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Abstract. Deep reinforcement learning (DRL) has been showing its strong power
in various decision making and controlling problems, e.g. Atari games and the
game of Go. It is inspiring to see DRL agents to outperform even human masters.
However, DRL algorithms require a large amount of calculation and exploration,
makingDRLagents hard to train, especially in problemswith large state and action
spaces. Also, most DRL algorithms are very sensitive to hyper parameters. To
solve these problems, we propose A3COE, a new algorithm combining the A3C
algorithm with online expert supervision. We applied it on mini-games of the
famous real-time-strategy game StarCraft II. Results show that this algorithm
greatly improved the agent’s performance with fewer training steps while
acquiring more stable training processes with a greater range of hyper parameters.
We also proved that this algorithm works even better with curriculum learning.
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1 Introduction

1.1 Deep Reinforcement Learning and Its Weakness

Deep reinforcement learning, combining neural networks with traditional tabular rein-
forcement learning to improve its generalization ability, has been proved successful in
multiple decision making problems: Atari games [1], the game of Go [2], and physic
simulators [3]. However, DRL algorithms require enormous training steps and exploration
data, and this problem becomes more serious when the state and action space is large. For
example, Deepmind’s Rainbow algorithm requires over 200 million frames of Atari game
play to train an agent [1], and AlphaGo Lee used as many as 48 TPUs to train [2].

Although the convergence of traditional reinforcement learning algorithms like Q-
learning have been proved mathematically [11], there is no evidence that these algo-
rithms remain convergent when combined with neural networks. Also, evidence
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showed that most popular DRL algorithms are very sensitive to hyper parameters, and
even the randomly initialized network weights can affect the training process greatly
[12]. This is definitely what we do not want to see: a reliable algorithm should be
robust and reproducible. A natural idea is to make use of demonstrations, as human
learn faster and better with demonstrations than exploring alone.

1.2 StarCraft II and Its Large Decision Space

Our experiment takes StarCraft II as the training environment and we use Deepmind’s
PYSC2 training platform. In PYSC2, the game’s state is represented by 24 feature
maps, with 17 main screen features, and the rest 7 minimap features. The game’s
actions are organized into 524 different action functions, each taking 0 to 2 parameters,
and there are more than 108 possible actions in total. Compared with the game of Go,
which has a state space of 19 * 19 * 5 (according to the training settings of [2]) and an
action space of approximately 361, StarCraft II is obviously more complex. So we
conclude that StarCraft II is a hard reinforcement learning problem, as it has a vast
decision space, which will require considerable exploration to train an agent.

It is worth mentioning that StarCraft II is also difficult for its long time scale,
strategy complexity and partial observations, but we do not discuss it because we avoid
these problems in our environment choosing, to focus on the point we want to solve:
the large decision space.

2 Backgrounds and Related Works

DRL algorithms are based on the concept of Markov Decision Processes (MDPs) [13].
An MDP can be described by a tuple { }, with the set of states, the set
of actions, Pðs0js; aÞ the transition probabilities, R s; að Þ the set of rewards, and a reward
discount factor c. Our aim is to find a good policy p sð Þ, which gives out the next action
given the current state. Based on the rewards received each step, we can define the Q-
value function and the V-value function as follows:

Vp sð Þ ¼
X

s02S
P s0js; p sð Þð Þ R s; p sð Þð Þþ cVp s0ð Þ½ � ð1Þ

Qp s; að Þ ¼
X

s02S
P s0js; að Þ R s; að Þþ cVp s0ð Þ½ � ð2Þ

And these equations are known as the Bellman Equations. The aim of reinforcement
learning is to find the optimal policy p�, and p� can be acquired with the following
Bellman optimality equations:

V� sð Þ ¼ maxaE R s; að Þþ cV� s0ð Þ½ � ð3Þ

Q� s; að Þ ¼ E R s; að Þþ c
X

s0
P s0js; að Þmaxa0 Q� s0; a0ð Þ

" #
ð4Þ
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Value-based DRL methods (e.g. DQN [14]) try to solve Eq. (4) and give optimal
actions according to Q-values, while actor-based methods try to directly give the
optimal action. In our experiment we use A3C, an actor-critic algorithm which contains
a critic network to estimate V-values and an actor network to give actions. The critic
network’s loss and actor network’s loss are designed as follows:

lossc ¼ Vactual � Vestimateð Þ2 ð5Þ

lossa ¼ � Vactual � Vestimateð Þ � log p ajsð Þð Þþ b � Ea ð6Þ

with p ajsð Þ the possibility of taking action a under state s, Ea the entropy of the actions’
possibilities (

