
Weighted Graph Classification
by Self-Aligned Graph Convolutional

Networks Using Self-Generated
Structural Features

Xuefei Zheng1,2, Min Zhang1, Jiawei Hu2, Weifu Chen1(B), and Guocan Feng1

1 School of Mathematics, Sun Yat-sen University, Guangzhou, China
alexandrap@163.com, Zhangjmin@gdpu.edu.cn,

{chenwf26,mcsfgc}@mail.sysu.edu.cn
2 Tencent-CDG-FIT, Shenzhen, China

jessejwhu@tencent.com

Abstract. Directed weighted graphs are important graph data. The
weights and directions of the edges carry rich information which can be
utilized in many areas. For instance, in a cashflow network, the direction
and amount of a transfer can be used to detect social ties or crimi-
nal organizations. Hence it is important to study the weighted graph
classification problems. In this paper, we present a graph classification
algorithm called Self-Aligned graph convolutional network (SA-GCN) for
weighted graph classification. SA-GCN first normalizes a given graph so
that graphs are trimmed and aligned in correspondence. Following that
structural features are extracted from the edge weights and graph struc-
tures. And finally the model is trained in an adversarial way to make the
model more robust. Experiments on benchmark datasets showed that
the proposed model could achieve competitive results and outperformed
some popular state-of-the-art graph classification methods.

Keywords: Graph classification · Graph convolutional networks
Graph normalization · Structural features · Adversarial training

1 Introduction

Many data, such as social networks, cash flow networks or structures of proteins,
can be naturally represented in the form of graphs. Graphs can be simply clas-
sified into directed graphs and undirected graphs, based on whether nodes are
connected by directed or undirected edges. For examples, cash flow networks are
directed graphs, since money is transferred from one account to another; protein-
protein interaction networks are undirected graphs, where undirected edges are
used to characterize the interaction between protein molecules. One of the most
important types of graph is weighted graph, in which each edge is associated
with a numerical weight. Since it is natural to measure the relationship between
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11257, pp. 505–516, 2018.
https://doi.org/10.1007/978-3-030-03335-4_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03335-4_44&domain=pdf
https://doi.org/10.1007/978-3-030-03335-4_44

506 X. Zheng et al.

nodes based on edge weights, weighted graphs have been widely used to store
network objects. Given a collection of weighted graphs, the work considers how
to classify the graphs. Unlike grid data, there are several challenges in graph
classification:

– Graphs usually differ in size, i.e., the number of nodes and the number of
edges of graphs are different;

– the nodes of any two graphs are not necessarily in correspondence, which,
however, is critical in comparing graphs;

– although sub-structures are basic elements for classifying graphs, how to use
the structural information in graph classification is still an open problem.

In the past decades, Support Vector Machines (SVMs) have been shown the
great power in classification [15]. When applying SVMs to graph classification
problems, the core issue is how to define kernels for graphs. The most popular
way to define graph kernel is based on subgraphs [13,16]. In summary, those
algorithms first recursively decomposed a graph into subgraphs, then counted
how many times each given subgraph occurred in the graph, and finally ker-
nel functions were defined to measure the similarity between the vectors of the
subgraph-occurring frequencies. The major limitation of those algorithms is the
high computational complexity, due to the decomposition of the graph, which
restricts the graph kernels only suitable to small number of subgraphs with few
nodes.

Recently, convolutional neural networks (CNNs) have achieved great success
in many fields [7,8]. Traditional CNNs are designed for grid data, and there is
an implicit order of the components. Hence, a receptive field can be moved in
particular directions. However, graph data don’t have such specific ordering and
it is necessary to redefine convolution operators for graph data. Many researches
tried to extend CNNs for graph data. One of the popular approaches is to gen-
eralize the convolution in the graph Fourier domain [3,4]. The basic procedure
of those algorithms was first to do the eigenvalue decomposition of the Lapla-
cian matrix of a graph, and the first d eigenvectors were then used as the filters
parameterized by diagonal matrices whose diagonal elements were related to
the eigenvalues of the graph Laplacian matrix. Although the definition of spec-
tral graph convolution in this way is attractive and the experimental results
reported are significantly improved, it was time-consuming (the computational
complexity is ©(n2), where n is the number of nodes of a graph) to calculate the
eigenvectors of the Laplacian matrix, in particular for large-scale graphs. Mean-
while, those methods assumed that the input vertices were in correspondence so
that the nodes could be easily transformed into a linear layer and fed to a con-
volutional architecture. For handling general graph data (with different nodes
and edges), Niepert et al. [11] proposed an algorithm called PATCHY-SAN to
extract locally connected regions from graphs using the Weisfeiler-Lehman algo-
rithm [18] for graph labelling so that the nodes of graphs were ordered and
convolution can be implemented as traversing a node sequence and obtain con-
vincing classification accuracy. One of the drawbacks of PATCHY-SAN is that
graph labelling methods are usually not injective and PATCHY-SAN used a

