
Thomas Peyrin
Steven Galbraith (Eds.)

 123

LN
CS

 1
12

74

24th International Conference on the Theory
and Application of Cryptology and Information Security
Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part III

Advances in Cryptology –
ASIACRYPT 2018

Lecture Notes in Computer Science 11274

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Thomas Peyrin • Steven Galbraith (Eds.)

Advances in Cryptology –

ASIACRYPT 2018
24th International Conference on the Theory
and Application of Cryptology and Information Security
Brisbane, QLD, Australia, December 2–6, 2018
Proceedings, Part III

123

Editors
Thomas Peyrin
Nanyang Technological University
Singapore, Singapore

Steven Galbraith
University of Auckland
Auckland, New Zealand

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03331-6 ISBN 978-3-030-03332-3 (eBook)
https://doi.org/10.1007/978-3-030-03332-3

Library of Congress Control Number: 2018959424

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-2690-9197

Preface

ASIACRYPT 2018, the 24th Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held in Brisbane, Australia, during
December 2–6, 2018.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

Asiacrypt 2018 received a total of 234 submissions from all over the world. The
Program Committee selected 65 papers for publication in the proceedings of this
conference. The review process was made by the usual double-blind peer review by the
Program Committee, which consisted of 47 leading experts of the field. Each sub-
mission was reviewed by at least three reviewers and five reviewers were assigned to
submissions co-authored by Program Committee members. This year, the conference
operated a two-round review system with rebuttal phase. In the first-round review the
Program Committee selected the 145 submissions that were considered of value for
proceeding to the second round. In the second-round phase the Program Committee
further reviewed the submissions by taking into account their rebuttal letter from the
authors. The selection process was assisted by a total of 347 external reviewers. These
three-volume proceedings contain the revised versions of the papers that were selected.
The revised versions were not reviewed again and the authors are responsible for their
contents.

The program of Asiacrypt 2018 featured three excellent invited talks by Mitsuru
Matsui, Melissa Chase, and Vanessa Teague. The conference also featured a traditional
rump session that contained short presentations on the latest research results of the
field. The Program Committee selected the work “Block Cipher Invariants as Eigen-
vectors of Correlation Matrices” by Tim Beyne for the Best Paper Award of Asiacrypt
2018. Two more papers, “Learning Strikes Again: the Case of the DRS Signature
Scheme” by Yang Yu and Léo Ducas, and “Tighter Security Proofs for GPV-IBE in the
Quantum Random Oracle Model” by Shuichi Katsumata, Shota Yamada, and Takashi
Yamakawa, were solicited to submit the full versions to the Journal of Cryptology. The
program chairs selected Chris Brzuska and Bart Mennink for the Best PC Member
Award.

Many people contributed to the success of Asiacrypt 2018. We would like to thank
the authors for submitting their research results to the conference. We are very grateful
to all of the PC members as well as the external reviewers for their fruitful comments
and discussions on their areas of expertise. We are greatly indebted to Josef Pieprzyk,
the general chair, for his efforts and overall organization. We would also like to thank
Waleed Alkalabi, Niluka Arasinghe, Mir Ali Rezazadeh Baee, Lynn Batten, Xavier
Boyen, Ed Dawson, Ernest Foo, Mukhtar Hassan, Udyani Herath, Qingyi Li, Georg
Lippold, Matthew McKague, Basker Palaniswamy, Anisur Rahman, Leonie Simpson,
Shriparen Sriskandarajah, Gabrielle Stephens, and Chathurika Don Wickramage, the

local Organizing Committee for their continuous support. We thank Craig Costello,
Léo Ducas, and Pierre Karpman for expertly organizing and chairing the rump session.

Finally we thank Shai Halevi for letting us use his nice software for the paper
submission and review process. We also thank Alfred Hofmann, Anna Kramer, and
their colleagues for handling the editorial process of the proceedings published in
Springer’s LNCS series.

December 2018 Thomas Peyrin
Steven Galbraith

VI Preface

ASIACRYPT 2018

The 24th Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

December 2–6, 2018, Brisbane, Australia

General Chair

Josef Pieprzyk CSIRO, Data61, Australia

Program Co-chairs

Thomas Peyrin Nanyang Technological University, Singapore
Steven Galbraith University of Auckland, New Zealand

Program Committee

Martin Albrecht Royal Holloway University of London, UK
Prabhanjan Ananth MIT, USA
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd CryptoExperts, France
Daniel J. Bernstein University of Illinois at Chicago, USA
Chris Brzuska Aalto University, Finland
Bernardo David Tokyo Institute of Technology, Japan
Nico Döttling Friedrich-Alexander University Erlangen-Nürnberg, Germany
Léo Ducas CWI, The Netherlands
Jens Groth University College London, UK
Dawu Gu Shanghai Jiao Tong University, China
Goichiro Hanaoka AIST, Japan
Viet Tung Hoang Florida State University, USA
Takanori Isobe University of Hyogo, Japan
Jérémy Jean ANSSI, France
Stefan Kölbl Technical University of Denmark, Denmark
Ilan Komargodski Cornell Tech, USA
Kaoru Kurosawa Ibaraki University, Japan
Virginie Lallemand Ruhr-Universität Bochum, Germany
Gaëtan Leurent Inria, France
Benoît Libert CNRS and ENS de Lyon, France
Helger Lipmaa University of Tartu, Estonia

Atul Luykx Visa Research, USA
Stefan Mangard TU Graz, Austria
Bart Mennink Radboud University, The Netherlands
Brice Minaud Royal Holloway University of London, UK
Mridul Nandi Indian Statistical Institute, India
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Elisabeth Oswald University of Bristol, UK
Arpita Patra Indian Institute of Science, India
Giuseppe Persiano Università di Salerno, Italy and Google, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Amin Sakzad Monash University, Australia
Jae Hong Seo Hanyang University, Korea
Ling Song Institute of Information Engineering, Chinese Academy

of Sciences, China
Nanyang Technological University, Singapore

Douglas Stebila University of Waterloo, Canada
Marc Stevens CWI, The Netherlands
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT laboratories, Japan
Yosuke Todo NTT Secure Platform Laboratories, Japan
Dominique Unruh University of Tartu, Estonia
Gilles Van Assche STMicroelectronics, Belgium
Frederik Vercauteren KU Leuven, Belgium
Bo-Yin Yang Academia Sinica, Taiwan
Yu Yu Shanghai Jiao Tong University, China
Aaram Yun UNIST, Korea

External Reviewers

Behzad Abdolmaleki
Aysajan Abidin
Shweta Agrawal
Estuardo Alpirez Bock
Joël Alwen
Abdelrahaman Aly
Andris Ambainis
Elena Andreeva
Jan-Pieter d’Anvers
Kazumaro Aoki
Nuttapong Attrapadung
Karim Baghery
Shi Bai
Gustavo Banegas
Subhadeep Banik

Paulo Barreto
Gilles Barthe
Hridam Basu
Aurélie Bauer
Carsten Baum
Christof Beierle
Adi Ben-Zvi
Ela Berners-Lee
David Bernhard
Pauline Bert
Ward Beullens
Rishiraj Bhattacharyya
Jean-Francois Biasse
Nina Bindel
Bruno Blanchet

VIII ASIACRYPT 2018

Olivier Blazy
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Cecilia Boschini
Raphael Bost
Christina Boura
Florian Bourse
Dusan Bozilov
Andreas Brasen Kidmose
Jacqueline Brendel
Ignacio Cascudo
Dario Catalano
Andrea Cerulli
Avik Chakraborty
Debrup Chakraborty
Long Chen
Yu Chen
Yu Long Chen
Wonhee Cho
Ashish Choudhury
Chitchanok Chuengsatiansup
Michele Ciampi
Sandro Coretti
Alain Couvreur
Ben Curtis
Dana Dachman-Soled
Joan Daemen
Nilanjan Datta
Pratish Datta
Alex Davidson
Thomas De Cnudde
Luca De Feo
Lauren De Meyer
Gabrielle de Micheli
Fabrizio De Santis
Rafael Del Pino
Cyprien Delpech de Saint Guilhem
Yi Deng
Amit Deo
David Derler
Apoorvaa Deshpande
Lin Ding
Ning Ding
Christoph Dobraunig

Rafael Dowsley
Alexandre Duc
Avijit Dutta
Ratna Dutta
Sébastien Duval
Edward Eaton
Maria Eichlseder
Ali El Kaafarani
Keita Emura
Naomi Ephraim
Muhammed Esgin
Thomas Espitau
Martianus Frederic Ezerman
Leo (Xiong) Fan
Antonio Faonio
Oriol Farràs
Prastudy Fauzi
Serge Fehr
Dario Fiore
Tore Frederiksen
Thomas Fuhr
Eiichiro Fujisaki
Benjamin Fuller
Philippe Gaborit
Clemente Galdi
Nicolas Gama
Chaya Ganesh
Si Gao
Luke Garratt
Romain Gay
Nicholas Genise
Rosario Gennaro
Essam Ghadafi
Anirban Ghatak
Satrajit Ghosh
Junqing Gong
Alonso González
Hannes Gross
Paul Grubbs
Charles Guillemet
Siyao Guo
Qian Guo
Kyoohyung Han
Javier Herranz
Julia Hesse
Harunaga Hiwatari

ASIACRYPT 2018 IX

Thang Hoang
Dennis Hofheinz
Seungwan Hong
Akinori Hosoyamada
Kathrin Hövelmanns
James Howe
Andreas Huelsing
Ilia Iliashenko
Ai Ishida
Masahito Ishizaka
Mitsugu Iwamoto
Tetsu Iwata
Håkon Jacobsen
Christian Janson
Dirmanto Jap
Jinhyuck Jeong
Ashwin Jha
Luke Johnson
Antoine Joux
Pierre Karpman
Shuichi Katsumata
Andrey Kim
Dongwoo Kim
Duhyeong Kim
Jeongsu Kim
Jihye Kim
Jiseung Kim
Myungsun Kim
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Yashvanth Kondi
Ben Kreuter
Toomas Krips
Veronika Kuchta
Marie-Sarah Lacharite
Junzuo Lai
Esteban Landerreche
Tanja Lange
Joohee Lee
Iraklis Leontiadis
Tancrède Lepoint
Jie Li
Qinyi Li
Shun Li
Wei Li

Xiangyu Li
Fuchun Lin
Donxi Liu
Fukang Liu
Hanlin Liu
Junrong Liu
Shengli Liu
Ya Liu
Zhen Liu
Zhiqiang Liu
Victor Lomne
Yu Long
Xianhui Lu
Yuan Lu
Chen Lv
Shunli Ma
Xuecheng Ma
Rusydi Makarim
Giulio Malavolta
Mary Maller
Alex Malozemoff
Yoshifumi Manabe
Avradip Mandal
Mark Manulis
Marco Martinoli
Daniel Masny
Pedro Maat Costa Massolino
Takahiro Matsuda
Alexander May
Sogol Mazaheri
Patrick McCorry
Florian Mendel
Peihan Miao
Vincent Migliore
Kazuhiko Minematsu
Matthias Minihold
Takaaki Mizuki
Andrew Morgan
Paz Morillo
Fabrice Mouhartem
Pratyay Mukherjee
Alireza Naghipour
Yusuke Naito
Maria Naya-Plasencia
Ryo Nishimaki
Ariel Nof

X ASIACRYPT 2018

Wakaha Ogata
Emmanuela Orsini
Rafail Ostrovsky
Carles Padró
Tapas Pandit
Louiza Papachristodoulou
Alain Passelègue
Kenny Paterson
Goutam Paul
Michaël Peeters
Chris Peikert
Massimo Perillo
Léo Perrin
Edoardo Persichetti
Peter Pessl
Thomas Peters
Christophe Petit
Stjepan Picek
Zaira Pindado
Bertram Poettering
Eamonn Postlethwaite
Thomas Prest
Emmanuel Prouff
Elizabeth Quaglia
Adrián Ranea
Shahram Rasoolzadeh
Divya Ravi
Ling Ren
Guénaël Renault
Joost Renes
Joost Rijneveld
Thomas Roche
Paul Rösler
Mélissa Rossi
Dragos Rotaru
Yann Rotella
Arnab Roy
Sujoy Sinha Roy
Sylvain Ruhault
Mohammad Sabt
Mohammad Reza Sadeghi
Yusuke Sakai
Simona Samardzijska
Olivier Sanders
John Schanck
Peter Scholl

André Schrottenloher
Jacob Schuldt
Peter Schwabe
Danping Shi
Kyoji Shibutani
SeongHan Shin
Ferdinand Sibleyras
Janno Siim
Javier Silva
Thierry Simon
Luisa Siniscalchi
Kit Smeets
Yongha Son
Gabriele Spini
Christoph Sprenger
Martijn Stam
Damien Stehle
Ron Steinfeld
Joshua Stock
Ko Stoffelen
Shifeng Sun
Siwei Sun
Moon Sung Lee
Koutarou Suzuki
Alan Szepieniec
Akira Takahashi
Katsuyuki Takashima
Benjamin Tan
Adrian Thillard
Jean-Pierre Tillich
Elmar Tischhauser
Radu Titiu
Junichi Tomida
Ni Trieu
Boaz Tsaban
Thomas Unterluggauer
Christine Van Vredendaal
Prashant Vasudevan
Serge Vaudenay
Philip Vejre
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Benoît Viguier
Jorge L. Villar
Srinivas Vivek

ASIACRYPT 2018 XI

Antonia Wachter-Zeh
Alexandre Wallet
Michael Walter
Peng Wang
Ping Wang
Yuyu Wang
Man Wei
Zihao Wei
Friedrich Wiemer
Tim Wood
Joanne Woodage
Thomas Wunderer
Keita Xagawa
Haiyang Xue
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kang Yang
Qianqian Yang
Kan Yasuda
Kevin Yeo

Scott Yilek
Kazuki Yoneyama
Jingyue Yu
Yang Yu
Xingliang Yuan
Thomas Zacharias
Michal Zajac
Rina Zeitoun
Mark Zhandry
Bin Zhang
Cong Zhang
Fan Zhang
Jiang Zhang
Juanyang Zhang
Ren Zhang
Yingjie Zhang
Raymond K. Zhao
Shuoyao Zhao
Linfeng Zhou
Vincent Zucca

Local Organizing Committee

General Chair

Josef Pieprzyk CSIRO, Data61, Australia

Advisors

Lynn Batten Deakin University, Australia
Ed Dawson QUT, Australia

Members

Waleed Alkalabi QUT, Australia
Niluka Arasinghe QUT, Australia
Mir Ali Rezazadeh

Baee
QUT, Australia

Xavier Boyen QUT, Australia
Ernest Foo QUT, Australia
Mukhtar Hassan QUT, Australia
Udyani Herath QUT, Australia
Qingyi Li QUT, Australia
Georg Lippold Mastercard, Australia
Matthew McKague QUT, Australia
Basker Palaniswamy QUT, Australia
Anisur Rahman QUT, Australia

XII ASIACRYPT 2018

Leonie Simpson QUT, Australia
Shriparen

Sriskandarajah
QUT, Australia

Gabrielle Stephens QUT, Australia
Chathurika Don

Wickramage
QUT, Australia

ASIACRYPT 2018 XIII

Contents – Part III

Multi-Party Computation

On Multiparty Garbling of Arithmetic Circuits . 3
Aner Ben-Efraim

Free IF: How to Omit Inactive Branches and Implement S-Universal
Garbled Circuit (Almost) for Free . 34

Vladimir Kolesnikov

Secure Computation with Low Communication from Cross-Checking 59
S. Dov Gordon, Samuel Ranellucci, and Xiao Wang

Concretely Efficient Large-Scale MPC with Active Security
(or, TinyKeys for TinyOT). 86

Carmit Hazay, Emmanuela Orsini, Peter Scholl,
and Eduardo Soria-Vazquez

Non-interactive Secure Computation from One-Way Functions 118
Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky,
and Ivan Visconti

ORAM

Simple and Efficient Two-Server ORAM . 141
S. Dov Gordon, Jonathan Katz, and Xiao Wang

More is Less: Perfectly Secure Oblivious Algorithms in the
Multi-server Setting. 158

T.-H. Hubert Chan, Jonathan Katz, Kartik Nayak,
Antigoni Polychroniadou, and Elaine Shi

Real World Protocols

A Universally Composable Framework for the Privacy
of Email Ecosystems . 191

Pyrros Chaidos, Olga Fourtounelli, Aggelos Kiayias,
and Thomas Zacharias

State Separation for Code-Based Game-Playing Proofs 222
Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet,
Konrad Kohbrok, and Markulf Kohlweiss

Security of the Blockchain Against Long Delay Attack 250
Puwen Wei, Quan Yuan, and Yuliang Zheng

Secret Sharing

Homomorphic Secret Sharing for Low Degree Polynomials 279
Russell W. F. Lai, Giulio Malavolta, and Dominique Schröder

Constructing Ideal Secret Sharing Schemes Based on Chinese
Remainder Theorem . 310

Yu Ning, Fuyou Miao, Wenchao Huang, Keju Meng, Yan Xiong,
and Xingfu Wang

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 332
Amos Beimel and Naty Peter

Isogeny-Based Cryptography

Towards Practical Key Exchange from Ordinary Isogeny Graphs 365
Luca De Feo, Jean Kieffer, and Benjamin Smith

CSIDH: An Efficient Post-Quantum Commutative Group Action 395
Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes

Computing Supersingular Isogenies on Kummer Surfaces. 428
Craig Costello

Foundations

Robustly Reusable Fuzzy Extractor from Standard Assumptions 459
Yunhua Wen and Shengli Liu

Simple and More Efficient PRFs with Tight Security from LWE
and Matrix-DDH. 490

Tibor Jager, Rafael Kurek, and Jiaxin Pan

Simulatable Channels: Extended Security that is Universally Composable
and Easier to Prove . 519

Jean Paul Degabriele and Marc Fischlin

Correction to: Constructing Ideal Secret Sharing Schemes Based
on Chinese Remainder Theorem . C1

Yu Ning, Fuyou Miao, Wenchao Huang, Keju Meng, Yan Xiong,
and Xingfu Wang

Author Index . 551

XVI Contents – Part III

Multi-Party Computation

On Multiparty Garbling of Arithmetic
Circuits

Aner Ben-Efraim1,2(B)

1 Department of Computer Science, Ben Gurion University of the Negev,
Be’er Sheva, Israel

anermosh@post.bgu.ac.il
2 Department of Computer Science, Ariel University, Ariel, Israel

Abstract. We initiate a study of garbled circuits that contain both
Boolean and arithmetic gates in secure multiparty computation. In
particular, we incorporate the garbling gadgets for arithmetic circuits
recently presented by Ball, Malkin, and Rosulek (ACM CCS 2016) into
the multiparty garbling paradigm initially introduced by Beaver, Micali,
and Rogaway (STOC ’90). This is the first work that studies arith-
metic garbled circuits in the multiparty setting. Using mixed Boolean-
arithmetic circuits allows more efficient secure computation of functions
that naturally combine Boolean and arithmetic computations. Our gar-
bled circuits are secure in the semi-honest model, under the same hard-
ness assumptions as Ball et al., and can be efficiently and securely com-
puted in constant rounds assuming an honest majority.

We first extend free addition and multiplication by a constant to the
multiparty setting. We then extend to the multiparty setting efficient
garbled multiplication gates. The garbled multiplication gate construc-
tion we show was previously achieved only in the two-party setting and
assuming a random oracle.

We further present a new garbling technique, and show how this tech-
nique can improve efficiency in garbling selector gates. Selector gates
compute a simple “if statement” in the arithmetic setting: the gate selects
the output value from two input integer values, according to a Boolean
selector bit; if the bit is 0 the output equals the first value, and if the
bit is 1 the output equals the second value. Using our new technique,
we show a new and designated garbled selector gate that reduces by
approximately 33% the evaluation time, for any number of parties, from
the best previously known constructions that use existing techniques and
are secure based on the same hardness assumptions.

On the downside, we find that testing equality and computing expo-
nentiation by a constant are significantly more complex to garble in the
multiparty setting than in the two-party setting.

Keywords: Arithmetic garbled circuits · Constant round MPC
Multiparty garbling

Research supported by ISF grant 152/17, by the Frankel Center for Computer Sci-
ence, and by the BGU Cyber Security Research Center.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-030-03332-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_1&domain=pdf

4 A. Ben-Efraim

1 Introduction

Garbled circuits are a fundamental cryptographic primitive, introduced by Yao
in the 1980s [33]. They are used in one-time programs, key-dependent message
security, homomorphic computation, verifiable computation, and more. The orig-
inal motivation of garbled circuits, and to date still their main use, is for secure
computation. The most practical approaches of secure two-party computation
are based on garbled circuits.

Since their introduction, garbled circuits have been significantly optimized
in a series of works, [5,21,25,26,29–31,34] being a very partial list. These works
reduced the size of the garbled gates and concretely improved the efficiency of
garbling protocols. For example, using the free-XOR technique introduced by
Kolesnikov and Schneider [25], XOR gates are “for free”, meaning they incur no
communication or cryptographic operations.

Due to efficiency reasons, garbled circuits were almost exclusively consid-
ered for Boolean circuits. However, there have been a few attempts to efficiently
extend the ideas of garbled circuits to arithmetic circuits (in the two-party set-
ting), e.g., [1,2,28]. The works of Ball et al. [2] and Malkin et al. [28] showed
how to extend free-XOR to free addition and multiplication by a constant. They
further showed how to efficiently garble multiplication in Fp, for small p. Ball
et al. also showed how to efficiently garble exponentiation by a constant. By com-
bining CRT representations in a primorial modulus, Ball et al. showed that the
above results extend to efficient garbling of arithmetic circuits over the integers.

Garbled circuits are important also for secure multiparty computation. The
multiparty garbling paradigm was introduced by Beaver et al. [4] in the first con-
stant round secure multiparty protocol. The first implementation of secure multi-
party computation, FairplayMP [6], followed this multiparty garbling paradigm.
Recently, experimental results in [8,32] suggested that concretely efficient imple-
mentations following the multiparty garbling paradigm, such as [8] in the semi-
honest model and [22,32] in the malicious model, are more suited for secure
multiparty computations over networks with high latency, such as the internet.

The adversarial model. We assume throughout that the adversary is semi-
honest, i.e., follows the protocol but might try to learn private information
from the messages it receives. A more realistic adversarial model is the mali-
cious adversary, which can deviate from the protocol arbitrarily. Nevertheless,
advances in semi-honest secure computation, and garbled circuits in particular,
have often proved to be a significant stepping stone for later advances in the
malicious model. Aside from numerous examples in the two-party setting, this
was recently demonstrated also in the multiparty setting: the concretely efficient
semi-honest protocols of [8] have been efficiently extended to maliciously secure
protocols in [22] and [7].

We also assume an honest majority, i.e., the adversary corrupts only a strict
minority of the parties. We do so in order to use the efficient constant round
protocol for unbounded fan-in multiplication of Bar-Ilan and Beaver [3], which is
needed in several of our constructions. Note that this is only needed for gates with

On Multiparty Garbling of Arithmetic Circuits 5

mixed Boolean-arithmetic inputs/output. Thus, arithmetic circuits can also be
garbled efficiently in the dishonest majority setting, assuming oblivious transfer.
Due to space constraints, this is explained in the full version.

The hardness assumption we rely on is the existence of a mixed-modulus cir-
cular correlation robust (MMCCR) hash function, introduced by Ball et al. [2];
see Definition 1. The definition of MMCCR hash functions is similar to the def-
inition of circular 2-correlation robust hash functions, introduced by Choi et al.
[12] to prove the security of free-XOR [25]. Ball et al. [2] conjecture that one
could use AES to construct a MMCCR hash function. Using AES is known to
be extremely fast in practice using AES-NI instructions.

Our results and techniques. We study garbled circuits containing both a
Boolean part and an arithmetic part in secure multiparty computation. We show
both how to compute efficient arithmetic garbled circuits, and also how the
Boolean and arithmetic parts of the circuit can efficiently affect each other.
This allows for more efficient secure multiparty computation of functions that
naturally combine Boolean and arithmetic computations, see our motivating
example below.

We begin by extending known results for garbled arithmetic circuits from
the two-party setting to the multiparty setting. In the two-party setting, Ball et
al. [2] and Malkin et al. [28] showed that the free-XOR idea of Kolesnikov and
Schneider [25] can be extended to free addition and multiplication by a constant
in Fp. We show that these results naturally extend to the multiparty setting.
This follows similar lines to the extension of free-XOR to the multiparty setting
by Ben-Efraim et al. [8].

We further efficiently extend the half-gates construction of Zahur et al. [34]
(which efficiently compute AND gates in the 2-party setting) to efficient multipli-
cation gates in the multiparty setting. There are three challenges we overcome in
this extension: (1) Since there is no single garbler, the parties perform the com-
putation using their shares. This requires understanding the values computed
in each half gate, which were not explicitly written (only implicitly used) in
previous works. (2) Since the evaluating parties also participate in the garbling
(and thus have additional knowledge), the output wire’s permutation element
and keys are partitioned to avoid revealing secret information. (3) Extending
from Boolean to Fp requires extending the technique of [34], by showing that
the correct way to look at the solution of [34] is to multiply the external value
of one wire with the key of the other. Proving this extended technique based on
MMCCR also requires an additional step in the proof that was not needed in
previous similar proofs (e.g., in [2,34]).

Using the half-gate extension, we manage to garble multiplication gates in Fp,
in the multiparty setting, with only 2p garbled rows. By representing numbers
in a primorial modulos and using the Chinese Remainder Theorem, as suggested
by Ball et al. [2], we obtain efficient arithmetic computations over the integers.
In the two-party setting, efficient garbled multiplication gates were previously
suggested by Malkin et al. [28] and by Ball et al. [2], see Table 1.

6 A. Ben-Efraim

We then show how the Boolean and arithmetic parts of the circuit efficiently
affect each other. In the multiparty setting, this requires a simple primitive that
we call a multifield-shared bit, in which the same bit is secret shared in multiple
fields of different characteristics. We show an efficient protocol for constructing
this primitive in the semi-honest model with an honest majority. Furthermore,
we explain that this primitive can be precomputed before the circuit is known.

To show how the Boolean part can efficiently affect the arithmetic part, we
look at selector gates, which compute a simple “if statement”: A selector gate
has 3 input wires, x, y, and w0. The wires x, y hold values in Fp and the wire w0

holds a Boolean value representing the selection bit. The output wire z should
equal either x or y, according to the value of the selection bit. I.e., denote the
value on wire ω by vω, then a selector gate computes the following simple if
statement: If (vw0 == 0) then vz = vx else vz = vy.

We show two constructions for garbled selector gates: the first is an exten-
sion of known techniques to the multiparty setting, using projection gates from
Boolean to Fp. To the best of our knowledge, this is the best construction of
selector gates using existing techniques that relies only on MMCCR hash func-
tions.1 Our second construction is a designated construction, using new tech-
niques described below. This construction reduces the evaluation time by approx.
33% from the construction using projection gates.

We give an informal overview of the main ideas in the designated selector
gate construction: The gate contains two components. Using the first component,
the evaluator tries to compute the multiplication between the Boolean value and
the values in Fp. But since the Boolean value seen by the evaluator is not the
real value on the wire, this computation possibly inserts an error. To solve this,
the second component is “corrector gates”. The result from the corrector gate is
(freely) added in order to correct the values from the first component. However,
the (possibly) inserted error depends on the value seen by the evaluator on
the Boolean wire. Thus, there are in fact 2 corrector gates, and the evaluator
decrypts only one of them, according to the value it sees. This raises a question
of security, as a corrupt evaluator can also decrypt the “wrong” corrector gate.
This issue is solved by double partitioning of the keys and permutation elements,
ensuring the decrypted keys and external values on the “wrong” corrector gate
leak no information, even given the correctly decrypted keys and values. To the
best of our knowledge, the technique of using a double partition of the keys and
permutation elements is new in this setting.

To show how the arithmetic part can affect the Boolean part, we extend to
the multiparty setting the construction of Ball et al. [2] of gates that test equality.
These equality gates use free subtraction and projection gates. Unfortunately,
we find that garbling general projection gates, and garbling equality gates in
particular, is significantly more complicated in the multiparty setting. To explain

1 In the 2-party setting there is a more efficient construction based on stronger assump-
tions by Ball et al. [2], see Remark 5. Nevertheless, since these stronger assumptions
are currently not needed to optimize any other garbled gate, we believe it is of
interest also to optimize selector gates which are secure based on MMCCR.

On Multiparty Garbling of Arithmetic Circuits 7

this, we note that the equations for equality gates require exponentiation. In
the multiparty setting, the values needed for the offline computation are secret
shared, and so this exponentiation is computed using MPC. We optimize these
computations using the constant round protocol of [3]. However, this still implies
that the offline time for computing equality gates is significantly slower. On the
positive side, the size of garbled projection gates and their evaluation time are
not affected by this, and therefore the difference in the online phase from the
two-party setting is similar to the Boolean case.

A motivating example. Many real-world applications naturally use a mixture
of Boolean and arithmetic computations. To illustrate the importance of mixed
Boolean-arithmetic circuits, we look at a simple natural problem, the problem
of conditional summation. Of course, it is possible to encode the problem as a
Boolean circuit or as an arithmetic circuit. However, notice that encoding the
conditions in arithmetic 0/1 would be very inefficient when the conditions are
complex. On the other hand, the summation could be expensive in Boolean,
while free in an arithmetic circuit (using free addition). Therefore, a more effi-
cient manner to perform the computation would be to compute the conditions
in a Boolean circuit, then use selector gates, and finally compute the summa-
tion in an arithmetic circuit. Possibly, the conditions (which are Boolean) could
decide multiplication constants instead of only 0, 1, (i.e., weighted conditional
summation) in which case multiplication gates are also required.

Comparison with previous works and techniques. Garbled multiplication
gates were previously considered in the two-party setting by Malkin et al. [28]
and by Ball et al. [2]. In Table 1 we compare our garbled multiplication gates with
those of [2] and [28]. We compare only with 2-party garbling protocols, because
previous multiparty garbling protocols did not handle arithmetic gates.2 For sake
of comparison, we also include the values of our garbled multiplication gate in the
2-party setting. The difference is that in the 2-party setting, the number of rows
in each half-gate can be reduced by one, using the row reduction technique [29].
Furthermore, in the multiparty setting, each row requires n ciphertexts, and
“decrypting” a row requires n2 decryptions (hash function calls), whereas in the
two-party setting each row is a single ciphertext and requires a single decryption.

In Table 2 we compare garbled selector gates using known techniques (pro-
jection gates) and the new designated construction.

Other related works. Most protocols for securely computing arithmetic cir-
cuits follow the secret-sharing paradigm, e.g., [10,11,14–16,23] to name but a
few. In the secret-sharing paradigm, the parties share their inputs. Then, for
each layer of the circuit, the parties interact in order to compute shares for the
next layer. Thus, the number of rounds depends on the depth of the circuit.
This could potentially lead to very slow online times when the circuit is very
deep and the latency is high (for example over the internet), as demonstrated

2 One could of course use an encoding of arithmetic into Boolean, e.g. the CRT encod-
ing in [1], and then apply any Boolean multiparty garbling protocol. For a comparison
between encoding into Boolean and arithmetic gates as discussed here, see [2].

8 A. Ben-Efraim

Table 1. Comparison of our garbled multiplication gates with those of [2,28] in number
of parties, number of garbled rows, total size of garbled gate, security assumption, and
number of decryptions (hash function calls needed in the online phase). For high fan-in
multiplication, the construction of [2] scales differently than ours, but still seems to
have more rows.

Garbled Multiplication Gate

Parties Rows Size Sec. Ass. # Dec.

[28] 2 2p − 2 (2p − 2)κ Random Oraclea 2

[2] 2 6p − 5 (6p − 5)κ MMCCR 6

New 2 2p − 2 (2p − 2)κ MMCCR 2

New n 2p (2p)κ · n MMCCR 2 · n2

aPossibly, this construction, which is also based on extending half-
gates, could be proven secure based on MMCCR, using techniques
later developed in [2]. However, we note that proving the extension
of half-gates to multiplication gates based on MMCCR requires an
additional step that was not needed in previous proofs, see Sect. 6.

in [8]. On the other hand, using garbled circuits breaks the dependency of the
round complexity on the depth of the underlying circuit. Furthermore, garbled
circuits are an important primitive that proved worth investigating even outside
the context of secure computation.

Hence, these works in the secret-sharing paradigm are incomparable with our
work. In addition, the recent works of Damg̊ard et al. [17] and Keller et al. [24] in
the secret-sharing paradigm use gate-scrambling, which shares many ideas with
garbling. Advances in garbling techniques could potentially aid these protocols.

Apart from the works of Ball el al. [2] and Malkin et al. [28], another notable
work that studied arithmetic garbled circuits in the two-party setting is the
work of Applebaum et al. [1]. The main result of [1] relies on LWE and is quite
complex. It is unclear if their result can be efficiently extended to the multiparty
setting – one of the main difficulties seems to be that their construction requires
preprocessing the circuit layer by layer. Thus, it does not seem to naturally lend
itself to an efficient constant round multiparty protocol, since a natural protocol
for this preprocessing would require rounds corresponding to the depth of the

Table 2. Comparison of garbled selector gates using known techniques (projection
gates) and the new designated construction.

Garbled Selector Gate

Parties Rows Size Sec. Ass. # Dec.

New – Known Techniques n 2p + 2 (2p + 2)κn MMCCR 3 · n2

New Technique n 2p + 2 (2p + 2)κn MMCCR 2 · n2

On Multiparty Garbling of Arithmetic Circuits 9

circuit. The secondary result of [1] using CRT has been surpassed by the results
of Ball et al. [2].

There have also been several other works that dealt with mixed Boolean-
arithmetic computations in secure computation, most notably the ABY frame-
work by Demmler et al. [18]. This work deals with mixed Boolean-arithmetic
computations in the 2-party setting by efficiently converting between arithmetic
secret-sharing, Boolean secret-sharing (for GMW), and Yao garbled circuits.
Their protocol is for 2 parties and not constant round. It is an interesting ques-
tion if the ABY framework can be extended to the multiparty setting (replacing
Yao with a BMR garbled circuit) and, in this case, how it would compare with
our constant-round protocol.

Organization. In Sect. 2 we review the basics of multiparty garbling and gar-
bling of arithmetic circuits. In Sects. 3 and 4 we explain how to efficiently garble
multiplication gates and selector gates, respectively.3 In Sect. 5 we describe our
constant-round secure multiparty protocol for mixed Boolean-arithmetic circuits.
In Sect. 6 we prove the security of our protocols.

2 Preliminaries

We assume that the reader is familiar with the BGW protocol and its improve-
ment [9,19]. Sections 2.4 and 4 also use the constant round protocol for
unbounded fan-in multiplication of Bar-Ilan and Beaver [3]. This protocol is
nicely explained in [13, Sect. 4].

2.1 Security Model

We follow the standard definition of secure multiparty computation for semi-
honest adversaries, as it appears in “Foundations of Cryptography” by Oded
Goldreich [20].4 To prove semi-honest security according to this definition, we
present a simulator for the ideal world that receives the output from the trusted
party and internally interacts with the real-world adversary. Informally, the pro-
tocol is secure if the view of the adversary (input, randomness, messages received)
in the ideal world is computationally indistinguishable from the view of the
adversary in the real world, given any fixing of the inputs of the honest parties.

2.2 Notation, Conventions, and Security Assumption

We list some of the conventions and notations that we use throughout this paper.
We consider a static semi-honest adversary A corrupting a strict minority of the

3 The garbling of equality testing gates and exponentiation by a public constant are
explained in the full version.

4 These security definitions are for the stand-alone model. There appears to be no
obstruction to prove also for the stronger UC model, but this has not been done in
this work.

10 A. Ben-Efraim

parties. The circuit of the function to be computed is denoted by C, and g ∈ C
denotes both the gate and its index. The set of all wires is denoted by W , and W
denotes the wires that are not outputs of “free gates” (e.g., XOR, addition, and
multiplication by a constant gates). The respective sets of wires with values in
Fp are denoted Wp and Wp respectively. The number of parties in the protocol is
n, and t =

⌊
n−1
2

⌋
is the bound on the number of corrupt parties. We denote the

security parameter by κ. For binary fields, the keys are therefore in F2κ . Notice
that for characteristic p fields, keys should be in Fpκp , with κp ≥ �κ/ log p�; see
also Remark 1. We often abuse notation, writing pκ def= pκp .

Throughout the paper we have computations in several fields. We often avoid
mentioning the field in which the computations are carried out when this can
be inferred from the equation. For example, if λ ∈ Fp and Δi

p ∈ Fpκ then
the multiplication λΔi

p is computed in Fpκ . Observe that Fp ⊂ Fpκ is a field
extension, so this is well defined. We also ensure that the computation is well
defined for the shares of λ and Δi

p; see Remark 1.
We sometimes use vector notation for the keys of the parties. For example,

if each party Pi has a key ki
x ∈ Fpκ then we write kx

def=
(
k1

x, . . . , kn
x

) ∈ F
n
pκ .

Addition of vectors and multiplication by a constant are the standard linear
algebra operations.

The hardness assumption we rely on, which we define next, is the existence
of a mixed-modulus circular correlation robust hash function that we denote by
H. This is the exact same assumption used by Ball et al. [2] in the two-party
setting. Ball et al. conjectured that it is secure to construct H using AES.

Definition 1. Let H be a hash function, and for each p in some set of primes
P let Δp ∈ Fpκ . We define an oracle OH

P that acts as follows:

OH
P (ρ, a, b, k, γ, δ) = H(k + γΔpa

, ρ) + δΔpb
(1)

where ρ ∈ N, pa, pb ∈ P , γ ∈ Fpa
, δ ∈ Fpb

, k ∈ Fpa
κ , and the output of H is

interpreted as in Fpb
κ . Note that γΔpa

is the inner offset and δΔpb
is the outer

offset. Legal queries to the oracle have inputs in the correct domains and satisfy:

1. The oracle is never queried with γ = 0,
2. For each ρ, all the queries have the same pa, pb, and each γ ∈ Fpa

\ 0 is used
in at most one query.

We say that H is mixed-modulus circular correlation robust if for all poly-
nomial time adversaries making only legal queries to the oracle, the oracle OH

P ,
for random Δps, is indistinguishable from a random function (with the same
input/output domains).

We use the shortened notation Fk(ρ) def= H(k, ρ) (F can be thought of as a
PRF). In our garbled gates, we use ρ = g||j (formally, ρ = ng + j), where g is
the index of the gate we garble and j ∈ [n]. In most gates, the key of each party

On Multiparty Garbling of Arithmetic Circuits 11

is “encrypted”, using F , by all parties, see for example Eqs. (2) and (3).5 We
therefore use the shortened notation Enckx

[
kj

z

] def=
(
Σn

i=1Fki
x
(g||j)) + kj

z. The
outputs of the Fki

x
(g||j)’s are, in this case, assumed to be in the same field as

kj
z. “Decryption” of the above ciphertext is by subtracting Σn

i=1Fki
x
(g||j).

Remark 1. In our offline protocols, the parties share both “small” field elements
λ ∈ Fp and “large” keys/offsets ki

x,Δi
p ∈ Fpκ , with κp ≥ �κ/ log p�. These

are shared using Shamir secret-sharing scheme in fields of characteristic p (to
allow linear combinations). Apart from the characteristic, there are three other
requirements of the fields in which the elements, keys, and offsets are shared.
The first two are always required by Shamir secret-sharing schemes.

1. The field must contain at least n + 1 elements.
2. The size of the field is at least the size of the domain of the secret.
3. We need to be able to multiply shares of the field element λ ∈ Fp with the

shares of the offset Δi
p ∈ Fpκ .

In order to satisfy the first requirement, the parties share λ in a field extension
Fpmp with pmp > n. In order to satisfy the second requirement, ki

x and Δi
p are

shared in Fpκ , as they cannot be shared in a smaller field. In order to satisfy
the third requirement, it must hold also that mp|κp, so that Fpmp ⊆ Fpκp . One
way to ensure all the requirements are met is to set mp = κp = �κ/ log p�. This
is not always the most efficient solution – any implementation should optimize
the choice of mp and κp for each p, in correspondence with the bound on the
number of parties, such that they satisfy all the above requirements.

2.3 Multiparty Garbling

In the multiparty setting, the first proposal for constructing a multiparty garbled
circuit was given in [4]. We extend a simplified description for the semi-honest
model given in [8] to the arithmetic setting (in the field Fp), by applying the
ideas of [2,28]. The construction of [8] allows the free-XOR ideas of [25]. In the
two-party setting, Malkin et al. [28] and Ball et al. [2] showed that free-XOR
extends to free addition, subtraction, and multiplication by a public constant in
the field Fp. As we shall see, this is also the case in the multiparty setting.

The multiparty garbling paradigm consists of two phases. In the first phase,
often called the offline or garbling phase, the parties collaboratively construct a
garbled circuit. Then, in the second phase, called the online or evaluation phase,
the parties exchange masked input values and the corresponding keys. After
that, each party (or a designated evaluating party) locally computes the outputs
of the function. Our secure computation protocol that follows this paradigm is
given in Sect. 5. We next recall the basics of the multiparty garbling paradigm.
5 As we explain later, it is more efficient to garble Boolean gates regularly than using

half-gates in the multiparty setting. However, this requires assuming also the exis-
tence of a circular two-correlation robust hash function (as defined in [12]), which
we denote, using shortened notation, by F2

k1,k2 . If we garble AND gates using the
half-gates construction in Sect. 3, this extra assumption is not needed.

12 A. Ben-Efraim

Boolean Circuits. For constructing the garbled circuit, each party Pi chooses,
for each wire ω ∈ W, two random keys, ki

ω,0 and ki
ω,1. To enable the free-XOR

technique [25], the parties need to choose the keys such that ki
ω,1 = ki

ω,0 ⊕ Δi

for some global offset Δi.
Each wire ω in the circuit is assigned a random secret permutation bit λω.

This bit masks the real values of the wires during the online phase. For an AND
gate with input wires x, y and output wire z, the garbled gate is the encryptions
gα,β =

(
g1α,β , . . . , gn

α,β

)
for (α, β) ∈ {0, 1}2, where

gj
α,β =

(
n⊕

i=1

F2
ki

x,α,ki
y,β

(g||j)
)

⊕ kj
z,0 ⊕ (

[(λx ⊕ α) · (λy ⊕ β) ⊕ λz] Δj
)
. (2)

Notice that all the values are “encrypted” by all the parties. XOR gates are
computed using the free-XOR technique of Kolesnikov and Schneider [25], which
was extended to the multiparty setting in [8] – the permutation bit and keys on
the output wire are set to be the XOR of those on the input wires; they require
no cryptographic operations or communication. For the circuit output wires, the
permutation bits are revealed. For input wires of party Pi, the corresponding
permutation bits are disclosed to party Pi.

During the evaluation phase, an evaluating party learns at each wire ω a
bit eω, called the external or public value, and the corresponding keys. The
keys on the output wire of a garbled gate are recovered by decrypting the row
gex,ey

using the keys on the input wires. As was first pointed out in [27], if the
evaluating party participates in the garbling (which we generally assume), the
external value can be extracted from the decrypted key – an evaluating party Pi

can compare the ith key with the keys it used for the garbling, and thus learn
the external value. I.e., if the key is ki

z,0 then ez = 0 and if it is ki
z,1 then ez = 1.

The external value eω is the XOR of the real value vω with the random per-
mutation bit λω. Since the permutation bit is random and secret, the external
value reveals nothing about the real value to the evaluating party. The evalu-
ating party uses the external value and keys to continue the evaluation of the
proceeding garbled gates. For the output wires of the circuit, the permutation bit
values are revealed, and thus the output is learnt by XORing with the external
values.

Extension to Fp Arithmetic. The above generalizes naturally to arithmetics in
the field Fp. We explain this briefly; see [2] for a detailed explanation (in the
two-party setting). Instead of each wire having a permutation bit λ, now each
wire has a random secret permutation field element λ ∈ Fp. The external value
on wire ω is similarly defined eω

def= vω + λω. The permutation field elements
are shared, using a linear secret-sharing scheme, in a field of characteristic p.
Furthermore, each party Pi has a global random secret offset Δi

p ∈ Fpκ . For
each wire ω, each party Pi has a random key ki

ω ∈ Fpκ . The p keys of each party

On Multiparty Garbling of Arithmetic Circuits 13

Pi that relate to the p possible external values, are set to be ki
ω,α

def= ki
ω + αΔi

p

for each α ∈ Fp.6

Thus, addition and subtraction are “free”: The zero keys of the output of an
addition/subtraction gate are chosen to be the sum/difference of the keys of the
input wires. The permutation field element of the output wire is set to be the
sum/difference of the permutation elements of the input wires. Since the keys
and permutation elements are shared using a linear secret-sharing scheme in a
field of characteristic p, the shares of the addition/subtraction can be computed
locally by the parties (by performing local additions on their shares). Similarly,
multiplication by a public constant c is also free: if c 	= 0, the zero keys and
permutation element of the output wire are set to be the multiplication by c.
Again, all the necessary computations can be performed locally by the parties,
both at the garbling phase and the evaluation phase. The case of c = 0 is dealt
using a global 0 wire.

A straightforward method for garbling multiplication gates is to extend Eq. 2
from Boolean to characteristic p. I.e., for a multiplication gate with input wires
x, y and output wire z, the garbled gate is the encryptions

gj
α,β =

(
Σn

i=1F2
ki

x,α,ki
y,β

(g||j)
)

+ kj
z,0 +

(
[(α − λx) · (β − λy) + λz] Δj

p

)
(3)

for every α, β ∈ Fp and j ∈ [n]. The summations and multiplications in the
above equation are carried out in Fpκ . Observe that for this equation to make
sense, the output of F2 must also be in Fpκ . At the online phase, the evaluator
recovers the output keys by decrypting row (ex, ey).

The above straightforward method requires p2 garbled rows. In Sect. 3 we
describe a more efficient way to garble multiplication gates in the multiparty
setting that requires only 2p garbled rows, by extending the half-gates idea of
Zahur et al. [34]. Extension of half-gates to Fp was shown in the two-party setting
by Malkin et al. [28], but their techniques are quite different from ours. Also,
in the two-party setting, Ball et al. [2] suggested a different solution to garble
multiplication gates in O(p) garbled rows. However, their solution relies heavily
on projection gates. Unfortunately, projection gates are relatively expensive to
garble in the multiparty setting, as we explain in Sect. 2.3.2.

2.3.1 CRT Representation and Application to Arithmetic Garbled
Circuits

We briefly explain the idea presented by Ball et al. [2] for constructing efficient
arithmetic garbled circuits over the integers; see [2] for a more detailed expla-
nation. The idea is to use the Chinese Remainder Theorem (CRT), along with
efficient garbling in the field Fp, for small p.

The computations are done in the primorial modulus Qk = 2 · 3 · · · pk, the
product of the first k primes. The number of primes k is chosen such that Qk > Z,
where Z is the bound on the possible intemediate values of the computation.
Each number is represented by a bundle of wires, one for each of the k primes.
6 Note that Fp ⊂ Fpκ is a field extension so α · Δi

p is well defined.

14 A. Ben-Efraim

We call such a representation a CRT bundle representation. Adding two num-
bers is free, because the sum can be carried out in each prime separately (and
addition in Fp is free), and similarly multiplication by a constant. Multiplication
and exponentiation by a constant are also computed separately for each prime.
Thus, the total number of computations and garbled rows is the sum of the
computations/garbled rows in the different primes. Correctness of computing
this way follows from the Chinese Remainder Theorem.

2.3.2 General Projection Gates
One of the main garbling gadgets used by Ball et al. [2] is projection gates. A
projection gate is a gate which has one input wire and one output wire. For
example, an exponentiation gate that computes x
→ xc, where c is a public
constant. In addition to gates g : ZN → ZN , there are also useful projection
gates in which the domain of the input wire differs from the domain of the
output wire. Ball et al. [2] showed in the two party setting that any projection
gate g : ZN1 → ZN2 can be garbled using at most N1−1 garbled rows, where the
−1 comes from the row reduction technique [29]. Furthermore, they showed that,
in the two-party setting, it is not difficult to compute these garbled projection
gates, because the garbler knows all the information for constructing the gate.
In particular, the garbler knows all the permutation bits/elements.

In contrast, in the multiparty setting, the parties only hold shares of the
permutation bits/elements. Therefore, the garbled gates are computed via an
MPC subprotocol with these shares. In general, garbling a projection gate might
require computing a very complex equation in MPC. Projection gates in which
the output domain differs from the input domain are potentially even more
complex.

We discuss three types of projection gates: a projection identity gate from
Boolean to Fp, an equality testing gate from Fp to Boolean, and an exponentia-
tion by a (public) constant gate from Fp to Fp (the latter two are explained in the
full version). The first gate can be computed very efficiently. On the other hand,
the equality and exponentiation gates, while significantly more efficient than
general projection gates, do still seem to be quite expensive. This is because
there are exponentiations in the gate equations, and computing exponentiation
in MPC is expensive, even using the protocols suggested in [3] or [13].

On the positive side, the number of garbled rows in our projection gates is
only one row more than the respective garbled gates in the two-party construc-
tion of [2]. Thus, the size of the garbled projection gates is only slightly more
than n times of the respective gate in the two-party setting. Furthermore, at
the evaluation phase only a single row is decrypted. Therefore, the online com-
putation is only about n2 times than the two-party setting. This matches the
Boolean case.

2.4 Multifield-Shared Bits

In this section we introduce a new primitive that we use in some of our construc-
tions. Note that garbling multiplication gates does not require this primitive; the

On Multiparty Garbling of Arithmetic Circuits 15

primitive is necessary only for garbling mixed Boolean-arithmetic gates. The
primitive is a random bit b ∈ {0, 1} that is shared multiple times in different
fields, of different characteristics. That is, each party holds multiple shares of the
same secret random bit, where each share is in a different field with a different
characteristic.

In the semi-honest model with an honest majority, it is quite simple to con-
struct this primitive. First, each party Pi chooses a random bit bi. The secret
random bit will be b =

⊕n
i=1 bi. Note that if there is an additional requirement

that bz = bx ⊕ by (as needed in some of our constructions to allow free XOR),
then party Pi sets (bz)i := (bx)i ⊕ (by)i instead of randomly choosing it – per-
mutation bits/elements are chosen only for the input wires of the circuit and for
output wires of garbled gates/components. Next, the parties run protocols to
share b in each field; these protocols are run in parallel.

We next explain the bit-sharing protocols. The sharing we describe is of
Shamir shares, which is the type of shares used in our constructions. The sharing
protocol depends on the characteristic of the field. See Remark 1 regarding the
fields in which the shares should be generated.

1. In characteristic 2 fields, each party Pi shares its bit bi amongst all the parties
in a (t + 1)-out-of-n Shamir sharing. The parties sum (XOR) their received
shares to obtain shares of the bit b.

2. In characteristic p 	= 2 fields, each party Pi shares the value b′
i =

{−1, bi = 1
1, bi = 0

amongst all the parties in a t + 1-out-of-n Shamir sharing. Then, the parties

use an MPC protocol to compute shares of b =
1−(Πn

i=1b′
i)

2 . This is computed
in constant rounds by combining the protocol of Bar-Ilan and Beaver [3]
for unbounded fan-in multiplication (to compute shares of Πn

i=1b
′
i) and then

linear operations on the shares (note that 2 is invertible in Fp and the inverse
is easily computable).

Observe that b computed in both protocols is the same: b = 0 if and only if an
even number of bis is 1. This happens if and only if an even number of b′

is is −1,
which is if and only if Πn

i=1b
′
i = 1, so if and only if 1−Πn

i=1b′
i

2 = 0. The case of
b = 1 is similar.

Remark 2. In our description of the protocol, we assume the parties know the
circuit when computing the multifield-shared bits. However, it is possible to
compute all the multifield-shared bits even before the function is known, at
almost no extra cost. This is explained in the full version.

3 Multiparty Multiplication Gates

In this section we show how to extend the notion of half-gates, introduced by
Zahur et al. [34], to multiplication gates in the multiparty setting. The multi-
plication gates are in the finite field Fp (note that regular half-gates, i.e. AND
gates, are multiplication in F2). The total cost of a multiplication gate in Fp will

16 A. Ben-Efraim

be 2p garbled rows, in comparison with p2 garbled rows of the näıve construc-
tion. In particular, the Boolean AND gate will cost 4 = 2 ∗ 2 = 22 garbled rows
using both the half-gates and the regular construction.

Remark 3. In the two party case, row reduction allows to reduce 2 garbled rows
using half-gates, while other methods either allow only a single row reduction
or are not compatible with the free-XOR technique. This is the main reason
to use half-gates also in the two-party Boolean case. However, no efficient row
reduction technique is yet known for the general multiparty case. Therefore,
half-gates does not seem to be suitable for the multiparty Boolean case.7

Remark 4. In [2], multiplication gates in Fp are constructed differently, mainly
using projection gates. As explained, projection gates seem to be considerably
more expensive in the multiparty case than in the two-party case. Therefore,
multiplication using an extension of the half-gates idea, as explained here, should
be preferred in the multiparty setting. In fact, the garbled multiplication gate
of [2] require slightly more rows and more decryptions, so possibly using the
half-gates extension should be considered also for the two-party setting.

We follow the convention of [34], describing the two half gates as the “Garbler
Half Gate” and “Evaluator Half Gate”, because these gates are somewhat similar
to the 2-party components of [34]. However, note that in our scenario all parties
perform the garbling collaboratively (i.e., there is no single garbler), and each
party can perform the evaluation.

Before going into the details of each half-gate, we give an informal overview
of the idea. Assume we have a multiplication gate with input wires x, y and
output wire z. During evaluation, the evaluating party learns on the input wires
the external values bits ex = vx + λx and ey = vy + λy, where v and λ are the
real value and the permutation element on the wires respectively. The evaluating
party also learns the keys corresponding to these external values. Using this, the
evaluating party should be able to recover the output external value

ez = vz + λz = vxvy + λz (4)

and corresponding keys.8 In the näıve construction, this is done by decrypting
the row (ex, ey), see Sect. 2.3.

In the half-gates construction, the computation is split into two distinct half-
gates, each performing a different computation. Informally, the first gate com-
putes −λyvx and the second half-gate computes vx(vy + λy). Then, adding the
two outputs, which is free, results in vz = vxvy.

To securely compute a multiplication gate using these two half gates in the
multiparty setting, two adjustments have to be made. The necessity of these
adjustments will become apparent when we discuss security. The first adjustment
7 Using half gates requires double the amount of decryptions during evaluation and is

therefore inferior in this case despite having the same number of garbled rows.
8 As explained in Sect. 2.3, it is enough to learn the keys; the evaluating party learns

the external value by comparing with its local key used for the garbling.

On Multiparty Garbling of Arithmetic Circuits 17

is that the permutation element on the output wire, λz, must be partitioned
λz = λ̃z + λ̂z, where λ̃z, λ̂z ∈ Fp are random elements under the constraint
that they sum to λz (which is the random permutation element of the output
wire). This is because the outputs of both half gates must be hidden, otherwise
information might be leaked on some of the values.9

The second adjustment is that the zero keys ki
z on the output wire also

need to be partitioned ki
z = k̂z

i
+ k̃i

z, where k̂z

i
, k̃i

z ∈ Fpκ are random under
the constraint that they sum to ki

z. The main idea of this partition is that the
output keys of an honest party Pi on both half gates do not leak information on
the global offset Δi

p. The permutation elements and keys λ̃z, k̃
i
z are used in the

Garbler half gate, and λ̂z, k̂z

i
are used in the Evaluator half gate.

To conclude, informally the half gates construction computes the output
using the following equation:

ez = vxvy + λz =

“Garbler Half Gate”
︷ ︸︸ ︷(
−λyvx + λ̃z

)
+

“Evaluator Half-Gate”
︷ ︸︸ ︷(
vx(vy + λy) + λ̂z

)
, (5)

The true construction and resulting equations are more involved, and we next
explain them in detail.

3.1 Garbler Half Gate

In the original description of this half gate in [34], the idea is described that
the garbler can take advantage that it knows the permutation bit (or color
bit in the terminology of [34]). In the multiparty case, no unauthorized subset
(i.e., a subset that could be controlled by the adversary) is allowed to know the
permutation element on any wire that it should not learn. However, we can use
the fact that the permutation elements are secret-shared to do the necessary
computations. The computed gate is slightly more complicated than in the two-
party case because the garbling parties also participate in the evaluation, and
thus have additional information.

As already stated, the garbler half gate should compute the value −λyvx+λ̃z.
Note that vx is the real value on the wire x (in an ungarbled computation) and
is therefore never known – neither during garbling nor during the evaluation
phase. Thus, we cannot hope to use it directly.

To overcome this, the value is computed using the equation −λyvx + λ̃z =
−λy(vx +λx)+λyλx + λ̃z. The value vx +λx is the external value on wire x and
thus revealed during evaluation. For garbling, the rows are computed for all p
values, using the BGW protocol with the shares of permutation bits, and with
vx + λx treated as a constant (as α in the αth row). The final garbled garbler
half gate is the set of encryptions

g̃i
α = Encky,α

[
k̃i

z +
(
−αλy + λyλx + λ̃z

)
Δi

p

]
(6)

9 This is different than the two-party case, where the evaluator half gate can be han-
dled differently, cf. [34].

18 A. Ben-Efraim

for every α ∈ Fp and i ∈ [n]. Note that α is a constant and all other values are
secret-shared. Since the multiplicative depth of this equation is 2, computing
this half gate (Eq. (6)) requires two BGW degree-reduction rounds.

To verify that the correct output key is recovered, we observe that if the
input external value is ex, then the encryptions g̃i

ex
are decrypted for all i. Thus,

the recovered output keys are

k̃i
z +

(
−exλy + λyλx + λ̃z

)
Δi

p

= k̃i
z +

(
−(vx + λx)λy + λyλx + λ̃z

)
Δi

p

= k̃i
z +

(
−λyvx + λ̃z

)
Δi

p = k̃i
z,−λyvx+˜λz

matching the expected value of the keys corresponding to −λyvx + λ̃z.

3.2 Evaluator Half Gate

As in the two-party case, the main idea of this half gate is that the evaluating
party learns at the evaluation phase the external values of the wires, and can
use this information for the computation. As we shall see more clearly when we
extend the half gates to Fp, the operation done by the evaluating party is to
multiply by this external value.

The evaluator half gate should compute the value vx(vy + λy) + λ̂z. The
value vy + λy is the external value ey on input wire y, and therefore known at
evaluation time. On the other hand, the value vx is the true value on wire x,
and thus generally should never be learnt by any subset of parties. Therefore, to
compute the gate we use the equation:

vx(vy + λy) + λ̂z = (vx + λx)(vy + λy) + λx(vy + λy) + λ̂z. (7)

The computation of the value λx(vy +λy)+ λ̂z is similar to the computations in
the Garbler Half Gate. Thus, the main addition in this half gate is the compu-
tation of the value (vx + λx)(vy + λy). Näıvely, it would seem that this requires
p2 rows in order to garble for each combination of (vx + λx, vy + λy) ∈ (Fp)2.
However, in the two party Boolean case, [34] observed that this computation
can be obtained practically for free. We first explain the observation of [34], and
then extend it to the multiparty Fp case.

In the Boolean case, the external values are (vx ⊕ λx) and (vy ⊕ λy). Note
first that (vx ⊕λx)(vy ⊕λy) can be computed at evaluation time as both external
values are known. This is still insufficient, because the evaluating party needs to
recover some key that corresponds to this value. The “trick” performed by [34] is
to XOR with the key on the wire x if vy ⊕λy = 1 and to ignore it if vy ⊕λy = 0.
We next describe this slightly differently for the Fp case, but the descriptions in
fact coincide for p = 2.

To extend the technique of [34], during evaluation, each evaluating party
multiplies the key on wire x by the external value vy + λy and adds it to the

On Multiparty Garbling of Arithmetic Circuits 19

decrypted key. Notice that this completely coincides with the Boolean case when
p = 2 (since multiplying the key by 0 is the same as ignoring the key). The only
subtlety is that now the corresponding multiplication of the zero key must be
subtracted from the encrypted key during the garbling. However, the proof for
this extended technique is slightly trickier, as we shall see in Sect. 6.

The garbled evaluator half gate is the set of encryptions

ĝj
β = Encky,β

[
k̂i

z − βki
x +

(
−βλx + λ̂z

)
Δi

p

]
(8)

for every β ∈ Fp and i ∈ [n]. Since the multiplicative depth is 1, computing this
half gate (Eq. 8) requires one BGW degree-reduction round.

Now during evaluation, the evaluating party multiplies the key on the x wire
by the external value ey = vy + λy. This is then added to the key decrypted
at row ey. We next verify that the recovered output keys indeed corresponds to
the correct value: the recovered output keys are the sum (for each i ∈ [n]) of
ey(ki

x + exΔi
p) and k̂i

z − eyki
x +

(
−eyλx + λ̂z

)
Δi

p. Simplifying,

ey(ki
x + exΔi

p) + k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δi

p

= eyki
x + ey(vx + λx)Δi

p + k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δp

= k̂i
z +

(
eyvx + λ̂z

i)
Δi

p = k̂i
z,eyvx+̂λz

matching the expected key value of vx (vy + λy) + λ̂z.

3.3 Summing the Two Half Gates

Recall that λz = λ̃z + λ̂z and ki
z = k̃i

z + k̂i
z. At the evaluation phase, once both

half gates are evaluated as above, each evaluating party computes for each i ∈ [n]
the output keys of the gate, by summing the two keys it recovered from the two
half gates, i.e.,

ki
z,ez

=
(
k̃i

z +
(
−λyvx + λ̃z

)
Δi

p

)
+
(
k̂i

z +
(
eyvx + λ̂z

)
Δi

p

)

=(k̃i
z + k̂i

z) +
(
−λyvx + λ̃z + (vy + λy)vx + λ̂z

)
Δi

p

=ki
z + (vxvy + λz) Δi

p = ki
z,vxvy+λz

.

Next, evaluating party Pj recovers the external value ez = vxvy + λz, by
comparing the recovered key kj

z with its local keys.

4 Selector Gates

One of the more challenging tasks of performing an arbitrary computation using
arithmetic circuits is to perform conditional statements. In this section, we dis-
cuss a gate computing a simple if statement. Namely, we build a “selector” gate,

20 A. Ben-Efraim

which chooses between two input wires in Fp, according to a Boolean “selection
bit”. I.e., the gate has three input wires x, y, and w0, and an output wire z.
The values on the input wires x, y are from Fp and the value on w0 is the selec-
tion bit. The selector gate computes the following if statement: If (vw0 == 0)
then vz = vx else vz = vy. Note that by applying this to each wire in the CRT
representation, we get a selector gate for integers.

We show two constructions for a selector gate. The first construction is using
known techniques. The gate is constructed by first projecting the value of w0

into Fp using a projection gate, and then using a multiplication gate. That is,
the gate is computed using the equation:

vz = ϕ(vw0) · vx + ϕ(vw0 ⊕ 1) · vy = ϕ(vw0) · vx + (1 − ϕ(vw0)) · vy

= ϕ(vw0) · (vx − vy) + vy (9)

where ϕ denotes the projection of the bit into Fp. There is one projection and one
Fp multiplication in Eq. 9, costing 2 and 2p garbled rows respectively. Thus, a
selector gate using the above construction has 2p+2 garbled rows. However, note
that the evaluator has to decrypt 3 rows using this method: 1 for the projection
gate, and 2 for the multiplication gate (1 in each half gate). To the best of our
knowledge, this is the best selector gate construction using existing techniques
and relying only on the existence of MMCCR PRFs; see Remark 5.

Our second construction will be a new and designated construction of a
garbled selector gate. The cost of the designated garbled selector gate will be
also 2p + 2 garbled rows. However, the number of rows the evaluator will have
to decrypt will be only 2. Thus, we expect evaluation of this designated selector
gate to be approx. 33% faster.

Remark 5. If w0 is in Fp then a selector gate can be garbled with 2p rows and
only 2 decryptions at evaluation (since projection is not needed). However, we
argue that it is important to consider the case of Boolean w0 for two reasons:
the first is that when computing over the integers using CRT, we would like
the same bit to select in all the characteristics. The second is that w0 could be
determined by a complex set of conditions, so it would make sense that w0 is
the output or intermediate value of a Boolean sub-circuit.

If we do not restrict the security assumption to only MMCCR hash functions,
then in the 2-party setting, Ball et al. [2] showed a direct construction of a
selector gate that has 2p − 1 rows and requires only 1 decryption, which can be
proved secure based on a random oracle (or possibly also on some extension of
Definition 1 to allow correlation and circularity on two input keys). Note that in
the 2-party setting, also the new designated construction and the construction
using a projection gate have 2p − 1 rows (this is because row-reduction [29]
reduces 1 row from every garbled component). However, they require 2 and 3
decryptions, respectively. Nevertheless, since in the two-party setting this is the
only garbled gate which an optimization is known using a stronger assumption,
we feel it is important also to optimize constructions that are based only on
MMCCR.

On Multiparty Garbling of Arithmetic Circuits 21

4.1 Charateristic 2 to Characteristic p Projection Gates

In this section we explain how to construct a projection gate that maps a bit
value on a Boolean wire to the same value on a wire in Fp. The projection gate
has a single input wire w0 containing a Boolean value, and an output wire z,
containing the same value in Fp. I.e., if vw0 = 0 then vz = 0 and if vw0 = 1 then
vz = 1 (note that vw0 ∈ F2 and vz ∈ Fp). This projection gate is needed if one
wishes to multiply the bit value by a value in Fp, as in the first selector gate
construction described above.

The projection gate takes advantage of the following observation: Suppose
that vw0 , λw0 ∈ {0, 1}. Then,

vw0 ⊕ λw0 =
{

vw0 − λw0 , vw0 ⊕ λw0 = 0
vw0 + λw0 , vw0 ⊕ λw0 = 1,

(10)

where the computations on the left and right are in F2, the computation in
middle is in Fp, and equality signifies that the value is the same value in {0, 1}
(whether in F2 or Fp). I.e., if vw0 = λw0 then vw0 − λw0 = 0 = vw0 ⊕ λw0 and if
vw0 	= λw0 then vw0 + λw0 = 1 = vw0 ⊕ λw0 .

To use Eq. (10), we will assume that λw0 is a multifield-shared bit, shared in
both a field of characteristic 2 and a field of characteristic p. Note that although
the output value is known to be a bit, it is masked using a random permutation
element in Fp to avoid leaking information. Thus, the equation of the gate will
be

ez = vz + λz = vw0 + λz =
{

(vw0 ⊕ λw0) + λw0 + λz, vw0 ⊕ λw0 = 0
(vw0 ⊕ λw0) − λw0 + λz, vw0 ⊕ λw0 = 1.

(11)

Hence, the garbled projection gate is the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂i

z + (λw0 + λz) Δi
p

]
, (12)

Enckw0,1

[
k̂i

z + (1 − λw0 + λz) Δi
p

]
. (13)

As explained in Sect. 2, although kw0,0, kw0,1 ∈ F2κ , the output of the PRF in
this case is in Fpκ . Assuming we have λw0 as a multifield-shared bit, i.e., the
parties already posses Shamir shares of the the bit λw0 in the correct field of
characteristic p, Eqs. (12), (13) can be computed using one additional BGW
degree-reduction round. Using Eq. (11), it is not difficult to verify that for both
values of ew0 the decrypted key corresponds to ez.

4.2 Designated Selector Gate Construction

In this section we explain a designated construction for a selector gate. The
gate contains three components. The first component, which we call the chooser
partial gate, has 2 garbled rows. The other two components, which we call the
corrector partial gates, contain p garbled rows each. Thus, this construction of a

22 A. Ben-Efraim

selector gate will require 2p+2 garbled rows, same as the previous construction.
However, this construction requires less decryptions at the evaluation phase, as
we explain next.

The main idea we use in our construction can be seen as an extension of
the half-gate technique – the evaluating party uses the key of one of the input
wires, according to the external value on the selection wire. Furthermore, the
evaluating party decodes only one of the two corrector partial gates according to
the external value on the selection wire. Therefore, only two rows are decrypted
when evaluating the gate (one in the chooser gate and one in the corrector gate),
1 less than the previous construction.

Note that since the external values are known only at the evaluation phase,
we cannot prevent a corrupt evaluating party from decrypting also the other
corrector partial gate. Thus, we must ensure that the decrypted key from this
does not leak any extra information. This is achieved using a double partitioning
of the output zero keys and permutation bit. I.e.,

λz = λ̂z + λ̃z = ̂̂
λz + ˜̃

λz, (14)

ki
z = k̂i

z + k̃i
z = ̂̂

k
i

z + ˜̃
k

i

z, (15)

where λ̂z, λ̃z,
̂̂
λz,

˜̃
λz ∈ Fp are random such that they satisfy Eq. (14) and likewise

k̂i
z, k̃

i
z,
̂̂
k

i

z,
˜̃
k

i

z ∈ Fpκ are random such that they satisfy Eq. (15). Note for example

that ˜̃λz is random even given λ̂z, λ̃z. Such observations are crucial for security, as
we later explain. Otherwise, a corrupt evaluator could learn secret information
by decrypting the “wrong” corrector gate. This idea of double partition of the
keys and permutation elements appears to have not been used before in garbled
circuits.

4.2.1 Half-Selector Gate
We now show the construction of a half selector gate that receives only two input
wires, x and w0, and outputs either x or 0 according to w0. This easily extends
to a full selector gate, using the equation

vz = vw0 · vx + (vw0 ⊕ 1) · vy = vw0 · (vx − vy) + vy. (16)

I.e., computing the value of x − y using free subtraction, then using a half-
selector, and then freely adding the value of y. It is also possible to construct a
full selector gate directly. This is explained in the full version. The construction
of the half-selector gate is significantly simpler, but contains most of the main
ideas.

Informally, the half-selector gate is computed using the following equation:

vxvw0 + λz =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

“Chooser Gate”
︷ ︸︸ ︷
vx(vw0 ⊕ λw0) + λ̂z

“Corrector Gate”
︷ ︸︸ ︷
+λw0vx + λ̃z vw0 ⊕ λw0 = 0

vx(vw0 ⊕ λw0) + ̂̂
λz −λw0vx + ˜̃

λz vw0 ⊕ λw0 = 1.

(17)

On Multiparty Garbling of Arithmetic Circuits 23

This equation works because vx(vw0 ⊕ λw0) =
{

vxvw0 − λw0vx vw0 ⊕ λw0 = 0
vxvw0 + λw0vx vw0 ⊕ λw0 = 1,

as one can readily verify for the 4 combinations of vw0 , λw0 ∈ {0, 1}. Note also
that the equations of the chooser gate in the first and second row simplify to λ̂z

and vx +̂̂
λz respectively, since the value of vw0 ⊕λw0 is already fixed. The reason

why we need to use different partitions of λz in the two rows will become clear
when we discuss the corrector partial gates in detail. In short, the reason is to
ensure that decrypting the “wrong” corrector gate does not leak any information.

Chooser Partial Gate for Half Selector. The chooser partial gate is somewhat
similar to the evaluator half gate. The first garbled row, which is decrypted
when vw0 ⊕ λw0 = 0, should output a key corresponding to vx(vw0 ⊕ λw0) +
λ̂z = λ̂z if decrypted. The λ̂z is secret-shared, so this computation is done in a
straightforward manner.

The second garbled row is decrypted when vw0⊕λw0 = 1, and the output keys

should correspond to the value vx(vw0⊕λw0)+
̂̂
λz = vx+̂̂

λz. Here we use a similar

trick as in the evaluator half-gate, i.e., the equation vx+̂̂
λz = (vx+λx)−λx+̂̂

λz,
where for the value vx + λx the evaluator will add the key on the input wire x,
as in the evaluator half gate. To conclude, the chooser partial gate for a half
selector gate has the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂i

z + λ̂zΔ
i
p

]
, (18)

Enckw0,1

[
̂̂
k

i

z − ki
x +

(
−λx + ̂̂

λz

)
Δi

p

]
. (19)

At the garbling phase, these equations require one BGW degree-reduction round.
At the evaluation phase, if the external value ew0 is 1, the evaluating party also
adds the key on wire x after decryption.

We verify that the decrypted keys indeed correspond to the values vx(vw0 ⊕
λw0) + λ̂z and vx(vw0 ⊕ λw0) + ̂̂

λz:

1. If ew0 = 0 the decrypted keys are k̂i
z + λ̂zΔ

i
p = k̂i

z,̂λz
= k̂i

z,vx(vw0⊕λw0)+
̂λz

,

2. If ew0 = 1 the output is the sum of ki
x + exΔi

p and ̂̂
k

i

z −ki
x +

(
−λx + ̂̂

λz

)
Δi

p.

Simplifying:

[
ki

x + exΔi
p

]
+
[
̂̂
k

i

z − ki
x +

(
−λx + ̂̂

λz

)
Δi

p

]
= ̂̂

k
i

z +
(

vx + ̂̂
λz

)
Δi

p

= ̂̂
k

i

z,vx+
̂

̂λz
= ̂̂

k
i

z,vx(vw0⊕λw0)+
̂

̂λz
.

Corrector Partial Gate for Half Selector. The computation of each corrector
partial gate is similar to the garbler half gate. The interesting point is that
there are two corrector gates for every selector gate, and only one value is used

24 A. Ben-Efraim

at evaluation. However, since which of the two is used is known only at the
evaluation phase, both corrector gates need to be computed at the garbling
phase.

The garbled rows of the first corrector gate, which correspond to the value
λw0vx + λ̃z = λw0(vx + λx) − λw0λx + λ̃z, are the following encryptions for each
α ∈ Fp and i ∈ [n]:

Enckx,α

[
k̃i

z +
(
αλw0 − λw0λx + λ̃z

)
Δi

p

]
. (20)

The garbled rows of the second corrector gate, which correspond to the value

−λw0vx + ˜̃
λz = −λw0(vx + λx) + λw0λx + ˜̃

λz, are the following encryptions for
each α ∈ Fp and i ∈ [n]:

Enckx,α

[
˜̃
k

i

z +
(

−αλw0 + λw0λx + ˜̃
λz

)
Δi

p

]
. (21)

Assuming λw0 is a multifield-shared bit, computing these gates requires two
BGW degree-reduction rounds. Verification is slightly tedious and hence omitted.

Combining the above components results in the half-selector gate: At the
evaluation phase, an honest evaluating party decrypts the chooser partial gate
and only one of the corrector gates, according to the external value on the
selector wire w0. By summing the values, the evaluating party recovers the key
corresponding to vxvw0 + λz.

Observe that the same key is used to decrypt both corrector gates. Thus,
a corrupt evaluating party can recover the decrypted keys on both corrector
gates, regardless of the external value on wire w0. Therefore, we must ensure
that the unused decrypted value does not leak any information. We explain the
intuition for the case ew0 = 0; the case of ew0 = 1 is similar. Notice that the keys

decrypted from the inactive corrector gate are ˜̃k
i

z +
(

−exλw0 + λw0λx + ˜̃
λz

)
Δi

p

for i ∈ [n]. There are 2 key observations:

– Clearly, a corrupt evaluating party Pi can learn the value −exλw0+λw0λx+˜̃
λz

by subtracting ˜̃
k

i

z and dividing by Δi
p. Furthermore, ex, ew0 , λ̂z, and λw0vx +

λ̃z are known to the evaluator from the protocol.10 Nevertheless, ˜̃λz ∈ Fp is

random even given these values. Thus, the value −exλw0 + λw0λx + ˜̃
λz leaks

no information on λw0 and λx.

– A corrupt evaluating party learns ˜̃
k

j

z +
(

−exλw0 + λw0λx + ˜̃
λz

)
Δj

p also for

every honest party Pj . However, ˜̃k
j

z ∈ Fpκ is random even given the keys
10 Usually, the permutation bits must remain secret as they hide the value on the wire.

However, in this specific case, the value on the wire corresponding to vxew0 = 0 is

publicly known. Thus, there is no need to hide ̂λz in this specific case. However, ̂λz

is crucial for security, otherwise λz = ˜λz and this would be insecure when ew0 = 1.

On Multiparty Garbling of Arithmetic Circuits 25

party Pi recovers from following the protocol. Thus, this does not leak any
information on Δj

p.

The proof of security in Sect. 6 formalizes the above intuition.

5 Protocol for Secure Computation

In this section we give the details of our secure multiparty computation protocol.
The protocol is an extension of the semi-honest BMR protocol, e.g. [8], to the
arithmetic case. The details of the garbled gates are explained in Sects. 3 and
4.11 The proofs of correctness and security appear at Sect. 6.

The garbling phase of protocols following the multiparty garbling paradigm
is often abstracted as a functionality that outputs the garbled circuit and the
necessary permutation bits to the respective parties. This functionality, which we
term FGC , is described in Fig. 1. We next sketch out a straightforward protocol
for securely computing FGC in constant rounds, using a combination of the
BGW protocol [9,19] and the constant round protocol for unbounded fan-in
multiplication of Bar-Ilan and Beaver [3].

Step 1, Setup: For each prime p in the primorial modulus, each party Pi does
the following:

– For each wire ω ∈ Wp (i.e., input wires of the circuit and output wires of
garbled gates/components), randomly chooses a random element (λω)i ∈
Fp and (zero) key ki

ω ∈ Fpκ .12 The random permutation element on the
wire is λω

def= Σn
i=1 [(λω)i].

– In topological order on the circuit, computes (λω)i and ki
ω for each wire

ω /∈ Wp, by summing/multiplying by a constant (according to gate type),
by using λi and ki on the input wires – see Sect. 2.3 on “free” gates.

– Each party randomly chooses a random global offset Δi
p ∈ Fpκ .

– For each garbled component g ∈ C, compute Fki
x,α

(g, j) for each j ∈ [n]
and α ∈ Fp, where p is according to the gate/component type.

Step 2, Sharing: Each party Pi shares all the keys, elements, and outputs of
F in Step 1 using (t + 1)-out-of-n Shamir secret-sharing scheme. Multifield-
shared bits are also shared using Protocol 2 in Sect. 2.4 for each p. The par-
ties obtain shares of λω for each wire by locally summing their shares of
{(λω)i}n

i=1.
Step 3, Computing the garbled gates: Shares of the garbled rows of each

garbled gate/component are computed using their respective equation (e.g.,
Eqs. 6, 8, 12, 13), where in each equation

– Addition and multiplication by a constant are computed locally,
– Multiplication is computed using a BGW degree-reduction round,

11 Due to lack of space, some of the constructions are deferred to the full version.
12 In the designated selector gates, this choice is slightly more involved – Pi randomly

chooses (̂λω)i, (
̂

̂λω)i, (˜λω)i, (
˜

˜λω)i such that (̂λω)i + (˜λω)i = (
̂

̂λω)i + (
˜

˜λω)i. The keys
are similarly partitioned; see Sect. 4.

26 A. Ben-Efraim

– Exponentiation is computed using the protocol of [3].
More details can be found in the respective section.

Step 4, Reconstructing the outputs: The parties exchange the shares (of
the outputs of FGC) and reconstruct the outputs of FGC , namely the garbled
gates/components and the output permutation elements. Furthermore, each
party receives the shares and reconstructs the permutation elements on its
input wires.

Remark 6. The above protocol is constant round since all gates are computed in
parallel and each step is constant round (Step 1 is local). However, the protocol
can be considerably optimized using techniques described in [7], such as share-
conversion and masking by additive shares of zeros. Due to space limitations,
the optimized protocol is deferred to the full version. An alternative protocol for
arithmetic garbled circuits that does not require an honest majority, which is
based on oblivious transfer, is also given in the full version.

Next, in Fig. 2 we give the details of our MPC protocol, in the FGC -hybrid
model (i.e., FGC can be executed securely as a black-box). The protocol is similar
to other protocols following the multiparty garbling paradigm, e.g., [8]. The only
major difference is the external values are not exclusively Boolean, and the size of
the garbled gates/components varies according to the gate type. The evaluation
of the various gates (Step 3b in Fig. 2) is explained in the respective section.
Correctness and security of the protocol are shown in Sect. 6.

6 Correctness and Security

In this section we state the correctness and security of our protocol. Due to lack
of space, we only give sketches of the proofs. The full proof of security, as well
as the straightforward proof of Claim1, will be given in the full version.

Correctness. We briefly explain the correctness of the protocol. To show that
the outputs received by the parties in Πonline (Fig. 2) corresponds to the correct
output, we show the following statement: for each wire, the evaluating parties
recover at evaluation the correct external value ez = vz +λz, and the correspond-
ing keys. For input wires, this statement follows from Step 2. The statement is
then proved by induction on the topological ordering of the gates. For output
wires of each gate type, this is shown in the respective section. Using the induc-
tion argument, the statement holds also for the output wires of the circuit. Thus,
in Step 4, the value recovered by the parties at wire z is ez − λz = vz.

Security. We now show the security of our protocol. We assume a semi-honest
adversary corrupting a strict minority of the parties. We begin with the following
lemma:

Lemma 1. Protocol ΠGC securely computes FGC in the presence of a static
semi-honest adversary controlling a strict minority of the parties.

On Multiparty Garbling of Arithmetic Circuits 27

Fig. 1. Functionality FGC for Constructing a Multiparty Garbled Circuit

Proof Sketch. Protocol ΠGC computes FGC using only Shamir secret sharing,
the BGW protocol, and the constant round protocol for unbounded fan-in mul-
tiplication of [3]. These are secure and composable with each other (the protocol
of [3] can be based on BGW) in the semi-honest model with an honest majority.
The intermediate messages the adversary sees throughout the protocol (Steps 2
and 3) are only Shamir shares, which appear random in the information theoretic
sense. Thus, they are easily simulated. The messages of the last round (Step 4)
are computed by the simulator using the output (given from the trusted party)
and the messages already given to the adversary in previous rounds. �

Before stating our main security theorem, we state the following claim that
follows from Definition 1:

Claim 1. Let B ⊂ [n]. If H is mixed-modulus circular correlation robust, then
for all polynomial time adversaries making only legal queries to the oracle, the
oracle

OH,B
P (ρ, a, b,

(
ki
)
i∈B

, γ, (δi)i∈B) def= Σi∈B

[
OH,i

P (ρ, a, b, ki, γ, δi)
]
, (22)

28 A. Ben-Efraim

where each OH,i
P is equal to OH

P with random and independent Δi
ps for each

p ∈ P and i ∈ B, is indistinguishable from a random function (with the same
input/output domains).

Claim 1 is proved from Definition 1 by a reduction. The proof is deferred to the
full version. Informally, the importance of Claim1 is to use the claim with B as
the set of honest parties, so OH,B

P mimics “encryption” by all the honest parties.
Further, the oracle adds offsets, corresponding to δiΔ

i
ps, to the encrypted keys

of the honest parties.
To give some intuition, this allows the distinguisher to change the values to

which the encrypted keys correspond to, without knowing the Δi
ps. For example,

let ex and ez be the external values on the input and output wires of the gate.
If the distinguisher wants to encrypt row ex + 1 with the key corresponding to

ez + 2, then for the jth part it uses γ = 1 and δi =
{

2 i = j
0 i 	= j

for each i ∈ B

(the computation of δj for the evaluator half gate and designated selector gates

Fig. 2. The online phase – circuit evaluation

On Multiparty Garbling of Arithmetic Circuits 29

is slightly more complex, as explained in the proof). This way, the distinguisher
only uses the keys ki

x,ex
, ki

z,ez
of the honest parties. Next, we state our main

security theorem:

Theorem 2. If H is a mixed-modulus correlation robust hash function then
Protocol Πonline in Fig. 2 securely computes fC in the FGC-hybrid model, in the
presence of a static semi-honest adversary.

The proof follows the general ideas used in [12], with the extended assumption.
The main difficulty of the proof, on which we focus, is to show how the simulator
simulates the output of FGC , and in particular a fake garbled circuit, such that
no polynomial time distinguisher can distinguish this fake garbled circuit from
a real garbled circuit. To show this, we describe a distinguisher that uses H and
legal queries to an oracle O ∈

{
OH,B

P , Rand
}

in order to construct a circuit that
distributes either as a real garbled circuit or as a fake garbled circuit, according
to the oracle. Thus, distinguishing between the two types of circuits breaks the
mixed-modulus correlation robustness of H. See the full version for more details.

There are two main differences from similar proofs: the first appears in mul-
tiplication gates, and specifically in the evaluator half gate. The second appears
in the designated selector gates. Therefore, we split the proof sketch into two
parts. In the first, we give an overview of the general proof structure and ideas,
i.e., the construction of the fake circuit by the simulator, and the construction
of the circuit by the distinguisher (which distributes as a real or fake circuit
according to the oracle). In the second part, we explain the difficulties and nec-
essary changes for evaluator half gates, and give a more detailed explanation on
the subtleties of selector gates.

Proof Sketch. Simulator: The simulator chooses a random path on the circuit,
i.e., for each wire ω ∈ W selects a random external value. For each wire ω ∈ W
and for each honest party, the simulator chooses random keys corresponding
to these external values. Then, the simulator computes the external values and
corresponding keys of free gates. Using these values, the simulator computes a
single encrypted row for each non-free gate/component – this row corresponds
to the external value on the input wire. The other rows are sent as completely
random strings (or more precisely as a random vector in F

n
pκ for the appropri-

ate p). There are slight differences in the designated selector gates, and these
are explained later in the proof.

Distinguisher: The distinguisher starts by following the simulator construction
for computing the first encrypted row. The other rows are computed differently,
by using the oracle. The key observation is that the distinguisher can compute
the γ’s it needs tosupply the oracle in order to, in the case O = OH,B

P , encrypt

30 A. Ben-Efraim

the rows correctly and can compute the δi’s in order to, if necessary, change the
keys of the honest parties that are encrypted in that case.13

Computing γ is simply by the difference in the rows – this part is unchanged
in the different gate types. Note that this ensures that γ 	= 0 and that each
γ ∈ Fpa

is used only once for each gate and party index. Thus, the distinguisher
makes only legal queries to the oracle.

To compute the δi’s, the distinguisher uses the inputs to compute the real
values on the wires. Using the real and external values, the distinguisher extracts
the permutation elements, which are used to compute δi for each row and each
i ∈ B. In the computation of the δi’s there are differences and subtleties from
similar proofs in both the evaluator half-gate and the designated selector gate,
and we address these next.

Evaluator Half Gates: The simulator computes the evaluator half gates
exactly the same. I.e., the simulator chooses an “external value” êz and cor-
responding random key k̂i

z,êz
. However, note that the “external value” of output

wire of the evaluator half gate represents êz = vx(vy +λy)+ λ̂z, but the key k̂i
z,êz

represents k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δi

p. This is because the evaluator should

add eyki
x,ex

after decrypting row ey.
This poses an extra challenge to the distinguisher when trying to compute

the other rows, because they require deducting different multiplications of ki
x,

but the distinguisher does not know ki
x.14 However, the distinguisher does know

ki
x,ex

= ki
x + exΔi

p. Therefore, to deduct βki
x, the distinguisher computes β(ki

x +
exΔi

p) = βki
x + βexΔi

p. Then, this is deducted, and the βex is aggregated to the
computation of the δi of that row. Thus, the simulator calls the oracle with these
aggregated δi’s. The technical details are given in the full version.

Designated Selector Gates: First note that in the designate selector gates
the simulator chooses three random external values and corresponding keys,
although one of the corrector gates should not be decrypted. Furthermore, the
simulator knows which corrector gate should not be decrypted. Nevertheless,
the simulator constructs this gate as usual (one row correctly encrypted, and
the other rows are random).

As for the distinguisher, the construction of the two corrector gates is similar
to regular gates. The distinguisher builds both corrector gates, despite knowing
which one should be decrypted. For the unused row in the chooser gate, the
distinguisher uses the technique described for the evaluator half gate.

Conclusion: The proof concludes with the following key observation: If O =
Rand then the circuit created by the distinguisher distributes as a fake garbled

13 All the keys of the corrupt parties are known to the distinguisher. For the honest
parties, the distinguisher knows the keys corresponding to the external values (chose
them randomly), but does not know the Δi

p’s. Therefore, in order to change which

value the honest parties’ encrypted keys correspond to, it must use the oracle OH,B
P .

14 The random Δi
ps of i ∈ B are an internal part of OH,B

P . The Δi
ps of the adversary

(i /∈ B) are known to both the simulator and the distinguisher.

On Multiparty Garbling of Arithmetic Circuits 31

circuit created by the simulator, while if O = OH,B
P the circuit distributes as

a real garbled circuit, created by a real execution of the protocol. Thus, distin-
guishing between the two cases breaks the mixed-modulus circular correlation
robustness. �

At first sight, it might not be obvious where in the proof we required the
double partition of the keys and permutation bits. However, a closer inspection
shows that by the simulator and distinguisher choosing the external values and
keys of the two corrector gates randomly and independently, this fact is implicitly
used. Otherwise (without the double partition), in a real garbled circuit the two
external values are dependent and similarly the two keys, and would not match
the distinguisher’s construction. Furthermore, in a real execution of the protocol,
if the λ’s are not double partitioned, by subtraction of the two external values, a
corrupt evaluator learns 2λw0vx (here λw0 is treated as an Fp element), violating
security. If the keys are not double partitioned, then a corrupt evaluator can
subtract the decrypted keys of an honest party Pi and recover a multiplication
of Δi

p. Thus, this double partition is crucial.

Acknowledgements. I would like to thank Amos Beimel, Eran Omri, and Yehuda
Lindell for the many ideas and helpful discussions. Special thanks to the anonymous
referees for their remarks and suggestions, and to abhi shelat and Mike Rosulek for
helping me to better understand their papers.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, pp. 120–129. IEEE Computer Society (2011)

2. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Proceedings of the 23rd Conference on Computer and Communications
Security, ACM CCS, pp. 565–577 (2016)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC (1989)

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC 1990, pp. 503–513 (1990)

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 478–492 (2013)

6. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, ACM CCS, pp. 257–266 (2008)

7. Ben-Efraim, A., Omri, E.: Concrete efficiency improvements for multiparty gar-
bling with an honest majority. In: Proceedings of the 5th International Conference
on Progress in Cryptology, LATINCRYPT (2017, to appear)

8. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Proceedings of the 23rd ACM Conference on
Computer and Communications Security, ACM CCS, pp. 578–590 (2016)

32 A. Ben-Efraim

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proceedings of the 20th ACM
Symposium on the Theory of Computing, pp. 1–10 (1988)

10. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

11. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. Network
(2010)

12. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 3

13. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 7

14. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 10

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

18. Demmler, D., Schneider, T., Zohner, M.: ABY-A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1998, pp. 101–111. ACM (1998)

20. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2009)

21. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under stan-
dard assumptions. In: Proceedings of the 22nd ACM Conference on Computer and
Communications Security, ACM CCS, pp. 567–578 (2015)

22. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

23. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Proceedings of the 23rd ACM Conference on
Computer and Communications Security (ACM CCS), pp. 830–842 (2016)

https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21

On Multiparty Garbling of Arithmetic Circuits 33

24. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

25. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

26. Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with mali-
cious adversaries. In: USENIX Security Symposium, pp. 285–300 (2012)

27. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

28. Malkin, T., Pastero, V., Shelat, A.: An algebraic approach to garbling. Unpublished
manuscript

29. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC
1999, pp. 129–139. ACM (1999)

30. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

31. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

32. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation.
In: Proceedings of the 24th ACM Conference on Computer and Communications
Security, ACM CCS, pp. 39–56 (2017)

33. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

34. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-662-46803-6_8

Free IF: How to Omit Inactive Branches
and Implement S-Universal Garbled

Circuit (Almost) for Free

Vladimir Kolesnikov(B)

School of Computer Science, Georgia Institute of Technology, Atlanta, USA
kolesnikov@gatech.edu

Abstract. Two-party Secure Function Evaluation (SFE) allows two
parties to evaluate a function known to both parties on their private
inputs. In some settings, the input of one of the parties is the definition
of the computed function, and requires protection as well. The standard
solution for SFE of private functions (PF-SFE) is to rely on Universal
Circuits (UC), which can be programmed to implement any circuit of size
s. Recent UC optimizations report the cost of UC for s-gate Boolean cir-
cuits is ≈ 5s log s.

Instead, we consider garbling that allows evaluating one of a given set
S of circuits. We show how to evaluate one of the circuits in S at the
communication cost comparable to that of evaluating the largest circuit
in S. In other words, we show how to omit generating and sending inac-
tive GC branches. Our main insight is that a garbled circuit is just a
collection of garbled tables, and as such can be reused to emulate the
throw-away computation of an inactive execution branch without reveal-
ing to the Evaluator whether it evaluates active or inactive branch.

This cannot be proven within the standard BHR garbled circuits
framework because the function description is inseparable from the gar-
bling by definition. We carefully extend BHR in a general way, intro-
ducing topology-decoupling circuit garbling. We preserve all existing con-
structions and proofs of the BHR framework, while allowing this and
other future constructions which may treat garbled tables separately
from function description.

Our construction is presented in the semi-honest model.

1 Introduction

Using circuit representation of the evaluated function brings a significant
disadvantage in the SFE world. Indeed, in contrast with the Random-Access
Machine (RAM) model, circuits introduce expensive, often crippling, redundan-
cies to SFE by requiring to generate, send and evaluate all conditional branches,
even if one of the players knows the branch taken. Circuits require unrolling
loops, incur linear costs when accessing an array element, etc. Yet, circuit-
based SFE is currently the highest-performing technique in most settings, due
to extremely high efficiency of the private evaluation of circuit gates.
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 34–58, 2018.
https://doi.org/10.1007/978-3-030-03332-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_2&domain=pdf

Free IF: How to Omit Inactive Branches and Implement 35

Addressing the limitations of the circuit-based representation has focused
mainly on improving random access to memory. A celebrated line of work on
Oblivious RAM (ORAM), started by [GO96], resulted in ORAM being a stan-
dard ingredient in MPC.

Our work. We address the need to pay for inactive throw-away conditional
branches. We propose an extremely simple technique, Free IF, to fully elim-
inate inactive GC branches in scenarios where one of the players knows the
executed branch. This is a natural scenario frequently occurring in practice, as
we will argue next.

We extend the BHR framework [BHR12] to introduce topology-decoupling
circuit garbling and present the construction in general terms. The extended
BHR framework, which treats garbled circuits as strings, is a contribution of
independent interest.

To our knowledge, this is the first such circuit-based technique. We discuss
previous work in Sect. 1.2; most well-known prior work on circuit size reduction
is generic universal circuit (UC) constructions.

1.1 Motivating Applications

We list several practical applications where our approach can be applied.

Evaluating one of several policy options. In Blind Seer [PKV+14,
FVK+15], a GC-based private database (DB) system, private DB search is
achieved by two players jointly securely evaluating the query match function
on the search tree of the data. Blind Seer does not fully protect query privacy:
it leaks the query circuit topology as the full universal circuit is not practical,
as admitted by the authors. Applying our solution to that work would hide this
important information, at (almost) no extra cost. Indeed, say, by policy the DB
client is allowed to execute one of several (say, 50) types of queries. The privately
executed SQL query can then be a represented as a switch of the number of
clauses selected by the querier, each corresponding to an allowed query type.
With our technique, only a GC corresponding to a single branch will need to
be sent instead of the 50 required today. Most of the cost of the Blind Seer
DB system is in running SFE of the query match function at a large scale, so
improvement to the query circuit will directly translate to overall improvement.
We note that the core of the Blind Seer system is in the semi-honest model, but
a malicious client is considered in [FVK+15].

Our work can be viewed as secure evaluation of a circuit universal for a set
of functions S = {C1, ..., Ck} (S-universal circuit, or S-UC) at the cost similar
to that of a single function. The next motivating example provides another
illustration of how our work may improve applications where we want to evaluate
and hide which function/query was chosen by a player (say, which one of several
functions allowed by policy or known because of auxiliary information).

SFE of semi-private functions (SPF-SFE) (see additional discussion in
Sect. 1.2) is a notion introduced in [PSS09], bridging the gap between expensive

36 V. Kolesnikov

private function SFE (PF-SFE) based on Universal Circuit [Val76,KS08b,KS16,
LMS16], and regular SFE (via GC) that does not hide the evaluated function.
SPF-SFE partially hides the evaluated function; namely, given a set of func-
tions, the evaluator will not learn which specific function was evaluated. (The
GC Generator does know the evaluated function.) Indeed, often only specific
subroutines are sensitive, and it is they that might be sufficiently protected by
S-universal circuit for an appropriate set of circuits S. [PSS09] presents a con-
vincing example of privacy-preserving credit checking, where the check function
itself needs to be protected, and shows that using S-universal circuits as building
blocks is an effective way of approaching this. Further, [PSS09] builds a compiler
which assembles GC from the S-universal building blocks (which they call PPB,
Privately Programmable Blocks). While [PSS09] provides only a few very simple
hand-designed blocks (see our discussion in Sect. 1.2), our work can be viewed
as an efficient general way of constructing such blocks.

CPU/ALU emulation. Extending the idea of SPF-SFE, one can imagine a
general approach where the players privately emulate a CPU evaluating a fixed
sequence of complex instructions from a fixed instruction set (instruction choice
implemented as a GC switch). Additionally, if desired, instructions’ inputs can
be protected by employing the selection blocks of [KS08b]. Such an approach
can be built within a suitable framework (e.g., that of [PSS09]) from S-universal
circuits provided by this work. We note that circuit design and optimization is
tedious, and not likely to be performed by hand except for very simple instances,
such as those considered in [PSS09]. Instead, our approach will result in immedi-
ate performance improvement, reducing the cost of the ALU step implementation
by a large factor.

For example, in a recent work [WGMK16], a secure and practically efficient
MIPS ALU is proposed, where the ALU is implemented as a switch over 37
currently supported ALU instructions evaluated on ORAM-stored data. Tiny-
Garble [SHS+15] also design and realize a garbled processor, using the MIPS I
instruction set, for private function evaluation. Our constructions would work
with [WGMK16,SHS+15] in a drop-in replacement manner, for implementing
straight-line functions known to one party. The ALU step will be correspond-
ingly reduced from containing implementations of all ALU instructions per step
(37 in [WGMK16], of which the output of 36 of them is discarded), to a single
instruction with our approach!

The client-server setting. Our approach is particularly attractive in the
client-server setting. Indeed, the cost of the GC generator for the S-UC of n
circuits, while proportional to n, only involves a simple operation per circuit of
S. The bulk of the cost of the GC generator is in garbling and sending (only)
the active branch. Because of this, the set S of the circuits can be very large
and still scale well allowing the server being able to service many clients. This
is because (essentially) the sole cost of adding more circuits to S is the evalua-
tor having to evaluate each circuit in S. This allows for a variety of trade-offs
between efficiency and the level of hiding of the evaluated function.

Free IF: How to Omit Inactive Branches and Implement 37

1.2 Background and Related Work

Garbled Circuit, OT and Universal Circuit. Significant part of SFE research
focuses on minimizing the size of the basic GC of Yao [Yao86,LP09], such
as garbled row reduction techniques Free-XOR [KS08a] and its enhancements
FleXOR [KMR14] and half-gates [ZRE15]. In contrast, in this work, we elimi-
nate the need for evaluation (i.e. sending) of all but one subcircuits in a switch.

Asymptotically, Valiant’s Universal Circuit [Val76,LMS16,KS16,GKS17] is
the optimal underlying technique to fully protect the evaluated function in MPC.
Respectively, for sub-circuits of size n, the size of the universal circuit gen-
erated by [Val76,KS08b] is ≈ 19n log n, and ≈ 1.5n log2 n + 2.5n log n. Recent
works [LMS16,KS16,GKS17] polish and implement Valiant’s construction. They
report a precise estimate of the cost (in universal gates) of Valiant’s UC of
≈ 5n log n. We note that UC-based constructions cannot take advantage of Free-
XOR (other than gates on permutation subcircuits), since Free-XOR of course
identifies positions of XOR gates. Thus, the classical universal circuit approach
becomes competitive for a number of clauses far larger than a typical switch.

Another technique for Private Function Evaluation (PFE) was proposed by
Mohassel and Sadeghian [MS13]. They propose an alternative (to the universal
circuit) framework of SFE of a function whose definition is private to one of
the players. Their approach is to map each gate outputs to next gate outputs
by considering a mapping from all circuit inputs to all outputs, and evaluate
it obliviously. For GC, they achieve a factor 2 improvement as compared to
Valiant [Val76] and a factor 3–6 improvement as compared to Kolesnikov and
Schneider [KS08b]. Similarly to [Val76,KS08b], [MS13] will not be cost-effective
for a small number of clauses.

We also mention, but do not discuss in detail, that hardware design considers
circuit minimization problems as well. However, their typical goal is to minimize
chip area while allowing multiple executions of the same (sub)circuit. Current
state-of-the-art in applying to MPC the powerful tool chains from hardware
design is producing 10–20% circuit (garble table) reduction [SHS+15,DDK+15,
DKS+17], while our approach will achieve large factor performance improvement
for the setting it can operate in).

Semi-private function SFE (SPF-SFE) [PSS09]. As discussed above, SPF-SFE
is a convincing trade-off between efficiency and the privacy of the evaluated
function. Our work on construction of container circuits corresponds to that of
privately programmable blocks (PPB) of [PSS09], which were hand-optimized
in that work. In our view, the main contribution of [PSS09] is in identifying and
motivating the problem of SPF-SFE and building a framework capable of inte-
grating PPBs into a complete solutions. They provide a number of very simple
(but nevertheless useful) PPBs, such as SCOMP = {<,>,≤,≥, �=}. Each of these
PPB sets only consists of functions with already identical or near-identical topol-
ogy; this is what enabled hand-optimization and optimal sizes of the containers.
Other than the universal circuit PPB, no attempt was made to investigate con-
struction PPBs of circuits of a priori differing topology.

38 V. Kolesnikov

In contrast, we can work with any set S of circuits for S-universal circuit
and achieve large factor performance improvement stemming from not having
to transmit inactive branches.

Circuit overlay heuristic [KKW17]. Finally, a recent work of Kennedy et
al. [KKW17] explored a heuristic approach to S-UC circuit generation, based on
alignment and overlay of underlying graphs. The authors were able to demon-
strate significant reduction in the size of a circuit implementing a switch of 32
small circuits. Specifically, for their switch of 32 small chosen circuits of total
size of ≈ 20, 000 gates, they were able to achieve the S-UC of size ≈ 3, 000 gates,
achieving ≈ 6× circuit size reduction.

In contrast, our approach is much simpler and is readily implementable. It is
not a heuristic, and has clean and understandable performance, which will nearly
always beat [KKW17] (often by a significant factor!) in our setting where the
GC generator knows the evaluated function. This is because of the following. In
this case both our and [KKW17] cost consists of GC generator Gen generating
and sending a single GC. However, in our case, this circuit size is equal to
max |Ci|, Ci ∈ S, while the [KKW17] circuit size is |C0|, where C0 is the circuit
universal for all Ci ∈ S. Clearly, |C0| ≥ max |Ci|, but it is difficult to give
a precise comparison since [KKW17] is a heuristic. As reported in [KKW16],
the full version of [KKW17], while overlay algorithm performed well on certain
pairs (groups) of circuits, it did not do well on others. For example, expansion
metric for circuits 29 and 30 (computing functions B · A + 555 and B2 + A2 > 1
respectively on 32 bit values) is reported to be 1.00 (Table 3 in [KKW16]),
which means that heuristic did not improve on simple circuit concatenation. In
contract, our approach will immediately work for these circuits.

The BHR framework [BHR12]. We present our generic protocol in the terminol-
ogy of BHR, which we extend to allow formal discussion of our work. We explain
the very useful BHR framework at length in Sect. 5.

2 Our Contributions

We present Free IF, an extremely simple (and hence easy-to-implement and to
adopt) method of eliminating the generation and transmission of all inactive
branches in a GC computation, when branch is selected by the GC generator.
An additional OT round, transferring secrets of size independent of the circuit
sizes and concretely small, is required.

Our approach works with state-of-the-art garbling schemes, including half-
gates [ZRE15].

We believe that our main idea — viewing GC as a collection of garbled tables
and separating the circuit topology from GC thus hiding the computed function
— will have other exciting applications, such as improved GC constructions.

Our result in very natural in retrospect; it is surprising it was not discovered
earlier, given a substantial body of work on private function evaluation. One
explanation is that we challenge “obvious facts” such as that GC is not reusable

Free IF: How to Omit Inactive Branches and Implement 39

or that “GC is a structure, not a string”. Both are widely accepted and are at
the core of very general BHR framework. Both are challenged in our approach.

As a contribution of independent interest, we carefully extend the BHR
framework to support a separation of circuit topology from the cryptographic
material (such as garbled tables), and to provide convenient formalization for
manipulating output encodings at wire granularity.

3 Technical Overview of Our Approach

Recall, garbled circuit (GC) can be viewed simply as a collection of garbled
(encrypted) gate tables. Specifically, it need not include the specification of the
evaluation topology (i.e. wire connections among the gates). While topology is
needed for the evaluation, it may be conveyed to the evaluator Ev separately
from the garbled tables, or by implicit agreement among the participants Gen
and Ev. Further, GC may, but need not, provide confirmation to Ev that the
obtained garbled label is a valid label.

Let S = {C1, C2, ..., Cn} be a set of Boolean circuits. We assume that all
circuits consist of fan-in-2 gates and have the same number of inputs and outputs.
Let the Generator Gen have nin-x input bits, and the Evaluator Ev have nin-y input
bits (total nin = nin-x + nin-y). Without loss of generality, let players receive the
same output consisting of nout bits. This is a standard and natural setting for
GC and universal circuits.

Recall, in our setting, (only) Gen knows which of the circuits in S =
{C1, C2, ..., Cn} is being evaluated. Let’s imagine for now that all the circuits
in S are of the same size s (i.e. consisting of the same total number of gates); we
will later show this easily generalizes. We do not place any other restrictions on
the topologies of the circuits. Suppose Gen wishes to evaluate its target circuit
Ct ∈ S. Our underlying idea is to have Gen generate a single GC ̂C implementing
Ct and send it to Ev. Ev knows S, but it will not know which of the circuits in S
is the target circuit. Now, for each Ci ∈ S, Ev will interpret ̂C as garbling of Ci

and evaluate it as such, obtaining the garbled output. With a little care in GC
design, it is possible to ensure that Ev will not be able to distinguish which of
the circuits in S is the target circuit Ct. We stress that the fact that circuts in
S have varying topologies is not an issue since GCs only contain garbled tables
which can be used with any topology.

