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Abstract. Image hashing approaches map high dimensional images to
compact binary codes that preserve similarities among images. Although
the image label is important information for supervised image hashing
methods to generate hashing codes, the retrieval performance will be lim-
ited according to the performance of the classifier. Therefore, an effective
supervised auto-encoder hashing method (SAEH) is proposed to gener-
ate low dimensional binary codes in a point-wise manner through deep
convolutional neural network. The auto-encoder structure in SAEH is
designed to simultaneously learn image features and generate hashing
codes. Moreover, some extra relaxations for generating binary hash codes
are added to the objective function. The extensive experiments on several
large scale image datasets validate that the auto-encoder structure can
indeed increase the performance for supervised hashing and SAEH can
achieve the best image retrieval results among other prominent super-
vised hashing methods.
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1 Introduction

With the growing number of image data on the Internet, fast image retrieval
is becoming an increasingly important topic. Image hashing attempts to map
higher dimension images to lower dimension binary codes, and thus, the similar-
ity between two sequences can be easily and quickly calculated. Hashing tech-
nique, which is the most powerful and important technique in image retrieval,
achieves a great success, due to its effectiveness to reduce the cost in term of
storage and time.

In previous years, many prominent hashing methods have been proposed
[2,15,17,23], including many learning based hashing approches, see, e.g. [25].
Hashing methods based on handcrafted features (e.g. GIST [20] and HOG [5])
have firstly been studied. Iterative Quantization (ITQ) [13] applies a random
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orthogonal transformation to the PCA-projected data and then refines the for-
mer orthogonal transformation to minimize quantization error. Kernel-Based
Supervised Hashing (KSH) [3] employs a kernel trick to accommodate with the
data which are linearly inseparable. [15] proposes to encode the relative order of
features rather than quantize the values in ranking subspaces, which can effec-
tively handle prevalent noises in real-world dataset.

In addition, convolution neural networks act as end-to-end methods to
extract the features and then to be applied in various tasks. Recently, notable
success of deep neural network models [9,11] in a wide range of areas such as:
object detection, image classification, and object recognition, has aroused the
researchers’ interest to develop hashing methods through deep neural networks.
CNNH+ [26] is developed for image hashing and comprises of two efficient stages.
In the first stage, it decomposes the similarity matrix into a product of matrix
of target hash codes. In the second stage, it builds a convolution network to
learn hashing codes from labelled data (if it is on supervised scenario). Later,
Deep Supervised Hashing (DSH) [16] prudently combines these two aforemen-
tioned stages in CNNH+ into a single network, in which it takes a pair of images
with their labels as inputs and attempts to maximize the discriminability of the
output space. As a point-wise method which takes single image as the input
of network for training, Supervised Semantics-preserving Deep Hashing (SSDH)
[27] uses a deep convolution network based on AlexNet [11] to obtain hash codes
and directly uses these codes to minimize the classification error. Deep Quanti-
zation Network (DQN) [2] proposes a product quantization loss for controlling
hashing quality and the quantizability of bottleneck representation.

In the most recent, CNN-based auto-encoder methods [6,24] emerge as a
powerful technique to extract highly abstract features from image data. These
extracted features can capture the semantic information of images, which can be
used for image hashing in the retrieval task. Several hashing methods based on
convolution auto-encoders (CAE) have also been proposed. For example, [21] is
one of the most recent method which presents a new hashing method by using
variational auto-encoder [7] on unsupervised scenario.

Although many efficient deep supervised hashing methods [2,15,16,27] have
been proposed in the last few years, which achieved exciting performance, the
studies on supervised auto-encoder structure in image hashing task are limited.
En [8] proves the effectiveness of the auto-encoder structure for unsupervised
hashing, which encourages the study in this paper on the supervised image hash-
ing by incorporating an auto-encoder structure into a supervised hashing net-
work. The effectiveness of the auto-encoder structure has been proved in image
classification [22] and generation [12,18] tasks, while in this paper, we validate
its effectiveness for supervised image hashing method in image retrieval task.

