
Noise Level Estimation for Overcomplete
Dictionary Learning Based on Tight

Asymptotic Bounds

Rui Chen1(&) and Changshui Yang2

1 Tianjin University, Tianjin, China
ruichen@tju.edu.cn

2 Peking University, Beijing, China
csyang@pku.edu.cn

Abstract. In this paper, we address the problem of estimating Gaussian noise
level from the trained dictionaries in update stage. We first provide rigorous
statistical analysis on the eigenvalue distributions of a sample covariance matrix.
Then we propose an interval-bounded estimator for noise variance in high
dimensional setting. To this end, an effective estimation method for noise level
is devised based on the boundness and asymptotic behavior of noise eigenvalue
spectrum. The estimation performance of our method has been guaranteed both
theoretically and empirically. The analysis and experiment results have
demonstrated that the proposed algorithm can reliably infer true noise levels,
and outperforms the relevant existing methods.
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1 Introduction

The dictionary learning is a matrix factorization problem that amounts to finding the
linear combination of a given signal Y 2 R

N�M with only a few atoms selected from
columns of the dictionary D 2 R

N�K � In an overcomplete setting, the dictionary matrix
D has more columns than rows K[N; and the corresponding coefficient matrix X 2
R

K�M is assumed to be sparse. For most practical tasks in the presence of noise, we
consider a contamination form of the measurement signal Y ¼ DXþw; where the
elements of noise w are independent realizations from the Gaussian distribution
Nð0; r2nÞ. The basic dictionary learning problem is formulated as:

min
D; X

Y� DXk k2F s:t: xik k0 � L 8i ð1Þ

Therein, L is the maximal number of non-zero elements in the coefficient vector xi.
Starting with an initial dictionary, this minimization task can be solved by the popular
alternating approaches such as the method of optimal directions (MOD) [1] and K-SVD
[2]. The dictionary training on noisy samples can incorporate the denoising together
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into one iterative process [3]. For a single image, the K-SVD algorithm is adopted to
train a sparsifying dictionary and the developed method in [3] denoises the corrupted
image by alternating between the update stages of the sparse representations and the
dictionary. In general, the residual errors of learning process are determined by noise
levels. Noise incursion in a trained dictionary can affect the stability and accuracy of
sparse representation [4]. So the performance of dictionary learning highly depends on
the estimation accuracy of unknown noise level r2n when the noise characteristics of
trained dictionaries are unavailable.

The main challenge of estimating the noise level lies in effectively distinguishing
the signal from noise by exploiting sufficient prior information. The most existing
methods have been developed to estimate the noise level from image signals based on
specific image characteristics [5–8]. Generally, these works assume that a sufficient
amount of homogeneous areas or self-similarity patches are contained in natural
images. Thus empirical observations, singular value decomposition (SVD) or statistical
properties can be applied on carefully selected patches. However, it is not suitable for
estimating the noise level in dictionary update stage because only few atoms for sparse
representation cannot guarantee the usual assumptions. To enable wider applications
and less assumptions, more recent methods estimate the noise level based on principal
component analysis (PCA) [9, 10]. These methods underestimate the noise level since
they only take the smallest eigenvalue of block covariance matrix. Although later work
[11] has made efforts to tackle these problems by spanning low dimensional subspace,
the optimal estimation for true noise variance is still not achieved due to the inaccuracy
of subspace segmentation. As for estimating the noise variance techniques, the scaled
median absolute deviation of wavelet coefficients has been widely adopted [12].
Leveraging the results from random matrix theory (RMT), the median of sample
eigenvalues is also used as an estimator of noise variance [13]. However, these esti-
mators are no longer consistent and unbiased when the dictionary matrix has high
dimensional structure.

