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Abstract. Human body detection is a key technology in the fields of
biometric recognition, and the detection in a depth image is rather chal-
lenging due to serious noise effects and lack of texture information.
For addressing this issue, we propose the feature visualization based
stacked convolutional neural network (FV-SCNN), which can be trained
by a two-layer unsupervised learning. Specifically, the next CNN layer
is obtained by optimizing a sparse auto-encoder (SAE) on the recon-
structed visualization of the former to capture robust high-level features.
Experiments on SZU Depth Pedestrian dataset verify that the proposed
method can achieve favorable accuracy for body detection. The key of
our method is that the CNN-based feature visualization actually pursues
a data-driven processing for a depth map, and significantly alleviates the
influences of noise and corruptions on body detection.
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1 Introduction

Human body detection is a basic task in biometric recognition which can be
widely applied in tracking, gait recognition and face anti-spoofing detection [1].
However, earlier detection methods used RGB camera is unavailable in some
special cases such as low-lighting scenes. To address this problem, depth cameras
have been considered for the human detection. Compared with RGB image,
depth image containing the 3D structure of the scene is insensitive to lighting
changes. Therefore human body detection in depth image has become an active
and attractive research area in the computer vision community [2].

Regarding to human body detection in depth image, most of depth descrip-
tors are similar to those in RGB or gray images [3]. For instance, Wu et al. [4]
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proposed Histogram of Depth Difference (HDD) descriptor and Spinello [5] pro-
posed Histograms of Oriented Depths (HOD) descriptor, which were similar to
HOG. Yu et al. [6] proposed a Simplified Local Ternary Patterns (SLTP) descrip-
tor, which improved the Local Ternary Patterns (LTP) and apply to human body
detection in depth imagery. However, a CNN with only one convolutional layer
and one pooling layer is used in [3], which actually expresses a shallow represen-
tation of the depth image. In general, a deep representation obtained by a deep
CNN is better to express an image than a shallow representation [7]. Therefore,
we would like to investigate how to develop Su et al.’s method [3] to a deeper
version.

Since it is unreasonable to use original image patches for training all network
layers, we employ the feature visualization technology to generate layer-specific
images at each network layer, then extract layer-specific image patches to train
corresponding SAE. Specifically, we adopt the image representation inverting
algorithm [8], which is able to use only information from image representation
to reconstruct the image. Figure 1 illustrates the images reconstructed from the
features at different convolution layers (conv1–conv5) for a given input image. As
shown, the reconstructed images correspond to multi-level semantic abstraction
but hold some invariant geometric and photometric information [9]. We call these
reconstructed images as layer-specific high-level images.

Fig. 1. Illustration of the feature visualization for convolutional neural networks.

Overall, the feature visualization based stacked convolutional neural network
(FV-SCNN) is proposed to extract features for human body detection in depth
images. FV-SCNN is rather different from Stacked Sparse Autoencoders (SSAE)
[10] or Stacked Denoising Autoencoders (SAE) [11]. Specially, the CNN-based
feature visualization actually achieves a data-driven processing for depth map,
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and enables the FV-SCNN to alleviate the influences of noise and corruptions
on body detection.

Moreover, sliding window approach is widely used in body detection task
[12], but it is rather time-consuming. To address this problem, we follow Su
et al.’s method [3] to use the histogram of depth to extract candidate depth
planes. Combined with the multi-scale window strategy, our method can not
only avoid the time-consuming siding window search, but also generate high-
quality candidates for body detection. Compared with [3] that uses k-means
algorithm to detect the candidate center, our method is more robust to the
noise, corruption, and the non-body parts.

The remainder of the paper is outlined as followed. The detailed introduction
of the proposed method is presented in Sect. 2. Experiments are reported in
Sect. 3 and the conclusion of the paper is made in Sect. 4.

2 Technical Approach

2.1 The Overview of the FV-SCNN Body Detection Framework

We utilize the FV-SCNN to learn the candidate body centers in depth images,
then develop a multi-scale body candidate windows with body centers to locate
the body areas.

