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Preface

Welcome to the proceedings of the First Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2018) held in Guangzhou, China!

PRCV emerged from CCPR (Chinese Conference on Pattern Recognition) and
CCCV (Chinese Conference on Computer Vision), which are both the most influential
Chinese conferences on pattern recognition and computer vision, respectively. Pattern
recognition and computer vision are closely inter-related and the two communities are
largely overlapping. The goal of merging CCPR and CCCV into PRCV is to further
boost the impact of the Chinese community in these two core areas of artificial intel-
ligence and further improve the quality of academic communication. Accordingly,
PRCV is co-sponsored by four major academic societies of China: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV aims at providing an interactive communication platform for researchers
from academia and from industry. It promotes not only academic exchange, but also
communication between academia and industry. In order to keep track of the frontier of
academic trends and share the latest research achievements, innovative ideas, and
scientific methods in the fields of pattern recognition and computer vision, international
and local leading experts and professors are invited to deliver keynote speeches,
introducing the latest advances in theories and methods in the fields of pattern
recognition and computer vision.

PRCV 2018 was hosted by Sun Yat-sen University. We received 397 full sub-
missions. Each submission was reviewed by at least two reviewers selected from the
Program Committee and other qualified researchers. Based on the reviewers’ reports,
178 papers were finally accepted for presentation at the conference, including 24 oral
and 154 posters. The acceptance rate is 45%. The proceedings of the PRCV 2018 are
published by Springer.

We are grateful to the keynote speakers, Prof. David Forsyth from University of
Illinois at Urbana-Champaign, Dr. Zhengyou Zhang from Tencent, Prof. Tamara Berg
from University of North Carolina Chapel Hill, and Prof. Michael S. Brown from York
University.

We give sincere thanks to the authors of all submitted papers, the Program Com-
mittee members and the reviewers, and the Organizing Committee. Without their
contributions, this conference would not be a success. Special thanks also go to all
of the sponsors and the organizers of the special forums; their support made the
conference a success. We are also grateful to Springer for publishing the proceedings
and especially to Ms. Celine (Lanlan) Chang of Springer Asia for her efforts in
coordinating the publication.



We hope you find the proceedings enjoyable and fruitful reading.

September 2018 Tieniu Tan
Nanning Zheng
Hongbin Zha

Jian-Huang Lai
Cheng-Lin Liu

Xilin Chen
Jie Zhou
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Chinese Painting Rendering by Adaptive
Style Transfer

Wanxin Zou1 , Xutao Li1(B) , and Sengping Li2

1 Department of Electronic Engineering, Shantou University, Shantou 515063, China
{wxzou,lixt}@stu.edu.cn

2 Department of Mechanical and Electronic Engineering, Shantou University,
Shantou 515063, China

spli@stu.edu.cn

Abstract. Chinese painting is distinct from other art in that the paint-
ing elements are exhibited by complex water-and-ink diffusion and shows
gray, white and black visual effect. Rendering such a water-and-ink paint-
ing with polychrome style is a challenging problem. In this paper, we
propose a novel style transfer method for Chinese painting. We firstly
decompose the Chinese painting with adaptive patches based on its struc-
ture, and locally colorize the painting. Then, the colorized image is used
for guiding the process of texture transfer that is modeled in Markov
Random Field (MRF). More precisely, we improve the classic texture
transfer algorithm by modifying the compatibility functions for search-
ing the optimal matching, with the chromatism information. The exper-
iment results show that proposed adaptive patches can well preserve the
original content while match the example style. Moreover, we present the
transfer results with our method and recent style transfer algorithms, in
order to make a comparison.

Keywords: Chinese painting rendering · Style transfer
Adaptive patch-based texture transfer · Markov Random Field

1 Introduction

As a traditional art in China, Chinese painting differs from other art in its expres-
sive brush strokes and ink diffusion. To ideally render water-and-ink painting,
many researchers attempted to use computer simulation for such complicated
texture generation [13,15]. In this paper, we aim to render Chinese painting
with other artistic style, which is regarded as a style transfer problem.

Style transfer is to synthesize an image that combines the structure of a
original image with the artistic style of the example image. In this work, it

Supported by NSFC No. 61471229/61573233. and Department of Education of Guang-
dong Province (2015KCXTD018/2017KCXTD015).
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is a process of migrating a style from an example image to Chinese painting,
which can be generally regarded as transferring two different painting style.
In animation production and video post-production fields, style transfer and
related approaches are highly interested as they facilitate generating different
scenes [9,12]. Although various methods have been proposed for this issue, style
transfer task has not been well-defined. The core difficulty is how to distinguish
style feature from semantic content in an image, including all visual attributes
such as texture, strokes, color and shading.

Previous study offers two distinct methods for style transfer: One is gen-
eralization of classic texture synthesis approaches, such as the works in [2,3],
in which optimal patches of a single image are expected to be found based on
local similarity. An alternative technique for style transfer problem emerged in
recent years, defining content and style representation of two images and using
Convolutional Neural Networks (CNN) to merge the corresponding content and
style [7].

Our work is motivated by patch-based texture synthesis approaches. In spite
of traditional patch-based texture synthesis methods made an impressive success
for style transfer, the limitations should be overcome. For example, the local
texture synthesis is accomplished in the same and fixed size patches throughout
the whole image, where the size of the patch is a tradeoff between the style and
the content to be preserved in the output image. The size of patch should be large
enough to exhibit the patterns that characterize the example style, yet small
enough to reconstruct the realistic content of original image. Another limitation
is that traditional constrains in transferring consider only luminance and local
neighboring similarity of target image, without color information. Hence, we
propose a style transfer method for Chinese painting which is able to overcome
the limitations. The main contributions of this work are summarized as follows:

• We adaptively divide target Chinese painting into patches based on its local
similarity for texture synthesis, in stead of using patches of constant size, so
as to achieve a realistic reconstruction of the original image while present
most noticeable example style;

• Constraints are modified in the process of texture synthesis, where color is
considered as a relevant factor guiding local texture transfer. It may guarantee
the validity in transfer process, where the futile texture is prevented.

2 Related Works on Style Transfer

Style transfer can be considered as a special case of texture synthesis, where the
content image influences the regular synthesis process. In the literatures of tra-
ditional texture synthesis and transfer, example-based methods are to generate
a texture image by computing non-parametric sampling from a given example
style image based on Markov Random Field (MRF). One of the earliest works in
[2] by Efros and Leung takes a pixel to be synthesized by random sampling from
a set of candidate pixels that are selected from an example texture image. This
process is repeated for every output pixel by growing from the initial region until
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all the output pixels have been already synthesized. Intuitively, the neighborhood
size should be equal to the texture element sizes. Otherwise, the output texture
may be too random or regular pattern may be reduced. The quality and speed
of these pixel-based approaches [2,14] were improved by path-based one. In [3],
a patch-quilting procedure for texture synthesis is proposed, and then extended
it to texture transfer. Patch-based texture transfer is similar to pixel-based one,
except that instead of synthesizing pixels, it copies patches.

The work in [8] suggested texture optimization as texture synthesis method
beyond pixel-based and patch-based algorithms. The algorithm synthesizes an
output texture in the units of pixels, but unlike previous pixel-based methods
that synthesize pixels one by one in a greedy fashion, this technique considered
all pixels together, determining pixel values by minimizing a quadratic energy
function. This energy function has been modified by the latest work in [4] to
match the transfer task better. In details, both content and example style image
were restricted by a segmentation mask adding to the energy function, in order
to determine which parts to be transferred and preserved.

Recently, an impressive work of style transfer is using Convolutional Neu-
ral Networks (CNN)[7]. Their methods adopt a pre-tranined CNN to extract
features from both the style and the content images, respectively.

Motivated by [5], which consider an explicit probability density modeling of
the problem and computes an approximate Maximum a Posteriori(MAP) solu-
tion based on an iterative optimization of Belief Propagation or Graph cuts, we
propose a novel style transfer method for Chinese painting. Unlike the traditional
patch-based algorithm in [3], we propose an adaptive patch for style transfer.
Especially given that our target image in this work is black-and-white Chinese
painting with expressive content, we improve classic style transfer algorithms by
modifying the optimal match condition to overcome such a challenge.

3 Problem Description

Traditionally, Chinese painting (water-and-ink) is presented by ink diffusion of
different degree on the Xuan paper. The objects are in a wide range of scale,
painted by complex and expressive brush strokes. In other words, while some
scene objects are always painted with rough brushwork, the key objects are
painted in detail with subtle brushwork. For example, in Fig. 1(a), the distant
mountains are roughly painted by great water-and-ink diffusion but the fish-
erman and the texture of the mountains nearby are exhibited subtly by slight
ink spreading. Moreover, ink diffusion can be also used for rendering Chinese
painting as “color”, such as the representation of cloud and shading.

Our goal is to transfer other artistic styles such as impressionism and post-
impressionism to Chinese painting. Consequently, we propose a style transfer
method that adopts an adaptive patch for patch-based texture transfer, and
colorization to guide the process of style transfer. At first, we give the problem
definition of style transfer for Chinese painting.

Given a Chinese painting C : ΩC ∈ R
3, and a style image S : ΩS ∈ R

3

with certain style. We aim to synthesis an image Cout which captures the style
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of S while preserves the semantic content of C. This can be considered as find-
ing a mapping f : ΩC → ΩS which comfirms each element X ∈ ΩC with a
corresponding element Y = f(X) ∈ ΩS .

Applying a similar idea for patch-based texture transfer, the correspon-
dence mapping f should be a piecewise constant translation mapping on region
P = {Pi}ni=1 of ΩC . In order to extract the style feature of S while preserving
the structure of C, the region P should be obtained based on the painting ele-
ments of C, and the texture as well as color of S should be taken into account
for the optimal corresponding f(x). Especially, to transfer the style elegantly,
smoothness is required on the boundary between neighboring regions.

4 Style Transfer for Chinese Painting

In this section we detail the proposed style transfer algorithm. In order to meet
the requirements mentioned above, our approach can divided into three main
steps:

• Adaptively decompose ΩC into n regions P ;
• Locally render ΩC according to the color of S;
• Find the optimal mapping f based on MRF model;

Moreover, corresponding experiment results are presented to illustrate the
performance of each step. We note that our style transfer is accomplished in
YUV color space, since we consider both luminance and chrominance in the
process of texture transfer.

4.1 Adaptive Decomposition for Chinese Painting

We firstly recall that in patch-based texture transfer, the original image to be
rendered is decomposed into fixed size patches, and assign one node of a Markov
network. Generally, if the size of patches are small (for example the size of 8×8),
the content of original image can be ideally reconstructed yet the style of the
example style image is nearly obvious; on the contrary, if large patches have been
chosen for texture synthesis, the considerable details of original image are lost.
To reconstruct the realistic content of original Chinese painting while inheriting
the example style, we divide the original image into adaptive-size patches based
on its structure and pixel distribution.

Let decomposition starts with one single region Pi ∈ ΩC , of size m×m. Each
region Pi is divided into four equal squares, with each size of m

2 × m
2 , if pixel

value Xi = (x1, x2, . . . xm×m) ∈ Pi satisfies:

D(Xi) > σ or m > ω (1)

where σ is the threshold; D(Xi) = (max(Xi) − min(Xi)) presents the difference
between the maximum and minimum value in region Pi, and ω is the maximum
patch size allowed in the quadtree.
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(a) Original image (b) Adaptive decomposition

(c) Style image (d) Style transfer result

Fig. 1. Illustration of adaptive decomposition (Color figure online)

The local variance of a quadtree cell decides whether a cell is divided into
four cells, which depends the details in C. As illustrated in Fig. 1(b), the more
delicate elements in the original image are divided into the more smaller patches
to be transferred, such as the trees and fisherman nearby. Thus, the content of
original image can be perfectly preserved in texture synthesis, while the style
feature can be reflected as much as possible, as showed in Fig. 1(d). Obviously,
our decomposition only depends on the structure of original image, rather than
the stopping criteria for quadtree splitting in [6].

In Fig. 2, we present a comparison of between our adaptive patches and Image
Quilting with fixed-size patches in [3]. To make it clear, We choose the smallest
size of patch allowed in two algorithms, and highlight two specific differences in
the results by red rectangles. It can be observed that two persons on the bridge
and the curved roof of pavilion reconstructed by our method are more clearer
than those reconstructed by Image Quilting as showed in Fig. 2(c) and Fig. 2(d).
These results present that our adaptive patches preserves the original content
better than fixed-size patches.
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(a) Original image (b) Style image

(c) Our method (d) Image Quilting [3]

Fig. 2. Comparison of adaptive patches and fixed-size patches: Our method with adap-
tive patches and the minimal size of patches is 4 × 4 as showed in (c); (d) present the
result of Image Quilting algorithm with patches of fixed size 8×8. (Color figure online)

4.2 Locally Color Transfer

Color style transfer is an essential step in style transfer which has usually been
done separately after texture transfer in classic approaches. Due to that the
brightness and darkness in Chinese painting are exhibited by complex ink diffu-
sion, the colors are usually gray, black and white, while the other artistic style is
generally colorful. Without chrominance information, the color fidelity of exam-
ple style cannot be guaranteed during reconstructing Cout. It is worse that the
futile texture may appear which is not conform to semantic content of the orig-
inal image. Thus, instead of transferring texture only in luminance, we consider
the chrominance information.

Here, we preprocess colorization for original Chinese painting before texture
transfer. Specific colors in S are extracted as color seeds for local rendering
through colorization method suggested in [10]. Then, the rendered image C̃
guides the texture transfer as one of criteria in chrominance. In detail, we search



Chinese Painting Rendering by Adaptive Style Transfer 9

(a) Original image (b) Style image

(c) Our method (d) Image Quilting [3] (e) Split and Match [6]

Fig. 3. Illustration of locally color transfer: Our result is more reasonable than the
one of Image Quilting method, since there is futile texture on the farmland by Image
Quilting [3]. And the color gamut of our result is more similar to the color gamut
of style image compared to the results of Split and Match method [6]. (Color figure
online)

for the optimal match for texture transfer in luminance as well as chrominance
(in YUV color space), which is described in next 4.3.

Similarly, we show the transfer results in Fig. 3. It is noted that if consider
luminance as the only matching condition for texture transfer, the futile texture
are synthesized, as showed in Fig. 3(d). From semantic understanding, the color
of farmland should be yellow or green, but Image Quilting algorithm (and other
classic methods that only consider luminance) synthesizes blue and white tex-
ture. As presented in Fig. 3(c), compared with the traditional algorithms, our
method can obtain a reasonable output image since the chrominance is con-
sidered. In addition, the color gamut of our result is more similar to the color
gamut of style image than the results of Split and Match method shown in 3(e).
It is indicated that the color style can be better extracted with chromatism
information.
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4.3 Optimal Match

As mentioned above, both the original image and example style image are divided
into patches where each patch is one node of a Markov network. With the frame-
work of Markov Random Field (MRF), the problem of patch-based style transfer
can be solved through computing the Maximum Posteriori from a well chosen
joint probability distribution on all patches [5]. Thus, the optimal mapping f
can finally be found with MRF model.

The MRF model in our work is illustrated in Fig. 4, which can be found
that the links on original image connect adaptive patches rather than fixed size
patches. We search for the optimal match for each patch by finding maximum
a posteriori (MAP), which is equally maximizing the joint probability over the
Xi and Yi, that can be written as

Pr(X1,X2, . . . XN , Y1, Y2, . . . YN ) =
∏

(i,j)∈N

Ψi,j(Xi,Xj)
∏

k∈N

Φk(Xk, Yk), (2)

where Ψi,j(Xi,Xj) are pairwise interaction potentials between neighboring nodes
i and j, while N(i, j) denotes the neighbors of patches. Ψi,j(Xi,Xj) ensures that
neighboring patches are similar in their overlapping region and it can be written
as

Ψi,j(Xi,Xj) = exp(−E(Xi,Xj)) (3)

where E(Xi,Xj) = ‖Xi − Xj‖2 is the error term of the overlapping region
between two patches. Φk(Xk, Yk) are the data penalty functions given by

Φk(Xk, Yk) = exp(−θ(Xk, Yk)). (4)

where θ is the weighted error term between the newly chosen block and the
old blocks. As discussed in 3.3, we use colorized image C̃ to guide the texture
transfer, hence, θ[Xk, Yk] is defined as

θ(Xk, Yk) = αd(Xk, Yk)Ori + βd(Xk, Yk)Ch + μd(Xk, Yk)L. (5)

Fig. 4. Markov network for our work: Each node in the network describes a local
adaptive patch of original or example image.
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(a) Original image (b) Style image (c) Style transfer result

Fig. 5. Transfer results on different style examples: Original Chinese painting (left
column), example style images (middle column), and the style transfer result (right
column).

We modify the criterion in [3] by adding d(Xk, Yk)Ch, presenting the square error
of patches between rendered image C̃ and example style image S. d(Xk, Yk)Ori

is the square error of the overlapping regions in the original image C, and
d(Xk, Yk)L is the square error term of patches between original image and style
image in luminance. α, β and μ are three positive weights that no bigger than 1
(respectively fixed to 0.2, 0.2 and 0.6 in all experiments).

Finally, we achieve an optimal boundary of adjacent patches to remove visibly
artificial seams. This minimal cost path through the overlap region can be done
with dynamic programming [1]. Other transfer results with respect to different
example style are presented in Fig. 5. With different style, our algorithm is able
to transfer example style while ideally reconstruct the content of the original
painting.

5 Comparison of Our Method and Other Approaches

In this section, we would like to make a comparison between our method and
recent style transfer approaches.

As shown in Fig. 6, we present the experimental results with our method
and a popular method Convolutional Neural Network (CNN) with the param-
eter setting in [7]. Both our method and CNN achieve ideal reconstruction for
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(a) Original image (b) Style image (c) Our method (d) CNN [7]

Fig. 6. Comparison with CNN approach: Original Chinese paintings (first column),
different style images (second column), our results (third column), and results of CNN
approach (last column). (Color figure online)

original content. The subtle texture feature of the style images can be captured
with our method such as the wavy strokes in Van Gogh’s Starry night. Even
the detail texture element like the yellow and white points are preserved in our
result, which hardly appear in CNN transfer results. And the color gamut of
our results is more closer to the color gamut of style images, compared with the
results of CNN. This is due to that in the style transfer process, we choose the
optimal patches in the original style image as the generated patches in stead of
extracting the abstract style feature. While CNN uses deep and abstract style
representation, it loses low-level pixel features of the style image. Moreover, CNN
has the trade-off problem of style and content matching, which has been men-
tioned in [7]. Similarly, the transfer method in [11] applies MRF prior defining
the loss function for CNN to control the abstract style layout yet our algorithm
improves compatibility functions of MRF to generates style directly from the
style image, rather than extracting the abstract style step by step.

As we mentioned in Sect. 4.1, our adaptive decomposition for the content
image only depends on the local variance, while the recent work by Frigo et
al., in [6] also regards the similarity between the content image and the style
image as the decomposition criterion. Most importantly, compare with Split and
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Match method transfers color style separately after texture transfer, we combine
texture transfer and color style transfer, by guiding the texture transfer process
with chromatism information. As depicted in Fig. 3, our result maintains the
original color style of the style image including green, blue and yellow color. Yet
the results of Split and Match method almost miss yellow color feature. The
color gamut of our result is more closer to the color gamut of style image.

6 Conclusion

In this paper, we regard the rendering problem of Chinese painting as a style
transfer issue and propose a new style transfer method for Chinese painting.
Based on the characters of Chinese painting where the painting elements are
always have obviously distinct scale, adaptive-size patches are applied for texture
transfer in our approach. Additionally, we modify the constraints in texture
transfer based on MRF model, considering color information of both style image
and colorized original image. The local colors of style image are extracted as
color seeds for rendering the black-and-white Chinese painting, which helps to
guide the process of texture transfer.

The experimental results of each step are presented to clearly illustrate the
improvement by our proposed algorithm. The results suggest that decomposing
target Chinese painting with adaptive patches to be transferred is able to well
preserve the original content while transferring example style, and the color style
can be captured with chromatism information. Finally, we discuss the compar-
ison of our method and other state-of-the-art style transfer methods, including
patch-based approach and CNN framework.
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Abstract. Image caption task has been focusing on generating a descriptive
sentence for a certain image. In this work, we propose the accurate guidance for
image caption generation, which guides the caption model to focus more on the
principle semantic object while making human reading sentence, and generate
high quality sentence in grammar. In particular, we replace the classification
network with object detection network as the multi-level feature extracter to
emphasize what human care about and avoid unnecessary model additions.
Attention mechanism is utilized to align the feature of principle objects with
words in the semantic sentence. Under these circumstances, we combine the
object detection network and the text generation model together and it becomes
an end-to-end model with less parameters. The experimental results on MS-
COCO dataset show that our methods are on part with or even outperforms the
current state-of-the-art.

Keywords: Image caption � Object detection � Attention mechanism
Deep learning

1 Introduction

Image caption task aims at automatically generating a descriptive sentence to describe
the content of an image with an English sentence [1]. With the explosive increase in
digital images and the rapid development in deep learning, teaching machines to
understand images as humans is drawing great interests. At the outset, computer vision
task aims at classifying the category of a single image (image classification). Hereafter,
researchers try to locate the position of objects in more complicated scenes (object
detection). After that, researchers further want to distinguish the category of per-pixel
(semantic segmentation). Along with this fruitful development route, researchers owe it
to comprehending the semantic information of the picture better and better. Meanwhile,
another understanding of the images’ semantic information is to describe an image’s
content with a human-like sentence (image caption). This idea is closer to human’s
habit when there is a scene in front of their eyes. While caption task seems obvious for
human beings, it is much more difficult for machine since it requires the ‘translation’
model to capture several semantic information from a certain image. Such as scenes,
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objects, attributes, relative position and so on. Another challenge of caption task is to
generate descriptive sentence meeting the grammar rules.

Recently, Neural network methods [2, 3] dominate the literature in image cap-
tioning. The encoder-decoder architecture in Neural Machine Translation [4] inspire
these methods very much. In contrast to original Neural Machine Translation model,
image caption model replace the recurrent neural network (RNNs) with convolutional
neural network (CNNs) as encoder. CNNs encode the input image into a feature vector,
which represents the semantic information of the image. Then a sequence modeling
approach (e.g., Long Short-Term Memory (LSTM) [5]) decodes the semantic feature
vector into a sequence of words. Such architecture applies to the vast majority of image
caption model.

The method to combine CNNs and RNNs together directly will result that the
information of the input image decreases by iterations. In this situation, researchers
start to utilize image guidance [3], attributes [6] or region attention [7] as the extra input
into LSTM decoder for better performance. The original intention comes from visual
attention, which has been known in Psychology and Neuroscience for a long time.
Attention mechanism highly relies on the quality of the input image. If there are too
much redundant information in the image, it will be hard for attention mechanism to
capture the principal information. As shown in Fig. 1, the proportion of principal
objects (humans and surfboards) is very low. CNNs-encoder usually reduce the
dimension of feature vector a lot, which will make it harder for attention mechanism to
capture the information for subject, object and other noun composition. In this con-
dition, if we insist on applying attention mechanism to the whole image like [7],
caption model may not know what to describe.

In Natural Language Processing, scientists take the noun composition in a sentence
as the focus, which people care more about. In image caption task, the noun compo-
sition corresponds to the principal object in an image. To help image caption model to

Fig. 1. This is an example picture in MS-COCO dataset. The caption ground truth is “Several
surfers riding a small wave into the beach”. The proportion of principal object (humans and
surfboards) is well low. There are too much redundant information, such as sky, which will make
it harder for attention mechanism to align the principal object with the noun composition in the
descriptive sentence.

16 X. Qi et al.



capture the principal object more accurate, we propose to get help from object detection
task. Object detection task has been studied for a long time. CNNs framework is widely
used and rapidly developed in object detection task, such as R-CNN [11], Fast-RCNN
[12], Faster-RCNN [13]. These models are able to capture principal objects in the
image very well. So we propose to make use of the feature of object detection methods
to encode the image and generate guidance for the language generate model. We call it
as accurate guidance. This advance also means to combine the higher level of semantic
information in computer vision task with the semantic meaning in human-reading
sentence.

We implement our model based on a single state-of-the-art object detection net-
work Faster-RCNN [13], for accuracy and speed. Simultaneously, our model can be
trained end-to-end, which will make the object detection module to adjust itself to suit
for the image caption task. We take the Google NIC [7] as the baseline and compare
our methods with popular attention models on the commonly used MS-COCO dataset
[9] with publicly available splits of training, validation and testing sets. We evaluate
methods on standard metrics. Our proposed methods outperform all of them and
achieve state-of-the-art across different evaluation metrics.

The main contributions of our paper are as follows. First, we propose accurate
guidance mechanism to help the caption model capture the principal object more
precisely and infer their relationships from global information simultaneously. Second,
the proposed method utilize a single object detection network as the multi-level feature
extracter and demonstrates a less complicated way to achieve end-to-end training of
attention-based captioning model, whereas state-of-the-art methods [3, 6, 19] involve
LSTM hidden states or image attributes for attention, which compromises the possi-
bility of end-to-end optimization.

2 Related Work

Recent successes of deep neural networks in machine translation catalyze the adoption
of neural networks [8] in solving image caption problems. Early works of neural
networks-based image caption include the multimodal RNN [10] and LSTM [5]. In
these methods, neural networks are used to both image-text embedding and sentence
generating.

Attention mechanism has recently attracted considerable interest in LSTM-based
image captioning [3, 6]. Xu et al. [7] proposed to integrate visual attention through the
hidden state of LSTM model. You et al. [6] propose to fusion visual attributes extracted
from images with the input or output of LSTM. These methods achieve state-of-the-art
performance but they highly rely on the quality of the pre-specified visual attributes.
Our method also use attention mechanism. Different from the predecessors, we con-
sider the object detection-dependent attention to generate high quality guidance rather
than search at the whole noisy image. It is an adaptive method to obtain high quality
features.

Reinforcement Learning has recently been introduced into image caption task [20]
and achieved state-of-the-art performance due to optimize the evaluation metrics
directly. These methods are generally applicable training approach not the
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improvement for the caption model. Thus, we don’t compare with them but believe that
our model will gain much higher performance with Reinforcement Learning.

[19] first proposes to utilize object detection method in image caption task.
However, it utilize Fast-RCNN to detect and VGG net [15] to locate. The caption
model is very redundant. While generating guidance, it keep the region of its bounding
box unchanged and set remaining regions to mean value of the training set for each
object in image. This process will bring much interference to the caption model. Our
method solves these puzzles by taking the single object detection network as the multi-
level feature extracter. In this way, our method is a clean architecture for the ease of
end-to-end learning.

3 Methods

Our accurate guidance model includes a multi-level feature extraction module (MFEM)
and a principal object guiding LSTM (po-gLSTM). Figure 2 shows the structure of our
model. We first describe how to use object detection network as MFEM to simulta-
neously extract the features of the whole image (feaw) and principle objects (feao) in
Sect. 3.1. Then, we introduce our po-gLSTM which will take advantage of the multi-
level feature to guide the LSTM to describe the image more precise in Sect. 3.2.

3.1 Multi-level Feature Extraction Module

Figure 3 shows the framework of multi-level feature extraction module. The MFEM
consists of two parts: (1) feao extraction network (above the red dotted line); (2) feaw
extraction network (below the red dotted line). It is a variant of Faster-RCNN [13]. In
order to capture the principle objects better, for an input image I, we suppose to utilize
object detection network to find the potential objects and extract feao, which denoted as
feao ¼ obj1; . . .; objNf g and formulated as formula (1). N is the number of potential
objects. RPN (Region Proposal Network) splits the principle object parts from the
whole image. CNNh2 is to further extract the features after RPN.

fea0 ¼ CNNh2 RPN CNNh1 Ið Þ½ �f g ð1Þ

Fig. 2. The structure of our accurate guidance model
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Simultaneously, we also need feaw so that the po-gLSTM can get the information of
scenes and infer the relationship between objects. In this situation, the original output
of Faster-RCNN framework does not meet the conditions. Thus, we try to fix it’s
framework so that it can extract feaw at the same time. As shown in the part below the
red dotted line in Fig. 3, we get a copy of the feature after CNNh1 and take it into
CNNh2 directly. Then we get an imitation classification network followed with feaw,
formulated as formula (2).

feaw ¼ CNNh2 CNNh1 Ið Þ½ � ð2Þ

Notice that the CNNh2 with dotted border (below the red dotted line) is the same
with the CNNh2 with solid border (above the red dotted line). We do not increase the
model parameters but obtain feaw successfully. Faster-RCNN argues the size of input
image should be larger than 600 pixel � 600 pixel. For reducing the model parameters,
we replace its’ fully connected layer with the Global Average Pooling layer to
embedding feaw and resize it to fit the size of the principle object guiding LSTM’s
input, formulated as follows:

x0 ¼ Poolave feawð Þ ð3Þ

x0 is utilized to initialize decoder in Sect. 3.2. Here, we have already gotten the
multi-level feature of the input image. The multi-level feature carries the multi-level
semantic information. As later experiments will demonstrate, multi-level feature
extraction module will help the model to focus more on the principle objects and
achieve better performance.

3.2 Principal Object Guiding LSTM (po-gLSTM)

As shown in Fig. 4, the function of po-gLSTM is to decode the multi-level semantic
information of the image and generate corresponding descriptive sentence. In this
section, we will first introduce the condition attention module to obtain the principle
object information for the current word. Then we will introduce how to make use of the
principle object information to guide the LSTM to generate sentence. Both of above,
we treat them as a whole and call it as po-gLSTM.

Fig. 3. The structure of the MFEM (Color figure online)
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Condition Attention Module
With the multi-level feature extraction module, feao and feaw of an input image will be
extracted easily. Each word in caption is represented by a one-hot vector and the
captioning sentence is a sequence of input vectors x1; . . .; xTð Þ. Same as previous
methods, we utilize feaw to initialize the decoder (LSTM), the decoder then computes a
sequence of hidden states h1; . . .; htð Þ and a sequence of outputs y1; . . .; ytð Þ. The primer
decoder only accesses feaw (encoded as x0) once at the beginning of the learning
process, which will loss most of the information of image I by iterations, and output
incorrect words or stop too early. To avoid this, we proposed to utilize condition
attention module (CAM) [6] to stress the role of principle objects and supply necessary
information lost by iterations. CAM is formulated as followed:

ait ¼ Wtanh Waoobji þWahht�1ð Þi ¼ 1; . . .;N ð4Þ

at ¼ softmax atð Þ ð5Þ

guit ¼
XN

i¼1
aitobji ð6Þ

W ;Wao;Wah are learnable parameters. N is the number of principle object in an
image. ait is the relevance of obji and ht�1. The elements of at is utilized to combine the
guiding information (principle objects). guit is the guidance at iteration t.

With attention mechanism, model will know “where to see” while generating every
word. We also make a visualization of attention mechanism to prove it in later
experiment.

Fig. 4. (a) CAM is the condition Attention Module, which is to generate guidance information
guitð Þ by principle object features fea0ð Þ and the information of hidden layer at previous step
ht�1ð Þ. (b) This sketch map shows how to utilize x0 and guit to generate descriptive sentence.
Both of (a) and (b) make up the po-gLSTM.
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Guiding LSTM
The generated sentence by the LSTM model may lose track of the original image
content since it only accesses the image content once at the beginning of the learning
process, and forgets the image even after a short time. To make use of guit mentioned
above and supplement the forgotten information if necessary, we propose to utilize an
extension of the LSTM model, named the guiding LSTM (gLSTM) [3], which extracts
semantic information from the input image and feeds it into the LSTM model every
time step as extra information. Its’ gate and memory cell can be formulated as follows:

i0t ¼ r W 0
i h0t�1; x

0
t; guit

� �� � ð7Þ

f 0t ¼ r W 0
f h0t�1; x

0
t; guit

� �� �
ð8Þ

o0t ¼ r W 0
o h0t�1; x

0
t; guit

� �� � ð9Þ

fC0
t ¼ tanh W 0

c h0t�1; x
0
t; guit

� �� � ð10Þ

C0
t ¼ f 0t C

0
t�1 þ i

0
t
fC0
t ð11Þ

h0t ¼ o0t � tanh C0
t

� � ð12Þ

x0tþ 1 ¼ W 0
emb log softmax W 0

hh
0
t

� �� � ð13Þ

Where W 0
s denote learnable weighs, � represent element-wise multiplication, r �ð Þ is

the sigmoid function, tanh �ð Þ is the hyperbolic tangent function, x0t stands for input at t-
th iteration, i0t for the input gate, f

0
t for the forget gate, o

0
t for the output gate, C

0
t for state

of the memory cell, h0t for the hidden state.
o0t decides what to forget in C0

t . Its’ decision is up to h0t�1 and x0t. In original LSTM,
when o0t decides that forgetting some information is helpful for x0tþ 1, it will be
impossible for x0t0 ðt0 [ tþ 1Þ to utilize the forgotten information. The longer the
descriptive sentence, the worse the condition like this is.

gLSTM is able to supplement the forgotten information if necessary. Condition
attention module will also help to pick the most helpful principle object for x0tþ 1. And
we call our gLSTM with principle object condition attention module as op-gLSTM.
Somebody may doubt weather emphasizing the principle object so much is helpful.
Our experiment will verify that the model can infer the relationship better with stronger
principle object information and it will cause no trouble for extracting the scene from
feaw.

One benefit of op-gLSTM is that it allows the language model to learn semantic
attention automatically through the back-propagation of the training loss. While [19]
only utilize objects and locations, other semantic information, such as scenes and
motion relationship, is discarded.
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4 Experiments

4.1 Dataset and Experiment Setup

Dataset
We use MS-COCO dataset [9] in our experiments. The dataset contains 123287 images
respectively and each is annotated with 5 sentences using Amazon Mechanical Turk.
There are 80 classes included in the dataset. We use 113287 images for training, 5000
images for validation and 5000 images for testing.

Experiment Setup
The inputting image is resized to 600 pixel � 600 pixel. The training process contains
three stages: (1) pre-train the object detection network (Faster RCNN) on MS-COCO
dataset. (2) combine the multi-level feature extract module (a variant of the pre-trained
Faster RCNN) with our po-gLSTM and train the po-gLSTM to equip it with the ability
to decode. (3) train the integral model end-to-end to help our multi-level feature extract
module and po-gLSTM fusion better. Four standard evaluation metrics, e.g. BLUE,
METEOR, ROUGE_L, and CIDER, are used evaluate the property of the generated
sentence.

4.2 Comparison Between Different CNNs Encoders

Encoder is used to extract the semantic feature of the input image. The property of the
extracted feature is decisive to our caption model. To explore which encoder is more
proper, we use three different CNNs in our experiments, including 50-layer and 101-
layer ResNets [14] and 16-layer VGGNet [15]. Table 1 shows the experimental result.

The experimental results show that deeper CNNs achieves higher scores on all
metrics. This indicates that deeper CNNs can capture better semantic features, which
contain more and better information for descriptive sentence generation. The guidance
of deeper CNNs is much more accurate.

4.3 Comparison to the State-of-the-Art

Several related models have been proposed in Arxiv preprints since the original sub-
mission of this work. We also include these in Table 2 for comparison.

Table 1. Results of different CNNs encoders. All values are reported as percentage (%).

CNNs encoders MS-COCO dataset
B1 B2 B3 B4 M R C

Ours-VGG16 70.9 53.1 38.4 27.4 23.5 51.3 88.0
Ours-RESNET50 72 54.4 39.8 28.9 24.1 52.3 90.8
Ours-RESNET101 72.9 55.6 41.0 29.9 24.7 53.1 96
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Table 2 shows the comparison results. Our models, both VGG16-based and
RESNET101-based, outperform other models at the same scale in most metrics by a
large margin, ranging from 1% to 5%. Models with attention mechanism, such as ATT
[6], Det+Loc [19] achieve better score than models without attention mechanism, such
as NIC [7] and LRCN [16]. Det+Loc [19] also utilize the object detection network
whose scores are better than the models with classification network. Notice that, our
VGG16-based model gets comparable performance with FC-2 K [20] (Resnet-101
based). Meanwhile, our RESNET101-based model outperforms FC-2 K in all metrics.
it’s up to 5.1% in CIDER. Det+Loc is an object detection-based model, which utilize
beam search (beam size 4) while testing. Without beam search, our VGG16-based
model outperforms it in Blue_1 and CIDER and slightly inferior to it in other metrics.
Det+Loc. introduce too much redundant information, which results in that its’ poorer
performance.

The results of comparison are strong evidence that (1) the object detection task does
have the ability to help with image caption model and our multi-level feature extract
module is better suitable for caption task. (2) Our end-to-end model can help the two
modules merge to get better performance in caption task.

4.4 Comparison Between Different Beam Search Size

In this section, we introduce Beam Search (BS) to replace Maximum Probability
Sampling Mechanism. BS is a heuristic algorithm, which will consider more situations
to generate better sentence while testing. The larger the beam size is, the more situation
will be considered. We take gLSTM as comparison and Table 3 shows the experi-
mental results.

Table 2. Results of different caption models. All values are reported as percentage (%).

Caption models MSCOCO dataset
B1 B2 B3 B4 M R C

NICs 66.6 46.1 32.9 24.6 – – –

LRCN 62.8 44.2 30.4 21.0 – – –

m-RNN 67.0 49.0 35.0 25.0 – – –

Soft-Attention 70.7 49.2 34.4 24.3 23.9 – –

Hard-Attention 71.8 50.4 35.7 25.0 23.0 – –

g-LSTM 67.0 49.1 35.8 26.4 22.7 – 81.3
ATT 70.9 53.7 40.2 30.4 24.3 – –

RA-SF 69.1 50.4 35.7 24.6 22.1 50.1 78.3
(RA-SF)-BEAM10 69.7 51.9 38.1 28.2 23.5 50.9 83.8
(Det.+Loc.)-BEAM4 70.4 53.1 39.2 29.0 23.8 52.1 85.0
FC-2K – – – 28.6 24.1 52.3 90.9
Ours-VGG16 70.9 53.1 38.4 27.4 23.5 51.3 88.0
Ours-RESNET101 72.9 55.6 41.0 29.9 24.7 53.1 96
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From Table 3, we can see that the performance of a model varies in different beam
size. Simultaneously, our model always outperforms gLSTM and it surpass Det+Loc.
at beam size = 4. This is another evidence that our accurate guided model is better than
other methods.

4.5 Qualitative Results

Figure 5 shows qualitative captioning results. To emphasize the effectiveness of our
accurate guidance model and for fair comparison, we compare our VGG16-based
model with the baseline model (NIC).

The example images include similar colors and rare actions. Our proposed model
can better capture objects in the target image, such as “a slice of pizza” in image (a) and
“a little girl” in image (b). Our po-gLSTM can better capture the scenes and rela-
tionships between objects, such as “on a pile of rocks” in image (b), “in the air” in

Table 3. Results of different Beam Size. All values are reported as percentage (%).

Beam size Model MS-COCO dataset
B1 B2 B3 B4 M R C

2 gLSTM 70.2 52.7 38.8 28.7 24.1 51.6 88.5
Ours-VGG16 71.7 54.3 40.3 29.8 24.2 52.2 92.5

3 gLSTM 70.2 52.8 39.1 29.0 24.1 51.6 88.9
Ours-VGG16 71.1 53.9 40.2 30.0 24.2 52.3 92.6

4 gLSTM 69.9 52.6 39.0 29.0 24.0 51.4 88.4
Ours-VGG16 70.7 53.5 39.9 30.0 24.2 52.2 92.1

Ex
am

pl
es (a)

NIC: a woman is eating 
a hot dog in a park.
Ours: a woman is eating 
a slice of pizza.
GT: There is a woman 
eating a slice of pizza. (b)

NIC: a bird is standing 
on a rock near a large 
body of water. 
Ours: a bird sitting on 
top of a pile of rocks. 
GT: A small orange bird 
standing on a collection 
of rocks.

(c)

NIC: a man in a suit and 
tie standing in a park. 
Ours: a little girl that is 
holding a stuffed bear.
GT: A girl sitting on a 
stone wall and eating. (d)

NIC: a man is riding a 
motorcycle on a dirt bike. 
Ours: a person jumping 
a dirt bike in the air. 
GT: A person up in the 
air with a motor bike.

Fig. 5. Qualitative results: NIC is the baseline model; Ours means our VGG16 based model;
GT is the ground truth.
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image (d) and “holding” in image (c), “jumping” in image (d). Assuredly, our model
may fail in some cases, such as “bear” in image (c). It is mainly due to there is no class
named as “hamburger” while training the object detection network and the hamburger
is covered with a white wrapping paper, which is hard for object detection task. If the
performance of object detection task gets better, our proposed model can achieve better
performance simultaneously. The qualitative result shows that object detection network
does do much help to capture the principle objects. Our model does not loss the
information of scenes and relationships between objects but it can even do better.

4.6 Visualization of Condition Attention Mechanism

In this section, we visualize the focus of CAM. The brighter part refers to higher
attention. Taking the first row as example, our proposed model focus exactly on the bus
in the image while generating the word-“bus”. When generating “parked”, the CAM
focus more on where the car and ground contact. This indicates that our po-gLSTM
does have the ability to focus on the effective objects all the time (Fig. 6).

5 Conclusion

In this work, we propose the framework of accurate guidance for image caption. It
combines a variety of object detection network (MFEM) and gLSTM with the help of
attention mechanism (po-LSTM). We show in our experiments that the proposed
methods significantly improve the baseline method and outperform the current state-of-
the-art on MS-COCO dataset, which supports our argument of explicit consideration of
getting help from object detection task.

Fig. 6. The visualization of condition attention mechanism on feature maps.
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Abstract. Visible watermark is extensively used for copyright protec-
tion with the wide spread of online image. To verify its effectiveness,
there are many researches attempt to detect and remove visible water-
mark thus it increasingly becomes a hot research topic. Most of the
existing methods require to obtain the prior knowledge from watermark,
which is not applicable for images with unknown and diverse water-
mark patterns. Therefore, developing a data-driven algorithm that suits
for various watermarks is more significant in realistic application. To
address the challenging visible watermark task, we propose the first
general deep learning based framework, which can precisely detect and
remove a variety of watermark with convolutional networks. Specifically,
general object detection methods are adopted for watermark detection
and watermark removal is implemented by using image-to-image transla-
tion model. Comprehensive empirical evaluation are conducted on a new
large-scale dataset, which consists of 60000 watermarked images with 80
watermark classes, the experimental results demonstrate the feasible of
our introduced framework in practical. This research aims to increase
copyright awareness for the spread of online images. A reminder of this
paper is that visible watermark should be designed to not only be striking
enough for ownership declaration, but to be more resistant for removal
attacking.

Keywords: Visible watermark · Watermark detection
Watermark removal · Deep convolutional networks

1 Introduction

Image, serving as an important information carrier for E-commercial and social
media, is widely employed and rapidly spreads nowadays. In modern life, many
online images are embedded with visible watermarks for ownership declaration.
In order to avoid the misuse of copyrighted images, it requires to perform water-
mark detection upon images before we use these images. Therefore, it is necessary
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 27–40, 2018.
https://doi.org/10.1007/978-3-030-03338-5_3
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to develop a watermark detector that is able to automatically and accurately
detect visible watermarks in images. Furthermore, as visible watermark plays an
important role in copyright protection, for purpose to verify its effectiveness, a
number of scientists attempt to attack it by removing watermark from images
after detection. Visible watermark detection and removal increasingly becomes
a hot research topic [1–6].

Developing robust visible watermark detection and removal methods remain
as a challenging task due to the diversification of visible watermarks. More specif-
ically, visible watermarks may consist of texts, symbols or graphic etc, leading
to the challenge of extracting discriminative feature from unknown and diverse
patterns of watermarks. In addition, the variations of the shape, location, trans-
parency and size of the watermarks in various sorts of watermarked image makes
it hard to estimate the area of watermark in practical situation.

Although researchers have extensively explored the visible watermark detec-
tion and removal problems [1–6], these works require handcraft feature from
images which highly depends on the prior knowledge. Thus, developing a fea-
sible approach that is able to tackle aforemention challenges for watermarked
images remains to be an unsolved problem. Recently, despite deep convolutional
networks have shown their strong performance on feature representation for com-
puter vision problems through taking advantage of massive image data, there
is a lack of deep learning method for watermark detection as well as removal,
and a lack of large-scale watermark dataset. Due to this fact, we contribute a
large-scale watermark dataset and further utilize deep learning to generalize the
detection and removal of unknown and diverse watermark patterns.

In this work, we propose a new visible watermark processing framework con-
sisting of the robust large-scale watermark detection and removal components.
Both of watermark detection and removal are build upon deep convolutional net-
works. Generally speaking, we exploit the trained watermark detector to locate
the area where there is a watermark, which will be cropped out and used for
the removal. To be more specific, we adopt the framework of current state-of-
the-art object detectors as our watermark detection basic network, which is fur-
ther implemented to be suitable for detecting and locating visible watermarks in
images. In the removal procedure, we cast the watermark removal into an image-
to-image translation problem, where we propose a full convolutional architecture
to transfer the watermarked pixels into the original unmarked pixels effectively.
Finally, both components are able to collaborate together to perform visible
watermark detection and removal tasks automatically and consistently.

In summary, the main contributions of this work are: (1) It is the first work
that formulate the visible watermark detection as an object detection problem
and adapt existing detectors to make them suitable for automatical watermark
detection. To achieve this, we contribute a new large-scale visible watermark
dataset with dense annotations to facilitate the lack of large-scale image dataset
for visible watermark detection task. (2) We propose an integrative deep learn-
ing based framework to fully address the visible watermark processing problem
including detection and removal. Moreover, extensive comparison experiments
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are conducted to evaluate our proposed framework and the experimental results
demonstrate the effectiveness and efficiency of our proposed framework for com-
plex visible watermark detection and removal tasks in real-world scenarios.

2 Related Work

Watermark Detection and Removal. In watermark detection and removal
literature, existing methods can be divided into two categories: (a) single image
schemes [1–3]. (b) stock images schemes (a large stock of images with same type
of watermark) [4,5]. For single image schemes, Santoyo-Garcia et al. [1] pro-
posed to decompose a watermarked image and then distinguish the watermarked
area from the structure image. Pei and Zeng [2] utilized Independent Compo-
nent Analysis (ICA) for watermarked image recovery. These methods have to
extract handcraft features from the whole watermarked image, which makes it
very inefficient for these methods to be implemented for detecting and removing
watermarks with diverse visible patterns. As for stock image schemes, Dekel et
al. [4] proposed to estimate the outline sketch and alpha matte of watermarks
from a batch of images. In this case, visible watermarks are regarded as fore-
grounds, whose attributes are required to be the same. Xu et al. [5] proposed
an watermark removal technique which assumes the pending images have the
same resolution and watermark region as those of training images. Despite the
stock-based approaches can estimate the outline of watermark for stock images,
these methods are not suitable for detecting and removing watermarks in real-
world scenarios where the images are high potentially marked with unknown
watermarks or the pattern of watermarks in different images might be distinct.
To overcome these challenge, we proposed a new deep learning based framework
which can effectively detect and remove watermark with unknown patterns.

Object Detection. Since we formulate the watermark detection as an object
detection task in this paper, existing generic object detectors are related to ours.
Currently the deep learning based object detection methods can be divided into
two-stage approaches [8–10] and one-stage methods [11–15]. Since the one-stage
methods take privilege of their high effectiveness and efficiency, they become
the mainstream of object detection. For example, YOLOv2 and RetinaNet can
obtain the state of art performance in accuracy with high speed (i.e. performing
real-time object detection).

Image Inpainting. Related to watermark removal, image inpainting inpaints
missing regions in an image, which gains huge benefit from a variety of Gener-
ative Adversarial Networks (GAN) based models [16,17]. Different from image
inpainting, in visible watermark removal, those pixels in watermarked area are
not missing. They instead embedded some background information. Hence, in
this work, we utilize the generator architecture to achieve the transformation
between watermarked pixels and unmarked pixels, which is proved to be very
effective in our work.
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3 Methodology

In this work, we aim at automatically and precisely detecting unknown and
diverse visible watermarks in images and exploring watermark removal in an
effective and efficient way. In this section, we present our visible watermark
processing framework. Firstly, a large-scale image dataset for visible watermark
processing is introduced. In general, our whole pipeline can be divided into two
separate modules: (1) the watermark detection module and (2) the watermark
removal module. To be more specific, we illustrate our watermark detection
module which is built on the existing deep learning based general object detection
methods in Sect. 3.2 and the watermark removal one is detailed in Sect. 3.3. The
illustration of our proposed visible watermark processing framework is shown in
Fig. 1.

Fig. 1. The pipeline of our visible watermark processing framework. In the period of
detection, the goal is to judge whether a image has watermark and locate the water-
marked area (the red box). Then, we enlarge the detection boundingbox (the yellow
box) and crop the watermarked patch to generate the input for watermark removal.
(Color figure online)

3.1 Large-Scale Visible Watermark Dataset

At present there is no watermarked image dataset available for large-scale vis-
ible watermark detection and removal. To fill this gap, we contribute a new
watermarked image dataset, containing 60000 watermarked images made of 80
watermarks, with 750 images per watermark. Specifically, the original images
used in the training and test sets are randomly chosen from the train/val and
test sets in PASCAL VOC2012 dataset [18] with replacement respectively. The
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80 categories of watermarks cover a vast quantity of patterns, including English
and Chinese, which are collected from renowned E-commercial brand, websites,
organization, personal, and etc (see Fig. 2(a)). The entire watermarks are trans-
fered into binary image with alpha channel for opacity setting. Furthermore,
the size, location and transparency of each watermark in different images are
distinct and set randomly. The diversity of watermarks makes our dataset more
general (see Fig. 2(b)).

Another important distinction between our dataset and the conventional
small-scale watermark dataset [4] is the watermarks in training set are not used
for constructing images in test set. To be more particular, in existing watermark
dataset, watermarks in training set and test set are exactly the same. This would
lead to the situation where the watermark detector trained on such dataset can
not work well on detecting unknown watermarks in images, which is impractical.
Therefore, to meet the demand of watermark detection in real-world scenarios,
in our dataset, watermarks in test set are different from those in training set.
More specifically, train set contains 80% sorts of watermark and the test set
includes the remaining.

In traditional pattern recognition tasks, object annotation is a time-
consuming and tedious procedure. During generating watermarked image, we
save the location size of the embedded watermark and original image at the same
time. With our large-scale visible watermark dataset, it is possible to develop
a significant deep learning based framework for facilitating visible watermark
tasks.

(a) Examples of watermarks from our dataset (b) Examples of images from our dataset

Fig. 2. The diversity of our proposed large-scale watermark dataset.

3.2 Visible Watermark Detection

Visible watermark detection, one of fundamental topics in the computer vision
field, is essential for various important applications, such as intellectual prop-
erty protection in e-commerce, copyright declaration for business intelligence,
and visual online advertising, etc. In this work, instead of directly exploiting an
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existed watermark detector to detect watermarks at the beginning of our water-
mark processing framework, we consider to develop a new and more robust one.

From the machine learning perspective, watermark detection can be viewed
as an two classification task, where the cropped image patches are classified into
the watermark or background category. However, in real-world scenarios, images
always contain various contents and the pattern, content, location, size, number
of the watermarks in images are unknown. Developing a robust method to detect
watermarks in images in the wild is inherent challenging and remains unsolved.
In this paper, we formulate watermark detection as an object detection problem.
Generally speaking, the recent deep learning based algorithms for generic object
detection, e.g. Faster RCNN [10] YOLO [11,12], RetinaNet [15] are appropriate
for our detection task.

Figure 1 shows the proposed deep learning based framework for watermark
detection in images. To be more specific, our model takes as input a watermarked
image and estimates the probabilities of all candidates with different scale and
ratio at all location in the image classified as the area which is tightly covered by
a watermark. Considering that the efficiency of watermark method is one of most
important criterions in watermark detection, we adopt the one-stage detection
methods in our watermark detection framework.

Thanks to the large-scale watermark dataset proposed in this work, our pro-
posed watermark detector can be trained effectively. More importantly, our pro-
posed method can detect watermarks in images effectively and efficiently under
unknown condition such as the unknown watermarks in images and so on.

3.3 Visible Watermark Removal

Once the watermarks in images are accurately detected, the detection results
can be used for further image-based watermarks processing such as watermark
removal, watermark recognition, etc. In this work, we mainly investigate the
former task, the watermark removal, and develop image transformation based
method for it.

Image transformation, where an image transformation model takes as input
an image and generate a different image to facilitate specific tasks, is one of the
popular computer vision topics. Examples like image denoising, super-resolution,
image style translation, etc., have taken significant steps since convolutional
neural network serves as an indispensable foundation for these works. Inspired
by the success of image transformation using deep learning technique [16,19],
we propose an effective visible watermark removal system based on deep neural
networks.

As shown in Fig. 3, the system consists of two components: watermark
removal network and loss network. Each watermarked patch x is fed into the
watermark removal network to obtain the estimated watermark free patch ỹ.
Then the L1 loss and perceptual loss are calculated based on the ground truth
and the estimated patches.

The whole network is trained to minimize the loss function via the combi-
nation of the two during training. During the test procedure, merely a forward
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transformation is required via passing watermarked patch through the water-
mark removal network.

Fig. 3. The illustration of our proposed system for visible watermark removal. We
leverage the U-net architecture for transferring visible watermarked patch into the
watermark free one. The difference between the outputed watermark free patch and
the ground truth watermark free patch is calculated using L1 loss, and perceptual loss
is exploited for measuring the perceptual features of visible watermark. Therefore, the
total loss of the watermark removal module during training process comprise the L1
loss and the perceptual one. The loss network for calculating perceptual loss is pre-
trained on ImageNet for image classification, which remains fixed during the training
process.

Network Architectures. Rather than transfering a whole image pixel-to-pixel,
our work focuses on partial transformation task (i.e. transfer a specific patch of
a image). More specifically, pixels inside the detected area are expected to be
recovered to unmarked condition, while those in unmarked area in the water-
marked image will remain unchanged. Specifically, we adapt the architecture of
our removal network as that of the U-net [7]. This network is mirror symmetrical
in structure, with skip connection between corresponding blocks. In this way, the
shallow features near to the input get combination with those high-level features
so that the low-level features such as location and texture of input image can be
preserved.

Objective Function. The L1 loss penalizes the pixel distance between the
ground truth and the output, which has been proved to have good performance
in matching the pixel value of the input with those of the ground truth, and
synthesizing the output [16]. Hence it is adopted in our network and is denoted
as LL1.

LL1(x, y) = ‖f(x) − y‖1 , (1)

where x denoted as an input watermarked patch detected and cropped from an
watermarked image, y refers to the ground truth patch without watermark. f(x)
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is the output of U-net. As L1 loss is calculated based on per-pixel value in a whole
image, it will be huge when each pixel has a small change and the image has little
difference in visual. Besides, as the perceptual loss, which has been proved to be
efficient in capturing the semantic information of the source image, depends on
high level feature from convolutional layer, using perceptual loss can result in
a more realistic output. Supposed the feature size of the jth convolutional layer
of loss network is Cj × Hj × Wj , the convolutional transformation is denoted
as Φj and ỹ is the estimated watermark free patch which is equal to f(x). The
formulation of the perceptual loss can be expressed as:

LΦ,j
pl (ỹ, y) =

1
CjHjWj

‖Φj(ỹ) − Φj(y)‖22 . (2)

In our work, we leverage the relu2 2 feature from VGG-16, which is similar to
the work in [19]. Consequently, in order to obtain a more visual pleasure results
for visible watermark removal, we combine benefits of these two loss functions,
which can keep the details of input information as well as the perceptual infor-
mation. Thus, the objective function of our removal network is:

Lwhole = LL1 + αLΦ,relu2 2
pl , (3)

where α � 0 is a weight for regularizing the effect of L1 loss and perceptual loss.

4 Experiments

In order to evaluate our proposed framework, we conduct comprehensive exper-
iments on our large-scale visible watermark dataset introduced in Sect. 3.1. In
this work, both components in our proposed framework, the watermark detec-
tion and removal modules, are evaluated and the experiments are conducted on
a computer cluster equipped with NVIDIA Tesla K80 GPU with 12 GB memory.
The experimental details of these two components are illustrated and analyzed
individually. It should be noted that existed methods cannot handle images with
unknown watermark patterns, thus they are not suitable for the case that we
deal with in this paper.

4.1 Visible Watermark Detection

Settings. We presume the proposed watermark detection framework can take
any recent deep learning algorithms for generic object detection. In our work, one
two-stage method Faster RCNN [10] and two one-stage methods YOLOv2 [12]
and RetinaNet [15] are adopted to verify our assumption. In order to make the
generic object detector suitable for watermarks detection in images, we adapt
the number of class to two (i.e. watermark or background), and follow the train-
ing strategy on object detection [10,12,15] to train our watermark detection
networks.
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Fig. 4. Evaluation of Intersection over Union (IoU) parameter settings for watermark
detection performance (AP)

Table 1. Evaluation of visible watermark detection

Method AP50:95 AP50 AP75

Faster RCNN 40.0 94.0 20.5

YOLOv2 69.9 93.4 29.4

RetinaNet 72.0 94.1 41.4

As we fomulate visible watermark detection as an object detection task, we
follow the standard object detection evaluation metric to validate the effective-
ness of our visible watermark detector, which is the Average Precision (AP)
under defined Intersection over union (IoU).

Results and Analysis. Figure 4 shows the AP curves versus IoU threshold
of the watermark detection models using Faster RCNN [10], YOLOv2 [12] and
RetinaNet [15]. From the figure, it is clear to see that the AP of the visible water-
mark detection models stays at around 100% when IOU is smaller than 0.4 and
the difference between these three models are very small. This promising results
imply that the visible watermark model which is obtained by finetuning exist-
ing object detection model on our visible watermark dataset can be effective
on detecting unknown visible watermark patterns. With the IoU increasing, the
AP curves drop dramatically. However, this has limited influence on our work as
watermark detection does not require very precise location of watermark bound-
ing box in real-world scenarios. Furthermore, it is evident that the watermark
detection model using one-stage method RetinaNet improves AP significantly
over Faster RCNN and YOLOv2. This indicates that the focal loss introduced
in RetinaNet can result in a more precise detection results for the small and
unapparent visible watermarks target.

To have a rounded analysis, we present the results of visible watermark detec-
tion in Table 1. The value of AP50:95, AP50 and AP75 are listed, where AP50:95



36 D. Cheng et al.

Fig. 5. Visualization of detection examples on our large-scale watermark dataset with
RetinaNet. The red box with the predicted watermark confidence score shown on the
top of the box is predicted by our watermark detection model using RetinaNet, while
the blue box shown on the bottom of the blue box is the goundtruth with IoU ratio
between the groundtruth box and the predicted one. (Color figure online)

is the average of AP under IoU threshold ranging from 0.5 to 0.95. These results
validate the excellent performance of RetinaNet.

In order to evaluate the performance of our watermark detector, we visual-
ize the watermark detection results of some testing examples in our collected
dataset and show them in Fig. 5. The results in the figure indicate that our
watermark detector is strong enough to detect those watermarks with different
scales, transparency, location and various pattern from background clutter. It
verifies that fomulating the visible watermark detection as an object detection
task is feasible.

4.2 Removal

Settings. For visible watermark removal, we build up our U-net with four down-
sampling blocks. Specifically, the input patch and the ground truth one are
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cropped from the marked image and the source one according to the predicted
watermark bounding box of our watermark detection model using RetinaNet.
Here, the center of both cropped marked and ground truth patches center at
the center of the detected watermark bounding box and the size is 1.5 times
larger than that of the predicted watermark bounding box to ensure that the
watermark target can be included in the cropped patches. We further round
the size of both cropped patches (i.e. height and width of the patches) to be a
multiplier of 16, which is required to meet the input requirement of the U-net.
During training, we adopt Adam optimization algorithm with initializing the
learning rate as 2e−4, and the batch size is set to be 1. The α for regulating
perceptual loss and L1 loss is adjusted to 1e−6.

The metrics which we adopt to evaluate the effects of watermark removal
is the same as that of [4], including Peak Signal to Noise Ratio (PSNR) and
Structural dissimilarity Image Index (DSSIM), both of which are adopted to
measure the similarity between the predict watermark free patch and the ground
truth one.

Table 2. Evaluation of visible watermark removal

Metrics Input Perceptual loss L1 loss Ours

PSNR 20.65 29.86 30.42 30.86

DSSIM 0.103 0.051 0.045 0.043

Results and Analysis. We calculate the average value of PSNR and DSSIM
over the whole test set. Table 2 gives the PSNR and DSSIM of our model using
different types of loss. As shown in Table 2, our removal model can have signif-
icant improvement in comparison over the input image. Besides, the results of
the combination of the L1 loss and perceptual loss is shown to be better than
those of single type of loss.

As shown in Fig. 6, despite the pattern of watermarks in images shown from
the first row to the fourth row is quite diverse, our watermark removal algo-
rithm performs well on removing visible watermarks. More specifically, some
watermarks are some English words or letters, while some of them are the com-
bination of English words, Logo and etc. However, our proposed method is able to
extract the invariant feature of the watermarks and generate the image patches
which is almost the same as the original ones. In addition, we report the removal
results of our model using different sorts of loss, which are subtle distinct. The
results in Fig. 6 indicate that our model using the loss combining the L1 loss
as well as perceptual loss can exploit the strength of both loss to wipe out the
visible watermarks and meanwhile keep the fine details of the source images,
yielding powerful reconstruction performance.

We also conduct experiments to compare the performance of different archi-
tectures. Observing the results of the encoder-decoder architecture mentioned
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Fig. 6. Different losses induce different removal results. The last three column shows
the output results trained under a different loss.

in [16] (The encoder-decoder is created by severing the skip connections in the
U-Net), we find that it alters the global brightness and there exists local water-
mark residual in local area. Thus the watermarked patch is hard to be restored
to get similar to its watermark free condition. The outputs of U-net architec-
tures are more similar to the ground truth patches, which is applicable for our
removal task. The results in Fig. 7 demonstrate that our U-net architecture is
more effective, as it does not break surrounding information by allowing low-level
information to be shortcut across the network.

Fig. 7. Example results of different architectures and images of the groundtruth. These
experimental results demonstrate that the U-net architecture can be more effective for
visible watermark removal.

4.3 Discussions

Our experiments show that our proposed framework can effectively deal with
the large-scale visible watermark tasks. For watermark detection, our water-
marks detection model using one-stage method RetinaNet perform very well on
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detecting visible watermark. During watermark removal, the size of bounding
box is expanded to a little larger than the size of the detected watermark patch
to alleviate the effect of partial detection, and our network can adaptively trans-
form the marked pixels to watermark free ones and do not corrode the other
pixels at the same time. Therefore, setting a small IoU threshold to capture
the watermarked patches as much as possible, and then expanding and inputing
these patches into our removal net, can ensure the performance of our proposed
framework.

5 Conclusion

This paper presents a new deep learning based framework for large-scale visible
watermark processing tasks, which consist of two components: (1) watermark
detection, which is fomulated as an object detection task. (2) watermark removal,
which is transferred into an image-to-image translation problem. Besides, we
build a large-scale visible watermark dataset for training and evaluating deep
learning based framework for watermark detection, watermark removal and so
on. In addition, extensive experiments are conducted to verify the feasible of our
proposed pipeline. Experimental results show that our proposed framework is
effective on watermark detection and removal.
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Abstract. Scene text recognition, is challenging due to the large appear-
ance variances of the scene character. Recently, deep learning technique
has shown its power for scene text recognition, but it requires enormous
annotated data for training and it is time-consuming to manually obtain
abundant data for all the categories of characters. This paper proposes a
new architecture, called multitask coupled generative adversarial network
(MtC-GAN), for scene Chinese character recognition (SCCR). The MtC-
GAN consists of coupled GAN networks for scene character style transfer
and classifier networks trained by the style-transferred data generated by
the coupled GAN. To make the generated data be realistic enough for
SCCR, we train the multitask networks using a new loss function that
combines the constrains of encoders, generators and classifiers simulta-
neously. Experiments show that the proposed MtC-GAN framework is
general and flexible to improve the accuracy for SCCR.

Keywords: Scene Chinese character recognition
Generative adversarial networks · Multitask training

1 Introduction

Scene text recognition (STR) has been drawing ever-increasing research interests
in recent years given its potential for many applications, such as autonomous
driving [1,2], license plate recognition [3,4] and industrial automation [5,6].
Although traditional optical character recognition has been extensively stud-
ied, naively adapting the technique to STR may fail to perform well, especially
for scene Chinese character recognition (SCCR). The main challenge of SCCR
lies in the large appearance variances of the scene character caused by style,
font, resolution, illumination, projection transformation or partially occluded.

Recently, deep learning technique has been introduced into the field of STR
[7–9]. The deep neural networks (DNN) consists of hierarchical nonlinear trans-
formation, and is allowed to learn the feature and classifier with great invariant
c© Springer Nature Switzerland AG 2018
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and discriminate properties. The developed system with DNN structure obtains
the state-of-the-art performance for SCCR. However, it requires enormous anno-
tated data to train and fine-tune the DNN-based system. Although large-scale
benchmark databases have been constructed for STR and SCCR [10], it is still
time-consuming to obtain abundant labels, and the large categories of SCCR
may also suffer from data imbalance. For instance, in the recently proposed
CTW dataset [10], Chinese character samples of common categories can exceed
the 17000 entries, whereas some rare categories contain only one sample. There-
fore, it would be significant to generate scene Chinese character images for SCCR
using DNN architecture.

The generation of scene Chinese character images can be divided into rule-
based and learning-based methods. For the rule-based scheme, Campos et al.
[11] generated English characters to train a character-level English scene text
classifier; Jaderberg et al. [12] create a synthetic word data generator through
physical rendering process to train a whole-word-based English scene text clas-
sifier; Gupta et al. [13] proposed a fast and scalable engine to generate synthetic
images of text in clutter which further consider the local 3D scene geometry,
and then train a text localisation network. The abovementioned methods which
are limited by their rule-based nature seems to hardly simulate all the impor-
tant variances in the real-world. For example, the work of [13] is limited by the
segmentation and depth prediction of background images.

The learning-based method is mostly motivated by the GAN architecture
[14], which can estimate the target distribution, and then generate similar images
to the real ones. Although the previous X-GAN framework can have many advan-
tages, it can’t be ensured that each samples generated by GAN methods can
preserve annotation information, and the naively synthetic data generated by
GAN method may fail to improve the prediction performance due to these bad
samples.

To tackle this problem, we propose a multitask coupled GAN framework
for scene Chinese character recognition, which generates realistic scene Chinese
character and improves the classification accuracy by the generated data simul-
taneously. The MtC-GAN consists of coupled GAN networks for scene character
style transfer and classifier networks trained by the style-transferred data gen-
erated by the coupled GAN. To make the generated data be realistic enough for
scene Chinese character recognition, we propose a new loss that combines the
constrains of encoders, generators and classifiers simultaneously. Experiments
show that the synthetic data by our method have great visual consistency to
the realistic data. Furthermore, classifiers with different deep structures, like
ResNet18 [15], ResNet34 [15] or VGG16 [16], can obtain apparent performance
improvement, which indicate that the proposed multitask coupled GAN frame-
work is general and flexible to improve the accuracy for SCCR.

The contributions of our work can be summarized as follows:

– A multitask coupled GAN learning framework for SCCR, which is general and
flexible to generate realistic data and improve the accuracy of the classifier
by generated data simultaneously without extra human annotation efforts;
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– A new loss that combines the constrains of encoders, generators and classifiers
to regularize the learning of the multitask coupled GAN.

– We qualitatively and quantitatively assess the classifier performance to
demonstrate the effectiveness of the proposed method.

2 Related Works

Scene text image generation is a challenging task given the presence of complex
background and font diversity. Many researchers have proposed the generation
of realistic scene text images. Campos et al. [11] generated English character
images to train a character-level English scene text classifier. Jaderberg et al.
[12] create a synthetic word data generator through physical rendering process to
train a whole-word-based English scene text classifier. Gupta et al. [13] proposed
a fast and scalable engine to generate clutter-text synthetic images considering
local 3D scene geometry, and then train a text localisation network. However,
these methods are limited by their rule-based nature. For instance, the method in
[13] is limited by the segmentation and depth prediction of background images.
Unlike the abovementioned methods, we propose a learning-based method to
generate realistic scene Chinese character images and further improve the recog-
nition performance.

As one of the most considerable improvements on the research of deep genera-
tive models [17,18], GANs [14] are being intensively studied by the deep learning
and computer vision communities alike. A GAN basically consists of generator
and discriminator networks, where the former generates samples to increase the
discriminator error rate, and the latter aims to distinguish real from synthetic
images. This adversarial training allows the generator to estimate the target dis-
tribution and then generate similar images to the real ones. Mathematically, the
standard GAN training aims to solve the following optimization problem:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

To extend the abilities of GANs, Mirza et al. [19] proposed a conditional GAN
to direct data generation by conditioning both the generator and discriminator
on additional information. This type of GAN has been successfully used in plenty
of applications, such as image super-resolution [20,21], image style transfer [22–
25], domain adaptation [26], etc.

Furthermore, conditional GANs are suitable for image-to-image translation,
which has been applied for different purposes including the generation of maps
from aerial photos and colorization of grayscale images. Conditional GAN is well
suited for this task and many researchers have achieved great success based on
it. Likewise, Isola et al. [22] proposed the pix2pix model to learn the mapping
from input to output images using paired images. Zhu et al. proposed Cycle-
GAN [23] based on a cycle consistency loss to break the limit of training with
paired images. Liu et al. [25] proposed an unsupervised image-to-image transla-
tion (UNIT) network assuming a shared latent space. Azadi et al. [27] proposed
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the multi-content GAN(MCGAN) for few-shot font style transfer. Shrivastava
et al. [28] proposed a simulated and unsupervised SimGAN to enhance the real-
ism of an image simulator while preserving annotation data and demonstrated
a high performance with no labeled real data. Zhao et al. [29] proposed a dual-
agent GAN(DA-GAN) to enhance the realism of a face simulator output by
using unlabeled real-face images while preserving identity information. Our pro-
posed multitask coupled GAN combines the advantages of the UNIT network
[25] and DA-GAN [29] to improve the quality of synthetic images and consequent
classifier performance.

3 Multitask Coupled GAN

3.1 Source Data

We first propose a synthetic character generator that retrieves simple Chinese
character images through font rendering, affine transformation, and perspective
transformation. We denote the synthetic data generated in this way as source
data xs. By using diverse TrueType and OpenType font files obtained from the
Internet, we generate plenty of simple Chinese character images with annotation
information. In addition, we use real image dataset published by Yuan et al. [10]
and denote it as xt. We aim to simultaneously reduce the difference between xs

and xt and improve the performance of a scene Chinese character classifier.

Fig. 1. Diagram of the proposed multitask coupled GAN architecture. E1 and E2

are two encoding functions that map images to latent codes. G1 and G2 are generation
functions that map latent codes to images. D1 and D2 are adversarial discriminators for
the respective domains. C1 and C2 are classifiers for the respective domains. Lip, Ladv

and Lmatch are the identity perception, adversarial, and matching losses, respectively.
The dash lines denote weight sharing.
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3.2 Coupled Generator

The same Chinese characters can present appearance variations in natural
images arising from complex backgrounds and writing styles. Still, humans can
easily recognize these characters, suggesting that the same characters written
with different styles might share high-level semantic characteristics in the human
brain. This semantic similarity can be represented by a map from characters with
different styles into the same latent space, and an inverse map from a latent space
into different domain images. Consequently, if the same characters with differ-
ent styles are mapped into a latent space, we can generate corresponding images
in two domains using autoencoders. To this end, we use concepts of coupled
GAN [30] and UNIT network [25] to establish a shared latent-space assumption
through a weight-sharing constraint. The architecture of the proposed MtC-GAN
model is illustrated in Fig. 1 and relies on a UNIT network, where generator loss
Lunit is formulated as:

Lunit = LV AE1(E1, G1) + LGAN1(E1, G1,D1) + LCC1(E1, G1, E2, G2)+
LV AE2(E2, G2) + LGAN2(E2, G2,D2) + LCC2(E2, G2, E1, G1) (2)

where LV AE denotes the variational autoencoder loss, LCC denotes the cycle-
consistent loss [23], LGAN denotes the standard adversarial loss [14]. and D, G,
and E denote adversarial discriminators, generators and encoders, respectively.
More details on the loss functions can be found in [25]. The loss constraint
can only add realism to synthesized images in appearance, but hardly preserves
annotation information well. However, to use the synthesized data for improving
classification performance, the synthesized images should preserve annotation
information. Therefore, we include identity perception loss Lip that is a multi-
class cross-entropy loss to preserve annotation information. Then, we update the
generator parameters by minimizing the following loss:

LG = Lunit + λ1Lip (3)

where hyperparameter λ1 control the weights of the objective terms. This com-
bined loss both enhances the realism of synthetic images and preserves annota-
tion data.

3.3 Multitask Discriminator

The discriminator aims to distinguish real from synthesized images. Its loss is
given by:

Ladv = logD1(xs) + log(1 − D1(G1(E2(xt))))+
logD2(xt) + log(1 − D2(G2(E1(xs))))

(4)
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In addition, we train a classifier to preserve label information of the generated
data using identity perception loss Lip defined as:

Lip =
∑

n

−YslogDc1(xs) +
∑

n

−YtlogDc1(G1(E2(xt)))+

∑

n

−YtlogDc2(xt) +
∑

n

−YslogDc2(G2(E1(xs)))
(5)

where Dc1 and Dc2 are the probabilities of class n output by classifier C1 and
C2, respectively. Ys and Yt are the labels of xs and xt, respectively. The defi-
nitions above derive in a multitask training that preserves label information of
the synthetic data. In addition, we can generate any amount of training data for
training supervised models.

To further constrain classifiers C1 and C2, we define a matching loss, formu-
lated as:

Lmatch =
∑

i

|Dc1(xs) − Dc2(G2(E1(xs)))| + |Dc2(xt) − Dc1(G1(E2(xt)))| (6)

Where i is the class index. This loss improves the classifier performance. Likewise,
we define another constraint in the generator to improve the quality of the
generated data by training the discriminator to minimize combined loss:

LD = Ladv + γ1Lip + γ2Lmatch (7)

where hyperparameters γ1 and γ2 weigh the corresponding objective terms.
We optimize MtC-GAN by alternatively optimizing multitask discriminator

and coupled generator for each training iteration until the whole network con-
verge.

4 Experiments and Results

We evaluated the performance of the proposed MtC-GAN mainly on the CTW
dataset [10]. Although the most commonly used metric for determining the qual-
ity of generative models is the inception score [31], it does not suit our objective
of using the generated data to improve the classifier performance. Instead we
use two complementary evaluation metrics. First, similar to [28], we deploy the
‘Visual Turing Test’ to evaluate the visual quality of the generated images. Sec-
ond, we use generated data to train a classifier, and compare the performance
among classifiers with different generation methods.

4.1 GAN Training

We used a recently released Chinese text detection and recognition dataset,
the CTW dataset [10]. It is split into training, validation and testing dataset,
where the validation dataset was used for evaluating all the experiments. Similar
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to [10], we only consider recognition of the top 1000 most frequently observed
character categories. In addition, we evaluated a simple classifier to determine
the enhancement provided by the generated images. Specifically, the classifier
that we used is the ResNet18 [15], whereas the architecture of generator and
discriminator was the same as that of the UNIT network [25]. The encoders
consisted of 3 convolutional layers as the front-end and 4 basic residual blocks [15]
as the back-end. The generators consisted of 4 basic residual blocks as the front-
end and 3 transposed convolutional layers as the back-end. The discriminators
consist of 6 convolutional layers. Then, an Adam solver [32] was adopted for the
MtC-GAN with learning rate of 0.0002, λ1 = 1, γ1 = 1,γ2 = 5.

4.2 Generated Image Quality

In this section, we deployed the ‘Visual Turing Test’ [28] to quantitatively eval-
uate the visual quality of the generated images and designed a simple user study
where subjects were asked to classify images as being either real or synthetic.
Each subject observed a random selection of 40 real and 40 synthetic charac-
ter images that were randomly presented, and was asked to label the charac-
ter images as either real or synthetic. We used the classification accuracy for
quantitative evaluation, whose outcomes are shown in Table 1. The classification
accuracy among subjects was 57%, which is very close to a random selection, i.e.,
50%. Consequently, we considered that the subjects were unable to distinguish
between real and synthetic images.

Table 1. Results of the ‘Visual Turing test’ where subjects classified real and synthetic
images. The average classification accuracy among subjects was 57%, close to the 50%
of random selection.

Selected as real Selected as synthetic

Ground truth real 225 175

Ground truth synthetic 169 231

Figure 2 shows examples of characters generated using the proposed method
that served to quantitatively evaluate its outcomes.

4.3 Classifier Performance

The goal of this study was to use generated data for improving the classifier
performance, and thus the classification accuracy was our main concern. Table 2
lists the classification accuracy using different generation methods. We can see
that, naively learning from synthetic data can undermine classification accuracy
due to the difference between synthetic and real image distributions, whereas the
proposed MtC-GAN generation method achieves the best performance among
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Fig. 2. The generated images using multitask coupled GAN. From top to bottom:
source characters, generated characters, target characters.

Table 2. Classification accuracy of different generation methods

Generation method Classification accuracy

Real data only 76.3%

Real data + source data(xs) 75.5%

Real data + synthtext2014 [12] 78.5%

Rael data + synthtext2016 [13] 78.2%

Real data + SimGAN [28] 77.2%

Real data + CycleGAN [23] 77.8%

Real data + UNIT [25] 78.5%

Real data + proposed MtC-GAN 80.7%

Table 3. Classification accuracy of different classifiers with and without the generated
images

Classifier Real data Real data+MtC-GAN

ResNet18 [15] 76.3% 80.7%

ResNet34 [15] 78.5% 82.2%

VGG16 [16] 81.3% 83.5%
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the compared methods, suggesting that multitask training can improve the clas-
sifier performance.

To further verify the effectiveness of the proposed method, we use different
classifiers, whose accuracies are listed in Table 3. Every classifiers using data
generated from the proposed MtC-GAN exhibits the best performance. Further-
more, the ResNet18 with multitask training can have better performance than
the ResNet34 [15] without multitask training. It shows that if we can generate
images which are realistic enough, we can train a shallow network enjoying the
comparable performance with a deep one.

5 Conclusions

We propose a multitask coupled GAN (MtC-GAN) for realistic annotation-
preserving image synthesis. The generated scene Chinese character images
improve the performance of character classifiers. Both qualitative and quantita-
tive evaluations demonstrate the effectiveness of the proposed MtC-GAN method
and its superior performance. The experimental results also suggest that if we
can generate images which are realistic enough, we can train a shallow network
enjoying the comparable performance with a deep one.
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Abstract. In order to improve the similarity character recognition of Tibetan
historical document, this paper applied the Depth Neural Network (DNN) to
similar characters recognition of Tibetan historical document, and proposed a
recognition method of the similarity character for Uchen Script Tibetan based on
deep learning. The effective feature learning and recognition are automatically
carried out by DNN. We also introduced a sample labeling method of Tibetan
historical document of Uchen Script using unsupervised clustering and con-
structing sample sets of the similar characters. Compared with the traditional
methods such as Support Vector Machine (SVM) and Naive Bayes Classifier
(NBC) based on gradient features through simulation experiment, our method can
achieve better performance. The proposed method can learn feature effectively
and avoid the disadvantages of manual feature selection and extraction, and it can
improve recognition rate greatly. With the increasing of training samples, the
recognition rate was improved more significantly. The experimental results show
that the proposed method used for similar characters of Tibetan historical doc-
ument Uchen Script recognition, higher recognition rate can be obtained.

Keywords: Deep neural network (DNN) � Deep learning
Convolutional neural network (CNN) � Tibetan
Similar character of Uchen script

1 Introduction

The characters of Tibetan historical document cover modern Tibetan and Sanskrit
Tibetan, so the number of characters is more than 7,000. The similarity between
characters of Tibetan historical document is high and there are a lot of similar char-
acters, such as “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, etc., which bring a larger technical
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difficulty to character recognition. In addition, many Tibetan historical documents are
carved on the woodblock, which was engraved by hands, so the nicks are usually
uneven. Therefore, the late manual inkiness is uneven, for example, the deep groove
has less ink, leading to a loss part strokes of character of historical documents; Or a loss
of strokes caused by the Image preprocessing of the ancient books, for example, “ ” “ ”
“ ” are changed into “ ” “ ” “ ”, which undoubtedly increases the difficulty of
character recognition of Tibetan ancient books. At present, there is a lack of researches
on the image and character recognition of Tibetan ancient books.

SVM method [1], hidden Markov model [2] and so on are more widely used in
character recognition. Convolution neural network is a deep neural network which has
a local connection between layers and which was put forward by American scholar
LeCun. After the appearance of convolution neural network (CNN), using a variety of
types of deep neural network models to analyze and recognize documents has become a
research hotspot in this field. CNN has been successfully used in many areas, such as
the recognition of handwritten digits, English characters, Chinese character and so on.
Among 107 papers collected in ICFHR meeting held in late October 2016, whose
image analysis and retrieval [3], text line segmentation [4], feature extraction [5],
classification recognition processing [6] and other links involved in Chinese, English,
Japanese, Mongolian, Arab, Bangladesh, etc., and more than half of the papers applied
the deep learning technology. The Tibetan language includes modern Tibetan language
(also known as Tibetan language or local Tibetan language) and Sanskrit Tibetan
language (the Tibetan transferring form of Sanskrit). The print form of modern Tibetan
characters has been studied a lot, such as professor Ou Zhu at Tibet University, pro-
fessor Huang Heming at Qinghai Normal University, professor Li Yongzhong at
Jiangsu University of Science and Technology, etc. And the team of professor Ding
Xiaoqing at Tsinghua University studied, researched and developed the Tibetan
character recognition system of practical multifont printing of more than 592 characters
[7, 8], which has been well applied. The literature [9–13] shows that, for handwritten
character recognition, the statistical characteristics of characters are the best, and for the
off-line handwritten Chinese character recognition, gradient feature has a high recog-
nition rate [14–16]. The researchers successfully applied the convolution neural net-
work to digit recognition [17, 18] and character recognition [19, 20] in the natural
scene, and pointed out that the convolution neural network could learn the character-
istics which are better than artificial design [21, 22]. The literature [23] applied the deep
convolution neural network to the recognition of offline handwritten similar characters,
and the recognition rate is more significantly improved than traditional method.
Therefore, this thesis proposes to use the deep convolution neural network to conduct
the recognition of similar Tibetan characters. In contrast, there is no report about the
application of deep convolutional neural network in the character recognition research
of Tibetan ancient books.

Due to the irreproducibility of Tibetan ancient books, sample extraction of Tibetan
characters can only be extracted from the document and image itself of Tibetan ancient
books, and the project team has realized the preprocessing, binarization and layout
analysis of document and image of Tibetan ancient books, and completed the document
character segmentation. Due to the printing requirement of “soft character fine
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alignment and fine carving” in the Phyi dar of Tibetan Buddhism, most of the Buddhist
texts adopted Uchen Script. The striking feature of Uchen Script is that the top stroke of
each letter is horizontal and straight, and the base line of the character arrangement is
on a straight line. See Fig. 1. The baseline (baseline 1, baseline 2, etc. expressed by the
dotted line in Fig. 1) is adopted to further segment into the vowel part above the
baseline. For example, baseline 1 is adopted to express the character “ ”, “ ” and so
on above the baseline; The part under the baseline, such as “ ”, “ ”, “ ”, etc. There
are fewer types of characters above the baseline, about a dozen types, and there are also
fewer types of similar characters. This thesis mainly studies the similar characters of the
characters under the baseline.

2 Construct Sample Set of Similar Characters

In view of the current situation that there is no character sample of Tibetan ancient
books, the following methods are proposed to classify and label the similar character
sets.

In view of the Tibetan characters which have been segmented early, first of all, their
characteristics are extracted, and three features about extraction in this paper are:

(1) Gradient 8 direction characteristics (64 D)
First of all, the character image of Tibetan ancient books is normalized to
136 � 50, and in order to ensure the less distortion of the image, bicubic inter-
polation is adopted for the deformation process. Then the uniform grid of 4 � 2 is
used to evenly divide the original image into 8 small grids according to the size,
and then the gradient feature of character pixels in each small grid is calculated.
Then, the gradient is decomposed into 8 directions in accordance with the method
of Bai to form 8 D gradient direction characteristics [24], and then 8 small grids
features are combined to get 64-dimensional gradient direction characteristics.

(2) Features of 8 � 8 grid (64 D)
In the first place, the character image of Tibetan ancient books is transformed into
64 � 64, and in order to ensure a less distortion of the image, the deformation
process adopts bicubic interpolation. Then, the original image is evenly divided

Fig. 1. Document image of Tibetan ancient books (a part)
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into 64 small grids by using the even grid of 8 � 8, and later, the percentage of
the characters in each small grid in the total pixel is calculated, and the charac-
teristics of 64-dimension are obtained.

(3) Peripheral features of characters (64 D)
The grids which are divided and extracted by using feature (2) to continue to
extract the pixel periphery features from top to bottom, from bottom to top, from
left to right and from right to left. The features of four directions are combined
into one-dimensional features, and 64 small grids have a total of 64-D features.

After integrating the above three characteristics, there are a total of 192 D feature
dimensions. Through principal component analysis, the dimension is reduced to 80 D
features. k-means clustering is used to record the filename of each character and the
corresponding relationship of the distance of each centroid. According to the sorting
characters in the class, the former k characters which are divided into the same class
and which are in a close range are divided into similar characters, constituting a set of
similar characters. MATLAB is used to copy the image of similar characters in the
same file, and the distance information is added before the image’s original file name.
Then, according to the sort of file name, the image of the same category of characters
can be gathered as far as possible (Fig. 2).

3 Convolution Neutral Network (CNN)

Convolution neural network (CNN) is a neural network which is specially used to deal
with similar network structure data, such as image data which can be considered as a
two-dimensional pixel grid. CNN shows a high recognition rate in 2 D image recog-
nition application, and its network structure is highly invariant to translation, scaling,
tilting or other forms of deformation. CNN directly conducts the learning and character
classification for the characteristics of original image, and it doesn’t need too much pre-
processing and feature extraction of the original character image, so it is an end-to-end
recognition system, which effectively avoid the defects of losing the details of similar
characters caused by artificial feature extraction and feature selection in advance. This
thesis adopts the following CNN network structure, as shown in Fig. 3.

tibetan character

feature selection and extraction

k-means clustering

sample labeling

Similar character sets

Fig. 2. Construction process of similar character set of Tibetan Uchen script
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Convolution neural network is composed of the convolution layer and the sampling
layer, and each layer is composed of multiple feature maps. Each pixel (neuron) of
convolution layer is connected with a local area of the upper layer, and it can be viewed
as a local feature detector. Each neuron can extract primary visual features such as
direction line segments, angular point, etc. At the same time, this local connection
makes the network have fewer parameters, which is beneficial to training. There is
usually a sampling layer behind the convolution layer, in order to reduce the resolution
of the image, and the network have a certain displacement, scaling and distortion
invariance. For the convolution layer, the feature graph of the previous layer is con-
ducted with a convolution operation with multiple group of convolution masks and
then the feature graph of the layer is obtained through the activation function. The
calculation form of the convolution layer is as follows:

alj ¼ r
X

i2Mj
al�1
i � wl

ij þ blj
� �

ð1Þ

In Eq. (1), l is the number of layers where the convolution layer is; w is convolution
kernel, which is a template of 5 � 5. b is setover, and r is activation function, that is
1=ð1þ e�xÞ. Mj represents an input feature graph of the upper layer.

The sampling layer is to sample the characteristics of the upper convolution layer
and get the same number of feature graphs. The training of convolution neural network
is the same as that of traditional neural network, and it adopts stochastic gradient
descent. The input layer is a character image of Tibetan ancient books, whose size is
28 � 28. C1 layer is the first convolution layer, which has eight feature graphs of
24 � 24, and one pixel (node or neuron) in each feature graph is interconnected with a
region of 5 � 5 corresponding to the input layer. S1 layer is a lower sampling layer
containing 8 feature graphs of 12 � 12, and each node in the feature graph is inter-
connected with a region of 2 � 2 corresponding to the feature graph in the C1 layer.
C2 is the second convolution layer with 16 feature graphs, and the size of each feature
graph is 8 � 8. The connection between S1 and C2 plays an important role in feature
extraction. S2 is the second sampling layer with 16 feature graphs, and the size of each
feature graph is 4 � 4. The last layer is the output layer with 10 nodes, corresponding
to the output category, and it has a full connection with S2 layer.

Convolutions Subsampling Convolutions Subsampling Full connection

C1:feature maps
8@24 24

S1:feature maps
8@12 12

C2:feature maps
16@8 8

S2:feature maps
16@4 4

Output:10

Input
28 28

Fig. 3. CNN network structure
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4 Experiment and Result Analysis

4.1 Experiment Data

In this paper, the experimental data is the two groups of similar characters under the
baseline of Tibetan characters, and each group contains 10 Tibetan character categories.
The first group is a set of similar characters formed by Tibetan vertical stacks, and it is
composed of “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ” and “ ”. It is
represented by G1, and there are a total of 5215 experimental samples.

The second group is a set of similar characters which are composed of complete
consonant characters, and it is composed of “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”,
“ ”, “ ”, “ ”. It is represented by G2, and there are a total of 24,700 experimental
samples.

In order to compare the performance of CNN in the recognition of Tibetan similar
characters, CNN is compared with Naive Bayes Discriminant classifier and support
vector machine classifier. For Naive Bayes discriminant and SVM classification, first of
all, gradient 8 direction features described in Sect. 2 are extracted to get 64 D feature
vector of each sample, and then the feature vector is used to discriminate and classify.
For CNN, the image of the Tibetan characters is directly compressed to the image with
a resolution of 28 � 28, so as to reduce the parameters of CNN, and thus improve the
training speed of the network.

4.2 Experiment Process

In the network training process shown in Fig. 3, the error reverse transform and the
gradient random descent method are adopted to update the parameter w and b.

J(w, b) is used to express the error function, and the expression of updating
parameters with the gradient descent method is as follows:

w := w� a
@Jðw; bÞ

@w
ð2Þ

b := b� a
@Jðw; bÞ

@b
ð3Þ

a is the descent rate control parameter, and the selection of a in the experiment is
determined by adopting the test method. Finally, selecting a = 1.5 as the descent rate
parameter of the system.

In order to observe the influence of different a on recognition rate, first of all, other
parameters are fixed, for example, the times of circuit training are 30, because smaller
number of circuit training times can save the training time, but it is enough to reflect the
impact of a on the recognition rate. Different a and corresponding identification error
rate are shown in Table 1.

The value of a during the experimental process is conducted according to the order
from top to bottom in Table 1. The error rate in Table 1 shows that the error rate is the
smallest when a = 1.5, and it is 0.2339.
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4.3 Experimental Results and Analysis

The experiment adopts CNN network structure shown in Fig. 3 and uses 64 D gradient
feature to conduct Naive Bayes and SVM classification. In this paper, G1 and G2 sets
are conducted with K-fold cross validation (K = 10), namely, each similar set is evenly
divided into 10 parts: T1, T2, T3…… T10. Each part is taken as a test set each time,
and the other 9 parts are regarded as the training set. The error rate results of G1 and G2
sets are shown in Tables 2 and 3 respectively. The experimental results show that,
compared with Naive Bayes and SVM recognition method, the method based on deep
neural network has a lower error rate. The reason for the poor performance of SVM and
Naive Bayes is that the identification information of similar Tibetan characters is lost in
the process of feature extraction.

The experimental results show that, compared with Naive Bayes and SVM
recognition method, the method based on deep neural network has a lower error rate.

Table 1. Different a and corresponding recognition error rate

a Error rate

0.01 0.7440
0.25 0.7440
0.6 0.3706
0.9 0.2817
1.5 0.2339
2 0.2798
1.8 0.2716
1.6 0.2651
1.4 0.2679

Table 2. A comparison of error rate of 10-fold cross-validation on G1 set

Classifier NBC SVM CNN

Error rate of T1 0.1288 0.0250 0.0212
Error rate of T2 0.1288 0.0327 0.0192
Error rate of T3 0.1308 0.0308 0.0269
Error rate of T4 0.1288 0.0327 0.0173
Error rate of T5 0.1385 0.0423 0.0154
Error rate of T6 0.1115 0.0365 0.0231
Error rate of T7 0.1385 0.0212 0.0154
Error rate of T8 0.1212 0.0250 0.0154
Error rate of T9 0.1231 0.0346 0.0192
Error rate of T10 0.1654 0.0404 0.0231
Average error rate 0.1315 0.0321 0.0196
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The reason for the poor performance of SVM and Naive Bayes is that the identification
information of similar Tibetan characters is lost in the process of feature extraction.

In order to illustrate the recognition performance of this paper method, The average
error rate comparison of different classifiers on G1 and G2 sets is shown in Fig. 4.

Figure 4 shows this paper’s method does not need human intervention in the
process of training and recognition, is a kind of end-to-end approach, as well as under
the condition of less training samples to achieve ideal effect.

Figures 5 and 6 shows the error curve of T10 of G1 and T10 of G2. It can be seen
that CNN has smaller error in similar character recognition with the increase of the
iterations.

Table 3. A comparison of error rate of 10-fold cross-validation on G2 set

Classifier NBC SVM CNN

Error rate of T1 0.0526 0.0158 0.0117
Error rate of T2 0.0530 0.0154 0.0134
Error rate of T3 0.0453 0.0109 0.0097
Error rate of T4 0.0555 0.0170 0.0134
Error rate of T5 0.0951 0.0146 0.0121
Error rate of T6 0.0632 0.0166 0.0162
Error rate of T7 0.0567 0.0142 0.0105
Error rate of T8 0.0551 0.0153 0.0109
Error rate of T9 0.0579 0.0117 0.0130
Error rate of T10 0.0587 0.0178 0.0117
Average error rate 0.0593 0.0149 0.0123

Fig. 4. Error rate of different classifiers on G1 and G2 set
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To further the robustness and stability of the network, In this paper randomly
selects 1/10 of the sample from category of G2 set to form the test sample set (Te), and
the number of test set is 2,470. In addition, it randomly selects five training sample sets
(Tr1, Tr2, Tr3, Tr4 and Tr5) which doesn’t include the test sample of Te, and the size
are 1, 2 times, 3 times, 5 times and 9 times of test sample respectively, and The number
of training sample sets is 2470, 4940, 7410, 12350, and 22230. The recognition error
rate of these five sets of data is shown in Table 4.

Fig. 5. T10 of G1 error curve

Fig. 6. T10 of G2 error curve

Table 4. A comparison of error rate of different training samples in G2 set

Classifier NBC SVM CNN

Error rate of Tr1-Te (2470-2470) 0.0628 0.0190 0.0510
Error rate of Tr2-Te (4940-2470) 0.0789 0.0202 0.0255
Error rate of Tr3-Te (7410-2470) 0.0846 0.0182 0.0227
Error rate of Tr4-Te (12350-2470) 0.0494 0.0153 0.0166
Error rate of Tr5-Te (22230-2470) 0.0526 0.0158 0.0146

60 X. Wang et al.



Table 4 shows that with the increase of the sample size, the error rate of the
recognition method based on the deep neural network gradually decreases, but the error
rate of NBC and SVM method fluctuates up and down. It’s clear that the network is
more stable for the different sample collection, and the system has more robust
robustness.

5 Conclusion

This thesis proposes that using convolution neural network to automatically learn and
recognize the characteristics of similar characters of Uchen Script in Tibetan ancient
books. At the same time, the similar characters of Tibetan ancient books constructed in
this paper are adopted to train the model parameters, and the experimental results show
that, compared with the traditional methods: (1) Deep convolution neural network can
automatically learn the effective features and identify them from the pixel level, which
avoids losing details caused by artificial selection and extraction of features and
improves the recognition rate; (2) With the increase of the number of training samples,
deep convolution neural network has a remarkable performance in reducing the error
recognition rate, and the increase of training samples has an obvious effect on
enhancing the recognition rate of deep neural network.
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Abstract. The recognition of Tibetan is of great significance to the study of
Tibetan culture while the progress of Tibetan character recognition is lagging
behind. Especially when there are not a large number of available training
samples, Tibetan character recognition is very difficult. So we propose a
recognition method for Tibetan characters based on component location infor-
mation without a large number of training samples. The proposed method
includes three main parts: (1) The segmentation of character and the extraction
of component which contain location information in the character; (2) Features
extraction and classifier design; (3) The superposition of component after
recognition and the retrieval of character. The testing results are: the recognition
rate of single component is 98.4%, the recognition rate of multilevel component
is 97.2%. It indicates that the method has a good effect on the recognition of
Tibetan character, and it is helpful for the recognition of Tibetan documents.

Keywords: Tibetan recognition � Character segment
Component combination � Classifier design

1 Introduction

Tibetan is a minority nationality character which is used by 5 million Tibetan people in
China. There are two views on the origin of Tibetan character: One view is that the
Tibetan was created by a minister Tumi Sabza of Srongtsen Gampo’s in the seventh
Century. Another view is that the Tibetan was evolved from Zhang zhung character.
Tibetan is a special kind of phonetic character, whose longitudinal unit is a character,
and a character consists of at most 4 components. Syllables are the basic spelling units.
Each syllable consists of at most 4 characters, as shown in Fig. 1.

Compared with other languages, the progress of Tibetan recognition research is
relatively backward. However, the gap is gradually narrowing under the efforts of a lot
of scholars.
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In Printed Tibetan: Hua Wang carried on the preliminary study of Tibetan recog-
nition form the preprocessing, text line segmentation, feature selection and classifier
design [1]. By using the segmentation method based on the connected domain and the
extraction of the stroke feature based on the grid, Zhu Ou increased the recognition rate
of the Tibetan [2]. In order to improve the recognition rate, Yulei Wang extracted the
features of Tibetan characters based on Fractal Moments and improved rough mesh
method [3]. Yuzhen Baima proposed projection method based on network lattice which
is suitable for Tibetan recognition [4]. Wei Zhou proposed a Tibetan recognition
method based on geometry analysis of component [5]. In Handwritten Tibetan: Heming
Huang established the first off-line handwritten Tibetan recognition system [6].
Xiaojuan Cai proposed a feature extraction algorithm for off-line handwritten Tibetan
characters based on multi projection normalization, which further improved the
recognition rate [7]. By using HMM based on stroke type and the position relation
between strokes to improve the recognition performance [8], Weilan Wang designed a
complete online handwritten Tibetan recognition system [9], proposed a Tibetan
Sanskrit handwritten sample generation method based on component combination [10].
Longlong Ma proposed a semi-automatic component annotation method for online
handwritten Tibetan character database [11], a Tibetan component representation
learning method for component-based online handwritten Tibetan character recognition
[12], and a component segmentation-based recognition method for online handwritten
Tibetan syllables [13]. We propose a recognition method for Tibetan characters based
on component location information without a large number of training samples. The
rest of this paper is organized as follows.

Section 2 introduces printed Tibetan characters and components. Section 3 gives
the component segmentation method. The method of feature extraction and classifier
design is given in Sect. 4. Section 5 gives recognition process and result analysis.
Section 6 offers concluding remarks.

2 Tibetan Characters and Tibetan Components

Tibetan is a special kind of alphabetic writing that a character contains 1 to 4 com-
ponents which are superposed up and down. Most Tibetan recognition work is based
on characters, while the recognition work based on components is rarely. There are 534
printed Tibetan characters used frequently, while 231 components in totally. And the
231 component contains 51 single components, 180 deformation combination

Fig. 1. Example of Tibetan structure
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components. As for non-single that changes have taken place in the deformation
combination, so we take combination components as a whole, as shown in Table 1 and
Fig. 2. In fact based on components is a very useful method for Tibetan recognition
work especially when the training sample is insufficient. Tibetan characters have strict
distribution rules, which can help separation component easily. Based on component
can also help reduce the number of classification. Character is recognized by retrieving
Tibetan characters database after the components are recognized.

Table 1 is a character example in Tibetan characters database, “TibetOrder” is the
sequence number of the character in database, “Tibet” is a character, “ID” is the
database record number, “Sort” is the layer information of a component in a character,
and “Code” is the sequence number of component in the template. Figure 2 is all
Tibetan components which contain 51 single components and 180 deformation com-
bination components.

We proposed a recognition method for Tibetan characters based on components
location information. The stages of the proposed method are shown as follow.

(1) After the size transformation, the segmentation of the above vowel, the seg-
mentation of the below vowel and the segmentation of intermediate component,
the component containing location information are obtained.

(2) Feature extraction and classifier design.
(3) Calculate the matching degree using the Euclidean distance, screen out the top-ten

matching degree and the corresponding components.
(4) According to the recognition result of each component, retrieve and find out the

corresponding character in database.

3 Component Segmentation

Component segmentation based on the writing standard of Tibetan character, which
follow the sequence of above vowel, below vowel and intermediate component. The
component segmentation process is shown in Fig. 1.

In Fig. 3, “Above” indicates above vowel, “Below” represent below vowel and
“Single” indicates single intermediate component, “Double” refers to double inter-
mediate component.

Table 1. Example of Tibetan characters database.

ID Tibet TibetOrder Sort Code

144 82 1 41

145 82 2 3

146 82 3 161
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3.1 Above Vowel Segmentation

The above vowel is located on the baseline of the Tibetan character, the top 1/4 part of
an image. The above of the baseline is empty without above vowel. The specific
algorithms are as follows.

Step 1: Above vowel judgment.
The statistical number of handwriting points in the 1/5 section above the image, and

the numbers is replaced by “sup”. Column projection on the 1/5 section above the
image, Statistical the numbers that Greater than zero, and the numbers is replaced by
“tnum”. The method of judgment is shown in Fig. 4, “Cnum” represent the numbers of
columns. Experimental verification, when T is 5, there is the best result.

Fig. 2. All Tibetan components we used.

above vowel
 existence or not

Have
below
vowel

Have
below
vowel

single
component

in the 
middle

single
component

in the 
middle

Input

single
component

in the 
middle

single
component

in the 
middle

Above
Below
Single

Above
Below
Double

Above

Single

Above

Double
Below
Single

Below
Double

Single Double

Fig. 3. Component segmentation process
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Step 2: Find the segmentation point.
Image line projection, and the point near “Rnum/4”, which has minimum projection

value and has the maximum rate is the segmentation point. “Rowsnum” indicate the
numbers of lines.

Step 3: Above vowel segmentation.
Image segmentation based on segmentation point. Example of above vowel seg-

mentation is shown in Fig. 5.

3.2 Below Vowel Segmentation

The below vowel is located in the underneath, 1/4 part of image. The specific algo-
rithms are as follows.

Step 1: Below vowel judgment.
The statistical number of handwriting points in the bottom 1/5 section of the image

is replaced by sdown. Column projection on the 1/5 section bottom the image, Sta-
tistical the numbers that Greater than zero, and the numbers is replaced by “dnum”. The
method of judgment is shown in Fig. 6.

The numbers of “Cnum” indicate the number of columns.

Step 2: Find the segmentation point.
Projection in the right half of the image, and the point near “4*Rnum/5”, the

segmentation point is supposed to have minimum projection value. “Rnum” indicate
the numbers of lines.

Input  sdown

sdown
<T

Have vowelNo vowel

Dnum>
Cnum/3

Fig. 6. Below vowel judgment

Input  sup

sup<T

Have vowelNo vowel

tnum>
Cnum/3

Fig. 4. Above vowel judgment Fig. 5. Example of above vowel segmentation
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Step 3: Below vowel segmentation.
Starting from the right side of the image, if connected to a below vowel, disconnect

based on the segmentation point. If not connected, search the segmentation path along
the contour of below vowel. Figure 7 is the Example of below vowel segmentation.

Intermediate component Segmentation
There are only one or two layers of components in middle part, after above vowel

segmentation and below vowel segmentation. The specific algorithms are as follows.

Step 1: Judgment of the number of layers.
After removing the above vowel and below vowel, assume the number of hand-

writing points in the top half of the image is N, in the bottom half of the image is M.
Single component if M=N\T3, the middle part is called single component, and it is
called double component under the condition of M=N[ T3. The experiment proves
that the result is best when M is 0.9.

Step 2: Find the segmentation point.
Projection the image, and the point near the middle position of the image, which

has minimum projection value is the segmentation point.

Step 3: Intermediate component segmentation.
Image segmentation is based on segmentation point. Example of intermediate

component segmentation is shown in Fig. 8.

3.3 Special Circumstances Process

(1) Sometimes the segmentation of above vowels may makes mistakes, as is shown in
Fig. 9. In this case we can use the minimum rectangle to extract the correct top
component. As is shown in Fig. 10.

(2) Sometimes the deformation combination of some components will be considered
as a single component, which is shown in Fig. 11. So we consider the result of the
deformed combination as a component and increase the number of components in
the template.

Fig. 7. Example of below vowel segmentation

Fig. 8. Intermediate component segmentation
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4 Feature Extraction and Classifier Design

4.1 Component Feature Extraction

168 features are extracted altogether, and the images involved are original component
image, remove position information image, skeleton image and edge image. As is
shown in Fig. 12(a)–(d). All image normalization, 100 rows and 50 columns.

The feature extraction algorithm of the component is as follows.

Step 1: Feature extraction of original image
The original image refers to the component image come form template or character

segmentation. The original image contains the location information of the component
distribution. And the distribution information of different components is different. Four
features are extracted from the original image: The ratio of black pixel points, the
number of rows with black pixel points, the position of first and the last row with black
pixel points.

Step 2: Feature extraction of remove position information image
After minimum rectangle frame processing, image extends to the original size. And

the image is divided into 16 parts using an elastic grid. 23 features are extracted from
the remove position information image: The ratio of black pixel points, position of grid
line and the position of first black pixel point per line in each part.

Step 3: Feature extraction of skeleton image
After skeleton processing of the original image, we get the skeleton image. 41

features are extracted from the skeleton image: rough periphery and inner profile.

Fig. 9. Error segmentation example Fig. 10. Correct segmentation example

Fig. 11. Component deformation combination

(a)      (b)      (c)    (d)

Fig. 12. (a) (b) (c) (d) Image used to extract feature
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Step 4: Feature extraction of edge image
After edge processing of the original image, we get the edge image. And the image

is divided into 25 parts averagely. Statistical directional line information in each part
and 100 features are extracted.

4.2 Classifier Design

Euclidean distance is used to calculate the matching degree between the test compo-
nents and the components in the template. Di indicate the matching degree between the
test components and the i-th components in the template. And the range of number “i”
is 1 to 231. As shown in (1).

Di ¼
Xm

j¼1

ðxj � xi; jÞ2 ð1Þ

Where m indicate the total number of feature values, xj and xi, j represents the j-th
feature value of test component and the j-th feature value of i-th components in the
template.

5 Analysis of Experimental Results

The method is carried out after line and character segmentation. Figure 13 is a part of the
Tibetan document image. Figure 14 is line segmentation results. Figure 15 is the
recognition results of Fig. 14(a), and the results are . It can be seen
from the recognition example that our method has a satisfactory recognition result. For
the experiments 100 Tibetan printed document images are used, and the recognition rate
of single component is 98.4%, the recognition rate of multilevel component is 97.2%.

Fig. 13. Tibetan printed document example

(a)

(b)                                       (c) 

Fig. 14. (a) (b) (c) line segmentation results
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After analysis, we can see that there are two main reasons for wrong recognition.
One is caused by the line or character segmentation error, which may cause some
character information to lose or increasing noise. And another is caused by components
segmentation error, which segmentation points are judged mistakenly. Wrong seg-
mentation point cause wrong segmentation results and lead to wrong recognition results
certainly, which is the reason why multi-layer character recognition rate is lower than
single-layer character.

Fig. 15. Recognition example

Fig. 16. Black body Fig. 17. Long body
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We also tested four other Tibetan fonts that include Black body (see Fig. 16), Long
body (see Fig. 17), Round body (see Fig. 18) and Bamboo body (see Fig. 19), which
recognition rate is 96.3%, 92.1%, 95.8% and 93.3% in the 50 sets of test samples. From
the test results, we can see that the recognition effect of Black body and Round body is
better than Long body and bamboo body. This is because that the change of Long body
and Bamboo body is larger than that of Black body and Round body compared with the
commonly used Tibetan fonts, which is the template we use. So it is easy to make
mistakes when components are segmented, which lead to the component contain noise
or some information lost. And then the result of the character recognition is wrong.
Although these Tibetan fonts are slightly different from the commonly used Tibetan
fonts, but the recognition rate has not been greatly affected. This also can prove that the
characteristics extracted are effective.

6 Conclusions

This paper propose a recognition method for Tibetan characters based on component
location information when lack a large number of training samples. The main work
includes: the extraction of component which contain location information, features
extraction based on four kinds of images, classifier training, superposition of compo-
nent and the retrieval of character based on component location information database.
The single-layer character recognition rate for this method is 98.4%, and 97.2% for
multi-layer character. It is found that the effect of component segmentation directly
affects the recognition of character. So the optimization of component segmentation
algorithm is the focus of further research.
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Fundamental Research Funds for the Central University of Northwest Minzu University
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Fig. 18. Round body Fig. 19. Bamboo body
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Abstract. Text line segmentation is one of the critical content in handwriting
documents recognition especially in the historical documents’ analysis and
recognition. Because of the low quality and the complexity of these documents
(background noise, scattered character, touching components between consec-
utive lines), automatic text line segmentation remains to be a hot spot for
researching. In this paper we propose a new method to segment the text line from
the historical Tibetan scripture “kangjur” of the Beijing version on the paper by
means of woodcut. This method first performs document image skew detection
and correction, using projection profiles to get the baseline of text line, then the
connected component is allocated to text line according to the location rela-
tionship. For some connected components, analyzing their location and sharp to
assign these connected components correctly. This method using connected
component instead of pixels, avoiding the noise generated by splitting characters.
Experiments show that this method is effective in copes with touching text lines
and promising in text line segmentation from historical Tibetan document.

Keywords: Historical Tibetan document � Kangjur � Text line segmentation
Component analysis � Location � Sharp

1 Introduction

The Tibetans have a large number of historical documents; most of them are stored in
temples. Those historical documents are exist in the form of scriptures for a very long
time. It is urgent to protect and reuse them by using digital technology because of the
deterioration of the quality of the historical documents. Using Optical Character
Recognition (OCR) technology to converts the historical Tibetan documents into text
files. The text files stored in the services is not only appropriate preserved but also
convenient for reusing those precious historical documents. In document processing
field, the segmentation is essential for document recognition which it needs several steps
of binarization, layout analysis, text blocks extraction, text lines and words segmentation
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and character recognition. The degraded historical documents (e.g. ink stains, torn pages,
overlapped/touching character, broken stroke etc.) make a challenge for the text line
segmentation task. The variation of the interline distance and the baselines undulation
between lines or even along the same text line. The touching characters between adjacent
text lines appear frequently in Tibetan documents. The whole characters may be divided
into several parts because of broken stroke. All above greatly complicates the task of the
text lines segmentation from historical handwritten document.

In this paper, we focus on the extraction of text lines from historical Tibetan
documents and we propose a method based on the analysis of the location and shape of
the connected component. This method cannot totally solve the problem of segmen-
tation, but we try to reduce the error as much as possible to extract text line complete.
For text line extraction of historical Tibetan documents, a few researche have been
done such as: based on baseline detection method [1] and contour curve tracking
method [2]. Other common text line extraction methods also include: projection-based
method [3], Hough-transform [4], smearing method [5], clustering approach [6, 7].

In [1] the baseline is getting by template matching, pruning the salient strokes and
closing operation, then touching characters is detecting and splitting, the text-line is
extracted according to baseline and split position, this method can deal with the
touching characters and fluctuating text lines. However, this method does not consider
broken strokes, so it is inadequate for some historical document image with a large
number of broken strokes.

In [2] the text line segmentation method based on contour tracking is proposed. The
text line is extracted by the contour from the document image which comes from the
constructed connected component. The method combine the barycentre coordinates of
the connected component to form the curve line and the separated components are
assigned to the corresponding text line by the barycentre gravity later. The text line is
obtained by the contour curve of the text line. This method is innovative but the
performance is not satisfactory when a document image with many touching characters
is segmented.

Projection-based method [3] is most commonly used for the text line segmentation
especially in printed or slightly document. The projection value is computed by
summing the values of pixel in the foreground in horizontal axis of each line. The text
lines is segmented by straight lines with suitable positions and directions, this method
is not suitable for historical Tibetan document as there is no obvious line
gap. According to the layout of the Tibetan Scripture “Kangjur”, the direction of the
text lines is approximately horizontal parallel, so this method can be used to find the
baseline of the text lines.

Hough-based method [4] is proper to detect text lines which are usually parallel in
certain areas. Smearing method [5] enlarged area of black pixels, the white space
between the black pixels is filled with black pixels if their distance is within a pre-
defined threshold. But this method is not suitable for historical Tibetan document.
Because some vertical stroke is overlong that smearing horizontal will produce more
touching components.

Clustering method [6, 7] usually divides a picture into several connected compo-
nents, blocks or other units according to some features, and then aggregates these units
to form alignments according to some rules. Considering that there are a lot of touching
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characters in historical Tibetan documents, it is very difficult to assign the characters to
the correct text lines in this way. Thus, this method is not suitable for text line seg-
mentation from historical Tibetan documents.

The paper is organized as follows: in Sect. 2, our method is described. In Sect. 3
the proposed method to segment text lines is detailed. Section 4 present the experi-
mental results and discuss. Section 5 describes conclusions and future work.

2 Our Method

Tibetan character can be regarded as a kind of string composed of basic characters and
characters in the vertical direction [8] (see Fig. 1). The authentic historical Tibetan
document not only have lots of touching characters between adjacent lines as the height
of the character is inconsistent but also have lots of broken strokes than other lan-
guages. The touching characters between adjacent line, the separated upper and lower
vowels and the broken strokes make the text-line segmentation more complex (see
Fig. 2). At present, there is no satisfactory segmentation method for the authentic
historical Tibetan document of wooden printing.

We can see the characters in the historical Tibetan document are very close to each
other because of the limited area of the document and there is no obvious gap between
adjacent lines. The historical document images have large number of touching and
overlapped characters and variety of broken strokes which are the main challenge to
extract text lines accurately.

Fig. 1. (a) Character with upper vowel (b) character with lower vowel.

Fig. 2. Partial image with slanted baseline, separated character, overlong and touching
characters.
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In order to extract the text-line completely from handwritten, degraded, historical
Tibetan documents, we present a text-line segmentation method which combine the
row projection location analysis and shape analysis of connection components. Our
method stems from the idea that the text line is composed of a set of location related
components. The task of text line segmentation is to find such a set of components and
extract them from the document image to form a text line.

Our method detects the input document image whether the image is skew or not and
perform skew correction if it is. Then the position of baseline is obtained using pro-
jection method as the text line is approximately horizontal after skew correction.

The connected component is allocated to text line according to the location rela-
tionship between the component and segmentation line by their location information.
For some connected components, it is difficult to assign them to the corresponding text
line only depends on location. Generally speaking, these components are broken
strokes, separate vowels, symbols, touch characters, noise, and so on. Therefore, it is
necessary to make a further analysis of the location and shape of these connected
components in order to correctly determine their attributes. Combining location and
shape information to determine which text line these connected components should
belong to will be more accurate, especially for complex documents. At last, the
components belong to the same alignment are merged to recover the text line.

Here is the architecture we extract text-lines from Tibetan historical documents
shown in Fig. 3.

Our method includes four stages:

1. Pre-processing: We detect whether the input image is skew. If the image is skewed,
the skew correction is done to make the text lines in the image horizontally parallel.
Then, the information about height of character is got which will be used to estimate
the feature of characters in next stage. At last the position of baseline is detected
using the projection method.

2. Location analysis: According to the baseline position we obtained before, the text
line region is extracted from the input image as a rectangle, and divide the region
into upper part and lower part according to the baseline position of the current
baseline. The upper part is undoubtedly part of the current text line, but the lower
part contains some components of the next text line. Next, the projection method is
used to find the optimal segmentation line (SL) which is the row’s location with
minimum pixels in the lower part. Then the connected component in the lower part
is divided into three classes according to whether it intersects with the SL. Some
connected components are belongs to current text line or next text line certainly but

Fig. 3. The text line segmentation process.
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the others cannot easily determine which text line they belong to, so further analysis
is needed.

3. Location and Shape analysis: By judging whether there is intersection point with
SL, the connected components with uncertain attribution is divided into one class.
By analyzing the location information and shape information of the connected
component in this class, we classify it into the correct text lines, especially for the
touching characters between the text lines, we use some features and rules to detect
and separate them.

4. Image merging: Through the Location and Shape analysis (LSA) of the connected
components, the connected components belonging to the current text line have been
marked out. Combining these connected components to form the lower part of the
current text line, and then splicing the upper and lower parts to form a complete
image of the current text line.

3 Text Line Segmentation

The proposed text line segmentation method base on the projection, location and shape
analysis of connected components for historical Tibetan handwritten document deals
with the following challenges: (i) parts of neighboring text lines may be connected;
(ii) overlong character and touching character in text line; (iii) the separated vowel may
be appeared either above or below the text line and (iv) the broken strokes of characters
in text line. The work flow of the text line segmentation is shown in Fig. 4.

Fig. 4. Proposed method framework.
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3.1 Pre-processing

The pre-processing stage consists of three steps. First, whether the input image is skew
is detected, the document image is skew corrected if the image is skew. The angle of
the skew correction is determined by the length of the border detection line, the method
rotates the image from -2 angle to +2 angle at step 0.1, and detects the sum of the
length of the edge lines of the four borders, the maximum sum corresponding angle is
the correction angle. An example is shown in Fig. 5. Then, average character height
(AH) and the average component height (ACH) for the whole document image are
calculated and the bordering box is removed. Last, the baseline position of each text
line is obtained by row projection profile method, and the number of locations equals
the number of text lines. An example is shown in Fig. 6.

3.2 Location Analysis

This stage includes two steps. At the first step, the projection method is used to get the
initial row position of the text line that is the line of beginning (LB) then extract the
area between LB and the baseline location of the current text line as the upper part of
the current text line image, and this part is denoted as “upper image” (see Fig. 7. black
part). The next step will analyze the image (“lower part”) between the baseline of
current text line and the next baseline. Firstly, the statistical method is used to find the
optimal segmentation line (SL) which is the row’s location with minimum pixels. Next,

(a)  the document image is skew                           (b)  after skew correction

Fig. 5. The input document image is skew (a) and the document image after skew correction (b).

Fig. 6. Row projection diagram of binary document image.
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by using relative location relations between components and SL, the connected com-
ponents domain is divided into three sub-domains, which are denoted as “Subsetcur”,
“Subsetlow” and “Subsetcs” respectively.

“Subsetcur” contains all componentswhich totally are located above the SL (see Fig. 7.
green part) and “Subsetlow” contains all components which are located below the SL (see
Fig. 7. blue part). “Subsetcs” contains all the componentswhich have the intersected points
with the SL, this subset have various components that need to be analyzed in different
manners by the proposed method in the next stage (see Fig. 7. red part).

3.3 Sharp-Analysis

This stage analyzes the location and shape of the components which is in the “subsetcs”
to determine whether it belongs to the current text line or not. The categories of these
components in the “subsetcs” are separated into upper vowels and lower vowels,
broken strokes ,overlong characters, touching and overlapped characters, and bar
shaped connected components. All connected components in “subsetcs” have a com-
mon property that they intersect with SL, in other words, SL divides these connected
components into upper and lower parts. In order to assign connected components to the
corresponding text lines accurately, we need to extract some features of these con-
nected components, such as the height of connected components (H), the height above
the SL (HA), the pixel per row for the part above the SL (PPRA), the height below the
SL (HB), the pixel per row for the part below the SL (PPRB), and the ratio of the
foreground area to the minimum rectangular bounding area (RFB).

The PPRA is calculated as follows: (value 1 for foreground and 0 for background
pixels)

PPRA ¼
Xwidth

x¼1

XHA

y¼1
I x; yð Þ=HA if I x; yð Þ ¼ 1 ð1Þ

Fig. 7. An example of partitioning the connected components by the relationship between the
component and the segmentation line. The black part is upper image, the lower part is the region
between current baseline and next text line’ baseline, the green part means “subsetcur”, the red
part means “subsetcs” and the blue part means “subset low”. (Color figure online)
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The PPRB is calculated as follows:

PPRB ¼
Xwidth

x¼1

XHB

y¼1
I x; yð Þ=HB if I x; yð Þ ¼ 1 ð2Þ

The RFB is defined as follows:

RFB ¼
Xwidth

x¼1

Xheight

y¼1
I x; yð Þ=width � height if I x; yð Þ ¼ 1 ð3Þ

The location and shape analysis (LSA) procedure consists of two steps. At the first
step, the feature obtained above are used to determine whether the connected com-
ponents lying in subsetcs are belong to the current text line or not according to the
following conditions.

In the first step, the method take advantage of the feature we obtained above and the
average character height (AH) and the average component height (ACH) which are got
at first stage to classify them into three categories by rules. The first category have the
connected components which are assigned to the next text line. One category consists
of components that in this step cannot determine the attribution of text lines, and these
components will be analyzed shapes in the next step. The last category includes the
components of the current text line, usually consisting of overlong characters, symbols,
and touching characters. The touching character will be segmented and retain the
component belonging to the current text line.

The broken strokes and separated vowels were selected by conditions 4. The
condition is described fellow:

H\ACH ð4Þ

The connected component is belongs to the current text line, if some features satisfy
the condition below:

ðH[AHÞ and ðHA[HBÞ ð5Þ

Identify the connected component with height exceeds the height threshold which
is defined as:

HT ¼ 1:5 � AH ð6Þ

The connected components which satisfied the above conditions include the
overlong characters (see Fig. 8, a b c), the touching characters(see Fig. 8, d e) and the
bar-shaped connected components which generally are Tibetan character symbol(see
Fig. 8, f).

The bar-shaped connected components usually are symbol which is belong to
current text line. Such component will be selected if the following condition is
satisfied:
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RFB[ 0:5 ð7Þ

The touching character are as long as the overlong character (see the Fig. 6a b c and
d e). Choose the touching character according to the following constraint.

PPRB[ 1:2 � PPRA ð8Þ

The LSA first step work flow is shown in Fig. 9

a b c d e  f 

Fig. 8. The image of overlong character, the overlong characters (a b c), the touching characters
(d e) and the bar-shaped connected components (f).

H < ACH

H > AH and 
HA > HB

H > 1.5*AH

subsetcur

RFB > 0.5

PPRB>PPRA

Touching 
character

segmenta on

The last 
component

end

yes
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yes

yes

no

no

yes

yes

no

no
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no

Component 
belonging to

  current text line

no Overlong
character

Bar shape
component
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Fig. 9. The LSA first step work flow
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The second step continues to deal with connected components still in subsetcs,
which are broken strokes (see Fig. 10, a b c d), separated lower vowels belonging to the
current text line (see Fig. 10, e f g), and upper vowels belonging to the next text line
(see Fig. 10, h i j).

This step has three works to do:

1. Calculate the centroid and the skeleton of connect components, then detect the
intersection between skeleton and the line located by the centroid, and calculated
the numbers and the coordinate positions of the intersected points.

2. For the connected components with only one intersected point (see Fig. 11 a b c d),
move it from subsetcs to the subsetcur if its centroid position is above the seg-
mented line, or it belongs to subsetlow if its centroid position is below the seg-
mented line.

3. For the connected components with two intersected points, the skeleton is seg-
mented into the upper part and the lower part according to the line located by the
centroid and the coordinate of two intersected points. The number of pixels in the
two parts is counted respectively. Connected components are assigned to subsetcur
if the pixels in the lower part is more than that in the upper part (see Fig. 11 e f g),
otherwise, the connected components will belong to subsetlow(see Fig. 11 h i j).

3.4 Merging Image

Since all the connected components that belong to the current text line have been
marked in the subsetcur, so the lower part of the current text line is generated by the
subsetcur. The complete image of the current text line image is got by merge the upper
part and lower part. The input image subtracts the current text line image from the
position of the LB to produce a image that is the input image for the next text line.

a  b c d e f g h i j 

Fig. 10. The connected components of broken strokes, separated lower vowels and separated
upper vowels

a    b   c     d       e      f         g          h          i           j

Fig. 11. The skeleton diagram with line located by the centroid
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4 Experimental Results and Discussion

The experimental dataset are from the historical Tibetan scripture “kangjur” of the
Beijing version on the paper by means of woodcut. The scripture “kangjur” of the
Beijing version have more than 60 thousand images, the dataset just have 1696 text
lines from 212 images which is selected at random. The method presented in this paper
is implemented in matlab.

Figure 12 is an original historical Tibetan document image. This method performs
image skew detection and correction, using projection profiles to get the baseline of
text line, then the bounding box is removed. Figure 13 is the document image without
bounding box. Figure 14 gives the text line segment results.

Let N be the number of all text lines, Gj the set of all points inside the ground truth
region, Ri the set of all points inside the corresponding result region. The detection rate
(DR) and the recognition accuracy rate(RA) are defined as follows:

DR ¼ G\R
G

;RA ¼ G\R
G

ð9Þ

Because text line segmentation is an important part of OCR recognition system, the
ideal situation is that the text lines only contains all the components belonging to the
text line, and it does not lose any component and does not have any component that do
not belong to them. Therefore, we propose completeness rate to measure the seg-
mentation effect. The definition of integrity is as follows:

Fig. 12. The input image

Fig. 13. The image after remove the bounding box
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CR ¼
P

Ni

N
Ni ¼ 1; if Gi ¼ Ri; otherwise Ni ¼ 0 ð10Þ

Table 1 shows the performance of contour curve tracking method and our method.
Comparing with the contour curve tracking method, our method has a considerable
improvement in each evaluation value.

Fig. 14. Result of text line segmentation

Table 1. The performance of contour curve tracking method and our method

Method N DR RA CR

Contour curve tracking 2196 82.79% 80.09% 33.23%
Our method 2196 91.17% 90.23% 37.51%
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Experimental results show that almost all the components belonging to the wrong
text line are caused by broken strokes and separated lower vowels. And this method is
very efficient to detect the touching characters in adjacent text lines. There are 874
touching characters in the dataset of the 212 pictures, and 840 of them are detected
successfully, the touching character’s detect ratio is 98.4%.

5 Conclusion and Further Work

Text line segmentation is still one of the most challenging topics in document image
analysis. In this paper, we present a text line segmentation method for handwritten
historical Tibetan documents based on connected components analysis. This method
correct the skew document image, gets the reasonable baseline position by the contour
projection, and obtains the text line region by the baseline position from the document
image. The connected component’s attribution is decided by analyzing the location and
shape. The method is suitable for text segmentation from complex layout document
image and can overcome the slightly fluctuation of text line. Although the algorithm is
reasonably designed and many features about location and shape are analyzed, there are
still many wrong parts in the extracted text line image.

Low completeness rate of text line segmentation is not only caused by strict
standards, but also by the real historical handwritten documents that is more compli-
cated because of the high frequency of separated vowel characters, broken strokes, and
touching characters.

