
An Interpretation
of Forward-Propagation and
Back-Propagation of DNN

Guotian Xie1,2 and Jianhuang Lai1,2,3(B)

1 The School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 510006, China

guotian.xgt@alibaba-inc.com
2 Guangdong Key Laboratory of Information Security Technology,

Guangzhou 510006, China
3 The School of Information Science and Technology, Xinhua College,

Sun Yat-sen University, Guangzhou, People’s Republic of China
stsljh@mail.sysu.edu.cn

Abstract. Deep neural network (DNN) is hard to understand because
the objective loss function is defined on the last layer, not directly on
the hidden layers. To best understand DNN, we interpret the forward-
propagation and back-propagation of DNN as two network structures,
fp-DNN and bp-DNN. Then we introduce the direct loss function for
hidden layers of fp-DNN and bp-DNN, which gives a way to interpret
the fp-DNN as an encoder and bp-DNN as a decoder. Using this inter-
pretation of DNN, we do experiments to analyze that fp-DNN learns to
encode discriminant features in the hidden layers with the supervision of
bp-DNN. Further, we use bp-DNN to visualize and explain DNN. Our
experiments and analyses show the proposed interpretation of DNN is a
good tool to understand and analyze the DNN.

Keywords: Forward-propagation · Back-propagation · Encoder
Decoder

1 Introduction

In recent years, with the assist of hard-ware development, more and more appli-
cations are based on Deep learning, e.g., Compute vision [18], Audio Analysis
[2], Nature Language Processing [8], Robots [13] and so on. Encouraging by its
successes in widespread applications, Deep Learning (DL) and Deep Neural Net-
works (DNN) become a hot research topic among researchers and show its power
comparing to other machine learning model, e.g., in these years, DL wins the
first place on machine learning competitions on real data challenges [6,10] and
even surpasses human beings on some tasks [7]. Despite such successes, we still
know little about DNN, though it bases on a simple optimization techniques,
Gradient Back-Propagation [11]. Although there are some feedback mechanisms
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11257, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-030-03335-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03335-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-03335-4_1

4 G. Xie and J. Lai

proposed to train DNN [14,16,19], BP is still a popular way and DNN is still a
black box [9,17,20].

The major obstacle of understanding how DNN learns knowledge is that, the
objective function of the DNN is defined on last layer of DNN. It’s not directly
defined on the hidden layers. A loss function directly defining on the hidden
layers could help us to understand what knowledge will be learned. For example,
researchers know that the objective loss function of SVM [5] is to learn a hyper-
plane to segment the dataset into two classes. That’s because the objective loss
function is defined directly on the linear model y = Wx + b.

Inspire by that, we define a direct loss function for the hidden layers of DNN.
First, we interpret the forward-propagation and back-propagation of DNN as
two network structures, denoted as fp-DNN and bp-DNN. Then we define direct
loss function for the hidden layers of fp-DNN and bp-DNN respectively, which
uncovers the fact that fp-DNN acts as a role of encoder, while bp-DNN acts as
a role of decoder. In this interpretation, fp-DNN and bp-DNN generate targets
to supervise the training of each other, as showing in Fig. 2. Here, the word
“targets”, which is also used in [3,12], represents the signal to supervise the
training.

In experiments, we use the proposed interpretation of fp-DNN and bp-DNN
to analyze DNN. First, we analyze the bp-DNN generate discriminant targets
to supervise the fp-DNN to learn to encode the discriminant features. Then,
we visualize the distribution of the encoded features of fp-DNN to verify that
fp-DNN does learn to encode discriminant features. Finally, we use bp-DNN to
visualize the DNN to do some analyses. The experimental results show that the
proposed interpretation is a good tool for analyzing DNN.

Our contributions in this paper are as follows,

1. We interpret the forward-propagation and the backward-propagation of DNN
as two network structures, fp-DNN and bp-DNN, respectively. By defining the
direct loss function for hidden layers of fp-DNN and bp-DNN, we think that
the fp-DNN acts as a role of an encoder, supervising the training of the bp-
DNN, while the bp-DNN acts as a role of a decoder, supervising the training
of the fp-DNN. This interpretation helps us to understand the DNN. For
example, we could explain why the hidden layers of fp-DNN learns to encode
the discriminant features.