Weighted Graph Classification by SA-GCN 507

software named NAUTY [9] to break ties between same-label nodes, which will
weaken the ordering meaning and lead to eliminating important nodes.

In this paper, we present a new kind of graph convolutional networks (GCNs)
for weighted graph classification. Since the proposed model could learn the order
of the nodes of a graph by itself based on the importance which is measured
by PageRank and degree centrality, we call the model Self-Aligned GCN (SA-
GCN). According to the order of the nodes, SA-GCN trims graphs into the
same size so that a correspondence of the vertices across input graphs could be
fixed. Following that graphs could be compared directly. In contrast to existing
GCNs, SA-GCN also considers structural features extracted from edge weights
and graph global structure, which are usually neglected by other models but
contain rich discriminative information for classification. Another problem could
be solved by SA-GCN is small-dataset problem. As it is well-known, due to
huge of parameters, a neural network tends to be overfitting if there is lack of
training samples. SA-GCN tries to solve this problem by adversarial training
which in essence is a way to augment training samples by adding particular
noise to existing training samples but has been proved efficient for increasing
the robustness of a model [6].

2 Self-Aligned Graph Convolutional Networks

In this section, we will introduce the novel Self-Aligned Graph Convolutional
Networks (SA-GCNs). First we will introduce the basic notations, and we will
introduce the three elements (graph normalization, structural feature generation
and adversarial training) in sequence.

Let G(V,E,A,W) denote a graph G with nodes V = {v1, . . . , vn}, edges
E = {e1, . . . , em}, adjacent matrix A and weight matrix W . Here each edge
e = (u, v) ∈ V × V is a ordered pair for directed graphs and is unordered pair
for undirected graph. Aij = 1 represents that there is an edge from vi to vj and
Aij = 0 means there is no edge connecting vi and vj . If Aij=1, vi and vj are called
adjacent. Let N1(v) denote the node set whose elements are adjacent to node
v, and N1(v) can be treated as the first-order neighborhood of node v. Wij is
the sum of all weights associated with e(vi, vj). Obviously, if G is an undirected
graph, both A and W are symmetric matrices. Define the degree of node vi as
di =

∑n
j=1 Wij , and degree matrix as D = diag(d1, . . . , dn) and then Laplacian

matrix can be defined as L = D − W . For directed graphs, the indegree of a
vertex is the number of head ends adjacent to the vertex, and the outdegree of
the vertex is defined as the number of tail ends adjacent to the vertex. We denote
the indegree and the outdegree of node vi as din(vi) and dout(vi) or simply as
dini and douti . Details of graph theory can be referred to Ref. [5].

2.1 Graph Normalization

In order to compare the graphs, we should impose an order on the vertices across
input graphs. Intuitively, nodes should be ordered based on their importance in

508 X. Zheng et al.

a graph. In this paper, PageRank and degree centrality are used to measure
the importance of nodes, according to which graphs are trimmed into fixed size.
Breadth-first search (BFS) is used to find the k-most-important neighbors of
each selected vertex to form the neighborhoods as the receptive fields so that
convolution operators can be easily implemented.

Node Ranking. Node ranking is the basis of graph normalization, and there are
many criteria to measure the importance of a node in a graph. In this work, we
chose PageRank (PR) [12] and degree centrality (DC) [10] as our node ranking
criteria, as both of these methods are highly effective and efficient in character-
izing the importance of a node in a graph, and they can be easily extended to
weighted graphs.