To solve the aforementioned problems, we propose to accurately estimate the noise
variance in a trained dictionary by using exact eigenvalues of a sample covariance
matrix. The proposed method can also be applied to estimate the noise level for the
noisy image. As a novel contribution, we construct the tight asymptotic bounds of
extreme eigenvalues to separate the subspaces between the signal and the noise based
on random matrix theory (RTM). Moreover, in order to eliminate the possible bias
caused by the high-dimensional settings, a corrected estimator is derived to provide the
consistent inference on the noise variance for a trained dictionary. Based on these
asymptotic results, we develop an optimal variance estimator which can well deal with
the settings with different sample sizes and dimensions. The practical usefulness of our
method is numerically illustrated.

2 Tight Bounds for Noise Eigenvalue Distributions

In this section, we analyze the asymptotical distribution of the ratio of extreme
eigenvalues of a sample covariance matrix based on the limiting RTM law. Then a tight
bound is derived.
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2.1 Eigenvalue Subspaces of Sample Covariance Matrix

We consider the sparse approximation of each observed sample yi 2 R
N with s pro-

totype atoms selected from learned dictionary D. With respect to the sparse model (1),
we aim at estimating the noise level r2n for an elementary trained dictionary Ds con-
taining a subset of the atoms fdigsi¼1. Note that Ds ¼ D0

S þwS, where D0
S denotes

original dictionary and wS is the additive Gaussian noise. At each iterative step, the
noise level r2n goes gradually to zero when updating towards true dictionary D0

S [14].
The known noise variance is helpful to avoid noise incursion and determine the sample
size, the sparsity degree and even the performance of the true underlying dictionary
[15]. To derive the relationship between the eigenvalues and noise level, we first
construct the sample covariance matrix of dictionary Ds as follows:

RS ¼ 1
s� 1

Xs
i¼1

ðdi � dÞðdi � dÞT; d ¼ 1
s

Xs
i¼1

di ð2Þ

According to (2), the square matrix
P

s has N dimensions with the sparse condition
N � s. Based on the symmetric property, this matrix is decomposed into the product of
three matrices: an orthogonal matrix U, a diagonal matrix and a transpose matrix UT ,
which can be selected by satisfying UTU ¼ I. Here, this transform process is written as:

UTRSU ¼ diagðk1; . . .; km; kmþ 1; . . .; kNÞ ð3Þ

Given k1 � k2 � . . .� kN , we exploit the eigenvalue subspaces to enable the sep-
aration of atoms from noise. To be more specific, we divide the eigenvalues into two
sets S ¼ S1 [S2 by finding the appropriate bound in a spiked population model [16].
Most structures of an atom lie in low-dimension subspace and thus the leading
eigenvalues in set S1 ¼ kif gmi¼1 are mainly contributed by atom itself. The redundant-
dimension subspace S2 ¼ kif gNi¼mþ 1 is dominated by the noise. Because the atoms
contribute very little to this later portion, we take all the eigenvalues of S2 into con-
sideration to estimate the noise variance while eliminating the influence of trained
atoms. Moreover, the random variables kif gNi¼mþ 1 can be considered as the eigenvalues
of pure noise covariance matrix Rw, whose dimensions are N.

2.2 Asymptotic Bounds for Noise Eigenvalues

Suppose the sample matrix Rw has the form ðs� 1ÞRw ¼ HHT, where the sample
entries of H are independently generated from the distribution Nð0; r2nÞ. Then the real
matrix M ¼ HHT follows a standard Wishart distribution [17]. The ordered eigen-
values of M are denoted by �kmaxðMÞ� � � � � �kminðMÞ. In the high dimensional situ-
ation: N=s ! c 2 0; 1½ Þ as s ; N ! 1, the Tracy-Widom law gives the limiting
distribution of the largest eigenvalue of the large random matrix M [18]. Then we have
the following asymptotic expression:
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Pr
�kmax

�
r2n � l

n
� z

� �
! FTW1ðzÞ ð4Þ

where FTW1ðzÞ indicates the cumulative distribution function with respect to the Tracy-
Widom random variable. In order to improve both the approximation accuracy and
convergence rate, even only with few atom samples, we need choose the suitable
centering and scaling parameters l ; n [19]. By the comparison between different
values, such parameters are defined as

l ¼ 1=s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p� �2
n ¼ 1=s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p� �
1ffiffiffiffiffiffiffiffiffi
s�1=2