The proposed FV-SCNN based human body detection framework is shown in
Fig. 2. As shown, the proposed model contains two CNNs with each containing
one convolutional layer and one pooling layer. In the training module, a large
mount of image patches are randomly extracted from original training set (depth
images) and used to train a SAE network. In our experiment, the size of image
patch is set to 16 by 16. The optimized weights and the bias of the SAE network
are employed to construct the filter of the first CNN. After that, the sub-images
with fixed aspect ratio (e.g., 120:64) extracted from original training set are
resized to 120 × 64 and put into the first CNN, yielding corresponding feature
maps. Based on each feature map, a high level image can be reconstructed by
using the feature visualization technology [8]. Like the scheme to construct the
first CNN, the randomly extracted patches from the first-layer high-level body
images are used to train the weights of another SAE for forming the second
CNN. After the second CNN is formed, the high-level images are input the
second CNN followed by a PCA to produce the final features. The features of
different labelled sub-images (body vs. non-body) are further used to train a
SVM classifier. Specifically, the sub-image exactly containing a human body is
labelled as a body sub-image, otherwise as non-body one.

In the application module, a set of candidate windows (sub-images) are gen-
erated for each input image. Each candidate sub-image is resized to 120 × 64
and put into the first CNN. The corresponding high level image reconstructed
from the first-layer feature map is further fed into the second CNN to export
the features, and further processed by PCA for a dimensionality reduction. The
classifier response based on the final features will judge whether current window
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Fig. 2. Illustration of the proposed human body detection framework.

contains a human body. Finally, the non-maximal suppression (NMS) is used to
merge the overlapping detected windows and get the final locations.

We demonstrate only two-layer CNNs in our model because a practicable
computing cost should be considered for a body detector. Specially, the first
CNN-based feature visualization tends to perform a data-driven processing for
depth map, and alleviate the influences of noise, corruption, and non-body com-
ponents on body detection. Actually, our model can be directly extended to more
than two layers by utilizing the reconstructed high-level image of a specific CNN
as the input of the following CNN. Details about our method are presented in
Sect. 3.

2.2 Sparse Auto-Encoder (SAE)

Recently, deep multi-layer neural networks have many levels of non-linearities
allowing them to compactly represent highly non-linear and highly-varying func-
tions. Auto-Encoder (AE) is an unsupervised feature learning algorithm which
aims to develop better feature representation of input high-dimensional data by
finding the correlation among the data. For an AE network, the output vector
is equal to the input vector. Training an AE can minimize reconstruction error
amounts and obtain the mutual information between input and learnt represen-
tation. Intuitively, if a representation allows a good reconstruction of its input,
it means that the representation has retained much of the information that was
presented in the input. Specifically, the AE is a three-layers neural network with
a single hidden layer forming an encoder and a decoder which proposed in [13].

Auto-Encoder (AE) can avoid the labor-intensive and handcraft feature
design. When the number of hidden units in AE is less than that of the input
units, a compression representation achieved. When the number of hidden units
is larger, even more than that of the input units, interesting structure of input
data can still be discovered by imposing a sparsity constraint on the hidden
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units. The Auto-Encoder with only few hidden units activated for a given input
is called the Sparse Auto-Encoder (SAE). Specially, the sparsity regularization
typically leads to more interpretable features for representing a visual object.

For a SAE network, let ρ̂j be the mean activation probability in the jth
hidden unit, namely ρ̂j = (1/m)]

∑m
i=1 hj . Let ρ be the desired probability of

being activated. Sparsity is imposed on the network, it is obvious that ρ � 1.
Here Kullback-Leibler (KL) divergence is used to measure the similarity between
the desired and actual distributions, as shown in the following equation

KL(ρ ‖ ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
. (1)

The SAE model can be formulated as the following optimization problem

min
W,b

⎡

⎣
m∑

i=1

(hW,b(x(i)) − y(i))2 + λ(‖W‖22) + β
k∑

j=1

KL(ρ‖ρ̂j)

⎤

⎦ , (2)

where the first term is the reconstruction cost, the second term is a regularization
on weight to avoid over-fitting, and the last term enforces the mapping sparsity
from the input layer to hidden layer. The parameters λ and β are regularization
factors used to make a tradeoff between the reconstruction cost, weight decay
and sparsity penalty term. Typically, back-propagation algorithm is used to solve
Eq. (2).