– PageRank. PageRank is originally designed to use link structure to rank
web pages, but can be easily extended to any directed graphs. The algorithm
first assigns every node the same initial value as its PR value, then in each
iteration splits the PR value of every node equally among the nodes that it
points to. After each iteration, the PR value of node vi is updated by

PRi(t) =
n∑

j=1

Aji
PRj(t − 1)

doutj

(1)

When there is a node with outdegree 0, Eq. (1) won’t work. In order to handle
this problem, a damping factor p (0 < p < 1) is added to denote the proba-
bility that a node would split its PR value among all nodes in the graph, and
1− p denotes the probability that a node would split its PR value among the
nodes it points to. The update equation is changed to:

PRi(t) = (1 − p)
n∑

j=1

Aji
PRj(t − 1)

doutj

+
p

n
(2)

– Degree Centrality. Degree is a simple but effective measure to reflect node
importance. For an undirected graph, the degree of node vi is the number of
nodes that are directly connected with vi through edges. The degree centrality
of a node in an undirected graph is defined as

DC(i) =
di

n − 1
, (3)

where n is the number of nodes in the graph. Hence, n − 1 is the largest
possible degree of a node. For a directed graph, since each node has indegree
dini and outdegree douti . The degree centrality can be defined as:

DC(i) =
douti

n − 1
(4)

It should be noted that degree centrality only reflects the local influence of a
node, but doesn’t consider the global structure of a graph and the quality of
the neighbors of a node. Therefore, degree centrality is seldom used alone as
the ranking criterion.

Weighted Graph Classification by SA-GCN 509

To rank the nodes in a graph, we first compute both the PageRank values and
the degree centralities of the nodes in a graph. Then we rank the nodes based on
their PageRank values, and break the ties based on the degree centralities, and
eventually obtain a node ranking without ties. In the experiments, the first w
important nodes were chosen to form a fixed-size ordered node sequence (denoted
by P). For weighted graphs, the edges between nodes have not only directions
but also weights. In general, some edges are more important than others, which
means those edges are more useful. To extend PageRank to weighted graphs,
we just need to change the PR value splitting strategy in the iterations. Instead
of equally splitting the PR value of a node among the nodes it points to, each
neighboring node get a proportion of its PR value which is defined by the edge
weight divided by the sum of weights on all edges leaving the current node.

Neighborhood Generation. After we have generated the ordered sequence
P with w important nodes, we consider generate the receptive field (i.e., the
neighborhood) for each vertex in P . Algorithm 1 depicts the procedure. First,
∀vi ∈ P , we use node vi as a starting point and apply breadth-first search(BFS)
to find its neighbors iteratively with an increasing distance from vi and add
them to set Ni. It should be noted that inside the while loop, the distance from
vi increases 1 in each iteration and the adjacent sets N1(v) of the neighboring
nodes are unified into the neighborhood Ni until there are more than k nodes
in set Ni or there are no more unexplored nodes to be added into set Li. Here
|Li| represents the number of unexplored nodes in Li. Second, the nodes in Ni

are sorted by their path distance from vi in an ascending order, and their PR
values and degree centralities are in sequence used to break the ties if they occur.
Finally, the top k nodes are selected to form the neighborhood of vi’s.

1 Input: PR,DC,P = {v1, ..., vw} , k
2 Output: for every node vi generate a regularized neighborhood Nsorted

i

1: for i = 1 to w do

2: Ni = [vi]
3: Li = [vi]

4: while |Ni| < k and |Li| > 0 do
5: Li = ∪v∈Li

N1(v)

6: Ni = Ni ∪ Li

7: end while

8: if Ni < k then

9: Fill k − |Ni| elements in Ni with 0
10: end if
11: Nsorted

i = the top k nodes of Ni sorted by firstly the distance to node vi in an
ascending order, secondly PR value, and thirdly DC value.

12: return Nsorted
i

13: end for

Algorithm 1: Neighborhood Generation

510 X. Zheng et al.

Figure 1 demonstrates two classes of graphs before and after the proposed
graph normalization.

Fig. 1. Two classes of graphs before and after graph normalization. The blue one is a
gamble community, and the star network structure was preserved after graph normal-
ization. The red one is a pyramid scheme community, and the hierarchical structure
was kept after graph normalization.

2.2 Node Feature Generation

After graph normalization, we consider how to extract structural features for
each node from a graph. In this work, two kinds of structural features were used
in the experiments:

– PageRank and Degree Centrality. The PR values and the degree central-
ities defined in Sect. 2.1 are useful structural features, as both of them could
characterize the relationship between the central vertex and its neighbors.

