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Abstract. Choosing a proper classifier for one specific data set is impor-
tant in practical application. Automatic classifier selection (CS) aims to
recommend the most suitable classifiers to a new data set based on the
similarity with the historical data sets. The key step of CS is the extrac-
tion of data set feature. This paper proposes a novel data set feature that
characterizes the classification complexity of problems, which has a close
connection with the performance of classifiers. We highlight two contri-
butions of our work: firstly, our feature can be computed in a low time
complexity; secondly, we theoretically show that our feature has con-
nection with generalization errors of some classifiers. Empirical results
indicate that our feature is more effective and efficient than the existing
data set features.
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1 Introduction

Classification is one of the most important tasks in machine learning. A great
number of classifiers were putted forward in recent decades to tackle various
kinds of classification problems arose in real world, such as support vector
machine, decision tree, AdaBoost, artificial neural networks, and so on. Does
there exist a classifier that significantly performs better than any other classi-
fiers on most of data sets? Some literatures have done in-depth investigations
on this problem. The No Free Lunch Theorem [1] tells us that there does not
exist such classifier. If classifier A1 outperforms A2 on some data sets, then there
must exist as many other data sets on which A2 outperforms A1. In [2], authors
analyzed the performances of three classifiers on some data sets and they did
not observe which classifier is significantly better than the others. Furthermore,
[3] conducted classification experiments using 179 classifiers and 121 data sets
and showed that there is no optimal classifier. These results indicate that classi-
fiers have preference on different types of data sets. Therefore, which classifier(s)
would be selected for a given classification problem?
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One idea is to use cross validation for all possible classifiers to find the best
classifier. However, this procedure is time-consuming. An efficient alternative
approach is automatic classifier selection based on data set similarity [4–7,10],
or classifier selection (CS) for short. We believe that the performances of classi-
fiers on similar data sets should be close. Since different data sets may vary in
sample size, dimensions, classes and attributes, how to measure the similarity
between data sets is a critical step of CS. The common method is to extract data
set feature by designing a feature extraction function (or called meta-learning)
and then compute the similarity between these features. There is an intrinsic
relationship between classifier performance and data set feature [9]. Therefore,
the recommendation heavily depends on the effectiveness of data set feature.
Furthermore, the feature should be calculated in a low time complexity, which
is a bottleneck of CS.

A number of data set features have proposed. These features are extracted
from different aspects of a data set: (i) statistics and information theory (SI)
[7,10]; (ii) model structure (MS) [5]; (iii) problem complexity (PC) [4]; (iv)
landmarking (LM) [6]. Especially, PC and LM characterize the classification
complexity of problems (we call it complexity) using a set of geometrical metrics
or basic classifiers. The complexity is expected to highly correlate to the per-
formances of classifiers [11]. In other words, the performances of classifiers on
data sets that have similar complexity should be close. Therefore, complexity
plays a vital role in CS. However, the data set features extracted by PC and LM
have two shortages: (i) time-consuming; (ii) no theoretical connection with per-
formances of classifiers. It is observed that PC and LM did not perform well in
some literatures [5,7], which means that they cannot characterize the complexity
accurately.

To remedy the aforementioned shortcomings of PC and LM, this paper uses a
set of geometrical and statistical metrics to describe the complexity of two-class
data set, then these metrics are united as data set feature. We use KNN classifier
as recommendation algorithm for CS. For multi-class classification problem, we
split the problem into two-class problems using one-vs-one strategy. Compared
with PC and LM, our work has improvements in two aspects: computation effi-
ciency and theoretical guarantee. Empirical results demonstrate the effectiveness
and efficiency of our method.

The rest of the paper is structured as follows. We briefly introduce the related
works in Sect. 2. Section 3 presents our data set feature. The classifier selection
algorithm is given in Sect. 4. Empirical investigations are discussed in Sect. 5 and
conclusions are drew in Sect. 6.

2 Related Work

The key problem of CS is feature extraction. To the best of our knowledge, there
are four kinds of features.