2. Since the bp-DNN acts as a decoder, It could be used to visualized what
knowledge the DNN have learned. However, the bp-DNN has some disad-
vantages for visualization. So we propose the guided-bp-DNN for knowledge
visualization of DNN, and our experiments show that the visualization using
guided-bp-DNN could focus on the important patterns for recognition.

Notation: We use bold lower case letters to represent a column based vector,
e.g., x, bold capital letters to represent a matrix, e.g., W. we denote a function
as fΘ(x), where Θ is the parameters of this function and x is the input.

An Interpretation of Forward-Propagation and Back-Propagation of DNN 5

(b) fp-DNN (c) bp-DNN(a) DNN

Forward

Back-propaga on

Fig. 1. (a) The normal DNN training procedure contains two steps, forward(blue) and
backward(red), which forms two network sharing weights. (b) The network fp-DNN rep-
resents the forward pass, extracting features (c) The network bp-DNN has the inverted
structure of fp-DNN, but sharing the same parameters, which is for transporting the
gradients (or label information) from top to the bottom. (Color figure online)

2 Formulation of Deep Neural Networks

Classification is a basic task for Machine Learning. In this paper, we use DNN
to model the classification task and analyze how DNN is trained. We assume
a classification task with C classes, with a training data set {xi,yi}N

i=1 that
contains N training samples. Where x ∈ RS is the input signal and y ∈ {0, 1}C

is the class label of x, with yc = 1 if x belongs to the cth class and otherwise
yi = 0, i �= c. The classification task for this data set is to train a DNN to
predict the conditional distribution p(y|x) = fΘ(x), where fΘ(x) is the function
of DNN. We denote p = [p0, p1, . . . , pC]T ∈ RC as the output of fΘ(x) for
convenience, with pi = p(yi|x).

To solve this classification task, we construct a model of deep neural network
with L hidden layers, and formulate it as [1], (Fig. 1(a))

DNN =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Θ(x,y) =
∑C

i yi log pi

pi = ezL,i
∑C

j ezL,j

z1 = W1x + b1

zl = Wlσ(zl−1) + bl, 2 ≤ l ≤ L

(1)

where Wl ∈ RCl×Cl−1 and bl ∈ RCl is the parameters of the lth layer of DNN,
and �Θ(x,y) is the softmax loss function. Θ is all the parameters of DNN.
zL = [zL,1, zL,2, . . . , zL,C]T is the linear output of DNN. zl ∈ RCl is the linear
output of the lth hidden layer, and p = [p1, p2, · · · , pC]T is the final prediction
of this DNN.

We define two network structures corresponding to the training process with
forward and back-propagation,

fp-DNN =

⎧
⎪⎨

⎪⎩

z0 = x
z1 = W1z0 + b1

zl = Wlσ(zl−1) + bl, 2 ≤ l ≤ L

(2)

6 G. Xie and J. Lai

bp-DNN =

⎧
⎪⎨

⎪⎩

z̃L = p − y
z̃L−1 = WT

L z̃L

z̃l−1 = WT
l (z̃l � b̃l), L − 1 ≥ l ≥ 1

(3)

where b̃l is the derivation of non-linear activation function of the lth layer,
b̃l = ∂σ(zl)

∂zl
. Since bp-DNN has an inverted structure, showing in Fig. 1, we use

an inverted order to number the layers of bp-DNN, i.e., the Lth layer is the first
layer of bp-DNN, while the 0th layer is the last layer of bp-DNN.

As the definition of fp-DNN and bp-DNN shows, they share the parameters
Wl, l = 1, · · · , L. See Fig. 1(b) and (c) for specification. Compare (b) and (c),
the structure of fp-DNN and bp-DNN is similar but inverted. For convenience,
we denoted ol and õl as the non-linear output of the lth layer of fp-DNN and
bp-DNN, respectively,

ol =

{
z0, l = 0
σ(zl), otherwise

, õl =

{
z̃L, l = L

z̃l � b̃l, otherwise
(4)

Since bp-DNN is an interpretation of back-propagation of DNN, we have ∂�Θ
∂zl

=
õl.

The symmetrical but inverted structures of fp-DNN and bp-DNN remind us
the auto-encoder network structures, which contain a part of network acting as
a role of encoder, and another part of network acting as a role of decoder. In
analyses of the next section, we will found that fp-DNN does act as a role of
encoder, while bp-DNN does act as a role of decoder.