Through experiments, we get the following conclusions for the text line segmen-
tation task for the degraded Tibetan historical document image of wooden printing:
(i) the method based on the connected component analysis is feasible for text line
segmentation. (ii) it is necessary to correct the skew document image for text line
segmentation.(iii) the problem of touching and overlapped characters in text line
segmentation of historical Tibetan documents can be solved effectively. (iv) it is not
enough to make use of a few features to identified the shape of character.

The focus of future work is to study the shape recognition algorithm of similar
vowels and broken strokes. Another issue is to research the better segmentation
algorithm for touching and overlapped character.
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Abstract. Discriminant Locality Alignment (DLA) has been successfully
applied in handwriting character recognition. In this paper, a new manifold
based subspace learning algorithm, which is called Two-dimensional Discrim-
inant Locality Alignment (2DDLA) algorithm, is proposed for online hand-
writing Tibetan character recognition (OHTCR). The proposed algorithm
integrates the idea of DLA and two-dimensional feature extraction algorithm. At
first, extracting direction feature matrix and edge feature matrix of Tibetan
character respectively, they are together formed original feature matrix. Then, in
part optimization stage, for each character sample, a local patch is built by the
given sample and its neighbors, and an object function is designed to preserve
local discriminant information. Third, in whole alignment stage, the alignment
trick is used to align all part optimizations to the whole optimization. The
projection matrix can be obtained by solving a standard eigen-decomposition
problem. Finally, a SMQDF classifier is used training and recognition. Exper-
imental results demonstrate that 2DLDA is superior to LDA and IMLDA in
terms of recognition accuracy. In addition, 2DLDA can overcome the matrix
singular problem and small sample size problem in OHTCR.

Keywords: Online handwriting recognition � Tibetan character recognition
Two-dimensional discriminant locality alignment (2DDLA) � Subspace learning

1 Introduction

With the acceleration of Tibetan information process, the demand of Tibetan character
recognition system is becoming more and more prominent. At present, handwriting
Tibetan character recognition (HTCR) has made great progress in both research and
practical application [1–6]. However, the recognition of Tibetan character is different
from handwriting recognition of other languages, it poses a special challenge due to a
complex structure, wide varieties in writing style, a large character set and many
instances of highly similar characters. Figure 1 illustrates some samples of handwriting
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Tibetan character. Unconstrained online HTCR is still an open problem remaining to be
solved, for it is still challenging to reach high recognition rate.

As shown in Fig. 1, many Tibetan characters are almost identical to other char-
acters except for only a small different. However, the small difference can be lost
during the feature extraction process. So the discriminate information extraction is
crucial for improvement of the recognition performance. In OHTCR, dimensionality
reduction is the process of transforming data from a high dimensional space to a low
dimensional space to reveal the intrinsic structure of the distribution of data. It plays a
crucial role in the field of computer vision and pattern recognition as a way of dealing
with the “curse of dimensionality”. In past decades, a large number of dimensionality
reduction algorithms have been proposed and studied. Among them, principal com-
ponents analysis (PCA) [7] and Fisher’s linear discriminant analysis (LDA) [8] are two
of the most popular linear dimensionality reduction algorithms.

PCA maximizes the mutual information between original high dimensional
Gaussian distributed data and projected low dimensional data. PCA is optimal for
reconstruction of Gaussian distributed data. However, it is not optimal for classification
problems. LDA overcomes this shortcoming by utilizing the class label information. It
finds the projection directions that maximize the trace of the between-class scatter
matrix and minimize the trace of the within-class scatter matrix simultaneously.
However, LDA is only a suboptimal model which suffers from the class separation
problem. The objective of LDA can be formulated as maximizing the sum of all the
pairwise distances between different classes, which will overemphasize the large dis-
tance of the already well-separated classes, and confuse the small distance classes that
are close in the original feature space. Li and Yuan [9] proposed a new method of
feature extraction using two-dimensional linear discriminant analysis (2DLDA), and
directly uses the matrix to extract the discriminant feature without a vectorization

Fig. 1. Some samples of handwriting Tibetan character
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procedure, it has a great advantage over the one-dimensional method in calculation and
processing efficiency.

Zhang [10] proposed a local linear dimensionality reduction algorithm called dis-
criminative locality alignment (DLA). The DLA takes into account the locality of
samples, deals with the nonlinearity of the samples distribution, and preserves the
discriminability of classes as well. However, the DLA algorithm is based on the vector
space, and the data must be vectorized during calculation, which destroys the spatial
distribution characteristics and structure information of the data. Based on the stability
and effectiveness of DLA algorithm in recognition performance, in this paper, we
combine the idea of DLA algorithm with two-dimensional feature extraction algorithm,
and proposes a two-dimensional discriminative locality alignment (2DDLA) algorithm
to improve the recognition performance in OHTCR.

The rest of paper is organized as follows. Section 2 introduces two-dimensional
discriminant locality alignment (2DDLA) algorithm for extracting discriminative fea-
tures for OHTCR and details the basic formulation. Section 3 introduces SMQDF
classifier. We perform experiments in Sect. 4 to show the effectiveness of the proposed
method and Sect. 5 gives concluding remark.

2 Two-Dimensional Discriminative Locality Alignment

2DDLA aims to extract discriminative information from patches. To achieve this goal,
one patch is first built for each sample. Each patch includes a sample and its within-
class nearest samples and its between-class nearest samples. Then an objective function
is designed to preserve the local discriminative information of each patch. Finally, all
the part optimizations are integrated together to form a global coordinate according to
the alignment trick. The projection matrix can be obtained by solving a standard Eigen
decomposition problem.

2.1 Part Optimization

Suppose we have a set of samples X = [X1, X2,���XN] from C different classes, Xi2Rm�n.
For a given sample Xi, we select k1 nearest neighbors from the samples of the same
class with Xi and name them as the neighborhoods of a same class: Xi1 ; � � � ;Xik1 , we
also select k2 nearest neighbors from samples of different classes with Xi, and name
them as neighborhoods of different classes: Xi1 ; � � � ;Xik2

. By putting them together, we
can build the local patch for Xi as Pi ¼ ½Xi;Xi1 ; � � � ;Xik1 ;Xi1 ; � � � ;Xik2

�. For each patch,
the corresponding output in the low-dimensional space is denoted by
Ci ¼ ½Yi; Yi1 ; � � � ; Yik1 ; Yi1 ; � � � ; Yik2 �.

In the low-dimensional space, we expect that distances between the given sample
and its within-class samples are as small as possible, while distances between the given
sample and its between-class samples are as large as possible. So we have
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arg min
Yi

Xk1
j¼1

jjYi � Yi j jj2F ð1Þ

arg max
Yi

Xk2
p¼1

jjYi � Yip jj2F ð2Þ

where ||�||F denotes the Frobenius norm for a matrix.
Since the patch formed by the local neighborhood can be regarded approximately

linear, we formulate the part discriminator by using the linear manipulation as follows:

arg min
Yi

ð
Xk1
j¼1

jjYi � Yi j jj2F � b
Xk2
p¼1

jjYi � Yip jj2FÞ ð3Þ

where b is a scaling factor (b2[0,1]). The coefficients vector is defined as:

Wi ¼ ½1; � � � ; 1
zfflfflfflffl}|fflfflfflffl{k1

;� b; � � � ;�b
zfflfflfflfflfflffl}|fflfflfflfflfflffl{k2

� ð4Þ
Then the Eq. (3) reduces to:

arg min
Yi

Xk1
j¼1

jjYi � Yi j jj2FWiðjÞþ
Xk2
p¼1

jjYi � Yip jj2FWiðpþ k1Þ
 !

¼ arg min
Yi

Xk1 þ k2

j¼1

jjYFif1g � YFifjþ 1gjj2FWiðjÞ
 !

¼ arg min
Yi

trðCiðL� InÞðdiagðWiÞ � InÞðR� InÞðCiÞTÞ

¼ arg min
Ci

trðCiTiC
T
i Þ

ð5Þ

where tr (�) denotes the trace operator, the operator⊗ denotes the Kronecker product of
matrix, Fi ¼ fi; i1; � � � ; ik1 ; i1; � � � ; ik2g is the index set for the ith patch,
ek1 þ k2 ¼ ½1; � � � 1�T 2 Rk1 þ k2 , Ik1 þ k2 is a (k1 + k2) � (k1 + k2) identity matrix,

R ¼ ½�ek1 þ k2 ; Ik1 þ k2 �T , L ¼ �eTk1 þ k2
Ik1 þ k2

� �
, and

Ti ¼ ðL� InÞðdiagðWiÞ � InÞðR� InÞ ð6Þ

2.2 Whole Alignment

After the part optimization step, we unify the optimizations together as a whole one by
assuming that the coordinate for the i’th patch Ci ¼ ½Yi; Yi1 ; � � � ; Yik1 ; Yi1 ; � � � ; Yik2 � is
selected from the global coordinate C ¼ ½Y1;Y2; � � � ; YN �, such that Ci ¼ CSi, where
Si 2 RðN�nÞ�ððk1 þ k2 þ 1Þ�nÞ is the selection matrix and an entry is defined as follows:
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ðSiÞpq ¼
In if p ¼ FiðqÞ
0n else

�
ð7Þ

Then Eq. (7) can be rewritten as

arg min
C

trðCSiTiSTi CT
i Þ ð8Þ

By summing over all the part optimizations described as Eq. (8), we can obtain the
whole alignment as

arg min
C

XN
i¼1

trðCSiTiSTi CTÞ

¼ arg min
C

trððC
XN
i¼1

SiTiS
T
i ÞCTÞ

¼ arg min
C

trðCLCTÞ

ð9Þ

where L ¼PN
i¼1

SiTiSTi 2 RN�N is the alignment matrix.

To obtain the linear and orthogonal projection matrix W, such as Y = WTX, Eq. (9)
is deformed as follows:

arg min
W

trðWTXLXTWÞ; s:t:WTW ¼ I ð10Þ

The transformation matrix W that minimizes the objective function is given by the
minimum eigenvalue solution to the standard eigenvalue problem,

XLXTP ¼ kP ð11Þ

3 SMQDF

3.1 MQDF

MQDF [11] classifier’s discriminate function is formulated as

f ðY;xjÞ ¼
Xk
i¼1

½ðY � ljÞTfðjÞi �2
k j
i

þ
Xm

i¼kþ 1

½ðY � ljÞTfðjÞi �2
k

þ
Xk
i¼1

logkðjÞi þ
Xm

i¼kþ 1

logk j ¼ 1; 2; . . .;C

ð12Þ
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where, Y is input feature vector, m is line number of feature matrix, lj denotes the mean
vector of class xj, ki

(j) and fi
(j) denote the ith larger eigenvalue and the corresponding

eigenvector of the covariance matrix of class xj, respectively. k is the number of
dominant principal eigenvectors that are kept in MQDF, k is experiment parameter.

We can obtain the classified result based on the following criterion: If
f ðY ;xiÞ ¼ min

1� j�C
f ðY ;xjÞ(C is class number), then we believe that input pattern

Y belongs to the xi class.

3.2 SMQDF

MQDF classifier is widely used in the area of character recognition. However, it only
applies to feature vector, and it is not appropriate for feature matrix. For this reason,
SMQDF (second modified quadratic discriminate function) classifier is generated by
improving MQDF classifier, its discriminate function as shown in the follow formula
(13). We take it as a baseline classifier.

f ðY;xjÞ ¼
Xm�1

i¼1

ððY � ljÞTfðjÞi ÞTððY � ljÞTfðjÞi Þ
kðjÞi

þ ððY � ljÞTfðjÞm ÞTððY � ljÞTfðjÞm Þ
k

þ
Xm�1

i¼1

logkðjÞi þ logk j ¼ 1; 2; . . .;C

ð13Þ

where, Y is feature matrix, m is positive integer, When classifies, Y belongs to the class
whose f(Y,xi) is minimum. To compensate for the estimation error of parameters on
limited training samples, the minor eigenvalues are replaced with a constant k. It can be
set to a class-independent constant or class-dependent constant. Here we set k to be
class-independent for its superior performance. k is computed by

k ¼ 1
c � d

Xc
j¼1

Xd
i¼1

kðjÞi ð14Þ

4 Experiment Results

4.1 Experiment Data

We evaluated the recognition performance of 2DDLA on a databases of handwritten
Tibetan characters, collected by our group, contains the handwriting samples of 7240
characters, 5000 samples per class [12]. In order to reduce the computing cost, we only
selected 562 frequently used characters, 2000 samples per class for training and 500
samples per class for testing.

For character image pre-processing and feature extraction, we adopt the same
methods as in [6]. Each character image is normalized to 48 � 96 pixels, the
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directional features and edge features are extracted. The resulting 60 � 12 feature
matrix is projected onto a 12 � 12 subspace learned by 2DDLA, then the baseline
classifier SMQDF is designed on this 12 � 12 subspace.

4.2 Choice of Parameters for 2DLDA

Since the parameters setup for 2DDLA is essential for its performance, we carried out
the 2DDLA parameter optimization experiments before for OHTCR. In the model of
2DDLA, there are three parameters: k1, k2 andb, where k1 is the number of the samples
from identical class in the given patch, k2 is the number of the samples from other
classes in the same given patch, and parameter b is the scale parameter. In order to find
a proper range for the dominant parameters k1, k2 andb in 2DDLA, we will investigate
the effects of the three model parameters on the recognition rates in the validation phase
based on our collected database.

Suppose n is the training sample number in each class (n = 2000), N is the total
training sample number (N = 562 � 2000 = 1024000), and C is class number
(C = 562). Then, k1 and k2 could be chosen in the range of [1, n−1] and [0, N−n]
respectively. Therefore, 1 � k1 � 1999, 0 � k2 � 1022000, and 0 � b � 1.

To evaluate the effects of the three model parameters, firstly, we analyze the effect
of the scale parameter b, by fixing patch building parameters k1 and k2 to arbitrary
values. For a given pair parameters k1 and k2, we can obtain the recognition rate curve
with respect to b, as shown in Fig. 1. Base on the figures, we observe that the best
recognition rates are obtained when b is neither too small nor too larger.

Secondly, we analyze the effects of patch building parameters k1 and k2, by fixing
scale parameter b = 0.1. When we vary k1 and k2 simultaneously, the best recognition
rate with the corresponding to b can be acquired. Table 1 shows that the details of the
best recognition rate. Figure 2 shows that best recognition rate with the corresponding
k1 = 50 and k2 = 300 in this experiment (Fig. 3).

Table 1 shows that, the best combination of k1, k2, and b are k1 = 50, k2 = 300,
b = 0.1 and k1 = 100, k2 = 300, b = 0.3, with the corresponding accuracy 99.38%.
Considering the computing cost, in the following experiments, we use the best com-
bination of k1, k2, and b is 50, 300, 0.1 respectively.

4.3 Evaluation Experiments

To evaluation the performance of 2DDLA in SHCCR, we compare the performance of
2DDLA, LDA, IMLDA [13] and 2DLDA in terms of recognition rate over SMQDF
classifier [6]. The experimental results are summarized in Table 2. We can see that the
proposed method obtains higher top 1 and top 10 recognition rate than other method.

From Table 2, it is shown that the recognition rates of 2DDLA are significantly
higher than that of IMLDA and 2DLDA respectively. It also shows the discriminate
information extraction performance is very competitive in OHTCR.

To illustrate the effects of the 2DDLA, Fig. 4 shows some sample that are mis-
recognized by IMLDA and 2DLDA, but can be corrected by 2DDLA.
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(a)                           (b)                              (c)                               (d) 

 (e)                            (f)                              (g)                               (h) 

(i)                           (j)                             (k)                               (l) 

(m)                               (n)                               (o)                             (p) 

Fig. 2. For a given pair parameters k1 and k2, the best recognition rate with the corresponding to
b. (a) k1 = 32, k2 = 100, (b) k1 = 32, k2 = 200, (c) k1 = 32, k2 = 300, (d) k1 = 50, k2 = 100,
(e) k1 = 50, k2 = 200, (f) k1 = 50, k2 = 300, (g) k1 = 80, k2 = 100, (h) k1 = 80, k2 = 200,
(i) k1 = 80, k2 = 300, (j) k1 = 100, k2 = 300, (k) k1 = 100, k2 = 500, (l) k1 = 100, k2 = 800,
(m) k1 = 100, k2 = 990, (n) k1 = 300, k2 = 500, (o) k1 = 300, k2 = 800, (p) k1 = 300, k2 = 990,
(q) k1 = 500, k2 = 800, (r) k1 = 500, k2 = 1000, (s) k1 = 500, k2 = 1200, (t) k1 = 500, k2 = 1500,
(u) k1 = 800, k2 = 1500, (v) k1 = 800, k2 = 2500, (w) k1 = 800, k2 = 3800, (x) k1 = 1000,
k2 = 300
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(u)                           (v)                             (w)                              (x) 

(q)                           (r)                               (s)                            (t) 

Fig. 2. (continued)

Table 1. Best recognition rate (%) with the corresponding k1 and k2.

K1 K2 b Recognition rates

32 100 0.11 99.36
32 200 0.11 99.36
32 300 0.11 99.36
50 100 0.41 99.37
50 200 0.21 99.37
50 300 0.10 99.38
80 100 0.61 99.34
80 200 0.31 99.34
80 300 0.21 99.34
100 300 0.30 98.38
100 500 0.18 99.18
100 800 0.12 99.31
100 990 0.12 99.35
300 500 0.50 93.93
300 800 0.30 93.93
300 990 0.30 93.93
500 800 0.60 92.41
500 1000 0.40 85.73
500 1200 0.40 85.72
500 1500 0.30 85.73
800 1500 0.50 85.62
800 2500 0.3 85.62
800 3800 0.2 85.62
1000 3000 0.3 87.19
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5 Conclusion

In this paper, we present a new method, called two-dimensional discriminative locality
alignment (2DDLA). Compare with IMLDA and 2DLDA, the proposed method has
better recognition rate. It inherits all the advantages of DLA and can overcome the
matrix singular problem and small sample size problem in OHTCR.

Fig. 3. Recognition rate vs. k1 and k2

Table 2. Best recognition rates (%) of three methods.

Methods Top 1 Top 10

IMLDA 55.56 92.73
2DLDA 83.73 98.21
2DDLA 85.9 99.38

Fig. 4. Some misrecognized by SMQDF, but corrected by compound distance method
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Abstract. As an important part of information retrieval, it is important to
improve the accuracy of document image retrieval system. This paper proposes
a document image retrieval method based on modified SURF features. Firstly,
FAST+SURF features are extracted from the image, and then the similarity
degree is retrieved by using different kinds of distances and matching points
respectively. With the change of size, angle and illumination, the FLANN
bidirectional matching and KD-Tree +BBF matching are implemented for its
feature points; finally, based on these two kinds of retrieval methods, various
Uyghur document image databases that have been collected and retrieved are
searched. The experimental results indicated that both search methods can
achieve accurate search requirements, but in computational complexity based on
the matching number of retrieval is more convenient. At the same time, the
comparison experiment proves that the proposed method is superior to the
original feature in the retrieval time.

Keywords: SURF feature � FALNN bidirectional match
KD-Tree and BBF match � Complex document image retrieval

1 Introduction

With the rapid development of multimedia information technology, document images
have become the main information resource, which also causes the explosive growth of
document image. How to obtain document image content efficiently has become a hot
research topic in domestic and overseas research. Xiaoxiao et al. [1] compared 64-
dimensional vectors to describe the feature points that were more suitable for image
data processing. Two modified SVM algorithms were used to extract information from
matched images and compare with traditional SVM algorithm. Zhao et al. [2] first
extracted the 64-dimensional SURF feature points, and based on the FLANN algorithm
for bidirectional matching, matching pairs for PROSAC analysis, excluding mis-
matched pairs to improve the image matching accuracy, and effectively reduce the
matching time. Cheon et al. [3] proposed an enhanced Fast Robustness Feature
(e-SURF) algorithm to save memory and increase speed. Zhang et al. [4] proposed an
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modified matching algorithm based on SURF (Speeded Up Robust Features) feature
point matching, which combined SURF and RANSAC (Random Sample Consensus)
algorithm. Chen et al. [5] proposed to improve the detection of SURF key points,
extract the feature points of the image detail region, and achieve accurate matching
based on KD-Tree bidirectional matching. Luo et al. [6] modified the SURF descriptor
using the DAISY descriptor, and matched the target image with nearest neighbor
distance ratio (NNDR), with a maximum matching rate of 95.78%. Wang et al. [7]
proposed a robust feature (SURF) based on improved accelerated fast image matching
algorithm, The RELIEF-F algorithm is used to reduce and simplify the improved SURF
descriptors to achieve image registration, and finally the improved algorithm is verified
by the experiments of real-time and robustness.

This paper analyzes the Uyghur complex document image without layout analysis,
proposes to the modified SURF features to achieve the key points extraction, and to
achieve effective retrieval from the large-scale image database. The algorithmic flow of
this paper is shown as in Fig. 1.

2 Fast and SURF Feature Extraction

The process of fast robust feature extraction (SURF) is similar to SIFT, and consists of
two parts: key point detection and feature description. However, it maintains the same
image size and changes the size and scale of the box filter in multiples relation-
ship. Based on the integral image, the proportional space is filtered so that the feature
detection takes much less time than SIFT. And the key points detected in the scale
space have the size translational robustness. In the feature description, the Haar wavelet

Uyghur complex
document image

Complex
Document Image

Database

feature
vector

Retrieval based
on Euclidean

distance

Retrieval based
on the number

of matches

scanning

target
image

fast key
detection

SURF

SURF

feature
description

FLANN
bidirectional

matching
RANSAC
analysis

output

Fast key
detection

SURF
feature

description

Fig. 1. The block diagram of Uyghur printed complex document image retrieval based on
modified SURF feature.
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response value in the fan-shaped area is calculated, the main direction of the key points
is determined, and the computational complexity is reduced.

However, shortening time parameter is not ideal for the complicated document
images of text and video. Therefore, in order to quickly detect the key points of the
image in the complex layout, the author makes full use of pixel gray level information,
detects the corners based on the FAST algorithm, and describes the sub-description
with the SURF descriptor to form the 64 dimension FAST and SURF feature, effec-
tively shortening the features Extraction time [8]. The Flow chart of modified SURF
feature key point detection is shown in the following Fig. 2.

3 Fast and SURF Feature Matching Analysis

To improve the matching speed of Uyghur complex document images, the author
implements two-way fast approximate nearest neighbor (FLANN) matching for dif-
ferent layout images, and compares the results with KD-Tree and BBF matching
results, from the performance of matching system to establish a retrieval system, and
realize the effective retrieval of Uyghur complex document images.

3.1 Bidirectional FLANN Match

Due to the SURF feature vector is a high-dimensional vector, the matching process is
equivalent to the nearest neighbor search problem in high-dimensional space, and the
operation is complex. Therefore, this paper starts from the rapidness of FLANN

Start

End

Taking the pixel Po as the center, 16
pixels are taken on the circle of r = 3.

throw
away

Po is the
key point

|P1-P0|<¦ and |p9-p0|< ¦

S>Si

The FAST scores Si for
all detected corners in
the Po-centered 3 * 3
field were compared

Find the value S of Pi-P0 | as
the value of FAST

|P5-P0|<¦ and |p13-p0|< ¦

|Pi-P0|<¦ ,among them
i=1-16,if (i>>9)

throw
away

Y

Y

Y

Y

N

N

N

N

τ τ

τ τ

τ

Fig. 2. Flow chart of modified SURF feature key point detection
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matching, and matches in two directions successively to get the location information of
matching pair. By comparing the location of the matching point to determine whether it
is correct. In order to effectively remove the mismatched point pairs, the author uses the
RANSAC algorithm to calculate the distance between the matched points and the
projection matrix, and compares it with the threshold value, effectively eliminating the
outer points and improves the matching accuracy. The original image FALNN bidi-
rectional matching results are shown in Fig. 3.

3.2 KD-Tree and BBF Match

KD-Tree is a tree structure for realizes K-nearest neighbor search and matching in
large-scale high-dimensional eigenvector space. Its research mainly consists of two
parts, namely, the establishment of tree structure and the nearest neighbor search. With
the increase of image feature vector dimension, the KD-Tree search ability is greatly
reduced. Therefore, starting from the modified KD-Tree, this paper finds the nearest
neighbor distance within the limit of maximum backtracking times, and compares the
distance ratio with a predetermined threshold to determine whether it is a matching key
point [9]. In this paper, the process of improving KD-Tree matching by improving 64-
dimensional SURF features is shown in Fig. 4.

The matching efficiency of the matching system under different transformation
conditions is evaluated by the matching rate, the correct matching rate and the false
matching rate, and its mathematical expression is as follows:

Match rate ¼ The total number of matched pairs
The total number of feature points detected

ð1Þ

Correct match rate ¼ The total number of correct matched
The total number of matched pairs

ð2Þ

Fig. 3. Schematic diagram of modified SURF features bidirectional FLANN matching
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Mismatch rate ¼ The total number of error matched
The total number of matched pairs

ð3Þ

4 Uyghur Complex Document Image Retrieval Method

In this paper, the distance-based similarity measure and the matching number-based
similarity measure are used. Four eigenvector distance similarity measures algorithms
are selected and they are as follows:

Euclidean distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 + ðy1 � y2Þ2

q
ð4Þ

Manhattan distance ¼ x1 � x2j j + y1 � y2j j ð5Þ

Chebyshev distance ¼ max x1 � x2j j; y1 � y2j jð Þ ð6Þ

Cosine distance¼ x1x2 + y1y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + y21

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 + y22

p ð7Þ

In the retrieval system that based on the matching number, the correct number of
matches between the document image and each image in the image database is cal-
culated from the correct number of matches, and then the number of correct matches
between each image in the image database is sorted and sorted in descending order to
effectively retrieve the document image. The more similar complex document images,
the greater the number of matches. The calculation of retrieval system is:

Enter inquiry point Q

Follow the root to the parent and
then to the leaf for a binary

search

After the backtracking operation, the tree branches
to be traced back are accessed in order of priority,

and the nearest neighbor is searched for in the
inner circle of the circle whose center is the query

point and passes the leaf point.

Find the distance between the query
point and the nearest neighbors, and
compare the distance ratio with the
threshold to find the best matching

feature point.

Fig. 4. The description of modified KD-Tree match
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Retrieval rate¼ N� S
N� 1

� 100% ð8Þ

Where N is the size of the complex document image database, and S is the position
number of the target document image output in the retrieval system window.

5 Experimental Results and Analysis

5.1 Experimental Data

Collection of Uyghur complex layout of books, magazines, documents, scanned with a
resolution of 100 dpi to form a depth of 8. bmp format of weaving complex document
images, construction of 1000 complex document image database. The system is in
4 GB memory, Windows7_64 bit operating system environment, and Visual Studio
2010 programming.

5.2 Matching Analysis Under Various Transformation Conditions

The original SURF feature detection relies on the choice of Octaves, Intervals, and
thresholds. Under the different thresholds (Octaves, Intervals, Init-sample, THRES), the
number of feature points to be acquired varies greatly. To test and verify the feasibility
of FAST and SURF features, the original SURF features were extracted at (4, 4, 2,
0.0004f) thresholds for complex text documents, in order to obtain the same layout
with different sizes, and compared with FAST and SURF Features for performance
analysis. The experimental results are shown in Table 1.

Table 1. Number of FAST+SURF key points and time statistics of different sizes image under
different threshold [10].

Image size Feature
Performance SIFT SURF FAST

(50)
+surf

FAST
(100)
+surf

FAST
(150)
+surf

803 � 1145 Key points 3276 3537 9767 7195 4960
Occupation
time (S)

30.405 15.866 0.021 0.01 0.009

1606 � 2290 Key points 10320 11516 22028 9414 9299
Occupation
time (S)

105.450 51.141 0.031 0.019 0.017

3212 � 4581 Key points 27820 38115 52967 17764 7839
Occupation
time (S)

250.492 162.491 0.082 0.04 0.035
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In order to detect the robustness of the extracted features to the rotation, scale and
illumination transformation, the modified SURF eigenvectors of the Uyghur complex
document image with the size of 1606 � 2290 were extracted under different trans-
formations. Based on FLANN bidirectional matching, KD-Tree and BBF matches the
number of exact match pairs. When the threshold c = 0.1, the results of FLANN
bidirectional matching and KD-Tree and BBF under the dimensional transformation
are shown in Table 2.

As can be seen from Table 2 that the image area decreases, the number of feature
points detected decreases, and the total number of matches also cut back. Therefore, for
thousands of key points, the stability of FLANN bidirectional matching is stronger than
KD-Tree and BBF matching. To test and verify the rotation invariance of the selected
features, the complex document images are rotated anticlockwise or clockwise in
different angular ranges, and matching based on different matching algorithms. The
experimental results are shown in Table 3.

Table 2. Uyghur document image different matching results of FAST+SURF features under
scale transform condition [10].

FLANN
bidirectional
matching

KD-Tree and BBF
match

Whole 1:1/2 1:1/4 Whole 1:1/2 1:1/4

The total number of key points 9414 4369 2082 9414 4369 2082
The total number of matching pairs 1145 454 200 9335 4264 2017
Correctly matched pairs 759 363 172 7582 4151 573
Correct match rate (%) 66.29 79.96 86 81.22 97.35 28.40

Table 3. Two kinds of FAST (100)+SURF feature points matching results under Uyghur
document image rotation transform

FLANN bidirectional matching
0° +5° +10° −5° −10°

The total number of key points 9414 10373 10614 9339 10423
The total number of matching pairs 1145 1213 1164 1070 1254
Correctly matched pairs 759 791 757 752 785
Correct match rate (%) 66.29 65.21 65.03 70.28 62.60

KD-Tree and BBF match
0° +5° +10° −5° −10°

The total number of key points 9414 10373 10614 9339 10423
The total number of matching pairs 9335 6044 6691 6005 6794
Correctly matched pairs 7582 1802 2112 2015 1845
Correct match rate (%) 81.22 29.81 31.56 33.56 27.16
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Rotating the image of a complex text document in the anti-clockwise or clockwise
direction can enlarges the image area. Therefore, the number of the detected key points
is appropriately increased and the position of the key point is changed. From Table 3, it
can be seen that FLANN bidirectional matching performance is better than KD-Tree
and BBF matching under the condition of rotation transformation. In order to verify the
robustness of the feature under light conversion conditions, the brightness of the
original document image is adjusted. The experimental results are shown in Table 4.

The change of illumination is the lightness and darkness of the image. From
Table 4, it can be seen that the KD-Tree and BBF matching performance is better than
FLANN matching under the key point matching under light conversion conditions, and
the matching number is large and the matching rate is high.

5.3 Analysis of Search Results

Due to the large size of the original image collected, the number of feature points
obtained by feature extraction is too large, which has a great influence on the number of
final matching points. Therefore, in order to assess the performance of the retrieval
system, two modifications were made to the overall Uyghur complex document image
database by compressing each image and cutting each image into 256 * 256 size, as
shown in Fig. 5, and constructed two kinds of Uyghur complex document image
database.

In Fig. 5, Fig. 5(b) is sheared image from Fig. 5(a). For the above two improved
Uyghur complicated document image databases, based on the number of matches,
Euclidean distance and cosine distance similarity measures, the user-specific target
document images are retrieved. The retrieval test results are shown in Tables 5 and 6.

Table 4. Two types of FAST (100)+SURF feature points matching results with Uyghur
document image illumination transform

FLANN bidirectional matching
0 20 40 −20 −40

The total number of key points 9414 9882 9411 8963 9647
The total number of matching pairs 1145 1073 1139 999 952
Correctly matched pairs 759 749 758 803 784
Correct match rate (%) 66.29 69.80 66.55 80.38 82.35

KD-Tree and BBF match
0 20 40 −20 −40

The total number of key points 9414 9882 9411 8963 9647
The total number of matching pairs 9335 4892 4931 5591 5789
Correctly matched pairs 7582 3556 1869 3499 3281
Correct match rate (%) 81.22 72.69 37.90 62.58 56.68
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It can be seen from Table 5 above that all three retrieval methods in the cut-
structured Uyghur complex document database achieve a retrieval rate of 100%, but the
search occupancy time is different. The matching needs to find the nearest neighbor and
the next nearest neighbor matching point of each key point, and it need to compare the
distance ratio with the first threshold to determine whether they match. Therefore, the
system consumes more time than the distance similarity metric retrieval algorithm. The
experimental results of compressed Uyghur document image are indicated in Table 6.

It can be seen from Table 6 that the retrieval system based on the number of
matches consumes more time than the distance similarity metric retrieval system. For
the two databases, matching number based retrieval system, the more the number of
image feature points is, the greater the number of matching and the greater the system
matching index time. In terms of similarity measure of distance between feature

(a) Compressed image sample (b) Sheared image sample

Fig. 5. The sample instance of modified database

Table 5. The statistical results of the sheared Uyghur document image retrieval experiment

Retrieve performance
indicators

Match the number of
search

Euclidean distance
search

Cosine distance
search

Retrieval rate 100% 100% 100%
Total search time (s) 1000 854 861
Average index time (s) 1 0.854 0.861

Table 6. The statistical results of the compressed Uyghur document image retrieval experiment

Retrieve performance
indicators

Match the number of
search

Euclidean distance
search

Cosine distance
search

Retrieval rate 100% 100% 100%
Total search time (s) 1636 599 607
Average index time (s) 1.636 0.599 0.607
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vectors, although the number of vector images in compressed image is larger, the
output target document image can be searched within a shorter time than the cut image.

In this paper, in order to further validate the effectiveness of the FAST and SURF
algorithm proposed in this paper, a cut-file image database of 256 * 256 size Arabic,
Chinese, Tibetan and natural images is collected, each of which has a size of 1000
frames. The sample example is shown in Fig. 6 below:

A number of examples of the experimental sample were transformed, such as size
(2, 4, 8), illumination (20, 40, 60, −20, −40, −60), and rotation angle (5°, 10°, −5°,
−10°) transformation, the retrieval results under different transformations are compared
with the retrieval experiments of the Uyghur-cut complex document images, Validate
the validity of the retrieval algorithm. The comparison result of the experimental results
of retrieving the output target image is shown in Fig. 7(a) to (c).

As can be seen from Fig. 7, the letters of Uyghur, Arabic and Tibetan are more
irregular than those of Chinese characters, and the differences in the gray-level values
of the neighborhood pixels vary greatly. The Chinese language has horizontal and
vertical Coherence; the difference in gray value is small. Therefore, the retrieval rate of
Chinese query images after many transformations is larger than that of other databases.
There are many transformations on the query, and the average indexing time for finding
the target image based on the modified retrieval system is 0.013 (0.018), 0.041
(middle), 0.043 (hide) and 0.003 (natural) respectively. Compared with the average
retrieval time of the retrieval system of the original features, it is 35.38 (original), 27.81
(a), 15.61 (middle), 16.05 (hide), 123.33 (natural) times. It can be seen that the retrieval
system of FAST+SURF features makes it easy to find the target image quickly and
accurately, which shows that this article proposes the effective and reliable method of
improving ideas.

(a) Chinese (b) Arabic      (c) Tibetan          (d) Natural images

Fig. 6. Comparative experimental database sample diagram
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Search results under the size of the comparison chart

Uyghur Arabic Chinese Tibetan Natural images

(a)  Comparison of experimental results retrieved in five databases under dimensional
transformation

20

70

original (+5°) (+10°) (-5°) (-10°)

Rotation changes under the search results comparison table

Uyghur Arabic Chinese Tibetan Natural images

(b) Comparison of experimental results retrieved in five databases under rotation transformation

0

50

100

original (+20) (+40) (+60) (-20) (-40) (-60)

Light conversion under the search results comparison table

Uyghur Arabic Chinese Tibetan Natural images

(c)  Comparison of experimental results retrieved in five databases under light conversion

Fig. 7. Comparison of modified FAST and SURF retrieval platform under various transforma-
tions experimental results comparison chart
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6 Conclusion

In order to make up for the gap in Uyghur complex document image research, this
paper proposes a document image retrieval method which is to match retrieval of
printed Uyghur composite document images using SURF and the modified SURF
features. It is combined the FAST corner detection and SURF description, and two
kinds of matching of the selected 64-dimensional feature vectors are performed, and the
matching ratio is compared under the condition of size, rotation and light conversion to
analyze the performance of the two matching systems. In the end, two retrieval systems
were proposed, that is, retrieval scheme based on multiple distance metrics and
matching number. The original 100 document images, 1000 compressed images and
1000 document images are retrieved respectively. The matched number of searches
takes more time than the distance-based search, but it has a good retrieval rate.
Therefore, the focus of the further work is to reduce the retrieval time while ensuring
the high retrieval rate of the system.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China (No. 61563052, 61363064, 61163028), and Hotan Normal University Scientific Research
Plan Project (No. 1076515160).
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Abstract. Word association is to predict the subsequent words and
phrase, acting as a reminder to accelerate the text-editing process. Exist-
ing word association models can only predict the next word inflexibly
through a given word vocabulary or a simply back-off N-gram language
model. Herein, we propose a deep word association system based on
attention mechanism with the following contributions: (1) To the best of
our knowledge, this is the first investigation of an attention-based recur-
rent neural network for word association. In the experiments, we provide
a comprehensive study on the attention processes for the word associa-
tion problem; (2) An novel approach, named DropContext, is proposed
to solve the over-fitting problem during attention training procedure; (3)
Compared with conventional vocabulary-based methods, our word asso-
ciation system can generate an arbitrary-length string of words that are
reasonable; (4) Given information on different hierarchies, the proposed
system can flexibly generate associated words accordingly.

Keywords: Word association · Attention mechanism
Recurrent neural network · Chinese · DropContext

1 Introduction

Given a word, phrase, or sentence of arbitrary length, word association requires
a machine to predict the following word, phrase, or even sentence that the user
would like to express, acting as a reminder to accelerate the text-editing process.
Word association is widely used in daily life, such as text input to smartphones,
the auto-fill of fields in a web browser, and question/answer systems, which can
not only save time and effort but also prevent spelling errors by providing users
with a list of the most relevant words. Specifically, when a word is input by a
user, the word association system provides a list of candidate words for the user
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 112–123, 2018.
https://doi.org/10.1007/978-3-030-03338-5_10
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to select and then updates the associated word list until the user has finished
the text editing task.

In the community, methods have been presented for the advancement of word
association. Generally, custom systems use a vocabulary or statistical informa-
tion for word association. PAL [1], the first word association system, predicted
the most frequent words that match the given words, completely ignoring any
useful context information. Profet [2] (for Swedish) and WordQ [3] (for English)
used both word unigrams and bigrams to improve the word association but still
suffered from a lack of context information, which would easily lead to syntacti-
cally inappropriate words. Considering the inflexibility of the above-mentioned
systems, an approach that models the complex context information of the given
words is significantly important for the word association problem. In recent years,
neural networks [4–6] have demonstrated outstanding ability in language models
(LMs). In particular, recurrent neural network LMs (RNNLMs) [7] use long-term
temporal dependencies without a strong conditional independence assumption.
As RNNLMs become more popular, Sutskever et al. [8] developed a simple vari-
ant of the RNN that can generate meaningful sentences by learning from a
character-level corpus. Zhang and Lapata [9] have conducted some interesting
work and use RNNs to generate Chinese poetry. Furthermore, the ability to
train deep neural networks provides a more sophisticated method of exploiting
the underlying context information of the sentence, thereby making the predic-
tion more accurate [10].

Fig. 1. The proposed word association system consists of two parts: (1) a multi-layered
LSTM encoder that learns a hierarchy of semantic features from the input text corpus
w = w1, · · · , wT . and (2) an iterative attention decoder module (with DropContext)
that iteratively updates attentions and refines current predictions. Note that y0 is
uniform distribution and yN predicts the finally results.

LSTM has the ability to remember the past information, but it is quite lim-
ited and thus easily leads to prediction failure [11]. Therefore, the attention
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mechanism has gained popularity recently in training neural networks [12]; it
allows models to learn the alignments between different modalities. The align-
ments may be between the frame level and text in the speech recognition task
[13], or between the source words and translation in the neural machine transla-
tion problem [14], allowing the network focus more on the important part of the
input. To the best of our knowledge, it is the best choice for natural language
processing, e.g., word association problem.

The performance of the current neural network is highly dependent on the
greedy learning of model parameters via many iterations based on a properly
designed network architecture [15]. During the training phase, it is easy to
encounter a problem of over-fitting. Many previous works have been dedicated
to solving this problem, e.g., Dropout [16] and DropConnect [17]. Nevertheless,
they were not appropriate for the attention mechanism.

Inspired by the aforementioned papers and works, we proposed a word associ-
ation system that integrates multi-layered LSTM with iterative attention mech-
anism. The primary contributions of the network can be summarized as follows:

– Attention mechanism is integrated to allow the proposed system to iteratively
review context information as well as historical prediction.

– A novel training strategy, namely DropContext, is proposed to alleviate the
over-fitting problem during the learning process.

– Given certain information of different hierarchies, the network can generate
words of arbitrary length, flexibly. The richer the information provided, the
more meaningful words are associated.

– The effectiveness of the proposed system is validated not only by word asso-
ciation on huge Chinese corpus, but also by a poem generating experiment.

The remainder of this paper is organized as follows: Sect. 2 presents a sys-
tem overview. Section 3 describes the results and performance evaluation of our
proposed model. Section 4 summarizes our work.

2 System Overview

Given the training text corpus w = w1, · · · , wT in V , where V is the word
dictionary, our word association system f , aims to minimize the loss function
L(w) as the negative log probability of correctly predicting all the associated
words in the text corpus:

L(w) = − 1
T

∑

t

logf(wt, wt−1, · · · , wt−n+1; θ) + R(θ) (1)

where T is the total length of the corpus and R(θ) is a regularization term.
Figure 1 describe the detailed architecture of our word association system. Given
the training corpus w = w1, · · · , wT , we first project each the word wt in the
corpus to a distributed feature vector in the word embedding layer. The multi-
layered LSTM then sequentially takes these embeddings as well as the past
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hidden state as input and outputs the corresponding context vector. Next, part
of the context vector is randomly discarded in the DropContext layer. Finally,
the updated context vector and final hidden state of the encoder are fed into
the iterative attention decoder, iteratively updates the attentions and refines the
current predictions. At the end of the decoder, the fully connected layer with a
softmax layer will produce a probability distribution over all the words in the
vocabulary.

2.1 Word Embedding

Word embedding is the concept of projecting each word in a vocabulary to a
distributed word feature vector. Word embedding plays an important role in
language modeling [18]. As pointed out by Bengio et al. [4], word embedding
helps a network to fight the curse of dimensionality with distributed represen-
tations. Through word embedding, semantically similar words, such as ‘cat’ and
‘dog’, are expected to have a similar embedding feature; thus, a training sample
that contains ‘cat’ can easily be projected to the case of ‘dog’ and vice versa.
Accordingly, word embedding reduces the number of training samples require-
ment and, more importantly, alleviates the curse of dimensionality. Additionally,
word embedding, i.e., the feature vector of each word, is directly learned from
the corpora and is naturally trained with neural networks, such as RNN and
LSTM, in an end-to-end manner. Given the advantages of word embedding, we
used it for word representation at the bottom of our word association system,
as shown in Fig. 1, to be jointly trained with the encoder and iterative attention
decoder.

2.2 Iterative Attention Decoder (IAD)

In the previous works, the attention-based decoder only ‘glance’ at the source
information once, and may make an inappropriate decision. Therefore, we herein
employ an iterative attention decoder to our system, giving us a chance to ‘view’
the source information again and refine the current predictions.

From the multi-layered LSTM encoder, we obtain the source hidden state cn

with a T dimension, which is the same as the number of the input words. Addi-
tionally, a current target hidden state hn is output from the decoder. Therefore,
we can formulate the iterative attention decoder as:

yn = IAD(cn ,yn−1) (2)

where yn−1 is the last output of the IAD system. Note that, when n = 1, y0

is uniform distribution, and Eq. (2) is updated for N times in the form of a
recurrent neural network.

Inspired by the work of Luong [12], we attempt to employ a context vector
cn that captures relevant input information to aid in the prediction of yn , and
Eq. (2) can be executed in two step:
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(1) We calculate the aligned weights αn according to the source context
vector cn and the current target hidden state hn :

αs
n =

exp(γs
n )

∑T
t=1 exp(γt

n )
(3)

where s is the dimension index of both αn and γn . Here, the content-based score
γt

n can be denoted as:

γt
n = v�

a tanh(Wa [h�
n ; ct

n ]) (4)

Note that, both v�
a and Wa are learnable parameters and [·] is the concatenation

operation. Subsequently, we adopt the soft attention mechanism [19] where the
updated context vector uctvt is defined as the weighted sum of the source context
vector.

uctvt =
T∑

t=1

αt
nct

n (5)

(2) The decoder iteratively updates the attentions and refines the current
predictions using a recurrent neural network:

yn = RNN(uctvt,yn−1) (6)

where the RNN is implemented by a variant of recurrent neural network: Gated
Recurrent Unit (GRU) [20]. Compared with LSTM, GRU only contains two
gating units that modulate the flow of information, therefore, costing lower con-
sumption.

In the last time step, the fully connected layer with a softmax layer will
produce a probability distribution over all the words in the vocabulary.

2.3 DropContext (DC)

To overcome the over-fitting problem of attention model, we propose DropCon-
text, a new training strategy, to enhance the efficiency of the learning process of
attention model, as shown in the black dotted line in Fig. 1.

Suppose that we have the source context vector cn , which is a set of T-
dimensional vectors, thus we can update the context vector with DropContext
layer:

c
′
n = DC(cn ) (7)

Many attempts have been performed to execute the DropContext layer in
our early work, considering the balance between performance and consump-
tion. Our DropContext layer is implemented in two steps. First, we construct a
T-dimensional drop-mask M, which is randomly initialized by the drop-ratio θ:
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M = {mt = I{ζ > θ}, t = 1, 2, · · · , T} (8)

where I{·} = 1 when the condition is true and otherwise zero. It is noteworthy
that ζ can follow any distribution, e.g., Gaussian distribution ora exponential
distribution. In this paper, ζ follows a uniform distribution.

Subsequently, we update the source context vector by the element-wise prod-
uct between cn and M:

c
′
n = cn � M (9)

We have to claim that, after introducing the DropContext layer, we only need
to replace cn with c

′
n in Eqs. (4) and (5) for the iterative attention decoder.

2.4 Word Association

By integrating the multi-layered LSTM encoder and iterative attention decoder
with the prediction layer, from the bottom to the top, we construct a word
association system. Formally, the word association system employs the chain
rule to model joint probabilities over word sequences:

p(w1, ..., wN ) =
N∏

i=1

p(wi|w1, ..., wi−1) (10)

where the context of all the previous words is encoded with LSTM and updated
as the predicted word is added. The probability of words is generated through
the Softmax layer.

The process of associating words of arbitrary length is shown in Fig. 2. Our
word association system takes the words of a given sequence as the input. The
system then associates the next word by generating a probability distribution
over all the given words, as the number upon the black lines shown in Fig. 2.
Therefore, we can sort the predicted words in descending order of probability.

Fig. 2. Schematic diagram of word association. Given the beginning words as input, our
word association system predicts a list of candidate words. By recursively adding these
candidate words into the input, our word association system can associate sentence of
arbitrary length, which is syntactically reasonable. Note that, the numbers upon the
black lines represent the probability of the next word.
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We adopt the first or top three in the list as the input for the next time step,
and associate the following words in the same way. Finally, the system provides
candidate associated sentences and their own probability. As described in Fig. 2,
after taking the the initial words, our word association system produces a list of
candidate words. By associating words in a recursive manner, our word associa-
tion system manages to generate syntactically reasonable sentences of arbitrary
length.

3 Experiments

3.1 Dataset

There is lack of benchmark dataset for the research on word association. Typi-
cally, researchers employ their own text corpus to generate the language model.
To present an objective evaluation of our word association system, we use two
publicly available text corpora, CLDC corpus [21] collected by the Institute of
Applied Linguistics, and the Three Hundred Tang Poems (THTP corpus) [22].

For the CLDC corpus, we extracted the available data and filtered extremely
rare Chinese characters and characters in other languages. The dataset contains
3455 classes and is divided into two groups, with approximately 70% of data
used for training and the remainder for testing. Consequently, the training set
contains 59,019,610 words and the test set contains 25,294,119 words.

The THTP corpus consists of 310 poems written by 77 famous poets during
the Tang dynasty. For convenience, the punctuation has been removed from
the poems. The dataset has approximately 20,000 words and consists of 2,497
classes, including a special symbol that indicates the end of a sentence.

3.2 Implementation Details

The proposed multi-layered LSTM encoder consists of two layers with the hidden
size of 512, which are unrolled for 10 steps. Additionally, we also use dropout
with probability 0.5 for our LSTMs. Besides, the iterative attention decoder is
implemented with an attention-based GRU, whose hidden size is 512. To strike
a balance between performance and consumption, we set the maximum iteration
N as 3 for the little performance gain with larger N . We train the system in
an end-to-end manner using stochastic gradient descent with a weight decay of
0.0005, momentum of 0.9, and gradient clipping set to 10. The initial learning
rate is set to 0.1, followed by a polynomial decay of power 0.5.

In this paper, we use the canonical performance metric of language models,
namely the perplexity [23], to evaluate our word association system. Perplexity
measures the average number of branches of the predicted text, the reciprocal of
which can be seen as the average probability of each word. Formally, perplexity
is calculated as:

perplexity = K

√
1

e(−
∑

log(p(w))
(11)
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where p(w) is the probability of each word in the test set and K is the total
number of words that appeared in the test set. It is noteworthy that the word
association system with a low perplexity generally performs better than those
with a higher perplexity. Besides, we also perform many visualizations of the
experiment result, which are more obvious.

3.3 Effectiveness of the DropContext Layer

In this section, we perform a detailed analysis on the performance of our pro-
posed DropContext method. In Table 1, we compare the performance of the
system with different drop-ratios. When the drop-ratio is 0.0, no DropContext
is available in our model and it is set as the baseline in our experiments. As the
drop-ratio increases, the gap between train loss and test loss became smaller,
and the system performance improves, i.e., the perplexity and testing loss of the
system decreases. We can conclude that, by introducing the DropContext, the
over-fitting during the training procedure can be alleviated. However, the system
performance decreases afterward when the drop-ratio is lager than 0.4. This is
because when the drop-ratio is too large, too much context information will be
discarded in the training procedure, which will confuse the decoder and render
our system difficult to converge.

Table 1. Influence of drop-ratio

Drop-ratio 0.0 (baseline) 0.2 0.4 0.6 0.8

Train loss 2.63 4.13 4.37 4.45 4.89

Test loss 4.79 3.92 3.86 3.89 4.42

Perplexity 120.36 50.40 47.46 48.91 83.10

3.4 Effectiveness of the Iterative Attention Decoder

In this section, we compare the proposed iterative attention model with a regular
LSTM-based model similar to that reported by Merity et al. [5]. The regular
LSTM-based model consists of two LSTM layers, with the hidden size of 512,
which is the same as the multi-layer LSTM encoder in our system. The difference
between the regular LSTM-based model and our model is that each hidden
state of the former is followed by the fully connected layer and a softmax layer.
This means that once a word is input, the system can only make a ‘decision’
(prediction) once. Note that, both of them are trained with the CLDC corpus.

As shown in Table 2, the regular LSTM-based model (denoted as R-LSTM)
achieves a perplexity of 62.80. By introducing the iterative attention decoder,
our model (denoted as IA-LSTM) achieves a much lower perplexity of 47.46.
We can conclude that adding iterative attention mechanism can lead to a better
performance.



120 Y. Huang et al.

Table 2. Perplexity and test loss on the CLDC corpus

Method Perpelxity Test loss

R-LSTM [5] 62.80 4.14

IA-LSTM 47.46 3.86

Additionally, Fig. 3 shows several examples on how the proposed iterative
attention decoder iteratively updates the attentions and refines the current pre-
dictions. As we can see, although the model may make an inexact prediction at
the beginning, it can update the attentions to focus on the last few words and
make a more reasonable prediction. This is also corresponds to common sense
that the associated words are more related with their adjacent words [24].

Fig. 3. Examples on how the proposed iterative attention decoder iteratively updates
attentions and refines current predictions. At each time-step n, the current association
word is listed. Each result is followed by the corresponding probability. Words in red
are the most appropriate ones. Note that we use red squares to display the attention
weight of each word, the deeper the color is, the greater the weight is.

3.5 Output Visualization of Word Association System

Our word association system generates an arbitrary length string of associated
words. The more information is provided to the system, the more meaningful
words will be generated. As shown in Fig. 4(a), given different numbers of words
as beginning, our system associates sentences with completely different mean-
ings. When only less information is available, the system randomly generates the
sentences. However, when given more detailed information, the system associates
a sentence that is quite relevant to the given words. In Fig. 4(b), the words in
the first line are the input to the word association system and the subsequent
lines are the associated sentences of different lengths. Note that regardless of the
length of the associated sentences, they are reasonable and meaningful.
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Fig. 4. Output of word association system. In (a), there are three kinds of inputs to
the system, ordered by the amount of information in Chinese. In (b), there are three
different lengths of output for the same input to the system. The associated sentence
is syntactically reasonable for any arbitrary length. The tiny English sentence right
below the Chinese sentence is the corresponding translation.

Fig. 5. Result of the model trained with the THTP corpus (shown in poetry format).
Given arbitrary words, our system associates a meaningful poem with the Tang poem
style.

3.6 Generating Poems

To verify the significance of our word association system, an poetry generating
experiment is conducted using the THTP corpus. In the testing phase, a contigu-
ous piece of a sentence is input to the word association system, and the system
attempts to associate a poem accordingly.

To generate a poem, as shown in Fig. 5, arbitrary words are given to the asso-
ciation system. Staring with the given words, the system produces a meaningful
poem of the Tang poem style. Furthermore, the associated poem is incredibly
‘real’ that it is difficult to distinguish whether it is one of the original poems in
the dataset.



122 Y. Huang et al.

4 Conclusion

In this paper, we presented a flexible Chinese word association method which
consists of a multi-layer LSTM encoder and an iterative attention decoder.
Experiments show that the attention mechanism can improve the performance of
Chinese word association system. Besides, the iterative attention decoder imple-
mented in our system can iteratively uses its previous prediction to update atten-
tions and to refine current predictions. Moreover, by adopting the DropContext
layer in our proposed model, over-fitting can be avoided during the training pro-
cedure, which is proved to be better converged. Additionally, we showed that
our system can generate syntactically reasonable associated words of arbitrary
length and tends to associate more meaningful yet relative words when given
more context information. Finally, we verify the significance of our word associ-
ation system through an interesting poem generating experiment.
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Abstract. Face recognition is an important research area in human-computer.
To solve the problem about the inaccuracy and incompleteness of feature
extraction and recognition, an ensemble learning method on face recognition is
proposed in this paper. This method is a combination of a variety of feature
extraction and classification ensemble technology. In feature extraction, wavelet
transform and edge detection are used for extracting features. In classification
recognition, the K nearest neighbor (KNN) classifier, wavelet neural network
(WNN) and support vector machine (SVM) are used for preliminary identifi-
cation. Each classifier corresponds to a feature method and then the classifica-
tion of the three views are constructed. The final output results are integrated by
voting strategy. Experimental results show that this method can improve the
identification rate compared with the single classifier.

Keywords: Face recognition � Multi-view � Feature extraction
Ensemble learning � Voting

1 Introduction

Biometric authentication is a kind of personal identification, which is performed using
the characteristics of the human body by computer [1]. Face recognition is an example
of using biometric to authenticate. Compared with the other biological features such as
iris and fingerprint, the acquisition of face image is more convenient and the equipment
is more hidden. As a method of using effective information for identification, face
recognition has been widely used in many aspects in the past few decades [2].

In the past few decades, face recognition technology has become more and more
concerned by researchers in the world. Especially since recent years, the research and
application of face recognition technology has made great progress and a large number
of academic papers have been published every year [3]. Some websites and APP use
face login and face registration. In the last year, the iPhone X produced by Apple Inc
uses the face recognition function. At the same time, there are many commercial face
recognition system into the market, such as law enforcement advanced video surveil-
lance, surveillance portal control and so on.

As a complex pattern recognition problem [4], face recognition involves many
disciplines, including image processing, mathematics, physiology, computer vision,
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etc. Because of the influence of many factors, face recognition is a technique with high
complexity. In order to deal with these complex problems, some good methods are
needed in feature extraction and recognition.

How can we extract features of the face accurately? Feature extraction is a key step
in face recognition, which determines the results of recognition directly. It is affected
by many aspects, including posture, expression, age, etc. [5]. The extracted features
should reflect the identity as much as possible. It is inaccurate if we just use a single
method to extract feature, then the recognition results are unsatisfactory. We can obtain
more complete features by combining a variety of methods to extract features and lay
the foundation for the recognition of the back. There are many methods to extract
features. Reference [6] has proposed a method based on Canny operator to detect
edges. The wavelet transform has a good time-frequency localization properties, so it is
suitable for image processing. Reference [7] used stationary wavelet transform
(SWT) to extract features from MR brain images.

In addition to feature extraction, the design of classifier also has great influence on
the performance of face recognition algorithm. Different classification can make dif-
ferent results. In general, feature recognition usually adopts single classifier such as
SVM [8], neural network and so on. However, it is unable to ensure the accuracy and
stability of the results only relying on a single classifier for recognition. Thus, multiple
classifiers are combined by the integration technology [9] to improve the generalization
ability and reliability of the classification system. When designing an integrated sys-
tem, the selection of a single classifier is critical, which is the first factor affecting the
performance. The selected single classifier need to be stable and diverse. Secondly, the
strategy of ensemble method is the second influencing factor. Reference [10] has used
weighted majority voting classifier combination for relation extraction from biomedical
sentences.

We proposed a method of ensemble learning for face recognition in this paper.
Canny operator, wavelet transform were used to extract features of the images itself and
transformation domain in this method [11]. Then we utilized three simple and common
classifiers the KNN, SVM and WNN to identify. A classifier combined a feature
extraction method and the classification of the three views were constructed subse-
quently. The voting strategy was adopted to integrate decision finally.

2 Classifier

The classifier can affect the final result, and we will introduce several classifiers used in
this chapter.

2.1 KNN (k Nearest Neighbor Classifier)

The K nearest neighbor classifier is an effective classifier in pattern recognition [12].
It uses the known categories of the nearest neighbor samples to judge the unknown

sample, which is suitable for dealing with overlapping or crossover samples. Specific
steps are as follow: Calculate the distance of the sample (also as known similarity) to be
sorted and the known samples in the feature space. This is the key to the method. Then
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find the k samples that are closest to the unknown sample. Count the category of k
samples, and find the category which has the largest number. Finally classify the
unknown sample into this category.

2.2 SVM (Support Vector Machine)

Support Vector Machine [8] has great advantages in solving nonlinear classification.
The basic principle is to transform the input space into the high-dimensional space by
non-linear mapping. The samples can be divided linearly, in which case the optimal
interface can be obtained.

Suppose the known training sets are C ¼ fðxi; yiÞg, where xi 2 Rn, yi 2 f�1; 1g,
(i = 1,2,…,l). For linear transformation of x, the equation of linear separation is
wxi þ b ¼ 0. The surface that satisfies yiðwTxi þ bÞ � 1� 0. The surface that satisfies
yiðwTxi þ bÞ � 1� 0 and wk k2 is the optimal classification surface.

Under this condition, it can be transformed into an optimization problem:

min
a

1
2

Xj

i¼1

Xl

j¼1

yiyjaiajKðxi; xjÞ �
Xl

j¼1

aj ð1Þ

Then the discriminant function can be determined according to the optimal solution
a and the threshold b determined from the training samples:

f ðxÞ ¼ sgnð
Xn

xi2Si
aiyiKðxi; xÞþ bÞ ð2Þ

Where a is Lagrange multiplier, Kðxi; xÞ is the kernel function.
We can construct multiple classifiers to solve the multiple class problems. On the

one hand, the SVM multi-class classifier can be realized by combining multiple two-
class classifiers. On the other hand, the objective function can be modified to merge the
problem of multiple classification surfaces into an optimization problem.

2.3 WNN (Wavelet Neural Network)

Wavelet neural network is the combination of wavelet transform and artificial neural
network. It not only includes the local time-frequency characteristics and multi-scale
decomposition characteristics of wavelet transform, but also contains the self-learning,
adaptive and fault-tolerant ability of neural network [13]. Simply speaking, the wavelet
function is used to replace the function in hidden layer on the basic of the BP neural
network. The signal of wavelet neural network is transmitted forward, and error is
transmitted backward at the same time.

The output of WNN is given by:

yðkÞ ¼
Xl

j¼1

xjk � hjðð
Xk

i¼1

xijxi � bjÞ=ajÞ ð3Þ
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Where hj is the mother wavelet function; aj is the scaling factor and bj is the translation
factor.

The error function is used as the fitness function to verify the degree of parameters
correction:

Error ¼
Xm

k¼1

ðyðkÞ � DðkÞÞ2=2 ð4Þ

Where DðkÞ is the expected output of the network.
We need to adjust the parameters according to the error. There are many methods

for parameter revision and the gradient descent method is the most common in the
wavelet neural network. However, it converges slowly and is easy to fall into the
minimum. In this paper, we use the method of adding momentum item to modify the
local parameters:

xijðiþ 1Þ ¼ xijðiÞþDxijðiþ 1Þþ kðxijðiÞ � xijði� 1ÞÞ ð5Þ

ajðiþ 1Þ ¼ ajðiÞþDajðiþ 1Þþ l � ðajðiÞ � ajði� 1ÞÞ ð6Þ

bjðiþ 1Þ ¼ bjðiÞþDbjðiþ 1Þþ l � ðbjðiÞ � bjði� 1ÞÞ ð7Þ

3 Multi-view Ensemble Learning

3.1 The Multi-view Ensemble Learning Model

The classification technique of ensemble learning is a combination of multiple clas-
sifiers to enhance the reliability and generalization of system. In order to identify face
images better, different feature extraction methods and identification classifiers are
adopted in this study. The recognition model is shown in Fig. 1.

View 1 (LDA + KNN)
In this view, LDA is used to obtain the features with fewer dimensions and then we use
KNN to identify the features.

LDA [11] also called Fisher Linear Discriminant, is a supervised algorithm that
reduces the dimension. The principle is: The data with label can be projected to a lower
dimension by mapping, the projecting points in the same class are as close as possible,
and the distance between different classes are as large as possible. Thus the data after
projection can be distinguish by category.

View 2 (Edge detection + SVM)
As an edge detection method, Canny operator has good anti-noise performance and
detection accuracy [14]. In this view, we use Canny operator to obtain the edge
information of the image. The gradient amplitude and direction of images can be
calculated after the Gaussian smoothing. We can use non-maximal suppression and
double threshold processing to get the final edge.
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After obtaining the edge features, we utilize SVM to classify to get the results. Face
recognition is a typical multi-class identification problem. The support vector machine
has strong generalization ability and good recognition rate for face recognition on
pattern classification.

View 3 (Wavelet Transform + WNN)
Firstly, we used the wavelet transform to deal the image. It is well known that the
wavelet transform has the ability of multi-scale expression. We use the two-
dimensional discrete wavelet transform in this model and it can be realized by one-
dimensional wavelet transform. The transformed image is divided into four parts:
The LL part is an image with approximate coefficient that contains the major feature of
the image. LH, HL and HH are images with detail coefficient that contain the details of
the image. Among them, HH has high frequency both in horizontal direction and
vertical direction, LH has low frequency in horizontal direction and high frequency in
vertical direction, HL has high frequency in horizontal direction and low frequency in
vertical direction.

In WNN, we adopt the three-layer feed-forward neural network shown in Fig. 2.
This kind of wavelet neural network has one hidden layer.

3.2 Ensemble Learning Method

When designing an integrated system, multiple classifiers need to be integrated to
achieve good integration [15]. And the selection of ensemble method affects the final
results. There are many methods to integrate. Among them, the bagging as the most
intuitive method has a surprisingly good performance. Table 1 shows the voting
method.

Fig. 1. The multi-view ensemble learning model.
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The voting results can be divided into three categories:

The Unanimous Voting: the result of ensemble learning is the class on which all
classifiers are consistent. In other words, if KNN, SVM and WNN are identified as the
same output, the final result will be this output.

The Plurality Voting: the ensemble result is the class on which more than one half of
the classifiers are consistent. For example, if KNN and WNN are identified as the same
output A, the SVM is identified as another output B, then the final result is output A.

Fig. 2. The structure of WNN for MIMO system.

Table 1. Algorithm: voting method.
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The Weighted Voting: If the outputs of the three classifiers are different, the output of
the classifier which has the highest recognition rate will be the final result. In this
experiment, the recognition rate of WNN is higher than KNN and SVM, so the final
result is derived from the WNN.

4 Experiments

In order to verify the feasibility of this algorithm, the experiment is carried out in ORL
face database. In this paper, we select 320 images of human face in ORL face database
consisting of 32 people. The size of each image is 92 � 112 pixels with a grayscale of
256. Some of the face images are shown in Fig. 3. We select 5 images of each person
that are 160 images as the training samples, and the rest of the images are used as test
samples.

In view 1, we obtain 160 dimensional features after the process of LDA. Then we
classify the features according to the K nearest neighbor classifier. There are many
methods to calculate the distance between the sorted samples and the known samples,
such as the Euclidean distance, the Minkowski distance, the Manhattan distance, and so
on. Here, we use the Euclidean distance. And we choose 5 neighbors through the
experiment finally.

In view 2, the two-dimensional Gaussian function is served as the noise filter in
Canny operator. Then we use the LIBSVM-FarutoUltimate toolbox to construct SVM
classification after obtain the edge features. This toolbox provides a series of auxiliary
functions for parameter searching, processing and result visualization, which are more
convenient to use. Different inner product kernel functions in SVM will form different
algorithms. In this model, we use sigmoid kernel function.

In view 3, in order to improve the speed, we adopt the wavefast function in wavelet
toolbox. The Fig. 4 is the original image and its wavelet transform. The left image is
the original image, and the right image is a 1-scale wavelet transform. As can be seen
from the figure, the low frequency part retains the approximate information, and the
high frequency part retains some edge information and noise. In the wavelet neural
network, the morlet wavelet shown in Fig. 5 is exploited as the activation function in
hidden layer.

Fig. 3. Some sample images in ORL database.
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Table 2 shows the recognition rate of the ensemble learning method proposed in
this paper. The single classifier is also used to identify the same data set. It can be seen
that the recognition rate is lowest when using KNN. Compared with the single clas-
sifier, the recognition rate of ensemble learning method has been improved obviously.

In order to increase the contrast, we select some images from the FERET database
randomly. Each person has 7 different images. In the experiment, four images of each
person are used for training set randomly and the remaining 3 images of each person
are used for testing set. Some of the face images are shown in Fig. 6. Table 3 shows the
recognition rate on this small data set. We can see that the ensemble learning method
has the highest recognition rate.

Fig. 4. The original image and its wavelet transform.

Fig. 5. Morlet wavelet function.

Table 2. Average accuracy rates on ORL.

Methods Rates (%)

LDA + KNN 86.88
Edge detection + SVM 90
Wavelet transform + WNN 91.88
Ensemble learning 96.88
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5 Conclusions

In this paper, combining multiple feature extraction and classification techniques, we
propose a method of multi-view ensemble learning in face recognition. A variety of
methods are used to extract features, which avoids the incompleteness of information
and represents the feature more fully. The classification uses SVM, KNN, WNN as the
base classifier to identity respectively. Multi-view results are integrated with voting
strategy to ensure the accuracy of identification results. The experimental results show
that our method has impressive recognition accuracy on face database.

Future work includes implementing the parallelism of the algorithm to compensate
the complexity. In addition, there is a need for further reduction in running time.
I believe that face recognition technology will be more prefect, stable and powerful in
the near future.
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Abstract. Conditional face synthesis has been an appealing yet chal-
lenging problem in computer vision. It has a wide range of applications.
However, few works attempt to leverage the synthesized face images for
data augmentation and improve performance of recognition model. In
this paper, we propose a conditional face synthesis framework that com-
bines a variational auto-encoder with a conditional generative adversarial
network, for synthesizing face images with specific identity. Our approach
has three novel aspects. First, we propose to leverage the synthesized face
images to do data augmentation and train a better recognition model.
Second, we adopt multi-scale discriminators to enable high-quality image
generation. Third, we adopt identity-preserving loss and classification
loss to ensure identity invariance of synthesized images, and use feature
matching loss to stabilize the GAN training. With extensive qualitative
and quantitative evaluation, we demonstrate that face images generated
by our approach are realistic, discriminative and diverse. We further show
that our approach can be used for data augmentation and train superior
face recognition models.

Keywords: Conditional face synthesis · Data augmentation
Generative adversarial network

1 Introduction

Since deep learning is data-driven methods, ample data have been utilized to
train high performance models in various computer vision tasks, such as image
classification [14], face recognition [20] and so on. However, There are many
realistic scenarios which limit data are available. The deep neural networks is
prone to overfit in the training set and yield pool generalization ability.
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Fig. 1. Synthesized faces. Given an identity label and a randomly sampled latent vec-
tor, generating diverse face images with specific identity.

As a generative problem in computer vision, image synthesis is appealing yet
challenging. In the past few years, it has received great research interests and
has a wide range of applications, such as image generation [3], face attribute
editing [5], image translation [19], face completion [4], image super-resolution
[15] among others. However, exist works seldom utilize the synthesized images
for further recognition or detection tasks, like face recognition. In this work,
we propose to leverage the synthesized face images for data augmentation and
improve performance of recognition model.

Traditional data augmentation techniques [14], like translation, rotation, hor-
izontal flip and random crop, can introduce some known intra-class variance.
These techniques are proved to be valid, but the transformations are limit and
constant. We argue that we can learn a generative model to do data augmen-
tation. Through a trained model, we can generate images with more abundant
intra-class variance.

This work mainly focuses on conditional face synthesis, i.e., given an iden-
tity label and a randomly sampled latent vector, generating face images with
specific identity, as illustrated in Fig. 1. We hope that synthesized face image
have following characteristics: (1) Images are photo-realistic, diverse and rich in
intra-class variance, such as pose, illumination and expression. (2) Images must
preserve identity so that they can be used for face recognition.

Inspired by CVAE-GAN [3], we propose a conditional face synthesis frame-
work that combines a variational auto-encoder with a conditional generative
adversarial network, for synthesizing face images with specific identity. However,
we find that using traditional discriminator structure and adversarial loss func-
tion will lead to many problems. First, the GAN training is unstable because of
the gradient vanishing problem. Then the quality of synthesized face images are
poor. Moreover, synthesized images are easy to loss identity information which is
the key for recognition task. To tackle these problems, we first adopt multi-scale
discriminators [19] to enable high-quality image generation. Specifically, we use
multiple discriminators that have the same network structure but handle differ-
ent image scales to improve image quality. Second, we adopt identity-preserving
loss and classification loss to ensure identity invariance of synthesized images.
Third, we use feature matching loss to stabilize the GAN training.

In summary, This paper makes the following contributions.
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1. We propose a conditional face synthesis framework that combines a vari-
ational auto-encoder with a conditional generative adversarial network, for
synthesizing face images with specific identity. Furthermore, we leverage the
synthesized face images to do data augmentation and train a better recogni-
tion model.

2. We adopt multi-scale discriminators to enable high-quality image generation,
adopt identity-preserving loss and classification loss to ensure identity invari-
ance of synthesized images, and use feature matching loss to stabilize the
GAN training.

3. With extensive qualitative and quantitative evaluation, we demonstrate that
face images generated by our approach are realistic, discriminative and
diverse. Furthermore, we show that our approach can be used for data aug-
mentation and train superior face recognition models.

2 Related Work

In the last few years, deep generative models have made significant break-
throughs in face synthesis. Since deep neural network is able to learn power-
ful feature representations, These methods can capture complex data distribu-
tions and generate more realistic images than traditional methods. The main-
stream face generative models can be roughly divided into two categories: Vari-
ational Auto-encoder (VAE) [6] and Generative Adversarial Network (GAN)
[2,3,7,11,19].

Variational Auto-encoder (VAE) [6] is one of the most popular approaches
to unsupervised learning of complicated distributions. It is actually a pair of
connected networks: an encoder and a decoder/generator. The encoder maps an
input image to a latent representation, and the decoder/generator converts it
back to the original input. With the reparameterization trick [6], VAE is able to
be optimized using stochastic gradient descent. However, since VAE uses l2 loss
or l1 loss as reconstruction loss, the images generated by VAE often suffer from
fuzzy effect.

Generative Adversarial Network (GAN) has attracted significant attention on
the research of deep generative models [2,3,7,11,19]. GAN consists of a discrimi-
nator D and a generator G that D and G compete in a minimax two-player game.
Huang et al. [11] proposed a Two-Pathway Generative Adversarial Network (TP-
GAN) for synthesising photorealistic frontal view face from profile. This work
perceives global structures and local details simultaneously. To improve the qual-
ity of generated images, Wang et al. [19] adopted multi-scale generator and dis-
criminator architectures, as well as improved adversarial loss. Arjovsky et al. [2]
adopted Earth Mover Distance to measure the similarity between two distribu-
tions, which stabilize the GAN training and alleviate mode-collapse phenomenon
to a certain extent.

Bao et al. [3] presents variational generative adversarial networks (CVAE-
GAN) for synthesizing images in fine-grained categories. Their work is related
to our work. But compared with their method, our method has the following dif-
ferences: (1) We introduce identity-preserving loss to ensure identity invariance
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of synthesized images. (2) We adopt multi-scale and multi-task discriminators
to enable high-quality image generation.

3 Approach

In this section, we first review the vanilla generative adversarial network
(Sect. 3.1). Then we introduce the overall of our conditional face synthesis frame-
work (Sect. 3.2). Next, we describe the detailed network architecture of our
method (Sect. 3.3). Finally, we introduce the object functions of the proposed
method and the training pipeline (Sect. 3.4).

3.1 Generative Adversarial Network

Generative Adversarial Network (GAN) consists of a discriminator D and a
generator G that D and G compete in a minimax two-player game. Specifically,
a discriminator D tries to distinguish a real image from a synthesized one, while
a generator G tries to capture the data distribution and generate images that
can fool D. Specifically, D and G play the following two-player minimax game
with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

3.2 Problem Formulation

In this section, we elaborate the proposed conditional face synthesis framework.
Given an identity label c and a randomly sampled latent vector z, our goal is
to generate face images with specific identity. The overall framework is visual-
ized in Fig. 2. Our method consists of four components: (1) encoder network E,
(2) generative network G, (3) discriminative network D, (4) identity-preserving
network FR. Next, we introduce the function of each component.

The encoder network E is similar to the encoder of VAE. By learning a dis-
tribution P (z|x), E first maps the image x to the mean and covariance, and
then obtains the latent representation z by reparameterization trick [6]. The
generative network G is similar to the generator of conditional GAN [16]. By
learning a distribution P (x|z, c), G generates a image G(z, c) given a identity
label c and a randomly sampled latent vector z. Specifically, The latent repre-
sentation zencode is obtained from E and the latent representation zrandom is
sampled from normal gaussian distribution. The generated images are xencode

and xrandom, respectively. Different from the traditional discriminator, we adopt
multi-task learning for discriminative network D. D distinguishes real/fake faces
and performs identity classification, i.e., estimate the posterior P (c|x), simulta-
neously. In order to leverage synthesized face images for face recognition task, it
is crucial to keep the identity invariance of synthesized images. We thus intro-
duce an identity-preserving network FR to ensure identity invariance through
feature matching manner.
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Fig. 2. The overall framework of our conditional face synthesis method. Our method
consists of four components: (1) encoder network E, (2) generative network G, (3)
discriminative network D, (4) identity-preserving network FR.

3.3 Network Architecture

The encoder network E consists of four residual blocks with 2x downsampling.
The architecture of residual block is shown in Fig. 3. The generative network G
consists of 6 deconvolution layers with 2x upsampling.

The discriminative network D consists of six convolution layers with 2x
downsampling. Different from traditional GAN that the discriminator only
distinguishes real/fake images, we adopt multi-task learning for D. D dis-
tinguishes real/fake faces and performs identity classification simultaneously.
Specifically, our discriminator produces two probability distributions, i.e., D :
x → {Dsrc(x),Dcls(x)}, where Dsrc(x) is the probability that discriminator
regards the input as true, and Dcls(x) is the posterior for identity classification.

Recent work [19] shows that the discriminator needs a large receptive field
to produce a high-quality image. Inspired by [19], we introduce multi-scale dis-
criminators to distinguish real/fake images from different scales. As illustrated in
Fig. 4, we use two discriminators D1 and D2. Each has the same network struc-
ture but handle images from different scales. The discriminator with coarse scale
has large receptive field, which helps to keel global structure information. The
discriminator with fine scale has small receptive field, which helps to produce
details.
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Fig. 3. The architecture of residual block [23].

Fig. 4. Illustration of multi-scale discriminators.

3.4 Object Function

The object function used in our approach is a weighted sum of five individual
loss functions. Next, we will describe each loss function, respectively.

Adversarial Loss. Traditional GAN uses cross entropy as adversarial loss.
Actually at the early stage of training, the distributions of real/fake images may
not overlap with each other. So it is easy for D to distinguish real/fake images.
This leads to gradient vanishing problem [1]. To stabilize the training process,
we use Wasserstein GAN with gradient penalty [2,8] as adversarial loss. It takes
the form:

Ladv(G,Dk) =Ex[Dk
src(x)] − Ez,c[Dk

src(G(zencode, c))]−
Ez,c[Dk

src(G(zrandom, c))] − λgpEx̂[(‖∇x̂Dk
src(x̂)‖2 − 1)2]

(2)

where Dk
src(·) denotes the output probability from k-th discriminator. x̂ is the

linear interpolation between real and fake samples. λgp is the weight of gradient
penalty and we use λgp = 1.0 for all experiments.

Feature Match Loss. To stabilize the GAN training, we adopt feature match
loss to train generator. Specifically, the feature match loss tries to minimize the
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distance of intermediate features from multi-scale discriminators between real
and fake images. We denote the i-th layer feature of k-th discriminator as Dk

(i).
The feature match loss is defined as follows:

LFM (G,Dk) =
T∑

i=1

1
Ni

[‖Dk
(i)(x) − Dk

(i)(G(zencode, c))‖1+

‖Dk
(i)(x) − Dk

(i)(G(zrandom, c))‖1]
(3)

where T is the number of layers used for feature matching. Ni is the number of
elements in i-th layer. Here we use features of the last three convolution layers.

Pixel Reconstruction Loss. When passing an input image x through E and
G, we can get a generated img G(zencode, c). We hope that G(zencode, c) can
reconstruct the input x as far as possible. Hence, we adopt pixel-wise L1 loss to
maintain structure information:

Lpixel = ‖x − G(zencode, c)‖1 (4)

In addition, the encoder network E maps input x to the mean(μ) and
covariance(ε). We apply KL loss to ensure that the latent representation obeys
normal gaussian distribution:

LKL =
1
2
(μTμ + sum(exp(ε) − ε − 1)) (5)

Classification Loss. For an arbitrary face image, we hope D can not only
distinguish real/fake, but also predict the identity. In detail, the classification
loss is defined as

Lr
cls(D

k) = Ex,c[−logDk
cls(c|x)]

Lf
cls(G,Dk) = Ez,c[−(logDk

cls(c|G(zencode, c)) + logDk
cls(c|G(zrandom, c)))]

(6)

where Dk
cls(c|x) represents the posterior for identity classification from k-th dis-

criminator. By minimizing this objective, D tries to classify a real image to its
corresponding identity, and G tries to generate a image with specific identity.

Identity-Preserving Loss. In order to leverage synthesized face images for
face recognition task, it is crucial to keep the identity invariance of synthesized
images. We imitate the perceptual loss [12] widely used in image style transfer.
Specifically, with a pre-trained face recognition model Light CNN9 [20], we learn
to match the intermediate features between real and fake images that have the
same identity. The identity-preserving loss is calculated as follows:

Lid = ‖FR(x) − FR(G(zencode, c))‖1 + ‖FR(x) − FR(G(zrandom, c))‖1 (7)

where FR(·) is the output of penultimate fc layer of Light CNN9. Since Light
CNN9 is dedicated to face recognition, its intermediate features contain rich
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Algorithm 1. The training pipeline
Require: initial network parameters {θE , θG, θD, θFR}, hyper-parameters λcls =

1, λFM = 1, λpixel = 10, λKL = 0.01, λid = 1
Ensure: optimal network parameters{θE , θG, θD}
1: Sample a batch from real data {x, c} ∼ Pr

2: zencode ← E(x)
3: Sample random noise from normal gaussian distribution zrandom ∼ Pz

4: LD =
∑

k[−Ladv(G, Dk) + λclsLr
cls(D

k)]

5: LE,G =
∑

k[Ladv(G, Dk) + λclsLf
cls(G, Dk) + λFMLFM (G, Dk)] + λpixelLpixel +

λKLLKL + λidLid

6: θD ← θD − �θD (LD)
7: θE,G ← θE,G − �θE,G(LE,G)
8: If not converge, back to step 1; else stop iteration.

identity information. So it’s reasonable to keep identity invariance by such fea-
ture matching manner. During the training process, we freeze the parameters of
Light CNN9 and only propagate the gradients back to E and G. We note that a
similar loss is used in [11].

Overall Object Function. Finally, the overall object function is a weighted
sum of loss functions defined above:

LD =
∑

k

[−Ladv(G,Dk) + λclsLr
cls(D

k)]

LE,G =
∑

k

[Ladv(G,Dk) + λclsLf
cls(G,Dk) + λFMLFM (G,Dk)]

+ λpixelLpixel + λKLLKL + λidLid

(8)

where λcls, λFM , λpixel, λKL, λid are hyper-parameters to control the importance
of each loss. We use λcls = 1, λFM = 1, λpixel = 10, λKL = 0.01, λid = 1 for all
experiments. The whole training pipeline is shown in Algorithm1.

4 Experiments

To validate the effectiveness of our approach, we evaluate our model qualitatively
and quantitatively on FaceScrub [17] and LFW [9] datasets. We train our model
on FaceScrub and test the model on LFW.

At preprocess stage, we perform face detection and get the facial landmarks
using the multi-task cascaded CNN [22]. Then we align the faces by similarity
transformation based on facial landmarks. The sizes of real and synthesized
images are 128 × 128. All the input are horizontal flip randomly.

For E and G, we use ReLU as activation function. The instance normalization
is applied after each convolution layer. For multi-scale discriminators, we use two
discriminators D1 and D2, where the input of D1 is 128 × 128, and the input of
D2 is 64 × 64. We use Leaky ReLU (λ = 0.01) as activation function.
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In our experiments, the dimension of latent representation is 256. Our model
is implemented using deep learning framework pytorch. The models are opti-
mized using Adam [13] with β1 = 0.5 and β2 = 0.999. We train all models with
a learning rate of 0.0002 for the first 100 epochs and linearly decay the learning
rate to 0 over the next 100 epochs. Training takes about 36 h on four NVIDIA
1080Ti GPU.

4.1 Qualitative Evaluation

Visualization Comparison. In this section, we compare the proposed method
with CVAE and CGAN qualitatively. For CVAE, we remove the discriminative
network D and only keep the pixel reconstruction loss Lpixel and KL loss LKL.
For CGAN, we remove the encoder network E as well as the pixel reconstruction
loss and KL loss, i.e., set λpixel and λKL as 0. For fair comparison, we use the
same network structure and training data. All methods use G to generate images.

(a) real image (b) CVAE (c) CGAN (d) ours

Fig. 5. Visualization results of each method. (a) Real images of 3 different identities.
(b) Results of CVAE. It’s blur and lack of identity information. (c) Results of CGAN,
which losses some structure information in some regions. (d) Our results, which is
realistic, diverse and identity-preserving.
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At test stage, we first randomly sample a identity c and a latent vector
z ∼ N(0, I), and then pass them through G to generate a image with identity
c. The visualization results of each method are shown in Fig. 5. We can see that
images generated by CVAE are very blur. The reason is that CVAE merely uses
the l1 reconstruction loss. Then images generated by CGAN often loss structure
information in some regions, which is because of the absence of encoder. On the
contrary, images generated by our approach are realistic and contain abundant
intra-class variance, such as pose and expression. Furthermore, our method can
keep the identity well. This shows the effectiveness of our approach.

Latent Representation Interpolation. To validate that our method can
learn continuous and general latent space, we perform interpolation for latent
representation. Specifically, we first randomly choose two faces of the same iden-
tity x1 and x2, and then get latent vectors z1 and z2 through encoder net-
work E. Next, we obtain a series of latent vectors by linear interpolation, i.e.,
z = αz1 + (1 − α)z2, α ∈ [0, 1]. Finally, we generate samples using these interpo-
lated vectors, as shown in Fig. 6. At each row, the left and right side are x1 and
x2, respectively. The interpolation results are in the middle. It can be seen that
the facial pose, expression and skin color change gradually from left to right,
which shows that the latent space learnt by our model is continuous.

4.2 Quantitative Evaluation

Evaluating the performance of generative model is a challenging problem. Many
existing methods in face synthesis evaluate images by human, which is a laborious
work and lack of objectivity. Following [3], we evaluate the model on image
discriminability, realism and diversity.

Fig. 6. The result of latent representation interpolation

We first randomly generate 53k face images (100 images for each identity)
using our method, CVAE and CGAN, respectively. To validate the discriminabil-
ity of generated images, we train a face classification model using real data. Here
we choose Light CNN29 [20] as a basic model, whose structure is similar to Light
CNN9 but deeper than it. With the pre-trained classification model, we calcu-
late the top-1 accuracy of images generated by each method. Table 1 shows the
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results. Since CVAE merely uses the l1 reconstruction loss. It can’t ensure iden-
tity invariance. So the accuracy is very poor. Our method achieve the best top-1
accuracy, showing significant margin than CVAE and is closing to real data
(99.56% vs 99.69%). This suggests that images generated by our method is dis-
criminative. It can be noted that CGAN also achieve high accuracy. We guess
it’s the contribution of identity-preserving loss. To validate this assumption, We
remove the identity-preserving loss (set λid as 0), and retrain the model. We find
that the accuracy drops dramatically (from 99.56% to 79.50%), which demon-
strates that the identity-preserving loss plays a crucial role in keeping identity
information.

We adopt inception score [18] to evaluate the realism and diversity of gen-
erated images. Specifically, we first train a face recognition model on CASIA-
Webface [21] dataset, and then use exp(ExKL(p(y|x)‖p(y))) as metric. If the
model can generate more photo-realistic and diverse images, the inception score
will be higher. From Table 1 we can see that our method achieve the highest
score and is closing to the real data.

Table 1. Quantitative evaluation of image discriminability, realism and diversity.

- Real image CVAE CGAN Ours Ours (w/o Lid)

Top-1 accuracy 99.69% 29.13% 98.35% 99.56% 79.50%

Inception score 48.86± .79 20.81± .21 43.95± .46 45.17± .59 44.14± .45

4.3 Data Augmentation

The ultimate goal of this paper is to utilize generated images to train better face
recognition models. In this section, we further demonstrate that our method can
be used for data augmentation. We use FaceScrub as training set and LFW as
testing set.

Following [3], we exploit two data augmentation strategies: (1) Generating
more faces of existing identities. (2) Generating faces of new identities by mixing
existing identity label. For strategy 1, we generate 200 images for each person
in training set and get totally 100k images. For strategy 2, we first randomly
sample 5k new identities by linearly interpolating three existing identity label,
and then generate 100 images for each new identity, getting totally 500k images.
The generated images are combined with original FaceScrub dataset to train
face recognition model. The models used in this experiment are Light CNN29
[20] and Concentrate Loss [10].

At the testing stage, we use the output of penultimate fc layer as face feature.
We adopt cosine similarity as metric for Light CNN29 and euclidean distance for
Concentrate Loss. We compare the LFW accuracy with and without data aug-
mentation, as shown in Table 2. We can observe that, Light CNN29 gets 1.30%
improvement (from 92.23% to 93.53%) with existing ID augmentation and 0.90%
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improvement (from 92.23% to 93.13%) with new ID augmentation. Consistently,
Concentrate Loss gets 1.10% improvement (from 93.12% to 94.22%) with exist-
ing ID augmentation and 1.08% improvement (from 93.12% to 94.20%) with
new ID augmentation. This demonstrates that our method can be used for data
augmentation effectively and bring improvement for face recognition.

Table 2. Results of data augmentation

- Data size Light CNN29 Concentrate loss

Without data augmentation 90K 92.23% 93.12%

Existing ID augmentation 90K + 100K 93.53% 94.22%

New ID augmentation 90K + 500K 93.13% 94.20%

5 Conclusion

In this paper, we propose a conditional face synthesis framework that com-
bines a variational auto-encoder with a conditional generative adversarial net-
work, for synthesizing face images with specific identity. To improve image qual-
ity, we adopt multi-scale discriminators. Furthermore, we incorporate identity-
preserving loss and classification loss to ensure identity invariance of synthesized
images, and use feature matching loss to stabilize the GAN training. Experimen-
tal results demonstrate that our approach not only produces realistic, discrimi-
native and diverse images but also is available for data augmentation.
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Abstract. It is generally known that the illumination could seriously
affect the performance of face analysis algorithms. Moreover, in most
practical applications, the illumination is usually uncontrolled. A number
of methods have been put forward to tackle the problem of illumination
variations in face images, but they always only work on facial region
and need to segment faces in advance. Furthermore, many illumination
processing methods only demonstrate on grayscale images and require
strict alignment of face images, resulting in limited applications in the
real world. In this paper, we propose a face image illumination processing
method based on the Generative Adversarial Network (GAN) with dual
triplet loss. Through considering the inter-domain similarity and intra-
domain difference between the generated images and the real images, we
put forward the dual triplet loss. At the same time, we introduce the
self-similarity constraint of the images in the target illumination field.
Experiments on the CMU Multi-PIE face datasets demonstrate that the
proposed method preserve the facial details well when relighting. The
experiment of 3D face reconstruction also verifies the effectiveness of the
proposed method.

Keywords: Face image · Illumination processing
Generative adversarial nets · Dual triplet loss

1 Introduction

Because of the great development of biometric recognition and machine learning,
face analysis technologies, such as face detection, face recognition and 3D face
reconstruction, have received great attention. Nowadays, in a highly constrained
environment, many classical algorithms have been able to achieve nearly per-
fect performance. However, in the real world, the imaging environment in most
applications is uncontrolled. For example, the user’s posture or expression are
not a neutral state, the illumination condition changes and so on. Compared
c© Springer Nature Switzerland AG 2018
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with other interference factors, illumination has a greater impact on many face
analysis algorithms. Therefore, the normalization of illumination is crucial for
exploring the method of illumination invariant.

Over the years, a large number of methods on illumination invariance have
been put forward. The invariant feature method is proposed to get the illumina-
tion invariant feature of images. Among them, Xie et al. [3] divided face images
into large scale and small scale, and processed them separately. Recently, Wang
et al. [4] proposed robust principal component analysis to eliminate the shadow
produced by high-frequency features based on Xie’s work. All these methods
have achieved impressive results in the removal of soft shadows, but they are
not effective in dealing with problems such as hard edge shadow caused by self
occlusion. At the same time, these technologies can not be extended to color
space, resulting in limited application in the real world.

With the development of 3D technology and deep learning, many researchers
turn to use them to solve the illumination problems. Zhao et al. [5] propose a
method for minimizing illumination difference by unlighting a 3D face texture
via albedo estimation using lighting maps. Hold-Geoffroy et al. [6] trained a con-
volutional neural network to deduce the illumination parameters and reconstruct
the illumination environment map. These methods are powerful and accurate.
However, they are easily limited by data collection and unavoidable highly com-
puting cost. In addition, most of the existing methods only focus on dealing
with the carefully segmented face regions, which are not robust to the whole
face images.

Inspired by the successful application of the Generative Adversarial Network
in transfer learning [8] and domain adaptation [9], we propose to reformulate
the face image illumination processing problem as a style translation task with
a Generative Adversarial Network (GAN) in [10]. By using the circle reversible
iterative scheme and via the multi-scale adversarial learning, we build the map-
ping from any complex illumination field to a target illumination field and its
inverse mapping to effectively achieve the normalization of illumination with-
out affecting any other non-illumination features of the image. In this paper, by
analyzing the distance relationship between the generated image and the real
image, an improved illumination processing method based on the dual triplet
loss is proposed in order to better retain the details of the image and improve
the quality of the generated image.

Overall, our contributions are as follows:

– We propose an improved illumination processing method based on Generative
Adversarial Nets with dual triplet loss.

– We put forward the dual triplet loss through considering the inter-domain
similarity and intra-domain difference between the generated images and the
real images.

– We introduce the self-similarity constraint of the images in the target illu-
mination field and add two image similarity indexes, SSIM and PSNR, to
supplement the measure of similarity.
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– We demonstrate that the proposed method can outperforms the state-of-the-
arts realistic visualization results on non-strictly aligned color face images
and eliminate the ill effects caused by illumination.

2 The Proposed Approach

2.1 Overall Network Framework

The overall network framework of our generative adversarial nets is shown in
Fig. 1. The same as [10], our network consists of one generator and a pair of
multi-scale discriminators with the same network structure but different classi-
fication constraint. We train G to translate an input image x under any lighting
conditions into an expected lighting image x̃′ conditioned on the target illu-
mination label c′, G(x, c′) → x̃′. And then reconstruct x̃′ to the input image
conditioned on the original illumination label c using the same G, G(x̃′, c) → x̃.
The discriminator D1 distinguishes between the synthesized output images x̃′

and the real ones x, and classify the illumination category c̃′. The classification
loss of real images used to optimize D1, and the fake images’ used to optimize G.
Similar but different, D2 distinguishes between x̃′ and a randomly selected pic-
ture y′ of maybe anybody’s under target illumination condition and recognizes
the identity l̃′ to optimize G and D2.

Fig. 1. Basic network architecture for face image illumination processing based on
GAN with dual triplet loss.

2.2 Inter-domain Similarity and Intra-domain Difference

According to our research idea, face images under the same illumination con-
ditions are divided into the same domain and our goal is to learn the mapping
from any other illumination domain to the target illumination domain, which
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refers the positive standard illumination in this paper. As shown in Fig. 2(a),
the images before and after illumination normalization belong to different illu-
mination domains, but their non-illumination information are same, which we
call “inter-domain similarity”. At the same time, the different images after nor-
malization belong to the same illumination domain, but their non-illumination
information are different, which we call “intra-domain difference”.

(a) illumination domain (b) identity domain

(c) sketch of the dual triplet loss

Fig. 2. Sketch of inter-domain similarity, intra-domain difference and the dual triplet
loss.

Besides, as shown in Fig. 2(b). If we treat the non-illumination information
as a symbol of the domain division, the two images before and after the normal-
ization belong to the same identity domain, but their illumination information
are different. That is, the two images have intra-domain difference now. Simi-
larly, for any two different images after illumination normalization, they belong
to different identity domains, but their illumination information are consistent.
That is, the two images have inter-domain similarity now.

2.3 Dual Triplet Loss

Inspired by the thought of the triplet loss [11], we propose to construct a dual
triplet loss based on the intra-domain difference and inter-domain similarity
between the generated image and the real image. As is shown in Fig. 2(c).

The dual triplet loss include two triplet loss, each is composed of the orig-
inal image x, the generated image x̃′ after illumination normalization and the
real image y′ captured randomly from the target illumination domain. The first
triplet loss takes y′ as anchor and takes x̃′ and x as positive and negative sample
respectively. The second triplet loss takes x as anchor and takes x̃′ and y′ as
positive and negative sample respectively.
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Define f(x), f(x̃′) and f(y′) are the features of x, x̃′ and y′ extracted from
our multi-scale discriminant network. In the illumination domain, x and x̃′ have
inter-domain similarity. So the distance between them should be as small as
possible and must be shorter than the distance between y′ and x. That is:

‖f(x) − f(x̃′)‖22 − ‖f(x) − f(y′)‖22 < 0 (1)

Similarly, in the identity domain, x̃′ and y′ have inter-domain similarity. So the
distance between them should be as small as possible and must be shorter than
the distance between y′ and x. That is:

‖f(y′) − f(x̃′)‖22 − ‖f(y′) − f(x)‖22 < 0 (2)

In addition, x̃′ and y′ belong to the same illumination domain, but their non-
illumination information are different. So, the distance between them should be
larger than a minimum distance interval Δ1. That is:

Δ1 − ‖f(y′) − f(x̃′)‖22 < 0 (3)

Similarly, in the identity domain, the distance between x̃′ and x should be larger
than a minimum distance interval Δ2. That is:

Δ2 − ‖f(x) − f(x̃′)‖22 < 0 (4)

In summary, the formula for calculating the loss function of dual triplet
constraints is:

Ldual−tri = E[‖f(x) − f(x̃′)‖22 − ‖f(x) − f(y′)‖22]+
+ E[‖f(y′) − f(x̃′)‖22 − ‖f(y′) − f(x)‖22]+
+ E[Δ1 − ‖f(y′) − f(x̃′)‖22]+ + E[Δ2 − ‖f(x) − f(x̃′)‖22]+

(5)

where [•]+ is a brief description of max[•, 0], which indicates that the loss is
valid only when the result value of [] is greater than 0, otherwise it is recorded
as 0. The threshold distance Δ1 is set as the minimum value of the feature
distance between any two face images in the target illumination domain of the
current training batch. Similarity, Δ2 is set to the minimum value of the distance
between any two face images in the original identity domain.

2.4 Self-similarity Constraint and Reconstruction Loss

The ideal function of the generate network is transferring the input image to the
target illumination and keeping the non-illumination information unchanged.
Therefore, if we use any real image of target illumination domain as input, the
generated image should be the same as the original, namely “self-similarity.
Because the illumination scene of them are already the target illumination and
don’t need to be transferred.
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Similar to the definition of the reconstruction loss in the previous article, we
use the L1 distance to measure the error between the input and output image
at first. The self-similarity constraint can be defined as

Lrec−y′ = E‖y′ − G(y′, c)‖1 (6)

L1 distance calculation is the sum of the absolute values of the corresponding
pixel difference of all pixels between two images. The advantage is that it is
convenient to calculate and can ignore the influence of the abnormal value in
the image data, which is relatively stable and robust. But its disadvantage is also
obvious, that is, the space between the pixels and their neighborhood is omitted,
which may lead to the loss of high frequency information such as texture and
detail. Based on the confirmation in [10], we use SSIM [12] and PSNR [13] to
supplement the L1 distance in the image reconstruction constraint. Define:

LSSIM (x1, x2) = 1 − SSIM(x1, x2)

=1 − (2μx1μx2 + c1)(2σx1x2 + c2)
(μ2

x1
+ μ2

x2
+ c1)(σ2

x1
+ σ2

x2
+ c2)

(7)

LPSNR(x1, x2) = 1 − PSNR(x1, x2)
30

=1 − 1
3

log
MAXx

2

MSE(x1, x2)

(8)

where MAXx is the maximum possible pixel value of the image. MSE(x1, x2)
is the mean squared error of x1 and x2. μx1 , μx2 , and σx1 , σx2 are the average
and variance of x1 and x2 respectively. σx1x2 is the covariance of x1 and x2.
c1 = (0.01L)2 and c2 = (0.03L)2 are two variables to stabilize the division with
weak denominator, in which L is the dynamic range of the pixel-values (1 in this
paper). Special to note is that we use an empirical value of 30 to normalize the
PSNR value.

Then the final cycle consistency loss of the generator can be written as

Lrec−all = Lrec−new + α1Lrec−y′−new

= E‖x − xrec‖1 + α2(LSSIM (x, xrec) + LPSNR(x, xrec))
+ α1(Lrec−y′ + α3(LSSIM (y′, G(y′, c)) + LPSNR(y′, G(y′, c)))

(9)

We use α2 = 0.5, α3 = 0.5 and α1 = 2 in all of our experiments.

2.5 Loss Function

Base Loss. To stabilize the training process and generate higher quality images,
we use Wasserstein GAN objective with gradient penalty as [8,10,14,15]. Define
x̆1 and x̆2 are sampled uniformly along a straight line between a pair of real
image and generated image, as well as a pair of target illumination image and
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generated image. The discriminator network D1 and D2 update their parameters
by minimizing the following loss:

Ladv1 = E[D1src(x)] − E[D1src(G(x, c′))] − λgpE[(‖∇x̆2D1src(x̆1)‖2 − 1)2]
(10)

Ladv2 = E[D2src(y′)] − E[D2src(G(x, c′))] − λgpE[(‖∇x̆2D2src(x̆2)‖2 − 1)2]
(11)

where we use λgp = 10 for all experiments.
For an input image x whose identity label is l and a target illumination label

c′, our goal is to translate x into an output image x̃′, which is properly classified
by D1 to c′ and recognized by D2 to l. The classification loss for illumination
and identity classification task can be defined uniformly as

Lcls1 = E[logD1cls(ĉ|x̂)] (12)

Lcls2 = E[logD2cls(ĉ|x̂)] (13)

where x̂ represents the image to be classified and the item ĉ represents the proper
label x̂ should be in this classification task.

Loss Function for Generator. Define the illumination label and identity label
of the synthesized output image as c̃′ and l̃′. So, the base objective functions to
optimize G can be written as

LG−base = Ladv1(x,G(x, c′)) + Ladv2(y′, G(x, c′))

+ α4Lcls1(c̃′, c) + α5Lcls2(l̃′, l)
(14)

where α4 and α5 are hyper-parameters that control the relative importance of
illumination classification and identity recognition losses respectively, compared
to the adversarial loss. We set α4 = 1 and α5 = 1. According to Eqs. (14, 9, 5),
the overall objective functions to optimize G can be written as

LG = LG−base + α6Lrec−all + α7Ldual−tri (15)

The detailed description of all the individual loss functions was postpone above.
We use a6 = 10 and a7 = 10 in all of our experiments.

Loss Function for Discriminator. The networks parameters of D1 and D2
can be optimized by minimizing a specifically designed adversarial loss Ladv1,
Ladv2 and the aforementioned classification loss Lcls1, Lcls2 of the real one’s
respectively:

LD1 = −Ladv1(x,G(x, c′)) + α8Lcls1(c̃′, c) (16)

LD2 = −Ladv2(y′, G(x, c′)) + α9Lcls2(l̃′, l′) (17)

we set a8 and a9 as 1 in our experiments.

2.6 Model Training

We summarize the details of our algorithm training procedure in Algorithm 1.
And we use the same history updating strategy as [10]. Moreover, we set Kd = 5,
Kg = 1, T = 1000 and lrG = lrD = 0.0001 in the first 500 iterations, which both
decay to 0 linearly in the following iterations.
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Algorithm 1. Face Image Illumination Processing Based on the Dual
Triplet Loss

Input: Real images x, identity label l, illumination label c and target illumination
label c′. Images with target illumination y′, identity label l′. Max number of
steps T , number of the two discriminator network update per step kd, number
of generative network updates per step Kg, the learning rate of lrG and lrD.

Output: The network parameters
1 for i = 1 : T do
2 for k = 1 : kd do
3 Sample a batch of real images x and target illumination images y′;
4 Get G(x, c′) with current network;
5 If the history buffer is not null, update the batch content with half a

batch images sampling from the buffer;
6 Update network parameters of D1 by taking a Adam step on batch loss

LD1 in Eq. (16);
7 Update network parameters of D2 by taking a Adam step on batch loss

LD2 in Eq. (17);
8 Sample half a batch images from the original G(x, c′) and add to the

history buffer.
9 end

10 for k = 1 : kg do
11 Sample a batch of real images x and target illumination images y′;
12 Get G(x, c′) and G(y′, c) with current network;
13 Reconstruct G(G(x, c′), c) and update network parameters of G by

taking a Adam step on batch loss LG in Eq. (15)
14 end

15 end

3 Experimental Results and Analysis

Experiments were conducted on the CMU Multi-PIE Face Database [1] to verify
the effectiveness of the proposed methods. Notably, all the images in this dataset
are color images, which is always a challenge on illumination normalization for
traditional methods. In our experiments, we restrict our attention merely to the
frontal face images with neutral expression. All images are simply aligned and
resized to 128 × 128 pixels, among which the first 2000 pictures were used for
test and the others used for training.

3.1 Comparisons of the Visual Quality with Other Methods

For convenience, we denote our previous base method in [10] as GAN-base and
denote this paper’s method as GAN-DTL. In Fig. 3, we compare the visual
results of normalized images between the proposed GAN-DTL method, GAN-
base method and two baseline algorithms: NPL-QI [17] and ITI [18]. Same as
other traditional methods, these two baseline algorithms can only process gray
images and require strict alignment of face images. However, even on gray images,
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they don’t work well. For example, the NPL-QI method can’t handle the extreme
illumination conditions such as the first group and the third group. There is a
general loss of detail in face after processing of the ITI method. And these two
methods are not effective in dealing with the self occlusion of nose in the second
groups. In contrast, our GAN-DTL method and GAN-base method achieve the
best normalization performance and preserve more facial details and almost all
appearance information, such as the hairstyle and hair color. At the same time,
our GAN-DTL method provides a higher visual quality of normalization results
on all kinds of test images. Different skin colors were preserved closer to the
original ones, especially obvious on the first group image. And the details of
eyeglass frame and whiskers in the third group are preserved more perfect. The
result indicated that the proposed GAN-DTL method can preserve the details
of generated images better and improve the quality of generated images.

Fig. 3. Quantitative evaluation results comparison between the proposed GAN-DTL
method, GAN-base method and two baseline algorithms.

3.2 Comparisons of the Ablation Study

We conduct ablation studies to show the superiority of our GAN-DTL method.
We carry out the experiment on our 2000 test images. Take the face image of the
same face under the target illumination as benchmark, we calculate the SSIM
value and PSNR value of the original image, the generated image of GAN-base
and the generated image of GAN-DTL respectively. And take the mean value
according to the original illumination category then, which are drawn in black,
blue and red curves in Fig. 4 respectively. As we can see, our GAN-DTL method
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improves the evaluation results to a new height. The total average value of
the SSIM is raised from 0.550 of the GAN-base method to 0.736 and the total
average of the PSNR is raised from 16.048 to 21.324, which is consistent with
the evaluation of the visual effect.

Fig. 4. Comparisons of the ablation study SSIM and PSNR. (Color figure online)

3.3 Test of Face Algorithm Application

We use the online 3D face reconstruction from a single image algorithm [19]
which is put forward by the team of nottingham university in 2017. As is shown
in Fig. 5. As the initial 3D reconstructed image is not a positive angle of view,
the angle and size of the pictures are slightly deviated when they are manually
rotated to the front view. But it obviously does not affect the experimental
comparison. In group (a), as the original image is in the dark light condition
and the skin color of the face is black, the face can not be detected in the 3D
reconstruction. In group (b), due to the uneven illumination of original images,
the location of facial landmarking is not allowed, resulting in partial deletion
of reconstructed 3D models. Similarly, in group (c) and group (d), the face
region segmentation of the original image is inaccurate due to the influence of
illumination on the location of facial landmarking, and the rough edge produced
by the shadow in the chin area. However, in the four sets of images, the 3D model
can be built very well and smoothly for the generated images after our GAN-
DTL and GAN-base method illumination normalization. And our GAN-DTL
method achieve the best results and illustrate the effectiveness of the proposed
method in real-world applications.

4 Conclusion

In this paper, we propose a face image illumination processing method based
on Generative Adversarial Nets with dual triplet loss. Through considering
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Fig. 5. 3D face reconstruction from a single image.

the inter-domain similarity and intra-domain difference between the generated
images and the real images, we put forward the dual triplet loss. At the same
time, we introduce the self-similarity constraint of the target illumination images
and add two image similarity indexes, SSIM and PSNR, to supplement the mea-
sure of similarity. Experiments on the CMU Multi-PIE face datasets demonstrate
that the proposed method preserve the details of generated images and improve
the quality of generated images. The 3D face reconstruction experiment shows
that the face images after our methods processing can eliminate the ill effects
caused by illumination, and illustrates the effectiveness of the proposed methods
in real-world applications.

Acknowledgment. This project is supported by the Natural Science Foundation of
China (61672544, 61702566), Fundamental Research Funds for the Central Universities
(No. 161gpy41), and the Tip-top Scientific and Technical Innovative Youth Talents of
Guangdong special support program (No. 2016TQ03X263).

References

1. Gross, R., et al.: Multi-pie. Image Vis. Comput. 28(5), 807–813 (2010)
2. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for

changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7),
721–732 (1997)

3. Xie, X., et al.: Normalization of face illumination based on large-and small-scale
features. IEEE Trans. Image Process. 20(7), 1807–1821 (2011)

4. Wang, H., Ye, M., Yang, S.: Shadow compensation and illumination normalization
of face image. Mach. Vis. Appl. 24(6), 1121–1131 (2013)

5. Zhao, X., et al.: Minimizing illumination differences for 3D to 2D face recognition
using lighting maps. IEEE Trans. Cybern. 44(5), 725–736 (2014)

6. Hold-Geoffroy, Y., et al.: Deep outdoor illumination estimation. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, vol. 1, no. 2 (2017)



Face Image Illumination Processing Based on GAN with Dual Triplet Loss 161

7. Wu, Z., Deng, W.: One-shot deep neural network for pose and illumination nor-
malization face recognition. In: 2016 IEEE International Conference on Multimedia
and Expo (ICME). IEEE (2016)

8. Choi, Y., Choi, M., Kim, M., et al.: StarGAN: unified generative adversarial net-
works for multi-domain image-to-image translation (2017)

9. Patel, V.M., et al.: Visual domain adaptation: a survey of recent advances. IEEE
Sig. Process. Mag. 32(3), 53–69 (2015)

10. Anonymous: Face image illumination processing based on generative adversarial
nets. In: 24th International Conference on Pattern Recognition (ICPR) (2018)

11. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015)

12. Wang, Z., et al.: Image quality assessment: from error visibility to structural sim-
ilarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

13. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th Interna-
tional Conference on Pattern recognition (ICPR). IEEE (2010)

14. Martin, A., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning (2017)

15. Gulrajani, I., et al.: Improved training of Wasserstein GANs. Advances in Neural
Information Processing Systems (2017)

16. Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition 2005.
CVPR 2005, vol. 1. IEEE (2005)

17. Xie, X., et al.: Non-ideal class non-point light source quotient image for face relight-
ing. Signal Process. 91(4), 1048–1053 (2011)

18. Liu, J., et al.: Illumination transition image: parameter-based illumination estima-
tion and re-rendering. In: 19th International Conference on Pattern Recognition,
2008. ICPR 2008. IEEE (2008)

19. Jackson, A.S., et al.: Large pose 3D face reconstruction from a single image via
direct volumetric CNN regression. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV). IEEE (2017)



Face Detection and Encryption for Privacy
Preserving in Surveillance Video

Suolan Liu(&), Lizhi Kong, and Hongyuan Wang(&)

Changzhou University, Changzhou 213164, Jiangsu, China
lan-liu@163.com, hywang@cczu.edu.cn

Abstract. A number of techniques have recently been proposed for privacy
preserving in video surveillance. Most of them are irreversible or have inter-
ference effect to the observation and recognition of human activities. In this
paper, we address these issues by developing an effective method including face
detection and encryption. In face detection, skin-color based approach fusing
with fuzzy clustering is produced to detect facial candidates coarsely, and then
we refine face by using SVM classifier. In face encryption, a reversible hybrid
encryption (decryption) scheme based on spatial and value scrambling models is
proposed. Simulation results verify the proposed mechanism can effectively
detect and obscure faces while leaving the activities comprehensible and has
high key sensibility for reducing the probability of attacking.

Keywords: Privacy preserving � Video surveillance � Face detection
Face encryption � Reversible

1 Introduction

Nowadays, video surveillance has become one of the most important auxiliary means
in the field of public security monitoring. Video surveillance systems are widely
deployed in many public places such as banks, supermarkets, airports, roads and res-
idential areas [1–3]. Everyone is constantly being watched no matter whether you feel
like it or not. However, in [4] a report about government surveillance revelations by
NAS contractor Edward have raised new concerns about how best to preserve
American’s privacy in the digital age. What is personal privacy? One approach defines
it in property terms as any information which the individual has certain decisional right
[5]. Thus one’s facial image, actions, location or copyrighted material are personal-
partly, because they “belong” to the individual. Among these privacies, facial image is
crucial and has highly close relationship with the others, because it can be directly used
in face recognition technology to identify the monitored person’s identity [2, 3]. In
general, privacy preserving measures based on video surveillance can be taken from
two aspects [6, 7]. On the one hand, we should enhance law making and law
enforcement to regulate videos collection, storage and usage to avoid malicious
infringement and disclosure of individual information. On the other hand, it is nec-
essary to take effectively technical measures to protect the data and information, such
as using cryptography theories and computer vision algorithms [2, 3, 7]. Cryptography
methods mainly focus on encrypting the whole frame images into an unreadable form
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so that every unauthorized person cannot recover the original video [8]. The traditional
encryption algorithms mainly include symmetric cryptographic algorithm and asym-
metric cryptographic algorithm. This kind of methods is fit to processing videos for
secure transmission over a communication line instead of real-time security monitoring
and alarming for some particular activities recognition (e.g. fall and fights, etc.).
Therefore encryption of the image as a whole may not be the most fixable method for
this application. Recently, privacy preserving method based on computer vision has
been a hot topic in the research field. Most of the preserving mechanisms are focused
on partly modify the moving targets in the surveillance scenes [8, 9]. Target detection
algorithms are used to localize the sensitive regions (e.g. face, eyes) and other methods
are applied to obscure or conceal the selected regions, such as video masking, black
boxes and replacing techniques. However, these methods are usually irreversible.
Objective to recover the original video whenever needed for authorized person, we
should apply reversible image processing methods with low computational complexity
to meet the requirement of fast and real-time processing and preserving.

In this paper, we address the above-mentioned issues of privacy preserving in
surveillance video by fusing image-processing method with encryption and decryption
techniques. In particular, the proposed scheme consists of two steps including face
detection and scrambling with the purpose of obscuring human face and monitoring his
activities without revealing his identity at the same time.

The remaining of this paper is organized as follows. In Sect. 2, we review previous
work related to pedestrian face detection, image encryption and decryption algorithms.
Section 3 describes the proposed framework. The overview of the scheme is presented.
Face detection approach and image encryption based on pixels spatial and value fea-
tures scrambling models are given. In Sect. 4, simulations and experimental results are
reported. Furthermore, we discuss the security of our proposed scheme. Finally, we
conclude our work in Sect. 5.

2 Related Works

At present, video surveillances are widespreadly set up for the purpose of ensuring
security and smart life. From this point of view, one may like surveillance to be carried
out with not be willing to reveal any individual information. As the most informative
part of human, face is usually used for identification. Therefore, obscuring or con-
cealing face technique becomes an urgent demand for video surveillance with privacy
preserving. Face detection is the first step of this application. Many of the current face
detection techniques contain two major modules including face localization and veri-
fying by extracting ‘facial’ features. To accurately localize face region, some prior
information of human face are required. Skin color and face geometry make explicit
use as apparent properties. Human skin color is one of the most robust face features and
can be efficiently applied to find the pixels belonged to human skin in a scene.
Roughly, physical-based methods and statistical-based methods are two basic kinds of
skin color-based face localization approaches. Furthermore, statistical-based approa-
ched can be grouped into parametric approaches and non-parametric approaches. In
parametric approaches, mean values, covariance matrices, Gaussian or mixtures of

Face Detection and Encryption for Privacy Preserving in Surveillance Video 163



Gaussians are used to build parametric face skin distribution models. For instances, in
[10] Pujol et al. developed a fuzzy system to detect facial region by computing and
fusing image variances from three color spaces of RGB, HSV and YCbCr. For the
considering of error detections, a method of detecting where truly face locates is further
proposed to eliminate these similar regions, such as the neck and hands. Experiments
showed about 93% correct face detection rate in brief backgrounds and stable light
conditions. In RGB space, Zhen et al. [11] built a maximum entropy model called the
first order model (FOM) for parameter estimating human face. And then belief prop-
agation algorithm was used to obtain fast selection and exact location for facial skin
region. But the output of detection was in a gray scale skin map and the special region
was not exactly located and marked. In non-parametric approaches, histogram, Baye-
sian approach and neural networks are usually developed to distinguish “face” or “non-
face”. In [12], authors applied the histograms of oriented gradients (HOG) as skin
feature extraction clue and a feed-forward neural network was trained to classify the
face from candidates. They tested the performance of their proposed scheme in
sequences of color images and achieved an accuracy of 91.4%. The recent research of
convolutional neural networks (CNNs) as the hottest algorithm in application of videos
has proposed different solutions for incorporating the face detection and human
recognition. Lu et al. [13] proposed using Clarifai net [14] and VGG-D model [15] to
extract features and fuse them before fine-tuning. A binary classification by support
vector machine (SVM) was conducted to realize face detection. Experimental results on
three public datasets verify its state-of-the-art performance. Although great progress
has made in recent years, face detection is still confronted with many challenges and
cannot handle the large variations in different poses, occlusion, illumination condition
and face in poor-quality video sequences.

As reported in [8], Boult proposed to protect privacy by using and adapting
encryption techniques and combining them with intelligent video processing methods.
The main contribution showed as cryptographically invertible obscuration only for
authorized users in possession of the decryption key. Image encryption methods have
been increasingly applied to meet security demands in video surveillance. The tradi-
tional encryption algorithms mainly include symmetric cryptographic algorithm and
asymmetric cryptographic algorithm. Data encryption standard (DES), Triple data
encryption standard (TDEA), Rivest Cipher5 (RC5) and International data encryption
algorithm (IDEA) are typically symmetric cryptographic algorithms, while RSA
(proposed by Ron Rivest, Adi Shamir and Leonard Adleman in 1977), ELGAMAL,
RABIN, Diffe-Hellman and Elliptic curve cryptography (ECC) are asymmetric cryp-
tographic algorithms. Video processing requires meeting its need such as fast and high-
level efficiency. Therefore these traditional encryption algorithms may not be the most
desirable algorithms for encrypting video frames with large size. By analyzing recent
reports and publications, encryption schemes for image application may be grouped
into three categories including pixel-position permutation, value permutation and
hybrid scrambling methods. Arnold transform, Fibonacci transform and Hilbert
transform are position permutation approaches with the disadvantage of not being able
to change the original histogram. They only rearrange the positions of the image pixels
rather than the pixel values. Once the histogram is revealed, exhaustion method can be
used to find the original image. Value permutation-based algorithms such as Virginia
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encryption [16], chaotic map [17] and gravitational transform [18] aim at changing
value by setting some parameters in advance. However, contour of original image can
always be found in the encrypted image, which may cause security issues. Hybrid
scrambling methods are produced by combing the advantages of the two former
methods. In [19], to property compromise between imperceptibility and robustness of
logo image encryption, Roy et al. proposed to fuse redundant discrete wavelet trans-
form (RDWT) with Arnold scrambling and furtherly reshape it. Qin et al. [20] pre-
sented a novel image hash securely generated scheme by diving the image into several
quantizes and scrambling the variances of pixel values. Testing results showed good
performances with respect to perceptual robustness and discrimination. In [21], a
hybrid encryption scheme based on quaternion hartley transform (QHT) and two-
dimensional logistic map are suggested to enhance the security level. Simulation results
verified that the novel scheme not only had satisfied security level but also had certain
robustness against cropping and noise disturbance.

3 The Proposed Method

In this section, we describe the proposed privacy preserving method based on two
steps: face detection and face encryption. The framework is shown in Fig. 1. In our
scheme, first, we develop cascaded classifiers to extract face from coarse-to-fine. Then,
a hybrid encryption approach based on spatial and value scrambling models are used to
change and rearrange pixels in facial region. The following subsections will discuss the
procedure detailedly.

3.1 Face Detection

Since most of the monitoring devices provide RGB video streams, approaches
developed in this paper are based on RGB applications. Skin color model can be used
to coarsely search facial candidates. Obviously, RGB has the negative property of each

Fig. 1. Framework of our proposed scheme
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coordinate (red, green and blue) is subject to luminance effects from light changes,
which may cause misclassification of skin and non-skin regions. Reported researches
show that skin color models work effectively only on the chrominance subspaces such
as Cb-Cr [22, 23] and Hue-Saturation (H-S) [24]. Inspired by the work in [25, 26], in
our approach skin candidates are produced using fuzzy c-means clustering
(FCM) based on pixel local properties termed as LFCM in Cb-Cr subspace. In [27], the
standard FCM is used to localize skin-like regions. However, they only consider pixel
value instead of other useful information, such as the relationships between pixels,
which play important roles in discriminating the category of a pixel. With this in mind,
we improve FCM by considering attributions from 8-neighbor pixels of a point.
Therefore, the conditional probability of a pixel xi categorized into the jth class can be
expressed as:

f ðjijgiÞ ¼
ebdi jð ÞPc
i¼1 e

bdi jð Þ ; i ¼ 1; 2 � � � ;N ð1Þ

where ji means that the pixel xi is classified into jth class. gi is the class label from 8
neighbors. di jð Þ is the statistical number of 8-neighbor pixels belonged to jth class. b is
the weight factor, b� 0. We set b ¼ 0:5 in all of our tests in Sect. 4. The following
criterion can be used to discriminate the pixel’s category:

j� ¼ argmax uij; i ¼ 1; � � � ;N; j ¼ 1; � � � ; c ð2Þ

where uij is the fuzzy membership value and can be calculated by the following
formula:

uij ¼ u
0
ij � f ðjijgiÞ ð3Þ

u
0
ij can be obtained from the standard FCM.

To refine facial region from several candidates, we conduct finely classification by
SVM. To reduce the influences from illumination and different sizes, we do prepro-
cessing including light compensation [27] and resizing every candidate to 64 * 64.
Define the block size as 16 * 16 composed by cells sized 8 * 8 with moving step
8 * 8. Next, nine gradient orientation bins are selected to produce HoG features and
concatenate them as final feature vector to train SVM model by using polynomial
kernel function [28].

3.2 Face Encryption

Once face region is properly detected, the next step is scrambling it for security and
privacy protection. Note that the encrypted face should be able to be recovered as
needed [29]. Motived by this requirement, a reversible hybrid encryption (decryption)
scheme is proposed in this section, which uses Arnold transform in spatial position
permutation [30] combining with gravitational transforms termed as GTs in value
permutation [18] to encrypt and decrypt human facial region. In our numerical setting,
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to facilitate Arnold transform, facial region is located in a bounding box sized N*N.
The facial region image is expressed as f xi; yið Þ. In mathematics, the hybrid encryption
operation is described as follows:

F xo; yoð Þ ¼ G A f xi; yið Þð Þf g xo; yoð Þ ð4Þ

where F xo; yoð Þ represents the output. The symbol “A” means Arnold transform (ART),
“G” denotes GTs.

Furthermore, the facial image is imported to Arnold transform function [18], which
is defined as:

AN :
x0i
y0j

� �
¼ mod

1; 1
1; 2

� �
xi
yj

� �
;N

� �
ð5Þ

where xi; yj
� �

and x
0
i; y

0
j

� 	
are the coordinates before and after position permutation AN .

The GTs can be given as:

G : c
mr � mx0i y

0
j

xr � x0
ið Þ2 þ yr � y0

j

� 	2
þ k2

2
64

3
75mod256� V x

0
i; y

0
j

� 	
ð6Þ

c is gravitational coefficient and assigned a large positive number in experiments.
mr ¼ 1 is the quality of unit particle which location is xr; yrð Þ. k is an adjusting

parameter to ensure xr � x
0
i

� �2 þ yr � y
0
j

� 	2
þ k2 [ 0. mx0i y

0
j
is the quality of the pixel

point x
0
i; y

0
j

� 	
with pixel value V x

0
i; y

0
j

� 	
. Note that V can be a three-tuple corre-

sponding to components of color images.

4 Numerical Simulations and Discussion

The main idea of our work is to develop a reversible method for human face obscuring
while having no interference to recognizing and monitoring their activities. To verify
the performance of the proposed scheme, we do experiments by choosing several video
clips with life scenarios. The operations in the processes of face detection, encryption
and decryption will be conducted in Matlab running on a laptop.

4.1 Test One

In this test, the original testing image shown in Fig. 2(a) contains two faces with
variations in illumination, position, orientation and accessories. As displayed in Fig. 2
(b), our approach can effectively detect faces with a certain range of skin color changes.
Even though the left-side person is lowing the head, his facial region is properly
localized. For the right-side person, accessories such as sunglasses greatly increase the
difficulties of face refining, which may result in partial detection of human face.
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However, our algorithm can successfully suppress this kind of influence and detect the
whole face region. Obviously, the effectiveness of this part will greatly facilitate the
next step of encryption.

In Table 1, we list the encrypted results by setting different parameters. For the sake
of conducting fair comparisons, in GTs we set the unit particle’s position as mean
values for each facial position and assign the adjusting parameter k = 100. The first list
displays the closeup of the detected faces; in the second list the ART results with
different numbers of iterations are presented. We show the GTs results based on ART
position permutation in the third list. The final encrypted results are displayed on the
original images in the last list. From Table 1, one may find that with the changes of
iterations from 3 to 80, the position scrambling effects show better from vision. Note
that, once the number of iterations increases to a certain extent, it becomes a decryption
operation. On the other hand, with the increase of gravitational coefficient the per-
mutation of pixel values show more uniform and indistinguishable.

4.2 Test Two

A frame image contains multiple faces from different views coupled with cluttering
background is utilized to test the robustness and security of our proposed scheme.

For the purpose of strengthening the security, in this test we set encrypt key as
KEY4 as following: the number of iterations is 150 and three different sets of
parameters for GTs corresponding to 3 channels [18] are applied. For red,
mx0i y

0
j
¼ 85� x

02
i þ y

03
j þ 230, c ¼ 9� 1014; for green, mx0i y

0
j
¼ 60� x

02
i þ y

03
j þ 175,

c ¼ 11:8� 1015; for blue, mx0i y
0
j
¼ 115� x

02
i þ y

03
j þ 70, c ¼ 10:5� 1013. The cipher-

image is displayed in Fig. 3(c). As can be seen that even though the image shows small
scaled faces and one of the actors in his profile, our method still achieves good
detection rates and localizes the core areas of all faces.

To verify the key sensibility of the proposed method, we select the face from
“Monica” shown in Fig. 4(a) and try to recover the encrypted image in Fig. 4(b) by
using different decryption keys. Firstly, we decrypt it by using KEY5 of incorrect
iterations as 90 for inverse ART operation, but no change to other parameters. The
decrypted result displays in Fig. 4(c). Furthermore, we utilize only incorrect keys for
inverse GTs operation with mx0i y

0
j
¼ 50� x

02
i þ y

03
j þ 60, c ¼ 9� 1013 for all 3 channels

(a ) original image   (b)  facial localization

Fig. 2. An example of face detection
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as KEY6 and show the result in Fig. 4(d). Figure 4(e) is decrypted image with correct
keys. Concludely, Figs. 4(c) and (d) indicate that the cipher-image can withstand some
potential attacks. Experimental results show the high key sensibility in our scrambling
scheme.