The next step is for Ev to obliviously discard the wire labels which belong
to non-target circuits and to propagate the (encrypted) output of the target cir-
cuit. To be more precise, Gen and Ev will run an output selection (OS) protocol.
Ev will provide as input to the protocol all (active) output labels it obtained in
evaluating |S| circuits, and Gen will provide the indices of the labels correspond-
ing to the target circuit Ct, as well as Ct’s zero labels on output wires. The OS
protocol will output (re-encoded) labels corresponding to the output of Ct.

This step is efficiently implemented via GC. We further observe that provid-
ing full-length output labels (i.e of length of the computational security parame-
ter κ) as input to OS is not needed; statistical security is sufficient and the labels

40 V. Kolesnikov

can be truncated to σ bits for OS input, improving performance. Even further
improvement is possible simply by having Gen ensure the labels on each output
wire of Ct differ in the last bit. Then Ev and Gen can submit only the last bits
of the labels they obtain. Note that it does not affect correctness or security if
the last bits on the active and inactive wires of circuits other than Ct are the
same, since selection is done based on the index t provided by Gen, and further
Ev will not obtain both labels of any wire (and hence won’t detect the mismatch
between ̂C and the interpreted evaluation of Ci).

Free XOR and half-gates. Our construction works with the Free XOR gar-
bling [KS08a].

Using half-gates [ZRE15] also works. Intuitively, this is because its garbled
tables also look like random strings. We show this in Sects. 6 and 6.1. We note
that using half-gates is concretely efficient, since the LSB of labels true and
false is different and hence the garbled output can be cheaply fed into output
selection protocol.

Addressing different circuit sizes in S. It is easy to see that our approach does not
limit us to considering S consisting only of the circuits of the same size. Indeed,
let smax = maxi |Ci| be the maximum circuit size in S. It is sufficient1 for Gen

to garble the target circuit ̂Ct and pad it with randomly generated garbled tables
to obtain ̂C′

t, so as the total number of garbled tables in the produced circuit
̂C′
t is equal to smax. Then, a simple convention can be easily designed to allow

Ev to use only the garbled tables of needed in evaluating each circuit Ci by
appropriately interpreting ̂C′

t.

On the cost of SFE and OT rounds. Our S-UC GC protocol adds a round of com-
munication for each switch statement. We argue that the associated latency cost
is negligible in many practical scenarios. This is because often the latency-related
idling will be productively used for computation and communication in the same
or another SFE instance. This is the case, e.g., in larger-scale SFE deployments,
where many instances will be run in parallel, and where SFE throughput is a far
more important parameter than latency.

Composing our protocol with GC. We note that we additionally design a secret-
shared-output functionality, where the output of the computation is not recon-
structed, but remains shared GC-style. Hence, it can be privately plugged into
another GC.

Nesting switch clauses. Our protocol naturally works for the nested clauses.
One way to implement a nested clause is to bring all choice variables to the
same level, placing us in the non-nested setting.

Figure 1 illustrates how a nested clause (left) can be rewritten to a single-level
branching (right). Again, we note that Gen must know the selection choices.

1 This holds for main schemes, such as classical Yao, Free-XOR and half-gates, as we
show in Sect. 6.1. It is possible to craft garbling schemes where this specific technique
won’t work. See Sect. 5.3 for a formal discussion.

Free IF: How to Omit Inactive Branches and Implement 41

Fig. 1. switch nesting rewriting. Left: nested. Right: flat.

We note that this nesting management results in no additional communica-
tion rounds due to nesting. In most cases, the nesting would not be deep/wide
enough to overwhelm the computational resource. Indeed, the computation cost
would be less than implementing the same circuit using standard Yao GC.

To illustrate the costs, consider the above example and let’s suppose all
functions are of the same size smax, and Gen’s choice variables are a = 2 and
b = 1. Then our protocol will require Gen to generate and send a single GC ̂C
implementing F21, and Ev to evaluate the received ̂C four times. Standard GC
will require Gen to generate and send four GCs, and Ev to evaluate four GCs.

3.1 Extending the BHR Framework: Decoupling the Topology

An important conceptual contribution of this work is the departure from thinking
of garbled circuits as monolithic objects, but rather, emphasizing that they are
strings representing (separately) the computed function and the cryptographic
material, such as garbled tables. We formalize this approach by extending the
BHR framework to support this vision. We are able to change some of the most
fundamental concepts of the framework while preserving it completely and not
requiring redefining any of its functions. This allows to reuse all existing body
of work in the popular and very useful BHR framework.

Specifically, our main change to BHR is a restriction that the garbled circuit
F must consist of two components, the function topology T and cryptographic
material E. This adjustment does not affect any of the existing BHR functions,
constructions and proofs, but allows us to introduce a new security property
related to obliviousness, which formalizes indistinguishability of GC evaluation
under different topologies.

We state our main result, Free IF, in the new extended BHR framework.

3.2 Outline of the Presentation

We already described at a high level the technical details of our contribution in
Sect. 3. Next, we introduce preliminary notation and definitions. In Sect. 5, we
review the relevant aspects of the BHR framework and introduce its extension
that allows to reason about circuit garblings separately from the function encod-
ing. We present our GC construction in the above extended framework, prove
security and formally discuss suitable garbling schemes, including half-gates, in
Sect. 6. Finally, in Sect. 7, we discuss the performance of our improvement.

42 V. Kolesnikov

4 Preliminaries

4.1 Notation

Throughout the paper we use the following notation: the computational and
statistical security parameters are denoted by κ and σ, respectively. We will
denote circuits by C and garbled circuits by ̂C. We denote a circuit’s gate by
Gi and a garbled gate by ̂Gi. We denote by S the set S = {C1, C2, ..., Cn} of
circuits with respect to which we design our universal circuit. We denote size of
S by s = |S|. NOT gates are implemented in the standard way by switching the
wire label semantics and we don’t discuss them further. We count the number
of non-XOR gates in a circuit as its size sCi

= |Ci|. We denote the maximal
circuit size in S by smax = maxCi∈S |Ci|. We denote by sTotalCi

= |Ci|Total the size
of the circuit Ci, including/counting XOR gates. We use the notation c= to denote
computational indistinguishability of ensembles of random variables.

4.2 Defining S-Universal GC

We introduce security definitions with which we operate in this work. We are
interested in efficient S-Universal GC evaluation. In Fig. 2 we formalize the func-
tionality FS-UC which will serve as the basic definition.

Intuitively, our goal is simple: we wish to evaluate a function chosen by one
of the players P1 among the known set of functions S.

We additionally define a more convenient functionality FS-UC-s for shared-
output FS-UC. FS-UC-s requires that the players don’t get the output of the
function Ct directly, but rather a GC-style secret sharing of the computed value.
The functionality FS-UC-s is presented in Fig. 3. We will present our construction
for the simpler FS-UC functionality; extension to the more convenient FS-UC-s

functionality is simple, and we briefly discuss it in Sect. 6.

5 Extending the BHR Framework

It is beneficial to present the work in the terminology of garbling
schemes [BHR12], introduced by Bellare, Hoang and Rogaway (BHR). In our
abstraction approach, we aim to find a balance between generality and simplic-
ity, while maximizing the reuse of the thoughtfully designed BHR framework.

We start by reminding the reader of the relevant details of the BHR frame-
work.

5.1 BHR Garbling Schemes

Bellare, Hoang, and Rogaway [BHR12] introduce the notion of a garbling scheme
as a cryptographic primitive. We refer the reader to their work for a complete
treatment and give a brief summary of relevant aspects here. We note that their
definitions apply to any kind of garbling, such as decision trees, automata, etc.

Free IF: How to Omit Inactive Branches and Implement 43

Fig. 2. S-UC functionality FS-UC

Fig. 3. S-UC-s functionality FS-UC-s

We focus the notation on circuits and circuit garbling, which BHR consider as a
special case, by requiring certain constraints on syntax and semantics of general
object in their framework. A circuit garbling scheme consists of the following
algorithms: Garble takes a circuit f as input and outputs (F, e, d) where F is a
garbled circuit, e is encoding information, and d is decoding information. Encode
takes an input x and encoding information e and outputs a garbled input X.
Eval takes a garbled circuit F and garbled input X and outputs a garbled output
Y . Finally, Decode takes a garbled output Y and decoding information d and
outputs a plain circuit-output (or an error ⊥).

Most relevant in our context are the prv.sim (privacy) and obv.sim (oblivious-
ness) security definitions from [BHR12], which we state below. In the prv.sim and
obv.sim games, the Initialize procedure chooses β ← {0, 1}, and the Finalize(β′)
procedure returns β

?= β′. In both games, the adversary can make a single call
to the Garble procedure, which is defined below. Additionally, the function Φ

44 V. Kolesnikov

denotes the information about the circuit that is allowed to be leaked by the gar-
bling scheme; the function S is a simulator, and G denotes a garbling scheme.

prv.simG,Φ,S :

Garble(f, x):

if β = 0
(F, e, d) ← Garble(1κ, f)
X ← Encode(e, x)

else (F, X, d) ← S(1κ, f(x), Φ(f))
return (F, X, d)

obv.simG,Φ,S :

Garble(f, x):

if β = 0
(F, e, d) ← Garble(1κ, f)
X ← Encode(e, x)

else (F, X) ← S(1κ, Φ(f))
return (F, X)

We then define the advantage of the adversary in the security games:

Advtgprv.simG,Φ,S (Adv, κ) :=
∣

∣

∣

∣

Pr[prv.simAdv
G,Φ,S(κ) = 1] − 1

2

∣

∣

∣

∣

;

Advtgobv.simG,Φ,S (Adv, κ) :=
∣

∣

∣

∣

Pr[obv.simAdv
G,Φ,S(κ) = 1] − 1

2

∣

∣

∣

∣

.

We say that a garbling scheme satisfies privacy (resp. obliviousness) if for
any polytime adversary Adv, the corresponding advantage Advtg is negligible.
We omit restating here the remainder of the BHR framework, and refer the
reader to the original work.

5.2 Intuition for Topology Decoupling and Composition

Ability to decouple the topology of evaluated GC, highlighted and used in this
work, is related to the standard obliviousness property formalized by BHR. Intu-
itively, BHR obliviousness means that a party acquiring F and X, but not d,
shouldn’t learn anything about f , x, or y beyond that is explicitly allowed in
the leakage function Φ. This is roughly the property we require as well, but with
a different formalization, requiring careful handling.

The following are the technical issues that need to be addressed to enable
discussion of our protocols in the (extended) BHR framework.

1. Let F be a string representing a garbled circuit. Firstly, we need to syntacti-
cally separate the function encoding (e.g., topology) T from the cryptographic
material E included in F , such as garbled tables. That is, we wish to explic-
itly write F = (T,E), thus enabling consideration of a GC (T ′, E). We note
that in the BHR framework, the function description T is either implicit in
Eval or is included in F in an unspecified manner.

2. Secondly, once this syntactic convention is adopted, we need to adjust the
definitions to support evaluation under a “wrong” function encoding, and
further, to require that Eval will not detect whether it operates with a “right”
or “wrong” encoding.

3. Thirdly, the BHR framework naturally treats circuits as “the whole thing,”
and does not provide for a clean interface to discuss shared output (e.g.

Free IF: How to Omit Inactive Branches and Implement 45

undecoded wire labels which may later be used as encrypted input in another
computation). In particular, the BHR decoding function Decode is required
to output the correct plaintext value of the computation.

We now sketch a suitable formalization approach addressing the above issues
for natural circuit representations. We take the BHR framework as the basis and
adjust it as described next. The formal definitions are presented in Sect. 5.3.

We stress that for concreteness and convenience we next discuss specific ways
to encode a circuit in GC. We note that that the definitions of Sect. 5.3 are more
general, and may use arbitrary encodings.

Topological encoding in GC F . In BHR, Y = Eval(F,X) takes as input the
garbled circuit F and garbled input X. The BHR framework does not discuss
how garbled function F encodes information which allows Eval to proceed with
the evaluation. In BHR, conventional Boolean circuits are viewed as a tuple
(n,m, q,A,B,G). Here n ≥ 2 is the number of inputs, m ≥ 1 is the number of
outputs, and q ≥ 1 is the number of gates. A (resp. B) is a function identifying
a gate’s first (resp. second) incoming wire, and G is a function identifying the
gate function of the gate. BHR introduces the notation of topological circuit
f−, which is defined to be a conventional circuit f without the gate function
component. That is, for a circuit f = (n,m, q,A,B,G), the topological circuit
f− is defined as (n,m, q,A,B).

Let’s consider the question of evaluating a GC, given a list of garbled tables.
It is easy to see that f− contains sufficient topological information to evaluate
classical Yao’s GC, assuming an implicit correspondence between gate id and the
garbled table associated with it. Such a correspondence is typically implemented
by enforcing a canonical ordering of the gates and garbled tables.

At the same time, f− does not have sufficient information to evaluate circuits
garbled with Free-XOR [KS08a]. This is because the ids of XOR gates are not
included in f− and cannot be inferred from a bare list of garbled tables. To
generalize this, we will consider type-topological circuits:

Definition 1. Following the BHR notation, we say that f∗ is a conventional
type-topological circuit, if f∗ = (n,m, q,A,B,G∗), where G∗ specifies the gate
type of each gate. We will often simply say topological circuit or topology instead
of type-topological circuit when clear from the context.

We stress that the topological circuit must provide sufficient information to
the Eval function to enable GC evaluation.

A typical example of gate types referred by G∗ is the set {XOR, non-XOR}.
Topology f∗ with G∗ defined over this type set allows evaluation of Free-XOR
and half-gate garbled circuits. We note that other natural definitions of circuit
topology are possible. One example is to include pointers to the garbled tables
implementing gates. We choose the representation of Definition 1 as a balance of
generality and simplicity which may be convenient to use for known GC schemes.

46 V. Kolesnikov

Topology Decoupling and Evaluation with Different topology. We need
to enable parsing and evaluation of GC F with varying topology. As outlined
above, for this we need to syntactically decouple the (implicit and determinis-
tically computed) GC topology from the (generated using randomness) crypto-
graphic material, such as encrypted tables. Without loss of generality, we require
parsing the garbled circuit F as F = (T,E), where T is the type-topological cir-
cuit f∗ and E is the cryptographic material, such as a set of encrypted tables. We
set f∗ = (n,m, q,A,B,G∗). We thus require Garble to produce F in the above
format, and Eval(F,X) to accept this format F = (T,E) of garbled circuit.

By extracting the type-topology T out of the GC F we enable evaluating F
with an arbitrary topology T ′. As a security feature of a circuit garbling scheme,
we will require that evaluator is unable to tell whether it is evaluating with the
intended topology T or an arbitrary different one T ′. This will be ensured by
requiring that the ensembles {(T,E),X} and {(T ′, E),X} are indistinguishable,
where X are the (encoded) input labels, T is the matching topology, and T ′ is
any admissible topology. In Sect. 5.3, we define the intuitive notion of admissible
topology (by considering classes of mutually admissible functions) and formalize
the above indistinguishability property.

Again, we stress that different topology representations are possible. While
the type-topology described above is convenient for known GC schemes, our
definitions in Sect. 5.3 do not restrict to using above representation.

Shared Output and Composition in Garbled Circuits. As noted above,
the BHR framework does not naturally handle in generality the composition of
garbled functions. It has the concept of garbled output, which, together with the
decoding information can be seen as the secret-sharing of the function output.
However, this representation is too general, and as one consequence, does not
support discussing manipulation of the undecoded or partial output and feeding
such output into a subsequent execution. In [BHR12], the authors sometimes
handle over-generality by parsing standard BHR objects in a certain way. For
example, faced with the need to discuss circuit input labels and their use in
OT, the authors simply say “parse (X0

1 ,X1
1 , ...,X0

n,X1
n) ← e.” This, of course,

assumes a specific garbling scheme, and represents a trade off between simplicity,
generality and formalism.

One way of formalizing the required secret-shared output bits is by introduc-
ing restrictions on the format of the decoding information Y 2.

It would be convenient to formalize this restriction as an option for circuit
garbling scheme, by requiring that the garbled output Y = (Y1, ...Ynout) is a
vector of garbled wire outputs and allows for syntactic access to any particular
component. Similarly, we require that the decoding information d = (d1, ..., dnout)

2 Indeed, BHR allows arbitrary representation options, including exotic ones such as
Y = AESk(y) being an AES encryption of the multi-bit output y, and d = k being
the AES decryption key. Clearly such a representation, while secure, is inconvenient
for revealing a partial output or providing the unencrypted output for further GC
evaluation.

Free IF: How to Omit Inactive Branches and Implement 47

is a vector of output wire decodings, such that di allows to decode the garbled
output Yi. We will overload the standard BHR Decode function to take as input
any subsets of garbled wire labels and corresponding decoding information.

5.3 Definition of Topology-Decoupling Circuit Garbling

We now formalize the intuition described in Sect. 5.2.
Recall, in the BHR framework [BHR12], the garbling scheme is a five-tuple

of algorithms GS = (Garble,Encode,Decode,Eval, eval). A BHR circuit garbling
scheme CGS = (Garble,Encode,Decode,Eval, eval) is a garbling scheme with cer-
tain natural syntactic restrictions. To reason about our protocol in generality, we
introduce a further syntactic restriction on the BHR garbled circuits. Namely,
syntactically, we will require the garbled circuit to be specified as F = (T,E).
Here T is a function encoding, such as the conventional type-topologic circuit (cf.
Definition 1), and E is cryptographic material, such as garbled tables. We keep
the syntax of all BHR functions Garble,Encode,Decode,Eval, eval.

In the following we use the standard BHR notation, and we only present
notions and objects different from standard BHR.

Definition 2 (Circuit Garbling Scheme (CGS)). We consider Circuit Gar-
bling Scheme as defined by BHR, with the following difference:

Garbled circuit. We require the garbled circuit F = (T,E) to explicitly define the
function encoding component T . T is implicit in and deterministically obtained
from the computed plaintext circuit f . We will often say topology instead of
function encoding when clear from the context.

Garble. On input (1κ, f), Garble will output (F, e, d), where F = (T,E). Here
T = T (f) is deterministic and hence can be computed by any party, including
the GC evaluator.

Eval. The garbled evaluation function Eval takes garbled input X and F = (T ′, E)
as input. Eval outputs garbled output labels Y or a special failure symbol ⊥.

Reusing BHR machinery. With the above syntactic restriction, we are able
to reuse the existing BHR garbling machinery in defining a generalization of
BHR circuit garbling. Importantly, our notion is a special case of BHR garbling
scheme, and thus we can keep the BHR function definitions and correctness and
security requirements as is. This is because we (so far, with a single exception)
restricted the syntax of the BHR notions. Our only generalization (allowing to
evaluate under different topology), is not exercised in BHR definitions. There-
fore, all BHR notation and definitions retain their meaning and are reused.

In other words, the BHR framework (which we retain in full as the founda-
tion!) is sufficient to handle the case of evaluating a circuit with correct topology.
We only need to define the behavior of circuit garbling in the generalized case
of evaluation under different topology.

Specifically, we only need to define the security properties ensuring that eval-
uation under an admissible topology is indistinguishable from correct evaluation.

48 V. Kolesnikov

Topology-decoupling circuit garbling schemes. There are several
approaches to defining indistinguishability of garbled circuits with matching
(“right”) and non-matching (“wrong”) topology.

In one approach, we could require the Garble function to take an additional
parameter s, specifying the size of the maximal circuit. Garble then would pro-
duce a garbled circuit implementing the given function f , but which has extra
garbled tables, suitable for implementing any circuit of size up to s. Then we
would require that the output (T,E) of such Garble function is such that ensem-
bles (T,E) and (T ′, E) are indistinguishable. This general approach requires
either overloading syntax of a standard BHR function, or introducing a new
function. In turn, BHR definitions stipulating security guarantees of standard
functions will need to be rephrased and stated second time for the new function.

Another approach could be to define a small-family garbling scheme w.r.t. a
fixed set of circuits which we intend to use as conditional clauses, and then define
generalized obliviousness. This is a natural approach, but it requires showing the
security of the garbling scheme for each set of circuits that might be required.

Our approach. Instead, we will take a cleaner and more general definitional
approach. We consider classes of mutually topologically admissible circuits. Such
a class would be defined by a canonical (for the class) circuit fcan. (For example,
in known schemes, such as Free-XOR and half-gates, the class of circuits will be
defined by the maximal number s of non-XOR gates, and fs

can could be a circuit
consisting of s AND gates.) We stress that multiple circuits could be canonical
for the same class C.

For convenience, we first introduce the following notation.

Definition 3 (Embedding of cryptographic material). We denote by
Embed the procedure of introducing the cryptographic material E of a function f
into the cryptographic material Ecan of the canonical circuit fcan. We will write
Embed(E,Ecan) to denote the output of this procedure.

The idea of the Embed procedure and its use, formalized in the definitions
next, is that the cryptographic material Embed(E,Ecan) can be used to eval-
uate f , but is indistinguishable from embeddings of cryptographic material
Embed(E′, Ecan) of any other function f ′, where f and f ′ belong to the same
class of mutually admissible circuits. The indistinguishability must hold even if
the encoded input is given. Embed will be defined as part of garbling scheme
description.

We stress that circuit encoding details, such as wiring, number of inputs and
outputs, etc., need not be explicitly specified and discussed in the definition.
Instead, this is handled by considering a class C of circuits for which the garblings
are compatible or mutually admissible (defined below).

We now formally define the indistinguishability requirement.

Definition 4 (Topology-decoupling circuit garbling). Let CGS =
(Garble,Encode,Decode,Eval, eval,Embed) be a circuit garbling scheme as dis-
cussed above (Definition 2), with the added Embed function. Let fcan be a circuit,

Free IF: How to Omit Inactive Branches and Implement 49

Fig. 4. Game topoCGS,C,fcan
.

and let C = Class(fcan) be a set (or class) of circuits. Consider the distinguishing
advantage of the adversary winning the game topo of Fig. 4 (cast in the BHR
setup with Initialize() and Finalize() procedures as in BHR).

We say that CGS is topology-decoupling within C and that fcan is canonical
for C, if for every polytime adversary Adv, the following is negligible:

Advtgtopo,fcan

CGS (Adv, κ) = |Pr[topoAdvCGS,C,fcan
(κ) = 1] − 1

2
| (1)

We note that the topo game of Definition 4 exactly corresponds to our pro-
posed construction, where the circuit’s cryptographic material is evaluated under
different function encodings/topologies with the same garbled input.

Finally, we need to require correct evaluation of a circuit (T,Embed(E,E′)),
where T,E are matching, i.e. produced by F ← Garble(κ). Formally:

Definition 5 (Extended correctness). Let CGS be a circuit garbling scheme
(Definition 2). Let ((T,E), e, d) = Garble(1κ, f) and ((Tcan, Ecan), ecan, dcan) =
Garble(1κ, fcan), where f belongs to a class defined by a canonical function
fcan. We say that CGS has extended correctness, if it always holds that:
Decode(d,Eval[(T,Embed(E,Ecan)),Encode(e, x)]) = eval(f, x).

We note that topology-decoupling does not imply extended correctness, since
the experiment in the topology decoupling definition does not have access to
output encoding.

Notation. Extended correctness is an obvious and default requirement. Therefore,
for convenience of notation, we will say topology-decoupling circuit garbling to
mean “topology-decoupling circuit garbling with extended correctness.”

We will use topology-decoupling circuit garbling schemes. To use them in
constructing S-UC protocols, one will need to first design a topology-decoupling
garbling scheme and then apply the generic construction presented in the next
section. Designing a required garbling scheme can be simply done by starting

50 V. Kolesnikov

with an existing scheme, such as half-gates, and showing that it meets the addi-
tional requirements (Definitions 4 and 5) or adjust it so that it does. This
approach relies on and reuses the existing body of work of proving security in
the BHR framework.

5.4 Output Manipulation Extension

We introduce the notation for bitwise output manipulation with the goal of
keeping the standard BHR notation intact, while at the same time allowing
formalizations and use in generic protocols.

Definition 6 (Topology-decoupling circuit garbling with bitwise
decoding). Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a topology-
decoupling circuit garbling scheme.

We say that a topology-decoupling circuit garbling scheme CGS supports bit-
wise decoding if the following holds:

1. The garbled output Y is a vector of garbled wire outputs Y = (Y1, ...Ynout) and
allows for syntactic access to any particular component by index Yi.

2. The decoding information d is a vector of output wire decodings d =
(d1, ..., dnout) and allows syntactic access to any particular component by index
di.

3. Extended correctness of decoding holds per wire. That is, let ((T,E), e, d) =
Garble(1κ, f) and ((Tcan, Ecan), ecan, dcan) = Garble(1κ, fcan), where f
belongs to a class defined by a canonical function fcan. Let Y =
Eval[(T,Embed(E,Ecan)),Encode(e, x)]. Then we require Decode(di, Yi) =
eval(f, x)|i.
A similar definition is easily constructed for standard BHR framework.

6 S-UC Construction from Topology-Decoupling Circuit
Garbling

We now show a generic S-UC construction built from the generic notion of
topology-decoupling circuit garbling schemes with extended correctness, intro-
duced above. In this section, we exclusively work with such schemes. For con-
venience, we may refer to them in this section simply as circuit garbling, when
clear from context.

Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a circuit-garbling
scheme with topology-decoupling garbling (Definition 4) and extended correct-
ness (Definition 5). The construction of Fig. 7 is presented in the generic terms
of such circuit garbling. In reviewing the construction, it may be instructive to
think in terms of a specific garbling scheme, such as the half-gates scheme or
classical Yao, and the class of admissible circuits as all circuits with up to s
non-XOR gates, where the canonical circuit is the s-gate circuit consisting of
AND gates.

Free IF: How to Omit Inactive Branches and Implement 51

We start with presenting a generalized output selection functionality (Fig. 5).
Here, instead of the specific way of feeding the shared input into the functionality,
we tailor it to work with generic BHR-style sharing, where one party will hold
garbled output, and the other will hold the decoding information. We note that
protocol Πgen-out of Fig. 6 implementing Fgen-out can be refined if circuit garbling
supports bitwise decoding (Definition 6). In the formal construction (Fig. 7), we
omit this and other natural enhancements (such as considering specific bits of the
output labels or producing shared output a-la functionality Fout-s) for simplicity
of presentation.

Fig. 5. Generalized output selection functionality Fgen-out

Theorem 1. Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a
topology-decoupling circuit garbling scheme (Definitions 4 and 5) with respect to
a class C and a canonical circuit Ccan. Then the construction of Fig. 7 securely
implements the S-UC functionality of Fig. 2.

Proof. Security against corrupt Gen. This part of the security proof closely
follows the standard Yao GC proof and is omitted. Indeed, the view of Gen only
includes the messages sent by the OT executions and the messages received as
part of the output selection functionality Fgen-out, and is easily simulated (in
part) by plugging in the output of the corresponding simulators.

Security against corrupt Ev. Intuitively, we need to argue that Ev does not
gain additional information from evaluating the same GC ̂C when interpreted as
garblings of different circuits Ci. We exhibit a simulator SimEv and prove that its
output is indistinguishable from the real execution. We will rely on the topology
decoupling property of circuit garbling, as formalized by Definition 4.

Constructing SimEv. Recall, the simulator SimEv(y, z) knows the set of circuits
S = {C1, C2, ..., Cn}, where each Ci ∈ C(Ccan). SimEv(y, z) takes as input the true
input and the output of the real execution and outputs the simulated view
ViewSimEv

.

52 V. Kolesnikov

Fig. 6. Generalized output selection protocol Πgen-out realizing Fgen-out of Fig. 5.

Fig. 7. S-universal garbled circuit protocol

SimEv starts by emulating the GC ̂C received in Step 1 of Fig. 7. To do
so, SimEv simply runs ((T,E), e, d) ← Garble(1κ, Ccan) and adds E to the view
ViewSimEv

.

Free IF: How to Omit Inactive Branches and Implement 53

SimEv proceeds to emulate Step 2 by parsing (X0
1 ,X1

1 , ...,X0
nin

,X0
nin

) ← e3. For
each index i of the wire provided by Gen, SimEv adds X0

i , to the view ViewSimEv
.

SimEv emulates the receiver’s view of OT (Step 3) by calling the provided OT
simulator SimOT. SimEv provides input y to SimOT as well as the corresponding
input wire labels Xj

i generated by Garble above. This is intended to simulate
the labels that are output as the result of OT. SimEv appends the Receiver view
generated by SimOT to the view ViewSimEv

.
SimEv emulates the evaluation of all n circuits of Step 4 by honestly executing

Step 4 n times as prescribed in the protocol of Fig. 7. As a result, SimEv obtains
n garbled outputs Yj . These Yj are implicit in the already-generated view and
hence are not formally included in ViewSimEv

.
Next SimEv simulates Step 5 by calling the simulator SimΠgen-out for the pro-

tocol Πgen-out realizing Fgen-out. For this, SimEv calls the simulator with input n
garbled outputs Yj , as well as the vector of the output labels received as SimEv

input. SimEv appends the output of the simulator to its view ViewSimEv
, outputs

its view and terminates.
Indistinguishability of the simulation. It is easy to verify that the simulation

is indistinguishable from the real execution.
Firstly, garbled circuits and the input encoding obtained in Steps 1–3 of the

real protocol are indistinguishable from the corresponding simulated view. This is
because the circuit garbling scheme CGS is topology-decoupling (cf. Definition 4).
Indeed, the real view is ((T,Embed(E,Ecan)),X), and the simulated view is
((Tcan, Ecan),Xcan). The game topoCGS,fcan

of Definition 4 immediately implies
that the above distributions are indistinguishable.

As a result, the view ViewSimEv
up until the call to a realization Πgen-out of

Fgen-out is indistinguishable.
Simulation of Πgen-out step is done by referring to the Πgen-out simulator

SimΠgen-out . We need to take care of two details:

1. ensure that input-output relationship of the call to Πgen-out is consistent with
the ViewSimEv

generated so far. Indeed, this is consistent. SimEv will provide
to SimΠgen-out the output labels it (SimEv) received as input, as well as the
collection of the candidate garbled labels Yj that SimEv had computed.

2. ensure that simulation provided by SimΠgen-out is good, despite the fact that the
P2 input provided to SimΠgen-outdifferent from the input provided to Πgen-out in
the real execution.
This is slightly more involved, and will require looking inside how the stan-
dard simulators work for GC-based secure computation. We show that there
exists a simulator of P2 which works with our proof. Intuitively, this is pos-
sible because Receiver’s real input is only used in the OT component of the
simulation of Πgen-out, where it is not used in an essential manner.
Consider the standard simulators of GC evaluator SimEv−LP of [LP04] and

3 While BHR do not formally require that such a parsing is possible, it is quite unnat-
ural to not permit it, and all current garbling schemes allow it. Futher, in their
examples BHR implicitly assume existence of such parsing.

54 V. Kolesnikov

of the OT Receiver SimR−IKNP of [IKNP03]. SimEv−LP accepts as input the
player’s input y and the function output f(x, y); it uses y only to pass
it (together with the needed OT output) to the OT Receiver simulator
SimR−IKNP. “Inside” SimR−IKNP of [IKNP03], the simulation succeeds inde-
pendently of what y is.
Finally, even though the input provided to SimΠgen-out is not the same as the
input provided to Πgen-out in the real execution, this is not a problem, as
they are still computationally indistinguishable when considered as part of
the probability ensemble {f1(x, y), S2(y, f2(x, y))}, as argued above.

	

Achieving shared-output functionality FS-UC-s. The protocol of Fig. 7 can be nat-
urally extended to implement FS-UC-s of Fig. 3. This is achieved, e.g., by running
a shared-output version Πgen-out-s of the output selection protocol Πgen-out. In
turn, Πgen-out-s is derived from Πgen-out by not sending the GC decoding informa-
tion to the other player and not reconstructing the plaintext output in the last
stage of Πgen-out.

6.1 Standard Garbling Schemes are Topology-Decoupling with
Extended Correctness

It is easy to verify that standard GC schemes (classical Yao, Free-XOR and
half-gates) satisfy the required notion. For classic Yao, the topology decoupling
is with respect to the class C of circuits with maximal circuit size s. For the Free-
XOR [KS08a] and half-gates [ZRE15] schemes, C is the set of circuits of ≤ s
non-XOR gates. In all three cases, the canonical circuit is the circuit consisting
of s AND gates and can have any number of inputs and outputs.

In our generic treatment of circuit garbling schemes, we ask the scheme to
define the Embed procedure. For the above standard schemes, we define the
Embed procedure as follows:

Construction 1 (Embedfor standard schemes). For classic Yao, Free-XOR
and half-gates, we define Embed to be the syntactic procedure of replacing the
prefix of the cryptographic material E2 with another cryptographic material E1.
For |E1| ≤ |E2|, we say E = Embed(E1, E2), if E is the string equal to E2 whose
first |E1| bits are set to be to be the string E1.

Theorem 2 (Half-gates garbling is topology-decoupling with extended
correctness). Assuming hashing functions used in the half-gates construction
are modeled as a random oracle, the half-gates garbling of [ZRE15] with the above
Embed satisfies Definition 4 with respect to the class C of circuits with the same
number of input and output wires, and with number of non-XOR gates less or
equal to s, where canonical circuit is the circuit consisting of s AND gates. The
half-gates garbling also satisfies Definition 5.

Free IF: How to Omit Inactive Branches and Implement 55

Proof. We first observe that syntactically the functions defined by the half-gates
scheme will work with switched topology. In particular, the Eval procedure of
the half-gates scheme does not check that there are leftover garbled tables after
completion. We defined the Embed procedure above. No additional syntactic
changes are needed to consider the scheme.

Extended correctness is immediate. Evaluation of the embedded half-gates
GC will proceed identically to the standard half-gates evaluation.

Topology-decoupling. Recall, in the half-gates scheme, the insight is for the
generator Gen to generate a uniformly random bit r, and to transform the original
AND gate vc = va ∧ vc into two half gates involving r:

vc = (va ∧ r) ⊕ (va ∧ (r ⊕ vb))

This has the same value as va ∧vb since it distributes to va ∧(r⊕r⊕vb). Observe
that in the first conjunction (va∧r) the generator Gen knows r, and in the second
conjunction (va ∧ (r ⊕ vb)), the evaluator Ev is allowed to learn (r ⊕ vb). In both
conjunctions one of the players knows one of the inputs in plaintext. ZRE call
them half-gates, a generator half-gate and an evaluator half-gate.

ZRE [ZRE15] then use a standard construction of two-row tables for each of
the half-gates. Further, a standard garbled-row reduction technique is applied to
reduce size of each to a single row. Finally, the vc = va ∧ vc is computed via the
Free-XOR technique. Importantly for our proof, the garbled rows look random
and do not contain any redundant information allowing evaluator to verify that
it is evaluating a correctly garbled circuit.

Specifically, let pa, pb be the random permutation bits selected by Gen, and
Δ is the Free-XOR offset also selected by Gen. The generator half-table row TGen

is set to: TGen ← H(W 0
a) ⊕ H(W 1

a) ⊕ pbΔ. The evaluator half-table row TEv is
set to TEv ← H(W 0

b) ⊕ H(W 1
b) ⊕ W 0

a . The garbled output wire W 0
c is set to

be W 0
c ← H(W 0

a) ⊕ paTGen ⊕ H(W 0
b) ⊕ pb(TEv ⊕ W 0

a), and the other output
label is set W 1

c = W 0
c ⊕ Δ. It is easy to trace this and to verify that the garbled

tables output by the half-gates Gen are random-looking, assuming H is a random
oracle, even given an input encoding X. That is, given input encoding X, a circuit
consisting from randomly generated garbled tables is indistinguishable from the
correctly generated half-gates GC corresponding to X. This immediately implies
the theorem statement. 	

Similar theorems can be easily proven for Free-XOR, classical Yao, and many
standard constructions. The proof relies on the property that the garbled circuit
generated by Gen looks random, even given an input encoding.

Theorem 3. Assuming hashing functions used in the Free-XOR construction
are modeled as a random oracle, the Free-XOR garbling of [KS08a] with the
above Embed satisfies Definition 4 with respect to the class C of circuits with the
same number of input and output wires, and with number of non-XOR gates less
or equal to s, where canonical circuit is the circuit consisting of s AND gates.
The half-gates garbling also satisfies Definition 5.

56 V. Kolesnikov

Theorem 4. Assuming hashing function used in the classical Yao construction
are modeled as a random oracle, the standard 4-row Yao garbling of [LP09] with
the above Embed satisfies Definition 4 with respect to the class C of circuits with
maximal circuit size s and with the same number of input and output wires,
where canonical circuit is the circuit consisting of s AND gates. This garbling
also satisfies Definition 5.

7 Performance Calculation and Comparison

It is easy to evaluate performance of our S-UC scheme. For a set S of n circuits
of (non-XOR gate) sizes sCi

, our communication consists of transmitting a single
GC of size smax = max sCi

, plus the communication needed for Πgen-out. Πgen-out

requires nin ·n OTs and sending a circuit implementing Πgen-out, which is a simple
multiplexer and has approximately nout · n gates.

The multiplexer circuit can process each of nout wires at cost n non-XOR
gates, e.g. as follows. The selector boolean input can be a vector of zeros except
with a 1 in target position t. Then, the multiplexer computes XOR of all nout

conjunctions (of the selector bit and branch bit).
In contrast, the standard approach involves evaluating all n circuits, and the

total communication cost will consist of sending
∑n

i=1 |Ci|. We note that a recent
heuristic circuit overlay approach [KKW17] can reduce this cost, sometimes sig-
nificantly. As discussed in Sect. 1.2, our approach is more efficient and much
simpler than [KKW17] in the case considered in this work (where the evaluated
function is known to Gen).

For the special and representative case where all circuits are of the same size,
our approach will require sending approximately max |Ci| gates, while prior work
required sending n · |Ci| gates. (The cost of [KKW17] varies depending on the
effectiveness of the heuristic and is between max |Ci| and n · |Ci| gates sent.) The
auxiliary costs we incur (extra OTs and evaluating Πgen-out circuit) can often be
ignored, e.g. when Ci is large relative to the auxiliary costs.

We note that if the branch clauses are very small circuits, then the cost of
output selection may overweigh the benefit of Free IF. Precise determination of
the break-even point mainly depends on the relative cost of the extra round of
communication we require. Beyond the cost of the extra round, there is little
we pay. Our output selection algorithm involves a circuit size similar to the
multiplexer that would be used in regular GC; because we use OT as input, our
multiplexer requires approximately twice the number of bits as the regular GC
multiplexer.

Computation costs. We stress that the computation cost is reduced for the Gen-
erator (it would generate a single branch). However it remains the same as in
the standard GC for the Evaluator. This is because the Evaluator must evaluate
all branches of the circuit. We stress that in typical GC deployments commu-
nication is by far the most significant bottleneck, and runtime will usually be
proportional to the amount of communication required.

Free IF: How to Omit Inactive Branches and Implement 57

Acknowledgements. I would like to thank anonymous reviewers of this paper and
Viet Tung Hoang for valuable suggestions on presentation.

References

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, pp. 784–796.
ACM Press, October 2012

[DDK+15] Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T.,
Zeitouni, S.: Automated synthesis of optimized circuits for secure compu-
tation. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp. 1504–1517.
ACM Press, October 2015

[DKS+17] Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni,
S., Zohner, M.: Pushing the communication barrier in secure computation
using lookup tables. In: 24 Annual Network and Distributed System Secu-
rity Symposium (NDSS 2017). The Internet Society, February 26-March
1, 2017. To appear

[FVK+15] Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private
DBMS. In: 2015 IEEE Symposium on Security and Privacy, pp. 395–410.
IEEE Computer Society Press, May 2015

[GKS17] Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit con-
structions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 443–470. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70697-9 16

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431–473 (1996)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[KKW16] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying circuit clauses for
secure computation. Cryptology ePrint Archive, Report 2016/685 (2016).
http://eprint.iacr.org/2016/685

[KKW17] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional cir-
cuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10625, pp. 499–528. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 18

[KMR14] Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for
XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 25

[KS08a] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[KS08b] Kolesnikov, V., Schneider, T.: A practical universal circuit construction
and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85230-8 7

https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
http://eprint.iacr.org/2016/685
https://doi.org/10.1007/978-3-319-70697-9_18
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7

58 V. Kolesnikov

[KS16] Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 27

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit:
improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/017 (2016). http://eprint.iacr.org/2016/017

[LP04] Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party
computation. Cryptology ePrint Archive, Report 2004/175 (2004). http://
eprint.iacr.org/2004/175

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[MS13] Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient
framework for private function evaluation. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 33

[PKV+14] Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE
Symposium on Security and Privacy, pp. 359–374. IEEE Computer Society
Press, May 2014

[PSS09] Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of
semi-private functions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 89–106. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9 6

[SHS+15] Songhori, E.M., Hussain, S.U., Sadeghi, A.-R., Schneider, T., Koushanfar,
F.: TinyGarble: highly compressed and scalable sequential garbled circuits.
In: 2015 IEEE Symposium on Security and Privacy, pp. 411–428. IEEE
Computer Society Press, May 2015

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–
203. ACM Press, New York (1976)

[WGMK16] Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of
MIPS machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Mead-
ows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 6

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-662-49890-3_27
http://eprint.iacr.org/2016/017
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-01957-9_6
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-662-46803-6_8

Secure Computation with Low
Communication from Cross-Checking

S. Dov Gordon1(B), Samuel Ranellucci2, and Xiao Wang3

1 George Mason University, Fairfax, USA
gordon@gmu.edu

2 Unbound Tech, Petach Tikva, Israel
samuel ran@hotmail.com

3 University of Maryland, College Park, USA
wangxiao@cs.umd.edu

Abstract. We construct new four-party protocols for secure computa-
tion that are secure against a single malicious corruption. Our protocols
can perform computations over a binary ring, and require sending just
1.5 ring elements per party, per gate. In the special case of Boolean cir-
cuits, this amounts to sending 1.5 bits per party, per gate. One of our
protocols is robust, yet requires almost no additional communication.
Our key technique can be viewed as a variant of the “dual execution”
approach, but, because we rely on four parties instead of two, we can
avoid any leakage, achieving the standard notion of security.

1 Introduction

As secure multi-party computation (MPC) is transitioning to practice, one set-
ting that has motivated multiple deployments is that of outsourced computa-
tion, in which hundreds of thousands, or millions of users secret share their
input among some small number of computational servers. In this setting, the
datasets can be extremely large, while the number of computing parties is small.
The use of secure computation in such settings is often viewed as a safeguard
that helps to reduce risk and liability. While companies and government agencies
are increasingly choosing to deploy this safeguard, it is a security/performance
tradeoff that many are not yet willing to make.

One important notion related to the security of an MPC protocol is the choice
of adversarial threshold: a higher threshold means that the protocol can tolerate
more corrupted parties. However, requiring a higher threshold usually results in
feasibility and efficiency obstacles. For example, the earliest results in the field
demonstrated key distinctions between t ≥ n/2, t < n/2, and t < n/3 cor-
ruptions [3,5,22,32], including whether fairness could be guaranteed (t < n/2),
whether a broadcast channel is needed (t > n/3), and whether cryptographic
assumptions are necessary (t > n/3). More recently, when t > n/2, there are
results showing how to reduce the bandwidth to just a constant number of field
elements per party, per gate [13,14,18]. In contrast, when t ≥ n/2, our best
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 59–85, 2018.
https://doi.org/10.1007/978-3-030-03332-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_3&domain=pdf

60 S. D. Gordon et al.

protocols require expensive preprocessing, with communication cost that grows
quadratically in n.

In this work, we develop a new protocol in the honest majority setting, tai-
lored to the case where n = 4. Our protocol is secure against a single mali-
cious corruption, consistent with the requirement that t < n/2. Focusing on this
domain, we are able to construct extremely efficient protocols.

Looking at concrete costs, the most efficient secure two-party computation
protocol (in terms of communication) requires roughly 290 bytes of communica-
tion per party per gate [31,33]. If we are willing to relax the setting by assuming
that a malicious adversary can only corrupt one out of three parties, then we
can further reduce the cost to 7 bits per party per gate [1]. Our protocol further
reduces the cost significantly: our four-party protocol requires only 1.5-bits of
communication per party. Furthermore, the results just cited for the two-party
and three-party settings are for 40-bit statistical security, and their costs per
gate increase for higher statistical security. Our protocol has no dependence on
a statistical security parameter, and has only an additive O(κ) term (where κ is
a computational security parameter).

We also note that we can achieve 1-bit communication per party in the six-
party setting. For these previous works as well as the protocol in this paper, all
computation can be hardware accelerated and thus communication complexity
is the most suitable indicator of real performance.

Contributions. We now summarize our contributions. Our main result is sum-
marized in the theorem below. The construction and proof of security appear in
Sects. 3 and 4. An additional improvement appears in Sect. 5.

Theorem 1. In the four party setting, it is possible to construct a protocol for
securely computing a circuit of size |C| over a finite field F whose total commu-
nication complexity is 6|C| log |F | + O(κ). In particular, for a Boolean circuit,
this amounts to 1.5 bits per player, per gate.

Binary Rings. An interesting result of our work is that we can securely evalu-
ate an arithmetic function over binary rings, such as (Z232 ,+, ∗), where (+, ∗)
denotes modular addition and multiplication. Note that most MPC protocols do
not work over rings that are not fields. In particular, MAC-based protocols based
on SPDZ [17] do not work over Z232 , as the multiplicative inverse is necessary
for constructing linear MAC schemes. The security of our protocol only relies on
additive maskings, so we do not need a multiplicative inverse. The correctness of
our protocol when computing over a binary ring follows from the distributivity
property of rings. The distributivity property allows us to use beaver triples. A
similar observation, in the semi-honest setting, was recently made by Mohassel
and Zhang [30].

Robustness. We construct a robust variant of our protocol, guaranteeing that the
honest parties always receive correct output. The cost of adding robustness is free
if all the players act honestly, and only requires an additional O(κ log |C| log |F|)
overhead when a player misbehaves (Sect. 6).

Secure Computation with Low Communication from Cross-Checking 61

1.1 Technical Overview

From a high-level view, the construction of our protocol starts with a semi-honest
protocol, π1, for two-party computation in the preprocessing model. We would
like two participants in the protocol to execute π1. There are two main tasks
towards our final goal:

1. Generating the preprocessing data for π1 with malicious security.
2. Strengthening the security of π1 in the online phase from semi-honest to

malicious security.

Our solutions to these challenges rely heavily on the fact that we work in the
four-party setting with only one corruption. In order to generate maliciously
secure preprocessing, we ask the other two parties to locally emulate the prepro-
cessing ideal functionality, both using the same randomness. To ensure that the
computation of the preprocessing is done correctly, each of the parties executing
π1 verifies that he was sent two identical copies of the preprocessing.

The second challenge is trickier. Existing work that compiles semi-honest
security to malicious security are not suitable for our use. The techniques can
be broadly described as follows: (1) Using generic zero-knowledge proof, which
is impractical for most cases; (2) Using certain forms of MACs on each party’s
share to ensure honest behavior. This approach has been made practical, but
it requires preprocessing data of size (at least) Ω(ρ) bits per gate, to achieve
2−ρ statistical security. (3) In the honest majority setting, one can use Shamir
secret sharing, but our π1 is a two-party protocol, where one can be malicious.
Instead, our approach is based on a technique called “dual-execution” [24,28],
which is known to have one-bit leakage in general. However, we show that in the
four-party setting, by performing a special cross-checking protocol at the end,
we are able to eliminate the leakage without any penalty to the performance.
Details follow below.

Dual execution without leakage. In order to accommodate dual execution,
we require that π1 has certain special properties. Intuitively, the outcome of π1

should leave both parties with “masked wire values” for all wires in the circuit,
together with a secret sharing of the masks. This property can be satisfied by
many protocols, e.g. the modified Beaver triple protocol [2] that we use in this
paper, as well as the semi-honest version of TinyTable [15].

Now we are in the setting, where, say, P1 and P2 have generated the prepro-
cessing, and each hold the full set of wire masks, namely λ1. P3 and P4 have
executed π1, and recovered masked values, namely m1. Our dual execution is
done by letting P1 and P3 switch roles with P2 and P4. As a result, P1 and P2

will obtain m2, while P3 and P4 will obtain λ2 in the second execution. Concep-
tually, our cross-checking compares, for all wire values in the circuit, whether

λ1 + m2 = λ2 + m1.

Note that the above holds if both executions are honest, since both sides of the
equation are equal to the true wire values, masked by both masks (λ1 and λ2).
For details of the protocol, see Sect. 3.

62 S. D. Gordon et al.

Readers that are familiar with the dual execution paradigm in the two-party
setting, from garbled circuits, might wonder how we remove the bit of leakage.
There are two key insights here. First, when using garbled circuits, it seems
difficult to check the consistency of internal wires, whereas the masked wires
of the form just described allows us to easily check the consistency of all wires
in the two evaluations. This eliminates the possibility of input inconsistency,
and also prevents the adversary from flipping a wire value to see if it has any
impact on the output. Second, in a garbled circuit implementation, the adversary
can fix the output of a particular gate arbitrarily, creating a “selective failure
attack”: the change goes undetected if the output he chooses is consistent with
the true output on that wire, and would otherwise cause an abort. With these
masked wire evaluations, the adversary cannot fix a wire value arbitrarily; he is
limited to adding some value to the wire, changing it in all cases, and always
causing an abort. In particular, then, whether he is caught cheating no longer
depends on any private value. By exploiting the structure of masks and masked
values, checking for inconsistencies requires only O(κ) bits of communication.

Reducing communication. The protocol described until this point is already
extremely efficient, but we further reduce the communication in several interest-
ing ways. In the preprocessing, we do this in a fairly straightforward way, using
PRG seeds and hash functions to compress the material. In the cross checking,
recall that we need the parties to verify, twice, whether λ1 + m2 = λ2 + m1,
where these values have size |C|. (They verify twice because each member of one
evaluation compares with one member of the other evaluation.) A naive way here
would be to twice compare the hash of these values, but this is in fact insecure.
If an adversary changes a value on one of the wires in his evaluation, as we have
already noted, he will always be caught, because his partner will compare the
hash of his modified masked wire values with an honest party from the other
evaluation. However, the adversary can still learn sensitive information from the
result of his own comparison with a member of the other evaluation. Instead,
we can use any honest-majority, four-party protocol for comparing these two
hash values. The circuit for this comparison has only O(κ) gates, so this intro-
duces very little overhead. Nevertheless, in Sect. 5 we show how to bootstrap
this comparison, removing the reliance on other protocols.

Related work. Maliciously secure protocols, tailored for the three-party setting,
have been studied in many works. Choi et al. [8] studied the dishonest majority
setting based on garbled circuits. Araki et al. [1], Mohassel et al. [29], Furukawa et
al. [19] studied the honest majority setting. However, we are not aware of any
MPC protocol tailored for the four-party setting.

Other protocols that work in the four-party setting include honest majority
protocols [4,10–12,16,26] and dishonest majority protocols [6,17,25,27,31,34].
These protocols can be used for MPC with more parties, but when applied in
the four-party setting, their concrete performances are worse than our protocol.
In particular, Damg̊ard et al. [16] designed an efficient protocol in the honest
majority setting. Their techniques appear to be different from ours and can be

Secure Computation with Low Communication from Cross-Checking 63

extended to more parties; however, our protocol is much more efficient in terms
of the total cost than theirs in the four-party setting.

2 Preliminaries

In this paper, we mainly consider arithmetic circuits C with addition gates and
multiplication gates. Each gate in the circuit is represented as (a, b, c, T), where
T ∈ {+,×} is the operation; a and b are the input wire indices; and c is the
output wire index.

We denote the set of wires as W, the set of input wires as Winput, the set
of output wires of all addition gates as Wplus, the set of output wires of all
multiplication gates as Wmult.

Masked evaluation. One important concept that we use in the paper is masked
evaluation. Intuitively, every wire w in the circuit, including each input and out-
put wire, is associated with a random mask, namely λw. The masked evaluation
procedure works in a way such that for each gate two parties, holding masked
input and some helper information, are able to obtain the masked output. All
parties hold only secret shares of λw, namely 〈λw〉, therefore obtaining masked
wire values does not reveal any information. We will use mw to denote the masked
wire value on wire w. That is, mw = λw + x, assuming that the underlying wire
value on wire w is x.

Secure evaluation-masking two-party protocol. A secure two-party proto-
col for computing circuit C is an evaluation-masking scheme if (1) the protocol
uses preprocessing, (2) the preprocessing assigns to the circuit C a masking λ
(3) the players evaluate the gates of the circuit layer by layer; if a gate g is in
layer L, then the evaluation of L allows both players to learn the masked values
for the given layer, (4) if an adversary starts deviating from the protocol, the
adversary should not learn any information about the computation unless the
output is revealed. (5) any misbehavior from the adversary for a given wire is
equivalent to him adding a fixed value to the wire that can be computed from
his misbehavior. This type of attack is described as an additive attack in the
work of [20]. They showed that certain MPC protocols have this property.

In this paper, we build upon a variant of Beaver’s scheme [2] which is an
evaluation-masking scheme. The main modification of Beaver is that the players
will hold for each wire, secret shares of masks and both players will learn the
sum of the mask and the actual underlying value. We denote the sum of a mask
and a value as either a masking or a masked value.

Committing encryption. A public-key encryption scheme is committing if the
ciphertexts serve as commitments.

– Completeness. A person who encrypts a message m resulting in a ciphertext
c needs to be able to prove that c is indeed an encryption of m.

– Soundness. If the player who generated c can prove that c is an encryption
of m then dec(sk, c) = m.

64 S. D. Gordon et al.

– Verifiability. Given the public-key, it is easy to determine if a ciphertext is
valid.

ElGammal encryption is committing due to the fact that (1) every element of
the ciphertext space is a valid ciphertext, (2) it is easy to check that an element
is in the ciphertext space, and (3) a player can unambiguously prove that a
ciphertext maps to a particular plaintext by simply providing the randomness
that was used to encrypt a message m.

Theorem 2. (Informal) From any secure evaluation-masking two-party protocol
π1, secure against a semi-honest adversary, we can construct a protocol π2 for
four parties that is secure against a malicious adversary corrupting at most one
player.

Security definitions. We us the standard security definition for stand-alone
security, as defined, for example, in Goldreich’s textbook [21]. In Sect. 4, we
claim security with abort, in which the ideal-world adversary receives output
first, and then dictates whether the functionality should provide output to the
honest parties. In our protocol of Sect. 6, we achieve security with robustness,
or guaranteed output delivery, as defined by Goldwasser and Lindell [23]. Under
this definition, the honest parties always receive output, regardless of how the
adversary behaves.1

As is standard, we prove security in a modular way. We start by proving
security of our preprocessing protocol, and we assume we have a secure protocol
for comparing two strings. We then prove security of our main protocol in a
hybrid model in which the participants in the real-world protocol are assumed to
have access to the ideal functionalities achieved by these protocols. The seminal
work of Canetti proves that this suffices for achieving standard, stand-alone
security; the functionalities used in the hybrid world can be instantiated using
any protocols that securely realize them [7].

3 Our Main Construction

A quick summary of our idea is that we run two executions of a two-party,
semi-honest protocol in the preprocessing model, and verify consistency between
these two executions through a strategy that we call cross-checking. We start
by partitioning the players into two evaluation groups with two players in each
group. Each group prepares preprocessing for the other. They leverage the fact
that there is at most one corruption to verify that the preprocessing was done
correctly. Then, each group evaluates the circuit using that preprocessing. As the
outcome of the evaluation, each party holds masked wire values for all wires in the
circuit. Finally, the two groups check the consistency of the two evaluations using

1 Of course, if the adversary refuses to participate, we cannot hope to include his input
in the computation. In this case, some default value can be used, or his input can
be excluded entirely if the computation is well defined over 3 inputs.

Secure Computation with Low Communication from Cross-Checking 65

their masked wire values and masks. Since one of the evaluations is guaranteed
to be correct, any cheating will be caught in this step. Below we provide the
details of each of these steps as well as why it is secure. A formal description of
the protocol appears in Fig. 1, and in the other figures referenced from there.

Fig. 1. Main protocol in the hybrid model

Preprocessing. Recall that we partition four parties into two equal-sized
groups. We first let one group create preprocessing material, and distribute the
preprocessing to the other group. This procedure is then repeated with the roles
reversed; we describe it only for one group. We will often refer to the group that
is performing the preprocessing step as D1 and D2, and to the group that uses
the preprocessing in the evaluation phase as E1 and E2, recognizing that one
party plays the role of (say) D1 in one execution while playing E1 in the other
execution. An ideal functionality for the preprocessing appears in Fig. 2.

To generate the preprocessing material, D2 chooses a random string and
sends it to D1. They then each use this randomness to locally generate prepro-
cessing, choosing mask values for every wire in the circuit as follows. They select
a random field element for every wire w ∈ Winput ∪ Wmult (that is, for every
input wire, and every wire that is the output of a multiplication gate). We refer

66 S. D. Gordon et al.

Fig. 2. Fpre: Ideal functionality for preprocessing

to these mask values as λ1, and the ones generated by the other 2 parties, in the
second preprocessing execution, are denoted by λ2. For the output wire of addi-
tion gate (a, b, c,+), suppose the input wires a and b have already been assigned
mask values λa and λb. Then the output wire of the gate is assigned the mask
value λa + λb. Note that all circuit wires now have well defined masks. For each
multiplication gate (a, b, c,×), the two parties additionally compute γc = λa ·λb.
We let γ1 = {γc}c∈Wmult

. D1 and D2 use their shared random string to construct
secret sharings λ1 = Λ1+Λ2 and γ1 = Γ1+Γ2. That is, they create two identical
copies of the secret sharing. They both send Λ1 and Γ1 to E1, and they both
send Λ2 and Γ2 to E2. E1 and E2 each verify the equality of the two values he
received before proceeding to the evaluation phase. Note that after agreeing on
the random string at the beginning of the procedure described above, D1 and D2

require no further communication with each other. Because one of the parties
must be honest, the equality checks performed by E1 and E2 suffice to catch any
malicious behavior. Note that this idea shares some similarity with the one by
Mohassel et al. [29] in the three-party setting based on garbled circuit.

We do not present the preprocessing protocol in quite the way that was
just described. Instead, an optimized variant with reduced communication com-
plexity is presented in Fig. 3. First, instead of choosing and sending random
strings of length O(|C|), the two parties choose two short seeds for a PRG: we

Secure Computation with Low Communication from Cross-Checking 67

Fig. 3. Distributed preprocessing of masked beaver triples

let Λ1 = G(seed1), and Λ2 = G(seed2). As before, λ1 = Λ1 + Λ2. Since the
value of γ1 depends on λ1, we cannot do the same thing there, but we can gen-
erate the shares Γ1 from the same seed1, and then fix Γ2 appropriately, using
O(|Wmult|) bits. This reduces the communication cost for each of the parties from
(2|F|+1)·|Wmult| to 2κ+|F|·|Wmult|. Recall that D1 and D2 send identical copies
of these values to an evaluator; we further reduce the communication by having
one party send only a single hash of the preprocessing, which suffices for allowing
each evaluator to verify the consistency of what he has received. Finally, note
that this last optimization causes the communication costs to become unbal-
anced. Although we do not present it, note that we can re-balance the cost by
having one party send the first half of Γ2 together with a hash of the second
half, while the other party sends the second half of Γ2 together with a hash of
the first half.

Evaluation. After receiving and verifying the consistency of the preprocessing,
E1 and E2 proceed to perform a mask-evaluation of the circuit, layer by layer.

68 S. D. Gordon et al.

Fig. 4. πeval : Two-party masked evaluation

To begin, they first need masked input values for every input wire; these are
of the form mw ← λw + xw. For an input wire w held by E ∈ {E1, E2}, D1

and D2 send λw to E. E verifies that they each sent the same value: if not, he
aborts. Otherwise, he computes λw +xw and sends it to the other evaluator. For
input wire w belonging to D ∈ {D1,D2}, D sends λw + xw to E1 and E2. The
evaluators compare values and abort if they don’t agree.

For every gate (a, b, c,+), E1 and E2 both locally compute mc = ma + mb.
For every gate (a, b, c,×), they locally compute 〈mc〉 ← ma · mb − ma · 〈λb〉 −
mb · 〈λa〉 + 〈λc〉 + 〈λa · λb〉. (Recall, they can compute the last term using 〈γc〉.)
They then compute mc ← open(〈mc〉) by exchanging their shares of mc. At the
conclusion of evaluation phase, one set of evaluators holds m1, which is the set
of masked values of all wires in the circuit, and the other group of parties hold
m2 after their evaluation phase.

Cross-checking. Note that during the evaluation phase, a malicious evaluator
can modify the value on any w ∈ Wmult simply by changing his share of mw

before reconstructing the value. Therefore, before either group recovers output
from their computation, they first compare their masking with the masking of

Secure Computation with Low Communication from Cross-Checking 69

Fig. 5. πcross : Cross checking

the other evaluation. Of course, they cannot reveal the values on any wires
while doing this check. Instead, for wire w that carries value x, each set of
evaluators uses the masking from their evaluation, together with the masks that
they generated for the other group during preprocessing, to compute

x + λ1
w + λ2

w = m1
w + λ2

w = m2
w + λ1

w.

They then compare these “doubly masked” values for consistency.
As in the case of preprocessing, we use a hash function where possible, in

order to reduce the communication cost. Each party begins by computing a hash
of the doubly masked wire values described above; for Pi, we denote this hash
by hi. The four parties then call an ideal functionality, Feq, which takes input
hi, and outputs 1 if and only if h1 = h3, and h2 = h4.

Taking P1 as example, he obtains m1
1 during evaluation and λ2

1 when acting
as a D. He will then compute h1 = H(m1

1 + λ2
1). For the other three parties,

it is defined similarly as follows: superscripts denote the index of the masked
evaluation and subscripts denote the identity of the party.

h2 = H(m1
2 + λ2

2), h3 = H(m2
3 + λ1

3), h4 = H(m2
4 + λ1

4)

To see why this suffices for providing security, suppose P1 changes some
masking during evaluation, effectively changing a wire value for him and P2. In
this case, the doubly masked evaluations of P2 and P4 are inconsistent, and Feq

will return 0; intuitively, comparing these hash values is equivalent to checking
the masked values wire by wire.

3.1 Concrete Performance

Here we briefly discuss the concrete performance of our protocol against the most
related state-of-the-art protocol by Araki et al. [1]. As mentioned previously, our
protocol requires 1.5 bits of communication per gate per party, a 4.5× improve-
ment over their protocol. Let’s see if the same applies to the computation cost.

70 S. D. Gordon et al.

Note that in the protocol by Araki et al., the heaviest part of the computation
is random shuffling, due to the use of the random bucketing technique in their
paper. The rest are AES and hash computation, which can be hardware accel-
erated or very fast. Compared to their protocol, our protocol is much simpler
and more efficient in terms of computation cost. The bulk of our computation
is in the evaluation phase, where we do not need any random shuffling. For each
128 AND gates, each party only needs 6 calls to fix-key AES to implement the
PRG, and roughly one call to a hash function. Araki et al. have a higher com-
putational cost than we do, because of their random shuffle; since they are able
to fill a 10 Gbps LAN, our protocol will certainly have no problem filling the
same pipe. We believe the computation cost will not be the bottleneck for any
reasonable hardware configuration.

Our protocol for the cross checking appears in Fig. 5. It is in a hybrid world
where the parties have access to a functionality, Feq. We note that this function-
ality can be realized using any secure four party computation. The circuit needed
to realize this functionality is small: it only performs two equality computations
on strings of length O(κ). Nevertheless, in Sect. 5, we also demonstrate how we
can bootstrap this functionality, communicating just a small constant number
of bits, and using almost no computation.

3.2 Multiplayer Extensions

Achieving one bit of communication using six parties. We note that if we
use six players, we can maintain of the overhead of 6 bits communicated in total,
thereby requiring each player to communicate just one bit per wire (on average).
The idea of the six-party computation protocol is fairly straightforward given the
four-party protocol. Two people agree on randomness for the preprocessing, and
then each communicates the preprocessing material to two of the remaining four
players. Those four parties now carry out two identical evaluations, in parallel,
and cross check them with one another at the end. The communication overhead
is still six bits per gate, but it is now divided among all six players.

Efficient Multiparty Protocols via Log-Depth Threshold Formulae. We
note that our result can be used to construct MPC protocols tolerating up to a
third of players being corrupted via the result of [9]. At a high level, their protocol
employs player emulation and works by recursively composing a protocol for a
small number of parties with itself via a log-depth threshold formulae.

4 Security Proof

4.1 Proof of Security for Preprocessing

Lemma 1. The protocol in Fig. 3 for distributed preprocessing securely realizes
the functionality of Fig. 2, with abort.

Secure Computation with Low Communication from Cross-Checking 71

Proof. Due to symmetry, we only prove the lemma for the following two cases:
(1) D1 is corrupt and (2) E1 is corrupt.

Corrupted D1. We will first describe our simulator S.

1. S queries Fpre and obtains seed1, seed2. If the A chooses to input random-
ness, use A’s choice.

2. S acts as honest D2, E1 and E2 for the rest of the protocol using the seeds
obtained above. If an honest E1 or E2 would abort, S sends abort to Fpre.

Note that none of the parties in the protocol have input. Therefore the indistin-
guishability of the ideal-world protocol and the real-world protocol is immediate,
given the observation that the protocol aborts in the real world protocol if and
only if it aborts in the ideal world protocol.

Corrupted E1. Note that E1 performs only local computation after receiving
messages from other parties. The simulator queries Fpre and receives the seeds.
He then simulates honest D1 and D2, sending seed1 on their behalf. If E1 aborts,
the simulator will send abort to Fpre and aborts. Indistinguishability from the
real-world protocol is immediate.

4.2 Proof of Security of the Main Protocol

Theorem 3. Assuming H is drawn from a family of collision resistant hash
functions, our main protocol, in Fig. 1, securely realizes F4pc in the (Fpre,Feq)-
hybrid model.

Proof. In the following, we will prove the security of our main protocol assuming
that P1 is corrupted by A. The simulator is as follows:

1. S honestly simulates the execution of Fpre. He sends P1 his resulting output,
and records the simulated mask values: λ1, which will mask the wire values
in the evaluation of P3 and P4, and λ2, which will mask the wire values in
the evaluation of P1 and P2.

2. S simulates the masking of input values 0 from P2, P3 and P4 for use in P1’s
evaluation with P2, using mask values from λ2. He receives three maskings of
P1’s input: one for each of P3 and P4 for use in their evaluation, using mask
values from λ1, and one using values from λ2, sent to P2 for his own evaluation
with P1. If the values sent to P3 and P4 are not equal, S sends abort to F4pc

and terminates the simulation. Otherwise, S extracts the input sent to P2,
and the one sent to P3 and P4, using his knowledge of the masks; he notes if
P1 misbehaves by using inconsistent values in the two evaluations.

3. S acts honestly as P2, P3 and P4 in both executions of the masked evaluations.
S obtains m1 by interacting honestly with P1 on behalf of P2 for the remainder
of their evaluation. He obtains m2 by simulating (internally) the remainder
of the evaluation of P3 and P4.

72 S. D. Gordon et al.

4. S collects P1’s input to Feq, and calculates the inputs of P2, P3, and P4 to
Feq according to the honest execution using input values of 0. S executes the
code of Feq locally on these 4 values, and outputs the resulting value.

Comment: In Sect. 5, we describe a more efficient, interactive protocol,
πvcc, which replaces the use of Feq. To simulate our protocol when using πvcc,
we would proceed as follows, in place of the previous step. If S noted that
P1 misbehaved during evaluation, or when sending his masked input, then S
runs πvcc, simulating the messages of P2 and P4 when using different (random)
inputs from one another. Otherwise, he runs πvcc as though P2, P3 and P4 all
use input m1 ⊕ λ2. If πvcc outputs 0, S sends abort to F4pc.

5. S uses the input extracted in Step 2 and sends it to F4pc. He receives y and
computes λ∗ = m1

out + y. S acts as P3 and P4 sending λ∗ to A.

Now we will show that the joint distribution of the output from A and honest
parties in the ideal world are indistinguishable from these in the real world
protocol.

1. Hybrid1: Same as the hybrid protocol, with S playing the role of honest play-
ers, using their true input. That is, in this hybrid, we give the input of the
honest players to the simulator. (The resulting distribution is equivalent to
that of the real world execution.)

2. Hybrid2: Same as Hybrid1, with messages simulated based on the true inputs of
the honest parties. However, now S uses m1 and λ1 to compute x1 = m1

in+λ1
in.

S sends x1 to F4pc, which returns y. In step 5, S acts as P3 and P4 and
broadcasts λ∗ = m1

out + y.
3. Hybrid3: Same as the Hybrid2 except that S uses input values of 0 for all

honest parties, instead of their true input.

It is fairly easy to see that Hybrid1 is indistinguishable from Hybrd2, as long as
the function H is drawn from a family of collision resistant hash functions. Up
until the simulation of Feq, the view of the adversary is identically generated in
the two hybrids. If H is collision resistant, then the output of Feq is 1, if and only
if the adversary behaves honestly in his execution. When he acts honestly, the
output generated in Hybrid2 by the ideal functionality is the same as the output
computed by S in Hybrid1. The distribution characterizing the adversarial view
in Hybrid3 is identical to that of Hybrid2, by the one-time-pad security of the
random masking. It is easy to verify that the joint distribution described by the
adversarial view and the honest output is identical in these two hybrids as well.

5 Cross Check from Veto

In this section, we will demonstrate how to construct an efficient cross checking
protocol based on a functionality for 4-party, logical OR, For. We sometimes call
this a veto functionality, as the parties use the OR to “veto” the execution, by
submitting a value of 1 (veto). The cross checking protocol from Sect. 3 required
a 4-party computation of Feq, which compared 2 pairs of strings, each κ bits

Secure Computation with Low Communication from Cross-Checking 73

long. The improved cross checking protocol based on veto requires each party to
compare two hashes locally, and then input a single bit to the veto functionality.
While the cost of either of these protocols is small compared to the evaluation
phase, the simplicity of the protocol here makes it hard to pass up. We also
describe how to bootstrap For, using a variant of the protocol from Sect. 3, and
requiring just 6 bytes of communication per party. Perhaps one of the nicest
features of this bootstrapping, from a practical standpoint, is that it allows us
to avoid any dependence on other MPC implementations (Fig. 6).

Naive implementation of cross checking. A naive way of implementing cross
checking is to have the two verifiers exchange their doubly masked evaluations,
and compare them for inconsistencies. Unfortunately, this approach fails because
the adversary can modify the values carried on any of the wires in his own
evaluation, and determine precisely how the change impacted the evaluation of
the circuit by subtracting his doubly masked evaluation from the other. The
differences between these two doubly masked evaluations reveals the differences
in the values carried on each wire in the two evaluations of the circuit.

Fig. 6. Cross check protocol from veto

Achieving secure and efficient cross checking. Our main observation for
simplifying the cross check protocol is that, in the attack just described, P1

will always cause the verification run by P2 and P4 to fail. This is because the
evaluation of P2 was also modified on wire w, but he will not modify λ1

w the
way P1 did. If the output of the equality test between P1 and P3 were hidden
from P1, shown only to P2 and P4, and, symmetrically, if P1 only saw the result
of their verification (which he already knows), then we can remove the bit of

74 S. D. Gordon et al.

leakage. Specifically, each Pi learns a single bit, bi, indicating whether the other
verifying set passed the equality test. The four parties then run a secure protocol
that computes the logical OR of these 4 bits. They can do this using any existing
4-party protocol.

One verification group reveals the equality of their masked evaluations to
the other verification group as follows. (1) They agree on a random seed, (2)
they hash it together with their doubly masked evaluation, and (3) they send
the hash output to the players of the other verification group. The players in
the other verification group can compute equality by simply checking that the
hashes they receive are the same.

Note that For is a constant size circuit, and it likely does not matter which
four party secure computation we use to realize it. Still, it is interesting to
note that we can actually bootstrap this computation with another variant of
our own protocol. In the protocol just previously described, letting di,w denote
the doubly masked value held by Pi for wire w, the parties effectively compute∨

w∈W(d1,w
= d3,w) ∨ ∨
w∈W(d2,w
= d4,w), where the hash value received by P1

and P3 (resp. P2 and P4) reveals the first (resp. second) disjunction of size |W| to
P1 and P3 (resp. P2 and P4). The disjunction in the middle is where we use For.
Following the same discussion above, the reader can verify that it is also secure to
compute

∨
w∈W ((d1,w
= d3,w) ∨ (d2,w
= d4,w)). This can be achieved by having

the four parties check the equality of gates in topological order by immediately
exchanging the results of every equality check, rather than “batching them” with
a hash function at the end of the evaluation. Removing the hash function in this
way increases the communication to O(|C|), so we would not prefer to use this
as our cross-checking protocol. However, since For only has three gates, it is
inefficient to bootstrap For using a hash function.

Security of Veto Cross Check

(Sketch). Assuming H is a non-programmable random oracle, our main protocol
is secure if we replace the cross checking in the main protocol with the cross
checking described in this section.

If the adversary acted maliciously during the masked evaluation, then it is
clear that the verification group that does not contain the corrupt player (i.e.
the honest verification group) will have inconsistent evaluations. As a result, the
simulator can run the cross checking on behalf of the honest players as though the
player in the honest verification group had inconsistent evaluations. In this case,
the honest player in the same validation group as the corrupt player will always
provide a veto. As a result, the simulator can safely always provide a simulated
output of veto from For, sends abort to F4pc, and the result is indistinguishable
from a real execution.

If instead the corrupt player only misbehaves in the cross checking, the only
possible deviation is to send the wrong hash value. In this case, the simulator
can compute whether the corrupt player misbehaved by analyzing the hash value
that he sent, together with the seed. The simulator knows that both players in
the honest verification group will veto. As a result, the simulator can simply

Secure Computation with Low Communication from Cross-Checking 75

provide a simulated output of veto from For, submit abort to F4pc, and the
result is indistinguishable from a real execution.

Finally, if the adversary never deviates from the protocol, the simulator
accepts the adversary’s input to For and sends it back to him as the output
of For. If this value is a veto, the simulator sends abort to F4pc, and otherwise,
he submits the adversary’s input to F4pc, and simulates the opening of the output
just as in Sect. 4.

Fig. 7. Robust preprocessing

The view in the real and ideal world are indistinguishable since (1) the simu-
lator can always determine if there is a veto or not based on the behavior of the
adversary and (2) the random oracles hides inputs from the other verification
group.

76 S. D. Gordon et al.

6 Adding Robustness

We can make our protocol robust against a single cheater. We note that it is
quite simple to strengthen our original protocol so that it is fair. If the malicious
party aborts before anyone sends the output wire masks, then nothing is learned,
and all parties can safely abort. If the adversary aborts after learning the output
masks, his partner can still reveal the output for the other two evaluators. The
only necessary modification is to prevent the malicious distributor from changing
his output masks, revealing output values that conflict with what his partner
reveals. This is easily handled by having all parties commit to their output masks
prior to the evaluation: if the two distributors use the same randomness in their
commitments, the evaluators can verify that they have both committed to the
same mask value.

The main challenge in achieving robustness is that we cannot simply abort
when we detect improper behavior, even if the output has not been revealed yet.
Instead, we have to ensure that all honest parties correctly identify a misbehaving
party, or at least a pair of parties that contains the adversary. To facilitate
this, we make several adjustments. First, we modify the preprocessing protocol
so that it either allows everyone to identify the adversary, or it ensures that
both evaluators receive good preprocessing material. The robust preprocessing
appears in Fig. 7. We then modify the input sharing to make it robust; the input
sharing in Sect. 3 would trigger an abort if any party used different inputs in
the two executions, but it would not allow the others to determine who cheated.
After receiving the preprocessing material and the masked inputs, the evaluators
continue the evaluation protocol from Sect. 3 until each party has a masking of
the circuit. They then perform a robust variant of the cross checking protocol.
In this variant, the parties cross check gate by gate, and if they ever find an
inconsistency, they run a sub-routine to identify a pair of parties that contains
the adversary.2 Input sharing, evaluation, and robust cross checking are fully
described in Fig. 8. We give a detailed overview of these changes below.

We will employ a broadcast channel throughout our protocol. We note that
unconditionally-secure broadcast is possible in the four player model with one
corruption due to the fact that less than n/3 players are corrupt.

Robust preprocessing: To make the preprocessing robust, one of the two
distributors, D2, starts by committing to the randomness that will be used in the
preprocessing. This commitment is constructed by broadcasting a committing
encryption under the public key of D1. The randomness used in the preprocessing
is denoted by (seed1, seed2, rcom): seed1 and seed2 are used to create masks,

2 To reduce communication of the robust cross checking, we can iteratively apply
our cross check protocol from Sect. 5, performing a binary search on the masked
circuit layers until we find the problematic layer. We then repeat that, performing a
binary search within the problematic layer to find the problematic gate. This would
yield a worst-case communication cost of O(κ log |C|). For simplicity, we describe
the protocol as operating gate per gate.

Secure Computation with Low Communication from Cross-Checking 77

just as in Sect. 3. rcom is used to construct a commitment to the output masks,
which is then included in the preprocessing output.

After generating the preprocessing material, D1 and D2 each sign a copy of
the output before sending it to E1 and E2. If they send conflicting values to E1,
the signatures allow E1 to convince the other honest parties that one of D1 or D2

is malicious. The honest one of the two can now be exonerated: D2 broadcasts
the randomness used to encrypt the preprocessing randomness. E1 broadcasts
their view, and the honest parties can check the validity of the messages sent
by D1 and D2. After removing the malicious party, the remaining three parties
can run a semi-honest protocol in which one party supplies the preprocessing,
the other two perform the evaluation, and no checking needs to be performed.

One other case of note deserves mention: suppose E1 receives nothing3 from,
say, D1. In this case, because there is no signature, E1 cannot prove that D1 or
D2 is malicious: it is equally possible that E1 is himself malicious, and that he
made the problem up. In this case, though, E1 does need to persuade anybody.
Because E1 knows that D1 is malicious, E1 can simply continue the protocol
using the preprocessing he received from D2.

Robust input sharing: Let P1 and P2 perform distribution for P3, P4, and
vice versa. Recall that Sect. 3, P1 shares input xw on wire w with P3, P4 by
using the mask λ1

w that he and P2 generated together. He shares his input
with P1, for their own evaluation, by using λ2

w, which he receives from P3, P4.
As written, nothing prevents him from sharing inconsistent values among the
parties, and nothing prevents those parties from pretending he did so. To fix
this, we first require P3, P4 to each sign λ2

w, which allows P1 to broadcast a
proof of inconsistency when necessary. Then, P1 signs and broadcasts his doubly
masked input: mw = xw+λ1

w+λ2
w. P2 computes mw−λ1

w for use in his evaluation
with P2. P3, P4 each compute mw − m2

w for use in their evaluation.

Robust cross checking: Instead of cross checking the hashes of the full circuit
maskings, the parties instead cross check gate by gate, starting at the input
layer, and proceeding topologically through the circuit. This protocol begins
with a pass over the circuit, one layer at a time, with the parties comparing
their doubly masked values to locate the first gate at which the two evaluations
depart from one another. Consider the case where P3 decides that the two masked
evaluations of some gate are inconsistent, and initiates a complaint. This can be
due to one of the following cases:

1. The masked evaluation performed by P1 and P2 is invalid.
2. The masked evaluation performed by P3 and P4 is invalid.
3. Both evaluations were executed correctly, but either P1 modified his input to

cross-checking (i.e. his reported masked evaluation), or P3 complained for no
valid reason.

If the honest players know that the first case holds, then the corrupt player is
either P1 or P2. They can therefore use the evaluation of P3 and P4 to determine

3 Equivalently, something that is not validly signed.

78 S. D. Gordon et al.

Fig. 8. Robust evaluation

Secure Computation with Low Communication from Cross-Checking 79

Fig. 9. Complaint

their output. By the same argument, if the players know that the second case
holds, they can all safely use the evaluation of P1 and P2 to produce the output.
Finally, if the players know they are in the third case, they know that the mali-
cious party is either P1 or P3. In this case, they do not dismiss either evaluation,
but they continue the cross checking using only between P2 and P4; since P2 and
P4 are honest, their cross-checking suffices for ensuring a valid computation.

When someone detects an inconsistency in the cross checking of a gate, the
parties execute a complaint subprotocol (See Fig. 9) to determine which of the
above cases hold. In this subprotocol, the parties use an ideal functionality, which
can later be bootstrapped generically using any MPC with identifiable abort. We
stress that the circuit implementing this functionality is small: it only needs to
be executed on a single gate, and it used at most twice in a computation. The
functionality is called once for each of the two evaluations. In each instance,
the two evaluators provide their masked input and masked output for the gate,
while the two distributors provide the masks that they created for the gate. If
the evaluators do not provide the same masked values then the functionality

80 S. D. Gordon et al.

indicates that the evaluation set contains the cheater. If the distributors do not
provide the same masks then the functionality indicates that the cheater is in the
distribution set. Otherwise, the functionality uses the masked wire values and
the mask values to check whether the gate evaluation was performed correctly.
If the masked evaluation was invalid, the ideal functionality indicates that the
evaluation set contains the cheater. Finally, if no error is detected, then the
functionality indicates this, and the parties conclude that either the party that
raised the alarm is malicious, or his partner in the cross-checking is malicious
(case 3 above).

6.1 Robust Evaluation Simulator

Theorem 4. If the robust evaluation protocol is instantiated using a CCA-
Secure public-key committing encryption scheme, and a EU-CMA signature
scheme, then it securely realizes F4pc in the random oracle model. In addition,
the protocol is robust.

Simulator for robust preprocessing when D2 is corrupt.

1. Wait that D2 broadcasts the ciphertext c. If the ciphertext is not valid (which
can be efficiently checked by the verifiability property of committing encryp-
tion) then the simulator submits a default input value to F4pc on behalf of the
adversary, and terminates. (This corresponds to the honest parties removing
the adversary from the computation, upon agreeing that he is malicious.)

2. Recover (seed1‖seed2‖rcom) ← Dec(sk, c).
3. The simulator computes the preprocessing and broadcasts

commit({λw}w∈Woutput
; rcom) on behalf of D1.

4. Simulator awaits that D2 sends the preprocessing material and signatures on
the preprocessing material to each player. Then,
(a) For each evaluator, if D2 sent an invalid signature to the given evaluator,

the simulator ignores what D2 sent.
(b) Otherwise, if D2 sent invalid preprocessing to either evaluator, then sim-

ulate the broadcast from the given evaluator of the signed preprocessing
and determining that D2 misbehaved. The simulator notes that D2 was
identified as a cheater.

Simulator for robust preprocessing when D1 is corrupt. Same as the
simulation for D2 except that the simulator broadcasts the encryption of the
randomness to D1.

Simulator for robust preprocessing when an evaluator is corrupt. The
simulator chooses randomness and simulates the three honest players. If an eval-
uator sends a message claiming he received inconsistent preprocessing, but the
signed messages he forwards do not substantiate his claim, the simulator sends
a default input to F4pc and terminates. (Technically, we did not describe in our

Secure Computation with Low Communication from Cross-Checking 81

protocol that the other parties remove the evaluator when he does this, because
we felt it would unnecessarily complicate the protocol description.)

Indistinguishability of robust preprocessing.

1. In the case where the distributor is corrupt, we claim the view in the real and
ideal worlds are indistinguishable. If the distributor deviates from the proto-
col, it is either ignored (if it does not send a signature with the preprocessing
it shares), or it is eliminated from the computation (if it sends bad prepro-
cessing with a valid signature). The committing property of the encryption
scheme guarantees that he gets caught if he signs and sends a wrong value.

2. The only message sent by an evaluator is (possibly) to complain about incon-
sistent preprocessing. If the evaluator is corrupt, then in both the ideal and
real world, the complaint would be ignored (due to the unforgeability of the
underlying signature scheme).

Claim. Let x = (x1, x2, x3, x4). Let view[Input]π,A = {view[Input]π,A}x,κ denote
the random variable describing real-world view of A for some fixed set of
inputs, and some fixed security parameter. There exists a simulator S such that
view[Input]F,S ≡ denote the random variable resulting from the ideal world simu-
lation described in the F4pc (described below). There in the input sharing phase,
and

1. If the corrupt player is providing input as an evaluator,
(a) The simulator provides the signed masks from the other distributors.
(b) The simulator awaits that the corrupt player broadcasts a double masking

mw. The simulator then computes the input of the corrupt player from the
masks that were produced in the preprocessing and the double masking
that the corrupt player sent.

2. If the corrupt player is a distributor, and the input wire belongs to an evalu-
ator,
(a) The simulator awaits that the corrupt player sends out a mask to the

evaluator. If the mask is signed with the corrupt player’s signature, and is
not the value produced in the preprocessing, then the simulator produces
a broadcast of the conflicting, signed masks. The simulator provides the
default value to F4pc on behalf of the corrupt player and terminates.

3. If the corrupt player is an evaluator, and the input wire belongs to the other
evaluator, the simulator broadcasts the doubly masked input.

Indistinguishability of input phase. We argue that since the view until the
end of the preprocessing phase in the ideal world is indistinguishable from the
view until the end of the preprocessing phase in the real world, then the views
are also indistinguishable up through the end of the input phase. In the real
and ideal world, when the distributor is corrupt, any deviation would either
be ignored, or would result in the dealer being caught and eliminated from the
computation. If the evaluator is corrupt, and he broadcasts an invalid complaint,
he is eliminated due to the unforgeability of the underlying signature scheme.

82 S. D. Gordon et al.

Simulator for evaluation. The simulator of the evaluation step follows the
same steps as the simulator for the masked evaluation in the main protocol.
In particular, the simulator stores if the corrupt player misbehaved during his
evaluation. We argue that since the view until the end of the input phase in the
ideal world is indistinguishable from the view until the end of the input phase
in the real world, then the views are also indistinguishable up through the end
of the evaluation phase.. This holds from the fact that our main protocol (in
particular the masked evaluation part) is secure.

Simulator for cross check. For every multiplication wire w ∈ Wmult,

1. If the corrupt evaluator had previously sent a wrong value in the evaluation
of wire w,
(a) The simulator broadcasts (error) on behalf of the verifiers that are not in

the same verification group as the corrupt player. (He might also do so
with the player that is in the same verification group as him.)

(b) The simulator receives (λa, λb, λc) and (ma,mb,mc) from the adversary,
intended for the first and second calls to the validation functionality,
respectively (and without loss of generality). If (λa, λb, λc) are inconsis-
tent with the values simulated during preprocessing, the simulator impli-
cates the adversary (and his partner) when simulating the output of the
first call to the validation functionality. In either case he implicates the
adversary (and his partner) in the simulated output of the second call to
the validation functionality.

The simulator then runs the protocol on behalf of the honest players using
the honest evaluation group’s masked evaluation.

2. Otherwise:
(a) if simulating V1, the simulator checks to see if the adversary sends a wrong

doubly masked value to his partner: m1
w + λ1

w.
(b) if simulating V2, the simulator checks to see if the adversary broadcasts

(error).
The simulator receives (λa, λb, λc) and (ma,mb,mc) from the adversary,
intended for the first and second calls to the validation functionality, respec-
tively (and without loss of generality). If (λa, λb, λc) are inconsistent with the
values simulated during preprocessing, the simulator implicates the adversary
(and his partner) when simulating the output of the first call to the validation
functionality. If (ma,mb,mc) are inconsistent with simulated masked values of
the evaluation phase, the simulator implicates the adversary (and his partner)
when simulating the output of the second call to the validation functionality.
If he is not implicated in either instance, then any future messages he might
send during cross checking are ignored.

Indistinguishability of cross check. We argue that since the view until the
end of the evaluation phase in the ideal world is indistinguishable from the view
until the end of the evaluation phase in the real world, then the views are also
indistinguishable up through the end of the cross check. If the corrupt player’s
evaluation group is deemed corrupt, then the protocol in the real world would

Secure Computation with Low Communication from Cross-Checking 83

dictate that the corrupt player no longer receive messages during the cross check
phase. Therefore, it is clear that after the elimination has taken place, the views
in the real and ideal world are indistinguishable.

We now claim that the validation function eliminates the adversary’s evalua-
tion set in the real world, if and only if the simulator implicates the adversary’s
evaluation set in the ideal world. Note that the simulator can detect if the adver-
sary has modified any wire in the evaluation, as well as whether his input to the
validation function is inconsistent with his partner’s input. The reader can verify
by inspection that the claim holds. Since the complaint phase consists of just
two calls to the validation functionality, it follows that the adversary’s view in
the complaint phase is identically distributed in the two worlds. By the previ-
ous note, after this point, the cross check in the real and ideal worlds would be
indistinguishable.

To complete the argument that the adversary’s view is correctly simulated
through the end of the cross check phase, we argue that, prior to being elim-
inated, the simulated view in the cross check phase is sampled from the same
distribution as his view in the real world. This follows because he only sees
doubly masked wire values, which are computationally indistinguishable from
uniformly distributed strings (because they are generated using a PRG).

Simulator for output phase. The output phase is the easiest to simulate.

1. First the simulator queries the ideal functionality with the adversary’s input
and receives an output.

2. The simulator selects masks for the honest evaluation group so that the sum
of the output and the masks of the honest evaluation group is equal to the
masked evaluation of the corrupt player. The simulator then “broadcasts”
decommitments to the masks of the honest evaluation group.

3. The simulator selects masked evaluation for the honest evaluation group so
that the sum of the output and the masks of the corrupt player add up to the
masked evaluation. The simulator then “broadcasts” the masked evaluations.

Indistinguishability of output phase. We now argue that the output dis-
tribution, conditioned on the adversary’s view, is indistinguishable in the two
worlds. We have already argued that the adversary is caught if he ever manip-
ulates his evaluation. The reader can verify that whenever a transcript results
in the use of a default adversarial input in the real world, the simulator submits
default input in the ideal world. If the adversary never changes the masked val-
ues, then the input used in both worlds is the one he committed to in the input
sharing phase.

References

1. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security &
Privacy, pp. 843–862, May 2017

84 S. D. Gordon et al.

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: ACM STOC, pp. 503–513, May 1990

4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: ACM CCS 2008, pp. 257–266, October 2008

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10, May 1988

6. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

8. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation
from cut-and-choose. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 513–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 29

9. Cohen, G., et al.: Efficient multiparty protocols via log-depth threshold formulae.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 185–202.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 11

10. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 10

11. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

12. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

13. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

14. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

15. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

16. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. Cryptology ePrint Archive, Report 2017/908
(2017). http://eprint.iacr.org/2017/908

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-319-63688-7_6
http://eprint.iacr.org/2017/908

Secure Computation with Low Communication from Cross-Checking 85

17. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

18. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710, May 1992

19. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

20. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: 46th ACM STOC,
pp. 495–504, May/June 2014

21. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th ACM STOC, pp.
218–229, May 1987

23. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005)

24. Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest
protocols with dual execution. In: 2012 IEEE Symposium on Security & Privacy,
pp. 272–284, May 2012

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

26. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS 2017, pp.
259–276 (2017)

27. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

28. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

29. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS 2015, pp. 591–602, October 2015

30. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security & Privacy, pp. 19–38,
May 2017

31. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

32. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85, May 1989

33. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: ACM CCS 2017, pp. 21–37 (2017)

34. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS 2017, pp. 39–56 (2017)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-642-32009-5_40

Concretely Efficient Large-Scale MPC
with Active Security (or, TinyKeys

for TinyOT)

Carmit Hazay1(B), Emmanuela Orsini2, Peter Scholl3,
and Eduardo Soria-Vazquez4

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 KU Leuven, imec-COSIC, Leuven, Belgium
emmanuela.orsini@kuleuven.be

3 Aarhus University, Aarhus, Denmark
peter.scholl@cs.au.dk

4 University of Bristol, Bristol, UK
eduardo.soria-vazquez@bristol.ac.uk

Abstract. In this work we develop a new theory for concretely effi-
cient, large-scale MPC with active security. Current practical techniques
are mostly in the strong setting of all-but-one corruptions, which leads
to protocols that scale badly with the number of parties. To work around
this issue, we consider a large-scale scenario where a small minority out of
many parties is honest and design scalable, more efficient MPC protocols
for this setting. Our results are achieved by introducing new techniques
for information-theoretic MACs with short keys and extending the work
of Hazay et al. (CRYPTO 2018), which developed new passively secure
MPC protocols in the same context. We further demonstrate the useful-
ness of this theory in practice by analyzing the concrete communication
overhead of our protocols, which improve upon the most efficient previ-
ous works.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties
to compute some function f on the parties’ private inputs, while preserving

C. Hazay—Supported by the European Research Council under the ERC consol-
idators grant agreement n. 615172 (HIPS), and by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.
E. Orsini—Supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
P. Scholl—Supported by the European Union’s Horizon 2020 research and innova-

tion programme under grant agreement No 731583 (SODA), and the Danish Inde-
pendent Research Council under Grant-ID DFF-6108-00169 (FoCC).
E. Soria-Vazquez—Supported by the European Union’s Horizon 2020 research

and innovation programme under the Marie Sk�lodowska-Curie grant agreement No.
643161, and by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 86–117, 2018.
https://doi.org/10.1007/978-3-030-03332-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_4&domain=pdf

Concretely Efficient Large-Scale MPC with Active Security 87

a number of security properties such as privacy and correctness. The former
property implies data confidentiality, namely, nothing leaks from the protocol
execution but the computed output. The latter requirement implies that the
protocol enforces the integrity of the computations made by the parties, namely,
honest parties are not led to accept a wrong output. Security is proven either
in the presence of a passive adversary that follows the protocol specification
but tries to learn more than allowed from its view of the protocol, or an active
adversary that can arbitrarily deviate from the protocol specification in order to
compromise the security of the other parties in the protocol.

The past decade has seen huge progress in making MPC protocols commu-
nication efficient and practical; see [KS08,DPSZ12,DKL+13,ZRE15,LPSY15,
WMK17,HSS17] for just a few examples. In the two-party setting, actively
secure protocols [WRK17a] by now reach within a constant overhead factor
over the notable semi-honest construction by Yao [Yao86]. On the practical
side, a Boolean circuit with around 30,000 gates (6,400 AND gates and the rest
XOR) can be securely evaluated with active security in under 20 ms [WRK17a].
Moreover, current technology already supports protocols that securely evalu-
ate circuits with more than a billion gates [KSS12]. On the other hand, secure
multi-party computation with a larger number of parties and a dishonest major-
ity is far more difficult due to scalability challenges regarding the number of
parties. Here, the most efficient practical protocol with active security has a
multiplicative factor of O(λ/ log |C|) due to cut-and-choose [WRK17b] (where λ
is a statistical security parameter and |C| is the size of the computed circuit).
On the practical side, the same Boolean circuit of 30,000 gates can be securely
evaluated at best in 500 ms for 14 parties [WRK17b] in a local network where
the latency is neglected, or in more than 20 s in a wide network. The problem
is that current MPC protocols do not scale well with the number of parties,
where the main bottleneck is a relatively high communication complexity, while
the number of applications requiring large scale communication networks are
constantly increasing, involving sometimes hundreds of parties.

An interesting example is safely measuring the Tor network [DMS04] which
is among the most popular tools for digital privacy, consisting of more than
6000 relays that can opt-in for providing statistics about the use of the network.
Nowadays and due to privacy risks, the statistics collected over Tor are generally
poor: There is a reduced list of computed functions and only a minority of the
relays provide data, which has to be obfuscated before publishing [DMS04].
Hence, the statistics provide an incomplete picture which is affected by a noise
that scales with the number of relays.

In the context of securely computing the interdomain routing within the
Border Gateway Protocol (BGP) which is performed at a large scale of thousands
of nodes, a recent solution in the dishonest majority setting [ADS+17] centralizes
BGP so that two parties run this computation for all Autonomous Systems.
Large scale protocols would allow scaling to a large number of systems computing
the interdomain routing themselves using MPC, hence further reducing the trust
requirements.

88 C. Hazay et al.

Another important application that involves a massive number of parties is
an auction with private bids, where the winning bid is either the first or the sec-
ond price. Auctions have been widely studied by different communities improving
different aspects and are central in the area of web electronic commerce. When
considering privacy and correctness, multi-party computation offers a set of tools
that allow to run the auction while preserving the privacy of the bidders (aka.
passive security). MPC can also enforce independent of inputs between the cor-
rupted and honest parties as well as correctness, in the sense that parties are
not allowed to change their vote once they learn they lost. This type of secu-
rity requires more complicated tools and is knows as active security. Designing
secure solutions for auctions played an important role in the literature of MPC.
In fact, the first MPC real-world implementation was for the sugar beet auction
[BCD+09] with three parties and honest majority, where the actual number of
parties was 1129. In a very recent work by Keller et al. [KPR18], the authors
designed a new generic protocol based on semi-homomorphic encryption and
lattice-based zero-knowledge proofs of knowledge, and implemented the second-
price auction with 100 parties over a field of size 240. The running time of their
offline phase for the SPDZ protocol is 98 s. The authors did not provide an
analysis of their communication complexity.

Motivated by the fact that current techniques are insufficient to produce
highly practical protocols for such scenarios, we investigate the design of proto-
cols that can more efficiently handle large numbers of parties with strong security
levels. In particular, we study the setting of active security with only a minor-
ity (around 10–30%) of honest participants. By relaxing the well-studied, very
strong setting of all-but-one corruptions (or full-threshold), we hope to greatly
improve performance. Our starting point is the recent work by Hazay et al.
[HOSS18] which studied this corruption setting with passive security and pre-
sented a new technique based on “short keys” to improve the communication
complexity and the running times of full-threshold MPC protocols. In this paper
we extend their results to the active setting.

Technical background for [HOSS18]. Towards achieving their goal, Hazay et
al. observed that instead of basing security on secret keys held by each party
individually, they can base security on the concatenation of all honest parties’
keys. Namely, a secure multi-party protocol with h honest parties can be built
by distributing secret key material so that each party only holds a small part of
the key. Formalizing this intuition is made possible by reducing the security of
their protocols to the Decisional Regular Syndrome Decoding (DRSD) problem,
which, given a random binary matrix H, is to distinguish between the syndrome
obtained by multiplying H with an error vector e = (e1‖ · · · ‖eh) where each
ei ∈ {0, 1}2�

has Hamming weight one, and the uniform distribution. This can
equivalently be described as distinguishing

⊕h
i=1 H(i, ki) from the uniform dis-

tribution, where H is a random function and each ki is a random �-bit key. A
specified in [HOSS18], when h is large enough, the problem is unconditionally
hard even for � = 1, which means for certain parameter choices 1-bit keys can
be used without introducing any additional assumptions.

Concretely Efficient Large-Scale MPC with Active Security 89

Our contribution. In this work we develop a new theory for concretely effi-
cient, large-scale MPC in the presence of an active adversary. More concretely,
we extend the short keys technique from [HOSS18] to the active setting. Adapt-
ing these ideas to the active setting is quite challenging and requires modifying
information-theoretic MACs used in previous MPC protocols [BDOZ11,DPSZ12]
to be usable with short MAC keys. As our first, main contribution, we present
several new methods for constructing efficient, distributed, information-theoretic
MACs with short keys, for the setting of a small, honest minority out of a large
set of parties. Our schemes allow for much lower costs when creating MACs in a
distributed manner compared with previous works, due to the use of short MAC
keys. For our second contribution, we show how to use these efficient MAC
schemes to construct actively secure MPC for binary circuits, based on the
‘TinyOT’ family of protocols [NNOB12,BLN+15,FKOS15,HSS17,WRK17b].
All previous protocols in that line of work supported n − 1 out of n corruptions,
so our protocol extends this to be more efficient for the setting of large-scale
MPC with a few honest parties.

Concrete efficiency improvements. The efficiency of our protocols depends
on the total number of parties, n, and the number of honest parties, h, so there
is a large range of parameters to explore when comparing with other works. We
discuss this in more detail in Sect. 8. Our protocol starts to concretely improve
upon previous protocols when we reach n = 30 parties and t = 18 corruptions:
here, our triple generation method requires less than half the communication
cost of the fastest MPC protocol which is also based on TinyOT [WRK17b]
(dubbed WRK) tolerating up to n − 1 corruptions. For a fairer comparison, we
also consider modifying WRK to run in a committee of size t + 1, to give a
protocol with the same corruption threshold as ours. In this setting, we see a
small improvement of around 10% over WRK, but at larger scales the impact
of our protocol becomes much greater. For example, with n = 200 parties and
t = 160 corruptions we have up to an 8 times improvement over WRK with full-
threshold, and a 5 times improvement when WRK is modified to the threshold-t
setting.

Technical Overview

In our protocols we assume that two committees, P(h) and P(1), have been
selected out of all the n parties providing inputs in the MPC protocol, such that
P(h) contains at least h honest parties and P(1) contains at least 1 honest party.
These can be chosen deterministically, for instance, if there are h honest parties
in total we let P(h) = {P1, . . . , Pn} and P(1) = {P1, . . . , Pn−h+1}. We can also
choose committees at random using coin-tossing, if we start with a very large
group of parties from which h′ > h are honest. Since we have |P(h)| > |P(1)|,
to avoid unnecessary interaction we take care to ensure that committee P(h) is
only used when needed, and when possible we will do operations in committee
P(1) only.

90 C. Hazay et al.

Section 3. We first show a method for authenticated secret-sharing based on
information-theoretic MACs with short keys, where given a message x, a MAC
m and a key k, verification consists of simply checking that s linear equations
hold. Our construction guarantees that forging a MAC to all parties can only be
done with probability 2−λ, even when the key length � is much smaller than λ, by
relying on the fact that at least h parties are honest. We note that the reason for
taking this approach is not to obtain a more efficient MAC scheme, but to design
a scheme allowing more efficient creation of the MACs. Setting up the MACs
typically requires oblivious transfer, with a communication cost proportional
to the key length, so a smaller � gives us direct efficiency improvements to the
preprocessing phase, which is by far the dominant cost in applications. Our basic
MAC scheme requires all parties in both committees to take part, but to improve
this we also present several optimizations, which can greatly reduce the storage
overhead by “compressing” the MACs into a single, SPDZ-like sharing in only
committee P(1).

Sections 4 and 5. We next show how to efficiently create authenticated shares
for our MAC scheme with short keys. As a building block, we need a protocol
for random correlated oblivious transfer (or random Δ-OT) on short strings.
We consider a variant of the OT extension protocol of Keller et al. [KOS15],
modified to produce correlated OTs (as done in [NST17]) and with short strings.
Our authentication protocol for creating distributed MACs improves upon the
previous best-known approach for creating MACs (optimized to use h honest
parties) by a factor of h(n − h)/n times in terms of overall communication
complexity. This gives performance improvements for all h > 1, with a maximum
n/4-fold gain as h approaches n/2.

Section 7. Finally, we introduce our triple generation protocol, in two phases.
Similarly to [WRK17b], we first show how to compute the cross terms in multipli-
cation triples by computing so-called ‘half-authenticated’ triples. This protocol
does not authenticate all terms and the result may yield an incorrect triple.
Next, we run a standard cut-and-choose technique for verifying correctness and
removing potential leakage. Our method for checking correctness does not follow
the improved protocol from [WRK17b] due to a limitation introduced by our use
of the DRSD assumption. The security of our protocol relies on a variant of the
DRSD assumption that allows one bit of leakage, and for this reason the num-
ber of triples r generated by these protocols depends on the security of RSD.
So, while we can produce an essentially unlimited number of random correlated
OTs and random authenticated bits, if we were to produce ‘half-authenticated’
triples in a naive way, we would be bounded on the total number of triples and
hence the size of the circuits we can evaluate. To fix this issue we show how to
switch the MAC representation from using one key Δ to a representation under
another independent key Δ̃. This switch is performed every r triples.

Extension to Constant Rounds. Since Hazay et al. [HOSS18] also described
a constant round protocol based on garbled circuits with passive security, it
is natural to wonder if our approach with active security also extends to this

Concretely Efficient Large-Scale MPC with Active Security 91

setting. Unfortunately, it is not straightforward to extend our approach to multi-
party garbled circuits with short keys and active security, since the adversary
can flip a garbled circuit key with non-negligible probability, breaking correct-
ness. Nevertheless, we can build an alternative, efficient solution based on the
transformation from [HSS17], which shows how to turn any non-constant round,
actively secure protocol for Boolean circuits into a constant round [BMR90]-
based protocol. When applying [HSS17] to our protocol, we obtain a multi-party
garbling protocol with full-length keys, but we still improve upon the naive (full-
threshold) setting, since the preprocessing phase is more efficient due to our use
of TinyOT with short keys. More details will be given in the full version.

2 Preliminaries

We denote the computational and statistical security parameter by κ and λ,
respectively. We say that a function μ : N → N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that μ(κ) < 1

p(κ) . The function
μ is noticeable (or non-negligible) if there exists a positive polynomial p(·) such
that for all sufficiently large κ it holds that μ(κ) ≥ 1

p(κ) . We use the abbreviation
PPT to denote probabilistic polynomial-time. We further denote by a ← A the
uniform sampling of a from a set A, and by [d] the set of elements {1, . . . , d}. We
often view bit-strings in {0, 1}k as vectors in F

k
2 , depending on the context, and

denote exclusive-or by “⊕” or “+”. If a, b ∈ F2 then a · b denotes multiplication
(or AND), and if c ∈ F

κ
2 then a · c ∈ F

κ
2 denotes the product of a with every

component of c.

Security and Communication Models. We use the universal composability
(UC) framework [Can01] to analyse the security of our protocols. We assume all
parties are connected via secure, authenticated point-to-point channels, as well
as a broadcast channel which is implemented using a standard 2-round echo-
broadcast. The adversary model we consider is a static, active adversary who
corrupts up to t out of n parties at the beginning of the protocol. We denote by
A the set of corrupt parties, and Ā the set of honest parties.

Regular Syndrome Decoding Problem. We recall that the regular syndrome
decoding (RSD) problem is to recover a secret error vector e = (e1‖ · · · ‖eh),
where each ei ∈ {0, 1}m/h has Hamming weight one, given only (H,He), for
a randomly chosen binary r × m matrix H. In [HOSS18] it was shown that
the search and decisional versions of this problem are equivalent and even sta-
tistically secure when h is big enough compared to r. In this work we use an
interactive variant of the problem, where the adversary is allowed to try to guess
a few bits of information on the secret e before seeing the challenge; if the guess
is incorrect, the game aborts. We conjecture that this ‘leaky’ version of the prob-
lem, defined below, is no easier than the standard problem. Note that on average
the leakage only allows the adversary to learn 1 bit of information on e, since if
the game does not abort he only learns that

∧
Pi(e) = 1.