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
N�1=2

p
� 	1=3

8>><
>>: ð5Þ

The empirical distribution of the eigenvalues of the large sample matrix converges
almost surely to the Marcenko-Pastur distribution on a finite support [20]. Based on the
generalized result in [21], when N ! 1 and c 2 0; 1½ Þ, with probability one, we
derive limiting value of the smallest eigenvalue as

�kmin
�
r2n ! 1� ffiffiffi

c
pð Þ2 ð6Þ

According to the asymptotic distributions described in the theorems (4) and (6), we
further quantify the distribution of the ratio of the maximum eigenvalue to minimum
eigenvalue in order to detect the noise eigenvalues. Let T1 be a detection threshold.
Then we find T1 by the following expression:

Pr
�kmax
�kmin

� T1

n o
¼ Pr

�kmax
r2n

� T1 � �kmin
r2n

n o
� Pr

�kmax
r2n

� T1 � 1� ffiffiffiffiffiffiffiffi
N=s

p
 �2n o
¼ Pr

�kmax=r2n�l

n � T 1� 1�
ffiffiffiffiffiffi
N=s

p
 �2
�l

n

( )
� FTW1

T 1� 1�
ffiffiffiffiffiffi
N=s

p
 �2
�l

n

( ) ð7Þ

Note that there is no closed-form expression for the function FTW1. Fortunately, the
values of FTW1 and the inverse F�1

TW1 can be numerically computed at certain percentile
points [16]. For a required detection probability a1, this leads to

T1 � 1� ffiffiffiffiffiffiffiffi
N=s

p
 �2�l

n
¼ F�1

TW1ða1Þ ð8Þ

Plugging the definitions of l and n into the Eq. (8), we finally obtain the threshold

T 1 ¼
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p
 �2
ffiffi
s

p � ffiffiffiffi
N

p
 �2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p
 ��2=3

s� 1=2ð Þ1=6 N � 1=2ð Þ1=6
� F�1

TW1ða1Þþ 1

 !

ð9Þ
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When the detection threshold T1 is known in the given probability, it means that an
asymptotic upper bound can also be obtained for determining the noise eigenvalues of
the matrix Rw because the equality kmþ 1=kN ¼ kmax

�
kmin holds. In general, the noise

eigenvalues in the set S2 surround the true noise variance as it follows the Gaussian
distribution. The estimated largest eigenvalue kmþ 1 should be no less than r2n. The
known smallest eigenvalue kN is no more than r2n by the theoretical analysis [11]. The
location and value of kmþ 1 in S are obtained by checking the bound kmþ 1 � T1 � kN
with high probability a1. In addition, k1 cannot be selected as noise eigenvalue kmþ 1.

3 Noise Variance Estimation Algorithm

3.1 Bounded Estimator for Noise Variance

Without requiring the knowledge of signal, the threshold T1 can provide good detec-
tion performance for finite s ; N even when the ratio N=s is not too large. Based on this
result, more accurate estimation can be obtained by averaging all elements in S2.
Hence, the maximum likelihood estimator of r2n is

r̂2n ¼
1

N � m

XN
j¼mþ 1

kj ð10Þ

In the low dimensional setting where N is relatively small compared with s, the
estimator r̂2n is consistent and unbiased as s ! 1. It follows asymptotically normal
distribution as

ffiffi
s

p
r̂2n � r2n

 �! Nð0; t2Þ; t2 ¼ 2r4n

N � m
ð11Þ

When N is large with respect to the sample size s, the sample covariance matrix
shows significant deviations from the underlying population covariance matrix. In this
context, the estimator r̂2n might have a negative bias, which leads to overestimation of
true noise variance [22, 23]. We investigate the distribution of another eigenvalue ratio.
Namely, the ratio of the maximum eigenvalue to the trace of the eigenvalues is

U ¼ kmþ 1

1=ðN � mÞ � trðRwÞ ¼
kmþ 1

1
.
ðN � mÞ �PN

j¼mþ 1 kj
ð12Þ

According to the result in (4), the ratio U also follows a Tracy-Widom distribution
as both N; s ! 1. The denominator in the definition of U is distributed as an inde-
pendent r2nv