4.3 Discussion

Correlation coefficient between plain-image and cipher-image can be used to quantify
the performance of an encryption algorithm. The lower correlation coefficient indicates
that the encryption algorithm can better hide the feature information of the plain-image.

Table 1. Scrambling processings and encrypted results

Closeup of face ART GTs follow-
ing ART

Encrypted results

KEY1:  
For ART, the number of iterations is 3;

KEY2:
For ART, the number of iterations is 50;
For GTs,  

KEY3:
For ART, the number of iterations is 80;
For GTs,  

(a) original image   (b) face detection result (c) encrypted result

Fig. 3. An example of multiple faces detection and encryption
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In this way, it will become more difficult to be attacked. Here we analyze the per-
formance of the proposed algorithm by calculating the correlation coefficients of red,
green and blue color channels respectively. The correlation coefficient between two-
dimensional image matrix A and B can be defined as:

CAB ¼
PN

i¼1

PN
j¼1 Ai;j � mean Að Þ� �

Bi;j � mean Bð Þ� �


 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1 Ai;j � mean Að Þ� �2�PN

i¼1

PN
j¼1 Bi;j � mean Bð Þ� �2q ð5Þ

Where mean xð Þ is the mean value.
Table 2 displays the correlation coefficient by using different keys. For Test One,

we calculate the correlation coefficient between plain-image (Fig. 2(a)) and cipher-
images (displayed in the forth list of Table 1). For Test Two, we calculate the corre-
lation coefficient between cipher-image (Fig. 4(b)) and decrypted images (Figs. 4(c)
and (d)).

From Table 2 one may find that for Test One most correlation coefficients are low
as approximately zero. It indicates that the relevance between plain-image and cipher-
image is very weak. From the aspect of encryption sensitivity, it means that the
algorithm presented in this paper has superior sensitivity. Conversely, for Test Two
while KEY5 is used to decrypt the cipher-image, correlation coefficient varies from
0.0243 to 0.0618, which shows high relevance. The reason for this phenomenon is the
incomplete decryption of spatial position. However, we can see that once KEY6 is
applied to decrypt, the average correlation coefficient is dramatically reduced from
0.0400 to 0.0061. As expected, localize and encrypt multiple faces in a picture is more
challenging, but our proposed scheme is able to perform quite well with satisfied anti-
attack property.

Fig. 4. Test results of key sensibility on a face

Table 2. Correlation coefficient between the red (r), green (g) and blue (b) color channels

Correlation
coefficient

Crr Crg Crb Cgr Cgg Cgb Cbr Cbg Cbb Average

Test
one

KEY1 0.0007 0.0021 0.0015 0.0009 0.0018 0.0011 0.0014 0.0006 0.0023 0.0014
KEY2 0.0013 0.0007 0.0003 0.0024 0.0007 0.0015 0.0008 0.0002 0.0009 0.0010
KEY3 0.0004 0.0018 0.0021 0.0026 0.0015 0.0003 0.0020 0.0014 0.0031 0.0017

Test
two

KEY5 0.0317 0.0243 0.0430 0.0357 0.0532 0.0618 0.0351 0.0426 0.0322 0.0400
KEY6 0.0079 0.0050 0.0071 0.0068 0.0082 0.0064 0.0047 0.0038 0.0046 0.0061
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5 Conclusion

We have proposed a practical privacy preserving technique for the application of video
surveillance. Faces corresponding to privacy sensitive information are detected and
encrypted. We aim to conceal faces while not interfere the observation and recognition
of human activities using in intelligent monitoring and alarm systems. Our method is
reversible for revealing faces whenever needed to the authorized person. Simulation
results demonstrate that the proposed scheme can successively detect and obscure faces
while leaving the activities comprehensible. Finally, the performance evaluation with
key sensibility shows that the developed mechanism can withstand some potential
attacks.
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Abstract. Facial blending is critical for various facial editing applica-
tions, whose goal is to transfer the facial appearance of the reference to
the target in seamless manners. However, when there are significant illu-
mination or color differences between the reference and the target, visual
artifacts may be probably introduced into the result. To tackle this prob-
lem, we propose content-aware masks that adaptively adjust the facial
lighting and blended region to achieve seamless face blending. To gener-
ate the content-aware masks with good visual consistency, we formulate
it as a label propagation process from a semi-supervised learning per-
spective, where the intensity of the initialized masks are propagated to
the whole masks based on the local visual similarity of the images. Then,
we construct a content-aware face blending framework that consists of
three stages. Firstly, the facial region of the reference and the target are
aligned according to the detected facial landmarks. Secondly, a facial
quotient image and a binary mask are obtained as the initialized masks,
and the content-aware masks for illumination and region adjustment are
generated using the label propagation model with different guided fea-
ture. Finally, we combine the reference to the target using the generated
masks to produce the face blending effects. Experimental results show
the effectiveness and robustness of our methods for different image-based
facial rendering tasks.

Keywords: Image-based rendering · Label propagation · Face transfer

1 Introduction

Facial image photo-realistic rendering is a novel computational photographic
technique [12] to achieve facial effects that can be used for many applications,
such as advertisement, movie production, digital entertainment, personalized
photo editing and identity protection. Among the various current rendering
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techniques [14], this paper specifically focuses on the facial appearance trans-
fer problem of the image-based portrait rendering.

Facial appearance transfer is the critical component of various facial editing
tasks, including face replacement [4,13], face swapping [1,7,18,19], face reenact-
ment [5,16] and age progression [6]. It aims to transfer the facial appearance of
the reference to the target with good visual consistency.

It is challenging to achieve seamless face transfer. Most previous methods
are based on the facial mask, and the facial property matching (like lighting or
color) between a target and a reference. Pérez et al. [13] proposed the Poisson
seamless cloning by the guided interpolation in the gradient domain. Dale et
al. [4] used a novel graph-cut method that estimates the optimal seam on the
face mesh to obtain video face replacement. Bitouk et al. [1] used the shading
model based on a linear combination of spherical harmonics to adjust facial
color and lighting for face swapping. Recently, Garrido et al. [5] proposed the
automatic face reenactment system that replaces the face of an actor with the
face of a user using a color adjustment with the Poisson blending [13].

Face 
Alignment

Facial Appearance-
Map Generation via
Label Propagation

Face 
Composition

Reference

Result

Target

Tmask

Itar

Iref

Iout

Fig. 1. The framework of the face transfer to blend the facial region of the reference
to the target, which is based on facial appearance-map generated by adaptive label
propagation.

The framework of the facial appearance transfer is shown in Fig. 1, which aims
to transfer the facial region of the aligned reference to the target to produce the
blended portrait. It consists of three stages: face alignment, facial appearance-
map generation, and face composition.

Due to the complex appearance differences between the faces, however, a
simple facial mask with Gaussian feathering may cause visual artifacts on the
boundary of the transferred region; even the Poisson image editing [13] may fail
to perform well when there is a large lighting or color difference between the
target and reference, as shown in Fig. 4. To tackle the problem of illumination
and region variances, this paper proposes a facial appearance map with good
illumination-aware and region-aware properties for seamless facial appearance
transfer. Inspired by Liang’s work on face enhancement [11], we formulate the
facial appearance map generation as a label propagation process [20] from a
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semisupervised learning perspective [2]. Since the face blending problem is dif-
ferent from the face enhancement problem in [11], we propose an adaptive label
propagation model with a new regularization structure and guided features to
achieve seamless face transfer.

Based on the adaptive facial appearance map, we construct the facial appear-
ance transfer framework containing three stages. Firstly, the facial region of the
reference is aligned to the target according to the detected facial landmarks. Sec-
ondly, a facial quotient image [10,15] and a binary mask are generated, and then
the guided label propagation model is used to diffuse the initial features of the
quotient image and the binary mask to obtain the adaptive facial appearance-
map for illumination and mask adjustment, respectively. Finally, we use the
appearance-maps to seamlessly transfer the reference to the target. Experimen-
tal results show the effectiveness and robustness of our methods compared with
the previous methods for various image based facial rendering tasks, such as face
replacement and face dubbing in [1,4,13].

The main contributions of the paper are summarized as follows: (1) An adap-
tive label propagation model with guided features to generate the illumination-
aware and region-aware facial appearance map for seamless face transfer; (2)
A facial appearance transfer framework based on the adaptive facial appear-
ance map, which achieves various image-based face blending effects, such as face
replacement and face dubbing.

2 Facial Appearance Transfer Framework

2.1 Face Alignment

In face alignment, we aims to match the reference Iref and the target Itar

to obtain the transformed reference I ′
ref and the wrapped target I ′

tar for
appearance-map generation and face composition.

Firstly, we use the Viola-Jones face detector [17] and the active shape model
(ASM) [3] to locate the 86 landmarks in the facial components of the reference
Sref and the target Star, respectively. Secondly, the transformed appearance
I ′
ref and shape S′

ref of the reference are obtained by matching the reference Iref

to the target Itar using the affine transformation with the landmarks. Finally,
we wrapped the target by the multilevel B-splines approximation (MBA) [9]
according to the transformed shape of the reference S′

ref , i.e. the appearance of
the wrapped target I ′

tar = fMBA(Itar, Star, S
′
ref ). For more technical detail of

MBA, we refer the readers to the article [9].

2.2 Facial Appearance-Map Generation

In face blending, directly pasting the face region of the reference to the target
probably fail to perform well. According to our observation, apparent visual
artifacts may be introduced to the results even through the gradient-domain
Poisson cloning [13] is used when the reference and the target have large lighting
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or color variances. To tackle this problems, we construct two different types of
facial appearance-maps (Tquot and Tmask) that perform adaptive illumination
and region adjustments of the reference for seamless face transfer.

Inspired by Liang’s recent work [11] for face enhancement, we formulate the
facial appearance-map generation as a label propagation process, which diffuses
the features within the initialized facial map to obtain the whole map. Since the
two appearance-maps require different diffusion processes, we integrate different
regularization structures with different guided features to the label propagation
model for the corresponding map diffusion.

Specifically, the appearance-map Tquot aims to relight the reference so that
the illumination and the color of the reference appearance is consistent to the
target, and it uses the quotient image [15] as the initialization. Unlike the orig-
inal quotient image that only handles the region within the faces, the diffused
the quotient appearance-map Tquot facilitates to relight the face with consistent
background illumination.

The appearance-map Tmask is to adaptively select the facial region of the
relighted reference for seamless face transfer with smooth region transition, which
use the binary mask of the facial landmarks as the initial map.

The benefit of the diffusion-based map generation is twofold. Firstly, it is
fault-tolerant to the small inaccurate landmark detection, since the final map
value is determined by the label propagation process instead of the initialized
value. Secondly, the map is adapted to the complex facial boundary and texture
variance of the region by using different regularization structures and guided
features. More detail of the structure and initialization of the label propagation
model for Tquot and Tmask will be presented in Sect. 3.

2.3 Face Composition

To produce the output Iout of face transfer, we replace the facial region of the
target Itar with the facial region of I ′

ref using the generated facial map Tquot,
Tmask as follows:

Iout = I ′
ref ◦ Tquot ◦ Tmask + Itar ◦ (J − Tmask), (1)

where ◦ denotes the element wise product operation, and J is the all-ones matrix
with the same dimension of Tmask. The results of face blending are shown in
Fig. 1, where the corresponding generated masks Tquot and Tmask are shown in
Fig. 2.

3 Facial Appearance-Map Generation

3.1 Adaptive Label Propagation Model

The appearance-map for face transfer is formulated as a label propagation model
with an adaptive regularization structure and guided features, which generates
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the whole map by propagating the value of the initial map to the others according
to the pixel similarity.

Specifically, the facial appearance-map T with n pixels is mapped into a
graph g = (V, E) of n nodes, where the node vp corresponds to the pth map
location, and the edge epq links the node pair (p, q) with the pixel similarity
Wpq. We initialize the node value by R (more details of R are in Sect.3.2), and
obtain the appearance-map T by propagating the initial value of R through the
graph according to the pixel-wise edge similarity given by the affinity matrix W .

The label propagation for appearance-map can be formulated as the mini-
mization of the following quadratic cost functional:

Z(T ) =
∑

p

Spp(Tp − Rp)2 +
λ

2

∑

p,q

Wpq(Tp − Tq)2 + λε
∑

p

T 2
p

The first term is the data term to constrain the diffusion region, where S is
an n × n diagonal matrix given by Spp = 1 in the constraint region, otherwise
Spp = 0. The third term is a small added regularization term that prevents
degeneration.

The second term is the smoothing term to determine the local smoothness
property of the generated map T , where λ is used to balance the relative weights
of the data term and the smoothness term; the weight matrix Wpq is non-zero
iff vp and vq are “neighbors”, and its value measures the similarity between the
nodes (pixels). In this paper, we use the typical value λ = 1 and ε = 0.0001 for
all the experiments.

The smoothness term has a closely relationship with graph Laplacian Lg.
Specifically, D is a diagonal matrix with Dpp =

∑
q Wpq, and Lg = D − W is

the un-normalized graph Laplacian. A more compact form of the cost function
can be obtained as following:

Z(T ) = ‖S(T − R)‖2 + λT�(Lg + εI)T. (2)

The derivative of the cost is

1
2

∂Z(T )
∂T

= S(T − R) + λ(Lg + εI)T

= (S + λLg + λεI)T − SR,
(3)

T can be obtained when the derivative is set to 0:

T = (S + λLg + λεI)−1SR = L−1SR, (4)

which is a linear equation about a symmetric, positive-definite Laplacian matrix
L. It can be solved efficiently by the conjugate gradient descent with the multi-
level preconditioning [8].

Also, Eq. 4 can be solved using a Jacobi iteration, which is similar to the
iterative label propagation proposed by Zhu and Ghahramani [20] and Liang’s
mask propagation model [11], except for the weight matrix that controls the
diffusion property.
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To obtain the appearance map of face transfer, we construct a new kernel
structure with guided features for the weight matrix W of appearance-map dif-
fusion.

3.2 Diffusions of Facial Appearance-Map

The edge-aware property of the optimization-based label propagation model is
mostly controlled by the smoothness term, specifically the similarity metric of
the weight matrix Wpq. To produce the appearance-map for face transfer, we
design a new kernel structure with guided features:

Wpq =
cpqG

′
pq

‖Gp − Gq‖α + ε
, (5)

where G and G′ are the guided features to control the local property of the
map diffusion, c and α are the parameters to adjust the sensitivity of the guided
features, ε is a small constant to avoid division by zero (typically ε = 0.0001).
The appearance-map Tquot and Tmask can be generated by different initializa-
tion R{quot,mask} and weight matrix W{quot,mask} with the corresponding guided
features and parameters.

Fig. 2. Diffusions of facial appearance-map Tquot and Tmask based on adaptive label
propagation with different guided features.

The appearance-map Tquot aims to adjust the illumination of the refer-
ence according to the target based on the facial shading model of the quotient
image [15], as shown in Fig. 2(c). To produce Tquot, we set Rquot = faWLS(I′

tar)
faWLS(I′

ref )
,

where Rquot is the quotient image of the matched target I ′
tar and reference I ′

ref

using Liang’s adaptive weighted least squares filter faWLS [10] for edge-aware
smoothing, as shown in Fig. 2(b). For the weight matrix Wquot, we set α = 1
and G = logL′

ref , where L′
ref is the luminance of I ′

ref (Fig. 2(a)); the value of
cG′ is small within the facial region and large in the background so that makes
the features of the quotient image diffuse across the significant edges within the
facial region to the whole image.

The appearance-map Tmask is responsible to paste the facial region of the
reference to the target with smooth transition between different regions. For
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Tmask, we set Rquot as a binary mask according to the facial landmarks, as
shown in Fig. 2(d). To produce Tmask with adaptive region boundary, we set
α = 1.2, G = logL′

ref and c = 0.5 with G′ = J , where L′
ref is the luminance of

I ′
ref and J is the all-one matrix. The map diffusion is controlled by the gradient

of the guided feature G, which assures the smooth transition of the blended
region between I ′

ref and Itar, as shown in Fig. 2(e).

4 Experiments

4.1 Basic Evaluation

The evaluations for facial appearance-map are shown in Figs. 2 and 3. The results
show that the generated Tquot efficiently propagates the quotient value from the
constrained regions of Rquot to the other regions, like eyes, eyebrows and back-
ground, and preserves the illumination consistence in the blended face. The
appearance-map Tmask is generated with smooth transition, which is adapted
to the region boundary between the face regions of the faces. The illumination-
aware and region-aware diffusion of Tquot and Tmask ensure the robustness of the
appearance transfer for faces with different properties, as shown in the experi-
ments of face transfer.

Fig. 3. Facial appearance-map for quotient-based illumination diffusion (Tquot) and
blending mask diffusion (Tmask) using the proposed label propagation with correspond-
ing guided feature.

Fig. 4. Comparison with Poisson image cloning [13] for faces with large differences in
age, color and lighting.
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Fig. 5. Comparison with Bitouk et al. [1] for face replacement using reference target
pair with different gender and roll rotation.

Fig. 6. Comparison with Dale et al. [4] for face dubbing, aims to transfer the series of
the face appearance of the reference to the target. Comparison of the close-up images
in the top rows illustrate that our method obtain better illumination consistency to
the target than Dale’s [4]

The basic experimental evaluations of face blending with the appearance-map
were performed for the face pairs with significant different appearance properties,
such as lighting, color, age and gender, as shown in Figs. 4, 5 and 6. The test
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images were taken from the FEI face database or the internet. The good visual
consistency of the results indicate the effectiveness and robustness of our method.

4.2 Comparison with Related Methods

We also made comparison with the related methods for face replacement [1,
13]. Figure 4 shows the comparison with the Poisson cloning [13]. Due to the
dependency of the gradient and boundary of the blended region, the results
of [13] are sensitive to the lighting and color differences of the faces. In contrast,
our method obtains natural face blending effects. Comparison with Bitouk’s
method in Fig. 5 further validates the effectiveness of our diffusion-based model.

We made the comparison between Dale’s [4] and our method for face dubbing,
which aims to transfer the series of the face appearance of the reference to
the target. The results indicate that both the methods can achieve good visual
consistency in a global manner, as shown in Fig. 6. The close-up images of the
local region in the first rows of Fig. 6, however, show the subtle differences. Dale’s
method [4] tends to transfer the lighting property of the reference to the target,
while ours tends to preserve the original appearance property of the target, which
is complementary to [4].

5 Conclusion

This paper proposes a label propagation model with adaptive regulariza-
tion to achieve facial blending with good visual consistency. Specifically, the
illumination-aware and region-aware facial appearance maps are generated by
diffusion with different guided features. Experiments illustrate the effectiveness
and robustness of our methods for face replacement and face dubbing.
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Abstract. Facial expression is usually considered as a face movement
process. People can easily distinguish facial expressions via subtle facial
changes. Inspired by this, we design two models that are expected to
better recognize facial expressions by capturing subtle changes in the
face. First, we consider to re-calibrate the response of different facial
regions to highlight several special facial areas. According to this idea,
we constructed cross-channel region-wise attention network (CCRAN),
which can underline the important information and mine the correla-
tions between different facial regions effectively. Moreover, we use the
feature subtraction method to obtain geographical facial difference infor-
mation. Based on this idea, we constructed temporal geometric frame
difference network (TGFDN), which accepts the facial landmark points
as input. These points are extracted from the facial expression frames.
This network can effectively extract the slight changes of geographical
information on the expression sequences. Through properly fusing these
two networks, we have achieved competitive results on the CK+ and
Oulu-CASIA databases.

Keywords: Facial expression recognition · Attention mechanisms
Temporal difference

1 Introduction

Facial expressions are part of the human body’s language. It is a physical
and psychological response commonly used to convey feelings. Therefore facial
expression recognition (FER) in the human-computer interaction is very impor-
tant. In order to conduct the interaction, the machine needs to recognize the
human facial expression to perceive their feeling. Considering that the expres-
sion often contains rich emotional information, the application of this task is
very extensive.
c© Springer Nature Switzerland AG 2018
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FER is generally considered as a classification problem. Many people have
done a lot of research in this field before. Overall, these studies can be divided
into two categories: frame-based methods and sequence-based methods [1,7,15,
20,24,28]. Because facial expressions are generally considered as a movement
process, extracting useful temporal and spatial features is very helpful for facial
expression recognition. Therefore, the recognition methods based on the image
sequence are generally considered to be superior to the methods based on a still
single frame [7,15].

However, the above methods are mainly based on the entire human face. In
facial expression recognition tasks, the major changes in expression are often
concentrated in several subtle facial regions. Humans can accurately recognize
the category of expression through several key areas of the face, such as forehead,
mouth, and brow. Therefore, the weights in different areas of the feature maps
should be different.

In this paper, we first propose cross-channel region-wise attention network
(CCRAN), trying to find the relationship between the different regions of the
feature map. We hope to improve the network’s ability to express specific image
regions by introducing the cross-channel region-wise squeeze and excitation
(CCSE) branch. Through this branch, we expect to re-calibrate features and
enhance the image regional sensitivity of the network without introducing addi-
tional information.

Furthermore, we also propose temporal geometric frame difference network
(TGFDN) to extract the temporal features from the facial landmarks. This net-
work can effectively capture facial morphological changes and accurately describe
facial movement characteristics. By performing feature extraction and frame dif-
ference for the landmarks of each frame separately, the network can extract low-
level facial expression movement information from the landmarks. The result
of the landmark difference is concatenated along the time axis and then input
into the subsequent layers to further extract the high-level expression features.
At the end of that, we can obtain the geometry information and movement
characteristics of facial expressions.

The main contributions of this paper are divided into three parts.

– We propose CCRAN model, which accepts continuous frames as input,
enhancing the network ability to recognize facial expressions by adding cross-
channel region-wise attention mechanisms to the network.

– We propose TGFDN model, which can extract the inter-frame difference
information from the facial landmarks points and can describe the motion
process of expressions accurately.

– Finally, we fuse these two networks. The integrated deep spatial-temporal
network takes into account geometry-appearance, regional-global, intra-frame
and inter-frame information synthetically, improving the accuracy of expres-
sion recognition effectively.
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2 Related Work

2.1 FER Based on Traditional Methods

Before the large-scale use of the deep learning-based method, it is a common
practice to use hand-crafted features for facial expression recognition. These
methods can be further divided into three kinds of methods based on local
features extraction, facial action units (FAUs), and spatio-temporal information,
respectively. Traditional methods based on local features, such as HOG, SIFT,
LBP, and BoW have been extended to video. These methods also have their
3D cases [11,15,23,25,31]. In FAU based methods [12,13], facial action coding
system (FACS) is used to detect and analyze FAUs to classify facial expressions.
The methods based on spatio-temporal information are represented by the work
of Liu et al. [15]. They have proposed an expressionlet-based spatio-temporal
manifold descriptor.

2.2 FER Based on Deep Methods

In recent years, deep convolutional neural networks have achieved great success
in image classification [4,5,27], object detection and localization [3,16,21,22],
semantic segmentation [3,17], and other computer vision fields. Corresponding
to these tasks, in the field of facial expression recognition, Liu et al. propose
3DCNN-DAP [14], which is based on 3D-CNN, constructing a deformable parts
learning component to capture the expression features. Further, Jung et al. [8]
trained two small deep networks with facial landmarks and image sequences
separately. To achieve the better result, they performed joint fine tuning method
to fuse these two networks. Based on this structure, Zhang et al. [29] introduce
recurrent neural network to further analyze the facial landmarks. Ding et al. [2]
use a large pre-trained face recognition network to help train a simple facial
expression recognition network through a regularization mechanism. Based on
this, Ofodile et al. [19] further improved the accuracy by introducing the motion
trajectory of the landmark points into the network. In addition, Kim et al. [10]
attempted to use a small deep encoder-decoder network pre-trained on a face
database to obtain a contrastive representation between expression face and
neutral face, which helps to distinguish expressions.

3 Approach

In summary, the proposed method uses a combination of two simple networks.
First, we construct the TGFDN to capture the geographical inter-frame motion
information. Then we use CCRAN to extract local appearance information in
consecutive frames of the expression. Finally, these two networks are properly
combined to improve the performance of facial expression recognition.
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Fig. 1. Overview of our proposed architecture. The upper part of the figure shows
the structure of CCRAN. The image sequence is fed into the network directly. Using a
simple bottleneck (a convolution layer, a ReLU activation layer, and a batch normaliza-
tion layer), the channels are increased to 64. After that, four cross-channel region-wise
attention (CCRA) blocks are interleaved with four pooling layers and then followed by
a fully connected layer to get logits. The lower part of the figure shows the structure
of TGFDN. Facial landmark points are extracted from the frame sequence, reshaped
into a matrix in which each row stores the coordinates of a point. Then the landmark
matrices are fed into convolution layers separately. After the feature subtraction and
difference concatenation, a fully connected layer is used to obtain logit values.

3.1 Cross-Channel Region-Wise Attention Network

In recent years, adding short connections to the network has proven to be
an effective way to increase the efficiency of network information propaga-
tion [4,6,26]. So we use a simple CNN-Resnet structure as our backbone, which
receives t frames of expression as input. The network includes four residual blocks
interleaved with four pooling layers, and a fully connected layer at the end. Each
residual block contains two convolutional layers. A batch normalization layer and
a ReLU activation layer are between them, as shown in Fig. 3(a).

The whole Resnet block shown in Fig. 3(a) can be regarded as a unit that
does not change the size and channels. The main problem with the backbone
is that the convolutional operation takes equal considerations for the entire fea-
ture map and are less sensitive to subtle local changes. So we have joined the
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Fig. 2. Overview of the cross channel squeeze and excitation process.

cross-channel region-wise attention branch on the basis Resent block of this net-
work. This branch draws on the squeeze and excitation network [5] and can be
trained end-to-end, including a cross-channel squeeze and a cross-channel exci-
tation operation as shown in Fig. 2.

The purpose of the squeeze operation is to compress the information of all
feature maps within a layer into a one-dimensional vector. Specifically, we first
compress all feature maps into a single feature map using average pooling. Then
we use a k × k filter to do average pooling again on this entire compressed
feature map. Each region of the compressed feature map is compressed to one
value. We then flatten these values into a one-dimensional vector. The vector
obtained in this way takes into account the context between the channels and
the facial regions. Formally, a two-dimensional matrix z ∈ R

H
k ×W

k is generated
by squeezing U through cross-channel k × k × C sized average pooling window,
where the zij is calculated by:

zij = Fsq(U) =
1

k × k × C

C∑

c=1

i·k+k−1∑

h=i·k

j·k+k−1∑

w=j·k
uc(i, j) (1)

We further extract the contextual relationships between the regions con-
tained in the vector through the excitation operation. Like SE-net [5], in order
to reduce the complexity of the model while reducing over-fitting, we use two
fully-connected layers as a bottleneck. One layer is the dimension-reduction layer,
and the other is the dimension-restoring layer. Between these two layers, we use
a ReLU as the activation layer to get more nonlinearity, so as to better fit and
mine the complex correlations between different regions. We will use this branch
to integrate with the original Resnet block. As we have shown in Fig. 3.

We obtain CCRAN by using the block in Fig. 3(b) to replace the block in
Fig. 3(a). It can be seen from Fig. 3(b) that the cross-channel SE branch we
proposed can be added flexibly to the original network structure. Here, we join
the cross-channel SE branch before the identity addition operation.

3.2 Temporal Geometric Frame Difference Network

The entire network includes a temporal difference layer and two fully connected
layers as shown in the upper part of Fig. 1. The TGFDN network receives the
sequence of facial landmarks as input. We select t-frame facial landmarks to
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Fig. 3. Overview of the CCRAN architecture: (a) resnet block, (b) cross channel region-
wise attention block, (c) the backbone network with two kinds of block.

describe the expression features. In Fig. 1, the landmarks selected for each frame
are arranged in a matrix where each row stores the xy-coordinates of a point.
Then t matrices are stacked and input into the network at the same time.

In the temporal difference layer, we use a convolutional operation to extract
features frame-by-frame. The kernel size is n×1. Let X = [x1, x2, . . . , xt] denote
the input facial landmarks, where xt refers to the landmark points extracted from
the t-th facial expression frame. The set U = [u1, u2, . . . , ut] represents a set of
convolution kernels and V = [v1, v2, . . . , vt] denotes the features extracted via
convolution operation. Features vt are extracted from xt using its corresponding
convolution kernels ut,

vs
t = us

t ∗ xt (2)

where ∗ denotes convolution, while vs
t denotes the s-th feature map of vt and

us
t represents the s-th kernel of ut. The convolution operation is followed by a

batch normalization layer and a ReLU activation layer. Then, we use the feature
obtained in this frame minus the features obtained in the previous frame to
obtain frame difference. After that, we concatenate all the differences and flatten
them into the one-dimensional vector. Formally, Z represents the concatenation
output, and C is the concatenation operation. Here we have:

Z = C(u2 − u1, u3 − u2, . . . , ut − ut−1) (3)

Then, the difference layers are passed through the two fully connected layers and
finally classified using softmax function. The discussion on convolution kernel size
and the hyper-parameter t is detailed in Sect. 4.4.
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3.3 Model Fusion

We fuse the two networks together through a fusion function referring to the
fusion method of Zhang et al. [29].

O(x) =
1∑

i=0

ai(βAi(x) + Pi(x)) (4)

Pi(x) (0 < Pi(x) < 1) is the output of the softmax layer in the CCRAN and
TGFDN. P0(x) comes from CCRAN and P1(x) comes from TGFDN. Ai(x) is
sorted according to the predicted value of each expression in Pi(x). In addition,
β (0 ≤ β ≤ 1) acts as a weight parameter. When the value of β is close to 1, the
fusion function will give priority to the sorting result of different expressions.
When the value of β is close to 0, the fusion function will be a simple weighted-
sum function. Finally, ai is the balance factor between different models. We
empirically set ai to 0.5 and β to 0.1. This function considers the sorting results
of the softmax output and actual value of the softmax output simultaneously.

4 Experiments

We evaluated the performance of our model on two widely used databases,
including CK+ [18] and Oulu-CASIA [30]. The process and details of the exper-
iments are shown in this section.

4.1 Implementation Details

The structure of CCRAN is I64-[B(5,64)+P2] × 4-FC1024-S7. I64 means that the
size of input frames is 64 × 64, and B(5,64) refers to a cross-channel SE block
with 64 channels and filters of size 5 × 5. Moreover, P2 refers to a 2 × 2 max
pooling layer and FC1024 means a fully connected layer with 1024 nodes. The
structure of TGFDN is L(68,2)-C((1,3),16)-FD-FC600-S7. L(68,2) means that
landmarks of a frame are reshaped to 68 × 2 for input, and C((1,3),16) means a
convolution operation with 16 output channels and filters of size 1×3. Moreover,
FD means a frame subtraction layer and FC600 means a fully connected layer
with 600 nodes. At last S7 is the softmax layer with seven outputs (in CK+
database).

4.2 Databases and Protocols

The CK+ Database. The CK+ database [18] is a representative database of
facial expression recognition tasks. This database has a total of 539 sequences of
facial expressions, corresponding to 123 subjects with different ages and genders.
Among them, 327 expression sequences are marked and correspond to seven
types: anger, contempt, disgust, fear, happiness, sadness, and surprise. Each
expression sequence begins with a plain frame (neutral expression) and ends
with the peak frame of expression. We follow the usual protocol of using 10-fold
cross validation [8,15] for testing.
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The Oulu-CASIA VIS Database. There are 80 individuals in this database.
Each individual has six expressions, including anger, disgust, fear, happiness,
sadness, and surprise. So the database has a total of 480 expression sequences.
Like the CK+ database, we use 10-fold cross validation as our experimental
method.

4.3 Data Preprocessing and Augmentation

The duration of the expression is not the same, but our network needs to accept
a fixed-length image sequence as input. Therefore, we use the average sampling
method to regularize the expression sequence along the time axis. From these
sampled frames, the faces are detected, cropped and reshaped into 64 × 64.
What’s more, we use dlib [9] to further extract 68 facial landmarks. Then we
regularize all the facial landmark points using the method described in [8]. We
also follow the method of Jung et al [8], making data augmentation to the train-
ing data to alleviate the overfitting problem.

4.4 Experiment Results

Comparison with Other Methods. On the CK+, we can see that our method
is very close to state-of-the-art [29] and better than three pre-trained mod-
els. The method with ∗ in Table 1 indicates that these methods use the face
recognition database for pre-training and the facial expression database for fine-
tuning, which introduces additional information to improve the result. On the
Oulu-CASIA database, our method has also achieved very good results. The
recognition ability of the fused network is higher than VGG-16 pre-trained net-
work. Moreover, the recognition result obtained by CCRAN, which only uses the
image frame as input, is surprisingly higher than the DTAGN, which uses both
image frames and landmark points as input for recognition on the Oulu-CASIA
database. It should be noted that there is no contradiction between our approach
and the state-of-the-art [29]. It is very likely to further improve the performance
by simply integrating the CCRA mechanism and the frame difference mechanism
into the network to form a complementary relationship with our method.

Analysis and Discussion

Region-Wise Squeeze-and-Excitation Blocks. As we can see in Table 2, by adding
the cross-channel region-wise attention (CCRA) mechanism to the Resnet block,
the network performs better on two databases. This result shows that re-
calibration of the different region in feature maps can effectively help the network
to learn facial expression features.

Facial Landmark Selection. The coordinates of facial landmarks extracted using
the dlib [9] can only be integers, which are not accurate and can cause noise in
the result. If the sampling frequency of expression frames is too high, the noise
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Table 1. Comparisons of different methods on the CK+ and Oulu-CASIA database
(where * indicates that the model use face recognition database for pre-training).

Method Accuracy(CK+) Accuracy(Oulu)

3DCNN [14] 85.9% -

3DCNN-DAP [14] 92.4% -

DTAN [8] 91.44% 74.38%

DTGN [8] 92.35% 74.17%

DTAGN(Weighted Sum) [8] 96.94% 80.62%

DTAGN(Joint) [8] 97.25% 81.46%

PHRNN-MSCNN [29] 98.50% 86.25%

VGG-16 Fine-Tune* [2] 89.9% 83.26%

FN2EN* [2] 96.8% 87.71%

GCNet* [10] 97.93% 86.39%

CCRAN 95.48% 81.58%

TGFDN 94.55% 77.38%

CCRAN-TGFDN 98.11% 83.54%

Table 2. Comparisons between resnet block and cross-channel region-wise attention
block on the CK+ and Oulu-CASIA database.

Method Explanation Accuracy(CK+) Accuracy(Oulu)

Baseline Resnet block 94.39% 79.91%

CCRAN CCRA block 95.48% 81.58%

Table 3. Comparisons between different input number and filter size of TGFDN on
the CK+ and Oulu-CASIA database.

Input Size Filter size Accuracy(CK+) Accuracy(Oulu)

7-frames 1 × 3 93.68% 74.12%

3-frames 2 × 2 92.99% 75.54%

3-frames 1 × 1 93.61% 77.13%

3-frames 1 × 3 94.55% 77.38%

will be large after frame difference operation. As shown in Table 3, we can see
that using landmarks with only three frames (t = 3) for recognition has achieved
better result than that with 7 frames. In addition, we also tried different filter
sizes in the network. Through the display in Table 3, we can see that the results
using 2 × 2 size filters on CK+ and Oulu-CASIA are significantly lower than
the other two convolution kernels. We think the reason is that the correlation
between the x-coordinate and the y-coordinate of the face landmark points is
relatively small. So a single-column-size filter performs better.
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Table 4. Confusion matrix of CK+ database.

Anger Contempt Disgust Fear Happy Sadness Surprise

Anger 97.78 0 1.69 0 0 0 0

Contempt 2.22 94.44 0 0 0 3.57 0

Disgust 0 0 98.31 0 0 0 0

Fear 0 0 0 92 0 0 0

Happy 0 0 0 4 100 0 0

Sadness 0 5.56 0 4 0 96.43 0

Surprise 0 0 0 0 0 0 100

Table 5. Confusion matrix of Oulu-CASIA database.

Anger Disgust Fear Happy Sadness Surprise

Anger 78.75 20 0 0 8.75 0

Disgust 12.50 70 12.5 0 2.5 0

Fear 0 0 80 2.5 2.5 8.75

Happy 1.25 0 6.25 97.5 1.25 0

Sadness 7.50 8.75 6.25 0 85 1.25

Surprise 0 1.25 6.25 0 0 90

Confusion Matrix. Tables 4 and 5 show the confusion matrices for our algorithm
on the CK+ and Oulu-CASIA databases, respectively. The abscissa of the table
represents prediction results and the ordinate represents labels. We can see that
in the CK+ and Oulu-CASIA databases, the performance of our model for the
fear is relatively poor, but the performance for happy and surprise is good.

5 Conclusion

In this paper, we try to improve the accuracy of expression recognition by cap-
turing subtle facial movements. We propose CCRAN to extract the continuous,
region-based, spatial appearance expression information and construct TGFDN
to obtain temporal, global-based geographic expression features. After we fused
these two networks, our model achieved better results on two different databases.
In addition, other popular network structure may also explore the relationship
between different areas of the feature map by simply adding the cross-channel
region-wise attention mechanism. Therefore, our method is novel, effective, and
general.
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Abstract. Recent state-of-the-art landmark localization task are domi-
nated by heatmap regression and fully convolutional network. In spite of
its superior performance in face alignment, heatmap regression method
has a few drawbacks in nature, such as do not follow shape constraint
and sensitivity to partial occlusions. In this paper, we proposed a score-
guided face alignment network that simultaneously outputs a heatmap
and corresponding score map for each landmark. Rather than treating
all predicted landmarks equally, a weight is assigned to each landmark
based on the two relational maps. In this way, more reliable landmarks
with strong local information are assigned large weights and the land-
marks with small weights that may stay with occlusions can be inferred
with the help of the reliable landmarks. Meanwhile, an exemplar-based
shape dictionary is designed to take advantage of these landmarks with
high score to infer the landmark with small score. The shape constraint is
implicitly applied in this way. Thus our method demonstrates superior
performance in detecting landmarks with extreme occlusions and im-
proving overall performance. Experiment results on 300 W and COFW
dataset show the effectiveness of the proposed method.

Keywords: Face alignment · Fully convolutional network · Occlusion

1 Introduction

Face alignment [5,25,40], aslo known as facial landmark detection, which aims
to find the locations of a set of predefined facial landmarks (e.g., mouth, eyes,
nose, cheek and so on) in a face image. It is a crucial pre-processing step for
face recognition [16,26,27], expression recognition [3,13], face analysis [21] and
so on. As a well established problem in computer vision, researchers have pro-
posed many methods and made significant progress in face alignment. Recently,
heatmap regression method [4,6,10] has shown superior performance on face
alignment. However, Face alignment under occlusions still remains unsettled.
Especially, when face images suffer from heavy occlusions, the performance of
face alignment drops severely.
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To address face alignment under occlusions, several methods are proposed to
tackle face alignment under partial occlusions. The method of [7] divides face
into a 3× 3 grid and only draw features from the 1/9 of facial region to sever-
al separate regressors. The work in [29] proposes a robust cascaded regression
framework to handle large facial pose and occlusion. The landmark locations
and the landmark visibility probability are updated stage by stage. The method
of [18] treat face alignment as an appearance-shape model problem. They learn
two dictionaries which are relational, one for the appearance of human face and
one for the facial shape. By the two relational dictionaries, the face appear-
ance is employed to infer occlusion and suppress the influence of occluded land-
marks. The work in [33] cascades several Deep Regression networks (DR) and
De- corrupt Auto-encoders (DA) to explicitly handle partial occlusion problem.
In contrast with previous methods that only predict occlusion, the proposed De-
corrupt Auto-encoders can recover the occluded facial appearance. They divide
the facial landmarks to seven components, each specific DA is able to recover the
occluded appearance. Although these methods have shown superior performance
in aligning occluded faces, they have limited scalability and robustness. First is
the lack of large-scale ground truth occlusion annotation for images in the wild.
The task of providing occlusion annotation is often time-consuming, involving a
considerable amount of tedious manual work. Another challenge is in the inher-
ent complex facial appearance. Generally, the performance of appearance-shape
dictionary depends on whether the image patterns reside within the variations
described by the face appearance dictionary. Therefore, it shows limited robust-
ness in unconstrained environment where appearance variations are too wide
and complicated. In addition, recovering the occluded appearance is not with-
out diffculties.

Fig. 1. Papers main idea: Given a face image as input, our network simultaneously
outputs heatmaps and score maps. Due to part occlusions, the occluded landmark
cannot be located precisely. Observe that the score for the occluded parts is much
lower than that of the non-occluded parts in score maps. Based on the two relational
maps, the occluded landmarks can be refined with the help of non-occluded landmark
by exploiting geometric constraints of face shape.
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In this paper, we propose a novel score-guided face alignment network to
deal face with large occlusions. The key innovation of our method is score map
which is able to dynamically select more reliable landmarks and use these reli-
able landmarks to refine the landmarks with small score. See Fig. 1 for a graph-
ical representation of our paper’s main idea. The proposed network outputs
heatmaps and score maps. The occluded part is obvious in score map and has
small score than non-occluded part. Rather than treat all landmarks equally, we
assign a weight to each landmark based on heatmaps and score maps and the
occluded landmark can be refined with the help of the non-occluded landmarks.
More specifically, due to the partial occlusion, the occluded landmark cannot be
located precisely. However, the non-occluded landmark can be located precisely.
Since the non-occluded landmarks have lager weights than occluded landmarks.
An exemplar-based shape dictionary act as shape priors can be utilized to search
most similar shapes to reconstruct the face shapes based on the weights of land-
marks.
The main contributions of our method can be summarized as follows:

1. We propose a novel face alignment network that simultaneously outputs
heatmaps and score maps, which is more robust to occlusions. Note that
no occlusion annotations are used.

2. Rather than treating all landmarks equally, we introduce score map to as-
sign weight to each landmark. In this way, more reliable landmarks with
large weights can help to refine the occluded landmarks with small weights.

2 Related Work

Prior to deep learning, cascade regression [9,17,18,22,23,37] is a popular method
in face alignment, it starts with an initial facial shape and refine the shape
in a cascaded manner. For each regressor, it learns a mapping function from
shape-indexed features to the shape increment. The authors of [31] proposed a
method named Supervised Descnet Method (SDM) to learn cascade regressors
with strong handcrafted features such as SIFT. The work in [23] proposes learn-
ing local binary features by using random forests. Thanks to the sparse binary
features, its speed can achieve 3000 FPS. To reduce the influence of inaccurate
shape initializations, In [37] a coarse to fine search method is proposed. It begins
with a coarse search over a shape pool and employs the coarse solution to finer
search of shapes. The authors of [38] reformulates the popular cascaded regres-
sion scheme into a cascaded compositional learning (CCL) problem. It divides all
training samples into several domains. Each domain-specific cascaded regressor
handle one domain. The final shape is a composition of shape estimations across
multiple predictions. The method of [11] trains multi-view cascaded regression
models using a fuzzy membership weighting strategy, which improving the fault-
tolerant of cascade regression. Although cascade regression has achieved good
performances on the wild databases, inaccurate shape initializations, indepen-
dent regressors and handcrafted features still may be sub-optimal for face align-
ment.
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This conventional cascade regression, however, has been greatly reshaped
by convolutional neural networks (ConvNets). Recent face alignment methods
have universally adopted ConvNets as their main building block, largely replac-
ing hand crafted features. The work in [36] uses multi-stage deep networks to
detect facial landmarks in a coarse to fine manner. The authors of [35] formu-
lates a novel tasks-constrained deep model to jointly optimize landmark detec-
tion together with the recognition of heterogeneous but subtly correlated facial
attributes which improves the performance of landmark detection. The work
in [34] employs Autoencoder netwroks (CFAN) that combined several stacked
auto-encoder networks in a cascaded manner. The authors of [28] proposes a con-
volutional recurrent neural network architecture. The feature extraction stage
is replaced with a convolutional network, the fitting stage is replaced with the
Recurrent Neural NetWork. The work in [30] employs an Attention LSTM (A-
LSTM) and an Refinement LSTM (R-LSTM), which sequentially selects the
attention center by A-LSTM and refines the landmarks around the attention-
center by R-LSTM. The authors of [19] presents a deep regression architecture
with two stage reinitialization to explicitly deal with the initialization problem
by face detection. FAN [6] employs stacked hourglass Network with a state-of-
the-art residual block to solve the 2D&3D Face Alignment problem. The work in
[10] formulate a novel Multi-view Hourglass Model which tries to jointly estimate
both semi-frontal and profile facial landmarks.

3 Methodology

3.1 Network Architecture

Here, we describe our network architecture based on hourglass [20] backbone.
The input is a face image with spatial resolution 128× 128. The network starts
a 7× 7 convolutional layer with stride 2 and padding 3 to process the image
to spatial resolution 64× 64, followed by three residual blocks [14] to increase
feature channels. Then the network is split in two sub-branches. The top sub-
branch is a hourglass network, which is a symmetric top-down and bottom-up
full convolutional network. Then two residual blocks process the feature maps
to 128 channels. After that, nearest neighbor upsampling is used to increase the
spatial resolution to 128× 128, followed by a residual block and a convolutional
layer with 1× 1 kernels to produce heatmaps. The bottom sub-branch has the
same network structure with the top sub-branch. Batch Normalization is used
to before all convolutional layers expect the first convolutional layer with kernels
7× 7. ReLU is the activation function. In summary, the input of network is a face
image with spatial resolution 128× 128. The network output N heatmaps and N
score maps, where N is the number of landmarks. Each landmark corresponds
to a heatmap and a score map (Fig. 2).

3.2 Score Map and Heatmap

Heatmaps are extensive used in landmark localization tasks. The model outputs
N heatmaps where N is the number of landmarks. The pixel with the high- est
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Fig. 2. An illustration of our network architecture.

value is used as the predicted landmark location. Great progress has been made
by heatmaps. However, the landmarks with partial occlusion and complex back-
ground still cannot be precisely located. To deal with occlusions, we introduce
score maps to assign weight to each landmark and suppress the influence of
occlusions. During training, Heatmap for one landmark is created by putting a
Gaussian peak at ground truth location of the landmark. While the score maps
are binary maps, the values within a certain radius around the ground truth
locations are set to 1 and the value for the remaining are set to 0. See Fig. 3
for example outputs produced by our network. The non-occluded face part has
higher score than the occluded-part in score map. Rather than treating all land-
marks equally, we weight each landmark based on their values in score maps.
In this way, more reliable landmarks with strong local information are assigned
high weights. The landmarks with small weights that may stay with occlusions
can be refined with the help of reliable landmarks. Based on the two relational
maps, the process of assigning weight can be written via the equation

wi =

Xi+r∑

k=Xi−r

Yi+r∑

t=Yi−r

scorei(k, t)

(2 ∗ r + 1)2
. (1)

where scorei(k, t) is the value of coordinate (k, t) in i-th score map. Xi and Yi

are the predicted locations of i-th landmark.

3.3 Face Shape Reconstruction

Based on the two relational maps, the weight of each landmark can be deter-
mined. For the non-occluded face images, the heatmaps and score maps assign
high weights to each landmark. The final predicted face shape is the locations
decoded from heatmaps. For the heavy occluded face images, score maps only
can check out these inaccurate landmarks with small weights, these landmarks
still cannot be accurately located. Intuitively, the predicted face shape should
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Fig. 3. Example outputs produced by our proposed network. First row shows land-
mark locations decoded by heatmaps. Second row shows the proposed score maps.
Observe that the occluded landmarks cannot be precisely located in most cases. The
non-occluded parts in score maps have higher score and are clearer than the occluded
parts.

look like a face shape. Human vision has ability to predict good face shape by
exploiting geometric constraints. Motivated by this, these inaccurate landmarks
caused by occlusions can be refined by searching the most similar face shapes
based on non-occluded landmarks, which is feasible and simple.

However, searching from all training samples is time-consuming. There are a
lots of similar face shapes which are redundant. Assuming there are M training
samples in train set. When M is large, searching from all training samples would
be time-consuming. Follow [18], We apply K-SVD [1] on all training shapes to
get N representative face shapes and use these face shapes as a shape dictionary
DS . Searching from DS will be more effective. The searching process is formally
written as

mins1···sk‖WSS − (WSS � WSDS)‖22 (2)

where WS = diag(w1, · · · , wN , w1, · · · , wN ) is the weight matrix and the wi

is the weight of the i-th landmark calculated via Eq. 1. The goal of W is to
force the search process to emphasize on the landmarks with high weights and
ignore the landmark with small weights. s1 · · · sk are the k nearest exemplar
shapes of the non-occluded landmarks. After that, the occlusions landmarks
can be reconstructed by the k nearest exemplar shapes and the reconstruction
coefficients can be computed by least squares method (Fig. 4).

3.4 Training Details

During training, to prevent overfitting, all training samples are augmented by
random in-plane rotation (from −30o to +30o), translation, scale (from 0.9 to
1.2), flip and adding color jittering. The network input is a RGB image of size
128× 128. The network is optimized by RMSProp with an initial learning rate
of 0.0001 and drop to 0.00005 after 20 epochs. All models are trained using
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Fig. 4. Face shape reconstruction by the k nearest exemplar shapes.

PyTorch with a Nvidia 1080-Ti GPU card with a mini-batch size of 10 for 80
epochs. The loss function is defined as

Loss =
1
2

N∑

n=1

K∑

k=1

‖Hk − Ĥk‖22 +
λ

2

N∑

n=1

K∑

k=1

‖Sk − Ŝk‖22 (3)

where N is the number of training samples,Hk and Ĥk are the predicted heatmaps
and the ground-truth heatmaps. Sk and Ŝk are the predicted score map and
ground-truth score map. λ is a hyperparameter to balance the loss functions.
During inference, the predicted landmark locations Ẑk is decoded from the pre-
dicted heatmap Hk by taking the locations with the maximum value as follows,

Ẑk = arg max
p

Hk(p) (4)

4 Experiments

4.1 Datasets

For training, 300-W is the most widely-used in-the-wild dataset for 2D face
alignment. All face images are labeled by 68 landmarks. The training set consists
of AFW [39] dataset, HELEN [15] training set and LFPW [2] training set, there
are 3148 face images in total. For testing, we report the results on LFPW testing
set, Helen testing set and IBUG dataset. To verify the effectiveness of our method
on occluded faces, we evaluate COFW [7,12] testing set. The COFW dataset is
a challenging dataset with severe facial occlusions and large facial pose collected
from web. There are 1345 face images in training set and 507 face images in
testing set. All face images are labeled by 29 landmarks. Since our model is
trained on images with 68 landmarks, Follow [12], we use the COFW with 68
landmarks for testing. Note that we only use COFW testing set for evaluation.
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4.2 Metrics

Given the predicted landmark locations and ground-truth landmark locations,
the Normalized Mean Error (NME) or cumulative error distribution (CED)
curves employed to evaluate the localization performance. The normalization
is normalized by inter-pupil distance and the NME is computed as follows:

error =
1
M

M∑

i=1

1
N

N∑

j=1

‖ppredi,j − pgti,j‖2
‖pi,l − pi,r‖2 (5)

where M is the number of testing images, N is the number of landmarks. pi,l, pi,r
are the locations of left eye center and right eye center in i-th face image. ppredi,j

is the predicted location of landmark location of the j-th landmark in i-th face
image. pgti,j is the ground-truth location of landmark location of the j-th landmark
in i-th face image.

4.3 Evaluation Results on 300W

The 300-W [24] testing set consists of common set and challenging set. The
com- mon set are Helen testing set and LFPW testing set. The challenging set
is the IBUG dataset. Table 1 show the resluts on 300 W dataset. We compare
our method with eleven state-of-the-art face alignment methods with RCPR [7],
CFAN [34], ESR [8], SDM [31], LBF [22], CFSS [37], TCDCN [35], DNN [32],
MD- M [28], RAR [30], TR-DRN [19]. Our method outperform most of these
methods except RAR.

4.4 Evaluation Results on COFW

To verify the effectiveness of our method on various occluded face images, we
test our method on COFW [7,12] dataset. The CED curves are shown in Fig. 5.
It can be seen our baseline still outperform all other methods by a large mar-
gin. That is because our method benefits from heatmap regression and network
architecture. By adding occlusion inference and face reconstruction, the NME
error decreases from 6.29% to 5.78%. The success rate increases from 94.67% to
97.83%. Moreover, we analyse the evaluation on only the visible landmarks, our
method and baseline show similar results on NME error and success rate. It can
be concluded that heatmap regression method achieves excellent performance in
detecting non-occluded face part. While evaluation on all the landmarks, benefit
from score map to assign weight to each landmark and refine the occluded re-
gion by face reconstruction, our method show better results than baseline both
in NME error and success rate.
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Table 1. Landmark detection results on different subsets of the 300-W dataset in terms
of the NME averaged over all the test samples.

Method Common set Challenging set Full set

RCPR 6.18 17.26 8.35

SDM 5.57 15.40 7.52

ESR 5.28 17.00 7.58

CFAN 5.50 16.78 7.69

DeepReg 4.51 13.80 6.31

LBF 4.95 11.98 6.32

CFSS 4.73 9.98 5.76

TCDCN 4.80 8.60 5.54

DDN - - 5.59

MDM 4.83 10.14 5.88

RAR 4.12 8.35 4.94

TR-DRN 4.36 7.56 4.99

SIR 4.29 8.14 5.04

Ours 4.16 7.54 4.78
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Fig. 5. Comparison of different models on the COFW dataset: (a) evaluation on all
the keypoints, (b) evaluation on only the visible keypoints.

5 Conclusion

In this paper, we propose a score-guided face alignment network which is robust
to occlusions. The network simultaneously outputs a heatmap and corresponding
score map for each landmark. Based on the two relational maps, more reliable
landmark are assigned large weights and landmarks with small weights can be
inferred with the help of the reliable landmarks. Experiment results on 300 W
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and COFW dataset show the effectiveness of the proposed method and showed
significant performance improvements over the state-of-the-arts.
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Abstract. Many of the exist face detection algorithms are based on the
generic object detection methods and have achieved desirable results.
However, these methods still struggle in solving the problem of partial
occluded face detection. In this paper, we introduce a simple and effective
face detector which uses a fully convolutional networks (FCN) for face
detection in a single stage. The proposed FCN model is used for pixel-
wise prediction instead of anchor mechanism. In addition, we also apply a
long short term memory (LSTM) architecture to enhance the contextual
infomation of feature maps, making the model more robust to occlu-
sion. Besides, we use a light-weighted neural network PVANet as the
backbone, which greatly reduces the computational burden. Experimen-
tal results show that the proposed method achieves competitive results
with state-of-the-art face detectors on the common face detection bench-
marks, including the FDDB, WIDER FACE and MAFA datasets, what’s
more, it is much more robust to the detection of occluded faces.

Keywords: Face detection · FCN · LSTM · Occlusion

1 Introduction

Face detection has always been a research hotspot as it is a crucial step of many
facial applications, such as face alignment, face recognition, etc. Since the pio-
neering work of Viola-Jones face detector [1], a lot of face detection methods have
been proposed. The hand-crafted features [2,3] usually rely on prior knowledge
leading to poor performance in complex scenes, especially faces with occlusion.

In recent years, convolutional neural networks (CNNs) have great success
in the field of computer vision, including image classification [4,5] and object
detection [6–9], etc. The Object detection algorithms such as fast [6]/faster [7]
R-CNN, SSD [9], YOLO [8] continue to make new breakthroughs in both speed
and precision. Face detection is a special case of object detection. Many face
detection approaches are based on object detection methods [10–13] and achieve
promising results. However, these anchor-based methods are badly rely on the
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Fig. 1. Our face detector is robust to heavy occlusion and large appearance.

number of matching proposals. If the faces are partial occluded, it’s very likely
that the models would miss the proposals of occluded faces or be confused by
the features of occluded faces. The cascaded network [17,18] is another type
of CNNs-based face detection approach. Several small CNNs are cascaded to
detect faces in a coarse-to-fine manner. In spite of very fast speed, these shallow
networks failed to represent robust image features to handle faces with occlusion.

Inspired by [20], we consider face detection problem as the combination of
binary classification and bounding box regression. In this paper, we propose
a fast and efficient face detector that only need two steps for face detection.
First, a FCN is used to do the pixel-wise classification and bounding box regres-
sion. Then, the produced face predictions are sent to Non-Maximum Suppression
(NMS) to yield final results. By making such dense predictions, the model has
strong robustness to faces with occlusion. In addition, considering the highly-
correlated of adjacent regions of the feature map, we use an in-network recurrent
architecture to encode rich context information of the feature map. Even if the
face is partial occluded, the model can make the correct predictions from the
non-occluded part. An example of our detection results can be found in Fig. 1.

The main contribution of this paper can be summarized as:

– We propose a novel FCN-based face detection method that directly make
dense predictions in feature maps. The proposed method is fast, accurate
and quite simple, which only consist of two step: a forward propagation of
the FCN and a NMS merging.

– We use a recurrent architecture to connect the context information of the fea-
ture maps, improving the model’s capacity of detecting faces with occlusion.
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– The proposed method achieves competitive results in FDDB, WDIER Face
datasets, and outperforms state-of-the-art methods in occluded faces datasets
like MAFA.

2 Related Work

Before the revolution of deep learning, Face detection has been widely studied.
Numerous face detector are based on traditional machine learning methods. The
pioneering work of Viola-Jones [1] utilizes Adaboost with Haar-like feature to
train a cascade model to detect face and get real-time performance. Since then
the studies of face detection focus on designing more efficient features [22,23]
and more powerful classifiers [26,27]. Deformable pattern models (DPM) [25] are
employed for face detection task and achieve promising results. Liao et al. [24]
proposed normalized pixel difference (NPD) features and constructed a deep
quadratic tree to handle unconstrained face detection. However, these hand-
crafted features always require prior assumptions which would be untenable in
complex scenarios, leading to low precision in the challenging face datasets, such
as WIDER Face and MAFA.

In recent years, the CNN-based face detectors achieved remarkable perfor-
mance. Li et al. [17] use cascaded CNNs for face detection. Zhang et al. [18]
propose Multi-task cascaded CNNs (MTCNN) to detect face and align face,
simultaneously. Qin et al. [19] integrate the training of cascaded CNNs into a
framework for end-to-end training, which greatly improves the performance of
cascaded networks. Faceness [28] generates face parts responses from attribute-
aware networks to detect faces under occlusion and unconstrained pose variation.
However, this method needs to label facial attributes of different facial parts and
generate face proposals according to facial part response maps, which is compli-
cated and time consuming.

There are also a variety of face detection methods that inherit the achieve-
ments from generic object detection methods. Face R-CNN [12] is based on Faster
R-CNN and adopts center loss [29] to minimize the intra-class distances of the
deep features. It also utilizes some training tricks such as online hard example
mining and multi-scale training. CMS-RCNN [10] uses contextual information for
face detection. DeepIR [13] concatenate features of multiple layers to improve
face detection performance. Hu et al. [16] build image pyramids and defines
multiple templates to find tiny faces. SSH [14] establishes detection modules on
different feature maps to detect face in a single stage. SFD [15] focuses on scale-
invariance by using a new anchor matching strategy. Zhu et al. [30] analyze the
anchor matching mechanism with the proposed expected max overlap (EMO)
score and introduce new designed anchors to find more tiny faces. All these
anchor-based methods have obtained promising results. However, we know that
the scale of faces is continuous. The anchor mechanism makes the scale discrete,
which may lead to the low matching rate of hard samples, especially occluded
faces. A naive way to increase the number of matching anchors is to increase the
total number of anchors. But this will result in heavily computational burden.
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DenseBox [20] is another kind of object detection method. Different from
the above anchor-based methods, DenseBox utilizes a FCN to perform pixel-
wise predictions. By doing the upsampling operation to keep a high-resolution
output, it has great advantages in handling the detection of small objects. The
approach of dense prediction can also improve the robustness of detecting heavy
occluded objects. UnitBox [21] further presents a new intersection-over-union
(IoU) loss for bounding box prediction. Yet there are some drawbacks of Unit-
Box. On one hand, an up-sample layer is used to perform linear interpolation
to resize the feature map to the original image size. Although it can detects
smaller faces, the computational cost is unacceptable. On the other hand, the
feature maps are upsampled 16 times for pixel-wise classification, which may
bring artifacts. In this paper, we propose a novel face detector that utilizes a
FCN framework to do the dense prediction on the feature maps whose size is
just 1/4 of the original image size. The FCN architecture consists of a bottom-up
path and a top-down path similar to [20,31]. Inspired by [32], we further employ
an in-network recurrence mechanism to explore meaningful information of the
convolutional feature maps and improve the robustness of detecting faces with
occlusion, leading to state-of-the-art detection performance.

3 Proposed Method

The proposed face detector is trained to directly predict the existence of faces
and their locations from full images instead of dividing the detection task into
bounding box proposal and classification. A fully convolutional neural network
is used to do the pixel-wise dense prediction of faces. The post-processing of our
method is quit simple, which only contains thresholding and NMS.

3.1 Base Framework

As we know from [33] that feature maps of different layer represent different
semantic information. The shallow layers have high spatial resolution responding
to corners and edge/color conjunctions, which is good for spatial localization.
The deep layers have lower spatial resolution but more class-specific which is
good for classification. Inspired by recent works [20,31,34], we adopt a neural
network that contains a top-down architecture with lateral connection to fuse
features from different layers.

Our network architecture is shown in Fig. 2. We use PVANet [35] as the back-
bone. The bottom-up pathway is the feed-forward computation of the backbone
ConvNet generating four levels of feature maps, whose sizes are 1/4, 1/8, 1/16
and 1/32 of the original image, respectively. We define that layers producing the
output maps of the same size are in the same network stage. Since the deeper
layer should have stronger features, the last layer of each stage is chosen to con-
nect with deeper layer with the same output size. It is very difficult to detect
tiny object by low resolution features. The top-down pathway increases the res-
olution by upsampling operations while keeps the semantic information. Each
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upsample operation is at a scaling step of 2. The top-down pathway features are
enhanced by features from the bottom-top pathway via lateral connections. By
doing such lateral connections, the network can maintain both geometrical and
semantic information. As shown in Fig. 2, we use a 1 × 1 conv layer to prepro-
cess the lateral features and merge different features by concat layer. Then a
1 × 1 conv layer and a 3 × 3 conv layer are used to further cut down half of the
number of channels and produce the output of this merging stage, respectively.
The size of the final feature maps is only 1/4 of the original image, making the
network computation-efficient. The network is then split into two branches, one
for classification and the other one for bounding box regression.

Fig. 2. An overview of our network architecture

3.2 In-Network Recurrence Architecture

Recurrent neural network (RNN) is often applied in scenarios with sequences
of inputs such as video, audio, text lines to encode the contextual information.
Recent work [32] has shown that the sequential context information is good for
text detection. Motivated from this work, we believe that RNN may also benefit
for face detection, especially detecting faces with occlusion. We note that features
of the face area are highly-correlated, so we can use this correlation via recurrent
structure to make correct predictions of the occluded part of face. Besides, the
regression task predicts a 4-D distance vector (the distances between the current
pixel and the four bounds of the ground truth box), and there is also a strong
correlation among the distance vectors of adjacent pixels. RNN can encode these
contextual information recurrently using its hidden layers. Formally, The internal
state of RNN at t moment is given by

Ht = ϕ(Ht−1,Xt) (1)

where Xt ∈ R3×3×C is the input sequential features from t-th sliding-window
(3×3) as shown in Fig. 2. The sliding window slides from left to right at a stride
of 1, generating t = 1, 2, ...W sequential inputs for each row. W is the width
of the input feature map. In this paper, we adopt the bi-directional long short-
term memory (Bi-LSTM) architecture for the RNN layer just as [32] do. The
Bi-LSTM allows the model to encode the contextual features in both directions.
The outputs of the two inverse LSTMs is then merged by a concat layer, followed
by a 1 × 1 conv layer to cut down the number of channels.
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3.3 Label Generation

We consider the face area is a rectangle. The classification task is to predict a
binary score map ∈ {0, 1} which indicates the negative area and positive area.
The positive area of the rectangle on the score map is designed to be roughly a
shrunk version of the original rectangle. For each edge, we shrink it by moving
its two endpoints inward along by 0.2 of its length, illustrated in Fig. 3(a). The
regression task is to predict a 4 channels of distance map as shown in Fig. 3(d).
The ground truth distance map is generated by calculating a 4-D distance vector
for each pixel with a value of 1 on the score map, illustrated in Fig. 3(c).

Fig. 3. Label generation. (a) Face bounding box (green dashed) and the shrunk rect-
angle (green solid); (b) score map; (c) pixel-wise distances generation; (d) 4 channels
of distances of each pixel to rectangle boundaries. (Color figure online)

4 Training

In this section, we introduce our training details, including loss function, training
dataset, data augmentation and other implementation details.

4.1 Loss Functions

Considering that there is a class imbalance problem, we restrict the number of
positive pixels and negative pixels during training, making them numerically
equal. This can be done by hard examples mining. We simply use softmax loss
for the classification. The regression task is optimized by IoU loss, more details
can be found in [21]. These two tasks are joint optimized equally. The multi-task
loss is formulated as

L = Lcls + LIoU (2)

We empirical note that model optimized by Eq. 2 has a problem in locating
tiny faces, leading to lots of false positives. We solve this problem by employing
a focal loss to focus training on locating tiny face. The new loss function can be
rewritten as

L = Lcls + αS−γLIoU (3)

where S is the face area, α and γ are two constant. In our experiments, we
empirically set α = 4,γ = 0.5.
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4.2 Training Dataset and Data Augmentation

We use the WIDER FACE training set which contrains 12,880 images to train
our model. In order to get better results, we also apply the following data aug-
mentation techniques: (1) Scale modification. Each image is random scaling
in a range between [0.6, 2] via bilinear interpolation. (2) Random crop. We
randomly crop a square patch from the image. And the size of the image patch
is 640×640. For images with shorter side less than 640 pixels, we firstly pad the
images with 0, making their shorter side greater than 640. (3) Horizontal flip.
After random crop, we obtain 640 × 640 image patch, and then we horizontally
flip it with probability of 0.5.

4.3 Other Implementation Details

Online hard examples mining is employed to boost the performance of the model.
For the parameter initialization, the parameters of the backbone are initialized
from the corresponding pre-trained models. We use PVANet as the backbone
in our experiments. Other additional layers are randomly initialized with the
“xavier” method. All models are trained by SGD with a single GPU. The mini-
batch sizes of models are 6, because of the GPU memory limitation. Weight decay
is 1e–5 and momentum is 0.9. Our networks are trained for 500 K iterations. The
initial learning rate is 0.001 and drops by a factor of 5 after 200 K iterations.
During inference, the score threshold is set to 0.01 and NMS with a threshold of
0.3 is performed on the predicted bounding boxes.

5 Experiments

5.1 Evaluation on Benchmark

We compare the proposed method with existing methods on two common face
detection benchmarks: FDDB, WIDER FACE.

FDDB. It contains 2845 images with 5171 annotated faces. The Evaluation cri-
teria include discrete score and continuous score. We compare our face detector
against the state-of-the-art methods. Figure 4 shows the results. Our Face detec-
tor achieves competitive results with SFD [15] and outperforms other methods,
indicating that our method can robustly detect unconstrained faces.

WIDER FACE. It contains 32203 images with a total of 393703 annotated
faces with different scales, poses and occlusions. The data set is divided into
training (40%), testing (50%) and validation (10%) set. Faces in the testing and
validation set are split into three kinds of difficulty (easy, medium and hard).
It is one of the most challenging face data sets. Our face detector is trained on
WIDER FACE training set and tested on both validation and test set. We set
the long side of the test image to 800, 1120, 1400, 1760 and 1920 for multi-scale
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(a) Discrete score (b) Continuous score

Fig. 4. Evaluation on FDDB

testing. Figure 5 illustrates the precision-recall curves along with AP scores. Our
face detector outperforms other recent published methods including Zhu et al.
[30], SFD [15], SSH [14] on the validation set and achieves competitive results
with Zhu et al.’s [30], which demonstrate that the proposed method has a strong
capacity in detecting small and hard faces.
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Fig. 5. Precision-recall curves on WIDER FACE validation and test sets.

5.2 Robustness to Occlusion

We further explore the ability of our detector in detecting occluded faces. To
demonstrate the effectiveness of LSTM, we carry out comparative experiments
with Two models: PVA, PVA+LSTM, where PVA uses PVANet [35] as the
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backbone without Bi-LSTM architecture. Two occluded face data sets are used
for this purpose, i.e. WIDER FACE validation set with artificial occlusion and
MAFA with real occlusion. We also compare our method with other algorithms
that release their trained models and testing codes such as MTCNN [18], SFD
[15], SSH [14].

Faces with Artificial Occlusion. In this experiment, We generate a new
occluded face data set by blacking a rectangle area on every faces of the WIDER
FACE validation set. The rectangle black is randomly distributed in the left,
right and bottom side of the face, accounting for 40% area of the face annotated
box. Examples of occluded images are shown in Fig. 6. Table 1 shows the results
of different methods. It’s clear that our two models outperform other methods.
We note that adding LSTM or not makes little difference. The main reason
is that the WIDER Face contain lots of tiny face, the role of encoding the
context information of the RNN structure is weakened after adding the artificial
occlusion.

Fig. 6. Examples of WIDER FACE validation set with Occlusion

Table 1. Comparison of different models on the WDIER FACE validation set with
artificial occlusion.

Methods AP (easy) AP (medium) AP (hard)

MTCNN [18] 0.565 0.526 0.361

SSH [14] 0.801 0.768 0.625

SFD [15] 0.835 0.798 0.621

PVA 0.881 0.850 0.723

PVA+LSTM 0.881 0.851 0.720

Faces with Real Occlusion. MAFA data set contains 30,811 image with
35,806 faces collected from the Internet. Most of the faces are occluded by mask.
We only use the testing set which contains 4,935 images to evaluate our face
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detector. The long side of all testing images is set to 1280. Table 2 shows the
results of different methods. Our base models without LSTM have already out-
perform other methods. And the LSTM structure further improves the robust-
ness of our face detectors in detecting faces with real occlusion.

Table 2. Comparison of different models on the MAFA data set.

Methods MTCNN [18] SSH [14] SFD [15] LLE-CNNs [36] PVA PVA+LSTM

AP 0.570 0.643 0.724 0.764 0.768 0.781

5.3 Inference Time

Although our method achieves great performance, its speed is not compromised.
We employ PVANet, a light-weighted neural network, as the backbone, which
greatly reduces the computational burden. We measure the speed using a GTX
1080Ti GPU and Intel Xeon E5-2620 v4@2.1 GHz CPU. Table 3 shows the infer-
ence time and AP with respect to different input sizes of our face detector. The
max size stands for the long side of the input image while keeping the aspect
ratio.

Table 3. The inference time and AP with respect to different input sizes

Max size 800 1120 1440 1760 1920

AP (hard) 0.723 0.829 0.863 0.873 0.872

Time (ms) 60.7 83.9 124.9 172.9 195.0

6 Conclusions

In this paper, we propose a novel FCN-based face detector which is simple and
efficient. Unlike other anchor-based methods, our face detector performs dense
prediction on a single feature map, which is inherent robust in detecting occluded
faces. By using the in-network RNN structure, our face detector is superior to
handle the detection of occluded faces. Besides, the size of the final feature map
is only 1/4 of the original image, reducing the computational cost while achiev-
ing remarkable results in detecting small faces. The experiments demonstrate
that the proposed method achieves the state-of-the-art performance on the chal-
lenging face detection benchmarks, especially for small faces and occluded faces.
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Abstract. In this paper, we propose a novel robust face recognition
framework named nuclear norm based superposed collaborative represen-
tation classifier (NNSCRC) to handle illumination variations, occlusion
and undersampled problems in face recognition. Specifically, we develop
a superposed linear collaborative representation classifier for robust face
recognition by representing the query image in terms of a superposi-
tion of the class centroid, the shared intra-class difference, and the low
rank error. By representing a face image as the class centroid and the
shared intra-class difference, our model can effectively enhance the face
recognition performance on undersampled databases. In addition, since
the occlusion and illumination variations generally lead to a low-rank
error image, we use nuclear norm matrix regression to obtain these low-
rank errors, which makes our model able to reconstruct the test image
better. Extensive experiments are performed on Extended Yale-B and
AR databases, which show the effectiveness of NNSCRC in robust face
recognition.
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1 Introduction

Face recognition (FR) has received extensive research during last thirty years
and numerous FR methods have been developed [7,8,13,15,17,24]. Classical FR
algorithms including principal component analysis (PCA) [19], linear discrimi-
nant analysis (LDA) [3] and laplacianface [10] try to employ subspace learning
method to represent the intrinsic characteristics of faces. At the same time, many
types of image features like scale-invariant feature transform (SIFT) [16], local
binary pattern (LBP) [1], speeded-up robust features (SURF) [2] and histogram
of oriented gradient (HOG) [21] have been introduced into FR algorithms, while
the final recognition result can be easily obtained based on these feature rep-
resentations. However, these feature descriptors are hand-crafted and always
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require many prior knowledge, which limits the improvement of recognition per-
formance.

Regression analysis based methods have also aroused broad interests in face
recognition community. For example, Naseem et al. proposed a linear regression
classification (LRC) [15] by reconstructing a query image as the linear combi-
nation of dictionary faces. Wright et al. proposed a sparse representation based
classification algorithm (SRC) [22] for robust face recognition using a sparse
constraint. By representing a face image with a sparse linear combination of the
dictionary faces, SRC believed that the query image will be reconstructed by the
training samples in the same class. However, when the number of training sam-
ples is limited, sparsity between classes may lead to misleading solutions. Zhang
et al. [25] analyzed the principle of SRC and believed that collaborative represen-
tation is more effective than sparsity constraint. Based on ridge regression, they
introduced a collaboration representation classifier (CRC) which lead to better
FR accuracy and lower complexity than SRC. After that, many improved ver-
sions of CRC algorithm have been proposed to further improve the performance
of FR. For example, Wang et al. [20] used a relaxed collaborative representation
(RCR) by considering locality constraints. Huang et al. [11] introduced group
sparse classifier (GSC) which tries to incorporate the class labels to boost FR
performance. IRGSC [26] further introduced group sparse classifier with adaptive
weights learning, and had achieved good performance in robust face recognition.

Recently, Yang et al. [23] proposed nuclear norm based matrix regression
(NMR) classification framework for occlusion face recognition and had achieved
good recognition performance. However, NMR relies heavily on the complete-
ness of database. When the number of training samples is limited, NMR suffers
from misleading coding coefficients of incorrect classes. More recently, super-
posed linear representation based classification (SLRC) [9] model was proposed
to further improve the robustness of CRC. SLRC decomposed the training sam-
ple of CRC into prototype and variation parts, and proposed a superposed linear
representation that encodes the test sample as a superposition of the prototype
and variation dictionaries. In SLRC, the author simply assumed that the test
image can be reconstructed by class-central of corresponding class and the shared
intra-class differences. However, when there are unknow illumination variations
or occlusion in the test image, the SLRC model will not work effectively since it
cannot reconstruct the image properly.

In order to address the limitations of NMR and SLRC, we propose a novel
model called nuclear norm based superposed collaborative representation clas-
sifier (NNSCRC). In our model, a query image can be decomposed as a class
centroid, a shared sample-to-centroid difference and a low rank error image. The
main contributions of this paper are outlined as follows:

– We propose a new framework named nuclear norm based superposed col-
laborative representation classifier for robust face recognition where a test
face image can be reconstructed as a superposed of class centroid, intra-class
difference and low rank error. The new model can address the misleading cod-
ing coefficients of incorrect classes when the dataset is undersampled, since
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it has decomposed the image as a class centroid and sample-to-centroid dif-
ference. Alternating direction method of multipliers (ADMM) algorithm has
been used to obtain the optimal solution of proposed model.

– By introducing a nuclear norm constraint, the low-rank part, generally the
occlusion or illumination variations in the image, will be separated out from
the dictionary reconstruction. Thus, the NNSCRC model is robust to occlu-
sion or illumination variations.

– NNSCRC model is robust to single sample per person (SSPP) face recognition
problem. Specifically, when there is only one train image available in each
class, we can borrow the intra-class variations from the subjects outside the
gallery since these variations are usually similar across different subjects.
The variations between query image and gallery images can be represented
by these intra-class variations properly, which will improve the performance
of SSPP face recognition.

– Experimental results on Extended Yale-B and AR databases show the pro-
posed NNSCRC model achieves better performance than state-of-the-art
regression based methods for illumination variations, occlusion and under-
sampled face recognition.

The remainder of this paper is organized as follows: Sect. 2 reviews the related
works. Section 3 introduces the proposed nuclear norm based superposed collab-
orative representation classifier (NNSCRC). In Sect. 4, we conduct experiments
on two popular face databases and compare our model with the state-of-the-art
regression based methods. Finally, Sect. 5 concludes this paper.

2 Related Works

In this section, we briefly review the regression based methods and introduce
SLRC method in detail, which is related to our model.

Regression based methods have long been a research hotspot in face recog-
nition community. Started by SRC, which represents a query image as a sparse
reconstruction of dictionary images, many regression based approaches like CRC
have been proposed in succession and have achieved good performance in face
recognition task. Collaborative representation based methods believe that l2-
norm constraint is more important than l1-norm constraint in classifier. They
use training samples to reconstruct the test sample and believe the training sam-
ples in the same class will become the major components in the reconstruction
process. Although these regression based methods have achieved good perfor-
mance on general face recognition, their generalization ability to illumination
variations, occlusion and undersampled face recognition problems is still weak.

Recently, superposed linear representation based classification (SLRC) [9] is
proposed to decompose the collaborative dictionary in a manner similar to the
decomposed representation in LDA. Specifically, given a sample x from one of
the classes in the training set, SLRC assume it can be naturally reconstructed
by two parts:

x = c(x) + (x − c(x)) (1)
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where c(x) is the centroid of corresponding class, and x − c(x) is the intra-class
difference from the sample to its class centroid. SLRC has achieved promise
performance when the test images have similar attributes to the training images.
However, when there are unknow variations in the test image such as illumination
changes or occlusion, the SLRC model will not work properly since it cannot
reconstruct these variations in test image.

Considering these limitations, we propose a novel framework to incorporate
the nuclear norm constraint into superposed linear representation based classifi-
cation, which not only makes use of the general variation information of training
samples, but also improves the robustness to unknow illumination changes and
occlusions. The proposed model will be introduced in detail in the next section.

3 Nuclear Norm Based Superposed Collaborative
Representation Classifier (NNSCRC)

Although CRC methods have received great success in face recognition, it still
suffers from undersampled and occlusion problems. Firstly, when the training
images are insufficient or unrepresentative, the test sample has to be recon-
structed by the samples of other classes, which usually generates misleading
coding coefficients. Secondly, when there are illumination changes or occlusion in
the test images, the reconstructed error will be dominated by these noise, which
will also lead to erroneous results. In order to overcome these difficulties, we pro-
pose a novel robust face recognition framework called nuclear norm based super-
posed collaborative representation classifier (NNSCRC). We will introduce our
NNSCRC model in detail and provide the optimization algorithm of NNSCRC
in this section.

3.1 NNSCRC Model

Inspired by NMR [23] and SLRC [9], we represent a test image as a superposition
of three parts, i.e., the class centres, the shared intra-class differences, and the

Fig. 1. In the proposed NNSCRC model, we try to reconstruct a test image as a linear
superposition of the class centroid, the shared intra-class differences, and the low-rank
error. (a) the original test image (b) the class centroid image (c) the shared intra-class
differences image (shown in absolute value) (d) the low-rank error image (shown in
absolute value)
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low-rank error, as shown in Fig. 1. Specifically, given a test image Y, we assume
it can be reconstructed by the mentioned three parts, which can be formulated
as:

Y = P(α) + V(β) + B. (2)

where P(α) = α1P1 + α2P2 + ... + αnPn, V(β) = β1V1 + β2V2 + ... + βnVn,
and Pi is the central of class i, Vi is the variation dictionary of class i. αi, βi

are the corresponding reconstruction coefficients of class i. B is the low rank
error image. To obtain the optimal reconstruction coefficients α̂ and β̂, we can
naturally construct the objective function as:

[
α̂

β̂

]
= arg min ‖y − [P ,V ]

[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22 + λ2‖B‖∗, (3)

where P ∈ R
d×k is the prototype dictionary and V ∈ R

d×n is the variation
dictionary, d is the dimension of face image, k represents the class number and n
is the number of training images. ‖B‖∗ represents the nuclear norm of low rank
error B, and b is the vectorization of matrix B. α,β are the coefficient vectors
to be determined. λ1, λ2 are the penalty parameters. The prototype dictionary
P consists of centroid from all classes, and the variation dictionary V consists
of intra-class difference from the sample to its class centroid. The construction
of dictionaries P and V is similar to [9]. For most collaborative representation
based methods, undersampled training images usually lead to misleading coding
coefficients. The main reason is that when the training images is insufficient,
the difference between test image and corresponding prototype class need to
be make up by images from other class, which make the major components
of reconstruction might be found in the error class. By integrating superposed
linear representation classifier with nuclear norm, our model can address the
problem of misleading coefficients and enhance the robustness to illumination
changes and occlusion. The reasons are listed as follows:

Firstly, we introduce a superposed linear representation into our model, which
constructs a prototype dictionary P and a variation dictionary V . When the
dataset is undersampled, the shared variation dictionary V will make up the
difference between the test image and the corresponding prototype class. The
major components of reconstructed test image will be the class centroid of corre-
sponding class, the intra-class variations from all classes, and the low rank error,
which makes our model can handle the misleading coefficients problem.

Secondly, since occlusion and illumination changes generally lead to a low-
rank error image, we apply a nuclear norm constrained matrix to characterize this
structured noise (see Fig. 1(d)). When there are unknow occlusion or illumination
changes in the test image, the nuclear norm constrained error term will represents
this kind of noise properly, which makes the NNSCRC model can work effectively.

3.2 Algorithm of NNSCRC

We provide the theoretical solution of NNSCRC in this section. Since Eq. (3) is
not always a convex function, we cannot solve it with traditional methods like
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augmented Lagrange Multipliers (ALM). Notice that it satisfies the condition
of Alternating Direction Method of Multipliers (ADMM) [4], which will been
proved in Sect. 3.3, we use ADMM algorithm to solve the optimization problem.
Specifically, we first introduce a matrix variable C and rewrite Eq. (3), which
form the object function as:

J(α,β,B,C) = min
α ,β ,B ,C

‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22

+ λ2‖C‖∗, s.t. C − B = 0.

(4)

Denote

f(α,β,B) = ‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22. (5)

Then the Lagrange form of J(α,β,B,C) is

Lρ(α,β,B,C) = f(α,β,B) + λ2‖C‖∗ + tr(ZT (C − B)) +
ρ

2
‖C − B‖2F

= f(α,β,B) + λ2‖C‖∗ +
ρ

2
‖C − B +

1
ρ
Z‖2F − 1

2ρ
‖Z‖2F .

(6)

where ρ > 0 is the Lagrangian multiplier, and Z is the dual variable. The obtain
of the optimal solution contains the following three iterative processes.

Fix Z,α,β,B to Solve C. At k-th iterative, when Z,α,β,B is fixed, Eq. (6)
can be rewritten as

J1(C) = arg min
C

λ2‖C‖∗ +
ρ

2
‖C − Bk +

1
ρ
Zk‖2F . (7)

Let Q = Bk − 1
ρZk ∈ R

m1×m2 , where rank(Q) = r. We apply singular value
decomposition to Q as:

Q = Um1×rΣV T
m2×r, (8)

where Σ = diag(σ1, σ2, ..., σr) and σ1, σ2, ..., σr are positive singular values.
Um1×r and Vm2×r are corresponding matrices with orthogonal columns. Accord-
ing to [5], the iterative solution of Ck+1 can be expressed as

Ck+1 = Um1×r({max(0, σj − λ2

ρ
)}1≤j≤r)V T

m2×r. (9)

Fix Z,C to Solve α,β and B. At k-th iterative, when Z,C is fixed, Eq. (6)
can be rewritten as

J2(α,β,B) = min
α ,β ,B

f(α,β,B) +
ρ

2
‖Ck+1 − B +

1
ρ
Zk‖2F

= min
α ,β ,B

‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22

+
ρ

2
‖Ck+1 − B +

1
ρ
Zk‖2F .

(10)
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Define Hk = Ck+1 + 1
ρZk ∈ R

m1×m2 , hk = V ec{H} ∈ R
m1m2×1, the optimal

solution can be obtained by setting the derivative of J2(α,β, b) with respect to
α, β, and b to zero respectively. Therefore, we have the optimal solution of α, β
and B at k-th iterative as

αk+1 = (P T P + 2λ1I)−1P T (y − bk+1 − V βk), (11)

βk+1 = (V T V + 2λ1I)−1V T (y − bk+1 − Pαk+1), (12)

bk+1 =
1

2 + ρ
(2y − 2Pα − 2V β + ρhk). (13)

Fix α,β,C and B to Solve Z. According to [4], the optimal solution of Z at
iteration k can be directly obtained by

Zk+1 = Zk + ρ(Ck+1 − Bk+1). (14)

With the iteration optimal solution in Sect. 3.2, we can finally obtain the optimal
solution of J(α,β,B,C) by alternate iteration. Finally, the optimal reconstruc-
tion coefficients are:

α̂ = αk+1, β̂ = βk+1. (15)

3.3 Classification Strategy of NNSCRC

Given test image Y , we need to decide which class it belongs to for face recog-
nition task. By using NNSCRC algorithm, we can obtain the reconstruction
coefficients α̂ and β̂. We use the reconstruction residual in each class as the
criterion for classification. Specifically, the residual of test image Y is

ri(Y ) = ‖Y − [P ,V ]
[
δi(α̂)

β̂

]
− B‖2, i = 1, ..., k. (16)

Where δi(α̂) ∈ R
n is a new vector whose only nonzero entries are the entries in

α̂ that are associated with class i. Note that when we calculate the residual, we
use intra-class variation matrix of all classes to reconstruct the test image Y ,
because these intra-class variation are often shareable across different subjects.
This is also one of the reason that our model is suitable for SSPP task. From
Eq. (16), we can find that the normal variations and error image are separated
out from the original query image, which can remove the influence of illumination
changes and occlusions. Based on the reconstruction residual, we can decide the
class label by

class(Y ) = arg min
i

ri(Y ). (17)

4 Experiments

In this section, we perform extensive experiments on two publicly available face
datasets to demonstrate the effectiveness of NNSCRC. Section 4.1 first gives the
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experimental settings of our experiments. In Sect. 4.2, we evaluate NNSCRC for
FR with different training sizes under controlled conditions. Section 4.3 verifies
the robustness of NNSCRC to illumination changes and occlusion face recogni-
tion. Section 4.4 compares our method with existing methods for face recognition
task under real face disguise. Finally, in Sect. 4.5, face recognition experiment
with single sample per person has been performed.

4.1 Experimental Settings

We apply Aleix Martinez and Robert Benavente (AR) dataset [14] and the
Extended Yale B (ExYaleB) dataset [12] to test the effectiveness and robustness
of proposed model. The AR dataset contains over 4000 images of 126 individ-
uals (70 men and 56 women). The faces in AR dataset contain variations such
as lighting conditions, expressions and occlusions. Some examples of face images
in AR database are shown in Fig. 2. For this dataset, we randomly seclect 100
subjects (50 men and 50 women) for our experiments. The Extended Yale B face
dataset contains 38 human subjects under 9 poses and 64 illumination condi-
tions. The 64 samples of each subject are acquired in a particular pose, which
are all frontal view facial images. Figure 3 shows some facial images in ExYaleB
database. All face images marked with P00 are used in our experiments.

Fig. 2. Facial image samples in AR database

Fig. 3. Facial image samples in the Extended Yale B face database

The proposed model is compared to state-of-the-art regression based rep-
resentation methods including NMR [23], WGSC [18], RCRC [6], RSRC [22],
and IRGSC [26]. For NNSCRC, the Lagrangian multiplier ρ is set to 1, and the
parameter λ1, λ2 are both traversed in {0.01, 0.05, 0.1, 0.5, 1, 5, 10} to obtain
best result. For all the comparative methods, the related parameters are set to
the values suggested by the authors.
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4.2 Face Recognition with Different Sample Sizes

We first validate the performance of NNSCRC without occlusion on ExYaleB
database. In order to explore the effect of sample size on experimental results,
we randomly split the dataset into two parts. One part is used as the dictionary,
which contains n(=10, 20, 30, 40, 50) images for each person, and the other
part is used for testing. The results are shown in Fig. 4, which compares our
method with the state-of-the-art method, IRGSC. Two most classical regression
based face recognition methods including CRC and SRC have also been used for
comparison.

Fig. 4. Face recognition with different sample sizes on ExYaleB database

From Fig. 4, we can find that the performances of all methods improved when
the sample size increases. Though the test faces suffers from illumination prob-
lems, for all groups of sample size, our NNSCRC model outperforms SRC and
CRC for over five percentage, which shows our model is more robust to illu-
mination variations compared to original collaborative representation methods.
IRGSC achieves higher accuracy than SRC and CRC because it use the recon-
struction residuals to obtain the feature weights, which can reduce the influence
of the pixel errors. However, there are still some variations between train images
and test images which will influence the reconstruction and classification, and
these variations cannot easily removed by the adaptive weights in IRGSC. In
comparison, our model still achieves higher accuracy than IRGSC for all groups
of sample sizes. The main reason is that our model can reconstruct the varia-
tions by using the variation dictionary which is constructed by all classes. The
nuclear norm constraint can also handle the illumination variations problem,
which make NNSCRC achieve better performance compared to IRGSC.
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4.3 Face Recognition with Occlusion

To validate the robustness of proposed NNSCRC model to occlusion, we conduct
two types of experiments on ExYaleB dataset, including random block occlusion
experiment and random face occlusion experiment.

Random Block Occlusion. We select 20 samples per subject in ExYaleB
dataset for training, and 20 for testing. Similar to the work in IRGSC, for each
test image, we randomly select a location in the image and replace 10–60%
pixels using a black block. Figure 5 shows the examples of different percentage
of occlusions. The recognition rates of different methods are shown in Table 1.
From Table 1, we can see that for all group of block occlusion, our method achieve
the best performance compared with state-of-the-art regression based methods.
Note that for 60% occlusion, our method still achieves 80.3% recognition rate,
which is 7.7% higher than IRGSC. NMR has worse performance compared to
IRGSC because it simply ignores the general variations, which will also influence
the reconstruction error. By considering the general variations and the low-lank
error, the proposed model can achieve better performance than other methods.

Fig. 5. Samples with different percentage of pixel corruption (0%–60%)

Table 1. Recognition accuracy of different methods versus different percentage of block
occlusion

Occlusion (%) 10 20 30 40 50 60

RSRC 98.6 96.2 95.2 93.5 69.7 56.4

RCRC 99.0 97.9 96.7 94.3 81.2 62.0

WGSC 94.1 93.4 85.3 73.9 57.1 41.3

NMR 99.0 98.0 95.9 92.5 81.1 69.3

IRGSC 99.1 98.2 96.7 94.2 83.8 72.6

NNSCRC 99.4 98.4 96.7 94.7 87.5 80.3

Random Face Occlusion. In this experiment, we replace 10–50% pixels of
each test images with other face images. As shown in Fig. 6, both the location of
occlusion position and the occlusion face images are randomly selected. Table 2
lists the recognition accuracy of different methods. As can be seen, our method
still achieve better performance compared to others methods. The recognition
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Fig. 6. Samples with different percentage of face occlusion (0%–50%)

Table 2. Recognition accuracy of different methods versus different percentage of face
occlusion

Occlusion (%) 10 20 30 40 50

RSRC 96.9 95.6 91.2 88.6 72.9

WGSC 97.6 96.4 90.2 84.0 67.8

NMR 98.9 95.3 93.8 83.1 72.1

IRGSC 99.1 96.4 94.1 89.2 81.7

NNSCRC 99.3 97.2 96.0 91.4 83.2

rate of our model is a little lower than that of random block occlusion, which is
due to the reason that face occlusion is not strictly low rank. Still, our model
outperforms about 2% than IRGSC under large percentage face occlusion, which
indicates the effectiveness of NNSCRC to address occlusions.

4.4 Face Recognition with Real Disguise

To evaluate the robustness of our model to real possible disguise, we further
conduct experiments on AR dataset. As shown in Fig. 2, there are some samples
with sunglasses or scarves in AR database, which reflects the real FR conditions
in practical application. This kind of occlusion is irregular, thus brings a large
challenge for FR tasks. In our experiment, the face images of these 100 persons
were separated into 2 sessions according to the shooting time of photos. For
each person, we select 3 images in session 1 which has no illumination changes
or occlusion problem as training samples. 1200 face images are used for test,
which are divided into 4 groups as: 300 face images with illumination changes
and sunglasses in session 1, and 300 face images with illumination changes and
scarves in session 1, and the same divided in session 2.

The experiment results of competing methods are listed in Table 3. Clearly,
the NNSCRC method achieves better result in all 4 groups of experiments com-
pared with WGSC, RCRC, RSRC, and NMR. WGSC has the worst performance,
while WGSC tried to regress the query images only with the training samples,
and failed to consider the influence caused by occlusion. RCRC tries to solve
the problem of occlusion, and in fact achieves better performance than WGSC.
Note that our model outperform NMR by around 14%, which indicates that by
introducing a superposed linear collaborative representation to NMR model, our
model can enhance the robustness of face recognition effectively.
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Table 3. Recognition rates (%) of different methods on AR database

Classifier Session 1 Session 2

Sunglasses Scarves Sunglasses Scarves

WGSC 66.3 62.7 32.0 36.3

RSRC 89.3 32.3 57.3 12.7

RCRC 80.3 70.3 46.3 42.0

NMR 72.3 72.3 35.3 45.3

NNSCRC 90.0 79.7 59.7 50.7

4.5 Face Recognition with Single Sample per Person

We further conduct experiments on ExYaleB dataset to evaluate the robustness
of our model to single sample per person (SSPP) face recognition. 20 persons in
ExYaleB are used for SSPP test and the other persons are used to construct intra-
class variations. We use the first image of these 20 persons in ExYaleB dataset
as gallery, and select 30 images each person as probe set. The results are shown
in Table 4. As can be seen, the recognition rate of NNSCRC is 9.9% and 3.9%
higher than that of NMR and IRGSC respectively. Though NMR and IRGSC
can handle the problem of differences between query and gallery images in some
kind, both of them suffers from the misleading coding coefficients of incorrect
classes when there is only one sample per subject. Different from these methods,
our model can borrow the intra-class variations from other subjects which are
not in the gallery set because these variations are usually similar across different
subjects. Clearly, the NNSCRC method achieves much better result than NMR
and IRGSC since NNSCRC can borrow the intra-class variations from other
subjects, which demonstrate our model is capable for SSPP face recognition
task.

Table 4. SSPP FR accuracy of different methods on ExYaleB database

NMR IRGSC NNSCRC

Accuracy 79.3 85.3 89.2

5 Conclusion

In this paper, we present a NNSCRC model for robust face recognition task. In
the proposed framework, a superposed collaborative representation is adopted to
obtain robust representation of reconstruct face images. By representing a face
image as a superposed of a class centroid, a shared sample-to-centroid difference
and a low rank error, our method can address the misleading coding coefficients
of incorrect classes when the dataset is undersampled. Specially, when there
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is only a single sample per class available, the proposed model can still have
promised performance by acquiring the intra-class variation base from the generic
subjects outside the gallery. Furthermore, our model is robust to occlusion and
illumination changes by introducing nuclear norm constrained. Experiments on
the famous Extended Yale-B and AR databases show the superiority of our model
compared with the state-of-the-art regression based face recognition methods.
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Abstract. Image sets-based face recognition receives growing research
interest in pattern recognition and machine learning. The most challeng-
ing problem focuses on how to formulate a computable and discrimina-
tive model by using given data sets. In this paper, we propose a new
method, which is called Bilinear Regression Classifier (BLRC) for short,
to address the image sets-based face recognition problem. BLRC classifies
a given test set by choosing the category that simultaneously maximizes
the unrelated subspace and minimize the related subspace. In particular,
the unrelated subspace is used to characterize the distances between the
query set and the unrelated image sets, while the related subspace is used
to characterize the distances between the query set and the related sets.
In our work, the Mahalanobis metric, rather than the Euclidean metric, is
exploited to compute the subspace distance. The subspace coefficient vec-
tors are obtained by solving an Elastic-Net regularized regression model.
Extensive experiments are conducted on several benchmark datasets to
evaluate the real recognition performance of the new method. The results
show that our BLRC method obtains competitive accuracies with some
state-of-the-art methods.

Keywords: Face recognition · Image sets · Linear regression

1 Introduction

Face recognition has traditionally been posed as the problem of identifying a face
from a single image. Good performance is usually rely on smartly designed classi-
fiers. A number of classifiers were proposed, such as the Nearest Neighbor (NN)
[4], A Local Support Vector Machine Approach [12], Sparse Representation-
based Classifier [16] and Linear Regression Classification (LRC) [11]. These clas-
sifiers use a single test sample for classification and assume that images are taken
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in controlled environments. Their classification performance is generally depen-
dent on the representation of individual test samples. However, facial appearance
changes dramatically under variations in pose, illumination, expression, etc., and
images captured under controlled conditions may not suffice for reliable recogni-
tion under the more varied conditions, that occur in real surveillance and video
retrieval applications. Recently there has been growing interest in face recogni-
tion from image sets. Rather than supplying a single query image, the system
supplies a set of images of the same unknown individual, and we expect that
rich information provided in the image sets can improve the recognition rate.

Image sets classification algorithms include parametric methods [1,8,14] and
non-parametric methods [2,3,5–7,9,13,17]. Parametric method, firstly use the
probability density functions to represent the image sets, then they use dis-
tance of divergence functions to measure the similarity between the image set
(probability distribution), and they finally classify the test image set into the
category which the closest image collection belongs. There are various difficulties
in parametric methods, and the recognition performance is usually unsatisfac-
tory. In recent years, researchers have focused on nonparametric methods that
are independent of models. These methods do not have any assumptions about
the distribution of image sets. Typical example of such methods is subspace
algorithm.

This paper makes a brief review on dual linear regression classification
(DLRC), then proposes the bilinear regression classification (BLRC) for image
set retrieval. For BLRC algorithm, we first give the concept of uncorrelated sub-
space. Then, we introduce two strategies to constitute the unrelated subspace.
Next, we calculate related distance metric and unrelated distance metric. Last,
we introduce a combination metric for two new classifiers based on two consti-
tution strategies of the unrelated subspace. Experimental results shows that the
performance of BLRC is better than DLRC and several state-of-the-art classifiers
for some benchmark.

2 Dual Linear Regression Classification

Suppose a and b be height and width of an image. Let two sets of (down-scaled)
face images be represented by

X = [x1, x2, · · · , xm], (1)

Y = [y1, y2, · · · , yn], (2)

where xi (i = 1, 2, · · · ,m) and yj (j = 1, 2, · · · , n) are column vectors of size ab.
Column vectors of the image set X and the image set Y determine a subspace

respectively, and an image located at the intersection of the two subspaces.
That is, the “virtual” face image can be assumed vector V should be a linear
combination of the column vectors of two image sets respectively. To calculate
the distance between two image sets, our task is to find the “virtual” face V and
Coefficient vectors α = (α1, α2, · · · , αm)T , β = (β1, β2, · · · , βn)T such that

V = Xα = Y β. (3)
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Considering that we have all down-scaled images standardized into unit vec-
tors, we further require that

m∑

i=1

αi =
n∑

j=1

βj = 1. (4)

When x̂i = xi − xm (i = 1, 2, · · · ,m − 1), ŷj = yj − yn (j = 1, 2, · · · , n − 1). We
have

V = [x̂1, x̂2, · · · , x̂m−1]α̂ + xm = [ŷ1, ŷ2, · · · , ŷn−1]β̂ + yn, (5)

where α̂ = (α1, α2, · · · , αm−1)T , β̂ = (β1, β2, · · · , βn−1)T . Assume that there is a
approximate solution γ = (α1, α2, · · · , αm−1, β1, β2, · · · , βn−1)T ∈ IR(m+n−2)×1

for the equation
yn − xm = X̂Y γ, (6)

where X̂Y = [x̂1, x̂2, · · · , x̂m−1,−ŷ1,−ŷ2, · · · ,−ŷn−1].
After obtaining the estimated value of the regression coefficient γ, the “vir-

tual” face image may be represented by the image set X and the image set Y
respectively. Specifically, the “virtual” face image VX reconstructed from the
image set X is

VX = [x̂1, x̂2, · · · , x̂m−1][γ̂1, γ̂2, · · · , γ̂m−1]T + xm, (7)

while the “virtual” face image VY reconstructed from the image set Y is

VY = [ŷ1, ŷ2, · · · , ŷn−1][γ̂m, γ̂m+1, · · · , γ̂m+n−2]T + yn. (8)

Obviously, difference between the two reconstructed “virtual” face images
is essentially the residual of the linear regression equation. Since the difference
between the image set X and the image set Y can be expressed by calculating
the difference between the two reconstructed “virtual” face images, we can use
the residual of the linear regression equation to estimate the similarity of the
two image sets subspace X, Y , namely

D(X,Y ) = ‖VY − VX‖ = ‖(yn − xm) − X̂Y γ̂‖. (9)

If the D(X,Y ) value is smaller, the two image sets are closer to each other.

3 Bilinear Regression Classification

Inspired by DLRC, this section proposes bilinear regression classification. We
show a simple flowchart in Fig. 1. The main contents of this section are organized
as follows. First, the concept of unrelated subspaces is presented in Subsect. 3.1.
Second, two strategies of constituting the unrelated subspace are described in
Subsect. 3.2. Then, both related metric and unrelated metrics are computed in
Subsect. 3.3. Last, the final distance metric for classification called combination
metric, is described in Subsect. 3.4.
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Fig. 1. The flowchart of the proposed BLRC

3.1 Definition of Unrelated Image Set Subspace

Definition 1. Suppose that there are C-classes image set in the training set,
there are a total of M test image sets in the test set. For each image set in the
test set, it is assumed that we need to calculate the distance between the test
image set and the cth image set, where c = 1, 2 · · · C, and the cth image set in
the training image set has Nc image samples. If there is a set U, U also contains
Nc samples, and these Nc samples are from the other C − 1 classes except for
the cth class, then set U is called the unrelated image set subspace of the above
test image set.

According to Definition 1, we need to select Nc image samples from the remaining
C − 1 class samples that exclude cth category to construct the unrelated image
set subspace. In next subsection we will describe how to construct unrelated
image set subspace.

3.2 Constructions of the Unrelated Subspace

The cth image set Xc in the training image set is represented as follows:

Xc = [xc
1, x

c
2, · · · , xc

Nc
] ∈ IRq×Nc . (10)

That means that the cth image set in the training set defines a subspace, which
can be represented by Xc.

The subspace X determined by all images on the training set is as follows:

X = [X1,X2, · · · ,XC ] ∈ IRq×l, (11)

in which l =
∑C

c=1 Nc.



Face Image Set Recognition Based on Bilinear Regression 237

The overall mean of training image set X is

Xmean =
1
l

C∑

c=1

Nc∑

i=1

xc
i . (12)

The mean of the cth image set on training image sets is Xc
mean = 1

Nc

∑Nc

i=1 xc
i .

Images in class c are centralized as x̂c
i = xc

i − Xc
mean(c = 1, 2, · · · , C; i =

1, 2, · · · ;Nc), then the centralized training image set X̂ is formulated as follows:

X̂ = [x1
1, x

1
2, · · · , x1

N1
, · · · , xc

NC
] ∈ IRq×l. (13)

Similarly, the image subspace determined by the test image set Y presented
by

Y = [y1, y2, · · · , yn] ∈ IRq×n. (14)

For image set Y , ymean = 1
n

∑n
i=1 yi, centralized as ŷi = yi − ymean (i =

1, 2, · · · , n), and then the centralized testing image set Ŷ is formulated as follows:

Ŷ = [ŷ1, ŷ2, · · · , ŷn]. (15)

Strategy 1. When calculating the manhatta distance between the test image
set and the cth image set, the distance between ymean and a training sample Xi

can be computed as:

di = |Xi − ymean|(i = 1, 2, · · · , l). (16)

The distance metric set D of the training image set X and ymean is as follows:

D = [d1, d2, · · · , dl] ∈ IR1×l. (17)

First, we remove the elements corresponding to the cth class from D as D̂ ∈
R1×(L−Nc). Then we sort the elements in D̂ in ascend order and select Nc samples
xp

i (p �= c) from X, which corresponds to the smallest Nc distances from D̂ to
constitute the unrelated subspace Uc.

Uc = [uc
1, u

c
2 · · · uc

NC
] ∈ IRq×Nc . (18)

The classifier based on strategy 1 will be called bilinear regression classification-I
(BLRC-I).

Strategy 2. When calculating the distance between the test image set and the
cth training image set, assuming that training image set X and test image set
Y determine a “virtual” face image space. Different from strategy 1, Strategy
2 does not directly calculate the distance between each image in the training
image set X and the center ymean of the test image set. Instead, it calculates
the distance between the projection of each image in the training image set on
the “virtual” face space and the center of the test image set ymean.
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In order to obtain the joint coefficient vector of the two image sets X̂ and Ŷ ,
the joint image set E and the test vector e can be constituted as:

E = [X̂, −Ŷ ] ∈ IRq×(l+n), (19)

e = ymean − xmean. (20)

Suppose that θ ∈ IR(L+n)×1 is the joint coefficient vector of X̂ and Ŷ , which can
be calculated by solving the optimization problem

θ̂ = arg min
θ

‖e − Eθ‖2 + λ1‖θ‖22 + λ2‖θ‖1, (21)

where λ1 > 0, λ2 > 0 and λ1 + λ2 = 1.
After solving the regression coefficient θ̂. Then, the Mahalanobis distance

between the projection of each image in the training image set X on the “virtual”
face space and the center of the test image set can be expressed by the following
equation:

di = |X̂iθ̂i − ymean|(i = 1, 2, · · · , l). (22)

The distance metric set D is formulated by

D = [d1, d2, · · · , dl] ∈ IR1×l. (23)

First, we remove the elements corresponding to the cth class from D as D̂ ∈
R1×(L−Nc). Then we sort the elements in D̂ in ascend order and select Nc samples
xp

i (p �= c) from X, which corresponds to the smallest Nc distances from D̂ to
constitute the unrelated subspace Uc,

Uc = [uc
1, u

c
2, · · · , uc

NC
] ∈ IRq×Nc . (24)

The classifier based on strategy 2 will be called bilinear regression classification-
II (BLRC-II).

3.3 Related and Unrelated Distance Metric

Related Distance Metric. In Subsect. 3.2, we have obtained the class mean
Xc

mean for each class in the training set. After centralized processing, the training
image set of class c can be converted to

X̂c = [x̂c
1, x̂

c
2, · · · , x̂c

Nc
] ∈ IRq×Nc . (25)

Now we need to calculate the distance between the test image set Ŷ and the cth

image set X̂c in the training set. To obtain the joint regression coefficients of the
two image sets, the joint image set Sc

r and test vector sc
r can be constituted as:

Sc
r = [X̂c,−Ŷ ] ∈ IRq×(Nc+n), (26)

and
sc

r = ymean − xc
mean. (27)
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Assume that γc ∈ IR(Nc+n)×1 is the joint regression coefficient of X̂c and Ŷ .
According to the regression equation sc

r = Sc
rγ

c, we can see that the solution of
γc ∈ R(Nc+n)×1 is

γ̂c = (Sc
r
T Sc

r + λI)
−1

Sc
r
T sc

r. (28)

Then, the reconstructed “virtual” face image r1 obtained from the cth training
image set X̂c is

r1 = X̂c[γc
1, γ

c
2, · · · , γc

Nc
]T + xc

mean. (29)

The reconstructed “virtual” face image r2 obtained from the test image set Y is

r2 = Ŷ [γc
Nc+1, γ

c
Nc+2, · · · , γc

Nc+n]T + ymean. (30)

Finally, the distance between r1 and r2 can be used to represent the distance
between the test image set and the cth image set in the training set, which is
expressed by

dc
r = ‖r1 − r2‖ = ‖sc

r − Sc
rγ

c‖. (31)

That is, the residual of the linear regression equation sc
r = Sc

rγ
c can be used to

represent the distance between the test image set and the cth image set in the
training set.

Unrelated Distance Metric. The unrelated image set subspace Uc of the test
image set has been obtained in Sect. 3.2. The mean vector of Uc is

uc
mean =

1
Nc

Nc∑

i=1

uc
i . (32)

After centralization, the unrelated image set subspace Uc can be converted to

Ûc = [ûc
1, û

c
2, · · · , ûc

Nc
] ∈ IRq×Nc . (33)

Now we need to calculate the distance between the test image set Ŷ and the
unrelated image set subspace Uc. To obtain the joint regression coefficients of
two image sets, the joint image set Sc

u and test vector sc
u can be constituted as

Sc
u = [Ûc,−Ŷ ] ∈ IRq×(Nc+n), (34)

and
sc

u = ymean − uc
mean. (35)

Assume that δc ∈ IR(Nc+n)×1 is the joint regression coefficient of Ûc and Ŷ .
According to the regression equation sc

u = Sc
rδ

c, it indicates that the solution of
δc ∈ IR(Nc+n)×1 is

δ̂c = (Sc
u

T Sc
u + λI)

−1
Sc

u
T sc

u. (36)

Then, the reconstructed “virtual” face image r1 obtained from the unrelated
image set subspace Ûc is

r1 = Ûc[δc
1, δ

c
2, · · · , δc

Nc
]T + uc

mean. (37)
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The reconstructed “virtual” face image r2 obtained from the test image set Y is

r2 = Ŷ [δc
Nc+1, δ

c
Nc+2, · · · , δc

Nc+n]T + ymean. (38)

Finally, the distance between r1 and r2 can be used to represent the distance
between the test image set and the unrelated image set subspace, which is
expressed by

dc
u = ‖r1 − r2‖ = ‖sc

u − Sc
uδc‖. (39)

That is, the residual of the linear regression equation sc
u = Sc

uδc can be used to
represent the distance between the test image set and the unrelated image set
subspace.

3.4 Combined Distance Metric

After obtaining the related distance metric dc
r and the unrelated distance metric

dc
u, we can construct a discriminative criterion by combine the two metric results

in a suitable manner. It is obvious that if the test image set belongs to category
c, we hope that the distance between the test image set Ŷ and the cth image
set X̂c is closer, that is, the dc

r is as small as possible. on the other hand, it is
desirable to make the feature representations between the test image set Ŷ and
the unrelated image set Ûc further, that is, the dc

u is as large as possible. So we
propose a new metric dc

p as

dc
p =

dc
r

dc
u

. (40)

The smaller the value of dc
p, the greater similarity between the test image set

and the cth image set. In other words our face image set recognition criterion
selects the image set category c when dc

p takes the minimum value, i.e.

min
c∗ {dc

p | c = 1, 2, · · · , C}. (41)

4 Experimental Results

This section provides extensive experimental results to evaluate the performance
of two proposed classifiers: BLRC-I and BLRC-II. These experiments are con-
ducted by using several benchmark datasets, i.e., image-based face recognition
on the LFW face database [18] and AR face database [10], video-based face
recognition on Honda/UCSD face database [8].

4.1 Experiments on LFW

LFW face database were captured in unconstrained environments such that there
will be large variations in face images including pose, age, race, facial expression,
lighting, occlusions, and background, etc. We use the aligned version of the LFW
database, LFW-a to evaluate the recognition performance.
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LFW-a contains more than 5,000 subjects. Each subject including images of
the same individual in different poses. Note that all the images in LFW-a are of
size 250 × 250. We manually crop the images into size of 90 × 78 (by removing
88 pixel margins from top, 72 from bottom, and 86 pixel margins from both left
and right sides). An subset of LFW containing 62 persons, each people has more
than 20 face images, is used for evaluating the algorithms. Our experimental
setting is identical to that in [3]. The first 10 images of each subject are selected
to form the training set, while the last 10 images are used as the probe images.

The proposed classifiers are compared with methods including sparse approx-
imated nearest points (SANP) [5,6], affine hull based image set distance (ASIHD)
[2], convex hull based image set distance (CSIHD) [2], manifold discriminant
analysis (MDA) [13], Dual Linear Regression Based Classification for Face Clus-
ter Recognition (DLRC) [3] and Pairwise Linear Regression Classification for
Image Set Retrieval (PLRC) [19]. All methods use the down-scaled images of
size of 10 × 10 and 15 × 10 as in [3]. The classification results of all methods
are illustrated in Table 1. For the images with size of 10 × 10, the proposed
BLRC-I achieves identical performances with the MDA and PLRC-I method,
and the recognition rate is 93.55%, which exceeds other classifiers. For BLRC-
II, the recognition rate is 98.39%, obtains the best recognition rate compared
with other methods. For images with size of 15 × 10, BLRC-I reaches 96.77%
recognition rate, BLRC-II, recognition rate is as high as 98.39%. The effects of
BLRC-II are higher than those of other classifiers as shown in Table 1.

Table 1. The recognition rates (RR) on LFW database.

Method 10 × 10 15 × 10

SANP 85.48 92.55

ASIHD 87.10 95.16

CSIHD 90.32 93.55

MDA 93.55 95.16

DLRC 91.94 95.16

PLRC-I 93.55 96.77

PLRC-II 95.16 96.77

BLRC-I 93.55 96.77

BLRC-II 98.39 98.39

4.2 Experiments on AR

In this section, we study the performance of the proposed classifiers by using the
well-known AR database. There are over 4000 face images of 126 subjects (70
men and 56 women) in the database. The face images of each individual con-
tain different expressions, lighting conditions, wearing sun glasses and wearing
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scarf. We use the cropped AR database that includes 2600 face images of 100
individuals, First, we manually crop images into a size of 90 × 70 (by removing
38 pixel margins from top, 39 from bottom, and 24 pixel margins from left and
25 pixel margins right sides). Then downscale the clipped image to get 40 × 40
resolutions. In the experiments, the first 13 images of each subject are selected
to form a training image set, and the remaining 13 images are composed of test
image sets.

For this database, the proposed classifiers are compared with following state-
of-the-art approaches: SANP [5,6], ASIHD [2], CSIHD [2], DLRC [3] and PLRC
[19]. The recognition rates of different classifiers have been presented in Table 2.
Experimental results show that compared with other algorithms, the recognition
accuracy of the BLRC-I and BLRC-II for image set recognition is as high as
97.98%, which shows obvious improvement on the classification performance.

Table 2. The recognition rates (RR) on AR database.

Methods RR

SANP 77.00

ASIHD 87.67

CSIHD 84.67

DLRC 96.00

PLRC-I 95.00

PLRC-II 97.33

BLRC-I 97.98

BLRC-II 97.98

4.3 Honda/UCSD Face Database

The Honda/UCSD dataset contains 59 video clips of 20 subjects [8], all but one
have at least 2 videos. 20 videos are called training videos and the remainder
39 test videos. The lengths of videos vary from 291 to 1168 frames. In order
to maintain the comparability of the experimental results, we use face images
consistent with other proceeding work [6].

This dataset has been used extensively for image-based face recognition, the
accuracy has reached 100% or close to 100%. Therefore, researchers have turned
to experiment on the settings using a small amount frames. We carry out the
experiment using the first 50 frames in each video for this database. The shared
database by [5] is used. For the video clips that contain less than 50 frames,
all frames are selected in the experiment. The following methods are chosen
for comparison: DCC [7], MMD [15], MDA [13], AHISD [2], CHISD [2], MSM
[17], SANP [5,6], DLRC [3] and PLRC [19]. Table 3 lists all recognition rates of
these classifiers on this database. We find that the recognition rates of BLRC-I,
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AHISD, RNP, DLRC and PLRC-I are all equal 87.18%, which is much better
than those of DCC and MMD methods. The BLRC-II classifier obtains the
highest accuracy 92.31% for this database, which is obviously superior to the
results of other types of recognition algorithms.

Table 3. The recognition rates (RR) on Honda/UCSD database.

Methods RR

DCC 70.92

MMD 69.32

MDA 82.05

ASIHD 87.18

CSIHD 82.05

MSM 74.36

SANP 84.62

DLRC 87.18

PLRC-I 87.18

PLRC-II 89.74

BLRC-I 87.18

BLRC-II 92.31

5 Conclusion

In this paper, bilinear regression classification method (BLRC) is proposed for
face image set recognition. Compared to DLRC, BLRC increases the unrelated
subspace for classification. Based on different methods of constituting the unre-
lated subspace, two classifiers are proposed in this paper. In order to validate the
performance of two classifiers, some experiments are evaluated on three database
for face image set classification tasks. All experimental results confirm the effec-
tiveness of two proposed classification algorithms.

References

1. Arandjelovic, O., Shakhnarovich, G., Fisher, J., Cipolla, R., Darrell, T.: Face recog-
nition with image sets using manifold density divergence. In: IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, pp. 581–588 (2005)

2. Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: Computer Vision
and Pattern Recognition, pp. 2567–2573 (2010)

3. Chen, L.: Dual linear regression based classification for face cluster recognition. In:
Computer Vision and Pattern Recognition, pp. 2673–2680 (2014)

4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Press (1967)



244 W.-W. Hua and C.-X. Ren

5. Hu, Y., Mian, A.S., Owens, R.: Sparse approximated nearest points for image set
classification, vol. 42, no. 7, pp. 121–128 (2011)

6. Yiqun, H., Mian, A.S., Owens, R.: Face recognition using sparse approximated
nearest points between image sets. IEEE Trans. Pattern Anal. Mach. Intell. 34(10),
1992–2004 (2012)

7. Kim, T.K., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image
set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell.
29(6), 1005 (2007)

8. Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.: Video-based face recognition using
probabilistic appearance manifolds. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 313–320 (2003)

9. Mahmood, A., Mian, A., Owens, R.: Semi-supervised spectral clustering for image
set classification. In: Computer Vision and Pattern Recognition, pp. 121–128 (2014)

10. Mart́ınez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach.
Intell. 23(2), 228–233 (2001)

11. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

12. Sch, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach.
In: International Conference on Pattern Recognition, pp. 32–36 (2004)

13. Wang, R., Chen, X.: Manifold discriminant analysis. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 429–436 (2009)

14. Wang, R., Guo, H., Davis, L.S., Dai, Q.: Covariance discriminative learning: a
natural and efficient approach to image set classification. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2496–2503 (2012)

15. Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with appli-
cation to face recognition based on image set. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8 (2008)

16. Wright, J., Ganesh, A., Zhou, Z., Wagner, A., Ma, Y.: Demo: robust face recog-
nition via sparse representation. In: IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 1–2 (2009)

17. Yamaguchi, O., Fukui, K., Maeda, K.: Face recognition using temporal image
sequence. In: 1998 Proceedings of IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 318–323 (1998)

18. Zhu, P., Zhang, L., Hu, Q., Shiu, S.C.K.: Multi-scale patch based collaborative rep-
resentation for face recognition with margin distribution optimization. In: Euro-
pean Conference on Computer Vision, pp. 822–835 (2012)

19. Feng, Q., Zhou, Y., Lan, R.: Pairwise linear regression classification for image set
retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
4865–4872 (2016)



Semi-supervised Learning of Deep Difference
Features for Facial Expression Recognition

Can Xu, Ruyi Xu, Jingying Chen(&), and Leyuan Liu

National Engineering Research Center for E-Learning,
Central China Normal University, Wuhan, China

chenjy@mail.ccnu.edu.cn

Abstract. Facial expression recognition (FER) is an important means of
detecting human emotions and is widely applied in many fields, such as affective
computing and human-computer interaction. Currently, several methods for
FER heavily rely on large amounts of manually labeled data, which are costly
and not available in real-world applications. To address this problem, this paper
proposes a semi-supervised method based on the deep difference features. First,
a cascaded structure is introduced to the original safe semi-supervised SVM
(S4VM) to solve the multi-classification task. Then, multiple deep different
features are fed to the cascaded S4VM to train the six basic facial expressions
using the information of the unlabeled data safely. Extensive experiments show
that the proposed method achieved encouraging results on public databases even
when using a small labeled sample set.

Keywords: Facial expression recognition � Deep learning � Cascaded S4VM
Semi-supervised method

1 Introduction

Analyzing facial expressions is one of the most important methods of human emotion
recognition and facial expressions are defined as the corresponding facial changes in
response to a person’s inner emotional state and intentions [1]. Nowadays, automatic
facial expression recognition (FER) has miscellaneous applications, such as affective
computing, interactive games, social psychology, synthetic animation, and intelligent
robots [2].

Automatic FER systems can be divided into two categories: those that based on
static images and those that based on dynamic image sequences [3]. The static-based
method only contains information of the currently input image, while the sequence-
based method can use temporal information from multi frames to identify the
expression. FER systems receive static images or dynamic sequences as input and then
output the corresponding expression category. This work focuses on methods based on
the key frames extracted from dynamic image sequences.

In the past two decades, many attempts have been made to recognize facial
expressions, and the effectiveness of these attempts depends largely on the size of the
labeled training set. A large-scale training set can better reflect the real distribution of
samples and hence acquire a better generalization error. However, manual annotation is
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demanding, time consuming and expensive [4]. A semi-supervised method can
simultaneously use labeled and unlabeled data to improve the classification perfor-
mance with small datasets, reduce the workload of manual labeling and enhance the
practicability of FER [5].

There have been few attempts to recognize facial expressions using a semi-
supervised method. Existing methods can be roughly divided into two categories: semi-
supervised learning (SSL) [6–8] and semi-supervised clustering [9–11]. SSL exploits
the distribution of the unlabeled data to enhance training. Semi-supervised clustering
sets the pairwise constraints with labeled data for cluster analysis. In 2004, Cohen et al.
[6] were the first to apply SSL to facial expression recognition. They trained proba-
bilistic classifiers with labeled and unlabeled data based on Bayesian networks and
achieved an average recognition accuracy of 74.8% on the Cohn-Kanade dataset. Hady
et al. [7] mentioned a learning framework to exploit the unlabeled data by the com-
bination of the Co-Training and the one-against-one output-space decomposition
approach, which uses Tri-Class SVMs as binary classifiers. The average recognition
accuracy on the four basic expressions of the Cohn-Kanade dataset was 86.95%. Jiang
et al. [8] focused on the problem of multi-pose facial expression recognition by
bringing transfer learning into SSL. Liu et al. [9] addressed the expression recognition
in the wild under a semi-supervised frame that combined reference manifold learning
with Semi-Supervised Non-negative Matrix Factorization to select discriminant unla-
beled data for enhanced training. Liliana et al. [10] proposed a semi-supervised clus-
tering method based on Fuzzy C-means (FCM) to consider the level of ambiguity of
facial expressions. Araujo et al. [11] mentioned a semi-supervised temporal clustering
method and applied it to the complex problem of facial emotion categorization.

Although the unlabeled samples are helpful to construct the exact model for facial
expression classification, experiments show that the effect of some SSL methods is
even worse than simply using the methods employed for labeled samples [12, 13]. To
address this problem, Li and Zhou presented the safe semi-supervised vector machine
(S4VM) [14] to explore multiple candidate low-density separators, estimate the deci-
sion boundary closest to the real situation and ensure the best classification effect. The
researchers define S4VM as a safe semi-supervised classifier whose performance never
degenerates, even when using unlabeled data.

Inspired by Li and Zhou, this work proposes a semi-supervised learning method
based on the DPND feature. The DPND feature proposed in our previous work [15]
extract the deep representations of the peak (the fully expressive) frame and the neutral
frame, respectively, and use the difference between them to represent the facial
expression. In this paper, to further improve the robustness, a set of DPND features is
extracted from each facial expression sequence which select the key frames near to the
cluster centroids. Then, a cascaded semi-supervised classifier is constructed to classify
facial expressions with both labeled and unlabeled samples. The final classification
result of each sequence is decided by the voting of all key-frame pairs.

The rest of this paper is organized as follows. The details of the semi-supervised
FER method are presented in Sect. 2. The experimental setup is described in detail, and
the experiment results are given in Sect. 3. Section 4 concludes the paper.
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2 The Proposed Method

In this section, the proposed semi-supervised FER approach will be described in detail.
The proposed method consists of two main parts: (1) Multiple DPND feature extraction
from expression sequences and (2) construction of a cascaded semi-supervised clas-
sifier for FER.

2.1 Multiple DPDN Feature Extraction

To address the FER problem, researchers have proposed many elaborate features to
represent facial expressions during past decades [16]. However, some recent works
show that features learned from millions of training samples by deep learning out-
perform manually designed features in face-related tasks, such as face detection [17]
and face recognition [18]. Encouraged by these advancements, the popular VGG-16
[19] is adopted as the network architecture for deep representation extraction in this
study. The VGG-16 is pre-trained on the VGG face dataset, which contains 2.6 M face
images from 2,622 subjects. When face images are put into the VGG-16, the output of
neuron responses by one of the intermediate layers of the VGG-16 network can be
extracted as images’ deep representation. In this paper, the DPND feature is employed
to describe the change between the neutral frame and the peak frame as our previous
work [15]:

fDPND ¼ f P � f N
� �

=N ð1Þ

where f P and f N are deep representation features extracted from the peak frame and
neutral frame, respectively, and N is the normalized factor. The DPND feature can
effectively retain facial expression information while eliminating individual differences
and environmental noises.

For some standard facial expression datasets, such as CK+ [20], in which each
sequence begins with the neutral expression and ends with the peak expression, the
DPND feature can be easily obtained by the deep representation feature of the
beginning frame and the end frame. However, the neutral frame and the peak frame of
an expression sequence are not directly available in some datasets, such as the BU-
4DFE [21]. To extract the DPND feature from expression sequences, a joint method of
K-means clustering and rank-SVM is presented.

However, a single DPND feature [15] from each sequence to represent the facial
expression has two limitations: first, the extraction of key frames has a certain ran-
domness due to the random initialization of cluster centroids; second, the extracted key
frames can only approximately represent the neutral frames and peak frames. In order
to further improve the robustness, in this work, a set of DPND features is extracted
from each facial expression sequence which select the key frames near to the cluster
centroids obtained using K-means. The final classification result of each sequence is
decided by the voting of all key-frame pairs. In this way, the multiple DPND feature
can effectively avoid the problem caused by the inaccurate selection of key frames. And
the subsequent experiments prove that, compared to the single DPND feature, the
multiple DPND feature can indeed improve the accuracy of FER.
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2.2 Construct a Cascaded Multi-class Classifier for FER

In this subsection, a cascaded classifier is introduced to the S4VM construct to rec-
ognize the six basic facial expressions using the proposed DPND feature. The original
S4VM proposed by Li and Zhou [14] is an inductive binary classifier. For applying it to
FER tasks, a set of S4VMs is combined with a cascaded structure, and each S4VM
divides a kind of facial expression from the given dataset. A brief introduction of
S4VM is first given.