– Spectral Embedding. While PageRank and Degree Centrality could reflect
the local structures of a graph, spectral embedding contains the global infor-
mation for graph partition [14,17]. In this work, spectral embedding based
on Laplacian Eigenmaps [2] was used in the experiments, which is defined to
solve the optimization problem

min
Y TDY=I

1
2

∑

i,j

‖yi − yj‖2Wij = trace(Y TLY). (5)

It can be proved that the optimal solution of (5) is the eigenvectors corre-
sponding to the top K smallest eigenvlues of the random-walk normalized

Weighted Graph Classification by SA-GCN 511

Laplacian matrix L̂ = I − D−1W , where K is the dimensions of the embed-
ding space.

After we have computed the spectral embedding, each node is associated with
c attributes (c = K +2). Hence, the size of the input tensor to the convolutional
network is w × k × c, where w is the number of selected important points, k is
the size of the node neighborhood, and c is the number of channels.

2.3 Adversarial Training

After graph normalization and node feature generation, each graph is represented
by a 3-dimension fixed size ordered tensor, that is, graphs are in correspondence.
The input tensor for each graph is of dimension w × k × c, which can be imagined
as an image in size w × k with c channels. We apply a k × 1 convolutional filter
with stride 1 on the tensors, and the rest of the architecture can be an arbitrary
combination of convolution, pooling and fully connected layer. Softmax layer is
used for the final classification. Assume that the input tensor of CNNs is x, the
corresponding label is y, and θ is the parameter set, the loss function of SA-GCN
is defined as:

J1(θ, x, y) = −logP (y|x; θ) (6)

However, as we know, CNNs need to be trained with large datasets to avoid
overfitting, but the datasets in the graph classification problems usually quite
small. In order to train a robust model, we introduce the adversarial training
objective into SA-GCN to make our model more robust and less prone to over-
fitting. The adversarial training objective is defined as [6]

J2(θ, x + r, y) = −logP (y|x + r; θ), (7)

where r is defined as
r = −εsign(�xlogP (y|x; θ)). (8)

Thus, the objective function can be defined as the weighted average of J1

and J2

J̃(θ, x, y) = αJ(θ, x, y) + (1 − α)J(θ, x + r, y), (9)

where α ∈ [0, 1] is a trading coefficient. This cost function can be viewed as
actively adding a most destructive perturbation on the input and forcing the
model to learn more robust feature to overcome the perturbation.We denote the
model with adversarial training SA-GCN+

In summary, SA-GCN consists of three steps: (1) graph normalization, (2)
node feature generation and (3) CNNs classification with adversarial training.
We show the SA-GCN architecture in Fig. 2

3 Experiment

3.1 Data Description

The performance of the proposed model was tested on two types of datasets.
The first type of datasets is a real cash flow networks. It contains four classes

512 X. Zheng et al.

Fig. 2. Architecture of SA-GCN.For input graph G, firstly perform graph regulariza-
tion with two steps of node ranking and neighborhood generation and rearrange graph
to a w× k matrix, secondly generate structural feature of graphs as node feature, and
lastly trains CNNs with adversarial training using node features as input.

of financial communities (pyramid scheme, illegal foreign exchange, gamble and
Wechat-sale group) in total of 1944 networks. Each community is represented
by a weighted graph without node information. The number of nodes of a graph
varies from 100 to 3000.

The second type of datasets consists of 7 standard benchmark datasets
described in line 2 to 4 of Table 3. Among them, PTC, NCI1, NCI109 and PRO-
TEINS are bioinformatic datasets, and COLLAB, IMDB B and IMDB M are
social network datasets. These benchmark datasets have node information, and
edge features are discrete or nonexistent.

3.2 Experimental Setting

All experiments were implemented on the Tensorflow platform [1] with a sin-
gle NVIDIA Titan X GPU. To compare with other models, we performed 10-
fold cross validation on all datasets and repeated the experiments 10 times and
reported the average prediction accuracies and standard deviations. For SA-
GCN, we use w = 100, k = 5 on all datasets. For PSCN [11], DGCNN [20], and
DGK [19] on standard benchmark datasets, we report the best results from the
papers. For DGCNN on weighted graph dataset, We set the k of SortPooling
such that 60% graphs have nodes more than k, and used weight matrix instead
of 0/1 adjacent matrix, and used degree centrality as node information to extend
DGCNN to weighted graph classification.