92 C. Hazay et al.

The ‘leaky’ part of the assumption is introduced as a result of an efficient
instantiation of random correlated OTs on short strings (Sect. 4). Once the adver-
sary has tried to guess these short strings, which act as short MAC keys in the
authentication protocol (Sect. 5), a DRSD challenge is presented to him during
the protocol computing the cross terms of multiplication triples (Sect. 7.1). As
in [HOSS18], the appearance of the DRSD instance is due to the fact of ‘hashing’
the short MAC keys of at least h honest parties during said multiplications.

Definition 2.1 (Decisional Regular Syndrome Decoding with Leak-
age). Let r, h, � ∈ N and m = h · 2�. Consider the game L-DRSDb

r,h,� for
b ∈ {0, 1}, defined between a challenger and an adversary:

1. Sample H ← F
r×m
2 and a random, weight-h vector e ∈ F

m
2 .

2. Send H to the adversary and wait for the adversary to adaptively query up to
h efficiently computable1 predicates Pi : Fm

2 → {0, 1}. For each Pi queried, if
Pi(e) = 0 then abort, otherwise wait for the next query.

3. If b = 0, sample u ← F
r
2 and send (H,u) to the adversary. Otherwise if b = 1,

send (H,He).

The DRSD problem with leakage with parameters (r, h, �) is to distinguish
between L-DRSD0

r,h,� and L-DRSD1
r,h,� with noticeable advantage.

2.1 Resharing

At several points in our protocols, we have a value x =
∑

i∈X xi that is secret-
shared between a subset of parties {Pi}i∈X , and wish to re-distribute this to a
fresh sharing amongst a different set of parties, say {Pj}j∈Y . The naive method
to do this is for every party Pi to generate a random sharing of xi, and send one
share to each Pj . This costs |X| · |Y | · m bits of communication, where m is the
bit length of x. When m is large, we can optimize this using a pseudorandom
generator G : {0, 1}κ → {0, 1}m, as follows:

1. For i ∈ X, party Pi does as follows:
(a) Pick an index j′ ∈ Y 2

(b) Sample random keys ki,j ← {0, 1}κ, for j ∈ Y \ j′
(c) Send ki,j to party Pj , and send xi,j′

=
∑

j G(ki,j) + xi to party Pj′

2. For j ∈ Y , party Pj does as follows:
(a) Receive ki,j from each Pi who sends Pj a key, and a share xi,j from

each Pi who sends Pj a share. For the keys, compute the expanded share
xi,j = G(ki,j).

(b) Output xj =
∑

i∈X xi,j .

Now each Pi only needs to send a single share of size m bits, since the rest are
compressed down to κ bits using the PRG. This gives an overall communication
complexity of O(|X| · |Y | · κ + |X| · m) bits.
1 By efficiently computable, we mean that the adversary sends a description of a

polynomially-sized circuit that computes P .
2 This can be chosen at random, or in some pre-agreed deterministic manner to load-

balance communication among the parties.

Concretely Efficient Large-Scale MPC with Active Security 93

3 Information-Theoretic MACs with Short Keys

We now describe our method for authenticated secret-sharing based on
information-theoretic MACs with short keys. Our starting point is the standard
information-theoretic MAC scheme on a secret x ∈ {0, 1} given by m = k+x·Δ,
for a uniformly random key (k,Δ), where k ∈ {0, 1}� is only used once per mes-
sage x, whilst Δ ∈ {0, 1}� is fixed. Given the message x, the MAC m and the key
k, verification consists of simply checking the linear equation holds. It is easy to
see that, given x and m, forging a valid MAC for a message x′ �= x is equivalent
to guessing Δ. In a nutshell, we adapt this basic scheme for the multi-party,
secret-shared setting, with the guarantee that forging a MAC to all parties can
only be done with probability 2−λ, even when the key length � is much smaller
than λ, by relying on the fact that at least h parties are honest.

Our scheme requires choosing two (possibly overlapping) subsets of parties
P(h), P(1) ⊆ P, such that P(h) has at least h honest parties and P(1) at least 1
honest party. To authenticate a secret value x, we first additively secret-share
x between P(1), and then give every party in P(1) a MAC on its share under a
random MAC key given to each party in P(h), as follows:

Pi ∈ P(h) : Δi, {ki,j [xj]}j∈P(1),j �=i

Pj ∈ P(1) : xj , {mj,i[xj]}i∈P(h),i �=j

such that x =
∑

j

xj and mj,i[xj] = ki,j [xj] + xj · Δi.

where ki,j [xj] is a key chosen by Pi from {0, 1}� to authenticate the message
xj that is chosen by Pj whereas mj,i[xj] is a MAC on a message xj computed
using the keys Δi and ki,j [xj]. We denote this representation by [x]P(h),P(1)

Δ . Note
that sometimes we use representations with a different set of global keys Δ =
{Δi}i∈P(h) , but when it is clear from context we omit Δ and write [x]P(h),P(1) .

We remark that a special case is when P(h) = P(1) = P, which gives the
usual n-party representation of an additively shared value x = x1 + · · · + xn, as
used in [BDOZ11,BLN+15]:

[x] = {xi,Δi, {mi,j ,ki,j}j �=i}i∈[n], mi,j = kj,i + xi · Δj ,

where each party Pi holds the n− 1 MACs {mi,j} on xi, as well as the keys ki,j

on each xj , for j �= i, and a global key Δi.
The idea behind our setup is that to cheat when opening x to all parties

would require guessing at least h MAC keys of the honest parties in committee
P(h). In Figs. 1 and 2 we describe our protocols for opening values to a subset
P̄ ⊆ P and to a single party, respectively, and checking MACs. First each party
in P(1) broadcasts its share xj to P(h), and then later, when checking MACs,
Pj sends the MAC mj,i to Pi for verification. To improve efficiency, we make
two optimizations to this basic method: firstly, instead of sending the individual
MACs, when opening a large batch of values Pj only sends a single, random
linear combination of all the MACs. Secondly, the verifier Pi does not check

94 C. Hazay et al.

every MAC equation from each Pj , but instead sums up all the MACs and
performs a single check. This has the effect that we only verify the sum x was
opened correctly, and not the individual shares xj .

Overall, to open x to an incorrect value x′ requires guessing the Δi keys of all
honest parties in P(h), so can only be done with probability ≤ 2−h�. This means
we can choose � = λ/h to ensure security. Note that it is crucial when opening
[x]P(h),P(1) that the shares xj are broadcast to all parties in P(h), to ensure
consistency. Without this, a corrupt Pj could open, for example, an incorrect
value to a single party in P(h) with probability 2−�, and the correct share to all
other parties.

More details on the correctness and security of our open and MACCheck
protocols are given in the full version of this paper.

Efficiency Savings From Short Keys. Note that the reason for taking this
approach is not to obtain a more efficient MAC scheme, but to design a scheme
allowing more efficient creation of the MACs. Setting up the MACs typically
requires oblivious transfer, with a communication cost proportional to the key
length, so a smaller � gives us direct efficiency improvements to the preprocessing
phase, which is by far the dominant cost in applications (see Sect. 5 for details).
Regarding the scheme itself, notice that this is actually less efficient, in terms of
storage and computation costs, than the distributed MAC scheme used in the
SPDZ protocol [DKL+13], which only requires each party to store λ+1 bits per
authenticated Boolean value. However, it turns out that these overheads are less
significant in practice compared with the communication cost of setting up the
MACs, where we gain a lot.

Extension to Arithmetic Shares. The scheme presented above can easily
be extended to the arithmetic setting, with shares in a larger field instead of
just F2. To do this with short keys, we simply choose the MAC keys Δi to
be from a small subset of the field. For example, over Fp for a large prime p,
each party chooses Δi ∈ {0, . . . , 2� − 1}, and will obtain MACs of the form
mj,i = ki,j + xj · Δi over Fp, where ki,j is a random element of Fp. This allows
for a reduced preprocessing cost when generating MACs with the MASCOT
protocol [KOS16] based on oblivious transfer: instead of requiring k OTs on k-
bit strings between all n(n−1) pairs of parties, where k = �log2 p�, we can adapt
our preprocessing protocol from Sect. 5 to Fp so that we only need to perform �
OTs on k-bit strings between (n−1)(t+1) pairs of parties to set up each shared
MAC.

3.1 Operations on [·]P(h),P(1)-Shared Values

Recall that P(h) ∩ P(1) is not necessarily the empty set.

Addition and multiplication with constant: We can define addition of [x]P(h),P(1)

Δ

with a public constant c ∈ {0, 1} by:

1. A designated Pi∗ ∈ P(1) replaces its share xi∗
with xi∗

+ c.

Concretely Efficient Large-Scale MPC with Active Security 95

Fig. 1. Protocols for opening and MAC-checking on (P(h),P(1))-authenticated secret
shares

2. Each Pi (for i ∈ P(h), i �= i∗) replaces its key ki,1[x] with ki,1[x] + c · Δi. (All
other values are unchanged.)

We also define multiplication of [x]P(h),P(1)

Δ by a public constant c ∈ {0, 1}
(or in {0, 1}�) by multiplying every share xi, MAC mi,j [x] and key ki,j [x] by c.

Addition of shared values: Addition (XOR) of two shared values [x]P(h),P(1)

Δ ,

[y]P(h),P(1)

Δ is straightforward addition of the components. Note that it is possible

96 C. Hazay et al.

Fig. 2. Protocol for privately opening (P(h),P(1))-party authenticated secret shares to
a single party Pi0 and MAC-checking

to compute the sum [x]P(h),P(1)

Δ + [y]P(h),P(h)

Δ of values shared within different
committees in the same way, obtaining a [x + y]P(h),P(h)∪P(1)

Δ representation.

3.2 Converting to a More Compact Representation

We can greatly reduce the storage overhead in our scheme by “compressing”
the MACs into a single, SPDZ-like sharing in only committee P(1) with longer

Concretely Efficient Large-Scale MPC with Active Security 97

keys. Recall that the SPDZ protocol MAC representation [DPSZ12,DKL+13] of
a secret bit x held by the parties in P(1) is given by

�x� = {xj ,mj [x]}j∈P(1)

where each party Pj in P(1) holds a share xj , a MAC share mj [x] ∈ F
λ
2 and a

global MAC key share Δj ∈ F
λ
2 , such that

x =
∑

j∈P(1)

xj ,
∑

j∈P(1)

mj = (
∑

j∈P(1)

xj) · (
∑

j∈P(1)

Δj)

Using this instead of the previous representation gives a much simpler and more
efficient MAC scheme in the online phase of our MPC protocol, since each party
only stores λ+1 bits per value, instead of up to |P(h)| ·�+1 bits with the scheme
using short keys. Therefore, to obtain both the efficiency of generating MACs in
the previous scheme, and using the MACs with SPDZ, below we show how to
convert an inefficient, pairwise sharing [x]P(h),P(1) into a more compact SPDZ
sharing �x�. This procedure is shown in Fig. 3.

Note that with the SPDZ representation, the parties in P(1) can perform
linear computations and openings (within P(1)) in just the same way. For com-
pleteness, we present the opening and MAC check protocols in the full version
of this paper.

Fig. 3. Protocol for transforming [x]P(h),P(1) representations to �x� representations

98 C. Hazay et al.

To see correctness, first notice that from step 2a, we have that
∑

j k̃i,j =
ri · ∑j ki,j . So each party in P(1) holds a share xj and a MAC share m̃j ∈ F2λ ,
which satisfy:

∑

j

m̃j =
∑

j

∑

i

(k̃
i,j

+ mj,i · ri)

=
∑

i,j

(ki,j + mj,i) · ri =
∑

i,j

xj · Δi · ri = x · Δ̃.

The security of this scheme now depends on the single, global MAC key
Δ̃ =

∑
i Δi · ri, instead of the concatenation of Δi for i ∈ P(h). Since at least h

of the short keys Δi ∈ F2� are unknown and uniformly random, from the leftover
hash lemma [ILL89] it holds that Δ̃ is within statistical distance 2−λ of the
uniform distribution over {0, 1}λ as long as h� ≥ 3λ. This gives a slightly worse
bound than the previous scheme, but allows for a much more efficient online
phase of the MPC protocol since, once the SPDZ representations are produced,
only parties in P(1) need to interact, and they have much lower storage and local
computation costs. Note that in our instantiation of this scheme for the overall
MPC protocol, we also need to choose the parameters h, � such that the L-DRSD
assumption is hard; it turns out that all of our parameter choices (see Sect. 8)
for this already satisfy h� ≥ 3λ, so in this case using more compact MACs does
not incur any extra overheads.

Improved Analysis for 1-bit Keys. When the key length is 1, we can improve
upon the previous bound from the leftover hash lemma with a more fine-grained
analysis. Notice that we can write the new key Δ̃ as Δ̃ = R · Δ, where R ∈
{0, 1}λ×n is a matrix with ri as columns. Since at least h positions of Δ are
uniformly random, from randomness extraction results for bit-fixing sources (as
used in, e.g. [NST17, Theorem 1]) it holds that since every honestly sampled row
of R is uniformly random, Δ̃ is within statistical distance 2λ−h of the uniform
distribution. We therefore require h ≥ 2λ, instead of h ≥ 3λ as previously.

Optimization with Vandermonde Matrices Over Small Fields. If we
choose each of the Δi keys to come from a small finite field F, with |F| ≥ n,
then we can optimize the compact MAC scheme even further, so that there
is no overhead on top of the previous pairwise scheme. The idea is to use a
Vandermonde matrix to extract randomness from all parties’ small MAC keys
in a deterministic fashion, instead of using random vectors ri as before. This
technique is inspired by previous applications of hyper-invertible matrices to
MPC in the honest majority setting [BTH08].

Let v1, . . . , vn be distinct points in F, where F is such that h · |F| ≥ λ. Now
let V ∈ F

n×h be the Vandermonde matrix given by

Concretely Efficient Large-Scale MPC with Active Security 99

V =

⎛

⎜
⎜
⎜
⎝

1 v1 . . . vh−1
1

1 v2 . . . vh−1
2

...
.

...
1 vn . . . vh−1

n

⎞

⎟
⎟
⎟
⎠

Party Pi defines the new MAC key share Δ̃i = vi · Δi, where vi is the i-th
row of V. This results in a new global key given by Δ̃ = (Δ1, . . . ,Δn) · V ∈ F

h.
From the fact that at least h components of Δ are uniformly random, and the
property of the Vandermonde matrix that any square matrix formed by taking
h rows of V is invertible, it follows that Δ̃ is a uniformly random vector in F

h.
More formally, this means that if n−h components of Δ are fixed and we define
ΔH to be the h honest MAC key components, then the mapping ΔH �→ Δ ·V is
a bijection, so Δ̃ is uniformly random as long as ΔH is. Therefore we can choose
h ≥ λ/|F| to obtain ≤ 2−λ cheating probability in the resulting MAC scheme.

Allowing leakage on the MAC keys. In our subsequent protocol for gener-
ating MACs, to obtain an efficient protocol we need to allow some leakage on
the individual MAC keys Δi ∈ {0, 1}�, in the form of allowing the adversary to
guess a single bit of information on each Δi. For both the pairwise MAC scheme
and the compact, SPDZ-style MACs, this leakage does not affect an adversary’s
probability of forging MACs in our actual protocols, since the entire MAC key
still needs to be guessed to break security — allowing guesses on smaller parts
of the key does not help, as a single incorrect guess causes the protocol to abort.
We analyse the security of this for our compact MAC representation in the full
version.

4 Correlated OT on Short Strings

As a building block, we need a protocol for random correlated oblivious transfer
(or random Δ-OT) on short strings. This is a 2-party protocol, where the receiver
inputs bits x1, . . . , xm, the sender inputs a short string Δ ∈ {0, 1}�, and the
receiver obtains random strings ti ∈ {0, 1}�, while the sender learns qi = ti +
xi · Δ. The ideal functionality for this is shown in Fig. 4.

The protocol we use to realise this (shown in the full version of this paper)
is a variant of the OT extension protocol of Keller et al. [KOS15], modified
to produce correlated OTs (as done in [NST17]) and with short strings. The
security of the protocol can be shown similarly to the analysis of [KOS15]. That
work showed that a corrupt party may attempt to guess a few bits of information
about the sender’s secret Δ, and will succeed with probability 2−c, where c is
the number of bits. In our case, since Δ is small, a corrupt receiver may actually
guess all of Δ with some noticeable probability, in which case all security for
the sender is lost. This is modelled in the functionality FΔ-ROT, which allows a
corrupt receiver to submit such a guess. This leakage does not cause a problem
in our multi-party protocols, because an adversary would have to guess the keys

100 C. Hazay et al.

of all honest parties to break security, and this can only occur with negligible
probability.

Communication complexity. Recall that λ is the statistical security parame-
ter and κ the computational security parameter. The initialization phase requires
� random OTs, which costs �κ bits of communication when implemented using
OT extension. The communication complexity of the Extend phase, to create
m Δ-ROTs, is �(m+λ) bits to create the OTs, and κ+2λ bits for the consistency
check (we assume PS only sends a κ-bit seed used to generate the χi’s). This
gives an amortized cost of � + (κ + 3λ)/m bits per Δ-ROT, which is less than
� + 4 bits when m > κ.

Fig. 4. Functionality for oblivious transfer on random, correlated strings.

5 Bit Authentication with Short Keys

In this section we describe our protocols for authenticating bits with short MAC
keys. To capture the short keys used for authentication we need to define a series
of different functionalities.

5.1 Authenticated Bit Functionality FaBit

We begin with the description of the ideal functionality FaBit described in Fig. 5
that formalises the MACs we create. Each party Pi ∈ P(h) chooses a global
Δi ∈ {0, 1}�, then FaBit calls the subroutine (P(h),P(1))-Bracket (Fig. 6) that
uses these global MAC keys {Δi}i∈P(h) stored by the functionality to create
pairwise MACs of the same length, as illustrated in Sect. 3.

Concretely Efficient Large-Scale MPC with Active Security 101

Fig. 5. Functionality for authenticated bits

5.2 Bit Authentication Protocol

We now present our bit authentication protocol ΠaBit, described in Fig. 7, imple-
menting the functionality FaBit (Fig. 5). The protocol first runs the Δ-OT pro-
tocol with short keys between every pair of parties in P(h) ×P(1) to authenticate
the additively shared inputs, in a standard manner. We then need to adapt the
consistency check from the TinyOT-style authentication protocol presented by
Hazay et al. [HSS17] to our setting of MACs with short keys distributed between
two committees, to ensure that all parties input consistent values in all the COT
instances.

Taking a closer look at the consistency checks in Step 3f, the first check
verifies the consistency of the Δi values, whereas in the second set of checks
we test the consistency of the individual shares xj . To see correctness when all
parties are honest, notice that in the first check, for i ∈ P(h) we have:

zi +
∑

j∈(P(1)\{Pi})
zj,i = 0

⇐⇒ (yi + y) · Δi +
∑

j∈(P(1)\{Pi})
(ki,j [y] + mj,i[y]) = 0

⇐⇒ (yi + y) · Δi +
∑

j∈(P(1)\{Pi})
(yj · Δi) = 0 ⇐⇒ y · Δi + y · Δi = 0.

102 C. Hazay et al.

Fig. 6. Macro used by FaBit to authenticate bits

For a corrupt party who misbehaves during the protocol, there are two potential
deviations:

1. A corrupt Pi, i ∈ PA
(h) provides an inconsistent Δi,j when acting as a sender

in Fm,�
Δ-ROT with different honest parties, i.e. Δi �= Δi,j for some j ∈ P(1) \ A.

2. A corrupt Pj , j ∈ PA
(1) provides an inconsistent input xi,j

ι when acting as a

receiver in Fm,�
Δ-ROT with different parties, i.e. xi

ι �= xi,j
ι , for some j ∈ P(h) \ A.

Note that in the above, the ‘correct’ inputs Δi, xj
ι for a corrupt Pi ∈ P(h)

or Pj ∈ P(1) are defined to be those in the FΔ-ROT instance with some fixed,
honest party Pi1 ∈ P(1) or Pj1 ∈ P(h), respectively. We now prove the following
two claims.

Claim 5.1. Assuming a non-abort execution, then for every corrupted party
Pi, i ∈ PA

(h), all Δi are consistent.

Proof. In order to ensure that all Δi are consistent we use the first check.
More precisely, we fix Pj ∈ PA

(h) and check that
∑

i∈[n] z
i,j = 0,∀j. Since we

require that y ∈ {0, 1}λ, the probability to pass the check is 1/2λ. More formally,
let us assume that a corrupt P ∗

j uses inconsistent Δj,i in FΔ-ROT with some
i �∈ PA

(h), then to pass the check P ∗
j can send adversarial values in step 3c, i.e.

when it broadcasts values ȳj , or in step 3d, when committing to the values zj,i.
Let ey ∈ {0, 1}λ denote an additive error so that

∑
i∈[n] ȳ

i = y + ey, and let
ez ∈ {0, 1}λ denote an additive error so that

∑
j∈PA

(h)
ẑj,i =

∑
j∈PA

(h)
zj,i + ez.

Finally, let δj,i = Δj + Δj,i. Then if the check passes, it holds that:

Concretely Efficient Large-Scale MPC with Active Security 103

0 =
∑

i

zi,j = ez + zj +
∑

i�=j

zi,j = ez + (y + ey + yj) · Δj +
∑

i�=j

yi · Δj,i

⇐⇒ ez + ey · Δj =
∑

i�=j

yi · δj,i,

which implies that the additive errors ez and ey, that make the above equation
equal to zero, depend on the yi values, and that the adversary has to guess at
least one of them in order to pass the check. This event happens with probability
2−λ since the only information the adversary has about these values is that they
are uniform additive shares of y, due to the randomization in step 3c. ��
Claim 5.2. Assuming a non-abort execution, then for every corrupted party
Pj , j ∈ PA

(1), all xi,j
ι are consistent.

Proof. We need to check that a corrupt P ∗
j cannot input inconsistent xj,i to

different honest parties without being caught. For every ordered pair of parties
(Pi, Pj), we can define Pj ’s MAC mj,i[y] and Pi’s key ki,j [y] respectively as

m∑

ι=1

χι · mj,i[xι] +
λ∑

k=1

Xk−1 · mj,i[rk] and

m∑

ι=1

χι · ki,j [xι] +
λ∑

k=1

Xk−1 · ki,j [rk] .

A corrupt Pj can commit to incorrect MACs ẑj,i, so that ẑj,i = zj,i + ej,i
z and

ŷj = yj,i + ej,i
y . In order to have the check passed, we have:

zj,i + ej,i
z = k[y]i,j + (yj,i + ej

y) · Δi,

Which happens if and only if:

ej,i
z + (yj,i + ej

y) · Δi = mj,i[y] + ki,j [y]

=
(m∑

ι=1

χι · (xj
ι + δj,i

ι) +
λ∑

k=1

Xk−1 · (rj
k + δ′j,i

k)
) · Δi

⇐⇒ ej,i
z =

(
yj,i + ej

y +
m∑

ι=1

χι · (xj
ι + δj,i

ι) +
λ∑

k=1

Xk−1 · (rj
k + δ′j,i

k)
) · Δi

= (ej
y +

m∑

ι=1

χι · δj,i
ι +

λ∑

k=1

Xk−1 · δ′j,i
k) · Δi.

Then there are two cases for which the adversary can pass the check:

1. In case ej,i
z = (ej

y +
∑m

ι=1 χι · δj,i
ι +

∑λ
k=1 Xk−1 · δ′j,i

k) · Δi �= 0 the adversary
needs to guess Δi, which can only happen with probability 2−�. Note that in
order to pass this check the adversary needs to guess all honest parties’ keys.

104 C. Hazay et al.

This is due to the fact that a corrupted Pj opens the same ŷj to all parties,
so if it cheats and provides an inconsistent value then it must pass the above
check with respect to all honest parties. Therefore, the overall probability of
passing this check is 2−�h ≤ 2−λ.

2. In case ej,i
z = 0 and ej

y =
∑m

ι=1 χι ·δj,i
ι +

∑λ
k=1 Xk−1 ·δ′j,i

k ,∀i �∈ PA
(1). Assuming

that there is at least one i �∈ PA
(h) s.t. δj,i

ι = δi = 0 (recall that we view the
inputs of Pj in the interaction with party Pj1 as the ‘correct’ inputs, then
there must be at least one party for which this condition holds). This implies
that ej

y = 0 as well. Thus, for every i /∈ PA
(h) ∪ j1 it needs to holds that

0 =
m∑

ι=1

χι · δj,i
ι +

λ∑

k=1

Xk−1 · δ′j,i
k .

Since each χι is uniformly random in F2λ and independent of the δj,i
ι , δ′j,i

ι

values, it is easy to see that this only holds with probability 2−λ if any δj,i
ι is

non-zero. ��
In the full version we prove the following theorem.

Theorem 5.1. Protocol Π
P(h),P(1),m,�

aBit securely implements the functionality
FP(h),P(1),m,�

aBit in the (Fm,�
Δ-ROT,FRand,FCommit)-hybrid model.

5.3 Efficiency Analysis

We now analyse the efficiency of our protocol and compare it with the previous
best known approach to secret-shared bit authentication. When there are n
parties with h honest, the previous best approach would be to use the standard
TinyOT-style MAC scheme (as in [WRK17b,HSS17]) inside a committee of size
n−h+1 parties, to guarantee at least one honest party. Here, the MACs must be
of length at least λ, and the amortized communication complexity can be around
λ(n−h+1)(n−h) bits per authenticated bit. In contrast, in our scheme we have
two committees of sizes n1 and n2, with h and 1 honest party, respectively. If we
suppose the committees are deterministically chosen from a set of n parties with
h honest, then we get n1 = n and n2 = n−h+1. To ensure security of the MAC
scheme we need MACs of length � ≥ λ/h, for statistical security λ. This gives an
amortized complexity for creating a MAC of around �n1n2 = λn(n−h+1)/h bits.
Compared with the TinyOT approach, this gives a reduction in communication
of h(n − h)/n times in our protocol. This is maximized when h = n/2, with a
n/4 times reduction in communication cost over TinyOT, and for smaller h we
still have savings for all h > 1.

Concretely Efficient Large-Scale MPC with Active Security 105

Fig. 7. Protocol for authentication of random shared bits using committees

106 C. Hazay et al.

6 Actively Secure MPC Protocol with Short Keys

Similarly to prior constructions such as [DPSZ12,NNOB12,FKOS15,KOS16],
our protocol is in the pre-processing model where the main difference is that
the computation is carried out via two random committees P(h) and P(1). The
preprocessing phase is function and input independent, and provides all the
correlated randomness needed for the online phase where the function is securely
evaluated.

6.1 The Online Phase

Our online protocol, shown in Fig. 8, runs mostly as that of [DPSZ12,DKL+13]
within a small committee P(1) ⊆ P with at least 1 honest party. The main
difference is that we need the help of the bigger P(h) ⊆ P committee with at least
h honest parties to authenticate the inputs of any Pi ∈ P using the [·]P(h),P(1)-
representation before converting them to the more compact �·�-representation
described in Sect. 3.2.

Fig. 8. The Boolean MPC protocol

Concretely Efficient Large-Scale MPC with Active Security 107

6.2 The Preprocessing Phase

The task of FPreprocessing is to create random authenticated bits under the
[·]P(h),P(1)-representation and random authenticated triples under the compact
�·�-representation.

7 Triple Generation

Here we present our triple generation protocol implementing the functionality
described in Fig. 9. First, protocol ΠHalfAuthTriple (Fig. 11) implements the func-
tionality FHalfAuthTriple (Fig. 10) to compute cross terms in triples: each party
Pi ∈ P(h) inputs random shares yi

k, k ∈ [m], and committees P(h),P(1) obtain
random representations [xk]Δ as well as shares of the cross terms defined by∑

i∈P(h)

∑
j �=P(1)\{Pi} xj

k · yi
k, k ∈ [m].

Given this intermediate functionality, protocol ΠTriple (Fig. 12) imple-
ments Fm,�

Triple (Fig. 9) computing correct authenticated and non-leaky triples
(�xk�, �yk�, �zk�) such that (

∑
j∈P(1)

xj
k) · (

∑
j∈P(1)

yj
k) =

∑
j∈P(1)

zj
k. Checking

correctness and removing leakage is achieved using classic cut-and-choose and
bucketing techniques. Note that even though the final triples are under the com-
pact �·�-representation we produce them first using [·]P(h),P(1)-representations in
order to generate MACs more efficiently and having an efficient implementation
of FHalfAuthTriple.

It is crucial to note that the security of ΠHalfAuthTriple is based on the hard-
ness of RSD, and for this reason the number of triples r generated by this
protocol depends on the security RSD. So while essentially an unlimited number
of random correlated OTs and random authenticated bits can be produced as
described on previous sections, a naive use of short keys would actually result in
an upper bound on the number of triples that can be produced securely. To fix
this issue, during ΠHalfAuthTriple we make the parties ‘switch the correlation’ on
representations [x]Δ, so they output a new representation under an independent
correlation [x]Δ̃, with Δ �= Δ̃ being the relevant value for the RSD assumption.
Finally, the fact that Δ̃ is short combined with the adversarial possibility of
querying some predicates about it requires the reduction to use an interactive
version of RSD, which we denote by L-DRSD as in Definition 2.1.

7.1 Half Authenticated Triples

Here we show how Π
P(h),P(1),r,�

HalfAuthTriple securely computes cross terms in triples. The
main difficulty arises from modelling the leakage due to using short keys in the
real world, and proving that it cannot be distinguished from uniformly random.
Looking at individual parties, security relies on the fact that on step 6a of the
protocol si,j

k is a fresh, random sharing of zero and hence yi,j
k is perfectly masked.

Nevertheless, when considering the joint leakage from all honest parties, the
L-DRSD assumption kicks in and requires a more thoughtful consideration.

Security is showed in the following theorem, proved in the full version.

108 C. Hazay et al.

Fig. 9. Functionality for triples generation.

Fig. 10. Functionality for half authenticated triples

Theorem 7.1. Protocol Π
P(h),P(1),r,�

HalfAuthTriple securely implements FP(h),P(1),r,�

HalfAuthTriple in the
(FaBit,FZero)-hybrid model as long as L-DRSDr,h,� is secure.

Concretely Efficient Large-Scale MPC with Active Security 109

Fig. 11. Protocol for half authenticated triples

7.2 Correct Non-leaky Authenticated Triples

Here we describe the protocol ΠTriple (Fig. 12) to create m correct random authen-
ticated triples with compact MACs �xk�, �yk�, �zk�, k ∈ [m].

110 C. Hazay et al.

First, parties in P(h) ∪ P(1) call FaBit obtaining m′ = m · B2 + c random
authenticated bits {[yk]P(h),P(1)}k∈m′ , where B and c are parameters of the sub-
protocol ΠTripleBucketing (Fig. 13). Then, each Pj ∈ P(1) reshares their values yj

k

to parties in P(h) obtaining [ŷk]P(h),P(h)

k∈m′ such that
∑

i∈P(h)
ŷi

k = yk, k ∈ [m].

This allows P(h) ∪ P(1) to call FP(h),P(1),r,�

HalfAuthTriple m̂ = m/r times, on inputs
{ŷ(ι−1)·r+k}k∈[r], for each ι ∈ m̂. The outputs of each of these calls are the
sharings vτ

(ι−1)·r+k, τ ∈ P(h) ∪ P(1) and k ∈ [r], of r cross terms products, i.e.
∑

τ∈P(h)∪P(1)

vτ
(ι−1)·r+k =

∑

i∈P(h)

∑

j∈P(1)

xj
(ι−1)·r+k · ŷi

(ι−1)·r+k.

Notice that the number r of cross terms computed by FP(h),P(1),r,�

HalfAuthTriple depends on
the leaky DRSD problem, and for this reason the protocol needs to call the
functionality m̂ times to obtain all the m′ outputs it needs.

After this, parties in P(h) reshare all the vi
k, k ∈ m′ to P(1), so that each

Pj ∈ P(1) gets v̂j
k, k ∈ [m′], where

∑

j∈P(1)

v̂j
k =

∑

j∈P(1)

xj
k

∑

i∈P(1)\j

yi
k =

∑

τ∈P(h)∪P(1)

vτ
k , (1)

so that parties in P(1) can locally add shares xj
k · yj

k to v̂j
k obtaining zj

k, k ∈ [m′].
Finally, P(h)∪P(1) call FaBit to obtain [zk]P(h),P(1) , and run the ΠTripleBucketing

subprotocol. This subprotocol is similar to the bucket-based cut-and-choose
technique introduced by Larraia et al. [LOS14] and optimized by Frederiksen
et al. [FKOS15], but adapted to run with two committees. It takes as input
m′ = B2 · m + c triples. First, in Step I and II, it ensures that all the triples are
correctly generated sacrificing B · m · (B − 1) + c triples, and then (Step III) it
uses random bucketing technique to remove potential leakage on the xk values
obtaining m private and correct triples. All the MACs on previously opened
values are eventually checked (Step IV) calling the Batch Check command in
Π[Open] (Fig. 1). Finally, on that last step, the remaining triples are converted to
SPDZ-style triples in P(1) using ΠMACCompact.

Correctness easily follows form the discussion above:
∑

j∈P(1)

zj
k =

∑

j∈P(1)

xj
k · yj

k + v̂j
k, (2)

where v̂j
k is the re-sharing inside P(1) of FP(h),P(1),r,�

HalfAuthTriple’s output. More precisely,
using Eq. 1 we can rewrite Eq. 2 as follows:

∑

j∈P(1)

zj
k =

∑

j∈P(1)

xj
k · yj

k +
∑

j∈P(1)

xj
k ·

∑

i∈P(1)\j

yi
k

=
∑

j∈P(1)

xj
k · (

yj
k +

∑

i∈P(1)\j

yi
k

)
=

(∑

j∈P(1)

xj
k

) · (∑

j∈P(1)

yj
k

)
.

Security is showed in the following theorem, proved in the full version.

Concretely Efficient Large-Scale MPC with Active Security 111

Fig. 12. Protocol for triples

Theorem 7.2. Protocol ΠTriple securely implements Fm,�
Triple in the

(FRand,FaBit,FP(h),P(1),r,�

HalfAuthTriple)-hybrid model.

Parameters: Based on the analysis from previous works [FKOS15,FLNW17,
WRK17a], we choose B = 3 and 4, to guarantee security except with probability
2−64 in our estimations. The additional cut-and-choose parameter c can be as
low as 3, so is insignificant as we initially need m′ = B2m + c triples to produce
m final triples.

112 C. Hazay et al.

Fig. 13. Checking correctness and removing leakage from triples with cut-and-choose

8 Complexity Analysis

We now analyse the complexity of our protocol and compare it with the state-
of-the-art actively secure MPC protocols with dishonest majority. As our online

Concretely Efficient Large-Scale MPC with Active Security 113

phase is essentially the same (even better) than that of SPDZ and TinyOT mixed
with committees, we focus on the preprocessing phase.

Furthermore, since the underlying computational primitives in our protocol
are very simple, the communication cost in the triple generation algorithm will
be the overall bottleneck. We compare the communication cost of our triple gen-
eration algorithm with that of the corresponding multiparty Tiny-OT protocol
by Wang et al. [WRK17b].

The main cost for producing m triples in this work, is 3mB2 calls to FaBit

using keys Δi ∈ {0, 1}�, plus mB2 calls to FaBit using new keys Δi +Δ̃i ∈ {0, 1}�

every r triples. The latter calls under new keys are more expensive, as the setup
costs that incurs is roughly 128 · � · |P(h)| · |P(1)| bits and is amortized only across
those r triples. Measuring the cost of FaBit after setup as |P(h)| · |P(1)| · � bits,
we obtain an amortized communication complexity of B2 · |P(h)| · |P(1)| · � · (3 +
(r + 128)/r) bits per triple.

The main cost for producing m triples in [WRK17b] is 3mB calls to their
long-key equivalent of FaBit with long keys, plus sending 2mB outputs of a hash
function. On the other hand, all their communication is within the smaller com-
mittee P(1). Their main (amortized) cost is then of B · |P(1)|2 · 128 · (3 + 2) bits
per triple. Define α = |P(h)|/|P(1)|. We can then conclude that the improve-
ment in communication complexity of our work w.r.t. WRK is roughly that of
a multiplicative factor of:

128 · 5
α · B · � · (4 + 128/r)

Table 1. Amortized communication cost (in kbit) of producing triples in our protocol
and WRK.

parties n (honest) 30 (12) 50 (20) 70 (20) 100 (30) 150 (30) 200 (40)

� 16 16 16 8 (8, 300) (7, 400)

WRK B = 3 656 1785 4896 9542 27878 49959

WRK B = 4 876 2381 6528 12723 37171 65946

Ours B = 3 381 950 2188 2481 6342 9413

Ours B = 4 677 1689 3890 4411 11275 16733

Given the total number of parties n and honest parties h, we first consider
the case of two deterministic committees P(h) and P(1) such that |P(h)| = n and
|P(1)| = n − h + 1, respectively. To give a fair comparison, we have chosen the
parameters in such a way that n − h + 1 in our protocol is equal to n in WRK.
The estimated amortized costs in kbit of producing triples are given in Table 1.
Notice that given n and h, the key lenght � and the number of triples r are
established according to the corresponding leaky-DRSD instance with κ bits of
security. We consider κ = 128 and bucket size B = 3 and 4.

114 C. Hazay et al.

As we can see from the table, the improvement of our protocol over WRK
becomes greater as (n, h) increase (and � consequently decreases). The key lenght
greatly influences the communication cost as a smaller � reduces significantly
the cost of computing the pairwise OTs needed both for triple generation and
authentication.

When n is larger we can use random committees P(h) and P(1) such that,
except with negligible probability 2−λ, P(h) has at least h2 ≤ h honest parties
and P(1) has at least 1 honest party. Let |P(h)| = n2, |P(1)| = n1 and λ = 64,
Table 2 compares the communication cost of our triple generation protocol with
random committees with WRK, where we take n = n1.

Table 2. Amortized costs in kbit for triple generation with n parties and h honest
parties using two random committees of sizes n1, n2 with 1 and h2 honest parties.

(n, h, |P(1)|) (h2, �) = (20, 11) (h2, �) = (50, 6) (h2, �) = (80, 1) (h2, �) = (110, 1) (h2, �) = (150, 1)WRK

n2 Ours n2 Ours n2 Ours n2 Ours n2 Ours

(300, 100, 89) 167 7141 240 5270 280 4486 15037

(500, 150, 108) 211 10950 316 8420 396 7698 456 4240 50700

(800, 200, 139) 275 18366 417 14301 533 13335 630 7539 733 6397 36829

(1000, 200, 179) 351 30188 531 23451 675 21748 796 12266 922 10363 61175

Fig. 14. Varying the larger committee size with total number of parties and corruptions
(n, t) = (500, 350) and (1000, 850).

Varying the size of the committee P(h), and the number h2 of honest parties
within P(h), we obtain a tradeoff: with a larger committee we obtain a larger
committee size n2 and lower overall communication complexity, but on the other
hand there are more parties interacting, which may introduce bottlenecks in the
networking. Figure 14 illustrates this with 500 and 1000 parties in total and 350
and 850, respectively, corruptions.

Concretely Efficient Large-Scale MPC with Active Security 115

References

[ADS+17] Asharov, G., et al.: Privacy-preserving interdomain routing at Internet
scale. PoPETs 2017(3), 147 (2017)

[BCD+09] Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingle-
dine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 20

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 11

[BLN+15] Burra, S.S., et al.: High performance multi-party computation for binary
circuits based on oblivious transfer. Cryptology ePrint Archive, Report
2015/472 (2015). http://eprint.iacr.org/2015/472

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 13

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40203-6 1

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation
onion router. In: USENIX, pp. 303–320 (2004)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[FKOS15] Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach
to MPC with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48797-6 29

[FLNW17] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure
three-party computation for malicious adversaries and an honest majority.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211,
pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 8

[HOSS18] Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new app-
roach to efficient multi-party computation. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 1

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC
combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.)

https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-20465-4_11
http://eprint.iacr.org/2015/472
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-96878-0_1

116 C. Hazay et al.

ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 21

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24.
ACM Press, May 1989

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal
overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 35

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016,
pp. 830–842. ACM Press, October 2016

[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 6

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[KSS12] Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with
malicious adversaries. In: USENIX, pp. 285–300 (2012)

[LOS14] Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party com-
putation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 28

[LPSY15] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant
round multi-party computation combining BMR and SPDZ. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
319–338. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 16

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

[NST17] Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO. In:
NDSS 2017. The Internet Society, February/March 2017

[WMK17] Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation
in the single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 14

[WRK17a] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and effi-
cient maliciously secure two-party computation. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 21–37. ACM
Press, October/November 2017

[WRK17b] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty com-
putation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 39–56. ACM Press, October/November 2017

https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-56617-7_14

Concretely Efficient Large-Scale MPC with Active Security 117

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-662-46803-6_8

Non-interactive Secure Computation
from One-Way Functions

Saikrishna Badrinarayanan1(B), Abhishek Jain2, Rafail Ostrovsky1,
and Ivan Visconti3

1 UCLA, Los Angeles, USA
{saikrishna,rafail}@cs.ucla.edu

2 JHU, Baltimore, USA
abhishek@cs.jhu.edu

3 University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. The notion of non-interactive secure computation (NISC)
first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies
the following problem: Suppose a receiver R wishes to publish an encryp-
tion of her secret input y so that any sender S with input x can then
send a message m that reveals f(x, y) to R (for some function f). Here,
m can be viewed as an encryption of f(x, y) that can be decrypted by
R. NISC requires security against both malicious senders and receivers,
and also requires the receiver’s message to be reusable across multiple
computations (w.r.t. a fixed input of the receiver).

All previous solutions to this problem necessarily rely upon OT (or
specific number-theoretic assumptions) even in the common reference
string model or the random oracle model or to achieve weaker notions of
security such as super-polynomial-time simulation.

In this work, we construct a NISC protocol based on the minimal
assumption of one way functions, in the stateless hardware token model.
Our construction achieves UC security and requires a single token sent
by the receiver to the sender.

Keywords: Secure computation · Hardware tokens

A. Jain—This research was supported in part by a DARPA/ARL Safeware Grant
W911NF-15-C-0213.
R. Ostrovsky—Research supported in part by NSF grant 1619348, DARPA Safe-
Ware subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065,
US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Fac-
ulty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. The views expressed are those of the authors and do not reflect position of
the Department of Defense or the U.S. Government.
I. Visconti—Research supported in part by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780477 (project
PRIViLEDGE) and in part by University of Salerno through a FARB grant.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 118–138, 2018.
https://doi.org/10.1007/978-3-030-03332-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_5&domain=pdf

Non-interactive Secure Computation from One-Way Functions 119

1 Introduction

A motivating scenario [1]. Suppose there is a public algorithm D that takes
as input the DNA data of two individuals and determines whether or not they
are related. Alice would like to use this algorithm to find family relatives, but
does not want to publish her DNA data in the clear. Instead, she would like to
publish an “encryption” of her DNA data b so that anyone else with DNA data
a can send back a single message to Alice that reveals D(a, b), i.e., whether or
not Alice is related to that person. This process must be such that it prevents
either party from influencing the output (beyond the choice of their respective
inputs), while also ensuring the privacy of their DNA data.

Non-interactive Secure Computation. The notion of non-interactive secure
computation (NISC), introduced by Ishai et al. [25], provides a solution to the
above problem. In its general form, NISC allows a receiver party R to publish
an encryption of her input y such that any sender party S with input x can then
send a message m that reveals f(x, y) to R (for some function f), where m can
be viewed as an encryption of f(x, y) that can be decrypted by R. NISC achieves
security against malicious senders and receivers, and also allows the receiver’s
message to be reusable across multiple computations (w.r.t. a fixed input of the
receiver).

Note that if malicious security was not required, then one could readily obtain
a solution via Yao’s secure computation protocol [33]. However, NISC guaran-
tees malicious security, and is therefore impossible in the plain model w.r.t.
polynomial-time simulation [20].

The work of Ishai et al. [25] gave the first solution for NISC in a hybrid
model where the parties have access to the oblivious transfer (OT) functionality.
Subsequently, efficient solutions for NISC based on cut-and-choose techniques
were investigated in the common reference string (CRS) model [1,29], the global
random oracle model [9], as well as the plain model with super-polynomial-time
simulation [2].

Our Goal. All of these works, however, necessarily rely upon OT [2,25] (or spe-
cific number-theoretic assumptions, as in [1,9,29]). In this work, we ask whether
it is possible to construct NISC protocols based on the minimal assumption of
one-way functions?

Since OT is necessary for secure computation (even in CRS and random
oracle model), we investigate the above question in the tamper-proof hardware
token model, namely, where parties can send hardware tokens to each other.

Starting from the work of Katz [26], there is a large body of research work
on constructing secure computation protocols in the hardware token model (see
Sect. 3 for a detailed discussion). However, all known solutions require two or
more rounds of interaction between the parties (after an initial token transfer
phase) regardless of the assumptions and the number of tokens used in the
protocol. Thus, so far, the problem of NISC in the hardware token model has
remained open.

120 S. Badrinarayanan et al.

Our Result. In this work, we construct a UC-secure NISC protocol based on
one-way functions that uses a single, stateless hardware token. Note that this is
optimal both in terms of complexity assumption as well as the number of tokens.

Concretely, our solution uses the following template: first, a receiver R sends
out a hardware token that has its input y hardwired. Upon communicating with
the token, a sender S sends out a single message to R, who can then evaluate
the output. Note that by using the transformation of [27] which involves adding
a single message from R to S, we can also support the case where we want both
parties to learn the output.

We remark that prior work on cryptography using hardware tokens has stud-
ied the use of both stateful and stateless hardware tokens. The latter is consid-
ered to be a more desirable model since it is more realistic, and places weaker
requirements on the token manufacturer. Our protocol, therefore, only relies on
a stateless hardware token. Moreover, following prior work, we do not make
any assumptions on the token if R is malicious; in particular, in this case, the
adversarial token may well be stateful.

2 Technical Overview

We now describe the techniques used in our non-interactive secure computation
(NISC) protocol using one stateless token and assuming one way functions.

Token Direction. Recall that in a NISC protocol, the receiver R first sends her
input y in some encrypted manner such that any sender S with input x computes
on this encrypted input and sends back a message m that the receiver can then
decrypt to recover the output f(x, y). For different choices of the function f and
input x, the sender can generate a fresh message m using the same encrypted
input of the receiver. Therefore, to follow this paradigm, in the setting of state-
less hardware tokens, we require that the receiver first sends a stateless token
T (containing her input) which can be followed by a communication message
from the sender. Another approach is to perhaps have the receiver first send a
communication message followed by a token sent by the sender. However, such
an approach has the drawback that to reuse the receiver’s first message, each
time, the sender has to generate and send a fresh token. Hence, we stick to the
setting of the receiver first sending a token.

A natural first approach then is to start with the large body of secure compu-
tation protocols based on stateless tokens [11,18,23,24] and try to squish one of
them into a protocol that comprises of just one token from the receiver and one
communication message from the sender. However, in all these works, it is the
sender who first sends a token to the receiver (as opposed to our setting where
the direction of token transfer is reversed) and this is followed by at least two
rounds of interaction between the two parties. As such, it is completely unclear
how this could be done even if we were to rely on assumptions stronger than
one-way functions.

Non-interactive Secure Computation from One-Way Functions 121

Therefore, we significantly depart from the template followed in all prior
works, and start from scratch for constructing NISC in the stateless hardware
token model.

Input authentication. In the stateless hardware token model, an important
desideratum is to prevent an adversary from gaining undue advantage by reset-
ting the stateless token that it receives from the honest party. In all prior works,
to prevent the adversary from resetting the token and changing its input in each
interaction with the token and observing the output (which may potentially allow
it learn more information), the token recipient’s input encoding is first authen-
ticated by the token creator before interaction with the token. However, such
an approach necessarily requires at least two rounds of communication between
S and R after the exchange of tokens which is not feasible in our setting. To
overcome this issue, we in fact do allow S to potentially reset the token and
interact with the token using different inputs! While this might seem strange
at first, the key observation is that S performs only “encrypted” computation
in its interaction with the token. Therefore, even if S resets and interacts with
the token using different inputs, he learns no information whatsoever about R’s
input from his interaction with the token. Thus, resetting attacks are nullified
even without authentication. We now describe how to perform such “encrypted”
computation.

Protocol structure. At a very high level, our construction follows the garbled
circuit based approach to secure computation [33]. That is, the sender S with
input x sends a garbled version of a circuit Cx that computes f(x, z) for any
input z. Since we are in the setting of malicious adversaries, an immediate ques-
tion is how does S prove correctness of the garbled circuit? Clearly, a proof of
correctness to the receiver will require more than one message of interaction.
Instead, we make S prove to the token T that the garbled circuit GC was cor-
rectly generated. At the end of the proof, T outputs a signature on GC which is
sent by the sender S to the receiver R (along with GC) as authentication that
this garbled circuit was indeed correctly generated.

To make this approach work, one question that naturally arises is how does
R receive the labels corresponding to her input in order to evaluate the garbled
circuit? Recall that we wish to rely on only one way functions and hence can’t
assume stronger primitives like oblivious transfer (OT). Also, previous stateless
token based OT protocols rely on multiple rounds of interaction and in some
cases, multiple tokens and stronger assumptions. We instead do the following:
S sends the garbled circuit GC to T and additionally discloses the randomness
rand used to generate the garbled circuit. The token can use this randomness to
compute on its own the labels corresponding to R’s input y. It then responds
with a ciphertext CT of these labels, and further proves that this ciphertext was
indeed correctly generated using the receiver’s input y and the randomness rand.
Then, if the proof verifies, S sends CT along with the garbled circuit GC and its
signature to R. The receiver R decrypts the ciphertext CT to recover the labels
and then evaluates the garbled circuit. To prevent S from tampering with the
ciphertext in its message to R, we will additionally require that the token T signs

122 S. Badrinarayanan et al.

the ciphertext as well. In fact, we require that the signature queries on GC and
CT are performed jointly as a single query to prevent an adversarial sender from
resetting the token and getting signatures from the token on a garbled circuit
GC computed using randomness rand, and an encryption CT of the wire labels
corresponding to R’s input computed using different randomness rand′ �= rand.
Indeed, such an attack may allow the sender to force an incorrect output on R.

Selective Abort. One issue with the above protocol is that if R is malicious,
the token could launch an aborting attack as follows: on being queried with
the garbled circuit GC and randomness rand used for garbling, reconstruct the
circuit Cx, thereby learning the sender’s input x and output ⊥ if x begins with
0 (for example). Now, if R received a valid message from S, she knows that S’s
input begins with 1. The observation is that it is crucial for the token T to not
learn both the garbled circuit GC and the randomness rand used for garbling.
Since it is necessary for T to know rand to generate the encrypted labels, we
tweak the protocol to have S query the token only with a commitment to the
garbled circuit (along with the randomness used for garbling) and prove that
this commitment is correctly computed. T then produces a signature on this
commitment. In his message to R, S now sends the commitment, the signature
on it and the decommitment to help R recover the garbled circuit.

Subliminal Channel. Another attack that a malicious receiver could launch is
by embedding information about the randomness rand in the ciphertext and sig-
natures it generates. Note that even though the token proves that the signature
and the ciphertext were correctly generated, a malicious token could still choose
the randomness for generating the ciphertext/signature as a function of rand.
Now, even though the proof verifies successfully, the receiver, using the knowl-
edge of the encryption key/signing key, might be able to recover the randomness
used for encrypting/signing and learn information about rand thus breaking the
security of the garbled circuit GC (which, in turn, can reveal S’s input). To
prevent such an attack, it is necessary to enforce that the randomness used by
the token to generate the ciphertext and signature is independent of rand, but
unknown to the sender. We do this by making the token fix this randomness
ahead of time (using a commitment) and proving that the randomness used to
encrypt and sign was the one committed to before knowing rand. Additionally,
we ensure (using pseudorandom functions) that a malicious sender, via resetting
attacks, can not learn this randomness used for encrypting and signing.

Finally, note that to deal with resetting attacks in the proofs, we use a
resettably sound zero-knowledge argument for the proof given by the sender to
the token and a resettable zero-knowledge argument of knowledge for the proof
from the token to the sender. Both these arguments are known assuming just
one way functions [12–15]. Here, we need the argument of knowledge property in
order to extract the receiver’s input in the security proof. To extract the sender’s
input in the ideal world, the simulator uses knowledge of the garbled circuit (sent
to the receiver) and the randomness for garbling (sent to the simulated token).
We refer the reader to the main body for more details about our construction
and other issues that we tackle.

Non-interactive Secure Computation from One-Way Functions 123

3 Related Work

We briefly review prior work on cryptography using hardware tokens. The sem-
inal work of Katz [26] initiated the study of secure computation protocols
using tamper-proof hardware tokens and established the first feasibility results
using stateful hardware tokens. Subsequently, this stateful token model has been
extensively explored in several directions with the purpose of improving upon
the complexity assumptions, round-complexity of protocols and the number of
required tokens [16,17,21,28,30].

The study of secure computation protocols in the stateless hardware token
model was initiated by Chandran et al. [10]. They constructed a polynomial
round two-party computation protocol for general functions where each party
exchanges one token with the other party, based on enhanced trapdoor permu-
tations. Subsequent to their work, Goyal et al. [23] constructed constant-round
protocols assuming collision-resistant hash functions (CRHFs). However, these
improvements were achieved at the cost of requiring a polynomial number of
tokens. Choi et al. [11] subsequently improved upon their result by decreasing
the number of required tokens to only one, while still using only constant rounds
and CRHFs. Recently, two independent works [18,24] obtained the first protocols
for secure two party computation based on the minimal assumption of one-way
functions. Specifically, Döttling et al. [18] construct a secure constant round
protocol using only one token. Hazay et al. [24] construct two-round two-party
computation in this model using a polynomial number of tokens.

All the above works, including ours, focus on achieving Universally Compos-
able (UC) [6] security1.

4 Preliminaries

UC-Secure Two Party Computation. We follow the standard real-ideal
paradigm for defining secure two party computation. We include the formal
definitions in AppendixA.

Non-interactive Secure Computation (NISC). A secure two party compu-
tation protocol in the stateless hardware token model between a sender S and a
receiver R where only R learns the output is called a NISC protocol if it has the
following structure: first, R sends a token to S and then the sender S sends a
single message to R. We require security against both a malicious sender and a
malicious receiver (who can create the token to be stateful). Further, note that
we work in the stand-alone security model and don’t consider composability.

Token functionality. We model a tamper-proof hardware token as an ideal
functionality FWRAP, following Katz [26]. A formal definition of this functional-
ity can be found in AppendixA. Note that our ideal functionality models stateful

1 Hazay et al. [24] study the stronger notion of Global UC security [7,9].

124 S. Badrinarayanan et al.

tokens. Although all our protocols use stateless tokens, an adversarially gener-
ated token may be stateful (Fig. 3).

Cryptographic primitives. In our constructions, we use the following cryp-
tographic primitives all of which can be constructed from one way functions:
pseudorandom functions, digital signatures, commitments, garbled circuits, pri-
vate key encryption [19,31–33].

Additionally, we also use the following advanced primitives that were recently
constructed based on one way functions: resettable zero knowledge argument of
knowledge and resettably sound zero knowledge arguments. [3–5,8,12–15].

Interactive proofs for a “stateless” player. We consider the notion of an
interactive proof system for a “stateless” prover/verifier. By “stateless”, we mean
that the verifier has no extra memory that can be used to remember the tran-
script of the proof so far. Consider a stateless verifier. To get around the issue
of not knowing the transcript, the verifier signs the transcript at each step and
sends it back to the prover. In the next round, the prover is required to send this
signed transcript back to the verifier and the verifier first checks the signature
and then uses the transcript to continue with the protocol execution. Without
loss of generality, we can also include the statement to be proved as part of
the transcript. It is easy to see that such a scenario arises in our setting if the
stateless token acts as the verifier in an interactive proof with another party.

5 Construction

In this section, we construct a non-interactive secure computation (NISC) pro-
tocol based on one-way functions using only one stateless hardware token. For-
mally, we prove the following theorem:

Theorem 1. Assuming one-way functions exist, there exists a non-interactive
secure computation (NISC) protocol that is UC-secure in the stateless hardware
token model using just one token.

Notation. We first list some notation and the primitives used.

– Let λ denote the security parameter.
– Let’s say the sender S has private input x ∈ {0, 1}λ and receiver R has private

input y ∈ {0, 1}λ and they wish to evaluate a function f on their joint inputs.
– Let PRF : {0, 1}λ × {0, 1}λ2 → {0, 1}λ be a pseudorandom function.
– Let Commit be a non-interactive2 computationally hiding and statistically

binding commitment scheme that uses n bits of randomness to commit to
one bit.

2 To ease the exposition, we use non-interactive commitments that are based on injec-
tive one-way functions. We describe later how the protocol can be modified to use
a two-message commitment scheme that relies only on one-way functions without
increasing the message complexity of the protocol.

Non-interactive Secure Computation from One-Way Functions 125

– Let(Gen,Sign,Verify) be a signature scheme.
– Let (ske.setup, ske.enc, ske.dec) be a private key encryption scheme.
– Let RSZK = (RSZK.Prove,RSZK.Verify) be a resettably-sound zero-knowledge

argument system for a “stateless verifier” and RZKAOK = (RZKAOK.Prove,
RZKAOK.Verify) be a resettable zero knowledge argument of knowledge sys-
tem for a “stateless prover” as defined in Sect. 4.

– Let (Garble,Garble.KeyGen,Eval) be a garbling scheme for poly sized circuits.

Note that all the primitives can be constructed assuming the existence of
one-way functions.

NP languages. We will use the following NP languages in our protocol.

1. NP language LT characterized by the following relation RT .
Statement : st = (cGC , ct, σ, cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct))
Witness : w = (y, ry, ek, rek, sk, rsk, k, rk, �y, rSign)
RT

2 (st,w) = 1 if and only if :
– cy = Commit(y; ry) (AND)
– cek = Commit(ek; rek) (AND)
– csk = Commit(sk; rsk) (AND)
– ck = Commit(k; rk) (AND)
– �y = Garble.KeyGen(y; toss) (AND)
– ct = ske.enc(ek, �y;PRF(k, rske.enc)) (AND)
– (vk, sk) = Gen(rSign) (AND)
– σ = Sign(sk, (cGC , ct);PRF(k, r(cGC,ct))).

2. NP language L characterized by the following relation R.
Statement : st = (toss, cGC , f)
Witness : w = (x,GC, rGC)
R(st,w) = 1 if and only if :

– GC = Garble(C; toss) (AND)
– C(·) = f(x, ·) (AND)
– cGC = Commit(GC; rGC)

5.1 Protocol

The NISC protocol π is described below:

Token Transfer:
R does the following:

1. Pick a random key k
$← {0, 1}λ for the function PRF.

2. Pick random strings ry, rek, rsk, rk, rSign.
3. Compute (sk, vk) ← Gen(λ; rSign) and ek ← ske.setup(λ).
4. Create a token T containing the code in Fig. 1.
5. Send token T to S.

Communication Message:
The sender S does the following:

126 S. Badrinarayanan et al.

1. Query the token with input “Start” to receive (cy, cek, csk, ck, vk).
2. Pick random strings (toss, rske.enc, r(cGC,ct)). Compute GC = Garble(Cx; toss)

where toss is the randomness for garbling and Cx is a circuit that on input a
string y, outputs f(x, y). Then, compute cGC = Commit(GC; rGC).

3. Using the prover algorithm (RSZK.Prove), engage in an execution of an
RSZK argument with T (who acts as the verifier) for the statement st =
(toss, cGC , f) ∈ L using witness w = (x,GC, rGC). That is, as part of the
RSZK, if the next message of the prover is msg, query T with input (“RSZK”,
toss, cGC , rske.enc, r(cGC,ct),msg).3

4. At the end of the above argument, receive (ct, σ(cGC,ct)) from T.
5. Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution

of a RZKAOK with T (who acts as the prover) for the statement stT =
(cGC , ct, σ(cGC,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct)) ∈ LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK”, toss, rske.enc, r(cGC,ct),msg). Output ⊥ if the argument does
not verify successfully.

6. Send (cGC ,GC, rGC , ct, σ(cGC,ct)) to the receiver R.

Output Computation Phase:
R does the following to compute the output:

1. Abort if Verifyvk((cGC , ct), σ(cGC,ct)) = 0.
2. Abort if cGC �= Commit(GC; rGC).
3. Compute � = ske.dec(ek, ct).
4. Evaluate the garbled circuit GC using the labels � to compute the output.

That is, out = Eval(GC, �).

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In order
to rely on just one way functions, we switch our commitment scheme to a two
message protocol where the receiver of the commitment sends the first message.
Now, we tweak our protocol as follows: after receiving the token, P1 sends the
first message of the commitment which is then used by the token T to compute
cy. Similarly, P1 computes c1 after receiving a first message receiver’s commit-
ment message from T. Note that this doesn’t affect the round complexity of the
NISC protocol.

5.2 Correctness

The correctness of the protocol follows from the correctness of all the underlying
primitives.

3 Looking ahead, note that a malicious sender can’t change the value of toss across
different rounds of the RSZK argument because the token checks the signed copy of
the transcript at each step.

Non-interactive Secure Computation from One-Way Functions 127

Fig. 1. Code of token T

6 Security Proof: Malicious Receiver

Let’s first consider the case where the receiver R∗ is malicious. Let the environ-
ment be denoted by Z. Initially, the environment chooses an input {x} ∈ {0, 1}λ

and sends it to the honest sender S as his input.

6.1 Simulator Description

The strategy for the simulator Sim against a malicious receiver R∗ is described
below:

Token Exchange Phase:
Receive token T from R∗.

Token Interaction:

1. Query the token with input “Start” to receive (cy, cek, csk, ck, vk).
2. Pick random strings (toss, rske.enc, r(cGC,ct)). Compute cGC = Commit(0λ; rGC).
3. Using the simulator SimRSZK, engage in an execution of an RSZK argument

with T (who acts as the verifier) for the statement st = (toss, cGC , f) ∈ L.
That is, as part of the RSZK, if the next message of SimRSZK is msg, query T
with input (“RSZK”, toss, cGC , rske.enc, r(cGC,ct), msg). Note that Sim forwards
the code M of the token T that it received from FWRAP to SimRSZK.

128 S. Badrinarayanan et al.

4. At the end of the above argument, receive (ct, σ(cSim.GC,ct)) from T.
5. Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution

of a RZKAOK with T (who acts as the prover) for the statement stT =
(cGC , ct, σ(cGC,ct), cy, cek, csk, ck, toss, vk, rske.enc, r(cGC,ct)) ∈ LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK”, toss, rske.enc, r(cGC,ct),msg). Output ⊥ if the argument does
not verify successfully.

Query to Ideal Functionality:

1. Run ExtRZKAOK on the transcript of the above argument to extract a witness
(y, ry, ek, rek, sk, rsk, k, rk, �y, rSign). Note that Sim forwards the code M of the
token T that it received from FWRAP to ExtRZKAOK.

2. Query the ideal functionality with input y to receive as output out. The honest
sender does not receive any output from the ideal functionality.

Communication Message:

1. Using the output out, generate a simulated garbled circuit and simulated
labels. That is, compute (Sim.GC,Sim.�y) ← Sim.GC(out).

2. Compute a commitment to the garbled circuit. That is, compute cSim.GC =
Commit(Sim.GC; rSim.GC).

3. Recompute the ciphertext and the signature using the same keys and ran-
domness as done by the token. That is, compute ct = ske.enc(ek, Sim.�y;PRF
(k, rske.enc)), σ(cSim.GC,ct) = Sign(sk, (cSim.GC , ct);PRF (k, r(cGC,ct))).

4. Send (cSim.GC ,Sim.GC, rSim.GC , ct, σ(cSim.GC,ct)) to the receiver R∗.

6.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb0 corresponds to the real
world and Hyb4 corresponds to the ideal world.

– Hyb0 - Real World: Consider a simulator SimHyb that performs exactly as
done by the honest sender S in the real world.

– Hyb1 - Extraction: In this hybrid, SimHyb runs the “Query to Ideal Func-
tionality” phase as in the ideal world. That is, run the algorithm ExtRZKAOK

to extract (y, ry, ek, rek, sk, rsk, k, rk, �y, rSign), then query the ideal functionality
with the value y to receive output out.
Note that SimHyb continues to use the honest circuit GC and its commitment
cGC in its interaction with T and the receiver.

– Hyb2 - Simulate RSZK: In this hybrid, in its interaction with the token
T, SimHyb computes the RSZK argument by running the simulator SimRSZK

instead of running the honest prover algorithm RSZK.Prove. Note that SimHyb

forwards the code M of the token T that it received from FWRAP to SimRSZK.

Non-interactive Secure Computation from One-Way Functions 129

– Hyb3 - Simulate Garbled Circuit: In this hybrid, SimHyb computes the
message sent to the receiver as in the ideal world. That is, after interacting
with the token, SimHyb does the following:

• Using the output out, generate a simulated garbled circuit and simulated
labels. That is, compute (Sim.GC,Sim.�y) ← Sim.GC(out).

• Compute a commitment to the garbled circuit. That is, compute cSim.GC =
Commit(Sim.GC; rSim.GC).

• Recompute the ciphertext and the signature using the same keys
and randomness as done by the token. That is, compute ct =
ske.enc(ek, Sim.�y;PRF(k, rske.enc)), σ(cSim.GC,ct) = Sign(sk, (cSim.GC,
ct);PRF(k, r(cGC ,ct))).

• Send (cSim.GC,Sim.GC, rSim.GC , ct, σ(cSim.GC,ct)) to the receiver R∗.

– Hyb4 - Switch Commitment: In this hybrid, SimHyb computes cGC =
Commit(0λ; rGC) and uses this in its interaction with the token. This hybrid
corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally indis-
tinguishable and this completes the proof.

Claim. Assuming the argument of knowledge property of the RZKAOK system,
Hyb0 is computationally indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb also
runs the extractor ExtRZKAOK to extract the adversary’s input y. Therefore, by
the argument of knowledge property of the RZKAOK system, we know that the
extractor ExtRZKAOK is successful except with negligible probability given the
transcript of the argument and the code of the prover (that is, the token’s code
M). Hence, the two hybrids are computationally indistinguishable.

Here, note that SimHyb forwards the code M of the token T that it received
from FWRAP to the algorithm ExtRZKAOK.

Claim. Assuming the zero knowledge property of the RSZK system, Hyb1 is
computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the
RSZK argument is computed. In Hyb1, SimHyb computes the RSZK by running
the honest prover algorithm RSZK.Prove, while in Hyb2, SimHyb computes the
RSZK by running the simulator SimRSZK. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the zero knowledge
property of the RSZK argument system with non-negligible probability which is
a contradiction.

Here, note that SimHyb forwards the code M of the token T that it received
from FWRAP to the external challenger which it uses to run the algorithm
SimRSZK.

130 S. Badrinarayanan et al.

Claim. Assuming the security of the garbling scheme (Garble,Eval) and the argu-
ment of knowledge property of the RZKAOK system, Hyb2 is computationally
indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is the way in which the
garbled circuit and the labels that are sent to the receiver are computed. We
show that if there exists an adversary A that can distinguish between the two
hybrids, then there exists an adversary AGC that can break the security of the
garbling scheme. The reduction is described below.

AGC interacts with the adversary A as done by SimHyb in Hyb2 except for
the changes below. AGC first runs the token interaction phase and the query to
ideal functionality phase as done by SimHyb in Hyb2. In particular, it picks a
random string toss, computes cGC as a commitment to an honest garbled circuit,
generates a simulated RSZK argument, extracts the adversary’s input y and
learns the output out.

Then, AGC interacts with the challenger ChallGC of the garbling scheme and
sends the tuple (Cx, y, out). Here, Cx is a circuit that on input any string z out-
puts f(x, z). ChallGC sends back a tuple (C∗, �∗

y) which is a tuple of garbled
circuit and labels that are either honestly generated or simulated. Then, AGC

computes c∗ = Commit(C∗; r∗), ct∗ = ske.enc(ek, �∗
y ;PRF(k, rske.enc)), σ(c∗,ct∗) =

Sign(sk, (c∗, ct∗);PRF(k, r(cGC,ct∗))). Finally, AGC sends (c∗, C∗, r∗, ct∗, σ(c∗,ct∗)) to
the adversary A as the message from the sender.

Observe that when ChallGC computes the garbled circuit and keys honestly,
the interaction between AGC and A corresponds exactly to Hyb2. This is true
because even though in Hyb2, its the token that generates the ciphertext ct and
the signature σ(cGC,ct), from the argument of knowledge property of the scheme
RZKAOK, we know that except with negligible probability, they were generated
using the message and randomness exactly as computed by AGC. Then, when
ChallGC simulates the garbled circuit and keys, the interaction between AGC and
A corresponds exactly to Hyb3. Now, note that the adversary A does not get
access to the randomness toss or the commitment cGC sent to the token T∗ by
the reduction AGC. Also, crucially, the randomness used in either the ciphertext
generation or the signature generation is completely independent of the message
being encrypted or signed and hence they don’t leak any subliminal information
from the token T∗ to the adversary A. Finally, AGC does not require any of the
randomness used by ChallGC to generate the garbled circuit and labels since AGC

simulates the RSZK argument in its interaction with T∗. Thus, if the adversary
A can distinguish between these two hybrids with non-negligible probability,
AGC can use the same guess to break the security of the garbling scheme with
non-negligible probability which is a contradiction.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb3
is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is the way in which the
value cGC is computed. In Hyb3, it is computed as a commitment to the garbled
circuit GC while in Hyb4, it is computed as a commitment to 0λ. Note that the

Non-interactive Secure Computation from One-Way Functions 131

value committed to or the randomness for commitment is not used anywhere else
since the RSZK argument is now simulated. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the hiding property
of the commitment scheme Commit with non-negligible probability, which is a
contradiction.

7 Security Proof: Malicious Sender

Consider a malicious sender S∗. Let the environment be denoted by Z. Initially,
the environment chooses an input {y} ∈ {0, 1}λ and sends it to the honest
receiver R as his input.

7.1 Simulator Description

The strategy for the simulator Sim against a malicious sender S∗ is described
below:

Token Exchange Phase:
Sim does the following:

1. Pick a random key k
$← {0, 1}λ for the function PRF.

2. Pick random strings ry, rek, rsk, rk, rSign.
3. Compute (sk, vk) ← Gen(λ; rSign) and ek ← ske.setup(λ).
4. Create a token TSim almost exactly as in the honest protocol execution with

the only difference that instead of the honest receiver’s input y, the token uses
a random string y∗ as input. For completeness, we describe the functionality
of the simulated token’s code in Fig. 2.

5. Send token TSim to S∗.

Communication Message:
Receive (cGC ,GC, rGC , ct, σ(cGC,ct)) from the sender S∗.

Query to Ideal Functionality:

1. Abort if Verifyvk((cGC , ct), σ(cGC,ct)) = 0.
2. Abort if cGC �= Commit(GC; rGC).
3. Amongst the queries made to the token TSim, pick one containing the tuple

(cGC , toss) for which the RSZK argument verified. Note that the queries to
the token are known to Sim by the observability property of the token.

4. Using this randomness toss from the above query and the garbled circuit GC
sent by S∗, recover S∗’s input x. Recall that GC = Garble(Cx; toss) where
Cx(·) = f(x, ·).

5. Send x to the ideal functionality and instruct it to deliver output to the honest
receiver.

132 S. Badrinarayanan et al.

Fig. 2. Code of simulated token TSim. The difference from the honest token code is
highlighted in red font. (Color figure online)

7.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb0 corresponds to the real
world and Hyb5 corresponds to the ideal world.

– Hyb0 - Real World: Consider a simulator SimHyb that performs exactly as
done by the honest receiver R in the real world.

– Hyb1 - Extraction: In this hybrid, SimHyb also runs the “Query to Ideal
Functionality” phase as in the ideal world. That is, SimHyb extracts the mali-
cious sender’s input, sends it to the ideal functionality and instructs it to
deliver output to the honest party.

– Hyb2 - Simulate RZKAOK: In this hybrid, in case 3 of the token’s
description, SimHyb computes the RZKAOK argument by using the simulator
SimRZKAOK instead of running the honest prover algorithm. Note that this
happens only internally in the proof and not in the final simulator’s descrip-
tion. Hence, the final simulator will not require the code of the environment
or need to rewind it.

– Hyb3 - Switch Commitment: In this hybrid, in case 1 of the token’s descrip-
tion, SimHyb computes cy = Commit(y∗; ry).

Non-interactive Secure Computation from One-Way Functions 133

– Hyb4 - Switch Ciphertext: In this hybrid, in case 2 of the token’s descrip-
tion, SimHyb sets �y = Garble.KeyGen(y∗; toss) and computes ct = ske.enc(ek, �y
; rske.enc) as in the ideal world.

– Hyb5 - Honest RZKAOK: In this hybrid, in case 3 of the token’s descrip-
tion, SimHyb computes the RZKAOK argument by running the honest prover
algorithm as in the ideal world. This hybrid corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally indis-
tinguishable and this completes the proof.

Claim. Assuming the unforgeability property of the signature scheme (Gen,Sign,
Verify), the binding property of the commitment scheme Commit, the soundness
of the RSZK argument system, Hyb0 is computationally indistinguishable from
Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb

extracts the adversary’s input x as in the ideal world. We now argue that this
extraction is successful except with negligible probability and this completes the
proof that the two hybrids are computationally indistinguishable.

First, from the soundness of the argument system RSZK, we know that except
with negligible probability, in one of the arguments given by the malicious sender
to the token containing the tuple (cGC , toss), there exists (x,GC, rGC) such that
C(·) = f(x, ·), GC = Garble(C; toss) and cGC = Commit(GC; rGC). Then, from the
unforegability of the signature scheme, we know that except with negligible prob-
ability, the commitment cGC sent by S∗ in the first message is indeed the same as
the one used in the above RSZK argument. Similarly, from the binding property
of the commitment scheme, we know that except with negligible probability, the
commitment cGC sent by S∗ in the first message is indeed a commitment to the
same value GC that was used as witness in the above RSZK argument. Hence, the
value x extracted by SimHyb is the adversary’s input except with negligible prob-
ability. There is no difference in the adversary’s view between the two hybrids.
Thus the joint distribution of the adversary’s view and honest party’s input is
indistinguishable between both the hybrids.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the
RZKAOK argument is computed. In Hyb1, SimHyb computes the RZKAOK by
running the honest prover algorithm RZKAOK.Prove, while in Hyb2, SimHyb com-
putes the RZKAOK by running the simulator SimRZKAOK. Thus, it is easy to see
that if there exists an adversary that can distinguish between the joint distribu-
tion of the malicious sender’s view and the honest party’s output in these two
hybrids with non-negligible probability, Sim can use that adversary to break the
resettable zero knowledge property of the RZKAOK system with non-negligible
probability, which is a contradiction.

134 S. Badrinarayanan et al.

Note: This is a non-black box reduction - that is, in this reduction, SimHyb

needs the adversary’s code. However, this is only within this specific reduction.
In particular, we stress again that the final simulator will not require the code
of the environment or need to rewind it and hence the protocol achieves UC
security.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb2
is computationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is the way in which the value
cy is computed. In Hyb2, it is computed as a commitment to the string y while
in Hyb3, it is computed as a commitment to 0λ. Note that the value committed
to or the randomness for commitment is not used as a witness in the RZKAOK
since the argument is now simulated. We only need the value y to generate the
ciphertext which is not a problem. Thus, it is easy to see that if there exists an
adversary that can distinguish between the joint distribution of the malicious
sender’s view and the honest party’s output in these two hybrids with non-
negligible probability, Sim can use that adversary to break the hiding property
of the commitment scheme Commit with non-negligible probability, which is a
contradiction.

Claim. Assuming the semantic security of the encryption scheme (ske.setup,
ske.enc, ske.dec), Hyb3 is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is the way in which the
ciphertext ct is computed. In Hyb3, it is computed as an encryption of the string
�y = Garble.KeyGen(y; toss) while in Hyb4, it is computed as an encryption of
�y = Garble.KeyGen(y∗; toss). Note that the message encrypted, the randomness
for encryption or the secret key of the encryption scheme are not used as a
witness in the RZKAOK since the argument is now simulated. We only need
the value y∗ to generate the ciphertext which is not a problem. Thus, it is easy
to see that if there exists an adversary that can distinguish between the joint
distribution of the malicious sender’s view and the honest party’s output in these
two hybrids with non-negligible probability, Sim can use that adversary to break
the semantic security of the encryption scheme with non-negligible probability
which is a contradiction.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb4 is computationally indistinguishable from Hyb5.

Proof. This is identical to the proof of Subsect. 7.2.

8 Extension

Output for Both parties:
By using the transformation of [27] which involves the receiver’s output also
containing a signed copy of the sender’s output that is then sent to the sender
using an extra message from the receiver, we can get a two message protocol
where both parties receive output. Formally:

Non-interactive Secure Computation from One-Way Functions 135

Corollary 2. Assuming one-way functions exist, there exists a two message
UC-secure two party computation protocol in the stateless hardware token model
using just one token, where both parties receive output.

A UC Framework and Ideal Functionalities

For simplicity, we define the two-party protocol syntax, and then informally
review the two-party UC-framework, which can be extended to the multi-party
case. For more details, see [6].

Protocol syntax. Following [22], a protocol is represented as a system of proba-
bilistic interactive Turing machines (ITMs), where each ITM represents the pro-
gram to be run within a different party. Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs
running on the same machine, and the communication tapes model messages
sent to and received from the network. Adversarial entities are also modeled as
ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first,
an ideal functionality is defined, which is a “trusted party” that is guaranteed
to accurately capture the desired functionality. Then, the process of executing
a protocol in the presence of an adversary and in a given computational envi-
ronment is formalized. This is called the real-life model. Finally, an ideal process
is considered, where the parties only interact with the ideal functionality, and
not amongst themselves. Informally, a protocol realizes an ideal functionality
if running of the protocol amounts to “emulating” the ideal process for that
functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe
the ideal and real world executions.

The real-life process. The real-life process consists of the two parties P1 and
P2, the environment Z, and the adversary A. Adversary A can communicate
with environment Z and can corrupt any party. When A corrupts party Pi, it
learns Pi’s entire internal state, and takes complete control of Pi’s input/output
behavior. The environment Z sets the parties’ initial inputs. Let REALΠ,A,Z be
the distribution ensemble that describes the environment’s output when protocol
Π is run with adversary A.

We also consider a G-hybrid model, where the real-world parties are addi-
tionally given access to an ideal functionality G. During the execution of the
protocol, the parties can send inputs to, and receive outputs from, the function-
ality G. We will use REALG

Π,A,Z to denote the distribution of the environment’s
output in this hybrid execution.

The ideal process. The ideal process consists of two “dummy parties” P̂1 and
P̂2, the ideal functionality F , the environment Z, and the ideal world adversary
Sim, called the simulator. In the ideal world, the uncorrupted dummy parties
obtain their inputs from environment Z and simply hand them over to F . As
in the real world, adversary Sim can corrupt any party. Once it corrupts party

136 S. Badrinarayanan et al.

P̂i, it learns P̂i’s input, and takes complete control of its input/output behavior.
Let IDEALF

Sim,Z be the distribution ensemble that describes the environment’s
output in the ideal process.

Definition 1 (UC-Realizing an Ideal Functionality). Let F be an ideal func-
tionality, and Π be a protocol. We say that Π UC-realizes F in the G-hybrid
model if for any hybrid-model PPT adversary A, there exists an ideal process
expected PPT adversary Sim such that for every PPT environment Z:

{IDEALF,Sim,Z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALG
Π,A,Z(n, z)}n∈N,z∈{0,1}∗ (1)

Note that the above equation, says that in the ideal world, the simulator Sim
has no access to the ideal functionality G. However, when G is a set-up assump-
tion, this is not necessarily true and the simulator may have access to G even
in the ideal world. Indeed, there exist different formulations of the UC frame-
work, capturing different requirements on the set-assumptions (e.g., [7]). In [7]
for example, the set-up assumption is global, which means that the environment
has direct access to the set-up functionality G. Hence, the simulator Sim needs
to have oracle access to G as well.

The Ideal Token Functionality. We now describe the ideal token function-
ality. Note that our ideal functionality models stateful tokens. Although all our
protocols use stateless tokens, an adversarially generated token may be stateful.

Fig. 3. The ideal token functionality FWRAP for stateful tokens.

Non-interactive Secure Computation from One-Way Functions 137

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS (2001)

4. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: STOC (2013)

5. Bitansky, N., Paneth, O.: On non-black-box simulation and the impossibility of
approximate obfuscation. SIAM J. Comput. 1383, 44–1325 (2015)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

8. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC (2000)

9. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 597–608
(2014)

10. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3 31

11. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 27

12. Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-
round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 192–216. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54242-8 9

13. Chung, K., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions. In: FOCS (2013)

14. Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: STOC (2013)

15. Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. SIAM J. Comput. 45, 415–458 (2016)

16. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19571-6 11

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-642-19571-6_11
https://doi.org/10.1007/978-3-642-19571-6_11

138 S. Badrinarayanan et al.

17. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically Secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

18. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: From stateful hardware
to resettable hardware using symmetric assumptions. In: Au, M.-H., Miyaji, A.
(eds.) ProvSec 2015. LNCS, vol. 9451, pp. 23–42. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-26059-4 2

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (1986)

20. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

21. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

23. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

24. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53641-4 15

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

26. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

27. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

28. Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 20

29. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the Offline/online and
batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 15

30. Moran, T., Segev, G.: David and goliath commitments: UC Computation for asym-
metric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78967-3 30

31. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–158 (1991)
32. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.

In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 387–394. ACM (1990)

33. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-319-26059-4_2
https://doi.org/10.1007/978-3-319-26059-4_2
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-11799-2_20
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-540-78967-3_30
https://doi.org/10.1007/978-3-540-78967-3_30

ORAM

Simple and Efficient Two-Server ORAM

S. Dov Gordon1, Jonathan Katz2, and Xiao Wang2(B)

1 George Mason University, Fairfax, USA
gordon@gmu.edu

2 University of Maryland, College Park, USA
{jkatz,wangxiao}@cs.umd.edu

Abstract. We show a protocol for two-server oblivious RAM (ORAM)
that is simpler and more efficient than the best prior work. Our con-
struction combines any tree-based ORAM with an extension of a two-
server private information retrieval scheme by Boyle et al., and is able to
avoid recursion and thus use only one round of interaction. In addition,
our scheme has a very cheap initialization phase, making it well suited
for RAM-based secure computation. Although our scheme requires the
servers to perform a linear scan over the entire data, the cryptographic
computation involved consists only of block-cipher evaluations.

A practical instantiation of our protocol has excellent concrete param-
eters: for storing an N -element array of arbitrary size data blocks with
statistical security parameter λ, the servers each store 4N encrypted
blocks, the client stores λ +2 log N blocks, and the total communication
per logical access is roughly 10 log N encrypted blocks.

1 Introduction

Protocols for oblivious RAM (ORAM) allow a client to outsource storage of an
array to a server, and then read from/write to that array without revealing to the
server anything about the data itself or the addresses of the data blocks being
accessed (i.e., the client’s memory-access pattern). Since the introduction of the
problem by Goldreich and Ostrovsky [16], it has received a significant amount
of attention [1,14,17,19,24,26–29,32–34]. The main parameters of interest are
the storage at the client and server, as well as the number of communication
rounds and the total client-server bandwidth needed to read or write one logical
position of the array. In classical work on ORAM, the server was only required to
physically read and write elements of some (encrypted) data array; more recent
work [1,2,14,24,33] has considered solutions in which the server performs non-
trivial computation as well. In that case, solutions relying on non-cryptographic
computation, or symmetric-key cryptography alone, are preferable.

Lu and Ostrovsky [23] proposed exploring ORAM in a model where there
are two non-colluding servers storing data on behalf of the client; the client
interacts with the servers to read and write data, but the servers do not need to
interact with (or even know about) each other. The solution by Lu and Ostrovsky
achieves parameters that are asymptotically better than those realized by any
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 141–157, 2018.
https://doi.org/10.1007/978-3-030-03332-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_6&domain=pdf

142 S. D. Gordon et al.

single-server solution: for accessing an N -element array of B-bit data blocks,
the client in their protocol has storage independent of N and B, the servers
each store O(N) encrypted data blocks, and reading/writing has an amortized
communication complexity of O(log N) encrypted data blocks. On the other
hand, like most ORAM constructions with sublinear communication (with a few
exceptions discussed below), the Lu-Ostrovsky protocol requires O(log N) rounds
of interaction between the client and servers per logical memory access; since it
is based on a hierarchical approach [16] and requires periodic reshuffling, their
scheme is also relatively complex and does not offer good worst-case performance
guarantees. A recent two-server ORAM scheme by Abraham et al. [1] improves
the communication overhead to O(log N/ log log N) when B = Ω(λ log2 N), but
still requires O(log N) rounds.

1.1 Summary of Our Results

We show here a construction of a two-server ORAM protocol that improves on
prior work both concretely and theoretically. Our scheme is also very simple to
describe and implement, which we view as an added advantage especially when
applying ORAM to RAM-based secure computation.

Concretely, our scheme is extremely efficient. In one instantiation of our
scheme, the client stores λ + 2 log N data blocks (where λ is a statistical secu-
rity parameter), the servers each store 4N encrypted data blocks, and the total
communication per logical read/write is only roughly 10 log N encrypted blocks.
This can be compared to the Lu-Ostrovsky scheme, which is estimated by the
authors to have server storage 2N + O(log9 N) and an amortized bandwidth of
more than 160 log N encrypted data blocks per logical memory access. (Abraham
et al. do not offer concrete estimates of the performance of their scheme, but
we believe our protocol will have better communication overhead for practical
parameters, especially for moderate B.) A drawback of our protocol is that it
requires the servers to perform a linear scan of the entire data, and perform a
linear number of symmetric-key operations.

In a theoretical sense, we improve upon prior work in several respects. Most
importantly, our protocol requires only one round of communication per logical
access; note that achieving logarithmic communication overhead with one round
of interaction is a major open question for single-server ORAM.1 Second, our
communication bound holds in the worst case, in contrast to the Lu-Ostrovsky
scheme for which it holds only in an amortized sense. Finally, in contrast to
the scheme of Abraham et al., our protocol has good communication overhead
regardless of the block size.

Applications to secure computation. Classical work on generic secure com-
putation views the function being computed as a boolean or arithmetic circuit.
1 Known single-server ORAM schemes with sublinear worst-case communication and

one round of interaction [12,13] have communication complexity at least κB log2 N
and would be prohibitively inefficient to implement. Other one-round schemes [11,33]
have sublinear communication only in an amortized sense.

Simple and Efficient Two-Server ORAM 143

More recently, researchers have explored secure-computation protocols that work
directly in the RAM model of computation [8–10,18,21,22,25,31,35]. A basic
idea in these works is to leverage ORAM to ensure that the parties’ accesses to
(shared) memory are oblivious. These works all assume either that the shared
memory is initially empty, or that initialization of the ORAM data structure is
done during some trusted preprocessing phase, because initializing a non-empty
ORAM as part of the protocol would be infeasible. For our ORAM protocol,
initialization is essentially “for free” and can be done locally by the servers
without any interaction with the client. (To the best of our knowledge, this is
not true for any prior ORAM scheme with sublinear communication overhead.)
This makes our protocol extremely well-suited for applications to RAM-based
secure computation in both the two-party and multi-party settings.

Our scheme has the added advantage that reads from a public address can
be done very efficiently, with communication of only 2 log N encrypted blocks
and negligible computation. This property is also very useful in applications to
secure computation.

1.2 Overview of Our Construction

Our construction can be viewed as combining any tree-based ORAM proto-
col [27–30] with a two-server private information retrieval (PIR) scheme [7].
(Combining ORAM and PIR was suggested previously by Mayberry et al. [24]
in the single-sever setting, and Abraham et al. [1] in the two-server setting.) We
describe each of these primitives informally, and then provide an overview of our
construction. Section 2 contains formal definitions; a detailed description of our
protocol is given in Sect. 3.

Tree-based ORAM. At a somewhat informal level, which will be sufficient to
understand the main ideas of our construction, a tree-based ORAM scheme—in
the single-server setting—works in the following way.2 Let D denote the client’s
data array with D[i], for 0 ≤ i < N , denoting the data block stored at address i
of the array. The client maintains a function position (called a position map) that
maps logical memory addresses to leaves in a binary tree of depth L = O(log N)
stored by the server, where each node in the tree can store some bounded number
of data blocks. It will be convenient for us to assume that every node in the tree
stores the same (constant) number of data blocks, with the exception of the root
that can store more items. Instead of being stored on the server, the root is
stored on the client and is also called a stash.

At any point in time, the value D[i] is stored at some node on the path
from the root of the tree to the leaf at position(i) (we call this the path to
position(i)). The client performs a logical read of address i by reading the entire
path to position(i) and taking the value of D[i] that is found closest to the root;
a logical write to address i is done by storing the new value of D[i] in the stash
(replacing any old value of D[i] found there).

2 For simplicity, we ignore encryption of the data blocks in the description that follows.

144 S. D. Gordon et al.

Executions of an eviction procedure are interspersed with logical reads and
writes. At a high level, during this procedure the client chooses a path P in the
tree and then, for each data block D[i] stored at some node in that path, pushes
that block as far down in P as possible subject to the constraint that D[i] must
lie on the path to position(i). The updated values of the nodes on path P are
then rewritten to the server. The purpose of the eviction procedure is to prevent
nodes in the tree from overflowing.

Note that to ensure obliviousness, the position map must be random (so the
server cannot correlate a particular path being read by the client with a logical
address) and position(i) must be updated each time D[i] is read (so the server
cannot tell when the same logical address is accessed repeatedly). Since the
position map itself has size Θ(N), the client must store the position map on the
server in order to achieve client storage o(N). The position map can be stored
recursively using a tree-based ORAM; note, however, that this induces several
rounds of interaction between the client and server for each logical memory
access, and also increases the server-side storage.

Private information retrieval. Abstractly, a private information retrieval
(PIR) scheme provides a way for a client to obliviously read a data block from
an N -element array of B-bit items stored on a server using o(BN) communi-
cation. For our purposes, the main distinction between PIR and ORAM is that
PIR supports reads only. Historically, PIR schemes have also involved only one
round of interaction.

PIR was first considered in the multi-server setting [7], where information-
theoretic security is possible. Although PIR with computational security is
possible in the single-server setting [6,15,20], constructions of (computation-
ally secure) PIR in the two-server setting have much better computational effi-
ciency. In particular, a recent construction of two-server PIR by Boyle et al. [3–5]
requires only symmetric-key operations by both the client and the server, uses
only one round, and has communication complexity 2B + O(κ · log N) for κ
a computational security parameter. (In fact, they show that the communica-
tion can be reduced asymptotically to 2B + O(κ · log(N/κ)) but for practical
parameters this does not seem to yield a concrete improvement.)

Our construction. We show how to combine tree-based ORAM with PIR to
obtain an efficient and conceptually simple protocol in the two-server setting.

In existing tree-based ORAM schemes the eviction procedure is already obliv-
ious, as it involves either choosing a random eviction path [29] or choosing evic-
tion paths according to a deterministic schedule [14,27]. Thus, only reads need
to be made oblivious. As noted earlier, in prior work this is achieved using a ran-
dom position map that is updated after each read. Our first conceptual insight
is that we can instead have the client use (two-server) PIR to read the path
associated with a particular data block. As a consequence, we can avoid ever
having to update the position map (see below for why we need a position map
at all) and so can use a pseudorandom position map, thereby avoiding recursion
and allowing us to obtain a one-round protocol.

Simple and Efficient Two-Server ORAM 145

Obliviously reading a path in a tree of depth L can always be done using
L parallel executions of a generic PIR protocol. Our second observation is that
we can do better than this by adapting the specific (two-server) PIR scheme of
Boyle et al. so as to natively support oblivious reading of a path in a tree with
less than L times the communication. Details are given in Sect. 2.2.

Since a position map is no longer needed for obliviousness, it is tempting to
think that we can avoid the position map altogether. Unfortunately this is not
the case, as we still need a (pseudo)random mapping of addresses to leaves in
order to ensure correctness—specifically, so that the probability of an overflow
remains negligible. In our case, however, we show that it is sufficient to choose a
random position map once, at the outset of the protocol, and then leave it fixed
for the remainder of the execution. This also means that we can generate the
pseudorandom position map based on a short key chosen at the beginning of the
protocol. Finally, we observe that this allows for extremely efficient initialization
(in settings where the data—perhaps in encrypted form—is initially held by
the server), at least when the memory-access pattern is chosen non-adaptively;
specifically, initialization can be done by sending the key defining the position
map to the server, who then arranges the data blocks as needed.

2 Background

2.1 Oblivious RAM

We use the standard definitions of correctness and security for ORAM [16],
repeated here for completeness. Readers familiar with these definitions can safely
skip to the next section.

For fixed N,B, we define a memory access to be a tuple (op, i, v) where
op ∈ {read,write}, i ∈ {0, . . . , N − 1}, and v ∈ {0, 1}B . Let D be an N -element
array containing B-bit entries. The result of applying (read, i, v) to D is D[i],
and the array D is unchanged. The result of applying (write, i, v) is ⊥, and D
is updated to a new array D′ that is identical to D except that D′[i] = v.
Given an initial array D and a sequence of memory accesses (op1, i1, v1), . . . ,
(opM , iM , vM), we define correctness for the sequence of results o1, . . . , oM in the
natural way; namely, the sequence of results is correct iff, for all t, the result
ot is equal to the last value written to it (or is equal to D[it] if there were no
previous writes to it).

A two-server, one-round ORAM scheme is defined by a collection of four algo-
rithms ORAM.Init, ORAM.C, ORAM.S, and ORAM.C′ with the following syntax:

– ORAM.Init takes as input 1λ, 1κ and elements D[0], . . . , D[N − 1] ∈ {0, 1}B .
It outputs state st and data T to be stored at the servers.

– ORAM.C takes as input st and a memory access (op, i, v). It outputs updated
state st′ along with a pair of queries q0, q1.

– ORAM.S takes as input data T and a query q. It outputs updated data T ′

and a response r.

146 S. D. Gordon et al.

– ORAM.C′ takes as input state st and a pair of responses r0, r1. It outputs
updated state st′ and a value o.

We define correctness and security via an experiment Expt. Given an array
D (which defines the parameters N and B) and a sequence of memory accesses
seq = ((op1, i1, v1), . . . , (opM , iM , vM)), experiment Expt(1λ, 1κ,D, seq) first
runs (st0, T0) ← ORAM.Init(1λ, 1κ,D) and sets T0,0 = T0,1 = T0. Then, for
t = 1 to M it does:

1. Run (st′t−1, qt,0, qt,1) ← ORAM.C(stt−1, (opt, it, vt)).
2. Run (Tt,b, rt,b) ← ORAM.S(Tt−1,b, qt,b) for b ∈ {0, 1}.
3. Run (stt, ot) ← ORAM.C′(st′t−1, rt,0, rt,1).

Let viewb = (T0, q1,b, . . . , qM,b). The output of the experiment is (view0, view1,
o1, . . . , oM).

Correctness requires that for any polynomial M there is a negligible function
negl such that for any λ, κ,D, and sequence of M = M(λ) memory accesses seq =
((op1, i1, v1), . . . , (opM , iM , vM)), if we compute (view0, view1, o1, . . . , oM) ←
Expt(1λ, 1κ,D, seq) then the sequence of results o1, . . . , oM is correct (for D and
seq) except with probability negl(λ).

An ORAM protocol is secure if for any λ and ppt adversary A the following
is negligible in κ:

∣
∣
∣
∣
Pr

[
(D0, seq0,D1, seq1) ← A(1λ, 1κ); b ← {0, 1};

(view0, view1, o1, . . . , oM) ← Expt(1λ, 1κ,Db, seqb)
: A(view0) = b

]

− 1
2

∣
∣
∣
∣

(and analogously for view1), where D0,D1 have identical parameters N,B, and
where seq0, seq1 have the same length. As usual, this notion of security assumes
the servers are honest-but-curious.

We remark that, as is typical in this setting, both correctness and security
are defined with respect to a non-adaptive selection of inputs (in terms of both
the original data and the sequence of memory accesses). Our scheme remains
secure even for adaptively chosen inputs, though in that case we cannot use the
optimized initialization procedure discussed at the end of Sect. 3.1.

2.2 Private Path Retrieval

We review the notion of private information retrieval (PIR), and propose an
extension that we call private path retrieval (PPR). We then describe an efficient
construction of a two-server PPR scheme based on a two-server PIR scheme of
Boyle et al.

Abstractly, a PIR scheme allows a client to obliviously learn one value out
of an array of N values stored by a pair of servers. Specialized to XOR-based,
one-round protocols in the two-server setting, we define a PIR scheme as a pair
of algorithms (PIR.C,PIR.S) with the following syntax:

– PIR.C is a randomized algorithm that takes as input parameters 1κ, B,N ,
and an index i ∈ {0, . . . , N − 1}. It outputs a pair of queries q0, q1.

Simple and Efficient Two-Server ORAM 147

– PIR.S is an algorithm that takes as input D[0], . . . , D[N − 1] ∈ {0, 1}B , and
a query q. It outputs a response r.

Correctness requires that for all κ,B,N, i, and D as above, we have

Pr
[

(q0, q1) ← PIR.C(1κ, B,N, i);
{rb := PIR.S(D, qb)}b∈{0,1} : r0 ⊕ r1 = D[i]

]

= 1.

A PIR scheme can be used by a client C and a pair of servers S0, S1 in the natural
way. S0 and S1 each begin holding identical copies of an N -element array D of
B-bit data blocks. When C wants to learn the element located at address i, it
computes (q0, q1) ← PIR.C(1κ, B,N, i) and sends qb to Sb. The servers compute
their corresponding responses r0, r1, and send them to the client. The client can
then recover D[i] by computing D[i] = r0 ⊕ r1.

Security requires that neither server learns anything about the client’s desired
address i. In other words, it is required that for all B,N, i, i′, and b ∈ {0, 1}
the following distributions are computationally indistinguishable (with security
parameter κ):

{(q0, q1) ← PIR.C(1κ, B,N, i) : qb} and {(q0, q1) ← PIR.C(1κ, B,N, i′) : qb} .

Private path retrieval. For our application, we extend PIR to a new primitive
that we call private path retrieval (PPR). Here, we view the data stored by the
servers as being organized in a depth-L binary tree with N = 2L leaves; the
client wishes to obliviously obtain all the values stored on some path in that tree
from the root to a leaf. (In fact, it will be convenient to omit the root itself.)
Formally, and again specializing to XOR-based, one-round protocols in the two-
server setting, we define a PPR scheme as a pair of algorithms (PPR.C,PPR.S)
with the following syntax:

– PPR.C is a randomized algorithm that takes as input parameters 1κ, B,N ,
and an index i ∈ {0, . . . , N − 1} corresponding to a leaf node. It outputs a
pair of queries q0, q1.

– PPR.S is an algorithm that takes as input a tree T of elements T [x] ∈ {0, 1}B ,
for x ∈ {0, 1}≤log N , and a query q. It outputs a response vector r1, . . . , rL.

Representing i ∈ {0, . . . , N − 1} as an L-bit integer in the obvious way, we let
〈i〉t denote the t-bit prefix of i for 1 ≤ t ≤ L. Correctness for a PPR scheme
requires that for all κ,B,N, i, and T as above, and all t ∈ {1, . . . , L}, we have

Pr
[

(q0, q1) ← PPR.C(1κ, B,N, i);
{(r1b , . . . , rL

b) := PPR.S(1κ, T, qb)}b∈{0,1} : rt
0 ⊕ rt

1 = T [〈i〉t]

]

= 1.

Security requires that neither server learns anything about the client’s desired
path. That is, we require that for all B,N, i, i′, and b ∈ {0, 1} the following
distributions are computationally indistinguishable (with security parameter κ):

{(q0, q1) ← PPR.C(1κ, B,N, i) : qb} and {(q0, q1) ← PPR.C(1κ, B,N, i′) : qb} .

148 S. D. Gordon et al.

Constructing a PPR scheme. It is immediate that any PIR scheme can be
used generically to construct a PPR scheme. Briefly: the servers view the the tree
they store as a collection of L arrays, with the ith level of the tree corresponding
to an array Di containing 2i elements. The client can then obliviously retrieve
a path in the tree by running any underlying PIR protocol L times, once for
each array D1, . . . , DL. This increases both the client-to-server and the server-
to-client communication by roughly a factor of L. This construction is “overkill,”
though, in the sense that it allows the client to retrieve an arbitrary data block
at each level of the tree, whereas a PPR scheme only needs to support retrieval
of data blocks along a path. This suggests that it may be possible to further
optimize the construction.

Indeed, we show that by adapting the specific PIR scheme of Boyle et al.
a better solution is possible. The communication complexity of their basic PIR
scheme is 2B + O(κ log N); thus, the generic construction sketched above would
give a PPR scheme with communication complexity 2B log N +O(κ log2 N). We
show how to improve this to 2B log N + O(κ log N).

Rather than give the details of the PIR scheme of Boyle et al., we describe
their scheme abstractly. To retrieve the ith element of an array D of length N , the
client in their scheme sends each server Sb a query of length κ+1+(κ+2)·log N =
O(κ log N) bits; the query enables that server to compute a sequence of bits
λb[0], . . . , λb[N − 1] with the property that λ0[j] ⊕ λ1[j] = 1 iff j = i. Server Sb

then responds with rb =
⊕N−1

j=0 λb[j]·D[j]. It is easily verified that r0⊕r1 = D[i].
To construct a PPR scheme, we leave the client algorithm unchanged. Let

i denote the leaf corresponding to the path the client wishes to retrieve. As
before, server Sb then computes a sequence of bits λb[0], . . . , λb[N − 1] where
λ0[j] ⊕ λ1[j] = 1 iff j = i. Each server then constructs a logical binary tree
of depth L = log N with the λ-values at the leaves, and recursively defines the
values at each internal node of this logical tree to be the XOR of the values of its
children. In this way, each server Sb obtains3 a collection of bits {λb[x]}x∈{0,1}≤L

with the property that λ0[x] ⊕ λ1[x] = 1 iff x is a prefix of i (or, in other words,
iff the node corresponding to x is on the path from the root to the ith leaf).
Server Sb then computes the sequence of responses rt

b =
⊕

x : |x|=t λb[x] · T [x]
for 1 ≤ t ≤ L. One can verify that rt

0 ⊕ rt
1 = T [〈i〉t] for all t. Note also that

security of the PPR scheme is implied immediately by security of the original
PIR scheme, which in turn is based on the existence of pseudorandom functions.

Summarizing, we have:

Theorem 1. Assuming the existence of pseudorandom functions, there is a two-
server PPR scheme in which the client sends each server a query of length
O(κ log N), and each server sends back a response of length B · log N .

3 Readers familiar with the construction of Boyle et al. may observe that these values
are already implicitly defined as part of their scheme; we explicitly describe the
computation of these values for self-containment.

Simple and Efficient Two-Server ORAM 149

3 A Two-Server ORAM Scheme

We now present our two-server ORAM scheme, which can be viewed as being
constructed by adapting the ring ORAM protocol [27] to the two-server setting
and then combining it with the PPR scheme from Sect. 2.2. We build on ring
ORAM for concreteness, but our general idea can also be applied to several other
tree-based ORAM schemes from the literature (e.g., [28–30]).

3.1 Description of Our Scheme

Preliminaries. The client’s data is viewed as a sequence of N = 2L data blocks
D[0], . . . , D[N − 1] ∈ {0, 1}B . Each server stores identical copies of a depth-L,
full binary tree T with N leaves numbered from 0 to N −1; we number the levels
of the tree from the root at level 0 to the leaves at level L, and refer to each node
of the tree (except the root) as a bucket. (The root will be treated differently
from the other nodes; see further below.)

As in other tree-based ORAM schemes, the client maintains a position map
that maps logical memory addresses to leaves in T . In our case, the position map
will be static and we implement it by a pseudorandom function FK : [N] → [N],
with K chosen by the client. For pos ∈ {0, . . . , 2L − 1} denoting a leaf in T , we
let P(pos) denote the path consisting of all buckets in the tree from the root to
that leaf.

A record (flag, i, pos, data) ∈ {0, 1}×{0, 1}log N ×{0, 1}log N ×{0, 1}B contains
four fixed-length fields, encrypted using a key held by the client. (For simplicity
in what follows, we omit explicit mention of encrypting/decrypting these blocks.)
If flag = 1 then the record is real and we have pos = FK(i) and data = D[i]; if
flag = 0 then the record is a dummy record and i, pos, data can be arbitrary (so
long as they are the correct length). Each bucket in the binary tree stored by
the servers contains Z records, where Z is a parameter we fix later.

As an optimization, we have the client store the root of the tree and refer
to the root as the stash. (We stress, however, that when we refer to a path
P = P(pos) in the tree, that path always includes the root/stash.) All records
in the stash are real, and we allow the stash to store more than Z records. Of
course, the records in the stash do not need to be encrypted.

Invariant. In our scheme, the servers store identical copies of the tree T at all
times. As in other tree-based ORAM schemes, we maintain the invariant that,
for all i, there is always a (real) record (1, i, pos,D[i]) located in some bucket
on P(pos). It is possible that multiple real records with the same index appear
in the tree at the same time; in this case, the one closest to the root is always
the most up-to-date copy.

Accessing memory. To read logical address i of its array, the client simply
needs to read the path P(FK(i)) and then find the corresponding record closest
to the root. For obliviousness, reading this path is done using our PPR scheme.
A logical write of the value v to address i of the array is done by storing the

150 S. D. Gordon et al.

record (1, i, FK(i), v) in the stash (removing from the stash any outdated record
with the same logical address, if necessary).