Safe Semi-Supervised Support Vector Machine (S4VM). Let X be the input space
and Y ¼ �1f g be the label space. A set of labeled data as xi; yif gli¼1 and a set of
unlabeled data are given as x̂j

� �u
j¼1. Semi-Supervised learning SVM (S3VM) aims to

find a decision function f : X ! �1f g and a label assignment on unlabeled instances
y ¼ ylþ 1; . . .; ylþu

� � 2 B such that the following objective function is minimized,

h f ; ŷð Þ ¼ k f kH
2

þC1

Xl

i¼1

lðyi; f xið ÞÞþC2

Xu

j¼1

lðŷj; f x̂j
� �Þ ð2Þ

S4VM focuses on the safeness of SSL algorithms. Its main idea is to generate
multiple low-density separators to approximate the ground truth decision boundary and
maximize the improvement in performance of inductive SVMs for any candidate
separator. To generate a pool of diverse separators ftf gTt¼1, the following function is
minimized:

min
f ; ŷt 2 bf gTt¼1

XT

t¼1
hðft; ŷtÞþMXð ŷtf gTt¼1Þ; ð3Þ

where T is the number of separators, X is a penalty coefficient about the diversity of
separators, and M is a large constant to ensure diversity. A variety of methods can be
adopted to solve this optimization problem, such as global simulated annealing search
and representative sampling.

To learn a label assignment y such that the performance against the inductive SVM,
ysvm, is improved, the worst-case improvement over inductive SVM is maximized and �y
is denoted as the optimal solution:

�y ¼ argmax
y

min
ŷ

gain y; ŷ; ysvmð Þ � loss y; ŷ; ysvmð Þ ð4Þ

where gain y; ŷ; ysvmð Þ and loss y; ŷ; ysvmð Þ are the gained and lost accuracies compared to
the inductive SVM, respectively. It has been shown that the accuracy of �y is never
worse than that of ysvm and achieves the maximal performance improvement over that
of ysvm in the worst cases.

Multi-class Classification with the Cascaded S4VM. The original S4VM is typically
designed for binary classification problems; thus, S4VM must be extended into a
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multi-class classifier for FER. The most common strategies are called one-against-one
and one-against-all, however, S4VM, as an inductive method, cannot use one-against-
one to construct a multi-class classification, while adoption of one-against-all is inef-
fective due to the same large training set for each binary classification.

This paper constructs multi-class classification based on a cascaded structure [22,
23], which can hold inductive and effective to unlabeled data. In detail, the training set
that contains labeled and unlabeled data is put into the cascaded classifier, and samples
of the specified class are picked out for each S4VM classifier. The identified unlabeled
data and the corresponding labeled data are removed from the training set, while the
remaining samples are passed to the next S4VM classifier.

It is worth noting that the performance of multi-class classifiers varies widely
according to different cascaded order. To design a more effective cascaded classifier,
the order of the S4VM classifiers is determined according to a discriminant measure of
labeled data. The ratio of the inner-class distance and the inter-class distance is defined
as the separable measure:

Sp ¼ DppP
q 6¼p Dpq

ð5Þ

where Dpq ¼ 1
pj j qj j

P
i2p;j2q

dij is the average distance between any two samples in the class

p and q. The class p is separated from the training set according to the ascending order
of Sp. The corresponding classes are sorted to p1; p2; . . .; pm. Then, a classifier with a
cascaded structure is constructed, such as that shown in Fig. 1.

Samples of class p1 are assigned to the positive category, and samples of the rest
classes are assigned to the negative category; then, the first sub-binary classifier S4VM1
is trained. After that, samples of class p1 are removed from the training set. Similarly,
samples of class p2 are assigned to the positive category, and the rest of the samples are
assigned to the negative category; then, the second sub-binary classifier SVM2 is trained
until all the sub-classifiers are trained. Finally, a cascaded S4VM is obtained.

Fig. 1. Multi-class classification based on a cascaded structure.
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3 Experiments

3.1 Experimental Protocol

To evaluate the effectiveness of the proposed algorithm, two public sequence-based
datasets, CK+ [20] and BU-4DFE [21], were chosen for the experiment; the CK+
dataset has been used in [10]. The details of these two datasets are listed in Table 1. In
our experiment, only six basic expressions (angry, disgust, fear, happy, sad and sur-
prise) were considered, and we extracted a subset of 53 subjects from the CK+ and a
subset of 64 subjects from the BU-4DFE. Some samples of the two databases are
shown in Fig. 2. For the CK+ dataset, the DPND feature is the difference between the
deep representation feature of the first frame and the last frame; for BU-4DFE, the
DPND feature is extracted from the facial sequences directly by our proposed method.

3.2 Comparison Among the Multiple DPND, the Single DPND
and the DPR Feature

In order to show the effectiveness of the DPND feature, we compared it with the static
feature that the deep representations of peak frames (DPR feature) extracted from the
VGG-16 network. Then, the proposed cascaded S4VM was employed to evaluate the
effects of the different features. For BU-4DFE, the multiple DPND feature was
extracted from a set of key-frame pairs near to the cluster centroids. It is noteworthy
that the labeled samples only accounted for 10% of the training set in the experiment.
The average accuracies of the different features are listed in Table 2. The results
indicate that the accuracy of the single DPND feature on the CK+ and BU-4DFE are
8.5% and 21% higher than that of the DPR feature, and the performance of the multiple
DPND feature is 3.4% higher than that of the single DPND feature on the BU-4DFE,
which strongly proves the excellence of the DPND feature, especially the multiple
DPND feature.

Table 1. Details of the CK+, BU-4DFE dataset.

Dataset Subjects Sequences Gender(F/M) Age Ethnicity

CK+ 97 486 65%/35% 18–30 Multiethnic
BU-4DFE 101 606 56%/44% 18–70 Multiethnic

Fig. 2. Exemplar expression images in the CK+, BU-4DFE dataset.
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3.3 Comparisons with the State-of-the-Art Method

In this subsection, we compare the proposed method (the cascaded S4VM with the
DPND feature) with the current state-of-the-art method [10] on the CK+ dataset. The
method [10] is based on an SSL algorithm. It first employed an Active Appearance
Model to detect human facial points for feature extraction and then utilized semi-
supervised Fuzzy C-Means to work as the classifier system; we refer to the method as
SSFCM. It selected 329 images of eight emotions from the CK+ dataset, of which 63%
were used as a training set and the remaining samples were used for testing. The
average accuracies of the proposed method and SSFCM method are shown in Table 3.
The proposed method outperforms the SSFCM method [10] even though the SSFCM
method selected the peak frames out from the sequences manually and used more
labeled data than our method.

3.4 Comparison with the Supervised Classification

In this subsection, we aimed to use the CK+ and BU-4DFE dataset to evaluate the
capability of the SSL method for FER. To this end, the proposed cascaded S4VM and
SVM were used as expression classifiers and SVM was considered the baseline
because it has been demonstrated as a successful approach for FER tasks. The per-
formance of the cascaded S4VM was calculated based on its outputs, including the list
of generated labels for unlabeled data. Using the same data, SVM was applied as a fully
supervised version of the cascaded S4VM (see Table 4) for comparison of the semi-
supervised learning and supervised learning. The results demonstrate that although a
small proportion of each dataset was labelled (10%), the accuracy of the cascaded
S4VM for FER on the CK+ and BU-4DFE are 5% and 12% higher than that of SVM.

For more evaluation, the accuracy of the cascaded S4VM was considered with
different amounts of labeled data (10%, 12.5%, 17%, 20%, 25% and 50%), as shown in
Fig. 3. In all these experiments, the cascaded S4VM achieved better accuracy than
SVM, especially in the case of few labelled data, which confirms the cascaded S4VM’s
efficiency. The results illustrate that combined with information from labeled and

Table 2. Average accuracy of the DPND and DPR features.

Feature CK+ BU-4DFE

Multiple DPND —— 71.8%
Single DPND 89.4% 68.4%
DPR 80.9% 47.4%

Table 3. Average accuracies of the proposed method and the
current state-of-the-art method on the CK+.

Method CK+

Proposed method 89.4%
SSFCM 80.7%
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unlabeled samples, the cascaded S4VM can predict the distribution of data more rea-
sonably and then adjust the decision boundary to improve the classification accuracy.
Figure 3 also shows that as the number of labeled data increases, the accuracy of the
cascaded S4VM and SVM also increase and match.

4 Conclusion

In this paper, we propose a semi-supervised method based on the multiple DPND
feature for FER. The DPND feature tends to emphasize the facial parts that are changed
in the transition from the neutral to the expressive face and to eliminate differences in
individual face identities and environmental noises. In this work, the multiple DPND
feature are extracted from each sequence to improve the robustness of feature repre-
sentation. Then, a cascaded semi-supervised classifier is constructed to recognize six
basic facial expressions using both labeled and unlabeled data. The proposed method
achieves an accuracy of 89.4% on the CK+ dataset and an accuracy of 71.8% on the
BU-4DFE dataset when only 10% of the training samples are labeled. The encouraging
results on public databases suggests that our method has strong potential to recognize
facial expressions in real-world applications.

Table 4. Accuracy of the cascaded S4VM compared to SVM.

Dataset (10%) SVM Cascaded S4VM

CK+ 84.9% 89.4%
BU-4DFE 59.9% 71.8%
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Abstract. In this paper, we address the problem of estimating Gaussian noise
level from the trained dictionaries in update stage. We first provide rigorous
statistical analysis on the eigenvalue distributions of a sample covariance matrix.
Then we propose an interval-bounded estimator for noise variance in high
dimensional setting. To this end, an effective estimation method for noise level
is devised based on the boundness and asymptotic behavior of noise eigenvalue
spectrum. The estimation performance of our method has been guaranteed both
theoretically and empirically. The analysis and experiment results have
demonstrated that the proposed algorithm can reliably infer true noise levels,
and outperforms the relevant existing methods.

Keywords: Dictionary learning � Sample covariance matrix
Random matrix theory � Noise level estimation

1 Introduction

The dictionary learning is a matrix factorization problem that amounts to finding the
linear combination of a given signal Y 2 R

N�M with only a few atoms selected from
columns of the dictionary D 2 R

N�K � In an overcomplete setting, the dictionary matrix
D has more columns than rows K[N; and the corresponding coefficient matrix X 2
R

K�M is assumed to be sparse. For most practical tasks in the presence of noise, we
consider a contamination form of the measurement signal Y ¼ DXþw; where the
elements of noise w are independent realizations from the Gaussian distribution
Nð0; r2nÞ. The basic dictionary learning problem is formulated as:

min
D; X

Y� DXk k2F s:t: xik k0 � L 8i ð1Þ

Therein, L is the maximal number of non-zero elements in the coefficient vector xi.
Starting with an initial dictionary, this minimization task can be solved by the popular
alternating approaches such as the method of optimal directions (MOD) [1] and K-SVD
[2]. The dictionary training on noisy samples can incorporate the denoising together
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into one iterative process [3]. For a single image, the K-SVD algorithm is adopted to
train a sparsifying dictionary and the developed method in [3] denoises the corrupted
image by alternating between the update stages of the sparse representations and the
dictionary. In general, the residual errors of learning process are determined by noise
levels. Noise incursion in a trained dictionary can affect the stability and accuracy of
sparse representation [4]. So the performance of dictionary learning highly depends on
the estimation accuracy of unknown noise level r2n when the noise characteristics of
trained dictionaries are unavailable.

The main challenge of estimating the noise level lies in effectively distinguishing
the signal from noise by exploiting sufficient prior information. The most existing
methods have been developed to estimate the noise level from image signals based on
specific image characteristics [5–8]. Generally, these works assume that a sufficient
amount of homogeneous areas or self-similarity patches are contained in natural
images. Thus empirical observations, singular value decomposition (SVD) or statistical
properties can be applied on carefully selected patches. However, it is not suitable for
estimating the noise level in dictionary update stage because only few atoms for sparse
representation cannot guarantee the usual assumptions. To enable wider applications
and less assumptions, more recent methods estimate the noise level based on principal
component analysis (PCA) [9, 10]. These methods underestimate the noise level since
they only take the smallest eigenvalue of block covariance matrix. Although later work
[11] has made efforts to tackle these problems by spanning low dimensional subspace,
the optimal estimation for true noise variance is still not achieved due to the inaccuracy
of subspace segmentation. As for estimating the noise variance techniques, the scaled
median absolute deviation of wavelet coefficients has been widely adopted [12].
Leveraging the results from random matrix theory (RMT), the median of sample
eigenvalues is also used as an estimator of noise variance [13]. However, these esti-
mators are no longer consistent and unbiased when the dictionary matrix has high
dimensional structure.

To solve the aforementioned problems, we propose to accurately estimate the noise
variance in a trained dictionary by using exact eigenvalues of a sample covariance
matrix. The proposed method can also be applied to estimate the noise level for the
noisy image. As a novel contribution, we construct the tight asymptotic bounds of
extreme eigenvalues to separate the subspaces between the signal and the noise based
on random matrix theory (RTM). Moreover, in order to eliminate the possible bias
caused by the high-dimensional settings, a corrected estimator is derived to provide the
consistent inference on the noise variance for a trained dictionary. Based on these
asymptotic results, we develop an optimal variance estimator which can well deal with
the settings with different sample sizes and dimensions. The practical usefulness of our
method is numerically illustrated.

2 Tight Bounds for Noise Eigenvalue Distributions

In this section, we analyze the asymptotical distribution of the ratio of extreme
eigenvalues of a sample covariance matrix based on the limiting RTM law. Then a tight
bound is derived.
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2.1 Eigenvalue Subspaces of Sample Covariance Matrix

We consider the sparse approximation of each observed sample yi 2 R
N with s pro-

totype atoms selected from learned dictionary D. With respect to the sparse model (1),
we aim at estimating the noise level r2n for an elementary trained dictionary Ds con-
taining a subset of the atoms fdigsi¼1. Note that Ds ¼ D0

S þwS, where D0
S denotes

original dictionary and wS is the additive Gaussian noise. At each iterative step, the
noise level r2n goes gradually to zero when updating towards true dictionary D0

S [14].
The known noise variance is helpful to avoid noise incursion and determine the sample
size, the sparsity degree and even the performance of the true underlying dictionary
[15]. To derive the relationship between the eigenvalues and noise level, we first
construct the sample covariance matrix of dictionary Ds as follows:

RS ¼ 1
s� 1

Xs
i¼1

ðdi � dÞðdi � dÞT; d ¼ 1
s

Xs
i¼1

di ð2Þ

According to (2), the square matrix
P

s has N dimensions with the sparse condition
N � s. Based on the symmetric property, this matrix is decomposed into the product of
three matrices: an orthogonal matrix U, a diagonal matrix and a transpose matrix UT ,
which can be selected by satisfying UTU ¼ I. Here, this transform process is written as:

UTRSU ¼ diagðk1; . . .; km; kmþ 1; . . .; kNÞ ð3Þ

Given k1 � k2 � . . .� kN , we exploit the eigenvalue subspaces to enable the sep-
aration of atoms from noise. To be more specific, we divide the eigenvalues into two
sets S ¼ S1 [S2 by finding the appropriate bound in a spiked population model [16].
Most structures of an atom lie in low-dimension subspace and thus the leading
eigenvalues in set S1 ¼ kif gmi¼1 are mainly contributed by atom itself. The redundant-
dimension subspace S2 ¼ kif gNi¼mþ 1 is dominated by the noise. Because the atoms
contribute very little to this later portion, we take all the eigenvalues of S2 into con-
sideration to estimate the noise variance while eliminating the influence of trained
atoms. Moreover, the random variables kif gNi¼mþ 1 can be considered as the eigenvalues
of pure noise covariance matrix Rw, whose dimensions are N.

2.2 Asymptotic Bounds for Noise Eigenvalues

Suppose the sample matrix Rw has the form ðs� 1ÞRw ¼ HHT, where the sample
entries of H are independently generated from the distribution Nð0; r2nÞ. Then the real
matrix M ¼ HHT follows a standard Wishart distribution [17]. The ordered eigen-
values of M are denoted by �kmaxðMÞ� � � � � �kminðMÞ. In the high dimensional situ-
ation: N=s ! c 2 0; 1½ Þ as s ; N ! 1, the Tracy-Widom law gives the limiting
distribution of the largest eigenvalue of the large random matrix M [18]. Then we have
the following asymptotic expression:
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Pr
�kmax

�
r2n � l

n
� z

� �
! FTW1ðzÞ ð4Þ

where FTW1ðzÞ indicates the cumulative distribution function with respect to the Tracy-
Widom random variable. In order to improve both the approximation accuracy and
convergence rate, even only with few atom samples, we need choose the suitable
centering and scaling parameters l ; n [19]. By the comparison between different
values, such parameters are defined as

l ¼ 1=s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p� �2

n ¼ 1=s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p� �
1ffiffiffiffiffiffiffiffiffi
s�1=2

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
N�1=2

p
� 	1=3

8>><
>>:

ð5Þ

The empirical distribution of the eigenvalues of the large sample matrix converges
almost surely to the Marcenko-Pastur distribution on a finite support [20]. Based on the
generalized result in [21], when N ! 1 and c 2 0; 1½ Þ, with probability one, we
derive limiting value of the smallest eigenvalue as

�kmin
�
r2n ! 1� ffiffiffi

c
pð Þ2 ð6Þ

According to the asymptotic distributions described in the theorems (4) and (6), we
further quantify the distribution of the ratio of the maximum eigenvalue to minimum
eigenvalue in order to detect the noise eigenvalues. Let T1 be a detection threshold.
Then we find T1 by the following expression:

Pr
�kmax
�kmin

� T1

n o
¼ Pr

�kmax
r2n

� T1 � �kmin
r2n

n o
� Pr

�kmax
r2n

� T1 � 1� ffiffiffiffiffiffiffiffi
N=s

p
 �2n o

¼ Pr
�kmax=r2n�l

n � T 1� 1�
ffiffiffiffiffiffi
N=s

p
 �2
�l

n

( )
� FTW1

T 1� 1�
ffiffiffiffiffiffi
N=s

p
 �2
�l

n

( ) ð7Þ

Note that there is no closed-form expression for the function FTW1. Fortunately, the
values of FTW1 and the inverse F�1

TW1 can be numerically computed at certain percentile
points [16]. For a required detection probability a1, this leads to

T1 � 1� ffiffiffiffiffiffiffiffi
N=s

p
 �2�l

n
¼ F�1

TW1ða1Þ ð8Þ

Plugging the definitions of l and n into the Eq. (8), we finally obtain the threshold

T 1 ¼
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p
 �2
ffiffi
s

p � ffiffiffiffi
N

p
 �2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1=2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1=2

p
 ��2=3

s� 1=2ð Þ1=6 N � 1=2ð Þ1=6
� F�1

TW1ða1Þþ 1

 !

ð9Þ
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When the detection threshold T1 is known in the given probability, it means that an
asymptotic upper bound can also be obtained for determining the noise eigenvalues of
the matrix Rw because the equality kmþ 1=kN ¼ kmax

�
kmin holds. In general, the noise

eigenvalues in the set S2 surround the true noise variance as it follows the Gaussian
distribution. The estimated largest eigenvalue kmþ 1 should be no less than r2n. The
known smallest eigenvalue kN is no more than r2n by the theoretical analysis [11]. The
location and value of kmþ 1 in S are obtained by checking the bound kmþ 1 � T1 � kN
with high probability a1. In addition, k1 cannot be selected as noise eigenvalue kmþ 1.

3 Noise Variance Estimation Algorithm

3.1 Bounded Estimator for Noise Variance

Without requiring the knowledge of signal, the threshold T1 can provide good detec-
tion performance for finite s ; N even when the ratio N=s is not too large. Based on this
result, more accurate estimation can be obtained by averaging all elements in S2.
Hence, the maximum likelihood estimator of r2n is

r̂2n ¼
1

N � m

XN
j¼mþ 1

kj ð10Þ

In the low dimensional setting where N is relatively small compared with s, the
estimator r̂2n is consistent and unbiased as s ! 1. It follows asymptotically normal
distribution as

ffiffi
s

p
r̂2n � r2n

 �! Nð0; t2Þ; t2 ¼ 2r4n

N � m
ð11Þ

When N is large with respect to the sample size s, the sample covariance matrix
shows significant deviations from the underlying population covariance matrix. In this
context, the estimator r̂2n might have a negative bias, which leads to overestimation of
true noise variance [22, 23]. We investigate the distribution of another eigenvalue ratio.
Namely, the ratio of the maximum eigenvalue to the trace of the eigenvalues is

U ¼ kmþ 1

1=ðN � mÞ � trðRwÞ ¼
kmþ 1

1
.
ðN � mÞ �PN

j¼mþ 1 kj
ð12Þ

According to the result in (4), the ratio U also follows a Tracy-Widom distribution
as both N; s ! 1. The denominator in the definition of U is distributed as an inde-
pendent r2nv

2
N

�
N random variable, and thus has Eðr̂2nÞ ¼ r2n and Varðr̂2nÞ ¼ 2r4n

�
ðN � sÞ. It is easy to show that replacing r2n by r̂2n results in the same limiting distri-
bution in (4). Then we have
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Pr
kmþ 1

�
r̂2n � l

n
� z

� �
! FTW1ðzÞ ð13Þ

Unfortunately, the asymptotic approximation present in (13) is inaccurate for small
and even moderate values of N [24]. This approximation is not a proper distribution
function. The simulation observations imply that the major factor contributing to the
poor approximation is the asymptotic error caused by the constant n [24]. Therefore, a
more accurate estimate for the standard deviation of kmþ 1

�
r̂2n will provide a significant

improvement. For finite samples, we have

E
kmþ 1

r2n

� 	
¼ l ; E

k4mþ 1

r4n

 !
¼ l2 þ n2 ð14Þ

Using these asymptotic results, we get the corrected deviation

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � s

2þN � s ðn
2 � 2

N � s l
2Þ

r
ð15Þ

Note that this formula in (15) has corrected the overestimation in the high
dimensional setting. thus the better approximation for the probabilities of the ratio is

Pr
kmþ 1

�
r̂2n � l

n0
� z

� �
� 1� FTW1ðzÞ ð16Þ

The determination of the distribution for the ratio U is devoted to the correction of
the variance estimator. In order to complete the detection of the large deviations of the
initial estimator r̂2n, we provide a procedure to set the threshold T2. Based on the result
in (16), an approximate expression for the overestimation probability is given by

Pr
r̂2n

kmþ 1
� T2

� �
¼ Pr

kmþ 1
�
r̂2n � l

n0
� 1=T2 � l

n0

� �
� 1� FTW1ð1=T2 � l

n0
Þ ð17Þ

Hence, for a desired probability level a2, the above equation can be numerically
inverted to find the decision threshold. After some simplified manipulations, we obtain

T2¼ 1
n0 � F�1

TW1ð1� a2Þþ l
ð18Þ

Asymptotically, the spike eigenvalue kmþ 1 converges to the right edge of the
support r2nð1þ

ffiffiffiffiffiffiffiffi
N=s

p Þ as N ; s go to infinity. According to the expression in (18), this
function turns out to have a simple approximation T2 ¼ 1=l in the high probability
case. Then the upper bound T2 � kmþ 1 for the known r̂2n yields a bias estimation.
Finally, the following expectation holds true:
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E
l � T2 � kmþ 1

1þ ffiffiffiffiffiffiffiffi
N=s

p
 !

� r2n 	 r̂2n ð19Þ

By analyzing the statistical result in (19), the correction for T2 � kmþ 1 can be
approximated as the better estimator than r̂2n because this bias-corrected estimator is
closer to the true variance under the high dimensional conditions. If r̂2n can satisfy the
requirement of no excess of the bound T2 � kmþ 1, the sample eigenvalues are consistent
estimates of their population counterparts. Hence, the optimal estimator is given by

r̂2
 ¼ min r̂2n ;
l � T2 � kmþ 1

1þ ffiffiffiffiffiffiffiffi
N=s

p
( )

ð20Þ

3.2 Implementation

Based on the construction of two thresholds, we propose a noise estimation algorithm
for dictionary learning as follows:

Algorithm 1 Noise Estimation for Dictionary Learning
1: Input: Noisy dictionary sD , the dimension N , the sample number s , the 

probability levels 1α and 2α . 
2: Compute the eigenvalues { } 1

N
i iλ = of the sample covariance matrix S∑ , and 

order 1 2 ... Nλ λ λ≥ ≥ ≥ . 
3: Compute two thresholds 1T and 2T . 
4: for 1: 1Ni −= do

if 11 Ni Tλ λ+ ≤ ⋅ then
Obtain the location 1 1m i+ = + , 1 1m iλ λ+ += and break

end if
end for

5: Estimate an initial noise variance 2ˆnσ using (10).
6: Compare the values of two estimators of (20) and select the minimum as an

optimal estimator 2σ̂ ∗ . 
7: Output: noise level estimation 2 2= ˆnσ σ∗ . 

4 Numerical Experiments

The proposed estimation method is evaluated on two benchmark datasets: Kodak [7]
and TID2008 [9]. The subjective experiment is to compare our method with three state-
of-the-art estimation methods by Liu et al. in [8], Pyatykh et al. in [9] and Chen et al. in
[11], which are relevant in SVD domain. The testing images are added to the
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independent white Gaussian noise with deviation level 10 and 30, respectively. We set
the probabilities a1 ; a2 ¼ 0:97 and choose N ¼ 256, s ¼ 3. In general, a higher noise
estimation accuracy leads to a higher denoising quality. We use the K-SVD method to
denoise the images [3]. Figures 1 and 2 show the results using our method outperform
other competitors. Moreover, our peak signal-to-noise ratios (PSNRs) are nearest to
true values, 32.03 dB and 27.01 dB, respectively.

To quantitatively evaluate the accuracy of noise estimation, the average of standard
deviations, mean square error (MSE), mean absolute difference (MAD) are computed
by randomly selecting 1500 image patches from 20 testing images. The results shown
in Table 1 indicate that the proposed method is more accurate and stable than other
methods. Next, we compare our optimal estimator r̂2
 with r̂2n and other two existing
estimators in the literatures. The simulated realization of a sample covariance matrix is
followed a Gaussian distribution with different variances. As presented in Table 2, the
performance of r̂2
 is invariably better than other estimators. To test robustness of our
estimation method, we further obtain the empirical probabilities of the estimated
eigenvalues at typical confidence levels. Figure 3 illustrates that two asymptotic
bounds can achieve very high success probabilities.

(a) Original image (b) Noisy image (28.14 dB) (c) Liu's (30.32 dB)

(d) Pyatykh's (33.99 dB) (e) Chen's (31.16 dB)  (f) Proposed (31.95 dB)

Fig. 1. Denoising results on the Woman image using K-SVD.
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(a) Original image (b) Noisy image (18.91 dB) (c) Liu's (26.34 dB)

(d) Pyatykh's (27.41 dB) (e) Chen's (26.48 dB)  (f) Proposed (26.91 dB)

Fig. 2. Denoising results on the House image using K-SVD.

Table 1. Estimation results of different methods (Best results are highlighted).

rn Liu’s [8] Pyatykh’s [9] Chen’s [11] Proposed

1 2.18 1.34 0.59 1.16
5 7.30 3.83 5.41 5.27
10 13.86 7.19 11.83 10.19
15 16.72 13.91 15.92 15.17
20 20.99 18.75 20.62 19.90
25 26.64 23.29 24.34 25.06
30 32.38 27.27 31.98 30.12
MAD 3.30 1.59 0.98 0.15
MSE 4.84 3.22 1.39 0.03

Table 2. Estimation results of four estimators (Best results are highlighted).

rn r̂median [23] r̂US [13] r̂n r̂

1 1.27 1.99 1.14 1.06
5 4.59 5.27 6.24 5.18
10 8.76 11.28 9.97 9.94
15 15.22 14.29 16.17 14.93
20 20.85 19.14 20.96 20.10
25 25.87 25.98 26.31 25.28
30 30.59 30.37 31.16 30.11
MAD 0.64 0.78 0.86 0.12
MSE 0.52 0.72 0.99 0.02
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5 Conclusions

In this paper, we have shown how to infer the noise level from a trained dictionary. The
eigen-spaces of the signal and noise are transformed and separated well by determining
the eigen-spectrum interval. In addition, the developed estimator can effectively
eliminate the estimation bias of a noise variance in high dimensional context. Our noise
estimation technique has low computational complexity. The experimental results have
demonstrated that our method outperforms the relevant existing methods over a wide
range of noise level conditions.

References

1. Engan, K., Aase, S., Husoy, J.: Method of optimal directions for frame design. In:
Proceedings of International Conference on Acoustics, Speech, and Signal Pattern Process
(ICASSP), pp. 2443–2446 (1999)

2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm designing overcomplete
dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322
(2006)

3. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

4. Sahoo, S., Makur, A.: Enhancing image denoising by controlling noise incursion in learned
dictionaries. IEEE Signal Process. Lett. 22(8), 1123–1126 (2015)

5. Li, D., Zhou, J., Tang, Y.: Noise level estimation for natural images based on scale-invariant
kurtosis and piecewise stationarity. IEEE Trans. Image Process. 26(2), 1017–1030 (2017)

6. Hashemi, M., Beheshti, S.: Adaptive noise variance estimation in BayesShrink. IEEE Signal
Process. Lett. 17(1), 12–15 (2010)

7. Tang, C., Yang, X., Zhai, G.: Noise estimation of natural images via statistical analysis and
noise injection. IEEE Trans. Circuit Syst. Video Technol. 25(8), 1283–1294 (2015)

8. Liu, W., Lin, W.: Additive white gaussian noise level estimation in SVD domain for images.
IEEE Trans. Image Process. 22(3), 872–883 (2013)

9. Pyatykh, S., Hesser, J., Zhang, L.: Image noise level estimation by principal component
analysis. IEEE Trans. Image Process. 22(2), 687–699 (2013)

10. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising.
IEEE Trans. Image Process. 22(12), 5226–5237 (2013)

Fig. 3. Empirical probabilities of exact noise eigenvalue estimation.

266 R. Chen and C. Yang



11. Chen, G., Zhu, F., Heng, P.: An efficient statistical method for image noise level estimation.
In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 477–485
(2015)

12. Donoho, L., Johnstone, I.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81,
425–455 (1994)

13. Ulfarsson, M., Solo, V.: Dimension estimation in noisy PCA with SURE and random matrix
theory. IEEE Trans. Signal Process. 56(12), 5804–5816 (2008)

14. Gribonval, R., Jenatton, R., Bach, F.: Sparse and spurious: dictionary learning with noise and
outliers. IEEE Trans. Inf. Theory 61(11), 6298–6319 (2015)

15. Jung, A., Eldar, Y., Gortz, N.: On the minimax risk of dictionary learning. IEEE Trans. Inf.
Theory 62(3), 1501–1515 (2016)

16. Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components
analysis. Ann. Stat. 29(2), 295–327 (2001)

17. Chiani, M.: On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart
random matrices lie within an interval. IEEE Trans. Inf. Theory 63(7), 4521–4531 (2017)

18. Karoui, N.E.: A rate of convergence result for the largest eigenvalue of complex white
Wishart matrices. The Annals of Probability 34(6), 2077–2117 (2006)

19. Ma, Z.M.: Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white
Wishart matrices. Bernoulli 18(1), 322–359 (2012)

20. Marcenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices.
Math. USSR-Sb. 1(4), 457–483 (1967)

21. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices, 2nd edn.
Springer, New York (2010). https://doi.org/10.1007/978-1-4419-0661-8

22. Kritchman, S., Nadler, B.: Determining the number of components in a factor model from
limited noisy data. Chem. Int. Lab. Syst. 94(1), 19–32 (2008)

23. Passemier, D., Li, Z., Yao, J.: On estimation of the noise variance in high dimensional
probabilistic principal component analysis. J. R. Stat. Soc. B 79(1), 51–67 (2017)

24. Nadler, B.: On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart
matrix. J. Multivar. Anal. 102, 363–371 (2011)

Noise Level Estimation for Overcomplete Dictionary Learning 267

http://dx.doi.org/10.1007/978-1-4419-0661-8


Perceptual Compressive Sensing

Jiang Du, Xuemei Xie(B), Chenye Wang, and Guangming Shi

School of Artificial Intelligence, Xidian University, Xi’an 710071, China
jiangdu@ieee.org, xmxie@mail.xidian.edu.cn, cywang dd@163.com,

gmshi@xidian.edu.cn

Abstract. Compressive sensing (CS) works to acquire measurements
at sub-Nyquist rate and recover the scene images. Existing CS methods
always recover the scene images in pixel level. This causes the smooth-
ness of recovered images and lack of structure information, especially at
a low measurement rate. To overcome this drawback, in this paper, we
propose perceptual CS to obtain high-level structured recovery. Our task
no longer focuses on pixel level. Instead, we work to make a better visual
effect. In detail, we employ perceptual loss, defined on feature level, to
enhance the structure information of the recovered images. Experiments
show that our method achieves better visual results with stronger struc-
ture information than existing CS methods at the same measurement
rate.

Keywords: Compressive sensing · Perceptual loss
Fully convolutional network · Low-level computer vision
Semantic reconstruction

1 Introduction

Nowadays, information is one of the most important component in human world.
Visual information takes up most of the percentage. There are billions of images
and videos around our daily life. Computer vision has underwent huge resur-
gence in recent years, since deep learning has made a significant difference in
this field. Researchers have shown that deep learning has made breakthrough
achievements in the following two broad categories. The first category is the
high-level computer vision tasks. For example, image and video classification
or recognition [26,27], object detection [8,29], image caption [19], and visual
tracking [21]. The second category is low-level reconstruction tasks. For exam-
ple, denoising [17,35], super-resolution [16], style transfer [13], and optical flow
estimation [10].

Researches on inverse problems in imaging [20,22] have been carried on for
decades, which cover various low-level computer vision tasks. Compressive sens-
ing (CS) [2,3,5] is a typical inverse problem in imaging. Conventional CS works
to recover the signal by optimization algorithms [4,7]. However, this model is
hard to be implemented and costs much computational complexity. The appli-
cation of deep neural networks in inverse problems in imaging makes it possible
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 268–279, 2018.
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that the CS measurements can be recovered real-time. Data-driven CS [14,24,25]
learns the recovery network from the training data. Adp-Rec [36] jointly train
the coder-decoder and brings significant improvement on reconstruction qual-
ity. Fully convolutional measurement network (FCMN) [6] firstly measures and
recovers full images. However, all the above methods focus on pixel level, and
ignore the high-level structure information. This makes the reconstructed results
look smooth and have unsatisfactory visual effect. To overcome the drawback,
we consider to add high-level perceptual information to CS. So the question is,
how to add high-level perceptual information on the low-level CS task.

Design of loss function is a promising solution for perceptual recovery. Study
on loss functions for low-level computer vision tasks has provided a variety of
approaches. For example, mean square error (MSE) loss, L1 loss [17], NRMSE
loss [33] and constraint loss [39]. Recently, perceptual loss [13] has been proposed
and employed in many reconstruction tasks, such as style transfer [13] and super-
resolution [16]. They are a combination of low-level detailed information and high
level semantic information. Perceptual loss is widely used to achieve these goals.
It is because perceptual loss is defined in feature space, which can convert the
ability of extracting high-level semantic information to recovery network. Thus,
the recovered images will contain rich structure information. Inspired by the
above applications, we propose perceptual CS, which focuses more on sensing
and recovering structure information. We use FCMN [6] as base network to
measure and recover scene images, and adopt perceptual loss to train it. We
surprisingly find that this framework is capable of capturing and recovering the
structure information, especially at extremely low measurement rate, where the
measurements can merely contain very limited amount of information.

The contribution of this paper is that, we propose perceptual CS, which
can measure and recover the structure information of scene images. It should
be noted that, only one deconvolution layer and one Res-block are used in our
framework as an illustration. One can employ a deeper network if necessary.

Moreover, perceptual CS indicates an universal architecture. One can change
the loss network using pre-trained or dynamic feature extractors for more specific
tasks. In this paper, we use VGG [32] as an example. Our code is available on
github1 for further reproduction.

The organization of the rest part of this paper is as follows. Section 2 intro-
duces some related works of this paper. Section 3 describes the technical design
and theoretical analysis of the proposed framework. Section 4 presents experi-
mental results of perceptual CS and gives detailed analysis. Section 5 draws the
conclusion.

2 Related Work

2.1 Compressive Sensing

CS [5,15,34] proves signal can be reconstructed after being sampled at sub-
Nyquist rates as long as the signal is sparse in a certain domain. Reconstructing
1 https://github.com/jiang-du/Perceptual-CS.

https://github.com/jiang-du/Perceptual-CS
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signal from measurements is an ill-posed problem. Traditional CS usually solves
an optimization problem, which leads to high computational complexity.

Recently, deep neural networks (DNNs) has been applied to CS tasks [6,14,
23–25,36]. These DNN-based methods can be divided into two categories depend-
ing on whether measurement and reconstruction process are trained jointly. The
first category trains the recovery network while the measurement part is fixed,
like SDA [25], ReconNet [14], and DeepInverse [24]. SDA [25] first applies deep
learning approach to solve the CS recovery problem, which uses fully-connected
layers in the recovery part. ReconNet [14] uses a fully-connected layer along with
convolutional layers to recover signals block by block. While, DeepInverse [24]
uses pure convolutional layers. The random Gaussian fashion of the measurement
part would mismatch the learned recovery part.

The second category jointly trains the measurement part and the recovery
part, such as Deepcodec [23], Adaptive [36], and FCMN [6]. These methods
totally overcome the problem that the measurement part is independent from
the recovery part. Deepcodec [23] is a framework where both measurement and
approximate inverse process are learned end-to-end by a deep fully-connected
encoder-decoder network. In [36], a fully-connected layer as the measurement
matrix along with a super-resolution network as the recovery part is trained.
FCMN [6] firstly uses a fully convolutional network where the measurement part
is implemented with an overlapped convolution operation. All these methods
recover the scene image on pixel level. They ignore the structure information of
images.

2.2 Perceptual Loss

Recently, perceptual loss [13] is widely used in many image reconstruction
tasks [9,11,13,16,30,38]. It can recover the image with better visual effect since
it is defined on feature space. Typically, perceptual loss calculates the Euclidean
distance between the features maps of the reconstructed images and the labels
from the same layer of the same pre-trained classification network. Perceptual
loss reflects the similarity in the feature level between the label and output
images, which makes the reconstructed images retain high-level structure infor-
mation. In contrast, per-pixel loss focuses on similarity in pixel level, which only
preserves low-level pixel information.

Perceptual loss achieves more excellent performance than per-pixel loss in
most of image restoration tasks. For example, Johnson et al. [13] use percep-
tual loss for style transfer and super resolution. The output images have sharper
edges compared to per-pixel loss. SRGAN [16] trained by perceptual loss gener-
ates more photo-realistic super-resolved images than by MSE loss. When used
in image inpainting [30], perceptual loss produces satisfactory results due to
the addition of high-level context. Additionally, perceptual loss helps to remain
finer details for image editing [38]. Inspired by the advantages of perceptual loss
in preserving structure and detail, we attempt to apply it to CS field and it
accordingly performs well.



Perceptual Compressive Sensing 271

3 Perceptual CS Framework

In this section, we mainly introduce the technical design of the perceptual CS
framework. The architecture is shown in Fig. 1. It consists of two parts: com-
pressive sensing network and perceptual loss network. The compressive sensing
network originally performs reconstruction in pixel-wise manner. With the per-
ceptual loss network added, the perceptual CS network preserves the structure
information of the recovered images. With the help of perceptual recovery, the
proposed network is able to acquire high-level perceptual information.

The compressive sensing network measures and recovers the full scene images.
The full image processing fashion provides an enough receptive field that makes
it possible to perform perceptual reconstruction. While, in the perceptual loss
network, we employ a classification network, VGG19, as an auxiliary network.
It plays the role of extracting the perceptual information of the images.

Conv Deconv

Res-block

+

Label Reconstruction

Back propagation

Preliminary 
reconstruction Residual

VGG 19

VGG 19

Error

Fig. 1. The architecture of perceptual CS network.

3.1 Full Image Compressive Sensing Network

In most existing CS methods, the scene image is measured and recovered block by
block, and each block is reshaped into a column vector. This breaks the structure
of the full image. Besides, the computational complexity of the existing methods
will extremely increase when the size of the image becomes larger. For example,
when an image with the size of n×n is measured, the memory consumption of the
sensing matrix can be up to S(n) = O(n4). Thus, it is nearly impossible to design
a large sensing matrix, let alone measuring the full image. This is because the
mapping from the scene image to the measurements is fully-connected, leading
to an extremely large-scale parameter nightmare.

Inspired by fully convolutional measurement network (FCMN) [6], we employ
a fully convolutional architecture to measure and recover the scene images in the
proposed framework, which can get rid of the disaster of the exploding number
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of parameters. The first convolution layer plays the role of measurement matrix,
with kernel size 32 and stride 16. This indicates that the size of measurement
matrix is 32 × 32 and the sliding step is 16 pixels. The deconvolution layer right
after the measurement part transforms the dimension of feature map back to the
same as input image. Moreover, the fully convolutional architecture can preserve
the correspondence among pixels (instead of reshaping into column vector). In
this way, block-effect has been largely removed in the recovered images due to the
overlapped convolutional measurement. This preserves the structure information
of the whole image. Furthermore, the full image method makes it possible to use
perceptual loss for semantic reconstruction.

Although the convolution and deconvolution layers can recover the image,
for better visual effect, we enhance the proposed framework with residual learn-
ing. In detail, we add one residual block and it works quite well, as is shown in
Fig. 2(b). One can add more residual blocks for further improvements if neces-
sary.

(a) Original (b)FCMN [6] (c) VGG2 2 (d) VGG3 4

Fig. 2. The original image ‘head of a peasant woman with white cap’ by Van Gogh
and the reconstructed images with different methods at 4% measurement rate. Here
the proposed method uses the conv2 2 and conv3 4 of VGG19 [32] as different scale of
loss respectively.

3.2 Perceptual Reconstruction for Compressive Sensing

In the proposed network, we focus on the perceptual recovery. In the classic CS
task, the recovery network approximates the error in the pixel-wise space. To
extract the structure information, we recover the scene image in feature-level
space. Instead of MSE loss, we consider the perceptual loss, which focuses on
perceptual recovery.

MSE loss: In classic CNN-based CS, the loss function is usually defined with
pixel-wise loss:

lpixel(w) = ‖f{x,w} − x‖22 . (1)

This pixel-wise loss will force the image to have the minimized average Euclidean
distance between the reconstruction images f{x,w} and the labels x. Here, w
represents the parameters of the whole network, including the measurement and
the recovery parts. Although MSE loss in (1) can help to achieve the recon-
structed images with high peak signal-to-noise ratio (PSNR), the reconstructed
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images usually look smooth and the structure information is not clear. We can
see in Fig. 2(b) that the face and the hat of the person is very smooth compared
with the original image in Fig. 2(a). Especially the wrinkle on the face cannot
be clearly seen.

Perceptual Loss: Considering the current popular classification network works
by extracting the features in an image, we can take this advantage into our
proposed method. Thus, we apply the perceptual loss. It is formulated as

lφ,j
feat(w) = ‖φj(f{x,w}) − φj(x)‖22 , (2)

where φj(x) denotes the feature map of the j-th layer of VGG19 with the input
image x. Different from (1), a typical kind of perceptual loss is defined with the
(squared, normalized) Euclidean distance between the feature maps generated
from the reconstructed image and the label. Actually, when applying CS at a
very low measurement rate, we do not care much about the detailed texture of
it. Correspondingly, we emphasize the importance of the structural information.
As is shown in Fig. 2(c) and (d), the structure information recovered better,
especially the hat of the person has richer structure information compared with
Fig. 2(b).

In practical, we define the loss function on VGG2 2 or VGG3 4 of VGG19
(actually pooling 2 or pooling 3) as examples. The results can be addressed in
Fig. 2(c) and (d). The feature map of bottom layers contains detailed low-level
information and the top layers have more high-level semantic features. We can
also choose other layers by different requirements. In this paper, We do not apply
perceptual loss by too high level layers because in terms of compressive sensing,
higher level drops too much information that it is nearly impossible to inverse,
even if pre-trained.

4 Experiments with Analysis

In this section, we conduct the experiments to illustrate the performance of the
proposed perceptual CS framework. We test our framework with a standard
dataset [14] containing 11 grayscale images. We also compare the reconstruction
results with some typical CS methods. Furthermore, we take some reconstruc-
tion results as examples to make a detailed analysis of the performance of the
proposed method.

Experiment Setup. The learning rate is set to 10−8 when perceptual loss is
defined on VGG2 2, and 10−9 when perceptual loss is defined on VGG3 4. The
bench size is set to 5 while training. For each measurement rate, the iteration
time is 106. We use the caffe [12] framework for network training and MATLAB
for testing. Our computer is equipped with Intel Core i7-6700K CPU with fre-
quency of 4.0 GHz, 4 NVidia GeForce GTX Titan XP GPUs, 128 GB RAM, and
the framework runs on the Ubuntu 16.04 operating system. The training dataset
consists of 800 pieces of images with size 256 × 256 down sampled and cropped
from 800 images in DIV2K dataset [1].
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Results with Analysis. The following is the analysis of the experimental
results at different measurement rates.

(a) Original (b) ReconNet(18.93dB) (c) Adp-Rec(21.67dB)

(d) FCMN(22.49dB) (e) Proposed VGG2 2

(19.38dB)
(f) Proposed VGG3 4

(18.07dB)

Fig. 3. Boats at measurement rate 1%. (b) and (c) are of block-wise. (d) is of full-
image. They all use MSE loss. (e) and (f) are improved by using perceptual loss [2].
Perceptual CS brings stronger structure information compared with FCMN.

The explanation from Fig. 3 at measurement rate 1% is as follows.

(1) Block effect occurs in Fig. 3(b) and (c) by block-wise methods such as Recon-
Net [14] and Adp-Rec [36].
Based on the standard ReconNet [14], the improved ReconNet [18] adds
several tricks such as adaptive measurement and adversarial loss. Its perfor-
mance is even lower than Adp-Rec [36].

(2) Figure 3(d) has no block artifacts in FCMN [6] where fully-convolutional
measurement is employed. This work achieves the state-of-the-art results in
terms of PSNR and SSIM.
In this experiment, all existing CS-based image reconstruction works rely
on MSE loss. While, FCMN [6] makes perceptual loss promising.

(3) Perceptual loss in Fig. 3(e) and (f) enhances structure information, even if
PSNR is lower compared with Fig. 3(d).

The explanation of measurement rate at 4% in Fig. 4 is as follows:

(1) Block effect also occurs in Fig. 4(c) in DR2-Net [37].
DR2-Net achieves highest PSNR among random Gaussian methods, since it
adds several Res-blocks that fully convergence in the reconstruction stage.
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(a) Original (b) ReconNet(18.19dB) (c) DR2-Net(18.93dB)

(d) FCMN(22.52dB) (e) Proposed VGG2 2

(18.25dB)
(f) Proposed VGG3 4

(16.35dB)

Fig. 4. Monarch at measurement rate 4%. (b) and (c) are of block-wise. (d) is of full-
image. They all use MSE loss. (e) and (f) are improved with perceptual loss. They have
stronger structure information than the state-of-the-art result in FCMN. Specially, we
can see in the red circle of (f), compared with (a) and (d), that even blurry image can
be enhanced. (Color figure online)

(2) The method with adaptive measurement for Fig. 4(d) adopts one Res-block,
achieving the highest PSNR. The comparison among several typical methods
including DR2-Net is in Fig. 4, where FCMN [6] with full image gets the best
result in terms of PSNR.
It should be pointed out that only one Res-block is used in both FCMN [6]
and the proposed framework in this paper. One can add more Res-blocks
for further improvement.

(3) With just one Res-block, perceptual loss in Fig. 4(e) and (f) works well,
which improves FCMN [6]. Structure information is kept. In some case,
even wake structure can become strong (see Fig. 4(f) compared to Fig. 4(a)
and (d)).

It should be noted that, even if PSNR is worse with perceptual loss, the
structure information is clearly reconstructed.

Evaluation of Perceptual CS. To evaluate the performance of the proposed
method, we evaluate quality of the reconstructed images with PSNR and SSIM.
Furthermore, we also use Mean Opinion Score (MOS) [28] to test the visual effect
of these methods. In this metric, an image is scored by 26 volunteers and the
final score is the average value. The quality ranking is represented by scores from
1 to 5, where 1 denotes lowest quality and 5 denotes the highest. All the test
images are ranked randomly before being scored and they are displayed group
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Table 1. Mean PSNR, SSIM and MOS of different methods

MR=1% ReconNet DR2-Net Adp-Rec FCMN VGG2 2 VGG3 4

PSNR 17.27 17.44 20.32 21.27 18.30 16.80

SSIM 0.4083 0.4291 0.5031 0.5447 0.2478 0.2565

MOS 1.0734 1.1188 1.8496 2.6328 2.6818 2.9510

MR=4%

PSNR 19.99 20.80 24.01 23.87 19.38 16.72

SSIM 0.5287 0.5804 0.7021 0.7042 0.3522 0.4729

MOS 1.5979 1.7237 3.0489 3.4230 3.4755 3.3566

VGG2_2 VGG3_4

ReconNet

FCMNAdp-Rec

Original

1%

ReconNetOriginal

VGG2_2 VGG3_4

FCMN

4%

Adp-Rec

Fig. 5. The reconstructed results of ReconNet [14], Adp-Rec [36], FCMN [6], and the
proposed method using the conv2 2 and conv3 4 of VGG19 [32] with measurement rate
1% and 4% and their corresponding original scene image.

by group. Each group has six reconstruction images, in different methods. All
participants take this test on the same computer screen, from the same angle
and distance. Here the distance from the screen to the tested persons is 50 cm
and the eyes of those persons are of the same height of the center of the screen.

The detailed comparison results of mean PSNR, SSIM and MOS is shown in
Table 1. we can draw the following conclusion. Our method achieves the highest
MOS rating. The PSNR and SSIM value of typical methods is higher, since their
loss function is defined as the Euclidean distance between the output and label.
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While, perceptual CS concentrates more on the visual effect. Thus, it is helpful
for MOS, instead of PSNR and SSIM.

Moreover, we give some examples of color images. In terms of color channels,
we measure and recover the RGB channels respectively, and then combine them
to a whole color image. The results of perceptual CS with color images are shown
in Fig. 5. Of course, we give the comparison with existing methods. We can see
obviously from the figure that the visual effect of perceptual CS is quite well.

In terms of hardware implementation, we follow the approach of the existing
work proposed in [31] in which sliding window is used to measure the scene.
Similarly, we can replace the random Gaussian measurement matrix with the
learned pre-defined parameters in the convolution layer of the measurement net-
work. The reconstruction part is not on optical device, so only the measurement
part needs to be implemented with the approach above.

5 Conclusion

In this paper, we propose perceptual CS for sensing and recovering structured
scene images. The proposed framework managed to recover structure information
from CS measurements. Our work is of profound significance, which may open
a door towards alternative to semantic sensing and recovery.
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Abstract. One of the most challenging problems in the domain of 2-
D image or 3-D shape is to handle the non-rigid deformation. From
the perspective of transformation groups, the conformal transformation
is a key part of the diffeomorphism. According to the Liouville Theo-
rem, an important part of the conformal transformation is the Möbius
transformation, so we focus on Möbius transformation and propose two
differential expressions that are invariable under 2-D and 3-D Möbius
transformation respectively. Next, we analyze the absoluteness and rela-
tivity of invariance on them and their components. After that, we propose
integral invariants under Möbius transformation based on the two differ-
ential expressions. Finally, we propose a conjecture about the structure
of differential invariants under conformal transformation according to
our observation on the composition of above two differential invariants.

Keywords: Conformal transformation · Möbius transformation
Differential invariant · Integral invariant

1 Introduction

One of the most challenging problems in the domain of 2-D image or 3-D shape
is to handle the non-rigid deformation, especially in the situation of anisotropy,
which is universal in the real world. In the viewpoint of transformation groups,
the isometric transformation is a prop subgroup of the conformal transformation,
which is a prop subgroup of the diffeomorphism. Obviously, the anisotropic non-
rigid transformation exceeds the boundary of isometric transformation and con-
tains conformal transformation. Based on the Erlangen program of Klein, geom-
etry is a discipline that studies the properties of space that remain unchanged
under a particular group of transformation. In order to solve the anisotropic
transformation problem, it is necessary to find the invariants under the confor-
mal transformation.

The original motivation of conformal mapping is how to flatten the map of
globe, and the Mercator projection produce an angle-preserving map that is
very useful for navigation. More generally, the conformal geometry focuses on
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 280–291, 2018.
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Fig. 1. A brief flowchart of the method.

the shape in which the only measure is angle instead of usually length. The
descriptions of conformal mapping contain angle preservation [5,12,26], metric
rescaling [21,27], preservation of circles [14,28], etc. Some key ideas reside in
the conformal surface geometry are Dirac equation [6], Cauchy-Riemann equa-
tion [22], Möbius transformations [27,28], Riemann mapping [9,10,33,35], Ricci
flow [34], etc. The conformal geometry lies between the topology geometry and
the Riemannian geometry, it studies the invariants of the conformal transforma-
tion group. The conformal structures [9,10] based on the theories of Riemann
surfaces are invariants under conformal transformation. According to conformal
geometry [7], the shape factor [10] and conformal module [35] are conformal
invariants. Moreover, the conformal inner product [26] defined by an inner prod-
uct of function is also changeless under conformal transformation. According to
the Liouville Theorem [8,20], the Möbius transformation plays an important role
in conformal mapping.

The definition of Möbius transformation [25] shows that it is compounded
by a series of simple transformations: Translation, Stretching, Rotation, Reflec-
tion and Inversion. In the domain of invariants under translation, stretching and
rotation transformations, the Geometric moment invariants (GMIs) [32] and the
ShapeDNA [17] show a general method to generate the moment invariants; Hu
et al. [13] proposed a general construction method of surface isometric moment
invariants based on the intrinsic metric. In the domain of invariants under reflec-
tion transformation, the chiral invariants [36] show the moment invariants based
on the generating functions of ShapeDNA [17]. In the domain of invariants under
conformal transformation, Hu [12] proposed limited conformal invariants based
on geodesic tangent vectors. In the domain of invariants under Möbius trans-
formation, the expression (H2 − K)dA proposed by Blaschke [1] is proved to
be a conformal invariant by Chen [4]; based on the Gauss-Bonnet Theorem,
White [30] proposed that

∫
M

H2dA is a global conformal invariant if M is an ori-
ented and closed surface. The Gauss-Bonnet Theorem associates the differential
expression (Gaussian curvature) of the surface S with its topological invariant
χ(S) (the Euler’s characteristic). This great theorem motivates us to explore
the differential invariants under the Möbius transformation since the differen-
tial expressions play essential roles in some procedures of physics, mathematics,
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computer science and other fields. In the domain of differential invariants, rota-
tion and affine differential invariants were proposed by Olver [23] based on
the moving frame method; a special type of affine differential invariants was
presented by Wang et al. [29]; Li et al. [19] prove the existence of projective
moment invariants of images with relative projective differential invariants; the
research [18] on the relationship between differential invariants and moment
invariants show that they are isomorphic under affine transformation.

In this article, we study invariants by combining functional map [24] and the
derivatives of function (see Fig. 1). In Sect. 2, we show the background of this
paper. In Sect. 3, we propose the invariants under Möbius transformation. In
Sect. 4, we show another Möbius invariant from the functional view. Finally, we
propose a conjecture about the structure of differential invariants under confor-
mal transformation. The main contributions of this paper are as follows.

– We propose two differential expressions that are invariant under 2-D and 3-D
Möbius transformation respectively. According to the Liouville Theorem, the
3-D differential invariant is a conformal invariant.

– Based on the analysis on absoluteness and relativity of invariance about the
two differential expressions and their components, we propose integral invari-
ants under Möbius transformation.

– We propose a conjecture about the composition of differential invariants under
conformal transformation.

2 Notion and Background

2.1 Notion

The formulation in this paper is same with the functional maps framwork [24].
Assuming M and N are two manifolds, a bijective mapping T : M → N induces
the transformation TF : F(M,R) → F(N,R) of derived quantities, where F(·,R)
is scalar function defined on manifold. It means that any function f : M → R

have a counterpart function g : N → R and g = f ◦ T−1.
To make the invariants under Möbius transformation clear, we partially mod-

ify original definition and theorem in this paper with this formulation.

2.2 Theoretic Background

According to the Liouville Theorem [20], the only conformal mapping in Rn(n >
2) are Möbius transformation [11,15,25]. Furthermore, the Generalized Liouville
Theorem shows that any conformal mapping defined on D(D ∈ R

n
, n > 2) must

be a restriction of Möbius transformation.

Theorem 1 (Generalized Liouville Theorem [8]). Suppose that D, D′ are
domains in R

n
and that T : D → D′ is a homeomorphism. If n = 2, then T

is 1-quasiconformal if and only if T or its complex conjugate is a meromorphic
function of a complex variable in D. If n ≥ 3, then T is 1-quasiconformal if and
only if T is the restriction to D of a Möbius transformation, i.e., the composition
of a finite number of reflections in (n − 1)-spheres and planes.
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Next, we will show the common expressions of Möbius transformation in
different dimensions (n ≥ 2).

In the filed of complex analysis, a Möbius transformation could be expressed
as

T (z) =
az + b

cz + d
, (1)

where a, b, c, d, z ∈ C, ad − bc �= 0. Based on the Liouville Theorem [20], every
Möbius transformation in higher dimensions could be given with the form

T (x) = b +
γA(x − a)
‖ x − a ‖ε

2

, (2)

where x, a, b ∈ R
n, ε is 0 or 2, γ ∈ R and A ∈ Rn×n is an orthogonal matrix.

The choice of ε decides if T (x) contains inversion transformation, and the sign
of det(A) decides if T (x) contains reflection transformation.

More generally, a Möbius transformation could be composed of a series of
simple transformations (Fig. 2), the definition of Möbius transformation is as
below.

Fig. 2. Some elementary transformations of Möbius transformation.

Definition 1 (Möbius transformation [25]). A n-dimension Möbius trans-
formation is a homomorphism of R

n
(the one-point compactification of Rn), it is

a mapping T : R
n → R

n
that is a finite composition of the following elementary

transformations (x ∈ R
n):

(1) Translation: Ta(x) = x + a, a ∈ R
n.

(2) Stretching: Ss(x) = sx, s ∈ R and s > 0.
(3) Rotation: RotR(x) = Rx, R ∈ Rn×n and R is an orthogonal matrix.
(4) Reflection about plane P (a, t): Refa,t(x) = x − 2(aT x − t)a, a ∈ R

n is the
normal vector of P (a, t), t ∈ R is the distance from the origin to P (a, t).

(5) Inversion about sphere Sn−1(a, r): Ia,r(x) = a +
r2(x − a)
‖ x − a ‖22

, a ∈ R
n is the

inversion center, r is the inversion radius.
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3 Möbius Invariants

3.1 Inversion Invariants

In order to derive the differential invariant under inversion transformation Ia,r,
in the 2-D situation we assume that the TIa,r

map the function f(x, y) on domain
D ⊂ R

n
to g(u, v) on domain D′ ⊂ R

n
, where (u, v) = Ia,r(x, y) and g(u, v) =

f(x, y), this means that the coordinates transformations under Ia,r are as follows.

u = ax +
r2(x − ax)

(x − ax)2 + (y − ay)2
(3)

v = ay +
r2(y − ay)

(x − ax)2 + (y − ay)2
(4)

At the same time, it means that the coordinates transformations under I−1
a,r are

as follows.

x = ax +
r2(u − ax)

(u − ax)2 + (v − ay)2
(5)

y = ay +
r2(v − ay)

(u − ax)2 + (v − ay)2
(6)

Based on g(u, v) = f(x, y) and the Eqs. (5) and (6), we obtain the relation-
ships between the partial derivatives of g(u, v) and f(x, y) as follows.

gu = fxxu + fyyu (7)
gv = fxxv + fyyv (8)

guu = (fxxxu + fxyyu)xu + fxxuu + (fyxxu + fyyyu)yu + fyyuu (9)
guv = (fxxxv + fxyyv)xu + fxxuv + (fyxxv + fyyyv)yu + fyyuv (10)
gvv = (fxxxv + fxyyv)xv + fxxvv + (fyxxv + fyyyv)yv + fyyvv (11)

Then we obtain a 2-D equation under the inversion transformation, it is

guu + gvv

g2u + g2v
=

fxx + fyy

f2
x + f2

y

(12)

This means that
fxx + fyy

f2
x + f2

y

(13)

is a differential invariant under inversion transformation. We use the same
method in 3-D situation and obtain a differential invariant under the inversion
transformation, it is

fA + fB

(f2
x + f2

y + f2
z )2

(14)

where

fA = (fxx + fyy + fzz)(f2
x + f2

y + f2
z )

fB = f2
xfxx + f2

y fyy + f2
z fzz + 2fxfxyfy + 2fxfxzfz + 2fyfyzfz

(15)
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3.2 The Boundary of Invariance

We have shown that (13) and (14) are differential invariants under inversion
transformation. It is obvious that they are invariants under translation transfor-
mation. We prove that (13) and (14) are also differential invariants under rota-
tion, stretching and reflection transformations (see Appendix A1 for a proof).
According to the definition of Möbius transformation, we conclude that the
differential expression (13) is a differential invariant under 2-D Möbius transfor-
mation. Furthermore, with the Generalized Liouville Theorem we obtain that
(14) is a conformal invariant.

3.3 Absoluteness and Relativity of Invariance

If expression InvT is an invariant under transformation T , the transformed
expression Inv

′
T satisfies

Inv
′
T = WT · InvT (16)

where WT is an expression related to T . In this context, InvT is an absolute
invariant if WT ≡ 1, otherwise, InvT is a relative invariant. Base on the analysis
in 3.2, (13) is an absolute invariant under Möbius transformation and (14) is
an absolute invariant under conformal transformation. Next, we will show the
numerator and denominator of (13) or (14) are relative invariants.

In the derivation of 2-D inversion invariants, we obtain that WIa,r
= ||J ||−1

for the numerator and denominator of (13), this means

guu + gvv = ||J ||−1(fxx + fyy) (17)

g2u + g2v = ||J ||−1(f2
x + f2

y ) (18)

where |J | is the determinant of Jacobian matrix of transformation Ia,r, ||J || is
the absolute valve of |J |. In 3-D situation, we obtain WIa,r

= ||J ||− 4
3 for the

numerator and denominator of (14). In the stretching transformation, we obtain
WS = ||J ||−1 in 2-D situation, and WS = ||J ||− 4

3 in 3-D situation. We also
obtain that WT = 1 for the numerator and denominator of (13) or (14) under
translation, rotation and reflection transformations.

The result of absoluteness and relativity of invariance on (13) and (14) is
shown in Table 1.

3.4 Multiscale and Quantity

Assuming f(x, y) is a regular parameter surface S defined on D, if TF transform
f(x, y) defined on D to g(u, v) defined on D′ and g(u, v) = f(x, y), based on the
change of variable theorem [16] for multiple integrals and Table 1 we obtain that
∫∫

D′
(guu + gvv)dudv =

∫∫

D

WT (fxx + fyy)||JT ||dxdy =
∫∫

D

(fxx + fyy)dxdy

(19)
1 https://github.com/duduhe/Differential-and-integral-invariants-under-Mobius-

transformation/blob/master/Appendix.pdf.

https://github.com/duduhe/Differential-and-integral-invariants-under-Mobius-transformation/blob/master/Appendix.pdf
https://github.com/duduhe/Differential-and-integral-invariants-under-Mobius-transformation/blob/master/Appendix.pdf
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Table 1. The form of WT under transformations

Expression Translation Stretching Rotation Reflection Inversion

(13) and (14) 1 1 1 1 1

Numa/den of (13) 1 ||J ||−1 1 1 ||J ||−1

Num/denb of (14) 1 ||J ||− 4
3 1 1 ||J ||− 4

3

aNum means the numerator of fraction.
bDen means the denominator of fraction.

∫∫

D′
(g2u + g2v)dudv =

∫∫

D

WT (f2
x + f2

y )||JT ||dxdy =
∫∫

D

(f2
x + f2

y )dxdy (20)

where ||JT || is the area extension factor, so we obtain that
∫∫

D

(fxx + fyy)dxdy (21)

∫∫

D

(f2
x + f2

y )dxdy (22)

are integral invariants under 2-D Möbius transformation. In the same way, we
obtain that ∫∫∫

D

(f2
x + f2

y + f2
z )

3
2 dxdydz (23)

∫∫∫

D

(fA + fB)
3
4 dxdydz (24)

are integral invariants under 3-D conformal transformation.
Actually a differential expression InvT of function f defined on domain Df

accurately characterize f at point of Df , it provides extremely wide space to
describe the function f .

Multiscale of Invariants. Assuming Fi(InvT ) is a function of InvT , a
general method to construct descriptors in different scale is the integral of∫

Dj
Fi(Invf )dA on region Dj(Dj ⊂ Df ) with different size, and when Dj = Df

the result is a global invariant, for example, the Willmore energy
∫

(H2−K)dA [1]
applied in the theory of surfaces [31], digital geometry processing [2] and other
fields.

In this view, the only difference between invariant with specify-scale and
global invariant is the definition domain, the construction method of specify-
scale invariant is same with global invariant. The former could be elaborately
modified by selecting domain of integration in different applications.

Quantity of Invariants. A general method to construct a large number of
invariants is using various functions Fi(InvT ) with these functions are inde-
pendent of each other [3]. We just show a simple method to construct integral
invariants based on differential invariants and integral, in addition, more invari-
ant forms can be constructed with differential invariants. Next, we give a possible
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form of invariants under Möbius transformation:
∫∫

D

(fxx + fyy)n+1

(f2
x + f2

y )n
dxdy (25)

∫∫

D

(f2
x + f2

y )n+1

(fxx + fyy)n
dxdy (26)

∫∫∫

D

(fA + fB)
3
4 (n+1)

(f2
x + f2

y + f2
z )

3
2n

dxdydz (27)

∫∫∫

D

(f2
x + f2

y + f2
z )

3
2 (n+1)

(fA + fB)
3
4n

dxdydz (28)

if the denominators of (25), (26), (27), (28) are not zero.

3.5 Another Conformal Invariant

The expression (H2 − K)dA proposed by Biacchke [1] has been proved to be an
invariant under Möbius transformation [4,30]. It differs from our method in two
important respects: the domain of transformation and the number of functions
participated in invariants (see detailed expression at Appendix B).

4 Conjecture of Conformal Invariants

We have shown that (13) is a Möbius invariant and (14) is a conformal invariant.
However, the fascinating part of (13) or (14) is that the differential expressions

f2
x + f2

y or f2
x + f2

y + f2
z (29)

fxx + fyy or fxx + fyy + fzz (30)

f2
xfxx + f2

y fyy + f2
z fzz + 2fxfxyfy + 2fxfxzfz + 2fyfyzfz (31)

are differential invariants under rigid transformation. Based on this observation
and the fact that the differential expressions play important roles in transfor-
mation, we have a bold conjecture about the structure of differential invariants
under conformal transformation.

Conjecture: The differential invariants under conformal transformation are
composed of differential invariants under rigid transformation in a self-consistent
manner.

One of the possible self-consistent forms in n-dimensional Euclidean space
may be

n−1∑

i=1

∏ai

j=1 DRIj

(f2
x1

+ f2
x2

+ · · · + f2
xn

)n−1
(32)

where DRI is differential invariant under rigid transformation.
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5 Experimental Results

We choose a human face model from TOSCA database and treat the z-coordinate
value of vertexes of the triangle mesh as a function f defined on x-coordinate
and y-coordinate, i.e. z = f(x, y). With least square method, the coordinates of
a vertice and its 1-ring neighbors were used to estimate parameters in Taylor
expansion of f at the vertice; in order to guarantee the accuracy of descriptor
calculation, we only consider vertexes that are located inside the mesh and have
enough 1-ring neighbors. After that, we calculate a descriptor at the vertice
and the descriptor is composed by (13), (25) and (26) with different n(≥ 0).
Moreover, in integral invariants, the area Avert around a vertice is determined
by Mixed Voronoi cell.

We deform the definition domain of f with reflection, stretching, rotation
and inversion transformation(Fig. 3). In reflection transformation, a = (1, 0)
and t = 0; the s in stretching transformation is 2; in rotation transformation the
original data is rotated 90◦ counterclockwise; in inversion transformation the
inversion center is (0, 1000) and inversion radius is 500 (see more explanation
about experiments at Appendix C).

Fig. 3. Elementary transformations of Möbius transformation on human face model.

5.1 Stability of Invariants

In this experiment we choose n = 0, 1 and the integral invariants is calculated at
the local area of each vertex. After we obtain a 5-dimension descriptor at vertexes
of the five mesh in Fig. 3, we calculate the average error of each dimension of
the descriptor. In addition, we choose an isometric invariant at the vertex, the
Laplacian operator, to compare with above invariants. The average error of each
dimension is calculated by the following formula

Err =
1
N

∑

i

|InvT ;i − InvO;i|
|InvT ;i| + |InvO;i| × 100% (33)

where InvO;i is the value of invariant at vertex i on original data, InvT ;i is the
value of invariant at vertex i on deformed data, and N is the total number of ver-
texes participated in the calculation. The result of this experiment is in Table 2,
it shows that (13), (25) and (26) are invariants under Möbius transformations.
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Table 2. The average error of Laplacian operator and Möbius invariants.

Expression Reflection Stretching Rotation Inversion

fxx + fyy 0 6.00 × 101 4.82 × 10−13 8.82 × 101

fxx+fyy

f2
x+f2

y
0 1.20 × 10−12 1.33 × 10−12 1.98 × 10−3

∫∫
D

(fxx + fyy)dxdy 0 4.38 × 10−13 4.82 × 10−13 1.69 × 10−1

∫∫
D

(f2
x + f2

y )dxdy 0 1.21 × 10−12 1.27 × 10−12 1.69 × 10−1

∫∫
D

(fxx+fyy)
2

f2
x+f2

y
dxdy 0 1.24 × 10−12 1.47 × 10−12 1.70 × 10−1

∫∫
D

(f2
x+f2

y )2

fxx+fyy
dxdy 0 2.39 × 10−12 2.58 × 10−12 1.70 × 10−1

5.2 Discrimination of Invariants

In this experiment we use the 5-dimension descriptor of vertex at original to
match its corresponding vertex in the deformed mesh with nearest neighbor
rule, the metric between vertexes is standardized Euclidean distance. The error
rate (percentage) of this experiment is in Table 3.

Table 3. The error rate (percentage) of Möbius invariants in vertex matching.

Reflection Stretching Rotation Inversion

0 0 0 0.87

Fig. 4. Some situations where vertex matching fails.

In conformal deformation scenario, this experiment shows the potential of
Möbius invariants in matching task. Figure 4 shows some matching-fail situa-
tions, where the white point is the real position and the red point is the matching
vertex. The reason for most matching failures is that the original white vertex
and deformed red vertex have similar functional distribution environments.

6 Conclusions

In this article, we propose two differential invariants under 2-D and 3-D Möbius
transformation respectively, in particular, the 3-D expression is a conformal
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invariant according to the Liouville Theorem. After that, we analyze the abso-
luteness and relativity of invariance on the two expressions and their components,
and we show an integral construction method that targets to the multiscale and
quantity of invariant, the experimental results show that the invariants proposed
in this paper perform well. Furthermore, we show another Möbius invariant from
the functional view. Finally, we propose a conjecture about the structure of dif-
ferential invariants under conformal transformation.

This article shows a method of combining functional map and derivatives
of function to study conformal invariant, more research about the differential
invariants under conformal transformation is necessary in the future. In addi-
tion to practical application solutions based on Möbius invariants, questing the
generative structure of conformal differential invariant is also an interesting topic.
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2. Bobenko, A.I., Schröder, P.: Discrete Willmore flow (2005)
3. Brown, A.B.: Functional dependence. Trans. Am. Math. Soc. 38(2), 379–394 (1935)
4. Chen, B.Y.: An invariant of conformal mappings. Proc. Am. Math. Soc. 40(2),

563–564 (1973)
5. Corman, E., Solomon, J., Ben-Chen, M., Guibas, L., Ovsjanikov, M.: Functional

characterization of intrinsic and extrinsic geometry. ACM Trans. Graph. (TOG)
36(2), 14 (2017)
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Abstract. Choosing a proper classifier for one specific data set is impor-
tant in practical application. Automatic classifier selection (CS) aims to
recommend the most suitable classifiers to a new data set based on the
similarity with the historical data sets. The key step of CS is the extrac-
tion of data set feature. This paper proposes a novel data set feature that
characterizes the classification complexity of problems, which has a close
connection with the performance of classifiers. We highlight two contri-
butions of our work: firstly, our feature can be computed in a low time
complexity; secondly, we theoretically show that our feature has con-
nection with generalization errors of some classifiers. Empirical results
indicate that our feature is more effective and efficient than the existing
data set features.

Keywords: Automatic classifier selection · Data set feature
Data set similarity

1 Introduction

Classification is one of the most important tasks in machine learning. A great
number of classifiers were putted forward in recent decades to tackle various
kinds of classification problems arose in real world, such as support vector
machine, decision tree, AdaBoost, artificial neural networks, and so on. Does
there exist a classifier that significantly performs better than any other classi-
fiers on most of data sets? Some literatures have done in-depth investigations
on this problem. The No Free Lunch Theorem [1] tells us that there does not
exist such classifier. If classifier A1 outperforms A2 on some data sets, then there
must exist as many other data sets on which A2 outperforms A1. In [2], authors
analyzed the performances of three classifiers on some data sets and they did
not observe which classifier is significantly better than the others. Furthermore,
[3] conducted classification experiments using 179 classifiers and 121 data sets
and showed that there is no optimal classifier. These results indicate that classi-
fiers have preference on different types of data sets. Therefore, which classifier(s)
would be selected for a given classification problem?
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One idea is to use cross validation for all possible classifiers to find the best
classifier. However, this procedure is time-consuming. An efficient alternative
approach is automatic classifier selection based on data set similarity [4–7,10],
or classifier selection (CS) for short. We believe that the performances of classi-
fiers on similar data sets should be close. Since different data sets may vary in
sample size, dimensions, classes and attributes, how to measure the similarity
between data sets is a critical step of CS. The common method is to extract data
set feature by designing a feature extraction function (or called meta-learning)
and then compute the similarity between these features. There is an intrinsic
relationship between classifier performance and data set feature [9]. Therefore,
the recommendation heavily depends on the effectiveness of data set feature.
Furthermore, the feature should be calculated in a low time complexity, which
is a bottleneck of CS.

A number of data set features have proposed. These features are extracted
from different aspects of a data set: (i) statistics and information theory (SI)
[7,10]; (ii) model structure (MS) [5]; (iii) problem complexity (PC) [4]; (iv)
landmarking (LM) [6]. Especially, PC and LM characterize the classification
complexity of problems (we call it complexity) using a set of geometrical metrics
or basic classifiers. The complexity is expected to highly correlate to the per-
formances of classifiers [11]. In other words, the performances of classifiers on
data sets that have similar complexity should be close. Therefore, complexity
plays a vital role in CS. However, the data set features extracted by PC and LM
have two shortages: (i) time-consuming; (ii) no theoretical connection with per-
formances of classifiers. It is observed that PC and LM did not perform well in
some literatures [5,7], which means that they cannot characterize the complexity
accurately.

To remedy the aforementioned shortcomings of PC and LM, this paper uses a
set of geometrical and statistical metrics to describe the complexity of two-class
data set, then these metrics are united as data set feature. We use KNN classifier
as recommendation algorithm for CS. For multi-class classification problem, we
split the problem into two-class problems using one-vs-one strategy. Compared
with PC and LM, our work has improvements in two aspects: computation effi-
ciency and theoretical guarantee. Empirical results demonstrate the effectiveness
and efficiency of our method.

The rest of the paper is structured as follows. We briefly introduce the related
works in Sect. 2. Section 3 presents our data set feature. The classifier selection
algorithm is given in Sect. 4. Empirical investigations are discussed in Sect. 5 and
conclusions are drew in Sect. 6.

2 Related Work

The key problem of CS is feature extraction. To the best of our knowledge, there
are four kinds of features.

Statistical Feature: This feature can be categorized into two kinds. The first
kind describes the data set using a group of statistical and information theory
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characteristics [10]. The second kind is based on summary statistics. Song [7]
characterizes the data set structure by computing the frequencies of itemsets
generated from binary data sets. Non-binary data set needs to be transformed
to binary data set, which would be time-consuming when the attributes of data
set are continuous.

Problem Complexity Feature: Twelve measures are designed to describe the
geometrical complexity of decision boundary of two-class problems [11]. Cano
[12] claimed that some of the measures have little connection with the perfor-
mances of classifiers. Bernado [4] selected six measures to characterize data set.

Landmarking Feature: This feature [6] utilizes the performances of a set of
basic classifiers (called landmarkers) to describe the data set. Therefore, the
similar features indicate that data sets may belong to the subspace of the same
performance. The chosen landmarkers must be significantly different.

Model Structure Feature: The statistical information of a model generated
from data set is collected as feature. In this category, decision tree is usually
considered [5], from which we gather a set of statistics like maximum/minimum
number of nodes, length of longest/shortest branches, and so on.

The aforementioned features belong to experimental origin. However, a the-
oretical investigation would be more persuasive. Furthermore, these features are
computationally expensive.

3 Proposed Feature

In this section, we firstly propose several metrics of complexity for CS. Then the
theoretical connections between two metrics and generalization errors of some
classifiers are investigated. Finally, we present our data set feature and similarity
measurement criterion.

3.1 Metrics of Complexity

Given a two-class data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} in input space
X , where xi, i = 1, 2, · · · , n are data points, and yi is the binary class label,
i.e., yi ∈ {1,−1}. Let y = [y1, y2, · · · , yn]� represents the vector formed with n
labels. We use n− and n+ to represent the amount of samples labeled −1 or 1,
respectively. Note that n− + n+ = n.

For a given kernel function k(x,y) = 〈φ(x), φ(y)〉, where φ is a nonlinear
mapping that maps x ∈ X to a reproduce kernel hilbert space (RKHS) H, an
n × n kernel matrix K is generated from D as

Kij = 〈φ(xi), φ(xj)〉, i, j = 1, 2, · · · , n.

K is a symmetric positive and semi-definite matrix that totally preserves the
geometrical structure of D. Our five metrics of complexity are based on K.
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Kernel Alignment. This metric, which is known as centered kernel target
alignment (KA) [13], is defined as

KA(Kc,yy�) =
〈Kc,yy�〉F√〈Kc,Kc〉F 〈yy�,yy�〉F

, (1)

where Kc is a centralized kernel matrix of K, 〈·, ·〉F denotes Frobenius inner-
product and yy� is called the target matrix. KA ∈ [0, 1] since 〈Kc,yy�〉F � 0.

The numerator of (1) can be expanded as

〈Kc,yy�〉F = y�Kcy =
n∑

i=1

n∑

j=1

yiyj(Kc)ij

=
∑

yi=yj

(Kc)ij −
∑

yi �=yj

(Kc)ij .

Therefore, KA measures the difference between the within-class and between-
class distances of data set. A bigger KA indicates that the corresponding data
set is more separable. The most time-consuming calculations of KA are the
centralization of K and 〈Kc,Kc〉F , which take O(n2) time complexity.

Kernel Space-Based Separability. The centers of two classes in H are cal-
culated as

φ− =
1

n−

∑

yi=−1

φ(xi),

φ+ =
1

n+

∑

yi=1

φ(xi),
(2)

respectively. KS [14] is defined as

KS(K,y) =
std− + std+
‖φ− − φ+‖2 , (3)

where

std− =

√∑
yi=−1〈φ(xi) − φ−, e〉2

n− − 1
,

std+ =

√∑
yi=1〈φ(xi) − φ+, e〉2

n+ − 1
,

(4)

are the standard deviations of two classes projected along the direction e =
φ−−φ+

‖φ−−φ+‖2
respectively, and ‖·‖2 denotes 2-norm of vector.

KS ∈ (0,+∞] actually describes the samples’ distribution along direction
φ− − φ+. A smaller KS means that the data set is more separable. KS needs
O(n2) time complexity.
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Overlap Region. We propose a metric that compute the ratio of the overlapped
region of two classes to the total region of two classes along direction e, denoted
as ROR. Suppose that the projected data of one class fall into [a1, b1], where
a1, b1 are the minimum and maximum values of the projected data, and the
other class falls into [a2, b2]. Let U = [a1, b1] ∩ [a2, b2] and V = [a1, b1] ∪ [a2, b2]
be intersection and union of these two intervals, respectively. ROR is defined as

ROR =

{
0, U = ∅,
max(U)−min(U)
max(V )−min(V ) , U 
= ∅,

(5)

where min(·) and max(·) are the maximum and minimum values of interval
respectively and ∅ represents empty set. ROR ∈ [0, 1] since U is a subset of V .
When data set is linear separable, ROR is expected to zero. However, ROR
will increase if data set is nonlinear separable. ROR also needs O(n2) time
complexity.

Test of Equality of Means. Now we treat kernel matrix K as a similarity
matrix. The following measure depends on the assumption that the similarity
among within-class data is higher than between-class data. We first introduce
two vectors extracted from K:

kW = {Kij |i < j ∧ yi = yj},

kB = {Kij |i < j ∧ yi 
= yj}.
(6)

We denote nW = n−(n−−1)
2 + n+(n−+1)

2 and nB = n−n+ represent the size of
vectors kW and kB respectively. We see that kW is the collection of within-class
similarity and kB is the collection of between-class similarity.

TEM [15] is defined as a variant of t-test to evaluate the equality of means
of kW and kB :

TEM(K,y) =
1
n

∣∣∣∣
∣

k̄W − k̄B√
σ2
W

nW
+ σ2

B

nB

∣∣∣∣
∣
, (7)

where k̄W and σ2
W denote the mean and variance of kW respectively, and k̄B and

σ2
B denote the mean and variance of kB respectively. TEM is very sensitive to

the nonlinearity of decision boundary. A larger TEM reflects that the data set
is more likely to be linearly separable. Here we normalized TEM by multiplying
the reciprocal of n to eliminate the influence of sample size. TEM only utilizes
the upper triangle elements of K, which needs O(n2) time complexity.

Test of Equality of Variances. Let kWB = kW ∪kB be the union of kW and
kB . We define three new vectors as follows:

zW = |kW − k̃W |,
zB = |kB − k̃B |,
zWB = |kWB − k̃WB |,

(8)
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where | · | represents element-wise absolute value, k̃W , k̃B and k̃WB are the
medians of kW , kB and kWB respectively. TEV [15] is defined using Brown-
Forsythe test to measure the equality of variances of kW and kB ,

TEV(K,y) = (1 − 2
n

)
nW (z̄W − z̄WB)2 + nB(z̄B − z̄WB)2

∑nW

i=1[(zW )i − z̄W ]2 +
∑nB

i=1[(zB)i − z̄B ]2
, (9)

where z̄B , z̄W and z̄WB are the mean values of vectors zB , zW and zWB respec-
tively, (zW )i and (zB)i represent the ith element of zW and zB . The idea behind
TEV is that if kW and kB have the same variance, then the data set should
be difficult to separate. The high value of TEV rejects the hypothesis of equal
variance and indicates compact within-class and mutually distant between-class
distribution [15]. Here we also normalize TEV by multiplying 1/n.

Like TEM, TEV also needs O(n2) time complexity, but TEV needs extra
O(n2) to search the medians.

3.2 Theoretical Analysis

We theoretically investigate the relationship between metrics KA, KS and gen-
eralization errors.

Theorem 1. KA is defined as (1). Let R(h) = Pr[yh < 0] be the error rate of
Parzen window predictor

h(x′) =
Ex[ykc(x,x′)]

√
E[k2

c ]
(10)

in binary classification. kc is the centered kernel function and E[·] is an expec-
tation operator. Suppose that k(x,x) � S2 for all x. Then for any δ > 0, the
following inequality holds with probability at least 1 − δ:

R(h) � 1 −
(

KA(Kc,yy�) − 18β

[
3
n

+ 4

√
log 6

δ

2n

])

· 1
Γ

, (11)

where Γ = maxx′

√
Ex[k2

c(x
′,x)]

Ex,x′ [k2
c(x

′,x)]
, β = max( S2

E[k2
c ]

, S2

E[k′2
c]

) and k′(xi,xj) = yiyj.

Proof. According to Theorem 12 in [13], we have

KA(kc, k
′
c) � KA(Kc,yy�) − 18β

[
3
n

+ 4

√
log 6

δ

2n

]

,

where KA(kc, k
′
c) = E[kck′

c]√
E[k2

c ]E[k′
c
2]

. Unifying Theorem 13 in [13]

R(h) � 1 − KA(kc, k
′
c) · 1

Γ
,

We obtain the inequation (11) directly.
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Theorem 2. [14] KS is defined as (3). There is a separating hyperplane

h(x) = e · φ(x) − e · std−φ+ + std+φ−
std− + std+

, (12)

such that the upper bound of training error of data set D is

KSerr =
KS(K,y)2

1 + KS(K,y)2
. (13)

Theorem 1 tells us that if there is a high KA and Γ is not too large, then the
upper bound of generalization error of (10) on D is small. Theorem 2 indicates
if KS is small, then the upper bound of training error of (12) on D is small, thus
we can expect a low generalization error [14].

3.3 Data Set Feature

Based on the above analysis, we define data set feature as follows:

v = [KA, 1 − KSerr, 1 − ROR,TEM,TEV]. (14)

The computation of v has a time complexity of O(n2). KA, KS and ROR mainly
focus on the distributions and the degree of overlap of two classes from a geomet-
rical point of view, while statistical tests (TEM, TEV) are used to characterize
the nonlinearity of decision boundary. Employing different kernel functions would
produce different features. We adopt Euclidean distance as similarity criterion:

ρ(D,D′) := ‖v − v′‖2 =

√√
√√

5∑

i=1

(vi − v′
i)2. (15)

The smaller ρ(D,D′) means that the similarity between data sets D and D′ is
higher.

4 Classifier Selection

Suppose that historical data sets D1, . . . ,Dm and testing data set D are two-class
problems. Our CS algorithm is shown in Algorithm1.

4.1 Recommendation Algorithm

In step 2 of Algorithm 1, we use KNN classifier as AR, where the data set sim-
ilarity is the distance between data set features. Assuming Dj , j = 1, 2, · · · ,K
are the K most similar data sets for D, the recommended classifier is selected
as: (i) for each Dj , we assign a rank to candidate classifiers according to its per-
formances on this problem. The classifier with the best performance has rank
1, while the classifier with the worst performance has rank m. Classifiers with
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Algorithm 1. CS for Two-class Problems
Input: historical data sets D1, . . . ,Dm, candidate classifiers A1, . . . ,A�, testing data

set D
Output: classifier A�

1: Evaluate the performances of candidate classifiers on historical data sets using
10-fold cross validation.

2: Design a recommendation algorithm AR based on similarity and the performances.
3: Extract the data set features v1, . . . ,vm and v as (14).
4: Compute the data set similarities using (15).
5: Output a best classifier A� for D using AR.

the same performance have the same average rank; (ii) let Ri,j , i = 1, 2, · · · , �
denote the rank of classifier Ai on Dj , then the rank of classification algorithm
Ai on D is computed as

Ri,D =
1
K

∑

Dj∈Nc(D)

Ri,j , j = 1, 2, · · · ,K, (16)

where Nc(D) is a set contains the K most similar data sets of D. In the end, the
classifier with the lowest rank is the recommended classifier.

4.2 Multi-class Classification Problem

Our feature only suitable for two-class data sets. We handle multi-class problems
as follow.

Step 1: Suppose that data set D has c classes. We split D into m = c(c−1)
2

two-class problems using one-vs-one strategy.
Step 2: For each sub-problem, we recommend one classifier based on Algo-
rithm1.
Step 3: The final decision is determined by using voting strategy.

The merit of this method is that we can select the most suitable classifier for each
sub-problem, which would make the classification accuracy higher than that of
the single classifier.

5 Experiments

We evaluate the proposed feature with three state-of-the-art features with
respect to computational efficiency and recommendation performance.

5.1 Experimental Setup

Data Sets. We selected 67 classification problems from the UCI repository
which include 49 historical data sets and 18 testing data sets (Table 1). Among



300 L. Deng et al.

Table 1. Summary of testing data sets in terms of attributes, sample size and classes.

ID Name Att. Ins. Classes ID Name Att. Ins. Classes

1 abalone 8 4117 3 10 page-blocks 10 5473 5

2 car 6 1728 4 11 seeds 7 210 3

3 contrac 9 1473 3 12 segment 18 2310 7

4 dermatology 34 366 6 13 st-landsat 36 6534 6

5 hayes-roth 5 132 3 14 st-vehicle 18 846 4

6 hill-valley 100 1212 2 15 synthetic-control 60 600 6

7 hill-valley-noise 100 1212 2 16 teaching 5 151 3

8 iris 4 154 3 17 waveform 21 2000 3

9 nursery 8 12598 4 18 wine 13 178 3

the historical data sets, the multi-class data sets are split into two-class data
sets using one-vs-one technique, then those data sets that are easy to classify
or have severely unbalanced/small samples in each class are deleted. We totally
have 84 two-class historical data sets. The attributes of data sets are normalized
into [−1, 1].

Candidate Classifiers. We employ 20 candidate classifiers. Some candidate
classifiers are KNN, LDA, logistics regression, SVM (linear, polynomial kernel,
RBF kernel), naive bayes, decision tree C4.5, random forest, Bagging (tree) and
AdaBoost (tree). These classifiers are run with the MATLAB statistic toolbox
except SVM uses LIBSVM software.

The remaining classifiers are nearest mean classifier, Fisher’s least square
linear discriminant, BP neural network, linear perceptron, Bayesian classifier,
Gaussians mixture model, Parzen classifier, Parzen density classifier and radial
basis neural network classifier, which are adopted from PrTools toolbox 5.0. We
run all codes on MATLAB 2017a on Windows operating system with Inter(R)
Core(TM) i5-6500 CPU @3.20GHz processer.

Comparative Classifiers. We evaluate 24 classifiers on testing data sets which
include 20 candidate classifiers and 4 data set features.

– statistical feature (Fs) [7];
– problem complexity feature (Fp) [4];
– landmarking feature (Fl) [6] with landmarkers KNN, C4.5, LR and NB;
– our data set feature using polynomial kernel (Fpoly). We set d = 3.

The attributes of 4 data set features are normalized into [0, 1]. Fs, Fp and Fl

adopt the CS framework in Algorithm1. For each testing data set, 10% samples
of each class are dropped as testing samples and the rests are used for training
(the testing data set in Algorithm 1). The classification model of recommended
classifier on training samples are trained using 10-fold cross validation. For the
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Fig. 1. Running times (s) of Fpoly, Fs, Fp and Fl on testing data sets. The total times
are 160.11s, 14662.85s, 31602.10s and 77109.74s, respectively.

sake of fairness, we also evaluate the performance of candidate classifiers on
multi-class testing data sets using splitting and voting strategy.

Performance Metrics. We employ classification accuracy (CA), average rec-
ommendation performance ratio (ARPR) [8] and non-parameter statistical tests
[16] to evaluate the performance of data set features.

5.2 Computational Efficiency

We collected the computation times of 4 data set features on 18 testing data
sets (Fig. 1). The recorded time of each data set is the sum of times of its sub-
problems. From Fig. 1, we see that our feature has the fastest computational
speed, which spent 160 seconds on overall data sets. However, Fs, Fp and Fl have
unacceptable low speeds. Although Fs outperformed our features on data sets 2,
3, and 9, we found that these data sets have discrete variables. For continuous
variables, the efficiency of Fs would be degraded rapidly. Therefore, our feature
outperforms Fs, Fp and Fl in terms of efficiency.

5.3 Performance Comparisons

In this section, we compare our Fpoly with three state-of-the-art data set features:
Fs, Fp and Fl, as well as 20 candidate classifiers. The comparisons of CA, ARPR
and statistical test are listed in Table 2. We observe that Fpoly has the highest
CA and ARPR.

To check the statistical difference between different methods, we calculated
the average rank of each feature and shown it in the last row of Table 2. Fpoly has
the lowest average rank 1.36, followed by Fs. Fp has the worst average rank. The
Friedman statistic is distributed according to the F-distribution with (4−1) = 3
and (4 − 1) × (18 − 1) = 51 degrees of freedom. The value of Friedman statistic
is 11.64 and the critical value of F (3, 51) is 2.79 at 0.05 significance level. Thus,
the null hypothesis is rejected. Then we applied the Nemenyi test for pairwise
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Fig. 2. CA (%) of best, BC and Fpoly. best represents the CA of the best candidate
classifier.

comparisons. The critical different is 1.11 which means that Fpoly is significantly
better than Fp and Fl.

Finally, we compare the CA of Fpoly with that of the best candidate classifier
and Bayesian classifier (BC) which has the highest ACA among 20 classifiers,
shown in Fig. 2. We see that the CA of Fpoly are very close to the CA of the
best candidate classifier except on data sets 7 and 18. Fpoly is equal to or higher
than the best candidate classifier on 11 data sets. Fpoly has the same CA as or
outperforms BC in 14 out of 18 cases. On the 4 data sets that BC outperforms
Fpoly, we see that the CA of BC and Fpoly are very close.

6 Conclusion

The difficulties of CS mainly stem from the similarity measurement among data
sets. So far, people resolve this problem by characterizing data set feature and
turn to comparing the similarity of features. In this paper, we proposed a new
data set feature to describe the classification complexity of data set. Different

Table 2. CA (%) of Fpoly, Fs, Fp and Fl on testing data sets. The first column shows
the ID of data sets. The last row reports the average rank of each CS algorithm. Abest

and Aworst indicate the best and worst CA of candidate classifiers.

ID Fpoly Fs Fp Fl Abest Aworst ID Fpoly Fs Fp Fl Abest Aworst

1 48.56 46.63 41.59 43.99 47.36 44.47 12 96.54 95.67 96.10 95.67 100 98.27

2 99.42 74.85 76.02 91.81 88.89 77.19 13 94.38 93.59 91.72 90.63 93.75 90.47

3 58.90 58.22 50.00 54.79 58.90 53.42 14 80.49 74.39 75.61 74.39 80.49 74.39

4 97.14 94.29 88.57 94.29 100 100 15 98.33 98.33 98.33 95.00 100 98.33

5 57.02 57.02 52.07 52.07 68.60 52.89 16 92.86 78.57 85.71 71.43 92.86 78.57

6 64.17 64.17 50.83 55.83 66.94 48.33 17 86.43 81.41 83.92 84.42 87.44 78.89

7 92.31 92.31 76.92 84.62 92.31 69.23 18 100 100 93.75 100 100 93.75

8 100 100 100 100 100 100

9 92.12 80.22 78.36 79.29 100 86.01 ACA 86.35 82.44 79.54 81.23

10 95.59 94.30 92.28 93.93 98.90 95.96 ARPR 0.99 0.95 0.90 0.93

11 100 100 100 100 100 85.71 Rank 1.36 2.44 3.19 3.00
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from previous works, our feature has merits like low computational complexity
and theoretical support. We built a CS framework using the proposed feature.
Experimental results show that our feature is effective and efficient. Our method
outperforms three data set features, which means that the proposed feature can
help to choose suitable classifiers for new classification problems.
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Abstract. Representational Similarity Analysis (RSA) aims to explore simi-
larities between neural activities of different stimuli. Classical RSA techniques
employ the inverse of the covariance matrix to explore a linear model between
the neural activities and task events. However, calculating the inverse of a large-
scale covariance matrix is time-consuming and can reduce the stability and
robustness of the final analysis. Notably, it becomes severe when the number of
samples is too large. For facing this shortcoming, this paper proposes a novel
RSA method called gradient-based RSA (GRSA). Moreover, the proposed
method is not restricted to a linear model. In fact, there is a growing interest in
finding more effective ways of using multi-subject and whole-brain fMRI data.
Searchlight technique can extend RSA from the localized brain regions to the
whole-brain regions with smaller memory footprint in each process. Based on
Searchlight, we propose a new method called Spatiotemporal Searchlight GRSA
(SSL-GRSA) that generalizes our ROI-based GRSA algorithm to the whole-
brain data. Further, our approach can handle some computational challenges
while dealing with large-scale, multi-subject fMRI data. Experimental studies on
multi-subject datasets confirm that both proposed approaches achieve superior
performance to other state-of-the-art RSA algorithms.

Keywords: RSA � Gradient � Searchlight � Whole-brain fMRI data

1 Introduction

One of the most significant challenges in brain decoding is finding some more effective
ways of using multi-subject and whole-brain fMRI data. Representational Similarity
Analysis (RSA) is one of the fundamental approaches in fMRI analysis and evaluates
similarities between different cognitive tasks [1–3]. Here, one subject is scanned while
watching different visual stimuli. With different pairs of stimuli, the brain generates
corresponding patterns of neural activities, and then the RSA calculates the similarities
between the neural activity patterns of different stimuli. This process obtains Repre-
sentational Similarity Matrix (RSM), and the matrix encodes the similarity structure.
The goal of the method is to explore the correlation between different cognitive tasks.
Figure 1 shows the computation of the representational similarity matrix (RSM).
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J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 304–315, 2018.
https://doi.org/10.1007/978-3-030-03338-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03338-5_26&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03338-5_26&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03338-5_26&amp;domain=pdf
https://doi.org/10.1007/978-3-030-03338-5_26


RSA can be casted as a multi-task regression problem. Classical RSA is based on
basic linear approaches, e.g., Ordinary Least Squares (OLS) or General [1, 2]. Indeed,
these methods are restricted to a linear model, each data contains a large number of
voxels, and the number of voxels far exceeds the time points. The methods mentioned
cannot obtain satisfactory results on fMRI datasets. Moreover, the data is difficult to be
converted into a matrix by this method [4], and it could reduce the stability and
robustness of the final analysis when the Signal-to-Noise Ratio (SNR) is low [7].

For OLS and GLM, they face a problem of overfitting. The current approaches
consider that the regularization can avoid overfitting. For example, Least Absolute
Shrinkage and Selection Operator (LASSO) method employs norm ‘1 to address the
regression problem [9], whereas Ridge Regression method uses the norm ‘2 to deal
with the mentioned problem [8]. As an alternative approach, the Elastic Net method
handle above issue by employing ‘1 and ‘2 norms [10].

In general, The RSA provides a way to compare different representational
geometries across subjects, brain regions, measurement modalities, and even species.
Since the similarity structure can be estimated from the imaging data even if the coding
model is not constructed, RSA is suitable not only for model testing but also for
exploratory research [3]. Indeed, RSA is initially used as a tool to study visual rep-
resentations [2, 5, 6], semantic representations [12, 13], and lexical representations
[14]. Further, RSA is utilized to reveal the network about dimensions of social-
information representations [15, 16].

As an alternative to region-of-interest based analysis, researchers introduce the
‘searchlight’ approach that performs multivariate analysis on sphere-shaped groups of
voxels centered on each brain voxel one by one [1]. Nowadays, fMRI brain image
datasets have a large number of subjects. Thus the whole-brain datasets are high-
dimensional. In the current general RSA algorithm, the data is difficult to be converted
into a matrix by this method and the inverse of the voxel matrix cannot be avoided.
Besides, the optimization of RSA is difficult when the number of voxels is too large.
Fortunately, modern RSA algorithm can optimize the solution process in comparison to
traditional RSA method [17]. One of the modern RSA methods utilizes the searchlight
technique, which is applied to EMEG [14]. As a novel application, the searchlight RSA
method can be utilized to analyze the structure of moral violations space [11].

In this paper, we propose a new RSA method based on gradient descent called
Gradient Representational Similarity Analysis (GRSA). The Gradient RSA algorithm
can handle the RSA problem by calculating the solution of LASSO using stochastic
gradient descent. It can solve the mapping feature matrix by using stochastic gradient
descent method with iteration to obtain an optimal result and explore the similarity
between different neural activity patterns. Another key contribution of this paper is a
novel application for Searchlight. GRSA is a tool for analyzing whether localized brain
regions encode cognitive similarities. Using searchlight, we propose a new method
called spatiotemporal searchlight GRSA (SSL-GRSA). In Sect. 3.2, we focus on this
approach with an aim to link searchlight analysis with GRSA. We develop this model
by using a spatiotemporal searchlight GRSA algorithm which can generalize our ROI-
based GRSA algorithm to the whole-brain data.
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2 Representational Similarity Analysis (RSA)

The application of RSA is based on a general linear model (GLM). This method
assumes that the neural pattern of fMRI responses is related to stimuli events.

Y ‘ð Þ ¼ X ‘ð ÞB ‘ð Þ þ � ‘ð Þ ð1Þ

where Y ‘ð Þ ¼ yij
� � 2 R

T�V ; 1� i� T ; 1� j�V denotes the fMRI time series from ‘-th
subject, T is the number of time points and V is the number of brain voxels. Design
matrix is denoted by X ‘ð Þ ¼ xikf g 2 R

T�P; 1� i� T ; 1� k�P. The design matrix is
obtained by the convolution of the time series of the stimuli with a typical hemody-
namic response function (HRF). Here, P denotes the number of distinct categories of
stimuli, B ‘ð Þ ¼ bkj

� � 2 R
P�V ; bkj 2 R; 1� k�P; 1� j�V denotes the matrix of esti-

mated regressors, and bkj is an amplitude reflecting the response of j-th voxel to the k-th
stimulus. This paper assumes that the neural activities of each subject are column-wise
standardized, i.e., Y ‘ð Þ �N 0; 1ð Þ. Indeed, RSA method is looking for the following
objective function:

min
B ‘ð Þ

Y ‘ð Þ � X ‘ð ÞB ‘ð Þ�� ��2
F�r B ‘ð Þ

� �
ð2Þ

where r B ‘ð Þ� �
is the regularization term for ‘-th subject. Notably, the regularization

term is zero ðrðBð‘ÞÞ ¼ 0Þ for non-regularized methods, including OLS and GLM. The
term rðBð‘ÞÞ is a Bk k2F for Ridge Regression, a Bk k1 for LASSO method,

aq Bk k1 þ að1�qÞ
2 Bk k2F for Elastic Net method.
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Fig. 1. Computation of the representational similarity matrix (RSM). The matrix encodes the
similarity structure. Each block in the RSM is a correlation distance between activation patterns
of a pair of experimental conditions (or stimuli). The elements on the main diagonal of the matrix
are one by definition. In the non-diagonal part of RSM, a larger value indicates that two stimuli
have a high similarity, and the small value implies that the two stimuli are not similar.
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In order to generalize RSA for multi-subject fMRI datasets, we calculate the mean
of the regressors matrices across subjects:

B� ¼ 1
S

Xs
‘¼1

Bð‘Þ ð3Þ

where S denotes the number of subjects, and each row of B� 2 R
P�V ¼

fb�1:; . . .; b�p:g; b�k: 2 R
V illustrates the extracted neural signature belonging to k-th

category of cognitive tasks.
Three metrics will be used to evaluate the performance of RSA methods. As the

first metric, we calculate the mean of square error for analyzing the accuracy of
regression:

MSE ¼ 1
TSV

XS
‘¼1

XT
i¼1

XV
j¼1

x ‘ð Þ
ij �

XP
k¼1

d ‘ð Þ
ik b ‘ð Þ

kj

 !2

ð4Þ

The next two techniques evaluate between-class correlation and between-class
covariance of the regressors matrices:

CR ¼ 1
S

XS
‘¼1

max
1� i�P
i\j�P

Corr b ‘ð Þ
i: ; b

‘ð Þ
j:

� �n o
ð5Þ

CV ¼ 1
S

XS
‘¼1

max
1� i�P
i\j�P

Cov b ‘ð Þ
i: ; b

‘ð Þ
j:

� �n o
ð6Þ

where b ‘ð Þ
i: ; b

‘ð Þ
j: are rows of B ‘ð Þ, function Corr is the Pearson correlation, and function

Cov calculates the covariance between two vectors. All of these three metrics must be
minimized for an ideal solution [7, 17].

3 Gradient Representational Similarity Analysis (GRSA)

fMRI brain data is high-dimensional. In fMRI, each data contains a large number of
voxels, and the number of voxels far exceeds the time points. Meanwhile, the presence
of similarity of different features leads to some redundant information. Feature selec-
tion can solve this problem. Therefore, we use the ‘1 norm here. The objective function
is optimized as follows:

J B ‘ð Þ
� �

¼ min
B ‘ð Þ

L B ‘ð Þ
� �

þ r B ‘ð Þ
� �

ð7Þ
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where the typical loss functions considered here are squared Frobenius error, i.e.,

L B ‘ð Þ� � ¼ Y ‘ð Þ � X ‘ð Þ � B ‘ð Þ�� ��2
F , and r B ‘ð Þ� �

is the ‘1 norm defined as a Bk k1. The
problem of this approach is that the computation complexity is tremendous when there
are a large number of features. And this method is merely applies to the linear model.

3.1 Optimization

In this section, we attempt to propose a method that is not restricted to a linear model
and can reduce the time complexity on high-dimensional data. Here, we propose an
effective approach that utilizes Stochastic Gradient Descent (SGD) for optimizing the
LASSO objective function. In order to efficiently optimize (7), one solution is to
calculate the gradient of (7) which is needed in Stochastic Gradient Descent
(SGD) algorithm. The step of gradient optimization is as follows:

rJ B ‘ð Þ
t

� �
¼ @

@B ‘ð Þ
t

J B ‘ð Þ
� �

ð8Þ

B ‘ð Þ
tþ 1 ¼ B ‘ð Þ

t � atrJ B ‘ð Þ
t

� �
ð9Þ

where rJ B ‘ð Þ
t

� �
denotes the gradient of J B ‘ð Þ� �

from t-th iteration. The step of iter-

ation of B ‘ð Þ denoted as (9). at is the self-adaptive learning rate, which is defined as
follows:

at ¼ affiffiffiffiffiffiffiffiffiffi
tþ 1

p ð10Þ

Here, t 2 R is the number of iterations. at denotes the updated learning rate of t-th
iteration. Since different features have different ranges of values, the iteration could be
very slow. In order to apply this algorithm to fMRI brain datasets, the SGD algorithm
randomly selects a batch of the time points instead of the whole time points to update
the model parameters. So each time of learning is fast and the model parameters can be
updated online. This paper uses GRSA approach for estimating the optimized solution.
GRSA can reduce the time complexity when applied to fMRI brain datasets, and
explore the similarity between different neural activity patterns by iterative optimal
algorithm. Our method can rapidly reduce the time complexity and have smaller
memory footprint in each process. This application of GRSA could be used not only in
the linear model but also in the non-linear model.

3.2 Spatiotemporal Searchlight GRSA (SSL-GRSA)

Finding the most effective method for analyzing multi-subject fMRI data is a long-
standing and challenging problem. Since the scarcity of data for each subject and the
differences of brain anatomy and functional response between different subjects,
researchers have an increasing interest in human cognitive fMRI research.
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Multi-subject fMRI datasets contain two group datasets, i.e., Region of Interests
(ROI) based datasets, and whole-brain datasets. The ROI-based method analyzes the
representation structure in a set of predefined brain regions. However, other brain
regions also have representational structures that are suitable for the prediction of our
model. Whole-brain data can be used to figure out what information is represented in a
region of the human brain. People want to find some more effective ways to analyze
whole-brain data. Searchlight analysis provides a way to map cube-shaped groups of
voxels across the whole brain continuously [1]. Therefore, we propose a method that
combines the ideas of the GRSA model and searchlight-based technique to analyze
multi-subject whole-brain fMRI data. A searchlight version of GRSA is conceptually
new. Therefore, we refer to our method as Searchlight GRSA (SSL-GRSA).

Ŷ ‘ð Þ 2 R
vx�vy�vz�T of four dimension is fMRI time series data from ‘-th subject

where 1� ‘� S and S is the number of subjects. The tuple x; y; zð Þ refers to the standard
axes, whereas vx; vy; vz refer to the number of voxels along the corresponding axis
respectively, and T is the number of time samples in units of repetition time (TR). The
process of our searchlight method is as follows: Firstly, a sliding cube is selected and

Searchlights across the 
whole cortex

Searchlights shape 
as a cube

The          matrix 
of each cube

Map            on             by voxel coordinate 
index

Subject 1

Mean beta matrix

Average 
GRSA

Subject S GRSA

Fig. 2. Process of Spatiotemporal Searchlight GRSA (SL-GRSA). The whole-brain data of each
subject is divided into K cubes (searchlights) with a specified size. Here, this size is fixed as
3� 3� 3. Then, the GRSA approach applies to each cube to generate K local matrices denoted

by b̂ ‘ð Þ
k . In the end, we splice those K local b̂ ‘ð Þ

k matrices into a complete b̂ ‘ð Þ matrix according to

the coordinates of voxels. The mean matrix is obtained by averaging over all matrices b̂ ‘ð Þ.
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the cube at a specific time covers a contiguous region of voxels. The selected snapshots
of the cube need to be adjacent and avoid overlapping. Then, the voxels of the whole-
brain is then analyzed by spatial local analysis in each cube. GRSA method is applied
to cube groups of voxels in a line. Therefore, the ROI method can be extended to the
whole-brain data. The process of our method is depicted in Fig. 2.

For standard Searchlight-based RSA method, the study first used the scene image as
task stimuli for experiment, and then used the Searchlight method to find brain regions
related to the perception of human brain. The results show that using the searchlight
method, we can find the active brain regions in the FMRI data related to scene
recognition of each subject. Compared with standard searchlight RSA, our method is
competitive and performs better with the same cube size. It’s worth mentioning that we
only load necessary data according to the mini batch to maintain a reduced memory
footprint in each process. We extend the application of GRSA from ROI to the whole-
brain. Further, we create a novel approach that addresses some computational chal-
lenges while dealing with large-scale, multi-subject fMRI data.

4 Experiments

4.1 Datasets

This paper utilizes five datasets, shared by Open fMRI (http://openfmri.org), for run-
ning empirical studies. All datasets are separately preprocessed by FSL 5.0.10 (https://
fsl.fmrib.ox.ac.uk), i.e., slice timing, anatomical alignment, normalization, smoothing.
Here, we use two groups of datasets, i.e., Region of Interests (ROI) based datasets, and
whole-brain datasets. Here, we analyze some specific parts of brain images in ROI-
based data, where these parts are manually selected based on the original papers of each
data. In this paper, we use ‘R’ prefix for the ROI-based dataset and a ‘W’ prefix is used
for denoting the whole-brain data.

Technically, the whole-brain datasets include all of the neural activities which are
registered to a standard space, i.e., Montreal Neurological Institute (MNI) 152 space T1
with voxel size 4 mm. Before applying our approach to each fMRI dataset, the dataset

Table 1. The datasets.

Title ID Task type S P T Scan TR TE

Visual object recognition R105 Visual 6 8 121 G3T 2500 30
Word and object processing R107 Visual 49 4 164 S3T 2000 28
Weather prediction without feedback W011 Decision 14 4 236 S3T 2000 25
Selective stop signal task W017 Decision 8 6 546 S3T 2000 25
Weather prediction W052 Decision 13 2 450 S3T 2000 20

This paper utilizes five datasets, shared by Open fMRI (http://openfmri.org). S is the
number of subject, P denotes the number of stimulus categories, T is the number of scans
in unites of scans in unites of TRs (Time of Repetition), VROI denotes the number of voxels
in ROI. In the column of Scan, G = General Electric, or S = Siemens in 3 T. TR is Time
of Repetition in millisecond and TE denotes Echo Time in millisecond.
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is normalized, i.e., Y ‘ð Þ �N 0; 1ð Þ, which allows us to obtain desirable experiment
result. The technical information of these datasets is shown in Table 1.

Fig. 3. The standard deviation of MSE for all RSA methods in the Fig. 3 is lower than 10�2.

Fig. 4. Maximum of between-class covariance (CV) across subjects.

Fig. 5. Maximum of between-class correlation (CR) across subjects.
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4.2 ROI Data Analysis

In this section, we analyze the performance of our method results by calculating three
metrics, including mean of square error (MSE), the maximum of between-class
covariance (CV), and the maximum of between-class correlation (CR). We use the ROI
data in each experiment, thus R105 dataset and R107 dataset are selected from five
different datasets. In order to create the comparative experiments, we use the classical
RSA based on GLM as a baseline. Elastic Net is employed for the empirical research.
In this method, the best results are obtained when the parameters are a ¼ 1:0 and
q ¼ 0:5. Moreover, GRSA generates the results by setting a ¼ 0:9. The number of
iterations for our method is considered 1000. The batch size is set 50 and learning rates
of normalized datasets is 10�3.

Figure 3 shows the test results of MSE, which is non-negative. MSE is an indicator
used to reflect the quality of the estimator. the smaller the MSE is, the better the method
is. Further, MSE is calculated by Formula (4). The results of our method in comparison
to other methods are shown in Fig. 3. GRSA has the best results compared to other
RSA methods. The standard deviation of MSE for all RSA methods in the Table 2 is
lower than 10�2.

Figure 4 has analyzed the maximum of between-class covariance by using (6). The
maximum of between-class covariance can be calculated as the maximum value
ranging over all different pairs of stimuli. Moreover, Fig. 5 has evaluated the maximum
of between-class correlation by employing (5) in which it searches the maximum
Pearson correlation coefficient amongst different pairs of stimuli. For those indicators,
the smaller they are, the better the method analyzes the similarity between different
neural activity patterns. Compared with other RSA methods in Fig. 4 or Fig. 5, GRSA
has the best results.

4.3 Whole-Brain Data Analysis

ROI is a manually selected area based on anatomical images of the brain. We analyze
the potential information of the data through the ROI based method. However, a certain
type of information is not necessarily confined to only one specific brain region, and
could be included in several areas. Therefore, the analysis of the whole-brain data
becomes more important. The GRSA method is applied to whole-brain data and this
approach can explore the relationship between different cognitive tasks. In this paper,
the whole-brain datasets are used in our method, i.e., W011 dataset, W017 dataset and
W052 dataset.

In this section, we implement the comparative experiments by some traditional
methods. We use the ordinary Spatiotemporal Searchlight RSA (SSL-RSA) as the
baseline. For the empirical study, Spatiotemporal Searchlight Elastic Net (SSL- Elastic
Net) is utilized. As mentioned before, both SSL-RSA and RSA share the same
parameters. And so do SSL- Elastic Net and Elastic Net. Previously mentioned, the
main challenges are the high dimension of data and the issue of memory footprint.

Our approach can address these challenges and has good performance. The cube
size can be set arbitrarily. Thus, all Searchlight RSA methods take the same cube size
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set as 3� 3� 3. In fact, the best result is obtained by using this cube size. The result of
each contrast experiment is showed in Tables 2 and 3.

In each comparative experiment, we evaluate all the methods by using CV and CR.
The formulas of these two indicators have already been mentioned in the previous
section. Table 2 has analyzed the maximum of between-class covariance whereas.

Table 3 evaluated the maximum of between-class correlation. As depicted in the
result Table 2, SSL-GRSA has generated better performance in comparison with other
methods. Further, as Table 3 demonstrates, the performance of the maximum of
between-class correlation is significantly lower except for W011, which confirms that
our method is better.

Table 2. Maximum of between-class covariance (CV) across subjects (max±std)

Datasets SSL-RSA SSL-elastic net SSL-GRSA

W011 0.415 ± 0.125 0.265 ± 0.046 0.208 – 0.042
W017 0.462 ± 0.062 0.237 ± 0.186 0.143 – 0.143
W052 1.831 ± 0.184 0.396 ± 0.143 0.237 – 0.052

Table 3. Maximum of between-class correlation (CR) across subjects (max±std)

Datasets SSL-RSA SSL-elastic net SSL-GRSA

W011 0.785 ± 0.033 0.507 – 0.042 0.609 ± 0.202
W017 0.849 ± 0.124 0.441 ± 0.052 0.358 – 0.082
W052 0.866 ± 0.071 0.471 ± 0.104 0.407 – 0.151
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Go-cri cal

Go-noncri cal

Go-noncri
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Failed-stop-noncri cal

Failed-stop-noncri
cal

Failed-stop-cri cal
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Fig. 6. Comparing correlation of a traditional method and SSL-GRSA method by using W017
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Base on W017 data, Fig. 6 depicts the comparison of correlation of a traditional
method and SSL-GRSA method. Each small block shows the similarity of the related
category of stimuli with respect to the corresponding row and column. Therefore, we
compare the between-class correlation of SSL-GRSA with the traditional methods.
SSL-GRSA provides the best similarity analysis compared with other methods.

4.4 Runtime Analysis

This section analyzes the runtime of the proposed method and compares it to the
runtime of other RSA methods. Here, the analysis is based on the ROI datasets. For
convenience, the runtime of other methods is scaled based on GRSA, that is, the
runtime of GRSA is regarded as a unit. As illustrated in Fig. 7, the Elastic Net is the
slowest one whereas traditional RSA beats others. Since GRSA utilizes a min-batch of
time-points, it runs faster than the regularized method. As a conclusion, the perfor-
mance of GRSA is more efficient. It is worth mentioning that the runtime of the whole
brain dataset has the same tendency.

5 Conclusion

In this paper, we explored the method of Representational Similarity Analysis. we
propose a novel RSA method called Gradient descent RSA. The Gradient-RSA algo-
rithm handles the RSA problem by calculating the solution of LASSO using stochastic
gradient descent, which is novel to RSA study. For the whole-brain data, the primary
challenges are the high dimension of data and the issue of memory footprint. Another
primary contribution of this paper is a new application in Searchlight. Based on
Searchlight, the application of our GRSA method is extended from the localized brain
regions to the whole-brain region. Further, Our methods show improved results over
standard competing methods. In the future work, our method can be applied to more
large-scale, multi-subject fMRI datasets, and further optimized by other new approa-
ches to obtain better performance.

(a) R105 (b) R107

Fig. 7. Runtime analysis
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Abstract. We propose a model named Feature Aggregation Tree to cap-
ture the temporal motion information in videos for action recognition.
Feature Aggregation Tree constructs a logical motion sequence by consid-
ering the concrete semantics of features and mining feature combinations
in a video. It will save different feature combinations and then use the
bayesian model to calculate the conditional probabilities of frame-level
features based on the previous features to aggregate features. It doesn’t
matter about the length of the video. Compared with the existing fea-
ture aggregation methods that try to enhance the descriptive capacity
of features, our model has the following advantages: (i) It considers the
temporal motion information in a video, and predicts the conditional
probability by using the bayesian model. (ii) It can deal with arbitrary
length of the video, rather than uniform sampling or feature encoding.
(iii) It is compact and efficient compared to other encoding methods,
with significant results compared to baseline methods. Experiments on
the UCF101 dataset and HMDB51 dataset demonstrate the effectiveness
of our method.

Keywords: Action recognition · Feature learning
Feature aggregation

1 Introduction

Human action recognition [1] is one of the fundamental researches in the field
of computer vision, which has great significance and application prospects in
video retrieval, video recommendation and video surveillance. In recent years,
many researches mainly focuse on two aspects. One is how to extract a more
discriminative spatio-temporal description for the video. The other is how to
aggregate frame-level features to a video-level feature, which gives more attention
to efficient feature organization strategies.
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In terms of feature description, most of the existing video feature representa-
tions for action recognition are mainly learned by two different types of networks:
one is two-stream network [2,3] and the other is 3D convolutional neural network
[4–6]. The trend of networks is to learn better video features which can capture
both spatial and temporal information in videos. And we need a strategy to han-
dle long videos with arbitrary frames, which can aggregate frame-level features
to a representation for the whole video.

In terms of feature aggregation, one strategy is selecting a key frame or
several key frames to represent the entire action video [7–9]. This strategy can
achieve satisfactory results when a video contains only one action instance, but
it is not so useful in the videos containing multiple categories action instances.
Another common strategy is to encode frame features, such as vectors of locally
aggregated descriptors (VLAD) [10], fisher vectors (FV) [11,12] and bag of words
(BoW) [13,14]. While these strategies cannot capture the temporal information
of the entire video. In addition, in the neural network methods, the temporal
pooling operation is usually used to compress the features of a video [3,15,16],
e.g. the mean and the max pooling. There are also some recent works trying
to modify the traditional pooling strategies to further improve the recognition
performance, such as adascan [17] and ActionVLAD [18], which attaches frame
features to different wight values. However, the pooling strategies don’t consider
the order of frames, which ignore the temporal information. Besides the CNNs,
the LSTM network is also considered to use attention mechanism to learn the
weight of different each frame [19–21]. But because of the complexity of the
training process, LSTM doesn’t become a mainstream method.

Fig. 1. We propose Feature Aggregation Tree to represent actions in videos. For exam-
ple, Action “Basketball” can be grouped by “running”, “dribbling”, “jumping” and
“throwing”. We construct a “basketball” tree to record action primitives nodes and
excavate the action pattern between two action primitives.
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To better understand what an action is performing, temporal information is
as important as spatial information. However, no matter hand-crafted features
or deep features, are all frame-level, which don’t make full use of the temporal
information of the entire video. To better use the temporal information, we need
to understand the component of actions firstly. The hierarchical definition pro-
posed by Moeslund [22] divides the actions into three levels, e.g. the lower level
definition is “action primitive”, the middle level definition is “action” which is
an ordered combination of primitives, while the concept of high-level definition
of “behavior” is the logical combination of actions, which is a complex advanced
semantics. Taking the action of basketball as an example, shown in Fig. 1, play-
ing basketball can be broken down into several action primitives like “running”,
“dribbling”, “jumping” and “throwing”and these primitives are organized in
a temporal order. Actions have different meanings in different orders, such as
“running-throwing” means playing basketball, while “running-jumping” means
high jump or long jump. And these temporal information involved in the patterns
will be helpful in action recognition. The method ActionVLAD with the similar
idea proves the effectiveness. In this work, we propose a novel method named
Feature Aggregation Tree (FA-Tree) to learn video features for action recogni-
tion, which is based on the knowledge of frequent patterns and association rules
in the field of data mining [23].

The main contribution of this work is that we propose a novel FA-Tree for
action recognition, which has the following advantages: (i) The method treats
frame-level features as action primitives, and aggregate them into action pat-
terns. Taking the temporal information of primitives into account, FA-Tree orga-
nizes patterns with different orders to better represent a complete action, and
then calculate the precise conditional probability of an action. (ii) The method
can deal with arbitrary length of the video, rather than uniform sampling or fea-
ture encoding. (iii) The model is compact and efficient, and has achieved good
results on two datasets.

2 Related Work

Action Feature Representation. In recent years, more and more researchers
want to extract more discriminative features to represent a video, which should
contain temporal information as well as spatial information. Some hand-crafted
traditional features [1,24,25] are proposed from 2D to 3D, and their description
ability has been significantly improved. It is worthy mentioning that Wang et al.
[26] proposed improved Dense Trajectories (iDT), which is the best hand-crafted
feature at present but it is computationally intensive. Simonyan and Zisserman
[3] proposed the two-stream network, which decomposed a video into appearance
and motion streams, and trained two networks respectively. Considering that
the input of 2D convolutional neural networks is always an image so it lacks
the temporal information, the 3D neural network uses the video segment as the
input [4–6].
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Video Feature Aggregation. One approach is to select a key frame or a key
segment to replace the entire video when predicting the action category. Cao
et al. [7] extracted the key frame with manifold learning based on the optical
flow graph for action recognition. Liu et al. [8,9] used supervised learning and
unsupervised clustering methods to extract key segments in action videos.

Another approach is feature encoding. Some methods use the bag of words
model (BoW) [14] to extract some local spatio-temporal descriptor, and encode
them into dictionaries to make templates [13,15,27,28]. Latev et al. [27]
described a video with BoW that encoded HoG and HoF features. Ji et al. [5]
also used BoW in their method. Similar to BoW are the methods such as VLAD
[10,18] and Fisher Vector [11–13]. Wang et al. [15] proposed the improved Dense
Trajectories(iDT) approach, which combined dense trajectories, histogram by
using Fisher Vector to encode. By combining iDT [26] features and Fisher Vec-
tor [29] algorithm, Peng et al. [13] discussed fusing first and then encoding or
encoding first and then fusing, and finally found the latter method is better.
Tang et al. [30] proposed a more flexible approach using a variable duration
HMM [31] that factored each video into latent states with variable durations.

Now the popular strategy in the neural network is to compress the infor-
mation of different frames in a video into a fixed summary vector by using
pooling operation [3,4,15,16]. The mean pooling and the max pooling are com-
mon choices, i.e. taking average or maximum values of each feature vector, such
as C3D [4] adopts the average value of each feature in every dimension. How-
ever, these pooling methods consider each frame equally, which is not robust to
the noisy information. As there may be some noisy frames in the video, these
noisy frames will cause some losses and ultimately lead to error judgments.
Some recent works try to modify pooling strategy for action recognition, such
as ActionVLAD [18] and adascan [17].

Frequent Pattern Tree. Our Feature Aggregation Tree, which want to mine
action pattern in a video, is inspired by Frequent Pattern Tree. Han et al. [32]
introduced the Frequent Pattern Tree structure for storing crucial information
about mining frequent patterns in transaction and time-series databases. They
also developed the FP-Growth algorithm for efficient and scalable mining on both
long and short frequent patterns. Chang et al. [33] proposed an incremental data
mining algorithm based on FP-Growth using the concept of heap tree to address
the issue of incremental updating of frequent itemsets. Aditya and Pradana
[34] leveraged the FP-Growth algorithm to find the customer buying habits on
market basket in organic medicine store. Dharmaraajan and Dorairangaswamy
[35] utilized the FP-Growth algorithm to classify user behavior in identifying
the patterns of the browsing and navigation data of web users.

3 Approach

In this section, we will describe the details of Feature Aggregation Tree. As is
outlined in Fig. 2, we extract frame-level features by the C3D network and then
regard these features as action primitives, which are the results of the softmax
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Fig. 2. When constructing the Feature Aggregation Tree (above), we extract the frame-
level features by C3D network, and than get feature labels to make up label vectors.
We use these label vectors to consturct Feature Aggregation Tree model and calculate
the probabilities of each node and each pattern. When testing (below), we predict the
test video label by matching each FA-Tree and calculating the probability.

layer. The next step is aggregating primitives into patterns to construct Feature
Aggregation Tree. In a FA-Tree, each node corresponds to the conditional prob-
ability that the node appears, which we use the bayesian model to calculate.
In the following we first describe how to construct Feature Aggregation Tree
(Sect. 3.1) and then discuss the strategies for calculate the probability of each
action pattern (Sect. 3.2).

3.1 How to Construct FA-Tree

In this part, we will give some definitions about the FA-Tree firstly. Specifically,
devide the entire dataset D into different subsets, such as D = {S1, S2, · · · , Sk}.
Videos in every subset Si have the same category label i, i is from 1 to k.
And every subset Si will generate one FA-Tree. Let Si = {v1, v2, · · · , vj}, where
v means a label vector, as every video corresponds to a label vector by C3D
network, and j is the number of videos in subset Si. Just like what is shown
in Fig. 2. For each video, each frame in the video is regarded as an element
in the label vector. Here we name one label in the vector as “item”, and two
different label pair as “pattern”. Item set is F = {f1, f2, · · · , fm} and pattern
set is P = {p1, p2, · · · , pn}.