Weighted Graph Classification by SA-GCN 513

Table 1. Comparison of accuracy results with different node features

Node features SA-GCN SA-GCN+

PageRank 84.77 ± 2.05 85.81 ± 2.39

Degree centrality 86.58 ± 2.92 87.50 ± 1.61

Spectral embedding 82.38 ± 3.61 83.49 ± 2.82

All three 89.20± 1.46 90.80 ±1.40

3.3 Node Feature Selection

In this section we compared the performance of three types of node features:
PageRank, degree centrality and spectral embedding with the partitions of 3.
We used the same graph normalization process to rearrange graph nodes to an
ordered tensor, and used PR, DC values and spectral embedding respectively as
the only node feature to train CNNs. The first 3 rows of Table 1 list the results
and show that degree centrality is the best out of the three. The reason behind
it maybe that cash flow networks have fewer hierarchies so that the number
of immediate neighbors could reflect more information of a graph. The fourth
row in Table 1 shows when using all three types of node features our model
reached the accuracy of 89.20%, which is higher than using either single kind of
node features. The reason behind it is that these three different node features
reflect different structural information of nodes. Therefore, all features could
make contribute to the classification and achieved the highest accuracy.

Table 2. Compare with other methods on weighted graph dataset

Method Accuracy

DGK 62.47 ± 2.56

DGCNN 84.59 ± 0.79

SA-GCN 89.20± 1.46

SA-GCN+ 90.80 ±1.40

Table 2 lists the result of our model comparing with DGK [19] and DGCNN
[20], and shows that SA-GCN and SA-GCN+ performed better than the other
two algorithm on weighted graph datasets. DGK is based on deep graph kernel,
and couldn’t utilize edge features, hence the bad performance. DGCNN is a
CNNs based method like ours, but with a different regularization process and
feature extracting mechanis. DGCNN use degree centrality as node feature, and
achieve higher accuracy than SA-GCN with PR value or spectral embedding as
node features, but have lower accuracy than SA-GCN with degree centrality.
On the one hand, these results show that degree centrality is indeed a better
node feature for these datasets and shows that SA-GCN can extract more useful
information than DGCNN from the same node features.

514 X. Zheng et al.

3.4 Adversarial Training

In this section we compared our model with or without adversarial training,
denoted by SA-GCN+ and SA-GCN respectively. Results are listed in the first
and second column of Table 1 and show that adversarial training could enhance
the performance of every combination of node features, and when using all three
node features and adversarial training, SA-GCN+ achieved the best results.

Fig. 3. Set w to 10, 50, 100, 150, 200 and 250 respectively, and report the model’s
average accuracy. The horizontal axis is x, and the vertical axis is the corresponding
accuracy. Model achieve the highest accuracy when w = 100.

3.5 Parameter Analysis

In this section we analyzed the choice of parameters in the graph normalization
process. The most important parameter is w, which indicates how many nodes
to keep in a graph. For cash flow network dataset, there are four classes of graphs
in total of 1944 and each graph have nodes number between 100 and 3000. We
chose w ∈ {10, 50, 100, 150, 200, 250}, k = 5 as parameter and train our model
respectively for 10 times and report average accuracy in Fig. 3. The line chart
shows that parameter w has a relatively small influence on the accuracy of the
model. Accuracy didn’t go up as w increase, which indicates that keeping more
nodes of a graph doesn’t provide the model with more useful information for
classification; with the increase of w, accuracy slightly come down, this indicates
that extra node information can be seen as noise and be deleted from the graph,
which further validate the effectiveness of graph regularization process. When
w = 10, accuracy shows acute drop, which means too little nodes are kept in
the regularization process and therefore the performance of classification suffers.
Accuracy reach the highest point when w = 100, hence is chosen as the optimal
w of SA-GCN.

Weighted Graph Classification by SA-GCN 515

3.6 Compare with Others

We compared SA-GCN+ with 2 CNNs based methods (DGCNN [20] and
PATCHY-SAN denoted as PSCN [11]) and 1 graph kernel based method (Deep
Graphlet Kernel, DGK [19]) on 7 standard benchmark datasets, the results were
listed in Table 3. SA-GCN+ achieves the highest accuracy on PROTEINS, COL-
LAB, PTC, NCI109 and IMDB B, and has highly competitive on other two
datasets, which proves that our model works well on unweighted graph despite
the fact that it is designed for weighted graph.