Since the supervised information from image labels is a strong regularization
term which drives the images with the same label to be encoded into the same
hashing codes, the performance of supervised hashing methods might be limited
by the classification accuracy of the supervisory network. However, considering
misclassified images by the supervisory network, the auto-encoder structure is
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able to restrict those with similar patterns to be encoded with similar hashing
codes, which is proved to be effective in unsupervised image hashing task [8,21]
and consequently improves the retrieval results on supervised scenario.

The motivation of this work is straightforward, since the auto-encoder struc-
ture has the ability to keep the semantic feature between images. In our work,
in order to improve the generalization ability and remedy the overly depen-
dent on the performance of the supervisory network for deep supervised hashing
method, we propose a framework based on a supervised auto-encoder hashing
(SAEH) model to generate binary hash codes while still keeping their semantic
similarities. The auto-encoder structure is also designed to assist the supervi-
sory network to learn more semantic features, which therefore, will increase the
semantic information represented by each hashing bit. Following previous works
[11,12], supervised information is incorporated in the deep hashing architecture
to associate the hashing bits with the given label, where the mean-square error
of original and recovered images and the classification error are simultaneously
minimized. In order to convert these codes to binary, some additional relaxations
are also incorporated into the objective function. In summary, there are three
main contributions of this paper: (1) A framework is proposed to incorporate
auto-encoder into supervisory hashing model, which will increase the semantic-
keeping and generalization ability. (2) Several typical methods for combining
auto-encoder structure with supervised hashing network are inspected to val-
idate their effectiveness in supervised image hashing task. (3) The proposed
framework can achieve the best image retrieval results among other prominent
supervised hashing methods on several large-scale datasets.

The practicalness and effectiveness of SAEH model are validated through
various experiments on MNIST, CIFAR-10, SVHN and UT-Zap50K datasets.
In order to statistically compare the performance of the proposed SAEH model
and the deep supervised hashing model without the auto-encoder structure, the
decoder network with the recovery loss is removed from our hashing model to
identify that the effectiveness of auto-encoder. Multiple comparison experiments
are also carried out to show the effectiveness of SAEH with other state of art
image retrieval methods.

The rest of the paper is organized as follows. Section 2 describes our frame-
work based on the supervised auto-encoder hashing model in detail. Section 3
presents experiments on four large datasets to evaluate the capability of SAEH
to generate binary hashing bits. Section 4 gives conclusions of this paper.

2 Supervised Auto-encoder Hashing

Let X = {xn}Nn=1 be N images belonging to labels Y = {yn ∈ {0, 1}C}Nn=1,
where C is the number of classes. For example, if xn belongs to class cn ∈
{1, 2, · · · , C}, we assign its label vector yn as (yn )j = 1 if j = cn and 0 otherwise.
Then we use hn ∈ [0, 1]K to denote the codes generated from xn through a
encoder function with the code length K. Similarly, we denote the binary hashing
codes as bn ∈ {0, 1}K by setting a threshold to hn . In order to obtain hashing
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Fig. 1. The architecture of SAEH (The source codes of this paper will be public in
the future) proposed in this paper, which includes three parts: encoder sub-network,
decoder sub-network, and supervisory sub-network. The encoder sub-network is based
on ResNet50 [9] where we remove the last two layers and add a fully connected layer to
generate hash codes. The stackn(n = 1, 2, · · · , 6) denotes a group of cascaded residual
units as building blocks in [9].

codes from highly abstract features of images, we design a supervised auto-
encoder architecture as illustrated in Fig. 1, including: the encoder sub-network,
the supervisory sub-network and the decoder sub-network.