The first step is using the unique operation to deal with the same consecutive
items. Because in our approach, we just consider different item pairs to mine
association rules. The second step is to set support and confidence thresholds.
Because there will be some noisy labels in the vector after the softmax layer, we
set the minimum item support threshold (MIST) to remove these noisy labels
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when the frequence of one item is lower than the threshold. The other threshold
is named minimum pattern confidence threshold (MPCT), which is set to choose
the root node of a FA-Tree. When we construct a FA-Tree, the root node must
be the actual label of this category. So we need to sort items by MIST, and
MPCT determines that in top 0.05 or 0.1 rate of all items, we can choose the
actual label as the root node. In Sect. 4.2, the data were uniformly sampled in
experiments to help set the thresholds.

In addition, when constructing a FA-Tree, we have fully considered the tem-
poral information in a video. Because in the processing step, we have not changed
the positions of items. So the remaining items are organized in the order as the
original video. The construction of a FA-Tree is divided into three steps. First,
those items whose frequence is higher than MPCT are selected as the root node.
Second, each label vector is divided into patterns to generate frequent pattern
set. Third, for each root node, we connect the items that appear before root
node in the left branch, and those after the root node in the right branch. The
specific algorithm is shown as below.

Algorithm 1. Pseudo-code of the Construction of Feature Aggregation
Tree
Input: Action label vector subset Si = {v1, v2, · · · , vj}, MIST , MPCT
Output: Feature Aggregation Tree FA − Tree

1 Scan Si once. Collect items higher than MIST to group F . Construct
the pattern set P . Sort F by support frequence in the descending order,
and choose items higher than MPCT to be the Root of a FA-Tree ;

2 Scan the pattern set P ;
3 for each vector in Vj do
4 for each pattern in P do
5 if item p appears before Root then
6 if Root has a left child node p then
7 the frequence of p add 1;

8 else
9 reach to the left child node of Root recursively, create a

new node p, and let its frequence be 1, linked to its
parent node and recorded in the list;

10 else
11 the same step as before except right instead of left;

12 if there is no p in the pattern then
13 create new Root and repeat step 2

14 final ; return FA − Tree;

Given a simple FA-Tree as an example in Fig. 3. The letter ‘a’ means ‘action’
while the subscript of ‘a’ is the result of the softmax layer. The item set is
{a2, a1, a20} and the pattern set is {[a20, a2], [a2, a1], [a2, a20], [a1, a20]}. When
the root is a2, we make a20 to be its left child node and a1 to be its right child
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node. When we extract the pattern [a2, a20], we find a2 already has the right
child node, so let a20 be the right child node of a1.

Fig. 3. We construct a simple AF-Tree as an example. Initial weights are calculated
by the statistical approach while weights are calculated by the bayesian model.

FA-Tree is a highly compressed structure that stores all the information of
action patterns, and the memory space occupied by FA-Tree is proportional to
the depth and width of the tree. For the depth of the tree, it generally depends on
the complexity of label vectors, as well as the quality of classifier. For example,
the more chaotic the label vector is, the deeper the tree will be. The width of the
tree indicates that there are not only one root node. FA-Tree is compact because
the size of the tree is usually much smaller than the original label vector set.

3.2 How to Design FA-Tree Probability Estimation

After constructing a FA-Tree, we initialize the weights of each node with the
simple statistical approach. The definition of weights is shown as below. For each
single item, its weight means the probability that it belongs to one action. For
each pattern, its weight means the probability product of a two-item combination
and this combination belongs to one action. The weight can be thought as the
contribution of items and patterns to the whole video. However, simple statistical
approach can not get precise weights in our experiments, Table 1. So we use the
bayesian model to predict weights, the formula is shown as:

P (Ccls|li) =
P (li|Ccls)P (Ccls)

P (li)
,
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where Ccls means the category of one action, li means the ith label in a video label
vector. P (li) is given by softmax classifier. P (Ccls) and P (li|Ccls) are calculated
by data statistics. So we can update P (Ccls|li) to have a more precise weight.
And the weight will be saved in the node of a FA-Tree.

The FA-Tree is used to compute the probability of the whole video by finding
the matched patterns in the test video. We will introduce the probability formula
for calculating the video probability, which is as follows:

– Set the node weight parameter μ, pattern weight parameter γ.
– The patterns extracted from a label vector has N nodes and M patterns,

referred to as pnode and ppattern respectively.

The probability that a test label vector passed by a FA-Tree can be expressed
as:

P (v, FA − Tree) =
N∑

i=1

μip
node
i +

M∑

j=1

γjp
pattern
j + c,

where v represents the test video label vector;μ and γ are the weight parameters
corresponding to p; c is a penalty, which plays a similar role as bias.

As is shown in Fig. 3, we get the initial weights with the statistical approach.
Given that this AF-Tree belongs to action “ApplyLipstick”, which is label 2.
If the assumption is P (Ccls=2) = 0.76, and P (a2), P (a1), P (a20) are given by
softmax, we can calculate the weights as the figure.

4 Experiments

4.1 Dataset

UCF101. UCF101 [36] is a dataset which is cut from real action videos in
YouTube. It contains a total of 101 action categories and 13320 videos. We use
split 1 for the experiment, including 9537 training videos and 3783 test videos,
whose total hours up to 27 h.

HMDB51. HMDB51 [37] is collected from a variety of sources, most of which
come from movies, and a small percentage from public databases such as
Prelinger files, YouTube and Google Video. The dataset contains 6849 segments,
which are divided into 51 action categories with at least 101 segments for each
category.

4.2 FA-Tree Construction

In the experiment, we use the first split of HMDB51 dataset to show the process
of parameter setting. Each video is divided into segments with the length of 16
frames and 50% overlap between segments. We use these video segments as the
input of the 3D convolutional neural network [4] and we will get the classification
result of each feature after the softmax layer. Therefore, for each action video, we
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can get a label vector which is made up by some different labels. We accumulate
all the vectors of the same category action in one subset.

To get the item set and pattern set, first, we select 80% training data to
predict the remaining 20% and we repeat this step 5 times. We randomly select
some data in HMDB51, and finally select about 4500 videos to construct Feature
Aggregation Trees. When observing these label vectors, some noisy data need
to be removed. We just set the threshold MIST, and items below the thresholds
are all excluded. The MIST is set to be 0.05 and the MPCT is set to be 0.1.

In the process of probability estimation, we set c as a penalty coefficient which
is shown in the formula of the Sect. 3.2. We also test whether we should set the
penalty factor c, which is shown in Table 1. The table (left) records accuracies
without the bayesian model and the penalty coefficient c. While the first three
columns in the table (right) record accuracies without the bayesian model but
with c. And the last column in the table (right) records accuracies with the
bayesian model and c.

Table 1. Accuracy (%) comparison between FA-Tree with PN (right) and without PN
(left) on the HMDB51 dataset

Rank-1 Rank-2 Rank-3

Split 1 56.9 69.9 75.0
Split 2 53.3 67.5 72.3
Split 3 55.4 69.2 74.7

Rank-1 Rank-2 Rank-3 Bayesian

Split 1 57.0 69.8 75.4 67.7
Split 2 53.5 68.2 73.8 63.4
Split 3 55.5 69.7 74.8 66.8

When experimenting on the HMDB51 dataset, if we only use the C3D fea-
tures and all weight of items and patterns are initialized, we can calculate the
accuracy of Rank-2 is 69.80%. This shows that the Feature Aggregation Tree can
really capture the latent motion information in the video. The reason why these
segments can not achieve the highest score is that the predictions are mainly
limited to using only the simple softmax. So after using the bayesian model we
get the result lower than Rank-2 but higher than Rank-1.

4.3 FA-Tree Comparison Experiment

In this part, we consider Fisher Vector [11,13] and VLAD [10] to be the baseline
method. In addition, we also consider the mean pooling and the max pooling,
as well as RNN-FV [38] and ST-VLMPF [39]. The experimental results are in
Table 2.

The result of FA-Tree is better than the baseline methods, which proves the
effectiveness of our method. It is worthy mentioning that, compared with the
improvement on the UCF101 dataset, the result is more obvious on the HMDB51
dataset because the labels in the UCF101 dataset are more ordered. However in
the HMDB51 dataset, the FA-Tree can find enough action patterns from chaotic
labels to represent the actions and ultimately improve the accuracy.
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Table 2. Accuracy (%) comparison between mean pooling, max pooling and FA-Tree
on the UCF101 dataset and the HMDB51 dataset

Strategies UCF101 HMDB51

iFV [11] 79.8 49.0

VLAD [10] 81.4 49.1

RNN-FV [38] 82.3 52.9

Mean pooling 82.7 51.6

Max pooling 83.3 52.5

ST-VLMPF [39] 86.2 56.3

FA-Tree 86.9 66.2

4.4 Comparison with the State-of-the-Art

In Table 3, we show a comparison of our FA-Tree with the state-of-the-art meth-
ods on both datasets. Our method with MIFS feature achieves 94.6% on the
UCF101 dataset and 74.2% on the HMDB51 dataset.

Table 3. Accuracy (%) comparison of our method with the state-of-the-art methods

Approach UCF101 HMDB51

Wang et al. [26] 85.9 57.2

Tran et al. [4] 82.6 52.5

Simonyan et al. [3] 88.0 59.4

Peng et al. [13] 87.9 61.1

Wang et al. [16] 90.3 63.2

Wang et al. [2] 94.2 69.4

Kar et al. [17] 93.2 66.9

Girdhar et al. [18] 93.6 69.8

Duta et al. [39] 93.6 69.5

Our Method + MIFS [40] 94.6 74.2

5 Conclusion

We propose a novel model - the Feature Aggregation Tree to capture the tempo-
ral motion information in action videos. The FA-Tree connects frame-level fea-
tures with the specific meanings of action primitives, and mines action patterns
in the action sequence. We use the bayesian model to calculate the conditional
probability of patterns. The experimental results on the UCF101 dataset and
HMDB51 dataset demonstrate the effectiveness of our method.
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Abstract. Matrix approximation has been increasingly popular for rec-
ommender systems, which have achieved excellent accuracy among col-
laborative filtering methods. However, they do not work well especially
when there are a large set of items with various types and a huge number
of users with diverse interests. In this case, the complicated structure of
sparse rating matrix introduces challenges to the single global or local
matrix approximation. In this paper, we propose an Adaptive Ensemble
Probabilistic Matrix Approximation method (AEPMA), which can
potentially alleviate the data sparsity and improve the recommendation
accuracy. By integrating the global information over the entire rating
matrix and local information on subsets of user/item ratings in a stochas-
tic gradient boosting framework, AEPMA has the ability to capture the
overall structures information and local strong associations in an adap-
tive weight strategy. A series of experiments on three real-world datasets
(Ciao, Epinions and Douban) have shown that AEPMA can effectively
improve the recommendation accuracy and scalability.

Keywords: Adaptive · Ensemble
Global and Local Matrix Approximation · Matrix approximation

1 Introduction

The variety and number of products provided by companies have increased dra-
matically. Companies produce a large number of products to meet the needs of
customers. Although this gives more options to customers, Customers are fac-
ing more and more information, and how to obtain information accurately and
effectively has become a dilemma. Recommender systems are becoming more
important due to the increasing challenge-information overload. Recommender
systems provide users with personalized recommendation service based on their
preferences, needs, and past behaviors.

Till now, the widely-used historical data is user-item rating matrix which
describes the user’s observed preference. Most popular recommendation tech-
niques (e.g., matrix approximation-based (MA) collaborative filtering) are pro-
posed on rating matrix. In order to predict the rating accurately, many global-
based methods have been proposed. The traditional matrix ratings prediction
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 328–339, 2018.
https://doi.org/10.1007/978-3-030-03338-5_28
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based on global information [2,5,9,24] works by studying the latent feature
matrix of users/items. Although this method has the advantages of prediction
simple and easy to understand the method from math, the interpretability of
the recommendation results is low and these methods failed to detect strong
associations among a small set of items/users.

In order to solve the problem of the subsets of users’ unique interests,
researchers adopted local methods [1,25] to predict the missing values of rat-
ing matrix. They apply matrix clustering and community detection to matrix
approximation methods. The main idea is to partition the large user-item matrix
into a set of smaller submatrices, and the usual method for partition is to consider
user-based clustering or item-based clustering. However, sub-matrix may appear
over-fitting in this local method, and ignore the overall structure on the rating
matrix. Now we proposed the new model AEPMA (Adaptive Ensemble Proba-
bilistic Matrix Approximation), which help us sift through all the available global
and local information to make accurate matrix rating prediction. The intuition
is that, weaker between correlation of two models, more accurate the prediction
values for missing value are. So we take both the global and local information
into consideration. Simultaneously, we apply a gradient-boosting framework to
learn the more accurate values and not sensitive to abnormal points. We learn
the weight of different components in the model, which plays an important role in
adaptive and effective prediction. More importantly, there is no manual setting
of the parameters, both the weight and learning rate.

2 Related Work

Matrix approximation-based collaborative filtering methods have been proposed
to alleviate the data missing issue. Some is from the overall structure, RSVD
[9] is a standard matrix factorization method inspired by the effective to the
domain of collaborative filtering, which is from the domain of natural language
processing. Then NMF [24] view the recommendation task as a actual situa-
tion, so the components are non-negative and NMF assume the ratings follows
the Poisson distribution. Then the Gaussian distribution assumption has been
attempted, PMF [2] is a Probabilistic Matrix Factorization model, which define
the conditional distribution over the ratings as Gaussian distributions. And later
BPMF [5] – a Bayesian extension of PMF, in which the model is using Markov
chain Monte Carlo (MCMC) methods for approximate inference.

Although these methods work well, these methods still limited in detecting
the overall structure. More recently, model such as ACCAMS [1] focused on local
strong correlation. ACCAMS [1] is an additive model of co-clustering, which can
partition rating matrix into blocks that are highly similar through a clustering of
the rows and columns. SIACC [25] is a extension of ACCAMS, and has a better
effect on co-clustering by using a social influence. WEMAREC [4] takes the rat-
ing distribution into consideration. And as a weighted and ensemble model, the
submatrix is generated using different co-clustering constraints in WEMAREC.
Furthermore, LLORMA [3], SMA [25] also focused on using ensembles of factor-
ization to exploit local structure. But these ensembles models only focused on
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ratings inside clusters and ignore the majority of user ratings outside clusters.
Since training data are often insufficient in the detected clusters, the perfor-
mance of local ensemble models may degrade due to overfitting. To tackle this
problem, we address these issues of ratings prediction by applying an ensemble
approach, which can incorporate both global and local information.

In this paper, we unify localized relationships in user-item subgroups and
common associations among all users and items to improve the recommendation
accuracy. The most related works are Probabilistic Matrix Factorization (PMF)
and ACCAMS. In AEPMA, the proposed method can learn global information
and local information simultaneously, since we can alternate optimization itera-
tion to obtain of the adaptive sample weight. We use stochastic gradient boosting
framework to learn more hidden information of the complex rating matrix. More
importantly, In the boosting framework, the ensemble models can enhance the
recommendation accuracy and stability.

3 The Proposed AEPMA Model

The structure of rating matrix is more and more complicated. The single frame-
work such as PMF can not accurately predict the rating. So we propose a
boosting-based matrix approximation for describing the different information
of the rating matrix. Because the user-item rating matrix is represented in a
global strategy by PMF, such as the whole rating matrix, which ignore the
local structure among rating information. In AEPMA, We can capture sufficient
information by combining global rating predictions and local rating predictions.
Then a stochastic gradient boosting framework is adopted to produce accu-
rate ratings prediction and enhance the recommendation stability. More impor-
tantly, we learn adaptive weight for each predictive rating matrix. Which can
sufficiently prevent overfitting. Similar to shrinkage in XGBOOST, the learned
weights reduce the influence of prediction in each stage and leave space for finer
prediction.

3.1 Global and Local Matrix Approximation

We exploit Global and Local Matrix Approximation (GLMA) which is a new
probabilistic model which combined global and local information. More impor-
tantly, the user-item rating weight can be learned adaptively. And the rating
with most suitable global or local model for each user/item should be with large
weights. The conditional distribution over the observed ratings for the global
and local model can be given as follows:

p(X|U,V, σ, α, β) =
∏

Xij∈Ω

[α1
i β

1
j N(Xi,j|Sij, σ

2) + α2
i β

2
j N(Xi,j|UT

i Vj, σ
2)] (1)

Where S is the prediction rating by local method ACCAMS, And U, V are
the global user, item latent feature vectors, which is inferred from all user-item
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rating matrix. And α1, β1 are the weight vectors of the local model for all user-
item ratings, respectively, and accordingly α2, β2 are the weight vectors of the
global model for all user-item ratings, Thus, α1

i , β
1
j reflect the weights of the

local model for the ith user and jth item. The local predictions that reflected the
unique interests shared among only subsets of users/items should be with large
weights, α2

i , β
2
j denote the weights of the globally optimized model, the ratings

that reflect the overall structures should be with large weight.
For α1, β1, α2, β2, we choose a Laplacian prior here, because the models with

most suitable global or local model for user-item ratings should be with large
weight, the variable should be sparse. More importantly, the adaptive weight
can make the model learn useful information and avoid overfitting. Thus the log
of the posterior distribution over the user and item features and weights can be
given as follows:

ln p (U, V, α, β| X, σU,σV, σ, uα, uβ , bα, bβ)
∝ ln [p (X| U, V, σ, α, β) p (U | σU ) p (V | σV ) p (α |uα, bα ) p(β| uβ , bβ)] (2)

Where uα, uβ are the location parameter of the Laplacian distribution, and
accordingly bα, bβ are the scale parameter of the Laplacian distribution. Unfor-
tunately, it is very difficult to solve the above optimization problem directly. In
order to simplify the model, we try to obtain the approximate solution using
Jensen’s inequality, the lower bound of Eq. (2) can be obtained as follows:

l =
n∑

i=1

m∑
j=1

Iij
[
lnα1

i β
1
j N

(
Xi,j | Sj , σ

2
)
+lnα2

i β
2
j N

(
Xi,j | UT

i Vj , σ
2
)]

− 1
2σ2

u
‖U‖2

F − 1
2σ2

v
‖V ‖2

F − n ln σ2
u − m ln σ2

v

− 1
bα

2∑
k=1

n∑
i=1

∣∣αk
i − uα

∣∣ − 1
bβ

2∑
k=1

m∑
j=1

∣∣βj − uβ

∣∣ − n ln b2
α − m ln b2

β

(3)

If we keep the hyperparameters of the prior distribution fixed may easily
lead to overfitting. And we want to obtain the adaptive weight of the model, so
we estimate the parameters and hyperparameters simultaneously during model
training. In order to estimate the hyperparameters, while fixed the rest variables
and then iterate until convergence. The hyperparameters can be given as:

σ2 =
∑

Xij∈Ω

αiβj

(
Xij − Rij

)2

/
∑

Xij∈Ω

1

σ2
u = 1

n

∑
Xij∈Ω

(Ui)
2

σ2
v = 1

m

∑
Xij∈Ω

(
Vj

)2

uα = 1
n

∑
Xij∈Ω

αi uβ = 1
m

∑
Xij∈Ω

βj

bα = 1
n

∑
Xij∈Ω

|αi − uα| bβ = 1
m

∑
Xij∈Ω

∣∣βj − uβ

∣∣

(4)

3.2 Boosting-Based Matrix Approximation

The structure of rating matrix is more and more complicated, the single frame-
work has trouble discovering abundant hidden information of the rating matrix.
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Thus, we propose a boosting-based mixture matrix approximation model- Adap-
tive Ensemble Probabilistic Matrix Approximation (AEPMA).

In order to describe the different information of the rating matrix, We propose
an ensemble mixture matrix approximation approach for rating prediction. In
AEPMA model, we learn an additive model X, with K products ωk ∗ Rk. Thus
the prediction rating matrix X̂ is presented:

X̂ =
K∑

k=1

ωk ∗ Rk (5)

Where K is the number of individual learner, Rk is the prediction rating
matrix of kth individual learner. Rk =

(
Uk

)T
V k, and ωk is the weight of pre-

diction rating matrix Rk. And
(
Uk, V k

)
is the pair of user, item latent factor

vectors.
In order to discover the global structure information and detect local strong

association. We let the first learner is GLMA, so we can get the prediction rating
S1, and the other individual learner corresponds to PMF. Thus the optimal
prediction rating value is then equal to:

X̂ = ω1 ∗ S1 +
K∑

k=2

ωk ∗ Rk (6)

To achieve the rating matrix approximation, we use the Frobenius norm-
based objective function as follows:

min
Uk,Vk

∥∥∥∥∥X − ω1 ∗ S1 −
K∑

k=2

ωk ∗ UT
k Vk

∥∥∥∥∥

2

F

(7)

Residual Matrix Update. AEPMA solves this problem in a gradient boosting
manner, which iteratively adds a new individual learner to better approximate
the true rating matrix. The partial residual rating matrix is learn from the
negative gradient of the loss function. In AEPMA, the negative gradient of the
loss function is the difference of the true ratings and the prediction ratings.

To fit the k − 1 learner PMF, Rk−1 = ωk−1 ∗ UT
k−1Vk−1, with rank rk−1 to

the residual matrix Xk−1. Where the matrix rank rk−1 is adaptive, because the
distribution of the residual is different. Then The specific residual matrix Xk

calculation method is shown in Fig. 1:
Due to the forward stage-wise manner, We constantly iterative add a new

model to better approximate rating matrix X. The prediction from previously
learned k−1 models is fixed, Thus the kth residual rating matrix can be indicated
by the previously learned k − 1 models. Thus, we can define the residual rating
matrix at stage k as:

Xk =

⎧
⎪⎨

⎪⎩

X if i = 1
X−ω1S1

ω2
if i = 2

Xk−1−ωk−1Rk−1

ωk
if i ≥ 3

(8)
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Fig. 1. The residual matrix determined by rating matrix and predictive rating matrix
in previous stage.

where ωk is the weight of kth prediction rating matrix Rk. S1 is the prediction
rating matrix which fitting the GLMA model. And accordingly Rk−1 is the
prediction rating matrix fitting the PMF model, Rk−1 =

(
Uk−1

)T
V k−1. And(

Uk−1, V k−1
)

is the pair of user, item factor latent vectors. Then the input
residual rating matrix Xk of the kth individual learner PMF can be written as;

Xk =

[[[
X − ω1S

1
] − ω2R

2
] · · · − ωk−1R

k−1
]

ωk
(9)

In the kth epoch, according to the Probabilistic Matrix Factorization(PMF)
model, we can obtain the user/item factor latent vectors. In our proposed method
solves each model of R in a greedy sequential manner, which means that once
the solution for Rk is obtained at stage k, it is fixed during the remaining iter-
ations. And in our model, we want to consider the local and global information
simultaneously, so the general we choose more than three models.

Adaptive Weight. One important step in the approximate algorithm is to pro-
pose adaptive weight. In AEPMA, we assign smaller weight to those components
R less explained(large residuals). Let us define the residual probability distribu-
tion P k

ij Rk
ij − X̂k

ij ∼ N
(
0, σ2

u

)
, Then large residuals is far from the mean, in

which the corresponding probability is relatively small. Thus the weight of each
prediction rating matrix is given by;

wk =
1
N

∑

i,j

P k
ij

K∑
s=1

P s
ij

(10)

In the above equation, higher weight values is assigned to components with
smaller residual. In other word, The better the fitting rating matrix, the greater
the corresponding weight.

In APEMA, each user-item rating is characterized by a mixture model, and
then to predict user-item ratings by the mixture components and the weight of
each model. We can predict the user-items ratings as follows:

X̂ = ω1 ∗ R1 + ω2 ∗ R2 + ω3 ∗ R3 · · · + ωk ∗ Rk (11)
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4 Experiments

4.1 Experiment Setup

In the following, we introduce our experimental setup include dataset, baseline
methods, and evaluation measures.

Datasets. We selected the following three real-world datasets that has widely
used for evaluating recommendation algorithm – Ciao, Epinions, and Douban
which are usually used in literatures. The rating score is from 1 to 5 score. For
each datasets, we randomly split it into five equal sized subsets. Four subsets
are used as training set and the left one as testing set in each fold. In the five-
fold cross-validation, the result are represented by averaging the results over five
different train-test splits. These datasets are summarized in Table 1.

Table 1. Summary of experimental datasets

Dataset Ciao Epinions Douban

�users 7,375 49,290 129,490

�items 106,797 139,738 58,541

�ratings 284,086 284,086 16,830,839

Rating density 0.036% 0.010% 0.222%

Baselines. We compared the recommendation accuracy of our proposed
method against various state-of-the-art methods, including PMF [2], BPMF [5],
LLORMA [3], WEMAREC [4], ACCAMS [1], SMA [25]. Because in the paper
(Low-Rank Matrix Approximation with Stability), the author proposed that
the performance of SMA is better than BPMF, LLORMA and WEMAREC.
Thus the proposed method (AEPMA) is compared against three state-of-the-art
matrix approximation based CF models, which are described as follows:

• PMF: A probabilistic matrix factorization, which define the conditional dis-
tribution of the observed ratings as Gaussian distribution.

• RSVD: A global-based matrix factorization method, in which user/item fea-
tures are estimated by minimizing the sum-squared error.

• ACCAMS: An additive co-clustering model to approximate rating matrix,
which can partition rating matrix into blocks that are highly similar through
a clustering of the rows and columns. Then using the mean of the values to
represent the block missing ratings.

• SMA: An low-rank matrix approximation framework, which achieving high
stability.

Metrics. The root mean square error (RMSE) and Mean Absolute Error (MAE)
is adopted as the evaluation metric for recommendation accuracy. The RMSE is

defined as RMSE =

√
∑

Xij∈T
(Xij−R̂ij)2

|T| .
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where T is the set of ratings in the testing set and |T| is the size of the test ratings.
R̂ij is the predicted rating Xij is represented the true rating value from ith user to

jth item in the testing set. The MAE is defined by MAE = 1
|T|

∑
Xij∈T

∣∣∣Xij − R̂ij

∣∣∣.

4.2 Recommendation Performance

Table 2 compares RMSE and MAE in our method with classic matrix approxi-
mation method. We can see our method can achieve both lower generalization
error and lower expected risk than other methods.

In this experiment, we compare the recommendation accuracy of AEPMA
against various state-of-the-art methods, including PMF, RSVD, ACCAMS and
SMA. In most of these methods, we use the same parameters values provided
in the original papers, and for ACCAMS, we tuned its parameters including
the number of users clusters and item cluster, and the number of stencils. In
PMF, we set the max-number of iterations as 300 in our experiment. And the
regularization parameter on latent is 0.01. In AEPMA, in order to reduce the
manual setting of the learning rate, we use adam for stochastic optimization.
And we choose 0.001 as stepsize, 0.9, 0.999 as the exponential decay rates for
the moment estimates. Then we set the number of individual learners as three.
The relative improvements that AEPMA achieves relative to four state-of-the-art
methods on three datasets are calculated. As shown in Fig. 2. Obviously, AEPMA
performs better than ACCAMS and SMA, which demonstrates that the model
with global structure information is better than the only local ensemble matrix
approximation methods. Simultaneously, Our method is much better than the
only global method PMF and RSVD. From the relative improvements, we can
see the SMA is better on the dense dataset (Douban) and perform poor on the
sparse datasets (Ciao and Epinions). More importantly, In order to prove that the
importance of GLMA method, we compare the performance in terms of MAE,
RMSE for PMF+ (global) and ACCAMS+ (local). In the boosting framework,
PMF+ is fitting PMF then get S1, accordingly ACCAMS+ is fitting ACCAMS
to get S1. In additional, our method which using global and local information is
better than the method only global on local. And we also find that the model can
achieve relatively stable prediction accuracy due to the framework of boosting.
A smaller RMSE or MAE value indicate better performance. Because there are
too many ratings, a small improvement in RMSE or MAE can have a significant
impact on the recommendation result. As shown in Table 2, It can be seen that
AEPMA consistently outperforms the global method (PMF, RSVD) and the
local method (ACCAMS, SMA), Which means that considering both local and
global information is more useful than only considering unilateral influence.

The true datasets have different rating density, For example, The Ciao and
Epinions (the rating density is 0.036% and 0.010%) is sparse. Simultaneously, We
can see in the Table 2, the recommendation accuracy on sparse dataset is worse
than the dense datasets. Thus how to improve the recommendation accuracy of
sparse data, is the challenge of the recommendation system. More importantly,
ACCAMS is better than SMA on the Ciao and Epinions, but worse than SMA on
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Table 2. RMSE and MAE comparison of different methods

Datasets Metrics PMF RSVD ACCAMS SMA PMF+ ACCAMS+ AEPMA

Ciao RMSE 1.1146 1.4268 1.0540 1.0746 1.0642 1.0339 1.0121

MAE 0.8256 1.0745 0.8084 0.8175 0.8130 0.7846 0.7788

Epinions RMSE 1.3203 1.4772 1.1689 1.1847 1.1710 1.1406 1.1118

MAE 1.1206 1.1411 0.8971 0.9157 0.9112 0.8875 0.8597

Douban RMSE 0.7699 0.7360 0.7309 0.7092 0.7098 0.7261 0.7038

MAE 0.6230 0.5752 0.5818 0.5594 0.5635 0.5779 0.5574

(a) RMSE (b) MAE

Fig. 2. The relative improvements of AEPMA vs. ACCAMS and SMA in three datasets
in terms of (a) RMSE and (b) MAE

(a) RMSE (b) MAE

Fig. 3. The relative improvements of AEPMA vs. PMF+ and ACCAMS+ in three
datasets in term of (a) RMSE and (b) MAE

(a) running time (b) RMSE (c) MAE

Fig. 4. Effect of Parameters k, s and matrices number on AEPMA
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the Douban dataset. In AEPMA, we exploit Global and Local information, and
use the boosting framework to learn the hidden information. Thus the proposed
AEPMA can outperform on both sparse and dense datasets. Table 2 show that
the ensemble-based local methods (ACCAMS, SMA) especially outperforms the
global method (PMF, RSVD). Thus we pay attention to the relative improve-
ments that AEPMA achieves to two local baselines on three datasets, as shown
in Fig. 2. Obviously, AEPMA performs better than ACCAMS and SMA, which
demonstrates the global information benefit the AEPMA model. Figure 2 also
reflects that the sparsity of data influence the recommendation accuracy. The
relative improvements that AEPMA achieves relative to SMA on sparse datasets
(Ciao, Epinions), is superior to the relative improvement to ACCAMS. In other
word, The ACCAMS performs better than SMA on sparse dataset, but worse
on dense dataset. Because the ACCAMS use the mean of values to the block
can lead to overfitting on the dense datasets. In AEPMA, we exploit Global and
Local information can fully learn the complicated ratings. More importantly, the
boosting framework can improve the model stability and robustness. In the global
model such as PMF and RSVD, the same vectors of latent factors inferred from
all user-item rating matrix is adopted to describe all users and items, However in
many real-world user-item rating matrics, if we think of the global latent factors
as “common interests”, then subset of users may share “unique interests” that
are not reflected by the “common interest”. Thus, Fig. 3 investigates the effect
of global and local information in our model. We fix the boosting framework
and change the S1. We can see AEPMA is better than PMF+ and ACCAMS+,
and ACCAMS+ performs better than PMF+. Because ACCAMS+ trained the
model by both global (boosting) and local (S1) information. But AEPMA can
learn the sample weight adaptively to learn sufficient information. Thus AEPMA
is superior to ACCAMS+.

Figure 4(a) analyzes the running time with the number of matrices increases.
The method AEPMA based on boosting can reduce the bias. And with the
number of iterations increasing, the RMSE and MAE can decrease gradually, but
running time increases. So in this experiment, we choose a compromise method,
the number of matrices is smaller than five. Figure 4(b, c) analyzes the impact
of clustering method with different numbers of clusters k and stencils s on Ciao
dataset. From Fig. 4(b, c), it can be seen that the performances is destroyed
when s is large. The main reason is that large stencils will make overfitting.
Meanwhile, we discover that AEPMA is stable under varying k with fixing s.
Thus small k is enough to approximate the rating matrix.

5 Conclusions

Traditional matrix approximation based collaborative filtering methods have a
major drawback that they perform poorly at detecting strong associations among
a small set of closely related items. In this paper, we can capture sufficient
information by combining global and local information. More importantly, by
placing a Laplacian prior on the user and item weight vectors, we can adaptively
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learn the sample weight. In the stochastic gradient boosting framework, we can
learn the hidden information and enhance the recommendation accuracy and
scalability. Experimental study on three real-world datasets demonstrates that
proposed AEPMA method can outperform several state-of-art ensemble matrix
approximation methods.
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Abstract. In this paper, we focus on a deep structure-enforced non-
negative matrix factorization (DSeNMF) which represents a large class
of deep learning models appearing in many applications. We present a
unified algorithm framework, based on the classic alternating direction
method of multipliers (ADMM). For updating subproblems, we derive
an efficient updating rule according to its KKT conditions. We conduct
numerical experiments to compare the proposed algorithm with state-
of-the-art deep semi-NMF. Results show that our algorithm performs
better and our deep model with different sparsity imposed indeed results
in better clustering accuracy than single-layer model. Our DSeNMF can
be flexibly applicable for data representation.

Keywords: Deep matrix fatorization · Alternating direction method
Data representation

1 Introduction

Matrix factorization techniques have found great utility in various data-related
applications, such as in signal and image processing and in machine learning
tasks, primarily because they often help reveal latent features in a dataset. In
recent years, Non-negative Matrix Factorization (NMF) is a widely-used method
for finding meaningful representations of nonnegative data and has been proven
useful in dimension reduction of images, text data and signals, for example. The
family of NMF algorithms has been successfully applied to a variety of areas,
like environmetrics [1], microarray data analysis [2,3], document clustering [4],
face recognition [5,6], speech recognition [7], hyperspectral image unmixing [8,9],
blind audio source separation [10], etc. Moreover, NMF has been extended into
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a number of variant forms, allowing for various structures or regularized models,
most of which demonstrate distinct advantages in local feature extraction or
data representation learning.

The work of Lee and Seung [11] demonstrates that NMF models tend to
return part-based sparse representations of data, which has popularized the use
of and research on NMF-related techniques. In particular, various NMF-inspired
formulations add different regularization or penalty terms to promote desired
properties, such as sparsity patterns or orthogonality in addition to nonnega-
tivity (see [12–18], for example). Besides, graph-regularized NMF versions have
also been explored. For example, Cai et al. [19] proposed a graph-regularized
NMF by incorporating prior information of samples into the typical NMF. This
helps to keep the original topological structure of data after being projected into
a subspace and usually leads to better clustering results.

Semi Non-negative Matrix Factorization (Semi-NMF) [20], as one of the most
popular variants of NMF, was proposed to extend NMF by relaxing the factor-
ized basis matrix to be real values. This practice allows Semi-NMF to learn new
lower-dimensional features from the data that have a convenient clustering inter-
pretation and have a wider application in the real world than traditional NMF.
Moreover, it has shown that it is equivalent to k-means clustering, and that in
fact, this NMF variants are expected to perform better than k-means clustering
particularly when the data is not distributed in a spherical manner.

Although there have been extensive variants of NMF, most of them remain to
be single-layer models, hence can only capture one level of data features. Most
recently, deep learning is becoming increasingly popular and has been demon-
strated to be powerful in learning data representation. Inspired by the success
of training deep architectures, Multi-layer NMF (see [21,22] for example), Deep
Semi-NMF [23], Deep Orthogonal NMF [24], Sparse Deep NMF [25], Deep Non-
smooth NMF [26], etc. have been proposed by stacking one-layer variants of
NMF into multiple layers to learn hierarchical relationships among features or
hierarchical projections. Since these deep (multi-layer) models can extract high
level data representations and yield intuitive interpretations for features gener-
ated in each layer, they have been successfully applied to many areas, such as
recommender systems [27], image clustering [28], neural network [29], speech sep-
aration [30], matrix completion [31], for example. However, these models are only
designed for specific problems with certain intuitive structures. In this paper, we
focus on a unified deep structure-enforced NMF in data representation, which
imposing desired properties (like sparsity, orthogonality, for example) in addition
to nonnegativity. A specific algorithmic approach to solve the deep structure-
enforced NMF is further studied and can be applicable to a range of easily
projectable structures.

This paper is organized as follows. In Sect. 2, we introduce the deep structure-
enforced NMF (DSeNMF) and propose a new ADMM-based algorithm frame-
work for solving DSeNMF. Section 3 contains several numerical experiments com-
paring the proposed algorithm with Deep Semi-NMF and single-layer matrix
factorization on MNIST digit dataset. Finally, we conclude this paper in Sect. 4.
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2 Deep Structure-Enforced Nonnegative Matrix
Fatorization Model

The general structured-enforced matrix factorization (SeMF) model (1) is firstly
proposed in the earlier work in [32]. That is, decomposing a given data matrix
M ∈ R

p×n into two factors Z ∈ R
p×k and H ∈ R

k×n which belong to Z and H,
respectively,

min
Z,H

1
2
‖M − ZH‖2F s.t. Z ∈ Z, H ∈ H, (1)

where ‖ · ‖F is Frobenius norm, and Z and H are subsets of Rp×k and R
k×n,

respectively. Obviously, the model (1) is a single-layer matrix factorization. Thus,
it can only do one-layer feature extraction even utilizing more structures. In prac-
tice, it is common that complex data objects have hierarchical features, each of
which denotes a different level of abstract understanding of the objects. It is
therefore meaningful to develop corresponding models with a deep architecture,
which allows to discover the hierarchy of data. It is well known that NMF is
widely used both in single-layer and in multi-layer data representation. To this
end, we propose a deep structure-enforced version for nonnegative matrix fac-
torization by extending model (1).

Similar to the general multi-layer framework, the Deep Structure-enforced
NMF (DSeNMF) model is presented to factorize M ∈ R

p×n into the multiplier
of m + 1 nonnegative matrices, as follows:

min
{Zi≥0}m

i=1,Hm≥0

1
2
‖M − Z1Z2 · · · ZmHm‖2F s.t. Zi ∈ Zi, Hm ∈ H, (2)

where Z1 ∈ R
p×k1 , {Zi ∈ R

ki−1×ki}m
i=2, Hm ∈ R

km×n, {Zi}m
i=1 and H are struc-

ture subsets with proper dimensions. In our model, prior knowledge are explic-
itly enforced as constraint sets {Zi}m

i=1 and H whose members possess desirable
matrix structures allowing “easy projection”. In practice, the most useful struc-
tures of this kind include, but are not limited to, nonnegativity, normality and
various sparsity patterns. Many deep NMF models can be represented by the
DSeNMF (2) with different structure constraints, see Sparse Deep NMF, Deep
Orthogonal NMF, Deep Semi-NMF as mentioned above, for example.

To make it more intuitive, one can split the model (2) into the following
factorizations:

M ≈ Z1H1,

H1 ≈ Z2H2,

...
Hm−1 ≈ ZmHm,

(3)

where {Zi}m
i=1 and {Hi}m

i=1 satisfy proper constraints, respectively. This formu-
lation can intuitively illustrate that deep model (2) allows for a hierarchy of m
layers of implicit representations of data. In other words, not only most multi-
layer and deep matrix factorizations is derived from the formulation (3), but
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also most algorithms for (2) are designed by solving (3) layer by layer. In the
beginning of approaches, the objective data matrix are multi-factorized only by
solving (3) one round layer by layer. Obviously, these approaches are inefficient
since the factor matrices in former layers are useless for subsequent layer factor-
izations. Therefore, the popular scheme is utilizing the layer by layer technique
as initialization or pre-training, then fine-tuning all layers by alternating updat-
ing factor matrices one by one. Now, we propose a novel approach based on
alternating direction algorithm framework to solve the non-convex problem (2).

2.1 An Alternating Direction Algorithm for the Proposed DSeNMF

As introduced in the work [32,33], an alternating direction and projection
method solves single layer structure-enforced matrix factorization (SeMF) effi-
ciently. Motivated by the algorithms in [32,33], we propose a novel way to tackle
multi-layer or deep matrix factorizations. To facilitate an efficient use of alter-
nating minimization, we introduce auxiliary variables {Ui}m

i=1 and Vm in order
to separate {Zi}m

i=1 and Hm from structure constraints {Zi}m
i=1 and H, respec-

tively. Consider the following model equivalent to (2),

min
{Zi≥0,Ui}m

i=1,Hm≥0,Vm

1
2
‖M − Z1Z2 · · · ZmHm‖2F

s.t. Zi − Ui = 0, Ui ∈ Zi, i = 1, · · · ,m,

Hm − Vm = 0, Vm ∈ H,

(4)

where {Ui}m
i=1 and Vm have the same dimension size with {Zi}m

i=1 and Hm,
respectively. The augmented Lagrangian function of (4) is

LA({Zi, Ui, Λi}m
i=1,Hm, Vm,Π)

= 1
2‖M − Z1Z2 · · · ZmHm‖2F +
∑m

i=1 Λi • (Zi − Ui) + Π • (Hm − Vm)

+
∑m

i=1
αi

2 ‖Zi − Ui‖2F + β
2 ‖Hm − Vm‖2F ,

(5)

where {Λi}m
i=1,Π are Lagrangian multipliers with equal-size of {Zi}m

i=1,Hm,
respectively, and ({αi}m

i=1, β) ≥ 0 are penalty parameters for equality con-
straints, respectively. Note that the scalar product “•” of two equal-size matrices
X and Y is the sum of all element-wise products, i.e., X • Y =

∑
i,j XijYij .

The alternating direction method of multiplier (ADMM) [34,35] for (4) is
derived by successively minimizing the augmented Lagrangian function LA with
respect to {Zi}m

i=1,Hm, {Ui}m
i=1 and Vm, one at a time while fixing others at

their most recent values, and then updating the multipliers after each sweep
of such alternating minimization. The introduction of the auxiliary variables
{Ui}m

i=1 and Vm makes it easy to carry out each of the alternating minimization
steps. Specifically, these steps can be written in the following forms,
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Z+
j ≈ arg min

Zj≥0
LA({Zi, Ui, Λi}m

i=1,Hm, Vm,Π), j = 1, 2, · · · ,m, (6a)

H+
m ≈ arg min

Hm≥0
LA({Z+

i , Ui, Λi}m
i=1,Hm, Vm,Π), (6b)

U+
j = PZj

(Z+
j + Λj/αj), j = 1, 2, · · · ,m, (6c)

V +
m = PH(H+

m + Π/β), (6d)
Λ+

j = Λj + αj(Z+
j − U+

j ), j = 1, 2, · · · ,m, (6e)

Π+ = Π + β(H+
m − V +

m ). (6f)

where PZj
(PH) stands for the projection onto the set Zj (H) in Frobenius norm,

and the superscript “+” is used to denote iterative values at the new iteration.

Updating Rule for Zj . We fix the rest of the factor matrices and minimize
the cost function with respect to Zj . The Zj-updating subproblem (6a) actually
can be rewritten as

min
Zj

1
2
‖M − ΦjZjΨj‖2F + Λj • (Zj − Uj) +

αj

2
‖Zj − Uj‖2F

s.t. Zj ≥ 0,

(7)

where Φj = Z1Z2 · · · Zj−1 and Ψj = Zj+1 · · · ZmHm. Let Γ be the lagrangian
multiplier for constraint Zj ≥ 0, the Lagrangian function of (7) is

L =
1
2
‖M − ΦjZjΨj‖2F + Λj • (Zj − Uj) +

αj

2
‖Zj − Uj‖2F + Γ • Zj .

The partial derivative of L with respect to Zj is

∂L
∂Zj

= ΦT
j ΦjZjΨjΨ

T
j + αjZj − ΦT

j MΨT
j − αjUj + Λj + Γ.

Using the Karush-Kuhn–Tucker (KKT) conditions ΓikZjik = 0, we get the fol-
lowing equations respect to the (i, k)-th element:

(
ΦT

j ΦjZjΨjΨ
T
j + αjZj − ΦT

j MΨT
j − αjUj + Λj

)
ik

(Zj)ik = 0.

This equation leads to the following updating rule:

(Z+
j )ik = (Zj)ik

(ΦT
j MΨT

j + αjUj − Λj)ik

(ΦT
j ΦjZjΨjΨT

j + αjZj)ik
, (8)

and it can be rewritten as

Z+
j = Zj � [(ΦT

j MΨT
j + αjUj − Λj) � (ΦT

j ΦjZjΨjΨ
T
j + αjZj)], (9)

where � and � denote component multiplications and divisions,respectively.
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Updating Rule for Hm . We can derive the Hm-updating rule of (6b) in a
similar way. We omit the derivative procedure and directly write updating rule
for (i, k)-th component of Hm:

(H+
m)ik = (Hm)ik

(ΦTM + βVm − Π)ik

(ΦTΦHm + βHm)ik
, (10)

where Φ = Z+
1 Z+

2 · · · Z+
m. Namely,

H+
m = Hm � [(ΦTM + βVm − Π) � (ΦTΦHm + βHm)], (11)

where � and � denote component multiplications and divisions, respectively.
Since we update Zj and Hm by component multiplications and divisions

instead of involving inverse matrices, the dominant computational tasks at each
iteration are the matrix multiplications. Therefore, our updating scheme posses
much lower complexity than inverting matrices.

Based on the formulas in (6), (9) and (11), we can implement the following
ADMM algorithmic framework so long as we can compute the projections in
steps (6c) and (6d).

Algorithm 1. ADMM Framework for DSeNMF
Input: M , each layer dimension ki, i = 1, · · · , m, maxiter > 0 and tol > 0.
Output: {Zi}m

i=1 and Hm.
Set {αi}m

i=1, β > 0.
H0 = M ;
for i = 1 to m do

Zi, Hi ← SeMF(Hi−1, ki) \\ Initialization.
end
for k = 1 to maxiter do

Update ({Zi, Ui, Λi}m
i=1, Hm, Vm, Π) by the formulas in (6), (9) and (11).

if stopping criterion (12) is met then
output {Zi}m

i=1 and Hm, and exit.
end

end

We use the following practical stopping criterion: for given tolerance tol > 0,

|fk − fk+1|
|fk| ≤ tol, (12)

where fk = ‖X − Zk
1Zk

2 · · · Zk
mHk

m‖F , Zk
i is the k-th iterate for the variable Zi,

and so on. For the sake of robustness, in our implementation we require that
the above condition be satisfied at three consecutive iterations. In other words,
we stop the algorithm when data fidelity does not change meaningfully in three
consecutive iterations.
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3 Experimental Results

In this section we test the proposed model on MNIST dataset to show that our
Deep SeNMF is able to learn better high-level representations of data than a
single one-layer structure-enforced NMF. In addition, we compare the perfor-
mance of the proposed DSeNMF with recently Deep Semi-NMF on the task of
clustering analysis and consuming time. Note that we consider to impose several
sparse constraints on our DSeNMF model (2).

To better understand the proposed model, we introduce three way to impose
sparsity on Hm. One is adding sparsity not only during initialization but also in
subsequential updating and denote this case as DSeNMF(sparse). The other way
is imposing sparsity only in step (6d), that is, using standard NMF to initialize
each layer matrix, and is denoted as DSeNMF(semi-sparse). The last one will
not impose sparsity and denote this case as DSeMF(no sparse). To illustrate
deep model and single-layer factorization distinct, we also consider single-layer
structure-enforced matrix factorization and denote as SingleSeMF.

Next, we apply models to the testing data in an unsupervised way to cluster-
ing. We opt the digits from 0 to 4 in MNIST which constitute a 784 × 5139 matrix
M . In this test, we choose the number of layers to be 3 and dimension size of each
layer is 300, 15 and 50, respectively. Besides, set the maximum number of itera-
tion maxiter = 500 and tolerance tol = 1e−6. We factorize data matrix M using
Deep Semi-NMF (DSemiNMF) in [23], DSeNMF(sparse), DSeNMF(semi-sparse)
and SingleSeMF, respectively. Then we cluster columns of the final Hm accord-
ing to the approach in [23] and output the clustering accuracy as AC.

Table 1. Results comparison with different deep NMF models

Method DSeNMF

(sparse)

DSeNMF

(semi-sparse)

DSeNMF

(no sparse)

DSemiNMF

[23]
SingleSeMF

[32]

AC 0.57 0.68 0.48 0.40 0.33

Time(s) 64.18 64.38 66.57 292.54 29.39

RMSE 37.3688 37.3693 37.3676 37.4621 24.0117

In Table 1, we tabulate the average clustering accuracy (AC), average run-
ning time (in second) and average root mean square error (RMSE). We see from
the table that our deep structure-enforced NMF performs well both in accuracy
and in time consuming. It should be note that our algorithm only need about
one fifth running time comparing with deep semi-NMF algorithm. In addition,
note that the last column in Table 1, we use the SeMF algorithm in [32] to
decompose M into multiplication of Z ∈ R

784×50 and H ∈ R
50×5139 which is

indeed a single-layer nonnegative matrix factorization. Obviously, SingleSeMF
obtain the best data fidelity, but get the worst clustering accuracy meanwhile.
It confirms that all the DSeNMF models are able to learn better high-level rep-
resentations of data than a single one-layer structure-enforced NMF. Among
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results of our proposed model with three different structure constraints, we
note that DSeNMF(sparse) and DSeNMF(semi-sparse) obtain better clustering
results than DSeNMF(no sparse) since imposing sparsity on Hm. More inter-
estingly, comparing DSeNMF(sparse) with DSeNMF(semi-sparse), the former
gets lower clustering accuracy even though considering sparsity in initialization.
It demonstrates that imposing structure constraints earlier could not obtain a
better initialization. It makes sense that some properties in real data should be
considered step by step rather than completely utilized at the beginning.
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DSeNMF(sparse)
DSemiNMF[23]

Fig. 1. RMSE comparison with different deep NMF models

Figure 1 presents RMSE curves of four deep models. It shows that our algo-
rithm for solving deep NMF models needs much less (about 50) iterations than
the algorithm in [23] (around 500 iterations). It will be evident that our proposed
model and algorithm are efficient for the class of deep structured NMF.

4 Conclusion and Future

We have introduced a kind of deep structure-enforced nonnegative matrix factor-
ization and proposed a novel framework for solving the unified model. Although
the proposed framework introduces many auxiliary variables, these variables aim
to separate from complex structure constraints and split original factor mat-
ices. Further, it can facilitate the obtained model equivalently transformed to
an ADMM-applicable model which is easy implemented. Numerical experiments
also show the efficiency of the proposed algorithm and the applicable of our deep
model for data representing problems.
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Although deep structured matrix factorization problems are generally highly
nonconvex, they widely and variously exist in real-world applications. Our next
step is testing the proposed model and algorithm on more datasets and com-
paring it with other deep NMF algorithms. Another work will be focusing on
how different decomposed dimension would affect clustering performance of deep
non-negative matrix factorization.
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Abstract. We introduce a novel embedded algorithm for feature selec-
tion, using Support Vector Machine (SVM) with kernel functions. Our
method, called Kernel Parameter Descent SVM (KPD-SVM), is tak-
ing parameters of kernel functions as variables to optimize the target
functions in SVM model training. KPD-SVM use sequential minimal
optimization, which breaks the large quadratic optimization problem
into some smaller possible optimization problem, avoids inner loop on
time-consuming numerical computation. Additionally, KPD-SVM opti-
mize the shape of RBF kernel to eliminate features which have low rel-
evance for the class label. Through kernel selection and execution of
improved algorithm in each case, we simultaneously find the optimal
solution of selected features in the modeling process. We compare our
method with algorithms like filter method (Fisher Criterion Score) or
wrapper method (Recursive Feature Elimination SVM) to demonstrate
its effectiveness and efficiency.

Keywords: Feature selection · Support vector machine
Kernel function

1 Introduction

Feature Selection is a vital issue in machine learning. It is common to apply fea-
ture selection methods to classification problems, especially when those original
data sets have redundant features [1].

According to [2], there are three main directions for feature selection: filter,
wrapper, and embedded methods.

Filter takes statistical analysis to filter out poorly informative features, it is
usually done before the samples taken into a classifier. Relief [3] is a typical filter
method which is statistically relevant to the target concept and feeds features
into the classifier.

Wrapper approach searches the whole set of samples to score feature subset,
therefore it naturally entails training and implementation of learning algorithms
c© Springer Nature Switzerland AG 2018
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during the procedure of feature selection, wrappers use different classifier such
as naive Bayes [4], neural networks [5] and nearest neighbor [6]. The random
forests based wrapper approaches [7,8] are widely used to identify important
features from feature subset.

In embedded method, feature selection is embedded into the classifier [9],
feature is selected by the internal function of an algorithm such as least absolute
shrinkage and selection operator (LASSO) [10] and decision tree [11].

Above methods have their limitation, wrapper algorithms are complex in
computation, but usually obtain more accurate results than filter methods [12],
the problem of a wrapper is high computational cost because it involves repeated
training. The robustness of above methods in high dimension data set is a crucial
problem. Therefore some features select approaches constructed by combining
multiple classifiers, their robust more than the approaches with a single classi-
fier [13]. In addition, support vector machines (SVM) have been proposed as a
wrapper classifier for feature selection [14].

Although standard implementation of SVM shows good performance in clas-
sification prediction, it cannot rank each features’ importance for feature elim-
ination. Thus we introduce a novel approach which selects features according
to the descent path of kernel parameters, indirectly figuring out the importance
of each features as well as optimizing the model predicting ability. The method
we called Kernel Parameter Descent Support Vector Machine (KPD-SVM), the
approach not only optimizes the parameter of SVM, but also obtains a sub-
set of features for specific objective. KPD-SVM will be talked in detail and be
compared with other characteristic approaches of feature selection in SVM.

2 Related Works

2.1 Support Vector Machine

In this section, we will simply review the development of SVM method.
Support Vector Machine (SVM) is a strictly math-based machine learning

model, raised by Vapnik [15]. The principle of SVM classifier is obvious. It tries to
find out the optimal hyperplane for the optimization problem with “soft margin”
as follows:

min
w,b,ξ

1
2
‖w‖2 + C

n∑

i=1

ξi (1)

s.t. yi · (wT · φ(xi) + b) ≥ (1 − ξi) i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n

Here we denote ξi as slack variable. The training data can be transformed into
higher dimensional space through kernel function x → φ(x). So the decision
function can be rewritten as:

f(x) =
n∑

i=1

αiyi〈φ(xi), φ(x)〉 + b (2)
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Since the scalar products 〈φ(x), φ(y)〉 are the only value to be calculated,
kernel function

K(x, y) = 〈φ(x), φ(y)〉 (3)

is used to solve them. As result the optimization problem can be rewritten as:

max
α

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjyiyjK(xi, xj) (4)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n

n∑

i=1

αiyi = 0

2.2 Feature Selection in SVMs

Typically, there are three methods in SVM based feature selection process, Filter,
Wrapper and Embedded [1]. Here we review each of them briefly and stress one
representative algorithm of each method, for experimental comparison in next
section.

– Filter Method: Among all the measurement in Filter method, Fisher Crite-
rion Score (F-Score) is one of the most common indicator to use. It computes
the significance of each feature independently of the other feature by compar-
ing that feature’s correlation to the output labels. The respective score F (j)
of feature j is given by:

F (j) =

∣∣∣∣∣
μ+

j + μ−
j

(σ+
j )2 + (σ−

j )2

∣∣∣∣∣ (5)

Where μ+
j (μ−

j )is the mean value for the jth feature in positive(negative) class.
And σ+

j (σ−
j ) is the standard deviation. When the F (j) is large, it means jth

feature has much more information to discriminate itself from other features,
which suggests it ranks top of the feature list and would be more likely not
to be eliminate and vice versa. The disadvantage of filter method is time
consuming and skillful because you need to choose a suitable measurement
method.

– Wrapper Method: One representative wrapper method is Recursive Fea-
ture Elimination SVM (RFE-SVM), which is raised by Guyon [16]. RFE-SVM
aims to find out the r-feature subset among the original n-feature set through
backward greedy algorithm, which build model by the whole feature at the
beginning then cut off one feature according the ranking order. The disadvan-
tage of Wrapper method is that it is more time consuming than filter method
because it need to train models on different feature subsets.
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– Embedded Method: The last method for feature selection is embedded
method. The most different novelty between embedded and others is that it
conducts the selection in the process of model training. One common embed-
ded method is to add a penalty item to the target function which limits the
model complexity [17]. Compared with filter method and wrapper method,
we choose embedded method in our model because it is less time consuming.

3 The Proposed Method: KPD-SVM

The principle of proposed method aims to improve the classification perfor-
mance as well as to eliminate less important features by optimizing parame-
ter/parameters in kernel function. This method use penalty item like L0−norm
or L1 − norm of the parameter to punish the large number of feature we con-
sider in modeling which is more likely to cause over-fitting problems. Through
gradient descent algorithm, we can find out the best solution (which means the
best classification performance) of the vector of kernel parameters. During this
iteration process, we set the parameters whose values are lower than a small
criterion as 0. Thus we can deal with the feature selection task.

3.1 Kernel Function

Among the kernel function SVM commonly uses, we pay attention to the fol-
lowing mostly-used kernels:

Gaussian Kernel function we write the kernel function in the form of the
summation in each feature:

K(x, y) = exp

(
−

d∑

j=1

(xj − yj)2

2σ2
j

)
(6)

where σ = [σ1, σ2, σ3 . . . , σn] indicates the width of the kernel and determines
the kernel shape. d is the number of features. For better demonstration, we
denote:

γ = [
1

2σ2
1

,
1

2σ2
2

,
1

2σ2
3

, . . . ,
1

2σ2
d

] (7)

which leads to

K(x, y) = exp

(
−

d∑

j=1

γj(xj − yj)2
)

(8)

Exponential kernel (Laplace) Similar with Gaussian kernel, it is shown as:

K(x, y) = exp

(
−

d∑

j=1

γj(xj − yj)
)

(9)
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Polynomial kernel its function as:

K(x, y) = (αxT y + c)D (10)

Here we fix D and let c = 1 in our proposed method, hence we only need to
consider the vector of α:

K(x, y) = ((
d∑

j=1

αjxjyj) + 1)D (11)

3.2 Target Function in KPD-SVM

According the previous definition, the set of Lagrange multipliers α is considered,
and adding the new parameter γ in kernel function and penalty item of model
complexity, therefore the optimization problem minw,b

1
2‖w‖2 is minimized with

a penalty function and some constrains.Our target function G is as follows:

min
α,γ

G(α, γ) = min
α

Ψ(α) + min
α,γ

Φ(α, γ) (12)

where the Ψ(α) are transformed from the target optimization function (4) of the
standard SVM:

min
α

Ψ(α) = min
α

−
n∑

i=1

αi +
1
2

n∑

i,j=1

αiαjyiyjK(xi, xj) (13)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n
n∑

i=1

αiyi = 0

and Φ(α, γ) is penalized function, the first item of Eq. (14) is transformed from
the second item of Eq. (13), the second item of Eq. (14) is penalized item:

min
α,γ

Φ(α, γ) = min
α,γ

1
2

n∑

i,s=1

αiαsyiysK(xi, xs, γ) + C2f(γ) (14)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n
n∑

i=1

αiyi = 0

γj ≥ 0 i = 1, . . . , d

where γj need to be non-negative and we use L0 − norm as f(γ), which is
approximately equal to [9]:

f(γ) = eT (e − exp(−βγ)) =
d∑

j=1

[1 − exp(−βγj)] (15)
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C2 is the strength of the penalty of the complexity of our model which is
different from C for penalty of training error(slack variable ξ). Also L0 − norm
can be replaced with L1 − norm or L2 − norm in our target function.

Because this optimization problem is not convex [17], it may be hard to
search the globally optimal solution. So that we propose an algorithm to search
a locally optimal solution. Then we use a method to solve this optimization
problem in two step [17]:

[Step 1] Given a set of fixed kernel parameter γ, calculate the value of α
in optimal function minα Ψ(α), here sequential minimal optimization(SMO) [18]
is a method to solve the SVM QP problem.

For convenience, all quantities that refer to the first multiplier will have a
subscript 1, while the other refers to the second multiplier α2. Without loss
of generality, the second multiplier α2 will be computed firstly. The following
bounds W,H apply to α2 while the target y1 does not equal the target y2:

W = max(0, α2 − α1),H = min(C,C + α2 − α1). (16)

If the target y1 = y2, the bounds apply to α2 is shown as:

W = max(0, α2 + α1 − C),H = min(C,α2 + α1). (17)

The second derivative of the objective function minα Ψ(α) along the diagonal
line can be conducted as:

η = K(x1, x1) + K(x2, x2) − 2K(x1, x2). (18)

Under the normal condition, the objective function is positive definite, there will
be a minimum along the direction of the linear constraint, and η is greater than
0. The new minimum is computed along the direction of the constraint as follow:

αopt
2 = α2 +

y2(E1 − E2)
η

(19)

where Ei = ui − yi, i = 1, 2 is the error on the i-th training example, as a next
step, the constrained minimum is clipped by the bound W,H. Let s = y1y2. The
optimal α1 is computed by the optimized and clipped α2:

αopt
1 = α1 + s(α2 − αopt

2 ) (20)

Under unusual condition, η will not be positive, which can cause the objective
function to become indefinite.

[Step 2] Find out the best γ for given fixed α in step 1, solve the
objective function minα,γ Φ(α, γ) using gradient descent algorithm. And if the
renewed γj is below the criterion we set, eliminate the feature j and loop for
next iteration until reaching the stop criterion. For given j the gradient of F (γ∗

j )
is:

Gaussian

ΔjΦ(γ∗) =
1
2

n∑

i,s=1

γ∗
j (xi,j − xs,j)2αiαsyiysK(xi, xs, γ

∗)

+ C2βexp(−βγ∗
j )

(21)
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Polynomial

ΔjΦ(γpoly) =
1
2

n∑

i,s=1

Dxi,jxs,jαiαsyiysK(xi, xs, γ
poly,D − 1)

+ C2βexp(−βγpoly
j )

(22)

To avoid misunderstandings of γ in polynomial kernel and target function,
we set γpoly in polynomial kernel. Exponential Kernel (Laplace)

ΔjΦ(γ∗) =
1
2

n∑

i,s=1

(xi,j − xs,j)αiαsyiysK(xi, xs, γ
∗)

+ C2βexp(−βγ∗
j )

(23)

The algorithm adjust the kernel components using gradient descent proce-
dure, specially to parameter γ, which is set to be small to avoid negative at the
first iterations.

3.3 Detailed Process of Proposed Algorithm

The pseudo code is shown as below:

Algorithm 1. KPD-SVM
kernel selection: we take Gaussian kernel as an example.
input:
parameter of gentle update strategy:d1, d2, θ;
parameter of update:ε1, ε2
01 start: stop = False, t = 0,

γ∗ = (γ∗)[0], α
[0]
1 , α

[0]
2

02 WHILE stop �= True
03 train SVM for a given γ∗ using SMO
04 FOR i = 1, . . . , d1

05 compute E1, E2, η, s
06 α

[i+1]
2 = α

[i]
2 + y2(E1−E2)

η
,

α
[i+1]
1 = α

[i]
1 + s ∗ (α

[i]
2 − α

[i+1]
2 )

07 IF‖(α1)
[t+1] − (α1)

[t]‖ < ε1
THEN α∗ = (α1)

[t+1] Break ENDIF
08 ENDFOR
09 train SVM for a given α∗

10 FOR j = 1, . . . , d2

11 (γ∗
j )[t+1] = (γ∗

j )[t] − θΔjΦ((γ∗)[t])
12 IF(γ∗

j )[t+1] < ε2
THEN (γ∗

j )[t+1] = 0 Break ENDIF
13 ENDFOR
14 IF(γ∗)[t], (γ∗)[t+1] meet the requirements of ζabsolute, ζrelative

15 stop = True
16 ENDIF
17 ENDWHILE
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where
γ∗ =

√
(2γ) = [

1
σ1

,
1
σ2

, . . . ,
1
σd

] (24)

and

F (γ∗) =
n∑

i,s=1

αiαsyiysK(xi, xj , γ
∗) + C2f(γ∗) (25)

In the algorithm, we may consider the following vital step, some details are
given as follows:

Kernel Selection, Use the whole features to train model with different
kernels (eg. Gaussian, Polynomial) and different parameter (γ,D, c). Calculate
the average accuracy of each model with different kernels by cross validations.
Then select the kernel with the best performance which is the most appropriate
kernel of this data set.

Set Original Value, At the start of algorithm, we give the initial value of
α, γ, and some parameter for update.

Calculate α, Based on standard SVM training process and may take SMO
algorithm [18] to quickly and efficiently find out the answer α∗.

Update σ and γ, Apply gradient descent algorithm to renew σi or γ∗
i , the

lines 10–13 of the algorithm shows the iteration process, one by one for fixed the
optimal α.

Step size of gradient descent, We set θ as the step size of gradient descend
in each iteration.

Elimination criterion, ε is the eliminate threshold which means we elimi-
nate the feature j by setting γ∗

j = 0 if value γ∗
j is below ε.

Stop criterion, For the stop criterion, we set a relative stop criterion
ζrelative and an absolute stop criterion ζabsolute in order to balance the time
of iterations and the performance of the model. ζrelative is defined as the ratio
‖(γ∗)[t+1]−(γ∗)[t]‖1

‖(γ∗)[t]‖1
and ζabsolute is set as ‖ (γ∗)[t] ‖1.

3.4 Discussion of Parameter

Our discussion mainly concentrates on one issue: Selection of parameter values
in proposed method. Basically, the proposed method outperforms in its process
of feature selection and modeling. However, there are some parameters we need
to tune for the optimal solution of classification. In [17], it has already concluded
that β, ε and γ[0] have less influence in the final solution. In terms of the penalty
for slack variables, C, we use Leave-One-Out Cross-Validation to find the best
value of C in each case.

Complexity Penalty C2: C2 is the coefficient of penalty item on the number
of feature or model complexity. A large C2 means a strict limitation to build
greatly complicated model. We choose C2 according to the balance of prediction
performances and model complexity.

Step Size θ: θ represents the step size of gradient descend in each iteration.
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We want to use an automatically adjusted step size in some cases. Hence,we
denote θauto as ε

median{ΔjF (γ∗)} , j = 1, . . . , d. And we may take θ =
min{θoriginal, θauto} as step size in each iteration.

Stop Criterion ζabsolute, ζrelative: With the increasing number of iterations,
the 1 − norm difference of kernel parameter in t and t + 1 iteration goes to
convergence, which shows the algorithm can find out the best kernel parameter
in certain countable iterations.

4 Experiments

In this section, we apply the proposed method to do experiments in some real-
world dataset. Also we will compare our method with F-score and RFE-SVM,
which represents the filter and wrapper algorithm in feature selection. The mea-
surements we make comparison are as follows: First, model prediction perfor-
mance. Second, the number of features in the optimal solution.

4.1 Data Set

The data sets we selected are from UCI Machine Learning Database. Detailed
information of each data set is shown as follows:

– Sonar: This is the data set used by Gorman and Sejnowski in their study of
the classification of sonar signals.
The data set contains 111 patterns obtained by bouncing sonar signals off a
metal cylinder at various angles and under various conditions. And it contains
97 patterns obtained from rocks under similar conditions. The label associated
with each record contains the letter “R” if the object is a rock and “M” if it
is a mine (metal cylinder).

– WBC: The Wisconsin Breast Cancer data set has 569 observations and 30
features. All feature values are recoded with four significant digits. In addi-
tion, people who are diagnosed are labeled as M (malignant tumor) and
the other are marked as B (benign tumor).

We basically consider the following three kernel functions: Gaussian, Poly-
nomial, Laplace (Exponential). Then the values of parameters in each kernel
function we used are as follows:

– σGaussian = (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100, 500,
1000)

– D = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
– σLaplace = (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100, 500,

1000)
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4.2 Case: Sonar

Basic information of this data set is shown in Table 1.

Table 1. Basic information of Sonar (mines vs. rocks) data set

Features Observations Proportion Predominant class prop.

Total 60 208 100% 53.4%

Train 60 145 70% 54.5%

Test 60 63 30% 50.8%

Fig. 1. The accuracy of Gaussian,
Laplace and Polynomial in Sonar (hori-
zontal axis represents feature numbers)

Fig. 2. The accuracy of KPD-SVM, F-
Scores and RFE-SVM in Sonar (hori-
zontal axis represents feature numbers)

First we carry out kernel selection. Fig. 1 shows the average performances of
each kernel function applied in Sonar. Thus we choose Polynomial Kernel in this
case.

Figure 2 shows the performance of proposed method KPD-SVM compared
with F-Score and RFE-SVM. The optimal feature subset are selected by each
method, and the number of these subsets are shown below: Filter(F1-Scores):24,
Wrapper(RFE-SVM):18-20, Embedded(KPD-SVM):20.

In conclusion, KPD-SVM outperforms F-Score and RFE-SVM in this Sonar
case.

4.3 Case: WBC

Basic information of this data set is shown in Table 2.
First we carry out kernel selection. In WBC we choose Polynomial Kernel

in this case. Figure 3 shows the average performances of each kernel function
applied in WBC.

The performance of proposed method KPD-SVM compared with F-Score
and RFE-SVM shown in Fig. 4. The optimal feature subset are selected by each
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Table 2. Basic information of WBC data set

Features Observations Proportion Predominant class prop.

Total 30 569 100% 62.7%

Train 30 512 90% 63.4%

Test 30 57 10% 52.6%

Fig. 3. The accuracy of Gaussian,
Laplace and Polynomial in WBC (hori-
zontal axis represents feature numbers)

Fig. 4. The accuracy of KPD-SVM, F-
Scores and RFE-SVM in WBC (hori-
zontal axis represents feature numbers)

method, and the number of these subsets are shown below: Filter(F1-Scores):26,
Wrapper(RFE-SVM):19, Embedded(KPD-SVM):15.

In conclusion, considering the model prediction accuracy and the model com-
plexity (the number of features), we can say KPD-SVM outperforms in this WBC
case.

5 Conclusion

In this paper, we have presented a novel method called Kernel Parameter Descent
Support Vector Machine (KPD-SVM) for feature selection using kernel func-
tions. Our embedded method can generalize a well-trained SVM classifier as
well as a good solution for feature selecting. In addition, our KPD-SVM method
outperforms other methods, like filter method (F-Score) and wrapper method
(RFE-SVM). Besides, compared with former embedded algorithm by optimizing
kernel parameters [1–4], our method has novelties in stop criterion and step size
settings in executions, which performs better in time consuming.
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Abstract. Content curation social networks (CCSNs), where users
share interests by images and their text descriptions, are booming social
networks. For the purpose of fully utilizing user-generated contents to
analysis user interests on CCSNs, we propose a framework of learning
multimodal joint representations of pins for user interest analysis. First,
images are automatically annotated with category distributions, which
benefit from the network characteristics and represent interests of users.
Further, image representations are extracted from an intermediate layer
of a fine-tuned multilabel convolutional neural network (CNN) and text
representations are obtained with a trained Word2Vec. Finally, a multi-
modal deep Boltzmann machine (DBM) are trained to fuse two modal-
ities. Experiments on a dataset from Huaban demonstrate that using
category distributions instead of single categories as labels to fine-tune
CNN significantly improve the performance of image representation, and
multimodal joint representations perform better than either of unimodal
representations.

Keywords: Multimodal · Content curation social networks
User modeling · Recommender systems

1 Introduction

Content curation social networks (CCSNs) are interest-driven social networks
where users can organize and demonstrate multimedia contents they like. Since
the most typical CCSN Pinterest became the fastest social network to reach
10M users [4], CCSNs have become popular worldwide. In China, more than 50
Pinterest-like websites such as Huaban, Duitang, Meilishuo, Mogujie and so forth
have been published. The rapid development of CCSNs attracts much attention
on different research topics, for example, network characteristic analysis [4], user
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behavior study [5], influence analysis [18], search engine [21], recommender sys-
tems [2,9,10,19] and user modeling [1,3,20].

On CCSNs, the carrier of user interests is the basic unit of the network called
“pin”, which comprises an image and its text description. Most prior works on
CCSNs only focused on unimodal data. Yang et al. [19] modeled boards with
text representations and recommended boards re-ranked with image representa-
tions. Cinar et al. [1] separately predicted categories of pins with either image
representations or text representations and fused the results of two modalities
by decision fusion. Liu et al. [10] used unimodal representations to respectively
generate candidate pins and to re-rank all the candidates. All these methods are
late fusion methods which cannot obtain multimodal joint representations.

Multimodal joint representation commonly consists of unimodal representa-
tion and multimodal fusion. With regard to image representation, convolutional
neural networks (CNNs) have recently achieved many outstanding performances
on computer vision. Some works have been done on employing CNNs to rep-
resent pins. A key to train CNNs is to create a large labelled dataset. Cinar
et al. [1], and You et al. [20] directly used the category of a pin as its label, but
this label may be inaccurate as different users may select different categories for
a same image. Geng et al. [3] constructed an ontology in fashion domain and
trained a multi-task CNN with concepts in ontology, but this methods is hard
to be deployed in all domains. Zhai et al. [21] obtained more detailed labels by
taking top text search queries on Pinterest, however, the quality and consump-
tion of this annotation highly depends on the performance of the search engine.
Inspired by the fact that categories predefined by CCSNs are not independent
objects but related notions, we use category distributions based on statistics as
labels and fine-tuned a multilabel CNN for image representation.

Many multimodal fusion studies have been carried out on classification and
retrieval. Most existed methods are based on discriminative models such as
latent Dirichlet allocation [15], CNN [11] and recurrent neural network [12].
Those methods mainly learn the consistency between modalities and can hardly
deal with missing input modalities. On the generative side, restricted Bolzmann
machine (RBM) [6], deep autoencoder (DAE) [14] and deep Boltzmann machine
(DBM) [17] are proved to be feasible to learn both the consistency and com-
plementarity between modalities and can easily deal with the absence of some
modalities, however, limited works have been done on fusing features obtained by
deep learning with these models. Zhang et al. [22] fused visual features extracted
from the 6-th layer of AlexNet and textual features generated by sparse coding
of word vectors from a Word2Vec [13] with a DAE. Since DAEs are deterministic
models while DBMs are probabilistic models, we trained a multimodal DBM to
improve generalization performance.

The proposed framework of learning multimodal joint representations of pins
is shown in Fig. 1. For image representation, visual features are extracted from an
intermediate layer of the fined-tuned CNN. For text representation, distributed
representations of words are learned on corpora and are encoded to represent
texts. As our choice, Word2Vec is a frequently used distributed representation
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for capturing semantic and syntactic relations between words. Mean vector [8]
of Word2Vec performs well on text representation and is unsupervised. Our
multimodal joint representations is finally generated by a pretrained modified
multimodal DBM.

Fig. 1. Framework of learning multimodal joint representations of pins.

We believe that our research is the foundation of further researches on CCSNs
such as board and user modeling, with the following contributions:

– We propose an easy-to-accomplish automatic annotate method that accumu-
late category selections of users to form category distributions of pins and
fine-tune a multilabel CNN which significantly improves the category predic-
tion performance.

– Multimodal joint representations of pins we get performs better than the
unimodal representations.

The rest of the paper is organized as follows. Section 2 describes the proposed
framework in details. Experiments and the corresponding analysis are provided
in Sect. 3. And it is followed by conclusions in Sect. 4.

2 Multimodal Joint Representations of Pins

A pin comprise an image and its text description. As shown in Fig. 1, the whole
process of multimodal joint representation can be roughly divided into three
parts: image representation, text representation and multimodal fusion.

2.1 Image Representation

The aim of image representation is to learn features which not only maintain
intrinsic characteristics of images but also relate to user interests on CCSNs.
As supervised learning models, CNNs can certainly capture the relationships
between images and user interests if user interests on CCSNs are used as labels
during the learning process. Not to mention that top layers of CNNs can learn
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high-level image features, which can be interpreted as color, material, texture,
object, scene and so on by some means.

All pins on CCSNs are collected into boards. When a board is created, the
owner must select one of categories predefined by CCSNs for it, and all pins
in this board will have the same category as the board. Since the category can
be considered as the theme of the board, it can be directly treated as a label,
which describes a coarse-grained user interest. However, this label is probably
weak and noisy, mainly because user preferences may lead to various category
selections for a same image since it can be observed that categories in Table 1
are sometimes related notions. To put it in practical terms, the image in Fig. 2a
may belong to photography, kids and pets on Huaban.

Table 1. List of all 33 predefined categories on Huaban.

Anime Apparel Architecture Art Beauty

Cars motorcycles Data presentation Design Desire DIY crafts

Education Film music books Fitness Food drink Funny

Games Geek Home Illustration Industrial design

Kids Men Modeling hair People Pets

Photography Quotes Sports Tips Travel places

Web app icon Wedding events Other

The most frequently activity on CCSNs is called “re-pin”, which means a user
collects an image and may add a text description for it from a board of another
user into his or hers own board. A “re-pin path” is formed if users are interested
in a same image and thus they re-pin it one by one, and all re-pin paths of
an image form a “re-pin tree”, as illustrated in Fig. 2b. Because any one of the
categories in the re-pin tree cannot decide what this image is about but describes
a portion of it instead, we use a category distribution to represent interests of
an image. The category distribution of a given image I can be computed after
counting the categories in the re-pin tree as

InterestI =

⎛
⎜⎜⎜⎝pCi

=
fCi

NC∑
i=1

fCi

⎞
⎟⎟⎟⎠ ∈ [0, 1]NC (1)

where fCi
denotes the frequency of the i-th category Ci, NC is the total number

of categories on CCSNs. In practice we set

fCi
= 0 if fCi

<

MC∑
i=1

fCi

MC
(2)
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Fig. 2. (a): Example of a pin on Huaban. (b): Illustration of a re-pin tree composed
of some re-pin paths. Each star represents a pin and Ci nearby is the category of this
pin. All pins in the re-pin tree have a same image.

where MC is the total number of categories occurred in the re-pin tree to filter
out spam and make the sequence on behalf of majority opinion.

After automatic image annotation, we then choose a pretrained CNN model
to fine-tune for the purpose of accelerate the training process. Most available
pretrained CNNs are designed for classifying independent objects, while our
model should be a multilabel regressor. Accordingly, we change the loss layer
from softmax with logarithmic loss layer to sigmoid with cross entropy loss layer.
The loss function is defined as

E = −
NC∑
i=1

[pCi
ln p̂Ci

+ (1 − pCi
) ln (1 − p̂Ci

)] (3)

where pCj
is the percentage in Eq. (1), p̂Cj

denotes the corresponding sigmoid
output.

After fine-tuning, the weights of the CNN are stored for feature extraction.
The activation values of an fully connected (FC) layer will be extracted as the
image representations.

2.2 Text Representation

An important aim of text representation is also to discover the relationships
between descriptions of pins and categories. However, it is difficult to create a
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large labelled dataset on CCSNs for supervised learning as descriptions in the
re-pin tree may be different.

Since there is no obvious difference between words used on CCSNs and those
in common situations, we train a Word2Vec on some public corpora to encode
words. Word2Vec is an efficient shallow model for learning distributed represen-
tations of words. Although the learning process of either of its two log-linear
models, which are continuous bag-of-words (CBOW) and continuous skip-gram,
is supervised, there is no need to annotate the training texts. Since the learned
vectors capture a large number of meaningful semantic and syntactic word rela-
tionships, we make sure that the categories are in the training dictionary in
order that the relationships between words and the categories can be considered
as the relationships between words and user interests. In addition, distributed
representations are scalable even though the vocabulary of natural language is
extremely wide.

Owing to the fact that texts have diverse lengths, it is necessary to trans-
form a set of word vectors into a single vector with a constant dimension for
representing a complete text. For a text T , the text representation is the mean
vector computed as

VT =
1

MT

MT∑
i=1

KeyedV ectorWordi
(4)

where KeyedV ectorWordi
denotes the word vector of the i-th word Wordi, MT

is the text length.

2.3 Multimodal Fusion

Different modalities typically have different statistical properties, which makes
it difficult to learn a joint representation that capture both consistent and com-
plementary relationships across modalities. A multimodal DBM which combines
DBMs by adding a shared hidden layer on top of them can effectively solve this
problem. A DBM is structured by stacking RBMs in a hierarchical manner. A
RBM is an undirected graphical model with binary-valued visible layer V and
binary-valued hidden layer H fully connected to each other defines the energy
function

E (V,H; θ) = −HTWV − ATV − BTH (5)
where θ = {W,A,B} denotes the model parameters including the symmetric
interaction terms W between two layers, visible layer bias terms A and hidden
layer bias terms B.

As illustrated in Fig. 1, we use two-layer DBMs with Gaussian-Bernoulli
RBMs, which are a variant of RBMs that can model real-valued vectors, as
bottom for both modalities. A Gaussian-Bernoulli RBM with visible units
V = {vi} ∈ IRD and hidden units H = {hj} ∈ {0, 1}F defines the energy
function

E (V,H; θ) =
D∑
i=1

(vi − ai)
2

2σi
2

−
D∑
i=1

F∑
j=1

vi
σi

wijhj −
F∑

j=1

bjhj (6)
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where σi denotes the standard deviation of the i-th visible unit and
θ = {{wij} ∈ IRD×F }, {ai} ∈ IRD}, {bj} ∈ IRF }, (σi) ∈ IRD}. During the unsu-
pervised training of the multimodal DBM, modalities can be thought of labels
for each other. Since RBMs can be considered as autoencoders, each layer of
the multimodal DBM makes a small contribution to eliminate modality-specific
correlations. Consequently, the top layer can learn a relatively modality-free rep-
resentation as opposed to the modality-full input layers. The joint distribution
over the multimodal inputs can be written as

P (VI , VT ; θ) =
∑

HI2,HT2,H3

P (HI2,HT2,H3)

(
∑
HI1

P (VI ,HI1,HI2)

) (
∑
HT1

P (VT ,HT1,HT2)

)
(7)

where θ denotes all model parameters.
A pin may has no text description. The multimodal DBM can be used to

generate missing text representation by sampling it from the conditional distri-
bution with the standard Gibbs sampler. Finally, activation probabilities of H3

are used as the multimodal joint representations of pins no matter they have
text descriptions or not.

3 Experiment

3.1 Dataset and Implementation Details

All data used in experiments was crawled from Huaban, which is one of typical
CCSNs in China. Huaban provides almost the same applications as Pinterest
provides, while three main differences between them are: users can “like” pins or
boards on Huaban while “like” has been removed by Pinterest; Huaban records
both users from whom a pin re-pinned and by whom it initially created while
Pinterest only records the direct source; some predefined categories are different
and Pinterest has 5 more categories.

We first crawled pins without images of 5957 users and sampled 88 users
according to pin counts and categories of their boards. To make our dataset
diverse and real, a few cold start and extremely active users have been confirmed
in it. We then downloaded the images of sampled users and pins of their like
boards. In addition, top 1000 recommended pins of every category was crawled
for fine-tuning the CNN, and re-pin paths of all recommended pins was crawled
for automatic annotation. In total, the dataset includes 1694 boards and 167747
unique images. All pins was used as supplements for obtaining category distri-
butions of all recommended pins. The average nodes of the incomplete re-pin
trees is 47.57.

Labeled images was split into 80% for training and validating and the remain-
ing 20% for testing after label balancing. AlexNet [7] with ImageNet [16] pre-
trained weights was chosen as a basis. Because AlexNet requires a constant input
dimension, the image was first rescaled such that the shorter side was of length
256 pixels, and then the central 256 × 256 patch of the resulting image was
cropped out. As a comparison, we also used the most frequent category as label
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to fine-tune an multiclass AlexNet. The dimensions of the fc8 layers of both
CNNs were change to 33. Image representations was extracted from the FC7
layer of the fine-tuned CNN.

Word2Vec was trained on Wikipedia dumps and Sougou Lab dataset with
CBOW and negative sampling. The vector dimension was set to 300. Words
with total frequency lower than 5 are ignored. Preprocessing such as traditional
Chinese and simplified Chinese conversion, removing punctuation, word tokenize,
removing stop words and machine translation has been done on text descriptions
of pins.

Image and text features were used for pretraining our multimodal DBM.
Dimensions of HT1, HT2 and HV 1 were equal to their corresponding visible
inputs, and dimension of HV 2 and H3 was set to 2048 for the purpose of com-
pressing the vectors. DBM was pretrained using a greedy layer-wise strategy by
learning a stack of modified RBMs. Finally, we ran Gibbs sampler to generate
missing text representations and to infer multimodal join representations.

3.2 Analysis of Interests Represented by Pins

Analysis of interests represented by pins is the prerequisite of analysis of interests
represented by boards and user interest analysis. The category distribution are
interests of the image and can be approximate the interests of the pin, even
though some of categories will be enhanced by the text description.

Table 2. Comparison on pin category prediction

Model Dimension Dominant category
accuracy

Mean nonzero
error

Mean
error

AlexNet [1] 4096 57.53% — —

Word2Vec [1] 300 33.47% — —

AlexNet [20] 4096 43.1% — —

AlexNet 4096 45.85% — —

Multilabel 4096 82.71% 0.1320 0.0141

Word2Vec 300 42.88% 0.3249 0.0415

Multimodal 2048 84.13% 0.1181 0.0119

Multidimensional logical regressions (LRs) were trained on recommended
pins for all unimodal and multimodal representations. The results are shown in
Table 2, together with the result of the compared AlexNet. Relevant results on
32 [1] and 34 [20] Pinterest categories are also cited as references. Mean nonzero
error is the average error between all nonzero categories and corresponding pre-
dictions. The dominant category accuracy checks the consistency of the most fre-
quently category between predictions and labels. Comparision of two fine-tuned
CNNs shows that our multilabel regressor significantly improves the accuracy.
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It is because that category distributions can not only eliminate the interfer-
ence of related categories but also provide more information to learn than only
dominant categories. Although the performance of text representations is not
comparable with those of image representations, the complementarity between
two modalities helps the multimodal joint representations perform better than
the unimodal representations. Our framework can also infer interests of images
from other social networks.

3.3 Board Category Recommendation

Every board must be assigned a category nowadays, while some boards have no
category as a result of that they were created before the constraint entered into
force. However, it is illogical because even if it is hard to select a category for
a board about wide interests, “other” in Table 1 can be selected. Consequently,
Huaban offers a function that allows any user to select a category for a board
which haven’t categorized. Board category recommendation will be useful on
that occasion, and the first selection and further editing too.

Table 3. Comparison on board category recommendation

Model Top-1 MRR MRR

Random 3.03% 12.39%

Text + Cosine similarity 25.65% 38.78%

Image + Multidimensional LR 60.10% 73.41%

Text + Multidimensional LR 38.00% 54.30%

Multimodal + Multidimensional LR 62.35% 74.77%

Same as interests represented by pins, interests represented by boards should
not limited in one category. The interest distribution of a board can be computed
by averaging all category distributions of its pins. As pins are accumulated, the
category preference is reinforced due to the fact that the accumulation process
of strong categories are faster than those of weak categories. Our recommended
category is the max category in the interest distribution of the board, and the
ground truth is the real category of the board. Mean reciprocal rank (MRR) are
used as the performance metric. As board category recommendation actually has
only one correct selection, we also give the top-1 MRR. Results are organized
in Table 3. Cosine similarities between texts and categories are less effective
than category distributions obtained with texts, this indicates that there is a
gap between semantemes and interests. The multimodal joint representations,
which benefit from personalized texts, perform better than image representa-
tions. Notice that the recommendation dataset is different from the training
dataset, it also proves that our framework has a good generalization ability.

The first selection is a cold start problem, as it only depends on one pin. We
then evaluate the influence of pin counts on board category recommendation.
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Table 4. Influence of pin count on board category recommendation based on multi-
modal join representation

Pin count Top-1 MRR MRR

=1 7.69% 35.56%

≤4 45.57% 59.68%

≤30 56.53% 69.75%

≤100 59.06% 72.39%

>100 67.11% 78.33%

As shown in Table 4, our recommendation suffers the cold start. However, the
theory about preference reinforcement is proved as more pins lead to better per-
formance. Although interests of users are more discrete than interests of boards,
we infer that the accumulation process is still effective on user interest analysis.

3.4 Board Recommendation

Well organized boards can be high quality galleries, which makes it easier for
users to collect pins. For this reason, CCSNs offer users a board recommendation
function. Besides interest distributions, a board can be represent by the mean
vector of representations of pins. And similarity between boards can be simply
measured with some distance metrics, for example cosine similarity.

Table 5. Comparison on board recommendation

Model Top-5 MRR MRR

Category based 2.12% 3.85%

Image + Multidimensional LR 16.08% 18.61%

Text + Multidimensional LR 15.93% 17.95%

Multimodal + Multidimensional LR 17.58% 20.13%

Image + Mean vector 33.66% 35.97%

Text + Mean vector 25.96% 27.49%

Multimodal + Mean vector 35.76% 37.88%

We divided every board in half according to the order of pins, and each half
must be similar board for another. The owner of each half will be interested in
another half and further re-pin from or like or follow it beyond all doubt. On the
basis of this, we consider half of the board as the only correct recommendation
result and retrieve the index in the similarity sequence. As Huaban exhibit five
pins at the top row of its waterfall flow for common resolution screens, we also
demonstrate top-5 MRR. Table 5 shows that results of mean vectors is higher
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than those of respective interest distributions, simply owing to the additional
information. All of our methods significantly improve the results in comparison
with the category based filtering. The results also show that multimodal joint
representations can model boards better than either of unimodal representations.

4 Conclusion

We propose a framework of learning multimodal joint representations of pins
on CCSNs. Experimental results show that multimodal joint representations
performs better than either of unimodal representations on interpreting pin-level
interests and board-level interests. The obtained representations can be easily
used on user modeling and recommender systems for CCSNs. Future work will
be focused on extending our framework to model boards and users. In addition,
other effective feature extraction methods and multimodal fusion approaches
may be taken into account.
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Abstract. Topic models have been widely used in discovering latent
topics which are shared across documents in text mining. Vector rep-
resentations, word embeddings and topic embeddings, map words and
topics into a low-dimensional and dense real-value vector space, which
have obtained high performance in NLP tasks. However, most of the
existing models assume the results trained by one of them are perfect
correct and used as prior knowledge for improving the other model. Some
other models use the information trained from external large corpus to
help improving smaller corpus. In this paper, we aim to build such an
algorithm framework that makes topic models and vector representations
mutually improve each other within the same corpus. An EM-style algo-
rithm framework is employed to iteratively optimize both topic model
and vector representations. Experimental results show that our model
outperforms state-of-the-art methods on various NLP tasks.

Keywords: Topic modeling · Polysemous-word · Word embeddings
Text mining

1 Introduction

Word embeddings, e.g., distributed word representations [16], represent words
with low dimensional and dense real-value vectors, which capture useful semantic
and syntactic features of words. Distributed word embeddings can be used to
measure word similarities by computing distances between vectors, which have
been widely used in various IR and NLP tasks, such as entity recognition [23],
disambiguation [5] and parsing [21]. Despite the success of previous approaches
on word embeddings, they all assume each word has a specific meaning and
represent each word with a single vector, which restricts their applications in
fields with polysemous words, e.g., “bank” can be either “a financial institution”
or “a raised area of ground along a river”.

To overcome this limitation, [14] propose a topic embedding approach,
namely Topical Word Embeddings (TWE), to learn topic embeddings to charac-
terize various meanings of polysemous words by concatenating topic embeddings
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 375–387, 2018.
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Fig. 1. Skip-Gram, TWE and LTSG models. Blue, yellow, green circles denote the embed-
dings of word, topic and context, while red circles in LTSG denote the global topical
word. White circles denote the topic model part, topic-word distribution ϕ and topic
assignment z. (Color figure online)

with word embeddings. Despite the success of TWE, compared to previous multi-
prototype models [11,20], it assumes that word distributions over topics are
provided by off-the-shelf topic models such as LDA, which would limit the appli-
cations of TWE once topic models do not perform well in some domains [19]. As a
matter of fact, pervasive polysemous words in documents would harm the perfor-
mance of topic models that are based on co-occurrence of words in documents.
Thus, a more realistic solution is to build both topic models with regard to poly-
semous words and polysemous word embeddings simultaneously, instead of using
off-the-shelf topic models. In this work, we propose a novel learning framework,
called Latent Topical Skip-Gram (LTSG) model, to mutually learn polysemous-
word models and topic models. To the best of our knowledge, this is the first
work that considers learning polysemous-word models and topic models simulta-
neously. Although there have been approaches that aim to improve topic models
based on word embeddings MRF-LDA [24], they fail to improve word embeddings
provided words are polysemous; although there have been approaches that aim
to improve polysemous-word models TWE [14] based on topic models, they fail to
improve topic models considering words are polysemous. Different from previous
approaches, we introduce a new node Tw, called global topic, to capture all of
the topics regarding polysemous word w based on topic-word distribution ϕ,
and use the global topic to estimate the context of polysemous word w. Then we
characterize polysemous word embeddings by concatenating word embeddings
with topic embeddings. We illustrate our new model in Fig. 1, where Fig. 1(A) is
the skip-gram model [16], which aims to maximize the probability of context c
given word w. Figure 1(B) is the TWE model, which extends the skip-gram model
to maximize the probability of context c given both word w and topic t, and
Fig. 1(C) is our LTSG model which aims to maximize the probability of context
c given word w and global topic Tw. Tw is generated based on topic-word distri-
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bution ϕ (i.e., the joint distribution of topic embedding τ and word embedding
w) and topic embedding τ (which is based on topic assignment z). Through
our LTSG model, we can simultaneously learn word embeddings w and global
topic embeddings Tw for representing polysemous word embeddings, and topic
word distribution ϕ for mining topics with regard to polysemous words. We will
exhibit the effectiveness of our LTSG model in text classification and topic mining
tasks with regard to polysemous words in documents.

In the remainder of the paper, we first introduce preliminaries of our LTSG
model, and then present our LTSG algorithm in detail. After that, we evaluate
our LTSG model by comparing our LTSG algorithm to state-of-the-art models in
various datasets. Finally we review previous work related to our LTSG approach
and conclude the paper with future work.

2 Preliminaries

In this section, we briefly review preliminaries of Latent Dirichlet Allocation
(LDA), Skip-Gram, and Topical Word Embeddings (TWE), respectively. We show
some notations and their corresponding meanings in Table 1, which will be used
in describing the details of LDA, Skip-Gram, and TWE.

Table 1. Notations of the text collection.

Term Notation Definition or description

Vocabulary V Set of words in the text collection, |V| = W

Word w A basic item from vocabulary indexed as
w ∈ {1, 2, . . . , W}

Document w A sequence of N words, w = (w1, w2, . . . , wN )

Corpus D A collection of M documents, D = {w1,w2, . . . ,wM}
Topic-word ϕ K distributions over vocabulary (K × W matrix),

|ϕ| = K, |ϕk| = W

Word embedding v Distributed representation of word, denoted by vw,
v ∈ Rd

Topic embedding τ Distributed representation of topic, denoted by τk,
τ ∈ Rd

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [2], a three-level hierarchical Bayesian model,
is a well-developed and widely used probabilistic topic model. Extending Prob-
abilistic Latent Semantic Indexing (PLSI) [10], LDA adds Dirichlet priors to
document-specific topic mixtures to overcome the overfitting problem in PLSI.
LDA aims at modeling each document as a mixture over sets of topics, each
associated with a multinomial word distribution. Given a document corpus D,
each document wm ∈ D is assumed to have a distribution over K topics. The
generative process of LDA is shown as follows,
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1. For each topic k = 1 → K, draw a distribution over words ϕk ∼ Dir(β)
2. For each document wm ∈ D,m ∈ {1, 2, . . . ,M}

(a) Draw a topic distribution θm ∼ Dir(α)
(b) For each word wm,n ∈ wm, n = 1, . . . , Nm

i. Draw a topic assignment zm,n ∼ Mult(θm), zm,n ∈ {1, . . . , K}.
ii. Draw a word wm,n ∼ Mult(ϕzm,n

)

where α and β are Dirichlet hyperparameters, specifying the nature of priors
on θ and ϕ. Variational inference and Gibbs sampling are the common ways to
learn the parameters of LDA.

2.2 The Skip-Gram Model

The Skip-Gram model is a well-known framework for learning word vectors [16].
Skip-Gram aims to predict context words given a target word in a sliding window,
as shown in Fig. 1(A).

Given a document corpus D defined in Table 1, the objective of Skip-Gram
is to maximize the average log-probability

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n), (1)

where c is the context window size of the target word. The basic Skip-Gram
formulation defines Pr(wm,n+j |wm,n) using the softmax function:

Pr(wm,n+j |wm,n) =
exp(vwm,n+j

· vwm,n
)

∑W
w=1 exp(vw · vwm,n

)
, (2)

where vwm,n
and vwm,n+j

are the vector representations of target word wm,n

and its context word wm,n+j , and W is the number of words in the vocabulary
V . Hierarchical softmax and negative sampling are two efficient approximation
methods used to learn Skip-Gram.

2.3 Topical Word Embeddings

Topical word embeddings (TWE) is a more flexible and powerful framework for
multi-prototype word embeddings, where topical word refers to a word taking
a specific topic as context [14], as shown in Fig. 1(B). TWE model employs LDA
to obtain the topic distributions of document corpora and topic assignment for
each word token. TWE model uses topic zm,n of target word to predict context
word compared with only using the target word wm,n to predict context word
in Skip-Gram. TWE is defined to maximize the following average log probability

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n) + log Pr(wm,n+j |zm,n).

(3)
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TWE regards each topic as a pseudo word that appears in all positions of words
assigned with this topic. When training TWE, Skip-Gram is being used for learn-
ing word embeddings. Afterwards, each topic embedding is initialized with the
average over all words assigned to this topic and learned by keeping word embed-
dings unchanged.

Despite the improvement over Skip-Gram, the parameters of LDA, word
embeddings and topic embeddings are learned separately. In other word, TWE
just uses LDA and Skip-Gram to obtain external knowledge for learning better
topic embeddings.

3 Our LTSG Algorithm

Extending from the TWE model, the proposed Latent Topical Skip-Gram model
(LTSG) directly integrates LDA and Skip-Gram by using topic-word distribution
ϕ mentioned in topic models like LDA, as shown in Fig. 1(C). We take three steps
to learn topic modeling, word embeddings and topic embeddings simultaneously,
as shown below.

Step 1. Sample topic assignment for each word token. Given a specific
word token wm,n, we sample its latent topic zm,n by performing Gibbs updat-
ing rule similar to LDA.

Step 2. Compute topic embeddings. We average all words assigned to each
topic to get the embedding of each topic.

Step 3. Train word embeddings. We train word embeddings similar to Skip-
Gram and TWE. Meanwhile, topic-word distribution ϕ is updated based on
Eq. (10). The objective of this step is to maximize the following function

L(D) =
1

∑M
m=1 Nm

M∑

m=1

Nm∑

n=1

∑

−c≤j≤c,j �=0

log Pr(wm,n+j |wm,n) + log Pr(wm,n+j |Twm,n
),

(4)

where Twm,n
=

K∑

k=1

τk ·ϕk,wm,n
. τk indicates the k-th topic embedding. Twm,n

can be seen as a distributed representation of global topical word of wm,n.

We will address the above three steps in detail below.

3.1 Topic Assignment via Gibbs Sampling

To perform Gibbs sampling, the main target is to sample topic assignments zm,n

for each word token wm,n. Given all topic assignments to all of the other words,
the full conditional distribution Pr(zm,n = k|z−(m,n),w) is given below when
applying collapsed Gibbs sampling [9],

Pr(zm,n = k|z−(m,n),w) ∝
n

−(m,n)
k,wm,n

+ β
∑w

w=1 n
−(m,n)
k,w + Wβ

· n
−(m,n)
m,k + α

∑K
k′=1 n

−(m,n)
m,k′ + Kα

, (5)
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where −(m,n) indicates that the current assignment of zm,n is excluded. nk,w

and nm,k denote the number of word tokens w assigned to topic k and the count
of word tokens in document m assigned to topic k, respectively. After sampling
all the topic assignments for words in corpus D, we can estimate each component
of ϕ and θ by Eqs. (6) and (7).

ϕ̂k,w =
nk,w + β

∑W
w′=1 nk,w′ + Wβ

(6)

θ̂d,k =
nm,k + α

∑K
k′=1 nm,k′ + Kα

(7)

Unlike standard LDA, the topic-word distribution ϕ is used directly for con-
structing the modified Gibbs updating rule in LTSG. Following the idea of DRS
[7], with the conjugacy property of Dirichlet and multinomial distributions, the
Gibbs updating rule of our model LTSG can be approximately represented by

Pr(zm,n = k|w, z−(m,n),ϕ, α) ∝ ϕk,wm,n
· n

−(m,n)
m,k + α

∑K
k′=1 n

−(m,n)
m,k′ + Kα

. (8)

In different corpus or applications, Eq. (8) can be replaced with other Gibbs
updating rules or topic models, eg. LFLDA [18].

3.2 Topic Embeddings Computing

Topic embeddings aim to approximate the latent semantic centroids in vector
space rather than a multinomial distribution. TWE trains topic embeddings after
word embeddings have been learned by Skip-Gram. In LTSG, we use a straight-
forward way to compute topic embedding for each topic. For the kth topic, its
topic embedding is computed by averaging all words with their topic assignment
z equivalent to k, i.e.,

τk =

M∑

m=1

Nm∑

n=1
I(zm,n = k) · vwm,n

∑W
w=1 nk,w

(9)

where I(x) is indicator function defined as 1 if x is true and 0 otherwise.
Similarly, you can design your own more complex training rule to train topic

embedding like TopicVec [13] and Latent Topic Embedding (LTE) [12].

3.3 Word Embeddings Training

LTSG aims to update ϕ during word embeddings training. Following the similar
optimization as Skip-Gram, hierarchical softmax and negative sampling are used
for training the word embeddings approximately due to the computationally
expensive cost of the full softmax function which is proportional to vocabulary
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size W . LTSG uses stochastic gradient descent to optimize the objective function
given in Eq. (4).

The hierarchical softmax uses a binary tree (eg. a Huffman tree) represen-
tation of the output layer with the W words as its leaves and, for each node,
explicitly represents the relative probabilities of its child nodes. There is a unique
path from root to each word w and node(w, i) is the i-th node of the path. Let
L(w) be the length of this path, then node(w, 1) = root and node(w,L(w)) = w.
Let child(u) be an arbitrary child of node u, e.g. left child. By applying hier-
archical softmax on Pr(wm,n+j |Twm,n

) similar to Pr(wm,n+j |wm,n) described in
Skip-gram [16], we can compute the log gradient of ϕ as follows,

∂ log Pr(wm,n+j |Twm,n
)

∂ϕk=zm,n,w=wm,n

=
1

L(wm,n) − 1

L(wm,n)−1∑

i=1
[
1 − h

wm,n+j

i+1 − σ(Twm,n
· v

wm,n+j

i )
]
τk · v

wm,n+j

i ,

(10)

where σ(x) = 1/(1 + exp(−x)). Given a path from root to word wm,n+j

constructed by Huffman tree, v
wm,n+j

i is the vector representation of i-th
node. And h

wm,n+j

i+1 is the Huffman coding on the path defined as h
wm,n+j

i+1 =
I
(
node(wm,n+j , i + 1) = child(node(wm,n+j , i)

)
.

Follow this idea, we can compute the gradients for updating the word w
and non-leaf node. From Eq. (10), we can see that ϕ is updated by using topic
embeddings τk directly and word embeddings indirectly via the non-leaf nodes
in Huffman tree, which is used for training the word embeddings.

3.4 An Overview of Our LTSG algorithm

In this section we provide an overview of our LTSG algorithm, as shown in
Algorithm 1. In line 1 in Algorithm 1, we run the standard LDA with certain
iterations and initialize ϕ based on Eq. (6). From lines 4 to 6, there are the
three steps mentioned in Sect. 3. From lines 7 to 13, ϕ will be updated after
training the whole corpus D rather than per word, which is more suitable for
multi-thread training. Function f(ξ, nk,w) is a dynamic learning rate, defined by
f(ξ, nk,w) = ξ · log(nk,w)/nk,w. In line 16, document-topic distribution θm,k is
computed to model documents.

4 Experiments

In this section, we evaluate our LTSG model in three aspects, i.e., contextual
word similarity, text classification, and topic coherence.

We use the dataset 20NewsGroup, which consists of about 20,000 documents
from 20 different newsgroups. For the baseline, we use the default settings of
parameters unless otherwise specified. Similar to TWE, we set the number of topics
K = 80 and the dimensionality of both word embeddings and topic embeddings
d = 400 for all the relative models. In LTSG, we initialize ϕ with init nGS =
2500. We perform nItrs = 5 runs on our framework. We perform nGS = 200
Gibbs sampling iterations to update topic assignment with α = 0.01, β = 0.1.
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Algorithm 1. Latent Topical Skip-Gram
Input: corpus D, # topics K, size of vocabulary W , Dirichlet hyperparameters α, β, # itera-

tions of LDA for initialization init nGS, # iterations of framework nItrs, # Gibbs sampling
iterations nGS.

Output: θm,k, ϕk,w, vw, τk, m = 1, 2, . . . , M ; k = 1, 2, . . . , K; w = 1, 2, . . . , W

1: Initialization. Initialize ϕk,w as in Equation (6) with init nGS iterations in standard
LDA as in Equation (5)

2: i ← 0

3: while (i < nItrs) do
4: Step 1. Sample zm,n as in Equation (8) with nGS iterations

5: Step 2. Compute each topic embedding τk as in Equation (9)
6: Step 3. Train word embeddings with objective function as in Equation (4)

7: Compute the first-order partial derivatives L′(D)

8: Set the learning rate ξ

9: for (k = 1 → K) do
10: for (w = 1 → W ) do

11: ϕ
(i+1)
k,w ← ϕ

(i)
k,w + f(ξ, nk,w)

∂L′(D)
∂ϕk,w

12: end for
13: end for

14: i ← i + 1
15: end while

16: Compute each θm,k as in Equation (7)

4.1 Contextual Word Similarity

To evaluate contextual word similarity, we use Stanford’s Word Contextual Word
Similarities (SCWS) dataset introduced by [11], which has been also used for
evaluating state-of-art model [14]. There are totally 2,003 word pairs and their
contexts, including 1328 noun-noun pairs, 399 verb-verb pairs, 140 verb-noun, 97
adjective-adjective, 30 noun-adjective, 9 verb-adjective pairs. Among all of the
pairs, there are 241 same-word pairs which may show different meaning in the
giving context. The dataset provide human labeled similarity scores based on the
meaning in the context. For comparison, we compute the Spearman correlation
similarity scores of different models and human judgments.

Following the TWE model, we use two scores AvgSimC and MaxSimC to evaluate
the multi-prototype model for contextual word similarity. The topic distribution
Pr(z|w, c) will be inferred by using Pr(z|w, c) ∝ Pr(w|z) Pr(z|c) with regarding
c as a document. Given a pair of words with their contexts, namely (wi, ci) and
(wj , cj), AvgSimC aims to measure the averaged similarity between the two words
all over the topics:

AvgSimC =
∑

z,z′∈K

Pr(z|wi, ci) Pr(z′|wj , cj)S(vz
wi

,vz′
wj

) (11)

where vz
w is the embedding of word w under its topic z by concatenating word

and topic embeddings vz
w = vw ⊕τz. S(vz

wi
,vz′

wj
) is the cosine similarity between

vz
wi

and vz′
wj

.



LTSG: Latent Topical Skip-Gram 383

MaxSimC selects the corresponding topical word embedding vz
w of the most

probable topic z inffered using w in context c as the contextual word embedding,
defined as

MaxSimc = S(vz
wi

,vz′
wj

) (12)

where
z = arg maxz Pr(z|wi, ci), z′ = arg maxz Pr(z|wj , cj).
We consider the two baselines Skip-Gram and TWE. Skip-Gram is a well-known

single prototype model and TWE is the state-of-the-art multi-prototype model.
We use all the default settings in these two model to train the 20NewsGroup
corpus.

Table 2. Spearman correlation ρ × 100 of contextual word similarity on the SCWS
dataset.

Model ρ × 100

Skip-Gram 51.1

LTSG-word 53.4

AvgSimC MaxSimC

TWE 52.0 49.2

LTSG 54.2 54.1

From Table 2, we can see that LTSG achieves better performance compared to
the two competitive baseline. It shows that topic model can actually help improv-
ing polysemous-word model, including word embeddings and topic embeddings.
The meaning of a word is certain by giving its specify context so that MaxSimC
is more relative to real application. Then LTSG model achieves more improve-
ment in MaxSimC than AvgSimC compared to TWE, which tells that LTSG could
perform better in telling a word meaning in specify context.

4.2 Text Classification

In this sub-section, we investigate the effectiveness of LTSG for document mod-
eling using multi-class text classification. The 20NewsGroup corpus has been
divided into training set and test set with ratio 60% to 40% for each category.
We calculate macro-averaging precision, recall and F1-score to measure the per-
formance of LTSG.

We learn word and topic embeddings on the training set and then model doc-
ument embeddings for both training set and testing set. Afterwards, we consider
document embeddings as document features and train a linear classifier using
Liblinear [8]. We use vm, τk, vw to represent document embeddings, topic embed-
dings, word embeddings, respectively, and model documents on both topic-based
and embedding-based methods as shown below.
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Table 3. Evaluation results of multi-class text classification.

Model Accuracy Precision Recall F1-score

BOW 79.7 79.5 79.0 79.2

LDA 72.2 70.8 70.7 70.7

Skip-Gram 75.4 75.1 74.7 74.9

TWE 81.5 81.2 80.6 80.9

LTSG-theta 74.1 73.1 72.7 72.9

LTSG-topic 74.8 74.0 73.3 73.7

LTSG-word 81.4 81.0 80.4 80.7

LTSG 82.7 82.5 81.7 82.1

Table 4. Top words of some topics from LTSG and LDA on 20NewsGroup for K = 80.

LTSG LDA LTSG LDA LTSG LDA LTSG LDA

image image jet printer stimulation doctor anonymous list

jpeg files ink good diseases disease faq mail

gif color laser print disease coupons send information

format gif printers font toxin treatment ftp internet

files jpeg deskjet graeme icts pain mailing send

file file ssa laser newsletter medical server posting

convert format printer type staffed day mail email

color bit noticeable quality volume microorganisms alt group

formats images canon printers health medicine archive news

images quality output deskjet aids body email nonymous

−75.66 −88.76 −91.53 −119.28 −66.91 −100.39 −78.23 −95.47

– LTSG-theta. Document-topic distribution θm estimated by Eq. (7).
– LTSG-topic. vm =

∑K
k=1 θm,k · τk.

– LTSG-word. vm = (1/Nm)
∑Nm

n=1 vwm,n
.

– LTSG. vm = (1/Nm)
∑Nm

n=1 v
zm,n
wm,n , where contextual word is simply con-

structed by v
zm,n
wm,n = vwm,n

⊕ τzm,n
.

Result Analysis. We consider the following baselines, bag-of-word (BOW)
model, LDA, Skip-Gram and TWE. The BOW model represents each document as
a bag of words and use TFIDF as the weighting measure. For the TFIDF model,
we select top 50,000 words as features according to TFIDF score. LDA represents
each document as its inferred topic distribution. In Skip-Gram, we build the
embedding vector of a document by simply averaging over all word embeddings
in the document. The experimental results are shown in Table 3.

From Table 3, we can see that, for topic modeling, LTSG-theta and LTSG-
topic perform better than LDA slightly. For word embeddings, LTSG-word
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significantly outperforms Skip-Gram. For topic embeddings using for multi-
prototype word embeddings, LTSG also outperforms state-of-the-art baseline
TWE. This verifies that topic modeling, word embeddings and topic embeddings
can indeed impact each other in LTSG, which lead to the best result over all the
other baselines.

4.3 Topic Coherence

In this section, we evaluate the topics generated by LTSG on both quantitative
and qualitative analysis. Here we follow the same corpus and parameters setting
in Sect. 4.2 for LSTG model.

Quantitative Analysis. Although perplexity (held-out likehood) has been widely
used to evaluate topic models, [3] found that perplexity can be hardly to reflect
the semantic coherence of individual topics. Topic Coherence metric [17] was
found to produce higher correlation with human judgments in assessing topic
quality, which has become popular to evaluate topic models [1,4]. A higher topic
coherence score indicates a more coherent topic.

We compute the score of the top 10 words for each topic. We present the
score for some of topics in the last line of Table 4. By averaging the score of
the total 80 topics, LTSG gets −92.23 compared with −108.72 of LDA. We can
conclude that LTSG performs better than LDA in finding higher quality topics.

Qualitative Analysis. Table 4 shows top 10 words of topics from LTSG and LDA
model on 20NewsGroup. The words in this two models are ranked based on
the probability distribution ϕ for each topic. As shown, LTSG is able to capture
more concrete topics compared with general topics in LDA. For the topic about
“image”, LTSG shows about image conversion on different format, while LDA
shows the image quality of different format. In topic “printer”, LTSG emphasizes
the different technique of printer in detail and LDA generally focus on “good
quality” of printing.

5 Releated Work

Recently, researches on cooperating topic models and vector representations have
made great advances in NLP community. [24] proposed a Markov Random Field
regularized LDA model (MRF-LDA) which encourages similar words to share the
same topic for learning more coherent topics. [6] proposed Gaussian LDA to use
pre-trained word embeddings in Gibbs sampler based on multivariate Gaussian
distributions. LFLDA [18] is modeled as a mixture of the conventional categor-
ical distribution and an embedding link function. These works have given the
faith that vector representations are capable of helping improving topic models.
On the contrary, vector representations, especially topic embeddings, have been
promoted for modeling documents or polysemy with great help of topic models.
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For examples, [14] used topic model to globally cluster the words into differ-
ent topics according to their context for learning better multi-prototype word
embeddings. [13] proposed generative topic embedding (TopicVec) model that
replaces categorical distribution in LDA with embedding link function. However,
these models do not show close interactions among topic models, word embed-
dings and topic embeddings. Besides, these researches lack of investigation on
the influence of topic model on word embeddings.

6 Conclusion and Future Work

In this paper, we propose a basic model Latent Topical Skip-Gram (LTSG) which
shows that LDA and Skip-Gram can mutually help improve performance on dif-
ferent task. The experimental results show that LTSG achieves the competitive
results compaired with the state-of-art models.

We consider the following future research directions: (I) We will investigate
non-parametric topic models [22] and parallel topic models [15] to set parame-
ters automatically and accelerate training using multi threading for large-scale
data. (II) We will construct a package which can be convenient to extend with
other topic models and word embeddings models to our framework by using the
interfaces. (III) We will deal with unseen words in new documents like Gaussian
LDA [6].
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Abstract. Recently, the security of multimodal verification has become a
growing concern since many fusion systems have been known to be easily
deceived by partial spoof attacks, i.e. only a subset of modalities is spoofed. In
this paper, we verify such a vulnerability and propose to use two representation-
based measures to close this gap. Firstly, we use the collaborative representation
fidelity with non-target subjects to measure the affinity of a query sample to the
claimed client. We further consider sparse coding as a competing comparison
among the client and the non-target subjects, and hence explore two sparsity-
based measures for recognition. Last, we select the representation-based mea-
sure, and assemble its score and the affinity score of each modality to train a
support vector machine classifier. Our experimental results on a chimeric mul-
timodal database with face and ear traits demonstrate that in both regular ver-
ification and partial spoof attacks, the proposed method significantly
outperforms the well-known fusion methods with conventional measure.

Keywords: Multimodal verification � Spoof attacks
Representation-based measure � Support vector machine

1 Introduction

A generic biometric system has eight vulnerable points that can be exploited by an
intruder to gain unauthorized access [1]. Among them, spoof attacks usually present a
counterfeited biometric sample (e.g., a gummy fingerprint, a face image/video/mask) to
a system sensor, which do not require knowledge about the system’s operational
mechanism and internal parameters. Spoof attacks are also known as non-zero effort
attacks, presentation attacks, and direct attacks. The concept of non-zero effort attacks
is relative to zero effort attempts, where an imposter doesn’t fabricate the biometric trait
of any specific client and merely presents his/her own biometric trait to the system. In
the literature, an imposter is generally regarded as an intruder who performs zero effort
attempts. In this paper, for clarity and terminological consistence, a legitimate claim,
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zero effort attempt, and non-zero effort attack are termed as genuine, imposter and
spoof, respectively, together with their associated executor/sample/score.

Multimodal systems have been considered intrinsically more secure than unimodal
systems based on the intuition that an intruder would have to spoof all the biometric
traits to successfully impersonate the targeted client [2]. Such a belief has long been
established disregarding the possibility that an intruder is falsely accepted by spoofing
only a subset of the biometric traits. The vulnerability of multimodal systems to partial
spoof attacks has been shown in the worst-case scenario, where the intruder is assumed
to be able to replicate a subset of the biometric traits of a genuine client exactly. Under
this assumption, Rodrigues [3] showed experimental results on chimeric multimodal
databases with face and fingerprint that multimodal systems can be deceived easily by
spoofing only a subset of the modalities, if the fusion rule is not designed with any anti-
spoofing measure. Wild et al. [4] showed the sensitivity of multimodal systems to
partial spoof attacks with real fake biometric databases.

Some efforts to enhance the security of multimodal systems against partial spoof
attacks have already been reported. Rodrigues et al. [5] proposed a modification of the
classic likelihood ratio (LLR) method that considers the possibility of spoof attacks and
the degree of security to individual trait when modelling score distributions. However,
these prior probabilities are application dependent and may not be time invariant, hence
are quite difficult to quantify. Rodrigues et al. [3] also proposed the idea of using
quality measures to protect against spoof attacks. Intuitively, a fake biometric sample is
likely to be of inferior quality. However, biometric quality assessment is still an open
issue to most biometrics. Besides, fake biometric sample is not necessarily to be
inferior with the emerging image/video synthesis, 3D printing, and materials.

Liveness detection is another kind of approach used to improve the spoofing
resistance for a given system. Marasco et al. [6] proposed a multimodal system that
incorporates a liveness detection algorithm to reject spoofed samples. If a spoof attempt
is indicated, the related modality matching score is ignored. Wild et al. [4] combined
the recognition score and liveness measure at score level with a 1-median filtering
scheme for enhanced tolerance to spoof attacks. Nevertheless, neither one of hardware-
based and software-based liveness detection systems have shown acceptable perfor-
mance and cost against spoof attacks. Physiological and behavioral characteristics are
also employed to enhance multimodal verification security in [7].

This paper is enlightened by the fact that in a partial spoof attack, the recognition
scores achieved from non-spoofed modalities are generally near the imposter score
distribution center, given that they are also zero effort attempts from a unimodal
viewpoint. Unlike the quality- and/or liveness-based methods that focus on the spoofed
modalities, we propose to take advantage of non-spoofed modalities. To this end, we
put forward a representation-based measure to gauge the affinity of a query sample to a
claimed client. This is based on the assumption that a biometric sample would result in
inferior sparse representation fidelity if it doesn’t lie in any subspace spanned by the
samples from the same subject [8–10]. Note that, it is unlikely to exhaustively collect
the representative samples per subject to construct a class specific overcomplete dic-
tionary. We propose to build the dictionary together with samples from non-target
subjects to collaboratively represent a query sample.
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This affinity score could be an additional measure to a traditional verification
method. However, we further consider sparse coding as a one-to-many comparison
among the claimed client and non-target subjects, and hence explore other sparsity-
based measures for verification. We evaluate two measures, namely, sparse coding
error (SCE) and sparse contribution rate (SCR), on a multimodal database with face and
ear. Encouraging performance of SCE-based and SCR-based Sum fusion methods
evidently supports the usage of sparsity-based one-to-many comparisons in multimodal
verification. However, SCR shows much more inferior performance in spoof attacks.
Last, we assemble the proposed affinity score and SCE score of each modality as an
input vector to train a support vector machine (SVM) classifier.

To validate the effectiveness of the proposed method, we construct a chimeric
multimodal database with face and ear traits. The proposed method is compared with
the well-known multimodal methods like LLR, SVM, and Sum fusion that are based on
cosine similarity. The experimental results validate that in both no spoof and partial
spoof cases, the proposed method significantly outperforms its competitors. For
example, the traditional methods get the best equal error rates (EER) of 8.32% and
11.89% in no spoof and spoof cases, while our method achieves 0.27% and 2.12%.
Apparently, the proposed method helps to increase the spoofing resistance of multi-
modal systems.

The remainder of the paper is structured as follows. We discuss the approaches to
verification based on one-to-many match, and we review the existing methods using
sparse coding in Sect. 2. In Sect. 3, we present the sparsity-based affinity and recog-
nition measures, together with the proposed multimodal verification system. In Sect. 4,
we describe our chimeric multimodal database and report the corresponding experi-
mental results. The conclusion is drawn in Sect. 5.

2 Related Work

In a biometric verification system, an individual who desires to be recognized claims an
identity and presents biometric samples. Then the system conducts a comparison to
determine whether the claim is licit or not. Verification is used for positive recognition,
where the aim is to prevent multiple people from using the same identity.

Typically, biometric verification systems conduct a one-to-one match that compares
a query image against the gallery template(s), whose identity is being claimed. The
comparison produces a similarity score. The system accepts the claim if the score is
higher than an operating threshold, otherwise rejects it. The operating threshold is
determined in the training phase based on the genuine and imposter score distributions.
However, it is unlikely to collect all the representative samples of a client that cover all
possible variations, for example, expression, pose, illumination, aging, and occlusion in
face. Under such circumstances, it cannot be guaranteed that no imposter score is
higher than the predefined operating threshold. The system is at a risk of being cracked
by intruders. Therefore, the one-to-one match solely based on a predetermined oper-
ating threshold is problematic.

Two decades ago, Verlinde et al. [11] proposed a one-to-many match biometric
verification method using a k-NN classifier. To the best of our knowledge, this is one of
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the first attempts to consider non-target subjects for verification in the test phase.
Nevertheless, the inferior comparison algorithm like k-NN could probably account for
the rare use of one-to-many match in verification. Cohort-based score normalization
also takes advantage of non-target subjects but serves the traditional one-to-one match
verification [12]. In recent years, we have witnessed the great success of sparse coding
techniques in biometric recognition [13–15]. The sparse representation-based classifi-
cation (SRC) conducts one-to-many comparisons in a sparse coding procedure and is
naturally applicable to biometric identification. Note that, along with the initial research
of SRC-based face identification in [13], a measure called sparse concentration index
(SCI) was applied to reject outliers, i.e. the subjects who do not appear in dictionary.

Inspired by the success of SRC identification and sparsity-based outlier verification,
SRC-based comparison has been introduced in speaker verification. In [16], GMM
mean supervector is used as feature of an utterance. The L1-norm value of the repre-
sentation coefficients associated with the claimed identity is used as genuine score,
while the L1-norm of the coefficients of each other non-target subject are imposter
scores. Based on a similar idea, Li et al. [17] created the dictionary using the total
variability i-vectors and evaluated three sparsity-based measures for speaker verifica-
tion, which achieved better results than a SVM baseline.

3 The Proposed Method

3.1 Affinity Measure

In this section, we present a representation-based measure to gauge the affinity of a
query sample to a claimed client, based on the assumption that a biometric sample
would result in inferior sparse representation fidelity if it doesn’t lie in the subspace
spanned by the samples from the same subject [8, 9]. Note that, it is unlikely to
exhaustively collect the representative samples per subject to construct a class specific
overcomplete dictionary. A feasible way is to use non-target subjects to collaboratively
represent the query samples [18].

Therefore, we select a number of non-target subjects together with the claimed client.
Their gallery samples/features are used to construct an overcomplete dictionary
A ¼ Ac; Ab½ � 2 RM�N ðM\\NÞ. The first sub-dictionaryAc ¼ ac;1; ac;2; � � � ; ac;n

� � 2
RM� n is composed of the gallery samples of the claimed client, which is a dynamic part of
the dictionary. The other sub-dictionary Ab ¼ a1; a2; a3; � � � ; aðN�nÞ

� � 2 RM�ðN�nÞ con-
sists of the samples of non-target subjects. Without any specific instructions, Ab is fixed
for all identity verification processes. Given a query sample y, if it is from a genuine client
and isn’t of inferior quality, y should lie in a subspace spanned byAc. In this context, y can
be sparsely represented by y ¼ Aa with high fidelity (see the genuine distribution in
Fig. 1), where a 2 RN is the coefficient vector. A sparse solution of a can be obtained by
the following optimization problem [13]:

â ¼ argmin ak k1 s: t: y� Aak k2\e; ð1Þ

where �k k1 denotes the L1-norm, and e[ 0 is a positive constant.
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In a partial spoof attack, a query sample of non-spoofed modalities is unlikely to lie
in any subspace spanned by the dictionary samples given that the non-target subjects
are confidential. In this context, only a solution with inferior collaborative represen-
tation fidelity (CRF), described in Eq. (2), can be found by optimizing Eq. (1).

F yð Þ ¼ y� Aâk k2: ð2Þ

Figure 1 shows the CRF distributions on a chimeric multimodal database using
face and ear, detailed in Sect. 4. When the ear of a client is spoofed, the intruder needs
to show his/her face or an arbitrary face to complete the biometric data enrollment.
Such arbitrary face is unlikely to be from the non-target subjects since the combination
of the overcomplete dictionary is confidential. In this context, the non-spoofed face is
an outlier that does not lie in the subspace spanned by A and hence leads to an inferior
CRF score, see in Fig. 1(a). When the face is spoofed, we see similar CRF distribution
of the non-spoofed ears in Fig. 1(b). From the perspective of the client, CRF score can
be used to represent the affinity of the query sample to it.

3.2 Sparsity-Based Recognition Scores

We consider sparse coding as a competing comparison among the client and non-target
subjects, and hence explore other two sparsity-based measures, namely, sparse coding
error (SCE) and sparse contribution rate (SCR), for multimodal verification.

Since â is achieved in Eq. (1), the SCE value is calculated by

E yð Þ ¼ y� Acdc âð Þk k2; ð3Þ

where dc: RN ! RN is the characteristic function that selects the coefficients associated
with the claimed client.

The well-known SRC and most of its extensions identify a query sample based on
comparing the SCEs of all classes in dictionary. Their superior classification

(a) Face distribution in ear spoof case (b) Ear distribution in face spoof case

Fig. 1. CRF distributions in partial spoof attacks.
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performance validates that SCE is a good candidate to measure the correlation between
a query sample and a specific class, as a distance score. Thus, it is reasonable to use
SCE for verification.

Wright et al. [13] presented a measure called sparse concentration index (SCI) to
reject outliers in face identification. Essentially, the SCI value depends on the class who
contributes the most in sparse coding. Given a query sample that isn’t an outlier, it
generally belongs to the class with the maximal sparse contribution rate (SCR), as
defined in Eq. (4). A large value of SCR obtained by a class indicates a greater
possibility of the query sample belonging to this class. Therefore, SCR could possibly
be used as a similarity score for verification.

R âð Þ ¼ dc âð Þk k1
�

âk k1: ð4Þ

Figure 2 plots the distributions of SCE and SCR scores obtained on the proposed
chimeric multimodal database of face and ear. For convenience to illustrate the
effectiveness of SCE and SCR in multimodal verification, we use the Sum rule to fuse
face and ear scores. As for SCE, the distribution centers of the genuine and imposter
scores are far away from each other with little overlap. Although there is no a clear
distribution center peak of the genuine SCR, the overlap is not evident as well. More
experimental evidence supporting SCE and SCR is shown in Sect. 4. In addition,
Fig. 2 also demonstrates that most spoof scores are located between the distribution
centers of genuine and imposter scores. This implies that the multimodal fusion
methods based on SCE or SCR are vulnerable to spoof attacks.

