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Abstract. Generative adversarial networks are useful tools in image
generation task, but training and running them are relatively slow due
to the large amount parameters introduced by their generators. In this
paper, S-Deconv, a sparse drop-in substitute for deconvolution layers,
is proposed to alleviate this issue. S-Deconv decouples reshaping input
tensor from reweighing it by first processing it with a sparse fixed filter
into desired form then reweighing them using learnable one. By doing so,
S-Deconv reduces the numbers of learnable and total parameters with
sparsity. Our experiments on Fashion-MNIST, CelebA and Anime-Faces
verify the feasibility of our method. We also give another interpretation
of our method from the perspective of regularization.
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1 Introduction

Generative adversarial networks (GANs [5]) have been a heated topic in the deep
learning community since they provide a powerful framework that allows us to
learn complex distributions in tasks where no explicit merits to apply such as
image generation and manipulation. To this end various network architectures
were designed, many of which have multiple generators with great depth [3,4,13].
Along with their mirrored counterparts, those generators introduce too many
parameters making it slow to train GANs. There has been methods [6,8] focusing
on substitutes with fewer parameters for convolution layers used in recognition
tasks; however, to the best of our knowledge, no similar substitutes has been
proposed for deconvolution layers in GANs.

In this paper, inspired by the success of introducing atrous convolution into
semantic segmentation tasks [2], we propose a new building block of neural
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networks called S-Deconv that functions similarly to a vanilla deconvolution
layer but with controllable sparsity built within and fewer parameters to learn.
These two properties are believed to helpful in terms of accelerating GANs during
training. Our proposed method can be considered as a combination of fixed and
learnable kernels. Although we adopt the similar setting of fixed kernel in [8],
our approaches are fundamentally different. Firstly, the problem settings are
not the same: generation and classification. Secondly, we use these fixed kernels
as mean to reshape the input tensor reserving much of its information despite
the sparsity, an encouraging result due to the nature of deconvolution while in
[8], fixed kernels, followed by Sigmoid activation, were used to approximate the
standard convolution layers.

2 Related Work

Generative Adversarial Networks. Being an upcoming technique in the
unsupervised learning field, generative adversarial networks [5] provide a way to
implicitly model distributions of high-dimensional data, for example, images and
neural languages [9,10]. In general, a GAN can be well characterized by training
two networks simultaneously in competition with each other. When a GAN is
applied in image synthesis tasks, one can image that one of the networks is a
forger whose specialty is to imitate master pieces while another is a expert whose
majors in art. In this scenario, the forger G, or Generator in GAN terminology,
will try its best to generate plausible art, or realistic images, from noises while
the expert D, or Discriminator, will receive both fake and real art then try to
identify which one is authentic and which one is not. In our experiments, we
use WGAN [1], a variant of GAN approximates EM distance rather than JS
distance, as our baseline model.

Local Binary Convolution. Local binary convolution (followed by a ReLU
activation), an approximation of vanilla convolution which is also followed by a
ReLU activation is proposed [8]. A LB-Conv consists of three parts: a convolution
layer with fixed LB-kernels, a sigmoid activation and a standard 1×1 convolution.
A LB-Conv kernels is many alike to a standard kernel used in convolution and
deconvolution layers except that elements in a LB-kernel are only zero, one and
negative one. We utilize this kind of kernels in our method for its sparsity and
other desirable properties.

3 Our New Method

3.1 S-Deconv

Our new method is based on one observation that after a feature map which
is passed to a deconvolution layer, two things happened simultaneously : (1)
this tensor is reshaped and (2) new values are given by a weighted summation
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of old ones. We call them reshapingphase and reweighingphase. Due to this
simultaneity, a kernel in a deconvolution layer must be lager enough to catch the
surrounding of a pixel in the feature map. However this often leads to vain efforts
since this kernel is operated on a feature map that is seriously padded with zeros.
If we shrink the size of this kernel or enlarge the stride of it, it may receive more
non-padded values giving more meaningful reweighing results; however, doing so
will jeopardize reshaping results forcing us to add more layers. To address this
dilemma, we trade simultaneity for freedom in designing kernels. This decoupling
reshaping and reweighing results our proposed method, S-Deconv layer.