Statistical Feature: This feature can be categorized into two kinds. The first
kind describes the data set using a group of statistical and information theory



294 L. Deng et al.

characteristics [10]. The second kind is based on summary statistics. Song [7]
characterizes the data set structure by computing the frequencies of itemsets
generated from binary data sets. Non-binary data set needs to be transformed
to binary data set, which would be time-consuming when the attributes of data
set are continuous.

Problem Complexity Feature: Twelve measures are designed to describe the
geometrical complexity of decision boundary of two-class problems [11]. Cano
[12] claimed that some of the measures have little connection with the perfor-
mances of classifiers. Bernado [4] selected six measures to characterize data set.

Landmarking Feature: This feature [6] utilizes the performances of a set of
basic classifiers (called landmarkers) to describe the data set. Therefore, the
similar features indicate that data sets may belong to the subspace of the same
performance. The chosen landmarkers must be significantly different.

Model Structure Feature: The statistical information of a model generated
from data set is collected as feature. In this category, decision tree is usually
considered [5], from which we gather a set of statistics like maximum/minimum
number of nodes, length of longest/shortest branches, and so on.

The aforementioned features belong to experimental origin. However, a the-
oretical investigation would be more persuasive. Furthermore, these features are
computationally expensive.

3 Proposed Feature

In this section, we firstly propose several metrics of complexity for CS. Then the
theoretical connections between two metrics and generalization errors of some
classifiers are investigated. Finally, we present our data set feature and similarity
measurement criterion.

3.1 Metrics of Complexity

Given a two-class data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} in input space
X , where xi, i = 1, 2, · · · , n are data points, and yi is the binary class label,
i.e., yi ∈ {1,−1}. Let y = [y1, y2, · · · , yn]� represents the vector formed with n
labels. We use n− and n+ to represent the amount of samples labeled −1 or 1,
respectively. Note that n− + n+ = n.

For a given kernel function k(x,y) = 〈φ(x), φ(y)〉, where φ is a nonlinear
mapping that maps x ∈ X to a reproduce kernel hilbert space (RKHS) H, an
n × n kernel matrix K is generated from D as

Kij = 〈φ(xi), φ(xj)〉, i, j = 1, 2, · · · , n.

K is a symmetric positive and semi-definite matrix that totally preserves the
geometrical structure of D. Our five metrics of complexity are based on K.
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Kernel Alignment. This metric, which is known as centered kernel target
alignment (KA) [13], is defined as

KA(Kc,yy�) =
〈Kc,yy�〉F√〈Kc,Kc〉F 〈yy�,yy�〉F

, (1)

where Kc is a centralized kernel matrix of K, 〈·, ·〉F denotes Frobenius inner-
product and yy� is called the target matrix. KA ∈ [0, 1] since 〈Kc,yy�〉F � 0.

The numerator of (1) can be expanded as

〈Kc,yy�〉F = y�Kcy =
n∑

i=1

n∑

j=1

yiyj(Kc)ij

=
∑

yi=yj

(Kc)ij −
∑

yi �=yj

(Kc)ij .

Therefore, KA measures the difference between the within-class and between-
class distances of data set. A bigger KA indicates that the corresponding data
set is more separable. The most time-consuming calculations of KA are the
centralization of K and 〈Kc,Kc〉F , which take O(n2) time complexity.

Kernel Space-Based Separability. The centers of two classes in H are cal-
culated as

φ− =
1

n−

∑

yi=−1

φ(xi),

φ+ =
1

n+

∑

yi=1

φ(xi),
(2)

respectively. KS [14] is defined as

KS(K,y) =
std− + std+
‖φ− − φ+‖2 , (3)

where

std− =

√∑
yi=−1〈φ(xi) − φ−, e〉2

n− − 1
,

std+ =

√∑
yi=1〈φ(xi) − φ+, e〉2

n+ − 1
,

(4)

are the standard deviations of two classes projected along the direction e =
φ−−φ+

‖φ−−φ+‖2
respectively, and ‖·‖2 denotes 2-norm of vector.