Some variants of SCE and SCR have been used in speaker verification and shown
to achieve comparable performance with the traditional one-to-one verification.
However, in our face and ear unimodal experiments, a genuine client might lose his/her
chance to obtain an eligible SCE or SCR score in the competing comparison, owing to
the variations in query samples. If it happens, the genuine score will be extremely low.
It means that many licitly claimed clients could not pass the verification system by
tuning a client specific operating threshold. Instead, more user cooperation will be
necessary, which would degrade the user experience. Therefore, for high accuracy and

Fig. 2. The distributions of SCE and SCR with Sum fusion on our multimodal dataset.
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user convenience of identity verification, sparsity-based one-to-many comparisons
would be rather preferable in multimodal scenarios rather than in unimodal
applications.

3.3 Multimodal Verification

The CRF score that measures the affinity of a query sample to its claimed client can be
utilized to enhance the system’s resistance to partial spoof attacks in a serial or parallel
fusion mode. In a serial fusion mode, multimodal systems firstly examine the CRF
scores of each modality to determine whether they are spoofed or not, and then conduct
multimodal verification.

However, as shown in Fig. 1, the overlap of the genuine and the spoof CRF score
distribution is still rather obvious. A hard CRF threshold would lead to high false
acceptance rate (FAR), while a loose one may compromise the multimodal system.
Note that, there is a high possibility that the non-spoofed modalities get inferior
recognition scores along with inferior CRF scores from the same sparse coding.
The CRF score and sparsity-based recognition score are complementary. Hence, it is
worthwhile to combine them in a parallel way to achieve better performance.

Two sparsity-based recognition scores, i.e., SCE and SCR, are introduced in
Sect. 3.2. Both the Sum fusion methods based on them get promising verification
performance in zero effort attempts, as shown by the distributions in Fig. 2. These
results support the use of the sparsity-based one-to-many comparison in multimodal
systems. On the other hand, SCR is much more inferior to SCE in spoof attacks. The
detailed experimental results will be given in Sect. 4.

Fig. 3. An overview of the multimodal system architecture.
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Last, we select the SCE and CRF scores of each modality to form a score vector for
a verification claim. Suppose there are K modalities, ek and fk are the SCE and CRF
scores of the kth modality. The final score vector can be denoted by
S ¼ ðe1; f1; e2; f2; � � � ; eK ; fKÞ0. In the training phase, we use genuine, imposter, and
spoof score samples to train a SVM classifier with RBF kernel. For simplicity but
without the loss of generality, an overview of system architecture with two modalities
(K = 2) is shown in Fig. 3 to illustrate the proposed method.

The chimeric multimodal database introduced in Sect. 4 contains 79 subjects with 7
gallery samples each. All these samples are used to form an overcomplete dictionary
with 553 atoms. We don’t have abundance data to discuss how to optimally select the
non-target subjects in this paper. Note that, we ignore the issue of score normalization,
given that the scores of face and ear are compatible in our experiments.

4 Experiments and Discussion

4.1 Databases

The proposed method is general for verification using multiple biometric traits. In this
paper, we construct a chimeric multimodal database with publicly available face and
ear databases. All the 79 subjects in USTB III ear database [19] are randomly paired
with the first 79 subjects of AR face database [20]. For each subject, the 7 face images
without occlusion of Session 1 are used as gallery samples, while the same type of 7
images of Session 2 are used as probe samples. The USTB III is a multi-view ear
database with 20 images per subject. We use the same gallery and probe partition rule
in [8, 9], where 7 ear gallery images and 13 ear probe images are selected for each
subject. In our experiments, the 2 probe images per subject with extreme pose variation
are discarded. For each subject on the multimodal database, in the gallery set, 7 face
images are uniquely paired with the 7 ear images to form 79 � 7 = 553 multimodal
samples. In the probe set, each face image is paired with all the ear images to form
79 � 7 � 11 = 6083 multimodal samples.

To simulate the worst-case partial spoof attacks, in a face spoof case, we replace the
ear part of a multimodal sample with the image of USTB II ear database (77 subjects, 4
images per subject) [19], In an ear spoof case, we replace the face part with the image
of Georgia Tech face database (GT, 50 subjects, 8 images per subject) [21]. Finally, we
get 77 subjects, 28 face spoof multimodal samples per subject, and 50 subjects, 88 ear
spoof multimodal samples per subject.

In the experiments, we use the features of gallery samples of all 79 subjects to
construct the overcomplete dictionary. The SCE, SCR, and CRF scores are derived
from the comparison between one-sample and one-set. The numbers of genuine,
imposter and spoof score samples are 6083, 474474 (6083 � 78), and 6556, respec-
tively. As for the competing methods using cosine similarity, we empirically select the
best match score from each comparison, hence their score sample numbers are the
same.
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4.2 Settings

The 2D-DCT method is applied for feature extraction of face and ear images, since it is
fast, general, and without specific training. The DCT coefficients are scanned in a
zigzag manner starting from the top-left corner of the entire transformed image to form
a feature vector with 200 dimensions.

The proposed multimodal method uses SVM with RBF kernel (sigma = 0.25). It is
compared with the Sum fusion methods of SCE and SCR, denoted by SUM(sce) and
SUM(scr), respectively. The competing multimodal methods include the well-known
LLR [22], SVM [23], and Sum fusion methods, which use cosine similarity and are
respectively denoted by LLR(cos), SVM(cos), and SUM(cos). SVM(cos) also uses
RBF kernel (sigma = 1).

Without specific instructions, half of the genuine, imposter and spoof scores are
randomly selected for training, and the remainder are for testing. To alleviate the
imbalance of training samples, SVM-based classifiers use 1/10 imposters to train. The
LLR(cos) uses half of all kinds of samples to fit Gaussian mixture models for score
distribution estimation. We run all experiments 5 times, the results presented here are
based on the average from these 5 runs.

5 Results

The metrics like false acceptance rate (FAR), false rejection rate (FRR), equal error rate
(EER), and the receiver operating characteristic (ROC) curves are generally used to
evaluate methods in regular verification. The spoof FAR (SFAR) is specifically used to
note the FAR in spoof attacks.

In the first part of the experiments, we train all the learning-based classifiers without
considering the spoof samples, namely Regular training. Figure 4 plots the ROC curves
of all competing methods in regular verification. The methods with sparsity-based
measures are observed to be significantly better than the methods with traditional
measure. Among the former methods, SUM(scr) is obviously inferior to SUM(sce) and
the proposed method. The ROC curves and the EERs summarized in Table 1 do not
show evident advantage of our method when compared with SUM(sce).

Table 1. Performance in terms of EER (%).

Training Testing SUM(cos) SVM(cos) LLR(cos) SUM(sce) SUM(scr) Ours

Regular
training

Regular 11.83 6.632 6.85 0.20 0.39 0.18
Spoof
attacks

12.44 22.05 21.04 8.73 28.26 4.13

Spoof
training

Regular 11.83 8.79 8.32 0.20 0.39 0.27
Spoof
attacks

12.44 11.89 12 8.73 28.26 2.12
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Figure 5(a) demonstrates that all these methods without spoof training are vul-
nerable to partial spoof attacks. Both the EERs of LLR(cos) and SVM(cos) increase by
about 15%, and even that of SUM(scr) soars to 28.26%. On the other hand, our method
achieves a 4.13% EER, which is less than half of the second best.

In the second part of the experiments, all the learning-based classifiers are trained
with genuine, imposter and spoof samples, namely spoof training. We can see from
Table 1 that, compared with the former experiments of spoof attacks, both LLR(cos)
and SVM(cos) get about 10% improvements, while the EER of ours reduces by half,
down to 2.12%. The overwhelming advantage of our method can be seen vividly with
the ROC curves plotted in Fig. 5(b). It is quite promising provided that the experiments
here are in the worst-case spoof conditions where the fake score distribution of the
spoofed modalities is identical to that of genuine.

Although LLR(cos) and SVM(cos) also exhibit obvious improvements, they
encounter obvious accuracy decline in regular verification, see Table 1. These results
show again that the spoof training may bring about unacceptable performance

Fig. 4. Performance in regular verification.

(a) Regular training (b) Spoof training.

Fig. 5. Performance in partial spoof attacks.
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degradation in regular identity verification [2]. As for the proposed method, the EER
increases from 0.18% to 0.27%, which is still very low. Above all, the proposed
method is able to achieve very low EER in both regular verification and partial spoof
attacks.

6 Conclusion

In this paper, aiming to improve the multimodal system’s resistance to partial spoof
attacks, we proposed the use of collaborative representation fidelity with non-target
subjects to measure the affinity of a query sample to a claimed client. We further
considered sparse coding as a competing comparison among the claimed client and
non-target subjects, and hence explored two sparsity-based measures associated with
individual subjects for recognition. The encouraging performance evidently supports
the use of sparsity-based one-to-many comparisons in multimodal systems. However,
based on their performance in spoof attacks, only the representation-based one is
selected as recognition score. Last, two types of representation-based scores for each
modality are assembled to train a SVM classifier.

The proposed method was compared with well-known multimodal methods like
LLR, SVM, and Sum fusion methods, using the cosine similarity measure, on a chi-
meric multimodal database of face and ear traits. The experimental results demonstrate
that in both regular verification and partial spoof attacks, the proposed method over-
whelmingly outperforms its competitors. The proposed method is a general model for
combining multiple biometric traits. In the future work, we plan to evaluate more
biometric traits like palmprint, iris, and with real spoofed data. We believe the method
can be further enhanced by using more robust feature extraction method like CNN-
based, and advanced multimodal joint sparse coding techniques [24].
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Abstract. In an intelligent wireless vision sensor network, an intra encoder is
used for the energy-precision optimization with two control parameters: sam-
pling ratio and quantization parameter, which have a direct impact on the coding
bit rate, encoder complexity, wireless transmission energy, as well as the server-
end object classification precision. Through extensive experiments, we construct
the precision-rate-complexity bivariate models to understand the behaviors of
the intra encoder and the deep convolutional neural networks, and then char-
acterize the inherent relationship between bit rate, encoding complexity, clas-
sification precision and these two control parameters. With these models, we
study the problem of optimization control of the wireless vision sensor node so
that the node-end energy can be minimized subject to the server-end object
classification precision. Our experimental results demonstrate that the proposed
control method is able to effectively adjust the energy consumption of the sensor
node while achieving the target classification performance.

Keywords: Intra encoder � Energy-precision optimization � Bivariate models
Deep convolutional neural networks

1 Introduction

In an intelligent wireless vision sensor networks (iWVSN), the vision analysis task is
performed on the compressed images. Therefore, the reconstruction quality of the
compressed image, as well as the encoder design and configuration, will have direct
impact on the subsequent vision analysis performance. The latest standardization
efforts in compression coding have led to the specification of high efficiency video
coding (HEVC) [1]. Studies have been performed to analyze and model the complexity
behavior of the HEVC encoder. In [2], the encoding complexity is incorporated into the
rate-distortion analysis to reduce the encoder’s energy consumption, where the
macroblock-level computational complexity of the H.264 encoder is modeled for each
prediction mode. Authors in [3] proposed a rate-power allocation scheme for wireless
video chat applications, where the transmission parameters are adaptively adjusted
based on a power-rate-distortion model.
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Recently, researchers have recognized the importance of joint design of image
compression and vision analysis. For traffic surveillance, an unequal error protection
scheme was developed in [4] to increase the vehicle tracking accuracy by allocating
more resources to the image region of interest. By classifying macroblocks into dif-
ferent groups in video frames, a rate control method was also proposed for preserving
the important local image features [5]. For moving object surveillance, a dynamic rate
control scheme was developed in [6] to achieve higher image quality for the regions of
interest. For lossy image compression of plant phenotyping, a k-domain HEVC rate-
distortion model was implemented to reduce the object segmentation errors at different
bit rates [7].

In this work, we choose the deep convolutional neural networks (DCNN) for object
classification of target images at the server end. Deep neural networks are able to
construct complex representations and automatically learn a compositional relationship
between inputs and outputs, mapping input images to output labels [8]. Once a DCNN
is trained using the back-propagation learning procedure, the classification or test is a
purely feedforward process [9]. During the past several years, a significant amount of
works have been done to push the performance limits of DCNN in vision analysis.
However, the join design of image compression, wireless transmission, and DCNN-
based object classification has not been studied.

Within the context of iWVSN with DCNN-based target classification, this work has
identified two important system control parameters, image sampling ratio (S) and
quantization parameter (Q) of the HEVC intra encoder, play a critical role in determining
the encoder complexity, coding bit rate, energy consumption in encoding and wireless
transmission, reconstructed image quality, and object classification precision. Following
an operational approach with extensive experiments, we establish models to characterize
the behaviors of coding bit rate, encoding energy, wireless transmission energy, and
DCNN classification precision with respect to two control parameters. Based on these
models, we then develop optimal resource allocation schemes to minimize the sensor-
node energy consumption while achieving the object classification precision.

2 Energy-Precision Control Framework

As discussed in the above, the task objective of the iWVSN is to identify targets. The
target images are collected, encoded, transmitted and analyzed for automated classi-
fication. As illustrated in Fig. 1, each iWVSN sensor node encodes the target image
using the HEVC intra encoder. The compressed bit stream is transmitted over a
wireless channel, and then forwarded to the cloud server through Internet. At the server
side, the bit stream is decoded to reconstruct the image. The DCNN is then applied to
classify this reconstructed image to determine the target class. The iWVSN system is
controlled by two important parameters: (1) the sampling ratio S and (2) the quanti-
zation parameter Q. Specifically, before encoding, we perform down-sampling on the
target image X with a sampling ratio of S. As we know, the sampling ratio S has a direct
impact on the following: (1) the encoding complexity which translates into encoder
power consumption, (2) the coding bit rate which translates into power consumption in
wireless transmission, and (3) the complexity and precision of the DCNN classifier.
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The quantization parameter Q has a direct impact on (1) the coding bit rate, (2) the
quality of reconstructed images, and (3) the precision of target classification.

HEVC image compression and wireless transmission are two major tasks for each
node, consuming most of its energy. With S and Q as the control parameters, PðS;QÞ
denotes the classification precision in percentage (%), and RðS;QÞ denotes the coding
bit rate per image in Kbps, and CðS;QÞ denotes the average complexity per image in
millisecond (ms). The node-end energy consumption includes two additive compo-
nents: the encoding energy Ec for compressing images, and the transmission energy Et

for sending bit data to a cloud server. The encoding energy Ec is related to the
computational complexity CðS;QÞ of the encoder, which depends on the two control
parameters: S and Q. In other words, we have

Ec ¼U C S;Qð Þ½ � ð1Þ

where U �½ � is a task-specific mapping the computational complexity or processor cycles
into energy consumption. The transmission energy Et is related to the bit rate RðS;QÞ of
the compressed image data stream which also depends on ðS;QÞ. Therefore, we write

Et ¼H R S;Qð Þ½ � ð2Þ

where H �½ � is also a task-specific mapping which depends on the wireless transmission
scheme. In this work, we consider the concise mapping mechanism for U �½ � and H �½ �. In
iWVSN, the node-end processor power is stable and the wireless transmission is delay-
tolerant. The encoding energy Ec exhibits a linear relation with the computational
complexity CðS;Q), and the wireless transmission energy Et also exhibits a linear
relation with the coding bit rate RðS;Q) [10]. In this way, the total amount of energy
consumption by the sensor node is given as follows:

EðS;QÞ¼Ec þEt ¼ pc � CðS;QÞ + et � RðS;QÞ ð3Þ
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Fig. 1. The module diagram of energy-precision control framework.
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where the encoding power pc is a constant in J/ms, and the wireless transmission power
et is another constant in J/Kbps. At the server end, the HEVC decoder decodes the
received bit stream and reconstructs the image. The reconstructed image is then used as
input to the DCNN module for target classification. Note that overall objective of the
iWVSN is to determine the target classes. Therefore, we propose to use the classifi-
cation precision PðS;QÞ as the performance metric, which depends on the size and
quality of the input image.

One major motivation of this work is from the following observation: the vision
sensor nodes may have spent too much computational and energy resources in
encoding and transmitting the image samples whose quality is much higher than that
needed for accurate target classification. In other words, from the target classification
perspective, the sensor nodes may have wasted a lot of energy. This leads to the
optimal resource allocation and control problem under DCNN precision constraints:

min EðS;QÞ s:t:PðS;QÞ�Pmin ð4Þ

In this work, we aim to minimize the energy consumption of the iWVSN node
while achieving the required precision Pmin for target classification. To successfully
solve the above control problem, we need to establish those precision-rate-complexity
models: PðS;QÞ, RðS;QÞ and CðS;QÞ, which will be presented in the following
section.

3 Precision-Rate-Complexity Modeling

Through extensive experiments, we will establish models to characterize the behaviors
of rate, complexity, and precision with respect to the two control parameters: S and Q.

3.1 Datasets and Experimental Setup

In this paper, we consider the application scenario of remote wildlife monitoring and
protection. A network of vision sensors are deployed to monitor wildlife and human
presence in the monitoring region. Triggered by animal motion, the sensor node will
capture an image and transmit it to the cloud server for object classification: animal,
human, or no-object. For example, if a human is detected in the wildlife protection
zone, an alarm will be generated. To test the DCNN classification module, we have
assembled a dataset of 1001 images of size 640 � 480, with about 1/3 images for each
class. The basic unit of HEVC is a coded tree block (CTB) whose minimum size is
16 � 16 pixels. Let ðW ;HÞ and ðWd;HdÞ be the (width, height) of the original image
X and its down-sampled image Xd, respectively. With a given sampling ratio S, the
(width, height) of the down-sampled image Xd can be denoted as follows:

ðWd;HdÞ¼ ð½W=
ffiffiffi
S

p
�; ½H=

ffiffiffi
S

p
�Þ ð5Þ

where [k] denotes a multiple of 16 that is closest to k; the width and height of a down-
sampled image uniformly increase or decrease. For each target image, we will use the
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HEVC intra encoder to compress the image with different sampling ratios S and
quantization parameters Q. The candidate values of S are Xs ¼ 1; 2; � � � ; 50f g and the
candidate values of Q are Xq ¼ 0; 1; 2; � � � ; 51f g. In total, we have 50 � 52 different (S,
Q) configurations. In this paper, we assume that the compressed bit stream is correctly
received at the server side for successful image decoding and reconstruction.
The DCNN is then applied to classify the reconstructed image into one of three classes:
Human, Animal, and Background. The DCNN model is previously trained with a large
set of labeled images, which are uncompressed and have the original resolution of
640 � 480.

3.2 Precision-Rate-Complexity Analysis

Note that S and Q are two independently control parameters. We propose to firstly
analyze the precision-rate-complexity behaviors with respect to each individual
parameter. Once we have understood and established these 1-Dimensional models, we
then proceed to establish the joint model with these two control parameters. Figure 2(a)
shows the actual PðS;QÞ curves at different S and different Q. We can see that for small
values of Q, for example, from 0 to 30, the compressed image quality is high, and the
precision does not change much. When Q is larger than the threshold (e.g., 30), the
precision drop exponentially. This implies that the image quality does not affect the
DCNN classification performance if it is above a certain threshold. This example
suggests that the sensor node will waste the bits and energy resources if the image
quality is already above the threshold since an even higher image quality level does not
help the DCNN classification. We can see that the P(S) curves follows a decreasing
near-exponential behavior. For actual coding bit rate, Fig. 2(b) plots the actual RðS;QÞ
curves at different S and different Q, whose average bit rate is 1725 Kbps. These curves
show an exponentially decreasing relationship with the increasing S or Q. For a given
encoder, its computational complexity is directly related to its encoding time. Figure 2
(c) plots the actual CðS;QÞ curves at different S and different Q, whose average
complexity is 258 ms. We can see that the quantization parameter Q does not affect the
complexity much. Certainly, the complexity will decrease for smaller input images or
larger sampling ratios.

3.3 Precision-Rate-Complexity Bivariate Models

A fundamental goal of the precision-rate-complexity modeling is to solve the node-end
energy minimization problem under server-end classification precision constraints. By
heuristically feeding actual data into the constrained minimization task in (4), the actual
distribution of all optimal control parameters can be obtained by exhaustively testing
all possible ðS;QÞ configurations. With all cases, Fig. 3 shows the distribution of actual
optimal Q values at different precisions, where a dot denotes an optimal Q value at its
precision. It can be seen that all optimal Q values are limited to a range from Q = 24
and Q = 51. When the smaller Q values vary from 0 to 23, the resulting precision (bit
rate, complexity) have no influence on the optimal solution of the energy-precision
optimization task, which motivates us neglect some (S, Q) configurations so as to
produce more accurate precision-rate-complexity models.
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Fig. 2. The actual behaviors of classification precision, coding bit-rate and complexity:
(a) PðS;QÞ curves, (b) RðS;QÞ curves, (c) CðS;QÞ curves.

Fig. 3. The distribution of actual optimal Q values.
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Based on the experiments, our curve fitting goal may only considers those larger
Q values in the range of [24, 51] and all 50 possible values for S. Thus, we have 50 � 28
possible (S, Q) configurations that needs to be fitted. It can be seen that the curves of
actual precision and complexity also exhibits a certain linear behavior, and a first-order
polynomial may approximate such a behavior. We relax the maximum value constraint
in a smaller fitting space. By comparing various exponential forms and their parameters,
the precision-rate-complexity bivariate models can be constructed as follows:

PðS;QÞ ¼ bp1 � bp2 � ebp3�Qþbp4�S � bp5 � Q� bp6 � S ð6Þ

RðS;QÞ ¼ br1 � ebr2�Qþ br3�S þ br4 � ebr5�Qþbr6�S ð7Þ

CðS;QÞ ¼ bc1 � ebc2�Qþ bc3�S þ bc4 � ebc5�Qþ bc6�S þ bc7 � Qþ bc8 � Sþ bc9 ð8Þ

By continuous approximation, Table 1 reports the optimal parameter values of the
precision-rate-complexity bivariate models. With better fitting results, the bivariate
models can be used to search the appropriate S and Q for the energy-precision opti-
mization task.

4 Resource Allocation and Energy Minimization

In the above section, we have established models to predict the encoder computational
complexity CðS;QÞ, coding bit rate RðS;QÞ, and the DCNN precision PðS;QÞ. Based
on these models, we are ready to study the resource allocation problem, answering the
following important question: what is the minimum energy consumption that the
iWVSN node needs to spend in order to achieve the desired DCNN object classification
precision at the server end? As discussed in the above section, the iWVSN resource
allocation problem can be formulated by:

min EðS;QÞ¼ pc � CðS;QÞþ et � RðS;QÞ s:t: PðS;QÞ�PT ð9Þ

Table 1. The parameters values of precision-rate-complexity bivariate models.

Parameter Value Parameter Value Parameter Value

bp1 102.6 br1 132020 bc1 5850.2

bp2 0.0863 br2 −0.1059 bc2 −0.01508

bp3 0.1123 br3 −0.5508 bc3 −0.792

bp4 0.01999 br4 41189 bc4 1336.5

bp5 −0.04603 br5 −0.1159 bc5 −0.02882

bp6 0.1242 br6 −0.04011 bc6 −0.07452

bc7 −0.5673
bc8 0.7176
bc9 23.73
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In the above section, we have obtained analytical models for the encoder com-
plexity CðS;QÞ, the encoding bit rate RðS;QÞ, and the DCNN classification precision
PðS;QÞ. We resort to a numerical solution. Specifically, with the precision-rate-
complexity bivariate models, we are able to compute the values of PðS;QÞ, RðS;QÞ,
and CðS;QÞ for a dense grid of points ðS;QÞ. We then find the set of grid points which
satisfy the precision constraint. Finally, within this set, we find the optimal ðS;QÞ
which has the minimum energy EðS;QÞ. Figure 4 shows the optimal sampling ratio S�

and encoder quantization parameter Q� for a given target classification precision PT.
Each dot represents an optimal look-up-table value of S� or Q� for a given target
precision PT. The jig-saw effect is caused by the fact that the quantization parameter Q
has to be an integer and the input image size has to be a multiple of 16. For easy
implementation in actual system control, we propose to approximate optimal sampling
ratio S�ðPTÞ using a piece-wise linear function as shown in Fig. 4(a) in solid lines, and
approximate the optimal encoder quantization parameter Q�ðPTÞ using an exponential
function as shown in Fig. 4(b):

S� PTð Þ ¼ Round x1 � PT þx2ð Þ;PT\P0

Round x3 � PT þx4ð Þ;PT �P0

�
ð10Þ

Q� PTð Þ = Round s1 � es2�PT þ s3 � es4�PT
� � ð11Þ

where the values of S�ðPTÞ belong to f1; 2; � � � ; 49; 50g, and the values of Q�ðPTÞ
belong to f24; 25; � � � ; 50; 51g. The model parameters are listed in Table 2.

Fig. 4. The look-up-table solution and analytic solution for energy-precision optimization:
(a) the S�ðPTÞ function; (b) the Q�ðPTÞ function.
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5 Experimental Results

In this section, we conduct experiments to evaluate the proposed method. Our test
dataset consists of 1001 uncompressed camera-trap images. The original input image
size is 640 � 480 in RGB color format. The DCNN classifier is constructed and trained
by using CAFFE which has 5 convolutional layers followed by 3 fully connected layers
[11]. The DCNN classifier has been well trained and tested on original target images,
where the target images are categorized into three object classes, namely: Human,
Animal, and Background. The image sampling ratio S and quantization parameter Q
jointly affect the complexity, bit rate, and object classification precision. The candidate
values of S are set to be {1, 2, 3,…, 49, 50}, and the candidate values of Q are set to be
{0, 1, 2, …, 50, 51}. For image compression, we adopt the HM-16.7 main profile
HEVC intra coding [12]. During simulation, to translate the computational complexity
into computational energy, we set the thermal design power (TDP) of the micropro-
cessor to be pc = 0.14 J/ms. The transmission power et is set to 2.6 � 10−3 Kbps [10].

Figures 5, 6 and 7 show the estimation results by the precision-rate-complexity
bivariate models obtained from the above section. Specifically, Fig. 5(a) shows the
estimation results for the PðQÞ curve at different S. Figure 5(b) shows the estimation
results for the PðSÞ curve for different Q. We can see that the model is able to accurately
capture the behavior of actual classification precision. For the estimation performance, we
have R - square = 0.9548, and RMSE = 3.057%. Figure 6(a) shows the estimation
results for the RðQÞ curve at different S. Figure 6(b) shows the estimation results for the
RðSÞ curve for different Q. We can see that this rate model is very accurate with
R - square = 0.991. Figure 7(a) shows the estimation results for the CðQÞ curves at
different S. Figure 7(b) shows the estimation results for the CðSÞ distributions for dif-
ferentQ.We can see that the complexity model is very accurate with R - square = 0.997.

Figure 8(a) shows the minimum energy consumption (in lines with circles) of the
iWVSN node to achieve the target DCNN classification precision at the server end
using the precision-rate-complexity bivariate model and resource allocation. For
comparison, we also include the actual optimal value of minimum energy consumption
(in lines with crosses) which are obtained from brute-force search based on experiments
with all possible combinations of control parameters ðS;QÞ. We can see that our
analysis and optimization approaches the actual optimal values. Figure 8(b) shows the
operating bit rate and complexity of the iWVSN node. We can see that, if we allow a
very small percentage of performance drop, for example, from dropping the precision
from 97% to 96%, we can save the total energy at the iWVSN node by up to 2 times,
which is very significant.

Table 2. The coefficients of analytic functions.

Coefficient Value Coefficient Value

x1 0.103 s1 −0.002
x2 39.22 s2 0.096
x3 −5.4 s3 62.01
x4 553.3 s4 −0.0046
P0 93.6
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Fig. 5. The fitting results for precision model: (a) PðQÞ at different S; (b) PðSÞ at different Q.

Fig. 6. The fitting results for rate model: (a) RðQÞ at different S; (b) RðSÞ at different Q.

Fig. 7. The fitting results for complexity model: (a) CðQÞ at different S; (b) CðSÞ at different Q.
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6 Conclusion

In this paper, we have studied the resource modeling, allocation, and optimization
problem for an intelligent wireless vision sensor network which collects image samples
of the targets, encodes and transmits the data to a cloud server for object classification
using DCNN. We developed a new framework for energy-precision analysis and
optimization. Specifically, we use the HEVC intra encoder for image compression
configured with two control parameters: the image sampling ratio and quantization
parameter. Through extensive experiments, we construct the precision-rate-complexity
bivariate models to understand the behaviors of the HEVC intra encoder and the
DCNN, and characterize the inherent relationship between bit rate, encoding com-
plexity, classification precision and these two control parameters. Based on these
models, we study the problem of optimization control of the wireless vision sensor
node so that the node-end energy can be minimized subject to the server-end object
classification precision. Our experimental results demonstrate that the proposed control
method is able to effectively adjust the energy consumption of the sensor node while
achieving the target classification performance.

Acknowledgments. This work is supported by the Natural Science Foundation of Shanghai
(18ZR1400300).
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Abstract. This paper introduced a simple and effective algorithm to
remove the noise and outliers in point sets generated by multi-view stereo
methods. Our main idea is to discard the points that are geometrically
or photometrically inconsistent with its neighbors in 3D space using the
input images and corresponding depth maps. We attach a scale value
to each point reflecting the influence to the adjacent area of the point
and define a geometric consistency function and a photometric consis-
tency function for the point. We employ a very efficient method to find
the neighbors of a point using projection. The consistency functions are
related to the normal and scale of the neighbors of points. Our algorithm
is locally adaptive, feature preserving and easy to implement for massive
parallelism. It performs robustly with a variety of noise and outliers in
our experiments.

Keywords: Multi-view stereo · Noise filtering · Scale · Local adaptive

1 Introduction

The state of the art in multi-view stereo methods has seen great development
in robustness and accuracy these years. However, point sets produced by multi-
view stereo methods are usually redundant and inevitably with a lot of noise and
outliers due to imperfection of acquisition hardware and algorithms, as is shown
in Fig. 1(b). Modern MVS algorithms use different output scene representations,
such as depth maps, a point cloud, or a mesh. Depth map scene representation
is one of the most popular choices due to the flexibility and scalability [7] but
suffers more noise. This poses a great challenge to surface reconstruction.

We can impose strong regularization in MVS methods to reduce outliers, but
this will destroy sharp features and may be time consuming. Some denoising
methods directly operate on unorganized point cloud and using k nearest neigh-
bors to optimize the position and normal of a reference point [13]. Depth map,
however, often provides us with additional information such as connectivity and
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 415–426, 2018.
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Fig. 1. We use the multi-view stereo methods MVE [8] to reconstruct a dense 3D point
cloud (b) for the Middlebury Temple dataset [11] (a). The output point cloud is very
noisy. We denoise the depth maps only use geometric consistency (c). A lot of noise
and outliers are removed but there are still some black points from the background
retained on the border of the temple. We use geometric consistency and photometric
consistency together in (d) and get better result.

scale [3]. Therefore, in our method, we computed a scale value for each point
using the input depth maps in image space. The scale value provides valuable
information about the surface area each point was acquired from, as discussed by
Fuhrmann et al. [3]. With scale information, we can handle datasets containing
non-uniform noise and sample resolution.

In our method, we do not discretize the 3D space, avoiding large memory
and time usage. We project a reference point to other depth maps and find its
neighbors in the image space. The neighbors obtained from image space are not
necessarily but most likely to be neighbors in the 3D space. Then we project
them back to the 3D space to evaluate the geometric and photometric con-
sistency between the reference point and its neighbors. Our locally adaptive
geometric consistency function and photometric consistency are related to the
scale of the reference point and it’s neighbors. The functions are defined com-
pactly supported, namely, the neighbors used for evaluating the functions must
be near the reference point in spatial space. Because of the redundancy of the
depth maps, we do not change the position, normal and color of the points but
just remove the points that are not consistent with its neighbors. For the sake of
efficiency, we employ view selection strategy to identify nearby views using the
feature points reconstructed in the previous SFM phase [6,8]. This enables our
methods the ability to operate on extremely large photo collections.

Our contributions are:

– An approach using scale information to evaluate the geometric and photomet-
ric consistency, which is local adaptive feature preserving and more accurate.

– Finding neighbors of reference points in image space by depth map triangu-
lation and projection, which is very efficiency.

In the remainder of this paper, we first review related work (Sect. 2). Then
introduce our denoise approach (Sect. 3), perform experiments on a variety of
data sets (Sect. 4) and conclude our work (Sect. 5).
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Fig. 2. (1) A point with a scale value represents a finite surface in the spatial space.
(2) The shape of the functions fx(x) (2a), fy(y) and fz(z) (2b), wx(x) (2c) and wyz(r)
(2d).

2 Related Work

Here we describe some closely related work in point set denoising, focusing on
how they handle point sets generated by images with varying resolution and
viewing parameters, what parameters they use and to what extend they are
time and memory consuming.

Most multi-view stereo methods integrate a depth map fusion strategy into
the depth estimation stage or after the whole reconstruction. They usually
enforce visibility and consistency across views. Wu et al. [18] firstly use an indica-
tor function based on visibility cues in [16] to remove outliers. Then they enforce
visibility consistency across views. Such method is not sophisticated thus there
remains a lot of noise and outliers. Schönberger et al. [10] define a directed graph
of consistent pixels with their photometric and geometric consistency support
set, then find and fuse the clusters of consistent pixels in this graph. The fused
point cloud are of high quality and have little outliers. However, finding clusters
is very time consuming and not easy to parallelize. In addition, they use the
photometric and geometric consistency terms computed in the MVS procedure
of their reconstruction method, which are only available in their approach.

The above methods proposed as part of multi-view stereo methods usually
use parameters that are unique in their depth reconstruction and thus their use
is restricted. There are also some methods independent of the MVS. Sun et al.
[13] directly denoise point clouds using the L0 norm to preserving sharp features.
Wolff et al. [17] take depth maps as input and implicitly uses a surface repre-
sented by the input depth maps to check geometric consistency and photometric
consistency between each per-view point and other input views. Our method
are relevant to their method, projecting the points to the image space of other
depth maps. However, we take a completely different, local adaptive strategy
to examine consistency using the finite surface represented by points with scale
value.
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Fig. 3. Our point denoising pipeline: we examine a reference point p against other
depth maps. A depth map Di is trianglated in the image space. Then we project the
reference point to the depth map and get which triangle it falls into. If no such triangle
exist, we do not compute any function and examine p against next depth map. If it
falls into an triangle, we regard the three vertexes as the neighbor of p and use them
to evaluate our functions. Our functions are related to the scale of the points. After
examining the reference point against all the depth maps, we compare the functions
with threshold and decide if the point will be removed.

The quality of the reconstructed surface strongly depends on the quality
of the input point set which is inevitably with noise and outliers. Therefore,
many surface reconstruction methods explicitly use some strategy to handle the
noise and outliers. Poisson surface reconstruction [9] estimate local sampling
density and scale the contribution of each point accordingly. However, sampling
density is not necessarily related to the sample resolution, and an increased
sampling density may simply be caused by data redundancy as discussed in [4].
Fuhrmann et al. [3] construct a discrete, multi-scale signed distance field capable
of representing surfaces at multiple levels of detail and produce output surfaces
that are adaptive to the scale of the input data. Our methods apply the same
depth map triangulation step and compute the scale of every points. Fuhrmann
et al. [4] attach the scale value to each sample point and use the weighted average
of locally estimated functions to define the implicit surface compactly around
the input data. The method is virtually parameter-free for mixed-scale datasets
and does not require any global operations. Our method draws inspiration from
this method and uses scale value computed from the triangulated depth maps
to handle the noise outliers.

3 Denoising and Outlier Removal

In this section, we describe the evaluation of geometric and photometric consis-
tency between a reference point p and its neighbors in spatial space. We assume
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that M input depth maps are given and points in them are equipped with a
position, a normal and a color.

3.1 Definition of Scale

We define a scale value for each point related to the depth map it comes from. As
illustrated in Fig. 3, we first find the adjacent points for a point in the input depth
map in image space, and then computed a scale value for each point by averag-
ing the spatial distances between the point and its adjacent points. As discussed
by Fuhrmann et al. [3], the scale value provides valuable information about the
surface area each point was acquired from. The points in depth maps are not
ideal points. Instead, they represent a surface at a particular scale depending on
viewing distance, focal length and image resolution [3] as illustrated in Fig. 2.
With scale information, we can define local adaptive functions for geometric con-
sistency and photometric consistency to handle datasets containing non-uniform
noise and sample resolution.

3.2 Neighbors in Image Space and LCS

To determine the geometric and photometric consistency, every reference point
p has to be examined against its neighbors in the spatial space. Depth maps can
provide us with additional information such as connectivity. As illustrated in
Fig. 3, We triangulate the depth maps in image space using the method proposed
by [3]. Then we project the reference point p to other depth maps and get
the triangles it falls into. The three vertices of the triangle are regarded as
the neighbors of the reference point. After the whole projection, we get a set
of neighbors Np = {pi|i = 1, ...,M} for p. Each of them are equipped with a
position pi ∈ R

3, a normal ni ∈ R
3, ‖ni‖ = 1, and a scale value si ∈ R. Generally,

such neighbors are most likely near the reference point in spatial space. Since
our functions are compactly supported, we can ensure that the neighbor points
used to evaluate geometric and photometric consistency are actually near the
reference point. When examining p against pi, we use the local coordinate of p in
the local coordinate system (LCS) of pi. The local coordinate is xi = Ri ·(p−pi)
with a rotation matrix Ri = R(ni) such that pi is located in the origin and the
normal ni coincides with the positive x-axis [4]. The LCS is only up to the
position and normal of pi so the functions should be invariant to the choice of
the LCS orthogonal to the normal.

3.3 Geometric Consistency

Given a reference point p, and a set of neighbors Np = {pi|i = 1, ...,M}, we
define a signed geometric consistency function F (p) as a weighted sum of basis
functions, as proposed in the surface reconstruction method [4]:

F (p) =
∑

i wdi(xi)wni(pi)fi(xi)∑
i wdi(xi)wni(pi)
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W (p) =
∑

i

wdi(xi)wni(pi) (1)

where xi is the local coordinate of p in local coordinate system of (LCS) pi. The
basis function fi(xi) is a signed function which is positive in front of the surface
and negative otherwise (similar to a signed distance function). The function
fi(xi) and weight wdi(xi), wni(pi) are parameterized by the ith neighbor’s
position pi, normal ni and scale si. Similar to [4], for each neighbor pi, we
define a basis function that is unit-integral and stretched depending on the scale
of the neighbor.

With xi = (x, y, z), we use a function fx(x) that is like the derivative of the
Gaussian in the x-coordinate. The standard deviation of fx(x) is set to the scale
of the neighbor, that is σ = si. It is positive when x > 0 and negative when
x < 0. Normalized Gaussians fy(y), fz(z) are used orthogonal to the normal in
y-coordinate and z-coordinate.

fx(x) =
x

σ2
e

−x2

2σ2 , fy(y) =
1

σ
√

2π
e

−y2

2σ2 , fz(z) =
1

σ
√

2π
e

−z2

2σ2 (2)

We define the basis function of the ith neighbor as:

fi(xi) = fx(x)fy(y)fz(z) =
x

σ42π
· e

−1
2σ2 (x2+y2+z2) (3)

The function meets the condition that it must be unit-integral as discussed
before:

∫ ∫ ∫

|fi(xi)|dxi =
∫

|fx(x)|dx

∫

fy(y)dy

∫

fz(z)dz = 1 (4)

In the following, we define a weighting function wdi(xi) related to the dis-
tance between the neighbor pi. It is designed to ensure that the neighbor used to
evaluate F (p) are actually near the reference point p. As illustrated in the Fig. 2,
fi(xi) is almost zero beyond 3σ, and thus wdi(xi) is define as 0 beyond 3σ to
ensure the compact support. As discussed by Curless and Levoy [1] and Vrubel
et al. [14]: if a point has been observed, the existence of a surface between the
observer and the point is not possible. Therefore, if x < 0, the existence of a ref-
erence point behind the neighbor cause conflict. Therefore, we want to reduce the
weight quickly. The weighting function wdi(xi) is non-symmetric in x-direction
and rotation invariant in y- and z-direction:

wdi(xi) = wx(x) · w(yz)(
√

y2 + z2) (5)

wx(x) =

⎧
⎨

⎩

1
9

x2

σ2 + 2
3

x
σ + 1 x ∈ [−3σ, 0)

2
27

x3

σ3 − 1
3

x2

σ2 + 1 x ∈ (0, 3σ]
0 otherwise

(6)

wyz(r) =
{

2
27

r3

σ3 − 1
3

r2

σ2 + 1 r < 3σ
0 otherwise

(7)
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r =
√

y2 + z2 (8)

Additionally, to better preserve the sharp features in the point set and avoid
over smoothing, we define a weighting function wni(pi) related to the similarity
between the normals of the points.

wni(pi) =

{
nT

pni

‖np‖·‖ni‖ nT
pni > 0

0 nT
pni ≤ 0

(9)

We define wni(pi) as 0 if nT
pni ≤ 0 to eliminate the influence of neighbors

that have a much different normal direction with the reference point, which can
improve the robustness.

Since F (p) is compactly supported, some extremely isolated outliers with
little neighbors will have small F (p). They cannot be filtered if we only make use
of F (p). We observe that if a reference point is an outlier with little neighbors,
its W (p), the sum of the weighting function, will be very small. In practice,
points with a weight below a certain value are also removed, which can filter out
extremely isolated outliers.

3.4 Photometric Consistency

In practice, our algorithm can filter out common noise and outliers with geo-
metric consistency function. However, as illustrated by Fig. 1(b) (c), the noisy
points near the border of object are hard to remove. Our observation is that such
points usually have a blurred color that is quite different from its neighbors. So
we define a function E(p) to evaluate the photometric consistency between the
reference point p, with a color c(p), and its neighbors Np = {pi|i = 1, ...,M},
whose colors are c(pi). E(p) is defined as

E(p) =
‖c(p) − c′(p)‖

‖c(p)‖ (10)

where c′(p) is the temporary color of p computed by the color of its neighbors.
Inspired by the anisotropic and feature-preserving nature of bilateral filtering
[2], we compute c′(p) as

c′(p) = K(p)
∑

i

Wc(pi)Ws(pi)c(pi) (11)

where Wc(pi) is the spatial weighting term, Ws(pi) is the signal weighting term
and K(p) = 1∑

i Wc(pi)Ws(pi)
is the normalization factor. Wc(pi) is a spatial

Gaussian that decreases the influence of distant neighbors:

Wc(pi) = exp(−‖p − pi‖2/2σ2) (12)

where σ = sp, which is the scale value of the reference point p. We do not define
Ws(pi) as Gaussian but just use the normalized dot product of the normals
between p and pi for efficiency.
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Ws(pi) =

{
nT

pni

‖np‖·‖ni‖ nT
pni > 0

0 nT
pni ≤ 0

(13)

The influence of neighbors that have a much different normal direction with
the reference point, i.e. nT

pni ≤ 0, are eliminated.

3.5 Depth Map Selection for Scalability

Our algorithm proposed above does not perform costly optimizations and thus
is very efficient and easy to parallel. However, assuming we have N input depth
maps with a resolution of K, the time complexity of our algorithm is O(KN2).
It increases quadratically with the number of depth maps N . In practice, we do
not consider depth maps whose viewing direction vi differs too much from the
viewing direction v under which p was observed, i.e. vT

i v < 0. However, the
time complexity still increase quickly when operating extremely large data sets.
In order to make our algorithm more scalable, we introduce a view selection
method as an option when operating on large data sets. We use SFM points
to select nearby depth maps for a reference depth map. The number of shared
SFM points between the reference depth map and other depth maps is a good
indicator whether the reference point is visible in other depth maps. We calculate
the number of shared feature points, sort them from large to small and only
examine the points in the reference depth map against the first C depth maps.
Now the time complexity is O(KCN), increasing linearly with the number of
depth maps N . Since the reference point is not likely visible by the depth maps
with few shared SFM points, our algorithm still yields good results with view
selection in our experiments.

3.6 Point Filtering Strategy

After evaluating F (p), W (p) and E(p) for a reference point p, we use them to
decide whether the point p will be retained. We retain a point if it satisfies all
of the following three conditions:

− Tp < F (p) < Tp, W (p) > α, E(p) < ε (14)

Since F (p) is an locally adaptive function, we define a locally adaptive
threshold Tp = βF (x = sp,

√
y2 + z2 = sp, σ = sp) for F (p). Actually,

F (x = sp,
√

y2 + z2 = sp, σ = sp) is the function value of a virtual point
whose local coordinates are relate to the scale of reference point. This definition
can ensure the adaptivity of filtering. β is a constant decided by users to control
the degree of filtering. It performs well in feature preserving in our experiments.
The threshold of W (p) is a constant α to filter out the extremely isolated out-
liers. It is related to the number of input depth maps and typically we set it to
25 when there are hundreds of input depth maps. The threshold of E(p) is a
constant ε. We typically set it to 0.1, that is, if the difference between the real
color and the temporary color is above 10%, we filter the point out. It performs
well in eliminating the color blur in the point sets.
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4 Results

In this section, we perform evaluation of our algorithm on different types of
datasets. In Sect. 4.1 we compare our filtering results with the method proposed
by Wolff et al. [17] on several datasets released by Yücer et al. [15]. We use
(Screened) Poisson Surface Reconstruction (PSR) [9] for surface reconstruction.
In Sect. 4.2 we analyze the performance of our strategy for filtering using the
Fountain data set of Strecha et al. [12]. In Sect. 4.3 we check the validity of the
photometric consistency function on the Temple Full dataset from the Middle-
bury benchmark [11].

4.1 Comparison Against the Method of Wolff et al.

Figure 4 shows the results of comparison of our method and the method proposed
by Wolff et al. [17] on the datasets released by Yücer et al. [15]. Wolff et al. [17]
also takes depth maps as input and use these datasets for the evaluation of their
method. We use two of state-of-the-art multi-view stereo methods, the colmap of
Schönberger et al. [10] and the MVE of Fuhrmann et al. [5] for the dense multi-
view depth reconstruction. While Fuhrmann et al. (MVE) [5] do not integrate a
fusion step into the MVS reconstruction, colmap of Schönberger et al. [10] fuse
their resulting depth maps into a point cloud. In our experiment, we disable the
fusion step in colmap [10] and use its raw depth maps for filtering. We also show
the result of the fusion result of colmap [10] for comparison.

We use about 200 input images for the reconstructions of each dataset. For
MVE we used the level-2 depth maps (4*downsampling) the same as the exper-
iments of Wolff et al. [17]. We also limit the max image size in colmap to the
same resolution as the experiment of MVE for comparison. We run PSR for each
point cloud in our experiment after the filtering. As shown in Fig. 4, the outliers
of the results of MVE and colmap are very dense so that it is not easy to filter
them out. However, our method employ both the F (p) and W (p) in Geometric
consistency and thus more robust to such outliers. Comparing to the results of
Wolff et al. [17], we get more clean and dense point cloud and little outliers with
our method. In all the experiments, the run time of our method and Wolff et
al. are almost the same. With the use of scale value, our method are not only
perform well in removing outliers but also preserve more sharp features in the
point cloud. Since the method of Wolff et al. are actually global, the results of
it often retains some outliers while destroying the sharp features.

4.2 Analysis of Filtering Strategy

In this section, we analyze the filtering strategy of our methods using the datasets
released by Yücer et al. [15] and the Fountain data set of Strecha et al. [12]. In
our experiments, we use the locally adaptive threshold for Tp. As is shown in
Fig. 4, the result of locally adaptive threshold is more clean nearby the surface
of the objects. That is, F (p) with a locally adaptive threshold performs better
in feature preserving with the scale information. We also use different constant



424 Z. Mi and W. Tao

SCARECROW

STATUE

DECORATION

TORCH

MVE Colmap
Unfiltered Wolff et al. Ours Unfiltered Wolff et al. Ours

Points

Mesh

Points

Mesh

Points

Mesh

Points

Mesh

Fusion

Fig. 4. We use the MVE [5] and colmap [10] to generate the depth maps. After filtering,
we use (PSR) [9] to reconstruct a surface for the point cloud. We compare our output
point clouds and surfaces with those of Wolff et al. [17]. We also show the result of the
fusion method of colmap as a comparison.

threshold of α for W (p). As illustrated by Fig. 5, as the increase of α, the number
of outliers in the point cloud decreases quickly because W (p) play an important
role in extreme outliers removing.

4.3 Performance of Photometric Consistency

Figure 1 shows the importance of photometric consistency function. The Temple
Full dataset from the Middlebury benchmark [11] contains 312 images. Their
background are black, so as shown in Fig. 1, the resulting point cloud using
MVE contains a mass of black points near the border of the object. These black
points are retained when we only apply the photometric consistency. When we
integrate the photometric consistency in filtering, most of the black points are
removed and the colors of the surface of the object are more uniform.
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Fig. 5. The sum of weight, W (p) performs an important role in outliers removing. The
α for W (p) in (b), (c), (d), (e) are 0, 2, 4, 6. It is clear that as the increase of α, the
number of outliers decreases quickly.

5 Conclusions

We propose a very efficient point cloud denoiser which is locally adaptive. We
are mainly inspired by the surface reconstruction method [4]. Since scale and
efficiency are common topics in 3D reconstruction, we hope that other people
can be inspired by our work and solve some other problems.
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Abstract. Multi-view data exists widely in our daily life. A popu-
lar approach to deal with multi-view data is the multi-view subspace
learning (MvSL), which projects multi-view data into a common latent
subspace to learn more powerful representation. Low-rank representa-
tion (LRR) in recent years has been adopted to design MvSL meth-
ods. Despite promising results obtained on real applications, existing
methods are incapable of handling the scenario when large view diver-
gence exists among multi-view data. To tackle this problem, we propose
a novel framework based on structured low-rank matrix recovery. Specif-
ically, we get rid of the framework of graph embedding and introduce
class-label matrix to flexibly design a supervised low-rank model, which
successfully learns a discriminative common subspace and discovers the
invariant features shared by multi-view data. Experiments conducted on
CMU PIE show that the proposed method achieves the state-of-the-art
performance. Performance comparison under different random noise dis-
turbance is also given to illustrate the robustness of our model.

Keywords: Subspace learning · Multi-view learning
Low-rank representation

1 Introduction

In our daily life, people or objects can be captured at different viewpoints
or by different sensors. Consequently, one object has multiple representations,
this is also known as multi-view data. Multi-view data is generally heteroge-
neous [4,13] (i.e., intra-class samples from another views may have lower similar-
ity than inter-class samples from the same view), which brings a large challenge
to recognition or classification tasks. For this reason, numerous work focusing
on multi-view subspace learning (MvSL) appears.

Early work on MvSL aims to learn multiple mapping functions, one for each
view, to respectively project multi-view data into a common latent subspace,
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in which the view divergence can be decreased and the similarity of heteroge-
neous samples can be measured. Among these approaches, the most well-known
unsupervised method is Canonical Correlation Analysis (CCA) [8]. However,
CCA can only be applied to two-view scenarios. Multi-view Canonical Correla-
tion Analysis (MCCA) [20] was later proposed to generalize CCA to multi-view
situations. Moreover, some state-of-the-art methods (e.g., Generalized Multi-
view Analysis (GMA) [21], Multi-view discriminant analysis (MvDA) [10] and
Multi-view Hybrid Embedding (MvHE) [26]) also have been proposed. Different
from MCCA, these methods take into consideration discriminant information,
thus improving the representation power of subspace. Despite significant results
obtained by them, they fail to work during the testing phase, when the view-
related information of test samples is not provided [5].

Low-rank multi-view subspace learning (LRMSL) circumvents this draw-
back by learning a common mapping function for all views, with the help of
low-rank representation (LRR). Compared with aforementioned methods, this
type of approaches do not need view-related information in testing process.
Based on how the prior knowledge (i.e., view-related information and class-
label information) is involved in the training phase, LRMSL approaches can be
divided into three categories: unsupervised methods, weakly-supervised methods
and supervised methods. Unsupervised methods (e.g., Latent Low-rank Rep-
resentation (LatLRR) [17]) make no use of these two kinds of information,
weakly-supervised methods (e.g., Low-rank Common Subspace (LRCS) [4]) only
take into consideration view-related information, whereas supervised methods
take full advantage of class-label information (e.g., Supervised Regularization
based Robust Subspace (SRRS) [12] and Robust Multi-view Subspace Learning
(RMSL) [5]).

LRMSL approaches did make a great progress for multi-view data, but
there still exist some problems. The success of low-rank representation bases
on the assumption that samples from a same class have higher similarity, but
the assumption is invalid for multi-view data. Hence, unsupervised and weakly-
supervised methods are incapable of effectively discovering the invariant fea-
tures shared by multi-view data. Although supervised methods provide a feasi-
ble solution, existing methods (e.g., SRRS and RMSL) do not achieve significant
improvement. One possible reason is that some graph embedding (e.g., Locally
Linear Embedding (LLE) [19] and Locality Preserving Projections (LPP) [7])
can not be applied to multi-view data. This is because these methods require
manifolds are locally linear. Unfortunately, this condition is also not met for
multi-view data [22,25].

To overcome the problems discussed above, we get rid of the framework of
graph embedding and introduce class-label matrix to flexibly design a supervised
low-rank model. In the process, a discriminative subspace and the shared infor-
mation of multi-view data are discovered. Experimental results on face recogni-
tion demonstrate the superiority of our method.

The remainder of this paper is organized as follows. Section 2 introduces
related work and Sect. 3 presents the proposed method. Optimization is given
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in Sect. 4. Experimental results are provided in Sect. 5. Finally, Sect. 6 concludes
this paper.

2 Related Work

In this section, related work is presented to make interested readers more familiar
with the low-rank multi-view subspace learning (LRMSL).

Low-rank Representation (LRR) is a popular approach that has been
widely applied in many computer vision and machine learning tasks. In [3],
Robust Principle Component Analysis (Robust PCA) was proposed to recover
a low-rank component and a sparse component from given data, which assumes
that data is homogeneous. To handle data sampled from multiple spaces, Liu et
al. [15,16] proposed LRR methods which learn a lowest-rank representation at
a given dictionary. Besides discovering the global class structure, it also elimi-
nates the influence of noises. Similar to dictionary learning approaches [1,18],
the dictionary used in LRR is also expected to be overcomplete. However, this
condition is not always easily met. Thus, LatLRR [17] was proposed to con-
struct the dictionary with both observed data and hidden data. In the area of
LRR, methods all aim to find an optimal (i.e. structured) representation matrix
Z with respect to data X [15,16]. Specifically, assume that we have a dataset
X = [X1,X2, · · · ,Xc] and a dictionary A, then the optimal representation Z
is expected to be block-diagonal as follows:

Z∗ =

⎛
⎜⎜⎜⎝

Z∗
1 0 0 0
0 Z∗

2 0 0

0 0
. . . 0

0 0 0 Z∗
c

⎞
⎟⎟⎟⎠ , (1)

where c is number of classes.
Low-rank Multi-view Subspace Learning (LRMSL) uses low-rank rep-

resentation technology to learn a robust subspace, in which the intrinsic structure
of data is preserved. In [4], LRCS was proposed to capture the shared structure
from multiple views. SRRS [12] used fisher criterion to learn a discriminant
subspace. Considering there are two kinds of structure embedded in multi-view
data (i.e. class structure and view structure), Ding et al. [5] proposed RMSL to
learn two kinds of low-rank structure simultaneously.

3 Robust Low-Rank Multi-view Subspace Learning

3.1 Problem Formulation

Suppose we have a multi-view dataset X = [X1,X2, · · · ,Xn], where n is the
number of views. Xk = [Xk1 ,Xk2 , · · · ,Xkc

] denotes the k-th view data, where
c is the number of classes and Xki

represent all samples of the i-th class under
the k-th view. Low-rank multi-view subspace learning (LRMSL) aims to find
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a component mapping function P ∈ R
d×p to project multi-view data from d-

dimensional space into a p-dimensional subspace (p ≤ d), in which projected
samples PTX can be represented as a linear combination of the bases of dic-
tionary A, and the representation matrix exhibits low-rank characteristic. Its
objective can be formulated as:

min
Z ,E ,P

‖Z‖∗+λ1 ‖E‖1
s.t. PTX=AZ + E, PTP =I, (2)

where E in Eq. (2) is introduced to remove random noise, the orthogonal con-
straint on P is used to obtain an orthogonal subspace and λ1 >0 can be deter-
mined by cross validation.

Equation (2) is a basic framework of LRMSL algorithms. To learn a discrim-
inant subspace, we develop a novel supervised model below.

Fig. 1. Illustration of structured low-rank matrix recovery for multi-view data.

3.2 Structured Low-Rank Matrix Recovery

Suppose A=[A1,A2, · · · ,Ac] denotes the dictionary, where Ai are the bases of
the i-th class. According to the discussion in Sect. 2, structured low-rank matrix
Z of multi-view projected samples PTX can be defined as follows:

Z∗ � (Z∗
1 ,Z∗

2 , · · · ,Z∗
n) , (3)

where Z∗
k is the structured representation matrix of PTXk, which can be rep-

resented as

Z∗
k =

⎛
⎜⎜⎜⎝

Z∗
k1

0 0 0
0 Z∗

k2
0 0

0 0
. . . 0

0 0 0 Z∗
kc

⎞
⎟⎟⎟⎠ . (4)



Robust Multi-view Subspace Learning 431

Obviously, low-rank matrix Z is a structured matrix when each sample from
the i-th class can be represented as a linear combination of the dictionary bases
from the i-th class. The illustration of the structured low-rank matrix recovery
for multi-view data is shown in Fig. 1. As can be seen, intra-class representations
are united and inter-class representations are deviated from each other.

To this end, we use class-label matrix Y =[y1,y2, · · · ,ym] to design a super-
vised model, where m is the number of samples. Assume that yk ∈ R

c×1 is from
the j-th class, it can be defined as

yk =

⎡
⎣

j−1︷ ︸︸ ︷
0, ..., 0, 1,

C−j︷ ︸︸ ︷
0, ..., 0

⎤
⎦
T

. (5)

The objective of the proposed supervised algorithm can be formulated as

min
Z ,E ,P

‖Z‖∗+λ1 ‖E‖1
s.t. PTX=AZ + E, PTP =I, YZ=Ys, eTZ=eT, Z≥0, (6)

where Y ∈R
c×m1 and Ys ∈R

c×m2 are the class-label matrices of the dictionary
A and the dataset X respectively, and e is a column vector with all elements
equal to one. eTZ=eT in Eq. (6) is used to normalize the representation coef-
ficients (i.e., the sum of each column in Z is equal to one), Z ≥ 0 is used to
guarantee that each element in Z is non-negative. Based on the normalization
and non-negative constraints, Y Z=Ys can guarantee that the Z we learned is
a structured matrix.

The dictionary A is generally represented by training samples in previous
algorithms, thus we replace A with PTX and we have Y = Ys. Moreover, to
improve the generalization performance, we introduce an error term EL. Then,
the objective function (6) can be reformulated as:

min
Z ,E ,EL,P

‖Z‖∗+λ1 ‖E‖1+λ2 ‖EL‖2F
s.t. PTX=PTXZ + E, PTP =I, YsZ=Ys+EL, eTZ=eT, Z≥0,

(7)

where λ2 controls the contribution of EL.

4 Optimization

Through introducing relax variable J , problem (7) can be translated into

min
J ,Z ,E ,EL,P

‖J‖∗+λ1 ‖E‖1+λ2 ‖EL‖2F
s.t. PTX=PTXZ + E, PTP =I, J =Z

YsZ=Ys+EL, eTZ=eT, Z≥0, (8)

where the augmented Lagrangian function is formulated as



432 J. Xu et al.

‖J‖∗+λ1 ‖E‖1+λ2 ‖EL‖2
F +tr

(
Y T

1

(
P TX−P TXZ−E

))
+tr

(
Y T

2 (Z−J)
)

+tr
(
Y T

3 (YsZ−Ys−EL)
)
+tr

(
Y T

4

(
eTZ−eT

))

+
μ

2

(∥∥∥P TX−P TXZ−E
∥∥∥
2

F
+‖Z−J‖2

F

)
+

μ

2

(
‖YsZ−Ys−EL‖2

F +
∥∥∥eTZ−eT

∥∥∥
2

F

)
,

(9)

where Y1, Y2, Y3 and Y4 are Lagrange multipliers and μ is a positive penalty
parameter. There are five parameters in problem (9) to be optimized, and it
is difficult to optimize them simultaneously. For this reason, we employ the
alternating direction method of multipliers (ADMMs) [6] to alternately optimize
J , Z, E, EL and P one by one through fixing the other variables. For example,
during the t+1 iteration of optimization, when we optimize J , variables Z, E,
EL and P are regarded as constants, i.e. inherit results of the tth iteration. In
detail, we define Jt, Zt, Et, EL,t, Pt, Y1,t, Y2,t, Y3,t and Y4,t as variables in the
tth iteration, and then we optimize variables in the t + 1 iteration as follows.
Updating J :

Jt+1=arg min
J

1
μt

‖J‖∗+
1
2

∥∥∥∥J−
(
Zt+

Y2,t

μt

)∥∥∥∥
2

F

. (10)

Updating E:

Et+1=arg min
E

λ1

μt
‖E‖1+

1
2

∥∥∥∥E−
(
PT

t X−PT
t XZt+

Y1,t

μt

)∥∥∥∥
2

F

, (11)

The two problems above can be optimized by the iterative thresholding app-
roach [14].
Updating EL:

EL,t+1=(2λ2+μt)−1 (Y3,t+μtYsZt−μtYs) . (12)

Updating P :

Pt+1 =
(
(X−XZt) (X−XZt)

T
)−1 (

(X−XZt)
(
ET

t −Y T
1,t/μt

))
. (13)

Updating Z:

Z=Z−1
1 Z2, (14)

where Z1 and Z2 are represented as follows:

Z1=XTPtP
T
t X+I + Y T

s Ys+eeT,

Z2=XTPt

(
PT

t X−Et

)
+Jt+Y T

s (Ys+EL,t)+eeT

+
(
XTPtY1,t−Y2,t−Y T

s Y3,t−eY4,t

)
/μt.
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Algorithm 1. Solving Problem (7) by ADMM

Input: X, Ys, λ1 and λ2;
Initialization: J = Z = E = EL = P = 0,

Y1 = Y2 = Y3 = Y4 = 0,
μmax = 106, μ = 10−3,
ρ = 1.03, ε = 10−6;

While not converged do
Step 1. Update J by solving problem (10);
Step 2. Update E by solving problem (11);
Step 3. Update EL by (12);
Step 4. Update P by (13), and then P ←orthogonal(P ) [9];
Step 5. Update Z by (14), and then Z = max (0, Z) [27];
Step 6. Update multipliers and parameter μ by (15);
Step 7. Check the convergence conditions:∥∥PTX−PTXZ−E

∥∥
∞ < ε,

‖Z−J‖∞ < ε,
‖YsZ−Ys−EL‖∞ < ε,∥∥eTZ − eT

∥∥
∞ < ε;

End while
Output: P , Z, E, EL.

Afterwards, we update multipliers Y1, Y2, Y3 and Y4 in the following way

Y1,t+1=Y1, t+μt

(
PT

t+1X−PT
t+1XZt+1−Et+1

)
,

Y2,t+1=Y2, t+μt (Zt+1−Jt+1) ,

Y3,t+1=Y3, t+μt (YsZt+1−Ys−EL,t+1) ,

Y4,t+1=Y4, t+μt

(
eTZt+1 − eT

)
,

μt+1=min (ρμt, μmax) , (15)

where ρ > 1 and μmax is a constant. We iteratively update variables and the
penalty parameter until the algorithm satisfies the convergence conditions or
reaches the maximum iterations. The detailed iteration process is summarized
in Algorithm 1.

5 Experiments

In this section, we first specify the evaluation protocol of MvSL algorithms.
Following this, one public dataset is introduced and experimental setting is pre-
sented. In order to evaluate the performance of the proposed method, three
baselines (i.e., PCA [24], LDA [2], LPP [7]) and three state-of-the-art low-rank
multi-view subspace learning (LRMSL) algorithms (i.e., LRCS [4], SRRS [12]
and RMSL [5]) are selected for comparison.
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5.1 Evaluation Protocol

Evaluation protocol of single-view subspace learning (SvSL) methods can not
precisely evaluate the performance of multi-view learning algorithms. To this
end, similar to [11], we adopt a more convincing evaluation protocol as follows:

accv2
v1

=

∑(
x : x ∈ Xv2

probe ∧ ȳ=y
)

∑(
x : x ∈ Xv2

probe

) , mACC =

(
n∑

v1=1

n∑
v2=1

accv2
v1

)
/n2, (16)

where n is the number of views, accv2
v1

denotes the accuracy when gallery and
probe sets are from view v1 and view v2 respectively. y and ȳ are the true label
and the predicted label of data x respectively. In experiments, we average results
of all pairwise views as the mean accuracy (mACC).

Fig. 2. Exemplar subjects from the CMU PIE dataset. C11, C29, C27, C05 and C37
poses are selected to construct multi-view data. The top row shows clean images and
the bottom row shows images with 10% random noise.

5.2 Dataset and Experimental Setting

The CMU Pose, Illumination, and Expression (PIE) Database. (CMU
PIE) [23] contains 41,368 images of 68 people with 13 different poses, 43 diverse
illumination conditions and 4 various expressions. Five poses (i.e., C11, C29, C27,
C05 and C37) are selected to construct multi-view data (see Fig. 2 for exemplar
subjects). In experiments, each person at a given pose has 4 images, and images
are cropped and resized to 64×64. To make results more convincing, experiments
on CMU PIE are repeated ten times by randomly dividing data into training set,
validation set and test set, and we report average result as the final accuracy.
Hyper-parameters of all approaches are determined by validation set.

5.3 The Superiority of the Proposed Method

The CMU PIE is used to evaluate face recognition across poses. Similar to [4,
5], experiments are conducted in 5 cases, namely case 1: {C27, C29}, case 2:
{C27, C11}, case 3: {C05, C27, C29}, case 4: {C37, C27, C11} and case 5:
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Table 1. The average recognition accuracy (%) in 5 cases of CMU PIE in terms of
mean accuracy (mACC). Bold denotes the best performance.

Case 1 Case 2 Case 3 Case 4 Case 5

PCA [24] 76.6 ± 7.3 66.0 ± 5.7 62.1 ± 5.7 55.1 ± 4.8 55.5 ± 4.1

LDA [2] 64.5 ± 6.6 58.6 ± 4.1 41.0 ± 10.0 45.0 ± 1.8 46.7 ± 3.6

LPP [7] 72.8 ± 7.5 65.5 ± 4.8 62.3 ± 4.6 53.5 ± 3.7 54.0 ± 4.1

LRCS [4] 74.0 ± 6.7 66.1 ± 4.4 68.9 ± 5.5 56.3 ± 3.1 58.1 ± 3.8

SRRS [12] 74.3 ± 6.5 66.8 ± 4.3 69.0 ± 5.2 56.2 ± 3.4 59.4 ± 3.3

RMSL [5] 75.7 ± 7.7 68.0 ± 4.7 70.7 ± 4.4 57.9 ± 3.2 62.0 ± 3.0

Proposed 83.0± 5.9 76.7± 7.0 78.5± 5.7 67.0± 4.5 70.9± 5.0

{C37, C05, C27, C29, C11}. In our experiments, 40 people are used as training
set, 14 people serve as validation set and the rest comprise the test set.

In the first experiment, we evaluate our performance with three baselines
and three state-of-the-art methods. The experimental results are summarized in
Table 1. As can be seen, SvSL based methods rank the lowest due to the neglect
of the view divergence. Benefited from the consideration of discriminant infor-
mation, SRRS and RMSL perform better than LRCS. As expected, our method
achieves a remarkable improvement compared with RMSL, which we argue can
be attributed to the more effectively exploiting discriminant information.
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Fig. 3. Illustration of 2D embedding of Euclidean space, the subspace generated by
LRCS, SRRS, RMSL and the proposed metho in case 5 of CMU PIE dataset. Different
colors denote different classes, and different views are denoted by different markers.
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Table 2. The average recognition results (%) in case 5 of CMU PIE. Bold denotes
the best performance.

Gallery Probe PCA [24] LDA [2] LPP [7] LRCS [4] SRRS [12] RMSL [5] Proposed

C37 C37 98.8 99.8 99.1 95.2 98.4 100.0 99.8

C05 70.9 53.6 67.3 71.6 69.3 69.5 81.4

C27 38.8 23.4 35.5 29.1 30.5 37.7 52.9

C29 27.1 18.0 26.3 29.8 28.6 30.4 45.0

C11 25.2 21.3 23.4 28.0 29.8 32.5 46.3

C05 C37 73.0 57.3 70.5 80.5 83.2 84.1 89.3

C05 96.1 100.0 95.9 85.7 87.9 99.8 99.6

C27 62.0 40.7 60.5 60.0 63.0 67.3 75.9

C29 32.9 26.4 29.3 47.7 47.3 49.6 57.9

C11 31.6 28.2 28.4 43.2 45.9 45.7 58.2

C27 C37 44.3 28.9 41.4 49.3 50.2 48.0 65.5

C05 58.8 42.0 56.3 70.4 72.3 74.3 78.6

C27 84.1 99.1 90.0 81.4 85.0 89.1 92.5

C29 54.1 33.9 51.3 62.3 64.1 66.6 70.0

C11 48.0 28.9 43.8 49.1 50.1 52.1 65.2

C29 C37 27.9 22.3 25.4 37.5 38.2 37.3 50.9

C05 34.5 24.6 30.2 42.5 43.8 46.4 59.5

C27 46.6 33.9 52.1 45.5 49.1 48.8 67.0

C29 97.0 99.8 97.9 89.6 91.6 98.9 99.5

C11 75.4 60.5 75.7 83.6 85.9 85.5 91.3

C11 C37 25.0 19.3 17.3 33.9 34.8 37.0 45.7

C05 29.3 25.4 20.7 29.6 27.7 31.8 45.5

C27 38.0 21.1 38.8 34.1 32.5 38.0 49.1

C29 73.6 58.6 76.8 82.1 84.3 82.9 88.9

C11 94.6 99.8 96.3 89.3 91.8 96.6 97.1

Average 55.5 46.7 54.0 58.1 59.4 62.0 70.9

Standard derivation 4.1 3.6 4.1 3.8 3.3 3.0 5.0

Table 3. The average recognition accuracy (%) in case 5 of CMU PIE with random
noise in terms of mean accuracy (mACC). Bold denotes the best performance. the
values in parentheses denote the relative performance loss (%) with respect to the
random noise scenario. “NR” denotes noise ratio.

NR LRCS [4] SRRS [12] RMSL [5] Proposed

0% 58.1 (0.0) 59.4 (0.0) 62.0 (0.0) 70.9 (0.0)

5% 56.4 (2.9) 57.2 (3.7) 60.0 (3.2) 70.0 (1.3)

10% 56.5 (2.8) 56.6 (4.7) 55.6 (10.3) 70.0 (1.3)

15% 54.9(5.5) 56.8 (4.4) 56.2 (9.4) 68.2 (3.8)

20% 53.4(8.1) 55.6 (6.4) 48.8 (21.3) 66.7 (5.9)

To better evaluate performance of the proposed method, detailed results in
case 5 of CMU PIE are shown in Fig. 3 and Table 2. As can be seen in Fig. 3, all
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low-rank subspace learning approaches can remove the view divergence to some
extent. However, LRCS, SRRS and RMSL approaches fail to distinguish the
yellow class from the green one correctly, whereas these two classes are separated
obviously in the subspace generated by our method. As a whole, the embeddings
shown in Fig. 3 corroborate the results summarized in Table 1. Moreover, as can
be seen in Table 2, one should note that our method does not achieve the best
performance when the gallery and the probe data come from the same view. The
reason for this phenomenon is that the constraint with respect to intra-view and
intra-class samples is only based on low-rank representation. Compared with
traditional graph embedded, this is a weak constraint.

At last, we evaluate the robustness of the proposed methods. we add random
noise to original images by randomly replacing 5%, 10%, 15% and 20% pixels (see
Fig. 2 for exemplar subjects) and report the results in case 5 in Table 3. As can
be seen, LRCS, SRRS and RMSL are more sensitive to random noise than our
method. Take the 20% random noise scenario as an example, our method only
suffers from a relative 5.9% performance drop from its original 70.9% accuracy,
whereas the accuracy of RMSL decreases to 48.8% with a relative performance
drop nearly 21.3%.

6 Conclusion

In this paper, we proposed an novel framework based on structured low-rank
matrix recovery to learn a discriminant subspace for multi-view data. Exper-
iments conducted on CMU PIE show that the proposed method successfully
discovers the discriminant information shared by multi-view data, thus improv-
ing the performance of subsequent recognition or classification tasks. Moreover,
experimental results in the scenario of random noise disturbance indicate that
our method is more robust to random noise. In the future, we are interested in
develop a nonlinear version of our method to handle more challenge scenarios.
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Abstract. Suffering from respiratory motion and drift, radiotherapy requires
real-time and accuracy motion tracking to minimize damage to critical structures
and optimize dosage delivery to target. In this paper, we propose a robust tracker
to minimize tracking error and enhance the quality of radiotherapy based on
two-dimensional ultrasound sequences. We firstly develop a scale adaptive
kernel correlation filter to compensate deformation. Then the filter with an
improved update rule is utilized to predict target position. Moreover, displace-
ment and appearance constrains are elaborately devised to restrict unreasonable
positions. Finally, a weighted displacement is calculated to further improve the
robustness. Proposed method has been evaluated on 53 targets, yielding 1.13 ±

1.07 mm mean and 2.31 mm 95%ile tracking error. Extensive experiments are
performed between proposed and state-of-the-art algorithms, and results show
our algorithm is more competitive. Favorable agreement between automatically
and manually tracked displacements proves proposed algorithm has potential for
target motion tracking in abdominal radiotherapy.

Keywords: Target tracking � Kernel correlation filter � Scale adaptation
Displacement and appearance constrain � Radiotherapy

1 Introduction

Motion in the abdomen is worth accounting for during radiotherapy image guided
intervention [1] and focus ultrasound surgery [2]. The motion induced in abdominal
organs is mainly due to breathing motion, drift and surgical instruments. Therefore,
motion tracking of abdominal target is crucial to minimize the damage to surrounding
crucial structure and optimize dosage delivery to target.

Respiratory gating is one of the most conventional approach to deal with abdomen
motion, whereas it potentially increases treatment time [3]. Motion modeling like
implanting fiducial markers to target region [4] is an alternative method, but it is
usually at the expense of healthy tissue. Tracking base on medical image e.g. magnetic
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resonance (MR), ultrasound (US) generally becomes a superior to localize abdomen
target. De Senneville [5] generates an atlas of motion fields based on magnitude data of
temperature-sensitive MR acquisitions. They suppose that motion of target region is
periodic and can be estimated in the next moment, so it just recovers deformation
caused by periodic component. 4D MR [6] is also introduced to respiratory motion
reconstruction, but low signal-to-noise ratio and additional high cost must be consid-
ered in clinical practice. US is an appealing choice for abdominal target tracking, by
contrast, as it has high temporal resolution and sub-millimeter spatial resolution along
the beam direction.

Recently several literatures focus on tracking hepatic landmark and reconstructing
liver motion of free breathing. Block matching [7], optical flow [8], particle filter [9],
image registration and mechanical simulation [10] are widely investigated. Meanwhile
temporal regularization [7] and distance metric [10] are also introduced to reject false
tracking results. While some results have achieved a great process, many limitations
remain to be discussed like tradeoff between real-time and accuracy, as well as
robustness for acoustic shadowing and large deformation due to out-of-plane motion.

Our tracking approach is motivated by kernel correlation filter (KCF) [11], which
achieves a fast and high performance on Visual Tracker Benchmark [12]. KCF provides
an effective solution for translation, but its performance would degrade because of the
scale and deformation of targets. Li et al. [13] suggests an effective scale adaptive
scheme. Without discussing update strategy adequately, however, better tracking results
cannot be remerged in US sequence. Besides, we integrate intensity feature, namely
speckle patter, to proposed tracking frame as it includes much information about
anatomical structure. In fact, if all the speckle patterns are stable, target motion can be
easily reconstructed. Unluckily, speckle patterns are not identical because of out-of-
plane motion and acoustic shadowing [14]. Moreover, similarity metrics is another
important ingredient in proposed method. While mutual information (MI) has been
suggested to be the most suitable metric for US to US match, high computation limits its
usage in real-time target tracking. In this work, normalized cross-correlation (NCC) is
chosen as it is easy to implement and effective to perform block matching.

In this work, we propose a real-time, robust tracking algorithm to compensate target
motion in abdominal radiotherapy. Our contributions mainly focus on four aspects: first,
we propose a scale adaptation strategy to alleviate deformation and scale change. Second,
an improved update rule for proximate periodic motion is applied to reducing accumu-
lation error in long-term tracking. Third, we integrate displacement and appearance
constrains to proposed method in order to restrict unreasonable target prediction. And
fourth, we suggest to use weighted displacement to determine target displacement.

2 Method

2.1 The KCF Tracker

In KCF tracker, Henriques et al. [11] suppose that the cyclic shifts version of
base sample is approximate the dense samples over the base sample. Take one-
dimension data x ¼ x1; x2; . . .; xn½ � for example, a cyclic shift of x is defined as
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Px ¼ xn; x1; x2; . . .; xn�1½ �: Therefore, all the cyclic shift samples, Puxju ¼ 0; . . .;f n�
1g; can be concatenated to form sample matrix X; which also called circulant matrix as
the matrix is purely generated by the cyclic shifts of x: This matrix has a helpful
property that all the circulant matrices can be formulated as follows:

X ¼ FHdiag Fxð ÞF ð1Þ

Where, F is the Discrete Fourier Transformation (DFT) matrix. FH is the Hermitian
transpose of F. Benefit from the decomposition of circulant matrix, it can be used to the
solution of linear regression. Moreover, the objective function of linear ridge regression
can be written as:

minw
Xn

i
f xið Þ � yið Þ2 þ k wk k ð2Þ

Where, f is linear combination of basis samples, f xð Þ ¼ wTx: The ridge regression

has a close-form solution, w ¼ XTX + kI
� ��1XTy: The solution can be rewritten with

Eq. 1, ŵ� ¼ x̂� � ŷ
x̂� � x̂ þ k

: Where, x̂ ¼ Fx donates the DFT of x; x̂� is the complex-

conjugate of x̂; � denotes element-wise multiplication. So during the process of
extracting patches explicitly and solving a general regression problem, this step can
save much computational cost. In order to construct a more powerful classifier in case
of non-linear regression, Henriques et al. [11] adopt a kernel tracker,
f zð Þ ¼ wTz ¼ Pn

i¼1 aiK z; xið Þ. Then dual space confident a can be learned as follows:

â� =
ŷ

k̂
xx þ k

ð3Þ

kxx is defined as kernel correlation. Similar to the linear classifier, the dual coef-
ficients are learned in Fourier domain. y is a regression target vector in Fourier domain
and has the same size with x; k is regularization weight in ridge regression. Note that
the search window, which is the size of x; has 2.5 times the size of the target in the
implementation of KCF. In case of Gaussian kernel function, the kernel correlation can
be denoted as:

kxx
0
= exp � 1

r2 xk k2 + x0k k2
� �

� 2F�1 x̂� x̂0�ð Þ
� �

ð4Þ

Where F�1 denotes inverse Fourier transform.
In detection step, the regression function Eq. 5 is applied to predict the position of

target where the maximum regression value locates.

f̂ zð Þ = k̂
~xz

� ��
�â ð5Þ

Where ~x denotes basic data template to be learned in the model; z is the candidate
patch, which has the same size and location with x in next frame. When we transform
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f̂ zð Þ back into the spatial domain, the translation with respect to the maximum response
is considered as the displacement of the tracked target.

2.2 Scale Adaptive KCF

Deformations and scale variations of targets is potential to increase the tracking error
and reduce robustness, even fail. However, these negative factors are common in
abdominal targets. In our clinical practice, there are two situations leading to target
deformation. First, with the contraction and relaxation of the diaphragm in free
breathing situation [15], the hepatic targets would suffer from deformation. Second,
because of free breathing and drift, the appearance of cross section between ultrasound
beam and targets would change. In this part, we propose a scale adaptive strategy to
compensate these deformations and scale variations.

Suppose that the size of search window sets as sT ¼ sx; sy
� �

; we define a scaling
pool g ¼ g1; g2; . . .; gmf g to expand search range to different scale space, which can be
donated as ~sT ¼ gisx; gjsy

� �jgi; gj 2 g;
� 	

: Because the dot-product requires the search
window with the fixed size in kernel correlation filter, we resize ~sT into the fixed size of
sT using bilinear-interpolation. Note that our proposed scale adaptive method is dif-
ferent from Li’s work [13], which adopts s^T ¼ gisTjgi 2 gf g: Therefore, the response
R gi;gj
� �

in difference scale space can be calculated.

R gi;gj
� � ¼ F�1f̂ z gi;gj

� �� � ð6Þ

Where z gi;gj
� �

is the sample patch resampled by scaling pool and the size of
z gi;gj
� �

is gisx; gjsy
� �

; which is subsequently resized to the fixed size of sT.

2.3 Improved Update Rule for Approximate Periodic Motion

According to Eq. 5, there are two sets of coefficient should be update. One is dual
space coefficient a; another is basic template ~x: Original update rule is realized by
combining new filter with old one linearly as Eq. 7 illustrates.

~xtþ 1 = l ~xtþ 1 + 1� lð Þ ~xt
âtþ 1 = l âtþ 1 + 1� lð Þ ât

(
ð7Þ

Where l is the linear interpolation factor.
While the update rule above achieves impressive success for nature video tracking,

it is so sensitive that cannot support for long-term tracking in our work. An explanation
is that Eq. 7 pays more attention to learn new characteristics from a new image. Once
ultrasound images suffer from noise severely, like acoustic shadowing and speckle
decorrelation, the performance of online classifier could degrade largely. With prior
knowledge that motion of liver is approximate periodic in free breathing, the target in
first frame would also appear in subsequent sequence. Therefore, an improved update
rule for long-term tracking of approximate periodic motion is proposed as Eq. 8 shows:
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~xtþ 1 = b ~x1 + 1� b� lð Þ ~xtþ 1 + l ~xt
âtþ 1 = b â1 + 1� b� lð Þ âtþ 1 + l ât

(
ð8Þ

Where b is recurrence factor.

2.4 Restricting Unreasonable Target Prediction

Though NCC has been a popular similarity measure in specking tracking, it still suffers
from acoustic shadowing, speckle decorrelation and other artifacts. Here, in order to
alleviate these adverse effect, we provide displacement and appearance constrains to
restrict unreasonable target prediction.

Displacement Constrain. In clinical ultrasound image guided abdominal radiother-
apy, we notice that the target displacement in two consecutive frames is very small
(<3 mm, acquisition frequency is 13–23 Hz). So a displacement cost function is
employed to restrict unreasonable prediction. Suppose that D ¼ Dx gi;gj

� �
;Dy gi;gj

� �� �
is the displacement prediction and R dijjdij 2 D

� �
is corresponding response map,

therefore, the response with displacement constrain can be expressed by:

Rdis gi; gj
� � ¼ R gi; gj

� � � exp �Dx2 þDy2

rdis

� �
ð9Þ

Where rdis is the bandwidth of displacement constrain.

Appearance Constrain. For alleviating the unreasonable matching from NCC, we
also employ a set of confidence response to determine target displacement instead of
selecting the displacement that the best response locates. Supposing the threshold of
confidence response is happ, the appearance constrain can be expressed as Eq. 10
shows.

Rapp
dis gi; gj

� � ¼ Rdis gi; gj
� �

; if Rdis �max Rdisf g � happ
0; others



ð10Þ

With constrains of displacement and appearance, the best scale space can be

determined by maximize the average response Rapp
dis gi;gj

� �
in Eq. 10:

argmaxRapp
dis gi; gj

� � ð11Þ

2.5 Weighted Displacement

Motivated by Carletti’s work [9], a weighted displacement is calculated to enhance the
robustness of proposed tracking algorithm. The displacements used to calculate
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weighted displacement are from Eq. 10, namely rij 2 Rapp
dis gi; gj

� �
: Finally the target

displacement can be determined in adjacent frames.

�d ¼

PM
i¼1

PN
j¼1

rijdij

PM
i¼1

PN
j¼1

rij

ð12Þ

Note that d is the displacement in best scale space, we get the real displacement dr
by performing scale inverse transformation with scale parameters from Eq. 11.
Therefore, by combining the target position in last frame pold and displacement dr, new
target position pnew in current frame can be determined.

pnew ¼ pold þ dr ð13Þ

Finally, the overall algorithm is summarized into Algorithm 1
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3 Experiments and Results

3.1 Dataset and Parameter Settings

Datasets and Resource. Our 2D liver ultrasound sequences are provided by MICCAI
2015 Challenge on Liver Ultrasound Tracking (CLUST) [16] training database, and it
consists of five different datasets CIL, ETH, ICR, MED1 and MED2. Each dataset is
acquired by different scanner with different image resolution (0.30–0.55 mm) and
acquisition frequency (13–23 Hz). Besides, our code is implemented using MATLAB
R2017b on an Intel Core i7-4910MQ CPU @ 2.90 GHz.

Parameter Settings. The parameters in our algorithm come from two parts. One is
from the original KCF tracker and we adopt the default parameters as [11] recom-
mends. The learning rate k in Eqs. 2 and 3 sets to 10�4 ; the r used in Gaussian
function Eq. 4 sets to 0.2; the linear interpolation factor l in Eq. 8 sets to 0.1; and the
size of search window is 2.5 times to the size of target. Another part is from our
contributions, which is used to ensure proposed tracker more accuracy and robust. We
adopt scaling pool with the suggestion from our experienced radiologist g ¼
0:85; 0:90; 0:95; 1:00; 1:05; 1:10; 1:15f g: And the recurrence factor b in Eq. 8, band-

width of displacement rdis in Eq. 9 and the threshold of confidence response happ in
Eq. 10 set to 0.15, 10 and 0.95 respectively. Parameters are same for all following
experiments.

Note that proposed method needs image patches as initialization. Therefore, we
generate a rectangular region manually with the guidance of experienced radiologist in
the first frame. During online tracking process, the center of rectangular region is
recorded and then used to evaluate tracking performance.

3.2 Tracking Results

We employ Euclidean distance suggested by Organizers of CLUST [16] to evaluate the
tracking performance. In our experiments, we compute errors between each manual
annotation and the output of proposed algorithm, and then mean, standard deviation
(SD), 95%ile and maximum errors are counted. Additionally, processing speed is
estimated by counting frames that are tracked per second (FPS).

Performance Evaluation on CLUST. Firstly, we evaluate the performance of pro-
posed tracking algorithm using the five datasets of CLUST database. The number of
objects means the total objects being tracked in corresponding dataset. The following
Table 1 shows the tracking error distribution of each dataset and the total 2D ultra-
sound sequences respectively.

Comparison Proposed with Baseline Algorithm. Then a performance comparison
experiment is performed between proposed and baseline algorithm, and the results are
shown in Fig. 1.

Compared with baseline algorithm, proposed method achieves state-of-the-art
results with mean decreasing by 78.8% (from 5.33 mm to 1.13 mm), 95%ile error
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decreasing by 77.1% (from 10.08 mm to 2.31 mm) and maximum error deceasing by
82.8% (from 66.10 mm to 11.37 mm) respectively.

Comparison Proposed with State-of-the-art Algorithms. Extensive comparison
experiments are performed among our tracker and some state-of-the-art trackers. The
following Table 2 gives a summary of tracking error distribution. It is worth men-
tioning that we compare these algorithms whose tracking performance is also evaluated
on CLUST training database. Compared with TMG [17], RMTwS [17] and Hybrid
[18], proposed algorithm achieves a competitive accuracy with maximum tracking
error decreasing by 40.4%–47.8%, which means it would provide a more effective
guidance for clinical operation. Experimental results also indicate our tracker is more
real time than the existing state-of-the-art trackers.

Table 1. A summary for performance evaluation on CLUST. All tracking errors are in
millimeters and processing speed is presented by frames per second.

Dataset No. objects Mean SD 95%ile Maximum FPS

CIL 3 0.99 1.16 2.02 3.61 20.33
ETH 16 0.89 0.60 1.73 4.18 23.57
ICR 12 1.00 0.54 2.31 6.23 23.14
MED1 19 1.39 1.62 2.74 11.37 22.21
MED2 3 1.38 2.04 3.01 7.88 31.00
Total 53 1.13 1.07 2.31 11.37 23.22

Fig. 1. Tracking errors comparison between proposed and baseline algorithm on CLUST. Left
is mean tracking error; middle is 95%ile error; right is maximum error.

Table 2. Comparison of published results with our tracking results. All tracking errors are in
millimeters and processing speed is presented by frames per second.

Algorithms Mean SD 95%ile Maximum FPS

Proposed 1.13 1.07 2.31 11.37 17–34
TMG [17] 1.17 0.89 2.61 21.78 8–23
RMTwS [17] 1.12 0.81 2.19 21.78 3–16
Hybrid [18] 0.80 0.80 1.85 19.08 8–32

An Online Learning Approach for Robust Motion Tracking 447



3.3 Experimental Analysis

In this section, we first perform an ablation analysis to understand the benefit of scale
adaptive strategy. Then a detailed parameters analysis are performed to find out the
effectiveness of improved update rule (Eq. 8) and appearance/displacement (Eqs. 9 and
10) constraints.

Ablation Study About Scale Adaptive Strategy. Deformation is common in liver
ultrasound sequence. In this part, we perform a comparison experiment between non-
rigid (with Eq. 6) and rigid (without Eq. 6) tracking. Results are shown in Fig. 2.

Compared with rigid tracking, non-rigid tracking achieves a better performance
with mean decreasing by 20.4% (from 1.42 mm to 1.13 mm), 95%ile error decreasing
by 19.5% (from 2.87 mm to 2.31 mm) and maximum error deceasing by 18.1% (from
13.88 mm to 11.37 mm) respectively. That means non-rigid deformation should be
considered seriously in precise radiotherapy.

Figure 3 shows an instance to compare the results from non-rigid and rigid
tracking. The target position calculated by rigid tracking yields larger deviations, by
contrast, the positions from proposed method are more accurate and robust.

Fig. 2. Tracking error distributions (mm) for proposed non-rigid and rigid tracking method. Left
is mean error; middle is 95%ile error, right is maximum error.

Fig. 3. An example for showing deviation between non-rigid and rigid tracking. Images are both
from CIL-01 #1 in CLUST. Left is the 675th frame and right is the 1182nd frame.
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Parameters Analysis. There are four parameters, g; rdis; happ; b
� �

; needing more dis-
cussion. Among them, scaling pool g can be designed when the deformation of target is
estimated. And we also can determine rdis by magnitude of target motion and fre-
quency of image acquisition. However, happ and b are assigned empirically. In this part,
we investigate the effect when we change the threshold of confidence response and
recurrence factor. Without loss of generality, we choose happ 2 0:90; 0:95; 1:00½ � and
b 2 0:10; 0:15; 0:20½ � to perform parameters analysis on CLUST training database.
Here, mean and 95%ile tracking errors, as regardful indicators for our project, are
chosen to evaluate the results of parameters analysis. Results are shown in Fig. 4 and
Table 3.

Therefore, recurrence factor is a crucial parameter in proposed algorithm. A smaller
b has a terrible effect on long-term tracking (like b ¼ 0:10; see Fig. 4). But a larger one
would also enlarge tracking error by unduly limiting learning ability for proposed
method. Besides, a smaller or larger happ are not a wise chose, which would potentially
introduce more unreasonable position or be not adaptive for artifacts well respectively.
Therefore, (0.15, 0.95) is a better combination for accuracy and robust tracking in our
project.

Fig. 4. The results of parameters analysis on CLUST. Left is results of mean error and right is
results of 95%ile error with parameters b; happ

� �
changing.

Table 3. Statistic results of mean and 95%ile errors (mm) with b; happ
� �

changing.

b; happ
� �

(0.10,0.90) (0.10,0.95) (0.10,1.00) (0.15,0.90) (0.15,0.95)

mean
95%ile

1.45
3.23

1.43
3.36

1.53
3.54

1.24
2.54

1.13
2.31

b; happ
� �

(0.15,1.00) (0.20,0.90) (0.20,0.95) (0.20,1.00)

mean
95%ile

1.26
2.65

1.24
2.56

1.18
2.43

1.32
2.78
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4 Conclusion and Discussion

In this paper, we present a 2D real-time tracking approach, which consists four steps
namely (1) initial target regions selection, (2) tracking with scale adaptive kernel
correlation filter, (3) displacement and appearance constrains, and (4) weighted dis-
placement. The initial target regions are generated by our experienced radiologist. Then
we train an online classifier to predict targets position. Because deformation of targets
can lead to error accumulation in learning phase, we employ adaptive scale strategy to
mitigate this adverse effect. Considering US images suffer from acoustic shadowing
and speckle decorrelation, NCC is more susceptible to bias. We employ displacement
and appearance constrains to constrict unreasonable position prediction by carefully
investigating the motion extents of landmarks in liver under free breathing. Further-
more, with prior knowledge that target motion in liver is approximately periodic under
free breathing, we revise the update rule by introducing a recurrence factor to improve
robustness in long-term tracking. Finally, inspired by success of particle filter in noise
circumstance, we obtain new target positions by calculating weighted displacement.

However, we just adopt single feature to realize target tracking. Accuracy and
robustness for proposed method may continue to improve by combining other image
features like texture and shape, which is a major research direction for future work.
Also, similarity metrics is a core ingredient for target tracking. While a large of sim-
ilarity metrics have been proposed in computer vision community, there are no clear
rules about how to select the most suitable one but to try them in different condition.

There are several avenues of future work that would potentially improve proposed
method. Integrating texture feature into our tracking method would be helpful to
improve accuracy. And adaptive recurrence factor strategy will be investigated to
improve robustness for long-time tracking.

In conclusion, we propose an online learning approach for robust and real-time
motion tracking in liver ultrasound sequences and evaluate it on five different datasets.
Favorable agreement between automatically and manually tracked displacements,
along with real-time processing speed prove that proposed algorithm has potential for
target motion tracking in abdominal radiotherapy.
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Abstract. The Symmetric Positive Definite (SPD) matrix on the Rie-
mannian manifold has become a prevalent representation in many com-
puter vision tasks. However, learning a proper distance metric between
two SPD matrices is still a challenging problem. Existing metric learn-
ing methods of SPD matrices only regard an SPD matrix as a global
representation and thus ignore different roles of intrinsic properties in
the SPD matrix. In this paper, we propose a novel SPD matrix met-
ric learning method of discovering SPD matrix intrinsic properties and
measuring the distance considering different roles of intrinsic proper-
ties. In particular, the intrinsic properties of an SPD matrix are dis-
covered by projecting the SPD matrix to multiple low-dimensional SPD
manifolds, and the obtained low-dimensional SPD matrices constitute a
set. Accordingly, the metric between two original SPD matrices is trans-
formed into a set-to-set metric on multiple low-dimensional SPD mani-
folds. Based on the learnable alpha-beta divergence, the set-to-set metric
is computed by summarizing multiple alpha-beta divergences assigned on
low-dimensional SPD manifolds, which models different roles of intrinsic
properties. The experimental results on four visual tasks demonstrate
that our method achieves the state-of-the art performance.

Keywords: SPD manifold · Metric learning · Set-to-set metric
Multiple manifolds

1 Introduction

The Symmetric Positive Definite (SPD) matrix has become a prevalent repre-
sentation in many visual tasks, such as face recognition [12], action recognition
[30], and object detection [25]. It utilizes the second-order or higher-order statis-
tics information to capture the desirable feature distribution. There are several
works try to model a more discriminative SPD matrix [16,27,28] from local
features. Meanwhile, calculating the distance metric in the SPD manifold is a
crucial problem coming along with the SPD matrix representation. Due to the
no-Euclidean structure of SPD manifolds, the Euclidean metric can’t be applied
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directly on it. In this paper, we focus on a robust metric learning method on
SPD manifolds.

Many efforts have been devoted to the SPD matrix metric, such as the Affine
Invariant Metric (AIM) [19], Log-Euclidean Metric (LEM) [2], Bregman diver-
gence [14], Stein divergence [21], and alpha-beta divergence [3,4,22]. Given a
concrete metric, metric learning aims at learning proper metric parameters that
keep similar pairs close and separate dissimilar pairs. Most of the existing met-
ric learning methods on the SPD manifold learn a discriminative metric on the
tangent Euclidean space [11,23,31].

However, how to learn a proper SPD matrix metric is still a challenging
problem. The SPD matrix is aggregated from local features, and contains differ-
ent essential intrinsic properties. Existing SPD matrix metric learning methods
[11,23,31] just regard an SPD matrix as a global representation and exploit a
direct metric on the complex manifold, ignoring the different roles of intrinsic
properties in the SPD matrix. It is unsuitable to treat intrinsic properties equally
when they have different roles, e.g., different distribution or significance. There-
fore, we argue that an SPD matrix metric modeling different roles of intrinsic
properties will achieve a better performance.

In this paper, a novel metric learning method on SPD manifolds is proposed
to solve the issues mentioned above. Firstly we discover intrinsic properties of
an SPD matrix, and then calculate the SPD matrix metric considering differ-
ent roles of them. In particular, our method aims to jointly learn multiple low-
dimensional projections and a set-to-set metric. As the property discovery can be
seen as the feature extraction, we apply multiple low-dimensional manifold pro-
jections on the SPD matrix to discover discriminative intrinsic properties. Thus,
the distance metric between two original SPD matrices is transformed into the
distance metric between the two sets which contain several corresponding pro-
jected low-dimensional SPD matrices. The alpha-beta divergences is a learnable
SPD matrix metric, so it is applied in our set-to-set metric to be adaptive to
the intrinsic property. We assign multiple alpha-beta divergences on different
low-dimensional manifolds as the sub-metrics and summarize these sub-metrics
discriminatively as the SPD matrix metric. Through this, the different roles of
intrinsic properties are involved in the SPD matrix metric. Evaluated by experi-
ments, the proposed learnable metric is extremely helpful to capture meaningful
nearest neighbors of different original SPD matrices.

In summary, our contributions are three-fold.

(1) We propose a robust SPD matrix metric learning method of discovering
discriminative intrinsic properties and modeling their different roles in metric
computation.

(2) We formulate the metric learning as the two-component joint optimization
problem, i.e., multiple low-dimensional manifold projections and a set-to-set
metric are learned jointly.

(3) We introduce the manifold optimization method which can learn metric
parameters to guarantee the robustness of the proposed metric.
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Fig. 1. The flowchart of our SPD matrix metric learning method. Left: multiple pro-
jections f1

W , f2
W , and f3

W used to discover intrinsic properties; Right: the computation
of the set-to-set distance Ds which considers different roles of intrinsic properties.

2 The Proposed Method

Throughout this paper, scalars are denoted by the lower-case letters; the vectors
are represented by the bold lower-case letters; the matrices are denoted by the
upper-case letters; the sets are represented by the bold upper-case letters.

2.1 Problem Definition

This work aims to discover discriminative intrinsic properties in an SPD matrix
and compute the distance of SPD matrices considering different roles of discov-
ered properties. The property discovery can be regarded as a feature extrac-
tion process that projects an original SPD matrix to multiple low-dimensional
SPD manifolds to form a set of the low-dimensional SPD matrices. We propose
a set-to-set metric to consider different roles of intrinsic properties. Individual
sub-metrics are assigned on low-dimensional manifolds and summarized discrim-
inatively. Consequently, our metric learning method is composed of two compo-
nents, multiple low-dimensional manifold projections and a set-to-set metric.
Given two SPD matrices Xi and Xj , the distance DΘ(Xi,Xj) is

DΘ(Xi,Xj) = Ds(Xi,Xj)

= Ds

(
{f1

W (Xi), · · · , fm
W (Xi)}, {f1

W (Xj), · · · , fm
W (Xj)}

)

= hM

(
g1A

(
f1

W (Xi), f1
W (Xj)

)
, · · · , gm

A

(
fm

W (Xi), fm
W (Xj)

))
,

(1)

where fk
W (·) is the low-dimensional manifold projection, and Xi = {fk

W (Xi)}m
k=1

is the set containing low-dimensional SPD matrices. The distance DΘ(Xi,Xj)
between original SPD matrices Xi and Xj is transformed into a set-to-set dis-
tance Ds(Xi,Xj), where the sub-metric on the k-th low-dimensional manifold
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is calculated by gk
A(·, ·) and all sub-metrics of properties are summarized by

hM (·). W,A,M are the projection parameter, the sub-metric parameter, and
the summarization parameter, respectively. We exploit a learnable parameter
set Θ = {W,A,M} to represent the parameters. The framework of our metric
learning method for the SPD matrix is shown in Fig. 1.

The goal of metric learning is to learn the metric parameter Θ from an SPD
matrix similar pair set S, a dissimilar pair set D, and their labels Y , where
yij = 1 means Xi and Xj are similar, otherwise yij = 0. The metric parameter
Θ can be learned by optimizing the loss function L(Θ,S,D, Y ) which is the
punishment of both far similar sample pairs and close dissimilar sample pairs.
We define L(Θ,S,D, Y ) in the following subsection. Moreover, we impose the
manifold constraints on W and M to obtain a more robust metric.

2.2 Multiple Low-Dimensional Manifold Projections

For an SPD matrix sample Xi ∈ R
n×n, we project Xi to m low-dimensional

manifolds to discover the intrinsic properties,

X1
i = f1

W (Xi) = W�
1 XiW1

...

Xm
i = fm

W (Xi) = W�
mXiWm,

(2)

where Xk
i ∈ R

p×p is the k-th low-dimensional SPD matrix, k ∈ {1, 2, · · · ,m}.
An SPD matrix Xi is projected to a set Xi = {Xk

i }m
k=1, which contains several

low-dimensional SPD matrices.
We expect that each low-dimensional matrix Xk

i is guaranteed to be still
an SPD matrix having the ability of capturing desirable feature distribution,
and any two low-dimensional SPD manifolds are unrelated to preserve as much
information as possible in the low-dimensional SPD matrix set. The learnable
parameter Wk needs to be a column full rank matrix to make Xk

i be an SPD
matrix as well. Based on the affine invariance [3,7] of the alpha-beta divergence,
we relax the column full rank constraint of Wk to the semi-orthogonal constraint,
i.e., W�

k Wk = Ip. In order to preserve more information in the Xi = {Xk
i }m

k=1

set, we expect that any two low-dimensional manifolds have a low relevance.
For any k �= l, we set W�

k Wl = 0, where 0 ∈ R
p×p is a matrix whose elements

are all “0”s, to reduce relevance between Xk
i and X l

i . These low-dimensional
SPD manifolds can be seen as analogies of different PCA subspaces. A total
projection matrix W is composed of all Wk, W = [W1,W2, · · · ,Wm] ∈ R

n×mp,
in which Wk is a partitioned matrix of W containing p columns. Note that, W
is a semi-orthogonal matrix, i.e., W�W = Imp, which is on the non-Euclidean
Stiefel manifold [1].

2.3 The Set-to-Set Metric

Based on multiple manifold projections, the distance DΘ(Xi,Xj) of two
SPD matrices is transformed into the set-to-set distance Ds(Xi,Xj). Firstly
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{gk
A(·, ·)}m

k=1 is exploited to compute sub-metrics on m low-dimensional SPD
manifolds, and then hM (·) is utilized to summarize the m sub-metrics, where
A and M are learnable parameters. We use the flexible alpha-beta diver-
gence [3,4,22] as the sub-metric gk

A(·, ·). For two SPD sets Xi = {Xk
i }m

k=1,
Xj = {Xk

j }m
k=1, the distance dk

ij between Xk
i and Xk

j is computed by the k-
th alpha-beta divergence,

dk
ij =gk

A(Xk
i , Xk

j )=D(αk,βk)
(
Xk

i ‖Xk
j

)
=

1

αkβk

p∑
u=1

log

(
αk(λ

k

iju)βk + βk(λ
k

iju)−αk

αk + βk

)
,

(3)
where λk

iju is the u-th eigenvalue of Xk
i (Xk

j )−1, and (αk, βk) is the individual
parameter of the k-th alpha-beta divergence. We denote all alpha-beta divergence
parameters as a matrix A = [(α1, β1), (α2, β2), ..., (αm, βm)] ∈ R

m×2, and a
distance vector between Xi and Xj as dij = [d1ij , d

2
ij , ..., d

m
ij ] ∈ R

m×1. Since
(αk, βk) needs to be adaptive to the k-th low-dimensional manifold, we exploit
a learnable strategy to update (αk, βk), which is detailed in the next subsection.
After computing all sub-metrics, the distance metric DΘ(Xi,Xj) between two
original SPD matrices Xi and Xj is formulated as

DΘ(Xi, Xj) = Ds(Xi,Xj) = hM (d1
ij , d

2
ij , ..., d

m
ij ) = d�

ijMdij

=

m∑
k=1

m∑
l=1

(
D(αk,βk)(W �

k XiWk‖W �
k XjWk

) · Mkl · D(αl,βl)
(
W �

l XiWl‖W �
l XjWl

))
,

(4)
where M ∈ R

m×m is the metric parameter, and Mkl is an element of M in the k-
th row and l-th column, reflecting the significance and relationship of properties.
If Xi = Xj , then dij is a zero vector, and DΘ(Xi,Xj) = 0. If Xi �= Xj , then dij

is a non-zero vector, and DΘ(Xi,Xj) should be larger than 0. The nonnegativity
of the metric forces M to be an SPD matrix and M ∈ Sym+

m.
To learn the parameter Θ, we formulate loss function L(Θ,S,D, Y ) as

min
Θ

L(Θ,S,D, Y ) =
1

|S|
∑

i,j∈S
yij · max

(
DΘ(Xi,Xj) − ζs, 0

)2

+
1

|D|
∑

i,j∈D
(1 − yij) · max

(
ζd − DΘ(Xi,Xj), 0

)2

+ ξ · γ(M,M0).

(5)

We expect that the distance between similar samples is smaller than a threshold
ζs, and the distance between dissimilar samples is larger than a threshold ζd.
We add two coefficients 1

|S| and 1
|D| to solve the imbalance issue of similar and

dissimilar sample pairs, where |S| and |D| are the pair numbers of sets S and
D. In addition, we add a regularization term ξ · γ(M,M0) on M in Eq. (5).
γ(M,M0) = Tr(MM−1

0 ) − logdet(MM−1
0 ) − m is the burgman divergence [5,8,

10], where Tr(·) is the trace of a matrix, M0 is the prior information, and ξ is
the trade-off coefficient.
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2.4 Optimization

L(Θ,S,D, Y ) in Eq. (5) is not a convex function with respect to W , A, and
M . Accordingly, we apply the gradient descent to learn Θ. The gradients are
computed as follows.

(1) The gradient of L with respect to M
The gradient of L with respect to M can be computed by

∇M (L) =
1

|S|
∑

i,j∈S
dij∇DΘ

ij
(L)d�

ij +
1

|D|
∑

i,j∈D
dij∇DΘ

ij
(L)d�

ij + ξ · ∇M (γ(M, M0)),

(6)

where ∇DΘ
ij

(L) is the gradient of L with respect to DΘ(Xi,Xj),

∇DΘ
ij

(L) = 2 · yij · max(DΘ
ij − ζs, 0) + 2 · (yij − 1) · max(ζd − DΘ

ij , 0), (7)

and ∇M (γ(M,M0)) is the gradient of γ(M,M0) with respect to M ,

∇M (γ(M,M0)) = M−1
0 − M−1. (8)

(2) The gradient of L with respect to A
The gradients of L with respect to αk and βk in A are

∇αk
(L) =

1
|S|

∑
i,j∈S

∇dk
ij

(L) · ∇αk
(dk

ij) +
1

|D|
∑

i,j∈D
∇dk

ij
(L) · ∇αk

(dk
ij), (9)

∇βk
(L) =

1
|S|

∑
i,j∈S

∇dk
ij

(L) · ∇βk
(dk

ij) +
1

|D|
∑

i,j∈D
∇dk

ij
(L) · ∇βk

(dk
ij). (10)

∇dk
ij

(L) is the k-th element of ∇dij (L) which is the gradient of L with respect
to dij ,

∇dij (L) = ∇DΘ
ij

(L) · ∇dij (D
Θ
ij) = ∇DΘ

ij
(L)d�

ij(M
� + M). (11)

∇αk
(dk

ij) and ∇βk
(dk

ij) are the gradients of dk
ij with respect to αk and βk, respec-

tively,

∇αk
(dk

ij) =
1

α2
kβk

p∑
u=1

(
αk(λk

iju)βk − αkβk(λk
iju)−αk logλk

iju

αk(λk
iju)βk + βk(λk

iju)−αk

− αk

αk + βk
− log

αk(λk
iju)βk + βk(λk

iju)−αk

αk + βk

)
,

(12)
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∇βk
(dk

ij) =
1

αkβ2
k

p∑
u=1

(
βk(λk

iju)−αk − αkβk(λk
iju)βk logλk

iju

αk(λk
iju)βk + βk(λk

iju)−αk

− βk

αk + βk
− log

αk(λk
iju)βk + βk(λk

iju)−αk

αk + βk

)
.

(13)

(3) The gradient of L with respect to W
The gradient of L with respect to each Wk is

∇Wk
(L) =

N∑
i

(
(Xi)�Wk∇Xk

i
(L) + XiWk∇Xk

i
(L)�)

, (14)

where N is the number of training samples, and N = 2 × (|S| + |D|). ∇Xk
i
(L)

is the gradient of L with respect to the low-dimensional SPD matrix Xk
i . The

eigenvalue decomposition of Xk
i (Xk

j )−1 is Xk
i (Xk

j )−1 = Uk
ijΣ

k
ij(U

k
ij)

�. Σk
ij is

the diagonal matrix eigenvalues, and λk
iju is the u-th eigenvalue. The gradients

∇Xk
i
(L) and ∇Xk

j
(L) are

∇Xk
i
(L) = Uk

ij∇Σk
ij

(L)(Uk
ij)

�(Xk
i )−�, (15)

∇Xk
j
(L) = (−1) · (Xk

j )−�(Xk
i )�Uk

ij∇Σk
ij

(L)(Uk
ij)

�(Xk
j )−�, (16)

where ∇Σk
ij

(L) is the gradient of Σk
ij with respect to L. ∇Σk

ij
(L) is a diagonal

matrix, and the u-th element is

∇λk
iju

(L) = ∇dk
ij

(L) · ∇λk
iju

(dk
ij)

= ∇dk
ij

(L) · 1
αkβk

αkβk(λk
iju)βk−1 − αkβk(λk

iju)−αk−1

αk(λk
iju)βk + βk(λk

iju)−αk
.

(17)

Since the gradients ∇W (L), ∇M (L), and ∇A(L) are obtained, the metric
parameter set Θ can be updated. A is optimized by the standard gradient
descent, A := A − η∇A(L), where η is the learning rate. W and M are updated
by the Riemannian optimization algorithm [1,6,20]. The computation details are
presented below,

⎧
⎨
⎩

∇WR
(L) = ∇W (L) − W

1
2
(W�∇W (L) + ∇W (L)�W )

W := q
(
W − η∇WR

(L)
) , (18)

and ⎧
⎨
⎩

∇MR
(L) = M

1
2
(∇M (L) + ∇M (L)�)

M

M := M
1
2 expm

( − ηM− 1
2 ∇MR

(L)M− 1
2
)
M

1
2

, (19)
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where ∇WR
(L) and ∇MR

(L) are the Riemannian gradients with respect to W
and M . In Eq. (18), q (·) is the retraction operation mapping the data back to
the Stiefel manifold. q (W ) denotes the Q matrix of the QR decomposition to
a matrix W , i.e., for the matrix W ∈ R

n×p, W = QR, where Q ∈ R
n×p is a

semi-orthogonal matrix and R ∈ R
p×p is a upper triangular matrix. In Eq. (19),

expm(·) is the matrix exponential function. We summarize the learning process
of our method in Algorithm1, w.

Algorithm 1. Trainging Process of Our Method
Input: Training SPD sample pairs S and D, labels Y . The initial projection matrix

W . The initial metric matrix M . The initial alpha-beta divergence parameter A.
Learning rate η.

Output: The learned W , M , and A.
1: while not converge do
2: For each SPD matrix, compute subspaces by Eq.(2).
3: For each sample pairs, compute the distance between their sets by Eq.(3) and

Eq.(4).
4: Compute the loss L by Eq.(5).
5: Compute the gradient ∇M (L) by Eq.(7), Eq.(8), and Eq.(6).
6: Compute the gradient ∇A(L) by Eq.(12), Eq.(13), Eq.(9), and Eq.(10).
7: Compute the gradient ∇W (L) by Eq.(17), Eq.(15), Eq.(16), and Eq.(14).
8: Update the parameter W by Eq.(18).
9: Update the parameter A by A := A − η∇A(L).

10: Update the parameter M by Eq.(19).
11: end while
12: return W , M and A

3 Experiments

In order to test the efficiency of our method, we conduct experiments on the
object recognition, video-based face recognition, action recognition, and tex-
ture classification tasks. Four datasets are utilized: the ETH-80 [15], the MSR-
Action3D [17], the YouTube Celebrities (YTC) [13], and the UIUC [18] datasets.

3.1 Datasets and Settings

The ETH-80 is an object image dataset, which contains 80 image sets of eight
categories. Each category consists of 10 image sets, and each set includes 41
images captured under different views. In our experiment, all the images of
the ETH-80 are resized to 20 × 20 and denoted by the intensity features. The
YTC is a video-based face dataset, collecting 1910 videos of 47 persons. Face
regions are detected from each frame by a cascaded face detector and resized
to 30 × 30, followed by the histogram equalized operation, and represented by
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the gray values. The MSR-Action3D is a 3D action dataset, containing totally
567 videos of 20 actions. There are 20 skeleton joints in the body of actions. In
the experiments, each frame is represented by a 120-dimensional feature, which
is the 3D coordinate differences of skeleton joints between this frame and its
two neighborhood frames. The UIUC material dataset contains 216 samples of
18 categories. We resize each image to 400 × 400. Then 128-dimensional dense
SIFT features are extracted from each image with 4-pixel space concatenated by
27-dimensional RGB color features from 3 × 3 patches centered at the locations
of dense SIFT features.

On the ETH-80, YTC, and UIUC datasets, we compute a covariance matrix
C to represent each sample and add a small ridge δI to avoid the matrix sin-
gularity, where δ = 0.001 × Tr(C). On the MSR-Action3D dataset, we first
compute the covariance matrix C with size of 120 × 120, then transform it to a
121 × 121 Gaussian distribution SPD matrix, C = |C|− 1

121

[
C + mm� m

m� 1

]
as the

sample representation, where m is the mean vector of 120-dimensional features.
Following the standard protocols [7,11,24,29], for each category, we randomly
select half of the samples for training and the rest for testing on the ETH-80,
MSR-Action3D, and UIUC datasets. On the YTC dataset, for each person, three
videos are randomly selected as the gallery, and six as the probe. In experiments,
we set ξ = 0.01, M0 = Im, ζs = 5, and ζd = 100.

3.2 Evaluation

We exploit the 1-NN classifier to evaluate the performance of all metric learning
methods. The following methods are evaluated in our experiments: AIM [19],
Stein Divergence [21], LEM [2], SPD-DR [7], CDL [29], RSR-ML [9], LEML
[11], and α-CML [31]. AIM, Stein Divergence, and LEM are the basic SPD
matrix metrics, measuring the geodesic distance between SPD matrices. SPD-DR
implements the dimensionality reduction on the SPD matrix and then applies
the AIM or Stein Divergence between samples. CDL is a Riemannian kernel
discriminative learning approach on the SPD manifold. RSR-ML employs sparse
coding and dictionary learning scheme on the SPD manifold. LEML and α-
CML are two LEM based SPD matrix metric learning methods which project
SPD matrices to the tangent space and utilize the LEM to compute the distance
between them.

Table 1 shows the comparisons of the four visual tasks. In the object recogni-
tion task, we set the dimensionality of the low-dimensional manifolds is 10 × 10
and the number of them is 20, i.e., m = 20. We find that LEM has a better per-
formance than AIM, 93.0 vs 85.0, showing that the point on the tangent space is
more discriminative. If the manifold point is projected to a low-dimensional dis-
criminative space, i.e., the SPD-DR method, the performance can be improved
to 96.0, 0.5 better than LEML. Compared with SPD-DR, our method achieves
97.5, 1.5 higher than it, which shows the power of discovering discriminative
properties and their roles.

In the video-based face recognition task, the dimensionality of projected man-
ifolds is 10 × 10, and the number of them is 40. We achieve 49.2 in this task, 2.5
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higher than SPD-DR and 10 percent higher than the basic SPD matrix metrics
approximately. However, due to the large variable faces caused by posture, illumi-
nation, scale, and occlusion, the performance of linear metric learning methods is
far less than it of the nonlinear kernel method CDL. The reason we think is that
the samples in the original space are not separable, a more higher-dimensional
RKHS space can relieve this problem.

In the action recognition task, the dimensionality of the low-dimensional
manifolds is 8 × 8 and the number of them is 15. Nonlinear kernel methods
CDL and RSR-ML achieve 95.4 and 95.0 respectively and have a better per-
formance than the existing metric methods [7,11,31]. In this case, our linear
method obtains the comparable performance with CDL and RSR-ML, achieving
95.8. Besides, Wang et al. [26] shows that the nonlinear kernel matrix represen-
tation has a better performance than the linear SPD representation, while our
accuracy is 3.1 higher than α-CML whose performance is based on the kernel
matrix [26] rather than the Gaussian distribution SPD matrix.

In the texture classification task, in our method, we set the dimensionality of
the low-dimensional manifolds is 8 × 8, and there are totally 18 low-dimensional
manifolds. We can see that, the three basic SPD matrix metrics i.e., AIM, Stein
Divergence, and LEM achieve comparable performance in the UIUC dataset,
35.6, 35.8 and 36.7 respectively. Meanwhile, metric learning methods can bring
a remarkable improvement. CDL achieves 54.9, and the accuracy of LEML is
53.9. SPD-DR achieves a better performance 58.3, showing that there are too
much noise and information redundancy in the original SPD representation. Our
method further improves the result to 60.8 showing that our method can not
only remove the noise and information redundancy but also bring the benefits
of discovering discriminative intrinsic properties and their different roles.

Table 1. Accuracies (%) on the four visual tasks. Our method is bold in the last line.

Method Eth-80 YTC MSR-Action3D UIUC

AIM [19] 85.0 38.2 84.7 35.6

Stein [21] - - 83.5 35.8

LEM [2] 93.0 40.8 84.7 36.7

AIM-DR [7] 96.0 46.7 93.1 58.3

Stein-DR [7] - - 94.6 58.1

CDL [29] 94.5 67.5 95.4 54.9

RSR-ML [9] 94.8 - 95.0 -

LEML [11] 95.5 - 92.3 53.9

α-CML [31] - - 92.7 -

Ours 97.5 49.2 95.8 60.8
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4 Conclusions

In this paper, we have proposed a novel metric learning method on the SPD
manifold, which can discover discriminative intrinsic properties and computes
the metric considering their different roles. We can formulate the SPD manifold
metric learning process as the multiple projections and a set-to-set metric joint
optimization problem. Moreover, we force the projection matrix and the metric
matrix on manifolds, obtaining a robust metric. Extensive experiments have
shown that our method outperforms existing metric learning methods on the
SPD manifold. As our method is differentiable in the whole process, in the future,
we will endow it with deep learning for the desirable nonlinearity.
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Abstract. The key of zero-shot learning (ZSL) is how to find the
information transfer model for bridging the gap between images and
semantic information (texts or attributes). Existing ZSL methods usu-
ally construct the compatibility function between images and class labels
with consideration of the relevance on the semantic classes (the mani-
fold structure of semantic classes). However, the relationship of image
classes (the manifold structure of image classes) is also very important
for the compatibility model construction. It is difficult to capture the
relationship among image classes due to unseen classes, so that the man-
ifold structure of image classes often is ignored in ZSL. To complement
each other between the manifold structure of image classes and that of
semantic classes information, we propose structure fusion and propaga-
tion (SFP) for improving the performance of ZSL for classification. SFP
can jointly consider the manifold structure of image classes and that
of semantic classes for approximating to the intrinsic structure of object
classes. Moreover, the SFP can describe the constraint condition between
the compatibility function and these manifold structures for balancing
the influence of the structure fusion and propagation iteration. The SFP
solution provides not only unseen class labels but also the relationship of
two manifold structures that encodes the positive transfer in structure
fusion and propagation. Experiments demonstrate that SFP can attain
the promising results on the AwA, CUB, Dogs and SUN datasets.

Keywords: Structure fusion and propagation · Manifold structure
Zero-shot learning · Transfer learning

1 Introduction

Although deep learning [32] depending on large-scale labeled data training has
been generally used for visual recognition [31], a daunting challenge still exists
to recognize visual object “in the wild”. In fact, in specific applications it is
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impossible to collect all class data for training deep model, so training (seen
classes) and testing classes(unseen classes) are often disjoint. The main idea
of ZSL is to handle this problem by exploiting the transfer model from the
redundant relevance of the semantic description. To recognize unseen classes
from seen classes, ZSL needs face to two challenges [3]. One is how to utilize the
semantic information for constructing the relationship between unseen classes
and seen classes, and other is how to find the compatibility among all kinds of
information for obtaining the optimal discriminative characteristics on unseen
classes.

ZSL can bridge the gap among the different domains to recognize unseen class
objects by semantic embedding of class labels. These semantic embeddings can
come from vision (attributes [11]) and language information (text [25]) by the
manual annotation, machine learning [29]or data mining [5]. In term of the trans-
formation relationship of different embedding, recent ZSL methods mainly fall
into linear embedding, nonlinear embedding and similarity embedding. Linear
embedding [1,2,7,13,24] implements the linear transformation method among
different embedding spaces for learning the relevance between unseen class
objects and class labels. Nonlinear embedding [23,25,28] can realize the non-
linear mapping of the embedding space for building the compatibility function
or classifier, which can be learned by deep networks [14,30]. Similarity embed-
ding [3,9,15,19,33] builds the classifier by the similarity metrics, which mostly
include structure learning or class-wise similarities. In our approach, the sim-
ilarity metric is extended from semantic space to image space, we attempt to
find the relationship of similarities (manifold structure in the different space)
for constraining the compatibility function, and further capture to the positive
structure propagation for the significantly improvement of the unseen object
classification.

In this paper, our motivation is inspired by structure fusion [16–18] for jointly
dealing with two challenges. The intrinsic manifold structure is crucial for object
classification. However, in fact, we only can attain the observation data of the
manifold structure, which can represent different aspects of the intrinsic manifold
structure. For recovering or approximating the intrinsic structure, we can fuse
various manifold structures from observation data. Based on the above idea,
we try to capture different manifold structures in image and semantic space for
improving the recognition performance of unseen classes in ZSL. Therefore, we
expect to construct the compatibility function for predicting labels of unseen
classes by building the manifold structure of image classes. On the other end, we
attempt to find the relevance between the manifold structure of semantic classes
and that of image classes in model space for encoding the influence between
the negative and positive transfer, and further make the better compatibility
function for classifying unseen class objects. Model space corresponding to visual
appearances is the jointed projection space of semantic space and image space,
and can preserve the respective manifold structure. Figure 1 illustrates the idea of
the proposed method conceptually. SFP considers not only semantic and image
structures but also the positive structure propagation for ameliorating unseen
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objects classification, while SynC [3] only focus on manifold structure in semantic
space for combining the base classifier in ZSL.

Fig. 1. The illustration of structure fusion and propagation for zero-shot learning.
Phantom object classes (the coordinates of classes in the model space are optimized
to achieve the best performance of the resulting model for the real object classes in
discriminative tasks [3].) and real object classes corresponding to all classes in model
space.

In our main contribution, a novel idea have tow aspects to recover or approx-
imate the intrinsic manifold structure from seen classes to unseen classes by fus-
ing the different space manifold structure for handling the challenging unseen
classes recognition. Specifically, one constructs the projected manifold structure
for real and phantom class in model space, another constrains the compatibility
function and the relationship of the manifold structure for the positive structure
propagation.

2 Structure Fusion and Propagation

In ZSL, we have training data set D = {(xn ∈ RD, yn)}Nn=1, in which xn is
image representation (it can be extracted based on deep model, and the detail
is described in Table 1) and yn(n = 1, ..., N) is the class label in the seen class
set S = {s|s = 1, ..., S}. We can denote the unseen class set as U = {u|u =
S+1, ..., S+U}. ac ∈ RD is the linear transformation vector of the c ∈ {S ⋃

U }
class.
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2.1 Classification Model and Manifold Structure

We construct a pair-wise linear classifier [3] in the visual image feature space,
and determinate a estimated label ŷ to a feature x by the following formula.

ŷ = arg max
c

aT
c x, (1)

here, ac ∈ RD is not only the transformation vector of the feature x, but also
the representation of the class c in model. In other words, the above formula can
describe the pair-wise linear relation between the feature space and the class
label space for characterizing the class representation in the model.

To measure the manifold structure, we can compute the similarity of the
related representation in the homogeneous space, which has the same scale and
metric. To this end, we respectively build a bipartite graph between unseen
classes and seen classes in semantic space and image space (this space includes
all image representations). In these bipartite graphs, nodes are corresponding to
unseen classes or seen classes, and weights of these nodes connect unseen classes
with seen classes. Because we focus on the transfer relation between unseen
classes and seen classes, no connection exists in unseen classes or seen classes.
Supposing Gb<Vb, Eb> can denote the manifold structure of semantic classes.
Here, Vb = Vbs

⋃
Vbu and ∅ = Vbs

⋂
Vbu. Eb includes connections between Vbs

(seen classes set in semantic space) and Vbu (unseen classes set in semantic space);
Gx<Vx, Ex> for the manifold structure of image classes. Here, Vx = Vxs

⋃
Vxu

and ∅ = Vxs

⋂
Vxu. Ex includes the connections between Vxs (seen classes set

in image space) and Vxu (unseen classes set in image space). Therefore, the
similarity of semantic and image space is respectively regarded as the weight
between nodes, which can be defined as following.

w(b)
su =

exp(−d(bs, bu))
∑U

u=1 exp(−d(bs, bu))
, w(x)

su =
exp(−d(xs, xu))

∑U
u=1 exp(−d(xs, xu))

, (2)

here, bs and xs are respectively the semantic and image representation (the detail
is described in Table 1) of the seen class s, while bu and xu are respectively the
semantic and image representation of the unseen class u. w

(b)
su and w

(x)
su are

respectively the weight (the similarity) between the seen class s and the unseen
class u in semantic and image representation space. d(bs, bu) and d(xs, xu) are
respectively the distance metric [3] of each space, and can be defined as following.

d(bs, bu) = (bs − bu)TΣ−1
b (bs − bu), d(xs, xu) = (xs − xu)TΣ−1

x (xs − xu), (3)

here, Σb = σbI can be learned from the semantic representation by cross-
validation (We alternately divide the training classes set into two part in accord-
ing with the proportion between the training classes set and the test classes set.
One part is to learn the model, and another is to validate the model. We give
the range of σb, which is form 2−5 to 25, and select the parameter corresponding
to the best result as the value of σb.) Σx = σxI can be learned from the image
representation by cross-validation (It is the same procedure like σb learning.).