In S-Deconv, reshaping is done by fixing sparse kernels containing only −1,
1 and 0 and then reweighing is done by channel-wise weighted summations. To
best utilize existing deep learning library, both phases in S-Deconv are imple-
mented by vanilla deconvolution and convolution layers: reshaping phase can
be considered as a deconvolution layer with fixed LB-kernels while reweighing
phase can be considered as a convolution layer with 1×1 kernels. However, these
two operations may increase the computational afford of GAN since S-Deconv
works best with sparse matrix multiplication. We present our main operations in
Algorithm 1 to have a clear understanding of how our method works in practice
and make a comparison to vanilla deconvolution layers in Table 1. And in Eq. (1)
we show the ratio of numbers of learnable parameters

#Deconv

#Our Method
=

p × h × w

m
(1)

and total parameters in Eq. (2)

#Deconv

#Our Method
=

p × h × w × q

p × h × w × m × (1 − θ) + m × q
(2)

where p, q and m are numbers of input, output and intermediate channels, h×w
is the size of deconvolution kernels and θ is the sparsity. Under mild settings,
we can see that both ratios are lager than one, which indicates that our method
uses fewer learnable and total parameters.

Algorithm 1. S-Deconv layer
Input: Tensor X; Fixed LB-Conv kernels Klb; Learnable 1 × 1 Kernels K1×1.
Reshaping Phase: Xinter = Deconv(X;Klb)
Reweighing Phase: Y = Conv(Xinter;K1×1)
Output: Y

We discuss some technical details as follows.

Why the Name? The name of our proposed method may be confusing. The
meanings of “sparse” here are of two folds. First, weights in a S-Deconv layer
are most zeros. Second, most of those weights need not to be learned.
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Table 1. A comparison of our method and deconvolution

Layer Components Output

Vanilla deconvolution Deconvolution Feature map

Our method Fixed deconvolution Reshaped input

1 × 1 convolution Feature map

Drop-In Substitute. Given LB-Conv kernels and intermediate channel size,
our method is a drop-in substitute for deconvolution layers. Our experiments
show that replacing a deconvolution layer with a S-Deconv layer often require
no changes in hyperparameter setting.

Why LB-Conv Kernels. When it comes to fixed hand-crafted kernels, there
are many options including randomly initialized weights, among which we take
LB-Conv kernels as our reshaping kernels for two reasons: (1) they have con-
trollable sparse nature built within; (2) aside from zeros for sparsity, it contains
only one and negative one which can help with persevering information.

Channels of Intermediate Feature Maps. After reshaping phase, input
feature maps have been transformed into new feature maps we call intermediate
feature maps which would be sent to reweighing. About the number of channels of
those maps, it seems it should be as large as possible to best preserve information
of the input ones; however, setting it too large will increase number of parameters
to learn in reweighing phase, and experiments have shown that keeping the
number of channels unchanged would be enough.

Runtime Analysis. In theory, our method should be faster due to its sparsity
nature. However, the convolution operation we use to implement our method in
the experiments are designed for sparse matrices in terms of forward, backward
ans storage; thus the significant improvement of runtime is not observed in our
pilot experiments. How to modify this operation would be our further work.

Relation with Other Methods. In [6], a vanilla convolution layer is decom-
posed into a channel-wise convolution and a point-wise convolution layer to save
parameters. In [8], fixed kernels are constructed by a Bernoulli distribution of
(1,−1, 0). Our method shares certain similarity with these two methods, but our
goals and approaches are different:

(1) We present a drop-in substitute that use the sparse nature of LB-Conv ker-
nels and paddings in deconvolution which is not a approximation to decon-
volution layers differencing from LB-Conv in [8]. And we do not intend to
make our method an approximated deconvolution layer but a regularized
one. See Sect. 3.2 for a regularization view.

(2) We aim to accelerate networks with sparsity which is different from [6].



