF. In addition, we compare the perfor-
mance of the proposed DSeNMF with recently Deep Semi-NMF on the task of
clustering analysis and consuming time. Note that we consider to impose several
sparse constraints on our DSeNMF model (2).

To better understand the proposed model, we introduce three way to impose
sparsity on Hm. One is adding sparsity not only during initialization but also in
subsequential updating and denote this case as DSeNMF(sparse). The other way
is imposing sparsity only in step (6d), that is, using standard NMF to initialize
each layer matrix, and is denoted as DSeNMF(semi-sparse). The last one will
not impose sparsity and denote this case as DSeMF(no sparse). To illustrate
deep model and single-layer factorization distinct, we also consider single-layer
structure-enforced matrix factorization and denote as SingleSeMF.

Next, we apply models to the testing data in an unsupervised way to cluster-
ing. We opt the digits from 0 to 4 in MNIST which constitute a 784 × 5139 matrix
M . In this test, we choose the number of layers to be 3 and dimension size of each
layer is 300, 15 and 50, respectively. Besides, set the maximum number of itera-
tion maxiter = 500 and tolerance tol = 1e−6. We factorize data matrix M using
Deep Semi-NMF (DSemiNMF) in [23], DSeNMF(sparse), DSeNMF(semi-sparse)
and SingleSeMF, respectively. Then we cluster columns of the final Hm accord-
ing to the approach in [23] and output the clustering accuracy as AC.

Table 1. Results comparison with different deep NMF models

Method DSeNMF

(sparse)

DSeNMF

(semi-sparse)

DSeNMF

(no sparse)

DSemiNMF

[23]
SingleSeMF

[32]

AC 0.57 0.68 0.48 0.40 0.33

Time(s) 64.18 64.38 66.57 292.54 29.39

RMSE 37.3688 37.3693 37.3676 37.4621 24.0117

In Table 1, we tabulate the average clustering accuracy (AC), average run-
ning time (in second) and average root mean square error (RMSE). We see from
the table that our deep structure-enforced NMF performs well both in accuracy
and in time consuming. It should be note that our algorithm only need about
one fifth running time comparing with deep semi-NMF algorithm. In addition,
note that the last column in Table 1, we use the SeMF algorithm in [32] to
decompose M into multiplication of Z ∈ R

784×50 and H ∈ R
50×5139 which is

indeed a single-layer nonnegative matrix factorization. Obviously, SingleSeMF
obtain the best data fidelity, but get the worst clustering accuracy meanwhile.
It confirms that all the DSeNMF models are able to learn better high-level rep-
resentations of data than a single one-layer structure-enforced NMF. Among
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results of our proposed model with three different structure constraints, we
note that DSeNMF(sparse) and DSeNMF(semi-sparse) obtain better clustering
results than DSeNMF(no sparse) since imposing sparsity on Hm. More inter-
estingly, comparing DSeNMF(sparse) with DSeNMF(semi-sparse), the former
gets lower clustering accuracy even though considering sparsity in initialization.
It demonstrates that imposing structure constraints earlier could not obtain a
better initialization. It makes sense that some properties in real data should be
considered step by step rather than completely utilized at the beginning.

100 101 102 103

Iterations

36

38

40

42

44

46

48

50

52

54

R
M

SE

RMSE via Iterations

DSeNMF(no sparse)
DSeNMF(semi-sparse)
DSeNMF(sparse)
DSemiNMF[23]

Fig. 1. RMSE comparison with different deep NMF models

Figure 1 presents RMSE curves of four deep models. It shows that our algo-
rithm for solving deep NMF models needs much less (about 50) iterations than
the algorithm in [23] (around 500 iterations). It will be evident that our proposed
model and algorithm are efficient for the class of deep structured NMF.

4 Conclusion and Future

We have introduced a kind of deep structure-enforced nonnegative matrix factor-
ization and proposed a novel framework for solving the unified model. Although
the proposed framework introduces many auxiliary variables, these variables aim
to separate from complex structure constraints and split original factor mat-
ices. Further, it can facilitate the obtained model equivalently transformed to
an ADMM-applicable model which is easy implemented. Numerical experiments
also show the efficiency of the proposed algorithm and the applicable of our deep
model for data representing problems.
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Although deep structured matrix factorization problems are generally highly
nonconvex, they widely and variously exist in real-world applications. Our next
step is testing the proposed model and algorithm on more datasets and com-
paring it with other deep NMF algorithms. Another work will be focusing on
how different decomposed dimension would affect clustering performance of deep
non-negative matrix factorization.
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