Eviction. As described, writing to the array will cause the number of records
stored in the stash to grow without bound. We prevent this by performing an
eviction procedure after every A memory accesses, where A is a configurable
parameter. This eviction procedure reads a path P in the tree, updates the
buckets in that path, and then writes the updated path P ′ back to the servers.
To fully specify this process, we need to determine two things: (1) how the paths
to be evicted are chosen and (2) how the chosen paths are updated.

– Following Gentry et al. [14], we choose paths to be evicted according to a
deterministic schedule, namely, in reverse lexicographic order. This is also
the schedule used in ring ORAM. Note that using a deterministic schedule
ensures obliviousness.

– Our update procedure is similar (but not exactly identical) to the one used
in path ORAM [29] and ring ORAM [27]. As in those schemes, we update a
path P by pushing every real record (1, i, pos, v) in that path as far down the
tree as possible, subject to the constraint that it must be located on P(pos)
(and the constraint that each bucket holds at most Z records). In addition,
prior to doing this, we also clear out any stale records in P. That is, if for
any i there are multiple records of the form (1, i, pos, �) in P, then only the
one closest to the root is kept; the rest are replaced with dummy records.

We give a formal description of our scheme, assuming initialization of the tree
has already been done, in Fig. 1. See below for a discussion of initialization.

Parameters. Each record has length exactly 1 + 2 log N + B bits before being
encrypted.4 Encryption adds at most κ additional bits; this can be reduced by
using a global counter keeping track of how many records have been encrypted
thus far. We let R denote the size, in bits, of a record (after encryption). If
κ = O(B) and B ≥ log N (which is typical in practice), we have R = O(B).

As described, the client’s stash can grow arbitrarily large. We show in the
next section that when A = 1 (i.e., eviction is done after every access) and Z = 3
the client’s stash contains at most λ records except with probability negligible
in λ. The servers each hold fewer than 2N buckets, with each bucket containing
Z records; thus, for the parameter settings discussed above, each server’s storage
is at most 2ZNR = O(BN) bits.

The total communication for a logical memory access can be computed as
follows:

1. As part of the PPR scheme, the client sends O(κ log N) bits to each server,
and each server responds with RZ log N bits.

2. For eviction, one server sends RZ log N bits to the client, and then the client
sends RZ log N bits to each server.

4 As a small optimization, FK(i) need not be stored in a record, as the client can
recompute it when needed.

Simple and Efficient Two-Server ORAM 151

The state of the client includes the stash, a key K, and a counter ctr initialized
to 0 that indicates the next eviction path. The servers store ctr and identical
copies of a tree T . The parameter A determines how often eviction is done.

On input (op, i, v) do:

1. Let pos := FK(i).
2. The client uses PPR to read P(pos) from T .
3. If op = read then scan through P(pos) to find the real record (1, i, pos, vi)

closest to the root, and output vi.
4. If op = write then (1) remove any records of the form (1, i, pos, �) from

the stash, and (2) add the record (1, i, pos, v) to the stash.
5. Set ctr = ctr + 1 mod A · N . If ctr = 0 mod A then run procedure

Evict(ctr/A).

Evict(ctr):

1. Let P be the path corresponding to ctr under reverse lexicographic order.
Request P from one of the servers.

2. If, for any i, there are multiple (real) records (1, i, pos, �) in P, then only
the one closest to the root is kept; the rest are replaced with dummy
records.

3. Process the remaining real records one-by-one, starting from the root. For
each such record record = (1, i, pos, v), find the bucket in P furthest from
the root that (1) is on P(pos) and (2) contains fewer than Z real records.
Put record in that bucket in place of a dummy block. (If no such bucket
is found then keep record where it is.) Finally, (re-)encrypt all records in
the updated buckets.

4. The updated path P ′ is then written back to both servers.

Fig. 1. Our two-server ORAM scheme.

Thus, for the parameter settings discussed above, the total communication com-
plexity is O(B log N) even when A = 1. Importantly, the constants are small;
the worst-case communication (for general parameters) is at most

κ + 1 + (κ + 2) · log N + 5Z · (κ + 2 log N + B) · log N

bits, and the amortized communication (in bits) is

κ + 1 + (κ + 2) · log N +
(

2Z +
3Z

A

)

· (κ + 2 log N + B) · log N.

Thus, as in path ORAM, we can trade off Z and A to reduce communication.
As described (and taking A = 1), the protocol uses three messages if we

piggyback the server’s eviction message with its response in the PPR scheme.
However, if we delay the client’s eviction message until the next time the client
initiates the PPR protocol (for the next memory access), then we obtain a one-
round protocol. Since the client must now store the updated path P ′ between
memory accesses, this increases the storage of the client by ZR log N bits.

152 S. D. Gordon et al.

Initialization. Initialization can be done locally at the client by starting with a
tree consisting only of dummy records and then simulating the process of writing
each data block of the original array; the resulting tree is then uploaded to each
server. We additionally observe that in settings where the servers initially hold
the array (in encrypted form), initialization can be done in essentially the same
way—but locally at each server—by having the client simply send K to the
servers.5

3.2 Analysis

Correctness of our protocol follows by inspection, and obliviousness follows from
obliviousness of the PPR scheme and the fact that a deterministic eviction pro-
cedure is used. Thus, in the remainder of this section we focus on analyzing the
efficiency of the scheme, specifically, the size of the stash stored by the client.
Compared to the similar analysis done for ring ORAM and other tree-based
schemes, there are two differences: first, in our scheme the tree may contain
stale records (i.e., real records (1, i, pos, v) that have been superseded by a more
up-to-date record stored closer to the root on the same path P(pos)); second, in
our scheme the position map is fixed once-and-for-all rather than being updated
each time a memory access is done. Careful examination of the proofs for prior
tree-based ORAM schemes, however, shows that both of these changes have no
effect on the final bound. Nevertheless, we include details of the analysis (fol-
lowing [27]) for completeness.

Recall that we assume eviction is done after every A accesses. We define
the size of the stash after the Mth memory access to be the size of the stash
following the last invocation of the eviction procedure. (In our one-round scheme
the eviction procedure following the Mth memory access is not completed until
the (M + 1)st memory access takes place; this difference can only increase the
size of the stash by a single record.)

During the execution of our ORAM scheme, the resulting tree stored by the
servers can contain two types of real records. We call a real record (1, i, pos, v)
stale if there is another real record (1, i, pos, �) stored closer to the root (including
at the root itself); otherwise, we call the record fresh. Note that there is exactly
one fresh record stored in the tree at any point in time for each logical memory
address i. An important observation is that stale records have no impact on the
stash. More formally:

Lemma 1. Consider modifying the ORAM protocol (Fig. 1), so that in step 4 of
processing a write operation the client also marks any stale records corresponding
5 Revealing the key to the servers does not affect the security of our scheme since we

do not rely on secrecy of K for obliviousness. Rather, we rely on pseudorandomness
of FK only for bounding the size of the stash. We remark, however, that our analysis
of the stash size assumes that the client’s sequence of memory accesses is chosen
independently of K. Thus, the optimized initialization (in which the client sends K
to the servers) is only applicable when the client’s sequence of memory accesses is
not under adaptive control of an adversarial server.

Simple and Efficient Two-Server ORAM 153

to logical address i as dummy records (without regard for obliviousness). This
modification does not affect the size of the stash, regardless of the position map
or the sequence of memory accesses.

Proof. The only time a stale record can possibly have any effect on the stash
in an execution of the real protocol is if there is a stale record (corresponding
to some logical address i) in a path P being processed in step 3 of the eviction
subroutine. But then the fresh record corresponding to address i is also in P at
that moment, and so the stale record would have been replaced with a dummy
record in step 2 of the eviction subroutine.

��
A consequence of the above is that we may treat stale records as dummy

records in our analysis, and it suffices for us to keep track of the placement of
fresh records.

Fix a memory-access sequence seq of length M . We assume the binary tree T
stored by the servers is initially filled entirely with dummy records; we thus let
seq include the memory accesses done as part of initialization. For the purposes
of proving a bound on the size of the stash, we may assume that all operations in
seq are writes; moreover, the data values being written are irrelevant, and so we
can simply focus on the sequence of logical memory addresses being accessed. If
τ is a subtree of T , then we let n(τ) denote the number of nodes in τ . A subtree
is rooted if it contains the root, and root denotes the root node (which is itself a
rooted subtree).

We treat the position map as a random function f : [N] → [N] chosen
independently of the memory-access sequence. For a subtree τ we let τZ be a
random variable denoting the number of fresh records stored in each node of τ
after our ORAM scheme (with bucket size Z) is used to carry out the sequence
of memory accesses in seq. As in prior work [27,29], we let τ∞ refer to the same
random variable when buckets can hold an unbounded number of records. We let
X(τZ) be a random variable denoting the total number of fresh records stored
in τZ . (Using this notation, we are interested in bounding X(rootZ).) We let
Xi(τZ) be a random variable denoting the number of fresh records corresponding
to logical address i that are in τZ ; note that Xi(τZ) ∈ {0, 1}.

We rely on the following result proved in prior work [27,29] for the same
eviction procedure we use (when focusing on fresh blocks):

Lemma 2. For any Z, S, it holds that

Pr[X(rootZ) > Z + S] ≤
∑

n≥1

4n · max
τ :n(τ)=n

Pr[X(τ∞) > Z · n(τ) + S],

where the maximum is over rooted subtrees τ of T .

The following result depends on the specifics of the eviction procedure and
the position map. Nevertheless, the end result we obtain for our scheme is the
same as what is shown in prior work.

154 S. D. Gordon et al.

Lemma 3. Set A = 1 in our scheme. If b is a leaf node, Exp[X(b∞)] ≤ 1. If b
is an internal node, Exp[X(b∞)] ≤ 1/2.

Proof. If b is a leaf node, then a fresh record corresponding to logical address i
can only possibly be stored in that node if i is mapped to b by the position
map. Since there are N logical addresses, and each is mapped to b with proba-
bility 1/N , the claimed bound follows.

Say b is a non-leaf node at level �. If b is not on any of the first M eviction
paths (note that this is independent of seq or the position map f), then b will
contain no fresh records. Otherwise, let 1 ≤ ctr1 ≤ M denote the last time b
was on an eviction path, and let ctr0 < M denote the penultimate time b was
on an eviction path (set ctr0 = 0 if there was no such time). By the properties
of reverse lexicographic ordering, we have ctr1 − ctr0 ≤ 2�. The only possible
fresh records that can be in b after all M instructions are executed are those
corresponding to logical write addresses used in time steps ctr0 + 1, . . . , ctr1.
Moreover, each such address causes a fresh record to be placed in bucket b with
probability exactly 2−(�+1). Thus, the expected number of fresh records in b is
at most 2� · 2−(�+1) = 1/2.

��
A corollary is that if τ is a rooted subtree then Exp[X(τ∞)] ≤ 0.8 · n(τ) for

all N ≥ 4 (since in that case at most N/(2N − 1) ≤ 4/7 of the nodes in τ can
be leaves). Following the analysis of Ren et al. [27, Sect. 4.3] (taking a = 0.8),
we may then conclude that when Z ≥ 3, the probability of overflow decreases
exponentially in S. This implies that the stash will not exceed λ records except
with probability negligible in λ.

In Table 1 we report concrete bounds on the number of blocks in the client’s
stash for different values of the bucket size Z and eviction parameter A. All
values in the table are obtained from our theoretical analysis assuming N is
sufficiently large. Simulations indicate that the stash size is even smaller than
what the theoretical bounds indicate.

Table 1. Bounds on the number of blocks in the client’s stash. These bounds hold
except with probability 2−40 (per operation).

Z = 3 Z = 4 Z = 5 Z = 6 Z = 7

A = 1 16 14 13 12 11

A = 2 - 21 18 16 15

A = 3 - 32 24 21 19

A = 4 - - 33 26 23

A = 5 - - - 34 28

3.3 Optimizations

We briefly mention a few optimizations.

Simple and Efficient Two-Server ORAM 155

Heuristic parameters. As in the ring ORAM scheme, we experimentally
observe that it suffices to set A = 1 and Z = 2 (giving the parameters men-
tioned in the abstract/introduction), or to set A = 3 and Z = 3 (giving slightly
better communication at the expense of increased server storage).

A two-round variant. If we are willing to use one more round, the communi-
cation complexity can be further reduced by first having the client use PPR to
read the indices in the records on the desired path, and then using an execution
of PIR to read the single record of interest.

Acknowledgments. This material is based on work supported by NSF
awards #1111599, #1563722, and #1564088.

References

1. Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight
bounds for composing ORAM with PIR. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 91–120. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 5

2. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54631-0 8

3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: 24th ACM Conference on Computer and
Communications Security, pp. 2105–2122. ACM Press (2017)

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and ex-
tensions. In: 23rd ACM Conference on Computer and Communications Security
(CCS), pp. 1292–1303. ACM Press (2016)

6. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science (FOCS), pp.
41–50. IEEE (1995)

8. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: 23rd ACM
Conference on Computer and Communications Security (CCS), pp. 1602–1613.
ACM Press (2016)

9. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: 24th ACM
Conference on Computer and Communications Security (CCS), pp. 523–535. ACM
Press (2017)

10. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-
tation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
360–385. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 16

https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-642-54631-0_8
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16

156 S. D. Gordon et al.

11. Fletcher, C., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single
online roundtrip, constant bandwidth oblivious RAM. Cryptology ePrint Archive,
Report 2015/1065 (2015). http://eprint.iacr.org/2015/1065

12. Garg, S., Lu, S., Ostrovsky, R.: Black-Box Garbled RAM. In: 56th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 210–229. IEEE (2015)

13. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 20

14. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39077-7 1

15. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

16. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

17. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

18. Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time.
In: 19th ACM Conference on Computer and Communications Security (CCS), pp.
513–524. ACM Press (2012)

19. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 143–156. ACM-SIAM (2012)

20. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computa-
tionally private information retrieval. In: 38th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 364–373. IEEE (1997)

21. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-
model secure computation. In: 2014 IEEE Symposium on Security and Privacy,
pp. 623–638. IEEE (2014)

22. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: 2015 IEEE Symposium on Security and
Privacy, pp. 359–376. IEEE (2015)

23. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

24. Mayberry, T., Blass, E.O., Chan, A.H.: Efficient private file retrieval by combining
ORAM and PIR. In: Network and Distributed System Security Symposium (NDSS)
2014. The Internet Society (2014)

25. Ostrovsky, R., Shoup, V.: Private information storage. In: 29th Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 294–303. ACM Press (1997)

26. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 27

27. Ren, L., et al.: Constants count: practical improvements to oblivious RAM. In:
USENIX Security Symposium, pp. 415–430. USENIX Association (2015)

http://eprint.iacr.org/2015/1065
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-14623-7_27

Simple and Efficient Two-Server ORAM 157

28. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

29. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: 20th ACM Conference on Computer and Communications Security (CCS), pp.
299–310. ACM Press (2013)

30. Wang, X., Chan, T.H.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: 22nd ACM Conference on Computer and Communi-
cations Security (CCS), pp. 850–861. ACM Press (2015)

31. Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of MIPS
machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 6

32. Wang, X.S., Huang, Y., Chan, T.H.H., Shelat, A., Shi, E.: SCORAM: oblivious
RAM for secure computation. In: 21st ACM Conference on Computer and Com-
munications Security (CCS), pp. 191–202. ACM Press (2014)

33. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: 19th
ACM Conference on Computer and Communications Security (CCS), pp. 293–304.
ACM Press (2012)

34. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access-
pattern privacy and correctness on untrusted storage. In: 15th ACM Conference on
Computer and Communications Security (CCS), pp. 139–148. ACM Press (2008)

35. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: 2016 IEEE Symposium on Security and Privacy, pp. 218–
234. IEEE (2016)

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-45741-3_6

More is Less: Perfectly Secure Oblivious
Algorithms in the Multi-server Setting

T.-H. Hubert Chan1, Jonathan Katz2, Kartik Nayak2,3(B),
Antigoni Polychroniadou4, and Elaine Shi5

1 The University of Hong Kong, Pokfulam, Hong Kong
hubert@cs.hku.hk

2 University of Maryland, College Park, USA
jkatz@cs.umd.edu

3 VMware Research, Palo Alto, USA
nkartik@vmware.com

4 Cornell Tech, New York, USA
antigoni@cornell.edu

5 Cornell University, Ithaca, USA
runting@gmail.com

Abstract. The problem of Oblivious RAM (ORAM) has traditionally
been studied in the single-server setting, but more recently the multi-
server setting has also been considered. Yet it is still unclear whether
the multi-server setting has any inherent advantages, e.g., whether the
multi-server setting can be used to achieve stronger security goals or
provably better efficiency than is possible in the single-server case.

In this work, we construct a perfectly secure 3-server ORAM scheme
that outperforms the best known single-server scheme by a logarithmic
factor. In the process we also show, for the first time, that there exist
specific algorithms for which multiple servers can overcome known lower
bounds in the single-server setting.

Keywords: Oblivious RAM · Perfect security

1 Introduction

Oblivious RAM (ORAM) protocols [12] allow a client to outsource storage of
its data such that the client can continue to read/write its data while hiding
both the data itself as well as the client’s access pattern. ORAM was historically
considered in the single-server setting, but has recently been considered in the
multi-server setting [1,16,17,19,21,25] where the client can store its data on
multiple, non-colluding servers. Current constructions of multi-server ORAM
are more efficient than known protocols in the single-server setting; in particular,
the best known protocols in the latter setting (when server-side computation is

An online full version of our paper [5] is available at http://arxiv.org/abs/1809.
00825.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 158–188, 2018.
https://doi.org/10.1007/978-3-030-03332-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_7&domain=pdf
http://arxiv.org/abs/1809.00825
http://arxiv.org/abs/1809.00825

More is Less: Perfectly Secure Oblivious Algorithms 159

not allowed) require bandwidth O(log2 N/ log log N) [3,7,15,18] for storing an
array of length N , whereas multi-server ORAM schemes achieve logarithmic
bandwidth1 [21].

Nevertheless, there are several unanswered questions about the multi-server
setting. First, all work thus far in the multi-server setting achieves either com-
putational or statistical security, but not perfect security where correctness is
required to hold with probability 1 and security must hold even against com-
putationally unbounded attackers. Second, although (as noted above) we have
examples of multi-server schemes that beat existing single-server constructions,
it is unclear whether this reflects a limitation of existing single-server schemes
or whether there are inherent advantages to the multi-server setting.

We address the above questions in this work. (Unless otherwise noted, our
results hold for arbitrary block size B as long as it is large enough to store
an address, i.e., B = Ω(log N).) We construct a perfectly secure, multi-server
ORAM scheme that improves upon the overhead of the best known construction
in the single-server setting. Specifically, we show the following — henceforth if a
multi-server ORAM scheme incurs, on average, X(N) bandwidth (measured in
terms of number of blocks transmitted) per logical memory access on a logical
memory of length N , we say that the scheme has X(N) bandwidth blowup.

Theorem 1. There exists a 3-server ORAM scheme that is perfectly secure
for any single semi-honest server corruption, and achieves O(log2 N) bandwidth
blowup. Further, our scheme does not rely on server-side computation or server-
to-server communication.

As a point of comparison, the best known single-server, perfectly secure ORAM
schemes require O(log3 N) bandwidth [6,9]. While Theorem 1 holds for any block
size B = Ω(log N), we show that for block sizes B = Ω(log2 N) our scheme
achieves bandwidth blowup as small as O(log N).

As part of our construction, we introduce new building blocks that are of
independent theoretical interest. Specifically, we show:

Theorem 2. There exists a 3-server protocol for stable compaction that is per-
fectly secure for any single semi-honest server corruption, and achieves O(n)
bandwidth to compact an array of length n (that is secret-shared among the
servers). The same result holds for merging two sorted arrays of length n.

In the single-server setting, Lin, Shi, and Xie [20] recently proved a lower
bound showing that any oblivious algorithm for stable compaction or merg-
ing in the balls-and-bins model must incur at least Ω(n log n) bandwidth. The
balls-and-bins model characterizes a wide class of natural algorithms where each
element is treated as an atomic “ball” with a numeric label; the algorithm may
perform arbitrary boolean computation on the labels, but is only allowed to

1 Although Lu and Ostrovsky [21] describe their multi-server scheme using server-
side computation, it is not difficult to see that it can be replaced with client-side
computation instead.

160 T.-H. H. Chan et al.

move the balls around and not compute on their values. Our scheme works
in the balls-and-bins model, and thus shows for the first time that the multi-
server setting can overcome known lower bounds in the single-server setting for
oblivious algorithms. Furthermore, for stable compaction and merging no previ-
ous multi-server scheme was known that is asymptotically faster than existing
single-server algorithms, even in the weaker setting of computational security.
We note finally that our protocols are asymptotically optimal since clearly any
correct algorithm has to read the entire array.

1.1 Technical Roadmap

Oblivious sorting is an essential building block in hierarchical ORAM schemes.
At a high level, our key idea is to replace oblivious sorting, which costs O(n log n)
time on an array of length n, with cheaper, linear-time operations. Indeed, this
was also the idea of Lu and Ostrovsky [21], but they apply it to a computationally
secure hierarchical ORAM. Prior single-server ORAM schemes are built from
logarithmically many cuckoo hash tables of doubling size. Every time a memory
request has been served, one needs to merge multiple stale cuckoo hash tables
into a newly constructed cuckoo hash table — this was previously accomplished
by oblivious sorting [3,15,18]. Lu and Ostrovsky show how to avoid cuckoo
hashing, by having one permutation server permute the data in linear time,
and by having a separate storage server, that is unaware of the permutation,
construct a cuckoo hash table from the permuted array in linear time (with the
client’s help). Unfortunately, Lu and Ostrovsky’s technique fails for the perfect
security context due to its intimate reliance on pseudorandom functions (PRFs)
and cuckoo hashing — the former introduces computational assumptions and
the latter leads to statistical failures (albeit with negligible probability).

We are, however, inspired by Lu and Ostrovsky’s permutation-storage-
separation paradigm (and a similar approach that was described independently
by Stefanov and Shi [25]). The key concept here is to have one permutation-
server that permutes the data; and have operations and accesses be performed
by a separate storage server that is unaware of the permutation applied. One
natural question is whether we can apply this technique to directly construct
a linear-time multi-server oblivious sorting algorithm — unfortunately we are
not aware of any way to achieve this. Chan et al. [4] and Tople et al. [27] show
that assuming the data is already randomly permuted (where the permutation
is hidden), one can simply apply any comparison-based sorting algorithm and
it would retain obliviousness. Unfortunately, it is well-known that comparison-
based sorting must incur Ω(n log n) time, and this observation does not extend
to non-comparison-based sorting techniques since in general RAM computations
(on numeric keys) can leak information through access patterns.

New techniques at a glance. We propose two novel techniques that allow us
to achieve the stated results, both of which rely on the permutation-storage-
separation paradigm:

More is Less: Perfectly Secure Oblivious Algorithms 161

– Despite known lower bounds in the single-server setting [20], we show that
with multiple servers, we can indeed achieve linear-time oblivious stable com-
paction and merging. As prior works [3,4,7,14] observe, merging and com-
paction are important building blocks in designing oblivious algorithms —
we thus believe that our new building blocks are of independent interest.

– We use the linear-time oblivious stable compaction and merging algorithms
to design a three-server ORAM. We adapt the single-server perfect ORAM
scheme by Chan et al. [6] into a new multiserver variant to save a loga-
rithmic factor. Specifically, in Chan et al. [6], the reshuffling operation was
realized with oblivious sorting. This operation can now be expressed entirely
with linear-time merging and stable compaction operations without relying
on oblivious sorting.

Stable Compaction and Merging. We first explain the intuition behind our
stable compaction algorithm. For simplicity, for the time being we will consider
only 2 servers and assume perfectly secure encryption for free (this assumption
can later be removed by using secret-sharing and by introducing one additional
server). Imagine that we start out with an array of length n that is encrypted
and resides on one server. The elements in the array are either real or dummy,
and we would like to move all dummy elements to the end of the array while
preserving the order of the real elements as they appear in the original array.
For security, we would like that any single server’s view in the protocol leaks no
information about the array’s contents.

Strawman scheme. An extremely simple strawman scheme is the following: the
client makes a scan of the input array on one server; whenever it encounters
a real element, it re-encrypts the element and writes it to the other server by
appending it to the end of the output array (initially the output array is empty).
When the entire input array has been consumed, the client pads the output array
with an appropriate number of (encrypted) dummy elements.

At first sight, this algorithm seems to preserve security: each server basically
observes a linear scan of either the input or the output array; and the perfectly-
secure encryption hides array contents. However, upon careful examination, the
second server can observe the time steps in which a write has happened to the
output array — this leaks which elements are real in the original array. Corre-
spondingly, in our formal modeling (Sect. 2), each server can not only observe
each message sent and received by itself, but also the time steps in which these
events occurred.

A second try. For simplicity we will describe our approach with server compu-
tation and server-to-server communication — but it is not hard to modify the
scheme such that servers are completely passive. Roughly speaking, the idea
is for the first server (called the permutation server) to randomly permute all
elements and store the permuted array on the second server (called the storage
server), such that the permutation is hidden from the storage server. Moreover,
in this permuted array, we would like the elements to be tagged with pointers

162 T.-H. H. Chan et al.

to form two linked lists: a real linked list and a dummy linked list. In both
linked lists, the ordering of elements respects the ordering in the original array.
If such a permuted array encoding two linked lists can be constructed, the client
can simply traverse the real linked list first from the storage server, and then
traverse the dummy linked list — writing down each element it encounters on
the first server (we always assume re-encryption upon writes). Since the stor-
age server does not know the random permutation and since every element is
accessed exactly once, it observes a completely random access pattern; and thus
it cannot gain any secret information.

The challenge remains as to how to tag each real (resp. dummy) element with
the position of the next real (resp. dummy) element in the permuted array. This
can be achieved in the following manner: the permutation server first creates a
random permutation in linear time (e.g., by employing Fisher-Yates [11]), such
that each element in the input array is now tagged with where it wants to be in
the permuted array (henceforth called the position label). Now, the client makes
a reverse scan of this input array. During this process, it remembers the position
labels of the last real element seen and of the last dummy element seen so far
— this takes O(1) client-side storage. Whenever a real element is encountered,
the client tags it with the position label of the last real seen. Similarly, whenever
a dummy is encountered, the client tags it with the position label of the last
dummy seen. Now, the permutation server can permute the array based on the
predetermined permutation (which can also be done in linear time). At this
moment, it sends the permuted, re-encrypted array to the storage server and the
linked list can now be traversed from the storage server to read real elements
followed by dummy elements.

It is not difficult to see that assuming that the encryption scheme is perfectly
secure and every write involves re-encrypting the data, then the above scheme
achieves perfect security against any single semi-honest corrupt server, and com-
pletes in linear time. Later we will replace the perfectly secure encryption with
secret-sharing and this requires the introduction of one additional server.

Extending the idea for merging. We can extend the above idea to allow linear-
time oblivious merging of two sorted arrays. The idea is to prepare both arrays
such that they are in permuted form on the storage server and in a linked
list format; and now the client can traverse the two linked lists on the storage
server, merging them in the process. In each step of the merging, only one array
is being consumed — since the storage server does not know the permutation,
it sees random accesses and cannot tell which array is being consumed.

3-Server Perfectly Secure ORAM. We now explain the techniques for con-
structing a 3-server perfectly secure ORAM. A client, with O(1) blocks of local
cache, stores N blocks of data (secret-shared) on the 3 servers, one of which
might be semi-honest corrupt. In every iteration, the client receives a memory
request of the form (read, addr) or (write, addr, data), and it completes this request
by interacting with the servers. We would like to achieve O(log2 N) amortized
bandwidth blowup per logical memory request.

More is Less: Perfectly Secure Oblivious Algorithms 163

Background on single-server perfect ORAM. We start out from a state-of-
the-art single-server perfectly secure scheme by Chan et al. [6] that achieves
O(log3 N) amortized bandwidth per memory request. Their scheme extends from
the original hierarchical ORAM framework of Goldreich and Ostrovsky [12,13]
where data blocks are stored in levels of geometrically increasing sizes. Recall
that Goldreich and Ostrovsky [12,13] achieve only computational security due
to the use of a PRF; and thus one of the key ideas of Chan et al. [6] is how
to remove the need for a PRF. More concretely, each level in Goldreich and
Ostrovsky’s hierarchical ORAM is an oblivious hash table capable of supporting
non-recurrent requests (henceforth called one-time memory). Within each level,
the position of a data block is determined by applying a PRF to the block’s
logical address. To achieve perfect security, the key requirement is to eliminate
the use the PRF. Therefore, in Chan et al. [6], blocks within a level are secretly
and randomly permuted using an oblivious sort. To access a block within a level,
the client must first figure out the block’s correct location within the level. To
achieve this, a trivial method is for the client to locally store the entire mapping
of the correct locations (henceforth called position labels), but this would con-
sume linear client space. Instead Chan et al. recursively store the position labels
in a smaller hierarchical ORAM, inspired by a standard recursion technique
commonly adopted by tree-based ORAMs [24] (but Chan et al. show how to
adapt it to the hierarchical ORAM setting). Thus, in Chan et al.’s construction,
there are logarithmically many hierarchical ORAMs (also called position-based
ORAMs), where the ORAM at depth d (called the parent depth) stores position
labels for the ORAM at depth d + 1 (called the child depth); and finally, the
ORAM at the maximum depth D = O(log N) stores the real data blocks.

Our multi-server perfect ORAM. We now explain how to build on top of Chan
et al. [6]’s idea and obtain a multi-server ORAM that saves a logarithmic factor
in bandwidth. The key to enabling this is a method for passing information
between adjacent recursion depths, without oblivious sort. Below, we first explain
how Chan et al. [6] passes information between adjacent recursion depths using
oblivious sort, and then we explain our novel techniques to accomplish the same,
but now relying only on merging and compaction in the multi-server setting.

As Chan et al. [6] point out, whenever a data block’s location is updated at
depth d through a shuffle operation, the position label at depth d−1 needs to be
updated to reflect the new location. This information passing between an ORAM
at depth d to its parent ORAM at depth d−1 is performed by using a coordinated
shuffle between the logarithmically many ORAMs upon every memory request.
This turns out to be the most intricate part of their scheme. During this shuffle,
suppose that the parent and the child each has an array of logical addresses and
a position label for each address. It is guaranteed by the ORAM construction
that all addresses the child has must appear in the parent’s array. Moreover, if
some address appears in both the parent and child, then the child’s version is
fresher. We would like to combine the information held by the parent and the
child by retaining the freshest copy of position label for every address. Chan et
al. relied on oblivious sorting to achieve this goal: if some address is held by

164 T.-H. H. Chan et al.

both the parent and child, they will appear adjacent to each other in the sorted
array; and thus in a single linear scan one can easily cross out all stale copies.

To save a logarithmic factor, we must solve the above problem using only
merging and compaction and not sorting. Notice that if both the parent’s and
the child’s arrays are already sorted according to the addresses, then the afore-
mentioned information propagation from child to parent can be accomplished
through merging rather than sorting (in the full scheme we would also need sta-
ble compaction to remove dummy blocks in a timely fashion to avoid blowup of
array sizes over time). But how can we make sure that these arrays are sorted
in the first place without oblivious sorting? In particular, these arrays actu-
ally correspond to levels in a hierarchical ORAM in Chan et al. [6]’s scheme,
and all blocks in a level must appear in randomly permuted order to allow safe
(one-time) accesses — this seems to contradict our desire for sortedness. Fortu-
nately, here we can rely again on the permutation-storage-separation paradigm
— for simplicity again we describe our approach for 2 servers assuming perfectly
secure (re-)encryption upon every write. The idea is the following: although the
storage server is holding each array (i.e., level) in a randomly permuted order,
the permutation server will remember an inverse permutation such that when
this permutation is applied to the storage server’s copy, sortedness is restored.
Thus whenever shuffling is needed, the permutation server would first apply the
inverse permutation to the storage server’s copy to restore sortedness, and then
we could rely on merging (and compaction) to propagate information between
adjacent depths rather than sorting.

Outline. In Sect. 3, we explain our protocol for permuting and unpermuting a
list of blocks under the permutation-storage-separation paradigm and build upon
it to describe a protocol for oblivious stable compaction and merge. In Sect. 4, we
show the protocol for a three-server oblivious one-time memory; this corresponds
to a single level in position-based ORAM in Chan et al. [6]. In Sect. 5, we first
show how a three-server position-based ORAM can be built using the one-time
memory (Sect. 5.1), and then construct our final ORAM scheme consisting of
logarithmic number of position-based ORAMs (Sect. 5.2).

1.2 Related Work

The notion of Oblivious RAM (ORAM) was introduced by the seminal work
of Goldreich and Ostrovsky around three decades ago [12,13]. Their construc-
tion used a hierarchy of buffers of exponentially increasing size, which was later
known as the hierarchical ORAM framework. Their construction achieved an
amortized bandwidth blowup of O(log3 N) and was secure against a compu-
tationally bounded adversary. Subsequently, several works have improved the
bandwidth blowup from O(log3 N) to O(log2 N/ log log N) [3,7,15,18] under
the same adversarial model. Ajtai [2] was the first to consider the notion of a
statistically secure oblivious RAM that achieves O(log3 N) bandwidth blowup.
This was followed by the statistically secure ORAM construction by Shi et
al. [24], who introduced the tree-based paradigm. ORAM constructions in the

More is Less: Perfectly Secure Oblivious Algorithms 165

tree-based paradigm have improved the bandwidth blowup from O(log3 N) to
O(log2 N) [8,23,24,26,28]. Though the computational assumptions have been
removed, the statistically secure ORAMs still fail with a failure probability that
is negligibly small in the number of data blocks stored in the ORAM.

Perfectly secure ORAMs. Perfectly secure ORAM was first studied by Damg̊ard
et al. [9]. Perfect security requires that a computationally unbounded server
does not learn anything other than the number of requests with probability 1.
This implies that the oblivious program’s memory access patterns should be
identically distributed regardless of the inputs to the program; and thus with
probability 1, no information can be leaked about the secret inputs to the
program. Damg̊ard et al. [9] achieve an expected O(log3 N) simulation over-
head and O(log N) space blowup relative to the original RAM program. Raskin
et al. [22] and Demertzis et al. [10] achieve a worst-case bandwidth blowup
of O(

√
N log N

log log N) and O(N1/3), respectively. Chan et al. [6] improve upon
Damg̊ard et al.’s result [9] by avoiding the O(log N) blowup in space, and by
showing a construction that is conceptually simpler. Our construction builds
upon Chan et al. and improves the bandwidth blowup to worst-case O(log2 N)
while assuming three non-colluding servers.

We note that since both Damg̊ard et al. [9] and Chan et al. [6] employ
perfectly oblivious random permutations, their schemes are Las Vegas algorithms
and there is a negligibly small failure probability that the algorithm exceeds the
stated runtime (however, perfect security is maintained nonetheless). Our multi-
server ORAM avoids the need for oblivious random permutation and thus the
algorithm’s runtime is deterministic.

Multi-server ORAMs. ORAMs in this category assume multiple non-colluding
servers to improve bandwidth blowup [1,16,17,19,21]. A comparison of the rel-
evant schemes is presented in Table 1. Among these, the work that is closely
related to ours is by Lu and Ostrovsky [21] which achieves a bandwidth blowup
of O(log N) assuming two non-colluding servers. In their scheme, each server
performs permutations for data that is stored by the other server. While their
construction is computationally secure, we achieve perfect security for access
patterns as well as the data itself. Moreover, our techniques can be used to per-
form an oblivious tight stable compaction and an oblivious merge operation in
linear time; how to perform these operations in linear time were not known even
for the computationally secure setting. On the other hand, our scheme achieves
an O(log2 N) bandwidth blowup and uses three servers. We remark that if we
assume a perfectly secure encryption scheme, our construction can achieve per-
fectly secure access patterns using two servers. Abraham et al. [1], Gordon et
al. [16] and Kushilevitz and Mour [19] construct multi-server ORAMs using PIR.
Each of these constructions require the server to perform computation for using
PIR operations. While Abraham et al. [1] achieve statistical security for access
patterns, other work [16,19] is only computationally secure. While the work of
Gordon et al. achieves a bandwidth blowup of O(log N), they require linear-
time server computation. Abraham et al. and Kushilevitz and Mour, on the

166 T.-H. H. Chan et al.

other hand, are poly-logarithmic and logarithmic respectively, both in compu-
tation and bandwidth blowup. In comparison, our construction achieves perfect
security and requires a passive server (i.e., a server that does not perform any
computation) at a bandwidth blowup of O(log2 N).

Table 1. Comparison with existing multi-server Oblivious RAM schemes
for block size Ω(log N). All of the other schemes (including the statistically-secure
schemes [1]) require two servers but assume the existence of an unconditionally secure
encryption scheme. With a similar assumption, our work would indeed need only two
servers too.

Construction Bandwidth Server Security

Blowup Computation

Lu-Ostrovsky [21] O(log N) - Computational

Gordon et al. [16] O(log N) O(N) Computational

Kushilevitz et al. [19] O(log N · ω(1)) O(log N · ω(1)) Computational

Abraham et al. [1] O(log2 N · ω(1)) O(log2 N · ω(1)) Statistical

Our work O(log2 N) - Perfect

2 Definitions

In this section, we revisit how to define multi-server ORAM schemes for the case
of semi-honest corruptions. Our definitions require that the adversary, control-
ling a subset of semi-honest corrupt servers, learns no secret information during
the execution of the ORAM protocol. Specifically our adversary can observe all
messages transmitted to and from corrupt servers, the rounds in which they were
transmitted, as well as communication patterns between honest parties (includ-
ing the client and honest servers). Our definition generalizes existing works [1]
where they assume free encryption of data contents (even when statistical secu-
rity is desired).

2.1 Execution Model

Protocol as a system of Interactive RAMs. We consider a protocol between
multiple parties including a client, henceforth denoted by C, and k servers,
denoted by S0, . . . ,Sk−1, respectively. The client and all servers are Random
Access Machines (RAMs) that interact with each other. Specifically, the client
or each server has a CPU capable of computation and a memory that supports
reads and writes; the CPU interacts with the memory to perform computation.
The atomic unit of operation for memory is called a block. We assume that all
RAMs can be probabilistic, i.e., they can read a random tape supplying a stream
of random bits.

More is Less: Perfectly Secure Oblivious Algorithms 167

Communication and timing. We assume pairwise channels between all parties.
There are two notions of time in our execution model, CPU cycles and commu-
nication rounds. Without loss of generality, henceforth we assume that it takes
the same amount of time to compute each CPU instruction and to transmit each
memory block over the network to another party (since we can always take the
maximum of the two). Henceforth in this paper we often use the word round to
denote the time that has elapsed since the beginning of the protocol.

Although we define RAMs on the servers as being capable of performing any
arbitrary computation, all of our protocols require the servers to be passive, i.e.,
the server RAMs only perform read/write operations from the memory stored
by it.

2.2 Perfect Security Under a Semi-Honest Adversary

We consider the client to be trusted. The adversary can corrupt a subset of
the servers (but it cannot corrupt the client) — although our constructions are
secure against any individual corrupt server, we present definitions for the more
general case, i.e., when the adversary can control more than one corrupt server.

We consider a semi-honest adversary, i.e., the corrupt servers still honestly
follow the protocol; however, we would like to ensure that no undesired infor-
mation will leak. To formally define security, we need to first define what the
adversary can observe in a protocol’s execution.

View of adversary viewA. Suppose that the adversary A controls a subset of
the servers — we abuse notation and use A ⊂ [k] to denote the set of corrupt
servers. The view of the adversary, denoted by viewA in a random run of the
protocol consists of the following:

1. Corrupt parties’ views: These views include (1) corrupt parties’ inputs, (2)
all randomness consumed by corrupt parties, and (3) an ordered sequence of
all messages received by corrupt parties, including which party the message
is received from, as well as the round in which each message is received.
We assume that these messages are ordered by the round in which they are
received, and then by the party from which it is received.

2. Honest communication pattern: when honest parties (including the client)
exchange messages, the adversary observes their communication pattern,
including which pairs of honest nodes exchange messages in which round.

We stress that in our model only one block can be exchanged between every
pair in a round — thus the above viewA definition effectively allows A to see the
total length of messages exchanged between honest parties.

Remark 1. We remark that this definition captures a notion of timing patterns
along with access patterns. For instance, suppose two servers store two sorted
lists that needs to be merged. The client performs a regular merge operation to

168 T.-H. H. Chan et al.

read from the two lists, reading the heads of the lists in each round. In such a
scenario, depending on the rounds in which blocks are read from a server, an
adversary that corrupts that server can compute the relative ordering of blocks
between the two lists.

Defining security in the ideal-real paradigm. Consider an ideal functionality F :
upon receiving the input I0 from the client and inputs I1, . . . , Ik from each of the
k servers, respectively, and a random string ρ sampled from some distribution,
F computes

(O0,O1, . . . ,Ok) := F(I0, I1, . . . , Ik; ρ)

where O0 is the client’s output, and O1, . . . ,Ok denote the k servers’ outputs,
respectively.

Definition 1 (Perfect security in the presence of a semi-honest adver-
sary). We say that “a protocol Π perfectly securely realizes an ideal functionality
F in the presence of a semi-honest adversary corrupting t servers” if and only if
for every adversary A that controls up to t corrupt servers, there exists a simu-
lator Sim such that for every input vector (I0, I1, . . . , Ik), the following real- and
ideal-world experiments output identical distributions:

– Ideal-world experiment. Sample ρ at random and compute (O0,O1, . . . ,
Ok) := F(I0, I1, . . . , Ik, ρ). Output the following tuple where we abuse nota-
tion and use i ∈ A to denote the fact that i is corrupt:

Sim({Ii,Oi}i∈A), O0, {Oi}i�∈A

– Real-world experiment. Execute the (possibly randomized) real-world protocol,
and let O0,O1, . . . ,Ok be the outcome of the client and each of the k servers,
respectively. Let viewA denote the view of the adversary A in this run. Now,
output the following:

viewA, O0, {Oi}i�∈A

Note that throughout the paper, we will define various building blocks that
realize different ideal functionalities. The security of all building blocks can be
defined in a unified approach with this paradigm. When we compose these build-
ing blocks to construct our full protocol, we can prove perfect security of the
full protocol in a composable manner. By modularly proving the security of each
building block, we can now think of each building block as interacting with an
ideal functionality. This enables us to prove the security of the full protocol in
the ideal world assuming the existence of these ideal functionalities.

We note that while the definitions in this paper apply to both active-server
protocols (where the server can perform arbitrary computation) as well as passive
server protocols (where the server performs no computation), our scheme does
not require server computation.

More is Less: Perfectly Secure Oblivious Algorithms 169

2.3 Definition of k-Server Oblivious RAM

Ideal logical memory. The ideal logical memory is defined in the most natural
way. There is a memory array consisting of N blocks where each block is Ω(log N)
bits long, and each block is identified by its unique address which takes value in
the range {0, 1, . . . , N − 1}.

Initially all blocks are set to 0. Upon receiving (read, addr), the value of the
block residing at address addr is returned. Upon receiving (write, addr, data),
the block at address addr is overwritten with the data value data, and its old
value (before being rewritten) is returned.

k-server ORAM. A k-server Oblivious RAM (ORAM) is a protocol between a
client C and k servers S1, . . . ,Sk which realizes an ideal logical memory. The
execution of this protocol proceeds in a sequence of iterations: in each interac-
tion, the client C receives a logical memory request of the form (read, addr) or
(write, addr, data). It then engages in some (possibly randomized) protocol with
the servers, at the end of which it produces some output thus completing the
current iteration.

We require perfect correctness and perfect security as defined below. We refer
to a sequence of logical memory requests as a request sequence for short.

– Perfect correctness. For any request sequence, with probability 1, all of the
client’s outputs must be correct. In other words, we require that with proba-
bility 1, all of the client’s outputs must match what an ideal logical memory
would have output for the same request sequence.

– Perfect security under a semi-honest adversary. We say that a k-server
ORAM scheme satisfies perfect security w.r.t. a semi-honest adversary cor-
rupting t servers, if and only if for every A that controls up to t servers, and for
every two request sequences R0 and R1 of equal length, the views viewA(R0)
and viewA(R1) are identically distributed, where viewA(R) denotes the view
of A (as defined earlier in Sect. 2.2) under the request sequence R.

Since we require perfect security (and is based on information-theoretic
secret-sharing), our notion resists adaptive corruptions and is composable.

2.4 Resource Assumptions and Cost Metrics

We assume that the client can store O(1) blocks while the servers can store O(N)
blocks. We will use the metric bandwidth blowup to characterize the performance
of our protocols. Bandwidth blowup is the (amortized) number of blocks queried
in the ORAM simulation to query a single virtual block. We also note that since
the servers do not perform any computation, and the client always performs
an O(1) computation on its O(1) storage, an O(X) bandwidth blowup also
corresponds to an O(X) runtime for our protocol.

170 T.-H. H. Chan et al.

3 Core Building Blocks: Definitions and Constructions

Imagine that there are three servers denoted S0, S1, and S2, and a client denoted
C. We use Sb, b ∈ Z3 to refer to a specific server. Arithmetic performed on the
subscript b is done modulo 3.

3.1 Useful Definitions

Let T denote a list of blocks where each block is either a real block containing
a payload string and a logical address; or a dummy block denoted ⊥. We define
sorted and semi-sorted as follows:

– Sorted: T is said to be sorted iff all real blocks appear before dummy ones;
and all the real blocks appear in increasing order of their logical addresses.
If multiple blocks have the same logical address, their relative order can be
arbitrary.

– Semi-sorted: T is said to be semi-sorted iff all the real blocks appear in
increasing order of their logical addresses, and ties may be broken arbitrarily.
However, the real blocks are allowed to be interspersed by dummy blocks.

Array Notation. We assume each location of an array T stores a block which is
a bit-string of length B. Given two arrays T1 and T2, we use T1 ⊕ T2 to denote
the resulting array after performing bitwise-XOR on the corresponding elements
at each index of the two arrays; if the two arrays are of different lengths, we
assume the shorter array is appended with a sufficient number of zero elements.

Permutation Notation. When a permutation π : [n] → [n] is applied to an array
T indexed by [n] to produce π(T), we mean the element currently at location i
will be moved to location π(i). When we compose permutations, π ◦ σ means
that π is applied before σ. We use e to denote the identity permutation.

Layout. A layout is a way to store some data T on three servers such that the
data can be recovered by combining information on the three servers. Recall that
the client has only O(1) blocks of space, and our protocol does not require that
the client stores any persistent data.

Whenever some data T is stored on a server, informally speaking, we need to
ensure two things: (1) The server does not learn the data T itself, and (2) The
server does not learn which index i of the data is accessed. In order to ensure the
prior, we XOR secret-share the data T := T0 ⊕ T1 ⊕ T2 between three servers
Sb, b ∈ Z3 such that Sb stores Tb. For a server to not learn which index i in
T is accessed, we ensure that the data is permuted, and the access happens to
the permuted data. If the data is accessed on the same server that permutes the
data, then the index i will still be revealed. Thus, for each share Tb, we ensure
that one server permutes it and we access it from another server, i.e., we have
two types of servers:

More is Less: Perfectly Secure Oblivious Algorithms 171

– Each server Sb acts as a storage server for the b-th share, and thus it knows
Tb.

– Each server Sb also acts as the permutation server for the (b + 1)-th share,
and thus it also knows Tb+1 as well as πb+1.

Throughout the paper, a layout is of the following form

3-server layout : {πb,Tb}b∈Z3

where Tb and (πb+1,Tb+1) are stored by server Sb. As mentioned, Sb not only
knows its own share (Tb) but also the permutation and share of the next server
(πb+1,Tb+1).

Specifically, T0,T1,T2 denote lists of blocks of equal length: we denote n =
|T0| = |T1| = |T2|. Further, πb+1 : [n] → [n] is a permutation stored by server Sb

for the list Tb+1. Unless there is ambiguity, we use ⊕b to mean applying ⊕b∈Z3

to three underlying arrays.
The above layout is supposed to store the array that can be recovered by:

⊕bπ
−1
b (Tb).

Henceforth, given a layout {πb,Tb}b∈Z3 , we say that the layout is sorted (or
semi-sorted) iff ⊕bπ

−1
b (Tb) is sorted (or semi-sorted).

Special Case. Sometimes the blocks secret-shared among S0, S1, S2 may be
unpermuted, i.e., for each b ∈ Z3, πb is the identity permutation e. In this case,
the layout is

Unpermuted layout : {e,Tb}b∈Z3

For brevity, the unpermuted layout {e,Tb}b∈Z3 is also denoted by the abstract
array T.

Definition 2 (Secret Write). An abstract array T corresponds to some unper-
muted layout {e,Tb}b∈Z3 . We say that the client secretly writes a value B to the
array T at index i, when it does the following:

– Sample random values B0 and B1 independently, and compute B2 := B⊕B0⊕
B1.

– For each b ∈ Z3, the client writes Tb[i] := Bb on server Sb (and Sb−1).

Definition 3 (Reconstruct). Given some layout {πb,Tb}b∈Z3 , the client
reconstructs a value from using tuple (i0, i1, i2) of indices, when it does the fol-
lowing:

– For each b ∈ Z3, the client reads Tb[ib] from server Sb. (It is important that
the client reads Tb from Sb, even though Tb is stored in both Sb and Sb−1.)

– The reconstructed value is ⊕bTb[ib].

Protocol Notation. All protocols are denoted as out ← Prot(sin, cin). Here, sin
and cin are respectively server and client inputs to the protocol Prot. Except for
in an ORAM Lookup, all the outputs out are sent to the server.

172 T.-H. H. Chan et al.

3.2 Permute and Unpermute

Non-oblivious random permutation. Fisher and Yates [11] show how to
generate a uniformly random permutation π : [n] → [n] in O(n) time steps.
This implies that the client can write a random permutation on a server with
O(n) bandwidth. The permutation is non-oblivious, i.e., the server does learn
the permutation generated.

Definition of Permute. Permute is a protocol that realizes an ideal functional-
ity Fperm as defined below. Intuitively, this functionality takes some unpermuted
input layout (i.e., unpermuted secret-shared inputs) and three additional permu-
tations πb+1 from the three permutation servers Sb. The functionality produces
an output such that the three shares are secret-shared again, and the share
received by storage server Sb+1 is permuted using πb+1. Secret-sharing the data
again before applying the new permutations ensures that a storage server Sb+1

does not learn the permutation πb+1 applied to its share.

– {πb,T
′
b}b∈Z3 ← Permute

(
({e,Tb}b∈Z3 , {πb}b∈Z3),⊥

)
:

• Input: Let {e,Tb}b∈Z3 be the unpermuted layout provided as input.
(Recall that Tb and Tb+1 are stored in server Sb.)
Moreover, for each b ∈ Z3, Sb has an additional permutation πb+1 as
input (which could be generated by the client for instance).
The arrays have the same length |T0| = |T1| = |T2| = n, for some n. The
client obtains ⊥ as the input.

• Ideal functionality Fperm:
Sample independently and uniformly random T̂0, T̂1 of length n.
Now, define T̂2 := T̂0 ⊕ T̂1 ⊕ (⊕bTb), i.e., ⊕bT̂b = ⊕bTb.
For each b ∈ Z3, define T′

b := πb(T̂b).
The output layout is {πb,T

′
b}b∈Z3 , and the client’s output is ⊥.

Protocol Permute. The implementation of Fperm proceeds as follows:

1. Mask shares. For each data block, the client first generates block “masks”
that sum up to zero, and then applies mask to Tb+1 on server Sb. Specifically,
the client does the following, for each i ∈ [n]:

– Generate block “masks” that sum up to zero, i.e., sample independent
random blocks Bi

0 and Bi
1, and compute Bi

2 := Bi
0 ⊕ Bi

1.
– Apply mask Bi

b+1 to Tb+1[i] stored on server Sb, i.e., for each i ∈ [b], the
client writes T̂b+1[i] ← Tb+1[i] ⊕ Bi

b+1 on server Sb.
2. Permute share of Sb+1 and send result to Sb+1. The client uses πb+1 to

permute a share on the permutation server and then sends this permuted
share to the storage server, i.e., for each b ∈ Z3, the client computes computes
T′

b+1 := πb+1(T̂b+1) on server Sb, and sends the result T′
b+1 to Sb+1. Each

server Sb stores T′
b and (πb+1,T

′
b+1); hence, the new layout {πb,T

′
b}b∈Z3 is

achieved.

More is Less: Perfectly Secure Oblivious Algorithms 173

Theorem 3. The Permute protocol perfectly securely realizes the ideal function-
ality Fperm (as per Definition 1) in the presence of a semi-honest adversary
corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

Definition of Unpermute and Protocol Description. Similar to Permute,
we also need a complementary Unpermute protocol. Its definition and protocol
are described in the full version [5].

3.3 Stable Compaction

Definition of StableCompact. StableCompact is a protocol that realizes an
ideal functionality Fcompact, as defined below:

– {e,T′
b}b∈Z3 ← StableCompact({e,Tb}b∈Z3 ,⊥):

• Input layout: A semi-sorted, unpermuted layout denoted {e,Tb}b∈Z3 .
• Ideal functionality Fcompact: Fcompact computes T∗ := T0 ⊕ T1 ⊕ T2; it

then moves all dummy blocks in T∗ to the end of the array, while keeping
the relative order of real blocks unchanged.
Now, Fcompact randomly samples T′

0,T
′
1 of appropriate length and com-

putes T′
2 such that T∗ = T′

0 ⊕ T′
1 ⊕ T′

2. The output layout is a sorted,
unpermuted layout {e,T′

b}b∈Z3 .

StableCompact Protocol. The input is a semi-sorted, unpermuted layout, and
we would like to turn it into a sorted, unpermuted layout obliviously. The key
idea is to permute each share of the list (stored on the 3 servers respectively),
such that the storage server for each share does not know the permutation.
Now, the client accesses all real elements in a sorted order, and then accesses all
dummy elements, writing down the elements in a secret-shared manner as the
accesses are made. We can achieve this if each real or dummy element is tagged
with a pointer to its next element, and the pointer is in fact a 3-tuple that is also
secret-shared on the 3 servers — each element in the 3-tuple indicates where the
next element is in one of the 3 permutations.

Therefore, the crux of the algorithm is to tag each (secret-shared) element
with a (secret-shared) position tuple, indicating where its next element is — this
will effectively create two linked list structures (one for real and one for dummy):
each element in the linked lists is secret-shared in to 3 shares, and each share
resides on its storage server at an independent random location.

The detailed protocol is as follows:

1. First, each server Sb acts as the permutation server for Sb+1. Thus, the client
generates a random permutation πb+1 on the permutation server Sb using
the Fisher-Yates algorithm described in Sect. 3.2. Basically, for each index i
of the original list the client writes down, on each Sb, that its (b+1)-th share
(out of 3 shares), wants to be in position πb+1(i).

174 T.-H. H. Chan et al.

2. Next, the client makes a reverse scan of (T0, π0), (T1, π1), (T2, π2) for i = n
down to 1. The client can access (Tb+1[i], πb+1(i)) by talking to Sb. In this
reverse scan, the client always locally remembers the position tuple of the
last real element encountered (henceforth denoted preal) and the position
tuple of the last dummy element encountered (henceforth denoted pdummy).
Thus, if T[kreal] is the last seen real element, then the client remembers
preal = (πb(kreal) : b ∈ Z3). pdummy is updated analogously. Initially, preal
and pdummy are set to ⊥.
During this scan, whenever a real element T[i] is encountered, the client
secretly writes the link L[i] := preal, i.e., L[i] represents secret-shares of the
next pointers for the real element and L itself represents an abstract linked
list of real elements. The links for dummy elements are updated analogously
using pdummy.
At the end of this reverse scan, the client remembers the position tuple for
the first real of the linked list denoted p1real and position tuple for the first
dummy denoted p1dummy.

3. Next, we call Permute inputting (1) the original layout — but importantly,
now each element is tagged with a position tuple (that is also secret-shared);
and (2) the three permutations chosen by each Sb (acting as the permu-
tation server for Sb+1). Thus, Permute is applied to the combined layout
{e, (Tb, Lb)}b∈Z3 , where Sb has input permutation πb+1. Let the output of
Permute be denoted by {πb, (T′

b, L
′
b)}b∈Z3 .

4. Finally, the client traverses first the real linked list (whose start position tuple
is p1real) and then the dummy linked list (whose start position tuple is p1dummy).
During this traversal, the client secretly writes each element encountered to
produce the sorted and unpermuted output layout.
More precisely, the client secretly writes an abstract array T′′ element by
element. Start with k ← 0 and p ← p1real.
The client reconstructs element B := ⊕T′

b[pb] and the next pointer of the
linked list next := ⊕L′

b[pb]; the client secretly writes to the abstract array
T′′[k] := B.
Then, it updates k ← k +1 and p ← next, and continues to the next element;
if the end of the real list is reached, then it sets p ← p1dummy. This continues
until the whole (abstract) T′′ is secretly written to the three servers.

5. The new layout {e,T′′
b }b∈Z3 is constructed.

Theorem 4. The StableCompact protocol perfectly securely realizes the ideal
functionality Fcompact (as per Definition 1) in the presence of a semi-honest
adversary corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

3.4 Merging

Definition of Merge. Merge is a protocol that realizes an ideal functionality
Fmerge as defined below:

More is Less: Perfectly Secure Oblivious Algorithms 175

– {e,U′′
b }b∈Z3 ← Merge

({e, (Tb,T
′
b)}b∈Z3 ,⊥

)
:

• Input layout: Two semi-sorted, unpermuted layouts denoted {e,Tb}b∈Z3

and {e,T′
b}b∈Z3 denoting abstract lists T and T′, where all the arrays have

the same length n.
• Ideal functionality Fmerge: First, Fmerge merges the two lists T0 ⊕T1 ⊕T2

and T′
0 ⊕ T′

1 ⊕ T′
2, such that the resulting array is sorted with all dummy

blocks at the end. Let U′′ be this merged result. Now, Fmerge randomly
samples U′′

0 and U′′
1 independently of appropriate length and computes U′′

2

such that U′′ = U′′
0 ⊕U′′

1 ⊕U′′
2 . The output layout is a sorted, unpermuted

layout {e,U′′
b }b∈Z3 .

Merge Protocol. The protocol receives as input, two semi-sorted, unpermuted
layouts and produces a merged, sorted, unpermuted layout as the output. The
key idea is to permute the concatenation of the two semi-sorted inputs such that
the storage servers do not know the permutation. Now, the client accesses real
elements in both lists in the sorted order using the storage servers to produce
a merged output. Given that a concatenation of the lists is permuted together,
elements from which list is accessed is not revealed during the merge operation,
thereby allowing us to merge the two lists obliviously. In order to access the two
lists in a sorted order, the client creates a linked list of real and dummy elements
using the permutation servers, similar to the StableCompact protocol in Sect. 3.3.

The detailed protocol works as follows:

1. First, the client concatenates the two abstract lists T and T′ to obtain an
abstract list U of size 2n, i.e., we interpret Ub as the concatenation of Tb and
T′

b for each b ∈ Z3. Specifically, Ub[0, n−1] corresponds to Tb and Ub[n, 2n−1]
corresponds to T′

b.
2. Now, each server Sb acts as the permutation server for Sb+1. The client gen-

erates a random permutation πb+1 : [2n] → [2n] on server Sb+1 using the
Fisher-Yates algorithm described in Sect. 3.2. πb+1(i) represents the position
of the (b + 1)-th share and is stored on server Sb.

3. The client now performs a reverse scan of (U0, π0), (U1, π1), (U2, π2) for i = n
down to 1. During this reverse scan, the client always locally remembers the
position tuples of the last real element and last dummy element encountered
for both the lists. Let them be denoted by preal, p′

real, pdummy, and p′
dummy.

Thus, if U[kreal] is the last seen real element from the first list, the client
remembers preal = (πb(kreal) : b ∈ Z3). The other position tuples are updated
analogously. Each of these tuples are initially set to ⊥.
During the reverse scan, the client maintains an abstract linked list L in the
following manner. When U[i] is processed, if it is a real element from the
first list, then the client secretly writes the link L[i] := preal. L[i] represents
secret-shares of the next pointers for a real element from the first list. The
cases for p′

real, pdummy, and p′
dummy are analogous.

At the end of this reverse scan, the client remembers the position tuple for
the first real and first dummy elements of both linked lists. They are denoted
by p1real, p

′1
real, p

1
dummy, and p′1

dummy.

176 T.-H. H. Chan et al.

4. We next call Permute to the combined layout {e, (Ub, Lb)}b∈Z3 , where each
server Sb has input πb+1, to produce {πb, (U′

b, L
′
b)}b∈Z3 as output.

5. The linked lists can now be accessed using the four position tuples p1real, p
′1
real,

p1dummy, and p′1
dummy. The client first starts accessing real elements in the

two lists using p1real and p′1
real to merge them. When a real list ends, it starts

accessing the corresponding dummy list.
More precisely, the client secretly writes the merged result to the abstract
output array U′′.
Start with k ← 0, p1 ← p1real, p

2 ← p2real.
For each s ∈ {1, 2}, the client reconstructs Bs := ⊕bU

′
b[p

s
b] and nexts :=

⊕bL
′
b[p

s
b] at most once, i.e., if Bs and nexts have already been reconstructed

once with the tuple (pp
b : b ∈ Z3), then they will not be reconstructed again.

If B1 should appear before B2, then the client secretly writes U′′[k] ← B1

and updates k ← k + 1, p1 ← next1; if the end of the real list is reached,
then it updates p1 ← p1dummy. The case when B2 should appear before B1 is
analogous.
The next element is processed until the client has secretly constructed the
whole abstract array U′′.

6. The new merged layout {e,U′′
b }b∈Z3 is produced.

Theorem 5. The Merge protocol perfectly securely realizes the ideal function-
ality Fmerge (as per Definition 1) in the presence of a semi-honest adversary
corrupting a single server with O(n) bandwidth.

Due to lack of space, the proof is in the full version of the paper [5].

4 Three-Server One-Time Oblivious Memory

We construct an abstract datatype to process non-recurrent memory lookup
requests, i.e., between rebuilds of the data structure, each distinct address is
requested at most once. Our abstraction is similar to the perfectly secure one-
time oblivious memory by Chan et al. [6]. However, while Chan et al. only
consider perfect security with respect to access pattern, our three-server one time
memory in addition information-theoretically encrypts the data itself. Thus, in
[6], since the algorithm does not provide guarantees for the data itself, it can
modify the data structure while performing operations. In contrast, our one-
time oblivious memory is a read-only data structure. In this data structure, we
assume every request is tagged with a position label indicating which memory
location to lookup in each of the servers. In this section, we assume that such
a position is magically available during lookup; but in subsequent sections we
show how this data structure can be maintained and provided during a lookup.

4.1 Definition: Three-Server One-Time Oblivious Memory

Our (three-server) one-time oblivious memory supports three operations: (1)
Build, (2) Lookup, and (3) Getall. Build is called once upfront to create the data

More is Less: Perfectly Secure Oblivious Algorithms 177

structure: it takes in a set of data blocks (tagged with its logical address), per-
mutes shares of the data blocks at each of the servers to create a data structure
that facilitates subsequent lookup from the servers. Once the data structure is
built, lookup operations can be performed on it. Each lookup request consists
of a logical address to lookup and a position label for each of the three servers,
thereby enabling them to perform the lookup operation. The lookup can be
performed for a real logical address, in which case the logical address and the
position labels for each of the three servers are provided; or it can be a dummy
request, in which case ⊥ is provided. Finally, a Getall operation is called to
obtain a list U of all the blocks that were provided during the Build operation.
Later, in our ORAM scheme, the elements in the list U will be combined with
those in other lists to construct a potentially larger one-time oblivious memory.

Our three-server one-time oblivious memory maintains obliviousness as long
as (1) for each real block in the one-time memory, a lookup is performed at
most once, (2) at most n total lookups (all of which could potentially be dummy
lookups) are performed, and (3) no two servers collude with each other to learn
the shares of the other server.

Formal Definition. Our three-server one-time oblivious memory scheme
OTM[n] is parameterized by n, the number of memory lookup requests supported
by the data structure. It is comprised of the following randomized, stateful algo-
rithms:

–
(
U,

({
πb, (T̂b, L̂b)

}
b∈Z3

, dpos
)) ← Build(T,⊥):

• Input: A sorted, unpermuted layout denoted {e,Tb}b∈Z3 representing an
abstract sorted list T. T[i] represents a key-value pair (keyi, vi) which are
either real and contains a real address keyi and value vi, or dummy and
contains a ⊥. The list T is sorted by the key keyi. The client’s input is ⊥.

• Functionality: The Build algorithm creates a layout {πb, (T̂b, L̂b)}b∈Z3 of
size 2n that will facilitate subsequent lookup requests; intuitively, n extra
dummy elements are added, and the L̂b’s maintain a singly-linked list for
these n dummy elements. Moreover, the tuple of head positions is secret-
shared ⊕bdposb among the three servers.
It also outputs a sorted list U of n key-value pairs (key, pos) sorted by
key where each pos := (pos0, pos1, pos2); the invariant is that if key
= ⊥,
then the data for key is ⊕bT̂b[posb].
The output list U is stored as a sorted, unpermuted layout {e, Ub}b∈Z3 .
Every real key from T appears exactly once in U and the remaining entries
of U are ⊥’s. The client’s output is ⊥.
Later in our scheme, U will be propagated back to the corresponding data
structure with preceding recursion depth during a coordinated rebuild.
Hence, U does not need to carry the value vi’s.

– v ← Lookup
(({

πb, (T̂b, L̂b)
}

b∈Z3
, dpos

)
,
(
key, pos

))
:

• Input: The client provides a key key and a position label tuple pos :=
(pos0, pos1, pos2). The servers input the data structure {πb, (T̂b, L̂b)}b∈Z3

and dpos created during Build.

178 T.-H. H. Chan et al.

• Functionality: If key
= ⊥, return ⊕bT̂b[posb] else, return ⊥.
– R ← Getall

({
πb, (T̂b, L̂b)

}
b∈Z3

,⊥
)
:

• Input: The servers input the data structure {πb, (T̂b, L̂b)}b∈Z3 created
during Build.

• Functionality: the Getall algorithm returns a sorted, unpermuted layout
{e, Rb}b∈Z3 of length n. This layout represents an abstract sorted list R
of key-value pairs where each entry is either real and of the form (key, v)
or dummy and of the form (⊥,⊥). The list R contains all real elements
inserted during Build including those that have been looked up, padded
with (⊥,⊥) to a length of n2.

Valid request sequence. Our three-server one-time oblivious memory ensures
obliviousness only if lookups are non-recurrent (i.e., the same real key is never
looked up more than once); and the number of lookups is upper bounded by
n, the size of the input list provided to Build. More formally, a sequence of
operations is valid, iff the following holds:

– The sequence begins with a single call to Build, followed by a sequence of at
most n Lookup calls, and finally the sequence ends with a call to Getall.

– All real keys in the input provided to Build have distinct keys.
– For every Lookup concerning a real element with client’s input (key, pos :=

(pos0, pos1, pos2)), the key should have existed in the input to Build. Moreover,
the position label tuple (pos0, pos1, pos2) must be the correct position labels
for each of the three servers.

– No two Lookup requests should request the same real key.

Correctness. Correctness requires that:

1. For any valid request sequence, with probability 1, every Lookup request must
return the correct value v associated with key key that was supplied in the
Build operation.

2. For any valid request sequence, with probability 1, Getall must return an
array R containing every (key, v) pair that was supplied to Build, padded
with dummies to have n entries.

Perfect obliviousness. Suppose the following sequence of operations are executed:
the initial Build, followed by a valid request sequence of � Lookup’s, and the final
Getall. Perfect obliviousness requires that for each b ∈ Z3, the joint distribution
of the communication pattern (between the client and the servers) and the viewb

of Sb is fully determined by the parameters n and �.

2 The Getall function returns as output the unpermuted layout that was input to Build.
It primarily exists for ease of exposition.

More is Less: Perfectly Secure Oblivious Algorithms 179

4.2 Construction

Intuition. The intuition is to store shares of the input list on storage servers
such that each share is independently permuted and each server storing a share
does not know its permutation (but some other server does). In order to lookup
a real element, if a position label for all three shares are provided, then the
client can directly access the shares. Since the shares are permuted and the
server storing a share does not know the permutation, each lookup corresponds
to accessing a completely random location and is thus perfectly oblivious. This
is true so far as each element is accessed exactly once and the position label
provided is correct; both of these constraints are satisfied by a valid request
sequence. However, in an actual request sequence, some of the requests may be
dummy and these requests do not carry a position label with them. To accom-
modate dummy requests, before permuting the shares, we first append shares of
dummy elements to shares of the unpermuted input list. We add enough dummy
elements to support all lookup requests before the one time memory is destroyed.
Then we create a linked list of dummy elements so that a dummy element stores
the position label of the location where the next dummy element is destined to
be after permutation. The client maintains the head of this linked list, updating
it every time a dummy request is made. To ensure obliviousness, the links (posi-
tion labels) in the dummy linked list are also stored secret-shared and permuted
along with the input list.

Protocol Build. Our oblivious Build algorithm proceeds as follows. Note that
the input list T is stored as an unpermuted layout {e,Tb}b∈Z3 on the three
servers.

1. Initialize to add dummies. Construct an extended abstract T′[0..2n − 1] of
length 2n such that the first n entries are key-value pairs copied from the
input T (some of which may be dummies).
The last n entries of T′ contain special dummy keys. For each i ∈ [1..n],
the special dummy key i is stored in T′[n − 1 + i], and the entry has a key-
value pair denoted by ⊥i. For each i ∈ [1..n], the client secretly writes ⊥i to
T′[n − 1 + i].

2. Generate permutations for OTM. Each server Sb acts as the permutation
server for Sb+1. For each b ∈ Z3, the client generates a random permutation
πb+1 : [2n] → [2n] on permutation server Sb.

3. Construct a dummy linked list. Using the newly generated permutation πb+1

on server Sb, the client constructs a linked list of dummy blocks. This is to
enable accessing the dummy blocks linearly, i.e., for each i ∈ [1..n − 1], after
accessing dummy block ⊥i, the client should be able to access ⊥i+1.
The client simply leverages πb+1(n..2n − 1) stored on server Sb to achieve
this. Specifically, for i from n − 1 down to 1, to create a link between i-th
and (i+1)-st dummy, the client reads πb+1(n+ i) from server Sb and secretly
writes the tuple (πb+1(n + i) : b ∈ Z3) to the abstract link L[n + i − 1].
There are no links between real elements, i.e., for j ∈ [0..n − 1], the client

180 T.-H. H. Chan et al.

secretly writes (⊥,⊥,⊥) to (abstract) L[j].
Observe that these links are secret-shared and stored as an unpermuted layout
{e, Lb}b∈Sb

.
Finally, the client records the positions of the head of the lists and secretly
writes the tuple across the three servers, i.e., ⊕bdposb := (πb(n) : b ∈ Z3),
where dposb is stored on server Sb.

4. Construct the key-position map U . The client can construct the (abstract)
key-position map U [0..n − 1] sorted by the key from the first n entries of T′

and the πb’s. Specifically, for each i ∈ [0..n − 1], the client secretly writes
(keyi, (πb(i) : b ∈ Z3)) to U [i].
Recall that U is stored as a sorted, unpermuted layout {e, Ub}b∈Z3 .

5. Permute the lists along with the links. Invoke Permute with input
{e, (T′

b, Lb)}b∈Z3 , and permutation πb+1 as the input for Sb. The Permute

protocol returns a permuted output layout {πb, (T̂b, L̂b)}b∈Z3 .
6. As the data structure, each server Sb stores (T̂b, L̂b), (πb+1, (T̂b+1, L̂b+1)), and

dposb+1. The algorithm returns key-position map list U as output, which is
stored as an unpermuted layout {e, Ub}b∈Z3 . This list will later be passed to
the preceding recursion depth in the ORAM scheme during a coordinated
rebuild operation.

Fact 6. The Build algorithm for building an OTM supporting n lookups requires
an O(n) bandwidth.

Protocol Lookup. Our oblivious Lookup
(({

πb, (T̂b, L̂b)
}

b∈Z3
, dpos

)
,
(
key,

(pos0, pos1, pos2)
))

algorithm proceeds as follows:

1. The client reconstructs (pos′
0, pos′

1, pos′
2) ← ⊕bdposb.

2. Decide position to fetch from. If key
= ⊥, set pos ← (pos0, pos1, pos2), i.e.,
we want to use the position map supplied from the input; if key = ⊥, set
pos ← (pos′

0, pos′
1, pos′

2), i.e., the dummy list will be used.
3. Reconstruct data block. Reconstruct v ← ⊕T̂b[posb] and (p̂os0, p̂os1, p̂os2) ←

⊕L̂b[posb].
4. Update head of the dummy linked list. If key
= ⊥, the client re-shares the

secrets ⊕bdposb ← (pos′
0, pos′

1, pos′
2) with the same head; if key = ⊥, the

client secretly shares the updated head ⊕bdposb ← (p̂os0, p̂os1, p̂os2).
5. Read value and return. Return v.

Fact 7. The OTM Lookup algorithm requires O(1) bandwidth.

Protocol Getall. For Getall, the client simply invokes the Unpermute protocol
on input layout {πb, (T̂b, L̂b)}b∈Z3 and returns the first n entries of the sorted,
unpermuted layout (and ignores the links created). This output is also stored
as a sorted, unpermuted layout {e,Tb}b∈Z3 . The data structure created on the
servers during Build can now be destroyed.

Fact 8. The OTM Getall algorithm requires an O(n) bandwidth.

More is Less: Perfectly Secure Oblivious Algorithms 181

Lemma 1. The subroutines Build, Lookup and Getall are correct and perfectly
oblivious in the presence of a semi-honest adversary corrupting a single server.

Due to lack of space, the proofs for these statements are described in the full
version of the paper [5].

5 3-Server ORAM with O(log2 N) Simulation Overhead

Recall that Sect. 4 provided a construction for a three-server one-time memory
that allows non-recurrent lookups so far as its position label is provided. In
this section, we first extend this construction to create a hierarchy of one-time
memories called position-based ORAM (similar to [6]) where each level acts as a
“cache” for larger levels. We will first assume that position-labels are magically
available in this position-based ORAM (Sect. 5.1). If a PRF could be used, the
position labels could have been obtained using the PRF and this would indeed
be an ORAM construction. However, to achieve perfect security, we instead
maintain the position labels by recursively storing them in smaller hierarchies
(Sect. 5.2).

Our ORAM scheme will consist of logarithmically many position-based
ORAMs of geometrically increasing sizes, henceforth denoted ORAM0, ORAM1,
. . ., ORAMD where D := log2 N . Specifically, ORAMd stores Θ(2d) blocks where
d ∈ {0, 1, . . . ,D}. The actual data blocks are stored in ORAMD whereas all other
ORAMd, d < D recursively store position labels for the next depth d + 1.

5.1 Position-Based ORAM

In this subsection, we focus on describing ORAMd assuming the position labels
are magically available. In the next subsection, we will describe how position
labels are maintained across different depths.

Data Structure. For 0 ≤ d ≤ D each ORAMd consists of d + 1 levels of
three-server one-time oblivious memory that are geometrically increasing in size.
We denote these one-time oblivious memories as (OTMj : j = 0, . . . , d) where
OTMj := OTM[2j] stores at most 2j real blocks.

Every level j is marked as either empty (when the corresponding OTMj has
not been built) or full (when OTMj is ready and in operation). Initially, all levels
are empty.

Position label. To access a block stored in ORAMd, its position label specifies
(1) the level l ∈ [0..d] such that the block resides in OTM�; and (2) the tuple
pos := (pos0, pos1, pos2) to reconstruct the block from OTM�.

182 T.-H. H. Chan et al.

Operations. Each position-based ORAM supports two operations, Lookup and
Shuffle.

Protocol Lookup:

– Input: The client provides
(
key, pos := (l, (pos0, pos1, pos2))

)
as input, where

key is the logical address for the lookup request, l represents the level such
that the block is stored in OTMl, and (pos0, pos1, pos2) is used as an argu-
ment for OTMl.Lookup.
The servers store OTMj for 0 ≤ j ≤ d where OTM stores layout{
πb, (T̂b, L̂b)

}
b∈Z3

and dpos for the level. Moreover, some of the OTMs may
be empty.

– Algorithm: The lookup operation proceeds as follows:
1. For each non-empty level j = 0, . . . , d, perform the following:

• The position label specifies that the block is stored at level OTMl.
For level j = l, set key′ := key and pos′ := (pos0, pos1, pos2). For all
other levels, set key′ := ⊥, pos′ := ⊥.

• vj ← OTMj .Lookup
(({

πb, (T̂b, L̂b)
}

b∈Z3
, dpos

)
, (key′, pos′)

)
.

2. Return vl.

Fact 9. For ORAMd, Lookup requires an O(d) bandwidth.

Protocol Shuffle. The shuffle operation is used in hierarchical ORAMs to shuf-
fle data blocks in consecutive smaller levels and place them in the first empty
level (or the largest level). Our shuffle operation, in addition, accepts another
input U that is used to update the contents of data blocks stored in the posi-
tion based ORAM. In the final ORAM scheme, the list U passed as an input
to ORAMd will contain the (new) position labels of blocks in ORAMd+1. Simi-
larly, the shuffle operation returns an output U ′ that will be passed as input to
ORAMd−1. More formally, our shuffle operation can be specified as follows:

(U ′, T̂) ← Shuffled

(
(OTM0, . . . ,OTMl, U), l

)
:

– Input: The shuffle operation for ORAMd accepts as input from the client a
level l in order to build OTMl from data blocks currently in levels 0, . . . , l. In
addition, ORAMd consists of an extra OTM, denoted by OTM′

0, containing
only a single element. Jumping ahead, this single element represents a freshly
fetched block.
The inputs of the servers consist of OTMs for levels up to level l, each of which
is stored as a permuted layout {πb, (T̂b, L̂b)}b∈Z3 and an array of key-value
pairs U , stored as a sorted, unpermuted layout {e, Ub}b∈Z3 . The array U is
used to update the blocks during the shuffle operation.
Throughout the shuffle operation we maintain the following invariant:

• For every ORAMd, l ≤ d. Moreover, either level l is the smallest empty
level of ORAMd or l is the largest level, i.e., l = d.

• Each logical address appears at most once in U .

More is Less: Perfectly Secure Oblivious Algorithms 183

• The input U contains a subset of logical addresses that appear in levels
0, . . . , l of the ORAMd (or OTM′

0).
Specifically, given a key-value pair (key, v), the corresponding block
(key, v′) should already appear in some level in [0..l] or OTM′

0. An update
rule will determine how v and v′ are combined to produce a new value v̂
for key.

– The Shuffle algorithm proceeds as follows:
1. Retrieve key-value pairs from (OTM0, . . . ,OTMl). The client first

retrieves the key-value
pairs of real blocks from (OTM0, . . . ,OTMl) and restore each array to
its unpermuted form. More specifically, the client constructs the unper-
muted sorted Tj ← OTMj .Getall({πb, (T̂b, L̂b)}b∈Z3 ,⊥), for 0 ≤ j ≤ l, and
T0 ← OTM′

0.Getall({πb, (T̂b, L̂b)}b∈Z3 ,⊥)3 Now, the old OTM0, . . . ,OTMl

instances can be destroyed.
2. Create a list for level l. The client then creates a level l list of keys

from (OTM0, . . . ,OTMl).
• Merge lists from consecutive levels to form level l list. The merge

procedure proceeds as follows:
For j = 0, . . . , l − 1 do:

T̂j+1 ← Merge((T̂j ,Tj),⊥) where Tj and T̂j are of size 2j

Moreover, the lists are individually sorted but may contain blocks
that have already been accessed. In the Merge protocol, for two
elements with the same key and belonging to different OTM levels,
we prefer the one at the smaller level first. For the case where l =
d, perform another merge T̂d ← Merge((T̂d,Td),⊥) to produce an
array of size 2d+1; Jumping ahead, the size will be reduced back
to 2d in subsequent steps.

At the end of this step, we obtain a merged sorted list T̂l, stored as
T̂l := {e, T̂l

b}b∈Z3 , containing duplicate keys that are stored multiple
times (with potentially different values).

• Mark duplicate keys as dummy. From the stored duplicate keys, we
only need the value of the one that corresponds to the latest access. All
other duplicate entries can be marked as dummies. At a high level, this
can be performed in a single pass by the client by scanning consecutive
elements of the unpermuted sorted layout T̂l. The client keeps the
most recent version, i.e., the version that appears first (and has come
from the smallest OTM), and marks other versions as dummies. To
maintain obliviousness, the secret-shares need to be re-distributed for
each scanned entry.
More specifically, suppose that there are λ duplicate keys. Then, the
client scans through the unpermuted layout T̂l := {e, T̂l

b}b∈Z3 . For
consecutive λ elements, j, . . . , j + λ − 1 with the same key, the client
re-distributes the secret for T̂l[j] for position j, and secretly writes ⊥

3 The layout inputs to the Getall operation are restricted to the ones stored in OTMj

for 0 ≤ j ≤ l, respectively.

184 T.-H. H. Chan et al.

for positions j + 1, . . . , j + λ − 1.
After this step, the resulting (abstract) T̂l is semi-sorted.

• Compaction to remove dummies. The client invokes the Stable-
Compact protocol with input T̂l := {e, T̂l

b}b∈Z3 , i.e., T̂l ←
StableCompact(T̂l,⊥) to obtain a sorted, unpermuted layout (where
the dummies are at the end). We keep the first 2l entries.

3. Update T̂l with values from U . The client updates T̂l so that it con-
tains updated position values from U . Looking ahead, in our final scheme,
U will contain the new position labels from an ORAM at a larger depth.
Given that ORAMD is the largest depth and does not store position val-
ues, this step is skipped for ORAMD.
We do this as follows:

• Merge T̂l with U . The client performs A ← Merge((T̂l, U),⊥) to
obtain a sorted, unpermuted layout. Ties on the same key break by
choosing the blocks in T̂l.

• Scan and Update A. In a single pass through the sorted, unpermuted
layout A, it can operate on every adjacent pair of entries. If they share
the same key, the following update rule is used to update both the
values (the precise update rule is provided in the Convert subroutine
in Sect. 5.2). In particular, in the final ORAM scheme, the keys in
A correspond to logical addresses. Each address in a position-based
ORAM at depth-d stores position labels for two children addresses at
depth-(d + 1). The entries in A that come from T̂l contain the old
position labels for both children. For the entries from U , if children
position labels exist, they correspond to the new labels. For each of
the child addresses, if U contains a new position label, the update
function chooses the new one; otherwise, it chooses the old label from
T̂l.

• Compaction to remove dummies. The client invokes the StableCom-
pact protocol A ← StableCompact(A,⊥) to obtain an updated sorted,
unpermuted layout A. We keep the first 2l entries.

4. Build OTMl. The client invokes U ′ ← Build(A,⊥) to generate a data
structure OTMl and U ′. Mark OTMl as full and OTMi, for i < l, as
empty.

We prove that the above position-based ORAM is correct and satisfies perfect
obliviousness in the presence of a semi-honest adversary corrupting a single server
in the full version of the paper [5].

5.2 ORAM Construction from Position-Based ORAM

Our ORAM scheme consists of D+1 position-based ORAMs denoted as ORAM0,
. . ., ORAMD where D = log2 N . ORAMD stores data blocks whereas ORAMd

for d < D stores a position map for ORAMd+1. The previous section specified
the construction of a position-based ORAM. However, it assumed that position
labels are magically available at some ORAMd. In this section, we show a full

More is Less: Perfectly Secure Oblivious Algorithms 185

ORAM scheme and specify (1) how these position labels for ORAMd are obtained
from ORAMd−1, and (2) after a level of ORAMd is built, how the position labels
of blocks from the new level are updated at ORAMd−1.

Format of block address at depth d. Suppose that a block’s logical address is a
log2 N -bit string denoted by addr〈D〉 := addr[1..(log2 N)] (expressed in binary
format), where addr[1] is the most significant bit. In general, at depth d, an
address addr〈d〉 is the length-d prefix of the full address addr〈D〉. Henceforth, we
refer to addr〈d〉 as a depth-d address (or the depth-d truncation of addr).

When we look up a data block, we would look up the full address addr〈D〉 in
recursion depth D; we look up addr〈D−1〉 at depth D − 1, addr〈D−2〉 at depth
D − 2, and so on. Finally at depth 0, only one block is stored at ORAM0.

A block with the address addr〈d〉 in ORAMd stores the position labels for two
blocks in ORAMd+1, at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Hence-
forth, we say that the two addresses addr〈d〉||0 and addr〈d〉||1 are siblings to each
other; addr〈d〉||0 is called the left sibling and addr〈d〉||1 is called the right sibling.
We say that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right child
of addr〈d〉.

An ORAM Lookup. An ORAM lookup request is denoted as (op, addr, data)
where op ∈ {read,write}. If op = read then data := ⊥. Here, addr denotes the
address to lookup from the ORAM. The inputs are all provided by the client
whereas the servers store position-based ORAM0, . . . ,ORAMD as discussed in
the previous section. We perform the following operations:

1. Fetch. For d := 0 to D, perform the following:
– Let addr〈d〉 denote the depth-d truncation of addr〈D〉.
– Call ORAMd.Lookup to lookup addr〈d〉. Recall that the position labels for

the block will be obtained from the lookup of ORAMd−1. For ORAM0, no
position label is needed.

– The block returned from Lookup is placed in a special OTM′
0 in ORAMd.

Jumping ahead, this will be merged with the rest of the data structure in
the maintain phase.

– If d < D, each lookup will return two positions for addresses addr〈d〉||0
and addr〈d〉||1. One of these will correspond to the position of addr〈d+1〉

which will be required in the lookup for ORAMd+1.
– If d = D, the outcome of Lookup will contain the data block fetched.

2. Maintain. We first consider depth D. Set depth-D’s update array UD := ∅.
Suppose lD is the smallest empty level in ORAMD. We have the invariant
that for all 0 ≤ d < D, if lD < d, then lD is also the smallest empty level in
ORAMd.
For d := D to 0, perform the following:
(a) If d < lD, set l := d; otherwise, set l := lD.
(b) Call U ← ORAMd.Shuffle((OTMd

0, . . . ,OTMd
l , U

d), l).
Recall that to complete the description of Shuffle, we need to specify

186 T.-H. H. Chan et al.

the update rule that determines how to combine the values of the same
address that appears in both the current ORAMd and Ud.
For d < D, in Ud and ORAMd, each depth-d logical address addr〈d〉 stores
the position labels for both children addresses addr〈d〉||0 and addr〈d〉||1 (in
depth d+1). For each of the child addresses, if Ud contains a new position
label, choose the new one; otherwise, choose the old label previously in
ORAMd−1.

(c) If d ≥ 1, we need to send the updated positions involved in U to depth d−
1. We use the Convert subroutine (detailed description below) to convert
U into an update array for depth-(d−1) addresses, where each entry may
pack the position labels for up to two sibling depth-d addresses.
Set Ud−1 ← Convert(U, d), which will be used in the next iteration for
recursion depth d − 1 to perform its shuffle.

The Convert subroutine. U is a sorted, unpermuted layout representing the
abstract array {(addr

〈d〉
i , posi) : i ∈ [|U |]}. The subroutine Convert(U, d) proceeds

as follows.
For i := 0 to |U |, the client reconstructs (addr

〈d〉
i−1, posi−1), (addr

〈d〉
i , posi) and

(addr
〈d〉
i+1, posi+1), computes u′

i using the rules below and secretly writes u′
i to

Ud−1.

– If addr
〈d〉
i = addr||0 and addr

〈d〉
i+1 = addr||1 for some addr, i.e., if my right

neighbor is my sibling, then write down u′
i := (addr, (posi, posi+1)), i.e., both

siblings’ positions need to be updated.
– If addr

〈d〉
i−1 = addr||0 and addr

〈d〉
i = addr||1 for some addr, i.e., if my left

neighbor is my sibling, then write down u′
i := ⊥.

– Else if i does not have a neighboring sibling, parse addr
〈d〉
i = addr||b for some

b ∈ {0, 1}, then write down u′
i := (addr, (posi, ∗)) if b = 0 or write down

u′
i := (addr, (∗, posi)) if b = 1. In these cases, only the position of one of the

siblings needs to be updated in ORAMd−1.
– Let Ud−1 := {u′

i : i ∈ [|U |]}. Note here that each entry of Ud−1 contains a
depth-(d − 1) address of the form addr, as well as the update instructions for
two position labels of the depth-d addresses addr||0 and addr||1 respectively.
We emphasize that when ∗ appears, this means that the position of the cor-
responding depth-d address does not need to be updated in ORAMd−1.

– Output Ud−1.

Lemma 2. The above ORAM scheme is perfectly oblivious in the presence of a
semi-honest adversary corrupting a single server.

Fact 10. Each ORAM access takes an amortized bandwidth blowup of
O(log2 N).

Due to lack of space, the proofs are in the full version of the paper [5].
Summarizing the above, we arrive at the following main theorem:

More is Less: Perfectly Secure Oblivious Algorithms 187

Theorem 11 (Perfectly secure 3-server ORAM). There exists a 3-server
ORAM scheme that satisfies perfect correctness and perfect security (as per
Sect. 2.3) against any single semi-honest server corruption with O(log2 N) amor-
tized bandwidth blowup (where N denotes the total number of logical blocks).

Finally, similar to existing works that rely on the recursion technique [24,26],
we can achieve better bandwidth blowup with larger block sizes: suppose each
data block is at least Ω(log2 N) in size, and we still set the position map blocks
to be O(log N) bits long, then our scheme achieves O(log N) bandwidth blowup.

Acknowledgments. T-H. Hubert Chan was supported in part by the Hong
Kong RGC under grant 17200418. Jonathan Katz was supported in part by NSF
award #1563722. Kartik Nayak was supported by a Google Ph.D. fellowship. Antigoni
Polychroniadou was supported by the Junior Simons Fellowship awarded by the Simons
Society of Fellows. Elaine Shi was supported in part by NSF award CNS-1601879, a
Packard Fellowship, and a DARPA Safeware grant (subcontractor under IBM).

References

1. Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight
bounds for composing ORAM with PIR. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 91–120. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 5

2. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: STOC (2010)
3. Chan, T.-H.H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revisited, and appli-

cations to asymptotically efficient ORAM and OPRAM. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 660–690. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 23

4. Chan, T.-H.H., Guo, Y., Lin, W.K., Shi, E.: Cache-oblivious and data-oblivious
sorting and applications. In: SODA (2018)

5. Chan, T.-H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is
less: Perfectly secure oblivious algorithms in the multi-server setting. CoRR,
abs/1809.00825 (2018)

6. Chan, T.-H.H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM. In:
TCC (2018)

7. Chan, T.-H.H., Shi, E.: Circuit OPRAM: a unifying framework for computationally
and statistically secure ORAMs and OPRAMs. In: TCC (2017)

8. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
62–81. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 4

9. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

10. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 371–406. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 13

https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-319-96884-1_13

188 T.-H. H. Chan et al.

11. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd edn.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston (1997).
ISBN: 0-201-89684-2

12. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553.
ISSN: 0004-5411

14. Goodrich, M.T.: Data-oblivious external-memory algorithms for the compaction,
selection, and sorting of outsourced data. In: SPAA (2011)

15. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

16. Gordon, D., Katz, J., Wang, X.: Simple and efficient two-server ORAM. In: Asi-
acrypt (2018)

17. Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.: S3ORAM: a
computation-efficient and constant client bandwidth blowup ORAM with shamir
secret sharing. In: CCS (2017)

18. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

19. Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM with small
block size. CoRR, abs/1802.05145 (2018)

20. Lin, W.-K., Shi, E., Xie, T.: Can we overcome the n log n barrier for oblivious
sorting? Cryptology ePrint Archive, Report 2018/227 (2018)

21. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

22. Raskin, M., Simkin, M.: Oblivious RAM with small storage overhead. Cryptology
ePrint Archive, Report 2018/268 (2018). https://eprint.iacr.org/2018/268

23. Ren, L., et al.: Constants count: practical improvements to oblivious RAM. In:
USENIX Security Symposium, pp. 415–430 (2015)

24. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

25. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: CCS (2013)
26. Stefanov, E., et al.: Path ORAM - an extremely simple oblivious RAM protocol.

In: CCS (2013)
27. Tople, S., Dang, H., Saxena, P., Chang, E.-C.: Permuteram: Optimizing oblivious

computation for efficiency. Cryptology ePrint Archive, Report 2017/885 (2017)
28. Wang, X.S., Chan, T.-H.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-

Ostrovsky lower bound. In: ACM CCS (2015)

https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-36594-2_22
https://eprint.iacr.org/2018/268
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

Real World Protocols

A Universally Composable Framework
for the Privacy of Email Ecosystems

Pyrros Chaidos1(B), Olga Fourtounelli1, Aggelos Kiayias2,3,
and Thomas Zacharias2

1 National and Kapodistrian University of Athens, Athens, Greece
{pchaidos,folga}@di.uoa.gr

2 The University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk

3 IOHK, Edinburgh, UK

Abstract. Email communication is amongst the most prominent online
activities, and as such, can put sensitive information at risk. It is thus
of high importance that internet email applications are designed in a
privacy-aware manner and analyzed under a rigorous threat model. The
Snowden revelations (2013) suggest that such a model should feature a
global adversary, in light of the observational tools available. Further-
more, the fact that protecting metadata can be of equal importance as
protecting the communication context implies that end-to-end encryp-
tion may be necessary, but it is not sufficient.

With this in mind, we utilize the Universal Composability frame-
work [Canetti, 2001] to introduce an expressive cryptographic model for
email “ecosystems” that can formally and precisely capture various well-
known privacy notions (unobservability, anonymity, unlinkability, etc.),
by parameterizing the amount of leakage an ideal-world adversary (sim-
ulator) obtains from the email functionality.

Equipped with our framework, we present and analyze the security
of two email constructions that follow different directions in terms of
the efficiency vs. privacy tradeoff. The first one achieves optimal security
(only the online/offline mode of the users is leaked), but it is mainly of
theoretical interest; the second one is based on parallel mixing [Golle
and Juels, 2004] and is more practical, while it achieves anonymity
with respect to users that have similar amount of sending and receiving
activity.

1 Introduction

During the last decade, internet users increasingly engage in interactions that
put their sensitive information at risk. Social media, e-banking, e-mail, and e-
government, are prominent cases where personal data are collected and processed
in the web. To protect people’s personal data, it is important that applications

This work was supported by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No. 653497 (project PANORAMIX).

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 191–221, 2018.
https://doi.org/10.1007/978-3-030-03332-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_8&domain=pdf

192 P. Chaidos et al.

intended for communication of such information over the internet are designed
in a privacy-aware manner and analyzed under a rigorous threat model.

The recent revelations by Snowden (2013) on massive surveillance of citizens’
internet interactions, confirmed researchers’ views that current technology is suf-
ficient to provide adversaries with the tools to monitor the entire network. This
was a turning point in that, henceforth, treating internet security and privacy in
a threat model that considers a global adversary seems not only desirable, but
imperative for the design of state-of-the-art cryptographic protocols.

As far as standard security is concerned, i.e., hiding the context between
communicating internet users, there have been significant advancements on the
aforementioned matter, mainly to due to wide deployment of end-to-end (E2E)
encryption tools, even for some of the world’s most popular applications, such as
WhatsApp, Viber, Facebook Messenger and Skype (over Signal). However, it is
well understood that E2E encryption is not enough to protect the users’ meta-
data (e.g. users’ identities and location, or the communication time), that often
can be of equal importance. The protection of metadata is studied in the con-
text of anonymous communications, that were introduced by the seminal works
of Chaum with the concept of mix-nets [10], followed by DC-nets a few years
later [8]. A mix-net is a message transmission system that aims to decouple the
relation of senders to receivers by using intermediate servers to re-encrypt and re-
order messages. The operation of mix-nets relies on messages from A to B making
intermediate stops in mix servers, with appropriate delay times so that multiple
messages “meet” at each server. The server re-encrypts messages before for-
warding them, thus breaking the link between incoming and outgoing messages.
We will analyse a mix-based system in Sect. 6 and contrast its overhead to the
more expensive broadcast solution in Sect. 5. Nowadays, the most scalable solu-
tions of anonymous communications in the real-world rely on onion-routing [33],
and mostly on the Tor anonymous browser [16]. Although very efficient and a
major step forward for privacy-preserving technologies, it has been pointed out
(e.g., [21,32,34]) that onion-routing can provide anonymity only against adver-
saries with local views with respect to the (three) relay routing nodes, whereas a
global observer can easily derive the addresses of two entities that communicate
over onion-routing applications. Towards the goal of communication anonymity
against a global adversary [2,9,11–13,24–26,29,35], various schemes have been
proposed, and several recent ones achieving reasonable latency [1,9,25,26,29,35].

Modeling privacy for email ecosystems. In this work, we focus on the study
of privacy (as expressed via several anonymity-style notions cf. [27]) for email
ecosystems. The reason why we choose to focus on the email case is threefold:

(i) Email is one of the most important aspects of internet communication,
as email traffic is estimated to be in the order of ∼ 1011 messages per day, while
there are approximately 2.5 billion accounts worldwide1.

1 https://www.radicati.com/wp/wp-content/uploads/2014/10/Email-Market-2014-
2018-Executive-Summary.pdf.

https://www.radicati.com/wp/wp-content/uploads/2014/10/Email-Market-2014-2018-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2014/10/Email-Market-2014-2018-Executive-Summary.pdf

A Universally Composable Framework for the Privacy of Email Ecosystems 193

(ii) The actual network infrastructure of an email ecosystem has some special
features that encourage a separate study from the general case of private messag-
ing. Namely, the users dynamically register, go online/offline, and communicate,
in a client-friendly environment and the management of the protocol execution
is mainly handled by their service providers (SPs) that manage their inboxes.
In turn, the client interface allows the user to log in/log out and while online,
submit send and fetch requests to their SP. Moreover, adding a subsystem of
mix-nodes which, in principle, are functionally different than the clients and the
SPs, stratifies the observational power of the global adversary into three layers
(i) the client↔SP channels, (ii) the SP↔mix-node channels, and (iii) the chan-
nels within the mix-node system. Under this real-world setting, exploring the
feasibility and the trade off between efficiency and privacy for anonymous email
routing poses restrictions on the expected secrecy, that would not be present in
a generic peer-to-peer setting (e.g. users jointly engaging in an MPC execution).

(iii) To the best of our knowledge, there is no prior work on general mod-
eling of email privacy in a computational model, that captures protocol flow
under a composition of individual email messaging executions. The Universal
Composability (UC) framework [6] is the ideal tool for such a modeling.

Contributions. Our contributions are as follows:
(i) In Sect. 3, we introduce a framework for the formal study of email ecosys-

tems in the real-ideal world paradigm of the UC model [6]. The real-world enti-
ties involved in our framework comprise the set of clients, the of SPs and the
subsystem of mix-nodes; all entities are synchronized via a global clock function-
ality Gclock and communicate over an authenticated channel functionality with
bounded message delay Δnet, denoted by FΔnet

auth . In the ideal-world, an email pri-
vacy functionality FLeak,Δnet

priv manages email traffic among dummy parties that
forward their inputs. The functionality is parameterized by Δnet and a leak-
age function Leak, defined over the history transcript, that formally expresses
the underlying privacy notion the studied email ecosystem should satisfy. To
illustrate the expressibility of our framework, in Sect. 4, we show how to for-
mally capture intuitively well understood privacy notions by properly defining
the leakage function. In particular, we express and study the relation of notions
of anonymity, unlinkability, unobservability and pseudonymity defined in [27],
as well as E2E encryption, and a notion we call weak anonymity that, although
a relaxed version of standard anonymity (still stronger than E2E encryption),
provides reasonable privacy guarantees given the setting.

(ii) In Sect. 5, we present and formally analyze a theoretical construction with
quadratic communication overhead that we prove it achieves unobservability
(i.e., only the online/offline mode of the clients is leaked), which we argue that
it sets the optimal level of privacy that can be expected under the restrictions
posed in our client-SP setting, even against a global adversary that only observes
the network. As a result, the said construction shows that in principle, optimal
privacy is feasible, while the challenge of every real-world email ecosystem is to
balance the privacy vs. efficiency trade off.

194 P. Chaidos et al.

(iii) In Sects. 6 and 7 we analyze a construction similar to the classical par-
allel mix of Golle and Juels [18], to illustrate the expressiveness of our model
in a more practice-oriented protocol. We focus on the UC simulation in Sect. 6,
and in Sect. 7, we use H̊astad’s matrix shuffle to model the permutation’s distri-
bution. This in turn makes our analysis relevant to Atom [25], a state of the art
anonymity system using similar permutation strategies. At the same time, as we
only assume an adversary that is a global passive observer, Atom’s techniques
to mitigate corruptions are complementary, even if orthogonal, to our work.

2 Background

2.1 Notation

We use λ as the security parameter and write negl(λ) to denote that some func-
tion f(·) is negligible in λ. We write [n] to denote the set {1, . . . , n} and �·� to
denote a multiset. By X ≈ε Y , we denote that the random variable ensembles
{Xλ}λ∈N, {Yλ}λ∈N are computationally indistinguishable with error ε(·), i.e., for
every probabilistic polynomial time (PPT) algorithm A, it holds that

∣
∣ Pr[w ← Xλ : A(w) = 1] − Pr[w ← Yλ : A(w) = 1] < ε(λ)

∣
∣.

We simply write X ≈ Y when the error ε is negl(λ). The notation x
$← S stands

for x being sampled from the set S uniformly ar random.

2.2 IND-CPA Security of Public-Key Encryption Schemes

In our constructions, we utilize public-key encryption (PKE). We require that a
PKE scheme PKE = (KeyGen,Enc,Dec) satisfies the property of multiple chal-
lenge IND-CPA (m-IND-CPA) security, which is equivalent to standard IND-
CPA security (up to negligible error). We recall that m-IND-CPA with error
ε(λ) dictates that any adversary B that (a) obtains the public key, and (b) sends
(polynomially many) challenge queries of the form (M0,M1) to the challenger
receiving encryption of Mb, where b is the random bit of the challenger, can not
guess b with more than 1/2 + ε(λ) probability.

2.3 Related Work

Early works treating anonymity followed the intuitive definition of Pfitzmann
and Khöntopp [28] as “the state of not being identifiable within a set of sub-
jects”, and aimed to augment it by quantifying the degree of non-identifiability.
One of the first efforts in that direction (predating [28]) was the concept of “k-
anonymity” by Samarati and Sweeney [30], that (in the context of databases)
attempts to identify an individual produce at least k candidates.

In [15,31], anonymity is quantified by measuring the probability that a mes-
sage M was sent by a user U . Thus, we are no longer interested only in the

A Universally Composable Framework for the Privacy of Email Ecosystems 195

size of the set of candidates, but also their relative probabilities. This definition
improved upon the “folklore” metric of only measuring the size of the subject
set, even if the probability distribution on that set was highly non-uniform –e.g.
[23].

The seminal work of Dwork [17] on Differential Privacy, while originating in
the realm of databases, highlights and formalizes the strength of combining dif-
ferent pieces of seemingly privacy-respecting information to arrive at a privacy-
impacting conclusion. Influenced in part by Differential Privacy, AnoA [3] is a
game-based privacy analysis framework that is flexible enough to model various
privacy concepts. Their approach is based on games between a challenger and an
adversary who has control of the execution of the game, apart from a challenge
message representing the scenarios the adversary is trying to distinguish.

In a different direction, the Universal Composability (UC) framework, [6]
models security as a simulation not against an adversary, but a malicious envi-
ronment, given strong control over the inputs of each party as well as a complete
view of the system. This rigorous approach produces strong and composable
security guarantees but is quite demanding in that the simulation must operate
with the bare minimum of data (i.e. what we assume the protocol leaks). This
precision in both simulation and leakage is a key motivation of this work.

On the other hand, state of the art anonymous communication solutions
such as Loopix [29] which aims for high performance while maintaining strong
anonymity properties, as well as unobservability, are analyzed under a weaker
adversary. Moreover, Atom [25] is engineered to provide statistical indistinguish-
able shuffling with strong safeguards against malicious servers, but lacks for-
mal proofs. In our work, we analyze a construction that shares a similar design
(namely H̊astad’s matrix shuffle), so that we are able to offer a suggested T value
(i.e. mix length) as a side contribution in Sect. 7. A key difference between Loopix
and Atom is that Loopix uses a free routing approach (i.e. a message’s path is
determined by its sender) as opposed to allowing mix nodes to route messages.
The first approach is more agreeable with high-efficiency solution aiming for a
practical level of resilience against active adversaries while the second approach
is easier to reason about but requires a passive adversary or measures such as
NIZKs or trap messages to ensure correct behavior.

Camenish and Lysyanskaya [5] offer a treatment of onion routing in the Uni-
versal Composability model. The defining characteristic of onion routing, is that
routing is entirely determined by the initial sender and is not influenced by
the intervening nodes. As such, their analysis focuses on defining security with
regards to the encryption, padding, structuring and layering of onions rather
than the routing strategy itself. This is orthogonal to our approach: we focus on
evaluating the anonymity of different mixing strategies under what we view as
realistic requirements about the message encapsulation.

Wikström [36] covers the UC-security of a specific mix construction. His
analysis is well-suited to voting but is hard to generalize over other use cases
and performance parameters. In contrast, our work, while focusing on email, is
more general and flexible in regards to leakage, timings and network topology.

196 P. Chaidos et al.

In the work of Alexopoulos et al. [1], anonymity is studied in the concept
of messaging via a stand-alone simulation-based model. Even though formally
treated, anonymity in [1] is defined under a framework that is weaker than UC.

3 A UC Framework for the Privacy of Email Ecosystems

In this section, we present our UC framework for email privacy. As in standard
UC approach, privacy will be defined via the inability of an environment Z,
that schedules the execution and provides the inputs, to distinguish between
(i) a real-world execution of an email ecosystem E in the presence of a (global
passive) adversary A and (ii) an ideal-world execution handled by an email
privacy functionality interacting with a PPT simulator Sim. More specifically,
we adjust our definitions to the global UC setting [7], by incorporating a global
clock functionality (cf. [4,22]) that facilitates synchronicity and is accessed by
all parties, including the environment.