Fig. 3. Examples of feature visualization for depth images. The first row are the original
images and the second row are the corresponding high level images reconstructed from
CNN features.
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2.3 Feature Visualization

In the proposed model, the feature maps of the first CNN are inverted and visual-
ized to generate the high-level images as the input of the second CNN. We adapt
Aravindh Mahendran’s method [8] to achieve this goal. Given a representation
function Φ : RH×W×C → R

d and a representation Φ0 = Φ(x0) to be inverted,
x0 is the input feature image, reconstruction finds the image x ∈ R

H×W×C that
minimizes the objective

x∗ = argminx∈RH×W×C �(Φ(x), Φ0) + λ�(x), (3)

where the loss � compares the image representation Φ(x) to the target one Φ0

and � : RH×W×C → R is a regulariser capturing a natural image prior.
In this paper, as same as [8], we choose the Euclidean distance for the loss

function � as follows
�(Φ(x), Φ0) = ‖Φ(x) − Φ0‖2. (4)

For the regulariser �(x), it contains two parts which incorporate two image
priors, then it can be written as

�(x) = �α(x) + �V β (x), (5)

where �α(x) = ‖x‖α
α is the α-norm, which encourages the range of the image to

stay within a target interval instead of diverging. Since images are discrete, the
total variation (TV) norm is replaced by the finite-difference approximation:

�V β (x) =
∑

i,j

(
(xi,j+1 − xi,j)2 + (xi+1,j − xi,j)2

) β
2 . (6)

Through the above mentioned, the final form of the objective function is

‖Φ(x) − Φ0‖22 + λα�α(x) + λV β �V β (x). (7)

In this paper, the simple gradient descent procedure is used to optimize the
problem of the objective (7). In the iteration process, the parameter x is updated
as follows:

μt = mμt−1 − ηt−1ΔE(x)
xt+1 = xt + μt,

(8)

where E(x) = �(Φ(x), Φ0)+λ�(x) is the objective function, mμt−1 is the momen-
tum with the momentum parameter m, and ηt−1 is the learning rate.

Some examples of feature visualization are illustrated in Fig. 3. Compared
with the contents in original depth images, both noise and non-body components
have been cleared up in the high-level images, but essential structures of human
body are preserved.
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2.4 Localization of Body Candidate

We follow Su et al.’s method [3] to compute the histogram of depth values in a
depth image and further to extract a set of candidate depth planes with respect
to the local peaks of the histogram. The depth map with respect to each depth
plane is converted into a binary image, which indicates whether a pixel belongs
to current depth plane (1 for yes and 0 for not). Such a binary image is named
as a depth plane mask. For locating the human body, Su et al. [3] apply the
k-means clustering on each depth plane mask and regard the clustering center
as the body center of candidate. However, the accuracy of this manner could
be easily affected by the noise and corruption of the depth map as well as the
non-body components.

For more accurately locating the human body center, we propose using the
vertical projection method to locate the X-coordinate of the body candidate.
Assumes that the human center position is (x0, y0). We observe that the x0-th
column of depth map generally contains more points than other columns in cur-
rent depth plane. Inspired by this, the current depth plane mask is vertically
projected onto the horizontal axis. The positions corresponding to the maxi-
mum projection value on the horizontal axis are regarded as the X-coordinates
of the candidate body centers. For each candidate X-coordinate xp, we per-
form an 1-D average filtering on the xp column of the depth plane mask. In our
experiment, the filter length is set to 8. After filtering, the location with respect
to the maximum response is taken as the Y -coordinates of the candidate body
center. When multiple locations hold the maximum response value, the maxi-
mum coordinate and the minimum one among these locations are averaged to be
the Y -coordinates of the candidate body center. The proposed candidate body
center localization method is illustrated in Fig. 4. At each candidate center, we
generate multi-scale windows as the candidate sub-images for the first CNN to
get corresponding feature maps, and use the pre-trained classifier to judge the
human body.