KS ∈ (0,+∞] actually describes the samples’ distribution along direction
φ− − φ+. A smaller KS means that the data set is more separable. KS needs
O(n2) time complexity.
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Overlap Region. We propose a metric that compute the ratio of the overlapped
region of two classes to the total region of two classes along direction e, denoted
as ROR. Suppose that the projected data of one class fall into [a1, b1], where
a1, b1 are the minimum and maximum values of the projected data, and the
other class falls into [a2, b2]. Let U = [a1, b1] ∩ [a2, b2] and V = [a1, b1] ∪ [a2, b2]
be intersection and union of these two intervals, respectively. ROR is defined as

ROR =

{
0, U = ∅,
max(U)−min(U)
max(V )−min(V ) , U 
= ∅,

(5)

where min(·) and max(·) are the maximum and minimum values of interval
respectively and ∅ represents empty set. ROR ∈ [0, 1] since U is a subset of V .
When data set is linear separable, ROR is expected to zero. However, ROR
will increase if data set is nonlinear separable. ROR also needs O(n2) time
complexity.

Test of Equality of Means. Now we treat kernel matrix K as a similarity
matrix. The following measure depends on the assumption that the similarity
among within-class data is higher than between-class data. We first introduce
two vectors extracted from K:

kW = {Kij |i < j ∧ yi = yj},

kB = {Kij |i < j ∧ yi 
= yj}.
(6)

We denote nW = n−(n−−1)
2 + n+(n−+1)

2 and nB = n−n+ represent the size of
vectors kW and kB respectively. We see that kW is the collection of within-class
similarity and kB is the collection of between-class similarity.

TEM [15] is defined as a variant of t-test to evaluate the equality of means
of kW and kB :

TEM(K,y) =
1
n

∣∣∣∣
∣

k̄W − k̄B√
σ2
W

nW
+ σ2

B

nB

∣∣∣∣
∣
, (7)

where k̄W and σ2
W denote the mean and variance of kW respectively, and k̄B and

σ2
B denote the mean and variance of kB respectively. TEM is very sensitive to

the nonlinearity of decision boundary. A larger TEM reflects that the data set
is more likely to be linearly separable. Here we normalized TEM by multiplying
the reciprocal of n to eliminate the influence of sample size. TEM only utilizes
the upper triangle elements of K, which needs O(n2) time complexity.

Test of Equality of Variances. Let kWB = kW ∪kB be the union of kW and
kB . We define three new vectors as follows:

zW = |kW − k̃W |,
zB = |kB − k̃B |,
zWB = |kWB − k̃WB |,

(8)
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where | · | represents element-wise absolute value, k̃W , k̃B and k̃WB are the
medians of kW , kB and kWB respectively. TEV [15] is defined using Brown-
Forsythe test to measure the equality of variances of kW and kB ,

TEV(K,y) = (1 − 2
n

)
nW (z̄W − z̄WB)2 + nB(z̄B − z̄WB)2

∑nW

i=1[(zW )i − z̄W ]2 +
∑nB

i=1[(zB)i − z̄B ]2
, (9)

where z̄B , z̄W and z̄WB are the mean values of vectors zB , zW and zWB respec-
tively, (zW )i and (zB)i represent the ith element of zW and zB . The idea behind
TEV is that if kW and kB have the same variance, then the data set should
be difficult to separate. The high value of TEV rejects the hypothesis of equal
variance and indicates compact within-class and mutually distant between-class
distribution [15]. Here we also normalize TEV by multiplying 1/n.

Like TEM, TEV also needs O(n2) time complexity, but TEV needs extra
O(n2) to search the medians.

3.2 Theoretical Analysis

We theoretically investigate the relationship between metrics KA, KS and gen-
eralization errors.