3.1 Entities and Protocols of an Email Ecosystem

The entities that are involved in a private email “ecosystem” E are the following:

– The service providers (SPs) SP1, . . . ,SPN that register users and are respon-
sible for mailbox management and email transfer.

– The clients C1, . . . , Cn that wish to exchange email messages and are regis-
tered to the SPs. For simplicity, we assume that each client is linked with
only one SP that manages her mailbox. We write C�@SPi to denote that C�

is registered to SPi, where registration is done dynamically. We define the set
Ci :=

{

C�

∣
∣ C�@SPi

}

of all clients whose mailboxes SPi is managing.
– The mix node subsystem MX that consists of the mix nodes MX1, . . . ,MXm

and is the core of the anonymous email routing mechanism.

An email ecosystem E has the two following phases:

� Initialization is a setup phase where all SPs and mix nodes generate any
possible private and public data, and commune their public data to a subset of
the ecosystem’s entities.

� Execution is a phase that comprises executions of the following protocols:

– The REGISTER protocol between client Cs and her service provider SPi. For
simplicity, we assume that registration can be done only once.

– The SEND protocol between client Cs and her service provider SPi. In par-
ticular, Cs that wishes to send a message M to some client address Cr@SPj

authenticates to SPi and provides her with an encoding Encode(M,Cr@SPj)
of (M,Cr@SPj) (that may not necessarily include information about the
sender). At the end of the protocol, Encode(M,Cr@SPj) is at the outbox
of Cs@SPi managed by SPi.

A Universally Composable Framework for the Privacy of Email Ecosystems 197

– The ROUTE protocol that is executed among SP1, . . . ,SPN and
MX1, . . . ,MXm. Namely, the encoded message Encode(M,Cr@SPj) is for-
warded to the MX subsystem, which in turn delivers it to SPj that manages
the inbox of Cr.

– The RECEIVE protocol between client Cr and her service provider SPj , where
Cr can retrieve the messages from the inbox of Cr@SPj via fetch requests.

Remark 1. In this work, we consider email solutions that follow the realistic
client-side approach, where the client-side operations are relatively simple and
do not include complex interaction with the other entities for the execution of
heavy cryptographic primitives (e.g. pairwise secure MPC). As we will explain
shortly, the client-friendly approach poses some limitations on the privacy level
that the email ecosystem can achieve.

3.2 A Global Clock Functionality

In our setting, the protocol flow within the email ecosystem E advances in time
slots, that could refer to any suitable time unit (e.g. ms). The entities of E are
synchronized via a global clock functionality Gclock that interacts with a set of
parties P, a set of functionalities F, the UC environment Z and the adversary A.
In the spirit of [4,22], the functionality Gclock, presented in Fig. 1, advances when
all entities in P and F declare completion of their activity within the current
time slot, whereas all entities have read access to it.

The global clock functionality Gclock(P,F).

The functionality initializes the global clock variable as Cl ← 0 and the set of
advanced parties as Ladv ← ∅.

– Upon receiving (sid,Advance Clock, P) from F ∈ F or P ∈ P, if P /∈ Ladv,
then it adds P to Ladv and sends the message (sid,Advance Ack, P) to F
or P , repsectively, and notifies A by forwarding (sid,Advance Clock, P). If
Ladv = P, then it updates as Cl ← Cl+ 1 and resets Ladv ← ∅.

– Upon receiving (sid,Read Clock) from X ∈ P ∪ F ∪ {Z,A}, then it sends
(sid,Read Clock,Cl) to X.

Fig. 1. The global clock functionality Gclock(P,F) interacting with the environment Z
and the adversary A.

3.3 A UC Definition of E-mail Privacy

Let Ad be the set of all valid email addresses linking the set of clients C =
{C1, . . . , Cn} and with their corresponding providers in SP = {SP1, . . . ,SPN},
i.e. Ad := ∪i∈[N]Ci. We denote by P the union C ∪ SP ∪ MX.

The history of an email ecosystem execution that involves the entities in
C,SP and MX is a transcript of actions expressed as a list H, where each

198 P. Chaidos et al.

action entry of H is associated with a unique pointer ptr to this action. The
leakage in each execution step, is expressed via a leakage function Leak(·, ·) that,
when given as input (i) a pointer ptr and (ii) an execution history sequence H,
outputs some leakage string z. Here, z could be ⊥ indicating no leakage to the
adversary. This leakage may depend on the entry indexed by ptr as well as on
entries recorded previously (i.e. prior than ptr).

We require that during a time slot, the environment sends a message for
every party, even when the party is idle (inactive) for this slot, so that the clock
can be advanced as described in Fig. 1.

The ideal world execution. In the ideal world, the protocol execution is
managed by the email privacy functionality FLeak,Δnet

priv (P), parameterized by the
message delivery delay bound Δnet and the leakage function Leak(·, ·), with access
to Gclock. The functionality FLeak,Δnet

priv (P) consists of the Initialization, Execu-
tion, and Clock advancement phases, that informally are run as follows:

– At the Initialization phase, all the SPs in SP and mix nodes in MX provide
FLeak,Δnet

priv (P) with an initialization notification via public delayed output. The
functionality proceeds to the Execution phase when all SPs and mix nodes
are initialized. Note that in the ideal world, the SPs and the mix nodes remain
idle after Initialization (besides messages intended for Gclock), as privacy-
preserving email routing is done by FLeak,Δnet

priv (P). Their presence in the ideal
setting is for consistency in terms of UC interface.

– At the Execution phase, FLeak,Δnet

priv (P) manages the email traffic, as sched-
uled per time slot by the environment. During this phase, the clients may
(dynamically) provide FLeak,Δnet

priv (P) with registration, log in, log out, send or
fetch requests. Upon receiving a request, FLeak,Δnet

priv (P) updates the history by
adding the request as a new entry associated with a unique pointer ptr, in
a ‘pending’ mode. Then, it notifies the simulator Sim by attaching the corre-
sponding leakage. The execution of a pending request which record is indexed
by a pointer ptr is completed when FLeak,Δnet

priv (P) receives an Allow Exec
message paired with ptr from Sim.

Within a time slot T , each client may perform only one action that also
implies a time advancement request to Gclock. In order for the clock to advance
all the other parties that performed no action (i.e., the SPs, the mix nodes and
the clients that remained idle during T), send an explicit time advancement
request to FLeak,Δnet

priv (P). Besides, any party may submit clock reading requests
arbitrarily. All the messages that are intended for Gclock are forwarded to it by
FLeak,Δnet

priv (P).

– At the Clock advancement phase, all parties have already submitted time
advancement requests during time slot T , so FLeak,Δnet

priv (P) takes the necessary
final steps before proceeding to T + 1. In particular, FLeak,Δnet

priv (P) completes
the execution of all send and fetch requests that have been delayed for Δnet

steps (by Sim). This suggests that in the ideal-world, the delay in message
delivery is upper bounded by Δnet. Finally, FLeak,Δnet

priv (P) informs Sim of the

A Universally Composable Framework for the Privacy of Email Ecosystems 199

leakage derived from the aforementioned executions, advances its local time
by 1 and reenters the Execution phase for time slot T + 1.

Formally, the email privacy functionality FLeak,Δnet

priv (P) is described as follows:
Initialization on status ‘init’.

– FLeak,Δnet

priv (P) sets its status to ‘init’. It initializes the set of valid addresses
Ad, the set of active entities Lact, the set of clock-advanced entities Ladv, the
history list H, and the set of leaked entries Lleak as empty.

– Upon receiving (sid, Init) from a party P ∈ SP ∪ MX, if Lact � SP ∪ MX,
then it sends the message (sid, Init, P) to Sim.

– Upon receiving (sid,Allow Init, P) from Sim, if P ∈ (SP∪MX)\Lact, then
it adds P to Lact. If Lact = SP ∪ MX, then it sends (sid, ready) to Sim.

– Upon receiving (sid,Execute) from Sim, it sends (sid,Read Clock) to
Gclock.

– Upon receiving (sid,Read Clock,Cl) from Gclock, it sets its clock as Cl and
its status to ‘execute’, and sends the message (sid, start,Cl) to Sim.

Execution on status ‘execute’.

Registration:
– Upon receiving

(

sid,Register,@SPi

)

from C�, if for every j ∈ [N] : C�@SPj /∈
Ad and C� /∈ Ladv, then

1. It sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, it adds C� to Ladv

and the entry
(

ptr,
(

sid,Cl,Register, C�@SPi

)

, ‘pending′) to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. Upon receiving

(

sid,Allow Exec, ptr
)

from Sim, if ptr refers to an entry
of the form

(

ptr,
(

sid,Cl,Register, C�@SPi

)

, ‘pending′), then
(a) It adds C�@SPi to Ad and Lact, and initializes a list Inbox[C�@SPi]

as empty.
(b) It updates the entry as

(

ptr,
(

sid,Cl′,Register, C�@SPi

)

, ‘(registered,
Cl)′).

(c) It sends the message
(

sid, ptr, Leak(ptr,H)
)

to Sim.
Log in:
– Upon receiving

(

sid,Active,@SPi

)

from C�, if C�@SPi ∈ Ad and C� /∈ Ladv,
1. It sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, it adds C� to Ladv

and the entry
(

ptr,
(

sid,Cl,Active, C�@SPi

)

, ‘pending′) to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. Upon receiving

(

sid,Allow Exec, ptr
)

from Sim, if ptr refers to an entry
of the form

(

ptr,
(

sid,Cl′,Active, C�@SPi

)

, ‘pending′), then
(a) If C�@SPi /∈ Lact, then it adds C�@SPi to Lact.
(b) It updates the entry as

(

ptr,
(

sid,Cl′,Active, C�@SPi

)

, ‘(logged in,

Cl)′).
(c) It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.

200 P. Chaidos et al.

Log out:
– Upon receiving

(

sid, Inactive,@SPi

)

from C�, if C�@SPi ∈ Ad and C� /∈ Ladv,
then

1. It sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, it adds C� to Ladv

and the entry
(

ptr,
(

sid,Cl, Inactive, C�@SPi

)

, ‘pending′) to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. Upon receiving

(

sid,Allow Exec, ptr
)

from Sim, if ptr refers to an entry
of the form

(

ptr,
(

sid,Cl′, Inactive, C�@SPi

)

, ‘pending′), then
(a) If C�@SPi ∈ Lact, then it deletes C�@SPi from Lact.
(b) It updates the entry as

(

ptr,
(

sid,Cl′, Inactive, C�@SPi

)

, ‘(logged out,

Cl)′).
(c) It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
Send:
– Upon receiving

(

sid,Send, 〈Cs@SPi,M,Cr@SPj〉
)

from Cs, if Cs@SPi,
Cr@SPj ∈ Ad and Cs ∈ Lact \ Ladv, then

1. It sends the message (sid,Advance Clock, Cs) to Gclock.
2. Upon receiving (sid,Advance Ack, Cs) from Gclock, it adds Cs in Ladv

and the entry
(

ptr,
(

sid,Cl,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, ‘pending′) to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. Upon receiving

(

sid,Allow Exec, ptr
)

from Sim, if ptr refers to an entry
(

sid,Cl′,Send, 〈Cs@SPi,M,Cr@SPj〉
)

with status ‘pending’, then
(a) It adds

(

sid,Cl′,Send, 〈Cs@SPi,M,Cr@SPj〉
)

to Inbox[Cr@SPj].
(b) It updates as

(

ptr,
(

sid,Cl′,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, ‘(sent,
Cl)′).

(c) It sends the message
(

sid, ptr, Leak(ptr,H)
)

to Sim.
Fetch:
– Upon receiving

(

Fetch, sid, Cr@SPj

)

from Cr, if Cr@SPj ∈ Ad and Cr ∈
Lact \ Ladv, then

1. It sends the message (sid,Advance Clock, Cr) to Gclock.
2. Upon receiving (sid,Advance Ack, Cr) from Gclock, it adds Cs in Ladv

and the entry
(

ptr,
(

sid,Cl,Fetch, Cr@SPj

)

, ‘pending′) to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. Upon receiving

(

sid,Allow Exec, ptr
)

from Sim, if ptr refers to an entry
of the form

(

sid,Cl′,Fetch, Cr@SPj

)

with status ‘pending’, then
(a) It sends the message (sid, Inbox[Cr@SPj]) to Cr.
(b) It updates the entry as

(

ptr,
(

sid,Cl′,Fetch, Cr@SPj

)

, ‘(fetched,
Cl)′).

(c) It resets Inbox[Cr@SPj] as empty.
(d) It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
Clock reading:
– Upon receiving

(

sid,Read Clock
)

from a party P ∈ P, then
1. It sends the message

(

sid,Read Clock
)

to Gclock.
2. On receiving

(

sid,Read Clock,Cl
)

from Gclock it adds
(

ptr,
(

sid,Cl,

Read Clock, P
))

to H, sending
(

sid,Read Clock,Cl
)

to P .

A Universally Composable Framework for the Privacy of Email Ecosystems 201

3. It sends the message
(

sid, ptr, Leak(ptr,H)
)

to Sim.
Clock advance:
– Upon receiving

(

sid,Advance Clock
)

from a party P ∈ P \ Ladv, then
1. It sends the message (sid,Advance Clock, P) to Gclock.
2. Upon receiving (sid,Advance Ack, P) from Gclock, it adds P in Ladv and

(

ptr,
(

sid,Cl,Advance Clock, P
))

to H.
3. It sends the message

(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. If Ladv = P, then it sets its status to ‘advance’ and proceeds to the Clock

advancement phase below.

Clock advancement on status ‘advance’.

– Upon setting its status to ‘advance’:
1. For every history entry of the form

(

sid,Cl′,Send, 〈Cs@SPi,M,Cr@SPj〉
)

with status ‘pending’ such that Cl − Cl′ = Δnet, it adds this entry to
Inbox[Cr@SPj] and updates the entry’s status to ‘(sent,Cl)’.

2. For every history entry of the form
(

sid,Cl′,Fetch, Cr@SPj

)

with
status ‘pending’ such that Cl − Cl′ = Δnet, it sends the message
(sid, Inbox[Cr@SPj]) to Cr, resets the list Inbox[Cr@SPj] as input and
updates the entry’s status to ‘(fetched,Cl)’.

3. It sends the message
(

sid, ptr, Leak(ptr,H)
)

to Sim.
4. It finalizes execution for the current slot as follows:

(a) It advances its time by Cl ← Cl + 1.
(b) It adds

(

ptr,
(

sid,Clock Advanced
))

to H.
(c) It reverts its status to ‘execute’ and resets Ladv to empty.
(d) It sends the message (sid,Clock Advanced) to Sim.

We denote by EXEC
FLeak,Δnet

priv

Sim,Z,Gclock
[P](λ), the output of the environment Z in an

ideal-world execution of FLeak,Δnet

priv (P) under the presence of Sim.
The

(Gclock,FΔnet

auth

)

-hybrid world execution. In the real world email ecosystem
E, the clients, the SPs and the mix nodes interact according to the protocols’
guidelines and the environment’s instructions. The message delivery is executed
via the functionality FΔnet

auth (P) described in Fig. 2 that captures the notion of
an authenticated channel, upon which a maximum delivery delay Δnet can be
imposed. Clock advancement is done via calls to Gclock, which interacts with all
entities and FΔnet

auth .

We denote by EXECE
Gclock,FΔnet

auth

A,Z,Gclock
[P](λ) the output of the environment Z in an

execution of E
Gclock,FΔnet

auth under the presence of A.
The UC definition of a private email ecosystem is provided below.

Definition 1 (UC Email Privacy). Let Δnet, ε be non-negative values. Let E

be an email ecosystem with client set C = C1, . . . , Cn, service provider set SP =
SP1, . . . ,SPN and mix node set MX = MX1, . . . ,MXm. Let P := C∪SP∪MX.
We say that E

Gclock,FΔnet
auth achieves statistical (resp. computational) ε-privacy with

respect to leakage (Leak) and message delay Δnet, if for every unbounded (resp.

202 P. Chaidos et al.

Fig. 2. The authenticated channel functionality FΔnet
auth (P) interacting with the adver-

sary A.

PPT) global passive adversary A, there is a PPT simulator Sim such that for
every PPT environment Z, it holds that

EXEC
FLeak,Δnet

priv

Sim,Z,Gclock
[P](λ) ≈ε EXECE

Gclock,FΔnet
auth

A,Z,Gclock
[P](λ).

4 Formalizing Privacy Notions via Types of Leakage
Functions

In [27], Pfitzmann and Hansen provide definitions for anonymity, unlinkability,
unobservability and pseudonymity. Even though outside the context of a for-
mal framework, the definitions in this seminal work have served as a reference
point by researchers for the understanding of privacy notions. In this section, we
formally express the said (yet not only these) notions by carefully specifying a
corresponding leakage function.

Basic leakage sets. Below, we define some useful sets that will enable the suc-
cinct description of the various leakage functions that we will introduce. In our
formalization, leakage will derive from the history entries that are in a ‘pending’
mode. This is due to technical reasons, as the ideal-world simulator Sim (cf.
Sect. 3.3) must be aware of the actions to be taken by the email privacy func-
tionality FLeak,Δnet

priv (P) before allowing their execution, so that it can simulate
the real-world run in an indistinguishable manner. In the following, the symbol
∗ denotes a wildcard, and ptr′ ≤ ptr denotes that entry indexed with pointer ptr′

was added earlier than the entry with pointer ptr.

A Universally Composable Framework for the Privacy of Email Ecosystems 203

– The active address set for H by pointer ptr:

Actptr[H]=:
{
C�@SPi

∣∣∣ ∃ptr′ ≤ ptr :
[[(

ptr′,
(
sid, ∗,Active, C�@SPi

)
, ‘pending′) ∈ H

]∨
∨ [(

ptr′,
(
sid, ∗,Register, C�@SPi

)
, ‘pending′) ∈ H

]]∧
∧

[
∀ptr′′ : ptr′ ≤ ptr′′ ≤ ptr ⇒ (

ptr′′,
(
sid, ∗, Inactive, C�@SPi

)
, ‘pending′) /∈ H

]}
.

Note. To simplify the notation and terminology that follows, we consider as
active all the addresses that are in a pending registration status.
– The sender set for H by pointer ptr:

Sptr[H] :=
{

Cs@SPi

∣∣∣ ∃ptr′ ≤ ptr :
(
ptr′,

(
sid, ∗, Send, 〈Cs@SPi, ∗, ∗〉), ‘pending′) ∈ H

}
.

– The sender multiset for H by pointer ptr, denoted by �Sptr�[H], is defined
analogously. The difference with Sptr[H] is that the cardinality of the pending
Send messages provided by Cs@SPi is attached.

– The message-sender set for H by pointer ptr:

MSptr[H] :=
{

(M,Cs@SPi)
∣
∣
∣ ∃ptr′ ≤ ptr :

(

ptr′,
(

sid, ∗,Send, 〈Cs@SPi,M, ∗〉), ‘pending′) ∈ H
}

.

– The recipient set for H by pointer ptr:

Rptr[H] :=
{

Cr@SPj

∣
∣
∣ ∃ptr′ ≤ ptr :

(

ptr′,
(

sid, ∗,Send, 〈∗, ∗, Cr@SPj〉
)

, ‘pending′) ∈ H
}

.

– The recipient multiset for H at time slot T , denoted by �Rptr�[H], is defined
analogously. The difference with Rptr[H] is that the cardinality of the pending
Send messages intended for Cr@SPj is attached.

– The message-recipient set for H by pointer ptr:

MRptr[H] :=
{

(M,Cr@SPj)
∣
∣
∣ ∃ptr′ ≤ ptr :

(

ptr′,
(

sid, ∗,Send, 〈∗,M,Cr@SPj〉
)

, ‘pending′) ∈ H
}

.

– The set of fetching clients for H by pointer ptr

Fptr[H] :=
{

Cr@SPj

∣
∣
∣ ∃ptr′ ≤ptr :

(

ptr,
(

sid, ∗,Fetch, Cr@SPj

)

, ‘pending′)
}

.

Unobservability. Unobservability is the state where “the messages are not
discernible from random noise”. Here, we focus on the case of relationship unob-
servability, that we will refer to unobservability for brevity, where within the
set of all possible sender-recipient-pairs, a message is exchanged in any relation-
ship. Hence, in our setting the unobservability set is the set of the users that are
online, i.e. only the “activity bit”. As a result, we can define the unobservability
leakage function Leakunob as the active address set:

Leakunob(ptr,H) := Actptr[H]. (1)

204 P. Chaidos et al.

Remark 2 (Unobservability a golden standard from email privacy). In our UC
formalization of e-mail ecosystems, we consider a dynamic scenario where the
clients register, go online/offline and make custom fetch requests, which is con-
sistent with the real-world dynamics of email communication. It is easy to see
that in such a setting the clients’ online/offline status may be leaked to a global
observer. E.g., the environment may provide send requests to offline clients and
notify the global adversary that provided the said requests, so that the latter
can check the activity of those clients. Hence, in our framework, unobservability
as defined in Eq. (1), sets a “golden standard” for optimal privacy. In Sect. 5,
we show that this golden standard is feasible in principle. Namely, we describe a
theoretical construction with quadratic communication complexity and we prove
it achieves unobservability. As a result, that construction sets one extreme point
in the privacy vs. efficiency trade off for the client-server email infrastructure, the
other being a simple and fast network with no security enhancements. Clearly,
the challenge of every email construction is to balance the said trade off between
these two extreme points.

We conclude our remark noting that a higher level privacy (e.g., no leakage
at all) could be possible if we considered an alternative setting where the email
addresses are a priori given, the clients are always online and mail delivery is via
continuous push by the SPs. However, we believe that such a setting is restrictive
for formally capturing what is an email ecosystem in general.

Anonymity. According to [27], anonymity “is the state of being not identifiable
within a set of subjects, the anonymity set”. In the email scenario, a sender (resp.
recipient) should be anonymous within the set of potential senders (resp. recip-
ients), i.e. the sender (resp. recipient) anonymity set. In addition, anonymity
sets may change over time, which in our framework is done via global clock
advancement and per slot. We recall from the discussion in Remark 2 that in
our setting, the anonymity sets are restricted within the set of online users.

We define the predicate End(·, ·) over the pointers and history transcripts to
denote that a pointer ptr refers to the last history entry before the function-
ality enters the Clock advancement phase in order to finalize execution for
the running time slot. By the above, we define the anonymity leakage function,
Leakanon, as follows:

Leakanon(ptr,H) :=
{(

Sptr[H],Rptr[H],Actptr[H]
)

, if End(ptr,H)
Actptr[H], otherwise (2)

Unlinkability. Unlinkability of items of interest (e.g. subjects, messages, etc.)
means that “the ability of the attacker to relate these items does not increase
by observing the system”. Here, we provide an example of unlinkability from
the sender side, where the message and its intended recipient can not be related
to the original sender. We define the sender-side unlinkability leakage function
Leaks.unlink as follows:

Leaks.unlink(ptr,H) :=
{(

Sptr[H],MRptr[H],Actptr[H]
)

, if End(ptr,H)
Actptr[H], otherwise (3)

A Universally Composable Framework for the Privacy of Email Ecosystems 205

Alternatively, we may define unlinkability from the recipient side via the function

Leakr.unlink(ptr,H) :=
{(

MSptr[H],Rptr[H],Actptr[H]
)

, if End(ptr,H)
Actptr[H], otherwise

Pseudonymity. According to [27] “being pseudonymous is the state of using
a pseudonym as ID”. To capture pseudonymity, we may slightly abuse defini-
tion and consider leakage as a randomized function (or program). Namely, the
functionality initially chooses a random permutation π over the set of clients
C, and the pseudonym of each client C� is π(C�) ∈ [n]. We denote by π[H] the
“pseudonymized history” w.r.t. to π, i.e. in every entry of H we replace C� by
π(C�). Clearly, in our infrastructure, the clients remain pseudonymous among
the set of clients that are registered to the same SP. We define the pseudonymity
leakage function as follows:

Leakpseudon(ptr,H) := π[H], where π
$← {

f
∣
∣ f : C −→ [n]

}

. (4)

Besides anonymity, unlinkability, unobservability and pseudonymity defined
in [27], other meaningful notions of privacy can be formally expressed in our
framework. We present two such notions below.

Weak anonymity. We define weak anonymity, as the privacy notion where
the number of messages that a client sends or receives and her fetching activity
is leaked. In this weaker notion, the anonymity set for a sender (resp. recipi-
ent) consists of the subset of senders (resp. recipients) that are associated with
the same number of pending messages. In addition, now the leakage for sender
anonymity set is gradually released according to the protocol scheduling, whereas
the recipient anonymity set still is leaked “per slot”. The weak anonymity leakage
function, Leakw.anon, is defined via the sender and recipient multisets as follows:

Leakw.anon(ptr,H) :=
{(

�Sptr�[H], �Rptr�[H],Fptr[H],Actptr[H]
)

, if End(ptr,H)
(

�Sptr�[H],Fptr[H],Actptr[H]
)

, otherwise
(5)

Remark 3. Even though not a very strong privacy notion, weak anonymity sup-
ports a reasonable level of privacy for email realizations that aim at a manageable
overhead and practical use. Indeed, observe that if we can not tolerate to blow
up the ecosystem’s complexity by requiring some form of cover traffic (which is a
plausible requirement in practical scenarios), then a global adversary monitoring
the client-SP channel can easily infer the number of sent/received messages over
this channel. Moreover, one may informally argue that in case the email users do
not vary significantly in terms of their sending and fetching activity (or at least
they can be grouped into large enough sets of similar activity), weak anonymity
and standard anonymity are not far. In Sect. 6, we present an efficient weakly
anonymous email construction based on parallel mixing [18,19].

End-to-end encryption. The standard notion of end-to-end encryption, now
applied in many internet applications (e.g., Signal, WhatsApp, Viber, Facebook

206 P. Chaidos et al.

Messenger, Skype), suggests context hiding of M in the communication of the
end users (up to the message length |M |), in our case the sender and the recipient.
Hence, we define the end-to-end leakage function Leake2e as shown below.

Leake2e :=
(

Actptr[H],
{

(Cs@SPi, |M |, Cr@SPj)
∣
∣
∣ ∃ptr′ ≤ ptr :

(

ptr′,
(

sid, ∗,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, ‘pending′) ∈ H
})

.
(6)

Relation between privacy notions. Observe that the relation between
two privacy notions can be deduced via their corresponding leakage func-
tions. Namely, if for every (ptr,H) a PPT adversary given the out-
put of leakage function Leak1(ptr,H) can derive the output of some
other leakage functions Leak2(ptr,H), then Leak2(·, ·) refers to a stronger
notion of privacy than Leak1(·, ·). In Fig. 3, given the definitions of
Leakunob, Leakanon, Leaks.unlink/Leakr.unlink, Leakw.anon, Leake2e above we relate the
respective notions in an intuitively consistent way.

Unobservability =⇒ Anonymity =⇒ Sender/Recipient-side Unlinkability
⇓

Weak anonymity =⇒ E2E encryption

Fig. 3. Relations between privacy notions. By A =⇒ B, we denote that notion A is
stronger than notion B.

Remark 4. We observe that pseudonymity can not be compared to any of
the notions in Fig. 3. Indeed, even for the stronger notion of unobservability,
having the set of active addresses is not enough information to derive the
pseudonyms. Conversely, having the entire email activity pseudonymized, is
not enough information to derive the active clients’ real identities. In addition,
we can combine pseudonymity with some other privacy notion and result in
a new ‘pseudonymized’ version of the latter (e.g. pseudonymous unobservabil-
ity/anonymity/etc.). It is easy to see that the new notions can also be expressed
via suitable (randomized) leakage functions, by applying a random permutation
on the clients’ identities and then define leakage as in the original corresponding
leakage function, up to this permutation. E.g., for π

$← {

f
∣
∣ f : C −→ C

}

,
“pseudonymized unobservability” could be expressed via the leakage function

Leakps.unob(ptr,H) :=
{

π(C�)@SPi

∣
∣ C�@SPi ∈ Actptr[H]

}

.

Remark 5. As our E2E leakage does not cover fetch information, strictly speak-
ing the implication from Weak anonymity to E2E encryption only holds if the
fetch behavior is either known in advance (e.g. because of the system specifica-
tion) or irrelevant. One could also opt to add the additional leakage to the E2E
definition, but we believe there is little practical value in doing so.

A Universally Composable Framework for the Privacy of Email Ecosystems 207

5 An Email Ecosystem with Optimal Privacy

We present an email ecosystem, denoted by Ecomp, that achieves privacy at an
optimal level at the cost of high (quadratic) communication complexity. Specifi-
cally, in each time slot all SPs in Ecomp communicate with complete connectivity
and always pad the right amount of dummy traffic, so that the activity of their
registered clients is unobservable by a third party, leaking nothing more than that
they are online (logged in). In addition, end-to-end communication between the
clients is done via encryption layers by utilizing a public key encryption scheme
PKE = (KeyGen,Enc,Dec). The encryption layers are structured according to
the network route

Sender −→ Sender’s SP −→ Receiver’s SP −→ Receiver

To support unobservability, the online clients who do not send an actual message
during some round provide their SPs with a dummy ciphertext.

Even though certainly impractical, Ecomp sets a “golden standard” of privacy
according to the discussion in Remark 2 that efficient constructions refer to in
order to balance the privacy vs. efficiency trade off. Description of Ecomp. The
email ecosystem Ecomp operates under a known delay bound Δnet. Throughout
the description of Ecomp, we assume that the following simplifications: (a) all
ciphertexts are of the same length. By Enc[P](M), we denote the encryption of
M under P ’s public key, and (b) all computations require one time slot2:

The phases of Ecomp are as follows:

� Initialization:

– On input
(

sid, Init
)

, a service provider SPi that is not yet initialized, runs
KeyGen(1λ) to generate a private and a public key pair (skSPi

, pkSPi
). Then, it

initializes its list of setup entities, denoted by LSPi
setup, as the pair (pkSPi

,SPi),
implying that at first SPi is only aware of itself. In addition, SPi initializes its
list of valid addresses, denoted by AdSPi , as empty. Finally, it broadcasts the
message

(

sid,Channel, (setup, pkSPi
),SPj) to FΔnet

auth (P) for every j ∈ [N]\{i},
so that all other SPs receive its public key.

– Upon receiving
(

sid, (setup, pkSPj
,SPj

)

from FΔnet

auth (P), SPi adds
(

(pkSPj
,

SPj)
)

to LSPi
setup. When LSPi

setup contains all SPs, the SPi sets its status to
‘execute’, and only then it processes messages of the Execution phase
described below.

� Execution:

Registration:
– On input

(

sid,Register,@SPi

)

, if C� is not registered to any SP and has not
yet sent a message (sid,Advance Clock, C�), then:
2 As it will become clear by the ecosystem’s description, the above simplifications do

not harm generality essentially. Namely,(a) can be reached via padding, while (b)
leads to similar analysis as requiring a computational time upper bound.

208 P. Chaidos et al.

1. C� sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, C� runs KeyGen(1λ)
to generate a private and a public key pair (sk�, pk�). It also initial-
izes her list of setup entities, L�

setup as the pair (pk�, C�), and her
list of valid addresses, Ad� as empty. Then, she sends the message
(

sid,Channel, (register, pk�),SPi

)

to FΔnet

auth (P).
3. Upon receiving

(

sid, (register, pk�), C�

)

from FΔnet

auth (P), SPi checks that
(C�, ·) /∈ LSPi

setup and that pk� is a valid public key, and if so, then it
adds (pk�, C�) to LSPi

setup and C�@SPi to AdSPi
. Next, it updates other

SPs and its registered clients by broadcasting the message
(

sid,Channel,

(setup, pkC�
, C�), P) to FΔnet

auth (P) for every P ∈ (SP\{SPi})∪Ci. It also sends
the message

(

sid,Channel, (setup, {pkP , P}
P∈L

SPi
setup

,AdSPi
), C�), updating

C� with all the valid public keys and addresses it knows so far. Finally,
it initializes the inbox Inbox[C�@SPi] of C�.
4. Upon receiving

(

sid, (setup, pk�, C�),SPi

)

from FΔnet

auth (P), SPj checks that
(C�, ·) /∈ L

SPj

setup and that pk� is a valid public key, and if so, then it,
then it adds (pk�, C�) to L

SPj

setup and C�@SPi to AdSPj
. It also adds it

adds C� to its set of active users, denoted by LSPi
act and initialized as

empty. Next, it updates its registered clients by broadcasting the message
(

sid,Channel, (setup, pkC�
, C�), C) to FΔnet

auth (P) for every C ∈ Cj .
5. Upon receiving

(

sid, (setup, {pkP , P}
P∈L

SPi
setup

,AdSPi
),SPi

)

from FΔnet

auth (P),
the client C�, newly registered to SPi, checks that all public keys are valid.
If the check is successful, then C� adds {pkP , P}

P∈L
SPi
setup

to Li
setup and sets

Ad� ← AdSPi
. Thus, from this point, C� is aware of the public information

of all SPs and all registered clients up to now. In addition, it sets its status
as logged in to SPi.
6. Upon receiving

(

sid, (setup, pkCt
,SPj),SPi) from FΔnet

auth (P), client C� (now
already registered to SPi) checks the validity of pkCt

, and if so, then she adds
(pkt, Ct) to L�

setup and Ct@SPj to Ad�.
Log in:
– On input

(

sid,Active,@SPi

)

, if C� is not logged in, C�@SPi is her valid
address, and has not yet sent a message (sid,Advance Clock, C�), then:

1. C� sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, C� “logs in” by send-
ing

(

sid,Channel,Enc[SPi](Active),SPi

)

to FΔnet

auth (P).
3. Upon receiving

(

sid,Enc[SPi](Active), C�

)

from FΔnet

auth (P), SPi decrypts as
(

sid,Active, C�

)

and checks that C�@SPi ∈ AdSPi
. If so, then it adds C� to

LSPi
act .

Log out:
– On input

(

sid, Inactive,@SPi

)

, if C� is logged in, C�@SPi is her valid address,
and has not yet sent a message (sid,Advance Clock, C�), then:

1. C� sends the message (sid,Advance Clock, C�) to Gclock.

A Universally Composable Framework for the Privacy of Email Ecosystems 209

2. Upon receiving (sid,Advance Ack, C�) from Gclock, C� “logs out” by send-
ing

(

sid,Channel,Enc[SPi](Inactive),SPi

)

to FΔnet

auth (P).
3. Upon receiving

(

sid,Enc[SPi](Inactive), C�

)

from FΔnet

auth (P), SPi decrypts
as

(

sid, Inactive, C�

)

and checks that C�@SPi ∈ AdSPi
. If so, then it

removes C� from LSPi
act .

Send:
– On input

(

sid,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, if Cs is logged in to SPi and has
not yet sent a message (sid,Advance Clock, Cs), then:

1. Cs sends the message (sid,Advance Clock, Cs) to Gclock.
2. Upon receiving (sid,Advance Ack, Cs) from Gclock, Cs encrypts the mes-
sage M into layers and provides FΔnet

auth (P) with the layered encryption
(

sid,Channel,Enc[SPi]

(

Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

,SPi

)

3. Upon receiving
(

sid,Enc[SPi]

(

Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

, Cs

)

from
FΔnet

auth (P), SPi checks that Cs@SPi ∈ AdSPi . If so, then it decrypts the first
layer with skSPi

and adds
(

sid, Cs@SPi,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

to its
set of messages pending to be sent, denoted by LSPi

send and initialized as empty.
Fetch:
– On input

(

sid,Fetch, Cr@SPj

)

, if Cr is logged in to SPj and has not yet sent
a message (sid,Advance Clock, Cr):

1. Cr sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, Cr) from Gclock, Cr sends the message
(

sid,Channel,Enc[SPj](Fetch),SPj

)

to FΔnet

auth (P).
3. Upon receiving

(

sid,Enc[SPj](Fetch), Cr

)

from FΔnet

auth (P), Cr checks that
Cr@SPj ∈ AdSPj

. If so, then she decrypts and adds Inbox[Cr@SPj] to her
set of inboxes which messages are pending to be pushed, denoted by L

SPj

push.
4. Upon receiving (sid, Er,1, . . . , Er,n,SPj) from FΔnet

auth (P) (see below), if Cr

is registered to SPj and has sent a
(

sid,Fetch, Cr@SPj

)

request, then she
decrypts all ciphertexts and stores the ones that are not dummy, i.e. they
correspond to actual mail messages with her as recipient. Otherwise, she
discards (sid, Er,1, . . . , Er,n,SPj).

Clock reading:
– On input

(

sid,Read Clock), the entity P ∈ C ∪ SP sends the message
(

sid,Read Clock) to Gclock. Upon receiving
(

sid,Read Clock,Cl) from Gclock,
P stores Cl as its local time.
Clock advance (for clients):
– On input

(

sid,Advance Clock), if the client C� is logged in to SPi and
has not yet sent a message (sid,Advance Clock,SPi), then she executes the
following steps:

1. C� sends the message (sid,Advance Clock, C�) to Gclock.
2. Upon receiving (sid,Advance Ack, C�) from Gclock, then she sends a
dummy message

(

sid,Enc[SPi](null)
)

to SPi via FΔnet

auth (P) (in turn, SPi will
discard the received null upon decryption).

210 P. Chaidos et al.

Clock advance (for SPs):
– On input

(

sid,Advance Clock), if SPi has not yet sent a message
(sid,Advance Clock,SPi), then it executes the following steps:

1. SPi sends the message (sid,Advance Clock,SPi) to Gclock.
2. Upon receiving (sid,Advance Ack,SPi) from Gclock, for every address
Cs@SPi ∈ AdSPi :

• If there is a message
(

sid, Cs@SPi,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

in
LSPi

send, then SPi broadcasts
(

sid,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

to all
SPs via FΔnet

auth (P), and removes the message from LSPi

send.
• If there is no such message for Cs@SPi but Cs ∈ Li

act, then SPi broad-
casts a dummy message

(

sid,Enc[SPi]

(

null
))

under its own key.
3. Upon receiving a message

(

sid, Ẽ,SPi

)

from FΔnet

auth (P), SPj checks whether
Ẽ is a ciphertext under its public key that decrypts as a pair of a valid
address Cr@SPj along with an (encrypted) message E. If so, then it adds E
to Inbox[Cr@SPj].
4. When L

SPj

fin,k contains all SPs, then for every address Cr@SPj :

• If Inbox[Cr@SPj] ∈ L
SPj

push, then SPj forwards all messages Er,1, . . . Er,nr

in Inbox[Cr@SPj] to Cr along with n−nr dummy ciphertexts under Cr’s
public key, empties Inbox[Cr@SPj] and removes it from L

SPj

push.

• If Inbox[Cr@SPj] /∈ L
SPj

push but Cr ∈ L
SPj

act , then SPj forwards n dummy
encryptions of ‘null’ to Cr, under her public key.

Thus, in any case, if Cr is active, then SPj sends a message of the form
(sid, Er,1, . . . , Er,n) to Cr via FΔnet

auth (P).

Privacy of Ecomp. To prove the privacy of Ecomp, we require that the underlying
public key encryption scheme PKE = (KeyGen,Enc,Dec) satisfies m-IND-CPA,
as specified in Sect. 2.2. In the following theorem, we prove that Ecomp only
leaks the “activity bit” of the clients formally expressed by the leakage function
Leakunob(·, ·) defined in Eq. (1).

Theorem 1. Let Ecomp with clients C = {C1, . . . , Cn} and service providers
SP = SP1, . . . ,SPN be implemented over the PKE scheme PKE =
(KeyGen,Enc,Dec) that achieves m-IND-CPA security with error ε(λ). Then,

E
Gclock,FΔnet

auth
comp achieves computational 2(n + N)ε(λ)-privacy for message delay Δnet

with respect to the unobservability leakage function defined below

Leakunob(ptr,H) := Actptr[H].

Proof. Let A be a global passive PPT adversary against E
Gclock,FΔnet

auth
comp . We begin

by constructing a simulator Sim for A as shown below.

Constructing a simulator for A. The ideal adversary Sim for A that for any
environment Z, simulates an execution of Ecomp as follows:

A Universally Composable Framework for the Privacy of Email Ecosystems 211

Simulating interaction between Z and A.

– Upon receiving a message
(

sid,M
)

from Z, it forwards
(

sid,M
)

to A playing
the role of a simulated environment.

– Upon receiving a message
(

sid,M
)

from A intended for the environment, it
forwards

(

sid,M
)

to Z.

Achieving synchronicity.

– Upon receiving any message from FLeakunob,Δnet

priv (P), Sim sends the message
(

sid,Read Clock
)

to Gclock. Upon receiving
(

sid,Read Clock,Cl
)

from
Gclock, it stores Cl as the global time of the real-world simulation. This way,
Sim simulates an execution where the simulated entities are synchronized with
respective actual ones in the ideal-world.

Simulating real − world message delivery.

– Upon receiving a leakage message of the form
(

sid, (ptr,M)
)

(possibly M = ⊥)
from FLeakunob,Δnet

priv (P), Sim knows that this message refers to some command
(register/active/inactive/send/fetch) that in the real-world protocol is real-
ized via communication between a client and her SP. Since in the simulation
Sim also plays the role of FΔnet

auth (P) in the eyes of A, it must be consistent with
the bounded delays (up to Δnet) that A imposes on message communication.
To achieve this consistency, Sim keeps record of the simulated message M̃ that
sends to the simulated FΔnet

auth (P) and is associated with ptr. Whenever the mes-
sage delivery of M̃ is allowed, either by A or automatically when Δnet delay
has passed, Sim sends the message

(

sid,Allow Exec, ptr
)

to FLeakunob,Δnet

priv (P).

Simulating Initialization.

– Upon receiving
(

sid, Init,SPi

)

from FLeakunob,Δnet

priv (P), it runs Gen(1λ) on behalf
of SPi to generate a pair of a private and a public key pair (skSPi

, pkSPi
).

Then, it broadcasts the message
(

sid,Channel, (setup, pkSPi
),SPj) to every

j ∈ [N] \ {i}, also simulating the role of FΔnet

auth (P). Observe that since A is
global and passive, the execution will always initiate upon Z’s request. Then,
Sim sends the message (sid,Allow Init,SPi) to FLeakunob,Δnet

priv (P).
– Upon receiving

(

sid, ready
)

from FLeakunob,Δnet

priv (P), if all simulated SPs
have initialized by generating and broadcasting their keys, then it sends
(

sid,Execute
)

to FLeakunob,Δnet

priv (P). Otherwise, it aborts simulation.

Simulating Execution.
Whenever the environment sends a register/active/inactive/send/fetch/clock
advance command to a dummy party P that forwards it to FLeakunob,Δnet

priv (P),
Sim obtains (i) an (sid,Advance Clock, P) notification from Gclock, and
(ii) the leakage of the form

(

sid, ptr,Actptr[H]
)

from FLeakunob,Δnet

priv (P). Namely,

212 P. Chaidos et al.

Sim obtains the sequence of clock advances and the transcript of activa-
tions/deactivations. We describe how using this information, Sim simulates exe-
cution:

– Upon receiving (sid,Advance Clock, C�) and
(

sid, ptr,Actptr[H]
)

, then:
• Playing the role of the global clock, Sim sends a simulated notification

(sid,Advance Clock, C�) to A.
• If C�@SPi is in Actptr[H] and

(

sid, ptr,Actptr[H]
)

is the first entry that
C�@SPi is activated, then Sim deduces that this refers to a registra-
tion command (Recall that for simplicity we included the pending reg-
istration commands in the set of active addresses). In this case, Sim
runs the registration protocol between C� and SPi exactly as in the
description of Ecomp, except that it replaces the ciphertext contents with
‘null’ messages. When FΔnet

auth delivers the message, Sim sends the message
(

sid,Allow Exec, ptr
)

to FLeakunob,Δnet

priv (P).
• If C�@SPi is in Actptr[H] and is registered but not yet logged in, then Sim

deduces that this refers to an active or a clock advance command. In either
of these cases, Sim simulates execution by sending a dummy ciphertext
(

sid,Channel,Enc[SPi](null),SPi

)

to the simulated FΔnet

auth . When FΔnet

auth

delivers the message, Sim sends the message
(

sid,Allow Exec, ptr
)

to
FLeakunob,Δnet

priv (P).
• If C�@SPi is in Actptr[H] and is registered and already logged in, then

Sim deduces that this refers to either a inactive, send, fetch or a clock
advance command. In either of these cases, Sim simulates execution by
sending a dummy ciphertext

(

sid,Channel,Enc[SPi](null),SPi

)

as above.
• If C�@SPi is not in Actptr[H], then Sim deduces that C�@SPi is inactive

and takes no further action.
– Upon receiving (sid,Advance Clock,SPi) and

(

sid, ptr,Actptr[H]
)

:
• Playing the role of the global clock, Sim sends a simulated notification

(sid,Advance Clock,SPi) to A.
• For every address Cs@SPi ∈ AdSPi

, it broadcasts a dummy message
(

sid,Channel,Enc[SPi](null),SPi

)

to all other SPs. Then, it sends the
message

(

sid,Allow Exec, ptr
)

to FLeakunob,Δnet

priv (P).

Reducing privacy to m-IND-CPA security. We prove the privacy of

E
Gclock,FΔnet

auth
comp via a reduction to the m-IND-CPA security with error ε of the under-

lying public key encryption scheme PKE = (KeyGen,Enc,Dec), which is assumed
in the theorem’s statement. Our reduction works as follows: Let A be a real-world
adversary and Z be an environment. First, we order the clients and servers as
parties P1, . . . , Pn+N . Then, we construct a sequence of “hybrid” m-IND-CPA
adversaries B1, . . . ,Bn+N , where Bj∗ executes the following steps:

1. It receives a public key pk from the m-IND-CPA challenger.
2. It generates the parties P1, . . . , Pn+N and simulates an execution of

E
Gclock,FΔnet

auth
comp conducted by Z and under the presence of A, also playing the

role of Gclock,FΔnet

auth . The simulation differs from an actual execution as shown
below:

A Universally Composable Framework for the Privacy of Email Ecosystems 213

(a) Upon initialization of a party Pj : if Pj �= Pj∗ , then Bj∗ honestly generates
a fresh key pair (skj , pkj). If Pj = Pj∗ , then it sets pkj∗ := pk.

(b) When a party Pi must send an encrypted message M under the public
key of Pj (note it may be the case that Pi = Pj) via FΔnet

auth :
– If j < j∗, then Bj∗ sends an encryption of M under pkj .
– If j = j∗, then it sends a challenge pair (M0,M1) := (null,M) to the

m-IND-CPA challenger. Upon receiving a ciphertext Enc[Pj∗](Mb),
where b is the m-IND-CPA challenge bit, it sends Enc[Pj∗](Mb) to
Pj∗ .

– If j > j∗, then it sends an encryption of null under pkj .
(c) Since A is passive, all parties are honest, thus Bj∗ is completely aware of

the plaintext-ciphertext correspondence. Therefore, when Pi encrypts M
under Pj ’s public key to a ciphertext Enc[Pj](M), Bj∗ proceeds as if Pj

had indeed decrypted this ciphertext to M .
3. It returns the output of Z.

Given the description of Bj∗ , j∗ = 1, . . . , n + N , we make the following observa-
tions:

– The limit case j∗ = 1: if b = 0, then B1 replaces all real-world communication
with encryptions of ‘null’, exactly as Sim does in its simulation. Thus, we have
that

Pr
[B1 = 1 | b = 0

]

= EXEC
FLeakunob,Δnet

priv

Sim,Z,Gclock
[P](λ). (7)

– The hybrid step: for every 1 ≤ j∗ < n+N , the adversaries Bj∗ and Bj∗+1 have
the same behavior regarding the parties Pj , where j �= j∗, j∗ +1. In addition,
if the m-IND-CPA challenge bit b is 1, then Bj∗ (i) respects the encryptions
of P ∗

j (hence, of every Pj , for j ≤ j∗) and (ii) replaces with null any plaintext
intended for Pj , for j ≥ j∗ + 1. Observe that this is exactly the behavior of
Bj∗+1, if b = 0. Therefore, it holds that

Pr
[Bj∗ = 1 | b = 1

]

= Pr
[Bj∗+1 = 1 | b = 0

]

. (8)

– The limit case j∗ = n + N : if b = 1, then Bn+N executes real-world commu-
nication respecting the environments’ instructions and inputs. Thus, we have
that

Pr
[Bn+N = 1 | b = 1

]

= EXECE
Gclock,FΔnet

auth

A,Z,Gclock
[P](λ). (9)

Consequently, by Eq. (7) and the m-IND-CPA security of PKE, we have that for
every j∗ ∈ [n + N], it holds that

∣
∣
∣ Pr

[Bj∗ = 1 | b = 1
] − Pr

[Bj∗ = 1 | b = 0
]
∣
∣
∣ =

=
∣
∣
∣ Pr

[Bj∗ = 1 | b = 1
] − (

1 − Pr
[Bj∗ = 0 | b = 0

]

)
∣
∣
∣ ≤

≤
∣
∣
∣2 · Pr

[

(Bj∗ = 1) ∧ (b = 1)
]

+ 2 · Pr
[

(Bj∗ = 0) ∧ (b = 0)
] − 1

∣
∣
∣ =

=
∣
∣
∣2 · Pr

[Bj∗(1λ) breaks PKE
] − 1

∣
∣
∣ ≤

∣
∣
∣2 · (

1/2 + ε(λ)
) − 1

∣
∣
∣ = 2ε(λ).

(10)

214 P. Chaidos et al.

Finally, by Eqs. (7), (8),(9), and (10), we get that

∣
∣
∣EXEC

FLeakunob,Δnet
priv

Sim,Z,Gclock
[P](λ) − EXECE

Gclock,FΔnet
auth

A,Z,Gclock
[P](λ)

∣
∣
∣ ≤ 2(n + N)ε(λ)

which completes the proof. ��

6 A Parallel Mix Email Ecosystem with t Strata

We will now describe a design to be used for routing messages between various
users, based on parallel mixing [18,19]. A parallel mix is a design that borrows
characteristics from stratified mixes i.e. mixes where servers are grouped in sets
called strata, and routing is restricted so that each stratum except the first only
receives messages from the previous one and each stratum except the last only
forwards messages to the next (the first and last strata operate as the entry
and exit points respectively). In parallel mixing routing is determined by the
servers themselves in the interest of symmetry and predictability in performance
and security. All t strata consist of σ nodes each. We use MXi,j to indicate
the j-th server in stratum i, and let MX = {MXi,j |i ≤ t, j ≤ σ}. We use
P =

(

C ∪ SP ∪ MX
)

to denote the set of all involved parties. We use a set
of assumptions similar to those of Sect. 5, specifically: (a) all communication is
executed via FΔnet

auth (P) as described in Fig. 2; (b) all messages have the same size
(i.e. messages are padded ahead of time); (c) all computations complete within
one unit slot; (d) each client is assigned to exactly one address.

As we assume a passive adversary and no corruptions, we are able to use
a simple layering of encryptions instead of a more complex onion scheme. In
practice one may wish to use a scheme such as Sphinx [14] or a variant thereof.

� Initialization: Nodes of the same stratum share stratum-specific keying mate-
rial. In practice, because of the long structure of the mixnet, and the large num-
ber of nodes involved, we might have that the same entities will be running
multiple servers across different strata. We can thus regain some robustness by
excluding some entities from each stratum so that each entity is absent from
at least one stratum. Alternatively, we may use per-node keys and allow free
routing, at the cost of slower (in terms of rounds) convergence to a random
permutation.

– On input
(

sid, Init
)

, a party P ∈ P that is not yet initialised, runs Gen(1λ)
to generate a pair of a private and a public key pair (skP , pkP). Then, it
broadcasts the message

(

sid, (init, pkP), P) to all clients and SPs by sending
(

sid, (init, pkP), P ′) to FΔnet

auth (G[P]), for every P ′ ∈ P \ {P}.
– When SPi has received

(

sid, (init, pkSPj
,SPj) for every i ∈ [N] \ {j}, then

begins the engagement in the email message exchange with its assigned clients
and the other SPs.

– When MXi,1 has received
(

sid, (init, pkS , S) for every MXi,j , j > 1, it runs
Gen(1λ) to generate stratum key pair (ski, pki). Then, it broadcasts the

A Universally Composable Framework for the Privacy of Email Ecosystems 215

message
(

sid, (init, pki),MXi,1) to all parties P ′ outside stratum i by send-
ing

(

sid, (init, pki), P ′) to FΔnet

auth (G[P]). For parties P ′′ in stratum i it sends
(

sid, (init, (pki, ski)), P ′′) instead.

� Execution: Our mixnet operates in rounds. A round consists of t+2 sub-
rounds, each consisting of tsub ≥ Δnet + 1 timeslots. We assume timing informa-
tion is publicly available. During each subround, messages are only sent during
the first timeslot. The remaining timeslots exist to ensure that even delayed
messages are delivered before the next subround. To simplify notation we will
introduce three functions on the clock value Cl:

Namely, we define (i) round(Cl) :=
⌊

Cl
tsub(t+2)

⌋

, (ii) sub(Cl) :=
⌊

Cl
tsub

⌋

, and
(iii) slot(Cl) := Cl mod tsub. Essentially, at clock Cl we are in slot slot(Cl) of sub-
round sub(Cl). We also assume that using the above functions use Read Clock
to determine the current value of Cl.

Registration is handled as in Sect. 5. Messages are routed through the mixnet
as follows:

– Messages from clients are queued by their SPs until the round begins.
– Once a round begins, in sub-round 0, clients send their messages to the SPs. In

sub-round 1, each SP uniformly randomly selects a server in the first stratum
to receive each message.

– In the sub-round 2 (3), first-stratum (second) servers tally up their incoming
messages and pad them to a multiple of σ. They shuffle them and send 1

σ of
them to each 2nd-stratum (3rd) server. No padding is required afterwards.

– In sub-round i, where 4 ≤ i ≤ t + 1, the servers of stratum i − 1 shuffle their
received messages and send 1

σ of them to each server in stratum i+1.
– At the end of sub-round t+2, the SPs move messages from their input buffers

to user inboxes.

We will now formally describe our system. Note that some inputs will only
have effect when given during particular sub-rounds or when given to certain
parties (e.g. only Clients). As in the previous section, Enc[X](Y) denotes the
encryption of Y under X’s public key. For brevity, we use Enc[x,y](m) to denote
Enc[x]

(

Enc[y](m)
)

.

Cs ∈ C. On input
(

sid,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, if Cs is not regis-
tered with an SPi and subround(Cl) = 0 and slot(Cl) = 0, the
client sets reg = round(Cl) and runs the registration operation
from Sect. 5.

Cs ∈ C. On input
(

sid,Send, 〈Cs@SPi,M,Cr@SPj〉
)

, if Cs is logged
in to SPi, she prepares the message

(

sid,Enc[SPi]

(

Cs@SPi,Enc[SPj](

Cr@SPj ,Enc[Cr](M)
)))

to be sent to SPi. If, in addition the
sub(Cl) and slot(Cl) are both 0 and round(Cl) > reg, all prepared
messages are sent to SPi.

Cr ∈ C. On input
(

sid,Fetch, Cr@SPj

)

, if Cr is logged in to SPj , it
sends the message

(

sid, Cr@SPj ,Enc[SPj](Fetch)
)

to SPj which,

216 P. Chaidos et al.

if Cr@SPj is a valid address, it decrypts and forwards all
messages Er,1, . . . Er,nr

in Inbox[Cr@SPj] to Cr, and empties
Inbox[Cr@SPj].

Cr ∈ C. Upon receiving (sid, Er,1, . . . , Er,n) from SPj and if Cr has sent
a

(

sid,Fetch, Cr@SPj

)

request, Cr decrypts all ciphertexts and
stores the ones that are not 0, i.e. they correspond to non-dummy
mail messages.

P ∈ P. On input
(

sid,Read Clock), the entity P ∈ P sends
the message

(

sid,Read Clock) to Gclock. Upon receiving
(

sid,Read Clock,Cl) from Gclock, P stores Cl as its local time
and forwards the message

(

sid,Read Clock,Cl) to the environ-
ment.

SPi ∈ SP. On input
(

sid,Enc[SPi]

(

Cs@SPi,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
)))

,
it checks that Cs@SPi ∈ Ad and if so, then it decrypts and adds
(

sid, Cs@SPi,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

to its set of mes-
sages pending to be sent, denoted by Li

send.
SPj ∈ SP. Upon receiving a message (sid,Enc[SPj](·, ·)) from some MXx,y,

SPj checks whether x = t, and if the content is a ciphertext under
its public key that decrypts as a valid address Cr@SPj along with
a ciphertext E. If so, then it adds E to B[Cr@SPj].

MX1,j ∈ S. On receiving
(

sid,Enc[1,...,t]

(

Cr@SPj ,Enc[Cr](M)
)

,X
)

, it checks
that X ∈ SP and if so, it decrypts it and adds
(

sid,Enc[2,...,t]

(

Cr@SPj ,Enc[Cr](M)
)

to its set of messages pend-
ing to be sent, denoted by Li

send.
MXk+1,j ∈ S. On receiving

(

sid,Enc[k,...,t]

(

Cr@SPj ,Enc[Cr](M)
)

,X
)

, it checks
that X = MXk,x for some x and if so, it decrypts it and
adds

(

sid,Enc[k+2,...,t]

(

Cr@SPj ,Enc[Cr](M)
)

to its set of messages
pending to be sent, denoted by Li

send. If k = t − 1, it instead adds
(

sid,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
)

to the list.
P ∈ P. On input

(

sid,Advance Clock), the entity P ∈ P sends the
message

(

sid,Advance Clock) to Gclock.
SPi ∈ SP. On input

(

sid,Advance Clock), If sub(Cl) = 1 and slot(Cl) = 0,
for each message

(

sid, Cs@SPi,Enc[SPj]

(

Cr@SPj ,Enc[Cr](M)
))

in
Li
send, then SPi sends

(

sid,SPi,Enc[1,...,t]

(

Cr@SPj ,Enc[Cr](M)
))

to a randomly selected MX1,j and removes the message from Li
send.

Finally, it sends the message
(

sid,Advance Clock) to Gclock.
MXk,j ∈ S. On input

(

sid,Advance Clock), If sub(Cl) �= k + 1 or
slot(Cl) �= 0, send the message

(

sid,Advance Clock) to Gclock

and return. Otherwise, if k = 1 or k = 2, MXk,j pads the
list Li

send with
(

sid,Enc[k+1,...,t]

(

0)
))

so that its length is a mul-
tiple of σ. The list is then shuffled randomly. For each mes-
sage

(

sid,Enc[k+1,...,t]

(

Cr@SPj ,Enc[Cr](M)
))

in Li
send, then MXk,j

sends
(

sid,MXk,j ,Enc[k+1,...,t]

(

Cr@SPj ,Enc[Cr](M)
))

to server
MXk+1,j mod σ, where j is the message’s position on the list, and

A Universally Composable Framework for the Privacy of Email Ecosystems 217

removes the message from Li
send. Finally, it sends the message

(

sid,Advance Clock) to Gclock.
MXt,j ∈ S. On input

(

sid,Advance Clock), If sub(Cl) = t + 1
and slot(Cl) = 0, for each message

(

sid,Enc[SPj]

(

Cr@SPj ,

Enc[Cr](M)
))

in Li
send, MXt,j forwards it to SPj . Finally it sends

the message
(

sid,Advance Clock) to Gclock.
SPj ∈ SP. On input

(

sid,Advance Clock), If sub(Cl) = t + 2 and
slot(Cl) = 0, it moves the contents of every buffer B[Cr@SPj]
to the corresponding inbox Inbox[Cr@SPj]. Finally it sends the
message

(

sid,Advance Clock) to Gclock.

Efficiency & Delivery times. The overhead of the padding is an O
(

σ2

m

)

multi-
plicative increase in the messages sent, where m is the number of messages sent,
which we expect to be low for typical use cases. Disregarding padding messages,
the cost to deliver a single email, is 3+ t messages compared to 3 in the insecure
case (sender to SPs to SPr to receiver) or 1 + s · n for the “golden standard”
solution of Sect. 5. While in principle this is identical to a cascade (i.e. single
server per stratum) solution, in practice a parallel mix requires a larger t value.
The load per mix server is m

σ messages, compared to m in a cascade.
The encryption overhead depends on the specifics of the cryptosystem. While

naive encryption might cause an exponential blow-up, solutions based on hybrid
encryption, or onioning solutions such as Sphinx can reduce the overhead to a
small linear factor. Delivery latency is also directly proportional to the length of
the mixnet. We note that latency can be significantly reduced by pipelining (i.e.
allowing messages to be sent at the end of every subround rather than at the
end of the first round only), but we opt to describe the base version for clarity.

Security. Here, we will show that the system described above is secure under
the weak anonymity definition and leakage function Leakw.anon(ptr,H), defined
in Eq. (5). For convenience, we will assume that one timeslot maps to one round.

Theorem 2. The parallel mix of Sect. 6, using t strata of σ servers to deliver m

messages is m1−
 t−1
2 � 1

4 4
 t−1
2 � 1

2 log m
 t−1
2 � 1

4 +2|P|εE weakly anonymous assuming
Enc is εE m-IND-CPA secure.

Proof. Due to space considerations, we postpone the proof to the full version of
this work and sketch the main strategy to cover the difference between a real and
simulated execution. We first utilize the m-IND-CPA security of the encryption
and a series of hybrid games to replace message contents with dummies. To
complete the proof, we use Theorem 3 (based on [20]) to show that replacing the
final routing of messages with a random allocation that respects the leakage (i.e.
messages per server) is statistically indistinguishable.

218 P. Chaidos et al.

7 The Combinatorics of Parallel Mixing

Many of the works analysing parallel mixing investigate the probability distri-
bution of a single message traversing the network. This is satisfactory for some
definitions of anonymity but not for our modelling of a global adversary under
universal composability. In our model, the environment determines the sender
and receiver of each message, so it is not sufficient to argue that any one message
is successfully shuffled (i.e. has a uniformly random exit point from the network).

To illustrate, assume messages are represented by a deck of n playing cards,
and further assume that our mixnet operates by simply “cutting” the deck once,
in secret (i.e. choosing k ∈ {0..n−1}, and placing the first k cards at the bottom
of the deck in their original order). It is trivial to simulate drawing a single
card from a deck shuffled this way, by sampling a random card. However, once
a card has been drawn, subsequent draws are determined by the initial order.
The environment knows the initial order because it set it, but the simulator does
not, and the simulation fails.

Our approach will be to show that parallel mixing after a number of rounds
produces a random permutation on the list of input messages, thus allowing
the simulator to produce the list of output messages by sampling a random
permutation of the recipients, independent of the senders (which is crucial as it
does not know the relation between the two).

We will model parallel mixing as a generalisation of the square lattice shuf-
fle of H̊astad [20]. In a square lattice shuffle, n = m2 cards are arranged in an
m × m matrix, and shuffled as follows: in odd rounds each row is shuffled by
an independently uniformly random sampled permutation. In even rounds, the
same happens to columns. It is simple to check that t iterations of this pro-
cess map directly to a t-stratum parallel mix with m servers per stratum, each
with capacity m: we label odd strata as “rows” and even strata as “columns”,
where the i-th server corresponds to the i-th row (column). The mapping is
then completed by noting the result of an odd round is that each row randomly
contributes one of its elements to each column, and vice-versa for even rounds.

Thus H̊astad’s results are applicable to parallel mixing. A second observa-
tion is that because parties are assumed honest, we can assign multiple rows
or columns to one party without invalidating the bounds. We thus reproduce
Theorem 3.6 from [20] and explain how it applies in our construction.

Theorem 3 (H̊astad [20], Theorem 3.6). Let Πt be the distribution defined
by t iterrations of lattice shuffling on m objects. Then

Δ(Πt, Um) ≤ O(m1−
 t−1
2 � 1

4 log m
 t−1
2 � 1

2)

Closer examination of the proof, and assuming m > 81 enables us to dismiss
the big-O and obtain:

Δ(Πt, Um) ≤ m1−
 t−1
2 � 1

4 1.5
 t−1
2 � log m
 t−1

2 � 1
2

This in turn implies

A Universally Composable Framework for the Privacy of Email Ecosystems 219

Corollary 1. For m > 106, 31 rounds of lattice shuffling are statistically 1
m

close to uniform.

The theorem’s proof also gives us insight in the effect of compromised servers
in a stratum: as coupling takes place over 3 iterations (or 2 with the assumption
that another honest iteration will follow), we must allow that a single compro-
mised stratum essentially shortens our network by 3 strata at the worst case.

7.1 A Brief Discussion on Convergence Speed

The bounds stated above describe a parallel mix with many small servers. One
would expect the situation to improve when examining fewer, larger servers. In
that direction, we expect a generalization of H̊astad’s result to yield a tighter
bound. That would be of value as there are few competing designs for random
permutation networks suited to anonymous communication [25].

The core of H̊astad’s analysis is about the probability of “coupling” two
permutations that start out differing by a single transposition, after 2 rounds
of shuffling. A first observation is that with “large” servers, the probability
that the transposition lies in one server (and thus the coupling is immediate)
becomes significant, improving convergence. A second, is that the probability
of a missed coupling is inversely proportional to the number of elements per
server which again implies improved convergence. We believe that a bound of

m1−
 t−1
2 � 1

2 1.5
 t−1
2 � log m
 t−1

2 � σ−1√
σ

 t−1
2 � is possible, which would approximately

halve the rounds required for the bound to reach 1
m , when σ is small, e.g. 17

rounds for σ = 4, m > 300.000. However, we consider the specifics outside the
scope of this work, and leave the question of statistical bounds for parallel mixing
open for further research.

References

1. Alexopoulos, N., Kiayias, A., Talviste, R., Zacharias, T.: MCMix: anonymous mes-
saging via secure multiparty computation. In: USENIX (2017)

2. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastruc-
ture. In: OSDI (2016)

3. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA: a frame-
work for analyzing anonymous communication protocols. In: CSF (2013)

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

5. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 11

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Foundations of Computer Science. IEEE (2001)

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/11535218_11

220 P. Chaidos et al.

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

8. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

9. Chaum, D., et al.: cMix: mixing with minimal real-time asymmetric cryptographic
operations. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS,
vol. 10355, pp. 557–578. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61204-1 28

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging
system handling millions of users. In: Security and Privacy (2015)

12. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: CCS, pp. 340–350 (2010)

13. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type III anony-
mous remailer protocol. In: Security and Privacy, pp. 2–15 (2003)

14. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
Security and Privacy (2009)

15. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 5

16. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

17. Dwork, C.: Differential privacy. In: Automata, Languages and Programming, pp.
1–12 (2006)

18. Golle, P., Juels, A.: Parallel mixing. In: CCS, pp. 220–226. ACM (2004)
19. Goodrich, M.T., Mitzenmacher, M.: Anonymous card shuffling and its applications

to parallel mixnets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012. LNCS, vol. 7392, pp. 549–560. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31585-5 49

20. H̊astad, J.: The square lattice shuffle. Random Struct. Algorithms 29(4), 466–474
(2006)

21. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed:
traffic correlation on tor by realistic adversaries. In: CCS, pp. 337–348 (2013)

22. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

23. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-Go-MIXes providing probabilistic
anonymity in an open system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525,
pp. 83–98. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8 7

24. Kotzanikolaou, P., Chatzisofroniou, G., Burmester, M.: Broadcast anonymous
routing (BAR): scalable real-time anonymous communication. Int. J. Inf. Sec.
16(3), 313–326 (2017)

25. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: horizontally scaling
strong anonymity. In: SOSP. ACM (2017)

26. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication
system with strong anonymity. PoPETS 2016(2), 115–134 (2015)

27. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, unobservability,
pseudonymity, and identity management - a consolidated proposal for ter-
minology. Version v0.25, December 2005

https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-319-61204-1_28
https://doi.org/10.1007/978-3-319-61204-1_28
https://doi.org/10.1007/3-540-36467-6_5
https://doi.org/10.1007/978-3-642-31585-5_49
https://doi.org/10.1007/978-3-642-31585-5_49
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/3-540-49380-8_7

A Universally Composable Framework for the Privacy of Email Ecosystems 221

28. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity —
a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44702-4 1

29. Piotrowska, A., Hayes, J., Elahi, T., Danezis, G., Meiser, S.: The loopix anonymity
system. In: USENIX (2017)

30. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Secu-
rity and Privacy (1998)

31. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 4

32. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006). https://doi.org/10.1007/
11863908 2

33. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Security and Privacy, pp. 44–54 (1997)

34. Syverson, P.F., Tsudik, G., Reed, M.G., Landwehr, C.E.: Towards an analysis
of onion routing security. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44702-4 6

35. Van Den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: SOSP, pp. 137–152 (2015)

36. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 18

https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-36467-6_4
https://doi.org/10.1007/11863908_2
https://doi.org/10.1007/11863908_2
https://doi.org/10.1007/3-540-44702-4_6
https://doi.org/10.1007/3-540-44702-4_6
https://doi.org/10.1007/978-3-540-24638-1_18
https://doi.org/10.1007/978-3-540-24638-1_18

State Separation for Code-Based
Game-Playing Proofs

Chris Brzuska1(B), Antoine Delignat-Lavaud2, Cédric Fournet2,
Konrad Kohbrok1, and Markulf Kohlweiss2,3

1 Aalto University, Helsinki, Finland
chris.brzuska@gmail.com

2 Microsoft Research, Redmond, USA
3 University of Edinburgh, Edinburgh, UK

Abstract. The security analysis of real-world protocols involves reduc-
tion steps that are conceptually simple but still have to account for many
protocol complications found in standards and implementations. Taking
inspiration from universal composability, abstract cryptography, process
algebras, and type-based verification frameworks, we propose a method
to simplify large reductions, avoid mistakes in carrying them out, and
obtain concise security statements.

Our method decomposes monolithic games into collections of stateful
packages representing collections of oracles that call one another using
well-defined interfaces. Every component scheme yields a pair of a real
and an ideal package. In security proofs, we then successively replace each
real package with its ideal counterpart, treating the other packages as
the reduction. We build this reduction by applying a number of algebraic
operations on packages justified by their state separation. Our method
handles reductions that emulate the game perfectly, and leaves more
complex arguments to existing game-based proof techniques such as the
code-based analysis suggested by Bellare and Rogaway. It also facilitates
computer-aided proofs, inasmuch as the perfect reductions steps can be
automatically discharged by proof assistants.

We illustrate our method on two generic composition proofs: a proof
of self-composition using a hybrid argument; and the composition of
keying and keyed components. For concreteness, we apply them to the
KEM-DEM proof of hybrid-encryption by Cramer and Shoup and to the
composition of forward-secure game-based key exchange protocols with
symmetric-key protocols.

1 Introduction

Code-based game-playing by Bellare and Rogaway [8] introduces pseudo-code
as a precise tool for cryptographic reasoning. Following in their footsteps, we
would like to reason about games using code, rather than interactive Turing
machines [48]. Our code uses state variables and function calls, hiding the details
of operating on local tapes and shared tapes. Function calls enable straightfor-
ward code composition, defined for instance by inlining, and enjoy standard but
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 222–249, 2018.
https://doi.org/10.1007/978-3-030-03332-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_9&domain=pdf

State Separation for Code-Based Game-Playing Proofs 223

useful properties, such as associativity. In the following, we refer to code units
A, R and G as code packages. If adversary A calls reduction R and R calls game
G, we may see it either as code A-calling-R that calls code G, or as code A calling
code R-calling-G. This form of associativity is used to define reductions, e.g., in
abstract cryptography and in Rosulek’s book The Joy of Cryptography [44].

As a first example, consider indistinguishability under chosen plaintext
attacks, coded as a game IND-CPAb with secret bit b, and let A be an adver-
sary that interacts with this game by calling its encryption oracle, which we
write A ◦ IND-CPAb. As a construction, consider a symmetric encryption scheme
based on a pseudorandom function (PRF). We can decompose IND-CPAb into
some corresponding wrapper MOD-CPA that calls PRFb, where b now controls ide-
alization of the PRF. The equality IND-CPAb = MOD-CPA ◦ PRFb can be checked
syntactically (and can be automatically discharged by proof assistants). IND-
CPA security follows from PRF security using MOD-CPA as reduction:

A ◦(MOD-CPA) ◦ PRFb = (A ◦ MOD-CPA) ◦ PRFb.

The extended version of this paper [15] presents this example in more details,
including a discussion of our definitional choices. In particular, we encode all
games as decisional games between a real game and an ideal game, following the
tradition of [12,18,35].

KEM-DEM. Our second example, the composition of a key encapsulation
mechanism (KEM) with a one-time deterministic encryption scheme (DEM),
involves associativity and interchange, another form of code rearrangement
(defined in Sect. 2). Cramer and Shoup [20] show that the composition of a KEM
and a DEM that are both indistinguishable under chosen ciphertext attacks
(IND-CCA) results in an IND-CCA public-key encryption scheme. We give a
new formulation of their proof. While Cramer and Shoup consider standard IND-
CCA security, we additionally require ciphertexts to be indistinguishable from
random ($-IND-CCA-security, defined in Sect. 4). As sampling random strings
is a key-independent operation, this makes the ideal game behaviour closer to
an ideal functionality.

We first reduce to the security of the KEM, replacing the encapsulated KEM
key with a uniformly random key, then we reduce to the security of the DEM,
which requires such a key. To facilitate these two reductions and analogously to
the previous example, we decompose the PKE-CCA game for public-key encryption
into a wrapper MOD-CCA that calls the games for KEM and DEM security. That
is, we use a parallel composition of the KEM and the DEM game. As the KEM
and the DEM share the encapsulated KEM key, we need to enable state-sharing
between both games. We achieve this by also decomposing the KEM and DEM
security games into two packages such that they both contain a so-called KEY
package that stores the shared key.

The KEM Game. Figure 1a depicts the decomposed $-IND-CCA KEM game
using a KEY package (also see p. 16, Definition 9). The formal semantics of the
graph-based notation of package composition is introduced in Sect. 2.2.

224 C. Brzuska et al.

The $-IND-CCA KEM game allows the adversary to make a KEMGEN query
to initialize the game as well as encapsulation queries ENCAP and decapsulation
queries DECAP. Upon receiving an encapsulation query ENCAP, the KEM package
makes a SET(k) query to KEY to store the real encapsulation key k, if the bit b
is 0. In turn, if the bit b is 1, the KEM package makes a GEN query to the KEY
package that samples a key uniformly at random.

In standard formulations of KEM security, the adversary not only receives
an encapsulation, but also the encapsulated key (or a random key, if b = 1) as
an answer to ENCAP. In our decomposed equivalent formulation, the adversary
can access the encapsulated key (or a random key, if b = 1) via a GET query to
the KEY package (also see p. 19, Definition 13 for the $-IND-CCA KEM game).

The DEM Game. Figure 1b depicts the decomposed $-IND-CCA DEM game
that also contains a KEY package. Here, the adversary can ask a GEN query to
the KEY package which induces the KEY package to sample a uniformly random
key that the DEM package obtains via a GET query to the KEY package. Note
that in the DEM game, the adversary only has access to the GEN oracle of the
KEY package, but neither to SET nor to GET. Moreover, in the DEM game, the
adversary can make encryption and decryption queries (see p. 19, Definition 14
for the definition of $-IND-CCA security for DEMs).

Fig. 1. Decomposed KEM and DEM games

KEM-DEM security. Recall that we prove that the KEM-DEM construction is
a $-IND-CCA secure public-key encryption scheme. Using the packages KEM, DEM
and KEY, we now write the $-IND-CCA security game for public-key encryption
in a modular way, see Fig. 2. In the extended version of this paper [15] we prove
via inlining, that the modular game in Fig. 2a, is equivalent to the monolithic $-
IND-CCA game for public-key encryption with secret bit 0 and that the modular
game in Fig. 2e, is equivalent to the monolithic $-IND-CCA game for public-key
encryption with secret bit 1.

Thus, we first idealize the KEM package and then idealize the DEM package.
Technically, this works as follows. Starting from the composition in Fig. 2a, we
lengthen the edges of the graph such that the KEM0 and KEY packages are on the

State Separation for Code-Based Game-Playing Proofs 225

right side of a vertical line (see Fig. 2b). Analogously to the first example, we use
associativity (and additional rules, explained shortly) to reduce to the security
of KEM by noticing that the packages on the left side of the vertical line call
the packages on the right side of the vertical line, where the latter correspond
to the KEM security game.

Reasoning on the graph corresponds to reasoning on compositions of pack-
ages, defined via the sequential operator ◦ and the parallel composition operator,
see Sect. 2. The lengthening of edges corresponds to inserting forwarding pack-
ages, denoted identity ID. The aforementioned interchange rule then allows to
formally interpret the vertical line in the graph as a sequential composition of
the packages on the left side of the line with the packages on the right side. For
a graphical depiction of the identity rule and the interchange rule, see Sect. 2.2.

After applying the KEM assumption (which modifies KEM0 to KEM1), we con-
tract the graph which, again, corresponds to applying the interchange rule and
then removing IDs, see Fig. 2c. Via the analogous mechanism, we stretch the
graph edges such that the DEM0 and KEY appear on the right side of a vertical
line, see Fig. 2d. We apply the DEM assumption and then contract the graph to
obtain Fig. 2e, as desired.

Fig. 2. KEM-DEM proof.

226 C. Brzuska et al.

Contents. § 2 Proof methodology. In this section, we set up the underlying
code framework and define sequential and parallel composition. We specify rules
to operate on package compositions such as the aforementioned associativity,
interchange and identity rules. Those rules enable the graphical interpretation
as a call graph which we explain in Sect. 2.2.

§ 3 KEY package composition. We introduce keying games (such as the KEM
game) and keyed games (such as the DEM game) which both contain a KEY
package, introduced in this section. In a single key lemma we prove indistin-
guishability properties of composed keyed and keying packages. A core argument
in the proof of the lemma is that the idealization of the keying game leads to
only calling the GEN oracle. As keyed games rely on uniformly random keys, we
model their security formally by inserting an identity package IDGEN that only
forwards the GEN oracle. Based on Sect. 2.2, we maintain a coherent mapping
to the graphical notation in which accessible oracles are simply labels on edges.

§ 4 KEM-DEM. We provide the details of the KEM-DEM construction and proof
discussed earlier. In particular, the security reduction is a straightforward appli-
cation of the single key lemma.

§ 5 Multi-Instance Packages and Composition. In this section, we generalize to
the multi-instance setting and carry out a multi-instance-to-single-instance com-
position proof. We then build on the multi-instance lemma to obtain multi-
instance version of the single key lemma.

Avoiding multi-to-single instance reductions is one of the motivations of com-
position frameworks (see below). Hence, we see it as a sanity check that our
proof methodology captures multi-to-single instance reductions. Note that also
in the game-based setting, general multi-instance to single-instance reductions
for classes of games have been provided before (see, e.g., Bellare, Boldyreva and
Micali [5]).

§ 6 Composition of forward-secure key exchange. To showcase our key-
composition techniques in the multi-instance setting, we re-prove a composition
theorem for forward-secure game-based key exchange and arbitrary symmetric-
key based protocols such as secure channels. This result was proven in Brzuska,
Fischlin, Warinschi, and Williams [14,17] and becomes a straightforward appli-
cation of the multi-instance key lemma. Our results are closely related to com-
position results very recently shown in the framework of CryptoVerif [13].

Limitations and Challenges. Our method considers distinguishing games
for single-stage adversaries [42], that is, we do not consider games where the
adversary is split into separate algorithms whose communications are restricted.
Although suitable extensions might exist (e.g., by extending adversaries into
packages that can call each other), we chose to restrict our current method to
the simpler single-stage setting.

Another apparent restriction is that we encode all security properties via
indistinguishability. Search problems such as strong unforgeability can also be

State Separation for Code-Based Game-Playing Proofs 227

encoded via indistinguishability. While the encoding might seem surprising when
not used to it, at a second thought, an appropriate encoding of an unforgeability
game also simplifies game-hopping: Imagine that we insert an abort condition
whenever a message is accepted by verification that was not signed by the signer.
This step corresponds to idealizing the verification of the signature scheme so
that it only accepts messages that were actually signed before.1

A challenge that all cryptographic works on real-world protocols face is to
decompose a protocol that does not inherently have a modular structure into
cryptographic building blocks. As demonstrated by [11,30,32] this can be done
even for archaic protocols such as TLS. Our method is influenced by the insights
of the miTLS project to allow for the necessary flexibility.

Related Techniques. Our approach is inspired by important conceptual works
from cryptography and programming language. In particular, we would like
to acknowledge the influences of Canetti’s universal composability framework
(UC) [18], Renner’s and Maurer’s work on random systems and abstract cryp-
tography [36,37], process algebras, such as the π-calculus of Milner, Parrow, and
Walker [39], and type-based verification frameworks used, e.g., to verify the TLS
protocol [10]. We now discuss these influences in detail.

Cryptographic Proof Frameworks. Composable proofs in the pen-and-paper
world as pioneered by Backes, Pfitzmann, Waidner and by Canetti have a long
history full of rich ideas [1,18,26,27,33,38,41,49], such as considering an envi-
ronment that cannot distinguish a real protocol from an ideal variant with strong
security guarantees.

Likewise, Maurer’s and Renner’s work on random systems, abstract cryp-
tography and constructive cryptography [34–37] inspired and encouraged our
view that a more abstract and algebraic approach to cryptographic proofs is
possible and desirable. Several of our concepts have close constructive cryp-
tography analogues: for instance, our use of associativity in this paper is simi-
lar to composition-order independence in Maurer’s frameworks [35]. Sequential
and parallel composition also appears in cryptographic algebras. An ambitious
expression of the idea is found in [36, Sect. 6.2]. Abstract cryptography has an
associativity law and neutral element for sequential composition and an inter-
change law for parallel composition. The same line of work [35,36] introduces
a distinguishing advantage between composed systems and makes use of trans-
formations that move part of the system being considered into and out of the
distinguisher.

Our focus is not on definitions but on writing game-based security proofs.
As such we are also influenced by game-based composition works, e.g., Brzuska,
Fischlin, Warinschi, and Williams [17]. We aim to facilitate security proofs for
full-fledged standardized protocols [19,23,28,32]. Such proofs typically involve
large reductions relating a complex monolithic game to diverse cryptographic
assumptions through an intricate simulation of the protocol.
1 CryptoVerif [12] also encodes authentication properties as indistinguishability.

228 C. Brzuska et al.

Language-Based Security and Cryptography. Algebraic reasoning is at the core
of process calculi such as the π-calculus by Milner, Parrow and Walker [39].
They focus on concurrency with non-determinism, which is also adequate for
symbolic reasoning about security protocols. Subsequently, probabilistic process
algebras have been used to reason computationally about protocols, e.g., in the
work of Mitchell, Ramanathan, Scedrov, and Teague [40] and the computational
indistinguishability logic (CIL) of Barthe, Crespo, Lakhnech and Schmidt [3].
Packages can be seen as an improvement of CIL oracle systems, with oracle
visibility and associativity corresponding to the context rules of CIL.

Monadic composition, a generalisation of function composition to effectful
programs, is an central principle of functional languages such as Haskell, F�, and
F� [29,45,46]. Associativity is also used by Mike Rosulek in his rich undergradu-
ate textbook draft The Joy of Cryptography to make the cryptographic reduction
methodology accessible to undergraduate students with no background in com-
plexity theory [44]. Our concept of packages is inspired by module systems in
programming languages such as F �, OCaml, SML (see e.g. Tofte [47]). Our ora-
cles similarly define a public interface for calling functions that may share private
state.

Existing techniques for overcoming the crisis of rigour in provable security
as formalised by Bellare and Rogaway [8] and mechanised in Easycrypt [4] have
focused on the most intricate aspects of proofs. Easycrypt supports a rich mod-
ule system similar to the ones found in functional programming languages [2]
(including parametric modules, i.e. functors), but it has not yet been used to
simplify reasoning about large reductions in standardized protocols.

The closest to our idea of package-based reductions is the modular code
structure of miTLS, an cryptographically verified implementation of TLS coded
in F� [10,11,22,25]. Fournet, Kohlweiss and Strub [25] show that code-based
game rewriting can be conducted on actual implementation code, one module at
a time, with the rest of the program becoming the reduction for distinguishing
the ideal from the real version of the module. Packages are simpler than F�

modules, with interfaces consisting just of sets of oracle names, whereas F�

provides a rich type system for specifying module interfaces and verifying their
implementations.

Our method draws from both formal language techniques and pen-and-paper
approaches for cryptographic proofs. We see facilitating the flow of information
between the two research communities as an important contribution of our work.
In this paper, we use pseudo-code, treating the concrete syntax and semantics of
our language as a parameter. This simplifies our presentation and make it more
accessible to the cryptographic community. Our method can be instantiated
either purely as a pen-and-paper method or via using a full-fledged programming
language, equipped with a formal syntax and operational semantics. The latter
might also allow the development of tools for writing games and automating
their proofs.

State Separation for Code-Based Game-Playing Proofs 229

2 Proof Methodology

As discussed in the introduction, we suggest to work with pseudo-code instead of
Turing machines as a model of computation and thus, this section will start by
providing a definition of code. We then continue to define functions and function
calls (to probabilistic and stateful functions), also known as oracles and oracle
calls in the cryptographic literature. We will then collect several such functions
(oracles) into a package, and when the package itself does not make any function
calls, we call a package closed or a game. We then define sequential composition
of 2 packages, where the first package calls functions (oracles) defined by the
second package. Moreover, we define parallel composition which allows to take
the functions defined by two packages and to take their union.

Then, we move to more advanced packages and algebraic rules that allow
to implement the “moving to the right” operation that we hinted to in the
introduction.

2.1 Composing Oracle Definitions

While we advocate to work with pseudo-code, we do not define a particular
language, but rather parametrize our method by a language for writing algo-
rithms, games, and adversaries. We specify below the properties of the syntax
and semantics of any language capable of instantiating our approach. We first
describe our pseudo-code and give a probabilistic semantics to whole programs,
then we explain our use of functions for composing code.

Definition 1 (Pseudo-Code). We assume given sets of values v, . . . ,
local variables x, y, . . . , expressions e, state variables a, T (uppercase denotes
tables), . . . , and commands c.

Values provide support for booleans, numbers, and bitstrings. Expressions
provide support for operations on them. Expressions may use local variables, but
not state variables.

Commands include local-variable assignments x ← e, sampling from a dis-
tribution x ←$ D, state updates T [x] ← e, sequential compositions c; c′, and
return e for returning the value of e. We write fv(c) for the state variables
accessed in c. We assume given default initial values for all state variables, e.g.
T ← ∅.

We write Pr[v ← c] for the probability that command c returns v. (We only
consider programs that always terminate.) We assume this probability is stable
under injective renamings of local variables and state variables.

For brevity, we often write commands with expressions that depend on the
current state, as a shorthand for using intermediate local variables for reading
the state, e.g. we write T [x] ← T [x]+1 as a shorthand for t ← T [x];T [x] ← t+1.

Definition 2 (Functions). We assume given a set of names f, . . . for func-
tions. We let O range over function definitions of the form f(x) �→ c. and write
Ω = {fi(xi) �→ ci}i=1..n for a set of n function definitions with distinct function

230 C. Brzuska et al.

names. We write dom(Ω) for the set of names {f1, . . . , fn} defined in Ω and
Σ(Ω) for the set of state variables accessed in their code.

We extend commands with function calls, written y ← f(e). We write fn(c)
for the set of function names called in c, and similarly define fn(O) and fn(Ω).
We say that a term is closed when this set is empty.

We interpret all function calls by inlining, as follows: given the definition
f(x) �→ c; return e′, the call y ← f(e) is replaced with c; y ← e′ after replacing x
with e in the function body. We write inline(c,Ω) for the code obtained by inlining
all calls to the functions f1, . . . fn defined by Ω in the command c. Similarly,
we write inline(Ω′, Ω) for the set of definitions obtained by inlining all calls to
functions in Ω into the code of the definitions of Ω′.

We consider function definitions up to injective renamings of their local vari-
ables.

Packages. We now introduce the general definition of packages as collections
of oracles that subsume adversaries, games and reductions. Packages are sets of
oracles Ωs defined above. Intuitively, we will treat the state variables of their
oracles as private to the package, i.e., the rest of the code only get oracle access.
Looking ahead to the composition of packages we endow each package with an
output interface consisting of the oracles names that it defines and an input
interface consisting of the oracles names that it queries.

Definition 3 (Packages). A package M is a set of function definitions Ω (its
oracles) up to injective renamings of its state variables Σ(Ω).

We write in(M) = fn(Ω) for its input interface and out(M) = dom(Ω) for its
output interface.

We disallow internal calls to prevent recursion. Technically, the disallowing of
internal calls is captured (a) by the input interface of a package, since this input
provides all oracles that are called by the oracles in Ω, and (b) by the Definition 4
of sequential composition that specifies that oracle calls are instantiated by the
oracles of another package.

We often consider families of oracles OΠ and packages MΠ parametrized by Π,
treating parameters as symbolic values in their code. We usually omit parameters
and refer to oracles and packages by their name, unless context requires further
clarification. In particular, we write in(MΠ) only if the input interface differs for
different parameters; out(M) never depends on the parameters.

Package composition. We say that Mmatches the output interface of M′ iff in(M) ⊆
out(M′). When composing two matching packages M ◦ M′, we inline the code of all
oracles of M′ called by oracles in M, as specified in Definition 2.

Definition 4 (Sequential Composition). Given two packages M with oracles
Ω and M′ with oracles Ω′ such that M matches M′ and Σ(Ω) ∩ Σ(Ω′) = ∅, their
sequential composition M ◦ M′ has oracles inline(Ω,Ω′).

Thus, we have out(M ◦ M′) = out(M) and in(M ◦ M′) = in(M′).

State Separation for Code-Based Game-Playing Proofs 231

Uniqueness. When describing a package composition, one cannot use the same
package twice, e.g., it is not possible to have compositions such as (M ◦ M’ ◦ M).
Note that this is a fundamental restriction, since it is unclear how to define the
state of such a composition, since there would be copies of pointers to the same
state (a.k.a. aliases).

Lemma 1 (Associativity). Let M0, M1, M2 such that in(M0) ⊆ out(M1) and
in(M1) ⊆ out(M2). We have (M0 ◦ M1) ◦ M2 = M0 ◦(M1 ◦ M2).

Proof outline. We rename the local variables and state variables of the three
packages to prevent clashes, then unfold the definition of sequential compositions
by inlining, and rely on the associativity of their substitutions of function code
for function calls.

Identity packages. Some proofs and definitions make one or more oracles of a
package unavailable to the adversary, which is captured by sequential composi-
tion with a package that forwards a subset of their oracle calls:

Definition 5 (Identity Packages). The identity package IDX for the names
X has oracles {f(x) �→ r ← f(x); return r}f∈X .

Hence, for X ⊆ out(M), the package IDX ◦ M behaves as M after deleting the
definitions of oracles outside X. In particular, the next lemma gives some identity
compositions that do not affect a package.

Lemma 2 (Identity Rules). For all packages M, we have M = IDout(M) ◦ M and
M = M ◦ IDin(M).

Proof outline. By definition of sequential composition and basic properties of
substitutions, we obtain the following from IDout(M) ◦ M:
We substitute ‘f(x) �→ c; return r’ in ‘f(x) �→ r ← f(x); return r’ and yield
‘f(x) �→ c; r ← r; return r’ which is equivalent to ‘f(x) �→ c; return r’. Analo-
gously, for M ◦ IDin(M):
We substitute ‘f(x) �→ r ← f(x); return r’ in ‘r′ ← f(x)’ and yield ‘r ←
f(x); r′ ← r’ which is equivalent to ‘r′ ← f(x)’. 	

We now define parallel composition, which is essentially a disjoint union
operator that takes two packages and builds a new package that implements
both of them in parallel. It is important to note that only the output interfaces
of M and M′ need to be disjoint, while they can potentially share input oracles.
This feature allows for parallel composition of several packages that use the same
input interface.

Definition 6 (Parallel Composition). Given two packages M with oracles Ω
and M′ with oracles Ω′ such that out(M) ∩ out(M′) = ∅ and Σ(Ω) ∩ Σ(Ω′) = ∅,
their parallel composition M

M′ (alternatively (M|M′)) has oracles Ω � Ω′. Thus,
out(M

M′) = out(M) � out(M′) and in(M
M′) = in(M) ∪ in(M′).

(This composition may require preliminary renamings to prevent clashes between
the state variables of M and M′.)

232 C. Brzuska et al.

Lemma 3. Parallel composition is commutative and associative.

The proof of these properties directly follows from our definition of packages.
Associativity enables us to write n-ary parallel compositions of packages. Next,
we show that sequential composition distributes over parallel composition. (The
conditions in the lemma guarantee that the statement is well defined.)

Lemma 4 (Interchange). For all packages M0, M1, M′
0, M′

1, if out(M0) ∩
out(M1) = ∅, out(M′

0) ∩ out(M′
1) = ∅, out(M0) ⊆ in(M′

0) and out(M1) ⊆ in(M′
1), then

M0
M1

◦ M′
0

M′
1

=
M0 ◦ M′

0

M1 ◦ M′
1

.

Proof outline. This equality follows from our definition, relying on the property
that function-call inlining applies pointwise to each of the oracle definitions in
the 3 sequential compositions above.

2.2 Graphical Representation of Package Composition

Writing fully-precise package compositions can be tedious. Recall the KEM-
DEM proof of Fig. 2; the step from (a) to (b) corresponds to applying a mix of
interchange and identity rules:

CCA ◦
(
KEM0

DEM0
◦ KEY

)
= CCA ◦

(
ID ◦ KEM0
DEM0 ◦ ID ◦ KEY

)
= CCA ◦

((
ID

DEM0
◦ KEM0

ID

)
◦ KEY

)

Instead of writing such steps explicitly, we propose a graphical representation
of package composition that allows us to reason about compositions “up to”
applications of the interchange, identity and associativity rules.

From terms to graphs. Identity packages IDS map
to edges, one for each oracle in the set S. Other
packages map to a node labelled with the package
name. Each output oracle of the package maps to
an incoming edge of the node, labelled with the ora-
cle name. Similarly, input oracles map to outgoing
edges.

Sequential composition A ◦ B sim-
ply consists of merging the outgoing
edges of A with the incoming edges of
B with the same label. Note that in this
process, some of the incoming edges of
B may be dropped, i.e. A may not use all of the oracles exported by B.

State Separation for Code-Based Game-Playing Proofs 233

The parallel composition of A and B is sim-
ply the union of the graphs constructed from
A and B. By definition of parallel composition,
out(A) ∩ out(B) = ∅, while input oracles may
be used both by A and B. We merge shared
input edges (i.e. unconnected outgoing edges)
in the resulting graph to capture this sharing.

From graphs to terms. By inductive
application of the above 3 rules, one can
construct a graph representing any term.
However, some information is lost in the
process: most importantly, the order in
which sequential and parallel composi-
tions are applied. For instance, consider
the left-hand side and right-hand side
of the interchange rule both terms map
to the same graph. This is by design,
as we intend to represent terms modulo
interchange. By drawing explicit boxes
around parallel and sequential compo-
sitions, it is possible to ensure that a
graph can be interpreted unambiguously
as a term. For instance, the figure on the
right shows how to depict the interchange rule on graphs with boxes.

2.3 Games and Adversaries

Games. A game is a package with an empty input interface. We model security
properties of a cryptographic scheme as indistinguishability between a pair of
games, usually parameterized by a bit b ∈ {0, 1} (which is equivalent to a single
game that draws a bit and then runs one of the two games at random.).

Adversaries. An adversary A is a package with output interface {run} that
returns a bit 0 or 1. We model the adversary as a package whose input interface
is equal to the set of names of the oracles of the game that the adversary is
meant to interact with.

Next, we define games and adversaries such that their composition A◦ G be
a closed package of the form R = {run() �→ c; return g}.

Since Definition 1 defines our probabilistic semantics only on com-
mands, we first extend it to such closed packages, defining Pr [1 ← R] as
Pr [1 ← c; return g]. (The command c; return g is the ‘top-level’ code g ←
run(); return g after inlining the definition of run in R.)

Definition 7 (Games). A game is a package G such that in(G) = ∅. An adver-
sary against G is a package A such that in(A) = out(G) and out(A) = {run}.

234 C. Brzuska et al.

A game pair consists of two games G0 and G1 that define the same oracles:
out(G0) = out(G1). Naturally, a game Gb with a binary parameter b defines a
game pair. We thus use the two notions interchangeably.

We now define distinguishing advantages. Note that we operate in the con-
crete security setting as it is more adequate for practice-oriented cryptography
and therefore only define advantages rather than security in line with the cri-
tique of Rogaway [43], Bernstein and Lange [9]. Our ideas can be transferred
analogously to the asymptotic setting.

Definition 8 (Distinguishing Advantage). The advantage of an adversary
A against a game pair G is

εG(A) =
∣∣Pr

[
1 ← A ◦ G0] − Pr

[
1 ← A ◦ G1]∣∣ .

In the rest of the paper, we may refer to the advantage function εG in this defi-
nition by writing G0

εG≈ G1. As an example, we restate below the usual triangular
equality for three games with the same oracles.

Lemma 5 (Triangle Inequality). Let F, G and H be games such that out(F) =
out(G) = out(H). If F

ε1≈ G, G
ε2≈ H, and F

ε3≈ H, then ε3 ≤ ε1 + ε2.

The triangle inequality helps to sum up game-hops. Many game-hops will exploit
simple associativity, as the following lemma illustrates.

Lemma 6 (Reduction). Let G be a game pair and let M be a package such that
in(M) ⊆ out(G). Let A be an adversary that matches the output interface of M,
then for both b ∈ {0, 1}, the adversary D := A ◦ M satisfies

Pr
[
1 ← A ◦ (M ◦ Gb)

]
= Pr

[
1 ← D ◦ Gb

]
.

As a corollary, we obtain A ◦ M ◦ G0
ε(A)≈ A ◦ M ◦ G1 for ε(A) = εG(A ◦ M).

Proof. The proof follows by associativity of sequential composition, i.e.,
Lemma 1 yields A ◦ (M ◦ Gb) = (A ◦ M) ◦ Gb = D ◦ Gb.

3 KEY Package Composition

Many cryptographic constructions emerge as compositions of two cryptographic
building blocks: The first building block generates the (symmetric) key(s) and
the second building block uses the (symmetric) key(s). In the introduction, we
already discussed the popular composition of key encapsulation mechanisms
(KEM) with a deterministic encryption mechanism (DEM). Likewise, complex
protocols such as TLS first execute a key exchange protocol to generate sym-
metric keys for a secure channel. In composition proofs, the keying building
block and the keyed building block share the (symmetric) key(s). To capture
this shared state, we introduce a key package KEYλ that holds a single key k of
length λ. (We handle multiple keys in Sect. 5.)

State Separation for Code-Based Game-Playing Proofs 235

Definition 9 (Key Package). For λ ∈ N, KEYλ is the package that defines the
three oracles below, i.e., out(KEYλ) = {GEN,SET,GET}.

GEN()

assert k = ⊥
k ←$ {0, 1}λ

SET(k′)

assert k = ⊥
k ← k′

GET()

assert k �= ⊥
return k

Hence, this package encapsulates the state variable k, initialized (once) by call-
ing either GEN or SET, then accessed by calling GET. This usage restriction is
captured using asserts, and all our definitions and theorems apply only to code
that never violate assertions.

Definition 10 (Keying Games). A keying game K is a game composed of a
core keying package CK and the key package as follows:

Kb,λ =
CKb,λ

ID{GET}
◦ KEYλ.

where b ∈ {0, 1}, in(CK0,λ) = {SET}, and in(CK1,λ) = {GEN}.
Definition 11 (Keyed Games). A keyed game D is a game composed of a
core keyed package CD and the key package as follows:

Db,λ =
ID{GEN}
CDb,λ

◦ KEYλ.

where b ∈ {0, 1} and in(CDb,λ) = {GET}.
Lemma 7 (Single Key). Keying games K and keyed games D are compatible
when they have the same key length λ and they define disjoint oracles, i.e.,
out(K)∩out(D) = ∅. For all compatible keying and keyed games, with the notations
above, we have

(a)
CK0

CD0
◦ KEYλ εa≈ CK1

CD1
◦ KEYλ, (b)

CK0

CD0
◦ KEYλ εb≈ CK0

CD1
◦ KEYλ,

where, for all adversaries A,

εa(A) ≤εK

(
A ◦ IDout(CK)

CD0

)
+ εD

(
A ◦ CK1

IDout(CD)

)
,

εb(A) ≤εa(A) + εK

(
A ◦ IDout(CK)

CD1

)
.

Proof. Figure 3 gives the proof outline using graphs: To show (a), we idealize
the core keying package, switching from SET to GEN (left); we idealize the core
keyed package (Fig. 3, right). To show (b), we also de-idealize the core keying
package, switching back form GEN to SET (left).

We give a more detailed proof below, using the algebraic rules of Sect. 2 to
rewrite packages in order to apply Definitions 10 and 11.

236 C. Brzuska et al.

Fig. 3. Reduction to the keying game (left) and the keyed game (right).

(1) Idealizing the core keying package. The first intermediate goal is to bring
the package into a shape where we can use Definition 10 to change CK0 into CK1.
Below, for all adversaries A, we have ε1(A) = εK

(
A ◦ IDout(CK)

CD0

)
.

CK0

CD0
◦ KEYλ =

IDout(CK)
CD0

◦ CK0

ID{GET}
◦ KEYλ (identity & interchange)

ε1≈IDout(CK)
CD0

◦ CK1

ID{GET}
◦ KEYλ =

CK1

CD0
◦ KEYλ

(2) Idealizing the core keyed package. As a second step, we want to use Defini-
tion 11 to move from CD0 to CD1 and thus need to make ID{GEN} appear. Note
that we can use ID{GEN} because {GEN} is equal to the input interface of CK1.
This was not possible before idealizing to CK1, since in(CK0) = {SET}. Below, for
all adversaries A, we have ε2(A) = εD

(
A ◦ CK1

IDout(CD)

)
.

CK1

CD0
◦ KEYλ =

CK1

IDout(CD)
◦ ID{GEN}

CD0
◦ KEYλ (identity & interchange)

ε2≈ CK1

IDout(CD)
◦ ID{GEN}

CD1
◦ KEYλ =

CK1

CD1
◦ KEYλ

(3) De-idealizing the core keying package. Finally, we move back from CK1 to
CK0, taking the inverse steps of idealizing the core keying package. We obtain
ε3(A) = εK

(
A ◦ IDout(CK)

CD1

)
.

4 KEM-DEMs

Cramer and Shoup [20, Sect. 7] show that composing a CCA-secure key encap-
sulation mechanism (KEM) and a CCA-secure data encapsulation mechanism
(DEM) yields a CCA-secure public-key encryption (PKE). Using the KEY package
composition introduced in Sect. 3, we give a new formulation of their KEM-DEM
proof.

Schemes are function definitions that do not employ state variables. We write
Mβ for a package calling functions of the scheme β in its parameters. Formally,
for a package M with oracles Ω, Mβ denotes the package with oracles inline(Ω, β).

State Separation for Code-Based Game-Playing Proofs 237

We denote the set of functions defined by a PKE scheme with ciphertext
expansion clen(|m|) by ζ = {kgen, enc, clen, dec} with standard semantics. We
denote the set of functions of a DEM scheme with key length λ and ciphertext
expansion clen(|m|) by θ = {λ, enc, clen, dec}, where we recall that enc is a
deterministic, one-time encryption algorithm. We prepend function names by ζ
and θ for disambiguation. We denote a KEM scheme with output key length λ
and encapsulation length elen by η = {kgen, encap, elen, decap, λ}, where kgen
produces a key pair (pk , sk), encap(pk) generates a symmetric key k of length
η.λ and a key encapsulation c of length η.elen, while decap(sk , c) given sk and
an encapsulation c returns a key k. For all three schemes, we consider per-
fect correctness. Throughout this section, we consider a single symmetric-key
length λ that corresponds to the length of the symmetric key used by the DEM
scheme as well as the length of the symmetric key produced by the encapsulation
mechanism η.encap. We now turn to the security notions which are $-IND-CCA
security notions for all three primitives, i.e., we consider ciphertexts that are
indistinguishable from random.

Definition 12 (PKE-CCA Security). Let ζ be a PKE-scheme. We define its
$-IND-CCA advantage εζ

PKE−CCA, where PKE − CCAb,ζ defines the following oralces,
i.e., out(PKE − CCAζ) = {PKGEN,PKENC,PKDEC}.

PKGEN()
assert sk = ⊥
pk, sk ←$ ζ.kgen()

return pk

PKENC(m)
assert pk �= ⊥
assert c = ⊥
if b = 0 then

c ←$ {0, 1}clen(|m|)

else

c ←$ ζ.enc(pk, m)

return c

PKDEC(c′)
assert sk �= ⊥
assert c′ �= c

m ← ζ.dec(sk, c′)

return m

We model the KEM as a keying and the DEM as a keyed package. We will use
the KEYλ package as specified in Definition 9. Note that we additionally require
that encapsulations are indistinguishable from random.

Definition 13 (KEM-CCA Security). Let η be a KEM. We define
its $-IND-CCA advantage εη

KEM−CCA using a keying game whose core key-
ing package KEMb,η defines the following oracles, so that out(KEM − CCAη) =
{KEMGEN,ENCAP,DECAP,GET}:

238 C. Brzuska et al.

KEMGEN()
assert sk = ⊥
pk , sk ←$ η.kgen()

return pk

ENCAP()
assert pk �= ⊥
assert c = ⊥
if b = 0 then

k, c ←$ η.encap(pk)

SET(k)

else

c ←$ {0, 1}elen

GEN()

return c

DECAP(c′)
assert sk �= ⊥
assert c′ �= c

k ← η.decap(sk , c′)

return k

Note that the adversary queries GET to obtain the challenge key. Encoding the
standard KEM notion in this way enables the following algebraic reasoning:

KEM-CCA0,η =
KEM0,η

ID{GET}
◦ KEYη.λ

εη
KEM-CCA≈ KEM1,η

ID{GET}
◦ KEYη.λ = KEM-CCA1,η

Definition 14 (DEM-CCA Security). Let θ be a DEM. We define its
$-IND-CCA advantage εθ

DEM−CCA using a keying game with output interface
out(DEM − CCAθ) = {GEN,ENC,DEC}, where the oracles of the core keyed pack-
ages DEMb,θ are defined as follows:

ENC(m)
assert c = ⊥
k ← GET()

if b = 0 then

c ← θ.enc(k, m)

else

c ←$ {0, 1}clen(|m|)

return c

DEC(c′)
assert c �= c′

k ← GET()

m ← θ.dec(k, c′)

return m

Note that DEM security justifies the following equational reasoning

DEM-CCA0,θ =
DEM0,θ

ID{GEN}
◦ KEYθ.λ

εθ
DEM-CCA≈ DEM1,θ

ID{GEN}
◦ KEYθ.λ = DEM-CCA1,θ

4.1 Composition and Proof

We prove that the PKE scheme obtained by composing a KEM-CCA secure
KEM and a DEM-CCA secure DEM is PKE-CCA secure.