Target

gradient

gradient

Target

(b) fp-DNN as a network producing
target for training bp-DNN

gradient

gradient

Target

Target

(a) bp-DNN as a network producing
target for training fp-DNN

Fig. 2. fp-DNN and bp-DNN are supervisor for each other. (a) From the view of fp-
DNN, bp-DNN generates targets to supervise the training of each hidden layers of
fp-DNN. (b) From the view of bp-DNN, fp-DNN generates targets to supervise the
training of each hidden layers of bp-DNN.

3 fp-DNN and bp-DNN vs Encoder and Decoder

In this section, we will give an interpretation that bp-DNN acts as a role of
decoder and fp-DNN acts as a role of encoder, by defining the direct loss function
for hidden layers of fp-DNN and bp-DNN respectively.

An Interpretation of Forward-Propagation and Back-Propagation of DNN 7

Fig. 3. The direct loss function for fp-DNN is �̃fpWl
(ol−1, −õl) = −õT

l (Wlol−1 + bl),

while the direct loss function for bp-DNN is �̃bpWl
(−õl,ol−1) = −oT

l−1(W
T
l õl). Here we

show an instance of the direct loss function of the DNN network described in Fig. 1.
The fp-DNN and bp-DNN in both (a) and (b) are shown only part of the fp-DNN and
bp-DNN in Fig. 1. (a) The bp-DNN generates the targets õ1 to supervise the fp-DNN
to learn the W1. (b) The fp-DNN generates the targets o1 to supervise the bp-DNN
to learn the W2.

3.1 Direct Loss Function for Hidden Layer of fp-DNN

The DNN is optimized on the loss function �Θ(x,y) =
∑C

i yi log pi. If we inter-
pret �Θ(x,y) into a direct loss function of hidden layer, we can understand easily
how the hidden layer is trained. We define the direct loss function �fp

Wl
of lth

hidden layer, so that it has the same gradient w.r.t Wl, i.e.,
∂�fp

Wl

∂Wl
= ∂�Θ(x,y)

∂Wl

When we want to optimize the parameters Wl of lth hidden layer, we use
the gradient descent, Wl = Wl − ηΔWl, where η is the learning rate and ΔWl

is the gradient back-propagated from the top layer, and has the form as follows,

ΔWl =
∂�Θ
∂zl

∂zT
l

∂Wl
=

∂�Θ
∂zl

σ(zl−1)T = õloT
l−1

Δbl =
∂�Θ
∂zl

∂zT
l

∂bl
=

∂�Θ
∂zl

= õl

(5)

By observation, we found that the gradient ΔWl and Δbl is equivalent to the
gradient of the loss function �̃fp

Wl
(ol−1, õl) w.r.t. Wl and bl,

�̃fp
Wl

(ol−1, õl) = õT
l (Wlol−1 + bl) (6)

where ol−1 = σ(zl−1) is the input signal and õl = ∂�Θ(x,y)
∂zl

is the new target of
the lth hidden layer, and we view ol−1 and õl as constants w.r.t. Wl and bl.
Obviously,

ΔWl =
∂�̃fp

Wl
(ol−1, õl)
∂Wl

=
∂�Θ(x,y)

∂Wl

Δbl =
∂�̃fp

Wl
(ol−1, õl)
∂bl

=
∂�Θ(x,y)

∂bl

(7)

min
Wl,bl

�Θ(x,y) ≡ min
Wl,bl

�̃fp
Wl

(ol−1, õl) ≡ max
Wl,bl

�̃fp
Wl

(ol−1,−õl) (8)

8 G. Xie and J. Lai

Please note that, �̃fp
Wl

(ol−1,−õl) defines a metric based on the cosine distance
between −õl and zl = Wlol−1+bl. Maximizing the cosine distance between the
vectors −õl and zl is to minimize the angle of these two vectors. One example
is shown in Fig. 3 (a).

In conclusion, the direct loss function for the lth hidden layer of fp-DNN is
�̃fp
Wl

(ol−1,−õl), which use a target −õl generated by the bp-DNN. The objective
function �̃fp

Wl
trains the Wl so that the output zl of this hidden layer is close

to the target −õl in cosine distance metric. The fp-DNN is going to map to
information of the output label y layer by layer during the training process,
with the supervision of bp-DNN. As a result, fp-DNN could be interpreted as
acting the role of the encoder, encoding the information of input x into the
information of label signal y.