450 J. Li et al.

3.2 A Regularization View

In this section, we interpret our method in a regularization perspective.
A deconvolution layer can be written as

V ec(Y )deconv = KTV ec(X) (3)

where KT is the kernel matrix used in deconvolution. In a S-Deconv setting, we
would have

V ec(Y )our = V BTV ec(X) (4)

where B is a fixed LB-Conv kernel matrix and V is a learnable 1×1 convolution
kernel matrix. In a regularization perspective, we can see that we add regular-
ization to kernels in standard deconvolution layers forcing their corresponding
matrix KT to be decomposed as matrix multiplication of V and BT .

4 Experiments

To verify the feasibility of our method S-Deconv, we conduct several experi-
ments of image generation on different datasets. We also show Inception scores
to compare qualities of images generated by different generators used in our
experiments.

4.1 Datasets and Preprocessing

Datasets used in our experiments are summarized as follows:

(1) Fashion-MNIST [12] is a Fashion version of MNIST dataset only with more
complex data structure. It was proposed to be direct replacement for MNIST
for benchmarking. We will focus on this dataset in terms of computing Incep-
tion scores since it is complex enough to show that our method can also work
well on other datasets while not too complex that we have enough compu-
tational resources to obtain Inception scores with Monte Carlo method.

(2) CelebA [11] is a large scale real life dataset of face attributes, we use its face
images in our experiments; since it’s not a label dataset, we cannot report
Inception scores.

(3) Anime-Faces1 contains 143,000 anime styled images with more than 100 tags
(attributes).

As for preprocessing, we resized all images into 64 × 64, and centralized them.
Resizing may add extra difficulties but it can save us a lot of time reorganizing
models.

1 Dataset obtained from https://github.com/jayleicn/animeGAN.

https://github.com/jayleicn/animeGAN
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4.2 Architectures and Hyperparameters Settings

We used a WGAN [1] with a five deconvolution layers generator and a mirrored
discriminator as our baseline model. Batch Normalization layers [7] are used.
Modifications made to verify the feasibility of our approach are replacing decon-
volution layers with S-Deconv ones. Details of this architecture is presented in
Fig. 1, where arrows indicate the directions of information flowing.

Fig. 1. Architecture of the baseline WGAN

All hyperparameters are kept unchanged for the same datasets in our exper-
iments to avoid cherry-picking. We pay no attention to adjusting those hyperpa-
rameters to create very smart results. In contrary, we use some default settings
that can be applied to many models and datasets to achieve not state-of- the-art
but satisfying enough results to show that those models work. Details of those
parameters are presented in Table 22. The classifier used to compute Inception
scores is built and trained by ourselves, the accuracy of which is a leaderboard
performance.

4.3 Results

Feasibility. We focus on the results, Inception scores especially, of experiments
on Fashion-MNIST dataset and show those scores in Table 3. Exact value of
Inception score indicates nothing, and to show a clearer idea of how well models
performed, we also compute the Inception scores of pure noises and real images.

From Table 3, we observe that by replacing a few deconvolution layers in our
baseline model, the resulting models can actually generate images with higher
2 Internal Coefficients: Ratio of internal channels and input channels in a SLBP layer.

Density: Controlling the sparsity of SLBP layers.
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Table 2. Hyperparameter sittings for three datasets

Hyperparameter Fashion-Mnist CelebA Anime

Image size 64 × 64 64 × 64 64 × 64

Dimension of noise 100 200 200

Optimizer RMSprop RMSprop RMSprop

Learning rate 0.0002 0.00005 0.00005

Beta 0.5 0.5 0.5

Batch size 64 16 16

Clipping 0.01 0.01 0.01

Basic channels for generators 64 128 128

Basic channels for discriminators 64 64 64

Internal coefficients 1 1 1

Density 0.5 0.5 0.5

Table 3. Inception scores

Source of evaluated images Inception score

Pure nosies 3.02

Real images 9.67

Baseline model 6.6364

Model−1 6.9164

Model−1−2 6.6427

Model-1−2−3 6.7098

Model-1−2−3−4 1.4297

Model-1−2−3−4−5 1.0000

Inception scores which verifies the feasibility of our method. And there is a
dramatic drop after Model−1−2−3 where the term Model−1−2−3 means the
first three deconvolution layers has been replaced. This may be caused by over-
regularization. Models with four or five S-Deconv layers would a small capacity
since their learnable parameters are of a small number. Such capacities may not
be enough to learn a complex image distribution.