2.1 Architecture of SAEH

The encoder sub-network is designed to map the normalized input image xn into
hashing codes hn in the latent space of SAEH model. We define the parameters
in the encoder sub-network as WH and the mapping function is signified as
H : xn �→ hn . Hereafter, in this paper, the output layer of the encoder sub-
network is named as hash layer. As the most importance information contained
by an image, image labels are used to regularize the latent variables through a
supervisory sub-network. The supervisory sub-network takes the latent variables
as input, which is generated by the encoder and contains a softmax function:
softmax(x)i = ewixi/

∑C
c=1 excwc . It is used to predict the label ŷn of input xn

based on its hashing codes hn during training process. And it can be formulated
as C : hn �→ ŷn , which is parameterized by WC . Supervisory sub-network aims
to minimize the classification error with the given label y, where we calculate
the categorical cross-entropy error:

l(yn , ŷn ) = −
C∑

c=1

ynclog(ŷnc). (1)
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And similarly, the loss of the supervisory sub-network among the whole training
set can be calculated as follows:

E1(WH ,WC) =
1
N

N∑

n=1

l(yn , ŷn )

=
1
N

N∑

n=1

l(yn , C(H(xn ;WH);WC). (2)

At the same time, the content of an image is important for image hashing,
which can be used to improve the generalization ability of the supervised hashing
methods and get rid of the heavy dependence on the classification performance.
Thus, a decoder sub-network is designed to recover the input image from its
hashing codes in the latent space. It can be signified as D : hn �→ x̂n , where x̂n

is the recovered image and the parameters are represented in term of WD. Here,
we use mean square error (MSE) between the input images and the decoded
images in pixel-wise manner to measure this recovery error as Eq. (3).

E2(WH ,WD) =
1
N

N∑

n=1

||xn − x̂n ||22

=
1
N

N∑

n=1

||xn − D(H(xn ;WH);WD)||22 (3)

2.2 Binary Hashing Codes

Considering that the codes generated by encoder H are distributed in continuous
space, in order to obtain the binary hashing codes, some relaxations should
be added to the hash layer. Since we use a sigmoid function: sigmoid(x) =
1/(1 + exp(−x)) to activate the output nodes of the hash layer, the output of
the hash layer is restricted between 0 and 1.

Following the previous works by [8,27], we then attempt to convert these
activation values into binary values as 0 or 1, which also means to be far from
their midpoint. So the relaxation term to get binary hashing codes can be given
as following:

E3(WH) = − 1
N

N∑

n=1

||hn − 0.5e||22, (4)

where e is a vector with all elements equal to 1.
Moreover, inspired by [27], in order to increase the gap of Hamming distance

between the hash codes of the input belonging to different classes, an additional
relaxation is added to make sure that hashing codes are as uniformly distributed
as possible. Since the latent variables are restricted into [0, 1] through a sigmoid
function, we can regularize the mean of the elements in a sequence of hash codes
closer to 0.5 as the mean of the even distribution between [0, 1].
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E4(WH) =
K∑

k=1

( 1
N

( N∑

n=1

hnk

) − 0.5
)2

(5)

The final binary hashing code bn is easily obtained by setting a threshold θ
(θ = 0.5 in our work) to hn as Eq. (6), where the quantization error is quite less
because the relaxation term in Eq. (4) is incorporated into the objective function
for training SAEH model.

bni =

{
1 hni > θ

0 otherwise
(6)

2.3 Different Ways for Incorporating Autoencoder Structure

Usually, there are three main ways for incorporating an auto-encoder struc-
ture into supervised classification tasks: pre-training a supervised classifier net-
work through an auto-encoder structure, simultaneously training classifier with
an auto-encoder, and training an auto-encoder model as warm-up for a clas-
sifier. The pre-training and warm-up training methods are usually designed to
initialize the parameters in the supervised classification networks for fast con-
vergence and improving the performance. Specifically, the pre-training method
trains the feature extraction network in the classifier as an encoder with an
extra decoder through a few iterations, and then directly removes such decoder
network with the recovery error in the objectives and only trains the classifier
continuously. Simultaneously training an auto-encoder with a classifier means
to train those networks for the whole time during the training process. Training
an auto-encoder as warm-up for a classifier attempts to gradually reduce the
weight of the decoder with the recovery error during the training process and
eventually remove it after some iterations. In this paper, we also investigate the
above methods for incorporating auto-encoder structure in supervised hashing
model. More formally, those methods for updating the weight γ of the recovery
loss term can be summarized as following:

γt =

⎧
⎪⎨

⎪⎩

u(t < tpre) ∗ γinit pre-train
γinit simultaneous train
min{γmax,max{γt−1 − t · k, 0}} warm-up

. (7)

In Eq. (7), u(condition) is an indicator function, which is 1 if the condition
is true and 0 otherwise. tpre is the iteration times, when the auto-encoder is pre-
trained for initialization. γinit is the initial value of the weight of the recovery
loss. k controls the decreasing speed of the recovery error weight in the warm-up
method with γ0 to be γinit, where the linear decreasing strategy is chosen in our
framework and the weight γt is clipped into [0, γmax] after each update.