3.2 Direct Loss Function for Hidden Layer of bp-DNN

Similar to the definition of direct loss function of fp-DNN, we define the direct
loss function of bp-DNN to have the same gradient w.r.t. Wl.

�̃bp
Wl

(−õl,ol−1) = −oT
l−1(W

T
l õl) (9)

min
Wl

�Θ(x,y) ≡ max
Wl

�̃bp
Wl

(−õl,ol−1) (10)

Comparing to Eq. (6), It’s a symmetric form of �̃fp
Wl

(ol−1,−õl). �̃bp
Wl

(−õl,ol−1)
also defines a metric based on the cosine distance between ol−1 and −z̃l−1 =
−Wlõl. It minimizes the angle of these two vectors. On example is shown in
Fig. 3(b).

In conclusion, the direct loss function for the lth hidden layer of bp-DNN is
�̃bp
Wl

(−õl,ol−1), which use a target ol−1 generated by the fp-DNN. The objective
function �̃bp

Wl
trains the Wl so that the output −z̃l−1 of this hidden layer is close

to the target ol−1 in cosine distance metric. The bp-DNN is going to recon-
struct the information of the input signal x layer by layer during the training
process, with the supervision of fp-DNN. As a result, bp-DNN could be inter-
preted as acting the role of decoder, decoding the information of label y into the
information of input signal x.

3.3 Interpretation of Forward-Propagation and Back-Propagation

As discussion above, we first interpret the forward-propagation and back-
propagation of DNN to be corresponding to two network structures, fp-DNN
and bp-DNN. Using the direct loss function for hidden layers of fp-DNN and
bp-DNN, we further interpret training process of DNN as the process of collab-
oration of training the encoder and decoder, i.e., the targets generated by bp-
DNN (decoder) supervises the training of fp-DNN (encoder), while the targets
generated by fp-DNN supervises the training of bp-DNN, see Fig. 2 for specifi-
cation. The structures of this interpretation shows a similar form as the stacked

An Interpretation of Forward-Propagation and Back-Propagation of DNN 9

auto-encoder [4], both with the encoder and decoder network structures. How-
ever, the major difference between our interpretation and stacked auto-encoder
is that the input signal for the decoder. The input signal for decoder of stacked
auto-encoder is the code p generated by encoder, while the input signal for the
decoder (bp-DNN) of our interpretation contains the label information, p − y.
With the supervision of label information, the encoder (fp-DNN) of our inter-
pretation learns to encode the discriminant features, while encoder of stacked
auto-encoder learns to encode features with maximum information for recon-
struction.

This interpretation could help us understand the training process of DNN.
For example, by analyzing the distribution of the targets õl generated by bp-
DNN, we can know how the bp-DNN guides the fp-DNN to encode discriminant
features layer by layer; by analyzing the reconstruction of input signal x from
the bp-DNN, we can learn what the network have learned. In next section, we
use this interpretation of DNN to do some analyses.

4 Experiments

We designed a DNN with six layers, denoted as DNN-6, of which all layers are
fully connection layers. The number of output channels of each hidden layers of
DNN-6 is set as 100, and we use ReLU as the non-linear activation function. We
train DNN-6 on MNIST [11] digits dataset and use it to show the collaboration
of training process of the encoder and decoder. We train DNN-6 for totally 10000
iterations, with batch size as 64. The final accuracy of DNN-6 on the test set of
MNIST is 97.51%.

Iter 0

Iter 100

digit
value

9
8
7
6
5
4
3
2
1
0

Fig. 4. In the 0th and 100th iteration, the targets õl generated by bp-DNN have the
discriminant property. This shows that targets generated by bp-DNN preserve the
discriminant property of label information during training. Here, points with the same
color come from the same category, e.g., red points belong to the category of digit 0.
(Color figure online)

10 G. Xie and J. Lai

4.1 Explanation of the Encoder (fp-DNN)

Why fp-DNN learns to encode discriminant features? We think the rea-
son is that the targets generated by bp-DNN, which supervise the training of
fp-DNN, are discriminant. In this discussion, we conduct experiments to verify
the targets generated by bp-DNN are discriminant, even when the weights of
bp-DNN are initialized randomly.