Fig. 4. Illustration of candidate body center localization scheme. For each candidate
depth plane mask (a), it is vertically projected onto the X-axle (b). The column cor-
responds to maximum projection value is selected (c), and then is smoothed by a 1-D
average filter (d). The location with respect to the maximum filtering response is taken
as the candidate body center.
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3 Experiments

3.1 Experimental Setting

This section presents experiments on SZU Depth Pedestrian dataset [4,14] to
evaluate the proposed method for body detection. We divide the dataset as the
principle in [3]. The dataset is captured by a Time-Of-Flight (TOF) camera, only
depth images are used in our experiments, the resolution of them is 176 × 144
pixels. The number of training and testing images are 4435 and 4029 respectively.
We found that both the training of the feature learning with SAE and softmax
classifier need only few training examples, therefore we used 400 training images
which extracted 40,000 patches randomly for training the first SAE. The number
of neurons in the feature layer of SAE is set as 64. The sub-images are extracted
and normalized to the size of 120 × 64. The size of pooling filter in each CNN
is set 7 × 7 and the model finally outputs a 6,720 dimensional feature. The out-
put feature is finally processed by PCA to produce a 1,000 dimensional feature
vector and sent to the SVM classifier. For training the classifier, the proportion
of positive and negative samples should be 1:6 [3]. We extracted 100 body sub-
images and 600 non-body sub-images from the training set. These sub-images are
reconstructed to train the second SAE. For body detection application, 300 pos-
itive samples (the depth images containing a pedestrian) as well as 300 negative
samples are randomly opted for testing.

We first use two experiments to investigate the performance of the proposed
candidate localization method, and then compare the FV-SCNN based body
detection method with related methods.

3.2 Investigation on the Body Candidate Localization Method

In this experiment, we compare the proposed body candidate center localization
method (in Sect. 2.4) with the k-means based method [3]. Both methods work
on the same depth plane detected by the histogram analysis method mentioned
in [3].

Figure 5 shows a comparison example of candidate center localization on a
depth plane in a depth image by using different method, and Fig. 6 illustrates the
results on all depth planes. In order to present the superiority of our method in
terms of extracting accurate candidate points, we exploits the same classification
method to compare the performance of locating candidate points. As shown, the
proposed method gets far more accurate center localization result than the K-
means method, and generates less candidates. It is notable that the k-means
localization method is easily affected by the non-body objects. Further, it is a
remarkable fact that k-means cost a lot of computation time. In our experiment,
it takes 14.7921 s to generate all the candidate positions for each depth image
while our method cost only 0.0046 s. Additionally, k-means based method is
sensitive to the clustering initialization.
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Fig. 5. Illustration of candidate center localization result on a depth plane. Left is the
result of our method (shown with red cross) while the right is the result of the k-means
based method (shown with black cross). (Color figure online)

Fig. 6. Illustration of the candidate center localization result on all depth planes. Left
is the result of our method and the middle is the result of k-means based method.
Right is the result of k-means based method by extending more eight points around
each candidate position by 16 pixel step, which is also suggested in [3].

3.3 Investigation on the Feature Visualization Based Stacked
Network

In this experiment, we compare the proposed FV-SCNN model with the SAE-
CNN method [3] which forms a single-layer CNN by optimizing a SAE. We also
implement a specially designed HOG-FV-CNN model, which first performs HOG
presentation visualization [15] to obtain a HOG based high-level reconstruction
image, and then use a SAE-CNN model to extract the features for classification.
Simply speaking, in regard to HOG-FV-CNN, the HOG is used in place of the
first CNN in the proposed FV-SCNN model.