Structure Fusion and Propagation for Zero-Shot Learning 469

In image space, the differentiation compared with the semantic space is that xu is
not determined because of unseen classes, while xs can be obtained from training
data by computing the mean value of the seen class. The way to produce the cen-
ter of the class as a representation is simple for convenient computation, and it is
reasonable to preserve the base characteristic of image representation according
with the distribution of the same class. xu can be attained by pre-classification
of unseen classes (the detail in the next section).

In (1), ac is the transformation vector, and also is the class representation in
model space. In (2), bs and bu is the class representation in semantic space, while
xs and xu is the class representation in image space. We expect to construct the
link among these space by vs and vu, which are respectively the phantom class
of seen or unseen classes in model. For preserving the manifold structure of
two bipartite graphs and aligning the image, the semantic and the model space,
we build the optimization formula under the condition of the distortion error
minimization, which is defined as following.

(ac, vu,β) = arg min
ac,vu,β

‖ac −
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu −

S∑

s=1

γT
[
w

(x)
ss w

(b)
ss

]T
vs‖22,

s.t. βT1 = 1,γT1 = 1, 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1 (i = 1, 2)
(4)

here, β =
[
β1 β2

]T , γ =
[
γ1 γ2

]T , and 1 =
[
1 1

]T . Because no connection exists
between unseen classes or seen classes in tow bipartite graphs, w

(b)
ss = 0 and

w
(x)
ss = 0. The analytical solution of (4) can find the relation between ac and vu.

ac =
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu,

s.t. βT1 = 1, 0 ≤ βi ≤ 1 (i = 1, 2)

(5)

here, ∀c ∈ {1, 2, ..., S + U}.

2.2 Phantom Classes and Structure Relation Learning

For obtaining phantom class vu(u = 1, ..., U) and the manifold structure of the
weight coefficient vector β, we further reformulate the optimization formula for
one-versus-other classifier [3].
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(v1, ..., vU ,β) = arg min
v1,...,vU ,β

S∑

c=1

N∑

n=1

�(xn, Iyn,c, ac)

+
λ

2

S∑

c=1

‖ac‖22 +
γ

2
‖β1W

x − β2W
b‖22,

s.t. ac =
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu,

βT1 = 1, 0 ≤ βi ≤ 1 (i = 1, 2)

(6)

here, w
(x)
su is the element of the matrix W x, and w

(b)
su is the element of the matrix

W b. The first term of formula (6) is the squared hinge loss, which can be defined
as �(xn, Iyn,c, ac) = max(0, 1 − Iyn,cacxn). Iyn,c ∈ {−1, 1} determines whether
or not yn = c. The second term of formula (6) is ac of a regularization tern,
which avoids over-fitting problem on the pair-wise linear classifier for modeling
the relationship between the class label and the image representation. The third
term of formula (6) is the constraint of the manifold structure similarity for
preventing the negative structure propagation in image space. The alternating
optimization can be implemented for minimizing the formula (6) with respect
to {vu}Uu=1 and β by solving the quadratic programming problem.

To depict the whole process of the structure fusion and propagation mecha-
nism, we show the pseudo code of the proposed SFP algorithm in Algorithm1.

Algorithm 1. The pseudo code of the SFP algorithm
Input: D = {(xn ∈ RD, yn)}N

n=1,bs and bu (input data)
Output: y∗

P (P is the total iteration number)
1: Computes the similarity matrix W(b) on the semantic representation by (2)
2: Setting the similarity matrix W(x) to zero matrix on the image representation
3: for 1 < t < P do
4: Solving {vu}U

u=1 and β by alternately optimizing (6)
5: Computing ac according to (5)
6: Computing ŷ by (1) and obtaining the class label y∗

t of the unseen class corre-
sponding to the semantic class

7: Computing the mean value of each image class as the image class representation
xs and xu

8: Computing and updating the similarity matrix W(x) on the image representation
by (2)

9: end for

2.3 Complexity Analysis

Formula (6) can be solved by alternately quadratic programming, which of the
complexity includes two parts. In the first part, when β is fixed, formula (6) is
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related to {vu}Uu=1 of a quadratic programming problem, which of the complexity
is O(U3) for the worst. In the second part, while {vu}Uu=1 is fixed, formula
(6) is corresponding to β of a quadratic programming problem, which of the
complexity is O(k3) (k is the dimension of β) for the worst. Given the proposed
algorithm SFP needs P iterations, it’s complexity is O(PU3 + Pk3).

3 Experiment

3.1 Datasets

For evaluating the proposed algorithm SFP1, we carry out the experiment in
four challenging datasets, which are Animals with Attributes (AwA) [12], CUB-
200-2011 Birds (CUB) [27], Stanford Dogs (Dogs) [4], and SUN Attribute (SUN)
[21]. These datasets can be used for fine-grained recognition (CUB and Dogs) or
non-fine-grained recognition (AwA and SUN) in ZSL. In semantic space, AwA
and CUB respectively are described by att [6], w2v [20], glo [22] and hie [1],
while Dogs is represented by w2v [20], glo [22] and hie [1]. SUN is only depicted
by att [6]. Table 1 provides the statistics and the extracted features for these
datasets. In addition, for conveniently comparing with the state-of-art methods,
we adopt image feature provided by [1].

Table 1. Datasets statistics and the extracted feature in experiments.

Datasets Number
of seen
classes

Number of
unseen
classes

Total
number of
images

Semantic
feature/
dimension

Image
feature/
dimension

AwA 40 10 30473 att/85,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

CUB 150 50 11786 att/312,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

Dogs 85 28 19499 N/A,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

SUN 645 72 14340 att/102,
N/A,
N/A,
N/A

Deep feature
based on
GoogleNet
[26]/1024

1 Source code: https://github.com/lgf78103/Structure-propagation-for-zero-shot-
learning.

https://github.com/lgf78103/Structure-propagation-for-zero-shot-learning
https://github.com/lgf78103/Structure-propagation-for-zero-shot-learning
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3.2 Comparison with the Baseline Methods

In this paper, there are three methods as the baseline for comparing with the pro-
posed SFP method because of the semantic structure mining. The first method
is structured joint embedding (SJE) [1], which can build the bilinear compati-
bility function with consideration of the structured output space for predicting
the label of the unseen class. The second method is latent embedding model
(LatEm) [28],which can construct the pair-wise bilinear (nonlinear) compatibil-
ity function according to model number selection for recognizing unseen classes.
The third method is synthesized classifiers (SynC) [3], which can make nonlinear
compatibility function with manifold structure in semantic space for combining
the base classifier in ZSL. Table 2 shows the performance of the structure fusion
and propagation (the proposed SFP method) greatly outperforms that of other
three methods.

3.3 Classification and Validation Protocols

Classification accuracy is average value of all test class accuracy in each database.
Because the learned model involves four parameters, which are λ, γ, σb and σx

(respectively are in formula (3) in formula (6)). We alternately divide the training
classes set into two part in according with the proportion between the training
classes set and the test classes set. One part is to learn the model, and another
is to validate the model. Firstly, we set σb and σx to 1, and obtain γ and λ
corresponding to the best result in γ (form 2−24 to 2−9) and λ (form 2−24 to
2−9) by cross validation. Secondly, we learn σb and σx corresponding to the best
result in σb and σx (form 2−5 to 25) by cross validation.

3.4 Structure Fusion and Propagation with the Iteration

The main idea of the proposed SFP method shows three contents. In the first
content, the manifold structure of images is considered for constructing the com-
patibility function between the class label and the visual feature. In the second
content, the relationship between multi-manifold structures is found for booting
the influence of the positive structure. In the last content, it is the most impor-
tant to propagate the positive structure and fuse multi-manifold structures by
the iteration computation. Therefore, we carry out the related experiment for
evaluating the effect of the iteration on the structure evolution in AwA. The
recognition accuracy can show the approximation degree of the class manifold
structure. In other word, the better recognition accuracy is proportional to the
more similar relationship between the reconstruction manifold structure and
the intrinsic manifold structure of classes. Figure 2 demonstrates the recognition
accuracy change with the iteration. In the beginning, the recognition accuracy
rapidly increases with the iteration, and then reaches a stable state. It means
that structure fusion and propagation with the iteration can advance the recog-
nition accuracy and finally obtain the best state.
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Table 2. Comparison of SFP method with SJE [1], LatEm [28] and SynC [3] in each
semantic space, average per-class Top-1 accuracy (%) of unseen classes is reported
based on the same data configurations, same images and semantic features in AwA. w:
the fusion includes att, w2v, glo and hie, while w/o: the fusion contains w2v, glo and
hie.

Datasets Semantic feature SJE LatEm SynC SFP

AwA att 66.7 71.9 69.3 84.3

w2v 51.2 61.1 52.9 77.4

glo 58.8 62.9 53.4 70.5

hie 51.2 57.5 52.0 62.1

w 73.9 76.1 78.0 85.4

w/o 60.1 66.2 69.1 81.4

CUB att 50.1 45.5 47.5 51.8

w2v 28.4 31.8 32.3 32.5

glo 24.2 32.5 32.8 33.3

hie 20.6 24.2 22.7 24.3

w 51.7 47.4 48.8 54.1

w/o 29.9 34.9 35.2 35.3

Dogs att N/A N/A N/A N/A

w2v 19.6 22.6 27.6 33.3

glo 17.8 20.9 21.9 33.4

hie 24.3 25.2 31.1 32.4

w N/A N/A N/A N/A

w/o 35.1 36.3 36.3 48.1

SUN att 56.1 57.6 62.8 67.6

3.5 Comparison with State-of-the-Arts

In term of the image data utilization of unseen classes in testing, we can divide
ZSL methods into two categories, which are inductive ZSL and transductive ZSL.
Inductive ZSL methods can serially process unseen samples without the consid-
eration of the underlying manifold structure in unseen samples [1,3,28,33], while
transductive ZSL can usually use the manifold structure of unseen samples to
improve ZSL performance [8,10,15]. SFP can find the structure of unseen classes
in image feature space to enhance the transfer model between seen and unseen
classes, so SFP belongs to a transductive ZSL method. For a fair comparison,
we use deep feature of images based on GoogleNet [26] in contrasting methods,
which include our method, one transductive ZSL method (DMaP [15]), and three
inductive ZSL methods (SJE [1], LatEm [28] and SynC [3]). To the best of our
knowledge, these methods are state-of-the-art methods for ZSL. Table 3 shows
their results for ZSL on three benchmark datasets. SFP mostly outperforms the
state-of-the-art methods except DMaP on CUB. DMaP focuses on the manifold
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Fig. 2. Average per-class Top-1 accuracy (%) of unseen classes is reported with struc-
ture fusion and propagation iteration times on AwA. w: the fusion includes att, w2v,
glo and hie, while w/o: the fusion contains w2v, glo and hie

structure consistency between the semantic representation and the image fea-
ture, and can better distinguish fine-grained classes. SFP can complement the
manifold structure between the semantic representation and the image feature,
and better recognize coarse-grained classes. Therefore, integrating two ideas is
expected to further improve the ZSL performance in future work.

3.6 Experimental Result Analysis

From the above experiments, we can attain the following observations.

– The semantic description have the different contribution for classifying unseen
classes. The supervised attribute tend to obtain the better recognition perfor-
mance than the unsupervised semantic representation (w2v, glo and hie) in
AwA and CUB. In the unsupervised semantic representation, the recognition
accuracy of w2v or glo is better than that of hie in AwA and CUB, but the
performance of hie is superior to that of w2v or glo in Dogs. This is mainly
due to the flexibility and uncertainty of the semantic representation in the
unsupervised way.

– The performance of SFP is better than that of other three methods, which are
SJE, LatEm, and SynC. However, the performance improvement is different
in the various datasets. The obvious improvement can be found in AwA,
Dogs and SUN, while the slight improvement can be shown in CUB. The main
reason of this situation is related to whether or not effectively to propagate the
positive structure in the optimization computation in term of data differences.

– SFP emphasizes on the different manifold structure complement, while DMaP
focuses on the various manifold structure consistency. Therefore, the perfor-
mance of SFP is superior to that of DMaP because the structure comple-
mentarity plays the important role for learning transfer model in AwA and
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Table 3. Comparison of SFP method with state-of-the-art methods for ZSL, average
per-class Top-1 accuracy (%) of unseen classes is reported based on the same data
configurations. ‘+’ indicates fusion operation.

Method Semantic feature T/I AwA CUB Dogs

SJE att I 66.7 50.1 N/A

w2v I 51.2 28.4 19.6

LatEm att I 71.9 45.5 N/A

w2v I 61.1 31.8 22.6

SynC att I 69.3 47.5 N/A

w2v I 52.9 32.3 27.6

DMaP att T 74.9 61.8 N/A

w2v T 67.9 31.6 38.9

att+w2v T 78.6 59.6 N/A

SFP att T 84.3 51.8 N/A

w2v T 77.4 32.5 33.3

att+w2v T 84.7 52.5 N/A

att+w2v+glo+hie T 85.4 54.1 N/A

w2v+glo+hie T 81.4 35.3 48.1

Dogs, and the performance of DMaP is better than that of SFP because the
structure consistency is a key point for classifying unseen classes in CUB.

– SFP performs better with the positive structure fusion and propagation. SFP
has demonstrated great promise in above experiments due to multi-manifold
structure consideration and alternated optimization between the weight com-
putation and the manifold structure estimation for ZSL.

– The proposed fusion method can attain the better performance than the non-
fusion method because of appropriate complementing each other. w or w/o
always performs better on AwA, CUB and Dogs.

4 Conclusion

We have proposed a new ZSL method, which called structure fusion and propa-
gation (SFP). This method can not only directly model the relevance among the
manifold structures in semantic and image space, but also dynamically propa-
gate the positive structure by the crossing iteration. Specifically, the proposed
SFP method mainly includes four parts. First, nonlinear model constructs the
mapping relationship between the class label and the visual image represen-
tation. Second, graph describes the relevance between seen classes and unseen
classes in semantic or image space. Three, loss function indicates the constrains
relationship of multi-manifold structure to balance the structure dependance.
Last, structure fusion and propagation is implemented by the crossing iteration
computation between phantom classes and weights solving. For evaluating the
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proposed SFP, we carry out the experiment on AwA, CUB, Dogs and SUN.
Experimental results show that SFP can obtain the promising results for ZSL.
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Abstract. For hierarchical learning, one open issue is how to build a
reasonable hierarchical structure which characterize the inter-relation
between categories. An effective approach is to utilize hierarchical clus-
tering to build a visual tree structure, however, the critical issue of this
approach is how to determine the number of clusters in hierarchical clus-
tering. In this paper, a hierarchical cluster validity index (HCVI) is devel-
oped for supporting visual tree learning. Before clustering of each level
begins, we will measure the impact of different numbers of clusters on
visual tree building and select the most suitable number of clusters. The
proposed HCVI will control the structure of visual tree neither too flat
nor too deep. Based on this visual tree, a hierarchical classifier can be
trained for achieving more discriminative capability. Our experimental
results have demonstrated that the proposed hierarchical cluster validity
index (HCVI) can guide the building of a more reasonable visual tree
structure, so that the hierarchical classifier can achieve better results on
classification accuracy.

Keywords: Hierarchical cluster validity · Number of clusters
Visual tree · Hierarchical classification

1 Introduction

Recently, hierarchical classification has received enough attention in the field of
machine learning [19,30,38,39], and also has been applied successfully in many
applications [3,9,40]. In general, hierarchical classification has three advantages:
(1) Hierarchical classification has higher classification efficiency. In the testing
phase, hierarchical classifier only need to go through fewer node classifiers than
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flat classifiers [6,37]. (2) Hierarchical classification can effectively deal with the
imbalanced data. (3) The structural characteristics of the hierarchical classi-
fier make it possible to obtain higher classification accuracy when dealing with
structured data. For hierarchical learning, one open problem is how to build a
reasonable hierarchical structure which characterize the inter-relation between
categories.

Fig. 1. The framework of hierarchical classifier training. The blue elliptical nodes rep-
resent the root nodes; the green circular nodes represent the intermediate nodes; the
violet hexagonal nodes represent the leaf nodes. Before clustering, HCVI was utilized
to select the optimal number of clusters. This process is applied recursively until the
leaf node is reached, and then the hierarchical classifier can be trained over the visual
tree from top to bottom. (Color figure online)

In general, the existing approaches for building hierarchical structure can be
roughly divided into three types: (1) Semantic tree [12,22,33]. It builds an hierar-
chical structure by leveraging the semantic ontology in the real world. However,
it cannot characterise the inter-relation between categories in the feature space.
(2) Label tree [9,23]. To learn a label tree, we need to train a flat one-versus-rest
(OVR) binary classifiers first, and then utilize the classification results to build
the visual tree. However, the label tree structure always suffer from the imbal-
anced data and training efficiency. (3) Visual tree [13,30,41]. In general visual
tree learning, a large number of categories can be organized hierarchically in a
coarse-to-fine fashion with hierarchical clustering. Because the feature space is
the common space for classifier training and classification, the visual tree can
provide a good environment to characterize the inter-relation between categories.
However, the number of cluster centers will profoundly influence the structure
of the visual tree. Thus, how to determine the number of clusters is a critical
issue.

Therefore, the suitable clustering number of hierarchical clustering is the key
to building a reasonable visual tree and training a more discriminative classifier.
It is necessary to find a way to effectively evaluate the goodness of clustering
in order to select the suitable number of clusters. It is worth noting that the
cluster validity index (CVI) is often used to evaluate the success of clustering
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applications [24,25]. Cluster validity index can be roughly divided into two cat-
egories: external cluster validity index and internal cluster validity index. The
main difference is whether the external information is used in the cluster validity.
Usually, the external information refers to the category labels. For visual tree,
the objects of clustering are categories instead of samples, so there is no external
information available for visual tree structure. Therefore, only internal cluster
validity index can be used to guide the visual tree building.

Based on these observations, in this paper, an hierarchical cluster validity
index (HCVI) is developed for supporting visual tree learning. The HCVI will
consider both the clustering results of each level and the structural rationality of
the visual tree. In hierarchical clustering, we will measure the impact of different
numbers of clusters on visual tree building and select the most suitable number
of clusters before clustering of each level begins. Based on the visual tree, a
hierarchical classifier can be trained from top to bottom. Figure 1 illustrates the
framework of hierarchical classifier training.

This paper is organized as follows. In Sect. 2, we review some relevant work.
In Sect. 3, we present the proposed HCVI algorithm for visual tree learning. In
Sect. 4, we present our experiments for algorithm evaluation. Section 5 provides
some conclusions.

2 Related Work

The existing approaches for building hierarchical structure can be divided into
three groups: (a) semantic tree; (b) label tree; (c) visual tree. Some researchers
utilize the semantic ontology to organize large numbers of categories hierarchi-
cally [8,12,22,26,27,33]. Marszalek et al. employ the affiliation between nouns
of WordNet to build a semantic tree for visual recognition [26]. Li et al. uti-
lize both image and tag information to discover the semantic image hierarchy,
and than employ this hierarchy to encode the inter-categories relations [22].
Fan et al. integrate semantic ontology and multi-task learning to complete the
multi-level image annotation [12]. Some researchers build the label tree struc-
ture in the feature space [1,9,15,29,36]. Bengio et al. propose a label embedding
tree for multi-class tasks [1]. Griffin et al. automatically generate useful tax-
onomies for learning hierarchical relationships between categories [15]. However,
the label tree structure always suffer from the imbalanced data and training
efficiency. Therefore, other researchers learn the visual tree by hierarchical clus-
tering directly [28,30,40,41]. Zheng et al. utilize hierarchical affinity propagation
clustering and active learning to build the visual tree [40]. Nister et al. built a
vocabulary tree by employing hierarchical clustering [28].

Cluster validity index can be roughly divided into two categories: external
cluster validity index and internal cluster validity index. External cluster validity
is a measure for evaluating the quality of a clustering by employing the ground
truth partition [21,24,25]. At present, many external cluster validity indexes have
been proposed, such as: Rand Index (RI) [31], Adjusted Rand Index (ARI) [17],
Fowlkes and Mallow index (FM) [14], Jaccard Index (JI) [18]. However, in visual
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tree learning, no ground truth information is available, so the internal cluster
validity index should be used. Internal cluster validity index has been widely
used in selecting the number of clusters. Calinski et al. proposed the Calinski-
Harabasz index (CH), and it defined as the average between- and within- cluster
sum of squares [4,24]. Davies et al. proposed the Davies-Bouldin index (DB),
and it defined as the sum ratio of within-cluster scatter to between-cluster sep-
aration [7]. Rousseeuw proposed the Silhouette index (Si), and it is utilized to
evaluate the consistency within clusters of data [32]. Tibshirani et al. focused the
well separated clusters and developed a Gap index (Gap) [34]. Dunn proposed
the Dunn index (Dunn), and it defined as the ratio between the inter-cluster sep-
aration to the intra-cluster compactness [11]. Hartigan proposed the Hartigan
index (Har) [5,16].

3 Hierarchical Cluster Validity Index for Visual Tree
Learning

In general, both external cluster validity index and internal cluster validity index
are used to evaluate the performance of clustering. If we want to use CVI to guide
visual tree learning, the most direct method is to find a reasonable CVI and use
it to select the suitable number of clusters before each level clustering starts.
This approach is appropriate for hierarchical clustering alone. However, although
the visual tree is built by employing the hierarchical clustering, its purpose is
not to get a good clustering result, but to train a discriminative hierarchical
classifier based on it. No matter what CVI is used, it can only select the optimal
number of clusters for a single clustering. However, one hierarchical clustering
contains many sub-clustering. As computer scientists often say: local greed does
not guarantee the global optimum, a satisfactory visual tree structure cannot be
obtained through traditional internal CVI guidance. For example: according to
CVI, one hierarchical clustering tends to choose fewer clusters at each level, the
obtaining visual tree will be deep and narrow, and then the more node classifiers
will be trained on one path of hierarchical classifier. Unfortunately, at some
times, the more node classifiers passed, the lower the classification accuracy will
be.

Based on these understanding, we propose a hierarchical cluster validity index
that can measure the clustering validity while taking care of visual tree learning.
The vast majority of CVIs are designed based on two key criteria: compactness
and separation. The compactness measures the distance between the cluster
center and samples in one cluster. Separation measures the pairwise distances
between cluster centers. The existing methods have done a good job on these
two criteria. Therefore, our hierarchical cluster validity index (HCVI) mainly
focuses on visual tree learning. Specifically, we design a parameter based on the
clustering results to measure whether the current cluster is suitable for building
a visual tree. After that, we combined this parameter with the common CVIs to
construct HCVI and employing the HCVI to guide the visual tree building.
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Fig. 2. The overly imbalanced structure of the visual tree. For sub-figure (a), most
categories are grouped into one cluster, which leads to category imbalance. For sub-
figure (b), Although the categories are relatively balanced, the huge difference in the
number of samples in different categories leads to data imbalance.

In the real-world, large numbers of categories are usually imbalanced in the
feature space (e.g., some of them have strong inter-category similarities, while
others may have weaker inter-category similarities). Therefore, hierarchical clus-
tering also generates an imbalanced visual tree. However, an overly imbalanced
structure can also have negative effects on the training of hierarchical classifiers.
Figure 2(a) illustrates an overly imbalanced structure. In this figure, each circle
represents one category, and one can observe that most categories are grouped
into one cluster. It will lead to imbalanced data problems when training hier-
archical classifiers over this visual tree. In order to solve this problem, we have
developed a parameter to evaluate the category balance, it defined as:

q∑

k=1

[(
rk − rE

rE
)
2

+ 1] (1)

where parameter q indicates number of clusters. rE indicates the average number
of categories for one cluster. rk indicates the number of categories contained in
the kth cluster.

This parameter indicates the category balance in the clustering. The larger
the parameter, the more imbalanced it is. On the other hand, in visual tree
learning, the clustering objects are categories. However, when training hierar-
chical classifiers over the visual tree, every sample needs to be used for training.
Therefore, we also need to consider the sample balance. Figure 2(b) illustrates
an overly sample imbalance. One can observe that the number of categories in
each cluster is almost equal, but the number of samples in each category varies
greatly, which can seriously affect the training of hierarchical classifiers. There-
fore, we have developed another parameter to evaluate the sample balance, it
defined as:

q∑

k=1

[(
mk − mE

mE
)
2

+ 1] (2)
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where mE indicates the average number of samples for one cluster. mk indicates
the number of samples contained in the kth cluster.

In order to measure the category and sample balance simultaneously, we
combine these two parameters to generate a balance parameter, it defined as:

δ(q) =
1
q

q∑

k=1

((
rk − rE

rE
)
2

+ 1)((
mk − mE

mE
)2 + 1) (3)

This parameter measures the balance of the visual tree learning. The smaller
the value, the better the balance. We employ the balance parameter in com-
bination with common CVIs as HCVI to measure the clustering effect so that
the optimal number of clusters for hierarchical clustering can be selected. Some
CVIs are the bigger the better, such as: CH [4], we denote HCVI as CH/δ(q),
meanwhile, others are the smaller the better, such as: DB [7], we denote the
HCVI as DB · δ(q).

4 Experimental Results

4.1 Notation and Definitions

In this section, we introduce the notations used in the experiment [5], and than
provide the definitions about HCVIs and internal CVIs, such as: CH [4], DB [7],
Si [32], Dunn [11] and Har [16].

In the following, we denote:

n = number of samples;
p = number of variables;
q = number of clusters;
X = {xij} , i = 1, ..., nj = 1, ..., p;
x = centroid of data matrix X;
Ck = the k-th clusters;
nk = number of objects in cluste Ck;
ck = centroid of cluster Ck;
d(x, y) = distance between x and y;
xi = p-dimensional vector of samples of the i-th object in cluster Ck;
‖x‖ = (xTx)1/2;

Wq =
q∑

k=1

∑
i∈Ck

(xi − ck)(xi − ck)
T is the within-class dispersion matrix;

Bq =
q∑

k=1

nk(ck − x)(ck − x)T is the between-class dispersion matrix;

Nt = n(n − 1)/2;

Nw =
q∑

k=1

nk(nk − 1)/2;

Nb = Nt − Nw;

Sw =
q∑

k=1

∑
i,j∈Ck,i<j

d(xi, xj) is sum of the within-cluster distances;
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Table 1. Definitions of cluster validity index.

Method Notation CVI definition HCVI definition

Calinski-Harabasz index CH CH =
trace(Bq)/(q−1)

trace(Wq)/(n−q)
CH/δ(q)

Davies-Bouldin index DB

DB = 1
q

q∑

k=1
max
k �=l

{
χk+χl
d(ck,cl)

}
,

χk = 1
nk

∑

x∈Ck

d(x, ck),

χl =
1
nl

∑

x∈Cl

d(x, cl)

DB · δ(q)

Silhouette index Si

Si = 1
n

n∑

x=1

b(x)−a(x)
max{a(x),b(x)} ,

a(x) = 1
ni−1

∑

y∈Ci,y �=x

d(x, y),

b(x) = min
j,j �=i

[ 1
nj

∑

y∈Cj

d(x, y)]

Si/δ(q)

Dunn index Dunn Dunn =

min
1≤i<j≤q

( min
x∈Ci,y∈Cj

d(x,y))

max
1≤k≤q

( max
x,y∈Ck

d(x,y))
Dunn/δ(q)

Hartigan index Har Har = (
trace(Wq)

trace(Wq+1)
− 1)(n − q − 1) Har · δ(q)

Sb =
q−1∑
k=1

q∑
l=k+1

∑
i∈Ck,j∈Cl

d(xi, yi) is sum of the between-cluster distances.

Based on these notations, Table 1 shows 5 widely used internal cluster valid-
ity index and its corresponding hierarchical cluster validity index. The “Method”
column gives the full name of these indices, and the “Notation” column gives
the abbreviation. The “CVI Definition” column gives the computation formu-
las of these indices and the “HCVI Definition” column gives the corresponding
hierarchical forms.

4.2 Experimental Settings

In order to verify the effectiveness of the proposed balance parameter, we com-
pare the common CVIs and the balance parameter based HCVIs through exper-
iments. We employ K-means as the clustering algorithm for experiment. All the
experiments are carried out on Matlab 2015a. In our experiments, DB, CH,
Si can be implemented by using the Statistics and Machine Learning Toolbox
of Matlab. We implement the Har index by employed part of CVAP toolbox
[35]. Our experimental environment is: a single machine with 4 cores and 16GB
memory.

4.3 Experiment for Balance Parameter

In this experiment, we evaluate the proposed approach on Fisheriris data set.
Fisheriris data set is one of available data set at UCI machine learning repository
[2]. It has 150 samples with 50 samples in each category. The dimension of the
original data is 4. To facilitate visualization, we use the first two dimensions of
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Table 2. Criterion values of CVIs.

Number of clusters 2 3 4 5 6 7 8

CH 730.92 873.13 1009.93 1190.18 1230.11 1196.25 1173.77

DB 0.36 0.58 0.70 0.61 0.67 0.69 0.72

Si 0.84 0.69 0.67 0.70 0.67 0.64 0.63

Dunn 0.0207 0.0282 0.0340 0.0654 0.0504 0.0548 0.0504

Har −184.47 −31.60 60.72 −64.90 318.50 −112.69 63.88

Table 3. Balance parameter of Fisheriris data set.

Number of clusters 2 3 4 5 6 7 8

Balance parameter 1.89 1.57 1.24 1.06 1.40 1.23 1.22

each sample as one sample and the last two dimensions as another. In this way,
there are 300 samples in total. In the experiment, we use 5 common CVIs and
their corresponding HCVIs to evaluate the clustering results with different num-
ber of clusters. It is worth noting that each sample in this experiment represents
only one single sample, so HCVIs can only evaluate the sample balance.

Table 2 shows the criterion values of CVIs. The bold value is the optimal
criterion values of different CVIs. One can observe that the optimal number of
clusters derived from different CVIs is not identical, even though the clustering
data is the same. It shows the criteria of different CVIs vary widely. Since we
have reconstructed the data set, the original labels has been invalidated, so
we cannot evaluate which CVI is better. However, our main purpose is not
to find the optimal indicators, but to verify the effectiveness of the balance
parameters. Table 3 shows the balance parameter of different number of clusters.
From the result, it is obvious that the clustering result is the most balanced
when the number of clusters q = 5. From Tables 2 and 3, we can observe that
most common CVIs do not pay attention to the balance of clustering, which is
the precisely concern of building a visual tree. Therefore, HCVI is a reasonable
choice for considering both clustering goodness and balance. Figure 3 illuminates
the cluster assignments and the criterion values of CVIs and their corresponding
HCVIs. The first two columns show the results of the CVI, and the last two
columns show the results of the corresponding HCVI. We can observe that the
common CVIs tend to choose fewer clusters, while HCVIs tend to choose more
clusters. In particular, the DB and Si indices both consider q = 2 as the optimal
number of clusters, however, it results in a very imbalanced clustering result.
After using the balance parameter, the HCVIs of DB and Si have selected a
reasonable cluster number that makes the clustering results more balanced. It
is worth noting that the balance parameter does not improve balance of Har
index. It shows that the Har index hardly considers the clustering balance as
a criterion. In summary, we can conclude that the proposed balance parameter
can effectively improve the performance of CVIs in terms of clustering balance.
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Fig. 3. The cluster assignments and the criterion values of CVIs and their correspond-
ing HCVIs.
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4.4 Experiment for Hierarchical Classification

In this section, we evaluate the proposed HVCIs comparing the classification
accuracy of different visual tree structures. In the experiment, we employ the
proposed HCVI to build visual trees and train hierarchical classifiers based on
these visual trees. Our experiment are carried out on two data sets: CIFAR-
100 [20], the ILSVRC-2012 [8]. CIFAR-100 has 100 image categories and each
category contains 600 images. We randomly select 10,000 images, half for training
and half for testing. ILSVRC-2012 data set is a subset of ImageNet. It contains
1000 image categories and each category has over 1,000 images. We randomly
select 20,000 images, half for training and half for testing. In the experiment, we
employ DeCAF features as the image representation [10], and then use PCA to
reduce the dimensionality of the DeCAF from 4096 to 128.

Table 4. Classification results on CIFAR-100 and ILSVRC-2012 image set.

Approaches CIFAR-100 ILSVRC-2012

Semantic tree 22.86 26.39

Label tree 24.51 28.11

Visual tree 25.07 28.16

EVT 28.28 28.59

CH-VT 36.98 33.96

DB-VT 25.46 32.21

Si-VT 30.90 39.12

Dunn-VT 28.08 30.02

Har-VT 29.34 28.10

HCH-VT 38.00 35.03

HDB-VT 29.04 34.46

HSi-VT 29.30 38.35

HDunn-VT 34.74 32.71

HHar-VT 31.54 28.58

In this experiments, we compare the proposed HCVI-visual tree structure
with two types of tree structure: CVI-visual tree structure and traditional hier-
archical structure. In particular, traditional hierarchical structures contains:
semantic tree [27], label tree [15], visual tree [40] and EVT [40]. We train hier-
archical classifiers based on these tree structure and compare their classification
results. We employ K-means as the clustering algorithm for experiment and the
SVM classifier as the node classifiers. The Mean Accuracy (%) is used as the
criterion to evaluate the performance of all approaches. The experimental results
are shown in Table 4. We can observe that the hierarchical classifiers based on
visual trees which utilizing cluster validity indices can achieve better results.
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The reason is that the cluster validity indices allows us to get better cluster-
ing results, so as to get more discriminative visual trees. In addition, most of
HCVIs-based methods have achieved better results, which illustrates the effec-
tiveness of the proposed balance parameter. It’s worth noting that CH index
based method achieve higher classification accuracy compared to HCH index
based method. One possible reason is that the HCH index considers balance too
much and ignores the compactness and the separation of clustering. In general,
we can obtain more reasonable visual tree structures through the guidance of
HCVIs to help train more discriminative hierarchical classifiers.

5 Conclusion

In this paper, a hierarchical cluster validity index (HCVI) is developed to achieve
more discriminative solution for visual tree learning, where the hierarchical clas-
sifiers can be trained over the visual trees. Our HCVI integrate the proposed
balance parameter and the common CVIs. Both the balance of visual tree and
the effectiveness of clustering are leveraged to learn more discriminative hierar-
chical structure. Therefore, the hierarchical classifier can achieve better results.
The experimental results have demonstrated that our hierarchical cluster validity
index has superior performance as compared with other cluster validity indices
on both the clustering balance and the classification accuracy.
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Abstract. Shapelets are discriminative local patterns in time series,
which maximally distinguish among different classes. Instead of con-
sidering full series, shapelet transformation considers the existence or
absence of local shapelets, which leads to high classification accuracy,
easy visualization and interpretability. One of the limitation of existing
methods is robustness. For example, Search-based approaches select sam-
ple subsequences as shapelets and those methods intuitively may be not
accurate and robust enough. Learning-based approaches learn shapelets
by maximizing the discriminative ability. However, those methods may
not preserve basic shape for visualization. In practice, shapelets are sub-
jected to various geometric transformations, such as translation, scaling,
and stretching, which may result in a confusion of shapelet judgement. In
this paper, robust shapelet learning is proposed to solve above problems.
By learning transform-invariant representative prototypes from all train-
ing time series, rather than just selecting samples from the sequences,
each time series sample could be approximated by the combination of the
transformations of those prototypes. Based on the combination, samples
could be easily classified into different classes. Experiments on 16 UCR
time series datasets showed that the performance of the proposed frame-
work is comparable to the state-of-art methods, but could learn more
representative shapelets for complex scenarios.

Keywords: Robustness · Transform-invariant
Representative prototype

1 Introduction

Time series classification has attracted a lot of attention in many applications,
such as finance (e.g. stock market), medical diagnosis (e.g. EEG and ECG),
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motion capture and speech recognition. Since the order of series and the depen-
dence of close time stamps are crucial in finding the most discriminative fea-
tures and patterns, it raises great difficulty for algorithms to classify time series
data. Recently, a new primitive named Shapelets has been generating increasing
interests in time series classification (TSC). Shapelets are discriminative contin-
uous snippets of full series, which maximally distinguish among different classes.
Hence, shapelets can be treated as representative of some class, and time series
classification turns out to be the problem of presence or absence of some shapelets
for representing time series data.

Shapelets for time series have attracted many researchers’ interest for two
main reasons. First, shapelets focus on local variation rather than global vari-
ation as traditional algorithms did, which could be more robust to noise and
available for early time series prediction. Second, shapelets reveal the inherent
attention mechanism of data so that allow for easier summarization and visual-
ization, which provides explanatory insights to the classification problem.
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Fig. 1. Demo of deformation. The left column is a cosine curve; the right column is the
transformed cosine curve obtained by imposing shift, translation, scaling, stretching
transformations and Gaussian noise on the original cosine curve.

Despite the above advantages of shapelets, current shapelets are a little
clumsy. We observe that samples in the same class always share a basic shape,
while in practice, the basic shape may subject to individual difference and go
through various deformations, such as shift, translation, scaling, stretching and
so on. As shown in Fig. 1, the cosine curve is actually similar to the transformed
cosine curve in term of shape, despite individual noises and slight differences in
phase (shift), amplitude (scaling), offset (translation), uniform scaling (stretch-
ing).

In this paper, we introduce a new conception, “shapelets prototypes” and
propose a transform-invariant robust shapelet learning framework based on dic-
tionary learning theory. The proposed framework aims to learn representative
basic shapes that are learned from the transformed subsequences by alterna-
tive iteration. In each iteration, robust shapelet learning performs two steps:
a) in the alignment step, the best transformation operators are automatically
obtained by minimizing the average least square error between the transformed
subsequences and current shapelets prototype; b) in the refinement step, the
dictionaries are updated to reflect the basic shapes from transformed training
series. Figure 2 shows a real-world example from the GunPoint dataset. S1 and
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S2 are learned shapelet prototypes, T1–T3 are three time series from gun class,
and T4–T6 are examples from no gun class. Here S1 represents an action of
drawing guns from holsters, and S2 represents returning guns to the holsters,
which are critical patterns for classifying the two classes. While such actions are
subject-dependent, and the corresponding patterns from samples shows a high
variety due to individual factors. As seen from Fig. 2, our proposed method can
align probe sample to learned prototypes and reveals the inherent knowledge of
data. Our contributions can be summarized as:

– We propose a robust shapelet learning framework based on dictionary learning
theory, which is invariant to various deformations;

– The discovered shapelet prototypes can explore intrinsic shapes which are
more general and expressive.

– Shapelet prototypes well preserve the basic shapes and hence have better
interpretability.
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Fig. 2. Illustration of two shapelet prototypes S1, S2 (leftmost plots) learned from
GunPoint dataset. First row (T1, T2, T3) and second row (T4, T5, T6), are instances
from Gun class and NoGun class respectively. Each sample mathced prototypes to
all segments and projected corresponding segments (red and green) to prototypes by
optimal transformation parameters. It can be observed that series in Gun have a better
match to prototypes than series in NoGun. (Color figure online)

2 Related Work

Shapelets are discriminative shapes that can be used to classify time series data
effectively. Shapelet learning algorithms make classification decision based on the
presence or absence of shapelets in representing a time series. Existing shapelet
learning methods can be categorized into search-based algorithms [7,8,10,13,14]
and learning-based algorithms [4,12]. The original search-based algorithm adopts
a brute-force strategy to select shapelets from a large pool of candidate segments
and select the most expressive subsequences by various quality criteria, which is
time-consuming [14]. In order to reduce the searching time, several algorithms
have been proposed to speed up the algorithm by skipping similar segments so
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that the number of candidates are greatly reduced [7,8,10,13]. Instead of learning
the shapelets first, learning-based algorithms try to learn shapelets and classify
time series data simultaneously. Grabocka et al. proposed a classification logistic
loss function to jointly learn the shapelets and the logistic regression classifier
through stochastic gradient descent approach. Search-based approaches choose
existing subsequences from training time series, while learning-based approach
sometimes may not preserve the basic shape of shapelets so that may lack of
interpretability, as it mainly considered classification ability. In other words, the
above methods lack of the ability of learning a transform-invariant prototypes
from training series.

Invariance of transformations is important for time-series domain
because sequences are easily distorted and always show high variety due to
geometric transformations. For examples, scaling (amplitude) and translation
(offset) invariance might benefit for seasonal variations of markets with inflation
motion caption [9], and shift invariance [15] is essential for the case where time
series share similar patterns but in different phase. In addition, uniform scal-
ing invariance is required for heartbeats with measurement periods of different
sampling frequency.

Dictionary learning has been proposed to learn a set of basis for com-
pact representation. In dictionary learning frameworks, each sample T can be
approximated by a sparse linear combination of learned basis {Dk}K

k=1.

T =
K∑

k=1

αkDk + ε s.t ‖α‖1 ≤ c0, (1)

Such models always employ reconstruction error as objective loss function, where
basis and representation coefficients are optimized by alternate iteration. Dictio-
nary learning has been proved feasible and desirable in image classification [6],
signal reconstruction and representation [1,11]. Further, it has been shown great
power in scalable data mining and has strong interpretability and generalization
capability [16].

3 Learning Transform Invariant Shapelet Prototypes

Formulations. In this section we adopt a conception of “prototype” D, repre-
sentative shapes learned from training samples. For a set of subsequences without
transformation, the prototype is usually computed based on Euclidean space:

arg min
αi∈RK

Dk∈Rq

N∑

i=1

‖T i −
K∑

k=1

αi
kDk‖2 + λ

N∑

i=1

‖αi‖1

s.t. ‖Dk‖2 ≤ d0, for k = 1 . . . , K

(2)

While it’s not appropriate to utilize Euclidean distance by L2 norm in many
cases, as we often pay more attention to the shape similarity. Even tiny opera-
tion in scaling, translation, and stretching may rapidly swamp shape similarity
measured by Euclidean distance.
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For subsequences with various transformations, we introduce a conception of
transformation operator τ , and τ may be a compound of multiple transforma-
tions. An intuitive observation is that each sample subsequences is transformed
from shared “prototype” dictionary bases D by a corresponding transformation
operator:

τ i(T i) =
K∑

k=1

αkDk + εi s.t ‖α‖1 ≤ c0, (3)

where each sample has specific transformation operator τ i. Therefore, the learned
dictionaries, removing the effect of transformations, is defined as “prototypes”
and could be estimated by minimizing the reconstruction error between the
sample subsequence and the aligned reconstruction samples. The reformulation
is as follows:

arg min
αi∈RK

Dk∈Rq

τ i∈ω

N∑

i=1

‖τ i(T i) −
K∑

k=1

αi
kDk‖2 + λ

N∑

i=1

‖αi‖1

s.t. ‖Dk‖2 ≤ d0, for k = 1 . . . , K.

(4)

Here prototypes D for series and transformation operator τ i and codes αi for
each sample need to be optimized.

Transform Definition
The proposed robust shapelet learning framework aims to find the intrinsic local
patterns of time series. For a prototype w ∈ Rp, a vector ordered by time stamps,
most classical linear transformations can be represented as:

T i = τ i(w) + εi = aiw(μit) + ci + εi, (5)

where ai is a scaling factor, ci is a translation factor and μi is a stretching
factor. Here τi defines a general transformation, where scaling, translation and
stretching operators are its special cases:

– Scaling operator: Scaling transformation describes differences in amplitude
between w(t) and transformed sequence Ti(t):

Ti(t) = aiw(t) t = 1, . . . , p (6)

– Translation operator: Translation transformation describes a translation
along y axis from w(t) to transformed sequence Ti(t):

Ti(t) = w(t) + ci t = 1, . . . , p (7)

– Stretch operator [3]: Uniform scaling transformation is used for match-
ing sequences with different lengths. Subsequences with different length may
require a stretching or shrinking operation due to different tempo or sampling
frequency:

Ti(t) = w(
⌈

t

μ

⌉
) t = 1, . . . , �μp� (8)
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Note that stretching operator defined is motivated by uniform scaling operation
through ceiling function [3].

Figure 3 shows the above defined transformations. Similarly, we can define
the inverse operators for the above transformations.
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Fig. 3. Difference between transformed subsequence (plotted in red) and original sub-
sequence (blue): Scale operator a = 1.5 (leftmost). Translation operator c = 0.2 (second
column). Stretch operator μ = 2 (third column). Multiple transformations on GunPoint
dataset (rightmost). (Color figure online)

4 Model Inference

Optimization objective function is a non-convex problem with respect to the pro-
totypes and transformation operators. We adopt a coordinate descent approach
for iteration alternatively. And in each iteration, we perform two steps shown in
Algorithm 1: (i) Alignment step: Given current dictionary, updating correspond-
ing transformation operator for each sample subsequences. (ii) Refinement step:
Given all transformation operators, the dictionary is updated to reflect the basic
shapes learnt from training series.

Alignment Step. Fix the dictionary and sparse coding, i.e., D and α, recon-
struction sequence has been determined. We are going to find the optimal align-
ment (deformation) between original series T i and reconstruction sequence. To
learn the transform parameters, we minimize the mean square error between the
reconstruction sequence and subsequence of time series by all possible conver-
sion. It’s remarkable that for input segments T i

j with stretching factor μ, it has
an unequal length to the dictionary. So it needs to do an inverse operation μ−1.
For a given sparse coding and dictionary, problems can be solve as:

arg min
τ i

‖τ i(T i) −
K∑

k=1

αi
kDk(t)‖2 (9)

where τ = {a, μ, c}, superscript and subscript are dropped for clarify. Obviously,
a and c are scaling and translation factors with continuous values, μ is a stretch
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Algorithm 1. Transform Invariant shapelet prototypes learning
Input: Initial segments {Ti}N

i=1, Initial dictionary D ∈ RK∗q.
1: for Iter = 1, ..., MaxIter do do
2: for i = 1, ..., N do do
3: Alignment step:
4: τi = E.q (9) ;
5: T ′

i = τ i(T i) ;
6: end for
7: Refinement step:
8: {α, D, τ} = E.q (10)
9: end for

10: return α, D, τ ;

factor with discrete factor. So fixed μ, optimal a, c can be derived by Least Square
methods. Then a grid search will be conducted by all possible μ. With obtained
parameters, original subsequence τ(T ) at transformed location are exacted, as
well as aligned sequence S = τ(T ) ∈ Rq.

Refinement Step. Fix the transform parameters, i.e., τ = {a, μ, c}, optimize
α,D. If transform parameters τ are known, it’s easy to get updated segments,
i.e., updated {τ i(T i)}N

i=1, which is transformed with fixed length. The problem
then reduces to a traditional dictionary learning problem:

arg min
α,D

N∑

i=1

‖τ i(T i) −
K∑

k=1

αi
kDk‖2 +

N∑

i=1

λ‖αi‖1

s.t. ‖Dk‖2 ≤ c, for k = 1 . . . , K

(10)

Coordinate descent is used to solve for dictionary D and sparse coding α.

5 Experiment

5.1 Experiment Setting

Since there are enormous shapelet candidates, we calculated the average sequence
to decide the discriminative ability by information gain. And shapes with low
discriminative power have been removed so that the volume of candidates would
be much smaller (similar, redundant candidates have been discarded), and only
valuable candidates were selected as input segments. In training phase, the algo-
rithm was initialized by subsequence matching, where we aligned the initial
candidate to all possible segment and extracted the most similar projection.
Then, these segments Ti were fed into our transform invariant prototype learn-
ing framework and after iterations, a transform-invariant dictionary could be
derived. Lastly in testing phase, the sparse representation were conducted based
on learned transform-invariant dictionary learning.
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Table 1. Statistics of the benchmark time series datasets

Train/test Length Class

Adiac 390/391 176 37

Beef 30/30 470 5

Coffee 28/28 286 2

Diatom 16/306 345 4

ECGFiveDays 23/861 136 2

FaceFour 24/88 350 4

GunPoint 50/150 150 2

ItalyPower 67/1029 24 2

Lighting7 70/73 319 7

MedicalImages 381/760 99 10

MoteStrain 20/1252 84 2

Sony 20/601 70 2

Symbols 25/995 398 6

SytheticC 300/300 60 6

Trace 100/100 275 4

TwoLeadECG 23/1129 82 2

During candidate selection process, it requires the tuning of hyper-
parameters, which were found through a grid search approach using cross-
validation over the training data. The initial number of shape set was searched
in a range of K1 ∈ {0.05, 0.1} ∗ Q, and the length of shapelets q ∈
{0.125, 0.25, 0.375, 0.5} ∗ Q, where Q is the full series length. During dictionary
learning process, the number of atoms in dictionary K2 ∈ {5, 10, 15}, while the
sparsity parameter λ ∈ {0.1, 1}. For efficiency, the operation of the above defor-
mation could be selected flexibly.

5.2 Complexity Analysis

The time complexity of shapelet prototypes learning consists of two parts, one
for initialization segments exaction, and the other for transform invariant dictio-
nary learning. For initialization segments exaction, we need to compute a robust
shape similarity, instead of optimal transformation operators, between shapelets
with length q candidates and all possible segments. Therefore, we adopted a Z-
normalization distance with all range of stretching factors, and the cost is O(Cq),
where C is the number of stretching factors. Here, the complexity is similar to
the Euclidean distance computation, with a constant multiplier.

For transform invariant dictionary learning, the cost part of alignment step
is the computing for τ i, which takes O(CNq), including the complexity of least
square solution of scaling, translation factor and grid search on stretching factors.
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Refinement step takes O(KNq), including sparse coding and dictionary learning.
Therefore, the total complexity for one call to Algorithm1 is O(M((C+K)Nq)),
where M is the maximum number of iterations allowed in Algorithm1. M can
be set quite small. In practice, 20 iterations would be sufficient.

5.3 Classification Accuracy

Experiments were performed on the 16 commonly used UCR time series bench-
mark which could be downloaded from UCR website [2], and the information
of the those datasets were listed in Table 1. For the sake of equivalent compari-
son, we used the same training and testing split for all the methods. And in the
experiments, SVM was chosen as the classifier.

There are many shapelet learning algorithms proposed in the last decades.
Ref. [5] compared the performance of some popular shapelet learning algo-
rithms. In this work, we compared our algorithm with three state-of-art baselines
IGSVM, LTS and FLAG:

– IGSVM [7]: Shapelet-transform algorithm, which uses the linear SVM as clas-
sifier and information as shapelet quality measurement.

– LTS [4]: learning time series shapelets algorithm, which learns the shapelets
and logistic classifier automatically and jointly.

– FLAG [5]: Learning position of shapelets, which maximizes the ratio of pro-
jected data variances between classes by fussed lasso constraints efficiently.

Table 2 shows the classification accuracy of baseline and the proposed
method. Our method shows a superiority to IGSVM, FLAG and a compara-
ble performance to LTS, even better prediction accuracy in several dataset. In
addition, dictionary learning is desirable for scalable analysis, as well as inter-
pretability.

5.4 Exploratory Data Analysis

One of the strengths of using shapelets as a classification tool is that they provide
an easy interpretation and summarization behind data that other classification
approaches simply do not. It helps for mining inherent structure. One of the key
motivation of our work is to capture an intrinsic structure and knowledge behind
data, which is interpretable and unified for data.

To verify the power of transform invariant shapelet learning, we briefly ana-
lyze a classical problem in time series data mining domain. On the Gun/NoGun
motion capture time series dataset, there are 100 instances from each class. In
the Gun class, the actors have their hands by their sides, draw a gun from a hip-
mounted holster, point it at a target for approximately one second, and then
return the gun to the holster and their hands to their sides. In contrast, in the
NoGun class, actors do the similar hands-down, point, hold, and return motion
without the gun in their hands and therefore are pointing to a target using the
index finger. The classification problem is to distinguish between above two very
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Table 2. Classification accuracy on 16 commonly used dataset.

Dataset Compared methods

IGSVM LTS FLAG Ours

Adiac 23.5(4) 51.9(3) 75.2(1) 61.8(2)

Beef 90.0(1) 76.7(3) 83.2(3) 76.7(3)

Coffee 100.0(1) 100.0(1) 100.0(1) 100.0(1)

Diatom 93.1(4) 94.2(3) 96.4(1) 95.4(2)

ECGFiveDays 99.0(3) 100.0(1) 92.0(4) 100.0(1)

FaceFour 97.7(1) 94.3(3) 90.9(4) 96.6(2)

GunPoint 100.0(1) 99.6(2) 96.7(4) 100.0(1)

ItalyPower 93.7(4) 95.8(1) 94.6(3) 95.3(2)

Lighting7 63.0(4) 79.0(1) 76.7(3) 78.1(2)

MedicalImages 52.2(4) 71.2(2) 71.4(1) 70.5(3)

MoteStrain 88.7(2) 90.0(1) 88.7(2) 88.7(2)

Sony 92.7(1) 91.0(4) 92.9(1) 91.5(3)

Symbols 84.6(4) 94.5(2) 87.5(3) 97.1(1)

SytheticC 87.3(4) 97.3(3) 99.7(1) 99.0(2)

Trace 98.0(4) 100.0(1) 99.0(3) 100.0(1)

TwoLeadECG 100.0(1) 100.0(1) 99.0(4) 100.0(1)

AverageRank 2.69 2 2.43 1.78

similar action. Moreover, the dataset consists of instances from two actors, who
differ in baseline height about 12 in. (translation) and motion ‘style’, including
different movement range (scaling), tempo (stretching). To sum up, the chal-
lenges relied on the similarity between two action and the intra-class diversity
due to geometric transformation.

As shown in Fig. 4, the original top shapelet trained by [14], represents a
“overshot” phenomenon at the end of series. It contains an action corresponding
to the arm being lowered back into position. However, at the begin of series, Gun
class has a specific shape found by proposed method before a consistent action
of raising the arm. That’s because action from Gun class has to draw a gun
from a holster. Intuitively, it’s one of intrinsic feature of Gun class, which differ
from NoGun class. However, owing to the intra-class diversity, instances differ
in offset, scale and stretching factor. DTW and Z-normalization fail to deal with
such variance, so that they failed to explore the latent discriminative power of S1,
because of the complex transformation. While our transform invariant framework
achieved meaningful detection of shapelets. The graphs in Fig. 4 shows a best
alignment for S1 by projecting it through optimal deformation factors.

Therefore, shapelet found by proposed method reflect the essential difference
between classes. Interestingly, once instance take a gun from a holster, we can
achieve a earlier judgement or prediction for Gun/NoGun classification problem.
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Gun
S1

Gun
T S1

Gun
T S1

Fig. 4. An illustration for complex transformation from the Gun class, where TS1
represents the optimal projection (transformation) from S1 to samples.
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Abstract. In this paper, we propose a multi-view clustering algorithm
based on fast search and find of density peaks. We combined the origi-
nal clustering algorithm with co-training to handle multi-view data and
implement self-adapting cluster center selecting through cluster fusion.
Based on the assumption that a point would be assigned to the same
cluster in all views, we search for the clustering result that agree across
the views by continually modifying one view with the clustering from
another view. We demonstrate the efficacy of the proposed algorithm on
several test cases.

Keywords: Peak clustering · Multi-view learning · Co-training
Cluster center · Adaptive clustering

1 Introduction

Unlabeled data exist in nature widely, and labeling each sample in a big-scale
data in multi-view learning costs a lot of time and work. Thus, we focus on unsu-
pervised learning. Clustering algorithms are widely used in unsupervised learn-
ing, which aim to partition elements based on their similarity. Many clustering
algorithms have been proposed such as K-means clustering algorithm seeking to
minimize the average squared distance between points in the same cluster [1],
spectral clustering [2] dividing the graph up into several subgraphs exploiting
the properties of the Laplacian of the original graph and Density-Based Spatial
Clustering of Applications with Noise (DBSAN) [3] viewing clusters as high-
density areas. In 2014, a clustering algorithm based on fast search and find of
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density (DPC) was proposed in [4], which was formed by the idea that cluster
centers are characterized by a higher density than their neighbors and by a rela-
tively large distance from points with higher densities. The DPC algorithm has
attracted attention by its good performance on automatically excluding outliers
and recognizing clusters irrespective of their shape and of the dimensionality of
the space.

In real world, we have access to lots of features from single object, and
limited information can be obtained through an individual view. Hence, we
attempt to obtain more information through observing an object in multiple
views. For examples, we can take a photo of an object in different angles or
even by different sensors. Different views make up for the lack of information in
single-view learning. Motivated by this factor, many multi-view learning meth-
ods have been proposed. In [5], Laplacian support vector machines (SVMs) [6]
is extended from supervised learning to multi-view semi-supervised learning.
Canonical Correlational Analysis (CCA) [7–9], Bilinear Model (BLM) [10] and
Partial Least Squares (PLS) [8,11,12] are popular unsupervised approaches in
multi-view learning [13]. In 2015, Later Multi-View Linear Discriminant Anal-
ysis (MLDA) [14] was proposed through combining CCA and Linear Discrimi-
nant Analysis (LDA) [15]. Linear Discriminant Analysis is a single-view learning
method seeking an optimal linear transformation that maps data into a sub-
space. Multi-View Intact Space Learning (MISL) proposed in [16] aims to find
a space from several views, which assumes that different views are generated
from an intact view. Differing from many multi-view approaches, MISL focuses
on the insufficiency of each view. However, we do not pay attention to whether
each view is sufficient or not, but focus on how to combine the information of
multiple views. Therefore, we focus on co-training [17] which is widely used in
multi-view learning.

Recently, many clustering methods are applied in multi-view learning. In
2013, a multi-view method, which combines spectral clustering with co-training
is proposed in [18]. In 2015, a Co-Spectral Clustering Based Density Peak is
proposed in [19], which replaces k-means in spectral clustering with DPC and
combines the exteneded spectral clustering with co-training. In 2016, a Multi-
View Subspace Clustering is proposed in [20], which performs subspace cluster-
ing on each view simultaneously, meanwhile guarantees the consistence of the
clustering structure among different views.

Some clustering methods demand preset number of clusters such as k-means
and spectral clustering. In this paper, we extend the cluster centers selection
of the orignal DPC with cluster fusion to implement self-adaptive cluster cen-
ters selection which remains unsolved in [4]. We propose an adjusted co-training
framework for DPC which varies weights of views according to views’ aggre-
gation. Combining the extended DPC and adjusted co-training, the proposed
approach is runed without sensitive parameters.
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2 Related Work

2.1 Co-training

Co-training [17] was proposed for problems of semi-supervised learning setting, in
which we have access to both labeled and unlabeled samples in two distinct views.
It considered the problem of using a small set of labeled samples to boost the
performance of unsupervised learning. It has its basis on two assumptions: each
view is sufficient for classification independently, and the views are conditionally
independent given the labels.

Given the labeled training set L and the unlabeled training set U , here we
outline the process of co-training:

– Create a pool U ′ of examples with u examples chosen randomly from U
– Loop for k iterations:

• Use L to train a classifier h1 that considers only the x1 portion of x
• Use L to train a classifier h2 that considers only the x2 portion of x
• Allow h1 to label p positive and n negative examples from U ′

• Allow h2 to label p positive and n negative examples from U ′

• Add these self-labeled examples to L
• Randomly choose 2p + 2n examples from U to replenish U ′.

2.2 Clustering by Fast Search and Find of Density Peaks

Given the distance between data points, density peaks clustering (DPC) [4]
chooses data points surrounded by neighbours with lower local density as cluster
centers. For data point pi, two quantities ρi and δi need to be calculated. ρi

indicates the number of points that distances between point pi and these points
are less than the cutoff distance dc. δi indicates the distance between point pi

and its nearest neighbour with higher local density, and δi is defined as

δi = min
j:ρj>ρi

dij (1)

One can choose dc so that the average number of neighbors is around 1% to
2% of the total number of points in the data set.

For the point with highest density, δi is defined as δi = maxj(dij). Expect
the point with highest density, each point and its nearest neighbour with higher
local density are assigned to the same cluster temporarily.

Data points with high ρ and high δ or with high γ defined as γ = ρδ are
selected as cluster center.

To exlude outliers, for each cluster, the algorithm finds a border region,
defined as the set of points assigned to that cluster but being within a distance
dc from data points belonging to other clusters. Then the algorithm finds the
point with highest density within its border region for each cluster. Its density is
denoted by ρb. A point is considered part of the cluster core (robust assignation),
if their density is higher than ρb of its cluster. Otherwise, it is considered part
of the cluster halo (suitable to be considered as noise).
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3 A Co-training Approach for Multi-view Density Peak
Clustering

3.1 Adjusted Co-training Framework

The main idea of the standard co-training is training several classifiers through
results producted by themselves. Thus, in the proposed approach, views are
modified with their clustering results. In a modified view v′

a, distances between
two data points belonging to the same cluster in another view vb are supposed to
decrease according to the aggregation of vb denoted by Ab, and other distances
maintain unchanged. Specifically, given the adjacency matrix Db of view vb, we
first obtain labels Lb by clustering and calculate modification weight matrix Wb

defined as:

Wbij =
{

Ab Lbi = Lbj

1 Lbi �= Lbj
(2)

Ab = max

∑
Lbi=Lbj

Dbij

maxDbxy

Size(Lbi)
(3)

In Eq. (3), Size(Lbi) denotes the size of the cluster which includes data point pi

in view vb.
The modified view v′

a is defined as

v′
aij = WbijDaij (4)

Similar with the standard co-training, we modify each view with another view’s
clustering result through some iterations. The modification will be ended when
all views’ clustering results are the same or maxiAi is less than a preset threshold
T . The brief process of the proposed approach is shown in Fig. 1.

3.2 Cluster Center Selection and Cluster Fusion

A problem remains unsolved in the orignal DPC is how to select cluster centers
automatically and accurately. To help select cluster centers, the author intro-
duced a quantity γ defined as γi = δiρi for each data point i, whose value is
enormously large for cluster centers [4]. Since we attempt to produce the cluster-
ing result through iterations in our adjusted co-training framework, DPC doesn’t
have to perform perfectly in cluster centers selection during each iteration. Thus,
we simply select points whose γ is higher than the average value of γ as tempo-
rary cluster centers to ensure that the expected cluster centers are included in
the set of chosen points. After this step, we fuse some excessive clusters based
on the border region of cluster center defined in [4].

The boder region of a cluster is originally used to find the cluster halo which
can be regarded as outliers [4]. We discard its function for excluding outliers,
and instead we apply it in merging excessive clusters produced by the cluster
centers selection. In the process of calculating border densities, for each cluster
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Fig. 1. The brief process of the proposed approach

Ci in we record its border cluster denoted by BCi within whose border region
the border density ρBi is obtained, where ρBi and BCi are defined as

ρBi = max
CLx �=CLy,CLx=Ci

ρx + ρy

2
(5)

BCi = arg max
CLy

ρx + ρy

2
(CLx �= CLy, CLx = Ci) (6)

where CLx denotes the cluster which data point px belongs to, and ρx denotes
the local density of data point px.

If the local density of the cluster center in cluster Ci is less than ρBi, cluster
Ci will be mergerd with BCi and the center of new cluster will be the orignal
center of BCi.

4 Experiment

4.1 Experiment Setup

To demonstrate the efficiency of the proposed approach, we compare our co-
trained density peak clustering approach with following baselines:

– Best Single View (BSV) Selecting most informative view where clustering
result achieving the highest scores.
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– Feature Concatenation (FC) Concatenating the features from each view,
and then running a clustering algorithm on the joint features.

– Kernel Addition (KA) Combining different kernels by adding them. As
suggested in [21], this seemly simple approach often leads to near optimal
results as compared to more sophisticated approaches for classification. It can
be noted that kernel addition reduces to feature concatenation for the special
case of linear kernel. In general, kernel addition is same as concatenation of
features in the Reproducing Kernel Hilbert Space [18].

– Kernel Product (element-wise) (KP) Multiplying the corresponding
entries of kernels and applying a clustering algorithm on the resultant matrix.
For the special case of Gaussian kernel, element-wise kernel product would be
same as simple feature concatenation if both kernels use same width param-
eter σ [18].

In the section of experiments, we compare performances of DPC with Density
Peak Spectral Clustering (DPSC) proposed in [19] combined with above base-
lines and co-training. DPSC replaces k-means in spectral clustering with DPC
to determine number of clusters without preset parameters. The self-adaptive
cluster selection is the advantage of the proposed approach as well. Therefore,
we compare the proposed approach with DPSC and co-trained DPC instead of
spectral clustering or other clustering algorithms requiring sensitive parameters.

4.2 Dataset

– Synthetic Dataset
Our synthetic data consists of 3 views. Each view consists of 2000 data
points in two-dimension space (x0, x1, x2 ∈ R

2) and four central points
(p0 = (1, 1), p1 = (−1,−1), p2 = (1,−1), p3 = (−1, 1)). The distribution
of data points follows

||xi − p(i mod 4)||∞ � r (7)

where r is a given range for generating data points randomly. We define
the true label of data point xi as Li = i mod 4. We evaluate the proposed
approach with a synthesis dataset containing three views as shown in Fig. 2.

– MNIST Handwritten Digit
One real-world dataset is taken from the handwritten digits (0–9) data from
the MNIST dataset (Modified National Institute of Standards and Technol-
ogy database). The dataset is consisted of 1000 examples. Digit images are
described in two ways: Histogram of Oriented Gradient (HOG) [22] (view-1)
and binaryzation (view-2). This dataset will exam the proposed approach’s
performance on features extracted with different methods from the same sam-
ples.

– IXMAS Actions Dataset
The IXMAS dataset contains recordings of 14 actions from different angles.
Images from each angle are regarded as samples in one view. HOG is applied
for describing features in views of different angles. This dataset will exam the
proposed approach’s performance on samples taken from different angles.
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Fig. 2. Three images showing distribution of data points in three views. The range r
in view (A) is 0.8; in view (B) is 1.0; and in view (C) is 1.2. Each shape or colour
represents one expected cluster.

4.3 Results

The clustering results are evaluated with adjusted rand score (adj-RI) [23] and
normalized mutual information score (NMI) [24].

Table 1. Results for synthetic dataset

Method adj-RI NMI

BSV DPSC 0.1468 0.6094

BSV DPC 0.4322 0.7328

FC DPSC 0.7828 0.8498

FC DPC 0.7902 0.8681

KA DPSC 0.3850 0.6508

KA DPC 0.4759 0.7359

KP DPSC 0.3306 0.5769

KP DPC 0.5036 0.7484

Co-trained DPSC 0.2298 0.5457

Co-trained DPC 0.9683 0.9712

Table 1 shows the clustering result on synthetic dataset. Our approach out-
performs all baselines by a significant margin. The feature concatenation is the
second best one among remaining baselines. Compared with DPSC, the pro-
posed approach integrates information in three views and avoids degradation of
performance.
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Table 2 shows the clustering result on MINST digit dataset. Our approach
outperforms all the baselines in adj-RI score and its NMI score is close to the
best one. Performances of kernel addition and kernel product are close to that
of the best single view.

Table 2. Results for MNIST dataset

Method adj-RI NMI

BSV DPSC 0.3480 0.6271

BSV DPC 0.3633 0.5665

FC DPSC 0.4118 0.6395

FC DPC 0.4164 0.6649

KA DPSC 0.3966 0.5931

KA DPC 0.3511 0.5796

KP DPSC 0.3238 0.5315

KP DPC 0.3421 0.6011

Co-trained DPSC 0.3498 0.5637

Co-trained DPC 0.4797 0.6456

Table 3 shows the clustering results on IXMAS action dataset. On this
dataset, our approach outperforms all baselines by a significant margin. Except
the co-trained DPC, other baselines combined with DPC perform worse than
the Best Single View combined with DPC do.

Table 3. Results for IXMAS dataset

Method adj-RI NMI

BSV DPSC 0.3479 0.6491

BSV DPC 0.3841 0.6550

FC DPSC 0.4214 0.6957

FC DPC 0.3398 0.6250

KA DPSC 0.3960 0.6723

KA DPC 0.3429 0.6353

KP DPSC 0.3238 0.5315

KP DPC 0.3554 0.6422

Co-trained DPSC 0.3746 0.6772

Co-trained DPC 0.5178 0.7495
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Figures 3, 4 and 5 show adj-RI scores in different datasets with increase of the
number of iterations. The proposed approach complete clustering by few steps
of iteration.

Fig. 3. adj-RI scores in different views vs number of iterations of co-trained DPC for
Synthetic dataset

Fig. 4. adj-RI scores in different views vs number of iterations of co-trained DPC for
MNIST dataset
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Fig. 5. adj-RI scores in different views vs number of iteration of co-trained DPC for
IXMAS action dataset

5 Conculusion

We extend the original density peak clustering method from single-view learning
to multi-view learning with the idea of co-training. In our adjusted co-training
framework, distances between data points belonging to the same cluster decrease
during iteration according to the clustering result for another view. In our
adjusted density peak clustering method, cluster centers are selected simply,
and then excessive clusters produced by the simple cluster center selection are
merged according to densities of points in the border area of clusters. Based
on these extensions, the co-trained density peak clustering method outperforms
other baselines in experiments. The proposed approach has the ability to inte-
grating information in views and avoiding degradation of performance through
few steps of iteration.
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Abstract. As a model of unsupervised learning, autoencoder is often employed
to perform the pre-training of the deep neural networks. However, autoencoder
and its variants have not taken the statistical characteristics and the domain
knowledge of training set into the design of deep neural networks and have
abandoned a lot of features learned from different levels at the pre-training
process. In this paper, we propose a novel sparse feature ensemble learning
method for natural image classification, named boosting sparsity-induced
autoencoder, to fully utilize hierarchical and diverse features. Firstly, a sparsity
encourage method is introduced by adding an extra sparsity-induced layer to
exploit the representative and intrinsic features of the input. And then, the
ensemble learning is taken into consideration of the construction of the model to
improve and boost the accuracy and stability of a single model. The classifi-
cation results on three datasets demonstrate the effectiveness of the proposed
method.

Keywords: Sparse representation � Sparsity-induced method
Ensemble learning � Image classification

1 Introduction

The performance of a generic learning algorithm, especially adopted to the classifi-
cation problem, extremely relies on the quality of learned feature representation of raw
input data. Good features not only could remove irrelevant or redundant features
coexisting in the original input space, but preserve the essential information for the
target tasks. A good feature extractor built for input space, especially using unsuper-
vised learning methods, can be further utilized for computer vision tasks. Deep hier-
archical features produced by stacked unsupervised models have been demonstrated to
be a powerful tool and appeal to emerging focus [1, 2].

In recent years, the study found that deep learning constructed by the multiple non-
linear transformations can be a powerful feature learning tool. Deep learning has
already been broadly used to address image classification tasks [3–6]. As a tool of deep
learning with a special architecture, the autoencoder has already been stacked to pre-
train a deep neural network using a greedy layer-wise means [7], where each layer is
separately initialized by unsupervised pre-training method, and then a fine-tuning way
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based on backpropagation is used by a supervised learning algorithm [8, 9], leading to
solving the lack of expression ability of shallow network.

By restricting the output of the model identical to the input data, autoencoder can be
regarded as an identity function which could reconstruct the raw input data composed
of an encoding phase and a decoding phase. Meanwhile, sparse representation has
proven its significant impact on computer vision [10–12]. The performance of an image
classifier can be improved if the input image can be represented by a sparse repre-
sentation. Ghifary [12] demonstrated that, in most cases, sparse network structures have
better classification performance than dense structures. In recent years, the sparse deep
model is proposed based on the sparse encoding strategy, sparse regularization term
and sparse filtering that have taken the input samples into sparse depth related neural
network model.

However, autoencoder and its variants have not taken the statistical characteristics
and the domain knowledge of training set into the design of deep networks, and they
have abandoned a lot of features learned from different levels. Therefore, autoencoder
can only provide a relatively coarse parameters setting and serves as a pre-training
method because of the large variance and low generalization ability on the unknown
testing dataset. So, how to fully utilize the features existed in the input is one of the
most important points in our work. It is well known that an ensemble of multiple
classifiers is considered as a practical technique for improving accuracy and stability
with comparisons to a single classifier. Ensemble learning employs some weak clas-
sifiers, according to some combination rule, to construct a stronger one to obtain
significantly reduced generalization error than any weak one. But, two key issues,
namely the diversity and accuracy of each classifier and the combination rules of fusion
rules [13], are required to be taken into consideration to ensure a better performance.

In this paper, we introduce a novel sparsity-induced autoencoder that can further
exploit the representative and intrinsic features of the input. Then, to benefit the ability
of the ensemble learning, an ensemble sparse feature learning algorithm based on the
novel sparse autoencoder mentioned above, named BoostingAE, is proposed. On the
one hand, the completion of the pre-training sparsity-induced autoencoder can obtain a
plurality of different levels of abstraction of sparse features; on the other hand,
ensemble learning could effectively improve and enhance the recognition rate and
stability of single classifier. Experimental results on three different datasets show that
the proposed ensemble feature learning method can significantly improve the overall
performance.

2 Related Work

2.1 Sparse Representation

Sparse Coding. Sparse coding provides a family of methods for acquiring the con-
dense features in the input. Given only the unlabeled dataset, it can discover the basic
functions aimed to capture the higher-level features in the data itself. Despite its close
relationship to the traditional sparse coding techniques on image denoising, the main
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drawback of sparse coding is its high computation cost. Moreover, it is well-known that
the sparse coding is not “smooth” [14, 15], which means a tiny variation in input space
might result in a significant difference in code space.

Sparse Filtering [16]. In contrast to many existing feature learning models, one of the
important properties of sparse filtering is that it only requires one hyper-parameter
rather than extensive hyper-parameters tuning for its very simple cost function:

min
XM
i¼1

f̂ ðiÞ
�� ��

1¼
XM
i¼1

~f ðiÞ

~f ðiÞ
�� ��

2

�����
�����
1

ð1Þ

where f represents the learned feature value for input sample, ~f is defined by ‘2 norm of
f , and M indicates the sample’s number.

Sparse Regularization. Compared with sparse coding, sparse regularization needs to
perform an extra separate stage to induce sparsity and encourage sparse representations
of input. Various methods of sparsity regularization either employed in deep belief
network or autoencoder [17], similar to sparse coding, each of which has been proved
the beneficial effects for some particular scene.

2.2 Softmax Regression

Softmax regression is a generalized version of logistic regression applied to classifi-
cation problems where the class label y can be chosen from more than two values.
Assume that there are k labels and m training samples:
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i ¼ 1; 2; . . .;mð Þ, where x is the input sample,
and y 2 1; 2; . . .; kgf is the corresponding label.

For every input, the output probability function can be defined as follows:
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where h is the parameter of the softmax model. For each input, the probability of its
category is estimated to be:

p y ¼ kjx ið Þ; h
� 	

¼ eh
T
j x

ið Þ

P
k e

hTk x
ið Þ ð3Þ

2.3 Ensemble Learning

According to certain combination rule, ensemble learning employs some weak clas-
sifiers to construct a stronger one to obtain significantly reduced generalization error
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than any weak one. Weak learner refers to whose generalization performance on the
unknown testing dataset is only slightly better than random guessing. From mathe-
matics, ensemble learning can significantly reduce the variance to achieve more stable
performance. In order to get a better integration result, it is necessary to make the
individual learner as different as possible, that is to say, there is a high degree of
diversity between the base learners, which will be helpful to the performance of
ensemble learning.

Boosting method is a widely used method for statistical learning, and severs as an
important means of ensemble learning. By changing the weights of training samples,
boosting method trains a group of individual learners and gets final decision results
with a combination rule of voting.

3 Boosting Sparsity-Induced Autoencoder

To learn more representative and intrinsic features of input, a novel sparsity encourage
method is first introduced to build a new autoencoder, called sparsity-induced
autoencoder (SparsityAE). Based on SparsityAE and ensemble learning, we further
proposed a boosting sparsity-induced autoencoder (BoostingAE), which is capable of
utilizing the hierarchical and diverse features, ensuring the accuracy and diversity, and
boosting the performance of the single SparsityAE on computer vision tasks.

3.1 Sparsity-Induced Autoencoder

Inspired by the assumptions of the sparse representation and the efficient reconstruction
of low-dimension feature representation obtained in the encoding phase of deep
models, SparsityAE is proposed, whose structure is shown in Fig. 1.

We feed the encoder by the dataset of high-dimension space. The length of the
codes learned by each layer gets less along with the deepening of the encoder. At the
end of the encoding phase, we employ a sparsity-induced layer to generate sparse

Encoding Stage Decoding Stage
Sparsity-induced layer

Fig. 1. The topology of the proposed sparsity-induced autoencoder
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codes. Conversely, the decoding phase deals with the compressed and sparse codes
given by sparsity-induced layer. In sparsity-induced layer, the neurons without sig-
nificant activation value will be set to zero, which could decrease the number of
neurons, remove the correlation between attributes and compress the raw inputs.

Let yiði ¼ 1; 2; . . .NÞ be the original data and xi be its degraded version, so the input
can be mapped to a hidden representation by the formulations as follows:

ŷðxiÞ ¼ r W
0
h xið Þþ b

0
� 	

ð4Þ

where ŷi is an approximation of yi, and r �ð Þ is the mapping function.
To benefit both from the virtues of sparse representation and deep neural networks,

we optimize the reconstruction loss regularized by a weight decay and a sparsity-
inducing term. The cost function can be designed as follows:

L X; Y ; hð Þ ¼ yi � ŷðxiÞk k22
.
N þ b � KL q̂kqð Þ ð5Þ

where h ¼ W ; b;W
0
; b

0� �
represents weights and bias, KL q̂jjqð Þ is the sparse regular-

ization to extract sparse representation, and q̂ is the average output of hidden neurons:
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q̂ ¼ 1=Nð Þ
XN
i

h xið Þ ð7Þ

In the training process, for the intractability of the whole image, the model is
provided with the original overlapping patches yi i ¼ 1; 2; . . .;Nð Þ as the reconstruction,
and their corrupted image patches xi as the polluted input. As long as the training is
completed, the learned model could reconstruct the corresponding clean image given
any polluted observation. The detailed process is shown in Algorithm 1.

Algorithm 1 SparsityAE
Notation: iΩ is reconstruction error for ix , iS is the reconstruction coefficient for ix , and 

1{ }N
iy is the hidden representation for every input. 

Input: training set 1{ }N
iD x= , parameters k  (constant) and { , , ', '}W b W bθ = . 

Process: 
(1) Compute the iS for each input 1{ }N

ix ; 
(2) Minimize the cost function by the stochastic gradient descent and update θ ; 
(3) Compute the hidden representation 1{ }N

iy for each input, keep the k biggest activation 
value and others are set to zero, and update iS and iΩ ; 
(4) Repeat the step (2) and (3) until convergence. 
Output: reconstruction representation of the input. 
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3.2 Feature Ensemble Method

Multiple sparse features with different abstraction levels will be obtained using the
SparsityAE introduced above; ensemble feature learning could effectively improve the
accuracy and stability of a single classifier. Together two points above, a BoostingAE
is proposed that uses hierarchical feature obtained in pre-training stage to train multiple
classifiers, and integrates the outputs of classifiers with specific fusion rules to get the
final prediction of image classification.

To make the whole structure easy to understand, Fig. 2 gives a clear and detailed
understanding of BoostingAE, which indicates that by cascading multiple SparsityAEs,
BoostingAE is theoretically possible to obtain N compressed sparse features derived
from the output of SparsityAEs.

In our work, training three SparsityAEs and utilizing softmax regression to perform
the classification task. First, we train SparsityAE_1 in Fig. 2. Assuming that the
original input sample is x, the weight matrix connecting the input layer and the hidden
layer is W ð1Þ, the bias vector is bð1Þ, so its output can be mapped by Eq. (4):

ŷ1 ¼ r x �W 1ð Þ þ b 1ð Þ
� 	

ð8Þ

Regard ŷ1 as the input of the second SparsityAE, thus further train SparsityAE_2.
Its weight matrix connecting the input layer and the hidden layer is W ð2Þ, and bias
vector is bð2Þ. With reference to the above operation, SparsityAE_2’s output can be
further obtained, which also be used as the input of next SparsityAE:

ŷ2 ¼ r ŷ1 �W 2ð Þ þ b 2ð Þ
� 	

ð9Þ

Along with the cascaded sparsity-induced autoencoder network, the characteristic
attributes which are trained from the current layer will be passed to the next layer by

Input 
dataset

Classifier
_1 Classifier_2 Classifier

_N Classifier_bias

Confusion rules

SparsityAE_1

SparsityAE_2

SparsityAE_N

Classifier_1 Classifier_N

Final decision

Fig. 2. The topology of the proposed BoostingAE
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above process, and therefore three SparsityAEs can be trained. At the same time, in the
longitudinal direction, the trained classifier model and optimal parameters of each
classifier are obtained by training the characteristic attribute at the encoding stage.
Further, three classifiers are obtained.

3.3 Combination Method of Voting

After training all base classifiers, final prediction is given by results of three classifiers
after integrating with some fusion rules. Here, the Naïve Bayes combination rules [18]
are applied which assume that individual classifiers are mutually independent.

We adopt three Naïve Bayes combination methods, namely MAX, MIN, and AVG
rules. Given a sample x, and its label y has C possible values. Assuming that the current
BoostingAE model consists of N base classifiers, Pnj xð Þ is the probability that the
category of x is j in the nth classifier. So label y can be defined as follows:

• MAX rule: y ¼ arg max
j¼1;2;...;C

max
n¼1;2;...;N

Pnj xð Þ;
• MIN rule: y ¼ arg max

j¼1;2;...;C
min

n¼1;2;...;N
Pnj xð Þ;

• AVG rule: y ¼ argmax
j¼1;2;...;C

1
N

PN
n¼1

Pnj xð Þ.

3.4 BoostingAE Algorithm

From Fig. 2, a multi-layer architecture based on ensemble learning consists of an input
layer, some hidden layers and an output layer to carry out specific tasks.

Here, how to measure the importance of each layer’s feature and how to select the
optimal models for each layer are two key issues, which will directly influence the
performance of the model. As a main contribution of this paper, we employ Adaboost
to supervise the adjustment of parameters and weight coefficients. Algorithm 2 gives
the detailed process of the proposed BoostingAE.

Algorithm 2 BoostingAE
Notation: T is the number of base sparse autoencoder, and the algorithm of base learner is 
SparsityAE.  
Input: training set ( ) ( ) ( ){ (1) (1) (2) (2) ( ) ( ), , , ,..., ,m mD x y x y x y=
Process:
Initialize: assign the default parameters.
Loop: for 1,2,...,k k=
Generate the new dataset 'D by bootstrapping the original dataset;
Obtain the trained individual classifier, =SparsityAE(D ).tg ′
Output: Obtain ensemble classifier { }' ( ).tD Uniform g=

}.
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Compared with traditional sparse stacked autoencoder, BoostingAE’s characteris-
tics are shown in following aspects:

• whose construction of base learners is similar to that of AdaBoost, BoostingAE
utilizes the cascade serialization mechanism among the base learners, which makes
the individual learners are related to each other and also maintain the difference;

• the subsequent layer takes the output of the previous layer as the input to obtain rich
feature representation, which makes each learners receive various “training input” at
the same time and avoids the waste of computing and storage resources;

• when design individual learners, the topology of each model can be specified
separately rather than by a unified model topology. This makes it possible to further
increase the diversity of base learners while maintaining the homogeneity of them.

4 Experiments

First of all, we verify the performance of SparsityAE in sparse feature learning. Next, to
unbiasedly and accurately show the performance and the stability of BoostingAE on
real-world image classification, the experiments are carried out on three widely
employed datasets, i.e., MNIST, CIFAR-10, and SVHN. Moreover, some state-of-art
methods are employed to provide the comparable results on the same datasets.

4.1 The Sparse Feature Learning of SparsityAE

To validate the performance of SparsityAE in sparse feature learning, we mainly focus
on denoising of grey-scale images. From http://decsai.ugr.es/cvg/dbimagenes, a set of
natural images are employed as the training set, and a set of standard natural images as
the testing set which has been widely used in the image processing.

When it comes to the training process, we randomly pick a clean image y from the
dataset and generate its corresponding noisy patch x by corrupting it with a specific
strength of additive white Gaussian noise. The training performed, the learned model
will be capable of reconstructing the corresponding clean image given any noisy
observation. To avoid the local minimum, we adopt the layer-wise pre-training pro-
cedure introduced in [7].

Figure 3 shows the comparison between SparsityAE and classic image denoising
methods: KSVD [19], BM3D [20], on standard testing images degraded by various
noise levels. We tell that when r ¼ 25, SparsityAE (magenta line) is competitive, while
corrupts for other different, i.e., higher noise strengthens, which is owing to that our
model knowing nothing about the noise of level but other methods were provided with
such information. The green line shows that if we train the proposed model on several
different noise levels, our SparsityAE is more robust to the change of noise levels
which means that it can generalize significantly better to higher noise levels.

What’s more, we compared the SparsityAE with several state-of-art denoising
methods: WNNM [21] and two training based methods: MLP [22], TNRD [23]. The
numerical results are shown in Table 1, which is measured by the peak signal to noise
ratio (PSNR in dB). The best PSNR result for each image is highlighted in bold.
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Although images with a lot of repeating structure are ideal for both KSVD and BM3D,
we do outperform KSVD, BM3D, and WNNM on every image except Barbara. It is
also shown that our SparsityAE is able to compete with MLP and TNPD.

The results illustrated that SparsityAE can not only project the original high
dimensional space to a lower dimensional and more intrinsic space from the per-
spective of dimension-reduction, but capture the more representative sparse feature
from multiple layers to make the best use of the information contained in original
space.

4.2 BoostingAE for Classification on MNIST

MNIST is a large dataset of handwritten digits that is widely used for image processing
and computer vision tasks. It contains 60,000 training images and 10,000 testing
images with labels, and the size of a single image is 28� 28.

The topology of the SparsityAE on MNIST with three hidden layers is first
determined, i.e., 784� 500� 250� 100� 10, which 784 is the size of the image and

Fig. 3. Denoising performance comparison of various methods with various noise levels (Color
figure online)

Table 1. Comparison of the various methods’ denoising performance measured by PSNR.

Image KSVD BM3D WNNM MLP TNRD Ours

Lena 31.35 32.08 32.24 32.25 32.00 32.46
House 32.14 32.86 33.23 32.56 32.53 32.96
C.man 28.72 29.45 29.64 29.61 29.72 29.98
Moarch 28.81 29.25 29.85 29.61 29.85 29.65
Couple 28.84 29.71 29.82 29.76 29.69 29.68
Man 29.09 29.61 29.76 29.88 30.11 29.78
Babara 29.60 30.72 31.24 29.54 29.41 29.20
Boat 29.32 29.91 30.03 29.97 30.21 29.91
Pepper 29.71 30.16 30.42 30.30 30.57 30.37
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10 is the label number. Then, Classifier_1 in Fig. 2 is obtained by pre-training and fine-
tuning SparsityAE_1. After that, SparsityAE_2 takes the feature representations
learned from SparsityAE_1 as input to get Classifier_2. With the process above, we get
the final three base classifiers that will be integrated when all base learners achieve
convergence after fine-tuning. With this, the whole BoostingAE model is constructed
and trained completely. When it comes to predicting the real samples, three Naïve
Bayes combination rules will be respectively used for voting the integrative result of
three classifiers to improve the performance.

Table 2 shows that three individual classifiers have better classification results than
KNN and SVM because of the introduction of the sparsity-induced layer in Spar-
sityAE. And the BoostingAE with three different fusion rules gets better performance
than any individual classifier and achieves 98.37%, 98.43% and 98.87% accuracy rate
respectively, which is very close to the result of Lp–norm AE [24]. Moreover, stacked
CAE [25] and CASE [26] employ more feature maps obtained by convolutional
operations and hidden layers, so our performance is slightly worse than these.

4.3 BoostingAE for Classification on CIFAR-10 and SVHN

CIFAR-10 is a dataset contains ten kinds of color images, each category contains 6000
color images. The training set contains 5000 images of each category, the remaining is
used for testing. SVHN dataset can be regarded as the upgrade of MNIST and also
contains ten kinds of color images. Both are captured from the real life so the back-
ground is more complex and the images are difficult to identify. SVHN is divided into
training set, testing set and extra set; the validation set is constructed in a random way:
the 2/3 of them is derived from the training set (400 samples per class), and the
remaining samples come from the extra set (200 samples per class).

Table 2. Classification results on three datasets.

MNIST CIFAR-10 SVHN

KNN 91.32% 84.47% 78.32%
SVM 94.02% 88.45% 83.24%
Lp–norm AE(KNN) [24] 97.44% / 67.23%
Lp–norm AE(SVM) [24] 98.64% / 71.19%
Stacked CAE [25] 99.29% 79.20% /
CSAE [26] 99.39% / /
CDSAE [27] / 74.18% /
Classifier_1 96.73% 91.46% 88.46%
Classifier_2 96.35% 91.83% 88.93%
Classifier_3 95.89% 90.96% 87.69%
BoostingAE(MAX) 98.37% 92.32% 89.94%
BoostingAE(MIN) 98.43% 91.49% 90.35%
BoostingAE(AVG) 98.87% 92.63% 90.87%
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Before the experiment, the original images of CIFAR-10 and SVHN should be
transformed from RGB space into grey space, and then normalized. To improve the
training efficiency, the mini-batch gradient descent algorithm is used when pre-training
and fine-tuning. Considering the unsupervised learning mechanism of autoencoder,
both CIFAR-10 and SVHN use a certain proportion of unlabeled samples as training
set in pre-training; and in the process of fine-tuning, two datasets require ground-truth
to implement the classification. Next, the topology of SparsityAE is determined as
1024� 500� 250� 100� 10. The subsequent operations are similar to those per-
formed on MNIST.

We report the results of comparison methods, individual classifiers and the pro-
posed method in Table 2 and get the similar conclusion as MNIST. Our methods
achieve the best results among comparison methods. The results illustrated the
BoostingAE could capture more sparse representation and utilize multi-layer features,
resulting in the improvement of accuracy and diversity of overall.

5 Conclusion

In this work, we first built SparsityAE by adding an extra sparsity-induced layer, which
efficiently abstract the sparse feature representations, and then based on SparsityAE and
ensemble learning, we further proposed a BoostingAE model to integrate sparse feature
learned from multi-layer, so as to improve the performance of individual sparse
encoder, which has been successfully applied to image classification.

The main advantage of our approach is that it could abstract more significantly
sparse representations that reflect the distribution of original data better and make full
use of the features learned from multi-layer to improve the diversity of base learners.
What’s more, it also promotes the overall performance after integrating multiple weak
learners. Additional experiments on three different datasets validate the effectiveness of
the proposed algorithm in image classification.
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Abstract. Area under the receiver operating characteristic curve, i.e.,
AUC, is a widely used performance measure. Traditional off-line and
some online AUC optimization methods should store the entire or part
of dataset in memory which is infeasible to process big data or streaming
data applications. So some scholars develop one-pass AUC optimization
(OPAUC) which is independent from the data size. While OPAUC can-
not process matrix instances. So we propose a matrix-instance-based
one-pass AUC optimization model, i.e., MOPAUC, to overcome such an
issue. Related experiments on some benchmark datasets including five
image datasets validate that MOPAUC can improve the average AUC,
cost little running time with matrix-instance cases. Furthermore, some
parameters including regularization parameters and weights have less
influence on the average AUC while step sizes have strong influence.

Keywords: One-pass · Matrix instance · AUC

1 Introduction

1.1 Background

As we all know, the area under the receiver operating characteristic (ROC) curve
(i.e., AUC) is an important performance measure and it has been widely used in
many tasks [1–5]. According to [6] said, AUC is measured by the losses defined
over pairs of instances from different classes which is different from the classical
classification and regression problems where the loss function can be gotten by a
single training instance. In present, during the procedure of design, many classi-
fiers demand the AUC be maximization [7–9]. Thus, the optimization of AUC is a
hot spot of present research. The traditional AUC optimization methods include
semi-supervised learning receiver operating characteristic (SSLROC) algorithms
which utilize unlabeled test instances in classifier training to maximize AUC
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[10], direct-AUC which is a boosting method to directly optimizes AUC value
as a classification performance measure [11], semi-supervised AUC optimization
method with generative models (OptAG) which utilizes generative models to
assist the incorporation of unlabeled instances in AUC-optimized classifiers [12].
While all those traditional AUC optimization methods exist two defects. One
is that those off-line AUC optimization methods [2,8,10–12] need to store the
entire dataset in memory before an optimization procedure is applied while this
is infeasible for applications involving big data or streaming data in which a large
volume of data come in a short time period. The other is that for some online
AUC optimization methods [1,7,9], they find the optimal solution of some per-
formance measures by only scanning the training data once, but these methods
still need to store

√
T instances where T is the number of training instances.

1.2 Proposal

As [6] said, a good AUC optimization method (i.e., one-pass AUC optimization)
should be independent from the number of training instances since it is always
difficult to expect how many data will be received in the applications. Until
now, only few scholars pay attention to one-pass AUC optimization problems.
To the best of our knowledge, work [13] is the extended work of [6] which aims
to process one-pass AUC optimization and except the scholars of [6] and [13],
we have not found any other scholars to pay attention to this field.

Moreover, it is found that in [6] and [13], the used datasets consist vector
instances, i.e., each instance x ∈ R

d×1 is a d-dimensionality one. This represen-
tation can bring a convenience in mathematics. But as we know, in real world
applications, more and more instances are represented in matrix form, i.e., a
matrix instance A ∈ R

m×n and its dimensionality is m × n. Classical matrix
datasets include images. Since the model named one-pass AUC (OPAUC) which
is developed by [6] and [13] cannot process matrix instances, thus this paper
will develop a matrix-instance-based one-pass AUC optimization model, i.e.,
MOPAUC, so as to process the matrix datasets.

1.3 Difficulty

As we said, MOPAUC can process matrix instances. While the difficulty that
extends OPAUC to handle matrix instances is obvious. Once we extend the
model of vector-instance-based learning machine to the one of the matrix-
instance-based learning machine, we should optimize more parameters due to
for a matrix instance, a more classifier weight is needed. How to optimize them
is the difficulty which should be conquered. Thus, in our work, in order to solve
this difficulty, we adopt gradient descent method and details are given in Sect. 2.

1.4 Contribution and Framework of the Manuscript

The contributions of the MOPAUC are (1) it can process the matrix-instance-
based AUC optimization problems; (2) compared with the OPAUC whose
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required storage is O(d2) where d = m × n, the storage requirement is reduced
to O(m2 + n2); (3) it inherits the advantage of OPAUC which is independent
from the number of training instances.

What’s more, Sect. 2 shows the framework of the developed MOPAUC.
Section 3 gives the experiments. The conclusion is given in Sect. 4.

2 Matrix-Instance-Based One-Pass AUC Optimization

There is a matrix instance A ∈ R
m×n and its dimensionality is m × n. The

class label of each instance is selected from the set y = {+1,−1}. Here, the
instances form the instance space A while the labels form the label space Y.
Denote D by an unknown distribution over the product space A × Y. Let
S = {(A1, y1), (A2, y2), . . . , (AT , yT )} be a series of instances which arrive con-
tinuously and each instance arrives identically and independently from D. More-
over, we denote [n] = {1, 2, . . . , n} where the integer n > 0 and �α� represents
the largest integer which is no more than α where the real α > 0. Then we adopt
|A| to denote its cardinality.

Now we let f : A → R be a real-valued function, and for S, the AUC of
function f is defined as:

AUC(f,S) =
T∑

i=1

T∑

j=1

B. (1)

where B = (
∏

[f(Ai)>f(Aj)]+
1
2

∏
[f(Ai)=f(Aj)])

∏
[yi>yj ]

T+
s T−

s
,

∏
[�] is the indicator

function which returns 1 if the argument is true and 0 otherwise, T+
s =

|{(Ai, yi) ∈ S : yi = +1}| and T−
s = |{(Ai, yi) ∈ S : yi = −1}|.

Then the optimization of AUC can be turned to optimize the pairwise sur-
rogate losses as follows:

L(f,S) =
T∑

i=1

T∑

j=1

�(f(Ai) − f(Aj))
∏

[yi > yj ]
T+

s T−
s

(2)

=
T∑

i=1

i−1∑

j=1

�(yi(f(Ai) − f(Aj)))
∏

[yi �= yj ]
T+

s T−
s

.

where � : R → R
+ is a convex function. Then we say in the D, the loss can be

computed as bellow.

L(f,D) = EAi�D+,Aj�D− [�(f(Ai) − f(Aj))] (3)
= E(Ai,yi)�D,(Aj ,yj)�D[�(f(Ai) − f(Aj))|yi > yj ].

In order to optimize the Eq. (3) in convenience, we let �(t) = (1 − t)2. Then
for S, its pairwise least square loss is given below.

L(u, v,S) =
λ1

2
|u|2 +

λ2

2
|v|2 +

1
2

T∑

i=1

i−1∑

j=1

(1 − yiu
T (Ai − Aj)T v)2

T+
s T−

s
. (4)



530 C. Zhu et al.

where the weights are u ∈ R
m×1 and v ∈ R

n×1. λ1 and λ2 are regularization
parameters that control the model complexity. The constant 1

2 is introduced for
simplicity. Moreover, we define that the pairwise least square loss with respect
to distribution D as

L(u, v,D) = ES [L(u, v,S)] =
1
T

T∑

t=1

Lt(u, v). (5)

where

Lt(u, v) =
λ1

2
|u|2 +

λ2

2
|v|2 +

t−1∑

i=1

∏
[yi �= yj ](1 − yiu

T (Ai − Aj)T v)2

2 |i ∈ [t − 1] : yiyt = −1| . (6)

Now we can say the minimization of Eq. (6) is the equivalent problem to
optimize the AUC of instances S. In order to process this problem, we will adopt
the gradient descent method and here, we define Lt(u, v) = 0 when T+

t T−
t = 0

where T+
t and T−

t denote the cardinalities of positive and negative instances in
St = {(A1, y1), (A2, y2), . . . , (At, yt)}, respectively.

If yi = +1, the gradient of Eq. (6) is

∂Lt(u, v)
∂u

= λ1u − Atv + c−
t v + [(At − c−

t )vvT (At − c−
t )T ]u + S−

tuu. (7)

∂Lt(u, v)
∂v

= λ2v − AT
t u + [c−

t ]T u + [(At − c−
t )T uuT (At − c−

t )]v + S−
tvv. (8)

where

c−
t =

∑

i:i<t,yi=−1

Ai

T−
t

. (9)

S−
tu =

∑

i:i<t,yi=−1

Aiv(Aiv)T − (c−
t v)(c−

t v)T

T−
t

. (10)

S−
tv =

∑

i:i<t,yi=−1

(uT Ai)T uT Ai − (uT c−
t )T uT c−

t

T−
t

. (11)

Otherwise, if yi = −1, the gradient of Eq. (6) is

∂Lt(u, v)
∂u

= λ1u + Atv − c+t v + [(At − c+t )vvT (At − c+t )T ]u + S+
tuu. (12)

∂Lt(u, v)
∂v

= λ2v + AT
t u − [c+t ]T u + [(At − c+t )T uuT (At − c+t )]v + S+

tvv. (13)
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where

c+t =
∑

i:i<t,yi=+1

Ai

T+
t

. (14)

S+
tu =

∑

i:i<t,yi=+1

Aiv(Aiv)T − (c+t v)(c+t v)T

T+
t

. (15)

S+
tv =

∑

i:i<t,yi=+1

(uT Ai)T uT Ai − (uT c+t )T uT c+t
T+

t

. (16)

Once we compute the gradient ∂Lt(u,v)
∂u and ∂Lt(u,v)

∂v , we can update the
classifier weights by

ut = ut−1 − ηut
∂Lt(ut−1, vt−1)

∂ut−1
. (17)

vt = vt−1 − ηvt
∂Lt(ut−1, vt−1)

∂vt−1
. (18)

where ut(vt) represents the u(v) under t-th iteration. Here each iteration rep-
resents one instance arrives. ηut and ηvt are the step sizes in the t-th iteration.
During the procedure, we should notice that once a new instance arrives, the
T−

t , c−
t , S−

tu , S−
tv , T+

t , c+t , S+
tu , S+

tv are also updated. If yt = −1, we have

T−
t = T−

t−1 + 1, T+
t = T+

t−1, c
−
t = c−

t−1 +
1

T−
t

(At − c−
t−1), (19)

c+t = c+t−1, S
+
tu = S+

t−1u
, S+

tv = S+
t−1v

,

S−
tu = S−

t−1u
+ c−

t−1v(c−
t−1v)T − c−

t v(c−
t v)T +

(Atv(Atv)T − S−
t−1u

− c−
t−1v(c−

t−1v)T )/T−
t ,

S−
tv = S−

t−1v
+ (uT c−

t−1)
T uT c−

t−1 − (uT c−
t )T uT c−

t +

((uT At)T uT At − S−
t−1v

− uT c−
t−1)

T uT c−
t−1)/T−

t .

Otherwise, if yt = +1, we have

T+
t = T+

t−1 + 1, T−
t = T−

t−1, c
+
t = c+t−1 +

1
T+

t

(At − c+t−1), (20)

c−
t = c−

t−1, S
−
tu = S−

t−1u
, S−

tv = S−
t−1v

,

S+
tu = S+

t−1u
+ c+t−1v(c+t−1v)T − c+t v(c+t v)T +

(Atv(Atv)T − S+
t−1u

− c+t−1v(c+t−1v)T )/T+
t ,

S+
tv = S+

t−1v
+ (uT c+t−1)

T uT c+t−1 − (uT c+t )T uT c+t +

((uT At)T uT At − S+
t−1v

− uT c+t−1)
T uT c+t−1)/T+

t .
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Once we get weights uT and vT , we can treat uT and vT as the weights of
classifier with T instances arrive continuously in a short time. For convenience,
we summary the algorithm in Table 1.

3 Experiments

3.1 Experiments on Benchmark Datasets

We conduct the experiments on 27 benchmark datasets [14] which can be found
in Table 2. Since our MOPAUC can be used for matrix datasets, so we also
adopt some image datasets for experiments, they are Coil-20, Letter-Image,
ORL, CIFAR-10, and MNIST. For each dataset, we scale the features to [−1, 1]
and each multi-class dataset is transformed into a binary one by randomly par-
titioning classes into two groups, where each group contains the same or similar
number of classes. Then in order to validate the effectiveness of MOPAUC, we
can also reshape the vector instance into different matrix forms with the way
given in [15] and select a feasible form for experiments. Contrariwise, if we con-
duct other AUC optimization methods which aim to process vector instances,
we can vectorize the matrix instances to vector ones. Moreover, we adopt the
following methods for comparison. Since some online and off-line AUC opti-
mization methods has been compared in OPAUC [6,13] and it has been validate
that OPAUC outperforms those methods, especially some online ones including
online AUC optimization with a sequential updating method or with a gradient
descent updating method [16], online gradient descent algorithm which optimizes
the (weighted) univariate exponential loss or optimizes the (weighted) univari-
ate logistic loss or optimizes the (weighted) univariate least square loss [17],
thus we compare some new methods including OPAUC (one-pass AUC [13]),
KOAUC (kernel online AUC maximization [1]), KOIL (kernel online imbal-
anced learning with AUC [7]), SSAUCGM (semi-supervised AUC optimization
method with generative models [18]), ELMAUC (off-line binary AUC optimiza-
tion algorithm [19]), SV MpAUC (support vector algorithms for optimizing the
partial area under the ROC curve [20]).

Among these methods, OPAUC, KOAUC, and KOIL are online ones and
others are new off-line AUC optimization methods. Since SSAUCGM is a semi-
supervised method, so for the experiments about SSAUCGM , each dataset is
divided into two parts. We choose 30% instances in random as labeled instances
and the rest is treated as the unlabeled part. Of course, as we know, more
labeled instances brings a better classification performance. But according to
our all experimental results which include those not written in this manuscript,
even though we adopt 100% labeled instances, the performance of SSAUCGM

is still worse than the proposed MOPAUC in average. Thus, we only show the
results when 30% instances are chosen in random as the labeled instances here.

Experimental environment is given below. All the computations are per-
formed on a node of compute cluster with 16 CPUs (Intel Core Due 3.0 GHz)
running RedHat Linux Enterprise 5 with 48 GB main memory which is similar
with the one used in OPAUC. The coding environment is MATLAB 2016.



MOPAUC 533

For each dataset, we choose 80% for training and the rest is used for test.
Since some datasets maybe have many instances and limited to our memory,
so we select 10000 training instances at random (without replacement) over
the whole training data for batch algorithms if training size exceeds 10000. For
all online methods, we go through the entire training data only once. Then in
terms of the parameter settings for the compared methods, we can refer to each
related reference. For our MOPAUC, the parameter setting is similar with the
one in OPAUC for fair comparison. Namely, ηut and ηvt are selected from the
set 2[−12:10], the regularization parameters λ1 and λ2 are selected from the set
2[−10:2], weights u and v are initialized from the set 10[−3:3]. In order to get
the optimal parameters, for each compared method, we carry out 10-fold cross-
validation and repeat for ten times so as to get the average optimal results. In
other words, the results in the following tables are from ten runs.

Table 3 shows the average testing AUC results for all compared methods on
the benchmark datasets after we carry out the experiments for ten runs. From
this table, it is found that in terms of testing AUC, our proposed MOPAUC
is better than other compared online and off-line AUC optimization methods
in average. Moreover, for the used five image datasets, MOPAUC performs
best which validates that MOPAUC is feasible for the matrix-instance-based
AUC optimization problems. Furthermore, the win/tie/loss counts show that
MOPAUC is clearly superior to these online methods, as it wins for most times
and never loses. For the other off-line AUC optimization methods, they performs
better than MOPAUC sometimes. The reason is that these off-line methods can
store the whole dataset so that they have potential for better performances.

What’s more, it is found that the proposed MOPAUC outperforms OPAUC
on vector instances. The reason for such a result can refer to the relationship
between some vector-instance-based learning machines (for example, MHKS, i.e.,
modification of Ho-Kashyap algorithm with squared approximation of the mis-
classification errors [21]) and their corresponding matrixized versions (for exam-
ple, MatMHKS, i.e., matrix-instance-based MHKS [15]). As we know, MHKS is
a learning machine to process vector instances directly and MatMHKS which is
developed on the base of MHKS is a one to process matrix instances directly.
In MHKS, ωxT is used to label a vector instance x while in MatMHKS, uAT vT

is used for labeling. Here, ω, u, and v are classifier weights and A is the matrix
version of x. As [15] and [22] said, with uAT vT used, MatMHKS is treated
as MHKS imposed with Kronecker product decomposability constraint and
MatMHKS has more constraints than MHKS since MatMHKS should optimize
more weights. More constraints bring more prior information such as struc-
tural or local contextual information and the information bring a better per-
formance. For that, MatMHKS outperforms MHKS even though they process
vector instances. According to the same reason, in terms of the forms of models,
the relationship between OPAUC and MOPAUC is same as the one between
MHKS and MatMHKS, thus MOPAUC has more constraints than OPAUC, and
then MOPAUC has more useful information to design a feasible classifier. That’s
why our developed MOPAUC outperforms OPAUC on vector instances.
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Table 1. Algorithm: MOPAUC

Input: Regularization parameters λ1 > 0, λ2 > 0, step sizes {ηut}T
t=1, {ηvt}T

t=1
Initialize: Set T

+
0 = T

−
0 = 0, c

+
0 = c

−
0 = [0]m×n, S

+
0u

= [0]m×m,

S
+
0v

= [0]n×n, S
−
0u

= [0]m×m, S
−
0v

= [0]n×n
1. for t=1,2,...,T do
2. Arrive a training instance (At, yt)
3. if yt = +1 then

4. T
+
t = T

+
t−1 + 1 and T

−
t = T

−
t−1

5. c
+
t = c

+
t−1 + 1

T
+
t

(At − c
+
t−1) and c

−
t = c

−
t−1

6. Update S
+
tu

, S
+
tv

, S
−
tu

, S
−
tv

with Eq. (20)
7. Calculate the gradient of Lt(u, v)
8. else

9. T
−
t = T

−
t−1 + 1 and T

+
t = T

+
t−1

10. c
−
t = c

−
t−1 + 1

T
−
t

(At − c
−
t−1) and c

+
t = c

+
t−1

11. Update S
+
tu

, S
+
tv

, S
−
tu

, S
−
tv

with Eq. (19)
12. Calculate the gradient of Lt(u, v)
13. end if
14. Update ut and vt with Eqs. (17) and (18)
15. end for
Output: weights uT and vT

Table 2. Benchmark datasets

datasets No. instances No. features datasets No. instances No. features datasets No. instances No. features
AuC 690 14 PID 768 8 BA 1372 4
BCW 699 9 Satellite Image 6435 36 TSE 5820 32
GeD 1000 24 Shuttle 58000 9 UKM 403 5
Glass 214 9 Sonar 208 60 QSAR 1055 41
Heart 270 13 Thyroid 7200 21 Coil-20 1440 32 × 32
Iris 150 4 Vowel 990 10 Letter-Image 500 24 × 18

Letter 20000 16 Waveform 5000 21 ORL 400 32 × 20
Liver 345 6 Waveform-noise 5000 40 CIFAR-10 60000 32 × 32

Pendigits 7494 16 Wine 178 13 MNIST 60000 28 × 28

Table 3. Testing AUC (mean ± std.) of MOPAUC with compared methods on bench-
mark datasets. •/◦ indicates that MOPAUC is significantly better/worse than the
corresponding method (pairwise t-tests at 95% significance level). The best average
AUC for each dataset is shown in bold.

datasets MOP AUC OP AUC KOAUC KOIL SSAUCGM ELMAUC SV MpAUC
AuC 78.07 ± 1.00 77.50 ± 1.77 77.77 ± 0.54 • 76.23 ± 1.41 76.44 ± 1.03 74.37 ± 1.12 73.40 ± 1.33
BCW 89.85 ± 1.46 89.44 ± 1.99 • 88.59 ± 2.76 88.56 ± 1.27 • 88.58 ± 0.48 • 88.09 ± 0.30 ◦ 87.22 ± 1.69 •
GeD 71.77 ± 0.07 79.78 ± 1.46 • 71.74 ± 1.36 • 70.17 ± 2.10 • 70.57 ± 0.71 • 68.27 ± 2.13 ◦ 67.58 ± 0.26 •
Glass 84.58 ± 1.95 83.03 ± 0.44 • 83.21 ± 1.25 83.15 ± 1.89 • 83.46 ± 0.77 82.48 ± 2.48 81.74 ± 2.00
Heart 79.34 ± 0.59 79.79 ± 0.73 80.20 ± 0.18 • 77.17 ± 1.17 • 77.98 ± 0.95 ◦ 73.79 ± 2.83 72.96 ± 2.14 ◦
Iris 91.37 ± 0.99 89.70 ± 0.20 • 89.01 ± 1.75 88.81 ± 2.16 89.22 ± 2.71 88.91 ± 0.93 ◦ 88.09 ± 0.55

Letter 86.02 ± 2.76 81.14 ± 0.64 85.09 ± 0.65 • 79.65 ± 1.65 • 81.06 ± 0.21 • 74.41 ± 2.66 • 72.84 ± 1.56 •
Liver 64.43 ± 2.99 63.23 ± 0.95 • 63.61 ± 1.73 63.57 ± 0.84 63.91 ± 2.11 63.28 ± 0.31 62.63 ± 2.30 ◦

Pendigits 91.58 ± 2.70 90.75 ± 1.71 • 90.54 ± 1.21 • 89.40 ± 0.51 89.65 ± 0.70 • 88.12 ± 0.37 • 87.30 ± 2.67 •
PID 66.30 ± 0.38 64.84 ± 0.77 • 64.49 ± 0.30 64.40 ± 2.26 • 64.33 ± 0.78 • 63.41 ± 2.42 63.03 ± 2.22

Satellite Image 77.96 ± 1.46 75.99 ± 0.62 75.88 ± 0.33 • 75.30 ± 0.92 75.33 ± 0.58 74.41 ± 1.72 • 73.79 ± 1.86 •
Shuttle 86.38 ± 1.82 84.54 ± 1.79 • 83.25 ± 1.63 82.33 ± 2.11 82.36 ± 1.80 81.28 ± 2.91 80.48 ± 1.54
Sonar 70.94 ± 2.25 69.41 ± 0.94 69.19 ± 0.36 • 67.71 ± 1.53 • 68.22 ± 2.59 ◦ 65.90 ± 2.80 65.18 ± 0.21 ◦

Thyroid 84.47 ± 0.71 83.16 ± 0.09 • 83.79 ± 1.09 84.08 ± 0.84 84.44 ± 0.66 • 84.22 ± 2.82 • 83.84 ± 0.99 •
Vowel 54.73 ± 2.64 53.75 ± 0.78 53.37 ± 1.46 50.54 ± 2.21 51.45 ± 2.21 48.35 ± 0.05 47.31 ± 1.10

Waveform 72.18 ± 0.55 71.60 ± 0.33 • 71.05 ± 1.10 • 70.18 ± 1.41 • 70.91 ± 1.82 • 70.09 ± 0.40 • 69.26 ± 0.73
Waveform-noise 77.68 ± 0.48 76.95 ± 0.56 • 77.42 ± 1.63 76.70 ± 1.39 77.24 ± 0.02 75.13 ± 0.80 74.65 ± 2.41 •

Wine 82.41 ± 0.27 80.83 ± 1.62 • 80.61 ± 1.12 • 81.00 ± 1.43 • 80.67 ± 2.43 ◦ 80.26 ± 2.71 79.93 ± 1.88
BA 91.62 ± 0.34 88.86 ± 0.24 88.33 ± 1.95 • 88.42 ± 1.67 88.45 ± 0.57 88.80 ± 1.29 ◦ 88.02 ± 2.68 •
TSE 85.29 ± 1.58 83.85 ± 2.84 • 84.46 ± 0.30 85.11 ± 1.57 • 85.28 ± 0.92 • 85.04 ± 2.04 • 84.69 ± 0.34 •
UKM 81.71 ± 1.25 80.69 ± 2.62 79.21 ± 0.43 78.57 ± 0.25 78.91 ± 2.81 ◦ 77.68 ± 0.79 ◦ 76.68 ± 2.29 ◦
QSAR 92.51 ± 0.39 90.33 ± 0.23 89.69 ± 0.41 • 84.31 ± 2.94 86.53 ± 2.76 79.50 ± 1.51 78.05 ± 2.54
Coil-20 79.64 ± 1.47 77.27 ± 1.02 • 76.84 ± 2.10 • 76.44 ± 2.99 • 76.77 ± 0.20 • 76.10 ± 2.94 • 75.89 ± 1.98 •

Letter-Image 79.64 ± 2.11 78.31 ± 2.35 • 78.34 ± 2.48 • 77.11 ± 2.77 • 77.37 ± 1.51 • 75.90 ± 1.19 • 75.35 ± 0.02 •
ORL 83.11 ± 0.54 82.84 ± 2.04 • 82.81 ± 2.52 • 79.56 ± 2.26 • 81.29 ± 2.94 • 77.25 ± 0.89 • 76.00 ± 2.42 •

CIFAR-10 94.03 ± 0.31 93.88 ± 0.14 • 93.01 ± 2.58 • 89.45 ± 1.63 • 78.32 ± 2.65 • 74.09 ± 0.67 • 72.47 ± 2.07 •
MNIST 93.56 ± 0.36 92.42 ± 0.21 • 92.34 ± 0.57 • 84.32 ± 1.07 • 78.41 ± 1.83 • 81.55 ± 0.70 • 73.30 ± 0.15 •

win/tie/loss 18 / 9 / 0 16 / 11 / 0 15 / 12 / 0 13 / 10 / 4 11 / 11 / 5 14 / 9 / 4
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Moreover, we also compare the average running time of MOPAUC and the
other three online AUC optimization methods after we carry out the experiments
for ten runs. Table 4 shows the comparison of the running time (in seconds) of
MOPAUC and the compared online methods on the used datasets. From this
table, it is found that for the datasets except the five image datasets, KOAUC
and KOIL can cost least running time in average. The reason is that KOAUC
and KOIL optimize on single instance loss, whereas MOPAUC and OPAUC
optimize on pairwise loss. Moreover, compared with OPAUC, MOPAUC costs
less running time. Especially, for the image datasets, our proposed MOPAUC
costs least running time which validate the effectiveness of our method. Indeed,
as OPAUC said, its required storage is O(d2) where d = m × n while for our
MOPAUC, the storage requirement is reduced to O(m2 + n2). Furthermore, as
[23] said, compared with vector leaning machine, matrix learning machine can
reduce the computational complexity and improve the classification performance.
The reduction of computational complexity always brings less running time.

Table 4. Comparison of the running time (in seconds) on datasets for the online AUC
optimization methods.

datasets MOP AUC OP AUC KOAUC KOIL datasets MOP AUC OP AUC KOAUC KOIL

AuC 0.10 0.37 0.02 0.01 Thyroid 0.38 2.86 0.74 0.09
BCW 0.03 0.15 0.03 0.01 Vowel 0.19 0.65 0.07 0.16
GeD 0.10 1.08 0.11 0.05 Waveform 0.38 2.86 0.15 0.22
Glass 0.03 0.15 0.01 0.02 Waveform-noise 0.58 10.37 1.09 0.59
Heart 0.32 0.32 0.02 0.09 Wine 1.10 1.10 0.17 0.14
Iris 0.01 0.03 0.01 0.01 BA 0.05 0.10 0.02 0.02

Letter 0.21 1.66 0.07 0.07 TSE 0.52 6.64 1.19 1.75
Liver 0.08 0.23 0.05 0.02 UKM 0.13 0.16 0.02 0.04

Pendigits 0.21 1.66 0.55 0.02 QSAR 10.81 10.90 2.30 0.96
PID 0.13 0.41 0.03 0.06 Coil-20 13.28 6797.67 735.72 1519.31

Satellite Image 0.63 8.40 0.83 1.59 Letter-Image 5.83 1209.84 55.07 81.79
Shuttle 0.12 0.53 0.11 0.10 ORL 9.23 2655.34 58.46 344.08
Sonar 0.88 23.34 4.96 3.15 CIFAR-10 13.28 6797.67 283.49 463.37
MNIST 10.16 3984.67 188.00 856.00

3.2 Experiments About Parameter Influence

In our proposed MOPAUC, it consists many adjustable parameters including
regularization parameters λ1, λ2, step sizes ηut, ηvt, weights u and v. So here, we
discuss the influence of them. Since ηut ∈ 2[−12:10], ηvt ∈ 2[−12:10], λ1 ∈ 2[−10:2],
λ2 ∈ 2[−10:2], u ∈ 10[−3:3], and v ∈ 10[−3:3], so we use the following three figures
to show the influence. For the convenience of elaboration, we only select four
datasets, they are GeD, Letter, CIFAR-10, MNIST. Figure 1 shows the influence
of the regularization parameters; Fig. 2 shows the influence of the step sizes;
Fig. 3 shows the one of the weights. Each sub-figure in each figure, 2x and 2y

just represent the power operation. Namely, the parameter is 2−10, 26 and so
on. For 10x and 10y, the meaning is same. According to these three figures, it
is found that the regularization parameters and weights have less influence on
the average AUC. While the step sizes should not be set to values bigger than
1, whereas there is a relatively big range between [2−12, 2−4] where MOPAUC
achieves good results. This conclusion is similar with one given in OPAUC [13].
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Fig. 1. Influence of regularization parameters.
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Fig. 2. Influence of step sizes.
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Fig. 3. Influence of weights.
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4 Conclusion

AUC is an important performance measure and it is always measured by the
losses defined over pairs of instances from different classes. Conducting tra-
ditional off-line AUC optimization methods should store the entire dataset in
memory which is infeasible for big data or streaming data applications. Online
AUC optimization methods need not store the entire dataset, but the present
mostly online AUC optimization methods still need to store

√
T instances yet

where T is the number of the entire training dataset. One-pass AUC optimization
(OPAUC) is a new online one and it is independent from the number of training
instances. While OPAUC is infeasible for matrix datasets including images. So
this paper extend the model of OPAUC and develop a matrix-instance-based
one-pass AUC optimization model, i.e., MOPAUC, so as to process the matrix
datasets. Related experiments on some datasets including the vector ones and
matrix ones validate that (1) MOPAUC has a best average testing AUC com-
pared with the online and off-line AUC optimization methods; (2) MOPAUC is
superior to some online methods from the statistical view; (3) MOPAUC can
cost less running time compared with other online methods for processing image
datasets; (4) regularization parameters and weights have less influence on the
average AUC for MOPAUC while step sizes have strong influence. If the values
of step sizes range from [2−12, 2−4], MOPAUC can achieve good results. If the
values are bigger than 1, the average AUC will decreased to be 0. In generally,
our proposed MOPAUC can process matrix-instance-based AUC optimization
problems without storing the dataset and only scanning the training data once.
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Abstract. Image denoising is a fundamental problem in image process-
ing and computer vision. A main challenge is to remove noise while pre-
serving features and developing piecewise smoothing image. Piecewise
constant and linear image recovery has been focused in the past decades.
In this paper, we propose a model recover a class more smoothing image
with complex geometrical structure. We first give definition of piecewise
harmonic image, which covers a wide range piecewise smoothing image.
Then a multiplicative framework for high order variational construction
is introduced. Within this framework, we present a geometrical weighted
Laplace (GWL) high order model. The proposed model is discussed and
compared to some typical related methods. Experimental results on test
images show the performance of the proposed method.

Keywords: Image denoising · Piecewise smoothing image
High order · Harmonic function

1 Introduction

In a standard problem of gray scale image denosing problem, the noisy image
u0 corrupted by additive white Gaussian noise is modeled as

u0(x, y) = u(x, y) + σ(x, y), (1)

where u is the unknown noisy free image and σ is assumed as known noise level:∫
Ω

(u − u0)2dxdy = σ2. The goal of image restoration is to remove noise while
preserving the important structure features from the observed noisy image u0 [1].
An usual regularization approach to remove noise by minimizing the following
functional:

E(u, λ) = E(u) +
λ

2

∫

Ω

(u − u0)2dxdy, (2)

where E(u) is the regularization term to measure the variation of the noise inten-
sity and λ ≥ 0 is the Lagrange multiplier. The first regularization term on the
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right-hand side of Eq. (2) is to measure the oscillations using weighted Laplace
operator. The second fitting term is to measure the identification between u and
u0. In seminar total variational (TV) method [2], the regularization functional
is defined as

ETV(u) =
∫

Ω

|∇u|dxdy, (3)

which produces a piecewise constant image while removing noise. However, TV
suffers from staircase effect in smoothing transition region [3]. A more smoothing
image is also expected in varying image processing fields, inluding computer
photography [4], medical image processing [5], image registration [6], Retinex
problem [7]. Some operations have been used to construct high order models,
such as Laplace operation based YK model [3] and LLT model [5], the Frobenius
norm of the Hessian based affine TV model [8], curvature based elastic model
[9] mean curvature based model [10] and Gaussian curvature based model [11].
A variable exponent high order variational model was proposed in [12], where
the Gaussian convolution was used for detecting edges.

Low order model and high order operators are combined to construct new
methods: one part to produce flat image and the other part to generate smooth-
ing transition. In [15], Papafitsoros and Schönlieb considered a general additive
high order functional and proved its existence and uniqueness. A popular high
order model, total generalized variation (TGV), involves high order derivatives
and automatically balances the first to kth derivatives [13]. The second order
TGV is defined as following:

E(u)TGV = TGV2
α = α1

∫

Ω

|∇u − v|dxdy + α2

∫

Ω

|ε(v)|dxdy, (4)

where the minimum is taken over the vector fields v and ε(v) = 1
2 (∇v + ∇vT)

denotes the symmetrized derivative. TGV reduces the staircase effect and leads
to piecewise polynomial intensities [14]. The connections between some typical
additive high order models are detailed in [15]. Typical non-variational methods
includes bilateral filter [16], nonlocal means filter [17,18], guided filter [19] and
BM3D [20].

In this paper, we will introduce piecewise harmonic image, which is more
smoother beyond the classical piecewise constant image and piecewise linear
image. It allow a weak edge between different regions and it is difficult to recovery
it. We will present a a new model to address this problem. The rest of this paper is
organized as follows. Since our aim is to recover a more smoothing image, Sect. 2
introduce the definition of harmonic image and a new multiplicative framework
for model construction. A new high order model is presented and its features
are discussed in Sect. 3, Experimental results are shown in Sect. 4 and a brief
conclusion is given in Sect. 5.



Piecewise Harmonic Image Restoration with High Order Variational Model 541

2 Framework for Piecewise Smoothing Image Recovery

2.1 Piecewise Smoothing Image: From Constant to Harmonic

Let Ωi,i = 1, 2, · · · , n, be a partition of Ω. A common piecewise image is defined
as

u(x, y) =
m∑

i=0

ui(x, y), (5)

where

ui(x, y) =

{
smoothing image (x, y) ∈ Ωi,

0 otherwise.
(6)

We require that the smoothing image in (6) is continuous and differentiable in
every partition Ωi. An usual way is to use homogeneous polynomial to represent
the smoothing function. Therefore, image I is named as a piecewise constant
image when u(i) = ci and a piecewise linear or affine image when u(i) = aix +
biy+ci. TV can recover piecewise constant image successfully. Several high order
models have been proposed to recover piecewise linear image.

Fig. 1. Two harmonic functions and their corresponding images. The left-up is the

shape of the harmonic function f(x, y) = x2

a2 − y2

b2
and right-up is its corresponding

image. The right-down is the shape of the harmonic function f(x, y) = y
x

and right-up
is its corresponding image.

In this paper, for the first time, we consider the recovery of a class more
smoothing image: piecewise harmonic image. In mathematic, a function f is
said to be harmonic if it satisfies the following Laplace equation:
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�f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
= 0. (7)

Except the traditional constant function and the linear ones, many more smooth-
ing function are harmonic. A quadratic one is a special case when a = b for the
hyperbolic paraboloid in geometry:

f(x, y) =
x2

a2
− y2

b2
, (8)

which describes the shape for a doubly ruled surface in 3D space. Another exam-
ple is f(x, y) = arctan( y

x ), which has a non-vanishing derivatives to infinity.
Figure 1 illustrates the the profiles of two harmonic functions and their corre-
sponding images. These two functions and images has a complex and smoothing
geometrical structure. Therefore, an image u is said to be a piecewise harmonic
if u(i) meets Eq. (7) in partition Ωi. It permits more wild range smoothing func-
tions beyond polynomial, though it is an extension to the traditional piecewise
constant image and linear image. The sharp edges between the piecewise con-
stant are easy to preserved and it is difficult to preserve the edges between the
different harmonic regions, as its gradient may be small.