Theorem 1. KA is defined as (1). Let R(h) = Pr[yh < 0] be the error rate of
Parzen window predictor

h(x′) =
Ex[ykc(x,x′)]

√
E[k2

c ]
(10)

in binary classification. kc is the centered kernel function and E[·] is an expec-
tation operator. Suppose that k(x,x) � S2 for all x. Then for any δ > 0, the
following inequality holds with probability at least 1 − δ:

R(h) � 1 −
(

KA(Kc,yy�) − 18β

[
3
n

+ 4

√
log 6

δ

2n

])

· 1
Γ

, (11)

where Γ = maxx′

√
Ex[k2

c(x
′,x)]

Ex,x′ [k2
c(x

′,x)]
, β = max( S2

E[k2
c ]

, S2

E[k′2
c]

) and k′(xi,xj) = yiyj.

Proof. According to Theorem 12 in [13], we have

KA(kc, k
′
c) � KA(Kc,yy�) − 18β

[
3
n

+ 4

√
log 6

δ

2n

]

,

where KA(kc, k
′
c) = E[kck′

c]√
E[k2

c ]E[k′
c
2]

. Unifying Theorem 13 in [13]

R(h) � 1 − KA(kc, k
′
c) · 1

Γ
,

We obtain the inequation (11) directly.
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Theorem 2. [14] KS is defined as (3). There is a separating hyperplane

h(x) = e · φ(x) − e · std−φ+ + std+φ−
std− + std+

, (12)

such that the upper bound of training error of data set D is

KSerr =
KS(K,y)2

1 + KS(K,y)2
. (13)

Theorem 1 tells us that if there is a high KA and Γ is not too large, then the
upper bound of generalization error of (10) on D is small. Theorem 2 indicates
if KS is small, then the upper bound of training error of (12) on D is small, thus
we can expect a low generalization error [14].

3.3 Data Set Feature

Based on the above analysis, we define data set feature as follows:

v = [KA, 1 − KSerr, 1 − ROR,TEM,TEV]. (14)

The computation of v has a time complexity of O(n2). KA, KS and ROR mainly
focus on the distributions and the degree of overlap of two classes from a geomet-
rical point of view, while statistical tests (TEM, TEV) are used to characterize
the nonlinearity of decision boundary. Employing different kernel functions would
produce different features. We adopt Euclidean distance as similarity criterion:

ρ(D,D′) := ‖v − v′‖2 =

√√
√√

5∑

i=1

(vi − v′
i)2. (15)

The smaller ρ(D,D′) means that the similarity between data sets D and D′ is
higher.

4 Classifier Selection

Suppose that historical data sets D1, . . . ,Dm and testing data set D are two-class
problems. Our CS algorithm is shown in Algorithm1.

4.1 Recommendation Algorithm

In step 2 of Algorithm 1, we use KNN classifier as AR, where the data set sim-
ilarity is the distance between data set features. Assuming Dj , j = 1, 2, · · · ,K
are the K most similar data sets for D, the recommended classifier is selected
as: (i) for each Dj , we assign a rank to candidate classifiers according to its per-
formances on this problem. The classifier with the best performance has rank
1, while the classifier with the worst performance has rank m. Classifiers with
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Algorithm 1. CS for Two-class Problems
Input: historical data sets D1, . . . ,Dm, candidate classifiers A1, . . . ,A�, testing data

set D
Output: classifier A�

1: Evaluate the performances of candidate classifiers on historical data sets using
10-fold cross validation.

2: Design a recommendation algorithm AR based on similarity and the performances.
3: Extract the data set features v1, . . . ,vm and v as (14).
4: Compute the data set similarities using (15).
5: Output a best classifier A� for D using AR.

the same performance have the same average rank; (ii) let Ri,j , i = 1, 2, · · · , �
denote the rank of classifier Ai on Dj , then the rank of classification algorithm
Ai on D is computed as

Ri,D =
1
K

∑

Dj∈Nc(D)

Ri,j , j = 1, 2, · · · ,K, (16)

where Nc(D) is a set contains the K most similar data sets of D. In the end, the
classifier with the lowest rank is the recommended classifier.

4.2 Multi-class Classification Problem

Our feature only suitable for two-class data sets. We handle multi-class problems
as follow.