P
a2A p ajsð Þ � log p ajsð Þð Þ) and b a positive hyper parameter to encourage

exploration.
In August of 2017, Deepmind released the PYSC2 platform with some baseline

results using A3C. Although they tried various network structures, all of them took up
to 300 million training steps to achieve good behavior in mini-games [8]. What’s more,
they hardly made any progress in full game and could not win the easiest built-in AI,
even with shaped rewards. However, agents trained with human replay data managed
to perform better and produced more units. That suggested that imitation learning may
be a ‘promising direction’ for AI training. Their work proved that StarCraft II is now a
challenging problem for DRL.

The idea of implementing demonstration data to pre-train network has been widely
used, for example, on DQN [4], A3C [5], DDPG and ACER [6]. However, these work
focuses on offline demonstration data, and little work looks on online expert data. In
some cases, it may be convenient to give expert policy in the training process, e.g.
mini-games in StarCraft II (you can easily hard-code an agent to give expert policies)
and automatic driving (provided with images of roads, people can easily give the right
action). Under these circumstances, training will be faster if we introduce online expert
supervision than offline pre-training as it is more straightforward.

Curriculum learning is a training method to help speed up training. Human beings
learn better if they learn easier tasks before hard ones, so it is possible to train networks
with easier tasks in the beginning to acquire better performance. Results have proved
that curriculum learning helps get better results in shape recognition and language
modeling using neural networks [9]. In DRL, this method has also been used to train
agents. For example, in the first-person shooting game Doom, curriculum learning has
helped agents to perform better, and one agent using A3C and curriculum learning won
the champion of Track1 in ViZ-Doom AI Competition 2016 [10].

3 Methods

3.1 Environment Settings

In our discussion we apply Collect Mineral Shards, a simple StarCraft II mini-game, as
our training environment. In this task, the agent controls two units to reach and get the
20 mineral shards on the map to get scores. The units and mineral shards are all
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randomly placed on the map. We only consider controlling the two units together (that
is, the two units receive the same instructions at the same time). We choose this task
because it simplifies the state and action space, lowering the total number of actions to
4097 (64 * 64 possible destinations for the agent to move units to and one action to
select the two units). It is also a small map which excludes camera moving, fog of war
and partial observation. Also, we can discard unused feature maps, thus reducing the
state space’s dims to 64 * 64 * 5 (64 is the screen’s resolution, and there are five
feature maps involved). We use the default settings of making a decision every 8
frames, and an episode lasts for 120 s. In an episode, when all the mineral shards have
been collected, the units and the mineral shards will be reset randomly until reaching
the time limit. For reward shaping, the agent gets +1 for every mineral shard collected,
and −0.001 for every action to encourage faster collections. This setting is similar to
that in Deepmind’s work [8] (Fig. 1).

3.2 Asynchronous Advantage Actor-Critic

We are facing a reinforcement training task with a vast action space, so it is difficult to
apply value-based DRL algorithms, in which one has to give an estimate of all the 4097
Q-values in one state while only a few Q-values are updated in one training step. So we
decide to apply Deepmind’s A3C [7] (Asynchronous Advantage Actor-Critic), an
actor-critic method which avoid these problems. In A3C, the critic network estimates
the V-value of the state while the actor gives out possibilities for taking each action. In
the training process we used 64 asynchronous local threads to learn together, each of
them sharing and updating parameters via a shared global net (Fig. 2).

For the network structure, we used convolutional neural networks similar to
Deepmind’s: two convolutional layers of 16, 32 filters of size 8 * 8 and 4 * 4 with
strides 4 and 2, connected with two dense layers [8]. For spatial actions (e.g. choosing a
point in the map), instead of outputting the possibility for choosing each point, we
assume the points’ coordinates to be normally distributed and output their means and
variances. This setting introduces a nice prior, that is, destination points near the

Fig. 1. A screenshot of Collect Mineral Shards (left) and the feature maps (right).
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optimal point should also be good, and that should contribute to a more stable training
process.

As for hyper parameter settings, all network weights are initialized with a variance
scaling initializer with factor 0.5, and all the worker nets share two common Adam
optimizers with the same learning rate (one for the critic net, and one for the actor net).
The parameters are updated every 40 game steps.