The human body detection results by different method are shown in Table 1.
In this experiment, the sub-images are directly used for testing. That is, the algo-
rithms do not need to localize the body candidate but only return whether the
input sub-image contains a body. The classification accuracy rates are reported.
As shown, the performance of HOG-FV-CNN is obviously worse than the FV-
SCNN model, even worse than the single-layer SAE-CNN model. The experimen-
tal results support that the deeper SAE-CNN network outperforms the single-
layer one. Furthermore, the CNN features work better than the hand-designed
HOG features in our framework.
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Table 1. Human body detection accuracies by different methods.

Methods SAE-CNN HOG-FV-CNN FV-SCNN

Accuracy rate 94.5% 86% 96.33%

�Layer 1 2 2

To deeply investigate the difference between HOG-FV-CNN and FV-SCNN,
we illustrate the reconstructed high-level images by these two methods in Fig. 7.
As shown, the high-level image generated by FV-SCNN contains the main human
structures but suppresses the noise and corruption (especially pay attention to
the upper-left part of image). By contrast, the reconstructed high-level image by
HOG is much rougher and the body configuration is distorted. The main reason
may be that the SAE is learnt by using the patches from the body sub-images,
so that the formed CNN responds more prominently on the body parts than
the non-body parts. However, as a kind of hand-craft features, the HOG takes
responses equally on different parts.

Fig. 7. Examples of high-level images reconstructed by different method. (a) is the
original depth image, (b) and (c) are the high-level images reconstructed by FV-SCNN
and HOG-FV-CNN, respectively.

3.4 Comparison with State-of-the-Art Methods

We also compared the proposed method with five state-of-the-art depth descrip-
tors for pedestrian detection in depth imagery, including the Histogram of
Oriented Depths (HOD) [5], Histogram of Depth Difference (HDD) [4], Rela-
tional Depth Similarity Feature (RDSF) [16], Simplified Local Ternary Patterns
(SLTP) [6], and SAE-CNN [3]. For a fair comparison, we adopt the same can-
didate windows and the same classifier (SVM) for different methods. The body
detection accuracy is evaluated using the intersection over union (IoU), which is
defined as the ratio of intersection to union between the results and ground-truth
bounding boxes. When the IoU is larger than 0.5, we treat current result as a
correct detection.

The body detection results of different methods are shown in Fig. 8, which
plots miss rate against FPPI (False Positives Per Image). Smaller miss rate at
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a fixed FPPI means more accuracy of the detection. As shown, the proposed
FV-SCNN method outperforms all other methods, and SAE-CNN perform bet-
ter than HOD, HDD, RDSF and SLTP, the superiority becomes more obvious
with a higher FPPI because we add the candidate localization method to the
proposed method from a systematical standpoint. The result revealing that the
feature learning is better than using hand-crafted feature. The proposed FV-
SCNN performs better than SAE-CNN, which verifies that a deeper network
architecture is more helpful for feature learning, and the proposed feature visu-
alization based network stacking manner is effective.

Fig. 8. Comparison of the proposed FV-SCNN with state-of-the-art methods includ-
ing hand-designed descriptors (HOD, HDD, RDSF) and learning based feature (SAE-
CNN).

4 Conclusion and Future Work

This paper presents a feature visualization based stacked convolutional neu-
ral network (FV-SCNN), where the feature visualization technology is used for
connecting multiple CNN layers. The FV-SCNN can be learned in a layer-wise
unsupervised manner by SAE. The FV-SCNN has been demonstrated for human
body detection in depth images. Experiments and visualization results reveal
that the proposed method significantly alleviates the influences of noise, corrup-
tion, and non-body components on body detection. The proposed method also
obtains a better body candidate localization result than the traditional methods
in body detection. In the future, we would like to apply the FV-SCNN to other
visual recognition processing tasks with deeper architectures. We also would like
to develop a fine-tuning method for the FV-SCNN, and investigate how to jointly
optimize the FV-SCNN and the classifier.
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