2
N

�
N random variable, and thus has Eðr̂2nÞ ¼ r2n and Varðr̂2nÞ ¼ 2r4n

�
ðN � sÞ. It is easy to show that replacing r2n by r̂2n results in the same limiting distri-
bution in (4). Then we have
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Pr
kmþ 1

�
r̂2n � l

n
� z

� �
! FTW1ðzÞ ð13Þ

Unfortunately, the asymptotic approximation present in (13) is inaccurate for small
and even moderate values of N [24]. This approximation is not a proper distribution
function. The simulation observations imply that the major factor contributing to the
poor approximation is the asymptotic error caused by the constant n [24]. Therefore, a
more accurate estimate for the standard deviation of kmþ 1

�
r̂2n will provide a significant

improvement. For finite samples, we have

E
kmþ 1

r2n

� 	
¼ l ; E

k4mþ 1

r4n

 !
¼ l2 þ n2 ð14Þ

Using these asymptotic results, we get the corrected deviation

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � s

2þN � s ðn
2 � 2

N � s l
2Þ

r
ð15Þ

Note that this formula in (15) has corrected the overestimation in the high
dimensional setting. thus the better approximation for the probabilities of the ratio is

Pr
kmþ 1

�
r̂2n � l

n0
� z

� �
� 1� FTW1ðzÞ ð16Þ

The determination of the distribution for the ratio U is devoted to the correction of
the variance estimator. In order to complete the detection of the large deviations of the
initial estimator r̂2n, we provide a procedure to set the threshold T2. Based on the result
in (16), an approximate expression for the overestimation probability is given by

Pr
r̂2n

kmþ 1
� T2

� �
¼ Pr

kmþ 1
�
r̂2n � l

n0
� 1=T2 � l

n0

� �
� 1� FTW1ð1=T2 � l

n0
Þ ð17Þ

Hence, for a desired probability level a2, the above equation can be numerically
inverted to find the decision threshold. After some simplified manipulations, we obtain

T2¼ 1
n0 � F�1

TW1ð1� a2Þþ l
ð18Þ

Asymptotically, the spike eigenvalue kmþ 1 converges to the right edge of the
support r2nð1þ

ffiffiffiffiffiffiffiffi
N=s

p Þ as N ; s go to infinity. According to the expression in (18), this
function turns out to have a simple approximation T2 ¼ 1=l in the high probability
case. Then the upper bound T2 � kmþ 1 for the known r̂2n yields a bias estimation.
Finally, the following expectation holds true:
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E
l � T2 � kmþ 1

1þ ffiffiffiffiffiffiffiffi
N=s

p
 !

� r2n 	 r̂2n ð19Þ

By analyzing the statistical result in (19), the correction for T2 � kmþ 1 can be
approximated as the better estimator than r̂2n because this bias-corrected estimator is
closer to the true variance under the high dimensional conditions. If r̂2n can satisfy the
requirement of no excess of the bound T2 � kmþ 1, the sample eigenvalues are consistent
estimates of their population counterparts. Hence, the optimal estimator is given by

r̂2
 ¼ min r̂2n ;
l � T2 � kmþ 1

1þ ffiffiffiffiffiffiffiffi
N=s

p
( )

ð20Þ

3.2 Implementation

Based on the construction of two thresholds, we propose a noise estimation algorithm
for dictionary learning as follows:

Algorithm 1 Noise Estimation for Dictionary Learning
1: Input: Noisy dictionary sD , the dimension N , the sample number s , the 

probability levels 1α and 2α . 
2: Compute the eigenvalues { } 1

N
i iλ = of the sample covariance matrix S∑ , and 

order 1 2 ... Nλ λ λ≥ ≥ ≥ . 
3: Compute two thresholds 1T and 2T . 
4: for 1: 1Ni −= do

if 11 Ni Tλ λ+ ≤ ⋅ then
Obtain the location 1 1m i+ = + , 1 1m iλ λ+ += and break

end if
end for

5: Estimate an initial noise variance 2ˆnσ using (10).
6: Compare the values of two estimators of (20) and select the minimum as an

optimal estimator 2σ̂ ∗ . 
7: Output: noise level estimation 2 2= ˆnσ σ∗ . 