3.3 Introducing Online Expert Supervision: A3COE

For this DRL task, we can easily hard-code an agent which performs nicely: always
moving the units to the nearest mineral shard. This strategy may be sub-optimal under
some circumstances, but it is still a strategy nice enough to learn from.

With this hard-coded agent, we can introduce expert supervision while training. For
each training step, apart from feeding states, actions and rewards to the network, we
also feed expert’s action to the network, and to utilize this expert demonstration, we
change the loss of the actor network (6) to:

loss0a ¼ � Vactual � Vestimateð Þ � log p ajsð Þð Þþ a � log p aEjsð Þð Þþ b � Ea ð7Þ

where aE represents the expert’s actions, and a is a positive hyper parameter to control
the degree of supervision. It is worth noticing that in this loss, b should be negative, for
the network tends to enlarge variance to minimize the loss and an negative b
encourages the network to converge. b was set positive in the original loss to encourage
exploration, but we do not need to encourage it any more (for the supervision loss has
already told us where to explore). We name this algorithm A3COE, which is short for
Asynchronous Advantage Actor-Critic with Online Experts.

Fig. 2. Illustration of how A3C works. Notice that all worker nets work asynchronously, which
avoids the relevance of experience data.
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Instead of using the distance between the agent’s actions and the expert’s actions,
we implement the log probability of the expert action as the form of the supervision
loss for several reasons: it is a natural form of policy gradient [11]; it updates both the
mean and variance; and it is easier to balance between the expert loss and the original
policy gradient loss. This new loss combines reinforcement learning loss with super-
vision loss, and instructs the agent to explore certain actions, so this loss should be
easier to converge, thus making the training process more stable.

3.4 Sparse Rewards and Curriculum Learning

One common problem in DRL is sparse rewards. In some states that are rarely reached,
only a small number of actions will manage to get a good reward, so training will be
slow in these states. One solution is to introduce curriculum learning, which manually
designs a series of tasks in which difficult states appear more frequently, and trains
agents on this series of tasks to improve performance. This training strategy is rea-
sonable because it is similar to human’s learning progress: to learn easy tasks first and
then try harder ones.

In our experiment, we found that when there are few mineral shards left, the agent
makes progress obviously slower, for these states (few mineral shards on the map)
appear less frequently, and actions that acquire positive rewards are pretty rare under
these states. So we applied curriculum learning to speed up training, designing maps of
2, 5, 10, 15 and 20 mineral shards in it, and set a score limit to decide which difficulty
the agent should be trained with. Agents who get high scores will be trained with a
more difficult map, while agents who fail to reach certain scores will be trained with
easier maps. Detailed score settings are listed in the following chart (Table 1).

4 Results

4.1 A3C and A3COE

We tested the performance of A3C and A3COE in the Collect Mineral Shards task
without curriculum learning. We set b ¼ �0:5 and a ¼ 5:0 for A3COE and b ¼ 0:05
for the original A3C. We tried three different learning rates and the results are in Fig. 3.
The horizontal axis is the total episodes trained, and the vertical axis is the smoothed
reward of each episode.

Table 1. Difficulties and score settings

Mineral shards
on the map

Minimum scores required
to enter next stage

Minimum scores required
to stay in this stage

2 6 –

5 15 5
10 25 10
15 35 15
20 – 20
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The original A3C algorithm preformed just fine with a suitable small learning rate
(1e−5), but with 1e−4 and 1e−3, the training process became unstable, and the agent
was trapped in a local minimum, unable to perform better. In contrast, A3COE was
more stable and performed nicely with all three learning rates. But the agent trained
with the small learning rate still outperforms the other two in training speed.

Also, with a proper learning rate, A3COE learned very quickly, reaching the score
of 18 at about 1,000 episodes, while the original A3C takes about 5,300 episodes.
Supervision has speeded up the learning process as we expected.

4.2 Degree of Supervision

We also tested the influence of different supervision parameter a, also without cur-
riculum learning, and the results are in Fig. 4. We can see that a ¼ 1:0 acquired the
greatest learning speed, while the agent trained with a ¼ 5:0 performed slightly better
in the end. The a ¼ 0:1 agent performed the worst, even unable to outperform the
original A3C agent, and the a ¼ 5:0 agent was slower in the beginning because of
overfitting. However, all of the A3COE agents outperformed the original one in
training speed. So an appropriate parameter a will help A3COE to perform better.