Step 1: Suppose that data set D has c classes. We split D into m = c(c−1)
2

two-class problems using one-vs-one strategy.
Step 2: For each sub-problem, we recommend one classifier based on Algo-
rithm1.
Step 3: The final decision is determined by using voting strategy.

The merit of this method is that we can select the most suitable classifier for each
sub-problem, which would make the classification accuracy higher than that of
the single classifier.

5 Experiments

We evaluate the proposed feature with three state-of-the-art features with
respect to computational efficiency and recommendation performance.

5.1 Experimental Setup

Data Sets. We selected 67 classification problems from the UCI repository
which include 49 historical data sets and 18 testing data sets (Table 1). Among
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Table 1. Summary of testing data sets in terms of attributes, sample size and classes.

ID Name Att. Ins. Classes ID Name Att. Ins. Classes

1 abalone 8 4117 3 10 page-blocks 10 5473 5

2 car 6 1728 4 11 seeds 7 210 3

3 contrac 9 1473 3 12 segment 18 2310 7

4 dermatology 34 366 6 13 st-landsat 36 6534 6

5 hayes-roth 5 132 3 14 st-vehicle 18 846 4

6 hill-valley 100 1212 2 15 synthetic-control 60 600 6

7 hill-valley-noise 100 1212 2 16 teaching 5 151 3

8 iris 4 154 3 17 waveform 21 2000 3

9 nursery 8 12598 4 18 wine 13 178 3

the historical data sets, the multi-class data sets are split into two-class data
sets using one-vs-one technique, then those data sets that are easy to classify
or have severely unbalanced/small samples in each class are deleted. We totally
have 84 two-class historical data sets. The attributes of data sets are normalized
into [−1, 1].

Candidate Classifiers. We employ 20 candidate classifiers. Some candidate
classifiers are KNN, LDA, logistics regression, SVM (linear, polynomial kernel,
RBF kernel), naive bayes, decision tree C4.5, random forest, Bagging (tree) and
AdaBoost (tree). These classifiers are run with the MATLAB statistic toolbox
except SVM uses LIBSVM software.

The remaining classifiers are nearest mean classifier, Fisher’s least square
linear discriminant, BP neural network, linear perceptron, Bayesian classifier,
Gaussians mixture model, Parzen classifier, Parzen density classifier and radial
basis neural network classifier, which are adopted from PrTools toolbox 5.0. We
run all codes on MATLAB 2017a on Windows operating system with Inter(R)
Core(TM) i5-6500 CPU @3.20GHz processer.

Comparative Classifiers. We evaluate 24 classifiers on testing data sets which
include 20 candidate classifiers and 4 data set features.

– statistical feature (Fs) [7];
– problem complexity feature (Fp) [4];
– landmarking feature (Fl) [6] with landmarkers KNN, C4.5, LR and NB;
– our data set feature using polynomial kernel (Fpoly). We set d = 3.

The attributes of 4 data set features are normalized into [0, 1]. Fs, Fp and Fl

adopt the CS framework in Algorithm1. For each testing data set, 10% samples
of each class are dropped as testing samples and the rests are used for training
(the testing data set in Algorithm 1). The classification model of recommended
classifier on training samples are trained using 10-fold cross validation. For the
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Fig. 1. Running times (s) of Fpoly, Fs, Fp and Fl on testing data sets. The total times
are 160.11s, 14662.85s, 31602.10s and 77109.74s, respectively.

sake of fairness, we also evaluate the performance of candidate classifiers on
multi-class testing data sets using splitting and voting strategy.

Performance Metrics. We employ classification accuracy (CA), average rec-
ommendation performance ratio (ARPR) [8] and non-parameter statistical tests
[16] to evaluate the performance of data set features.