The direct loss function for fp-DNN is �̃fp
Wl

(ol−1,−õl) = −õT
l (Wlol−1 +bl),

where õl is the supervised information generated by bp-DNN and zl = Wlol−1+
bl is the learned encoded features of fp-DNN. Since the fp-DNN is supervised by
the bn-DNN, analyzing the properties of the target õl generated by the bp-DNN
can tell us what a kind of fp-DNN will be trained using bp-DNN as supervisor.
The input of bp-DNN is the label information p−y, so the target õl generated by
bp-DNN is a function of the label information. As we know, the most important
property of label information is the discriminant property. Here we want to
use the t-SNE [15] technique to visualize the target õl to explore whether õl

preserve the discriminant property of label information p−y. We use the DNN-
6 to generate the corresponding bp-DNN and fp-DNN, and use them to extract
the target õl and the encoded feature zl.

First, we will conduct experiments that to show the õl preserve the discrim-
inant property of label information during training.

Then we further visualize the distribution of the encoded feature zl, to verify
that the encoded features are discriminant under the supervision of the discrim-
inant target õl generated by bp-DNN.

Since the direct loss function is based on the cosine distance metric, we also
set the distance metric of t-SNE as cosine distance metric for reducing dimension.

Iter 10 Iter 30 Iter 50 Iter 100 Iter 10000

digit
value

9
8
7
6
5
4
3
2
1
0

Fig. 5. The learned feature z1 of fp-DNN is going to be more discriminant during the
training, under the supervision of the discriminant target õ1. Finally, the distribution
of z1 is close to the distribution of õ1 in the iteration 10000.

Visualize the Discriminant Target õl. This experiment is to show that the
target õl generated by bp-DNN is discriminant in varying degrees. We visualize
the õl, l = 1, · · · , 5 in the 2D plane, using t-SNE to reduce dimension, as showing

An Interpretation of Forward-Propagation and Back-Propagation of DNN 11

in Fig. 4. In Fig. 4, we show the distribution of the target of 5 layers, with l =
1, · · · , 5, with the first column showing the distribution of the target of l = 1th
layer, the second column showing the distribution of the target of the l = 2th
layer and so on. We also show the distribution of the target in different training
iteration, and specifically, we show the distribution in 0th iteration and the
100th iteration. More distributions in other iterations are not shown for the
limitation of paper length, but we are sure that distribution in other iterations
shows consistent agreements with those in the 0th iteration and 100th iteration.

In Fig. 4, points with the same colour are in the same category. The points
in the same cluster are more close to each other, then the distribution of these
points are more discriminant. From the visualization in Fig. 4, we have such
observation,

First, the target õl generated from bp-DNN does have the discriminant prop-
erty for all layers l = 1, · · · , 5. But the degree of discriminant properties of each
layer are varying, where the distribution of target in higher layers (l ≥ 3) seems
more discriminant than that of bottom layers (l ≤ 3).

Second, the discriminant property is preserved during training, for example,
in the iteration 100, õl preserve the discriminant property as well, as Fig. 4 show-
ing. Specifically, after training, the target has the trends to be more discriminant.
For example, the targets õ1 and õ2 in 100th iteration are more discriminant than
those in the 0th iteration.

In conclusion, the targets generated by bp-DNN preserve the discriminant
property of label information in varying degrees. Naturally, the encoded feature
zl of fp-DNN is expected to be discriminant after training, since it’s supervisor
is discriminant. Next, we conduct experiments to visualize the encoded features
to verify this assumption.

Visualize the Discriminant Feature zl. First, we show the encoded features
z1 in the first layer during the training iteration 10, 30, 50, 100 and 10000, as
showing in the second row of Fig. 5. For comparison, we show the corresponding
targets õ1 for supervision in the first row of Fig. 5. In Fig. 5, the distribution of
the learned features z1 becomes more and more discriminant during the training.
When the training iteration is finished, the learned feature z1 run into a distri-
bution similar to the target õl. Specifically, in iteration 10000, the distribution
of z1 achieves a similar degree of discriminant property as the distribution of
õ1. The fp-DNN does learn to encode the input signal to a feature space with
discriminant property.