2.4 Objective Function and Implementation

Before going to further discussion, we first formulate the objective function.
The final objective function will be obtained by summing all the loss terms,
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including the classification loss, the recovery loss, and the relaxations with their
corresponding weights and formulated as:

E(WH ,WD,WC) = E1(WH ,WC) + γE2(WH ,WD)
+ αE3(WH) + βE4(WH)

+ η
(
||WH ||22 + ||WD||22 + ||WC ||22

)
, (8)

where an l2 regularization term for all of the parameters in SAEH is added
during training to reduce the overfitting issue.

SAEH is implemented in Keras [4] with Tensorflow [1] on an NVIDIA GTX
1080 GPU. As shown in Fig. 1, the encoder sub-network is based on ResNet [9],
in which we remove the last two layers and add a fully connected layer (hash
layer) to generate hashing codes. The supervisory sub-network is connected after
the encoder, of which the output layer with C nodes is directly connected from
the hash layer. The decoder network is a inverted architecture of the encoder
network, where the bilinear interpolation approach, as the inverted operation of
max pooling in the encoder sub-network, is designed to increase the size of the
feature maps as up-sampling layer. In addition, We apply the stochastic gradient
descend (SGD) method in order to address the problem in Eq. (8) and we set the
momentum to 0.9. The learning rate is initialized by 0.1 and reduces 80% every
30 epochs. To validate the effectiveness of auto-encoder structure for supervised
hashing, we mainly discuss the influence of recovery weight γ in the following
experiments, while other parameters such as α, β and η are fixed to be: 0.1, 0.1
and 0.0005 respectively based on some preliminary experiments.

3 Experiments

In this section, we carry out various experiments to evaluate the performance
of the proposed image hashing framework based on supervised auto-encoder
hashing model on several publicly available image datasets. Notice that after
the SAEH model being well trained, the supervisory and decoder sub-networks
can be simply removed from the framework since only the encoder sub-network
is required to generate hashing codes on the test scenario. Thus, our framework
is as efficient as other deep supervised hashing models except some extra efforts
for training.

3.1 Datasets

– MNIST [14] contains 70k 28 × 28 handwritten images from 0 to 9 in grayscale.
Following common splits, we select 6k images per class (60k in total) as
training set and the rest as testing set.

– CIFAR-10 [10] consists of 60k 32 × 32 color images of ten common objects. In
our experiments, we have divided the images into training set with 5k images
per class and the remain for testing set.
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– SVHN [19] is a color house number dataset obtained from Google Street View
images including 73,257 samples for training and 26,032 for testing.

– UT-Zap50K [28] is a large shoe dataset involving 50,025 images belonging to
4 categories respectively. We randomly select 46,025 samples for training and
the rest 4,000 samples for testing.

Table 1. mAP@1000(%) and precision rate (with Hamming radius to be 2) on CIFAR-
10 dataset w.r.t different γ (α = β = 0.1)

γ 0 0.01 0.1 1.0 10

mAP@1000 84.56 87.30 87.35 87.00 86.13

Precision 88.16 88.77 88.90 91.93 95.59

Table 2. mAP@1000(%), precision rate(%) (with Hamming radius to be 2), and the
classification accuracy (as a reference) on CIFAR-10 and UT-Zap50K datasets with 32
bits w.r.t different methods to incorporate auto-encoder structure into supervised hash-
ing model. Notice that the evaluation result by accuracy is the classification accuracy
of the supervisory sub-network.