5.2 Computational Efficiency

We collected the computation times of 4 data set features on 18 testing data
sets (Fig. 1). The recorded time of each data set is the sum of times of its sub-
problems. From Fig. 1, we see that our feature has the fastest computational
speed, which spent 160 seconds on overall data sets. However, Fs, Fp and Fl have
unacceptable low speeds. Although Fs outperformed our features on data sets 2,
3, and 9, we found that these data sets have discrete variables. For continuous
variables, the efficiency of Fs would be degraded rapidly. Therefore, our feature
outperforms Fs, Fp and Fl in terms of efficiency.

5.3 Performance Comparisons

In this section, we compare our Fpoly with three state-of-the-art data set features:
Fs, Fp and Fl, as well as 20 candidate classifiers. The comparisons of CA, ARPR
and statistical test are listed in Table 2. We observe that Fpoly has the highest
CA and ARPR.

To check the statistical difference between different methods, we calculated
the average rank of each feature and shown it in the last row of Table 2. Fpoly has
the lowest average rank 1.36, followed by Fs. Fp has the worst average rank. The
Friedman statistic is distributed according to the F-distribution with (4−1) = 3
and (4 − 1) × (18 − 1) = 51 degrees of freedom. The value of Friedman statistic
is 11.64 and the critical value of F (3, 51) is 2.79 at 0.05 significance level. Thus,
the null hypothesis is rejected. Then we applied the Nemenyi test for pairwise
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Fig. 2. CA (%) of best, BC and Fpoly. best represents the CA of the best candidate
classifier.

comparisons. The critical different is 1.11 which means that Fpoly is significantly
better than Fp and Fl.

Finally, we compare the CA of Fpoly with that of the best candidate classifier
and Bayesian classifier (BC) which has the highest ACA among 20 classifiers,
shown in Fig. 2. We see that the CA of Fpoly are very close to the CA of the
best candidate classifier except on data sets 7 and 18. Fpoly is equal to or higher
than the best candidate classifier on 11 data sets. Fpoly has the same CA as or
outperforms BC in 14 out of 18 cases. On the 4 data sets that BC outperforms
Fpoly, we see that the CA of BC and Fpoly are very close.

6 Conclusion

The difficulties of CS mainly stem from the similarity measurement among data
sets. So far, people resolve this problem by characterizing data set feature and
turn to comparing the similarity of features. In this paper, we proposed a new
data set feature to describe the classification complexity of data set. Different

Table 2. CA (%) of Fpoly, Fs, Fp and Fl on testing data sets. The first column shows
the ID of data sets. The last row reports the average rank of each CS algorithm. Abest

and Aworst indicate the best and worst CA of candidate classifiers.

ID Fpoly Fs Fp Fl Abest Aworst ID Fpoly Fs Fp Fl Abest Aworst

1 48.56 46.63 41.59 43.99 47.36 44.47 12 96.54 95.67 96.10 95.67 100 98.27

2 99.42 74.85 76.02 91.81 88.89 77.19 13 94.38 93.59 91.72 90.63 93.75 90.47

3 58.90 58.22 50.00 54.79 58.90 53.42 14 80.49 74.39 75.61 74.39 80.49 74.39

4 97.14 94.29 88.57 94.29 100 100 15 98.33 98.33 98.33 95.00 100 98.33

5 57.02 57.02 52.07 52.07 68.60 52.89 16 92.86 78.57 85.71 71.43 92.86 78.57

6 64.17 64.17 50.83 55.83 66.94 48.33 17 86.43 81.41 83.92 84.42 87.44 78.89

7 92.31 92.31 76.92 84.62 92.31 69.23 18 100 100 93.75 100 100 93.75

8 100 100 100 100 100 100

9 92.12 80.22 78.36 79.29 100 86.01 ACA 86.35 82.44 79.54 81.23

10 95.59 94.30 92.28 93.93 98.90 95.96 ARPR 0.99 0.95 0.90 0.93

11 100 100 100 100 100 85.71 Rank 1.36 2.44 3.19 3.00
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from previous works, our feature has merits like low computational complexity
and theoretical support. We built a CS framework using the proposed feature.
Experimental results show that our feature is effective and efficient. Our method
outperforms three data set features, which means that the proposed feature can
help to choose suitable classifiers for new classification problems.
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