Then, in the second row of Fig. 6, we show the distribution of zl, l = 1, · · · , 5
after training for 10000 iteration. For comparison, the corresponding distribution
of zl, l = 1, · · · , 5 in the iteration 0 is shown in the first row of Fig. 6, which
are far from discriminant. Comparing to the distribution of zl, l = 1, · · · , 5 in
iteration 0, the distribution of zl, l = 1, · · · , 5 in iteration 10000 does show the
discriminant property as Fig. 6 showing. And we think that the reason of fp-
DNN learning discriminant features in hidden layer is the target generated by

12 G. Xie and J. Lai

Iter 0

Iter
10000

digit
value

9
8
7
6
5
4
3
2
1
0

Fig. 6. Before training, features of fp-DNN don’t have discriminant property. After
training, features of all hidden layers of fp-DNN have varying degrees of discriminant
property. This is because fp-DNN learns to encode features under the supervision of
discriminant targets generated by bp-DNN.

bp-DNN, which preserve the discriminant property and supervise the fp-DNN
to learn discriminant features.

4.2 Explanation of the Decoder (bp-DNN)

Since bp-DNN is a decoder network, we can use bp-DNN to map y back into the
input signal space x̂. By visualizing the reconstruction x̂, we can know which
part of x is important for the DNN to recognize that it belongs to the category
y. However, the direct reconstruction loss function of bp-DNN is to train Wl

to reconstruct all training samples ol−1 as much as possible. This leads the
reconstruction to be an average version of ol−1 and not only relative to the
specific input signal x. An average version of ol−1 could be a bad visualization
for human.

G. Xie et al.
digit bp guided digit bp guided digit bp guided digit bp guided digit bp guided

(a) (b) (c) (d) (e)

Fig. 7. Visualization using guided-bp-DNN could show clearly which parts of the digit
images are important for DNN to recognize, while visualization of bp-DNN is not clear
and hard to read.

To only visualize those reconstructions that are relative to a specific sig-
nal xi, we need to add some constrains. Here, we select the reconstructions

An Interpretation of Forward-Propagation and Back-Propagation of DNN 13

that are mostly matched with the input. To achieve this objective, we intro-
duce an indicator to measure the degree of matching between the recon-
structed feature z̃l−1 and the feature zl−1, that is, 1sign(zl)=sign(z̃l). Let’s give
an example. If zl = [0.5, 0.3,−0.1,−0.2]T and z̃l = [0.5,−0.3,−0.1, 0.2]T , the
1sign(zl)=sign(z̃l) = [1, 0, 1, 0]T . With the 1sign(zl)=sign(z̃l) to measure the degree
of matching, we select the reconstructed feature as ẑl = 1sign(zl)=sign(z̃l) � z̃l.
The bp-DNN could be modified as, denoted as guided-bp-DNN,

Guided-bp-DNN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z̃L = y
z̃L−1 = WT

L z̃L

ẑl = 1sign(zl)=sign(z̃l) � z̃l, l ≥ 0
z̃l−1 = WT

l (ẑl � b̃l), L − 1 ≥ l ≥ 1

(11)

We will give experiments to show the advantages of guided-bp-DNN for
visualization. By the way, when using ReLU as non-linear activation function,
guided-bp-DNN is the same as the guided-Back-Propagation proposed in paper
[21] for visualization. That is, guided-Back-Propagation is a specific case of our
guided-bp-DNN.

Comparison Between bp-DNN and Guided-bp-DNN. We use DNN-6 for
visualization on the MNIST. In Fig. 7, we show the visualization results using
bp-DNN and guided-bp-DNN respectively, showing the visualization results of
five digits (0, 1, 2, 3, 4), each digit with three instances. The first column shows
the origin images of the digit, while the second column and third column shows
the visualization results using bp-DNN and guided-bp-DNN respectively. From
Fig. 7, we can found that the visualization results of bp-DNN could be a mess
and hard for us to understand. Only the visualization of digit 1 and digit 3 could
be recognized to has a shape of digit 1 and digit 3. As mentioned previously,
this mess is caused by the fact that bp-DNN is trained to reconstruct an average
version of all training samples.

On the contrary, guided-bp-DNN use 1sign(zl)=sign(z̃l) to guide the recon-
struction to be close to the specific input signal. The visualization of guided-bp-
DNN in Fig. 7 could be readably for human. In Fig. 7, The highlight in visualiza-
tion of guided-bp-DNN shows that the part of the digit covering by the highlight
is an important pattern for the DNN to recognize this digit. In next section, we
use guided-bp-DNN to analyze what DNN have learned to recognize the digit.