Effects of Regularization. Experimental results in Table 3 verify the feasibil-
ity of our proposed S-Deconv method. Now we further investigate the regulariza-
tion effect of different combinations of S-Deconv layers (in total 25 = 32 cases).
Table 4 shows Inceptions scores under different settings where array (0, 1, 0, 1,
0) means the second and fourth deconvolution layers being replaced by SLBP
layers. Note that over regularization (4 or 5 layers replaced, 2 or 3 top layers
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Table 4. More inception scores

Model Inception score Model Inception score

0 0 0 0 0 6.6364 0 0 0 0 1 1.0000

0 0 0 1 0 6.8365 0 0 0 1 1 1.0000

0 0 1 0 0 6.7918 0 0 1 0 1 1.5593

0 0 1 1 0 6.5145 0 0 1 1 1 1.0000

0 1 0 0 0 1.0457 0 1 0 0 1 6.3385

0 1 0 1 0 6.4304 0 1 0 1 1 1.5357

0 1 1 0 0 6.8262 0 1 1 0 1 1.0000

0 1 1 1 0 1.0956 0 1 1 1 1 1.0000

1 0 0 0 0 6.9164 1 0 0 0 1 6.5662

1 0 0 1 0 1.0071 1 0 0 1 1 6.1790

1 0 1 0 0 4.7278 1 0 1 0 1 1.0000

1 0 1 1 0 1.0000 1 0 1 1 1 5.2147

1 1 0 0 0 6.6427 1 1 0 0 1 1.0075

1 1 0 1 0 1.0007 1 1 0 1 1 5.0681

1 1 1 0 0 6.7098 1 1 1 0 1 5.3925

1 1 1 1 0 1.4297 1 1 1 1 1 1.0000

replaced) would lead to catastrophic results since networks under such regular-
izations would not have sufficient model capacity to learn complex distributions.

Generated Images. We show some samples of images generated by Model−1
and Baseline model as a comparison on all three datasets using hyperparameter

Fig. 2. Real Fashion-MNIST images Fig. 3. Real CelebA images
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Fig. 4. Real Anime-Faces images

(a) Generated by Baseline Model (b) Generated by Model-1

Fig. 5. Generated Fashion-MNIST images

settings described in Sect. 4.2. All images were generated during training with
no hand-picking. Real images are provided for evaluation and comparison with
generated images shown in Figs. 5, 6 and 7.

We can see that on Fashion-MNIST dataset, model equipped with our
method clearly outperforms the baseline model as indicated by Inception Scores
in Table 3. As for CelebA and Anime-Faces datasets, we believe that the two
models perform very similarly.
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(a) Generated by Baseline Model (b) Generated by Model-1

Fig. 6. Generated CelebA faces

(a) Generated by Baseline Model (b) Generated by Model-1

Fig. 7. Generated Anime Faces

5 Discussion

We have proposed S-Deconv, a sparse substitute for deconvolution layers in
GANs settings, and have shown that our method is feasible in practice. In exper-
iments, we use WGAN as our baseline model and make modifications only on
generators since that WGAN add extra constraints to discriminators. However,
in other GAN architectures, such constraints are not needed, which means that
we can replace convolution layers in discriminators to further reduce parameters.
As we all know, neural networks are, in most cases, over-parameterized and the
search in parameter space is constrained by network structures and guided by
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optimizers using SGD-based algorithms. Thus, to obtain better search results,
we can

(1) design architectures that encode human pilot knowledge;
(2) design building blocks that are less redundant than stand deep learning

layers;
(3) design new optimization algorithms that can make full use of information

contained in data.

In this paper, our method should be classed into option (1) or option (2) since
a S-Deconv layer is less redundant than a standard deconvolution layer that it
replaces and can be considered as two layers (a deconvolution one with fixed
kernels and a convolution one with 1 × 1 kernel size) taken place in sequence.

Development of deconvolution operation implemented with sparse matrix
multiplication is our further work.
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