Construction 1 (KEM-DEM Construction) Let η be a KEM and θ be
a DEM. We define the PKE scheme ζ with ciphertext expansion η.elen +
θ.clen(|m|) as follows:

State Separation for Code-Based Game-Playing Proofs 239

ζ.kgen()
return η.gen()

ζ.enc(pk ,m)
k, c1 ←$ η.encap(pk)

c2 ← θ.enc(k, m)

return c1||c2

ζ.dec(sk , c)
c1||c2 ← c

k ← η.decap(sk , c1)

m ← θ.dec(k, c2)

return m

Theorem 1 (PKE Security of the KEM-DEM Construction). Let ζ be
the PKE scheme in Construction 1. For adversaries A, we have that

εζ
PKE−CCA(A) ≤ εη

KEM−CCA

(
A ◦ MOD − CCA ◦ IDout(KEMη)

DEM0,θ

)
+

εθ
DEM−CCA

(
A ◦ MOD − CCA ◦ KEM1,η

IDout(DEMθ)

)

where the oracles of MOD − CCA are defined in Fig. 4.

Fig. 4. MOD-CCA construction.

In the extended version of this paper 15, we prove via code comparison that
for b ∈ {0, 1}, PKE-CCAb,ζ equals MOD-CCA◦ KEMb,η

DEMb,θ ◦KEYλ. Thus, for all adversaries
A, we can now apply Lemma 7a to the adversary B = A◦MOD-CCA, as KEM-CCAη

is a keying game, DEM-CCAθ is a keyed game, and the two are compatible. Note
that we do not de-idealize KEM1,η as PKE-CCA1,ζ requires random ciphertexts. For
all adversaries B, we denote

B ◦ KEMη,0

DEMθ,0
◦ KEYλ

ε(B)≈ B ◦ KEMη,0

DEMθ,1
◦ KEYλ.

and the value ε(B) is less or equal to

εη
KEM-CCA

(
B ◦ IDout(KEMη)

DEM0,θ

)
+ εθ

DEM-CCA

(
B ◦ KEM1,η

IDout(DEMθ)

)
.

240 C. Brzuska et al.

5 Multi-Instance Packages and Composition

Definition 15 (Indexed Packages). For a command c with free names fn(c)
we denote by ci the command in which every function name f ∈ fn(c) is replaced
by a name fi with the additional index i. For function definition O = f(x) �→ c,
we denote by Oi− the definition fi(x) �→ c and by Oi the definition fi(x) �→ ci.

Let D be a package with function definitions Ω. We denote by Di− and Di

packages with definitions {Oi−|O ∈ Ω} and {Oi|O ∈ Ω} respectively. This means
that in(Di−) = in(D) and in(Di) = {fi|f ∈ in(D)}.
Definition 16 (Multi-Instance Operator). For a package D and n ∈ N, we
define

∏n
i=1 Di− := (D1− |...| Dn−) and

∏n
i=1 Di := (D1 |...| Dn).

Note that using a product sign
∏n

i=1 Di to denote multi-instance parallel compo-
sition (D1 |...| Dn) is convenient, since it allows to emphasize the multi-instance
notation via a prefix which is more prominent than merely a special subscript
or index, it reduces the number of brackets per expression, and it allows to
avoid dots. While common in arithmetics and, notably, the π-calculus, product
notation might be a bit unusual for cryptographers. Also note that including
indices in oracle names assures that instances of the same package have disjoint
output interfaces which is necessary for their parallel composition. The follow-
ing lemma states that the multi-instance operator

∏n
i=1 commutes with parallel

composition, sequential composition and ID.

Lemma 8 (Multi-Instance Interchange). Let M and N be packages such that
M matches the output interface of N. Let P be a packages such that out(M) and
out(P) are disjoint. Then, for any number n of instances, the following hold:

n∏
i=1

(M ◦ N)i =
n∏

i=1

Mi ◦
n∏

i=1

Ni IDout(
∏n

i=1 Mi) =
n∏

i=1

(IDout(M))i

n∏
i=1

(
M

P

)
i

=
∏n

i=1 Mi∏n
i=1 Pi

Mi− =IDout(M),i− ◦ M

Proof. Firstly, note that the package
∏n

i=1 Mi ◦ ∏n
i=1 Ni is well-defined, since∏n

i=1 Mi matches the input interface of
∏n

i=1 Ni due to Definition 15. Using the
interchange rule, we obtain that it is equal to

∏n
i=1(M ◦ N)i. Note that

∏n
i=1 Mi∏n
i=1 Pi

is well-defined due to the disjointness condition on the output interfaces. The
term is equal to

∏n
i=1

(
M
P

)
i
by associativity of parallel composition. The last two

equations follow by inspection of the ID definitions.

5.1 Multi-Instance Lemma

We introduce a multi-instance lemma that allows us to turn arbitrary games
using symmetric keys into multi-instance games.

State Separation for Code-Based Game-Playing Proofs 241

Lemma 9 (Multi-Instance). Let M be a game pair with distinguishing advan-
tage εM. Then for any number n of instances, adversaries A, and reduction R
that samples j ←$ {1, . . . , n} and runs⎛

⎝j−1∏
i=1

M0i
∣∣IDout(M),j−

∣∣ n∏
i=j+1

M1i

⎞
⎠

we have that MIb =
∏n

i=1 M
b
i is a game pair with εMI(A) ≤ n · εM(A ◦ R).

In the extended version of this paper [15] we provide a systematic recipe for
hybrid arguments and instantiate it for the proof of this lemma.

5.2 Multi-Instance Key Lemma

We now combine key composition and multi-instance lemmas. For this purpose,
we use a multi-instance version of the following single-instance package CKEY.
In contrast to the simpler KEY package, CKEY allows for corrupted keys (whence
the name CKEY) and, consequently, needs to allow the symmetric-key protocol
to check whether keys are honest.

Definition 17 (CKEY Package). For λ ∈ N, CKEY is the package that defines
the oracles below, i.e., out(CKEY) = {GEN,SET,CSET,GET,HON}.

GEN()

assert k = ⊥
k ←$ {0, 1}λ

h ← 1

SET(k′)

assert k = ⊥
k ← k′

h ← 1

CSET(k′)

assert k = ⊥
k ← k′

h ← 0

GET()

assert k �= ⊥

return k

HON()

assert h �= ⊥

return h

A corruptible keying game is composed of a core keying package and the
multi-instance version of CKEYλ. The core keying package can set corrupt keys
via the CSET oracle. A corruptible keyed game is single-instance but will be
turned into a multi-instance game later. Its core keyed package can access the
honesty status of keys via the HON oracle.

Definition 18 (Corruptible Keying Game). A corruptible keying game K is
composed of a core keying packages CK and the CKEY package as follows:

Kb,λ =
CKb,λ∏n

i=1(ID{GET,HON})i
◦

n∏
i=1

CKEYλ
i .

where n, λ ∈ N, b ∈ {0, 1}, in(CK0,λ) = {SETi,CSETi}n
i=1, and in(CK1,λ) =

{GENi,CSETi}n
i=1.

Definition 19 (Corruptible Keyed Game). A corruptible keyed game D is
composed of a core keyed package CD and the CKEY package as follows:

Db,λ =
ID{GEN,CSET}

CDb,λ
◦ CKEYλ.

where λ ∈ N, b ∈ {0, 1}, and in(CD0,λ) = in(CD1,λ) = {GET,HON}.

242 C. Brzuska et al.

Lemma 10 (Multiple Keys). Keying and keyed games K and D are compatible
when they have the same key length λ and they define disjoint oracles out(K) ∩
out(

∏n
i=1 Di). For all compatible corruptible keying and keyed games, with the

notation above, we have that

CK0∏n
i=1 CD

0
i

◦
n∏

i=1

CKEYλ
i

ε≈ CK0∏n
i=1 CD

1
i

◦
n∏

i=1

CKEYλ
i ,

where for all adversaries A, ε(A) is less or equal to

εK

(
A ◦ IDout(CK)∏n

i=1 CD
0
i

)
+ n · εD

(
A ◦ CK1

IDout(
∏n

i=1 CDi)
◦ R

)
+ εK

(
A ◦ IDout(CK)∏n

i=1 CD
1
i

)
.

where reduction R samples j ←$ {1, . . . , n} and implements the package
(
∏j−1

i=1 M0i |(IDout(M))j−|∏n
i=j+1 M

1
i), where Mb = ID{GEN,CSET}

CDb ◦ CKEYλ.

Proof Outline. The proof proceeds analogously to the 3 steps in the proof of
Lemma 7b, i.e., idealizing the corruptible keying game, then the corruptible
keyed game and then de-idealizing the corruptible keying game. For the alge-
braic proof steps, we use the multi-instance variants of the identity rule and the
interchange rule, as given in Lemma 8. We defer the details of the proof to the
extended version [15] and here only include the multi-instance to single instance
reduction involved in the idealization of the corruptible keyed game.

Multi-instance Lemma. We invoke Multi-instance Lemma 9 on game pair M with
Mb = ID{GEN,CSET}

CDb ◦CKEYλ. By applying Lemma 9, we obtain that for all adversaries
B, we have

εMI(B) ≤ n · εD(B ◦ R), (1)

where MIb =
∏n

i=1 M
b
i and reduction R samples j ←$ {1, . . . , n} and implements

the package (
∏j−1

i=1 M0i |(IDout(M))j−|∏n
i=j+1 M

1
i).

6 Composition of Forward-Secure Key Exchange

We here give a short definition of authenticated key exchange (AKE) protocols
with forward security based on the definition of forward security by Bellare, Rog-
away and Pointcheval [6] adapted from password authentication to the setting
with asymmetric long-term keys. Moreover, unlike [6], we do not encode secu-
rity against passive adversaries via an Execute query but rather via require the
existence of an origin-session, as suggested by Cremers and Feltz [21]. Brzuska,
Fischlin, Warinschi and Williams [17] essentially use the same security definiting,
except that they did not encode passivity and used session identifiers instead of
partner functions. We explain our definitional choices at the end of this section.

State Separation for Code-Based Game-Playing Proofs 243

Definition 20 (Key Exchange Protocol). A key exchange protocol π con-
sists of a key generation function π.kgen and a protocol function π.run. π.kgen
returns a pair of keys, i.e., (sk , pk) ←$ π.kgen. π.run takes as input a state
and an incoming message and returns a state and an outgoing message, i.e.,
(state ′,m′) ←$ π.run(state,m).

Each party holds several sessions and the function π.run is executed locally on
the session state. We use indices i for sessions and indices u, v for parties. For the
ith session of party u, we denote the state by Π[u, i].state. The state contains at
least the following variables. For a variable a, we denote by Π[u, i].a the variable
a stored in Π[u, i].state.

– (pk , sk): the party’s own public-key and corresponding private key
– peer : the public-key of the intended peer for the session
– role: determines whether the session runs as an initiator or responder
– α: protocol state that is either running or accepted .
– k : the symmetric session key derived by the session

Upon initialization of each session, the session state is initialized with pair
(pk , sk), the public-key peer of the intended peer of a session, a value role ∈
{I,R}, α = running and k = ⊥. The first three variables cannot be changed.
The variables α and k can be set only once. We require that

Π[u, i].α = accepted =⇒ Π[u, i].k �= ⊥.

The game that we will define soon will run (state ′,m′) ←$ π.run(state,⊥) on the
initial state state and an empty message ⊥. For initiator roles, this first run
returns m′ �= ⊥, and for responder roles, it outputs m′ = ⊥.

Protocol correctness. For all pairs of sessions which are initialized with (pk I , sk I),
pkR, role = I, α = running and k = ⊥ for one session, and (pkR, skR), pk I ,
role = R, α = running and k = ⊥ for the other session, the following holds:
When the messages produced by π.run are faithfully transmitted to the other
session, then eventually, both sessions have α = accepted and hold the same key
k �= ⊥.

Partnering. As a partnering mechanism, we use sound partnering functions, one
of the partnering mechanisms suggested by Bellare and Rogaway [7]. Discussing
the specifics, advantages and disadvantages of partnering mechanisms is beyond
the scope of this work, we provide a short discussion as well as a definition and
the soundness requirement for partner functions in the extended version of this
paper 15. For the sake of the AKE definition presented in this section, the reader
may think of the partnering function f(u, i) as indicating the (first) session (v, j)
which derived the same key as (u, i), has a different role than (u, i), and is the
intended peer of (u, i). On accepted sessions, it is a symmetric function, thus
partners of sessions, if they exist, are unique.

244 C. Brzuska et al.

Session key handles. Upon acceptance the SEND oracle returns the index of the
CKEY package from which the session key can be retrieved using GET. This index
is an administrative identifier that is set when the first of two partnered sessions
accept. The second accepting session is then assigned the same identifier as its
partner session.

Definition 21 (IND-AKE Security). For a key exchange protocol π =
(kgen, run), a symmetric, monotonic, sound partnering function f , and a
number of instances n ∈ N, we define IND-AKE advantage επ,f,n

IND−AKE using

Fig. 5. Oracles of the core keying package AKE. cntr is initialized to 0.

State Separation for Code-Based Game-Playing Proofs 245

a keying game IND − AKEπ,f,n with corruptible keying package AKEb,π,f whose
oracles are defined in Fig. 5 yielding output interface out(IND − AKEπ,f,n) =
{NEWPARTY,NEWSESSION,SEND,CORRUPT,GET}.
Theorem 2 (BR-Secure Key Exchange is Composable). Let π be a key
exchange protocol with partnering function f such that for n, λ ∈ N, their IND-
AKE advantage is επ,f,n

IND−AKE. Let D be a corruptible keyed game that is compatible
with the corruptible keying game IND − AKEπ,f,n. Then it holds that

AKE0,π,f∏n
i=1 CD

0
i

◦
n∏

i=1

CKEYλ
i

εBR≈ AKE0,π,f∏n
i=1 CD

1
i

◦
n∏

i=1

CKEYλ
i ,

where

εBR(A) ≤ επ,f,n
IND−AKE

(
A ◦ IDout(AKE)∏n

i=1 CD
0
i

)
+ n · εCD

(
A ◦ AKE1,π,f

IDout(
∏n

i=1 CDi)
◦ R

)

+ επ,f,n
IND−AKE

(
A ◦ IDout(AKE)∏n

i=1 CD
1
i

)
,

and where reduction R samples j ←$ {1, . . . , n} and implements the package(∏j−1
i=1 M0i

∣∣(IDout(M))j−
∣∣ ∏n

i=j+1 M
1
i

)
, where Mb = ID{GEN,CSET}

CD0
◦ CKEYλ.

Proof. We observe that Theorem 2 is a direct application of the Multiple Key
Lemma 10. Firstly, AKE is a corruptible core keying package as we have that
in(AKE0,π,f) = {SET,CSET} and in(AKE1,π,f) = {GEN,CSET}. Also, by defini-
tion, D is a corruptible keyed game that is compatible with the corruptible keying
game IND-AKEπ,f,n.

Discussion of definitional choices. Forward secrecy usually requires a notion
of time that cryptographic games are not naturally endowed with and that we
have no tools to handle in hand-written proofs. In the miTLS work and also
in our notation of key exchange security, instead, it is decided upon acceptance
whether a session shall be idealized or not. The advantage is that one can check in
the moment of acceptance whether the preconditions for freshness are satisfied,
and this check does not require a notion of time. In our encoding the CKEY
package then stores either a real or a random key, and when the partner of the
session accepts, the partner session inherits these idealization or non-idealization
properties. A downside of this encoding is that it is only suitable for protocols
with explicit entity authentication (See, e.g., Fischlin, Günther, Schmidt and
Warinschi [24]), as in those, the first accepting session is already idealized. In
particular, our model does not capture two-flow protocols such as HMQV [31].

Using partner functions instead of session identifiers or key partnering has
the advantage that the at most condition of Match security defined by Brzuska,
Fischlin, Smart, Warinschi and Williams [16] holds syntactically. Thus, one does
not need to make probabilistic statements that are external to the games. Note
that we made another simplication to the model: Currently, the CKEY module

246 C. Brzuska et al.

and thus CD does not receive information about the timing of acceptance. This
can be integrated at the cost of a more complex CKEY module.

Acknowledgements. We are deeply indebted to Cas Cremers for extensive feedback
on an early draft of our article. We are grateful to Simon Peyton Jones for pointing out
the associativity of Monadic composition as a generalization of function composition to
effectful programs. We thank Giorgia Azzurra Marson and Hoeteck Wee for feedback on
the presentation of our IND-CPA toy example in the introduction. We thank Martijn
Stam for suggesting to use KEM-DEM composition as one of our application cases.
We are grateful to H̊akon Jacobsen for feedback on our key exchange definition. We
thank Ueli Maurer for an inspiring and helpful discussion on abstraction. We thank
Sabine Oechsner, Frieder Steinmetz, Bogdan Warinschi, Jan Winkelmann, and Santiago
Zanella-Béguelin for helpful suggestions and inspiration.

Chris Brzuska is grateful to NXP for the support of his previously held chair of
IT Security Analysis at TU Hamburg. Much of the research was done while the first
author was at Microsoft Research Cambridge and during internships and research visits
supported by Microsoft and the EU COST framework. In particular, this work was
supported by an STSM Grant from COST Action IC1306 “Cryptography for Secure
Digital Interaction”. This work was supported by Microsoft Research through its PhD
Scholarship Programme. Markulf Kohlweiss is grateful for a fellowship from IOHK.

References

1. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 19

2. Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: modular
machine-checked proofs of one-round key exchange protocols. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 689–718. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46803-6 23

3. Barthe, G., Daubignard, M., Kapron, B.M., Lakhnech, Y.: Computational indis-
tinguishability logic. In: ACM CCS, pp. 375–386 (2010)

4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

5. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

7. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: STOC (1995)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

https://doi.org/10.1007/978-3-540-24638-1_19
https://doi.org/10.1007/978-3-662-46803-6_23
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

State Separation for Code-Based Game-Playing Proofs 247

9. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 17

10. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y.: Implementing
TLS with verified cryptographic security. In: Security and Privacy (2013)

11. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (As It Is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 14

12. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Trans. Dependable Sec. Comput. 5(4), 193–207 (2008)

13. Blanchet, B.: Composition theorems for CryptoVerif and application to TLS 1.3.
In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, 9–12 July
2018, Oxford, United Kingdom, pp. 16–30 (2018)

14. Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Darmstadt Uni-
versity of Technology, Germany (2013)

15. Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State
separation for code-based game-playing proofs. Cryptology ePrint Archive, Report
2018/306 (2018). http://eprint.iacr.org/2018/306

16. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
relaxed yet composable security notions for key exchange. Int. J. Inf. Sec. 12(4),
267–297 (2013)

17. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: ACM CCS (2011)

18. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

19. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: EuroS&P 2017 (2017)

20. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2003)

21. Cremers, C.J.F., Feltz, M.: Beyond eCK: perfect forward secrecy under actor
compromise and ephemeral-key reveal. Des. Codes Cryptography 74(1), 183–218
(2015)

22. Delignat-Lavaud, A., et al.: Implementing and proving the TLS 1.3 record layer.
In: Security and Privacy (2017)

23. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: ACM CCS (2015)

24. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: Security and Pri-
vacy (2016)

25. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic veri-
fication. In: ACM CCS (2011)

26. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. Cryp-
tology ePrint Archive, Report 2011/303 (2011). http://eprint.iacr.org/2011/303

27. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-662-44381-1_14
http://eprint.iacr.org/2018/306
http://eprint.iacr.org/2011/303

248 C. Brzuska et al.

28. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

29. Jones, S.P.: Haskell 98 language and libraries: the revised report (2003)
30. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-

)Constructing TLS 1.3. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015.
LNCS, vol. 9462, pp. 85–102. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26617-6 5

31. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

32. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

33. Kuesters, R., Tuengerthal, M.: The IITM model: a simple and expressive model
for universal composability. Cryptology ePrint Archive 2013/025 (2013)

34. Maurer, U.: Constructive cryptography - a primer (invited paper). In: FC (2010)
35. Maurer, U.: Constructive cryptography - a new paradigm for security definitions

and proofs. In: TOSCA (2011)
36. Maurer, U., Renner, R.: Abstract cryptography. In: ITCS (2011)
37. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)

EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

38. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party compu-
tation. In: Innovations in Theoretical Computer Science, ITCS (2013)

39. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100(1) (1992)

40. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols.
Theor. Comput. Sci. 353(1–3) (2006)

41. Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 3

42. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

43. Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006). https://doi.org/
10.1007/11958239 14

44. Rosulek, M.: The joy of cryptography. Online Draft (2018). http://web.engr.
oregonstate.edu/∼rosulekm/crypto/

45. Swamy, N., Hricu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhar-
gavan, K., Fournet, C., Strub, P.-Y., Kohlweiss, M., Zinzindohoue, J.-K., Zanella-
Béguelin, S.: Dependent types and multi-monadic effects in F*. In: POPL (2016)

46. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-1-4302-4651-0

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-26617-6_5
https://doi.org/10.1007/978-3-319-26617-6_5
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-540-70936-7_3
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/11958239_14
https://doi.org/10.1007/11958239_14
http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://web.engr.oregonstate.edu/~rosulekm/crypto/
https://doi.org/10.1007/978-1-4302-4651-0

State Separation for Code-Based Game-Playing Proofs 249

47. Tofte, M.: Essentials of standard ML modules. In: Launchbury, J., Meijer, E.,
Sheard, T. (eds.) AFP 1996. LNCS, vol. 1129, pp. 208–229. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61628-4 8

48. van Leeuwen, J., Wiedermann, J.: Beyond the turing limit: evolving interactive
systems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp.
90–109. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45627-9 8

49. Wikström, D.: Simplified universal composability framework. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 566–595. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 24

https://doi.org/10.1007/3-540-61628-4_8
https://doi.org/10.1007/3-540-45627-9_8
https://doi.org/10.1007/978-3-662-49096-9_24

Security of the Blockchain Against Long
Delay Attack

Puwen Wei1(B), Quan Yuan1(B), and Yuliang Zheng2

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

pwei@sdu.edu.cn, yuanquan sdu@mail.sdu.edu.cn
2 University of Alabama at Birmingham, Birmingham, USA

yzheng@uab.edu

Abstract. The consensus protocol underlying Bitcoin (the blockchain)
works remarkably well in practice. However proving its security in a
formal setting has been an elusive goal. A recent analytical result by
Pass, Seeman and shelat indicates that an idealized blockchain is indeed
secure against attacks in an asynchronous network where messages are
maliciously delayed by at most Δ � 1/np, with n being the number
of miners and p the mining hardness. This paper improves upon the
result by showing that if appropriate inconsistency tolerance is allowed
the blockchain can withstand even more powerful external attacks in the
honest miner setting. Specifically we prove that the blockchain is secure
against long delay attacks with Δ ≥ 1/np in an asynchronous network.

Keywords: Bitcoin · Blockchain · Delay · Random oracle

1 Introduction

Bitcoin introduced by Nakamoto [19] is the first cryptocurrency that allows a
ledger to be maintained by the public in a decentralized manner. It has a number
of attractive properties including decentralization and pseudonymity. At the core
of Bitcoin is a consensus protocol, called the blockchain. The blockchain is a
chain-structured ledger maintained by all the participants (or miners), where
records (or blocks) can only be added by the miners to the end of the chain.

A key idea of Nakamoto’s blockchain protocol to achieve consensus among
distributed miners is the use of proof of work (POW), which requires the miners
to solve a “cryptographic puzzle”. Advantages of POW are two folds. First, the
“cryptographic puzzle” makes it more difficult for an adversary to modify the
block. Second, POW helps distributed miners to synchronize in a permissionless
setting. While having low efficiency and high power consumption, the blockchain
protocol based on POW is still the most successful one that gains peoples accep-
tance wildly in practice. The main concern over the blockchain protocol based
on POW is security, which has not been proven formally until Garay, Kiayias,
and Leonardas [10] provide a rigorous analysis of the blockchain protocol. They
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 250–275, 2018.
https://doi.org/10.1007/978-3-030-03332-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_10&domain=pdf

Security of the Blockchain Against Long Delay Attack 251

model the execution of the blockchain protocol by allowing the adversary to con-
trol a concrete percentage of computing power and also to interfere with com-
munication among miners, whereby proving that two basic properties, which are
common prefix and chain quality, hold for a blockchain built on POW. Consid-
ering the effect of delay, Pass, Seeman and shelat [22] prove the security of the
blockchain protocol in an asynchronous network with a-priori bounded delay Δ,
where the adversary can delay any message with at most Δ rounds. The security
analysis in [22] holds for a relatively small delay only. Specifically the delay Δ
should be significantly smaller than 1/np, that is Δ � 1/np, where n and p
denote the number of miners and the mining hardness, respectively.

Networks delay is considered to be one of the most important threats to the
security of a blockchain. As shown in [6], long delays lead to increased proba-
bilities for forking, which may break the common prefix property. Pass, Seeman
and shelat demonstrate a simple attack in a fully asynchronous setting where
the adversary is allowed to schedule message delivery with a long delay relative
to the mining hardness. What is worse, such attacks could be deployed even
when all miners are honest, which means that the adversary does not need any
hashing power [10].

In the real world, however, long delays, say Δ ≥ 1/np, could be caused not
only by message propagation over a “bad” asynchronous network but also by
malicious attacks. Instead of attempting to corrupt a sizable fraction of miners,
it would be much easier for the adversary to disrupt communications among
miners. Furthermore, it is also unpractical to require all the miners’ chains to
be consistent with the “main chain” due to the long delay.

In practice the adversary cannot delay messages successfully all the time.
Consider the eclipse attack [14] that allow an adversary to control 32 IP addresses
to monopolize all connections to and from a target bitcoin node with 85% prob-
ability. If the attack fails or the adversary loses the ability to intercept messages,
blocks will be diffused to other miners at an exponentially fast rate. This natu-
rally brings up a interesting question, that is

Is the blockchain protocol based on POW still secure in a real world asyn-
chronous network, where long delay relative to the mining hardness, say Δ ≥
1/np, is allowed?

Our contribution. In this paper, we focus on the effect of long delay, especially
Δ ≥ 1/np, and give results that support a positive answer to the above question.
Specifically, we propose a simplified model for the blockchain protocol based on
POW, which captures an adversary’s ability to deliver messages maliciously in
the real world. We extend the definitions of chain growth and common prefix
[10,11,22] to allow fractions of miners’ chains to be inconsistent with the main
chain. By analyzing the evolution of the main chain in a more subtle way, we
prove that the common prefix property and the chain growth property still hold
in our model. In addition, to illustrate the threat of long delay attack in our
model, we present a concrete attack in which an adversary without any hash
power may threaten the common prefix property of a blockchain protocol with
certain parameters.

252 P. Wei et al.

There are a number of subtle differences between our model and previous
research in [10,11,22]. A detailed discussion follows.

– Long delay attack: In our model, the upper bound of delay can be large,
say Δ ≥ 1/np, and the adversary can delay a message with probability α ∈
(0, 1], meaning that the adversary may not always disrupt communications
successfully in practice. Previous works consider Δ � 1/np or Δ = 1 and the
adversary can always delay any message. Hence, our model is more general
in capturing the adversary’s ability to deliver messages maliciously.

– Common prefix for majority: We relax the requirements of common prefix
and chain growth so that certain fractions of miners’ chains are allowed to be
inconsistent with the common prefix of the main chain. Previous definitions
of common prefix require all the miners’ chains be consistent with the com-
mon prefix of the main chain, which is a special case of our definition. We
emphasize that such inconsistency tolerance is not only crucial to our proof
but also necessary for the blockchain protocol to work in practice.

– Honest miners: Since we only focus on the effect of delay, we assume all the
miners are honest. That is, all the miners follow the protocol honestly and the
adversary neither corrupts any miners nor possesses any hash power. Hence,
we only need to consider the common prefix property and the chain growth
property. Previous works consider adversaries which can collect a fraction
of the total hash power by means of corrupting miners and thus analyze
chain quality. Additionally we impose restrictions on the miners’ behavior:
two consecutive blocks cannot be mined by the same miner. This restriction
is reasonable in our honest miner setting, as in practice is unlikely that two
consecutive blocks are mined by the same miner1, especially when n is large
whereas p is small.

In a large-scale blockchain protocol, it is hard for the adversary to collect
enough computational power to mount an effective attack, where at least 1/3
computational power of all miners is usually required. Therefore, we ignore the
influence of the hash power of an adversary and instead focus on attacks by
disrupting communications.

Main techniques. Informally, the common prefix property states that, in addi-
tion to the last T blocks, all the miners’ chains should have the same prefix.
In order to prove the common prefix property, [22] shows that there are enough
“convergence opportunities” for the miners to synchronize the same chain, where
the “convergence opportunities” depend on consecutive Δ rounds of “silence”.
Here, Δ rounds of “silence” means no honest miners mines a block during these
Δ rounds. If Δ � 1/np, it is likely that no block is mined during Δ rounds.
However, the challenge is that, if Δ ≥ 1/np, at least one block is expected to
be mined during those rounds, which will ruin the “convergence opportunities”.
So previous proof techniques cannot be applied when Δ ≥ 1/np. To solve this
problem, we introduce an inconsistency tolerance parameter λ, which is inspired

1 not the same mining pool.

Security of the Blockchain Against Long Delay Attack 253

by the fact that the common prefix property in the real world holds only for the
majority miners. Therefore, we redefine the properties of chain growth rate and
common prefix using λ ∈ (12 , 1], which captures to what extent the common pre-
fix property holds. Our definitions are more general and allow us to exclude the
“bad” miners during Δ rounds of silence. Furthermore, we introduce a powerful
tool called TreeMC to record the state of the main chains. Unlike the Ftree oracle
in [22] which stores all the chains during the execution of the blockchain protocol,
our TreeMC only records the state of the main chain at the current round, which
can capture the evolution of main chains in a subtle manner. Then, we show the
relation between TreeMC and the view of the real execution of blockchain proto-
col. Due to the good properties of TreeMC, we only need to focus on the analysis
of TreeMC instead of the original block chain protocol, which greatly simplified
the analysis and security proof.

Related Work. Since the introduction of Bitcoin, a number of cryptocurrency,
e.g., Litecoin, Zerocash [2] and Ethereum, have appeared, most of which are
based on the idea of Bitcoin. Meanwhile, a series of works [3,6,8,9,12,15,21,23,
26–31] analyze the security of Bitcoin under different attack scenarios and inves-
tigate the conditions under which Bitcoin achieves a game-theoretic equilibrium.
Eyal and Sirer [8] propose an attack strategy called “selfish mining”, where the
adversary only requires about 1/3 of the total mining power. Miller and LaViola
[18] show the connection between bitcoin and probabilistic Byzantine agreement
protocols. Heilman et al. [14] present eclipse attacks which allow an adversary
controlling a sufficient number of IP addresses to “eclipse” a bitcoin node. As
mentioned in [14], the attacker can eclipse a fraction of miners and launch N -
confirmation double spending attacks without any mining power. In fact, such
attacks can be extended to attacks on common prefix. For instance, the attacker
can eclipse a fraction of miners in advance and launch the long delay attacks
described in Sect. 7. Notice that the target block which the attacker intends to
delay may be not mined by the eclipsed miners. In other words, a block can
be delayed with some probability, which is the scenario captured by our model.
Sompolinsky and Zohar [29] show that the bitcoin protocol with high throughput
is more susceptible to double-spend attacks. In order to solve the above problem,
[29] presents an algorithm called GHOST, which chooses the main chain by the
heaviest subtree instead of the longest branch. Then, Natoli and Gramoli [20]
propose the balance attack against POW blockchain systems, where the common
prefix property can be broken by disrupting communications between subgroups
of similar mining power.

Rigorous cryptographic analysis on blockchain protocol are initiated by
Garay, Kiayias and Leonardas [10] and Pass, Seeman and shelat [22]. [10]
abstracts the backbone protocol of Bitcoin and proves its security under the pro-
posed model. Furthermore, [22] extends the model to an asynchronous network
and shows the security of blockchain protocol with a bounded delay Δ � 1/np.
Kiayias and Panagiotakos [16] investigate the tradeoff between provable security
and transaction processing speed. Then, Garay, Kiayias and Leonardas [11] ana-
lyze the security of blockchain protocol with variable difficulty. Pass and Shi [24]

254 P. Wei et al.

consider the sleepy model, where players can be either online or offline. Notice
that it is difficult for the adversary to control large fractions of the total min-
ing power in practice, and no such attacks has been observed to date. Hence,
Badertscher et al. [1] investigates the reason why we can assume the majority of
the mining power is honest or why the miners need to follow the protocol hon-
estly. In order to overcome the problems induced by POW, such as large energy
demands, another line of research focuses on the blockchain protocol based on
proof of stake (POS), where the miner to issue the next block is decided by ran-
domly selecting one of the miners proportionally to their stakes. For instance,
Algorand [13], Snow White [4], Ouroboros/Ouroboros Praos [5,17], and Thun-
derella [25].

2 Preliminaries

In this section, we recall the blockchain protocol, following the notations of
[10,22].

2.1 Notation

Let B denote a block. A blockchain C =
−→
B consists of a sequence of ordered Bs

and the length |C| means the number of blocks in C. Let m denote the message
contained in B. −→m denotes the messages in

−→
B correspondingly. We denote by

Cr
i the chain of miner i at round r. C�k denotes the chain C that removes the

last k blocks, where k is a nonnegative integer. If k ≥ |C|, C�k = ε. Let C1 � C2

denotes that C1 is a prefix of C2. B(n, k) denotes the binomial distribution with
n trials and success probability k. H : {0, 1}∗ → {0, 1}κ is a cryptographic hash
function.

2.2 Blockchain Protocol

A blockchain protocol consists of two algorithms, which are ΠV and C. ΠV is a
stateful algorithm, receiving security parameter κ and maintaining a blockchain
C. C is a sequence of block B, where B = (h−1,m, r, h). h−1 is a pointer to the
previous block. m is the message from the environment. r is a nonce. h is the
pointer to the current block such that h = H(h−1,m, r). The cryptographic hash
function H(·) is modeled by a random oracle H(·), which on inputs x outputs
H(x). Let H.ver(·, ·) be an oracle which takes (x, y) as inputs and outputs 1
if H(x) = y and 0 otherwise. The first block of a chain is called the genesis
block B0 = (0,⊥, 0,H(0||⊥||0)). The algorithm C takes C as input and outputs
the corresponding sequence of messages −→m of C. That is, C(C) = −→m. V is an
algorithm which checks the validity of −→m. If −→m is valid, V (C(C)) outputs 1. In
the bitcoin protocol, m contains the transaction information and V is used to
check the validity of transactions.

A block B = (h−1,m, r, h) is valid with respect to a predecessor block B−1 =
(h′

−1,m
′, r′, h′) only if following conditions hold:

Security of the Blockchain Against Long Delay Attack 255

– h−1 = h′,
– h = H(h−1,m, r) < Dp, where Dp is the difficulty parameter.

If all blocks in C are valid and V (C(C)) = 1, we say C is valid, where the
corresponding validity check algorithm is called “chain-check” algorithm.

Suppose there are n miners, where n = n(κ) is a polynomial function with κ.
At each round, a miner receives a message m from the environment Z and runs
ΠV to maintain a chain C as follows:

– If V (C(C)||m) �= 1, proceed to the next step. Otherwise, pick r ← {0, 1}κ ran-
domly and compute h by querying H with (h−1,m, r), where h−1 is the pointer
of the last block of C. If h < Dp, set C = CB, where B = (h−1,m, r, h), and
we say the miner succeeds in mining a new block B. The miner can query
H at most q times before he succeeds. Then, broadcast the new chain C. In
order to capture the attack that the adversary can disturb the communication
among miners, C is considered as being delivered by the adversary.

– On receiving the chains delivered by the adversary, choose the longest and
valid one, say C ′, where the validity of blocks is checked by querying H.ver.
If |C ′| > |C|, replace C by C ′. Otherwise, go to the next round.

Note that under the random oracle model H(·) is modeled by a random oracle
H(·) and a miner is allowed to query H for at most q times at each round, but can
query H.ver for arbitrary times. p denotes the probability that a miner succeeds
in mining a block at a round, where p = 1 − (1 − Dp

2κ)
q

≈ qDp

2κ . We use p to
describe the difficulty of mining in the following parts.

2.3 Ftree Model

In this section we recall the simplified blockchain protocol with access to Ftree

oracle introduced by [22]. The Ftree oracle maintains a tree which contains mes-
sages of all valid chains and can answer two kinds of queries, Tree.extend and
Tree.ver. When receiving query Tree.extend((B0, . . . , Bl−1), B), it checks whether
(B0, . . . , Bl−1) is a path of the tree, where the root of the tree is the genesis block
B0. If so, with probability p it extends this path with B and returns 1; Otherwise,
return 0. When receiving Tree.ver(B0, . . . , Bl), it returns 1 if (B0, . . . , Bl) is a
path of the tree; Otherwise, return 0. Here, a block B only contains message m,
i.e., B = (m). Then the random oracle in blockchain protocol is replaced with
Ftree and the resulting protocol is called (Πtree, Ctree). The main differences
between (Πtree, Ctree) and (Π, C) are described as follows.

The protocol (Πtree, Ctree) is also directed by an environment Z(1κ). The
environment activates n miners and sends each miner a message at each round.
A miner receives a message m from the environment Z and runs Πtree below:

– If Vtree(Ctree(C)||m) �= 1, proceed to the next step. Otherwise, query Ftree

with Tree.extend(C,m). If the oracle answers 1, a new block B = (m) is
mined. Set C = CB and broadcast C.

256 P. Wei et al.

– When receiving the chains delivered by the adversary, choose the longest
and valid one, say C ′, where the validity of C ′ can be checked by querying
Tree.ver(C ′). If the oracle Tree.ver(C ′) returns 1, we say the chain is valid. If
|C ′| > |C|, set C = C ′. Otherwise, go to the next round.

Under the Ftree model, a miner is allowed to query Tree.extend only once
at each round, but can query Tree.ver for arbitrary times. Note that the miners
described in Sect. 2.3 can query H at most q times at a round and the probability
of successful mining at a round is p. Therefore those queries to H at a round are
considered as one query to Tree.extend.

[22] shows that the security properties in (Πtree, Ctree) still hold in original
protocol, while the analysis is much simpler in the Ftree model. For simplicity,
we misuse (Π, C) to denote the basic blockchain protocol in the Ftree model.
Besides, the algorithm Vtree or V depends on the functionality of the concrete
protocol. To simplify the description, we consider V which outputs 1 for all
inputs. Hence, V is omitted in following parts.

3 Blockchain Model with Long Delays

Nakamoto’s blockchain protocol is proved to be secure [22], where chains broad-
casted by miners may suffer at most Δ-bounded delays such that Δ � 1/np. As
discussed in Sect. 1, on one hand, it is much easier for the adversary to disturb
the communications rather than collect large computational power. On the other
hand, if the adversary fails to delay the target chain, the chain will be diffused
to other miners immediately. To capture such scenario, our modifications for the
behavior of the adversary are as below:

Execution of adversary at round r:

– Recieving. On receiving the chains from miners, the adversary chooses which
valid chains he wants to delay. But only with probability α the chosen one
can be delayed. Those delayed chains are marked as “delayable”. The other
undelayed chains are marked as “undelayable”. Then all the chains the adver-
sary received together with their marks and the round r are saved in a list
T .

– Distribution. The adversary chooses which chains in T to be distributed
and these chains will be received by all the miners at the next round. But the
following two kinds of chains have to be distributed at the current round.

• The chains marked as undelayable;
• The chains having been marked as delayable for Δ rounds.

Note that if the adversary distributes more than one chains at a round, the
adversary can adjust the order of these chains. For instance, the adversary can
broadcast chains C1 and C2 in a way that (C1, C2) to miner i but (C2, C1) to
miner j, where |C1| = |C2|. If C1 and C2 are longer than i and j’s chains, then i
accepts C1 as his main chain while j accepts C2. We emphasize that our model
is in honest miner setting where the adversary does not corrupt any miners.

Security of the Blockchain Against Long Delay Attack 257

Remark. In practice, it is possible that some miners receive a block earlier than
others due to the propagation delay in the bitcoin network. As shown in [6], the
broadcast of a block follows an exponential behavior. Hence, once a block has
been broadcasted to its neighbors, most miners will receive the block immediately
and it is difficult for the adversary to delay anymore. It takes about 10 s for a
broadcasted block to be known by almost all the miners [6,22]. In our model,
if the adversary broadcasts a block, all the miners will receive it in the next
round, where the time span of a round can be 10 s. Such time span is enough for
the adversary to influence the miners’ behavior. To capture the possible attacks,
e.g., attacks on miner i and j described above, we allow the adversary can adjust
the order of these chains, which is equivalent to the case that miner i received
C1 only.

Modification to blockchain protocol. We make additional restrictions on
the miners’ behavior in the blockchain protocol. That is, the miner cannot mine
in a chain, the last block of which was mined by himself. In other words, the
miner who has already mined a block will not execute the mining step of Π
until he receives a new chain mined by other miners. The reason why we prevent
consecutive blocks mined by the same miner is that such consecutive blocks may
cause possible forks even in the honest miner setting. In addition, it is not likely
that a miner (not the mining pool) can mine two consecutive blocks in practice
due to the large number of miners n and the small difficulty parameter p. Hence,
such a restriction is reasonable in our honest miner setting.

We emphasize that our restriction only applies to a single miner which is
an independent communication node of the network and has a unit computa-
tional power. Hence, such a modification would lead to a slightly decline of the
total mining power and we ignore such a mild change in the following proof for
simplicity.

In our protocol, we say a miner is “being delayed” if his chain is being delayed
by the adversary. Obviously, a miner being delayed will not mine a block until
he accepts a new chain mined by others.

4 Properties of Our Blockchain Model

In this section we redefine the chain growth property and the common prefix
property in our blockchain model.

4.1 Chain Growth

Previous definition of chain growth [22] considers the minimum increase of the
length of all miners’ chains during T rounds. In our model, we consider the
length increase of the majority of miners’ chains instead. Informally speaking,
if the majority of chains, say, with fraction λ > 1

2 , grows by t blocks during
consecutive rounds, we say the blockchain view grows by t blocks during these
rounds with majority λ. In fact, the definition of chain growth in [22] is a special

258 P. Wei et al.

case of ours when λ = 1. It is, however, difficult to have λ = 1 in practice. Hence,
our definition is more flexible in capturing the real scenario.

Let view(Π, C, A, Z, κ) and |view(Π, C, A, Z, κ)| denote the joint view of all
miners and the number of rounds during the execution of (Π, C), respectively.

Definition 1. Given view(Π, C, A, Z, κ), we say the blockchain grows by at least
t blocks with majority λ ∈ (12 , 1] from round r1 to r2, if

Pr
i,j

[|Cr2
j | − |Cr1

i | ≥ t] ≥ λ, (1)

where the probability is taken over all the choice of i, j ∈ [n].
Define chain-increase

(Π,C)
A,Z,κ(r1, r2, λ) as the maximum value of t satisfying

(1). That is,

chain-increase
(Π,C)
A,Z,κ(r1, r2, λ) = max{t|Pr

i,j
[|Cr2

j | − |Cr1
i | ≥ t] ≥ λ}.

Definition 2. The blockchain protocol (Π, C) has the chain growth rate g ∈
R with majority λ ∈ (12 , 1], if there exists some constant c and negligible
functions ε1, ε2 such that for every κ ∈ N, T ≥ c log(κ) and every r ≤
|view(Π,C,A,Z, κ)| − T , the following holds:

Pr[chain-increase(Π,C)
A,Z,κ(r, r + T, λ) ≥ gT] ≥ 1 − ε1(κ) − ε2(T), (2)

where the probability is taken over the randomness of the protocol.

4.2 Common Prefix

Similarly, we can define common prefix as follows.

Definition 3. common-prefix
(Π,C)
A,Z,κ(r, k, λ) = 1 with majority λ ∈ (12 , 1] if the

following holds:
Pr
i,j

[(Cr
i

�k � Cr
j) ∧ (Cr

j
�k � Cr

i)] ≥ λ, (3)

where the probability is taken over all the choice of i, j ∈ [n].

Definition 4. A blockchain protocol (Π, C) satisfies the common prefix prop-
erty with parameter λ ∈ (12 , 1], if there exists some constant c and negligi-
ble function ε1 and ε2 such that for every κ ∈ N, T ≥ c log(κ) and every
r ≤ |view(Π,C,A,Z, κ)|, the following holds:

Pr[common-prefix(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1 − ε1(κ) − ε2(T), (4)

where the probability is taken over the randomness of the protocol.

5 State of the Main Chain

In this section, we introduce a special tree to capture the evolution of the main
chains.

Security of the Blockchain Against Long Delay Attack 259

5.1 Record the State of the Main Chain

During the execution of Π, miners will “reach agreement” on some chains at each
round and those chains are called the main chains. Although the main chains
may not be unique at each round, only one of those chains will be the prefix of
the main chain after enough rounds. Since the evolution of the main chains is
closely related to chain growth and common prefix, we introduce a special tree,
denoted by TreeMC, to record the state of the main chains, where a node of the
tree is a block of a chain. TreeMC is initialized to the root B0. Next, we show
how to add and delete blocks at a round in TreeMC.

– AddBlock: When the adversary broadcasts a chain C = (B0, B1, . . . , Bl),
and there exist a branch (or paths from root to leaves) C ′ in TreeMC such that
C ′ = C�k with the smallest k, extend C ′ with the last k ordered blocks of C.
Note that the adversary is allowed to send more than one chain at a round.
That means the same leaf node of TreeMC may be extended with different
branches simultaneously.

– DeleteBlock: At the end of a round (after the adversary finishes Distribu-
tion), suppose TreeMC has the depth, say d. Delete “useless” blocks or forks
so that only the branches Cs satisfying the following conditions remain.

• |C| = d,
• For any C ′ with depth d, the last block of C was added to TreeMC no later

than the last block of C ′.

Once the adversary broadcast the chains, each miner will update his chain with
the longer one, and no one will withhold the shorter chains or attempt to extend
them. Hence, TreeMC only records all the main chains of the undelayed miners
at current round. But if a miner has a chain longer than the main chain but is
delayed by the adversary, this delayed chain is not recorded in TreeMC.

5.2 Properties of TreeMC

Obviously, all of the branches on TreeMC at the end of a round are of equal depth
and the depth of TreeMC never decreases. Other interesting properties of TreeMC

are shown below.

Lemma 1. Properties of TreeMC.

1. If new blocks are successfully added to TreeMC at the end of a round, then the
depth of TreeMC increases.

2. The depth of TreeMC increases by at most 1 at each round.
3. If only one block is added to TreeMC at the end of a round, then TreeMC has

only one branch and the depth increases by 1.

Proof. 1. Suppose there are new blocks added to the TreeMC while the depth
remains unchanged. So those added blocks are useless and will be deleted at
once due to DeleteBlock.

260 P. Wei et al.

2. Without loss of generality, suppose the depth of TreeMC at round r − 1 and
r are d and d + 2, respectively. If the (d + 2)th block is mined by miner i,
then (d + 1)th block must be mined by a different miner, say miner j, due
to the restriction that the same miner cannot mine two consecutive blocks.
Hence, miner i received miner j’s chain of length d + 1 from the adversary.
That means there exists a round r′ such that r′ < r and the depth of TreeMC

is d + 1 at round r′, which contradicts the fact that the depth of TreeMC is d
at round r − 1.

3. Suppose the depth of TreeMC is d at round r and only one block, say B,
is successfully added at round r + 1. Due to the first property, the depth
increases to d + 1. And the length of branches without B is still d. After
DeleteBlock, the useless blocks of these branches will be deleted from the
tree and only the branch with depth d + 1 will remain.

5.3 Relation with the View of (Π, C)
TreeMC records the main chains known by all the miners at current round. But
there are some chains at current round which are not recorded in TreeMC due to
the adversarial delay. Hence, the actual view of the main chains of (Π, C) may
be different from TreeMC. Fortunately, such difference in terms of chain growth
and common prefix is negligible. Therefore, we can prove these properties of
(Π, C) by analyzing TreeMC. The relations between TreeMC and the view of (Π, C)
are proven by the following lemmas. (Note that the following lemmas are all
discussed after TreeMC finishes the step of DeleteBlock.)

Lemma 2. Assume 1/2 < λ ≤ 1 − 8αpΔ. Let mr
delay be the number of being

delayed miners at round r. There exists a polynomial function poly such that

Pr[mr
delay >

(1 − λ)n
4

] < e−poly(κ). (5)

Proof. Consider the case that r ≥ Δ. If a miner i is being delayed at round r,
that means i succeeded in mining a delayable block from round r−Δ+1 to round
r. During these Δ rounds, there are nΔ independent events of mining, each of
which is delayable with probability αp. So mr

delay ∼ B(nΔ,αp). According to
the Chernoff bound, for any ε ≥ 1, we have

Pr[mr
delay > (1 + ε)αnpΔ] < e

−εαnpΔ
3 . (6)

Let (1+ε)αnpΔ = (1−λ)n
4 and 1/2 < λ ≤ 1−8αpΔ. We have ε = 1−λ

4αpΔ−1 ≥ 1.
Therefore,

Pr[mr
delay >

(1 − λ)n
4

] < e
−ε(1−λ)n
12(1+ε) ≤ e

−(1−λ)n
24 , (7)

where the last inequality follows from ε
1+ε ≥ 1

2 . Since n = n(κ) is a polynomial

function with κ, let poly(κ) = (1−λ)n(κ)
24 . That completes the proof of Lemma 2.

Security of the Blockchain Against Long Delay Attack 261

We denote the event that mr
delay > (1−λ)n

4 as Over-delay in the following
parts.

Lemma 3. Assume 1/2 < λ ≤ 1 − 8αpΔ. Let dr
tree be the depth of TreeMC at

round r. We have

Pr[chain-increase(Π,C)
A,Z,κ(r1, r2, λ) ≥ dr2

tree − dr1
tree] ≥ 1 − 2e−poly(κ). (8)

Proof. If |Cr
i | < dr

tree which means there exists at least one chain of length dr
tree

distributed by the adversary and known to all the miners, miner i at the end of
round r should have updated his state with the chain of length dr

tree. That is,
|Cr

i | = dr
tree. So the event that |Cr

i | < dr
tree cannot happen.

If |Cr
i | > dr

tree, which means Cr
i is being delayed by the adversary. Assuming

that Over-delay doesn’t happen at round r1 and r2 (with probability at least
1 − 2e−poly(κ) due to Lemma 2), we have

Pr
i

[|Cr
i | �= dr

tree] =
mr

delay

n
≤ 1 − λ

4
. (9)

Therefore,

Pr
i,j

[|Cr2
j | − |Cr1

i | ≥ dr2
tree − dr1

tree]

≥ Pr
i,j

[|Cr2
j | − |Cr1

i | = dr2
tree − dr1

tree]

≥ 1 − Pr
i

[|Cr1
i | �= dr1

tree] − Pr
j

[|Cr2
j | �= dr2

tree]

≥ 1 − 1 − λ

4
− 1 − λ

4
> λ.

That means chain-increase(Π,C)
A,Z,κ(r1, r2, λ) ≥ dr2

tree −dr1
tree, which completes the

proof of the Lemma 3.

Lemma 4. Assume 1/2 < λ ≤ 1 − 8αpΔ. Let d be the depth of TreeMC. If all
the branches of TreeMC at round r have a common prefix with length d − T , we
have

Pr[common-prefix(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1 − 2e−poly(κ). (10)

Proof. Suppose all the branches of TreeMC at round r have a common prefix
with length d − T . For any two branches of TreeMC at round r, say Cr

tree.1 and
Cr

tree.2, we have (Cr
tree.1

�T � Cr
tree.2)∧ (Cr

tree.2
�T � Cr

tree.1). However, not every
miner’s view match with TreeMC. Suppose Cr

i is not a branch of TreeMC at round
r, which is denoted by Cr

i �⊂ Treer
MC. Consider the following two cases:

– Case 1: Ci
r is being delayed by the adversary at round r. Assume that Over-

delay doesn’t happen at round r. As is discussed in the proof of Lemma 3,
the probability of this case is at most 1−λ

4 .

262 P. Wei et al.

– Case 2: Cr
i is not being delayed by adversary at round r. Then |Cr

i | = dr
tree.

Suppose Cr
i �⊂ Treer

MC. That is, Cr
i has been distributed by the adversary,

which means the last block of Cr
i was added to TreeMC due to AddBlock

but then deleted due to DeleteBlock at round r′ ≤ r. Since dr′
tree ≥ |Cr

i |
and dr′

tree ≤ dr
tree due to Lemma 1, we have dr′

tree = |Cr
i | = dr

tree. Hence,
there exists another branch C∗ such that |C∗

tree| = dr
tree and C∗

tree is added
to TreeMC earlier than Cr

i . Let r∗ denote the round at which C∗
tree is added.

Since C∗
tree is distributed by the adversary at round r∗ but the miner i didn’t

update his state with C∗
tree, Cr∗

i must be no shorter than C∗
tree. Therefore,

|Cr∗
i | = |Cr

i | = dr
tree and Cr∗

i = Cr
i . We thus conclude that Cr

i was created
no later than r∗ but was distributed at round r′ > r∗. That means, miner i
was being delayed at round r∗.
Assuming that Over-delay doesn’t happen at round r∗, the probability that
miner i was being delayed at round r∗ is at most 1−λ

4 due to the proof of
Lemma 3. So the probability of Cr

i �⊂ Treer
MC in this case is at most 1−λ

4 .

To sum up, on condition that Over-delay doesn’t happen at round r∗ and r
(with probability at least 1 − 2epoly(κ)), the probability that Cr

i is not a branch
of TreeMC at round r is

Pr
i

[Cr
i �⊂ Treer

MC]

= Pr
i

[Cr
i �⊂ Treer

MC ∧ Case 1] + Pr
i

[Cr
i �⊂ Treer

MC ∧ Case 2]

≤
mr

delay

n
+

mr∗
delay

n

≤ 1 − λ

4
+

1 − λ

4
=

1 − λ

2

Therefore,

Pr
i,j

[(Cr
i

�T � Cr
j) ∧ (Cr

j
�T � Cr

i)]

≥ Pr
i,j

[Cr
i ⊂ Treer

MC ∧ Cr
j ⊂ Treer

MC]

≥ 1 − Pr
i

[Cr
i �⊂ Treer

MC] − Pr
j

[Cr
j �⊂ Treer

MC]

≥ 1 − 1 − λ

2
− 1 − λ

2
= λ,

which completes the proof of Lemma 4.

6 Proofs of Security

In this section we analyze the chain growth property and the common prefix
property of (Π, C) using TreeMC.

Security of the Blockchain Against Long Delay Attack 263

6.1 Chain Growth

Theorem 1 (Chain growth). Assume 1/2 < λ ≤ 1 − 8αpΔ. The blockchain
protocol (Π, C) has the chain growth rate g = (1−δ)f

1+fE[Ri
delay]

with majority λ, where

f = 1 − (1 − p)n, E[Ri
delay] = α−αωΔ−1[ω+Δ(1−ω2)]

1−ω and ω = 1 − (1 − α)f .

Proof. The aim of the adversary is to decrease the chain growth rate by delaying
or scheduling the chain delivery. Due to Lemma3, which shows the relation
between the chain growth of (Π,C) and that of TreeMC, we only need to focus
on the chain growth of TreeMC.

It seems that the adversary can use forks to distract the hashing power of
miners in order to slow the chain growth rate. However, the forks does not help
in breaking the chain growth property of TreeMC. More precisely, consider the
rounds at which two consecutive blocks are added to TreeMC. Once a miner
successfully mined a block B1, which corresponds to chain C1, the adversary
can delay it with probability α for at most Δ rounds, and waits for the next
block B′

1. If B1 is delayable and the next block B′
1 corresponding to C ′

1 is mined
within Δ rounds, the adversary can generate a fork by broadcasting both chain
C1 and C ′

1 simultaneously. Then B1 and B′
1 can be added to TreeMC such that

B1 is the neighbour of B′
1, and depth of TreeMC grows by 1. Specifically, the

adversary can broadcast C1 to a set of miners, say S1, and C ′
1 to the remaining

miners, say S′
1. Then miners in S1 will accept chain C1, while miners in S′

1 will
accept C ′

1. Let r1 be the round at which B1 and B′
1 are added to TreeMC and

r2 be the round at which the next block B2 is mined. Notice that r2 − r1 is
not influenced by the number of forks which the adversary generated at round
r1, and only the number of the rounds of delays affect the chain growth rate of
TreeMC.

Fig. 1. The rounds during which t consecutive blocks are added to TreeMC

Consider t consecutive blocks in TreeMC as shown in Fig. 1. Block B0 is added
to the tree at round r0 and Bt is added at round rt. We divide those rounds
from r0 to rt into t periods, and each period consists of the rounds during which
the depth of TreeMC increases by 1.

Each period i consists of mining phase and delay phase. For each i, let Bi be
the first block that mined in period i. The round at which block Bi is mined is
the end of mining phase. Let Ri

mine and Ri
delay denotes the number of rounds of

264 P. Wei et al.

mining phase and delay phase of period i, respectively. Let Rmine = Σt
i=1R

i
mine

and Rdelay = Σt
i=1R

i
delay. So Rmine + Rdelay = rt − r0.

Next, we show how to compute Rmine and Rdelay. Let f = 1−(1 − p)n be the
probability that some miner succeeds in mining a block in a round. Since Ri

mines
are independent geometrically distributed variables such that Pr[Ri

mine = k] =
(1 − f)k−1f , the sum Rmine follows a negative binomial distribution NB(t, f).
Due to Lemma 5 in AppendixA, we have

Pr[Rmine ≤ (1 + δ1)t
f

] ≥ 1 − e−poly(δ2
1t), (11)

where 0 < δ1 < 1/2.
In delay phase, if Bi is undelayable, it has to be added to TreeMC at the

current round and Ri
delay = 0. Otherwise, the adversary can delay the chain

for at most Δ rounds, Ri
delay ≤ Δ. It is obvious that Rdelay ≤ tΔ. To get a

lower upper bound, we need to consider the event that a undelayable block is
mined during each delay phase. Indeed, if an undelayable block is mined within
Δ rounds since the beginning of a delay phase, the adversary has to add such
block to TreeMC and the delay phase is ended. Hence, the probability distribution
of Ri

delay is defined as follows:

Pr[Ri
delay = k] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − α, if k = 0,

α(1 − (1 − α)f)k−1(1 − α)f, if 0 < k < Δ,

α(1 − (1 − α)f)k, if k = Δ,

0, otherwise.

(12)

So we have

E[Ri
delay] = α(1 − (1 − α)f)ΔΔ +

Δ−1∑

k=1

kα(1 − (1 − α)f)k−1(1 − α)f

=
α − αωΔ−1[ω + Δ(1 − ω2)]

1 − ω
,

where ω = 1 − (1 − α)f .
Since Ri

delays are independent random variables with the same distribution,
the expectation E[Rdelay] =

∑t
i=1 E[Ri

delay] = tE[Ri
delay]. Using the Chernoff

bound, we get

Pr[Rdelay < (1 + δ2)tE[Ri
delay]] > 1 − e− δ22tE[Ri

delay]

3 , for 0 ≤ δ2 ≤ 1. (13)

So on the condition that (11) and (13) hold, the chain growth rate of TreeMC

is

g >
t

Rmine + Rdelay
=

t
(1+δ1)t

f + (1 + δ2)tE[Ri
delay]

=
(1 − δ)f

1 + fE[Ri
delay]

, (14)

Security of the Blockchain Against Long Delay Attack 265

where δ is decided by picking sufficiently small δ1 and δ2.
Due to Lemma 3, the view of (Π, C) has chain growth g with majority λ

with probability at least 1 − 2e−poly(κ) conditioned on that (11) and (13) hold.
Therefore, given the view of (Π, C), we have

Pr[chain-increase(Π,C)
A,Z,κ(r, r + T, λ) ≥ gT]

≥ 1 − 2e−poly(κ) − e−poly(δ2
1T) − e− δ22T E[Ri

delay]

3 ,

which completes the proof of Theorem 1.

Remark. If α = 1, then E[Ri
delay] = Δ and the chain growth rate is (1−δ)f

1+fΔ ,
which is the same as that of [22].

6.2 Common Prefix

Theorem 2 (Common prefix). Assume 0 < α < 1 − np and 1/2 < λ ≤ 1 −
8αpΔ. The blockchain protocol (Π, C) satisfies the common prefix property with
parameter λ.

Proof. Due to Lemma 4, it remains to prove that TreeMC have the common prefix
property. Suppose the adversary’s goal is to break the common prefix of TreeMC

with depth d+T . That is, the adversary aims to make the length of the common
prefix of all branches in TreeMC at most d − 1.

Note that the depth of TreeMC can increase by 1 at most at each round due
to Lemma 1. Therefore, in order to generate a fork in TreeMC, the adversary has
to broadcast more than one blocks in a round. If only one block is broadcasted,
there will be only one branch in TreeMC according to Lemma 1 and the adversary
fails to generate a fork.

In order to capture the attack for common prefix, we introduce the following
game ExperimentCOMM

A,(Π,C), where the adversary generates a fork and tries to keep
the branches of the fork as long as possible.

ExperimentCOMM
A,(Π,C): Run (Π, C). Suppose that at current round r the depth of

TreeMC is d − 1 and there is no blocks being delayed and no forks in TreeMC.
Then the adversary A tries to generate a fork and extend the length of forks as
follows.

1. Wait for new blocks to be mined. If the new block or blocks are mined at
some round r′ such that r′ > r.

– If more than one block are mined in the same round r′, A broadcasts the
corresponding chains and goes to step 3. That means a fork is generated
and recorded in TreeMC.

– If only one block, say B, is mined,
• If B is delayable, A delays the corresponding chain, say C1, and goes

to step 2;
• Otherwise, go to step 1.

266 P. Wei et al.

2. A tries to delay C1 as long as possible. During these rounds of delays, A tries
to generate a fork by “collecting” new blocks. If no block have been mined
during these rounds, A fails to generate a fork and goes to step 1. Otherwise,
go to step 3.

3. A tries to keep the fork of TreeMC as long as possible. If at least two branches
of the fork are extended with T blocks, we say the adversary wins the common
prefix game.

Since the adversary can always keep waiting and trying until a fork is created
(in step 1 and step 2), the common prefix property is measured by the success
probability of A in step 3.

Next, we consider a special event called converge which results in the failure
of A. Suppose the depth of TreeMC increases to l at round r. Let B∗ be the first
block mined after round r and let r∗ denote the round at which B∗ is mined.
The event converge satisfies the following conditions.

1. Only one miner succeeds in mining at round r∗.
2. The chain C∗ which B∗ lies in is undelayable, or C∗ is delayable while there

is no new block mined in following Δ rounds.

Note that if the event converge happens in step 3, then the depth of TreeMC

increases by 1, e.g., from l to l + 1.
When the depth of TreeMC increases to l at round r, the chains of all the

miners are of length l. (Notice that the (l + 1)th block can be mined only if
a chain of length l is distributed). Then, if only one miner succeeds in r∗ and
generates an undelayable chain C∗, C∗ will be the unique chain in TreeMC and
A fails to extend the fork. If C∗ is undelayable and there is no new block mined
in following Δ rounds, A fails too.

Conditioned on that there exists some miner succeeding at round r∗, the
probability of condition 1 is

np(1 − p)n−1

1 − (1 − p)n >
np(1 − p)n−1

np
= (1 − p)n−1

> 1 − np (15)

The probability of condition 2 is

1 − α + α(1 − p)nΔ
> 1 − α + α(1 − npΔ) = 1 − αnpΔ (16)

Therefore,

Pr[converge] > (1 − np)(1 − αnpΔ) > 1 − np(1 + αΔ) (17)

The adversary can keep the fork for consecutive T blocks only if converge
does not happen for consecutive T times, the probability of which is at most
(np(1 + αΔ))T . So the probability that TreeMC has a common prefix with depth
d − T is at least 1 − (np(1 + αΔ))T .

If Δ ≤ 1/np, considering the assumption α < 1 − np, we have

Security of the Blockchain Against Long Delay Attack 267

np(1 + αΔ) < np(1 +
1 − np

np
) = 1 (18)

If Δ > 1/np, the equality (16) can be replaced with 1−α+α(1 − p)nΔ
> 1−α,

and the probability that TreeMC has a common prefix with depth d−T is at least
1 − (α + np)T , where α + np < 1.

To sum up, the probability that TreeMC has a common prefix path with depth
d−T is at least 1−negl(T), where negl is a negligible function. Due to Lemma4,
the view of (Π, C) satisfies common-prefix

(Π,C)
A,Z,κ(r, T, λ) = 1 with probability at

least 1 − 2e−poly(κ). Therefore, given the view of (Π, C), we have

Pr[common-prefix(Π,C)
A,Z,κ(r, T, λ) = 1] ≥ 1 − 2e−poly(κ) − negl(T),

which completes the proof of Theorem 2.

7 Long Delay Attack on Common Prefix

7.1 Long Delay Attack

Note that Theorem 2 is an asymptotic result, which means the common prefix
property can hold when T is large enough. To illustrate the threat of long delay
attack comprehensively, we present a concrete attack on the common prefix of
TreeMC when Δ and α are “too” large relative to a fixed T .

Fig. 2. For α = 0.8 and T = 6, the success probability increases as Δ gets larger. In
particular, the success probability grows much faster when Δ > 60 (10 min). When
Δ > 120 (20 min), the success probability can reach about 1%.

268 P. Wei et al.

Fig. 3. For Δ = 60 (10min, the expected time of mining a block) and T = 6, the
success probability increases as the probability of delay α get larger. As shown in the
figure, the success probability increases much faster when α > 0.7.

Fig. 4. For Δ = 60 (10 min) and α = 0.8, the success probability decreases as T gets
larger. In particular, when T ≥ 6, the success probability becomes extremely small.

Suppose that TreeMC has a fork with two branches2 of depth 1, which lies
in two chains, say chain A and chain B, respectively, and half of the miners

2 Here the branch starts from the block where the fork begins and ends with the last
block.

Security of the Blockchain Against Long Delay Attack 269

accepted chain A and the other half accepted chain B. Then the adversary aims
to increase the length of the two branches by T . Note that once the adversary
need to broadcast two chains, he distributes in a way that the number of miners
which accept one chain equals to that of miners which accepts the other chain.
More details of the attack and related analysis are described in AppendixB. The
success probability of such attack is

(
f

4
+ (α +

f(1 − 2α)
4

)
f(1 − pΔ

next)
2 − 2pnext

)
T

(19)

where pnext ≈ (2−f(1−α))(2−f)
4 .

For an experimental interpretation of the success probability of the attack,
the parameters are set as follows: The time span of a round for full interaction
is set to 10s. Since the expected time to mine a block is about 10 min, the
probability of all the miners succeeding in mining per round is about f = 1/60.
Considering n = 105 miners in the network, we have p ≈ f/n ≈ 1.67×10−7. Let
λ = 99.8%, which satisfies the assumption 1/2 < λ ≤ 1 − 8αpΔ if Δ < 1.5 × 103

(about 4.2 h). In this case, the common prefix of TreeMC is the same as that of
(Π, C) with probability at least 99.95% due to Lemma 4.

Given the above parameters, Figs. 2, 3 and 4 reflect the success probability
of long delay attack when Δ, α and T varies. As shown in those figures, the
adversary without any hash power may threaten the common prefix property of
blockchain protocol especially when Δ and α are too large relative to the fixed
T .

7.2 Balance Attack

Our attack is reminiscent of the balance attacks introduced by [20], since both
attacks can create or maintain forks by splitting honest miners into subgroups
of similar mining power. Main differences between the original balance attack in
[20] and ours are as follows.

– The goal of the original balance attack is to make the target branch selected
as the main chain, while the goal of ours is to maintain the forks for as long
as possible.

– The attacker in the original balance attack requires a fraction, say 20%, of
mining power to launch attack, while our attack as well as N -confirmation
double spending attack in [14] does not require any mining power.

– The original balance attack disrupts the communication between subgroups
by delaying messages and those isolated subgroups mine their own blockchains
independently. Our attack delays the new block (or blockchain) as soon as it is
successfully mined, e.g., the attacker “eclipses” the miner which mines a new
block. Then the attacker delivers different blockchains to different subgroups
once he obtains enough blockchains.

According to Theorem 5 of [20], we can evaluate the effectiveness of balance
attack on bitcoin protocol. Table 1 shows the time of delays (in minutes) required

270 P. Wei et al.

by the original balance attack and ours, where we only consider the ideal case
for the attacker of balance attack. More precisely, we assume that all the blocks
mined in balance attack can be added to the main chain. For more details of
balance attack, we refer to [20].

Table 1. Delays for balance attack and our long delay attack (minutes). f = 1/60
and T = 6. ε denotes the success probability of the attack. ρ denotes the fraction of
mining power owned by the adversary in balance attack. α denotes the probability of
delay in our attack. “-” denotes that the corresponding success probability cannot be
achieved. For example, the maximum success probability of our attack is about 0.55
when α = 0.95 and hence cannot reach 0.9.

Types of attack Success probability

ε = 0.1 ε = 0.5 ε = 0.9

Balance attack ρ = 0.1 8055 11230 11920

ρ = 0.2 1790 2495 4426

ρ = 0.3 696 970 1724

Our attack α = 0.85 43.6 - -

α = 0.95 26.6 78.4 -

α = 1 22.9 44.2 80.8

Although Table 1 shows that the balance attack requires longer delays than
ours, we emphasize that it is not fair to say which attack is better. First, the goals
are different. Second, the balance attack only considers the case that the attacker
can always delay the message successfully, while our attack considers different
probability of delay. Besides, the success probability estimation of balance attack
on bitcoin, which is obtained by applying the result on GHOST [20] directly, is
not tight and can be further improved.

Acknowledgements. We would like to thank the anonymous reviewers of ASI-
ACRYPT 2018 for their insightful and helpful comments. We are also grateful to Siu
Ming Yiu, Zhengyu Zhang, Yingnan Deng, Shichen Wu and Xianrui Qin for interest-
ing discussions. Puwen Wei and Quan Yuan were supported by the National Natu-
ral Science Foundation of China (No. 61502276 and No. 61572293). Puwen Wei was
also supported by the Chinese Major Program of National Cryptography Development
Foundation (No. MMJJ2017012) and the Fundamental Research Funds of Shandong
University (No. 2016JC029).

A Chernoff Bound for Negative Binomial Distribution

Lemma 5. Let X1,X2, . . . , Xk be independent random variables, such that for
all i ∈ [k] and integer m ≥ 1, Pr[Xi = m] = (1 − p)m−1

p. Let X = Σk
i=1Xi,

Security of the Blockchain Against Long Delay Attack 271

the variable X is said to have a negative binomial distribution NB(k, p), and for
δ ∈ (0, 1

2)

Pr[X ≤ (1 − δ)
k

p
] < e−poly(δ2k) (20)

Pr[X ≥ (1 + δ)
k

p
] < e−poly(δ2k) (21)

Proof. Let t = (1−δ)k
p and ε = 1

1−δ − 1 ∈ (0, 1). Here, k = pt
1−δ = (1 + ε)pt.

Let Y1, Y2, . . . , Y�t� be independent random boolean variables, such that for all
i ∈ {1, . . . , �t�}, Pr[Yi = 1] = p. Y = Σ

�t�
i=1Yi. Due to the Chernoff bound [7], we

have
Pr[Y ≥ k] ≤ Pr[Y ≥ (1 + ε)p�t�] < e− ε2p�t�

3 (22)

Since
p�t� = pt − p(t − �t�) > pt − p = (1 − δ)k − p (23)

we have
Pr[Y ≥ k] < e− ε2

3 ((1−δ)k−p) < e− δ2k
3(1+δ)+

ε2p
3 < e− δ2k

3 + p
3 (24)

Consider the event Y ≥ k. If it happens, there are at least k successes in �t�
Bernoulli trials. In other words, it takes us at most �t� experiments to achieve
the kth successes. Xi is considered as the number of Bernoulli trials needed to
get one success. So the event Y ≥ k is equivalent to the event X ≤ �t�. Hence,

Pr[X ≤ t] = Pr[X ≤ �t�] = Pr[Y ≥ k] < e− δ2k
3 + p

3 (25)

That completes the proof of inequality (20). Similarly, inequality (21) can be
proved if t = (1+δ)k

p and ε = 1 − 1
1+δ .

B Long Delay Attack on Common Prefix

Suppose chain A and chain B are in TreeMC, such that chain A is similar to chain
B except that only the last blocks are different. For convenience, let GA and GB

denote the set of miners which accept chain A and chain B, respectively. The
number of miners in group A equals to that of group B, i.e., |GA| = |GB | = n/2.
Note that GA or GB is not fixed and will be changed due to the adversary
delivery. Then the adversary waits for a new block. We say round r is successful
if there is a new block mined at round r. Let γ(n, p) = 1− (1− p)n. If p is small,
we have γ(n, p) ≈ np. Obviously, the probability that a round is successful is
f = γ(n, p). When a successful round appears, consider the following cases:

1. There is at least one block mined in each of the two branches. That means,
chain A and chain B are extended at the same round. The adversary dis-
tributes the two chains in a way that the number of miners accepting chain
A and the number of miners accepting chain B are equal. As a result, the

272 P. Wei et al.

adversary succeeds in extending the length of the fork by 1. Since the proba-
bility of mining a block in one chain is γ(n

2 , p), the probability that this case
happens is

γ(n
2 , p) · γ(n

2 , p)
γ(n, p)

≈
1
4n2p2

np
=

np

4
(26)

2. There is at least one undelayable block mined in only one of the branches
(without loss of generality, chain A) while no block mined in the another chain
(chain B). In this case, the new chain A is broadcasted by the adversary, while
the length of chain B remains the same. So the useless blocks in chain B is
deleted due to DeleteBlock and the adversary fails to extend the fork. The
probability of this case is

2γ(n
2 , (1 − α)p)(1 − γ(n

2 , p))
γ(n, p)

≈
(1 − α)np(1 − np

2)
np

=
(1 − α)(2 − np)

2
(27)

3. Otherwise, all the blocks mined at this round are delayable and in only one
branch (without loss of generality, chain A). That means, the adversary nei-
ther succeeds nor fails at this round. The adversary can delay the new chain
A and keep waiting for a new block in chain B in the following Δ rounds.
Due to Eqs. (26) and (27), the probability that the adversary needs to delay
the chain is

1 − np

4
− (1 − α)(2 − np)

2
= α +

np(1 − 2α)
4

(28)

Then, the adversary keeps the chain A delayed and waits for a new block to
be mined in chain B. At each of the following rounds, there are three cases
to be discussed:
(a) If GB succeeds in mining a block, the chain B can be extended and adver-

sary distributes the delayed chain A and the new chain B in a way that
|GA| = |GB |. As a result, the adversary succeeds in extending the length
of chain A and chain B by 1. The probability of this case is γ(n

2 , p) ≈ np
2 .

(b) If GB does not succeed in mining a block while GA mines an undelayable
block. Then, the new chain A should be distributed, which means only
chain A in TreeMC is extended. So the adversary fails.

(c) If GA does not mine an undelayable block while GB does not succeed in
mining a block. The adversary checks whether the number of rounds for A
being delayed exceeds Δ. If it exceeds Δ, the adversary has to broadcast
chain A and fails. Otherwise, the adversary keeps chain A delayed and
goes to the next round, where the probability of this event is

pnext = (1 − γ(
n

2
, (1 − α)p)) · (1 − γ(

n

2
, p)) ≈ (2 − np(1 − α))(2 − np)

4
.

(29)
In a word, in case 3, the adversary can succeed with probability np

2 per round,
or can go to the next round with probability pnext. Conditioned on case 3

Security of the Blockchain Against Long Delay Attack 273

happens at round r, the probability for the adversary succeeding at round
r+1 is np

2 and the probability of success at round r+2 is pnext · np
2 . Similarly,

conditioned on case 3 happens at round r, the probability of success at round
r + i is pnext

i−1 · np
2 . Since the adversary only has Δ rounds for trying, the

probability for adversary to succeed during those Δ rounds in case 3 is

Δ∑

i=1

pnext
i−1 · np

2
=

np(1 − pΔ
next)

2 − 2pnext
. (30)

Considering case 1, 2 and 3, the probability of the adversary succeeding in
increasing the length of branches by 1 for a successful round is

np

4
+ (α +

np(1 − 2α)
4

)
np(1 − pΔ

next)
2 − 2pnext

. (31)

Then the adversary waits for another successful round and executes as described
above.

We say the adversary’s long delay attack is successful, if the adversary suc-
ceeds in increasing the length of the fork by 1 for consecutive T times. Therefore,
the success probability of our long delay attack is

(
f

4
+ (α +

f(1 − 2α)
4

)
f(1 − pΔ

next)
2 − 2pnext

)
T

. (32)

where np ≈ f .

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

2. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payment from bitcoin.
In: IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

3. Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: ACM CCS 2016, pp. 154–167. ACM Press,
New York (2016)

4. Daian, P., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive, Report 2016/919 (2016)

5. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

6. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
13th IEEE International Conference on Peer-to-Peer Computing, pp. 1–10. IEEE
Computer Society Press (2013)

7. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge (2009)

https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3

274 P. Wei et al.

8. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

9. Eyal, I., Sirer, E.G.: The miner’s dilemma. In: 2015 IEEE Symposium on Security
and Privacy, vol. 7, pp. 89–103. IEEE Computer Society Press (2015)

10. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

12. Gervais, A., Karame, G.O., Wust, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: ACM CCS 2016,
pp. 3–16. ACM Press (2016)

13. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. IACR Cryptology ePrint Archive, Report
2017/454 (2017)

14. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin peer-
to-peer network. In: Jung, J. (ed.) 24th USENIX Security Symposium, pp. 129–144.
USENIX Association (2015)

15. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: 2016 ACM Conference on Economics and Computation, pp. 365–382.
ACM Press (2016)

16. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive: Report 2015/1019 (2016)

17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

18. Miller, A., LaViola, J.J.: Anonymous byzantine consensus from moderately-hard
puzzles: a model of bitcoin. Technical report, CS-TR-14-01. University of Central
Florida (2014)

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
20. Natoli, C., Gramoli, V.: The balance attack against proof-of-work blockchains:

the R3 testbed as an example. Computing Research Repository (2016).
arXiv:1612.09426

21. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy, vol. 142, pp. 305–320. IEEE Computer Society Press
(2016)

22. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

23. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: ACM Symposium on Principles
of Distributed Computing, pp. 315–324. ACM Press (2017)

24. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/1612.09426
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14

Security of the Blockchain Against Long Delay Attack 275

25. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

26. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

27. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

28. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

29. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin.
IACR Cryptology ePrint Archive: Report 2013/881 (2017)

30. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

31. Zohar, A.: Bitcoin: under the hood. In: Communications of the ACM, vol. 58, pp.
104–113. ACM Press (2015)

https://doi.org/10.1007/978-3-319-78375-8_1
http://arxiv.org/abs/1112.4980
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_29

Secret Sharing

Homomorphic Secret Sharing
for Low Degree Polynomials

Russell W. F. Lai(B), Giulio Malavolta, and Dominique Schröder

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{russell.lai,malavolta}@cs.fau.de, dominique.schroeder@fau.de

Abstract. Homomorphic secret sharing (HSS) allows n clients to secret-
share data to m servers, who can then homomorphically evaluate public
functions over the shares. A natural application is outsourced compu-
tation over private data. In this work, we present the first plain-model
homomorphic secret sharing scheme that supports the evaluation of poly-
nomials with degree higher than 2. Our construction relies on any degree-
k (multi-key) homomorphic encryption scheme and can evaluate degree-
((k + 1)m − 1) polynomials, for any polynomial number of inputs n and
any sub-logarithmic (in the security parameter) number of servers m.
At the heart of our work is a series of combinatorial arguments on how
a polynomial can be split into several low-degree polynomials over the
shares of the inputs, which we believe is of independent interest.

1 Introduction

Homomorphic secret sharing (HSS), introduced by Boyle, Gilboa, and Ishai [9],
allows n clients to secret share the data x into the shares x1, . . . , xm which are
distributed to m servers, who can then homomorphically evaluate public func-
tions over the shares. The evaluation is done locally by each server, meaning
that there exists a local evaluation algorithm Eval(f, xj) that takes as input
a description of the function f and a share xj , and returns a value yj . The
result of the distributed computation can be re-constructed using the decod-
ing algorithm Dec(y1, . . . , ym), which returns the result f(x). HSS schemes for
meaningful classes of functions can be constructed under weak assumptions,
such as decisional Diffie-Hellman (DDH) [9] or the security of Paillier encryp-
tion scheme [20]. A natural application of HSS is outsourced computation over
private data.

1.1 Our Contribution

We propose a family of HSS schemes for polynomials from weak assumptions.
More precisely, we show that:

Theorem 1 (Informal). For all integers k ≥ 0 and m = O
(

log λ
log log λ

)
, if there

exists a degree-k homomorphic public-key encryption scheme, then there exists an
m-server homomorphic secret sharing for polynomials of degree d = (k+1)m−1.
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 279–309, 2018.
https://doi.org/10.1007/978-3-030-03332-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_11&domain=pdf

280 R. W. F. Lai et al.

Table 1. Comparison amongst existing HSS schemes for n clients, m servers and
resilient against the corruption of t servers. “n = ∗” denotes unbounded number of
clients.

(n, m, t) Functions Assumptions

Shamir [30] (∗, m, t) Rd, d = m − 1 -

Benaloh [6] (∗, m, m − 1) Affine -

Information Theoretic PIR [18,31] (∗, m, 1) Selection -

Beimel et al. [5] (1, 3, 1) Depth 2 Boolean circuits -

Computational PIR [13] (∗, m, 1) Selection Φ-Hiding

Function Secret Sharing [8,25] (1, m, m − 1) Point Function OWF

Spooky Encryption [17] (∗, m, m − 1) Circuits LWE

Boyle et al. [9,10] (∗, 2, 1) Branching Programs DDH

Catalano and Fiore [15] (∗, 2, 1) Rd, d = 2k k-HE

Sections 4 and 5 (∗, m, 1) Rd, d = (k + 1)m − 1 k-HE

Our scheme is perfectly correct, assuming a perfectly correct homomorphic
encryption scheme, and naturally generalizes to the multi-key and the threshold
settings. Our construction is secure in the plain model, without the need for
a public-key setup. Interestingly, when k = 0, i.e., the encryption scheme has
no homomorphic properties, we recover the same functionality of Shamir secret
sharing [30], i.e., the supported degree is d = m − 1. A comparison amongst
existing HSS schemes is summarized in Table 1. Most of the known schemes are
either limited to very restricted classes of functions (such as affine or point func-
tions) or require assumptions from which we can instantiate fully homomorphic
encryption (FHE), such as the learning with errors (LWE) assumption. Notable
exceptions include the work of Catalano and Fiore [15] and the recent break-
through result of Boyle, Gilboa, and Ishai [9]. The construction of Catalano and
Fiore allows to efficiently outsource the computation of degree-2k polynomials to
2 non-colluding servers, using only a degree-k homomorphic encryption scheme.
Boyle et al. [9] proposed the first 2-server HSS scheme for branching programs (a
superclass of NC1) assuming only the hardness of DDH. A shortcoming of this
construction is that the correct result of the evaluation is recovered only with
probability 1

poly(λ) . Additionally, their multi-key variant assumes the existence
of a public-key setup.

Our result directly improves over the work of Catalano and Fiore [15] in two
ways. First, we increase the computable degree d from d = 2k to 2k+1. While this
improvement seems small, it has significant consequences for small values of k:
For example, for k = 1, we obtain a 2-server HSS for degree-3 polynomials, which
can be bootstrapped to securely evaluate any function in P/poly [1] (assuming
the existence of a PRG computable in NC1). In particular, it was shown [1]
that any computation in P/poly can be probabilistically encoded by evaluating
a set of polynomials of degree 3. The encoding can then be decoded in time

Homomorphic Secret Sharing for Low Degree Polynomials 281

proportional to the time complexity of the original computation. Furthermore,
the encoding leaks nothing beyond the computation result.

Second, we generalize the scheme of Catalano and Fiore [15] for m ≥ 2
servers, for any m which is sub-logarithmic in the security parameter. Increasing
the number of supported servers allows us to relax the non-collusion assump-
tion. We derive bounds for the maximum degree supported by the resulting
scheme and characterize the requirements for determining the minimum number
of servers needed for correct computation.

1.2 Applications

Our HSS can be applied directly to outsource the computation of low-degree
polynomials on private data. Examples of particular interests include:

1. Privacy-preserving machine learning using shallow neural networks where
highly non-linear activation functions are approximated by low-degree (e.g.,
degree-6 [24]) polynomials to be evaluated on private data.

2. Computation of several statistical measures over private data, such as vari-
ance, skewness and higher moments.

3. A round-optimal m-server PIR which can be casted as the evaluation of
the selection function (a degree d polynomial) over a private index and the
entire database DB for a communication complexity dominated by a factor
|DB|
2d + poly(λ).

A recent work from Boyle et al. [11] describes how to generically bootstrap
an additive 3-client 2-server HSS scheme for degree-3 polynomials (in the PKI
model) into a round-optimal n-clients m-servers MPC protocol (in the PKI
model) for any choice of n and m which are polynomial in the security parame-
ter. Applying a similar transformation to our scheme we obtain a round-optimal
n-clients m-servers server-aided MPC protocol in the plain model. Server-aided
MPC [15,27,28] models real-life scenarios where clients outsource the burden
of the computation to (non-colluding) cloud servers. In particular, such model
allows the adversary to corrupt any strict subset of the servers or the output
client, and an arbitrary number of input clients. Beyond being round-optimal,
our MPC protocol has several interesting properties. First, it can be instantiated
from any multi-key linearly homomorphic encryption (which can be constructed
from the DDH assumption [14]). Additionally, our HSS scheme is perfectly cor-
rect and thus the transformation from HSS to MPC does not need to go through
the probability amplification step of [10]. It also inherits the efficiency features of
the transformation of Boyle et al. [11]: If |f | is the size of the circuit computing
f , then

– the computational efficiency is |f | · poly(λ) · n3 when m = O(1) or m = n,
and

– the output client complexity is bounded by |f | · poly(λ) · m.

282 R. W. F. Lai et al.

1.3 Our Techniques

We illustrate the basic ideas behind our HSS scheme with a simple example,
where two servers wish to privately compute the function f(x, y, z) = xyz, for
some values x, y, and z belonging to a ring R. The client computes a standard
2-out-of-2 Shamir’s secret sharing of each input and arranges the shares into the
following matrix:

T :=

⎡
⎣

x1 x2

y1 y2
z1 z2

⎤
⎦ s.t . T

[
1
1

]
=

⎡
⎣

x
y
z

⎤
⎦ .

In the following, boxed shares are encrypted shares under a linearly homomorphic
encryption scheme HE (assume for the moment under the same public key). The
client then distributes the shares to the two servers (S1,S2) as follows:

S1 ←

⎡
⎢⎣

x1 x2

y1 y2
z1 z2

⎤
⎥⎦ S2 ←

⎡
⎢⎣

x1 x2

y1 y2
z1 z2

⎤
⎥⎦

It is not hard to see that distributing the shares in that way does not reveal any
information to either of the servers. This follows from the the semantic security of
the encryption scheme because each server alone cannot recover the plain value
of the original inputs. Now, we show how the two servers can jointly compute
the function f over the inputs x, y, and z. Let us expand the product

xyz = (x1 + x2)(y1 + y2)(z1 + z2) =
2∑

i=1

2∑
j=1

2∑
�=1

xiyjz�.

We now consider each term xiyjz� individually. By the pigeonhole principle, for
each combination of indices (i, j, �) ∈ {1, 2}3 there exists at least one server
for which at most one of the entries is encrypted. As an example, (1, 1, 2) is a
“valid” set of indices for S2, since it knows the plain values x1 and y1 and the
encrypted share HE.Enc(pk, z2). This implies that every monomial is computable
by a server by treating the plaintext entries as a constant and multiplying them
to the encrypted entry, e.g.,

HE.Enc(pk, z2)x1·y1 = HE.Enc(pk, x1y1z2).

This kind of operations is supported by the encryption scheme since it is linearly
homomorphic. Let I1 ⊂ {1, 2}3 be the set of valid indices for the server S1, let
I2 := {1, 2}3 \ I1 be the set for S2, and let mi be the monomial indexed by
the i-th set of indices. Exploiting the homomorphic properties of the encryption
scheme each server computes

HE.Enc

(
pk,

∑
i∈I1

mi

)
← S1 HE.Enc

(
pk,

∑
i∈I2

mi

)
← S2

Homomorphic Secret Sharing for Low Degree Polynomials 283

and sends the two ciphertext to the client. The client (who knows the secret
key) can decrypt and sum the plaintexts up to recover the result of the compu-
tation:

∑
i∈I1

mi +
∑

i∈I2
mi =

∑2
i=1

∑2
j=1

∑2
�=1 xiyjz� = xyz. Although the

two plaintexts may contain some information of the intermediate values of the
computation, this can be easily avoided by adding a dummy sum of two shares
of 0. This immediately extends to the computation of any degree-3 polynomial.

Increasing the degree of the polynomial. The next observation is that, using the
same principle, increasing the number of servers also increases the degree of the
polynomial that can be computed. The inputs are shared across m servers with
the same strategy and the view of each server looks as follows:

Sj ←

⎡
⎢⎢⎣

x1 . . . xj−1 xj xj+1 . . . xm

...
. . .

...
...

...
. . .

...
z1 . . . zj−1 zj zj+1 . . . zm

⎤
⎥⎥⎦

Products are computed as before and a simple combinatorial argument shows
that the maximum degree computable is d = 2m − 1. Extending to an arbitrary
amount of servers introduces some subtlety in the splitting of monomials since
now one combination of indices might be computable by more than one server.
Thus one needs to take some extra care in the design of a suitable splitting
function.

Furthermore, if we admit the existence of a homomorphic encryption scheme
for degree-k polynomials, then the degree computable by each server increases
even more since now k encrypted entry can be multiplied together locally. Our
analysis shows that the degree increases to d = (k + 1)m − 1.

Extensions. We consider some natural extensions of our HSS scheme. In a multi-
key HSS, clients can independently share their inputs such that servers can eval-
uate functions over an arbitrary set of shares. Since the shares from different
clients are tied to different public keys, we need to upgrade the baseline homo-
morphic encryption scheme to a multi-key homomorphic encryption scheme. For
completeness, we also explore the feasibility of increasing the corruption thresh-
old t by increasing the amount of encrypted entries per server (and decreasing
the maximum supported degree d).

1.4 Related Work

Similar techniques on splitting the evaluation of polynomials have been used
in the context of simultaneous-message multiparty computation [2] and private
information retrieval [4]. Barkol et al. [3] leveraged a similar observation to prove
an upper bound on the degree of polynomials computable by any information
theoretic secret sharing scheme. Another closely related work is by Franklin
and Mohassel [21], who propose a two party computation protocol for degree-3
polynomials. However, their protocol is interactive and therefore does not imply
a homomorphic secret sharing scheme.

284 R. W. F. Lai et al.

2 Preliminaries

Notations. We denote by λ ∈ N the security parameter and by poly(λ) any
function that is bounded by a polynomial in λ. We address any function that
is negligible in the security parameter with negl(λ). An algorithm is PPT if it
is modeled as a probabilistic Turing machine whose running time is bounded
by some function poly(λ). Given a set S, we denote by x ← S the sampling of
an element uniformly at random in S and by [n] we denote the set of integers
{1, . . . , n}. In the following we recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U . The statistical distance between X and Y is defined as

SD [X,Y] =
1
2

∑
u∈U

|Pr[X = u] − Pr[Y = u]| .

2.1 Homomorphic Encryption

For conciseness, in the remaining of this section, we work with multivariate poly-
nomials with the number of variables fixed to n. All results can be generalized
to the case with unbounded number of variables. Formally, let R be a (finite)
ring and R := R[X1, . . . , Xn] be the ring of n-variate polynomials over R. Let
Rd := {f ∈ R : deg(f) ≤ d} be a set of such polynomials of degree at most d.
We recall the notion of homomorphic encryption, for which we assume that the
message domain M of the scheme is a finite ring R that is publicly known and
where it is possible to efficiently sample uniformly distributed elements (e.g.,
[7,14,29], see [15] for a more comprehensive list).

Definition 2 (Homomorphic Encryption (HE)). A public key homomor-
phic encryption scheme HE = (KGen,Enc,Eval,Dec) over degree-d polynomials
Rd, consists of the following PPT algorithms:

KGen(1λ): The key generation algorithm takes as input the security parameter
λ and outputs the public key pk and the secret key sk.

Enc(pk,m): The encryption algorithm takes as input the public key pk and the
message m ∈ M; it returns a ciphertext c ∈ C.

Eval(pk, f, (c1, . . . , cn)): The evaluation algorithm takes as input the public key
pk, a polynomial f ∈ Rd, and a vector of n ciphertexts (c1, . . . , cn) ∈ Cn; it
returns a ciphertext c ∈ C.

Dec(sk, c): The decryption algorithm takes as input the private key sk and a
ciphertext c ∈ C; it returns a plaintext m ∈ M.

Correctness. A homomorphic encryption scheme has decryption correctness if
for any λ ∈ N, any (pk, sk) ∈ KGen(1λ), and any message m ∈ M, we have that

Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc.

Homomorphic Secret Sharing for Low Degree Polynomials 285

A homomorphic encryption scheme has (2-hop) evaluation correctness if
for any λ ∈ N, any (pk, sk) ∈ KGen(1λ), any polynomials f, f1, . . . , fn ∈ R
such that f(f1, . . . , fn) ∈ Rd, any messages m,mi ∈ M for i ∈ [n] where
m = f(f1(m1, . . . , mn), . . . , fn(m1, . . . , mn)), we have that

Pr
[
Dec(sk, c) = m :

∀i ∈ [n], ci ← Enc(pk,mi),
c ← Eval(pk, f, (c1, . . . , cn))

]
≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc and Eval. The scheme
is perfectly correct if the above probabilities are exactly 1.

Compactness. We sometimes require a homomorphic encryption scheme to be
compact. This imposes a bound on the size of the output of Eval: The size of the
output (and consequently the running time of Dec) must be independent from
the size of the evaluated polynomial (e.g., when expressed as a circuit) [22].

Security. The security of a homomorphic encryption scheme is the standard
notion of semantic security introduced by Goldwasser and Micali [26].

Definition 3 (Semantic Security). A homomorphic encryption scheme HE is
IND-CPA-secure (has indistinguishable messages under chosen plaintext attack)
if for any PPT adversary A = (A1,A2) there exists a negligible function negl(λ)
such that

Pr

[
b = b′ : (pk, sk) ← KGen(1λ), (m0,m1, state) ← A1(pk),

b ← {0, 1}, c ← Enc(pk,mb), b′ ← A1(state, c)

]
≤ 1

2
+ negl(λ)

where the probability is taken over the random coins of b, KGen, and Enc.

Circuit Privacy. In the context of homomorphic encryption, semantic security
might be per se not sufficient to guarantee the secrecy of the encrypted messages.
In particular, the output of Eval may still contain some information about the
messages encrypted in the input ciphertexts. This leakage is ruled out by the
notion of circuit privacy [12].

Definition 4 (Circuit Privacy). A homomorphic encryption scheme HE is
circuit-private with respect to a family of functions F , if there exists a PPT
simulator SHE and a negligible function negl(λ) such that for any λ ∈ N,
any (pk, sk) ∈ KGen(1λ), any f ∈ F , any vector of messages (m1, . . . mn) ∈
Mn, and any vector of ciphertexts (c1, . . . , cn) ∈ Cn such that for all
i ∈ {1 . . . t} : ci ∈ Enc(pk,mi), we have that

SD
[
Eval(pk, f, (c1, . . . , cn)),SHE(1λ, pk, f(m1, . . . , mn))

] ≤ negl(λ) .

286 R. W. F. Lai et al.

Multi-Key Homomorphic Encryption. The above definition of homomorphic
encryption can be extended to the multi-client settings with minimal changes. To
do so, we consider the scenario of n clients, each holding an independent key pair
(pki, ski): The key generation and encryption algorithms are unchanged whereas
the evaluation and the decryption algorithms take as input vectors of public and
secret keys, respectively, and are defined as Eval((pk1, . . . , pkn), f, (c1, . . . , cn))
and Dec((sk1, . . . , skn), c). The definitions of correctness and circuit privacy can
easily be modified accordingly.

The (lifted) ElGamal encryption scheme [19] is an example of multi-key
homomorphic encryption. Informally, given the ciphertexts (gr, hr

1g
m1) and

(gs, hs
2g

m2) of m1 and m2 under the keys h1 = gx1 and h2 = gx2 respectively, one
can compute (gr, gs, hr

1h
s
2g

m1+m2) as a ciphertext of m1 + m2 under the com-
bined key (h1, h2). The decryption of lifted ElGamal requires the computation
of a discrete logarithm and therefore it is important that the evaluated message
lies in a polynomial space. To overcome this limitation, one can use the variant
of Castagnos and Laguillaumie [14].

3 Definition of Homomorphic Secret Sharing

We define a variant of homomorphic secret sharing [9] in the public-key setup
model. Our variant considers three parties: one output client, many input clients,
and many servers. The output client provides the setup, meaning that it gen-
erates a public and a secret key and it shares the public key among all partic-
ipants. Furthermore, it also computes the final result. The input clients secret
share their inputs as “input shares” to all servers. The servers homomorphically
evaluate functions, in our case polynomials, over the input shares to obtain “out-
put shares”. These output shares are then sent to the output client, who uses
its secret key to decode them.

The definition can be generalized to the multi-output- client (or multi-key)
setting, where different parties receive the output of the computation. The defini-
tion can also be lifted to the plain model by simply removing the key generation
algorithm and letting all public and secret keys inputs be empty strings.

Definition 5 (Homomorphic Secret Sharing (HSS)). An n-input (1-
output) m-server homomorphic secret sharing scheme for degree-d polynomials
Rd (with public-key setup) HSS = (KGen,Share,Eval,Dec) consists of the follow-
ing PPT algorithms / protocols:

(pk, sk) ← KGen(1λ): On input the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk.

(si,1, . . . , si,m) ← Share(pk, i, x): Given a public key pk, an input index i ∈
[n], and an input x ∈ R, the sharing algorithm outputs a set of shares
(si,1, . . . , si,m).

yj ← Eval(pk, j, f, {si,j}i∈[n]): The evaluation protocol is executed by a server
Sj on inputs the public key pk, an index j, a degree-d polynomial f , and
the corresponding tuple of shares (si,j)i∈[n]. Upon termination, the server Sj

outputs the corresponding output share yj.

Homomorphic Secret Sharing for Low Degree Polynomials 287

Fig. 1. Security experiments for (∗,m, t)-HSS

y ← Dec(sk, (y1, . . . , ym)): On input a secret key sk and a tuple of output shares
(y1, . . . , ym), the decoding algorithm outputs the result y of the evaluation.

Correctness. An n-input m-server HSS scheme for degree-d polynomials Rd

is correct if for any λ ∈ N, any m,n ∈ poly(λ), any (pk, sk) ∈ KGen(1λ), any
f ∈ Rd, any n-tuple of inputs (x1, . . . , xn) ∈ Rn, it holds that

Pr

⎡
⎣
Dec(sk, (y1, . . . , ym)) = f(x1, . . . , xn) :

∀i ∈ [n], (si,1, . . . , si,m) ∈ Share(pk, i, xi),
∀j ∈ [m], yj ∈ Eval(pk, j, f, {si,j}i∈[n])

⎤
⎦ ≥ 1 − negl(λ) ,

where the probability is taken over the random coins of Share and Eval. The
scheme is perfectly correct if the above probability is exactly 1.

Security. The security of a HSS scheme guarantees that no information about
the message is disclosed to any subset of servers of size at most t.

Definition 6 (Security). An n-input m-server HSS scheme is t-secure if for
any λ ∈ N there exists a negligible function negl(λ) such that for any PPT algo-
rithm A = (A0,A1),

∣∣Pr [Security0A,HSS = 1
] − Pr

[
Security1A,HSS = 1

]∣∣ < negl(λ)

where Securityb
A,HSS is defined in Fig. 1 for b ∈ {0, 1}.

For conciseness, we refer to an n-input, m-server, t-secure homomorphic
secret sharing scheme as an (n,m, t)-HSS. If the number of inputs is unbounded,
we denote it by (∗,m, t)-HSS.

288 R. W. F. Lai et al.

Robustness. An (n,m, t)-HSS scheme is r-robust if it suffices for the output client
to collect output shares from any r out of m servers to recover the computation
result.

Context Hiding. In the setting of outsourced computations, the party who
decrypts may be different from the one who provides the inputs of the com-
putation or determines the function to be computed. For this reason, Catalano
and Fiore [15] introduced the notion of context-hiding, which assures that the
decrypting party learns nothing beyond the output of the computation.

Definition 7 (Context Hiding). A (n,m, t)-HSS scheme is context-hiding if
for any λ ∈ N there exists a PPT simulator S and a negligible function negl(λ)
such that for any PPT algorithm A = (A0,A1),

∣∣∣Pr
[
Context-Hidingb

A,S,HSS = 1
]

− Pr
[
Context-Hidingb

A,S,HSS = 1
]∣∣∣ < negl(λ)

where Context-Hidingb
A,S,HSS is defined in Fig. 1 for b ∈ {0, 1}.

Multi-Key HSS. Homomorphic secret sharing can be easily generalized to the
multi-key/multi-input-client settings by extending the evaluation protocol so
that all servers take as input all public keys of the participating output clients,
and the decryption algorithm takes as input all of the corresponding secret
keys. While the definition of security is unchanged and is required to hold for
each secret key, the definitions of correctness, robustness, and context-hiding are
extended accordingly.

4 Main Construction in the Public-Key Model

Let m and k be positive integers. We present a generic construction of an
unbounded-input (1-output) m-server 1-secure homomorphic secret sharing
((∗,m, 1)-HSS) scheme HSS for degree-d polynomials Rd in the public-key model,
where d = (k + 1)m − 1. Our construction is generic and relies only a public key
homomorphic encryption scheme HE for degree-k polynomials. We analyze the
efficiency of our construction in Sect. 4.3 and show that it satisfies the security
definitions for an HSS scheme in Sect. 4.4. For the sake of simplicity, we initially
assume a public-key setup and we show how to upgrade it to the plain model
in Sect. 5.

4.1 Construction

In the following we provide the reader with an intuitive description of our main
construction and we refer to Fig. 2 for a formal description.

Key Generation. On input the security parameter, the output client generates
the keys of the encryption HE scheme and publishes the public key.

Homomorphic Secret Sharing for Low Degree Polynomials 289

Secret Sharing. To secret share a ring element xi ∈ R, the input client samples
random base secret shares xi,j ← R for j ∈ [m] subject to the constraint that∑

j∈[m] xi,j = xi. It then encrypts each share xi,j for i ∈ [n], j ∈ [m] as x̃i,j . Sim-
ilarly, base shares of 0 are randomly sampled as (zi,1, . . . , zi,m) ∈ Rm such that∑

j∈[m] zi,j = 0. For each j′ ∈ [m], the resulting j′-th secret share of (x1, . . . , xn)
consists of all plaintext base shares xi,j for all i ∈ [n] and j ∈ [m] \ {j′}, the
encrypted base shares x̃i,j′ for all i ∈ [n], and the plain 0-shares zi,j′ for all
i ∈ [n]. The process of creating a share si,j′ is visualized below and formalized
in Fig. 2.

0 Base Share→ [
zi,1 · · · zi,m

]

xi
Base Share→ [

xi,1 · · · xi,j′−1 xi,j′ xi,j′+1 · · · xi,m

]
HE.Enc→

[
xi,1 · · · xi,j′−1 x̃i,j′ xi,j′+1 · · · xi,m zi,j′

]
:= si,j′

Evaluation. Let f ∈ Rd be an n-variate polynomial of degree at most d for
some n ∈ poly(λ). Without loss of generality, suppose the servers are to homo-
morphically evaluate f over xi for i ∈ [n] which have been secret shared as
(si,1, . . . , si,m) respectively1. To do so, Sj locally evaluates a function fj over its
shares (s1,j , . . . , sn,j), to be explained below. We will construct (for each d) a
function Splitd that splits f into some polynomials g1, . . . , gm, with the following
properties:

1. If
∑

j∈[m] xi,j = xi, then f(x1, . . . , xn) =
∑

j∈[m] gj(x1,j , . . . , xn,j).
2. For all i ∈ [n] and j ∈ [m], fix xi,j such that

∑
j∈[m] xi,j = xi. Let

x−j
i = (xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,m). Then for each j ∈ [m], gj is an

n-variate polynomial over (x1,j , . . . , xn,j) of degree at most k, whose coef-
ficients are uniquely determined by f and (x−j

1 , . . . , x−j
n), denoted by gj =

Splitd(j, f, (x−j
1 , . . . , x−j

n)).