What Patterns are Important for DNN to Recognize? In Fig. 8, we use
guided-bp-DNN to visualize what part of the digit the DNN think is important
to recognize. In Fig. 8, the column ‘digit’ is the origin image of those digits, and
the column ‘guided’ is the visualization results of guided-bp-DNN. In the origin
images of digits, we use a green/red box to mark out the part that is highlighted
by the guided-bp-DNN visualization. In Fig. 8, we show two types of patterns
that is important to recognize digits. One is the intersection part where two or
more strokes intersect, which is marked with red box in Fig. 8. The other is the

14 G. Xie and J. Lai

digitguided guideddigit

Fig. 8. Through the visualization using guided-bp-DNN, we found that two types of
patterns are important for DNN to recognize digits, i.e., the intersection parts of strokes
(red box) and the turning parts of strokes (green box). These two types of patterns
contain rich information for recognition. (Color figure online)

turning part where the strokes change the direction suddenly, which is marked
with green box. The DNN learns these two types of patterns to recognize digits
is reasonable, because there are rich information in the intersection parts and
the turning parts.

5 Conclusion

We proposed an interpretation of DNN into two networks structures, fp-DNN
and bp-DNN. By introducing direct loss function for hidden layers of fp-DNN
and bp-DNN, fp-DNN could be interpreted to act as a role of encoder while bp-
DNN acts as a role of decoder. Using this interpretation, we could explain how
DNN learn discriminant features in the hidden layer. We also use the proposed
guided-bp-DNN to analyze what have learned in DNN.

Acknowledgments. This project is supported by the Natural Science Foundation of
China (61573387) and Guangdong Project (2017B030306018).

References

1. An, S., Boussaid, F., Bennamoun, M., Hu, J.: From deep to shallow: transforma-
tions of deep rectifier networks. arXiv preprint arXiv:1703.10355 (2017)

2. Arik, S.O., et al.: Deep voice: real-time neural text-to-speech. arXiv preprint
arXiv:1702.07825 (2017)

3. Bengio, Y.: How auto-encoders could provide credit assignment in deep networks
via target propagation. arXiv preprint arXiv:1407.7906 (2014)

4. Bengio, Y., et al.: Learning deep architectures for Ai. Found. Trends R© Mach.
Learn. 2(1), 1–127 (2009)

5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

http://arxiv.org/abs/1703.10355
http://arxiv.org/abs/1702.07825
http://arxiv.org/abs/1407.7906
http://arxiv.org/abs/1512.03385

An Interpretation of Forward-Propagation and Back-Propagation of DNN 15

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)

8. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: compressing text classification models. arXiv preprint arXiv:1612.03651
(2016)

9. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
arXiv preprint arXiv:1703.04730 (2017)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. Lee, D.-H., Zhang, S., Fischer, A., Bengio, Y.: Difference target propagation. In:
Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A.
(eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 498–515. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23528-8 31

13. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
Int. J. Robot. Res. 37, 421–436 (2016). https://doi.org/10.1177/0278364917710318

14. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247
(2014)

15. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

16. Nøkland, A.: Direct feedback alignment provides learning in deep neural networks.
In: Advances in Neural Information Processing Systems, pp. 1037–1045 (2016)

17. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of
deep learning systems. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 1–18. ACM (2017)

18. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016)

19. Scellier, B., Bengio, Y.: Equilibrium propagation: bridging the gap between energy-
based models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017)

20. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810 (2017)

21. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1703.04730
https://doi.org/10.1007/978-3-319-23528-8_31
https://doi.org/10.1177/0278364917710318
http://arxiv.org/abs/1411.0247
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1412.6806

	An Interpretation of Forward-Propagation and Back-Propagation of DNN
	1 Introduction
	2 Formulation of Deep Neural Networks
	3 fp-DNN and bp-DNN vs Encoder and Decoder
	3.1 Direct Loss Function for Hidden Layer of fp-DNN
	3.2 Direct Loss Function for Hidden Layer of bp-DNN
	3.3 Interpretation of Forward-Propagation and Back-Propagation

	4 Experiments
	4.1 Explanation of the Encoder (fp-DNN)
	4.2 Explanation of the Decoder (bp-DNN)

	5 Conclusion
	References