2.2 Multiplicative High Order Variational Framework

Based on the decisions above, we may infer that it is a challenge to recover
piecewise harmonic image as it permits more smoothing structures beyond con-
stant region and affine region. Before constructing a feasible variation model to
this problem, we should consider two issues. The first is how to judge where is
the boundaries of different smoothing transition regions, which is helpful for a
reasonable piecewise. The second is how to choose a proper way to describe the
smoothing function, which is responsible for smoothing control. The answers to
the two problems need to be integrated into the variational model. To improve
the smoothing degree of the restored image, one need to incorporate high order
operator to describe the smoothing requirement. Therefore, we proposed the
following general high order framework for piecewise smoothing image recovery:

E(u) =
∫

Ω

fp(u, ui, uij)fs(u, ui, uij)dxdy, (9)

where fp provides the clues for judging the boundaries between piecewise regions
and fs conveys the smoothing control respectively. Contrary to the traditional
additive high order variational model framework, the multiplicative model is
easy to extend to other imaging tasks.

3 Proposed Weighted Laplacian Model

By consider a gray scale image u(x, y) as a surface S = (x, y, u(x, y)), we propose
the the following geometrical weighted Laplace (GWL) energy functional:

EGWL(u) =
∫

Ω

|�u|
√

1 + |∇u|2 dxdy. (10)
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The kernel in the the energy (10) is a product of two functions and it can be seen
as a special case for (9) when choosing fp = 1√

1+|∇u|2 and fs = |uxx + uyy| =

|�u|.
The key of recovery of the piecewise harmonic image is the interaction

between two functions.

1. Piecewise. The piecewise effect in a certain partition is guaranteed by edge
boundary detector g =

√
1 + |∇u|2, which has a remarkable geometrical

interpretation:

r =
1
g

=
1

√
1 + u2

x + u2
y

=
dxdy

gdxdy
=

Adomain

Asurface
, (11)

where Adomain is the area of the infinitesimal surface in the image
domain (x, y), and Asurface is its corresponding area on the image surface
(x, y, u(x, y)). Therefore, r conveys the height variation on the surface as well
the intensigy variation on the image data [21]. r is equal 1 for flat surface and
its Laplacian is zero too, such structure will be preserved. r is equal 0 near
edges, which is helpful to preserve edges.

2. Harmonic. The smoothing harmonic constrain is mainly performed by Lapla-
cian operator Δu. As g =

√
1 + |∇u|2 > 1, zero Laplacian means the kernel

function will be zero too and functional reaches the minimizer in this region.
Therefore, smoothing structures will be kept if they can be represented as
any harmonic function.

3. Edge preserving. For an ideal typical sharp edge, its Laplace has a famous zero
crossing property: near the midpoint of the edge, its second order derivative
would cross zero. The kernel function will be 0 as Δu = 0 and r = 0 for a
true sharp edge, which will be recognized and well preserved.

Therefore, the proposed model permits discontinuous while preserving piecewise
smoothing regions.

Adding an artificial time to the Euler-Lagrange equation derived to (10), we
can obtain the following an anisotropic high order nonlinear diffusion equation:

ut = −�
( �u

g|�u|
)

+ div
( |�u|

g3
∇u

)

− λ(u − u0). (12)

The initial condition is u(x, 0) = u0 and its boundary condition is

(ux, uy) · µ = 0, (γ1, γ2) · µ = 0, (13)

where µ is the unit outward normal direction to ∂Ω and γ1 and γ2 are defined
as

γ1 =
( �u

g|�u|
)

x

+
|�u|ux

g3
, (14)

γ2 =
( �u

g|�u|
)

y

+
|�u|uy

g3
. (15)
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The diffusion of Eq. (12) is decided by the interaction of the first order edge
detector g and the second order information �u

|�u| . Noting �u
|�u| = sign�u, only

three values, −1, 0, 1 are permitted. When it equals 0, the diffusion stop auto-
matically. It means that the local structure described by the harmonic function
maybe preserved. When it equals 1 or −1, the diffusion now depends on the mag-
nitude the boundary detector. The diffusion speed will slow down as the sign of
the Laplace operator is scaled by the inverse of a large gradient magnitude. A
fast diffusion will be performed in flat region as the image gradient is small and
the boundary detector g � 1.

As the evolution equation is nonlinear highly, we now consider to solve it
by an explicit finite difference method. For time discretion, forward difference is
used and the space grid size is set as h = 1. Table 1 lists the scheme for time
and spatial operators in high order nonlinear Eq. (12).

Table 1. The discrete scheme for operators in high order nonlinear Eq. (12).

Continuous variable Discrete variable Discrete scheme

t �t Time space

u u0
i,j Initial image

�u �(ui,j) ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

ux in fourth term Dx(ui,j) Dx(ui,j) =
ui+1,j−ui−1,j

2
l

uy in fourth term Dy(ui,j) Dy(ui,j) =
ui,j+1−ui,j−1

2

ux in third term D∓
x ui,j ∓(ui∓1,j − ui,j)

uy in third term D∓
y ui,j ∓(ui,j∓1 − ui,j)

4 Experimental Results

In this section, we conduct several experiments to demonstrate the performance
of the high order GWL model. We make comparisons with three related methods.
The first one is second order TV method, which is famous for its edge preserving
ability. The second method is TGV method, which is implemented by a primal-
dual splitting method in [22]. The code is also available: http://www.gipsa-lab.
fr/∼laurent.condat/software.html. The third one is state of art BM3D method.
To do a quantitative comparison, peak signal-to-noise-ratio (PSNR) is used for
quantitative comparison. For the proposed method, we set time space �t = 10−2

and λ = 0.01.
The first experimental results on a synthesized piecewise quadratic image

are shown in Fig. 2. The test image is composed by two constant functions (one
for left side and another for right side), a linea function (up middle and down
middle) and a selected quadratic harmonic function for u(x, y) = x2

16 − y2

16 in
(8) (middle). The noise level is 10 and the denosing results for the noisy image

http://www.gipsa-lab.fr/~laurent.condat/software.html
http://www.gipsa-lab.fr/~laurent.condat/software.html
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Fig. 2. Piecewise quadratic denoised images. The image is composed by two constant
functions (one for left side and another for right side), a linea function (up middle

and down middle) and a selected quadratic harmonic function for u(x, y) = x2

16
−

y2

16
. From the left to right, the first row: clean image, noisy image (PSNR= 28.1376),

TV result (PSNR= 43.3636). From the left to right, the second row, from the left
to right, TGV result(PSNR= 32.3433), BM3D result (PSNR= 47.0606), GWL result
(PSNR= 49.3684).

Fig. 3. The induced surfaces of piecewise quadratic denoised images. The order is the
same as Fig. 2.

(PSNR = 28.1376) by four methods are shown in 2. The staircase effect is obvi-
ous in quadratic region for TV denoised image (PSNR = 43.3636). The TGV
denoised image (PSNR = 32.3433) shows a good smoothing ability but blurs
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Fig. 4. Piecewise smoothing denoised images beyond quadratic. It is composed of a
linear function and a smoothing function u(x, y) = arctan( y

x
), whose infinite deriva-

tives are non-vanishing. From the left to right, the first row: clean image, noisy image
(PSNR= 28.1221), TV result (PSNR= 43.2176). From the left to right, the second row,
from the left to right, TGV result (PSNR= 31.8597), BM3D result (PSNR= 45.4445),
GWL result (PSNR= 49.6065).

Fig. 5. The induced surfaces of piecewise smoothing denoised images in Fig. 4.

the edges seriously. The staircase effect in linear regions and quadratic regions is
unpleasant in visual for BM3D denoised image (PSNR = 47.0606). The proposed
GWL method provide an almost perfect denoised image visually and quantita-
tively (PSNR = 49.3684). The corresponding induced surfaces are displayed in
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Fig. 6. Nasa denoised image. From the left to right, the first row: clean image, noisy
image (PSNR= 22.1151), TV result (PSNR= 40.1939). From the left to right, the
second row, from the left to right, TGV result (PSNR= 33.5203), BM3D result, GWL
result (PSNR= 42.2764).

Fig. 3. It can be observed that TGV and GWL shows a better smoothing effect
than TV and BM3D.

The second test synthesized image has a more complex structures: it is com-
posed of a linear function and a smoothing function u(x, y) = arctan y

x , whose
infinite derivatives are non-vanishing. The noise level is 10 and the denosing
results for the noisy image (PSNR = 28.1221) by four methods are shown in
4. TV result shows a serious staircase effect for the tangent function region
(PSNR = 43.2176). The TGV denoised image (PSNR = 31.8597) blurs the edges
heavily again. BM3D performs better than TV and TGV but staircase effect is
visual for linear region (PSNR = 45.4445). The proposed GWL method yields a



548 B. Lu et al.

best result among four methods visually and quantitatively (PSNR = 49.6065).
The corresponding induced surfaces are displayed in Fig. 5.

The third test image is a picture of moon rise captured from the space sta-
tion by NASA astronaut Randy Bresnik on August 3, 2017. The noise level
is 20 and the denosing results for the noisy image (PSNR = 22.1151) by four
methods are shown in Fig. 6. Four methods remove noise in white and black
background. The differences between them lie in the moon surface and the
smoothing transition regions in the middle of the image. BM3D provides the
best detail preservation ability for moon surface (PSNR = 41.3395) while GWL
produces a good transition effect between the white region and black region
(PSNR = 42.2764). TV still suffers from the staircase (PSNR = 40.1939) and
TGV blurs edges (PSNR = 33.5203).

5 Conclusions

We present a high order variational method to recover a class more smooth-
ing piecewise image beyond quadratic, which we call piecewise harmonic image.
Piecewise harmonic image covers the popular piecewise constant and piecewise
linear images and beyond them, even including some certain function with infi-
nite order non-vanishing derivatives. We construct the new model within a multi-
plicative variational framework and its kernel is based is based on a geometrical
weighted Laplacian operation. The research in this paper shows that we can
restore piecewise harmonic image perfectly. Its major limitation is the fact that
the natural image do not always contain standard piecewise quadratic geometri-
cal structures. Therefor, improvement on its adaptability to more image is part
of our future work. Another important work is to devise an efficient speeding up
algorithms for GWL model.
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Abstract. Distributed training performance is constrained by two fac-
tors. One is the communication overhead between parameter servers and
workers. The other is the unbalanced computing powers across work-
ers. We propose a dynamic delay based cyclic gradient update method,
which allows workers to push gradients to parameter servers in a round-
robin order with dynamic delays. Stale gradient information is accumu-
lated locally in each worker. When a worker obtains the token to update
gradients, the accumulated gradients are pushed to parameter servers.
Experiments show that, compared with the previous synchronous and
cyclic gradient update methods, the dynamic delay cyclic method con-
verges to the same accuracy at a faster speed.

Keywords: Distributed training · Deep learning
Cyclic delayed method · Stochastic optimization

1 Introduction

Deep learning trains deep neural networks with huge volumes of data. The train-
ing process is compute-intensive. It can take weeks or months with one modern
GPU. Many researchers employ distributed training to accelerate the training
process with a server cluster [1].

Model parallelism and data parallelism are two commonly adopted paradigms
for distributed training. Model parallelism splits the model into different parts
and allocates each part to one GPU [2]. Although model parallelism can speed up
the training process with parallel computing, it has two drawbacks which limit
its application. The first drawback is scalability, which means it is hard to create
a generic model parallelism solution which splits arbitrary model into balanced
parts, allocates to adequate GPUs and achieves sublinear scaling ratio. The sec-
ond drawback is that model parallelism has high communication-to-computation
ratio and the communication overhead may counteract the performance gain.
Data parallelism is more widely adopted for its simplicity and generality. The
training dataset is usually large and easy to split into sub-datasets. Each GPU
hosts a replica of the model and trains it with its sub-dataset concurrently.
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Various architectures have been proposed for data parallelism, e.g. param-
eter server (PS) [3], peer-to-peer, ring-based structure [4]. PS architecture has
been proved to be effective and are widely adopted [5,6]. There are two entities
defined in the PS architecture: parameter servers and workers. Parameter servers
are responsible for collecting gradient updates from workers and calculating new
model parameters with received gradients. Workers pull latest parameters from
parameter servers, train their model replicas with their sub-datasets, calcu-
late gradients, and push gradients to parameter servers. The gradient update
method between parameter servers and workers can be roughly classified into
synchronous method and asynchronous method. For synchronous method, all
workers push gradients to parameter servers in every training iteration. This
method is robust, fast and has been proved to be equivalent to the standard
stochastic gradient descent (SGD) in single GPU training. But the synchronous
method has two issues. One is traffic burst when all workers push gradients at
roughly the same time. The other one is that if workers are not homogeneous,
the slowest one will slow down the overall training process. Asynchronous meth-
ods have been proposed to overcome these issues [7]. However, asynchronous
methods may suffer from slower convergence or divergence issues due to stale
gradients [8].

In this paper, we propose a method to delay the gradient updates between
parameter servers and workers dynamically. Experimental results show that our
method increases the distributed training throughput, reduces the network band-
width requirement, and achieves almost the same accuracy as the synchronous
method.

2 Related Works

Many previous works target at reducing the communication overhead in dis-
tributed training. Chen et al. [9] propose a double buffering technique which
shows the delayed update works well. Seide et al. [10] and Strom et al. [11] use
an 1-bit SGD method which adds delay to gradient updates. Lin et al. [12] pro-
pose a gradient threshold algorithm, which throttles small gradient updates and
accumulates them locally. These gradient sparsification technologies can reduce
the communication volume and they are validated by experiments. But the con-
vergence of these implicit delayed methods are not proved in theory. Agarwal et
al. [7] propose explicitly delayed gradient update methods to reduce the commu-
nication frequency. For convex optimization problem, it has been theoretically
proved that the delayed gradient update can be asymptotically negligible and
the convergence rate scales as O

(
1/

√
nT

)
for n-node cluster after T iterations.

However, this cyclic delayed method suffers from the unbalanced worker com-
puting power issues. In the next section, we introduce a dynamic delay based
algorithm to overcome these problems and improve the performance.
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3 Dynamic Delay Based Cyclic Gradient Update Method

We propose a dynamic delay based cyclic gradient update method, which extends
the previous cyclic delayed method. A dynamic delay is applied to the gradient
update of each worker. The delay is calculated from the real-time global gradient
updating status. This method decouples the cyclic period and actual delays of
workers.

The conventional cyclic delayed architecture computes the stochastic gra-
dients in parallel and updates the model parameters in sequence. The worker
i computes the gradient gi (t − τ) = ∇F [x (t − τ)] from the stale parameters
x (t − τ) of τ updates before. The central parameter server obtains gi (t − τ)
from worker i, computes the updated model x (t + 1) and pushes it back only to
worker i. Meanwhile, other workers do their computations on the stale param-
eters other than the latest x (t + 1). The delay τ comes from the sequential
updating of the parameters among the workers, where τ = n − 1 for a n worker
cluster in the simplest case. The errors coming from τ is a second order effect,
which makes the penalty of delay asymptotically negligible [7].

Fig. 1. Runtime illustration with two workers (Color figure online)

The behavior of each worker can be roughly classified into two phases: a
communication phase for gradient synchronization, and a computation phase
for gradient calculation and accumulation. Although it is possible to overlap
part of the backward computation phase with the communication phase for a
single worker, the cyclic method focuses more on overlapping the computation
phase of a worker with the communication phases of other workers.

In our proposed method, an additional delay is introduced to improve the
throughput performance. Each worker maintains an independent local training
pool. When a worker is in computation phase, it keeps doing local training and
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Algorithm 1.1. Dynamic delay cyclic method
1: Initialize x0, t ← 0 and x−1 ← x0

2: for all n < N do
3: G̃ ← 0
4: while t < T do
5: while mod (t, N) �= n do
6: Wait
7: end while
8: Push xt ← xt−1 − η̃tG̃
9: Pull x̃ ← xt

10: t ← t + 1, G̃ ← 0
11: for d̃ < D do
12: Compute g̃ = ∇f (x̃)
13: Accumulate G̃ ← G̃ + g̃, x̃ ← x̃ − η̃tg̃
14: if mod (t, N) = n then
15: Break
16: end if
17: end for
18: end while
19: end for

gradient accumulation. Mini-batches of the dataset are fetched continuously to
train the local model replica. The following communication phase is dynamically
postponed until the worker obtains the token. The delay is adaptive, which helps
to maintain a good load balance. A powerful worker does more training (and
hence processes more training data examples) in its computation phase and a
weak worker does less.

Figure 1 shows the runtime illustration of different gradient update meth-
ods. Blue blocks denote communication phases, and green blocks denote train-
ing operations. The width denotes the duration of different operations in the
runtime, which is variational because of the imbalance of workloads. In the syn-
chronous method (sync), a strong worker has to wait for a weak worker in every
communication phase. The delayed synchronous method (dsync) postpones the
synchronizations with a fixed amount of local computations. This additional
delay alleviates the load imbalance and reduces the communication volume. In
the cyclic method, the round-robin communication phases prevents the network
traffic burst. However the computation phases are not fully utilized if the workers
are heterogeneous. Additional computations of the strong workers are introduced
in our dynamic delay cyclic method (dcyclic), where the computation phase is
prolonged to overlap the communication phase of other workers. The dynamic
delay makes full use of every worker’s computation power while minimizing the
network traffic.

The dynamic delay cyclic method is described in Algorithm 1.1, where the
local variables on the workers are decorated with a tilde. N denotes the number
of workers, T denotes the maximum global step, and D denotes the maximum
amount of accumulations, i.e. the limitation on the delay of the communication
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phase in every training iteration. x denotes the weights, g denotes the gradients
and G denotes the accumulations. The global step t serves as the token for the
synchronization communication and is maintained by the PS. The subscript −1
of x is introduced for convenience, which is unnecessary in the implementation.
Each worker implements two operations. One is the communication operation
(remote push-to/pull-from the PS), the other one is the local computation oper-
ation (computing/accumulating of gradients).

The communication operation is based on the cyclic delayed method [7]. All
workers cooperate in a round-robin order. The worker obtaining the communi-
cation token performs the communication operation, including the pushing of
gradients and the pulling of updated weights. Then the global step t increases
by one, in which case the token is relayed to the next worker.

The dynamic delay occurs in the computation phase of the worker. Com-
pared to the single gradient computation in the conventional cyclic architecture,
our dynamic cyclic method enables additional gradient computations and accu-
mulations before the worker obtains the token. In the meanwhile, the amount of
accumulations is adaptive in runtime, which is limited by the predefined largest
delay D. When D = 1, this method falls back to the conventional cyclic delay
method [7]. When D > 1, local updates and gradient accumulations are acti-
vated. In the computation phase when the worker processes new mini-batches,
it keeps monitoring the global step t. As soon as it obtains the communica-
tion token, the worker aborts the remnant local operations in order to do the
communication operation at the earliest.

The dynamic delay cyclic method brings two benefits. One is the optimized
throughput (e.g. in examples/second) due to gradient accumulations. By doing
as many training as possible in the computation phase, device utilization is
improved. As a result, the total processing time for the same quantity of exam-
ples is decreased. The other benefit is the convergence conservation. Being able
to abort the computation helps to suppress the actual delay and the staleness
of gradients, even when the predefined D is large. This helps to achieve the
convergence state.

4 Experimental Results

In this section, the dynamic delay cyclic method is evaluated with two large-scale
datasets.

4.1 Datasets and Experiment Setup

Two datasets are selected for the evaluations. One is the ILSVRC2012 [13]
dataset, which focuses on the image object classification. The training set con-
tains 1.2 million images and the validation set contains 150 thousand images.
Both of them are labeled with the presence or absence of 1000 object categories.
The ResNet-V2-50 [14] model is adopted for the classification task. The other
dataset is the union of the 109 Word Parallel Corpus for training and the updated
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development set of the News Crawl for validation from the WMT’15 [15]. The
training corpus consists of over 22 million sentences, and the validation corpus
consists of 3 thousand sentences. Both focus on the recurring translation task on
the French–English pair. The Seq2Seq model [16] is adopted for the translation
task.

Fig. 2. Experiment setup. Workers are bound to different GPUs inside one node. All
workers connect directly to the PS on the other node. The traffic goes over the network
in the same manner as a distributed cluster

Two computing nodes are utilized for all experiments. Both nodes are
equipped with dual Intel Xeon E5-2600v4 CPUs, 512 GB memory and a Mel-
lanox 40 Gbit/s network adapter. One node has 4 NVIDIA Tesla P100 GPUs,
and the other node has no GPU. The distributed computing environment is sim-
ulated with these two nodes by making use of the GPU affinity as illustrated in
Fig. 2. The worker procedures are bound to different GPUs, in the meanwhile
the PS procedure is launched on the other node. PS and workers communicate
through the network adapter, in the same way as a real distributed cluster.

4.2 Algorithm and Implementation

We compare our method with the cyclic and the delayed synchronous meth-
ods, and take the vanilla synchronous method as the baseline. Workers in the
cyclic method update the parameters in a round-robin order [7]. In the vanilla
synchronous method, the weights on the PS are updated by gradients received
from all workers at around the same time. In the delayed synchronous method,
the gradients are accumulated and applied to the local model replicas first. And
then the gradient update to the PS works similarly with the vanilla synchronous
method.

We implement these four methods with the PS architecture [17], where the
server maintains the parameters and the workers do the computations. The data
manipulation is automatically managed by TensorFlow [6] from the implicit
insertion of nodes to the computation graph.

The ResNet-V2-50 model is trained with the Nesterov accelerated gradient
(NAG) method [18,19] with a batch size of 32, a momentum of 0.9 and a learning
rate of 0.005 in 80 epochs. The learning rate is exponentially decayed with a
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factor of 0.1 every 20 epochs. The learning rate warmup [20] is implemented
in the synchronous methods in order to accelerate the convergence. The vanilla
SGD is used to train the Seq2Seq model in 1 epoch with a batch size of 64. The
learning rate starts at 0.02 and decays every 0.01 epoch with a decay factor of
0.99. The learning rate warmup is not utilized in the training of the Seq2Seq
model.

4.3 Results

We first investigate the performance of different methods. The convergence rates
of train (dashed) and validation (solid) are plotted in Fig. 3. The columns from
left to right show the synchronous (blue), the delayed synchronous (green), the
cyclic (red) and the dynamic delay cyclic (cyan) methods. The top-5 error of the
ResNet model is on the top, and the perplexity of the Seq2Seq model is at the
bottom. The actual amount of gradient accumulations are tuned to be the same
during the training of each model.

Fig. 3. (Color online) The convergence after definite epochs. The top row presents the
top-5 error of the ResNet model, and the bottom shows the perplexity of the Seq2Seq
model. The columns indicate the synchronous (blue), the delayed synchronous (green),
the cyclic (red) and the dynamic delay cyclic (cyan) methods from left to right. The
dashed lines denotes the training and the solid lines denotes the validation. (Color
figure online)

In the ResNet model, the cyclic methods achieve the same performance with
the synchronous method. The rate of convergence is not impacted by the inher-
ent gradient staleness from the round-robin order. The additional gradient accu-
mulations limit the rate of convergence in the delayed synchronous method.
Nevertheless, it takes little effect on the dynamic-cyclic method.

In the Seq2Seq model, the cyclic methods perform better than the syn-
chronous methods, where the perplexity converges quickly to a lower value in
the limited number of epochs. The additional accumulations impacts the con-
vergence rate negatively in the delayed synchronous method. The result shows
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Fig. 4. (Color online) The wall-clock time of different methods. On the left shows the
top-5 error of ResNet, and on the right shows the perplexity of Seq2Seq. The vanilla
synchronous SGD (blue) is taken as the baseline. The cyclic method (red) finishes after
a long time due to the low device utilization. The delayed synchronous SGD (green)
obtains slow convergence in the limited number of epochs. The dynamic delay cyclic
method (cyan) converges faster in less wall-clock time because of its high throughput.
(Color figure online)

that the dynamic delay method is more robust to the staleness of the gradient
information than the delayed synchronous method.

The gradient accumulations improve the throughput performance signifi-
cantly. In the delayed methods, the synchronizations are postponed by the
local operations on the workers. This delay reduces the communication-to-
computation ratio and increases the utilization of the computing device, which
leads to a higher throughput as illustrated in Fig. 4. Large datasets are trained
to the same convergence rate at a faster speed with the dynamic delay cyclic
method.

Fig. 5. (Color online) The actual network bandwidth consumption under different
update methods. To achieve the same state of convergence, the dynamic delay cyclic
method requires less network traffic than the vanilla synchronous and cyclic methods.
(Color figure online)

The network traffic is reduced with the dynamic delay cyclic method. The
delay reduces the communication frequency and the total communication vol-
ume. In the cyclic methods, the PS responds to only one worker at a time.



558 W. Hu et al.

The rolling of the communication token prevents the traffic burst issue in the
synchronous methods and reduces the network requirements. In our experiments,
the delay and cyclic methods significantly reduce the network traffic as shown in
Fig. 5. The dynamic delay cyclic method preserves the convergence and requires
less network traffic than the synchronous and the cyclic methods.

5 Conclusions and Discussions

We propose a dynamic delay based cyclic gradient update method, which ben-
efits from the cyclic gradient update architecture and the local gradient accu-
mulations. The network traffic burst is relieved from the round-robin updating
order, and the communication volume and frequency is suppressed by the explicit
delay of gradient updates. This method keeps the rate of convergence from the
restricted duration between synchronizations, and improves the throughput per-
formance by the dynamic extension of the actual delay. The wall-clock time is
reduced in the training of large datasets.

The cyclic methods take full use of the gradients computed from every mini-
batch of examples. The gradients are not only employed to update local model
replicas, but also accumulated to update the global model on the PS. A fixed
(perhaps with decay) learning rate is more applicable for these aggressive meth-
ods.

The actual delay is bounded to prevent the convergence problem rising from
the gradient staleness. The PS cycles the refresh of the local replicas among all
workers in the cluster. The duration of the computation phase scales linearly
with the number of workers, which comes from the round-robin nature of the
cyclic methods. An oversize delay may limit the convergence rate because of the
gradient staleness. An optimized delay restriction should be selected to accelerate
the training and preserve the convergence simultaneously.
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Abstract. Gathering labeled data is one of the most time-consuming and
expensive tasks in supervised machine learning. In practical applications, there
are usually quite limited labeled training samples but abundant unlabeled data
that is easy to collect. Semi-supervised learning and active learning are two
important techniques for learning a discriminative classification model when
labeled data is scarce. However, unlabeled data with significant noises and
outliers cannot be well exploited and usually worsen the performance of semi-
supervised learning and the performance of active learning also needs a pow-
erful initial classifier learned from the quite limited labeled training data. In
order to solve the above issues, in this paper we proposed a novel model of
semi-supervised dictionary active learning (SSDAL), which aims to integrate
semi-supervised learning and active learning to effectively use all the training
data. In particular, two criterions based on estimated class possibility are
designed to select the unlabeled data with confident class estimation for semi-
supervised learning and the informative unlabeled data for active learning,
respectively. Extensive experiments are conducted to show the superior per-
formance of our method in classification applications, e.g., handwritten digit
recognition, face recognition and large-scale image classification.

Keywords: Semi-supervised learning � Dictionary learning � Active learning
Pattern classification

1 Introduction

Considering the explosion of digital images in the real world, it is necessary to collect,
classify and organize them in a simple, fast and efficient way. In order to use these
increasing images as labeled data, automatic image annotation [28] is proposed by
establishing statistical models, which can significantly reduce the labor cost of man-
ually annotating images. However, statistical models, which need a large amount of
labeled training samples, are not applicable for the case with a quite limited labeled
data. How to build an accurate classification model with limited labeled samples for
multi-class classification is still an open question.
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Semi-Supervised learning (SSL) [1–4, 12] are potential solutions to the problem
with a quite limited labeled data. SSL utilizes unlabeled samples to enhance the gen-
eralization ability of supervised learning. Classical SSL algorithms include Co-Training
[2], graph-based semi-supervised learning [3], semi-supervised support vector machi-
nes (S3VM) [4] and semi-supervised dictionary learning (SSDL) [5–10, 12]. Recently
promising performance has been achieved by jointly learning a dictionary based
classifier and the class estimation of unlabeled data. However, it has been pointed by
[11] that directly using unlabeled samples may significantly reduce classification per-
formance when there are large amounts of noisy samples and outliers in the unlabeled
data.

In order to effectively adopt the unlabeled training samples, which disturb semi-
supervised learning methods due to their noise and variations, active learning (AL) [11,
29, 30] methods attract much attention recently. AL trains the model in an interactive
way, which is capable of selecting the representative data based on the classification
model learned in different iterations. However, the performance of AL quite depends
on the effectiveness of the initial classifier.

Semi-supervised learning and active learning are not perfect alone but comple-
mentary to each other together. The classifier obtained by SSL, which takes both the
labeled and unlabeled samples into account, can act as a good initial classifier; the
introduction of AL can eliminate the problem of the model performance reduction
caused due to the presence of a large number of noise samples and outliers in the
unlabeled samples. Meanwhile, the introduction of AL can also gradually get labeled
samples from the unlabeled data set for training without the need to prepare the
required large-scale labeled datasets at the beginning. Several methods have been
developed to study how to effectively combine SSL and AL. Song et al. [13] proposed
an active learning method based on co-training in video annotation. Jiang et al. [14]
developed a graph-based SSL method for video concept detection and used active
learning to select data-concept pairs for human annotation. Although these combina-
tions have improved the performance, the recently developed powerful semi-supervised
dictionary learning (SSDL) models are not well exploited and how to jointly integrate
SSDL and AL is still an open question.

In order to solve above issues, in this paper we proposed a novel framework of
semi-supervised dictionary active learning (SSDAL) to effectively integrate semi-
supervised dictionary learning (SSDL) and active learning (AL). Initially, we use a
handful of labeled samples and abundant unlabeled samples to train a SSDL model.
Based on that, we introduce AL algorithm to select the informative samples to boost the
training. Compared to the original SSDL model, it is not necessary to prepare all the
labeled samples at the beginning. Compared with the simple AL algorithm, it has a
great advantage in learning from less labeled data and more unlabeled data. The
experimental results on the benchmark datasets clearly show the superior performance
of the proposed
To summarize, the main contributions of our work are as follows:

• A novel semi-supervised dictionary active learning (SSDAL) framework is pro-
posed to integrate the advantages of SSDL and AL for the first time.
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• The representative unlabeled samples selected by AL and the unlabeled samples
with confident class estimation are complementary to each other.

• Experiments on the benchmark datasets are conducted, with remarkable perfor-
mance reported.

The rest of the paper is organized as follows. Section 2 presents a brief review of
related work. Section 3 overviews the pipeline of our framework, followed by a dis-
cussion of model formulation and optimization in Sect. 4. The experimental results are
presented in Sect. 5. Section 6 concludes the paper.

2 Related Work

2.1 Semi-supervised Dictionary Learning

Owing to the impressive performance of sparse representation and dictionary learning
[16, 17, 31–34], semi-supervised dictionary learning (SSDL) algorithms [5–10, 12]
have been proposed recently.

Most of SSDL methods aim to learn a shared dictionary. Pham et al. [5] incor-
porated the reconstruction error of both the labeled and unlabeled data with sparsity
constraint into a joint objective function. Zhang et al. [6] proposed an online semi-
supervised dictionary learning model, in which the reconstruction error of both labeled
data and unlabeled data, label consistency and the classification error were integrated
into a joint model. Wang et al. [9] proposed a robust dictionary learning method by
exploiting the global structure of all labeled and unlabeled data. In these semi-
supervised dictionary methods mentioned above, the unlabeled training data is only
used to learn a shared dictionary, ignoring to explore the discrimination hidden in the
unlabeled data.

In order to utilize the class information of unlabeled data, Shrivastava et al. [7]
learnt a class-specific semi-supervised dictionary with estimating the class possibility
of unlabeled data. Wang et al. [10] proposed an adaptively unified semi-supervised
dictionary learning model which integrated the reconstruction error of both the labeled
data and unlabeled data, and classifier learning into a unified framework. Vu et al. [27]
proposed a shared dictionary learning by grouping the unlabeled samples via using the
coefficient-based relationship between the labeled and unlabeled samples. The methods
above try to exploit the discrimination hidden in the unlabeled data. However, the class
probability of unlabeled training samples is artificially designed but not derived from
the objective function. And the powerful class specific representation ability cannot be
used in the shared dictionary learning model.

Recently, Yang et al. [12] proposed a discriminative semi-supervised dictionary
learning (DSSDL) method, which achieves superior performance by introducing a
regularization of entropy and using an extended dictionary to explore the discrimina-
tion embedded in the unlabeled data. However, there are some representative samples
(e.g., nearby the border of different classes), which cannot be correctly estimated by
DSSDL, preventing the further improvement of DSSDL.
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2.2 Active Learning

Active learning (AL) has been widely studied in [11, 29, 30] for its ability to reducing
human labor. In the view of sampling strategy, active learning can be roughly divided
into three categories [28]: (i) membership query synthesis, (ii) stream-based selective
sampling, and (iii) pool-based sampling.

Membership query synthesis assumes that the system can interact with the sur-
rounding environment, e.g., the annotator can be asked to determine the category of
some samples and learn the unknown concepts. But the disadvantage of this method is
that all unlabeled samples are labeled by the annotator without considering the actual
distribution of samples. To solve this issue with a large scale of unlabeled data, stream-
based selective sampling introduced. Although the stream-based selective strategy can
solve the problems caused by direct query methods to some extent, it often needs to set
a fixed threshold to measure the information content of the sample, thus lack the
universality of different tasks. Moreover, because of the way it compares, the actual
distribution of unlabeled data sets and the difference between the unlabeled data can not
be obtained [28].

Pool-based sampling active learning is proposed to overcome the drawbacks above.
Lewis et al. [29] solved this by proposing pool-based sampling, which compares the
information of unlabeled samples, and then selects the sample with the highest amount
of information to ask the annotator. Since the pool-based sampling strategy has
inherited the previous two methods and overcome the shortcomings of the above two
methods, it has become the most widely studied and used sampling strategy [29, 30]. It
has also pointed out by Lin et al. [30] that the sample selection criterion is the another
key in AL algorithm, and there exists many sample selection criteria including risk
reduction, uncertainty, diversity and so on [28]. The criteria is typically defined
according to the classification uncertainty of samples. Specifically, the samples of low
classification confidence, together with other informative criteria like diversity, are
generally treated as the candidates for model retraining. The accuracy of progressively
selecting uncertain unlabeled sample depends on the recognition ability of the desired
classifier, which needs to perform well in the case with limited labeled training data.

3 Semi-supervised Dictionary Active Learning

We propose a novel SSDL-based active learning framework which is composed of a
SSDL model and an active learning algorithm. Figure 1 illustrates the overall frame-
work. Initially, the training set includes a limited labeled samples and abundant
unlabeled samples. Next, we use semi-supervised dictionary learning to train a dic-
tionary, which is supposed to have a good representative ability with a small within-
class variation but a bad interclass representative ability. Then we select the most
informative sample through active learning technique to retrain the proposed model.
For the most informative sample, we introduce a user to annotate it and add it into
labeled data set for the next dictionary training until the model converges.
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3.1 Model of SSDAL

As many prevailing semi-supervised dictionary learning models [5–10, 12], we focus
on the case that the identity of unlabeled training data lies in the training set. In order to
overcome the drawbacks of the prevailing semi-supervised learning (e.g., its perfor-
mance will be worsened by the unlabeled noisy samples and outliers) and active
learning (e.g., a powerful initial classifier is needed), we proposed a novel model of
semi-supervised dictionary active learning to fully exploit the benefits of both of semi-
supervised dictionary learning [12] and active learning.

Given data points set A ¼ A1; . . .;Ai; . . .;AC;B½ � where Ai denotes the ith-class
training data and each column of Ai is a training sample while the remaining B ¼
b1; . . .; bi; . . .; bN½ � is the N unlabeled training samples from class 1 to C. Let D ¼
D1; . . .;Di; . . .;DC½ � denote the supervised dictionary initialized by A, while E ¼
E1; . . .;Ei; . . .;EC½ � is an extended dictionary that mainly explore the discrimination of
unlabeled training data. Both Di and Ei are associated to class i, and they are required
to well represent ith-class data but with a bad representation ability for all the other
classes. As Pi;j indicates the probabilistic relationship between the jth-unlabeled training
sample and ith-class. The model of our proposed SSDAL framework is:

Fig. 1. Illustration of our proposed SSDAL framework. Firstly, the SSDL model is learned with
quite limited labeled samples and all of the unlabeled samples. Secondly, we use AL algorithm to
select the most informative samples iteratively from the unlabeled data set. Thirdly, we introduce
a user to label those informative samples and add them into labeled data set to update the model
with the new labeled samples and the rest of unlabeled data.
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where Xi
i and yij are the coding coefficient matrix of Ai and unlabeled data bj on the

class-specific dictionary D̂i ¼ DiEi½ �, respectively.
The confidence of the estimated class possibility can be measured by the entropy

H bið Þ ¼ �
XC
i¼1

Pi;j logPi;j ð2Þ

The entropy value of Eq. (2) indicates the uncertainty of the class estimation. For
instance, if the unlabeled data is definitely assigned to some class (e.g., Pi;j ¼ 1 for
some j when the sample is assigned to the ith class, and Pi;j ¼ 0 for j 6¼i), the entropy
value will be zero.

3.2 Semi-supervised Dictionary Learning

When the class estimation is confident, the proposed SSDAL model changes to
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where T is a threshold, which is usually set as 0.5. In the dictionary learning, we only
use the unlabeled data whose entropy is smaller than the threshold, i.e., their class
estimation is relatively confident.

3.3 Active Learning

Considering the combination of active learning, Let D̂ denote the output of DE½ � in
Eq. (1). Set L as the number of labeled samples for active learning. In model’s iteration,
we can get the probabilistic outputs P for all the unlabeled samples and a class-specific
dictionary D̂ ¼ DE½ �. If we want to boost the performance of our model by acquiring
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some labeled examples, the main issue is how to select the most valuable examples to
query the user for labels. Considering that the SSDL model can naturally provide the
probabilistic outputs, which is convenient to measure the uncertainty of all unlabeled
samples, we adopt the uncertainty measurement to select the most uncertain samples.

For the unlabeled data, there are C candidate classes. Therefore, the semi-
supervised dictionary learning provides C classifiers. When multiple learners exist, a
widely applied strategy is to select the samples that have the maximum disagreement
amongst them. Here the disagreement of multiple learners can also be regarded as an
uncertainty measure, and this strategy is categorized into the uncertainty criterion as
well. Inspired by [15], we use the uncertainty estimation method that considers the
posterior probabilities of the best and the second best predictions, that is,

Uncertainty xð Þ ¼ P c1jxð Þ � P c2jxð Þ ð4Þ

where c1 and c2 are the classes with the largest and second largest posterior class
probabilities, respectively. If their margin is small, it means that the model is more
confused on the sample and thus it is with high uncertainty. We use Eq. (3) as the final
sample selection strategy in the active learning.

3.4 Classification Model

We utilize different coding models when dealing with the testing sample, e.g., col-
laborative representation of Eq. (5) for face recognition and the large scale image
classification, while local representation of Eq. (6) is used in digit recognition [12].

Code Classify bj; D̂
� � ¼ argminyj bj � D̂yj

�� ��2
F
þ c yj

�� ��
1

ð5Þ
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���
2

F
þ c yij

���
���
1
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where yj ¼ ½y1j ; . . .; yij; . . .; ycj � is the coding vector on the whole dictionary, D̂ ¼ DE½ � is
the learned structured dictionary associated with class i; and yij is the coding vector

associated to ith class of the jth unlabeled data. Then the final classification is conducted by

identity bð Þ ¼ arg min
i

eif g ð7Þ

where ei ¼ b� D̂iyij
���

���
2

2
.

4 Optimization of SSDAL

The optimization of SSDAL is an alternative solving procedure, which includes the
selection of unlabeled data and the semi-supervised dictionary learning of Eq. (3). And
the semi-supervised dictionary learning can further be divided into two sub-problems
by doing class estimation of unlabeled data and discriminative dictionary learning
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alternatively: updating P by fixing D, E and X, while updating D, E and X alternatively
by fixing P [12]. These processes enable the model to converge.

Selection of Unlabeled Data. With the class estimation of all unlabeled data, the ones
with confident class estimation will be integrated into the model of discriminative semi-
supervised dictionary learning.

For the unlabeled data with unconfident class estimation, we select the most
informative samples from the rest of unlabeled data set iteratively via Eq. (4). Then, we
introduce a user to label those informative samples and then add them into the anno-
tated dataset.

Update P. By fixing the class-specific dictionary and the corresponding coding

coefficient (e.g., D, E, X and y), and let eij ¼ bj � D̂iyij
���

���. The class probability of jth

unlabeled training sample is

Pi;j ¼ exp �eij=b
n o

=
XC

i¼1
exp �eij=b

n o
ð8Þ

Update D, E and X. The unlabeled data, which are not included into the active
learning or don’t have a confident estimation, their probability of class will be set as
zero, i.e., Pi;j ¼ 0. Then the proposed SSDAL changes to
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which can efficiently solved by using the method in Yang et al. [12].

5 Experiments

In this section, extensive experiments were conducted over on the benchmark datasets,
such as LFW [24], Web Vision 1.0 [25], USPS [22] and MNIST [23] to demonstrate
the effectiveness of our proposed semi-supervised dictionary active learning (SSDAL).
The competing methods include several representative supervised dictionary learning
methods: SRC [18], FDDL [19], DKSVD [20], LCKSVD [26] and semi-supervised
dictionary learning methods: JDL [5], OSSDL [6], S2D2 [7], SSRD [9], SSP-DL [21]
and recently proposed DSSDL [12] algorithm. Here we don’t include deep learning
related models because our base classifier is a dictionary learning related model and the
number of labeled samples is too limited to train a good enough deep learning model.
The coding of unlabeled training data and testing data in our proposed framework
adopts the same coding representation.

The SSDL model used in our framework has three super parameters, k, c and b:We
set them as k ¼ 0:01, c ¼ 0:001, b ¼ 0:01 in all experiments as same as [12].

We evaluate the performance of our proposed SSDAL in the classification accuracy
with the same amount of user annotation totally. The classification accuracy is defined
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as the top one rate for digit recognition and face recognition, with an extra top-5 rate in
Web Vision large-scale image classification task.

5.1 Datasets and Results

Face Identification. Following the same experimental setting in [10], we estimate our
proposed framework in the LFW database [24], which is a large-scale database consists
of 4,174 face images of 143 individuals taken under varying pose, expression, illu-
mination, misalignment and occlusion conditions. Each individual has no less than 11
images and we select the first 10 samples for training data with the remaining samples
for testing. We randomly select 2 samples from each class as the initial labeled data,
then we set 5 times of user-query iteration, which makes the final amount of labeled
data as same as other methods. As shown in Fig. 2, the data is divided into 3 parts, the
data not used, the training data, and the test data.

We use the same feature in [12] which reduces the feature vectors to 500 dimension.
Table 1 lists the identification results of the LFW database, which show clearly that our
proposed method achieves the highest recognition rates with the same amount of
labeled data among the competing schemes. Compare to DSSDL, the improvement of
the performance stems from the integration of active learning algorithm, which can
select the most informative samples and no need to get all the labeled data ready.

Digit Recognition. Use the same experimental setting in [12], we evaluate the per-
formance on both the USPS dataset [22] and MNIST dataset [23]. In the USPS dataset,
there are 9,298 digital images consisting of 10 classes. We randomly select 110 images

Fig. 2. Illustration of how the data is divided. In this experiment, firstly, the data is randomly
divided into 3 parts during the whole training process. Secondly, for training data, we randomly
select 2 of them as the initial labeled data (i.e., orange frame) and the rest as unlabeled data.
Then, we gradually add the labeled data (i.e., green frame) from the rest of the unlabeled data(i.e.,
red frame) via AL algorithm to boost our model. After all, we use testing data to test our model.
(Color figure online)
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from each class and then randomly select 2 images as the labeled samples for the initial
dictionary training, 58 images as the unlabeled samples and the left as the testing
samples. For MNIST dataset, there are 10 classes and 70,000 handwritten digital
images totally, 60,000 for training and 10,000 for testing respectively. But we ran-
domly select 200 samples from each class then we randomly select 2 images each class
as the labeled samples for the initial dictionary training, 98 images as the unlabeled,
and 100 images as the testing samples. The feature we used is the whole image, which
was normalized to have unit l2-norm. We set 18 times user-query iteration, which with
10 labels updated in each iteration. This makes the final labeled data amount as same as
other methods, which use 20 labeled images per class for training.

All relevant results for ten independent tests are listed in Table 2, which calculates
the mean accuracy and standard deviation. It can be seen that the proposed SSDAL is
able to find the informative samples from the unlabeled dataset for next round training
and can then utilize information of the selected unlabeled data to improve the classi-
fication accuracy. Compare to all the competing methods, our proposed SSDAL
achieves the best performance.

Table 1. The recognition rates (%) on LFW database.

Methods LFW

SRC 62.2 ± 2.7
DKSVD 56.7 ± 1.8
LC-KSVD 58.6 ± 1.3
FDDL 66.1 ± 1.5
JDL 64.8 ± 2.1
S2D2 65.4 ± 2.1
DSSDL 67.5 ± 1.2
SSDAL 72.0 – 0.7

Table 2. The recognition rates (%) on USPS and MNIST

Methods USPS MNIST

SRC 68.6 ± 2.7 72.9 ± 2.3
DKSVD 67.5 ± 1.8 71.4 ± 1.7
FDDL 85.2 ± 1.2 82.5 ± 1.3
LC-KSVD 76.9 ± 1.3 73.0 ± 1.3
OSSDL 80.8 ± 2.8 73.2 ± 1.8
S2D2 86.6 ± 1.6 77.6 ± 0.8
SSR-D 87.2 ± 0.5 83.8 ± 1.2
SSP-DL 87.8 ± 1.1 85.8 ± 1.2
DSSDL 90.2 ± 0.9 88.3 ± 1.5
SSDAL 90.9 – 0.9 88.8 – 1.1
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Web Vision Database 1.0. Web Vision database 1.0 [25] is larger than all the data-
base we evaluated. We use a subset with the same number of classes (i.e., 1,000
classes) as the dataset, which contains 50 samples in each class. For each class, we
randomly set 30 samples for train and 20 samples for test. From the training set, we
select the first 5 samples as the initial labeled data. Next we set 8 times of user-query
iteration. This makes it 13 labeled samples for each class finally.

We extract feature as same as [25] then we reduced it to 300 dimension. The top-1
result and top-5 result of the proposed SSDAL and two most competing methods, such
as the supervised LCKSVD and the semi-supervised DSSDL. The results of all
methods are listed in Table 3, from which we can observed that the improvements of
SSDAL over DSSDL are 1.3% in Top-1 accuracy and 2.7% in Top-5 accuracy.
Compared to LCKSVD, the advantages of SSDAL is larger.

6 Conclusions

In this paper, we proposed a new model of semi-supervised dictionary active learning
(SSDAL), which integrates the state-of-the-art semi-supervised dictionary learning and
active learning for the first time. Based on the proposed criterion which based on the
estimated class possibility, the unlabeled data with confident class estimation and the
representative information are returned into the training of SSDAL. Extensive exper-
iments have shown the superior performance of our proposed framework.
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Abstract. Sparse representation has been widely applied to pattern
classification, where the input is coded as a sparse linear combination of
training samples and classified to a category with the minimum recon-
struction error. In the recent years, multi-feature representation based
classification has attracted widespread attention and most of these meth-
ods have showed the superiorities compared to the classification model
with single feature. One key issue in multi-feature representation is how
to effectively exploit the similarity and distinctiveness of different feature,
which is still an open question. In this paper, we present a novel multi-
feature shared and specific representation (MFSSR) model, which not
only keeps the distinctiveness of different features, but further exploits
their similarity with a shared representation coefficient. In addition, dif-
ferent features are weighted differently to reflect their discriminative abil-
ities. Several representative experiments have shown the effectiveness and
simplicity of the proposed MFSSR.

Keywords: Multi-feature representation
Shared and specific representation · Pattern classification

1 Introduction

Over the past decade, sparse representation has achieved great success [14]
and has been widely applied to various applications, such as face recognition
[21,22,24], image classification [25], signal classification [18], and image restora-
tion [12]. The main idea of sparse representation is to approximate a testing sam-
ple by a linear combination of training samples and the representation coefficients
should be sparse to some extent. Both l0-norm (i.e., the number of non-zero ele-
ments) and l1-norm (i.e., the count of absolute values of elements) minimizations
can be applied to implement sparsity coding. However, considering l0-norm min-
imization is an NP-hard problem, most of sparse representation methods employ
l1-norm minimization. And the simplest and standard sparse representation can
be regarded as the following regularized linear problem.

min
α

‖y − Dα‖22 + λ‖α‖1 (1)
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where y is the feature vector of testing sample, D = [d1, . . . ,di, . . . ,dn] is the
dictionary in which di is the feature vector of the ith training sample, and λ is
a positive scalar as sparsity penalty parameter.

Based on Eq. (1), Wright et al. [22] proposed the sparse representation based
classification (SRC) method for robust face recognition, which not only achieves
high classification accuracy, but is also robust to face occlusion. In SRC, the
query face image is approximated by a linear combination of all the training
samples, and then classified to the category i with the lowest reconstruction
error:

i = min
i

‖y − Diα̂i‖22 (2)

where Di is the sub-dictionary of ith class, α̂i is the coefficient associated with
the sub-dictionary Di.

Compared to single feature, multiple features obviously can provide more
effective information [6] to recognize the class of testing sample. Amount of
works [4,15] have shown the benefits of complementary information provided by
different features. Hence a mass of methods have sprung up to deal with multi-
feature representation based classification problems, which can be divided into
two categories, namely classifier fusion [17] and feature fusion [2].

Multi-feature sparse representation based methods have emerged in recently
years. In [26], a multi-task joint sparse representation based classification method
(MTJSRC) is proposed, which adopts a mixed norm regularization on the rep-
resentation coefficients to enforce the similarity of different features and the
sparsity of classes. Considering that multiple features may have different contri-
butions for the representation and classification, [23] proposed a relaxed collab-
orative representation (RCR) model with a weighted within-class regularization
on the coding coefficient. Although promising performance of RCR is reported,
the within-class regularization has no direct connection with the final classifier.
Very recently, in order to keep the distinctiveness of each feature, a joint similar
and specific learning (JSSL) model [9] is proposed, which divides representation
coefficients into two parts to balance the similarity and distinctiveness among
different features. However, the model of JSSL is a little unnecessary complex
due to its double flexility on the coding coefficients.

Fortunately, all the above issues can be solved by designing a suitable multi-
feature representation model. Lately, many effective models have been proposed.
For example, Luo et al. [11] proposed the consistent and specific multi-view sub-
space clustering, and Lan et al. [8] learned common and feature-specific patterns
for multiple features. In this paper, we propose a multi-feature shared and spe-
cific representation (MFSSR) model. In the proposed model, different features
have a shared representation for their commonality and different specific repre-
sentations for their specificity. Moreover, a weighted representation term, which
has direct connection with the final classifier, is designed to handle some features
with outliers. An efficient solving algorithm is also proposed for the proposed
MFSSR. Extensive experiments have been conducted to show the advantages in
accuracy and running time.
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The rest of this paper is organized as the following. Section 2 reviews some
related works. Section 3 introduces the proposed model and its optimization.
Section 4 illustrates the experimental results in several representative databases,
and Sect. 5 concludes the paper.

2 Brief Review of Related Works

MTJSRC
With multiple types features for joint sparse representation and recognition, the
multi-task joint sparse representation based classification (MTJSRC) has been
proposed in [26]

min
αk

K
∑

k=1

‖yk − Dkαk‖22 + λ

C
∑

j=1

‖αj‖2 (3)

where K is the number of different features, C is the number of classes, yk

denotes the kth feature vector of query samples, Dk = [Dk,1, . . . ,Dk,j , . . . ,Dk,C ]
represents the kth-feature dictionary, and αj = [α1,j , . . . , αk,j , . . . , αK,j ] is the
coefficient associated to class j of all features, where αk,j is associated to the
kth feature and the class j. It can seen clearly that, by using a mixed-norm
regularization, the representation coefficients of different features can be similar
and sparse in terms of classes.

RCR
Different from the mixed-norm regularization of MTJSRC, the relaxed collabo-
rative representation (RCR) model in [23] utilizes a weighted within-class regu-
larization term and a l2-norm for representation coefficients, assuming that the
coding vectors from different features have a small variance. Besides, in order to
exploit the discrimination of different features, the weight for each feature can
be learned in the stage of coding process. The whole formulation of RCR is as
the following.

min
αk

K
∑

k=1

(‖yk − Dkαk‖22 + λ‖αk‖22 + τωk‖αk − α‖22) (4)

where α is the mean of all αk. τ and λ are positive scalar constants and ωk

indicates the discrimination of kth features. It can be observed that the similarity
between different features is exploited by reducing the variance representation
coefficients.

JSSL
Although minimizing the distance between coefficients can exploit the similarity
of different features, it is too restrictive since there is also distinctiveness among
the coefficients. In order to keep the distinctiveness of them, [9] proposed a
joint similar and specific learning (JSSL) model to address the problem. In the
model of JSSL, representation coefficients are divided into two parts, namely
similar part and specific part. On the one hand, similar part exploits similarity
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of different features. On the other hand, specific part keeps their distinctiveness.
The model of JSSL can be written as the following.

min
K

∑

k=1

‖yk − Dk(αc
k + αs

k)‖22 + τ‖αc
k − αc‖22 +

K
∑

k=1

λ(‖αc
k‖1 + ‖αs

k‖1) (5)

where αc
k and αs

k are similar part and specific part, respectively. It can be seen
that αc

k achieves similarity between different features by minimizing the distance
of their coefficients. Besides, the specific part αs

k extracted from αk can keep the
distinctiveness of kth feature, which makes their representation more flexible.

MTJSRC assumes that multiple features have the same contributions for
the representation and classification, which may not be correct in practice. For
RCR, the within-class coding coefficient term has no direct connection with the
final classifier, lacking a meaningful illustration on the discriminative dictionary
learning model. Although promising performance has been reported by JSSL,
there are still several issues. It is not necessary to introduce double flexilities,
e.g., αc

k −αc and αs
k, because the introduction of αs

k has represent the speciality.
The model of JSSL is complex due to unnecessary unknown variable, e.g., α.
Another drawback of JSSL doens’t consider the features with outliers although
the specific representation can tolerate noises to some extent.

3 Multi-feature Shared and Specific Representation

3.1 Multi-feature Shared and Specific Representation Model

Similarity and distinctiveness of multiple features are always the main problem
considered in multi-feature representation based classification. Both of them are
important. On the one hand, the similarity of different features means the same
information they keep, which should be exploited to make the classification sta-
ble. On the other hand, different features may have extra valuable information,
which may improve the recognition performance.

In order to solve the issues presented in Sect. 2, we proposed a novel multi-
feature shared and specific representation (MFSSR) model

min
αc,αs,ω

K
∑

k=1

(‖yk −Dk(αc +αs
k)‖22+τωk‖yk −Dkαc‖22+λ2‖αs

k‖1
)

+λ1‖αc‖1 (6)

where K is the number of different features and τ , λ1 and λ2 are positive scalar
constants. yk = [y1

k; y2
k; . . . ; yn

k ] ∈ R
n denotes the kth feature vector of query

samples. Dk = [d1
k,d2

k, . . . ,dm
k ] ∈ R

n×m represents the kth-feature dictionary.
αc = [αc,1;αc,2; . . . ;αc,m] ∈ R

m is the shared coefficient vector of each feature
vector yk over dictionary Dk. αs

k = [αs,1
k ;αs,2

k ; . . . ;αs,m
k ] ∈ R

m is the specific
coefficient vector of the kth feature vector yk over the dictionary Dk. ωk is the
weight assigned to the kth feature.
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Inspired by JSSL [9], in order to exploit the similarity and distinctiveness of
multiple features, we also divide the representation coefficients into two parts.
The primary coefficient αk can be written as the following form

αk = αc + αs
k (7)

where αc is the shared part of all features. Different from JSSL, we required
the shared coding coefficient be same for different features, i.e., αc is the shared
coding vector for all yk. The reason is that the specific representation part, i.e.,
αs

k has introduced enough flexility, and it is more effective and simpler than that
of JSSL.

As the related works mentioned above, RCR introduces a weighted within-
class regularization to minimize the distance of coefficients between different
features under the assumption that their representation coefficients should be
close to some extent. However, the regularization of RCR is too restrictive to
keep enough distinctiveness of various features. Compared to RCR, which uses
weighted within-class variance of coding vectors to handle bad features, the
proposed MFSSR directly weights the class-specific dictionary representation,
which is also the criterion of final classification. The benefit of Eq. (6) is that the
training phase and testing phase are consistent. In the proposed model, we can
learn the weights of different features as the following term.

K
∑

k=1

ωk‖yk − Dkαc‖22 (8)

It is obvious that the weight ωk should be big when yk can be well reconstructed
by using only the shared coefficient, indicating the kth modality is more distinc-
tive. In order to keep our model more stable, some regularization constraints
on ωk can be adopted. For example, both Karush-Kuhn-Tucker condition and
maximum entropy principle can deal with it. In this paper, we use maximum
entropy principle to regularize the prior ωk:

−
K

∑

k=1

ωk ln ωk > δ (9)

where δ is a positive scalar constant.

3.2 Optimization Algorithm

The objective function (6) can be minimized by alternately updating the shared
coefficient αc, the specific one αs

k and the weight ωk until the function converges
to local minimum.

Initialization:
We initialize the proposed model by simply setting the shared coefficient and
the specific coefficients as zero vectors, and the weights as one.

αc = 0, αs
k = 0, ωk = 1 (10)
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Updating the Shared Representation:
If we fix the specific coefficient αs

k and the weight ωk, the objective function (6)
is reduced to Eq. (11).

min
αc

K
∑

k=1

(‖(yk − Dkαs
k) − Dkαc‖22 + τωk‖yk − Dkαc‖22

)

+ λ1‖αc‖1 (11)

Obviously, we can combine all the K sub-functions because they share the same
coefficient αc. The minimization of Eq. (11) with respect to αc can be rewritten
as the following function.

min
αc

(‖

⎡

⎢

⎢

⎢

⎣

y1 − D1a
s
1

y2 − D2a
s
2

...
yk − Dkas

k

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

D1

D2

...
Dk

⎤

⎥

⎥

⎥

⎦

αc‖22 + τ‖

⎡

⎢

⎢

⎢

⎣

√
ω1y1√
ω2y2

...√
ωkyk

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

√
ω1D1√
ω2D2

...√
ωkDk

⎤

⎥

⎥

⎥

⎦

αc‖22 + λ1‖αc‖1)

(12)
Here all the left two terms in Eq. (12) are differentiable. For convenience, We
rewrite Eq. (12) as the following.

min
αc

(F(αc) + λ1‖αc‖1) (13)

where F(αc) represents the left two terms of the objective function (12). Since
F(αc) is differentiable, The Iterative Projection Method (IPM) [16] can be
applied to minimize Eq. (11), as described in Algorithm 1.

Updating the Specific Representation:
We fix the shared coefficient αc and the weight ω, the specific coefficient αs

k

can be updated by reducing the objective function (6) to Eq. (14)

min
αs

k

(‖(yk − Dkαc) − Dkαs
k‖22 + λ2‖αs

k‖1
)

(14)

It is clear that the objective function is similar to Eq. (13), which can be also
optimized by The Iterative Projection Method [16].

Updating the Weight:
If the coefficient ac and as are known, under the condition of maximum

entropy principle (9), the objective function (6) becomes Eq. (15).

min
ωk

(

τωk‖(yk − Dkαc)‖22 + γωk lnωk

)

(15)

The weight ωk can be derived:

ωk = exp
( − τ‖yk − Dkαc‖22/γ

)

(16)

In all, our optimization algorithm alternately updates the shared representa-
tion coefficient αc, the specific coefficients αs

k and the weights ωk, until Eq. (6)
converges. The summary of the algorithm is described in Algorithm2. Since each
sub-problem in the optimization of Eq. (6) will reduce the objective, Algorithm 2
will converge to a local optimal solution.
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Algorithm 1. The coding algorithm of shared coefficient
1: Input: σ, λ1 > 0
2: Initialization: α̃c(1) = 0 and h=1.
3: while convergence and maximal iteration number are not reached do

h = h + 1
α̃c(h) = Sλ1/σ

(

α̃c(h−1) − 1
2σ

∇F(α̃c(h−1))
)

where ∇F(α̃c(h−1)) is the derivative of F(αc) w.r.t. α̃c(h−1), and Sλ1/σ is a soft
threshold operator defined in [16].

4: Return αc = α̃c(h).

Algorithm 2. Multi-Feature Shared and Specific Representation (MFSSR)
1: Input: λ1, λ2, τ,yk,Dk, k = 1, 2, . . . , K
2: Initialization: αc = 0, αs

k = 0, ωk = 1, k = 1, 2, . . . , K
3: while not converged do

update coefficients αc following Eq. (12)
update coefficients αs

k following Eq. (14)
update weights ωk following Eq. (15)

4: Return αc and αs
k, k = 1, 2,. . . , K

3.3 Classification

When the coding coefficients and the weights are obtained, its label is decided
based on the lowest reconstruction error over all K vector:

identity = arg min
j

K
∑

k=1

ωk‖yk − Dk,j(αc
j + αs

k,j)‖22 (17)

where Dk,j is the elements of the dictionary Dk of class j, and αc
j and αs

k,j are
the shared and specific coefficients associated to the sub-dictionary Dk,j .

4 Experiments

In this section, we conduct three face recognition (FR) experiments on two
benchmark face databases, including the AR database [13] and the Labeled
Faces in the Wild (LFW) database [20], to verify the effectiveness of the pro-
posed model. In the experiments, the methods nearest neighbor (NN) [5] and
SVM [7] are used as the baseline. In order to further evaluate the effectiveness
of MFSSR, several multi-feature representation based classification methods,
including MTJSRC [26], RCR [23] and JSSL [9], are compared with the pro-
posed model.

For AR database, the three parameters λ1, λ2, γ (the Lagrange multiplier of
the entropy constraint) are set as 0.0005, 0.0005, and 0.02, respectively, which are
the same for FR without occlusion and FR with disguise. For the experiments of
LFW databases, a challenging task in uncontrolled environment, the parameters,
such as λ1, λ2 and the weights ω are learned from the validation set.
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This section is organized as the following. First, we give the experiment of AR
with occlusion in Sect. 4.1, which evaluates MFSSR is robust to face occlusion.
In Sect. 4.2, we evaluate the performance of MFSSR on LFW database with
multiple features as input. Then, in Sect. 4.3, we evaluate the performance of
MFSSR on experiment of AR without occlusion. In Sect. 4.4, we focus on the
comparison of time complexity and running time with JSSL.

4.1 AR with Occlusion

In this subsection, we perform face recognition based on AR with occlusion. The
AR database contains two-session data of 50 male and 50 female subjects. In
each session, every person has 7 images with only illumination and expression
variations, and 6 with real face occlusion (sunglass or scarf disguise).

In these experiments, 800 images (8 samples per person with only expression
variations from two sessions) serve as the training set, while another 200 images
with sunglass (or scarf) disguise are used for testing, as shown in Fig. 1(a).
Following the experimental setting of RCR [23], we also resize all images to
83 × 64 and partitioned them into 4 × 2 blocks with the size of 20 × 30, as
shown in Fig. 1(b). Then, each block is resized to a 600-dim vector, which can
be regarded as a feature vector.

)b()a(

Fig. 1. (a) The testing samples with sunglass and scarves in AR database; (b) parti-
tioned testing samples.

The experimental results of these methods are listed in Table 1. Our proposed
MFSSR achieves the best performance. SVM and NN, which are not designed
for dealing with multi-features, get the worse results compared to other meth-
ods. As a multi-feature representation based classification, MTJSRC fails to deal
with the problem that there is occlusion variation in some blocks, since it treats
each block equally. Inversely, RCR learns weights for different blocks, and hence,
the occluded parts are set very small weights, which can reduce the interference
of occluded blocks in the stage of classification. JSSL, which adopts the simi-
lar within-class regularization, achieves similar results. Compared to RCR and
JSSL, MFSSR not only automatically learns the weights for different blocks, but
also exploits the similarity of different features by shared representation coeffi-
cient. What’s more, it keep their distinctiveness by the specific part. Therefore,
the proposed MFSSR achieves the best performance.
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Table 1. Face recognition rates on AR database with disguise.

Method Sunglass Scarf

SVM 53.5% 10.5%

NN 63% 12%

MTJSRC 80.5% 90.5%

RCR 97% 94%

JSSL 96% 94%

MFSSR 100% 97.5%

4.2 LFW Face Recognition

Labeled Faces in the Wild (LFW) [20], a large-scale database of human face
images, is designed for unconstrained FR in uncontrolled environment with vari-
ations of pose, illumination, expression, misalignment and occlusion, etc. (shown
in Fig. 2). We use one subset of aligned LFW in our experiments. It contains
143 subjects with at least 11 samples per subject. In our experiments, the first
10 samples serve as training data and the rest as testing data. There are four
representative features extracted from each sample, including intensity values,
low-frequency Fourier feature [19], Gabor magnitude [10] and LBP [1]. In the
feature extraction stage, similar the processing method of LDA [3], we first par-
tition each image into 2 × 2 blocks, then extract the enhanced discriminative
feature in each block. At last, the features of all blocks are concatenated as the
final feature.

The comparison of MFSSR with other methods are presented in Table 2.
With no obvious occlusion in all images, there is little difference between the
recognition rates of all methods. However, SVM and NN are still worse than
other multi-feature representation based classification methods, for the reason
that multi-feature methods have the powerful ability to mitigate the correla-
tion between different features, which can greatly improve the performance of
classification. And among these methods, the proposed MFSSR gets the best
performance, with at least 0.6% improvement over other methods. Compared
to JSSL, which also divides representation coefficients into two parts, MFSSR
further enforce the similarity among different features.

(a) (b)

Fig. 2. (a) and (b) are samples in training and testing sets of LFW.
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Table 2. Face recognition accuracy on LFW.

SVM NN MTJSRC RCR JSSL MFSSR

68.3% 70% 77.4% 79.5% 79.3% 80.1%

4.3 AR Without Occlusion

As in RCR [23], the images with only illumination and expression variations are
selected, where 700 images (7 samples per person) from Session 1 serve as the
training data, while another 700 images (7 samples per person) from Session 2
for the testing data. With no obvious occlusion in these images, we simply divide
them into 1 × 4 blocks. Then each block is resized to a vector, as the same of
the experiment of AR with occlusion.

The comparison of proposed model with other competing methods is shown
in Table 3. It can be observed that MFSSR has about 2% improvement compared
with MTJSRC and RCR, though it is slightly worse than JSSL.

Table 3. Face recognition rates on the AR database without occlusion.

SVM NN MTJSRC RCR JSSL MFSSR

87.1% 74.7% 95.8% 95.9% 97.8 % 97.7%

4.4 Time Complexity and Running Time

We verify the efficiency of MFSSR by comparing with JSSL in time complexity
and running time.

Suppose that the size of all Dk are n × m, and the number of testing data
is t. All the testing vectors are organized as a matrix. For JSSL updating ac

k

once by Augment Lagrangian Method (ALM), the time complexity of coding is
O((3K + c)m3 +Km2n+3Kmnt). First, Computing Q has complexity O(cm3),
where c is a positive constant. Second, Computing Pk has complexity 2Km3.
Third, the time complexity PkQ is Km3. Fourth, the computation complexity
of ac

0,k is O(K(m2n+2mnt)). At last, soft threshold operation needs O(Kmnt).
Besides, when updating as

k one iteration, the time complexity O(3Kmnt). In all,
the time complexity of JSSL is O(q((3K + c)m3 + Km2n + 6Kmnt)), where q
is the iteration number.

However, in MFSSR, both ac and as
k are updated by IPM, which is very

timesaving. First, updating ac has complexity of O(6Kmnt). Then, the time
complexity of updating as

k is O(3Kmnt) like JSSL. SO, the coding complexity
of MFSSR is O(q(9Kmnt)), where q is the iteration number. It is obvious in the
proposed MFSSR is more effective than JSSL.
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We conduct the running time experiments by the desktop of 3.5 GHz CPU
with a 8 GB RAM. As is seen in Table 4, the proposed MFSSR is more efficient
than JSSL in all experiments. For instance, MFSSR is two times faster than
JSSL on the LFW database.

Table 4. Average computational time (seconds) coding and classifying one testing
sample.

Experiment AR(sunglass) AR(scarf) LFW AR block

JSSL 0.91 0.92 3.96 0.71

MFSSR 0.63 0.78 1.87 0.45

5 Conclusion

In this paper, we propose a multi-feature shared and specific representation
model (MFSSR) for pattern recognition, which further exploit the similarity
and distinctiveness of different features for coding and classification. By divid-
ing the coefficients into the shared part and the specific part, the discrimination
embedded in multiple features is enhanced through the shared representation,
while the distinctiveness of different features is tolerated by the specific repre-
sentation. An adaptively weighted representation term is also proposed, with
excellent performance to image recognition with occlusions. The experimental
results on several representative databases demonstrated the advantages of our
proposed model in accuracy and efficiency.
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Abstract. Time series is widely found in various fields such as geo-
science, medicine, finance, and social sciences. How to effectively extract
the features of time series remains a challenge due to its potentially
complex non-linear dynamics. Recently, Random Projection Filter Bank
(RPFB) [5] is proposed as a generic and simple approach to extract
features from time series data. It generates the features by randomly
generating numerous autoregressive filters that are convolved with input
time series. Such numerous random filters inevitably have redundancy
and lead to the increased computational cost of the classifier. In this
paper, we propose a distillation method of RPFB, named D-RPFB, to
not only maintain the high level of quantity of the filters, but also reduce
the redundancy of the filters while improving precision. We demonstrate
the efficacy of the features extracted by D-RPFB via extensive experi-
mental evaluation in three different areas of time series data with three
traditional classifiers (i.e., Logistic Regression (LR) [2], Support Vector
Machine (SVM) [14] and Random Forest (RF) [8]).

Keywords: Random projection · Filter bank · Time series
Feature extraction

1 Introduction

Time series data are ubiquitous in many practical applications ranging from
health care [3], action recognition [10], financial markets [15] to urban traffic
control [16]. How to extract the features of time series effectively is a popular
research topic [4,5,7,9,13]. However, time series extraction remains a challenging
task due to the potentially complex non-linear dynamic system behind the time
series.

Recently, Random Projection Filter Bank (RPFB) [5] is proposed as a generic
and simple approach to extract features from time series data. RPFB is a set
of randomly generated stable autoregressive filters that are convolved with the
input time series to generate the features. These features can be used by any
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 586–596, 2018.
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conventional machine learning algorithm for solving tasks such as time series pre-
diction, classification with time series data, etc. Different filters in RPFB extract
different aspects of the time series, and together they provide a reasonably good
summary of the time series.

However, numerous random filters inevitably have redundancy and lead to
the increased computational cost of classifier. Moreover, in some cases, redundant
features will make the performance of classifier worse. How to reduce redundant
features (i.e., estimate the quality of the filter) is an important issue. In this
paper, with an aim of reducing the number of redundant filters, we propose a
way to distil the filters of RPFB, named D-RPFB, which uses a set of specific
rules to filter the filters that are most capable of guiding the classifier to get
better performance. D-RPFB can reduce the number of redundant and even
potentially mislead filters, thus improving the quality of the features provided
to the classifier which directly improves the learning ability of the classifier and
obtains a better performance.

2 Preliminaries

There is a crucial process for the distillation of RPFB, which is designed to
measure the quality of a specific filter. To do that, we introduce entropy [6].
Considering that entropy is not very common in time series analysis, we first
introduce the concept of entropy briefly before proposing our D-RPFB formally.

Entropy [6] is often used in information theory and probability statistics to
measure the uncertainty of a variable. Entropy is always a real number larger
than 0 but smaller than 1. Its value indicates the degree of uncertainty of random
variables. When the entropy is equal to 0, the random variable is completely
certain without any randomness. When entropy is equal to 1, the uncertainty of
the random variable peaks. This property of entropy makes it possible to use the
entropy to measure the classification quality of the classification subset when a
classifier uses a single feature extracted by certain filter to classify an instance.
The smaller the entropy of a subset, the more the feature extracted by the filter
can make the classifier better complete the clustering, and vice versa, the greater
the entropy value indicates that the feature extracted by the filter may lead to
the confusion of the classification results.

3 Proposed Methods D-RPFB

3.1 Brief Review of Random Projection Filter Bank

The idea behind RPFB is to randomly generate many simple dynamical systems
(i.e., 1

1−Z′
nz−1 denotes a certain simple dynamical system with a given pole Z

′
n

and z−1 denotes the inverse of z-transform [11]) that can approximate optimal
dynamical systems with a high accuracy.

In order to do this, what we should do first is to determine the number of fil-
ters in the filter bank. After that, given the certain number of filters N , we draw
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N random real numbers or the imaginary numbers Z
′
1, · · · , Z

′
n from the unit cir-

cle to construct a filter bank defined by filter φ(z−1) = ( 1
1−Z

′
1z−1 , · · · , 1

1−Z′
nz−1 )

which contains N random projection filters. Then, we pass each input time
series through every filter in RPFB to do convolution and generate N features
corresponding to each time series at each time step. For example, assuming the
length of the each input time series is T , we will get N ∗ T features after pass-
ing it through RPFB. Finally, we can input the obtained features into different
classifiers for conducting time series classification.

3.2 The Distillation of Random Projection Filter Bank

Introduce the Entropy into Time Series. The entropy is used in the tradi-
tional decision tree ID3 algorithm [12] for feature selection. That motivates us to
use entropy to evaluate the quality of a certain filter. However, in the traditional
decision tree ID3 algorithm [12], the entropy is only applicable to a discrete vari-
able. To solve this issue, we use an extra classifier to introduce the entropy into
time series and achieve the purpose of evaluating the quality of a certain filter.
In general, assuming the length of the each input time series is T , we will get T
features through time after passing it through a certain filter. Then, we input
the T features into a certain classifier to get the classification result. In this way,
for each time series example, we get a classification result which makes a certain
filter become a discrete variable. And, we propose evaluation method combined
with entropy and classification result to evaluate the quality of a certain filter.

Computation of Subset Uncertainty and Evaluation of Filters. After
using RPFB to generate filter, each filter will be executed with the proposed
evaluation algorithms to get their evaluation value. The overall algorithm flow
is shown in Algorithm 1. First, in the training data set, randomly select the
same number of instances in each category to form data set Dm for avoiding
unbalanced sample. For each filter in RPFB, randomly select the half number of
instances in Dm as training data Dt, the other half as validation data Dv and
then pass the train and valid data into the filter, extracting the corresponding
features (denoted by Ft and Fv). Then, fitting the classifier with the Ft. When
the remaining features Fv are classified by the classifier, each category (totally M
category) will produce a corresponding subset D

′
m. Each subset D

′
m may contain

the instances that belong to the subset or contains instances that do not belong
to the subset. Thirdly, we can calculate the uncertainty of each subsets D

′
m by

entropy. If the uncertainty of the subset D
′
m is small it means that D

′
m contains

many instances of the same category, which means that the feature extracted by
the filter can guide the classifier to complete the clustering of the time series.
However, only clustering results cannot evaluate whether a filter is really efficient
because if a subset D

′
m contains many instances of the same category that do not

belong to D
′
m, the feature extracted by the filter is quite bad which misleads the

classifier. Therefore, we have to consider the classification accuracy as the second
characteristics of each subset D

′
m. In this way, the two important measurements,
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the clustering effect and the classification accuracy are both considered. Both of
them are equally important for evaluating the quality of the feature extracted
by a filter. Therefore, D-RPFB proposes a method for calculating the evaluation
value of a certain filter as follow:

Algorithm 1. The distillation of random projection filter bank
Input: Dataset = (Xi,1, Yi,1), · · · , (Xi,Ti , Yi,Ti)

m
i=1

Output: Classifier f̂ and new filter bank φnew

1 l : Y
′ × Y → R : Loss function;

2 F : Function space;
3 n : The number of filters in random projection filter banks;
4 ρ : The percentage of remaining filters after the screening filter;

5 Draw Z
′
1, · · · , Z

′
n uniformly random within the unit circle.

6 Define filter φ(z−1) = ( 1

1−Z
′
1z−1 , · · · , 1

1−Z
′
nz−1 ).

7 In the training data set, randomly select the same number of instances in each
category to form data set Dm.

8 foreach φi(z
−1) in φ(z−1) do

9 Pass each time series in Dm through filter φi(z
−1).

10 Randomly select the half number of instances in Dm as training data Dt,
the other half as valid data Dv.

11 Input the corresponding features Ft generated by training data Dt in step 9
into the classifier to fit the model. (The type of classifier used here is the
same as the f in line 19.)

12 Input the corresponding features Fv generated by valid data Dv into the

fitted model got by step 11 to get the classification subsets D
′
m.

13 Use Equation (3) to calculate the evaluation Eφ(z−1) of the filter φi(z
−1).

14 end
15 Sort all filters according to their evaluation value Eφ(z−1).

16 Select the corresponding number of filters based on ρ with higher evaluation
values to form new filter banks φnew.

17 Pass each time series in training set through every filter in the new filter bank
φnew.

18 Use the new extracted features (X
′
i,1:Ti

) generated by new filter bank φnew to
construct the estimator, we use regularized empirical risk minimization to solve
it and J(f) controls the complexity of the function space:

19 f̂ ← arg minf∈F
∑m

i=1

∑Ti
t=1 l(f(X

′
i,t, Yi,t)) + λJ(f)

where l denotes the cross entropy cost function, J can be lasso or ridge
regression regularization.

20 Return f̂ and φnew

H(D
′
m) = −

M∑

m=1

pmlogpm (1)

RecallD′
m

=
TP

TP + FN
(2)
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Eφ(z−1) =
M∑

m=1

(1 − H(D
′
m)) × (RecallD′

m
) (3)

where H(D
′
m) is the entropy of a classification subset of the filter i, M is the

total number of category, pm is proportion of an instance of M category in the
classification subset D

′
m, TP is the number of the samples classified correctly

in this category, TP + FN is the number of the total samples in this category,
RecallD′

m
is the recall of classification subsets D

′
m and Eφ(z−1) is the total eval-

uation value E of the i filter.

4 Experiment

In order to verify that the proposed D-RPFB can reduce the redundancy of
the numerous filters while also keeping or even improving the performance of
classification, we evaluate it in three different areas of time series data with
three traditional classifiers (i.e., LR, SVM and RF) compared with RPFB. First,
we investigate the effect of the proposed evaluation method for measuring the
quality of a specific filter. Then, we show the experimental results on other two
time series. Finally, we give an analysis of the screening percentage of the filters
to empirically decide how many filters should be retained.

4.1 Analyzing the Effect of the Proposed Evaluation on Star Curve
Data Set

The proposed evaluation method in the Eq. (3) for measuring the quality of a
certain filter plays an important role in our D-RPFB. We first investigate the
effect of the proposed evaluation method on the Star curve data set [1]. We assess
the effect of the Eq. (3) by answering the question: Can we use the Eq. (3) to get
three group filter banks that correspond to an excellent, inferior, and average
property and get the corresponding performance on the test set? If this happens,
then the proposed evaluation method is considered to be effective.

Our experimental scheme is as follows. Firstly, a sufficient number of filters
are generated to form an initial filter group. Then, we input a part of the training
data and the initial filter bank into the filter method to get the evaluation of all
the filters by Eq. 3). Third, sorting the filter by the respective evaluation value of
E, we divide the filter into four intervals according to the evaluation value of E
(i.e., 0 < E < 0.25 for worst, 0.25 < E < 0.5 for worse, 0.5 < E < 0.75 for better,
0.75 < E < 1 for best). Finally, we construct three group filter banks with 200
filters in each that corresponds to excellent, inferior, and average distribution by
randomly selecting a specific number of filters in a specific interval to meet the
scheme we need. The corresponding distribution is shown in Fig. 1.

Figure 2 shows clearly the ability of the evaluation method to distinguish
high quality filters from inferior filters. Generally speaking, the classification
error of the inferior distribution is far higher than the classification error rate of
the average distribution and the classification errors of the excellent distribution
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Fig. 1. The number of filters with different evaluation values in the three group of filter
banks.

Fig. 2. The performance of classification comparison among three filter banks distri-
bution with three classifiers.

are lower than the average distribution on the three classifiers, which shows that
the proposed evaluation method can effectively distinguish high quality and low
quality filters.
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4.2 Detection of Bearing Defects

To compare D-RPFB and RPFB, we employ the bearing defect detection data
set [5] used by the RPFB. We extract 40 time series of length 3333 in each class
time series for filtering screening and testing. First, we select 15 time series (3
categories in total 45) in each category to screen the filter. Next, we generate a set
of filter banks, each of which will be used in the D-RPFB and RPFB respectively.
In RPFB, the filter group will maintain the number of the filters and participate
in the classification of time series, and finally produce the classification error
rate. In D-RPFB, the filter group will be firstly screened and then participate
in the classification of time series. In this case, if the classification error rate of
the D-RPFB is the same with that of the RPFB, it can verify that D-RPFB
can reduce the number of redundancy and even potentially mislead filters, thus
obtaining a better performance.

Fig. 3. The performance of classification comparison between the RPFB and D-RPFB
with different classifiers on data set detection of bearing defects [5].

In our experiment, we empirically retain 75% filters (i.e., reduced number
of filters in RPFB by 25%) in D-RPFB. As shown in Fig. 3, both of D-RPFB
and RPFB are decreasing with the increasing of the number of filters. On this
data set, the SVM can provide a lower error rate than the LR or RF. This
conclusion is consistent in both the D-RPFB and RPFB. On the one hand, the
error rate of the RPFB and D-RPFB is relatively high when the number of filters
is relatively small. Besides, D-RPFB is worse than PRFB. This implies that the
RPFB has a limited ability to summarize the time series when there are only
a few filters. Meanwhile, D-RPFB further reduces the number of filters with
relatively poor quality by distillation mechanism results in fewer filters, which
reduces the accuracy of the D-RPFB. On the other hand, with the increasing of
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the number of filters, the error rate of the D-RPFB and RPFB has decreased, but
the D-RPFB declines more. This is because the D-RPFB has gradually obtained
the filter which can accurately summarize the time series through the screening
mechanism and remove some filters that can produce a misleading effect. The
RPFB, because there is no screening mechanism to distinguish the redundant
and misleading filters, the effect of some inefficient filters hinders classifier from
getting a better performance.

4.3 Heart Rate Classification

To show more that the D-RPFB can improve the performance of classification,
we apply the heart rate data set [5] used in the RPFB. There are two time series
with a length of 1800, which belong to category A and B respectively. We firstly
divide the time series of category A into 30 short time series with 60 length,
15 of which are training data sets and 15 others are test data sets. Next, we
conduct the same operations on the time series of category B. After dividing
two long time series, we get 30 training time series (15 of them are category A
and the remaining 15 are category B) and 30 test time series (also 15 of them
are category A and the remaining 15 are category B). Then, we generate a set of
filter banks, each of which will be used in the D-RPFB and RPFB respectively.
Finally, again, RPFB uses all the generated filters for classifier. And D-RPFB
uses the screened filters for classifier.

In this experiment, we empirically retain 75% filters (i.e., reduced number of
filters in RPFB by 25%) in D-RPFB. As shown in Fig. 4, with the small amounts
of filters, the performance of D-RPFB is inferior to RPFB again. This implies
that there is no need for distillation when the number of filter is very small.
However, with the increase of the filters, most of the points on the classification

Fig. 4. The performance of classification comparison between the RPFB and D-RPFB
with different classifiers on data set heart rate [5].
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error curve using the features provided by D-RPFB are under the classification
error curve of using the features provided by RPFB, even if some points are not
under the classification error curve of RPFB, they are not much higher than in
the original method. That is to say, such numerous filters randomly generated
by RPFB are indeed redundant and have some misleading filters. D-RPFB distil
the filters obtained by RPFB to reduce redundancy or some misleading filters to
achieve the high quality of the filters and then input to the classifier, resulting
a better performance.

4.4 Analyzing the Choosing of the Screening Percentage of the
Filters on Hand Profile Data Set

How many filters can be kept to obtain a good summary of the input time
series remains to be a question. The above reported result is under the 75%
retainment (i.e., the corresponding percentage of screening is 25%) of the filters
case. In this section, we analyze the choosing of the screening percentage of
the filters on Hand profile data set [1]. We first generate 200 filters and then
adjust the remaining filter ratio by selecting the high ranking filters, obtaining
the corresponding results.

As shown in Fig. 5, if the number of filters retained is too small, the features
extracted by these filters may not provide a good summary of the input time
series, thus resulting a worse performance. With the percentage of retainment is
increasing, the performance is better. Combined with the conclusions of experi-
ments 4.2 and 4.3, there is no redundant or misleading information which could

Fig. 5. The performance of classification obtained by using different classifiers under
different percentages of retainment on D-RPFB.
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harm the performance among such 200 filters. We can see that the original time
series has been well summarized at the 80% of retainment (i.e., the correspond-
ing percentage of screening is 20%), because the benefits from retaining more are
already very small. Besides, more filters retained mean more running-time con-
suming when combined with specific classifier. So, in our experiment, we retain
the number of filters at the original 80% while making further adjustments and
finally retain 75% (i.e., the corresponding percentage of screening is 25%) to get
a better performance.

5 Conclusion

In this paper, we proposed the distillation of random projection filter bank (D-
PRFB) for time series classification, which is an improvement method of the
random projection filter bank (PRFB). Before directly applying the features
generated by the randomly generated numerous autoregressive filters that are
convolved with the input time series, we add filter screening in the original
method for screening the filters that are most capable of guiding the classifier
to get better performance. We evaluated the D-PRFB in three different areas of
time series data with three traditional classifiers. Extensive experimental results
demonstrate that D-RPFB can reduce redundancy and even potentially mislead-
ing filters, thus improving the quality of the features provided to the classifier
which directly improves the learning ability of the classifier to obtain a better
performance.
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Abstract. Least squares regression and ridge regression are simple and effec-
tive methods for feature selection and classification and many methods based on
them are proposed. However, most of these methods have small-class problem,
which means that the number of the projection learned by these methods is
limited by the number of class. In this paper, we propose a jointly sparse
reconstructed regression (JSRR) to solve this problem. Moreover, JSRR uses
L2,1-norm as the basic measurement so that it can enhance robustness to outliers
and guarantee joint sparsity for discriminant feature selection. In addition, by
integrating the property of robust feature selection (RFS) and principle com-
ponent analysis (PCA), JSRR is able to obtain the projections that have mini-
mum reconstructed error and strong discriminability for recognition task. We
also propose an iterative algorithm to solve the optimization problem. A series
of experiments are conducted to evaluate the performance of JSRR. Experi-
mental results indicate that JSRR outperforms the classical RR and some state-
of-the-art regression methods.

Keywords: Regression � Feature selection � Joint sparsity � Classification
Robustness

1 Introduction

During the last decades, many methods are proposed for feature selection. Taking the
label information into consideration or not, the feature selection methods can be
divided into three categories: supervised algorithms, semi-supervised algorithms and
unsupervised algorithms. For unsupervised learning, the classical method is principle
component analysis (PCA) [1] which projects high dimensional data into a lower
dimensional space via seeking the maximum the variance of the data [2]. For super-
vised learning, linear discriminant analysis (LDA) [3] is the representative method that
utilizes label information to learn an optimal matrix that maximizes the between-class
scatter and at the same time minimizes the within-class scatter in feature space [4].
Besides, least squares regression (LSR) and ridge regression (RR) are also the classical
supervised learning methods.

Although PCA, LDA and LSR are simple and effective in dealing with problems in
data analysis and machine learning, they still have a major disadvantage. That is, they
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do not have sparsity property. Actually, the methods with sparsity are able to learn a
series of sparse projections for feature presentation. To solve this problem, the sparse
RR [5] as well as elastic net [6] was proposed. These methods are very classical and
widely used in many cases. Inspired by them, many regression based methods are also
developed to learn sparse approximation projections for feature selection [7–10].
However, these sparse learning methods based on L1-norm regularization have two
drawbacks. First, the L1-norm based methods do not have joint sparsity. Second, since
these methods use L1-norm regularization on the projections, they need to compute the
projection vectors one by one during the procedure of feature selection, which leads to
higher training time. Recently, L2,1-norm regularization has attracted great attention in
the field of feature selection, with which we can obtain joint sparsity to improve the
performance of feature selection and classification. Moreover, the L2,1-norm based
methods are less time-consuming than the methods based on L1-norm regularization.
Nie et al. proposed robust feature selection (RFS) [11] by using L2,1-norm on both of
loss function and the regularization term. Yang et al. proposed unsupervised dis-
criminative feature selection (UDFS) [12] to extend the L2,1-norm regularization to
unsupervised learning. Xiang et al. proposed discriminative least squares regression
(DLSR) [13] to enlarge the distance between different classes based on the framework
of LSR. In addition, many L2,1-norm based methods are also proposed to deal with
different classification tasks [14–19].

Even though the above L2,1-norm based methods are able to obtain jointly sparse
projections for discriminative feature selection, they ignore the small-class problem.
That is, the number of the learned projections is limited by the number of class. For
example, suppose the number of the class is c, RR, RFS and even DSLR cannot obtain
more than c projections for feature selection, which indicates that they cannot obtain
enough projections if the number of the class is small. In addition, all of the existing
methods do not consider the property of supervised and unsupervised learning in a
unified regression form.

Based on this regard, in this paper we propose a reconstructed regression method
for jointly sparse feature selection. The proposed method called Jointly Sparse
Reconstructed Regression (JSRR) integrates the property of RFS and PCA in regres-
sion form, by which the joint sparsity is obtained and the small-class problem is solved.
Moreover, compared with PCA, JSRR is able to embed the label information in the loss
function so as to obtain discriminative projection for feature selection. In summary, the
contributions of the proposed JSRR can be described as follows:

(1) JSRR is able to enhance the robustness to outliers by using L2,1-norm instead of
the L2-norm as the basic measurement on the loss function. Moreover, it can
guarantee the joint sparsity for discriminative feature selection by imposing L2,1-
norm penalty on the regularization term.

(2) Compared with LSR, RR and their extensions, JSRR can solve the small-class
problem, by which it can obtain more than c projections to improve the perfor-
mance of feature selection and classification.

(3) Compared with PCA, JSRR considers the label information on the loss function,
so that it can obtain more discriminative information for effective feature
selection.
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2 The Proposed Method

In this section, we first present the notation of the variables in this paper and briefly
review the classical ridge regression. Then we propose the jointly sparse reconstructed
regression (JSRR) for feature selection and give the corresponding optimization
procedure.

2.1 Notation

In this paper, we denote all the matrices as bold uppercase italic letters, i.e. X, Y, etc.,
while vectors are denoted as bold lowercase italic letters, i.e. x; y, etc. and scalars are
presented as lowercase italic letters, i.e. i, j, c, n.

The sample matrix is denoted as X 2 Rd�n, where d is the dimension of the data
and n is the number of samples. The label matrix is presented as Y 2 Rn�c with Yij = 1
where xi belongs to j-th class, otherwise, Yij = 0.

2.2 Ridge Regression Revisit

Least squares regression is simple and effective technic for data analysis and classifi-
cation. The optimization problem of LSR is as follows

W# ¼ argmin
W

jjY � XTWjj2F ð1Þ

where Y 2 Rn�c is the label matrix and X 2 Rd�n is the sample matrix, W 2 Rd�c is the
projection matrix used for feature selection.

LSR can obtain its optimal solution only when XXT is full-rank, that is, it exists the
singular problem. To solve this problem, a L2-norm based penalty is added to the
objective function and that comes to the optimization problem of the ridge regression.

W� ¼ argmin
W

jjY � XTWjj2F þ k jjWjj2F ð2Þ

where k is the parameter to balance the two terms. The second term in (2) acts as bias
term and it can avoid the singular problem in LSR.

2.3 Jointly Sparse Reconstructed Regression

Motivated by the previous work in RFS [11] that using L2,1-norm on both of the loss
function and regularization term can not only enhance the robustness to outliers but
also obtain jointly sparse projections for feature selection. In this paper, we integrate
the property of RFS and PCA to design a more complete model to not only inherit the
property of RFS and PCA, but also solve the small-class problem in RR or its
extensions so as to obtain enough projections to improve the performance of feature
selection and classification. The objective function of the proposed JSRR is presented
as follows
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ðQ�; P�; A�Þ ¼ arg min
Q;P;A

a jjY � XTQAjj2;1 þ ð1� aÞ jjX � PQTXjj2;1 þ b jjQjj2;1
s:t AAT ¼ I

ð3Þ

where X 2 Rd�n is the sample matrix, Y 2 Rn�c is label matrix, A 2 Rk�c is the
orthogonal matrix, P 2 Rd�k is the auxiliary matrix and Q 2 Rd�k is projection matrix.
a and b are the parameters to balance the three terms. jj � jj2;1 is the L2,1-norm
definition.

In (3), the first term is the loss function as in LSR where matrix QA with size d � c
is similar to the matrix W 2 Rd�c. The difference between JSRR and LSR is that the
size of the projection matrix Q in JSRR is d � k while the projection matrix in LSR or
RR is d � c, which means the JSRR can obtain k projections for feature selection while
LSR and RR can only obtain at most c projections (note that k is a variable and it can be
set as any integer). If we set k[ c, then JSRR can break through the limitation of the
class number and thus solve the small-class problem. Another difference between JSRR
and LSR or RR is that JSRR uses L2,1-norm as the basic measurement on the loss
function, by which the model is more robust to outliers. Compared with RFS, JSRR
does not have the small-class problem. Moreover, JSRR can degrade to conceptual
framework of RFS when a ¼ 1. That is, the second term in (3) is released, JSRR is the
L2,1-norm based RR that has similar property with RFS. When a ¼ 0, JSRR becomes a
unsupervised learning method. In this case, JSRR is the joint sparse principle com-
ponent analysis method as proposed in [19]. Otherwise, if a 6¼ 0 and a 6¼ 1, JSRR
holds the property of RFS and PCA, which enhances the robustness to outliers and at
the same time obtains sparse principle components (PCs) for feature selection.

In summary, from the objective function of JSRR, we can know that it uses L2,1-
norm instead of L2-norm on all terms to enhance robustness to outlier and simulta-
neously guarantee joint sparsity for discriminative feature selection. Also, since the
projection matrix is Q with size d � k, JSRR can obtain k projections instead of c
projection to solve the small-class problem so as to obtain enough projections for
feature selection and classification. In addition, JSRR enjoys the property of RFS and
PCA when a 6¼ 1 and a 6¼ 0, or it can also be used for unsupervised learning when
a ¼ 0.

2.4 The Optimal Solution

There are three variables in (3) and the optimization problem is not convex, which
means that we cannot obtain the optimal solution directly. Therefore, we need to
develop an iterative algorithm to solve the optimization problem.

First, from (3), we have

a jjY � XTQAjj2;1 þ ð1� aÞjjX � PQTXjj2;1 þ b jjQjj2;1
¼ atr½ðY � XTQAÞTDðY � XTQAÞ�
þ ð1� aÞtr½ðX � PQTXÞTD1ðX � PQTXÞ� þ btrðQTD2QÞ

ð4Þ
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where D 2 Rn�n is a diagonal matrix with the elements represented as

Dii ¼ 1

2jjðY � XTQAÞijj2
ð5Þ

where ðY � XTQAÞi denotes the i-th row of the matrix ðY � XTQAÞ.
Similarly, the elements of diagonal matrix D1 2 Rd�d and D2 2 Rd�d are repre-

sented as

ðD1Þii ¼
1

2jjðX � PQTXÞijj2
ð6Þ

ðD2Þii ¼
1

2jjQijj2
ð7Þ

where ðX � PQTXÞi and Qi denote the i-th row of the matrix ðX � PQTXÞ and Q,
respectively.

From (4), we have

a jjY � XTQAjj2;1 þ ð1� aÞ jjX � PQTX jj2;1 þ b jjQjj2;1
¼ atr½ðY � XTQAÞTDðY � XTQAÞ�
þ ð1� aÞtr½ð ffiffiffiffiffiffi

D1
p ðX � PQTXÞÞTð ffiffiffiffiffiffi

D1
p ðX � PQTXÞÞ� þ btrðQTD2QÞ

ð8Þ

From (8), we can know that the objective function in (3) can be rewritten as the
following optimization problem

ðQ�;P�;A�Þ ¼ arg min
Q;P;A

a
ffiffiffiffi
D

p ðY � XTQAÞ�� ��2
F þ ð1� aÞ ffiffiffiffiffiffi

D1
p ðX � PQTXÞ�� ��2

F þ b k ffiffiffiffiffiffi
D2

p
Qk2F

s:t AAT ¼ I

ð9Þ

Let �P ¼ ffiffiffiffiffiffi
D1

p
P, �Q ¼ ffiffiffiffiffiffi

D1
p �1Q, then (9) is equal to

ð�Q�
; �P�; A�Þ ¼ arg min

�Q;�P;A
a

ffiffiffiffi
D

p ðY � XT ffiffiffiffiffiffi
D1

p
�QAÞ�� ��2

F

þ ð1� aÞ ffiffiffiffiffiffi
D1

p
X � �P�QT ffiffiffiffiffiffi

D1
p

XÞ
���

���
2

F
þ b

ffiffiffiffiffiffi
D2

p ffiffiffiffiffiffi
D1

p
�Q

�� ��2
F

s:t AAT ¼ I

ð10Þ

By imposing the orthogonal constraint �PT �P ¼ I to (10), we have

ð�Q�; �P�; A�Þ ¼ arg min
�Q;�P;A

a k ffiffiffiffi
D

p ðY � XT ffiffiffiffiffiffi
D1

p
�QAÞk2F

þ ð1� aÞ k ffiffiffiffiffiffi
D1

p
X � �P�QT ffiffiffiffiffiffi

D1
p

XÞk2F þ b k ffiffiffiffiffiffi
D2

p ffiffiffiffiffiffi
D1

p
�Qk2F

s:t AAT ¼ I; �PT�P ¼ I

ð11Þ
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Take the optimization problem in (11) as the objective optimization problem in this
paper, we can first obtain the optimal solution of �P and �Q, and then we obtain the

optimal solution of P and Q as P ¼ ffiffiffiffiffiffi
D1

p �1�P, Q ¼ ffiffiffiffiffiffi
D1

p
�Q.

�Q Step: Suppose �P and A are fixed, there exists an optimal matrix �P? that guar-
antees ½�P; �P?� is a d � d column orthogonal matrix. From the optimization problem
in (11), we have

jj ffiffiffiffiffiffi
D1

p
X � �P�QT ffiffiffiffiffiffi

D1
p

XÞjj2F ¼ jjXT ffiffiffiffiffiffi
D1

p � XT ffiffiffiffiffiffi
D1

p
�Q�PTjj2F

¼ jjXT ffiffiffiffiffiffi
D1

p ½�P; �P?� � XT ffiffiffiffiffiffi
D1

p
�Q�PT ½�P; �P?�jj2F

¼ jjXT ffiffiffiffiffiffi
D1

p
�P� XT ffiffiffiffiffiffi

D1
p

�Q�PT�Pjj2F þ jjXT ffiffiffiffiffiffi
D1

p
�P? � XT ffiffiffiffiffiffi

D1
p

�Q�PT�P?jj2F
¼ jjXT ffiffiffiffiffiffi

D1
p

�P� XT ffiffiffiffiffiffi
D1

p
�Qjj2F þ jjXT ffiffiffiffiffiffi

D1
p

�P?jj2F

ð12Þ

In (12), since �P is given and kXT ffiffiffiffiffiffi
D1

p
�P?k2F is a constant, the optimization problem

in (11) becomes

�Q� ¼ argmin
�Q

a jj ffiffiffiffi
D

p ðY � XT ffiffiffiffiffiffi
D1

p
�QAÞjj2F

þ ð1� aÞ jjXT ffiffiffiffiffiffi
D1

p
�P� XT ffiffiffiffiffiffi

D1
p

�Qjj2F þ b jj ffiffiffiffiffiffi
D2

p ffiffiffiffiffiffi
D1

p
�Qjj2F

s:t AAT ¼ I

ð13Þ

From (13), we have

atrðYTDY � 2�QT ffiffiffiffiffiffi
D1

p
XDYAT þ �QT ffiffiffiffiffiffi

D1
p

XDXT ffiffiffiffiffiffi
D1

p
�QÞ

þ ð1� aÞtrð�PT ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�P� 2�QT ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�P þ �QT ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�QÞ
þ btrð�QT ffiffiffiffiffiffi

D1
p

D2
ffiffiffiffiffiffi
D1

p
�QÞ�

s:t: AAT ¼ I

ð14Þ

By the derivative of (14) with respect to �Q to be 0, we have

að ffiffiffiffiffiffi
D1

p
XDXT ffiffiffiffiffiffi

D1
p

�Q� ffiffiffiffiffiffi
D1

p
XDYATÞ

þ ð1� aÞð ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�Q� ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�PÞ þ btrð ffiffiffiffiffiffi
D1

p
D2

ffiffiffiffiffiffi
D1

p
�QÞ ¼ 0

ð15Þ

Then, we have

�Q ¼ ½
ffiffiffiffiffiffi
D1

p
ðaXDXT þ ð1� aÞXXT þ bD2Þ

ffiffiffiffiffiffi
D1

p
��1ða

ffiffiffiffiffiffi
D1

p
XDYAT þ ð1� aÞ

ffiffiffiffiffiffi
D1

p
XXT

ffiffiffiffiffiffi
D1

p
�PÞ

ð16Þ

Since Q ¼ ffiffiffiffiffiffi
D1

p
�Q, then

Q ¼ ½aXDXT þð1� aÞXXT þ bD2��1ðaXDYAT þ ð1� aÞXXT
ffiffiffiffiffiffi
D1

p
�PÞ ð17Þ
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�P Step: Suppose �Q and A are given, from (14), we have

�P� ¼ argmax
�P

trð�PT
ffiffiffiffiffiffi
D1

p
XXT

ffiffiffiffiffiffi
D1

p
�QÞ ð18Þ

Theorem 1. [20] Suppose G 2 Rc�k is a matrix with rank of k and Z 2 Rc�k is an
orthogonal matrix. The optimization problem

Z ¼ argmin trðZTGÞ s:t: ZTZ ¼ Ik ð19Þ

Algorithm 1 The algorithm of JSRR
Input: The data matrix d nR ×∈X , the label matrix n cR ×∈Y , the projection number k , the pa-

rameter α and β.
Initialize k cR ×∈A , d kR ×∈P , d kR ×∈Q , n nR ×∈D , 1

d dR ×∈D  and 2
d dR ×∈D . 

repeat
compute Q using (16); update Q using (17); compute P using (21); update P using (22);
update A using (25); update D using (5);  update 1D using (6);  update 2D using (7); 

until converge
Output: d kR ×∈Q with k sparse projections. 

can be solved by singular value decomposition (SVD) of G, i.e. G ¼ U
^

D
^

V
^T

, then

Z ¼ U
^

V
^T

.
From Theorem 1, we can know that the optimal solution of �P can be obtain by

SVD of
ffiffiffiffiffiffi
D1

p
XXT ffiffiffiffiffiffi

D1
p

�Q, that is,

ffiffiffiffiffiffi
D1

p
XXT

ffiffiffiffiffiffi
D1

p
�Q ¼ UDVT ð20Þ

then

�P ¼ UVT ð21Þ

Since P ¼ ffiffiffiffiffiffi
D1

p �1�P, we have

P ¼
ffiffiffiffiffiffi
D1

p �1
UVT ð22Þ

A Step: Suppose �Q and �P are given, from (14), we have

A� ¼ argmax
A

atrðAYTDXT ffiffiffiffiffiffi
D1

p
�QÞ

s:t: AAT ¼ I
ð23Þ
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Similarly, according to Theorem 1, we know that the optimal solution of A can be
obtain by SVD of YTDXT ffiffiffiffiffiffi

D1
p

�Q, that is,

YTDXT
ffiffiffiffiffiffi
D1

p
�Q ¼ ~U~D~V

T ð24Þ

Then, we have

A ¼ ~U~V
T ð25Þ

The details of the iterative algorithm that solves optimization problem in (3) are
shown in Algorithm 1.

3 Experiments

In this section, several benchmark datasets with varying image types are used to
evaluate the performance of the proposed JSRR on feature selection and recognition.
These datasets include AR dataset, CMU PIE dataset and LFW dataset. In addition, in
all experiments, we compare the proposed JSRR with some classical methods including
RR, and some state-of-the-art methods including RFS [11], UDFS [12], DLSR [13] and
RIPCA [21].

3.1 Datasets Description

The AR database [22] is consist of over 4000 images from 126 individuals. In our
experiment, we use the subsection that contains 2,400 images from 120 individuals. All
of these images are normalized to 50 � 40 pixels. This dataset is used to evaluate the
performance of JSRR with varying facial expressions, lighting conditions and
occlusions.

The CMU PIE dataset [23] contains 41,368 face images from 68 individuals. We
use a subset (C29) which has 1632 images from 68 individuals in our experiment. All
of these images are cropped to 32 � 32 pixels.

Labeled Faces in the Wild (LFW) databases [24] is consist of images from 5,749
subjects in uncontrolled environment. In our experiment, we select 4,324 images from
158 subjects in LFW-a dataset.

Recently, deep learning technique is very famous in the field of machine learning
and computer vision. Therefore, to explore the performance of JSRR based on the
background of deep learning, we use deep features on LFW dataset instead of original
image features as input. Similar to [25], we use deep convolutional neural network
(CNN) as feature extractor to obtain deep features. After that, JSRR, RR, RFS, UDFS,
DLSR and RIPCA are used to perform further feature selection and extraction. The
property of the datasets is summarized in Table 1.
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3.2 Experimental Setting

In our experiments, PCA is used as pre-processing to perform dimensionality reduc-
tion. After that, all methods including the comparative methods and the proposed JSRR
are used to perform feature selection and extraction and nearest neighbor (NN) classi-
fier is used for classification. The recognition rate is used as the criteria to evaluate the
performance of all methods. Each method independently runs 10 times to conduct
feature selection and the mean recognition rate is computed.

For JSRR, since there are two parameters, i.e. a and b, need to optimize, we analyze
their values in the area of [−3,���, 3] and [10−3,���, 103], respectively. For the com-
parative methods, their parameters are set as the value that introduced in the original
paper. For example, the value of the parameter in RFS, UDFS and DLSR is set as
[10−3,���, 103], [10−3,���, 103] and [10−4,���, 101], respectively.

3.3 Experimental Results and Comparison

On AR, CMU PIE and LFW dataset, l1 ðl1 ¼ 2; 3Þ, l2 ðl2 ¼ 4; 5Þ l3 ðl3 ¼ 4; 5Þ images
of each individual are selected for training while the rest of the images are used for
testing.

To explore the optimal values of a and b, we report in Fig. 1(a) the recognition
rates with varying values of a 2 [−3, −2,���, 3] and b 2 ½10�3; 10�2; � � � ; 103� on AR
database. From Fig. 1(a), we can know that JSRR obtain the best performance while a
lies in the area of [−3, −2, −1] and b lies in the area of ½10�3; 10�2; � � � ; 103�.
Therefore, we use these values for a and b on all experiments for simplicity.

Table 1. Description of datasets.

Datasets # of Samples Features classes

AR 2,400 2,000 120
CMU PIE 1,632 1,024 68
LFW 4,324 1,024 158
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Fig. 1. (a) Sensitivity analysis of parameters, (b) convergence curve on AR database.
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The average recognition rates with varying dimension on AR and CMU PIE dataset
are shown in Fig. 2 while the maximum average recognition versus the dimension and
the standard deviation on AR, CUM PIE and LFW dataset are listed in Tables 2, 3 and
4, respectively. The convergence curve of the proposed JSRR on AR dataset is pre-
sented in Fig. 1(b).
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Fig. 2. The recognition rate versus the dimension on (a) AR, (b) CUM PIE dataset.

Table 2. On AR dataset, the performance (recognition rate, standard deviation (%),
dimension) of all methods.

l1 RR RFS UDFS DLSR RIPCA JSRR

2 49.62 ± 6.69
105

80.74 ± 12.00
120

71.20 ± 5.01
180

81.74 ± 9.03
120

71.03 ± 5.02
195

83.93 – 8.25
195

3 62.97 ± 5.21
105

84.54 ± 12.37
120

76.92 ± 5.12
180

83.81 ± 10.08
120

76.70 ± 5.26
200

86.08 – 9.99
135

Table 3. On CMU PIE dataset, the performance (recognition rate, standard deviation (%),
dimension) of all methods.

l2 RR RFS UDFS DLSR RIPCA JSRR

4 64.28 ± 9.71
65

80.18 ± 8.81
65

62.54 ± 10.15
200

84.15 ± 8.92
65

68.09 ± 9.33
200

90.29 – 3.58
185

5 72.56 ± 8.98
65

87.40 ± 7.42
65

72.46 ± 13.57
200

86.04 ± 6.57
65

71.82 ± 7.34
200

90.75 – 3.59
200

Table 4. On LFW dataset, the performance (recognition rate, standard deviation (%),
dimension) of all methods.

l3 RR RFS UDFS DLSR RIPCA JSRR

4 94.21 ± 1.36
155

98.24 ± 0.00
155

97.86 ± 0.00
70

96.34 ± 0.00
155

98.35 ± 0.00
130

98.44 – 0.04
170

5 92.64 ± 3.63
155

98.53 ± 0.00
155

98.02 ± 0.00
90

97.62 ± 0.00
155

98.64 ± 0.00
90

98.70 – 0.05
135

606 D. Mo et al.



According to the experimental results, we have the following interesting
observations:

(1) In all experiments, JSRR obtains the best performance. The potential reason for
this phenomenon is that JSRR integrates the property of RFS and PCA, with
which it can obtain joint sparse projections for discriminative feature selection and
extraction. Furthermore, by considering the label information on the loss function,
JSRR is able to enhance the discriminability of the sparse PCs.

(2) On AR and CMU PIE dataset, JSRR, RFS and DLSR obtain better performance
than other methods, which indicates that utilizing L2,1-norm on loss function and
regularization term is able to enhance the robustness and guarantee joint sparsity,
such that they are superior for feature selection and classification.

(3) The experimental results demonstrate that JSRR can solve the small-class prob-
lem. For example, Fig. 2(b) and Table 3 show that RR, RFS and DLSR obtain the
best recognition rate when dimension is 65 (the class number is 68). However,
JSRR obtains its highest recognition rate when dimension is 185. It indicates that
the number of the projection learned by JSRR is not limited by the number of
class, i.e. JSRR can solve the small-class problem.

4 Conclusion

In this paper, we propose a method called jointly sparse reconstructed regression
(JSRR) which uses joint L2,1-norm as the basic measurement on the objective function.
By doing so, JSRR is more robust to outliers than the L2-norm based methods. Also, it
can obtain jointly sparse projection for discriminative feature selection. Different from
LSR, RR and their extensions, JSRR is able to solve the small-class problem, which
enables it to obtain enough projections to perform feature selection and extraction even
though the class number is small. Under some certain conditions, JSRR can degrade to
RFS or sparse version of PCA, which indicates that JSRR at least guarantees the
effectiveness of RFS and PCA. To solve the optimization problem of JSRR, an iterative
algorithm is proposed. Experimental results on three well-known facial datasets
demonstrate that JSRR is superior to the classical RR and some state-of-the-art feature
selection methods.
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Abstract. The spatial pyramid matching has been widely adopted for
scene recognition and image retrieval. It splits the image into sub-regions
and counts the local features within the sub-region. However, it has not
captured the spatial relationship between the local features located in the
sub-region. This paper proposes to construct the multi-scale attributed
graphs which involve the vocabulary label to characterize the spatial
structure of the local features at different scales. We compute the dis-
tances of any two attributed graph corresponding to the image grids and
find the optimal matching to aggregate. Then we poll the distances of
graphs at different scales to build the kernel for image classification. We
conduct our method on the Caltech 101, Caltech 256, Scene Categories,
and Six Actions datasets and compare with five methods. The experi-
ment results demonstrate that our method can provide a good accuracy
for image categorization.

Keywords: Image classification · Multi-scale attributed graph
Graph distance

1 Introduction

Image Categorization, which has a quite wide range of applications, such as face
recognition, scene classification and pedestrian tracking, is a challenging task in
computer vision. It is undoubtedly of great theoretical and practical significance
to study the robust and accurate image classification algorithm. How to find
the correct classification of an unlabel image from a large scale image database
has been a research spot for several decades and numerous methods have been
developed.

The approach bag of words (BoW) has been widely used in image classifi-
cation [1–3]. BoW based methods use image visual features (e.g. SIFT [4]) to
build a dictionary of visual words and computing a histogram for each image for
recognition. However, the BoW method does not contain spatial and structural
information of the image. In this respect, one limitation of the BoW approach is
that it can not encode the spatial distribution of visual words within an image.

To characterize the spatial layout of the local features, the spatial pyramid
[5] divides the image into different regions at different levels and computes a
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11258, pp. 610–621, 2018.
https://doi.org/10.1007/978-3-030-03338-5_51
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BoW for each region, and the final image descriptor as the concatenation of the
histograms from all regions. For the same reason, latent pyramidal regions (LPR)
[6] are trained by combining the benefits of spatial pyramid representation using
nonlinear feature coding and latent SVM. Yang et al. [7] proposed the linear
spatial pyramid matching using sparse coding (ScSPM) and Wang et al. [8]
proposed the locality-constrained linear coding method to improve the ScSPM
method by adding the local constraints. In order to obtain the vector based on
BoW with certain invariance, Cao etc. presented two methods of linear BoW
and annular BoW to improve the robustness to some degree [9].

In recent years, graph matching algorithms have been applied to solve image
classification [10,11]. One of the most popular methods to perform graph match-
ing is the graph edit distance [12–15]. Jouili et al. [12] used Hungarian method
with a vector which encodes vertices and edges of the same representation to com-
pute a suboptimal cost of edit distance. Zhou et al. [16] proposed a deformable
graph matching method to match graphics that are subject to global rigid and
non rigid geometric constraints. The bag of graph [13] and bag of visual graphs
[14] combines the spatial locations of interest points and their labels defined in
terms of the traditional visual-word codebook to define a set of connected graphs,
then defines descriptors for image classification based on graph local structures.
Lee et al. [17] generalizes the formula of hyper-graph matching to cover arbitrary
sequence of feature relations and obtained a new graph matching algorithm by
reinterpreting the concept of random walk on hyper-graph. Zhang et al. [18] pro-
posed a saliency-guided graphlet selection algorithm for image categorization. In
the multi-graph-view respects, Wu et al. [19] proposes a multi-graph-view model
to represent and classify complex targets. Mousavi et al. [20] generated a graph
pyramid based on the selected graph summarization algorithm to provide the
required information for classification.

The matching node embeddings [21] is presented as the graph kernel based
on the pyramid match kernel. It restricts the matchings only between vertices
that share same labels. However, the interest points have not assigned labels.
Thus this method is not competent for the graph based on interest points without
tags. Our approach takes this into account that applying the weighted Hungarian
method to find the most similar graph, that can be a good way to overcome this
problem.

In this paper, we propose to construct a multi-scale attributed graph model
for image classification, where the spatial structure relation between the interest
points of the image at different scales are captured. The graphs are pruned to
give more efficient structure information for categorization. At each scale, the
distance of the attributed graphs are calculated to find the optimal matched
graphs. Final the distances are accumulated with weight to built the kernel for
SVM.

The rest of the paper is organized as follows. We first present the proposed
multi-scale attributed graph for image representation in Sect. 2, and then com-
pute the distance between the attributed graphs corresponding to image grids
in Sect. 3. In Sect. 4, the kernel for classification is built by accumulating the
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distances between the matched graphs. The experimental results on four public
datasets are presented and discussed in Sect. 5. Finally, conclusions are drawn
in Sect. 6.

2 The Multi-scale Attributed Graph Model for Image
Representation

To describe the structure and spatial features of the images at different scales,
we define multi-scale attributed graphs Gl = (V l, El, Al), where l denotes the
scale or level factor, the nodes set V l = {v1, v2, · · · , vn} corresponds to the
image feature points F = {f1, f2, · · · , fn}, which obtained by extracting the
SIFT features of the images in our experiment, the edges set El = {eij} are
constructed by delaunay triangulation, and Al denotes the attribute of the node
set V l, for a node vi, its attribute is defined as,

Al
vi

= {avi, degree(vi), {aei}} (1)

where avi is the label of node vi which corresponds to the feature point fi. In
terms of the widely used bag of words, we assign a vocabulary label to each
node, degree(vi) is the degree of the node vi, {aei} is the attribute set of all
the edges which are adjacent to the node vi. There exist many methods for
constructing graph based on images, such as k-nearest neighbor graph [22] and
deep learning hash [23]. We use the delaunay triangulation method here for its
stability and efficiency. To characterize the image structure at different scale, we
split an image into a sequence of grids at each scale l ∈ (0, . . . , L), such that
a total of S = 2sl image grids are obtained, where s is the dimension of the
images. For each grid, we construct an attributed graph on the feature points,
as shown in Fig. 1. These graphs form the multi-scale structure representation
of an image.

Fig. 1. The multi-scale attributed graph extraction from an cougar body.
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Fig. 2. The graph model for an image in Caltech 101. (a) The delaunay triangulation
graph on the feature points; (b) Our graph constructed after pruning.

Since the images have not been preprocessed as segmentation or salient anal-
ysis, the images usually have the objective, background and noise. The multi-
scale attributed graphs built from the original image will contains the additional
structure information which is not related to the objective. For example, Fig. 2(a)
shows the attributed graph constructed from an image in Caltech 101 at level
0. We can see that one point in the background in the lower right corner of the
image is connected to feature of the aircraft. Furthermore, the feature points of
the tail and the head of the aircraft are also connected. However, these edges
are useless to reflect the structure of the aircraft and not helpful for image
classification. Therefore, we consider to prune the graph, specifically, remove
the edges which connect the points with long distance and short distance, as
shown in Fig. 2(b). Let m be the value of the longest edge of the constructed
graphs for one image, we delete the edges longer than βm and shorter than
αm, where 0 < α < β < 1. In the experiments, we choose α = 0.1 and β = 0.6.
Because experiments show that the short edges can not improve the classification
but increase the computational complexity. We can effectively avoid the error
structure with the complicated background, and focus on the local structure of
the image by pruning edges and constructing the multi-scale attributed graphs.
Moreover, the graph after pruning becomes sparse and computational efficient.

3 Graph Distance Based on Node Attributes

To match the multi-scale structure between two images, we compute the distance
between the multi-scale graphs constructed from two images. The graph distance
is obtained based on the node attributes using the heterogeneous euclidean over-
lap metric (HEOM) [12], which can handle the numeric and symbolic attributes
of nodes. The distance of two nodes vi and vj is defined as their distance between
the node attribute Ai and Aj ,

d(Ai,Aj) =

√
√
√
√

N∑

k=0

q(Ai(k),Aj(k))2 (2)

where N refers the length of the longest node signature of vi and vj , and
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q(Ai(k),Aj(k)) =

⎧

⎨

⎩

|Ai(k)−Aj(k)|
range if Ai(k) and Aj(k) are both numeric

R(Ai(k),Aj(k)) if Ai(k) and Aj(k) are both symbolic
1 if Ai(k) or Aj(k) is missing

(3)
where

R(Ai(k),Aj(k)) =
{

0 if Ai(k) = Aj(k)
1 otherwise

(4)

and range is used to normalize the distance of the numeric attribute.
The distance between an attributed graph corresponding to the grid i in

image I1 and an attributed graph corresponding to the grid j in image I2 at the
same scale is computed as [12]:

D(G1(i), G2(j)) =
M̄

|M| + ||G1(i)| − |G2(j)|| (5)

where M̄ is the optimum graph matching cost of two attributed graphs G1(i)
and G2(j), the M is the distance matrix of two attributed graphs that each
element of matrix corresponds to the distance between a vertex of graph G1(i)
and a vertex of graph G2(j). The node matching between two attributed graphs
G1(i) and G2(i) is carry out by the hungarian method. Then the optimum graph
matching cost M̄ is computed by calculating the sum of the distance between
two correspondence points. |M| is a normalization constant that refers to the
number of matched vertices. |G1(i)| is the number of vertices in graph G1(i).
The Eq. (5) represents the matching cost normalized by the matching size, and
is effected by the sizes of the two graphs.

4 Multi-scale Attributed Graph Kernel Computation

When the distances between any two attributed graphs corresponding to two
grids in the different images are computed at a scale, for convenience, we use the
efficient hungarian method to find the optimal matched graphs correspond to
two different images and get c distances {D1,D2, · · · ,Dc} between the matched
graphs. Inspired by the concept of graph kernel [24], which compares and counts
the common subgraphs between two graphs. We compute a kernel by accumu-
lating the distances between the matched graphs from two images, i.e.

κ(Gl
1, G

l
2) ∝ exp(−

∑c
i=1 wi · Di

c
) (6)

where wi is the reciprocal of the total number of vertices of the matched graphs
corresponding to two grids.

The final kernel is then the sum of all the level kernels,

K(G1, G2) =
L∑

l=0

1
2L−l

κ(Gl
1, G

l
2) (7)
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where the weight associated with level l is set to 1
2L−l , which are inversely pro-

portional to the number of the grids which increases as the level increases. The
multi-scale attributed graph match kernel we built is a positive semidefinite
kernel matrix which can be used by SVM for classification. We summarize the
proposed image categorization model in Algorithm 1.

Algorithm 1. The Multi-scale Attributed Graph Kernel algorithm.

Input: H category-labeled training images {I1, I2, . . . , IH};
Output: The multi-scale attributed graph match kernel;

(1)Split each image into a sequence of grids at each scale l ∈ (0, . . . , L);
(2)Use the delaunay triangulation method to characterize the image structure
at different scale, built the multi-scale attributed graphs;
(3)Remove the long edges and short edges of the constructed graphs;
(4)Compute the distance between the multi-scale graphs based on the node
attributes, use the hungarian method to find the optimal matched graph;
(5)Build the multi-scale attributed graph match kernel by accumulating the
distances between the multi-scale matched graphs from two images.

5 Experiments

In this section, we conduct comparative experiments on four benchmark datasets:
Caltech 101 [27], Caltech 256 [28], Scene Categories [29], and Six Actions [30].
The performance of the proposed multi-scale attributed graph match kernel is
evaluated and compared with traditional bag of words (BoW) [3], the spatial
pyramids (SP) [5], BoVG-SP [14], fine-grained dictionary learning (FDL) [25]
and word spatial arrangement (WSA) [32] respectively. The experimental results
are summarized and analyzed. All experiments are implemented in Matlab 8.6
and executed on a Intel Core i7-6700 3.4 GHz CPU with 16 GB of memory and
no effort made to optimize algorithm speed.

5.1 Dataset

The Scene Categories dataset is composed of fifteen scene categories. Each cat-
egory has 200 to 400 images, and average image size is 300 × 250 pixels. In
experiments, we randomly select 40 images of each class for training and 20
images per class for testing to evaluate the impact of different approaches in
image categories.

The Caltech 101 dataset consists of a total of 9146 images, split between 101
different object categories. Each object category contains between 40 and 800
images on average. Each image is about 300 × 200 pixels in dimension. We use
SIFT detector, a codebook of size 300 and 30 images per class for training and
the rest for testing.

The Caltech 256 dataset is collected in a similar manner of Caltech 101 which
split into a set of 256 object categories containing a total of 30607 images.
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The Six Actions dataset collect about 2400 images in total for six action
queries, each action class contains about 400 images and the size of each class
are 200 × 200 pixels.

5.2 Baseline

This paper adopts the method in [3] as the baseline approach. The 128-D SIFT
descriptors are used for feature extraction and the experiment uses K-means
method to get the codebook of size 300. With the increase of scale l, the effect
of characterizing image structure is better, but when the scale is larger than
3, the number of grids is too large, the complexity of the algorithm is greatly
increased but the improvement of accuracy is limited. Thus the scale level of the
multi-scale attributed graph is set to L = 3. The LIB-SVM [31] is employed for
classification training.

5.3 Results

Table 1 shows the classification results on four datasets. As we can see our
method and FDL produce the higher classification accuracy than other methods.
Our method achieves highest recognition rates on Scene Categories, Caltech 101
and Six Actions dataset. Taking Scene Categories for example, it is clear that
the classification accuracy of MsAG is 79.67%, which is higher than others.

Table 1. Categorization accuracies on four datasets

Dataset BoW SP BOVG-SP FDL WSA MsAG

Scene Categories 69.00% 73.33% 78.00% 82.96% 78.43% 79.67%

Caltech 101 26.43% 34.75% 38.75% 43.73% 39.74% 44.56%

Caltech 256 9.92% 15.70% 16.19% 19.93% 16.08% 18.52%

Six Actions 77.50% 82.50% 83.33% 85.67% 85.16% 86.02%

Figure 3 shows a confusion matrix between the fifteen scene categories, con-
fusion occurs between the classes like kitchen, bedroom, living room, and also
between some natural classes, such as coast and open country. The curves in
Fig. 4 shows the classification accuracy for different training set sizes on Caltech
101. We partition the dataset into train images (5, 10, 15, 20, 25 and 30 images
per class) and test images (limit the number of test images to 30 per class). The
figure shows that the accuracy increases with the training size. Our approach
has always been better than the other methods when the number increases from
5 to 30. In Fig. 5, the experimental results on Six Actions show that the results
of our method is consistent with that on Caltech 101.

Then we compare the classification accuracies of each method for different
codebook sizes, the FDL and WSA methods do not involve codebook, so we do
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Fig. 3. Confusion matrix for the Scene Category dataset. Average classification rates
for individual classes are listed along the diagonal. The entry in the ith row and jth

column is the percentage of images from class i that were misidentified as class j.

Fig. 4. Classification accuracy for different training set sizes on Caltech 101.

Fig. 5. Performance of BoW, SP, BoVG-SP, FDL, WSA and MsAG on Six Actions.
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Fig. 6. Different codebook size on the performance of BoW, SP, BoVG-SP and MsAG
on (a) Six Actions, (b) Scene Category.

Fig. 7. Partial results of image classification on the Six Actions database.

not compare them in this experiment. As shown on Fig. 6, classification accu-
racy increases when the codebook size increases from 200 to 500 and remains
obtain similar results on both datasets when the size is lager than 300. Com-
paratively, considering the time consumption of the algorithm, we set the size of
the codebook to 300.

Figure 7 shows partial results of image classification on Six Actions database
using the MsAG, which show that our method had better recognition accuracy
on each label category. Meanwhile, the performance of our method is stable in
similar categories problem. We believe that our approach is still very competitive
in other conditions.

6 Conclusion

In this paper, we explore the multi-scale attributed graph construction and
matching kernel for image classification. This may provide a further step to
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utilize the structure information for image recognition. The comparisons on four
standard datasets with five approaches, which are BoW, SP, FDL, WSA and
BoVG-SP, show the efficiency of our approach.

Our work has been limited the simple edge construction using delaunay tri-
angulation, there are several nature extension that can be taken advantage of.
First, we can build different edge sets to form the local structure for image. Sec-
ond, one can use various graph distance computation for more accurate graph
matching.
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