Note that f and (x−j
1 , . . . , x−j

n) are known by server Sj in plaintext. Since the
underlying encryption scheme supports degree k polynomials, Sj can evaluate
fj = gj +

∑
i∈[n] zi,j over the encrypted base shares (x̃1,j , . . . , x̃n,j) to obtain the

output share yj , which is a ciphertext encrypting gj(x1,j , . . . , xn,j)+
∑

i∈[n] zi,j .
It remains to show how to construct the Splitd function. Let f =

f(X1, . . . , Xn) be a polynomial of degree d, write f =
∑

w awMw(X1, . . . , Xn),
where Mw are monomials of some degree c ≤ d, where c depends on w,
with coefficients aw. For each w, consider the monomial Mw(X1, . . . , Xn) =
Xw1Xw2 · · · Xwc

for some (possibly duplicating) indices w1, . . . , wc ∈ [n]. Next,
by defining a set of new variables Xi,j for all i ∈ [n] and j ∈ [m] and substituting
Xi =

∑
j∈[m] Xi,j , we can expand the monomial Mw as

1 In general, i can be picked from any index set I ⊂ N of size n.

290 R. W. F. Lai et al.

Mw(X1, . . . , Xn) = Xw1Xw2 · · · Xwc

=
∏

i∈{w1,...,wc}

⎛
⎝

m∑
j=1

Xi,j

⎞
⎠

= Xw1,1 · · · Xwc,1 + . . . + Xw1,m · · · Xwc,m

=
∑

e∈[m]c

Xw1,e1 · · · Xwc,ec
.

We now inspect the summand Xw1,e1 · · · Xwc,ec
. Recall that c ≤ d = (k+1)m−1.

By the (dual of) pigeonhole principle, any way of writing c as a sum of m
non-negative integers must contain a summand which is at most k, where the
“worst case” is c = (k + 1) + . . . + (k + 1)︸ ︷︷ ︸

m−1

+k. In other words, for each summand

Xw1,e1 · · · Xwc,ec
, there exists an index j ∈ {e1, . . . , ec} which appears at most k

times in the expression. Furthermore, such an index j can be chosen determin-
istically by a publicly known algorithm. For the moment, we will continue the
description of the construction without specifying explicitly such an algorithm.
In Sect. 4.3 we will give two explicit examples and analyze their efficiency.

With this observation in mind, we can rewrite each monomial Mw as

Mw(X1, . . . , Xn) =
∑

e∈[m]c

Xw1,e1 · · · Xwc,ec

=
∑

j∈[m]

hw,j [X
−j
1 , . . . , X−j

n](X1,j , . . . , Xn,j)

where X−j
i = (Xi,1, . . . , Xi,j−1,Xi,j+1, . . . , Xi,n) is defined similar to x−j

i , and
each term hw,j [X

−j
1 , . . . , X−j

n](X1,j , . . . , Xn,j) is the sum over the subset of all
summands with j being the chosen index as defined by the property above.
Note that each hw,j can be interpreted as a degree-k (at most) polynomial over
X1,j , . . . , Xn,j , with coefficients depending on X−j

1 , . . . , X−j
n .

Finally, we can rewrite the polynomial f(X1, . . . , Xn) as

f(X1, . . . , Xn) =
∑
w

awMw =
∑
w

aw

∑
j∈[n]

hw,j =
∑

j∈[m]

∑
w

awhw,j .

Since each hw,j is a degree-k polynomial over X1,j , . . . , Xn,j , we can define gj :=∑
w awhw,j which is a degree-k polynomial function over X1,j , . . . , Xn,j , with

coefficients uniquely determined by f and X−j
1 , . . . , X−j

n . This completes the
construction of the Splitd function.

Decoding. Let fAdd(Y1, . . . , Ym) = Y1 + . . . + Ym. Since fAdd is of degree-1,
its homomorphic evaluation is supported by HE. Thus, given the output shares
y1, . . . , ym (which are HE ciphertexts),the output client can homomorphically

Homomorphic Secret Sharing for Low Degree Polynomials 291

evaluate fAdd over y1, . . . , ym, which are ciphertexts encrypting fj(x
−j
1 , . . . , x−j

n)
respectively. By the construction of fj , the evaluation yields a ciphertext encrypt-
ing f(x1, . . . , xn), which can then be decrypted using sk.

Correctness. Note that by condition 2 of the Splitd algorithm the function
gj (and consequently fj) is of degree at most k. Therefore the polynomial
fAdd(f1, . . . , fm) is of degree at most k. By the evaluation correctness of HE,
we have that

y = HE.Dec(sk, c) =
∑

j∈[m]

gj(x1,j , . . . , xn,j) +
∑
i∈[n]

∑
j∈[m]

zi,j

except with negligible probability. By condition 1 of the Splitd algorithm and
since for all i ∈ [n] it holds that

∑
j∈[m] zi,j = 0, we have that

y =
∑

j∈[m]

gj(x1,j , . . . , xn,j) +
∑
i∈[n]

∑
j∈[m]

zi,j

= f(x1, . . . , xn) +
∑
i∈[n]

0 = f(x1, . . . , xn).

Note that if HE is perfectly correct, then HSS is also perfectly correct.

Fig. 2. Construction of a homomorphic secret sharing scheme HSS in the public-key
setup model. (The functions fAdd and Splitd are defined in the text description.)

292 R. W. F. Lai et al.

Remark 1 (The case k = 0). For completeness, we remark that the construction
still works for the case of k = 0 (i.e., HE is a public-key non-homomorphic
encryption) for the most part, except that “homomorphic evaluations” (in the
evaluation protocol and the decoding algorithm) are performed over the plaintext
shares rather than ciphertexts. The ciphertexts can actually be discarded or not
created in the first place.

4.2 Discussion

In the following we first argue that our techniques are “tight” with respect to
the degree of the polynomial to be computed. Then we discuss some function-
dependent optimizations that we can apply to improve the efficiency of our
protocol.

On the upper bound of the supported degree d. In our construction, we showed
that it is possible to support the evaluation of polynomials of degree at most (k+
1)m−1 using m servers. By a counting argument, we can show that (k+1)m−1
is also the maximum possible supported degree of our construction. Suppose the
n servers were to evaluate a degree (k + 1)m polynomial f , then f contains a
monomial Mw =

∑
j1,...,jcw ∈[m] Xiw,1,j1 · · · Xiw,cw ,jcw

of degree (k + 1)m which
contains a summand Xiw,1,j1 · · · Xiw,cw ,jcw

in which each j ∈ {j1, . . . , jcw
} = [m]

appears exactly k + 1 times in the expression. Thus, it is impossible to write
Mw =

∑
j∈[m] hw,j [X

−j
i1

, . . . , X−j
ic

](Xiw,1,j , . . . , Xiw,cw ,j) such that each hw,j is a
polynomial of degree at most k. In fact, no matter how the indices j are chosen,
there must exists hw,j which is of degree at least k + 1.

On computing polynomials with a subset of servers. A näıve usage of our HSS
scheme requires one to query all of the m servers even when the degree of
the polynomial is lower than d. In fact, a smaller number of servers could
be used, with the following modification: Consider any subset M ⊆ [m] and
any ordering of its indices (say lexicographical). All base shares of each input
xi = (xi,1, . . . , xi,m) for m servers can be transformed into base shares for any
set of |M | servers by setting

xi
Base Share→

⎡
⎣xi,j∗ +

∑
j /∈M

xi,j , {xi,j}j∈M\j∗

⎤
⎦

where j∗ is the first element of M . This operation can be computed also homo-
morphically (when needed). Note that the resulting base share is a well-formed
input for the set M . Additionally one needs to provide each server with all of the
0-shares (zi,1, . . . , zi,m) and apply the same transformation as described above.
The resulting share si,j is a correctly formed share for a set of |M | servers. Note
that this operation can be performed non-interactively by all servers belonging
to M .

In another perspective, one can view this as a mechanism for performing the
evaluation (although for a lower degree polynomial) using only a subset of the

Homomorphic Secret Sharing for Low Degree Polynomials 293

servers of size r, i.e., a r-robust HSS scheme. Using combinatorial arguments
similar to those in Sect. 4.1, one can conclude that any size-r subset of the m
servers is able to evaluate polynomials of degree km + r − 1.

On arithmetic circuits of the form
∑∏∑

. In the construction of the Splitd
function, we assume that the polynomial f to be evaluated is given in the fully
expanded form. In general, the number of monomials in a fully expanded polyno-
mial of degree d is exponential in d. It is therefore desirable if the Splitd function
can handle representations of polynomials f which are not fully unrolled. In
certain special cases, this might save an exponential factor (of the number of
monomials and hence server computation complexity) in the degree of the poly-
nomial.

Our observation is that in our construction, computing linear functions over
the inputs is essentially “free”: Given a linear function L(X1, . . . , Xn), and a set
of shares {si,j}n

i=1 = {(x−j
i , x̃i,j , zi,j)}n

i=1, each server Sj can locally compute
x′

j′ = L(x1,j′ , . . . , xn,j′) for j′ �= j, and x̃′
j = HE.Eval(pk,L, (x̃1,j , . . . , x̃n,j)),

which constitutes essentially the j-th share of the value L(x1, . . . , xn).
With the above observation in mind, we notice that if f is given in the

(
∑∏∑

)-form f =
∑v

w=1 aw

∏d
i=1 Lw,i(X1, . . . , Xn), i.e., the sum of products

of d linear functions over X1, . . . , Xn, the servers can first locally evaluate the
linear functions and treat the result as shares of additional inputs, then apply
the Splitd function on these new inputs. Note that even if f consists of only one
product of d linear functions, the fully expanded form of f would contain (n+1)d

monomials in general. This class of functions may be of particular interest since
there exists a generic efficient transformation [23], due to an observation by Ben-
Or, from any multilinear symmetric polynomial to depth-3 (

∑∏∑
)-arithmetic

circuits.

4.3 Efficiency Analysis

We analyze the efficiency of the construction in terms of server communication
and computation complexity. The client-server communication is that of one
ciphertext and therefore is independent from the size of the function that is
computed, under the assumption that the underlying encryption scheme is com-
pact. The input and output clients computation complexity is dominated by m
calls to the encryption algorithm and one decryption, respectively.

The complexity of server computation depends on the design of the Splitd
functions. Below, we first analyze a simpler greedy design where the workload
is distributed to the servers unevenly. Next, we analyze a fair design in which
the workload of each server is identical. Surprisingly, the fair design seems to be
worse than the greedy design in terms of computation complexity for k > 1.

We assume the polynomial f to be evaluated is given in the form f =∑
w awMw(X1, . . . , Xn), where Mw are monomials of degree at most d. The

efficiency analysis can be adapted easily to the setting where f is given as a sum
of product of linear functions.

294 R. W. F. Lai et al.

To bound the computation complexity of the servers, it is useful to use the
following upper bounds, which can be verified straightforwardly:

(
n

r1,...,rm,n−r1−...−rm

) ≤ (en)r1+...+rm

rr1
1 · . . . · rrm

m
(1)

(
α
r

)r ≤ e
α
e (2)

where the multinomial coefficient
(

n
r1,...,rm,n−r1−...−rm

)
denotes the number of

ways to distribute n distinct objects into m + 1 bins, with rj objects in the j-th
bin for j ∈ [m], and n − r1 − . . . − rm objects in the last bin, and e is Euler’s
constant.

The Greedy Approach. One natural choice of Splitd is the greedy one: For each
monomial Mw =

∏
i∈{w1,...,wc}

(∑m
j=1 xi,j

)
in f , the first server (according to

some fixed order) computes as many monomials in Mw as possible, then the
second server computes as many monomials as possible except those which are
already computed by the first server, and so on. We assume that each polynomial
is given in the expanded form (as a sum of monomials). In turn, each monomial
Mw is the product of several terms Xw1 · · · Xwc

for some c ∈ [d], where each
term Xi is shared as Xi := xi,1 + . . . + xi,m for i ∈ [n]. This defines a circuit of
depth 3 with (n + 1) sum gates.

As computing sums are essentially free, we analyze the computation com-
plexity of each of the servers, in terms of the number of product gates of the
arithmetic circuit evaluated. It is useful to consider the following matrix:

T :=

⎡
⎢⎢⎢⎣

xw1,1 xw1,2 . . . xw1,m

xw2,1 xw2,2 . . . xw2,m

...
...

. . .
...

xwc,1 xwc,2 . . . xwc,m

⎤
⎥⎥⎥⎦ .

All monomials in Mw can be obtained by multiplying c elements, such that each
of which is chosen from a distinct row of T . The monomials that the first server
can compute (homomorphically) consists of those obtained by multiplying at
most k elements from the first column. One (efficient) way to compute the sum
of these monomials is to first sum up the last m − 1 elements in each row i
as vi =

∑
j>1 xwi,j , compute the products obtained by multiplying � terms in

{xw1,1, . . . , xwc,1} and (c−�) terms in {v1, . . . , vc} for � ∈ {0, . . . , k}, and sum up
all products. The circuit for computing the above consists of

∑k
�=0

(
c
�

)
product

gates.
The second server computes all monomials obtained by multiplying at most

k elements from the second column, except those already computed by the first
server. A way to compute this is first sum up the last m−2 elements in each row
i as vi =

∑
j>2 xwi,j , compute the products obtained by multiplying �1 terms in

{xw1,1, . . . , xwc,1}, �2 terms in {xw1,2, . . . , xwc,2}, and �3 = (c− �1 − �2) terms in
{v1, . . . , vc} for �1 ∈ {k +1, . . . , c} and �2 ∈ {0, . . . , k} such that �1 + �2 ≤ c, and

Homomorphic Secret Sharing for Low Degree Polynomials 295

sum up all products. The number of product gates in the circuit for computing
the above is given by

∑
�1, �2 :

�1 + �2 ≤ c
�1 ∈ {k + 1, . . . , c}

�2 ∈ {0, . . . , k}

(
c

�1, �2, c − �1 − �2

)
.

Proceeding this way, we can derive that the number of product gates in the
circuit evaluated by the j-th server is given by

∑
�1, . . . , �j :

�1 + . . . + �j ≤ c
�1, . . . , �j−1 ∈ {k + 1, . . . , c}

�j ∈ {0, . . . , k}

(
c

�1, . . . , �j , c − �1 − . . . − �j

)

≤
∑

�1, . . . , �j :
�1 + . . . + �j ≤ c

�1, . . . , �j−1 ∈ {k + 1, . . . , c}
�j ∈ {0, . . . , k}

c�1+...+�j

��1
1 . . . �

�j

j

=
∑

�1, . . . , �j :
�1 + . . . + �j ≤ c

�1, . . . , �j−1 ∈ {k + 1, . . . , c}
�j ∈ {0, . . . , k}

∏
�∈{�1,...,�j}

(c

�

)�

≤(k + 1)(c − k − 1)j−1jec/e

≤(k + 1)(c − k − 1)m−1mec/e

=O(mm)
=O(2m log m)

In order for the computation complexity of the servers to be polynomial, we
set m = O

(
log λ

log log λ

)
. Then, assuming f contains polynomially many monomials

(or products of linear functions), the computation complexity of each server is
bounded by

poly(λ) · O(2m log m) = O
(
2

log λ
log log λ log(log λ

log log λ)
)

< O(2log λ) = poly(λ)

The Fair Approach. Observe that in the greedy approach (the upper bound
of) the workload of the j-th server increases as j increases, meaning that the
distribution of work is unfair. This is undesirable since the overall computation
time is determined by that of the slowest server. If the workload is distributed
evenly, it might be possible that the workload of each server is lower than that
of the slowest server in the greedy approach.

We denote by a vector (�1, . . . , �m) (where
∑

j∈[m] �j = d) the classification
of monomials obtainable by multiplying �j terms in the j-th column of T . For

296 R. W. F. Lai et al.

example, consider the case k = 1, m = 3, and d = (k + 1)m − 1 = 5. The
monomial with classification (1, 2, 2) can only be computed by the server with
the first column encrypted, which is S1. Similarly, both S1 and S2 can compute
monomials in the class (0, 1, 4).

With the above observation in mind, we can design the Splitd function such
that each server computes a weighted-sum of all monomials it can compute,
where the monomials of a class that δ-many servers can compute are assigned
the weight 1/δ (assuming the message space R is also a field)2. The servers can
thus group monomials of the same weight together, and try to reduce the number
of multiplications as much as possible.

In the following, we describe one of the ways to group monomials, which is
identical for all servers. Consider Sj . To obtain the sum of all monomials which
are only computable by Sj , it chooses from each of the m−1 columns besides its
own (column j) k +1 terms. This makes sure that no matter how the remaining
k terms are chosen, the resulting monomials are only computable by Sj . Due to
the latter, it simply sum each of the remaining k rows where terms are not yet
chosen, and multiply them to all (k + 1)(m − 1) terms chosen in the beginning.
Note that the number of ways to choose those (k + 1)(m − 1) terms is given by

S1 :=
(

m − 1
m − 1

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−1

, k

)

≤
k∑

�1=0

(
m − 1
m − 1

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−1

, �1, c − (k + 1)(m − 1) − �1

)
,

where inequality will be useful for the analysis later. Summing all S1 polynomials
obtained by the above procedures (and assigning weight 1 to them) covers all
monomials that are only computable by Sj .

Moving on, to obtain the sum of all monomials which are only computable by
Sj and one other servers, Sj chooses m−2 columns out of the other m−1 columns,
and chooses k + 1 terms each from these m − 2 columns. Let j′ be the column
which is not chosen. It then chooses �1 items from its own column (from the
remaining rows), and �2 items from column j′, such that �1, �2 ∈ {0, . . . , k}. This
ensures that both Sj and Sj′ and no server else can compute these monomials.
Next, it sums up the elements in each of the remaining rows in the m−2 chosen
columns, and multiplies each sum with the (k +1)(m−2)+ �1 + �2 terms chosen
before. Note that the number of ways to choose those (k + 1)(m − 2) + �1 + �2
terms is given by

S2 :=
k∑

�1,�2=0

(
m − 1
m − 2

)(
c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−2

, �1, �2, c − (k + 1)(m − 2) − �1 − �2

)
.

2 In general, it suffices for the servers to assign weights which add up to 1.

Homomorphic Secret Sharing for Low Degree Polynomials 297

Summing all S2 polynomials obtained by the above procedures and assigning
weight 1/2 to them covers all monomials that are only computable by Sj and
exactly one other server. Continue in this way, we conclude that the number of
product gates for Sj is given by

S :=

m−1∑

i=1

k∑

�1,...,�i=0

(m − 1

m − i

)(c

k + 1, . . . , k + 1︸ ︷︷ ︸
m−i

, �1, . . . , �i, c − (k + 1)(m − i) − �1 − . . . − �i

)
.

Using the inequality above, we have

S ≤
m−1∑
i=1

k∑
�1,...,�i=0

(
e(m − 1)
(m − i)

)m−i (ec)(k+1)(m−i)+�1+...+�i

(k + 1)(k+1)(m−i)��1
1 · . . . · ��i

i

=
m−1∑
i=1

(
e(m − 1)
(m − i)

)m−i (ec)(k+1)(m−i)

(k + 1)(k+1)(m−i)

k∑
�1,...,�i=0

∏
�∈{�1,...,�i}

(ec

�

)�

=
m−1∑
i=1

(
e(m − 1)(ec)(k+1)

(m − i)(k + 1)(k+1)

)m−i

(k + 1)i
(ec

�

)�

≤ (k + 1)m(m − 1)
2

exp
(

(m − 1)(ec)(k+1)

(k + 1)(k+1)
+ c

)

≤ O(2mk

).

In order for the computation complexity of the servers to be polynomial, we set
m = O

(
log1/k λ

)
. Then, assuming f contains polynomially many monomials

(or products of linear functions), the computation complexity of each server is
bounded by

poly(λ) · O(2mk

) = O(2(log
1/k λ)k

) = O(2log λ) = poly(λ) .

Note that for the case k = 1, i.e., a linearly homomorphic encryption is used, we
can set m = O(log λ), which is better than m = O

(
log λ

log log λ

)
set in the greedy

approach.

4.4 Security Proof

We show that our construction is secure as per Definition 6 assuming HE is
IND-CPA-secure. Furthermore, if HE is circuit-private, then our construction is
context hiding.

Theorem 2. Let HE be an IND-CPA-secure public key encryption scheme, then
HSS constructed in Fig. 2 is a secure (∗,m, 1)-HSS scheme in the public-key setup
model.

Proof. Suppose there exists an efficient adversary A which breaks the security of
HSS with non-negligible probability, we show how to construct another efficient
adversary C against the IND-CPA-security of HE.

298 R. W. F. Lai et al.

C participates in the IND-CPA experiment of HE and receives pk which
is forwarded to A. The latter chooses x∗

0, x
∗
1 ∈ R, and an index j∗ ∈ [m]. C

samples x1, . . . , xj∗−1, x
′
j∗+1, . . . , xm ← R, and sets xb,j∗ := x∗

b − ∑
j∈[m]\{j∗}

for b ∈ {0, 1}. It then queries the challenge oracle of HE on (x0,j∗ , x1,j∗), and
receives in return x̃j∗ . Finally, it sends sj∗ := (x1, . . . , xj∗−1, x̃j∗ , xj∗+1, . . . , xn)
to A. Eventually, A returns a bit b′, which is forwarded by C to the IND-CPA
experiment.

We analyze the success probability of C in breaking the IND-CPA-security
of HE. By construction, if b is the bit chosen by the challenge oracle of HE,
C simulates the Securityb

A,HSS experiment for A faithfully, i.e., the view of A
simulated by C is identical to that in Securityb

A,HSS. Therefore, the probability
of C guessing b correctly is identical to that of A breaking the security of HSS.
This concludes our proof. �
Theorem 3. Let HE be a circuit-private public key homomorphic encryption
scheme, then HSS constructed in Fig. 2 is a context-hiding (∗,m, 1)-HSS scheme
in the public-key setup model.

Proof. We first describe the simulator S: On input the security parameter 1λ,
the public key pk, and the function output r, the simulator S samples some
random (r1, . . . , rm) under the constraint that

∑
j∈[m] rj = r and executes

cj ← SHE(1λ, pk, rj), for all j ∈ [m], where SHE is the simulator of HE. The
simulator S returns (c1, . . . , cm).

We analyze the distribution of the output of the simulator S. Consider the
output of the Eval algorithm, for all j ∈ [m]. By the circuit privacy of HE we
have that:

yj = HE.Eval(pk, fj , (x̃1,j , . . . , x̃n,j))

≈ SHE

(
1λ, pk, fj(x1,j , . . . , xn,j)

)

= SHE

⎛
⎝1λ, pk, gj(x1,j , . . . , xn,j) +

∑
i∈[n]

zi,j

⎞
⎠

where ≈ denotes statistical indistinguishability. Consider any subset M ⊆ [m]
of size m − 1. Then for all j ∈ M we have that:

yj ≈ SHE

⎛
⎝1λ, pk, gj(x1,j , . . . , xn,j) +

∑
i∈[n]

zi,j

⎞
⎠

≈ SHE

(
1λ, pk, rj

)

for some rj ∈ R sampled uniformly at random, since there exists at least one (in
fact all) i ∈ [n] such that zi,j is sampled uniformly and independently in R. By
the correctness of HSS it must be the case that for j /∈ M :

yj ≈ SHE

⎛
⎝1λ, pk,

∑
j∈[m]

rj − r

⎞
⎠

Homomorphic Secret Sharing for Low Degree Polynomials 299

which is exactly the output of the simulator S. �

Multi-Use Context-Hiding. We point out that the standard definition of context-
hiding takes into account only one execution of the Eval algorithms, whereas in
certain scenarios it might be desirable to preserve context-hiding even when
multiple functions are evaluated over the same shares. We propose a simple
modification of our scheme that achieves the stronger version of the property:
Instead of computing the shares for the value 0, the sharing algorithm initializes
m keys for a certain pseudo-random function PRF (κi,1, . . . , κi,m) and each server
j is given (κi,j , κi,(j+1 mod m)). Then, for all j ∈ [m], the function fj is defined
as

fj := Splitd(j, f, (x−j
1 , . . . , x−j

n))+
∑
i∈[n]

PRF(κi,j , f)−
∑
i∈[n]

PRF(κi,(j+1 mod m), f).

The analysis follows, with minor modifications, along the lines of what discussed
above.

5 Multi-key Construction in the Plain Model

In the following we show how to extend the scheme in Sect. 4 to the multi-key
settings (in the public-key setup model) and how to turn it into a plain model
scheme.

5.1 Intuition

First, we observe that the main construction in Sect. 4 can be naturally extended
to the multi-key setting, where shares under different public keys are combined
in the evaluation algorithm. In this context, it is useful to distinguish between
input and output clients: The former provide the input data and share them to
the same set of servers3 whereas the latter decode the output of the computation.
Note that these two sets of clients may intersect arbitrarily. We stress that the
clients are not assumed to communicate with each other and can generate their
input shares independently. Adapting our protocol to this setting is surprisingly
simple: In a nutshell, it is sufficient to replace the homomorphic encryption
scheme with the corresponding multi-key variant.

Next, we turn the multi-key construction into a plain model construction. The
idea is to let the input clients, instead of the output clients, generate in the share
algorithm a fresh pair of public and secret keys. They then secret share their
data under the freshly generated public key as in the multi-key construction,
and further secret share the fresh secret keys to all m servers using an m-out-
of-m secret sharing scheme. The servers evaluate the shares as in the multi-key
3 While sharing to different sets of servers is in general possible, it limits the class

of polynomials that can be computed. Specifically, if there exists a server picked
by client i but not client j, then any polynomial which contains a product of data
contributed by both clients is not computable.

300 R. W. F. Lai et al.

construction, and forward the output shares along with the shares of the secret
keys to the output client. The latter recovers the secret keys and uses them to
decode the output shares as in the multi-key construction.

5.2 Construction

Below, we describe briefly the modifications made to the construction in Sect. 4
to obtain a plain model scheme. A formal description is given in Fig. 3. Let m
and k be positive integers. We present a generic construction of an unbounded-
input (1-output) m-server 1-secure homomorphic secret sharing ((∗,m, 1)-HSS)
scheme pHSS for degree-d polynomials Rd in the plain model, where d = (k +
1)m − 1, using only a public-key multi-key homomorphic encryption scheme HE
for degree-k polynomials.

Key Generation. In the plain model, key generation is no longer needed.

Secret Sharing. An input client runs the key generation algorithm for a multi-
key homomorphic encryption scheme to generate a public key and a secret key
independent of other input clients. It then runs the same sharing algorithm
(under the generated public key) to share its private data. It also secret-shares
the secret key of the encryption scheme using an m-out-of-m secret sharing
scheme. Finally, it appends the public key and the j-th share of the secret key
to the j-th input share given to the j-th server.

Evaluation. The evaluation performed by the servers is almost identical, except
that the evaluation algorithm of the multi-key homomorphic encryption scheme
inputs ciphertexts encrypted under different pubic keys and outputs a ciphertext
encrypted under the set of combined public keys. The shares of the secret keys
remain untouched, and are forwarded to the output client along with the output
of the homomorphic evaluation.

Decoding. The output client collects all shares of all secret keys, and recovers
them. As in the previous construction, it homomorphically evaluates the output
shares received from the servers and obtain a ciphertext encrypting the com-
putation result. The only difference is that now the result is encrypted under a
set of public keys. The output client thus uses all the recovered secret keys to
decrypt the ciphertext and obtain the result.

The analyses of correctness, efficiency, and security are almost identical to those
in Sect. 4. We thus state the formal results and omit the proofs.

Theorem 4. Let HE be an IND-CPA-secure public-key encryption scheme, then
pHSS constructed in Fig. 3 is a secure (∗,m, 1)-HSS scheme in the plain model.

Theorem 5. Let HE be a circuit-private public-key multi-key homomorphic
encryption scheme, then pHSS constructed in Fig. 3 is a context-hiding (∗,m, 1)-
HSS scheme in the plain model.

Homomorphic Secret Sharing for Low Degree Polynomials 301

Fig. 3. Construction of a homomorphic secret sharing scheme pHSS in the plain model.
(The functions fAdd and Splitd are defined in Sect. 4.1.)

6 Collusion-Resistance

The constructions in Sects. 4 and 5 are 1-secure, meaning that security is lost as
soon as two servers collude. We outline how the construction can be upgraded to
give a (∗,m, t)-HSS scheme which tolerates t > 1 colluding servers, and investi-
gate the effect on the supported degree d of the resulting secret sharing scheme.

Bounding the Number of Plaintext Base Shares. Unlike in the previous construc-
tions, where we use an m-out-of-m secret sharing scheme to generate base shares
of each input xi, we now use a b-out-of-b secret sharing scheme instead, where
b is a new independent variable. Suppose that for each xi, a certain choice of p
out of b base shares of xi are given in plaintext to a server. In the previous con-
structions, p = b − 1. This means any two colluding servers collectively possess
all base shares of xi in plaintext, and hence are able to recover xi. To tolerate t
colluding servers, we must set p and b such that b > tp, so that any t colluding

302 R. W. F. Lai et al.

servers collectively possess at most tp < b out of b base shares of each xi in
plaintext, and are thus unable to recover any xi.

Bounding the Supported Degree of the Homomorphic Secret Sharing Scheme.
Next, we analyze the supported degree d of the resulting HSS scheme, assuming
an encryption scheme supporting degree k is used. Recall the matrix represen-
tation of the shares as defined in Sect. 4.3. The goal of the servers is to jointly
compute (homomorphically) the product of the sums of each row, which can
be rewritten as a sum of the products obtained by choosing one element from
each row. A product of d-many rows (and therefore a degree d polynomial) is
computable only if, for each monomial of such a product, there exists at least
one server where at most k elements of such a monomial belong to the encrypted
columns possessed by this server. A natural strategy to maximize the degree is
to let the server possessing the highest number of plaintext columns to compute
such a monomial. Let us rewrite k = (b − p)u + v, for some quotient u and
remainder v. A “worst case” configuration is visualized as follows.

Encrypted Columns, k elements︷ ︸︸ ︷
u, . . . , u︸ ︷︷ ︸
b−p−v

, u + 1, . . . , u + 1︸ ︷︷ ︸
v

,

Plaintext Columns, d−k elements︷ ︸︸ ︷
u + 1, . . . , u + 1︸ ︷︷ ︸

p

The above means that u elements are chosen from each of the b − p − v of the
encrypted columns, and u + 1 elements are chosen from each of the remaining
plaintext and encrypted columns. Consider shifting any element from a plaintext
column to an encrypted column j−. We argue that (after the shift) there exists
a configuration of b − p encrypted columns with at most k elements in the
encrypted columns. Such a configuration is obtained as follows: Let j+ be the
plaintext column with the least amount of elements after the shift. We move j−

to the set of plaintext columns and j+ to the set of encrypted columns. The
numbers of plaintext and encrypted columns clearly do not change. Since j− has
at least u + 1 elements and j+ has at most u + 1 elements, there is no positive
gain in elements in the set of encrypted columns. Thus the new configuration has
at most k elements in the encrypted columns, as the previous configuration does.
This shows that the case constructed above is indeed the worst case. Assume for
the moment that each monomial is computable by at least one server, then the
supported degree cannot exceed

d = bu + p + v

= b

(
k − v

b − p

)
+ p + v

=
bk

b − p
+ v

(
1 − b

b − p

)
+ p

=
bk

b − p
− v

(
p

b − p

)
+ p.

Homomorphic Secret Sharing for Low Degree Polynomials 303

Depending on the value of v, which is uniquely determined by (k, b, p) and sat-
isfies 0 ≤ v < b − p, the maximum supported degree lies within the range

k · b

b − p
< d ≤k · b

b − p
+ p.

To maximize the above range, we can fix p = b−1
t , and have

k · tb

(t − 1)b + 1
< d ≤ k · tb

(t − 1)b + 1
+

b − 1
t

. (3)

For consistency check, we can differentiate with respect to t. For the (non-trivial)
case where p ≥ 1, we have 1 ≤ t ≤ b − 1, and hence

k <
kb

b − 1
< d ≤(k + 1)b − 1.

When no collusion is allowed, i.e., t = 1, we can set b = m and recover the
previous bound d ≤ (k + 1)m − 1. This bounds the maximum supported degree
by (k +1)m− 1, regardless of how many servers are involved. The constructions
in Sects. 4 and 5, show that this bound is actually achievable using m servers.

If a collusion of two servers is allowed, i.e., t ≥ 2, we examine the bound
given in Eq. 3. An interpretation is that the construction amplifies the supported
degree of the base encryption scheme by roughly t/(t − 1) multiplicatively (by
taking limit as the number of columns b → ∞), then adds roughly 1/t degree
per column.

Bounding the Minimum Number of Servers. It remains to show the condition
for having each monomial computable by at least one server. Fix b, p, k and d.
There must exists an integer δ such that d ≤ δ · k. We argue that the number
of servers m required is lower bounded by the solution of the following set cover
problem.

From the set of all
(

b
p

)
number of configurations of choosing p plaintext

columns out of b columns in a secret share matrix, choose a subset satisfying the
following properties: For any integer s ∈ [b], any combination of s out of all b
columns, any combination of �s/δ� out of these s columns, there exists at least
one configuration (a secret share matrix) in the subset which has at most these
�s/δ� columns (out of the s columns) encrypted. Each satisfying subset specifies
a set of servers.

We argue that the above condition on m is both necessary and sufficient,
i.e., the lower bound is tight. For the former, suppose that the condition is
not satisfied, namely that there exists s, a combination of s columns, and a
combination of �s/δ� out of these s columns, such that the secret share matrices
of all servers have more than these �s/δ� columns encrypted. Consequently, no
server is able to compute the monomial where all elements are contributed from
these s/δ columns.

For the sufficiency, consider without loss of generality any degree d monomial,
and denote the number of columns contributing elements to this monomial by

304 R. W. F. Lai et al.

s ∈ [b]. Since d ≤ δ · k, there must exist �s/δ� columns out of these s columns
that are contributing at most k elements. By the condition specified above, there
must exist a server whose secret share matrix has at most these �s/δ� columns
encrypted (whereas the other s − �s/δ� are in plaintext). This server is thus able
to compute the monomial.

Although the general set cover problem is NP-hard, the greedy algorithm
is known to solve the general problem with (multiplicative) approximate factor
O(log N) [16], where N is the number of elements to be covered.

Practically-Relevant Parameters. The above analysis does not give a close form
for the number of servers m needed, for a fixed set of parameters (t, b, p, k, d). In
the following, we investigate parameter settings which are most practically rele-
vant. First, we restrict ourselves to use only encryption for affine functions, i.e.,
k = 1. Next we consider the computation of polynomials of degree d = 3, since
they are sufficient for the secure computation of any function via randomized
encodings [1]. In order to compute degree-3 polynomials, we must have p > 14.
We pick p = 2 and set b = 2t + 1, where t > 1. Using a greedy algorithm, it
can be found that the number of servers needed for t = 2, 3, 4 are m = 4, 9, 16
respectively, which seems to suggest that m ≈ t2. If that is the case, the max-
imum tolerated ratio of colluding servers is t/m ≈ 1/t, which gets worse as t
grows. Therefore, a (∗, 4, 2)-HSS for degree-3 polynomials from affine encryption
seems to be the most interesting result in terms of collusion resistance.

7 Applications

We highlight several interesting applications of our HSS scheme.

7.1 Server-Aided Secure Evaluation of Low-Degree Polynomials

Server-aided secure computation is a natural application of HSS schemes. In
this scenario, one or multiple input clients secret share their data to a set of
servers. Later, the servers can homomorphically evaluate functions (e.g., given
by the input clients or other parties) on the shared data and send the result to
an output client. The latter can efficiently recover the computation result, and
due to the context-hiding property, without learning the original data and the
function being evaluated beyond what is trivially revealed by the result. Using
an HSS scheme in this scenario is particularly appealing since the client-server
communication is succinct (independent of the size of the function evaluated)
and the workload of the input and output clients is typically small.

When instantiated with linearly homomorphic encryption schemes such as
ElGamal [19] or Paillier [29], our main construction allows input clients to
outsource the computation of degree-d polynomials to m non-communicating
4 If p = 1, then the best the Splitd function can do is to assign one element to the

plaintext column and one element to one of the ciphertext columns, whose product
is of degree 2.

Homomorphic Secret Sharing for Low Degree Polynomials 305

servers, where d = 2m − 1 and m = O (log λ). Since Shamir secret sharing [30]
allows to evaluate polynomials of degree d = m − 1 using m = poly(λ) servers,
our result is more interesting when the number of servers, and hence the degree
of the polynomials, are small. There are a few interesting scenarios where low-
degree polynomials are evaluated over private data.

Moments: Moments are recurrent measures in statistics and physics to describe
the shape of a set of points. The d-th moment is computable by a degree-d poly-
nomials. The mean is the first row moment and the variance and the skewness are
the second and third central moments, respectively. Notably, our scheme allows
two servers to efficiently compute the third moment from standard assumptions
whereas previous approaches with comparable efficiency [15] rely on bilinear
maps.

Neural Networks: Multi-layered non-recurrent neural networks are arithmetic
circuits consisting of gates computing non-linear functions. Previous work on
privacy-preserving neural network evaluation [24] approximates these non-linear
functions using low-degree polynomials, such that the modified neural network
can be homomorphically evaluated using a fully homomorphic encryption [22]
(FHE) scheme with a reasonable parameter. Suppose that the networks to
be evaluated are shallow enough, then our constructions provide a relatively
lightweight alternative to FHE for evaluating neural networks over private data.

Polynomials with Hidden Coefficients: Suppose the polynomial f of degree d
to be evaluated is given also by the input clients, they can choose to hide the
coefficients of the monomials in f by secret sharing them, and turning f into a
new polynomial f ′ of degree d+1, where the coefficients in f become variables in
f ′. The clients can further hide the monomials appearing in f by secret sharing
the (possibly zero) coefficients in f of all monomials of degree at most d. Note
that although the number of such monomials is exponential in d, it is not an issue
for a degree d = O (log λ) (when k = 1 and m = O(log λ)) which is logarithmic
in the security parameter.

m-Server PIR: Our HSS scheme for degree d polynomials can be easily converted
into a (round-optimal) m-server PIR scheme as follows: Consider a set of m
servers who store a copy of a database DB locally and let us split the database
in 2d equal chunks (DB1, . . . ,DB2d), then, on input an index i ∈ {0, 1}d, the
client shares i to the m servers with our HSS scheme. The servers evaluate the
function

g(i) :=
2d∑

j=1

DBj(i = j) = DBi

and send the output of the computation to the client. Note that g is a polynomial
of degree d with coefficients determined by DB, which is public. The communi-
cation complexity is dominated by the factor |DB|

2d + poly(λ) of the server-client
message.

306 R. W. F. Lai et al.

7.2 Round-Optimal Server-Aided Multiparty Computation in the
Plain Model

A recent result by Boyle et al. [11] shows that an additive (3, 2, 1)-HSS schemes
for degree-3 polynomials and a low-depth PRG imply a 2 round (n,m)-MPC
protocols5, where n,m ∈ poly(λ). Since the only (3, 2, 1)-HSS scheme from stan-
dard assumption was known to exist only in the PKI model [9], the resulting
MPC protocol inherits the same setup assumption. Unfortunately the transfor-
mation assumes a linear reconstruction of the HSS, which is not satisfied by our
scheme.

However, we can apply a similar transformation to our multi-client HSS
scheme in Sect. 5 to obtain a 2 round (n,m)-MPC, where the adversary is allowed
to corrupt any strict subset of the servers or the output client, and an arbitrary
number of input clients. This corruption model has been introduced in the con-
text of server-aided multiparty-computation [28]. We denote such a primitive by
(n,m)-saMPC. Our scheme does not require a PKI and can be instantiated in
the plain model. Moreover, since our HSS scheme is perfectly correct (assuming
a perfectly correct homomorphic encryption scheme), we can avoid the probabil-
ity amplification step in [10]. We briefly outline the steps of the transformation
in the following.

Lemma 1. (n, 2, 1)-HSS for degree 3 polynomials =⇒ (n, 2, 1)-HSS for P/poly.

This is a trivial implication using randomized encodings [1] and assuming the
existence of a low-depth PRG.

Lemma 2. (n, 2, 1)-HSS for P/poly =⇒ (n, 3)-saMPC for P/poly.

This is shown using the server-emulation technique described in [10], where the
inputs of one server are secret shared among two new servers and its computa-
tion is emulated using the (n, 2, 1)-HSS. Note that the resulting (n, 3)-saMPC is
resilient against the corruption of any strict subset of the 3 servers or the output
client.

Lemma 3. (n, 3)-saMPC for P/poly =⇒ (n,m)-saMPC for degree 3 polynomi-
als.

This is shown using the following observation of [11]: Given a degree 3 polynomial
f(X1, . . . , Xn), then rewriting Xj =

∑m
i=1 xj,i we obtain another degree 3 poly-

nomial f(
∑m

i=1 x1,i, . . . ,
∑m

i=1 xn,i). Each monomial is of the form x1,ix2,jx2,k

and can be computed by the servers (Si,Sj ,Sk) with the (n, 3)-saMPC scheme.
Padding each monomial with a blinding factor (such that all factors sum up to
0) gives us the final (n,m)-saMPC protocol for degree 3 polynomials.

Lemma 4. (n,m)-saMPC for degree 3 polynomials =⇒ (n,m)-saMPC for
P/poly.

5 (n,m)-MPCs are n-client m-server MPCs which are secure against m − 1 corrupt
server.

Homomorphic Secret Sharing for Low Degree Polynomials 307

Follows by another application of randomized encodings.

Acknowledgements. This research is based upon work supported by the German
research foundation (DFG) through the collaborative research center 1223, by the
German Federal Ministry of Education and Research (BMBF) through the project
PROMISE (16KIS0763), and by the state of Bavaria at the Nuremberg Campus of
Technology (NCT). NCT is a research cooperation between the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN).

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15, 115–162 (2006)

2. Babai, L., Kimmel, P.G., Lokam, S.V.: Simultaneous messages vs. communica-
tion. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 361–372.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0 88

3. Barkol, O., Ishai, Y., Weinreb, E.: On d-multiplicative secret sharing. J. Cryptol.
23(4), 580–593 (2010)

4. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified
construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-48224-5 74

5. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private infor-
mation retrieval. In: Proceedings of the 27th Conference on Computational Com-
plexity, CCC 2012, Porto, Portugal, 26–29 June 2012, pp. 258–268. IEEE Computer
Society (2012)

6. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

8. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

9. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 6

11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Innovations in Theoretical Computer Science, vol. 94. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

12. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45022-X 43

https://doi.org/10.1007/3-540-59042-0_88
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/3-540-45022-X_43

308 R. W. F. Lai et al.

13. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

14. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

15. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15,
Denver, CO, USA, 12–16 October, pp. 1518–1529. ACM Press (2015)

16. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

17. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

18. Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May–2 June,
pp. 39–44 (2009). ACM Press (2009)

19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

20. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing
from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec
2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68637-0 23

21. Franklin, M., Mohassel, P.: Efficient and secure evaluation of multivariate polyno-
mials and applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol.
6123, pp. 236–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13708-2 15

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May–2 June, pp. 169–178.
ACM Press (2009)

23. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Ostrovsky, R. (ed.) 52nd FOCS, Palm Springs,
CA, USA, 22–25 October, pp. 107–109. IEEE Computer Society Press (2011)

24. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

25. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

26. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

27. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272 (2011). http://eprint.iacr.org/2011/
272

28. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, Raleigh, NC,
USA, 16–18 October, pages 797–808. ACM Press (2012)

https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-642-13708-2_15
https://doi.org/10.1007/978-3-642-13708-2_15
https://doi.org/10.1007/978-3-642-55220-5_35
http://eprint.iacr.org/2011/272
http://eprint.iacr.org/2011/272

Homomorphic Secret Sharing for Low Degree Polynomials 309

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

30. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

31. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, San Diego, CA, USA, 11–13
June, pp. 266–274. ACM Press (2007)

https://doi.org/10.1007/3-540-48910-X_16

Constructing Ideal Secret Sharing
Schemes Based on Chinese Remainder

Theorem

Yu Ning, Fuyou Miao(B), Wenchao Huang, Keju Meng, Yan Xiong,
and Xingfu Wang

School of Computer Science and Technology, University of Science and Technology of
China, Hefei 230027, China

mfy@ustc.edu.cn

Abstract. Since (t, n)-threshold secret sharing (SS) was initially pro-
posed by Shamir and Blakley separately in 1979, it has been widely
used in many aspects. Later on, Asmuth and Bloom presented a (t, n)-
threshold SS scheme based on the Chinese Remainder Theorem (CRT)
for integers in 1983. However, compared with the most popular Shamir’s
thresholdtn SS scheme, existing CRT based schemes have a lower infor-
mation rate, moreover, they are harder to construct due to the stringent
condition on moduli. To overcome these shortcomings of CRT based
schemes, (1) we first propose a generalized (t, n)-threshold SS scheme
based on the CRT for polynomial ring over a finite field. We show that
our scheme is ideal, i.e., it is perfect in security and has the informa-
tion rate 1. Comparison show that our scheme has a better information
rate and is easier to construct compared with the existing threshold SS
schemes based on the CRT for integers. (2) We prove that Shamir’s
scheme, which is based on the Lagrange interpolation, is a special case
of our scheme. Therefore, we establish the connection among threshold
schemes based on the Lagrange interpolation, schemes based on the CRT
for integers and our scheme. (3) As a natural extension of our threshold
scheme, we present a weighted threshold SS scheme based on the CRT for
polynomial rings, which inherits the above advantages of our threshold
scheme over existing weighted schemes based on the CRT for integers.

Keywords: Threshold · Ideal secret sharing
Chinese Remainder Theorem · Polynomial ring

1 Introduction

Secret sharing (SS) was first introduced respectively by Shamir [29] and Blak-
ley [4] in 1979 to construct robust key management schemes for cryptographic
systems. Shamir’s scheme is constructed based on the Lagrange interpolation

The original version of this chapter was revised: Two references were added. The cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-030-03332-3 20

Supported partially by National NSF of China 61572454,61572453,61520106007 and
National Key R&D Program of China 2018YFB0803400.

c© International Association for Cryptologic Research 2018, corrected publication 2021
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 310–331, 2018.
https://doi.org/10.1007/978-3-030-03332-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-03332-3_20
https://doi.org/10.1007/978-3-030-03332-3_12

Constructing Ideal Secret Sharing Schemes 311

polynomial, as a (t, n)-threshold SS scheme (i.e., (t, n)-SS), it divides a secret
into n shares and distributes each share to one of n parties called shareholders;
only t or more shareholders pooling their shares together can recover the secret
while t − 1 or less shareholders cannot obtain any information about the secret.
So far, many schemes [10,18,19,27,34] have been proposed based on Shamir’s
scheme. Later on, threshold schemes based on the Chinese Remainder Theorem
(CRT) for integer ring were proposed by Mignotte [25] and Asmuth-Bloom [1].

Different from Shamir’s scheme, Mignotte’s scheme and Asmuth-Bloom’s
scheme illustrated a new method to construct (t, n)-threshold SS schemes using
the CRT for integers. Both schemes are highly similar except that the latter
improves the former in perfectness of security. Therefore, Asmuth-Bloom’ scheme
is our main concern among CRT based SS schemes in this paper. In nature,
CRT-based schemes are capable of assigning shares of distinct size to different
shareholders, this capability can in turn be used to implement new functionality,
e.g., the weighted schemes of [15,21,35]. In constructing weighted SS schemes,
CRT-based SS schemes allow a shareholder to possess only one share each. In
contrast, Shamir’s scheme needs to allocate trivially multiple shares to a share-
holder, who has the weight more than 1. Moreover, the shareholder leaking any
of its shares may cause the disclosure of the secret.

Asmuth-Bloom’s scheme has become a popular and fundamental schemes.
Based on the scheme, a lot of work [16–18,22,24] has been done to extend the
original idea and meet different requirements of practical applications. One type
of extension is to construct new access structures, e.g., the general access struc-
ture [18] and the multipartite scheme [16]. Another type of extension aims to
improve functionality, e.g., the verifiable SS [17,24] to prevent malicious action
of dishonest shareholders and the proactive secret sharing for strengthening the
security.

As we all know, Shamir’s scheme is based on Lagrange interpolation and thus
is easy to construct. Moreover, it is an ideal SS scheme, i.e., it is perfect in secu-
rity and has the maximum information rate 1. Roughly speaking, information
rate is the ratio of secret to share in size, which denotes the information effi-
ciency of secret sharing. In comparison, the CRT-based Asmuth-Bloom’s scheme,
on one hand, is lower in information rate since each share is larger than the secret
in size; on the other hand, it is difficult to construct because the scheme requires
a series of pairwise coprime integers satisfying some stringent condition.

In a word, Shamir’s scheme is ideal and easy to construct while Asmuth-
Bloom’s scheme is not ideal, hard to construct but more natural and neat in
constructing weighted SS scheme. In this case, we are faced the following 2
questions,

– Is there any CRT-based SS scheme which is ideal as Shamir’s scheme?
– If such a scheme exists, how to construct it in practice? and what is the

connection in theory among Shamir’ scheme, Asmuth-Bloom’s scheme and
the new scheme?

To answer the above questions, we need to study new CRT based schemes
free from the above mentioned drawbacks in Asmuth-Bloom’s scheme. To this

312 Y. Ning et al.

end, this paper mainly focuses on constructing a generalized (t, n)-threshold SS
scheme based on the CRT for the polynomial ring and further finds out the
connection among these (t, n)-threshold SS schemes. Our contribution can be
summarized as follows

– We propose a generalized (t, n)-threshold SS scheme based on the CRT for
the polynomial ring over a finite field. Our scheme is perfect in security and
has the information rate 1. Compared with Asmuth-Bloom’s scheme, it is
better in information rate, easier to construct and more computationally effi-
cient. Therefore, our scheme can serve as a better substitution for Asmuth-
Bloom’s scheme. That is, existing schemes based on Asmuth-Bloom’s scheme
are allowed to base themselves on our scheme to overcome the above draw-
backs inherited from Asmuth-Bloom’s scheme.

– We show that Shamir’s scheme is a special case of our scheme. As a result, we
establish the connection among (t, n) threshold SS schemes based on Lagrange
interpolation polynomial (the family of Shamir’s scheme), CRT for integers
(the family of Asmuth-Bloom’s scheme) and CRT for polynomial rings (our
proposed scheme).

– We present a weighted SS scheme based on the above proposed threshold
scheme. Compared with [15,21,35], which are based on Asmuth-Bloom’s
scheme, our new weighted scheme enjoys advantages inherited from our (t, n)
threshold SS scheme, which illustrates the power of our threshold scheme as
a better base than Asmuth-Bloom’s scheme.

The rest of this paper is organized as follows: Sect. 2 introduces some pre-
liminaries about secret sharing and the CRT. In Sect. 3, we present our thresh-
old scheme and compare it with Shamir’s scheme and Asmuth-Bloom’s scheme.
Section 4 shows that Shamir’s scheme is a special case of our threshold scheme.
In Sect. 5, a weighted threshold scheme is given and compared with other existing
CRT based schemes. Finally, Sect. 6 concludes our work.

2 Preliminaries

In this section, we introduce some fundamentals as a preliminary. Subsection 2.1
introduces some notations for convenience. In Subsect. 2.2, the CRT for different
rings are discussed. Subsection 2.3 is devoted to some results on the irreducible
polynomials in the polynomial ring over a finite field. We introduce some fun-
damental notions about secret sharing in Subsect. 2.4. Finally, Asmuth-Bloom’s
scheme and Shamir’s scheme are reviewed in Subsects. 2.5 and 2.6 respectively.

2.1 Notation

Here, we introduce some notations that will be used all the way.

– Let Z denote the usual ring of integers. Let n ∈ Z, [n] denotes the set
{1, 2, . . . , n} of n elements.

Constructing Ideal Secret Sharing Schemes 313

– Let p ∈ Z be a prime number, Fp denotes the finite field of p elements.
– Let R be some ring, for any a, b ∈ R, 〈a〉 denotes the principal ideal generated

by a. Also, a | b means that a divides b, that is, there is c ∈ R such that b = ac.
– Let R be some ring, R[x] denotes the univariate polynomial ring in the vari-

able x over R. For any f(x) ∈ R[x], deg(f(x)) represents the degree of f(x).
– Let I be an ideal of a ring R and x, y ∈ R, x ≡ y (mod I) means that

x − y ∈ I. If I = 〈a〉 is a principal ideal for some a ∈ R, it is also written as
x ≡ y (mod a).

– gcd denotes the greatest common divisor.
– Let S be a finite set, |S| denotes the number of elements in S; 2S denotes the

power set of S, that is, 2S contains all subsets of S as elements.

2.2 The Chinese Remainder Theorem (CRT)

In this subsection, we introduce the CRT for different rings, especially, for Z

and K[x] with K being a field. This subsection serves as the fundamental of
Asmuth-Bloom’s scheme and our proposed scheme.

The Asmuth-Bloom’s scheme is based on the CRT for Z. Actually, the CRT
for Z can be generalized to any other ring as follows.

Theorem 1 (Theorem 2.1 of [23]). Let I1, . . . , In be ideals of a ring R such
that Ii + Ij = R for all i, j ∈ [n], i �= j. Given elements x1, . . . , xn ∈ R, there
exists x ∈ R such that

x ≡ xi (mod Ii) for all i ∈ [n].

And x is unique in the sense that if y is another element satisfies all the con-
gruences, then

x ≡ y (mod I1 ∩ I2 · · · ∩ In).

To have an intuitional understanding of this theorem, we can consider the case
when R = Z. Since Z is a principal ideal domain (PID), for all i ∈ [n], Ii = 〈mi〉
for some mi ∈ Z. The condition Ii +Ij = R becomes that the linear combination
of mi and mj with integer coefficients can represent any integer in Z, specifically,
can represent 1 ∈ Z, that is gcd(mi,mj) = 1. Also, the congruence x ≡ xi

(mod Ii) becomes x ≡ xi (mod mi). In conclusion, by letting R = Z, we have
the following ordinary version of the CRT for Z.

Theorem 2. Let m1, . . . ,mn ∈ Z be pairwise coprime integers. Given integers
x1, . . . , xn ∈ Z, there exists x ∈ Z such that

x ≡ xi (mod mi) for all i ∈ [n].

And x is unique in the sense that if y is another integer satisfies all the congru-
ences, then

x ≡ y (mod
∏n

i=1
mi).

314 Y. Ning et al.

Note that the uniqueness also means that x is unique if we only consider numbers
in the range [0,

∏n
i=1 mi − 1].

The reason that we can replace the ideals with the elements generating that
ideal is that Z is a PID. It is well known that K[x] is also a PID if K is a field.
Similarly, we have the following CRT for the ring of polynomials over a field.

Theorem 3. Let K be a field and m1(x), . . . , mn(x) ∈ K[x] be pairwise coprime
polynomials. Given polynomials f1(x), . . . , fn(x) ∈ K[x], there exists f(x) such
that

f(x) ≡ fi(x) (mod mi(x)) for all i ∈ [n].

And f(x) is unique in the sense that if g(x) is another polynomial satisfies all
the congruences, then

f(x) ≡ g(x) (mod
∏n

i=1
mi(x)).

Note that the uniqueness also means that f(x) is unique if we only consider
polynomials of degree less than deg(

∏n
i=1 mi(x)).

The above different versions of CRT (Theorems 1, 2, 3) does not give a
concrete method of finding out the exact solution of a given system of congru-
ences. For the most general case, it may be difficult to find such a method. But
for Euclidean domains, we can explicitly write out and efficiently compute the
solution as the following theorem states.

Theorem 4 (Generalized Algorithm 1.3.11 in [8]). Let R be a Euclidean
domain and m1, . . . ,mn ∈ R be pairwise coprime elements. Given elements
x1, . . . , xn ∈ R and a system of congruences

x ≡ xi (mod mi) for all i ∈ [n],

let M =
∏n

i=1 mi, Mi = M/mi and ai ∈ R with aiMi ≡ 1 (mod mi), then,

x =
∑n

i=1
aiMixi

is a solution of the system of congruences.

2.3 Irreducible Polynomials over a Finite Field

In this subsection, we introduce some existing results about the number of irre-
ducible polynomials and how to find irreducible polynomials in Fp[x]. These
results enable the practicality of our scheme.

Most results here are derived from the following theorem.

Theorem 5 (Theorem 1 in Chapter 26 of [7]). xpn − x is the product of
all monic irreducible polynomials in Fp[x] of degree d, for all d | n.

Constructing Ideal Secret Sharing Schemes 315

First, Theorem 5 shows a way to count the number of irreducible polynomials
in Fp[x]. Let N(n, p) be the number of monic irreducible polynomials in Fp[x],
by Theorem 5, considering the factorization of xpn − x and counting the degree,
it is clear that

pn =
∑

d|n dN(d, p). (1)

Applying the Mobius inversion formula to Expression 1 results in Theorem 6.

Theorem 6 (Theorem 7 in Chapter 26 of [7]). N(n, p) = 1
n

∑
d|n μ(n/d)pd

where μ is the Mobius function.

Fixing p, N(n, p) grows rapidly with respect to n, which can be seen in Table 1
and we have Theorem 7 to bound N(n, p).

Theorem 7 (Theorem 19.12 of [31]). For any prime number p, for all n ≥ 1,
we have

pn

2n
≤ N(n, p) ≤ pn

n
and N(n, p) =

pn

n
+ O(

pn/2

n
).

Table 1. Number of irreducible polynomials

n N(n, p) N(n, 2) N(n, 3) N(n, 5) N(n, 7)

1 p 2 3 5 7

2 (p2 − p)/2 1 3 10 21

3 (p3 − p)/3 2 8 40 112

4 (p4 − p2)/4 3 18 150 588

5 (p5 − p)/5 6 48 624 3360

6 (p6 − p2 − p3 + p)/6 9 116 2580 19544

7 (p7 − p)/7 18 312 11160 117648

8 (p8 − p4)/8 30 810 48750 720300

9 (p9 − p3)/9 56 2184 217000 4483696

10 (p10 − p5 − p2 + p)/10 99 5880 976248 28245840

On the other hand, Theorem 5 also results in a primality testing algorithm
in Fp[x]. Suppose f ∈ Fp[x] is of degree d, if f is not irreducible, f has an
irreducible divisor of degree at most k =
d

2�. Therefore, by Theorem 5, at least
one term in Expression 2

gcd(xp − x, f), gcd(xp2 − x, f), . . . , gcd(xpk − x, f) (2)

will return a non-trivial divisor of f . Thus, by checking each term in Expression
2, we can determine the primality of f as is in Algorithm 1.

With Algorithm 1, we have the probabilistic Algorithm 2 for finding irre-
ducible polynomials of a given degree d in Fp[x].

Theorem 8 (Theorem 20.2 of [31]). Algorithm 2 takes an expected number
of O(d3 log d log p) operations in Fp.

316 Y. Ning et al.

Input: f(x) ∈ Fp[x] of degree d > 0
Output: whether f(x) is irreducible or not

h ← x mod f ;
for k ← 1 to �d/2� do

h ← hp mod f ;
if gcd(h − x, f) �= 1 then

return false;
end

end
return true;

Algorithm 1. Algorithm for Irreducible Polynomial Testing [29]

Input: the given degree d
Output: an irreducible polynomial of degree d

repeat
choose a polynomial f of degree d at random;
test whether f is irreducible using Algorithm 1;

until f is irreducible;
return f ;

Algorithm 2. Generation Algorithm of Random Irreducible Polynomial [29]

2.4 Secret Sharing

Secret sharing was first introduced by Shamir [29] and Blakley [4] in 1979 to con-
struct robust key management schemes for cryptographic systems. Nowadays,
it has become a cryptographic primitive and is widely used in many applica-
tions, including multiparty computations [3,9], threshold cryptography [13,22]
and generalized oblivious transfer [30,33] and so on.

In a secret sharing scheme, a dealer with a secret to share, a set [n] =
{1, 2, . . . , n} of n parties and a collection Γ ⊆ 2[n] of authorized subsets are
involved. In such a scheme, the dealer generates n shares and allocates each
party a share such that

– any authorized subset of parties in Γ pooling their shares together can deter-
mine the secret

– any subset of parties not in Γ cannot get any information about the secret.

The collection Γ is called the access structure realized by the secret sharing
scheme. It is reasonable to assume that if some subset of parties can recover the
secret, with any other parties taking participant, they can still recover the secret.
That is, if A ⊆ [n] can recover the secret, then, for any B ⊆ [n] with A ⊆ B,
B is also able to recover the secret. Therefore, Γ has the following monotone
property.

∀A ∈ Γ,∀B ⊆ [n], A ⊆ B =⇒ B ∈ Γ (3)

And we use Expression 3 as the definition of access structure.

Constructing Ideal Secret Sharing Schemes 317

Definition 1 (Access Structure [2]). Let [n] denote a set of parties. A col-
lection Γ ⊆ 2[n] is monotone if ∀A ∈ Γ,∀B ⊆ [n], A ⊆ B =⇒ B ∈ Γ . An access
structure is a monotone collection of subsets of [n].

Next, we introduce a mathematical model for secret sharing schemes and for-
malize the meaning of “determining the secret” and “cannot get any information
about the secret”.

Definition 2 (Perfect Secret Sharing Scheme [20]). Suppose we have n par-
ties {1, 2, . . . , n}. For a monotone access structure Γ ⊆ 2[n], a perfect secret shar-
ing scheme realizing Γ is a list of discrete random variables (S, S1, S2, . . . , Sn)
over some finite sample space such that

– (correctness) - for any A ∈ Γ , H(S | {Si | i ∈ A}) = 0
– (perfectness) - for any B ⊆ [n] with B /∈ Γ , H(S | {Si | i ∈ B}) = H(S)

where H(·) stands for the Shannon entropy and H(· | ·) denotes the conditional
entropy.

Naturally, we have the information rate represented by the ratio of the length
of the secret to that of shares, which is used to measure the efficiency of each
party sharing the secret.

Definition 3 (Information Rate [20]). The (worst-case) information rate of
a secret sharing scheme (S, S1, . . . , Sn) is

ρ =
H(S)

max{H(Si) | i ∈ [n]} .

A lot of research has been carried out to study the bounds of the information rate
for different kinds of access structures. In [6], it was shown that, in any perfect
secret sharing scheme, H(S) ≤ H(Si), i ∈ [n]. Therefore, an upper bound for
the information rate is ρ ≤ 1. For a perfect scheme with information rate 1, its
share size is at most as small as the secret and we call it an ideal scheme.

Threshold Access Structure: A fundamental case of secret sharing is the
threshold case. The access structure realized by a (t, n)-threshold scheme is

Γ = {A ⊆ [n] | |A| ≥ t}.

That is, only t or more parties can recover the secret while any t − 1 or less
parties cannot gain any information about the secret.

Weighted Access Structure: The weighted threshold secret sharing is a direct
generalization of the threshold case. In a weighted threshold case, a threshold
t is set and each party is associated with a positive weight. Only subset of
parties, whose sum of weights is larger than or equal to t, can recover the secret
while parties, whose sum of weights is less than t, cannot gain any information

318 Y. Ning et al.

about the secret. Formally, the access structure realized by a (t, n, ω)-weighted
threshold scheme is

Γ = {A ⊆ [n] |
∑

i∈A
ω(i) ≥ t}

where ω : [n] → N
+ is the weight function and ω(i) is the weight of the i-th party.

In [26], it was shown that weighted threshold access structures with a positive
rational or real weight can always be converted to the same access structure
with a weight of positive natural numbers. Therefore, we often only consider the
weight as a positive natural number. Usually, we also require the condition that

∀i ∈ [n], ω(i) < t.

Otherwise, there is a party knowing the secret and there will be no sharing
in some sense. Note that the weighted threshold case degenerates to the basic
threshold case if

∀i, j ∈ [n], ω(i) = ω(j).

2.5 Review of Asmuth-Bloom’s Scheme [1]

In this subsection, we review Asmuth-Bloom’s (t, n)-threshold SS scheme.

Share Distribution: The dealer selects integers m0 and m1 < m2 < · · · < mn

satisfying Expressions 4 and 5.

∀i, j ∈ [n] ∪ {0}, i �= j =⇒ gcd(mi,mj) = 1 (4)

m0

∏n

i=n−t+2
mi <

∏t

i=1
mi (5)

The dealer then chooses the secret s ∈ [0,m0 − 1] and randomly selects an
integer α such that

s + αm0 ∈ (
∏n

i=n−t+2
mi,

∏t

i=1
mi).

The share si for the i-th party would be

si = s + αm0 mod mi

and is sent to the i-th party privately.

Secret Reconstruction: Suppose t parties {i1, . . . , it} ⊆ [n] want to recover
the secret. They pool their shares together and get the following system of con-
gruences ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x ≡ si1 (mod mi1)
x ≡ si2 (mod mi2)
.

x ≡ sit
(mod mit

)

Constructing Ideal Secret Sharing Schemes 319

By Theorems 4 and 2, they would get a unique solution x0 in the range
[0,

∏t
k=1 mik

− 1]. Since s + αm0 also satisfies this system of congruences and

s + αm0 <
∏t

i=1
mi ≤

∏t

k=1
mik

,

that is, s + αm0 is also in the range [0,
∏t

k=1 mik
− 1]. By the uniqueness,

s + αm0 = x0 and the secret can be recovered by computing s = x0 mod m0.
There are papers studying the perfectness or the information rate of Asmuth-

Bloom’s scheme. In [1], it is shown that the entropy of the secret in Asmuth-
Bloom’s scheme decreases “not too much” when t − 1 shares are known. In [14],
it is advised to choose m0,m1, . . . ,mn being primes as close as possible and it
is proved that t − 2 shares or less give no information on the secret for a (t, n)-
threshold scheme. In [28], it is shown that Asmuth-Bloom’s scheme with moduli
being consecutive primes is asymptotically ideal. However, for fixed values of
moduli, the scheme always has an lower information rate (less than 1), especially
for not too large moduli.

2.6 Review of Shamir’s Scheme [29]

In this subsection, we review Shamir’s (t, n)-threshold SS scheme.

Share Distribution: The dealer selects a prime number p and randomly selects
t − 1 elements a1, . . . , at−1 independently with a uniform distribution over Fp.
The secret is also some element s from Fp. Then the dealer constructs a polyno-
mial

f(x) = s +
∑t−1

i=1
aix

i ∈ Fp[x]

and computes si = f(i), i ∈ [n] as the private share of the i-th party. Finally,
the dealer sends si to the i-th party in private.

Secret Reconstruction: Suppose t parties {i1, . . . , it} want to recover the
secret. They pool their shares together and get the following system of linear
equations

⎡

⎢⎢⎢⎣

1 i1 i21 . . . it−1
1

1 i2 i22 . . . it−1
2

...
...

...
...

...
1 it i2t . . . it−1

t

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

s
a1

a2

...
at−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

si1

si2
...

sit

⎤

⎥⎥⎥⎦

Since the coefficient matrix is a Vandermonde square matrix over the field Fp

of size t × t, it is invertible and this system of linear equations has a unique
solution. Therefore, they can recover the secret s by solving this system of linear
equations.

We have described this scheme from the point of view of solving systems of
linear equations. Another way to recover the secret is based on the Lagrange

320 Y. Ning et al.

interpolation (Theorem 7.15 of [31]). In this way, f(x) can be written directly
as

f(x) =
∑t

k=1
sik

∏t

j=1,j �=k

x − ij
ik − ij

and the secret is

s = f(0) =
∑t

k=1
sik

∏t

j=1,j �=k

0 − ij
ik − ij

.

There are some works studying the perfectness or the information rate of
Shamir’s scheme [5,10,32]. We show in Sect. 4 that Shamir’s scheme is a special
case of our scheme and provide in Subsect. 3.2 a strict proof of the perfectness
of our scheme, which also indicates that Shamir’s scheme is perfect. Since the
secret and the shares of Shamir’s scheme are all selected in Fp, its information
rate is obviously 1. Thus, Shamir’s scheme is ideal.

3 Threshold Scheme Based on CRT for Polynomial Ring
over Finite Field

In this section, we first propose a (t, n)-threshold SS scheme based on the CRT
for polynomial ring over finite field, and show that it can be ideal. Then, we show
that Shamir’s scheme is a special case of our scheme, revealing the connection
among Shamir’s scheme, Asmuth-Bloom’s scheme and our scheme. Finally, we
compare our scheme with the other two schemes.

3.1 The Scheme

In this subsection, we propose a (t, n)-threshold SS scheme. The scheme can be
seen as the counterpart of Asmuth-Bloom’s scheme for the polynomial ring over
a finite field. It can also be regarded as a generalization of Shamir’s scheme.

Share Distribution: The dealer chooses an integer d0 ≥ 1 and sets m0(x) =
xd0 . The dealer chooses a prime integer p and pairwise coprime polynomials
mi(x) ∈ Fp[x], i ∈ [n]. Let di = deg(mi(x)) for all i ∈ [n]. The polynomials must
satisfy each of Expressions 6, 7 and 8.

∀i ∈ [n],m0(x) and mi(x) are coprime (6)

d0 ≤ d1 ≤ d2 ≤ · · · ≤ dn (7)

d0 +
∑n

i=n−t+2
di ≤

∑t

i=1
di (8)

The secret space is the set

S = {g(x) ∈ Fp[x] | deg(g) < d0},

Constructing Ideal Secret Sharing Schemes 321

i.e., all polynomials of degree at most d0 −1. Suppose that the dealer has picked
his secret s(x) ∈ S. Then, the dealer randomly chooses a polynomial α(x) from
the set

A = {g(x) ∈ Fp[x] | deg(g) ≤ (
∑t

i=1
di) − d0 − 1}

and computes

f(x) = s(x) + α(x)m0(x) = s(x) + α(x)xd0 .

Let dα = deg(α) and df = deg(f). It is clear that df ≤ ∑t
i=1 di − 1. Finally, for

each i ∈ [n], the dealer computes si(x) = f(x) mod mi(x) as the share for the
i-th party and sends si(x) privately to the i-th party.

Share Reconstruction: If t parties {i1, . . . , it} ⊆ [n] want to reconstruct the
secret, they pool their private shares together and get the following system of
congruences ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

X(x) ≡ si1(x) (mod mi1(x))
X(x) ≡ si2(x) (mod mi2(x))
. . .

X(x) ≡ sit
(x) (mod mit

(x))

(9)

According to Theorems 4 and 3, they can solve Expression 9 and get a unique
solution X0(x) among polynomials of degree less than d =

∑t
j=1 dij

. Let Π =
∏t

j=1 mij
(x). It is clear that

d ≥
∑t

j=1
dj >

∑t

j=1
dj − 1 ≥ df .

Since f(x) also is a solution of the above system of congruences, by the unique-
ness, f(x) = X0(x) and they can recover the secret by computing

s(x) = X0(x) mod m0(x) = X0(x) mod xd0 .

Before finishing this subsection, we would like to discuss some practical issues.
In our scheme, the dealer is required to find a series of n pairwise coprime
polynomials in Fp[x]. In practice, it is convenient for the dealer to directly select
distinct irreducible polynomials of specified degrees and these distinct irreducible
polynomials with m0(x) are automatically pairwise coprime. By Theorem 7, we
know that there are enough irreducible polynomials for this purpose in practice.
Also, Algorithm 2 shows an efficient way to accomplish this job.

3.2 Security Analysis

In this subsection, we show that our scheme is perfect. The road map of the
proof is as follows.

322 Y. Ning et al.

– First, Theorem 9 shows that coefficients of the computed f(x) in the scheme
regarded as random variables are independently identically distributed(i.i.d)
of a uniform distribution over Fp, if coefficients of both s(x) and α(x) are i.i.d
with respect to a uniform distribution over Fp.

– Since t−1 parties together can eliminate some choices for f(x), we must show
that the number of choices for f(x) left after the elimination is still greater
than or equal to the number of choices for s(x). Otherwise, the conditional
probability distribution of s(x) under the condition of knowing t − 1 shares
would not be a uniform distribution. And this part is completed in the proof
of Theorem 10.

– However, what we get so far cannot imply that the conditional probability
distribution of s(x) is a uniform one, since Theorem 10 is only a necessary
condition. Therefore, we need to study the correspondence between s(x) and
f(x) under the relationship that f(x) = s(x) + α(x)xd0 . In particular, we
show that after eliminating impossible choices for f(x) with t − 1 shares,
the number of possible choices for f(x) corresponding to a selected s(x) is a
constant. And this part is completed in the proof of Theorem 11.

– Finally, according to all the results above, we conclude that our scheme is
perfect.

Theorem 9. If the coefficients of s(x) and α(x), regarded as random variables,
are independently identically distributed(i.i.d) of a uniform distribution, then,
the coefficients of f(x), viewed as random variables, are also i.i.d with respect to
a uniform distribution over Fp.

Proof. In the scheme, f(x) is computed as

f(x) = s(x) + α(x)m0(x) = s(x) + α(x)xd0

where the coefficients of s(x) and α(x) are i.i.d with respect to a uniform distri-
bution over Fp. Since

– f [i] = s[i] for 0 ≤ i ≤ d0 − 1
– f [i] = α[i − d0] for d0 ≤ i

therefore, coefficients of f are i.i.d of a uniform distribution over Fp. �

To show that our scheme is perfect, it suffices to consider the worst case where
the t − 1 parties {n, n − 1, . . . , n − t + 2} with moduli of the highest degree
pool their shares together and try to recover the secret. But they only get the
following system of t − 1 congruences

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(x) ≡ sn(x) (mod mn(x))
X(x) ≡ sn−1(x) (mod mn−1(x))
. . .

X(x) ≡ sn−t+2(x) (mod mn−t+2(x))

(10)

By solving Expression 10, they can only find a unique solution X0(x) ∈ Fp[x]
among polynomials of degree less than

∑n
i=n−t+2 di. Since f(x) also satisfies

Constructing Ideal Secret Sharing Schemes 323

Expression 10 and all the moduli are pairwise coprime, let Π =
∏n

i=n−2+t mi(x),
they know f(x) ≡ X0(x) (mod Π), that is,

s(x) + α(x)xd0 = f(x) = X0(x) + k(x)Π (11)

By Expression 11, t − 1 parties can eliminate some choices of f(x). We must
consider how many possible f(x) still satisfy this equation for given X0(x). That
is, fixing X0(x), we need to find the cardinality of the set

F = {g(x) ∈ Fp[x] | deg(g) ≤
∑t

i=1
di − 1 and g mod Π = X0(x)}.

Let d =
∑n

i=n−t+2 di. Let δ =
∑t

i=1 di−d. It is clear that δ ≥ d0 by the selection
of the parameters di during the scheme construction. We claim that |F | = pδ as
Theorem 10 states. Note that |S| = pd0 and |F | ≥ |S| for the secret space S.

Theorem 10. |F | is equal to pδ.

Proof. Any element g(x) ∈ F is of the form g(x) = X0(x)+k(x)Π with deg(g) ≤∑t
i=1 di − 1. Therefore, one choice for k(x) corresponds to one choice for g(x) ∈

F . Since deg(X0) < deg(Π), deg(g) = deg(k) + deg(Π). Therefore, deg(k) ≤∑t
i=1 di − 1−deg(Π). That is, deg(k) ≤ δ − 1. Therefore, the number of choices

for k(x) is pδ. Hence, |F | = pδ. �
From Theorem 10, we can see that t − 1 parties would know that the dealer
must have selected one of the pδ polynomials in F . And the probability that
each polynomial is selected by the dealer is the same by Theorem 9.

Next, we study how these polynomials in F , modulo m0(x) = xd0 , map to the
secret s(x) to find out the conditional probability distribution of s(x) regarded
as a random variable.

Theorem 11. Let

ψ : F → S, g(x) �→ g(x) mod m0(x).

For any s(x) ∈ S, let

ψ−1(s(x)) = {g(x) ∈ F | ψ(g(x)) = s(x)}.

Then, the following proposition holds.

∀s1(x), s2(x) ∈ S, |ψ−1(s1(x))| = |ψ−1(s2(x))|.
Proof. For any fixed s(x) ∈ S, since ψ−1(s(x)) ⊆ F , elements of ψ−1(s(x)) is of
the form X0(x) + k(x)Π with deg(k) ≤ δ such that

X0(x) + k(x)Π ≡ s(x) (mod m0(x)). (12)

Therefore, to count the number of elements in ψ−1(s(x)) is to count how many
k(x) with deg(k) ≤ δ − 1 satisfy Expression 12.
Subtracting X0(x) through Expression 12, we have

k(x)Π ≡ s(x) − X0(x) (mod m0(x)).

324 Y. Ning et al.

Since m0(x) and Π are coprime in our scheme, Π has a multiplicative inverse
modulo m0(x), then,

k(x) ≡ (s(x) − X0(x))Π−1 (mod m0(x)).

Let k0(x) = (s(x) − X0(x))Π−1 mod m0(x). Then, any k(x) satisfying Expres-
sion 12 is of the form k(x) = k0(x) + n(x)m0(x) with n(x) ∈ Fp[x]. Since
deg(k0) < deg(m0), deg(k) = deg(n) + deg(m0). In addition, deg(k) ≤ δ − 1,
deg(n) ≤ δ − d0 − 1. Therefore, the number of such satisfiable n(x) is pδ−d0 .
Hence, |ψ−1(s(x))| = pδ−d0 is a constant. �

So far, we have the foundation to discuss the conditional probability distribution
of s(x) under the condition that t−1 shares are known. It’s clear that t−1 parties
knowing X0(x) can determine the set F of all possible randomly selected f(x),
by Theorem 10, |F | = pδ. Over all the pδ choices, by Theorem 11, only pδ−d0

choices lead to the correct secret. Therefore, the conditional probability that
t − 1 parties can guess out the secret is pδ−d0

pδ = 1
pd0

. That is,

∀s0(x) ∈ S, P r(s(x) = s0(x) | X0(x)) =
1

pd0
= Pr(s(x) = s0(x)).

This implies that our scheme is perfect in security.

3.3 Information Rate

In this subsection, we discuss the information rate of our newly proposed scheme.
In our scheme, the secret is a polynomial of degree at most d0 −1 and it takes d0
elements in Fp to represent the secret. On the other hand, the n-th party holds
the largest share which is a polynomial of degree at most dn − 1 and consists
of dn elements in Fp. Therefore, the information rate of our threshold scheme is
d0
dn

.
Note that our scheme does not require d0 < dn, instead, the dealer can select

the modulus polynomials with the identical degree, i.e.,

d0 = d1 = · · · = dn. (13)

In this case, the information rate is 1 and our scheme is an ideal one. By Theorem
7, we know that Expression 13 can be easily satisfied in practice and Algorithm
2 provides an efficient way.

3.4 Comparison

In this subsection, we compare our scheme with Asmuth-Bloom’s scheme and
Shamir’s scheme. We show that our scheme has its advantage in some aspects,
which encourages us to consider our scheme as a good base when designing new
secret sharing schemes.

We start with the comparison with Asmuth-Bloom’s scheme and our scheme
enjoys the advantages in

– Perfectness and Information rate: From Subsect. 2.5, we know that Asmuth-
Bloom’s is neither perfect nor ideal. However, in Subsect. 3.2, we have shown

Constructing Ideal Secret Sharing Schemes 325

that our scheme is perfect and in Subsect. 3.3, we have discussed that our
scheme can reach information rate 1. Although, [28] has shown that Asmuth-
Bloom’s scheme is asymptotically ideal, it takes moduli of huge size to achieve
this asymptotic property, which is not practical at all.

– Simplicity: During the construction of our scheme, the dealer only needs to
find n distinct irreducible polynomials of degree d0 with Algorithm 2 and
these polynomials automatically satisfy the required conditions (Expressions
6, 7 and 8) of our scheme. However, Asmuth-Bloom’s scheme failed to give an
explicit way to find its moduli and to our knowledge, there is no such special-
ized algorithm. One candidate may be selecting consecutive prime numbers.
But when the prime numbers are small, such consecutive prime numbers are
not guaranteed to satisfy the required Expression 5. When the prime numbers
are large, Expression 5 may be easier to satisfy, but it would be impractical
if the number of secrets is small.

– Computing efficiency in certain cases: First, different from public key cryp-
tosystems, where the private key related with the security level is usually
large, the secret sharing schemes mentioned in this paper does not put its base
on some intractable problem. Therefore, we usually do not put a restriction
on the parameters related with security, but the parameters are determined
considering both security level and practical needs. Now, suppose we are in
the situation where we want to share a secret of huge size, e.g., a 2048 or
larger bits key for the RSA cryptosystem, with Asmuth-Bloom’s scheme, we
may need to find prime moduli of this size (larger than 22048). However, it
suffers from the fact that

• to find a prime number or test the primality of numbers of such size takes
a long time,

• and the basic operations on numbers of such size is also time-consuming.
In contrast, using our scheme with a proper d0 selected (say d0 = 64), a prime
number around 232 will handle this case without extremely huge numbers
involved, thus, required computation can be completed efficiently.
Another situation is when the secret can be expressed as a d0 bit number.
Then, by working in F2[x], polynomial operations of our scheme can be imple-
mented with bitwise operations to speed up.

When it comes to the comparison with Shamir’s scheme, the above-mentioned
advantages fade. Since Shamir’s scheme is already ideal, our scheme can only
draw with Shamir’s scheme in perfectness and information rate. Shamir’s scheme
is also easy to construct, since the dealer only needs to find one prime number
and the rest steps are clear. As for the last point, Shamir’s scheme can also
naturally work in the finite field of pn elements to deal with the situation when
the secret is of huge size and in the finite field of 2d0 elements to enjoy the speed
up of bitwise operations. Therefore, in all the aspects discussed, we can only say
that our scheme draws with Shamir’s scheme.

However, the important difference between Shamir’s scheme and our scheme
is that our scheme still preserves the structure of the CRT as Asmuth-Bloom’s
scheme does. That is,

326 Y. Ning et al.

– in Shamir’s scheme, all parties are equal,
– while in our scheme, different parties can be easily assigned shares of different

size to be distinguished from each other. Therefore, our scheme is more flexible
than Shamir’s scheme.

This may also be the reason why Asmuth-Bloom’s scheme is significant even
though Shamir’s scheme behaves better than Asmuth-Bloom’s scheme in per-
fectness, information rate and computing efficiency. In practice, schemes based
on Asmuth-Bloom’s scheme mostly take advantages of the property of CRT. For
example,

– In the weighted scheme of [15], parties with larger weights are assigned larger
moduli while parties with smaller weights are assigned smaller moduli. This
can be easily achieved by the property of CRT.

– In the multilevel threshold scheme of [16], parties in different security levels
are assigned moduli of different size to ensure different threshold for each
level.

4 Shamir’s Scheme as a Special Case of Our Scheme

As we know, Lagrange interpolation is closely related to CRT over polynomial
ring [7].

In this section, we show that Shamir’s scheme can be regarded as a special
case of our scheme, indicating that Shamir’s scheme, Asmuth-Bloom’s scheme
and our scheme are all tightly connected in essence.

To derive Shamir’s scheme, we can select the parameters of our proposed
scheme as follows.

– p is still a prime number
– let d0 = 1 and m0(x) = x ∈ Fp[x]
– for all i ∈ [n] let mi(x) = x − ai ∈ Fp[x] such that

∀j, l ∈ [n], j �= l =⇒ aj �= al

– let s(x) = a0 ∈ Fp[x]
– let α(x) be a random polynomial in {g(x) ∈ Fp[x] | deg(g(x)) ≤ t − 2.}
It is easy to check that the above selection of parameters satisfies all the required
conditions of our scheme. Then, f(x) = s(x) + α(x)m0(x) = a0 + α(x)x is a
random polynomial of degree at most t − 1 and the secret is exactly s(x) =
a0 = f(0), which coincides with Shamir’s scheme. The share for the i-th party
would be si(x) = (f(x) mod mi(x)) = (f(x) mod (x − ai)) = f(ai), which also
coincides with Shamir’s scheme.

To see that f(x) (mod x − ai) = f(ai), just divide f(x) with x − ai and
get f(x) = (x − ai)q(x) + r for some unique q(x), r ∈ Fp[x] with deg(r) <
deg(x − a1) = 1. Therefore, r is actually a constant in Fp[x]. Then, replacing x
with ai in both side will result in f(ai) = r, that is, f(x) (mod x − ai) = f(ai).

In the secret reconstruction phase, for brevity of symbols, suppose t parties
{1, 2, . . . , t} want to recover the secret. Pooling their shares together, they have
the following system of congruences

Constructing Ideal Secret Sharing Schemes 327

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(x) ≡ f(a1) (mod x − a1)
X(x) ≡ f(a2) (mod x − a2)
. . .

X(x) ≡ f(at) (mod x − at)

(14)

Let

M(x) =
∏t

i=1
(x − ai) and Mj(x) =

M(x)
x − aj

=
∏t

k=1,k �=j
(x − ak), j ∈ [t]

For all i ∈ [t], since

Mi(x) ≡ Mi(ai) ≡
∏t

k=1,k �=i
(ai − ak) (mod x − ai)

and gcd(Mi(x), x − ai) = 1, we have

M−1
i (x) ≡ (

∏t

k=1,k �=i
(ai − ak))−1 (mod x − ai)

Therefore, by Theorem 4, the solution of Expression 14 can be written as

X(x) =
∑t

i=1 f(ai)Mi(x)(M−1
i (x) (mod x − ai))

=
∑t

i=1 f(ai)
∏t

k=1,k �=i (x − ak)(
∏t

k=1,k �=i (ai − ak))−1

=
∑t

i=1 f(ai)
∏t

k=1,k �=i
x−ak

ai−ak

which coincides with the Lagrange interpolation polynomial for recovering the
secret in Shamir’s scheme.

5 A Weighted Threshold Secret Sharing Scheme

In this section, we propose a weighted secret sharing scheme based on our thresh-
old scheme in Subsect. 3.1. The weighted scheme can also be seen as a counterpart
of the scheme based on Asmuth-Bloom’s scheme [15] for the polynomial ring over
a finite field. By this weighted scheme, we illustrate that our scheme can serve
as a better substitution for Asmuth-Bloom’s scheme. Also, we recommend our
threshold scheme for users who need some CRT based scheme as a base in the
future. In Subsect. 5.1, we describe the weighted scheme. Then, in Subsect. 5.2,
we discuss its security, information rate and comparison.

5.1 The Weighted Threshold Scheme

As is in Subsect. 2.4, the access structure realized by a (t, n, ω)-weighted thresh-
old secret sharing scheme is of the form

Γ = {A ⊆ [n] |
∑

i∈A
ω(i) ≥ t}

328 Y. Ning et al.

where ω is the weight function evaluated over Z. For simplicity of notations, let
wi = ω(i) for all i ∈ [n] and assume that

1 ≤ w1 ≤ w2 ≤ · · · ≤ wn < t.

Share Distribution: The dealer chooses a prime p and pairwise coprime poly-
nomials m0(x) = x,m1(x), . . . , mn(x) ∈ Fp[x]. Let

di = deg(mi) for all i ∈ [n] ∪ {0}.

The chosen polynomials must satisfy the condition that ∀i ∈ [n], di = wi. The
secret space is Fp. Suppose that the dealer has picked his secret s ∈ Fp. Then,
the dealer randomly chooses a polynomial α(x) from the set

A = {g(x) ∈ Fp[x] | deg(g(x)) ≤ t − 2}.

That is, α(x) is a polynomial of degree at most t− 2. Next, the dealer computes
f(x) = s + α(x)m0(x) = s + α(x)x. Let df = deg(f(x)) and dα = deg(α(x)). It
is clear that

df = dα + d0 ≤ t − 2 + 1 = t − 1

Finally, the dealer computes

si(x) = f(x) mod mi(x)

as the share of the i-th party and sends si(x) privately to the i-th party.

Secret Reconstruction: If k parties {i1, . . . , ik} ⊆ [n] with
∑k

j=1
ω(ij) ≥ t

want to reconstruct the secret, they pool their private shares together and form
the following system of congruences

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(x) ≡ si1(x) (mod mi1(x))
X(x) ≡ si2(x) (mod mi2(x))
. . .

X(x) ≡ sik
(x) (mod mik

(x))

They can solve this system of congruences and get a solution X0(x) ∈ Fp[x]. By
the CRT for polynomial rings over a field (Theorem 3), the solution is unique if
only polynomials of degree less than

∑k
j=1 dij

are considered. Since

∑k

j=1
dij

≥ t > t − 1 ≥ df

and f(x) also is a solution of the above system of congruences, they have f(x) =
X0(x). Then, the secret can be recovered by computing

s(x) = X0(x) mod m0(x).

Constructing Ideal Secret Sharing Schemes 329

5.2 Discussion of the Weighted Threshold Scheme

Since our weighted scheme can also be seen as a parameterization of our thresh-
old scheme, we only briefly discuss the security and information rate of our
weighted scheme in this subsection. Then, we compare it with the existing
weighted scheme.

First, as a fundamental criterion, our weighted threshold scheme is perfect.
This conclusion should be clear since the weighted scheme can be seen as a
parameterization of our threshold scheme, except that, in the weighted scheme,
one party with weight w is thought of as equivalent with w parties in the thresh-
old scheme.

In our weighted scheme, the secret ranges over Fp while the largest share is
the polynomial of degree wn−1 which consists of wn coefficients in Fp. Therefore,
the information rate is 1

wn
.

To our knowledge, there are several existing weighted threshold schemes
based on the CRT for integers, like [21,35] and [15]. In [15], it is commented
that

– Both schemes of [21] and [35] are not perfect while [15] is perfect.
– In the scheme of [21], the dealer needs to find out all minimal subsets of autho-

rized access structure and then determines the modulus of each shareholder
accordingly and it is a time-consuming process.

– The size of the CRT moduli and private shares of [15] is smaller than the
moduli of [21] and [35].

Still, compared with the scheme of [15], our weighted scheme enjoys the following
advantages in

– Information rate: Our information rate is 1
wn

while the information rate of
the scheme of [15] is less than 1

wn
.

– Simplicity: In the scheme of [15], the constraint on the modulus for each
party is stricter than that in Asmuth-Bloom’s scheme. As mentioned in Sub-
sect. 3.4, to find such a series of moduli is not trivial and there’s no spe-
cialized algorithm. But it is simpler to find the moduli of our scheme with
Algorithm 2.

– Computing efficiency: Our weighted scheme still inherits the advantage of the
computing efficiency in certain cases over the scheme based on the CRT for
integers as mentioned in Subsect. 3.4.

6 Conclusion

Currently, existing CRT based (t, n)-threshold SS schemes are not ideal. Com-
pared with Shamir’s scheme, they have a lower information rate and are harder
to construct. In this paper, we present the generalized (t, n)-threshold SS scheme
based on the CRT for the ring of polynomials over a finite field. In particular, our
scheme is perfect in security and has information rate 1. Moreover, we showed

330 Y. Ning et al.

that Shamir’s scheme is a special case of our threshold scheme and thus estab-
lish the connection among Shamir’s scheme, Asmuth-Bloom’s scheme and our
proposed scheme. Finally, we present a weighted threshold scheme based on our
threshold scheme. Comparison shows that our weighted scheme has great advan-
tages over existing schemes based on Asmuth-Bloom’s scheme, which enables our
scheme to be a better substitution for Asmuth-Bloom’s scheme.

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf.
Theor. 29(2), 208–210 (1983)

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium On Theory Of Computing, pp. 1–10. ACM (1988)

4. Blakley, G.R., et al.: Safeguarding cryptographic keys. In: Proceedings of the
National Computer Conference, vol. 48, pp. 313–317 (1979)

5. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 45

6. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. Cryptol. 6(3), 157–167 (1993)

7. Childs, L.N.: A Concrete Introduction to Higher Algebra. UTM. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-74725-5

8. Cohen, H.: A Course in Algorithmic Algebraic Number Theory, vol. 138. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-3-662-02945-9

9. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

10. Fuyou, M., Yan, X., Xingfu, W., Badawy, M.: Randomized component and its
application to (t, m, n)-group oriented secret sharing. IEEE Trans. Inf. Forensics
Secur. 10(5), 889–899 (2015)

11. Galibus, T., Matveev, G.: Generalized mignotte’s sequences over polynomial rings.
Electron. Notes Theor. Comput. Sci. 186, 43–48 (2007). https://doi.org/10.1016/
j.entcs.2006.12.044

12. Galibus, T., Matveev, G., Shenets, N.: Some structural and security properties
of the modular secret sharing. In: 10th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pp. 197–200. IEEE Press, New York
(2008). https://doi.org/10.1109/SYNASC.2008.14

13. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles Of Distributed Computing,
pp. 101–111. ACM (1998)

14. Goldreich, O., Ron, D., Sudan, M.: Chinese remaindering with errors. In: Proceed-
ings of the Thirty-first Annual ACM Symposium on Theory of Computing, pp.
225–234. ACM (1999)

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1007/978-0-387-74725-5
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1016/j.entcs.2006.12.044
https://doi.org/10.1016/j.entcs.2006.12.044
https://doi.org/10.1109/SYNASC.2008.14

Constructing Ideal Secret Sharing Schemes 331

15. Harn, L., Fuyou, M.: Weighted secret sharing based on the Chinese remainder
theorem. Int. Netw. Secur., 1–7 (2013)

16. Harn, L., Fuyou, M.: Multilevel threshold secret sharing based on the Chinese
remainder theorem. Inf. Process. Lett. 114(9), 504–509 (2014)

17. Harn, L., Fuyou, M., Chang, C.C.: Verifiable secret sharing based on the chinese
remainder theorem. Secur. Commun. Netw. 7(6), 950–957 (2014)

18. Harn, L., Hsu, C., Zhang, M., He, T., Zhang, M.: Realizing secret sharing with
general access structure. Inf. Sci. 367, 209–220 (2016)

19. Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16),
3059–3064 (2010)

20. Iftene, S.: Secret sharing schemes with applications in security protocols. Sci. Ann.
Cuza Univ. 16, 63–96 (2006)

21. Iftene, S., Boureanu, I.C.: Weighted threshold secret sharing based on the Chinese
remainder theorem. Sci. Ann. Cuza Univ. 15(EPFL–ARTICLE–174320), 161–172
(2005)

22. Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth-Bloom secret
sharing. Inf. Sci. 177(19), 4148–4160 (2007)

23. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer,
New York (2002). https://doi.org/10.1007/978-1-4613-0041-0. 1. ALL-ALL

24. Liu, Y., Harn, L., Chang, C.C.: A novel verifiable secret sharing mechanism using
theory of numbers and a method for sharing secrets. Int. J. Commun. Syst. 28(7),
1282–1292 (2015)

25. Mignotte, M.: How to share a secret. In: Beth, Thomas (ed.) EUROCRYPT 1982.
LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983). https://doi.org/10.1007/
3-540-39466-4 27

26. Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted threshold secret sharing
schemes. Inf. Process. Lett. 70(5), 211–216 (1999)

27. Pang, L.J., Wang, Y.M.: A new (t, n) multi-secret sharing scheme based on
Shamir’s secret sharing. Appl. Math. Comput. 167(2), 840–848 (2005)

28. Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold
scheme based on the Chinese remainder theorem. In: Naccache, D., Paillier, P.
(eds.) PKC 2002. LNCS, vol. 2274, pp. 199–210. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45664-3 14

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized

oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77444-0 31

31. Shoup, V.: A computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2009)

32. Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2(4),
357–390 (1992)

33. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptogr.
58(1), 11–21 (2011)

34. Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t, n) multi-secret sharing scheme. Appl.
Math. Comput. 151(2), 483–490 (2004)

35. Zou, X., Maino, F., Bertino, E., Sui, Y., Wang, K., Li, F.: A new approach to
weighted multi-secret sharing. In: 2011 Proceedings of 20th International Confer-
ence on Computer Communications and Networks, ICCCN, pp. 1–6. IEEE (2011)

https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-45664-3_14
https://doi.org/10.1007/978-3-540-77444-0_31

Optimal Linear Multiparty Conditional
Disclosure of Secrets Protocols

Amos Beimel(B) and Naty Peter

Ben-Gurion University of the Negev, Be’er-Sheva, Israel
amos.beimel@gmail.com, naty@post.bgu.ac.il

Abstract. In a k-party CDS protocol, each party sends one message to
a referee (without seeing the other messages) such that the referee will
learn a secret held by the parties if and only if the inputs of the par-
ties satisfy some condition (e.g., if the inputs are all equal). This simple
primitive is used to construct attribute based encryption, symmetrically-
private information retrieval, priced oblivious transfer, and secret-sharing
schemes for any access structure. Motivated by these applications, CDS
protocols have been recently studied in many papers.

In this work, we study linear CDS protocols, where each of the mes-
sages of the parties is a linear function of the secret and random elements
taken from some finite field. Linearity is an important property of CDS
protocols as many applications of CDS protocols required it.

Our main result is a construction of linear k-party CDS protocols
for an arbitrary function f : [N]k → {0, 1} with messages of size
O(N (k−1)/2) (a similar result was independently and in parallel proven
by Liu et al. [27]). By a lower bound of Beimel et al. [TCC 2017], this
message size is optimal. We also consider functions with few inputs that
return 1, and design more efficient CDS protocols for them.

CDS protocols can be used to construct secret-sharing schemes for
uniform access structures, where for some k all sets of size less than
k are unauthorized, all sets of size greater than k are authorized, and
each set of size k can be either authorized or unauthorized. We show
that our results imply that every k-uniform access structure with n
parties can be realized by a linear secret-sharing scheme with share

size min
{

(O(n/k))(k−1)/2, O(n · 2n/2)
}

. Furthermore, the linear k-party

CDS protocol with messages of size O(N (k−1)/2) was recently used by
Liu and Vaikuntanathan [STOC 2018] to construct a linear secret-sharing
scheme with share size O(20.999n) for any n-party access structure.

Keywords: Secret-sharing schemes
Conditional disclosure of secrets protocols

The authors are supported by ISF grant 152/17 and by the Frankel center for
computer science.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 332–362, 2018.
https://doi.org/10.1007/978-3-030-03332-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_13&domain=pdf

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 333

1 Introduction

Conditional disclosure of secrets (CDS) protocols, introduced by Gertner, Ishai,
Kushilevitz, and Malkin [20], is a cryptographic primitive related to secret-
sharing that has many applications. In a CDS protocol, there are k parties,
each one holds a private input xi and the same secret s, and a referee that holds
x1, . . . , xk but does know s. The goal is that the referee will learn s if and only
if the inputs x1, . . . , xk satisfy some condition specified by a function f , i.e.,
f(x1, . . . , xk) = 1. The challenge is that each party sends only one message to
the referee (without seeing the other messages). This simple primitive is used
to construct attribute based encryption [6,29], symmetrically-private informa-
tion retrieval [20], priced oblivious transfer [1], secret-sharing for uniform access
structures [3,13,14], and secret-sharing for general access structures [25]. Moti-
vated by these applications, CDS protocols have been recently studied in many
papers [3,4,10,12,14,19,22,26,27].

In this work, we study linear CDS protocols, where the messages of the parties
are a linear function of the secret and random elements taken from some finite
field. Equivalently, a CDS protocol is linear if the reconstruction of the secret
by the referee from the messages is a linear mapping.1 In many applications
of CDS protocols, it is required that the protocol will be linear. For example,
it was shown by Attrapadung [6] and Wee [29] that linear 2-party CDS proto-
cols can be used to construct public-key (multi-user) attribute-based encryption.
Furthermore, using a construction of Cramer et al. [16] and the construction of
secret-sharing schemes of [25], linear k-party CDS protocols imply secure multi-
party computation (MPC) protocols secure against Q2 adversarial structures.2

The construction of Cramer et al. [16] requires a linear secret-sharing scheme,
i.e., they must use a linear k-party CDS.

Linear CDS protocols can be used to construct linear secret-sharing schemes
for uniform access structures, that is, access structures in which for some k
all sets of size less than k are unauthorized, all sets of size greater than k are
authorized, and each set of size k can be either authorized or unauthorized [3,12–
14]. Very recently, Liu et al. [25] used the optimal linear k-party CDS protocols
(constructed in our paper and in [27]) to construct linear secret-sharing schemes
with share size O(20.999n) for any n-party access structure. They also used non-
linear k-party CDS protocols to construct a non-linear secret-sharing scheme
with share size O(20.994n) for any n-party access structure. These are the first
major improvements in the share size of secret-sharing schemes for arbitrary
access structures since the first constructions of [23], whose share size is 2n.

CDS protocols share similarities with private simultaneous messages (PSM)
protocols, a primitive introduced by Feige, Kilian, and Naor [18] for two-input
functions, and generalized to k-input functions in [18,21]. In a PSM protocol,

1 This equivalence is a special case of the equivalence for secret-sharing schemes. See [7]
for discussion on equivalent definitions of linear secret-sharing schemes.

2 An adversarial structure is Q2 if the union of any two sets that the adversary can
control is not the entire set of parties.

334 A. Beimel and N. Peter

there are k parties, each one holds a private input xi; here the referee does not
hold x1, . . . , xk. The goal is that the referee will learn f(x1, . . . , xk), without
learning any additional information on x1, . . . , xk. As in CDS protocols, the
challenge is that each party sends only one message to the referee (without seeing
the other messages). Intuitively, compared to CDS, PSM is a stronger model,
since in CDS the inputs are known to the referee and in PSM the referee should
not learn any information about the inputs. A PSM protocol for a function
f implies a CDS protocol for the function f [20]. PSM protocols for specific
functions are used in the construction of CDS protocols in our work and in [27].

1.1 Our Results

Our first result is a construction of linear k-party CDS protocols for an arbitrary
k-input function f : [M] × [N]k−1 → {0, 1} with total message size O(N (k−1)/2)
for every k > 2 and integers M,N . Notice that the message size is independent
of M , that is, the domain of inputs of one party can be very large without
affecting the message size. For example, this property is useful for the index
function where the size of the domain of the first party is 2Nk−1

and the size
of the domains of the other parties in N . By [10], the size of the messages in
linear CDS protocols for most k-input functions f : [M] × [N]k−1 → {0, 1} is
Ω(k−1 ·N (k−1)/2) (see details in Sect. 8), thus our construction is optimal (up to
a factor of k). Previously, this result was only known for k = 2 [19] (for the case
that M = N). For k > 2, in the best previously known linear CDS protocol the
size of the messages was O(Nk) [20].

Following [9,10,12], we also consider functions with few inputs that return
1. We consider k-input functions f such that |f−1(1)| ≤ Nγ for some 0 <
γ < (k + 1)/2 and construct a linear CDS protocol for them with message
size O(k3 · Nγ(k−1)/(k+1) · log N). The same result holds for functions such that
|f−1(0)| ≤ Nγ . These results generalize the result of [11] that constructed a
CDS protocol for 2-input functions f such that |f−1(1)| ≤ Nγ for some constant
1 ≤ γ < 2 with message size Õ(Nγ/4). The results of [10] imply a lower bound
of Ω(k−1 · Nγ(k−1)/2k) for the message size of linear CDS protocols for k-input
functions. We do not know if our construction for k-input functions with few
inputs that return 1 is optimal.

As discussed above, CDS protocols imply secret-sharing schemes for uniform
access structures. Thus, our results imply the existence of linear secret-sharing
schemes for uniform access structures as we next elaborate. Using a family of per-
fect hash functions and our CDS protocols, we show that every k-uniform access
structure with n parties can be realized by a linear secret-sharing scheme with
share size O(k · ek · log n · �n/k�(k−1)/2) (a similar transformation was presented
in [3]; our transformation is more efficient). Furthermore, using a transforma-
tion of [14], every k-uniform access structure with n parties can be realized
by a linear secret-sharing scheme with share size O(n · 2n/2); this protocol is
more efficient when k > 0.257n. Finally, our results imply that every k-uniform
access structure with nγ minimal authorized sets of size k can be realized by

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 335

a linear secret-sharing scheme in which the size of the share of each party is
O(k4 · ek · log2 n · �n/k�γ(k−1)/(k+1)).

1.2 Our Technique

We use the following paradigm to design multiparty linear CDS protocols; this
paradigm was implicitly used to design multiparty CDS protocols [27] and PSM
protocols [14]. We start with a CDS protocol for a constant number of parties
and use it to construct a CDS protocol for an arbitrary number of parties.

We demonstrate this idea by describing a linear k-party CDS protocol for
a k-input function f : [N]k → {0, 1} with complexity O(N3k/4−1). Notice that
for k > 2 this construction already improves the best previously known upper
bound described in [20] of O(Nk) for linear CDS protocols. For simplicity of
the discussion, in this paragraph we only consider an even k (as explained in
the technical section we also show how to handle odd values of k). Given the
function f , we define a 2-input function g : [N]k/2 × [N]k/2 → {0, 1}, where
g((x1, . . . , xk/2), (xk/2+1, . . . , xk)) = f(x1, . . . , xk). By [19], there is a linear 2-
party CDS protocol for g with messages of size O(Nk/4). Denote the message
of the first and second party in the CDS protocol for g by m1(x1, . . . , xk/2) and
m2(xk/2+1, . . . , xk), respectively (these messages are also a function of the com-
mon randomness of the CDS protocol). We construct a k-party CDS protocol for
f , where the first k/2 parties (respectively, the last k/2 parties) use a k/2-party
PSM protocol to compute m1(x1, . . . , xk/2) (respectively, m2(xk/2+1, . . . , xk)).
The parties can use the PSM protocol of [18] to compute these functions; the
complexity of the protocol is O(N3k/4−1). The referee can reconstruct the mes-
sages m1(x1, . . . , xk/2) and m2(xk/2+1, . . . , xk) and use the linear reconstruction
function of the CDS protocol to reconstruct the secret. The problem is that the
resulting CDS protocol is not linear since the PSM protocol of [18] is not linear.
However, we can use the fact that in a CDS protocol the referee knows x1, . . . , xk

and construct a simplified version of the protocol of [18] that is linear.
We use the above approach to design a linear k-party CDS protocol with mes-

sages of size N (k−1)/2. We first construct a new linear 3-party CDS protocol for
3-input functions; this CDS protocol generalizes the linear 2-party CDS protocol
of [19]. To construct a CDS protocol for a k-input function f : [N]k → {0, 1} (for
an odd k) we define a 3-input function g : [N]× [N](k−1)/2× [N](k−1)/2 → {0, 1},
where g(x1, (x2, . . . , x(k−1)/2), (x(k+1)/2, . . . , xk)) = f(x1, . . . , xk); that is, we
partition the parties to three sets, where the size of the first set is 1 and the
sizes of the two other sets is (k − 1)/2. We use our 3-party CDS protocol for g,
and denote the messages in this protocol by m1,m2,m3; in this protocol each
message is of size at most N (k−1)/2. We then show that m2 and m3 can be
computed by efficient linear PSM protocols (where the referee knows the inputs
x2, . . . , x(k−1)/2 and x(k+1)/2, . . . , xk, respectively).