4 Numerical Experiments

The proposed estimation method is evaluated on two benchmark datasets: Kodak [7]
and TID2008 [9]. The subjective experiment is to compare our method with three state-
of-the-art estimation methods by Liu et al. in [8], Pyatykh et al. in [9] and Chen et al. in
[11], which are relevant in SVD domain. The testing images are added to the
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independent white Gaussian noise with deviation level 10 and 30, respectively. We set
the probabilities a1 ; a2 ¼ 0:97 and choose N ¼ 256, s ¼ 3. In general, a higher noise
estimation accuracy leads to a higher denoising quality. We use the K-SVD method to
denoise the images [3]. Figures 1 and 2 show the results using our method outperform
other competitors. Moreover, our peak signal-to-noise ratios (PSNRs) are nearest to
true values, 32.03 dB and 27.01 dB, respectively.

To quantitatively evaluate the accuracy of noise estimation, the average of standard
deviations, mean square error (MSE), mean absolute difference (MAD) are computed
by randomly selecting 1500 image patches from 20 testing images. The results shown
in Table 1 indicate that the proposed method is more accurate and stable than other
methods. Next, we compare our optimal estimator r̂2
 with r̂2n and other two existing
estimators in the literatures. The simulated realization of a sample covariance matrix is
followed a Gaussian distribution with different variances. As presented in Table 2, the
performance of r̂2
 is invariably better than other estimators. To test robustness of our
estimation method, we further obtain the empirical probabilities of the estimated
eigenvalues at typical confidence levels. Figure 3 illustrates that two asymptotic
bounds can achieve very high success probabilities.

(a) Original image (b) Noisy image (28.14 dB) (c) Liu's (30.32 dB)

(d) Pyatykh's (33.99 dB) (e) Chen's (31.16 dB)  (f) Proposed (31.95 dB)

Fig. 1. Denoising results on the Woman image using K-SVD.
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(a) Original image (b) Noisy image (18.91 dB) (c) Liu's (26.34 dB)

(d) Pyatykh's (27.41 dB) (e) Chen's (26.48 dB)  (f) Proposed (26.91 dB)

Fig. 2. Denoising results on the House image using K-SVD.

Table 1. Estimation results of different methods (Best results are highlighted).

rn Liu’s [8] Pyatykh’s [9] Chen’s [11] Proposed

1 2.18 1.34 0.59 1.16
5 7.30 3.83 5.41 5.27
10 13.86 7.19 11.83 10.19
15 16.72 13.91 15.92 15.17
20 20.99 18.75 20.62 19.90
25 26.64 23.29 24.34 25.06
30 32.38 27.27 31.98 30.12
MAD 3.30 1.59 0.98 0.15
MSE 4.84 3.22 1.39 0.03

Table 2. Estimation results of four estimators (Best results are highlighted).

rn r̂median [23] r̂US [13] r̂n r̂

1 1.27 1.99 1.14 1.06
5 4.59 5.27 6.24 5.18
10 8.76 11.28 9.97 9.94
15 15.22 14.29 16.17 14.93
20 20.85 19.14 20.96 20.10
25 25.87 25.98 26.31 25.28
30 30.59 30.37 31.16 30.11
MAD 0.64 0.78 0.86 0.12
MSE 0.52 0.72 0.99 0.02
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5 Conclusions

In this paper, we have shown how to infer the noise level from a trained dictionary. The
eigen-spaces of the signal and noise are transformed and separated well by determining
the eigen-spectrum interval. In addition, the developed estimator can effectively
eliminate the estimation bias of a noise variance in high dimensional context. Our noise
estimation technique has low computational complexity. The experimental results have
demonstrated that our method outperforms the relevant existing methods over a wide
range of noise level conditions.
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