Method CIFAR-10 UT-Zap50K

mAP@1000 Precision Accuracy mAP@1000 Precision Accuracy

SAEH 87.35 88.90 0.8868 85.74 88.35 0.8135

SAEH− 84.56 88.16 0.9110 80.70 75.59 0.8080

SAEHpre 86.52 89.3 0.8873 83.78 79.94 0.7970

SAEHwu 86.59 88.61 0.8938 83.65 79.56 0.7959

3.2 Ablation Study for Auto-encoder Structure

To evaluate the effectiveness of the decoder structure in SAEH model, where we
simultaneously train an auto-encoder with a classifier, for alleviating the depen-
dence on the classification accuracy, we apply SAEH and contrastive method
(denoted as SAEH−, where we remove the decoder structure from SAEH by set-
ting the weight of recovery error γ to 0 in the Eq. (8)) on the MNIST, CIFAR-10
and SVHN datasets respectively. The retrieval results of SAEH and SAEH−

measured by mAP@1000 are shown in the last two rows in Table 3. Compar-
ing to SAEH− model, where the decoder sub-network with the recovery loss
is ignored during training, SAEH increases the mAP around 0.6%–3.64% on
different datasets with the help of decoder structure. Moreover, the weight on
the decoder loss γ is inspected to evaluate influences of the decoder network
on the performance in supervised image retrieval tasks. The retrieval results on
CIFAR-10 dataset of 32 bits with various γ are illustrated in Table 1, where
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SAEH achieves best retrieval result under the measurement of mAP@1000 when
γ = 0.1 and the precision rate with Hamming distance lower than 2 when
γ = 10.0. Besides, the model with γ = 0 by removing the auto-encoder structure
has the worst behaviour among the models with weight γ > 0, which also vali-
dates the advantage of the auto-encoder structure in supervised image hashing
task. As a trade off, we assign γ to 1 in the following experiments.

Fig. 2. Precision-recall (PR) curves of the four methods for incorporating auto-encoder
structure into supervised hashing model on (a) CIFAR-10 and (b) UT-Zap50K datasets,
with hashing bit length to be 32.

3.3 Ablation Study for Incorporating Auto-encoder Methods

We carry out some experiments to evaluate the effectiveness of the three different
methods in Eq. (7) for incorporating auto-encoder structure in supervised hash-
ing model. We initialize the hyperparameters γinit, tpre and k as 0.1, 2k, 0.0001
respectively while other parameters in the objective function remains the same.
We denote the three methods in Eq. (7): pre-training, simultaneously training
and warm-up training as SAEHpre, SAEH (corresponding with the notation in
other experiments), and SAEHwu respectively. We compare those methods on
the CIFAR-10 and UP-Zap50K datasets with bit length to be 32. The experi-
ment results measured by mAP@1000 and precision rate with Hamming radius
to be 2 are in Table 2. For comparison, we also add the result without the auto-
encoder structure as SAEH− in the table. The classification accuracy by the
supervisory sub-network is also appended as the reference.

From Table 2, we can find that the auto-encoder structure indeed increases
the effective of supervised hashing methods. Although the SAEH− with out
the auto-encoder structure achieves the excellent results under the evaluation
of the classification accuracy, comparing to the other three variants with auto-
encoder structure, it has the worst behaviour for supervised image hashing under
the measurement of both the mAP@1000 and precision rate with Hamming
radius to be 2, which verifies that the auto-encoder structure can alleviate the
overly dependant on the classification accuracy in supervised hashing methods.
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The experiments results in Table 2 also shows the advantage of simultaneously
training auto-encoder with a classifier, which achieves the best results on both
CIFAR-10 and UT-Zap50K datasets according to criterion of mAP@1000. In
other words, when the recall rate decreases, the precision rate of the simulta-
neously training method increases faster than other incorporating methods as
well as the supervised-only SAEH−, which is illustrated in Fig. 2 as the precision
recall curves on CIFAR-10 and UT-Zap50K datasets, respectively.

Table 3. mAP@1000(%) of SAEH, supervised-only hashing (denoted as SAEH−) and
other advanced hashing methods w.r.t. different number of hashing bits on MNIST,
CIFAR-10 and SVHN datasets.