4.3 Curriculum Learning

In the experiments showed below, agents learned significantly slower when they got a
score of about 17, mainly because of sparse rewards. To boost training, we introduced
curriculum learning and tested its effect.

We focused on the agent’s ability to get a score more than 20 in a single episode,
which means that the agent must overcome the states with sparse rewards and manage
to collect all the mineral shards on the map, and that is exactly what we want cur-
riculum learning to do. In the following statements, if an agent gets more than 20 points
in an episode, we consider this performance to be ‘nice’, for it overcomes the hard state
of having few mineral shards on the map. We trained four agents each taking a different
training method, and all the agents were trained for 3,000 episodes. Then we tested
them for 2,000 episodes each, and counted the times they got a score over 20. The
results are in Table 2.

Fig. 3. Performances of the original A3C algorithm (left) and A3COE (right) with different
learning rates.

Applying Online Expert Supervision 475



With supervision, curriculum learning indeed helped agents to overcome sparse
reward dilemmas, enabling the agent to perform ‘nicely’ two times more frequently.
However, the effect of curriculum learning in the original A3C case was rather weak, for
the trainingwithout supervisionwas slow and the agent had not fully explored its policies.

4.4 Case Study

How does curriculum learning helps overcome sparse rewards? We inducted a case
study to have a closer look. We tested the ‘A3COE without curriculum learning’ agent
and the ‘A3COE with curriculum learning’ agent mentioned in Sect. 4.3 in two states:
the first state is an ‘easy’ case with 20 mineral shards on the map and a large number of
actions can get good rewards. And the other state is a ‘harder’ one with only two

Fig. 4. Training agents with different supervision parameters.

Table 2. Performance of agents with different training methods

Agent training method Times of getting over 20 points
(‘nice’ performances) in 2,000
episodes

Original A3C without
curriculum learning

34

Original A3C with
curriculum learning

36

A3COE without
curriculum learning

104

A3COE with curriculum
learning

389
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mineral shards on it. We recorded position of mineral shards, position of the units the
agents control, and the first action chosen by the agents and the expert, and the results
are shown in Fig. 5.

We can see that in the easy cases, it is acceptable to take actions different from the
expert’s for they will get good rewards as well, and so the two agents both performed
nicely. However, in the hard sparse reward settings, few actions can get good rewards,
so the agent without curriculum learning performed worse due to lack of exploration. In
contrast, the agent with curriculum learning acted very similar to the expert because it
had already been well-trained in sparse reward states.

5 Conclusions and Discussions

Human beings learn much faster with experts’ instructions than exploring alone. Sim-
ilarly, DRL algorithms that do not rely on expert data require a large amount of
exploration, and supervision is a reasonable way to speed up training. In our experiment,
supervised A3C outperforms the unsupervised algorithm, and is more stable as well.

In offline pre-training, the distributions of expert demonstrations and exploration
experience may vary a lot, and that affects the effect of pre-training. However, online
expert supervision is more flexible and reliable, and speeds up training much more
directly. So in tasks which we can easily provide online expert policy, our method will
train faster. Also, our method can deal with suboptimal expert demonstrations. After
the agent performs nicely enough, we can train it with the original unsupervised
method. As the suboptimal policy is more close to the optimal policy than random
policies, this training process will be faster than completely unsupervised training. In
that condition, our method serves as a kind of pre-training.

Fig. 5. The first action chosen by the agents in different states.
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We observed a ‘peak’ in the training curve of supervised A3C algorithm with the
learning rate 1e−4 and 1e−3 at about 400 episodes, but the score failed sharply after the
peak before climbing up again slowly. Our explanation is that the actor network might
be over-fitted at the beginning of training, and that causes the drop in the training scores
that follow.

From the experiments, we can see the effect of curriculum learning and difficulty
designing. However, there are still remaining questions. For example, how to design
difficulties to maximize its effect? Up till now, there is no theory instructing on diffi-
culty design, and we are applying it relying only on our observations and instincts.
Also, is the ‘difficulty’ for us the same as the ‘difficulty’ for agents? In supervised
learning, the difficulty may be the noise in data, but in reinforcement learning prob-
lems, there is still no clear definition for ‘difficulty’.

This work was supported by the National Natural Science Foundation of China
(61673234). This work was also supported by SaturnLab in FITC of Tsinghua
University (Tsinghua iCenter).
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