Compared to DGCNN and PSCN, the differnce lay between the graph reg-
ularization mechanism we chose. PSCN uses Weisfeiler-Lehman algorithm and
external software to order and chose nodes. But the Weisfeiler-Lehman algo-
rithm sorted nodes by it’s structural role and doesn’t reflect the importance
of a node, which means nodes which are more important in a graph could be
excluded in the process. DGCNN uses graph convolutional network to extract
node features and rank and choose the nodes according to these features, which
means the ranking would be refined through the process of training, which is
the greatest strength of this method. The drawback is that the edge feature and
the structural features of graph (like the partitions) aren’t fully utilized. The
strength of SA-GCN is that we fully extract information from edge features and
graph structural features and use them to the fullest extend to regularize graph
and introduce them as node feature. Furthermore, we use adversarial training
to resolve the overfitting problem and make our model more robust.

Table 3. Compare with other method on benchmark datasets. SA-GCN+ achieved
state of the arts on PROTEINS, COLLAB, PTC, NCI109 and IMDB B.

Dataset PTC NCI1 NCI109 PROTEINS COLLAB IMDB B IMDB M

Size 344 4110 4127 1113 5000 1000 1500

Classes 2 2 2 2 3 2 3

Avg. nodes 25.5 29.8 29.6 39.1 74.49 19.77 13

PSCN 62.29± 5.68 76.34 ± 1.68 - 75.00± 2.51 72.60± 2.15 71.00± 2.29 45.23± 2.84

DGCNN 58.59± 2.47 74.44± 0.47 - 75.54± 0.94 73.76± 0.49 70.03± 0.86 47.83± 0.85

DGK 57.32± 1.13 62.48± 0.25 62.69± 0.23 71.68± 0.50 73.09± 0.25 66.96± 0.56 44.55± 0.52

SA-GCN+ 62.93 ± 3.26 71.63± 0.61 68.86 ± 1.17 76.06 ± 2.04 74.02 ± 1.50 72.40 ± 1.84 45.76± 2.03

4 Conclusion

In this paper, we proposed a GCN-based model for weighted graph classification
called SA-GCN. Experimental results on several popular datasets showed that
the proposed model outperformed some state-of-the-art models, which indicated
the advantages of the proposed model.

Directions for future work include using alternative node features and develop
a criterion to compare the effectiveness each type of node features; combing the

516 X. Zheng et al.

graph regularization process with the neural network, so that both part can be
trained simultaneously.

Acknowledgements. This work is partially supported by the NSFC under grants
Nos. 61673018, 61272338, 61703443 and Guangzhou Science and Technology Founding
Committee under grant No. 201804010255 and Guangdong Province Key Laboratory
of Computer Science.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI
2016, pp. 265–283 (2016)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

3. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally con-
nected networks on graphs. In: International Conference on Learning Representa-
tions (2014)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

5. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2006)
6. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-

ples (2015)
7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
9. McKay, B., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,

94–112 (2014)
10. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
11. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for

graphs. In: Proceedings of the 33rd International Conference on Machine Learning,
pp. 2014–2023 (2016)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

13. Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Advances
in Neural Information Processing Systems, pp. 1660–1668 (2009)

14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

15. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
16. Vishwanathan, S., Schraudolph, N., Kondor, R., Borgwardt, K.: Graph kernels. J.

Mach. Learn. Res. 11(Apr), 1201–1242 (2010)
17. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416

(2007)
18. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and

an algebra arising during this reduction. Nauchno-Tech. Informatsiya 2(9), 12–16
(1968)

19. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374. ACM (2015)

20. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification (2018)

	Weighted Graph Classification by Self-Aligned Graph Convolutional Networks Using Self-Generated Structural Features
	1 Introduction
	2 Self-Aligned Graph Convolutional Networks
	2.1 Graph Normalization
	2.2 Node Feature Generation
	2.3 Adversarial Training

	3 Experiment
	3.1 Data Description
	3.2 Experimental Setting
	3.3 Node Feature Selection
	3.4 Adversarial Training
	3.5 Parameter Analysis
	3.6 Compare with Others

	4 Conclusion
	References