Method MNIST CIFAR-10 SVHN

12 24 32 48 12 24 32 48 12 24 32 48

KSH [3] 24.30 36.63 31.10 33.25 17.65 14.80 15.50 16.63 24.18 24.36 24.72 21.87

ITQ [13] 37.63 53.87 51.76 54.11 12.93 14.06 13.40 15.11 16.22 16.85 19.67 19.89

DSH [16] 96.05 97.35 98.10 98.13 38.17 38.70 40.19 37.29 73.16 70.33 82.16 77.33

CNNH+ [26] 97.57 97.89 98.04 98.33 40.00 42.00 44.89 44.55 78.32 81.46 81.81 84.00

DQN [2] 98.02 98.16 98.22 98.06 55.40 55.80 56.40 58.00 86.77 86.80 87.01 86.89

SSDH∗ [27] 98.83 98.97 98.96 99.15 82.31 84.07 83.78 84.28 93.19 93.98 93.95 94.46

SAEH− 99.30 99.38 99.38 99.41 84.30 85.71 84.56 82.69 94.91 95.55 95.86 96.14

SAEH 99.50 99.44 99.53 99.54 85.85 87.38 87.00 86.33 95.48 96.28 95.95 96.45

Fig. 3. Precision rate (with Hamming distance r = 2) of different hashing methods on
UT-Zap50K dataset w.r.t different length of hash bits.

3.4 Evaluation on SAEH and Other Methods

In this experiment, we compare our proposed framework based on a supervised
auto-encoder hashing model with other prominent hashing methods to verify the
effectiveness and competitiveness of our framework in supervised image hashing
task. We adopt the simultaneously training auto-encoder with a supervisory sub-
network mentioned above as our SAEH model. For KSH and ITQ methods based
on handcraft features, we first calculate the 512 GIST features of each image for
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training. In the second stage of CNNH+ [26], we follow the authors’ scheme to
carefully design a convolution network for generating hashing codes based on
image label information. So far as we know, SSDH [27] is the most prominent
supervised hashing method. For fair comparison, we also re-implement SSDH
by using ResNet50 [9] as its inference model, denoted as SSDH∗. For convincing
evaluation, we repeat the experiments for each hashing method mentioned above
for 5 times and illustrate the average results. The retrieval results of mAP@1000
on MNIST, CIFAR-10 and SVHN datasets are shown in Table 3 and the precision
rate with Hamming distance r = 2 on UT-Zap50K dataset is shown in Fig. 3.
From Table 3, comparing to the results from other competitive hashing methods,
SAEH increases the mAP@1000 from 0.39% to 3.54%, while it also increases the
precision rate with Hanming radius to be 2 from 1.7% to 15.1% on UT-Zap50K
dataset in Fig. 3, which validates of the effectiveness and practicalness of the
proposed supervised hashing framework based on the auto-encoder structure.

4 Conclusion

The performance of supervised hashing methods are always limited by the clas-
sification accuracy of the classifier in the model. Consider that the semantic
information in the image can be captured efficiently through an auto-encoder
structure, which is able to improve the performance of the supervised hash-
ing methods by alleviating the dependence on the accuracy of classification
sub-network. Therefore, in this paper, we propose a hashing framework based
on a supervised auto-encoder model, which learns semantic preserving hashing
codes of images. Moreover, some extra relaxations are introduced that turn the
output of hash layer into binary codes and increase the gap of the Hamming
distance between classes. Experiment results prove that SAEH takes both the
advantage of supervisory and auto-encoder networks and performs better than
the contrastive model without the decoder structure. The equilibrium of the
recovery loss and supervisory loss is also inspected in this paper. The extended
experiments on three main methods to incorporate auto-encoder structure into
supervised hashing show the superior effectiveness of simultaneously training
an auto-encoder and a supervisory sub-network. Moreover, comparing to other
state-of-art methods in supervised image retrieval task, the proposed framework
SAEH achieves superior retrieval performance and provides a promising archi-
tecture for deep supervised image hashing.
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