To summarize our approach, one can start with any linear CDS protocol for
a small number of parties and use a linear variant of the PSM protocol of [18], in
which the parties send messages enabling the referee to compute the messages of
the CDS protocol. However, this transformation does not necessary result in the

336 A. Beimel and N. Peter

most efficient protocol. To construct an optimal linear k-party CDS protocol, we
design a specific 3-party CDS protocol, such that its messages can be computed
by efficient linear PSM protocols.

Comparison to the protocol of [27]. In a work that was done indepen-
dently and in parallel to our work, Liu et al. [27] have also constructed k-party
linear CDS protocols for arbitrary k-input functions with total message size
O(k · N (k−1)/2) for every k > 2. Their protocol is somewhat different than ours,
however it uses very similar ideas. We apply some optimizations in our protocol,
which reduces the total message size by a factor of k compared to the protocol
of [27]. Furthermore, the protocol of [27] is only described for odd values of k
(using our ideas it can be transformed to a protocol for even values of k).

1.3 Related Works

Gertner et al. [20] defined CDS protocols and used them to construct
symmetrically-private information retrieval protocols. They gave some construc-
tions of CDS protocols: (1) they showed that a PSM protocol for a function
implies a CDS protocol for the same function, and (2) they showed that a
span program (not necessarily monotone) computing a function f implies a lin-
ear CDS protocol for f . In particular, this gives a construction from formulas
and branching programs. Their result implies that for every k-input function
f : [N]k → {0, 1} there exist a linear CDS protocol with messages of size O(Nk).

Beimel et al. [13] showed that for every 2-input function f : [N]×[N] → {0, 1}
there exists a 2-party CDS protocol in which the size of the messages is O(N1/2).
Their protocol is not linear. Gay et al. [19] constructed a linear 2-party CDS
protocol for arbitrary 2-input functions with the same message size of O(N1/2).
Following the above results, Liu et al. [26] have shown that every 2-input function
has a non-linear 2-party CDS protocol with messages of size 2O(

√
log N log log N).

To construct this CDS protocol, they reduced it to a CDS protocol for the index
function and constructed a CDS protocol for the index function based on the
private information retrieval protocol of Dvir and Gopi [17]. Liu et al. [27] have
generalized their results to k-input functions, designing a non-linear k-party CDS
protocol with messages of size 2O(

√
k log N log(k log N)).

Gay et al. [19] proved lower and upper bounds on the size of the messages in
linear and non-linear 2-party CDS protocols for several functions with domain of
size N . For example, they proved a lower bound of Ω(

√
log N) and a matching

upper bound of O(
√

log N) on the messages size of linear CDS protocols for the
index function and a lower bound of Ω(

√
log N) and an upper bound of O(log N)

on the messages size of linear CDS protocols for the disjointness function (which
returns 1 if and only if the sets represented by the inputs are disjoint) and for
the inner-product function. They also proved a lower bound of Ω(log log N) for
any CDS protocol (possibly non-linear) for these functions. Applebaum et al. [4]
proved a lower bound of Ω(log N) for any CDS protocol (possibly non-linear)
for some (non-explicit) function. Applebaum et al. [5] proved a lower bound of

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 337

log N −3−o(1) for any CDS protocol (possibly non-linear) for the inner product
function. All the above lower bounds are for a one-bit secret.

Applebaum et al. [4] and Ambrona et al. [2] showed that if there is a linear
2-party CDS protocol for some function f with message size c and common
random string with size r, then there is a linear CDS protocol for the complement
function f in which the message size and the common random string size is
linear in c and r. Applebaum et al. [4] also showed that if there is a 2-party CDS
protocol (possibly non-linear) for some function f with message size c, common
random string with size r, and an error of 2−κ (in the reconstruction and in the
privacy), then there is a CDS protocol for f in which the message size and the
common random string size are polynomial in c, r, and κ.

Another result shown in [4] is that for every 2-input function there exists a
linear CDS for secrets of � bits, where � is exponential in N2, in which the size
of the messages is O(� · log N). This gives an amortized message size of O(log N)
per each bit of the secret, much better than the message size of 2O(

√
log N log log N)

shown in [26]. Applebaum and Arkis [3] improved this result and extended it to
k-input functions; they showed that for every function f : [N]k → {0, 1} there
exists a multi-linear CDS protocol for secrets of � bits, where � is exponential in
Nk, in which the size of each of the messages sent by the parties is 4�.

CDS protocols are closely related to secret-sharing schemes for uniform access
structures. Basically, k-party CDS protocols for functions f : [N]k → {0, 1} are
equivalent to secret-sharing schemes for k-partite k-uniform access structures
with k · N parties, where a k-uniform access structure is k-partite if there is a
partition of the parties to k sets V1, . . . , Vk such that every authorized set of
size k contains exactly one party from each set Vi. Two-uniform access struc-
tures, called forbidden graph access structures, where first defined by Sun and
Shieh [28], and where further studied in [3,10,12,13].

In particular, it was shown in [13] that there is a transformation from 2-party
CDS protocols to secret-sharing schemes for 2-uniform access structures with n
parties in which the share size is O(log n) times the message size in the CDS
protocol; this transformation preserves linearity. Furthermore, if the size of the
secret is increased, then the share size of the resulting scheme is only O(1) times
the message size in the CDS protocol; this transformation does not preserve
linearity (for a linear CDS, the resulting scheme would be multi-linear). In [3],
this transformation was generalized for any k, where the increase in the share size
is O(ek · log n) if one wants to preserve linearity and O(ek) without preserving
linearity. In this paper, we improve this transformation for short secrets, i.e.,
we transform k-party CDS protocols for a function with domain of size n/k to
secret-sharing schemes for k-uniform access structures with n parties.

2 Preliminaries

2.1 Conditional Disclosure of Secrets Protocols

In this section we define k-party conditional disclosure of secrets (CDS) proto-
cols, first presented in [20].

338 A. Beimel and N. Peter

Definition 2.1 (Conditional Disclosure of Secrets Protocols – Syntax
and Correctness). Let f : X1 × · · · × Xk → {0, 1} be some k-input function.
A CDS protocol P for f with domain of secrets S consists of:

– A finite domain of common random strings R, and k finite message domains
M1, . . . ,Mk.

– Deterministic message computation functions Enc1, . . . ,Enck, where Enci :
Xi × S × R → Mi for every i ∈ [k].

– A deterministic reconstruction function Dec : X1×· · ·×Xk×M1×· · ·×Mk →
{0, 1}.

We say that a CDS protocol P is correct (with respect to f) if for every
(x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S,
and every common random string r ∈ R,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

The total message size of a CDS protocol P is the total size of the messages
sent by the parties, i.e.,

∑k
i=1 log |Mi|.

We define the privacy of CDS protocols with a simulator, i.e., given x1, . . . , xk

such that f(x1, . . . , xk) = 0, we can simulate the messages sent by the parties by
a simulator that has access only to x1, . . . , xk, such that one cannot distinguish
between the messages sent by the parties and the messages generated by the
simulator. That is, a CDS protocol is private if everything that can be learned
from it can be learned from x1, . . . , xk without knowing the secret.

Definition 2.2 (Conditional Disclosure of Secrets Protocols – Pri-
vacy). We say that a CDS protocol P is private (with respect to f) if there
exists a randomized function Sim, called the simulator, such that for every
(x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 0, every secret s ∈ S,
and every k messages (m1, . . . ,mk) ∈ M1 × · · · × Mk,

Pr[Sim(x1, . . . , xk) = (m1, . . . ,mk)]
= Pr[Enc1(x1, s, r) = m1, . . . ,Enck(xk, s, r) = mk],

where the first probability is over the randomness of the simulator S and the
second probability is over the choice of r from R with uniform distribution.

Informally, we say that a CDS protocol is linear if the reconstruction function
of the referee is a linear function.

Definition 2.3 (Linear Conditional Disclosure of Secrets Protocols).
We say that a CDS protocol is linear over a finite field F if

– S = F,
– There exists constants �, �1, . . . , �k such that R = F

� and Mi = F
�i for every

i ∈ [k], and

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 339

– For every x1, . . . , xk ∈ [N] there exist field elements (αi,ji
)i∈[k],ji∈[�i] ∈ F such

that

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) =
∑

i∈[k],ji∈[�i]

αi,ji
mi,ji

,

where Enci(xi, s, r) = (mi,1, . . . ,mi,�i
) for every i ∈ [k].

Equivalently, we could have required that for every i ∈ [k] and every xi ∈ Xi

the function Enci(xi, s, r) is a linear function over F of the secret s and the field
elements in r = (r1, . . . , r�) (see [7,24] for the equivalence).

2.2 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes, similar to [8,15].

Definition 2.4 (Secret-Sharing Schemes). Let P = {P1, . . . , Pn} be a set of
parties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by min Γ .

A secret-sharing scheme Σ = 〈Π,μ〉 with domain of secrets K is a pair, where
μ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Kj

is called the domain of shares of Pj. A dealer distributes a secret k ∈ K according
to Σ by first sampling a random string r ∈ R according to μ, computing a vector
of shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to
party Pj. For a set A ⊆ P , we denote ΠA(k, r) as the restriction of Π(k, r) to
its A-entries (i.e., the shares of the parties in A).

Given a secret-sharing scheme, define the size of the secret as log |K|, the
share size of party Pj as log |Kj |, the max share size as max1≤j≤n log |Kj |, and
the total share size as

∑n
j=1 log |Kj |.

Let K be a finite set of secrets, where |K| ≥ 2. A secret-sharing scheme Σ =
〈Π,μ〉 with domain of secrets K realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of parties.
That is, for any set B = {Pi1 , . . . , Pi|B|} ∈ Γ , there exists a reconstruction
function ReconB : Ki1 × · · · × Ki|B| → K such that for every secret k ∈ K and
every random string r ∈ R,

ReconB

(
ΠB(k, r)

)
= k.

Privacy. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T /∈ Γ , every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉Pj∈T ,

Pr[ΠT (a, r) = 〈sj〉Pj∈T] = Pr[ΠT (b, r) = 〈sj〉Pj∈T],

where the probability is over the choice of r from R at random according to μ.

340 A. Beimel and N. Peter

A scheme is linear if the mapping that the dealer uses to generate the shares
that are given to the parties is linear, as we formalize at the following definition.

Definition 2.5 (Linear Secret-Sharing Schemes). Let Σ = 〈Π,μ〉 be a
secret-sharing scheme with domain of secrets K, where μ is a probability dis-
tribution on a set R and Π is a mapping from K × R to K1 × K2 × · · · × Kn.
We say that Σ is a linear secret-sharing scheme over a finite field F if K = F,
the sets R,K1, . . . ,Kn are vector spaces over F, Π is an F-linear mapping, and
μ is the uniform probability distribution over R.

3 Linear CDS Protocols for 2 and 3 Parties

We present linear 2-party and 3-party CDS protocols. The 3-party CDS protocol
will be used in Sect. 4 to construct k-party CDS protocols for k > 3. To avoid
confusions, in this section we denote the parties by Alice, Bob, and Charlie.

3.1 A Linear 2-Party CDS Protocol

As a warm up, we first describe a linear 2-party CDS protocol for any 2-input
function f : [M] × [N] → {0, 1} in which the total message size is N ; i.e.,
the message size does not depend on M . This protocol is part of the protocol
described in [19], and it is not the optimal protocol for 2 parties (in particular,
by [19] there exist a linear 2-party CDS protocol for any 2-input function f :
[N] × [N] → {0, 1} in which the message size is O(N1/2)).

In the CDS protocol, the parties, Alice and Bob, hold the inputs x1 ∈ [M]
and x2 ∈ [N], respectively, and the common randomness is N uniform bits
r1, . . . , rN . We denote the secret by s ∈ {0, 1}. Alice sends to the referee the bit

s ⊕
⊕

i2∈[N],f(x1,i2)=0
ri2 ,

and Bob sends the bits r1, . . . , rx2−1, rx2+1, . . . , rN . The message size of the
protocol is 1 + (N − 1) = N .

The correctness of the above protocol follows from the fact that if f(x1, x2) =
1, then the bit rx2 is not part of the exclusive-or of the bit that Alice sends. The
referee gets all the bits r1, . . . , rN except for the bit rx2 , and in particular all the
bits among r1, . . . , rN that are part of the exclusive-or in s⊕⊕

i2∈[N],f(x1,i2)=0 ri2 .
Thus, the referee can reconstruct the secret. For the privacy, we observe that
if f(x1, x2) = 0, then the bit rx2 is part of the exclusive-or of the bit that
Alice sends, and since the referee does not get this bit from Bob, then it cannot
learn any information about the secret. Formally, a simulator independently
chooses N uniform bits s′, r′

1, . . . , r
′
N−1 and outputs s′ as the message of Alice

and r′
1, . . . , r

′
N−1 as the message of Bob.

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 341

Fig. 1. A linear 3-party CDS protocol P3 for a 3-input function f : [M] × [N] × [N] →
{0, 1}.

3.2 A Linear 3-Party CDS Protocol

We adapt the above protocol and construct a linear 3-party CDS protocol P3

for any 3-input function f : [M] × [N] × [N] → {0, 1} with message size O(N)
(again, the message size is independent of M).

Lemma 3.1. Let f : [M] × [N] × [N] → {0, 1} be a 3-input function. Then,
there is a linear 3-party CDS protocol for f with total message size O(N).

Proof. The linear CDS protocol for f , denoted by P3, is described in Fig. 1. We
start with an informal description of the protocol. The parties, Alice, Bob, and
Charlie, hold the inputs x1 ∈ [M] and x2, x3 ∈ [N], respectively. The common
randomness is 2N bits r1, . . . , rN and q1, . . . , qN , and the secret is s ∈ {0, 1}.

For every possible value i3 ∈ [N] of the input of Charlie, Alice sends to the
referee the bit si3 = s ⊕ qi3 ⊕ ⊕

i2∈[N],f(x1,i2,i3)=0 ri2 (i.e., the message that
Alice sends in the 2-party CDS protocol, masked by qi3). Bob sends the bits
r1, . . . , rx2−1, rx2+1, . . . , rN , and Charlie sends the bit qx3 .

Next, we prove the correctness of P3. If f(x1, x2, x3) = 1, then the bit rx2 is
not part of the exclusive-or in the bit sx3 that Alice sends, since it contains only
the bits ri2 for which f(x1, i2, x3) = 0. Thus, the referee, which gets the bit qx3

and all the bits r1, . . . , rN except for the bit rx2 , and in particular all the bits
among r1, . . . , rN that are part of the exclusive-or in sx3 , can reconstruct the
secret s, as described in P3.

342 A. Beimel and N. Peter

Now, we prove that P3 is private by constructing a simulator whose output is
3 messages, such that the distribution on the messages of P3 and the distribution
on the messages of the simulator are the same. If f(x1, x2, x3) = 0, then the bit
rx2 is part of the exclusive-or in the bit sx3 , and, thus, the bit sx3 is uniformly
distributed given the messages of Bob and Charlie. Similarly, since the referee
does not get the bits q1, . . . , qx3−1, qx3+1, . . . , qN , the distribution on the bits
si3 , for every i3 ∈ [N] such that i3 = x3, is uniform. Hence, the simulator
independently chooses 2N uniform bits s′

1, . . . , s
′
N , r′

1, . . . , r
′
N−1, q

′ and outputs
s′
1, . . . , s

′
N as the message of Alice, r′

1, . . . , r
′
N−1 as the message of Bob, and q′

as the message of Charlie.
Moreover, the protocol P3 is linear over F2, since for every x1 ∈ [M] and

x2, x3 ∈ [N] the reconstruction function of the referee is a linear combination of
the bits in the messages it gets. Finally, Alice sends N bits, Bob sends N −1 bits,
and Charlie sends one bit, so the massage size of P3 is N +(N − 1)+1 = 2N . ��

4 Linear k-Party CDS Protocols

We use the protocol P3 to construct a k-party CDS protocol, for any integer
k, using the approach described in the introduction. First, in Sect. 4.1, we show
how to transform the 3-party CDS protocol P3 to a linear k-party CDS protocol
Pk for any k-input function f : [M] × [N]k−1 → {0, 1}, for an odd k > 3. Then,
in Sect. 4.2, we show how we can adapt the transformation for an even k > 3.

4.1 A Linear k-Party CDS Protocol for an Odd k

Informal Description of the Protocol. We consider a k-input function f :
[M] × [N]k−1 → {0, 1}, for some odd k, and k parties P1, . . . , Pk that hold the
inputs x1 ∈ [M] and x2, . . . , xk ∈ [N], respectively. Let k′ = (k − 1)/2, y1 =
x1, y2 = (x2, . . . , xk′+1), and y3 = (xk′+2, . . . , xk), and define a 3-input function
g : [M] × [N]k

′ × [N]k
′ → {0, 1}, where g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) =

f(x1, . . . , xk). That is, we partition the parties into three sets, where the first
set is S1 = {P1}, the second set is S2 = {P2, . . . , Pk′+1}, and the third set is
S3 = {Pk′+2, . . . , Pk}. Observe that |S2| = |S3| = k′.

We next describe a k-party CDS protocol Pk in which the parties P1, . . . , Pk

simulates the parties in the protocol P3 for the function g. In this simulation,
party P1 simulates Alice, the parties in S2 simulate Bob, and the parties in S3

simulate Charlie, as follows. We denote the simulated inputs in P3 by y1, y2, y3
and use h2, h3 ∈ [N]k

′
as possible inputs of g in P3.

Simulating Alice. Party P1 sends the bits sh3 = s⊕ qh3 ⊕⊕
h2∈[N]k′ ,f(x1,h2,h3)=0

rh2 , for every h3 = (ik′+2, . . . , ik) ∈ [N]k
′
(exactly as in P3).

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 343

Simulating Bob. The parties in S2 should send the bits rh2 , for every h2 =
(i2, . . . , ik′+1) ∈ [N]k

′
, except for ry2 = rx2,...,xk′+1

. To do so, every party Pj ∈ S2

sends to the referee all the random bits rh2 for every h2 = (i2, . . . , ik′+1) ∈ [N]k
′

such that ij = xj . Observe that h2 = (x2, . . . , xk′+1) if and only if ij = xj for at
least one j. Thus, the parties in S2 send the bits that they should send.

Simulating Charlie. The parties in S3 should send the bit qy3 . To do so, we share
every random bit qh3 , for every h3 ∈ [N]k

′
, between the parties in S3 using a k′-

out-of-k′ secret-sharing scheme. That is, for every h3 = (ik′+2, . . . , ik) ∈ [N]k
′
,

we choose k′ random bits qk′+2
h3

, . . . , qk
h3

and define qh3 = qk′+2
h3

⊕· · ·⊕qk
h3

. Every
party Pj ∈ S3 sends the bits qj

h3
for every h3 = (ik′+2, . . . , ik) ∈ [N]k

′
such that

ij = xj . Thus, the referee can reconstruct the bit qy3 = qxk′+2,...,xk
, and cannot

learn any information about the bits (qh3)h3 �=y3 .

As explained above, the referee in Pk can compute the messages in P3, and,
thus, when g(y1, y2, y3) = 1 (i.e., when f(x1, . . . , xk) = 1), it can reconstruct the
secret s. The message size of every party is at most Nk′

= N (k−1)/2, and the
total massage size is Nk′

+ k′ · Nk′−1 · (N − 1) + k′ · Nk′−1 = O(k · N (k−1)/2).
Next, we show how to improve the total message size of the above protocol

by a factor of k, by improving the simulations of Bob and Charlie by the parties
in S2 and S3, respectively.

The improved simulation of the messages of Charlie is as follows. The common
random string will contain bits qj

ij ,...,ik
, for every j ∈ {k′ + 2, . . . , k} and every

ij , . . . , ik ∈ [N]. First, let qik′+2,...,ik
=

⊕k
j=k′+2 qj

ij ,...,ik
, for every ik′+2, . . . , ik ∈

[N]. Party Pj , for every j ∈ {k′ + 2, . . . , k}, sends the random bits qj
xj ,ij+1...,ik

, for
every ij+1, . . . , ik ∈ [N]. The referee gets the bits qk′+2

xk′+2,...,xk
, qk′+3

xk′+3,...,xk
, . . . , qk

xk
,

and thus can reconstruct qxk′+2,...,xk
. We will show that all other bits qik′+2,...,ik

remain random to the referee, and, thus, the privacy still holds.
The improved simulation of the messages of Bob is as follows. The common

random string contains the bits tij ,...,ik′+1
, for every j ∈ {3, . . . , k′ + 1} and every

ij , . . . , ik′+1 ∈ [N] (in addition to all previously mentioned bits). Party P2 sends
the random bits ri2,...,ik′+1

, for every i2, i3, . . . , ik′+1 ∈ [N] such that i2 = x2 as
before. In addition it also sends the bits rx2,i3,...,ik′+1

, for every i3, . . . , ik′+1 ∈
[N], masked by random bits, that is, it sends rx2,i3,...,ik′+1

⊕ ti3,...,ik′+1
, for

every i3, . . . , ik′+1 ∈ [N]. Next, party P3 sends all the bits ti3,...,ik′+1
, for every

i3, i4, . . . , ik′+1 ∈ [N] such that i3 = x3. Given those bits, the referee can learn
all the bits ri2,i3,...,ik′+1

for which i2 = x2, and all the bits ri2,i3,...,ik′+1
for which

i2 = x2 and i3 = x3. We continue in the same manner until we get to the party
Pk′+1. That is, the party P3 additionally sends the bits tx3,i4...,ik′+1

⊕ ti4,...,ik′+1
,

for every i4, . . . , ik′+1 ∈ [N], and so on. Finally, party Pk′+1 sends only the bits
tik′+1

, for every ik′+1 ∈ [N] such that ik′+1 = xk′+1.
The referee will learn only the bit qxk′+2,xk′+3...,xk

from the messages of the
parties that simulate Charlie, and all the bits ri2,...,ik′+1

, for every i2, . . . , ik′+1 ∈
[N], except for rx2,...,xk′+1

, from the messages of the parties that simulate Bob.

344 A. Beimel and N. Peter

The size of the messages sent by parties Pk′+2, . . . , Pk is Nk′−1 + Nk′−2 +
· · · + N + 1 < 2 · Nk′−1 = O(N (k−3)/2), and the size of the messages sent by
parties P2, . . . , Pk′+1 is Nk′

+Nk′−1 + · · ·+N2 +N −1 < 2 ·Nk′
= O(N (k−1)/2).

Lemma 4.1. Let f : [M]× [N]k−1 → {0, 1} be a k-input function, for some odd
integer k > 3. Then, protocol Pk, described in Fig. 2, is a linear k-party CDS
protocol for f with total message size O(N (k−1)/2).

Proof. Recall that k′ = (k − 1)/2. We prove that protocol Pk is a CDS protocol
for f with message size as in the lemma. Let g : [M]×[N]k

′×[N]k
′ → {0, 1} be the

3-input function where g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = f(x1, . . . , xk).
We first prove that in protocol Pk, the referee can compute the messages
that the referee gets in the protocol P3 for g, and, thus, it can compute s if
g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = 1, i.e., if f(x1, . . . , xk) = 1. We then
prove that if f(x1, . . . , xk) = 0, then the messages in Pk can be simulated since
they are uniformly distributed regardless of s.

Correctness. First, we show that the referee gets the bit qxk′+2,...,xk
. Observe

that the referee gets the bit qj
xj ...,xk

from party Pj , for every j ∈ {k′ + 2, . . . , k}.
Thus, the referee can perform an exclusive-or between all these bits and recon-
struct the bit qxk′+2,...,xk

=
⊕k

j=k′+2 qj
xj ,...,xk

.
Second, we show that the referee gets all the bits ri2,...,ik′+1

, for every
i2, . . . , ik′+1 ∈ [N], except for the bit rx2,...,xk′+1

. Fix some (i2, . . . , ik′+1) =
(x2, . . . , xk′+1), and let � ∈ {2, . . . , k′ + 1} be the first index for which i� = x�.
If � = 2, then the referee gets the bit ri2,...,ik′+1

from party P2. Otherwise, the
referee gets the bit rx2,...,x�−1,i�,...ik′+1

⊕tx3,...,x�−1,i�,...ik′+1
from party P2, and for

every j ∈ {3, . . . , � − 1}, it gets the bit txj ,...,x�−1,i�,...ik′+1
⊕ txj+1,...,x�−1,i�,...ik′+1

from party Pj . Moreover, since i� = x�, the referee gets the bit ti�,...ik′+1
from

party P�. Thus, the referee can perform an exclusive-or between all the above
bits and reconstruct the bit ri2,...,ik′+1

.
Using the above two facts, we prove the correctness of Pk. The referee gets

sxk′+2,...,xk
, (ri2,...,ik′+1

)(i2,...,ik′+1) �=(x2,...,xk′+1)
, and qxk′+2,...,xk

, i.e., the messages
it would get in the protocol P3 for the function g. Hence, if f(x1, . . . , xk) = 1,
then g(x1, (x2, . . . , xk′+1), (xk′+2, . . . , xk)) = 1 and the referee can reconstruct
the secret s since it would have reconstructed it in P3, as described in Pk.

Privacy. We prove that Pk is private by constructing a simulator. The simulator
of Pk chooses independently uniform random bits as the messages sent by the
parties. We show that the output of the simulator is distributed as the messages
sent by the parties in the protocol Pk for f(x1, . . . , xk) = 0, i.e., we show that
in this case the messages in Pk are uniformly distributed.

First, the messages of parties Pk′+2, . . . , Pk contain random bits from the
common randomness and each bit is only sent by one of the parties, thus, the
messages sent by these parties are uniformly distributed. Next, the message of
party Pk′+1 is uniformly distributed, since it contains the random bits tik′+1

, for
every ik′+1 ∈ [N] such that ik′+1 = xk′+1. Given this message, the message of
party Pk′ is uniformly distributed, since it contains the random bits tik′ ,ik′+1

,

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 345

Fig. 2. A linear k-party CDS protocol Pk for a k-input function f : [M] × [N]k−1 →
{0, 1}, for an odd k.

346 A. Beimel and N. Peter

for every ik′ , ik′+1 ∈ [N] such that ik′ = xk′ , and the bits txk′ ,ik′+1
⊕ tik′+1

which
contains the random bit txk′ ,ik′+1

, for every ik′+1 ∈ [N]. We continue in the
same manner, and conclude that given the messages of parties P3, . . . , Pk′+1,
the message of party P2 is uniformly distributed, since it contains the ran-
dom bits ri2,...,ik′+1

, for every i2, . . . , ik′+1 ∈ [N] such that i2 = x2, and the
bits rx2,i3,...,ik′+1

⊕ ti3,...,ik′+1
, for every i3, . . . , ik′+1 ∈ [N]. Thus, the messages

of parties P2, . . . , Pk′+1 are uniformly distributed. Note that the messages of
P2, . . . , Pk′+1 and Pk′+2, . . . , Pk are independent.

We next argue that the message of P1 is uniformly distributed given the
messages of the other parties. We first prove that the bits qik′+2,...,ik

, for
every (ik′+2, . . . , ik) = (xk′+2, . . . , xk), are uniformly distributed given the
messages of Pk′+2, . . . , Pk. Fix some (ik′+2, . . . , ik) = (xk′+2, . . . , xk), and let
� ∈ {k′ + 2, . . . , k} be the first index for which i� = x�, i.e., (ik′+2, . . . , ik) =
(xk′+2, . . . , x�−1, i�, . . . , ik). Thus, the referee does not get the bit q�

i�,...ik
from

party P�, and, thus, it cannot learn the bit qik′+2,...,ik
, since q�

i�,...ik
is part of the

exclusive-or in the bit qik′+2,...,ik
. In the above argument, we used q�

i�,...ik
only

for qxk′+2,...,x�−1,i�,...,ik
, thus, the set of bits {qik′+2,...,ik

}(ik′+2,...,ik) �=(xk′+2,...,xk)

are uniformly distributed given the messages of Pk′+2, . . . , Pk.
We next show that the referee does not learn the bit rx2,...,xk′+1

. The referee
gets the bit rx2,...,xk′+1

⊕ tx3,...,xk′+1
from party P2, and for every j ∈ {3, . . . , k′},

it gets the bit txj ,...,xk′+1
⊕ txj+1,...,ik′+1

from Pj . However, party Pk′+1 does not
send to the referee the bit txk′+1

, so it cannot learn the bit rx2,...,xk′+1
.

Now, we show that given the messages of parties P2, . . . , Pk, the message of
party P1 is uniformly distributed. Since f(x1, . . . , xk) = 0, the bit rxk′+2,...,xk

is part of the exclusive-or in the bit sxk′+2,...,xk
. As we have shown, the referee

does not get rxk′+2,...,xk
, so the bit sxk′+2,...,xk

is uniformly distributed. For every
(ik′+2, . . . , ik) = (xk′+2, . . . , xk), the bit qik′+2,...,ik

is part of the exclusive-or in
the bit sik′+2,...,ik

. As we have shown, the referee does not get qik′+2,...,ik
, so the

bit sik′+2,...,ik
is uniformly distributed. Thus, since for every ik′+2, . . . , ik ∈ [N]

there is a unique random bit that is part of the exclusive-or in the bit sik′+2,...,ik

that cannot be learned by the referee, the bits (sik′+2,...,ik
)ik′+2,...,ik∈[N] are uni-

formly distributed and independent of each other and of the secret. Overall, the
messages sent by the parties are uniformly distributed.

Message size. The size of the message of party P1 is Nk′
, the sizes of the

messages of parties P2, . . . , Pk′+1 are Nk′
, Nk′−1, . . . , N2, N − 1, respectively,

and the sizes of the messages of parties Pk′+2, . . . , Pk are Nk′−1, Nk′−2, . . . , N, 1,
respectively. Thus, the total message size of Pk is Nk′

+ (Nk′
+ · · · + N − 1) +

(Nk′−1 + · · · + 1) < Nk′
+ 2 · Nk′

+ 2 · Nk′−1 = O(N (k−1)/2). ��

4.2 A Linear k-Party CDS Protocol for an Even k

Next, we adopt the CDS protocol Pk to even values of k. Given a k-input function
f : [M] × [N]k−1 → {0, 1}, for an even k, and k parties P1, . . . , Pk that hold the
inputs x1 ∈ [M] and x2, . . . , xk ∈ [N], respectively, we define k′ = (k + 2)/2,
xk′ = (x1

k′ , x2
k′), where x1

k′ , x2
k′ ∈ [N1/2], and y1 = x1, y2 = (x2, . . . , xk′−1, x

1
k′),

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 347

and y3 = (x2
k′ , xk′+1, . . . , xk). As before, we partition the parties into three

sets S1, S2, S3, but now we split the input of party Pk′ , and it will be in both
sets S2, S3, with half of its input in each of them. That is, S1 = {P1}, S2 =
{P2, . . . , Pk′}, and S3 = {Pk′ , . . . , Pk}. The protocol for an even k is the same
as the protocol for an odd k, where Pk′ participates in the simulations of Bob
and Charlie, in which it uses x1

k′ and x2
k′ , respectively.

The protocol Pk for an even k described in Fig. 3. The fact that now not all
the inputs have the same size does not change the correctness and the privacy
of the protocol. Moreover, the message size of protocol Pk for an even k is the
same as in protocol Pk for an odd k.

The above explanation together with Lemma 4.1 implies the following result.

Theorem 4.2. Let f : [M] × [N]k−1 → {0, 1} be a k-input function, for some
integer k > 2. Then, there is a linear k-party CDS protocol for f with total
message size O(N (k−1)/2).

5 Linear k-Party CDS Protocols for Unbalanced
Functions

We show how to construct linear k-party CDS protocols for k-input functions
with a small number of inputs that return 1 and for k-input functions with a
small number of inputs that return 0. We start by constructing a k-party linear
CDS protocol for k-input functions in which for every input xk there are most d
inputs (x1, . . . , xk−1) such that f(x1, . . . , xk−1, xk) = 1. Next, we use this CDS
protocol to construct a k-party linear CDS protocol for the desired functions.

First, let us present the following result from [10], which we are going to use
in our basic construction.

Definition 5.1 (Degree of an Input). Let f : [M] × [N]k−1 →
{0, 1} be a k-input function. The degree of an input xk ∈ [N] is
|{(x1, . . . , xk−1) ∈ [M] × [N]k−2 : f(x1, . . . , xk−1, xk) = 1

} |.
Claim 5.2 ([10]). Let f : [M] × [N] → {0, 1} be a 2-input function in which
the degree of every x2 ∈ [N] is at most d ≤ M . Then, for a field F such that
|F| ≥ M , there are M linear subspaces V1, . . . , VM ⊆ F

d+1 of dimension d and
N vectors z1, . . . , zN ∈ F

d+1 such that for every x1 ∈ [M] and every x2 ∈ [N] it
holds that zx2 ∈ Vx1 if and only if f(x1, x2) = 1. Furthermore, for every i ∈ [M],
the basis of Vi is v1, . . . ,vd, where vj = ej+1 − i · ej for every j ∈ [d].

These linear subspaces and vectors are used in [10] to construct the following
linear 2-party CDS protocol for 2-input functions f : [M]×[N] → {0, 1} in which
the degree of every x2 ∈ [N] is at most d. Alice and Bob, which hold the inputs
x1 ∈ [M] and x2 ∈ [N], respectively, send the messages v1·r, . . . ,vd·r and s+zx2 ·
r, respectively, where s ∈ F is the secret, r ∈ F

d+1 is the common randomness,
and v1, . . . ,vd are a basis of the linear subspace Vx1 . If f(x1, x2) = 1, then
zx2 ∈ Vx1 and there exist constants u1, . . . , ud such that u1·v1+· · ·+ud·vd = zx2 .

348 A. Beimel and N. Peter

Fig. 3. A linear k-party CDS protocol Pk for a k-input function f : [M] × [N]k−1 →
{0, 1}, for an even k.

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 349

Thus, the referee can compute u1 · v1 · r+ · · · + ud · vd · r = zx2 · r and unmask
the secret s from the message s + zx2 · r. Otherwise, if f(x1, x2) = 0, it can be
shown, given the messages of Alice, that the distribution on zx2 · r is uniform,
and, thus, the referee cannot reconstruct the secret. The total message size of
this CDS protocol is (d + 1) log |F| and the size of the secret is log |F|.

We show how to use these ideas to construct a linear k-party CDS protocol
for k-input functions f : [N]k → {0, 1} in which the degree of every input
xk ∈ [N] of the last party is at most d, in which the message size of each party
is O(d · k · log N). This result is non-trivial since we do not have any bound on
the degree of the inputs of the first k − 1 parties.

In the following protocol we simulate the above 2-party CDS protocol for
the 2-input function g : [N]k−1 × [N] → {0, 1}, where g((x1, . . . , xk−1), xk) =
f(x1, . . . , xk). The first k − 1 parties simulate Alice and the kth party simu-
lates Bob. For this simulation, we use properties of the basis of Vi as described
in Claim 5.2. The protocol in [10] does not need to use these properties.

Lemma 5.3. Let f : [N]k → {0, 1} be a k-input function in which the degree
of every xk ∈ [N] is at most d ≤ Nk−1. Then, there is a linear k-party CDS
protocol for f in which the message size of each of the first k − 1 parties is
O(d · k · log N) and the message size of the last party is O(k · log N).

Proof. Let F be the smallest finite field with a prime number of elements such
that |F| ≥ Nk−1, and define g : [N]k−1 × [N] → {0, 1} as the 2-input function
g((x1, . . . , xk−1), xk) = f(x1, . . . , xk), as above. Next, let V1,...,1, . . . , VN,...,N ⊆
F

d+1 and z1, . . . , zN ∈ F
d+1 be the Nk−1 subspaces of dimension d and N

vectors guarantied by Claim 5.2 for the function g. We represent the inputs of
P1, . . . , Pk−1 as an element in

{
0, . . . , Nk−1 − 1

}
, i.e., (x1, . . . , xk−1) = (x1 −

1)Nk−2 + (x2 − 1)Nk−3 + · · · + (xk−2 − 1)N + xk−1 − 1 ∈ {
0, . . . , Nk−1 − 1

}
.

Thus, the ith vector in the basis of Vx1,...,xk−1 is

vi = ei+1 − (x1, . . . , xk−1) · ei
= ei+1 − (x1 − 1)Nk−2 · ei − · · · − (xk−2 − 1)N · ei − (xk−1 − 1) · ei,

that is, vi is a sum of k − 1 vectors, where the jth vector is determined by
xj , i.e., the first vector is vi,1 = ei+1 − (x1 − 1)Nk−2 · ei and for every j ∈
{2, . . . , k − 1}, the jth vector is vi,j = −(xj − 1)Nk−j−1 · ei. To simulate Alice,
parties P1, . . . , Pk−1 should send vi · r for every i ∈ [d]. Since vi =

∑k−1
j=1 vi,j,

where Pj knows vi,j, party Pj can send vi,j ·r. However, this discloses additional
information to the referee, so we need to mask the messages of the parties.
Specifically, for every j ∈ {1, . . . , k − 1}, the message of party Pj is v1,j · r +
rj
1, . . . ,vd,j · r+ rj

d, and the message of party Pk is s + zxk
· r, where s ∈ F is the

secret and the common randomness is r ∈ F
d+1 and rj

i ∈ F, for every j ∈ [k − 1]
and i ∈ [d], such that r1i + · · · + rk−1

i = 0 for every i ∈ [d].
First, we prove the correctness of the protocol. If f(x1, . . . , xk) = 1, then for

every i ∈ [d], the referee can compute vi · r = vi,1 · r + r1i + vi,2 · r + r2i + · · · +
vi,k−1 · r + rk−1

i from the messages it gets. Next, since zxk
∈ Vx1,...,xk−1 , there

350 A. Beimel and N. Peter

exist constants u1, . . . , ud such that u1 ·v1+ · · ·+ud ·vd = zxk
. Thus, the referee

can compute u1 · v1 · r+ · · · + ud · vd · r = zxk
· r and unmask the secret s from

the message s + zxk
· r.

Now, we prove that the protocol is private, by constructing a simulator.
The simulator independently chooses uniform random elements from F as the
messages sent by the parties. We show that the messages sent by the parties in the
protocol are uniformly distributed. Since the vectors v1, . . . ,vd are independent,
v1 ·r, . . . ,vd ·r are uniformly distributed. By [10], given the values v1 ·r, . . . ,vd ·r,
the message of party Pk is uniformly distributed when g((x1, . . . , xk−1), xk) = 0
(i.e., when f(x1, . . . , xk) = 0). Furthermore, each of the messages of parties
P1, . . . , Pk−1 contains d field elements, where the sum of the ith element from
each of these messages is vi · r. Since we mask the messages, the messages of
P1, . . . , Pk−2 are uniformly distributed, and the message of Pk−1 is the random
vector (v1 ·r, . . . ,vd ·r) minus the messages of P1, . . . , Pk−2, that is, the message
of Pk−1 is uniformly distributed as well.

The protocol is linear, since the reconstruction function of the referee is a
linear combination of the messages it gets. The total message size of the protocol
is (k − 1) · O(d · k · log N) + O(k · log N) = O(k2 · d · log N). ��

Next, we show how to transform a k-party CDS protocol for such functions
to a k-party CDS protocol for k-input functions with a small number of inputs
that return 1. The transformation in Lemma5.4 is general and can start from
any k-party CDS protocol for functions where the degree of every xk ∈ [N] is
bounded. Moreover, if we start with a linear k-party CDS protocol, then the
resulting k-party CDS protocol is also linear.

Lemma 5.4. Let f : [N]k → {0, 1} be a k-input function, in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N]k such that f(x1, . . . , xk) = 1, for some
0 < γ < k, and assume that for every k-input function f ′ : [N]k → {0, 1} such
that the degree of every xk ∈ [N] is at most d ≤ Nk−1 there is a k-party CDS
protocol for f ′ with total message size c. Then, there is a k-party CDS protocol
for f with total message size k · c + O((Nγ/d)(k−1)/2).

Proof. Let Si be the set of all the inputs xi ∈ [N] such that there are at most
d inputs (x1, . . . xi−1, xi+1, . . . , xk) ∈ [N]k−1 for which f(x1, . . . , xk) = 1, for
every i ∈ [k]. By our assumption, there is a CDS protocol with message size c
for the restriction of f to the domain [N]i−1 × Si × [N]k−i, for every i ∈ [k] (by
reordering the parties, we can apply the assumption for every i ∈ [k]).

Next, the set [N]\Si contains all the inputs xi ∈ [N] such that there are more
than d inputs (x1, . . . xi−1, xi+1, . . . , xk) ∈ [N]k−1 for which f(x1, . . . , xk) = 1,
and, thus, the number of inputs that return 1 of f is at least |[N]\Si|·d. Therefore,
|[N] \ Si| ≤ Nγ/d for every i ∈ [k]. We use the protocol Pk of Theorem 4.2 to
obtain a linear k-party CDS protocol with message size O((Nγ/d)(k−1)/2) for
the restriction of f to the domain ([N] \ S1) × ([N] \ S2) × · · · × ([N] \ Sk).

If f(x1, . . . , xk) = 1, and xi ∈ Si for at least one i ∈ [k], then the referee can
reconstruct the secret from the messages it gets from the CDS protocol for the
restriction of f to the corresponding domain. If xi ∈ [N] \ Si for every i ∈ [k],

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 351

then the referee can reconstruct the secret from the messages it gets from the
CDS protocol of Theorem 4.2. Otherwise, if f(x1, . . . , xk) = 0, then the referee
cannot learn any information on the secret, which follows by the privacy of each
of the independent CDS protocols we used.

Finally, if the CDS protocol with message size c we assume is linear, then the
resulting protocol is linear, since in that case it is consist of independent linear
protocols. The message size of the protocol is k · c + O((Nγ/d)(k−1)/2). ��

We use the above transformation and our basic linear k-party CDS protocol
for inputs with bounded degree to construct a linear k-party CDS protocol for
k-input functions with a small number of inputs that return 1.

Theorem 5.5. Let f : [N]k → {0, 1} be a k-input function in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N]k such that f(x1, . . . , xk) = 1, for some
0 < γ < (k + 1)/2. Then, there is a linear k-party CDS protocol for f with total
message size O(k3 · Nγ(k−1)/(k+1) · log N).

Proof. By Lemma 5.3, for every k-input function f ′ : [N]k → {0, 1} such that
the degree of every xk ∈ [N] is at most d ≤ Nk−1, there is a linear k-party CDS
protocol for f ′ with total message size O(k2 · d · log N). Thus, by Lemma 5.4,
there is a linear k-party CDS protocol for f with total message size O(k3 ·
d · log N + (Nγ/d)(k−1)/2). To minimize this expression, we require that d =
(Nγ/d)(k−1)/2, that is, d = Nγ(k−1)/(k+1), and obtain a linear k-party CDS
protocol with message size O(k3 · d · log N) = O(k3 · Nγ(k−1)/(k+1) · log N). ��

By a small modification in the first protocol as in [10], the same results hold
also for k-input functions with s small number of inputs that return 0.

Lemma 5.6. Let f : [N]k → {0, 1} be a k-input function in which the degree of
every xk ∈ [N] is at least Nk−1 − d, for some d ≤ Nk−1. Then, there is a linear
k-party CDS protocol for f in which the message size of each of the first k − 1
parties is O(d · k · log N) and the message size of the last party is O(k · log N).

Theorem 5.7. Let f : [N]k → {0, 1} be a k-input function in which there are
at most Nγ inputs (x1, . . . , xk) ∈ [N]k such that f(x1, . . . , xk) = 0, for some
0 < γ < (k + 1)/2. Then, there is a linear k-party CDS protocol for f with total
message size O(k3 · Nγ(k−1)/(k+1) · log N).

Note that the above results are not implied by the closure of CDS protocols
to complement [2,4] since the randomness in the protocols of Lemma 5.3 and
Theorem 5.5 is too big.

6 Linear k-Party CDS Protocols for Functions
with Inputs of Different Sizes

We use the protocol Pk to construct linear k-party CDS protocols for k-input
functions with inputs of different sizes; as in Pk, the message size in these pro-
tocols is independent of the largest input size. In the following three protocols,
we assume, by reordering the parties, that α1 ≥ αi for every i ∈ {2, . . . , k}.

352 A. Beimel and N. Peter

Theorem 6.1. Let f : [Nα1]×[Nα2]×· · ·×[Nαk] → {0, 1} be a k-input function,
for some integer k > 2 and real numbers α1, . . . , αk > 0. Then, there is a linear
k-party CDS protocol for f with total message size O(2k/2 · N

∑k
i=2 αi/2).

Proof. We view f as a k′-input function f ′ : [Nα1] × {0, 1}k′−1 → {0, 1}, where
k′ = 1 +

∑k
i=2�αi log N� ≤ k + log N · ∑k

i=2 αi, and

f ′(x1, x2,1, . . . , x2,�α2 log N	, . . . , xk,1, . . . , xk,�αk log N)
= f(x1, (x2,1, . . . , x2,�α2 log N), . . . , (xk,1, . . . , xk,�αk log N)).

We execute the linear k′-party CDS protocol Pk′ promised by Theorem 4.2 for
the k′-input function f ′, where party P1 simulates the first party, party P2

simulates the next �α2 log N� parties in the k′-party CDS protocol for f ′, party
P3 simulates the next �α3 log N� parties, and so on. Overall, since the message
size of the protocol is independent of the size of the input of the first party, we
get a linear k-party CDS protocol for the k-input function f with total message
size O(2(k

′−1)/2) = O(2(k+log N ·∑k
i=2 αi)/2) = O(2k/2 · N

∑k
i=2 αi/2). ��

We present alternative linear CDS protocols for k-input functions f : [Nα1]×
[Nα2] × · · · × [Nαk] → {0, 1}, where for some parameters we remove the factor
of 2k/2 of the above protocol. We start with a linear k-party CDS protocol for
such k-input functions, for an odd k.

Theorem 6.2. Let f : [Nα1] × [Nα2] × · · · × [Nαk] → {0, 1} be a k-input
function, for some odd integer k > 2 and real numbers α1, . . . , αk > 0.
Then, there is a linear k-party CDS protocol for f with total message size
O(minS⊂{2,...,k},|S|=(k−1)/2{N

∑
i∈S αi + N

∑
i∈{2,...,k}\S αi}).

Proof. Fix any set S ⊂ {2, . . . , k} such that |S| = (k − 1)/2 and define S1 =
{Pj : j ∈ S}. By renaming the parties, we assume that S1 =

{
P2, . . . , P(k+1)/2

}
.

We execute the linear k-party CDS protocol of Lemma 4.1 with the function
f . Recall that in Pk party P1 simulates Alice, the parties in

{
P2, . . . , P(k+1)/2

}

simulate Bob with an input from a domain of size N
∑

i∈S αi , and the parties in
{P2, . . . , Pk} \ S1 =

{
P(k+3)/2, . . . , Pk

}
simulate Charlie with an input from a

domain of size N
∑

i∈{2,...,k}\S αi . The message size of party P1 is N
∑

i∈{2,...,k}\S αi ,
the message size of parties P2, . . . , P(k+1)/2 is less than 2 · N

∑
i∈S αi , and the

message size of parties P(k+3)/2, . . . , Pk is less than 2 · N
∑

i∈{2,...,k}\S αi . Thus,
the total message size of the protocol is O(N

∑
i∈S αi + N

∑
i∈{2,...,k}\S αi). Since

we can choose any set S ⊂ {2, . . . , k} of size (k − 1)/2, the theorem follows. ��
In the above CDS protocol, either

∑
i∈S αi or

∑
i∈{2,...,k}\S αi is at least

∑k
i=2 αi/2. So, the total message size in the CDS protocol of Theorem 6.2 can be

reduced by a factor of at most 2k/2 compared to the CDS protocol of Theorem 6.1
(for example, when

∑
i∈S αi =

∑
i∈{2,...,k}\S αi =

∑k
i=2 αi/2). However, there

are cases for which the total message size of the CDS protocol of Theorem 6.1
will be smaller than the total message size of the CDS protocol of Theorem 6.2
(for example, when α1, α2 � ∑k

i=3 αi).

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 353

Similarly to Theorem 6.2, we can construct a linear k-party CDS protocol for
k-input functions, for an even k. As this CDS protocol is similar to the previous
CDS protocol, we omit its details.

Theorem 6.3. Let f : [Nα1] × [Nα2] × · · · × [Nαk] → {0, 1} be
a k-input function, for some even integer k > 2 and real numbers
α1, . . . , αk > 0. Then, there is a linear k-party CDS protocol for f with
total message size O(minj∈{2,...,k},S⊂{2,...,k}\{j},|S|=(k−2)/2{Nαj/2+

∑
i∈S αi +

Nαj/2+
∑

i∈{2,...,k}\(S∪{j}) αi}).

7 Linear Secret-Sharing Schemes Realizing k-Uniform
Access Structures

7.1 General k-Uniform Access Structures

Recall that an access structure is k-uniform if all sets of size less than k are
unauthorized, all sets of size greater than k are authorized, and the access struc-
ture specifies which sets of size k are authorized. A k-uniform access structure
is k-partite if the parties can be partitioned into k sets V1, . . . , Vk such that
each authorized set of size k contains exactly one party from each set Vi. Basi-
cally, k-party CDS protocols are equivalent to secret-sharing schemes realizing
k-partite k-uniform access structures, see, e.g., [3, Lemma 4.2]. Furthermore, this
equivalence preserves linearity. Thus, our results imply the following theorem.

Corollary 7.1. Let Γ be a k-partite k-uniform access structure with partition
V1, . . . , Vk, where |Vi| = N for every i ∈ [k]. Then, there is a linear secret-sharing
scheme realizing Γ in which the share size of every party is O(N (k−1)/2).

We next describe a secret-sharing scheme realizing k-uniform access structure
(not necessarily k-partite). To obtain this result, we use a generic transformation
from secret-sharing schemes realizing k-partite k-uniform access structures to
secret-sharing schemes realizing k-uniform access structure (not necessarily k-
partite). This transformation is similar to the transformation in [3], however,
for short secrets our transformation is more efficient. The transformation uses a
family of perfect hash functions.

Definition 7.2. A set of functions H = {hi : [n] → [k] : i ∈ [�]} is a family of
perfect hash functions if for every set A ⊆ [n] such that |A| = k there exists
at least one index i ∈ [�] such that |hi(A)| = | {hi(a) : a ∈ A} | = k, i.e., hi

restricted to A is one-to-one.

It is known that if we sample � = O(k ·ek · log n) random functions hi : [n] →
[k], then we get a family of perfect hash functions with high probability. In our
transformation we need that the outputs of every hi are evenly distributed. We
next supply a simple proof that such a family of perfect hash functions exists.

354 A. Beimel and N. Peter

Claim 7.3. There exists a family of perfect hash functions H =
{hi : [n] → [k] : i ∈ [�]}, where � = O(k ·ek · log n), such that for every i ∈ [�] and
every b ∈ [k] it holds that

| {a ∈ [n] : hi(a) = b} | ≤ �n/k�. (1)

Proof. We prove the existence of H using the probabilistic method. We can
assume that n/k is an integer (otherwise we add dummy elements to the domain).
We choose � functions hi independently, where in each stage we choose a function
satisfying (1) with uniform distribution.

First, we fix a set A ∈ [n] of size k, and choose one function h satisfy-
ing (1) with uniform distribution. We give a lower bound on the probabil-
ity that |h(A)| = k. We can view the choice of such a function h as the
following process: Choose a random permutation π : [n] → [n] and define
h(a) = b if (b − 1) · n/k + 1 ≤ π(a) ≤ b · n/k (e.g., all elements such that
π(a) ≤ n/k are mapped to 1). Let B = π(A) = {π(a) : a ∈ A}. As π is a
permutation chosen with uniform distribution, the set B is a uniformly dis-
tributed set of size k. Thus, the probability that |h(A)| = k is the probability
that a uniformly distributed set B of size k contains exactly one element from
(b − 1) · n/k + 1, (b − 1) · n/k + 2, . . . , b · n/k, for every b ∈ [k]. The probability
of the latter event is

(n/k)k

(
n
k

) ≥ (n/k)k

(e · n/k)k
= e−k.

We choose � = ek · (1 + k · ln n) functions h1, . . . , h� satisfying (1) independently
with uniform distribution. Thus, the probability that every hi is not one-to-one
on a fixed A is at most (1−e−k)ek·(1+k·lnn) ≤ e−(1+k·lnn) = 1/(e·nk) < 1/(e·(n

k

)
).

By the union bound, the probability that there exits a set A of size k such that
every hi is not one-to-one on A is less than 1/e. This implies that there exists
a family of perfect hash functions H of size � = O(k · ek · log n) such that all
functions in H satisfy (1). ��

Next, we show how to transform a secret-sharing scheme realizing k-partite k-
uniform access structures to a secret-sharing scheme realizing general k-uniform
access structures. Moreover, if we start with a linear scheme, then the resulting
scheme is also linear.

Lemma 7.4. Let Γ be a k-uniform access structure with n parties. Assume that
for every k-partite k-uniform access structure Γ ′ with partition V1, . . . , Vk, where
|Vi| ≤ N for every i ∈ [k], there is a secret-sharing scheme realizing Γ ′ in which
the share size of every party is c(k,N). Then, there is a secret-sharing scheme
realizing Γ in which the share size of every party is O(k · ek · log n · c(k, �n/k�)).
Proof. Given a partition V = (V1, . . . , Vk) of the parties in Γ , we define the k-
partite k-uniform access structure ΓV ⊂ Γ , where a set A ∈ Γ is authorized in
ΓV if either |A| > k or A contains exactly one party from each set Vi.

We use � partitions V1, . . . ,V� of the parties such that Γ = ∪�
i=1ΓVi and

realize each ΓVi independently. On one hand, every set A ∈ Γ is authorized in

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 355

at least one ΓVi so the parties in A can reconstruct the secret. On the other
hand, every set A /∈ Γ is unauthorized in every ΓVi so the parties in A get no
information on the secret. The share size of each party in the resulting scheme
is � times the size of the shares needed to realize ΓVi .

We construct the � partitions using the family of perfect hash functions H =
{hi : [n] → [k] : i ∈ [�]}, for � = O(k · ek · log n), guaranteed by Claim 7.3, where
Vi = (h−1

i (1), . . . , h−1
i (k)). Using this family of perfect hash functions, every set

in each partition is of size at most �n/k�. Moreover, by our assumption, there is
a scheme realizing ΓVi in which the share size of every party is c(k, �n/k�). This
results in a scheme with share size O(k · ek · log n · c(k, �n/k�)). ��

The above transformation combined with Corollary 7.1 immediately gives the
following result.

Theorem 7.5. Let Γ be a k-uniform access structure with n parties. Then,
there is a linear secret-sharing scheme realizing Γ in which the share size of
every party is O(k · ek · log n · �n/k�(k−1)/2).

When k > 0.257n, the above scheme is less efficient than trivial scheme with
share size 2n. We can use a transformation of [14] showing that if every n-input
function f : {0, 1}n → {0, 1} has a CDS protocol with messages of size c, then
any k-uniform access structure with n parties has a secret-sharing scheme with
share size O(c ·n). This transformation preserves linearity. Thus, our linear CDS
protocol implies a linear secret-sharing scheme realizing every k-uniform access
structure, in which the share size is independent of k.

Theorem 7.6. Let Γ be a k-uniform access structure with n parties. Then,
there is a linear secret-sharing scheme realizing Γ in which the share size of
every party is O(n · 2n/2).

7.2 Sparse and Dense k-Uniform Access Structures

By the equivalence between CDS and uniform access structures, we obtain
results for sparse and dense k-partite k-uniform access structures, which follows
from Theorems 5.5 and 5.7.

Corollary 7.7. Let Γ be a k-partite k-uniform access structure with partition
V1, . . . , Vk, where |Vi| = N for every i ∈ [k]. If | {A ∈ Γ : |A| = k} | ≤ Nγ or
| {A ∈ Γ : |A| = k} | ≥ Nk − Nγ , for some 0 < γ < (k + 1)/2, then there is a
linear secret-sharing scheme realizing Γ in which the share size of every party is
O(k3 · Nγ(k−1)/(k+1) · log N).

Using the transformation in Lemma7.4, we can generalize the above result
to every sparse and dense k-uniform access structure (not necessarily k-partite).

Corollary 7.8. Let Γ be a k-uniform access structure with n parties. If
| {A ∈ Γ : |A| = k} | ≤ nγ or | {A ∈ Γ : |A| = k} | ≥ (

n
k

) − nγ , for some 0 <
γ < (k + 1)/2, then there is a linear secret-sharing scheme realizing Γ in which
the share size of every party is O(k4 · ek · log2 n · �n/k�γ(k−1)/(k+1)).

356 A. Beimel and N. Peter

The above results should be compared to the trivial linear scheme realizing
sparse k-uniform access structures with n parties, in which we share the secret
independently for every minimal authorized set of size k; in this scheme the share
size of every party is O(nγ).

8 Lower Bounds for Linear Schemes Realizing k-Uniform
Access Structures

In this section, we use results of [10] to prove lower bounds on the size of the
shares in linear secret-sharing schemes realizing k-uniform access structures and
on the size of the messages in linear k-party CDS protocols.

8.1 Lower Bounds on the Size of One Share and Implications
to CDS Protocols

First, we show lower bounds on the share size of at least one party in every linear
secret-sharing scheme realizing general k-partite k-uniform access structures.

Before we start, we need some notations and a lemma from [10]. We say that
the rank of an access structure Γ is r if the size of every minimal authorized set
in Γ is at most r. Furthermore, we say that ρq(Γ) ≤ s if there exists a linear
secret-sharing scheme over Fq realizing Γ such that each share in the scheme
contains at most s field elements.

Lemma 8.1 ([10]). For every prime power q and integers s, r, n such that s >
log n, the number of access structures Γ with n parties, rank r, and ρq(Γ) ≤ s

is at most 22rns2·log q.

Theorem 8.2. For most k-partite k-uniform access structures Γ with partition
V1, . . . , Vk, where |Vi| = N for every i ∈ [k], the share size of at least one party
for sharing a one-bit secret in every linear secret-sharing scheme realizing Γ is
Ω(k−1 · N (k−1)/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over Fq

in which the largest share containing s field elements, then the size of the share
of at least one party is s · log q. For the share size of every party to be less than
k−1 ·N (k−1)/2, it must be that q ≤ 2k−1·N(k−1)/2

(otherwise, every share contains
at least k−1 · N (k−1)/2 bits), and, furthermore, s · log q ≤ k−1 · N (k−1)/2.

We next bound the number of k-partite k-uniform access structures Γ that
can be realized by a secret-sharing scheme in which the share size of every party
is at most θ. Recall that in k-uniform access structures all sets of size k + 1 are
authorized, that is, its rank is at most k + 1.

By Lemma 8.1, the number of k-partite k-uniform access structures Γ with
k · N parties and ρq(Γ) ≤ θ/ log q, is at most 22(k+1)·kN ·(θ/ log q)2·log q <

22(k+1)·kN ·θ2
. Since we are counting linear schemes, we need to sum the number

of the access structures that realized by linear schemes for every possible finite

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 357

field (there are at most 2k−1·N(k−1)/2
such fields, because q ≤ 2k−1·N(k−1)/2

). Con-
sider the access structures that realized by linear schemes in which the size of the
share of every party is θ < k−1 · N (k−1)/2. The number of such access structures
is at most 2k−1·N(k−1)/2 · 22(k+1)·kN ·θ2

= 2k−1·N(k−1)/2+2(k+1)·kN ·θ2
.

On the other hand, the number of k-partite k-uniform access structures
Γ , where the size of every part is N , is 2Nk

. Thus, if half of the k-partite
k-uniform access structures Γ , where the size of every part is N , have linear
secret-sharing schemes in which the share size of every party is at most θ, then
2k−1·N(k−1)/2+2(k+1)·kN ·θ2 ≥ 1

2 ·2Nk

, i.e., k−1 ·N (k−1)/2+2(k+1)·kN ·θ2 ≥ Nk−1,
so θ = Ω(k−1 · N (k−1)/2). ��

By [3, Lemma 4.2], we get the following corollary for k-party CDS protocols.

Corollary 8.3. For most k-input functions f : [N]k → {0, 1}, the message
size of at least one party in every linear k-party CDS protocol for f is Ω(k−1 ·
N (k−1)/2).

As we show in Theorem 4.2, this bound is tight up to a factor of k.

Sparse and Dense k-Uniform Access Structures

Theorem 8.4. Let 0 ≤ γ ≤ k be some real number. There exists a k-partite
k-uniform access structure Γ with partition V1, . . . , Vk, where |Vi| = N for every
i ∈ [k] and | {A ∈ Γ : |A| = k} | ≤ Nγ , such that the share size of at least one
party for sharing a one-bit secret in every linear secret-sharing scheme realizing
Γ is Ω(k−1 ·Nγ(k−1)/2k). Furthermore, there exists a k-partite k-uniform access
structure Γ with partition V1, . . . , Vk, where |Vi| = N for every i ∈ [k] and
| {A ∈ Γ : |A| = k} | ≥ Nk − Nγ , such that the share size of at least one party
for sharing a one-bit secret in every linear secret-sharing scheme realizing Γ is
Ω(k−1 · Nγ(k−1)/2k).

Proof. By Theorem 8.2, for every N there exists a k-partite k-uniform access
structure ΓN with N parties in every part such that the share size of at least one
party for sharing a one-bit secret in every linear secret-sharing scheme realizing
the access structure ΓN is Ω(k−1 · N (k−1)/2). We use this k-partite k-uniform
access structure (with fewer parties) to construct a sparse k-partite k-uniform
access structure Γ with N parties in every part. Let V1, . . . , Vk be disjoint sets of
parties of size N . For every i ∈ [k], we fix an arbitrary set of parties V ′

i ⊂ Vi of
size N ′ = Nγ/k, and construct the k-partite k-uniform access structure ΓN ′ with
parties V ′

1 ∪· · ·∪V ′
k. We define Γ as the access structure with parties V1∪· · ·∪Vk

that contains all sets in ΓN ′ and all sets of size at least k + 1.
Since all minimal authorized sets of size k in Γ contain exactly one party

from each V ′
i (for every i ∈ [k]), the number of minimal authorized sets of size

k is at most (N ′)k = (Nγ/k)k = Nγ . The share size of at least one party for
sharing a one-bit secret in every linear secret-sharing scheme realizing ΓN ′ (and,
hence, Γ) is Ω(k−1 ·(Nγ/k)(k−1)/2) = Ω(k−1 ·Nγ(k−1)/2k) = Ω(k−1 ·Nγ/2−γ/2k).

To construct a dense k-partite k-uniform access structure with at least Nk −
Nγ minimal sets of size k that requires large shares in every linear scheme

358 A. Beimel and N. Peter

realizing it, we use a similar construction, however, we add all sets of size k with
exactly k parties from different parts that contain at least one party in Vi \ V ′

i

for some i ∈ [k]. Similar analysis implies that the resulting k-partite k-uniform
access structure has at least Nk − Nγ minimal authorized sets of size k and the
share size of at least one party for sharing a one-bit secret in every linear scheme
realizing this k-partite k-uniform access structure is Ω(k−1 · Nγ(k−1)/2k). ��

Again, by [3, Lemma 4.2], we get the following results.

Corollary 8.5. Let 0 ≤ γ ≤ k be some real number. There exists a k-input
function f : [N]k → {0, 1} such that |{(x1, . . . , xk) : f(x1, . . . , xk) = 1}| ≤ Nγ ,
in which the message size of at least one party in every linear k-party CDS
protocol for f is Ω(k−1·Nγ(k−1)/2k). Furthermore, there exists a k-input function
f : [N]k → {0, 1} such that |{(x1, . . . , xk) : f(x1, . . . , xk) = 0}| ≤ Nγ , in which
the message size of at least one party in every linear k-party CDS protocol for f
is Ω(k−1 · Nγ(k−1)/2k).

8.2 Lower Bounds on the Total Share Size

Next, we show lower bounds on the total share size in every linear secret-sharing
scheme realizing k-uniform access structures.

Theorem 8.6. For most k-uniform access structures Γ with n parties, the total
share size for sharing a one-bit secret in every linear secret-sharing scheme real-
izing Γ is Ω(k−(k+3)/2 · n(k+1)/2).

Proof. If we share a one-bit secret using a linear secret-sharing scheme over Fq

with shares containing S field elements, then the total share size is S · log q.
For the total share size to be less than k−(k+3)/2 · n(k+1)/2, it must be that
q ≤ 2k−(k+3)/2·n(k−1)/2

(otherwise, each share contains more than k−(k+3)/2 ·
n(k−1)/2 bits, and the total share size will be more than k−(k+3)/2 · n(k+1)/2),
and, furthermore, S · log q ≤ k−(k+3)/2 · n(k+1)/2.

Denote the parties in Γ by P . First, we count the number of linear schemes
realizing k-uniform access structures Γ over Fq with shares containing S field
elements. Let B be the set of size at most n/k containing all the parties such
that the share of each one of them containing more than k · S/n field elements.
The set P \ B contains all the parties such that the share of each one of them
containing at most k · S/n field elements. We can add parties to B such that
|B| = n/k, and the share of every party in P \B is still containing at most k ·S/n
field elements.

By Lemma 8.1, the number of k-uniform access structures over Fq with
parties in P \ B such that there exists linear schemes realizing them in
which the share of every party containing at most k · S/n field elements is
22(k+1)·n(1−1/k)·(kS/n)2·log q.

The number of sets with k parties that intersect B is the number of sets with
k parties in P minus the number of sets with k parties contained in P \ B, i.e.,

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 359

(
n
k

)− (
n(k−1)/k

k

)
> (1− (1− 1/k)k)

(
n
k

)
. Moreover, the number of possible choices

of the set B is
(

n
n/k

)
.

Thus, the number of k-uniform access structures Γ over Fq with linear
schemes realizing them in which the shares containing S field elements is
(

n
n/k

) · 2(1−(1−1/k)k)(n
k) · 22(k+1)·n(1−1/k)·(kS/n)2·log q = exp

(
O

(
(1 − (1 − 1/k)k)

(
n
k

)
+ k3·S2·log q

n

))
.

Since we are counting linear schemes, we need to sum the number
of the access structures that realized by linear schemes for every possi-
ble finite field (there are at most 2k−(k+3)/2·n(k−1)/2

such fields, because
q ≤ 2k−(k+3)/2·n(k−1)/2

). Consider the access structures that realized by lin-
ear schemes with total share size at most S · log q = Θ < k−(k+3)/2 ·
n(k+1)/2 (so here S = Θ/ log q). The number of such schemes is at most
exp

(
O

(
k−(k+3)/2 · n(k−1)/2 + (1 − (1 − 1/k)k)

(
n
k

)
+ k3·Θ2

n

))
.

Additionally, the number of k-uniform access structures Γ with n parties is
2(n

k). Thus, if half of the k-uniform access structures Γ with n parties have linear
secret-sharing schemes in which the share size of every party is at most Θ, then
exp

(
O

(
k−(k+3)/2 · n(k−1)/2 + (1 − (1 − 1/k)k)

(
n
k

)
+ k3·Θ2

n

))
≥ exp

((
n
k

) − 1
)
,

i.e., exp
(
O

(
k−(k+3)/2 · n(k−1)/2 + k3·Θ2

n

))
≥ exp

(
Ω

(
(1 − 1/k)k

(
n
k

)))
≥

exp
(
Ω

(
nk

kk

))
, so we get that Θ = Ω(k−(k+3)/2 · n(k+1)/2). ��

As we show in Theorem 7.5, for a constant k this bound is tight up to a
logarithmic factor.

Sparse and Dense k-Uniform Access Structures

Theorem 8.7. Let 1 ≤ γ ≤ k be some real number. There exists a k-uniform
access structure Γ with n parties and | {A ∈ Γ : |A| = k} | ≤ nγ , such that the
total share size for sharing a one-bit secret in every linear secret-sharing scheme
realizing Γ is Ω(k−(k+3)/2 · n(γ+1)/2). Furthermore, there exists a k-uniform
access structure Γ with n parties and | {A ∈ Γ : |A| = k} | ≥ (

n
k

) − nγ , such that
the total share size for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γ is Ω(k−(k+3)/2 · n(γ+1)/2).

Proof. By Theorem 8.6, for every n there exists a k-uniform access structure
with n parties such that the total share size for sharing a one-bit secret in every
linear secret-sharing scheme realizing it is Ω(k−(k+3)/2 · n(k+1)/2). Denote the
parties in Γ by P . We use this k-uniform access structure (with fewer parties)
to construct a sparse k-uniform access structure Γ with n parties. We partition
the parties of P to n′ = n(k−γ)/(k−1) disjoint sets of parties V1, . . . , Vn′ , where
|Vi| = n/n′ = n(γ−1)/(k−1) for every i ∈ [n′]. We construct a copy of a k-uniform
access structure from Theorem 8.6 with n/n′ = n(γ−1)/(k−1) parties among the
parties of Vi, and denote this k-uniform access structure by Γi, for every i ∈ [n′].
There are no authorized sets contain parties from different sets from V1, . . . , Vn′ .

360 A. Beimel and N. Peter

Since every authorized set in this construction contains parties from the same
set Vi (for some i ∈ [n′]), the number of authorized sets is at most n′ ·(n/n′

k

) ≤ n′ ·
(n/n′)k = n(k−γ)/(k−1) · (n(γ−1)/(k−1))k = n(k−γ+kγ−k)/(k−1) = nγ(k−1)/(k−1) =
nγ . The total share size for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γi (for every i ∈ [n′]) is Ω(k−(k+3)/2 · (n(γ−1)/(k−1))(k+1)/2) =
Ω(k−(k+3)/2 · n(γ−1)(k+1)/(2(k−1))) = Ω(k−(k+3)/2 · n(kγ+γ−k−1)/(2(k−1))). Thus,
the total share size for sharing a one-bit secret in every linear secret-sharing
scheme realizing Γ is n′ · Ω(k−(k+3)/2 · n(kγ+γ−k−1)/(2(k−1))) = Ω(k−(k+3)/2 ·
n(k−γ)/(k−1)+(kγ+γ−k−1)/(2(k−1))) = Ω(k−(k+3)/2 · n(kγ−γ+k−1)/(2(k−1))) =
Ω(k−(k+3)/2 · n(γ+1)(k−1)/(2(k−1))) = Ω(k−(k+3)/2 · n(γ+1)/2).

To construct a dense k-uniform access structures with at least
(
n
k

)−nγ autho-
rizes sets that requires large shares in every linear scheme realizing it, we use a
similar construction, however, we add all sets with exactly k parties, in which
not all the paries are in the same set Vi, for some i ∈ [n′]. Similar analysis implies
that the resulting k-uniform access structure has at least

(
n
k

) − nγ authorizes
sets and the total share size for sharing a one-bit secret in every linear scheme
realizing this k-uniform access structure is Ω(k−(k+3)/2 · n(γ+1)/2). ��

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 36–66. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7 2

3. Applebaum, B., Arkis, B.: Conditional disclosure of secrets and d-uniform secret
sharing with constant information rate. Technical report, Electronic Colloquium
on Computational Complexity (2017), to appear in TCC 2018. www.eccc.uni-trier.
de/eccc/

4. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of
secrets: amplification, closure, amortization, lower-bounds, and separations. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 727–757.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 24

5. Applebaum, B., Holenstein, T., Mishra, M., Shayevitz, O.: The communication
complexity of private simultaneous messages, revisited. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 261–286. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 9

6. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

7. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion (1996). www.cs.bgu.ac.il/∼beimel/pub.html

8. Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf.
Theory 40(3), 786–794 (1994)

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-319-63688-7_2
www.eccc.uni-trier.de/eccc/
www.eccc.uni-trier.de/eccc/
https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-319-78375-8_9
https://doi.org/10.1007/978-3-642-55220-5_31
www.cs.bgu.ac.il/~beimel/pub.html

Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols 361

9. Beimel, A., Farràs, O., Mintz, Y.: Secret-sharing schemes for very dense graphs. J.
Cryptol. 29(2), 336–362 (2016)

10. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 394–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 13

11. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. Technical report 2017/940, IACR Cryptology
ePrint Archive (2017)

12. Beimel, A., Farràs, O., Peter, N.: Secret sharing schemes for dense forbidden
graphs. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 509–528.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 27

13. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

14. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 10

15. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2),
87–96 (1993)

16. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

17. Dvir, Z., Gopi, S.: 2-server PIR with sub-polynomial communication. In: 47th
STOC 2015, pp. 577–584 (2015)

18. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th
STOC 1994, pp. 554–563 (1994)

19. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 24

20. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

21. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183
(1997)

22. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

23. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Globecom 1987, pp. 99–102 (1987). Journal version: Multiple assign-
ment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)

24. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity
Theory, pp. 102–111 (1993)

25. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In:
50th STOC 2018, pp. 699–708 (2018)

https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-44618-9_27
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54

362 A. Beimel and N. Peter

26. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 25

27. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 21

28. Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: INFO-
COM 1997, pp. 718–724 (1997)

29. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

Isogeny-Based Cryptography

Towards Practical Key Exchange
from Ordinary Isogeny Graphs

Luca De Feo1,4(B) , Jean Kieffer2,3,4, and Benjamin Smith4

1 UVSQ, LMV, Université Paris Saclay, Versailles, France
luca.de-feo@uvsq.fr

2 École Normale Supérieure, Paris, France
jean.kieffer.14@normalesup.org

3 IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest,
Talence, France

4 Inria and École polytechnique, Université Paris Saclay, Palaiseau, France
smith@lix.polytechnique.fr

Abstract. We revisit the ordinary isogeny-graph based cryptosystems
of Couveignes and Rostovtsev–Stolbunov, long dismissed as impracti-
cal. We give algorithmic improvements that accelerate key exchange in
this framework, and explore the problem of generating suitable system
parameters for contemporary pre- and post-quantum security that take
advantage of these new algorithms. We also prove the session-key security
of this key exchange in the Canetti–Krawczyk model, and the IND-CPA
security of the related public-key encryption scheme, under reasonable
assumptions on the hardness of computing isogeny walks. Our systems
admit efficient key-validation techniques that yield CCA-secure encryp-
tion, thus providing an important step towards efficient post-quantum
non-interactive key exchange (NIKE).

Keywords: Post-quantum cryptography · Key exchange
Elliptic curves · Isogenies

1 Introduction

Isogeny-based protocols form one of the youngest and least-explored families of
post-quantum candidate cryptosystems. The best-known isogeny-based protocol
is Jao and De Feo’s SIDH key exchange [36], from which the NIST candidate
key-encapsulation mechanism SIKE was derived [4,53]. SIDH was itself inspired
by earlier key-exchange constructions by Couveignes [19] and Rostovtsev and
Stolbunov [57,61,62], which were widely considered unwieldy and impractical.

Indeed, the origins of isogeny-based cryptography can be traced back to Cou-
veignes’ “Hard Homogeneous Spaces” manuscript, that went unpublished for ten
years before appearing in [19]. A principal homogeneous space (PHS) for a group
G is a set X with an action of G on X such that for any x, x′ ∈ X, there is a
unique g ∈ G such that g ·x = x′. Equivalently, the map ϕx : g �→ g ·x is a bijec-
tion between G and X for any x ∈ X. Couveignes defines a hard homogeneous
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 365–394, 2018.
https://doi.org/10.1007/978-3-030-03332-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_14&domain=pdf
http://orcid.org/0000-0002-9321-0773

366 L. De Feo et al.

space (HHS) to be a PHS where the action of G on X is efficiently computable,
but inverting the isomorphism ϕx is computationally hard for any x.

Algorithm 1: Key generation for cryptosystems in an HHS X for a group
G, with a fixed “base point” x0 in X.
Input: ()
Output: A private-public keypair (g, x) ∈ G × X s.t. x = g · x0

1 function KeyGen()
2 g ← Random(G) // g is sampled uniformly at random from G
3 x ← g · x0

4 return (g, x)

Any HHS X for an abelian group G can be used to construct a key exchange
based on the hardness of inverting ϕx, as shown in Algorithms 1 and 2. If Alice
and Bob have keypairs (gA, xA) and (gB , xB), respectively, then the commuta-
tivity of G lets them derive a shared secret

DH(gA, xB) = gA · (gB · x0) = gB · (gA · x0) = DH(gB , xA) .

The analogy with classic group-based Diffie–Hellman is evident.

Algorithm 2: Diffie–Hellman in an HHS X for a group G

Input: A private key gA ∈ G and a public key xB ∈ X, each generated by calls
to KeyGen

Output: A shared secret value k ∈ X
1 function DH(gA,xB)
2 k ← gA · xB

3 return k

For example, if X = 〈x〉 is cyclic of order p and G = (Z/pZ)∗ acts on X \{1}
by g·x = xg, then inverting ϕx is the discrete logarithm problem (DLP) in X.
But inverting ϕx for other homogeneous spaces may not be related to any DLP,
and might resist attacks based on Shor’s quantum algorithm. Similar ideas have
occasionally appeared in the literature in different forms [40,48].

Couveignes viewed HHS chiefly as a general framework encompassing var-
ious Diffie–Hellman-like systems. Nevertheless, he suggested using a specific
HHS based on the theory of complex multiplication of elliptic curves, in a
sense generalizing Buchmann and Williams’ class-group-based Diffie–Hellman
key exchange [10]. Independently, Rostovtsev and Stolbunov proposed in [57]
a public key encryption scheme based on the same HHS. Later, Stolbunov [62]
derived more protocols from this, including an interactive key exchange scheme

Towards Practical Key Exchange from Ordinary Isogeny Graphs 367

similar to Algorithm 2. Rostovtsev and Stolbunov’s proposal deviates from the
HHS paradigm in the way random elements of G are sampled, as we will explain
in Sect. 3. This makes the primitive less flexible, but also more practical.

Rostovtsev and Stolbunov advertised their cryptosystems as potential post-
quantum candidates, leading Childs, Jao and Soukharev to introduce the first
subexponential quantum algorithm capable of breaking them [13]. Hence, being
already slow enough to be impractical in a classical security setting, their prim-
itive appeared even more impractical in a quantum security setting.

But the Couveignes–Rostovtsev–Stolbunov primitive (CRS) has some impor-
tant advantages over SIDH which make it worth pursuing. Unlike SIDH, CRS
offers efficient and safe public key validation, making it suitable for non-
interactive key exchange (NIKE). Further, CRS does not suffer from some of
the potential cryptographic weaknesses that SIDH has, such as short paths and
the publication of image points.

This paper aims to improve and modernize the CRS construction, borrowing
techniques from SIDH and point-counting algorithms, to the point of making it
usable in a post-quantum setting. Our main contributions are in Sects. 3, 4, where
we present a new, more efficient way of computing the CRS group action, and in
Sect. 5, where we give precise classic and quantum security estimates, formalize
hardness assumptions, and sketch security proofs in stronger models than those
previously considered. In Sect. 6 we present a proof-of-concept implementation
and measure its performance. While the final result is far from competitive, we
believe it constitutes progress towards a valid isogeny-based alternative to SIDH.

CSIDH. While preparing this paper we were informed of recent work by Cas-
tryck, Lange, Martindale, Panny, and Renes, introducing CSIDH, an efficient
post-quantum primitive based on CRS [12]. Their work builds upon the ideas
presented in Sects. 3, 4, using them in a different homogeneous space where they
apply effortlessly. Their breakthrough confirms that, if anything, our techniques
were a fundamental step towards the first practical post-quantum non-interactive
key exchange protocol.

Side channel awareness. The algorithms we present here are not intended to
provide any protection against basic side-channel attacks. Uniform and constant-
time algorithms for arbitrary-degree isogeny computations are an interesting
open problem, but they are beyond the scope of this work.

2 Isogenies and Complex Multiplication

We begin by recalling some basic facts on isogenies of elliptic curves over finite
fields. For an in-depth introduction to these concepts, we refer the reader to [59].
For a general overview of isogenies and their use in cryptography, we suggest [21].

368 L. De Feo et al.

2.1 Isogenies Between Elliptic Curves

In what follows Fq is a finite field of characteristic p with q elements, and Fq is
its algebraic closure. Let E and E′ be elliptic curves defined over Fq. A homo-
morphism φ : E→E′ is an algebraic map sending 0E to 0E′ ; it induces a group
homomomorphism from E(Fq) to E′(Fq) [59, III.4]. An endomorphism is a homo-
morphism from a curve to itself. The endomorphisms of E form a ring End(E),
with the group law on E for addition and composition for multiplication. The
simplest examples of endomorphisms are the scalar multiplications [m] (mapping
P to the sum of m copies of P) and the Frobenius endomorphism

π : E −→ E ,

(x, y) �−→ (xq, yq) .

As an element of End(E), Frobenius satisfies a quadratic equation π2 + q = tπ.
The integer t (the trace) fully determines the order of E as #E(Fq) = q +1− t.
A curve is called supersingular if p divides t, ordinary otherwise.

An isogeny is a non-zero homomorphism of elliptic curves. The degree of an
isogeny is its degree as an algebraic map, so for example the Frobenius endomor-
phism π has degree q, and the scalar multiplication [m] has degree m2. Isogenies
of degree � are called �-isogenies. The kernel kerφ of φ is the subgroup of E(Fq)
that is mapped to 0E′ . An isogeny φ is cyclic if kerφ is a cyclic group.

An isomorphism is an isogeny of degree 1. An isomorphism class of elliptic
curves is fully determined by their common j-invariant in Fq. If any curve in the
isomorphism class is defined over Fq, then its j-invariant is in Fq.

Any isogeny can be factored as a composition of a separable and a purely
inseparable isogeny. Purely inseparable isogenies have trivial kernel, and degree
a power of p. Separable isogenies include all isogenies of degree coprime to p. Up
to isomorphism, separable isogenies are in one-to-one correspondence with their
kernels: for any finite subgroup G⊂E of order � there is an elliptic curve E/G and
an �-isogeny φ : E → E/G such that kerφ = G, and the curve and isogeny are
unique up to isomorphism. In particular, if φ is separable then deg φ = #kerφ. It
is convenient to encode kerφ as the polynomial whose roots are the x-coordinates
of the points in kerφ, called the kernel polynomial of φ.

For any �-isogeny φ : E → E′, there is a unique �-isogeny φ̂ : E′ → E such
that φ ◦ φ̂ = [�] on E′ and φ̂ ◦ φ = [�] on E. We call φ̂ the dual of φ. This
shows that being �-isogenous is a symmetric relation, and that being isogenous
is an equivalence relation. Further, a theorem of Tate states that two curves are
isogenous over Fq if and only if they have the same number of points over Fq.

2.2 Isogeny Graphs

Isogeny-based cryptosystems are based on isogeny graphs. These are (multi)-
graphs whose vertices are elliptic curves up to isomorphism, and whose edges are
isogenies between them (again up to isomorphism). The use of isogeny graphs for
algorithmic applications goes back to Mestre and Oesterlé [49], followed notably
by Kohel [41], and has been continued by many authors [26,29,31,37,50].

Towards Practical Key Exchange from Ordinary Isogeny Graphs 369

We write E[�] for the subgroup of �-torsion points of E(Fq). If � is coprime
to p, then E[�] is isomorphic to (Z/�Z)2. Furthermore, if � is prime then E[�]
contains exactly �+ 1 cyclic subgroups of order �; it follows that, over Fq, there
are exactly �+1 distinct (non-isomorphic) separable �-isogenies from E to other
curves. Generically, a connected component of the �-isogeny graph over Fq will
be an infinite (� + 1)-regular graph (a notable exception is the finite connected
component of supersingular curves, used in SIDH and related protocols).

We now restrict to isogenies defined over Fq. If E and E′ are elliptic curves
over Fq, then an isogeny φ : E→E′ is defined over Fq (up to a twist of E′) if and
only if the Frobenius endomorphism π on E stabilizes kerφ. We emphasize that
the points in kerφ need not be defined over Fq themselves.

For the vertices of the Fq-isogeny graph we use j-invariants, which classify
elliptic curves up to Fq-isomorphism; but in the sequel we want to work up to
Fq-isomorphism, a stronger equivalence. If E and Ẽ are not Fq-isomorphic but
j(E) = j(Ẽ), then Ẽ is the quadratic twist of E (which is defined and unique
up to Fq-isomorphism).1 When E is ordinary, its quadratic twist has a different
cardinality (if #E(Fq) = q +1− t, then #Ẽ(Fq) = q +1+ t), so E and Ẽ are in
different components of the isogeny graph. But every Fq-isogeny φ : E → E′ cor-
responds to an Fq-isogeny φ̃ : Ẽ → Ẽ′ of the same degree between the quadratic
twists. The component of the Fq-isogeny graph containing an ordinary curve and
the component containing its twist are thus isomorphic; we are therefore justi-
fied in identifying them, using j-invariants in Fq for vertices in the Fq-graph.2
This is not just a mathematical convenience: we will see in Sect. 3 below that
switching between a curve and its twist often allows a useful optimization in
isogeny computations.

If an isogeny φ is defined over Fq and cyclic, then π acts like a scalar on the
points of kerφ. Thus, for any prime � 	= p, the number of outgoing �-isogenies
from E defined over Fq can be completely understood by looking at how π acts
on E[�]. Since E[�] is a Z/�Z-module of rank 2, the action of π is represented by
a 2 × 2 matrix with entries in Z/�Z and characteristic polynomial X2 − tX + q
mod �. We then have four possibilities:

(0) π has no eigenvalues in Z/�Z, i.e. X2− tX+q is irreducible modulo �; then
E has no �-isogenies.

(1.1) π has one eigenvalue of (geometric) multiplicity one, i.e. it is conjugate to
a non-diagonal matrix

(
λ ∗
0 λ

)
; then there is one �-isogeny from E.

(1.2) π has one eigenvalue of multiplicity two, i.e. it acts like a scalar matrix(
λ 0
0 λ

)
; then there are � + 1 isogenies of degree � from E.

(2) π has two distinct eigenvalues, i.e. it is conjugate to a diagonal matrix(
λ 0
0 μ

)
with λ 	= μ; then there are two �-isogenies from E.

1 There is a slight technicality here for j-invariants 0 and 1728, where non-quadratic
twists may exist. We ignore these special cases because these curves never appear
in our cryptosystem: the class groups of their endomorphism rings are trivial, and
keyspaces of size 1 are of limited utility in cryptography.

2 The situation is much more complicated for supersingular graphs, because the curve
and its twist are in the same component of the graph; see [23, Sect. 2] for details.

370 L. De Feo et al.

The primes � in Case (2) are called Elkies primes for E; these are the primes
of most interest to us. Cases (1.x) are only possible if � divides Δpi = t2 − 4q,
the discriminant of the characteristic equation of π; for ordinary curves Δpi 	= 0,
so only a finite number of � will fall in these cases, and they will be mostly
irrelevant to our cryptosystem. We do not use any � in Case (0).

Since all curves in the same isogeny class over Fq have the same number of
points, they also have the same trace t and discriminant Δπ. It follows that if �
is Elkies for some E in Ellq(O), then it is Elkies for every curve in Ellq(O).

Hence, if � is an Elkies prime for a curve E, then the connected component
of E in the �-isogeny graph is a finite 2-regular graph—that is, a cycle. In the
next subsection we describe a group action on this cycle, and determine its size.

2.3 Complex Multiplication

In this subsection we focus exclusively on ordinary elliptic curves. If E is an
ordinary curve with Frobenius π, then End(E) is isomorphic to an order3 in the
quadratic imaginary field Q(

√
Δπ) (see [59, III.9]). A curve whose endomorphism

ring is isomorphic to an order O is said to have complex multiplication by O.
For a detailed treatment of the theory of complex multiplication, see [45,60].

The ring of integers OK of K = Q(
√

Δπ) is its maximal order : it contains
any other order of K. Hence Z[π] ⊂ End(E) ⊂ OK , and there is only a finite
number of possible choices for End(E). If we write Δπ = d2ΔK , where ΔK is the
discriminant4 of OK , then the index [OK : End(E)] must divide d = [OK : Z[π]].

It turns out that isogenies allow us to navigate the various orders. If φ : E→E′

is an �-isogeny, then one of the following holds [41, Prop. 21]:

– End(E) = End(E′), and then φ is said to be horizontal ;
– [End(E) : End(E′)] = �, and then φ is said to be descending ;
– [End(E′) : End(E)] = �, and then φ is said to be ascending.

Notice that the last two cases can only happen if � divides d2 = Δπ/ΔK , and
thus correspond to Cases (1.x) in the previous subsection. If � does not divide
Δπ, then φ is necessarily horizontal.

We now present a group action on the set of all curves up to isomorphism
having complex multiplication by a fixed order O; the key exchange protocol of
Sect. 3 will be built on this action. Let a be an invertible ideal in End(E) � O
of norm prime to p, and define the a-torsion subgroup of E as

E[a] =
{
P ∈ E(Fq)

∣
∣ σ(P) = 0 for all σ ∈ a

}
.

This subgroup is the kernel of a separable isogeny φa. 5 The codomain E/E[a] of
φa is well-defined up to isomorphism and will be denoted a · E. The isogeny φa

is always horizontal—that is, End(a · E) = End(E)—and its degree is the norm
of a as an ideal of End(E).
3 An order is a subring which is a Z-module of rank 2.
4 ΔK is a fundamental discriminant : ΔK ≡ 0, 1 (mod 4), and ΔK or ΔK

4
is squarefree.

5 In fact, one can define φa for any invertible ideal a, but it is not always separable.

Towards Practical Key Exchange from Ordinary Isogeny Graphs 371

Let Ellq(O) be the set of isomorphism classes over Fq of curves with com-
plex multiplication by O, and assume it is non-empty. The construction above
gives rise to an action of the group of fractional ideals of O on Ellq(O). Further-
more, the principal ideals act trivially (the corresponding isogenies are endo-
morphisms), so this action induces an action of the ideal class group C(O) on
Ellq(O).

The main theorem of complex multiplication states that this action is simply
transitive. In other terms, Ellq(O) is a PHS under the group C(O): if we fix a
curve E as base point, then we have a bijection

C(O) −→ Ellq(O)
Ideal class of a �−→ Isomorphism class of a · E.

The order of C(O) is called the class number of O, and denoted by h(O). An
immediate consequence of the theorem is that #Ellq(O) = h(O).

As before, we work with Fq-isomorphism classes. Then Ellq(O) decomposes
into two isomorphic PHSes under C(O), each containing the quadratic twists
of the curves in the other. We choose one of these two components, that we
will also denote Ellq(O) in the sequel. (The choice is equivalent to a choice of
isomorphism End(E) ∼= O, and thus to a choice of sign on the image of π in O.)

Now let � be an Elkies prime for E ∈ Ellq(O). So far, we have seen that
the connected component of E in the �-isogeny graph is a cycle of horizontal
isogenies. Complex multiplication tells us more. The restriction of the Frobenius
to E[�] has two eigenvalues λ 	= μ, to which we associate the prime ideals a =
(π − λ, �) and â = (π − μ, �), both of norm �. We see then that E[a] is the
eigenspace of λ, defining an isogeny φa of degree �. Furthermore aâ = âa = (�),
implying that a and â are the inverse of one another in C(O), thus the isogeny
φâ : a·E→E of kernel (a·E)[â] is the dual of φa (up to isomorphism).

The eigenvalues λ and μ define opposite directions on the �-isogeny cycle,
independent of the starting curve, as shown in Fig. 1. The size of the cycle is the
order of (π − λ, �) in C(O), thus partitioning Ellq(O) into cycles of equal size.

3 Key Exchange from Isogeny Graphs

We would like to instantiate the key exchange protocol of Algorithm 2 with the
PHS X = Ellq(O) for the group G = C(O), for some well chosen order O in a
quadratic imaginary field. However, given a generic element of C(O), the best
algorithm [38] to evaluate its action on Ellq(O) has subexponential complexity
in q, making the protocol infeasible. The solution, following Couveignes [19], is
to fix a set S of small prime ideals in O, whose action on X can be computed
efficiently, and such that compositions of elements of S cover the whole of G.
The action of an arbitrary element of G is then the composition of a series of
actions by small elements in S. As Rostovtsev and Stolbunov [57] observed, it
is useful to visualise this decomposed action as a walk in an isogeny graph.

372 L. De Feo et al.

λ

μ

λ
μ

λμ

λ
μ λ

μ

λ μ

λ
μ

Fig. 1. An isogeny cycle for an
Elkies prime �, with edge direc-
tions associated with the Frobe-
nius eigenvalues λ and μ.

x2

x4
x8

x3

x6

x12

x11

x9

x5
x10

x7

x1

Fig. 2. Undirected Schreier graph on 〈x〉 \
{1} where x13 = 1, acted upon by
(Z/13Z)∗, generated by S = {2, 3, 5} (resp.
blue, red and green edges). (Color figure
online)

3.1 Walks in Isogeny Graphs

Let G be a group, X a PHS for G, and S a subset of G. The Schreier graph
G(G,S,X) is the labelled directed graph whose vertex set is X, and where an
edge labelled by s ∈ S links x1 to x2 if and only if s · x1 = x2. It is isomorphic
to a Cayley graph for G. If S is symmetric (that is, S−1 = S), then we associate
the same label to s and s−1, making the graph undirected.

A walk in G(G,S,X) is a finite sequence (s1, . . . , sn) of steps in S. We define
the action of this walk on X as

(s1, . . . , sn)·x =
(n∏

i=1

si

)·x.

In our application G is abelian, so the order of the steps si does not matter.
We can use this action directly in the key exchange protocol of Algorithm 2, by
simply taking private keys to be walks instead of elements in G.

Example 1. Figure 2 shows G(G,S,X) where G = (Z/13Z)∗, S = {2, 3, 5} ∪
{2−1, 3−1, 5−1}, and X = 〈x〉\{1} is a cyclic group of order 13, minus its identity
element. The action of G on X is exponentiation: g·x = xg. The action of 11,
which takes xk to x11k, can be expressed using the walks (2, 5, 5), or (2−1, 3−1),
or (3, 5), for example. Note that 5 has order 4 modulo 13, thus partitioning
〈x〉 \ {1} into 3 cycles of length 4.

Returning to the world of isogenies, we now take

– X = Ellq(O) as the vertex set, for some well-chosen q and O; in particular
we require O to be the maximal order (see Sect. 5).

– G = C(O) as the group acting on X;
– S a set of ideals, whose norms are small Elkies primes in O.

Towards Practical Key Exchange from Ordinary Isogeny Graphs 373

The graph G(G,S,X) is thus an isogeny graph, composed of many isogeny cycles
(one for the norm of each prime in S) superimposed on the vertex set Ellq(O). It
is connected if S generates C(O). Walks in G(G,S,X) are called isogeny walks.

We compute the action of an ideal s (a single isogeny step) on an x∈Ellq(O)
by choosing a representative curve E with x = j(E), and computing an isogeny
φs : E→E′ from E corresponding to s; the resulting vertex is s · x = j(E′). The
action of an isogeny walk (si)i is then evaluated as the sequence of isogeny steps
φsi . Algorithms for these operations are given in the next subsection.

Using this “smooth” representation of elements in C(O) as isogeny walks lets
us avoid computing C(O) and Ellq(O), and avoid explicit ideal class arithmetic;
only isogenies between elliptic curves are computed. In practice, we re-use the
elliptic curve E′ from one step as the E in the next; but we emphasize that when
isogeny walks are used for Diffie–Hellman, the resulting public keys and shared
secrets are not the final elliptic curves, but their j-invariants.

3.2 Computing Isogeny Walks

Since C(O) is commutative, we can break isogeny walks down into a succession
of walks corresponding to powers of single primes s = (�, π−λ); that is, repeated
applications of the isogenies φs. Depending on s, we will compute each sequence
of φs using one of two different methods:

– Algorithm 5 (ElkiesWalk) uses Algorithm 3 (ElkiesFirstStep) followed
by a series of calls to Algorithm 4 (ElkiesNextStep), both which use the
modular polynomial Φ�(X,Y). This approach works for any s.

– Algorithm 7 (VéluWalk) uses a series of calls to Algorithm 6 (VéluStep).
This approach, which uses torsion points on E, can only be applied when λ
satisfies certain properties.

Rostovtsev and Stolbunov only used analogues of Algorithms 3 and 4. The
introduction of VéluStep, inspired by SIDH and related protocols (and now a
key ingredient in the CSIDH protocol [12]), speeds up our protocol by a consid-
erable factor; this is the main practical contribution of our work.

Elkies steps. Algorithms 3 and 4 compute single steps in the �-isogeny graph.
Their correctness follows from the definition of the modular polynomial Φ�:
a cyclic �-isogeny exists between two elliptic curves E and E′ if and only if
Φ�(j(E), j(E′)) = 0 (see [58, Sect. 6] and [24, Sect. 3] for the relevant theory).
One may use the classical modular polynomials here, or alternative, lower-degree
modular polynomials (Atkin polynomials, for example) with minimal adaptation
to the algorithms. In practice, Φ� is precomputed and stored: several publicly
available databases exist (see [42] and [8,9,66], for example).

Given a j-invariant j(E), we can compute its two neighbours in the �-isogeny
graph by evaluating P (X) = Φ�(j(E),X) (a polynomial of degree � + 1), and
then computing its two roots in Fq. Using a Cantor–Zassenhaus-type algorithm,
this costs Õ(� log q) Fq-operations.

374 L. De Feo et al.

Algorithm 3: ElkiesFirstStep
Input: E ∈ Ellq(O); (�, λ) encoding s = (π − λ, �)
Output: j(s · E)

1 P ← Φ�(X, j(E))
2 {j1, j2} ← Roots(P,Fq)
3 K ← KernelPolynomial(Isogeny(E, j1, �)) // e.g. BMSS algorithm [7]
4 Q ← a nonzero point in K // e.g. (x, y) ∈ E(Fq[x, y]/(y2 − fE(x), K(x)))
5 if π(Q) = [λ]Q then
6 return j1
7 else
8 return j2

Algorithm 4: ElkiesNextStep
Input: (�, λ) encoding s = (π − λ, �); (j0, j1) = (j(E), j(s · E)) for E in Ellq(O)
Output: j(s · s · E)

1 P ← Φ�(X, j1)/(X − j0)
2 j2 ← Root(P,Fq)

// It is unique
3 return j2

Algorithm 5: ElkiesWalk
Input: E ∈ Ellq(O); (�, λ) encoding s = (π − λ, �); k ≥ 1
Output: sk · E

1 j0 ← j(E)
2 j1 ← ElkiesFirstStep(E, (�, λ))
3 for 2 ≤ i ≤ k do
4 (j0, j1) ← (j1,ElkiesNextStep((�, λ), (j0, j1)))

5 ER ← EllipticCurveFromJInvariant(j1)
6 if not CheckTrace(ER, t) then
7 ER ← QuadraticTwist(ER)

8 return ER

Algorithm 6: VéluStep
Input: E ∈ Ellq(O); (�, λ) encoding s = (π − λ, �); r > 0; Cr = #E(Fqr)
Output: s · E

1 repeat
2 P ← Random(E(Fqr))
3 Q ← [Cr/�]P

4 until Q 	= 0E

5 K ← ∏(�−1)/2
i=0 (X − x([i]Q)) // Kernel polynomial of isogeny

6 ER ← IsogenyFromKernel(E, K) // Apply Vélu’s formulæ
7 return ER

Towards Practical Key Exchange from Ordinary Isogeny Graphs 375

Algorithm 7: VéluWalk
Input: E ∈ Ellq(O); (�, λ) encoding s = (�, π − λ); k ≥ 1
Output: sk · E

1 r ← Order(λ, �) // Precompute and store for each (�, λ)
2 Cr ← #E(Fqr) // Precompute and store for each r
3 for 1 ≤ i ≤ k do
4 E ← VéluStep(E, (�, λ), r, Cr)

5 return E

We need to make sure we step towards the neighbour in the correct direction.
If we have already made one such step, then this is easy: it suffices to avoid
backtracking. Algorithm 4 (ElkiesNextStep) does this by removing the factor
corresponding to the previous j-invariant in Line 4; this algorithm can be used
for all but the first of the steps corresponding to s.

It remains to choose the right direction in the first step for s = (�, π − λ). In
Algorithm 3 we choose one of the two candidates for φs arbitrarily, and compute
its kernel polynomial. This costs Õ(�) Fq-operations using the Bostan–Morain–
Salvy–Schost algorithm [7] with asymptotically fast polynomial arithmetic. We
then compute an element Q of kerφs over an extension of Fq of degree at most
�−1
2 , then evaluate π(Q) and [λ]Q. If they match, then we have chosen the right

direction; otherwise we take the other root of P (X).
Algorithm 5 (ElkiesWalk) combines these algorithms to compute the iter-

ated action of s. Line 5 ensures that the curve returned is the the correct com-
ponent of the �-isogeny graph. Both ElkiesFirstStep and ElkiesNextStep
cost Õ(� log q) Fq-operations, dominated by the calculation of the roots of P (X).

Vélu steps. For some ideals s = (�, π − λ), we can completely avoid modular
polynomials, and the costly computation of their roots, by constructing kerφs

directly from �-torsion points. Let r be the order of λ modulo �; then kerφs ⊆
E(Fqr). If r is not a multiple of the order of the other eigenvalue μ of π on E[�],
then E[�](Fqr) = kerφs. Algorithm 6 (VéluStep) exploits this fact to construct
a generator Q of kerφs by computing a point of order � in E(Fqr). The roots of
the kernel polynomial of φs x(Q), . . . , x([(� − 1)/2]Q). 6

Constructing a point Q of order � in E(Fqr) is straightforward: we take
random points and multiply by the cofactor Cr/�, where Cr := #E(Fqr). Each
trial succeeds with probability 1−1/�. Note that Cr can be easily (pre)computed
from the Frobenius trace t: if we write Cr = q − tr + 1 for r > 0 (so t1 = t) and
t0 = 2, then the tr satisfy the recurrence tr = t · tr−1 − q · tr−2.

We compute the quotient curve in Line 6 with Vélu’s formulæ [69] in O(�)
Fq-operations. Since logCr � r log q, provided � = O(log q), the costly step in

6 If the order of μ divides r, Algorithm 6 can be extended as follows: take P∈E[�],
and compute π(P) − [μ]P ; the result is either zero, or an eigenvector for μ. This is
not necessary for any of the primes in our proposed parameters.

376 L. De Feo et al.

Algorithm 6 is the scalar multiplication at Line 3, which costs Õ(r2 log q) Fq-
operations.

Comparing the costs. To summarize:

– Elkies steps cost Õ(� log q) Fq-operations;
– Vélu steps cost Õ(r2 log q) Fq-operations, where r is the order of λ in Z/�Z.

In general r = O(�), so Elkies steps should be preferred. However, when r is
particularly small (and not a multiple of the order of the other eigenvalue), a
factor of � can be saved using Vélu steps. The value of r directly depends on λ,
which is in turn determined by #E(Fp) mod �. Thus, we see that better Step
performances depend on the ability to find elliptic curves whose order satisfies
congruence conditions modulo small primes. Unfortunately, we can only achieve
this partially (see Sect. 4), so the most efficient solution is to use Vélu steps
when we can, and Elkies steps for some other primes.

In practice, Algorithm 6 can be improved by using elliptic curve models
with more efficient arithmetic. In our implementation (see Sect. 6), we used
x-only arithmetic on Montgomery models [18,51], which also have convenient
Vélu formulæ [17,56]. Note that we can also avoid computing y-coordinates in
Algorithm 3 at Line 5 if λ 	= ±μ: this is the typical case for Elkies steps, and we
used this optimization for all Elkies primes in our implementation.

Remark 1. Note that, in principle, Algorithm 6, can only be used to walk in one
direction sλ = (�, π − λ), and not in the opposite one sμ = (�, π − μ). Indeed we
have assumed that E[sλ] is in E(Fqr), while E[sμ] is not. However, switching to
a quadratic twist Ẽ of E over Fqr changes the sign of the Frobenius eigenvalues,
thus it may happen that Ẽ[s−μ] is in Ẽ(Fqr), while Ẽ[s−λ] is not. It is easy to
force this behavior by asking that p ≡ −1 (mod �), indeed then λ = −1/μ.

For these eigenvalue pairs we can thus walk in both directions using Vélu
steps at no additional cost, following either the direction λ on E, or the direction
−μ on a twist. In Algorithm 6, only the curve order and the random point
sampling need to be modified when using quadratic twists.

3.3 Sampling Isogeny Walks for Key Exchange

We now describe how keys are generated and exchanged in our protocol. Since
the cost of the various isogeny walks depends on the ideals chosen, we will use
adapted, or skewed, smooth representations when sampling elements in C(O) in
order to minimize the total computational cost of a key exchange.

We take a (conjectural) generating set for C(O) consisting of ideals over a set
S of small Elkies primes, which we partition into three sets according to the step
algorithms to be used. We maintain three lists of tuples encoding these primes:

SV V is a list of tuples (�, λ, μ) such that the ideal (�, π − λ) and its inverse
(�, π − μ) are both amenable to VéluStep.

Towards Practical Key Exchange from Ordinary Isogeny Graphs 377

SV E is a list of tuples (�, λ) such that (�, π − λ) is amenable to VéluStep but
its inverse (�, π − μ) is not.

SEE is a list of tuples (�, λ, μ) such that neither (�, π − λ) nor (�, π − μ) are
amenable to VéluStep.

In SV V and SEE , the labelling of eigenvalues as λ and μ is fixed once and
for all (that is, the tuples (�, λ, μ) and (�, μ, λ) do not both appear). This fixes
directions in each of the �-isogeny cycles. Looking back at Fig. 1, for � associated
with SEE and SV V , both directions in the �-isogeny graph will be available for
use in walks; for SV E , only the Vélu direction will be used.

Each secret key in the cryptosystem is a walk in the isogeny graph. Since the
class group C(O) is commutative, such a walk is determined by the multiplicities
of the primes s that appear in it. Algorithm 8 (KeyGen) therefore encodes
private-key walks as exponent vectors, with one integer exponent for each tuple
in SV V , SV E , and SEE . For a tuple (�, λ, μ),

– a positive exponent k� indicates a walk of k� �-isogeny steps in direction λ;
– a negative exponent −k� indicates k� �-isogeny steps in direction μ.

For the tuples (�, λ) in SV E , where we do not use the slower μ-direction, we only
allow non-negative exponents. We choose bounds M� on the absolute value of
the exponents k� so as to minimize the total cost of computing isogeny walks,
while maintaining a large keyspace. As a rule, the bounds will be much bigger
for the primes in SV V and SV E , where Vélu steps can be applied.

The public keys are j-invariants in Fq, so they can be stored in log2 q bits;
the private keys are also quite compact, but their precise size depends on the
number of primes � and the choice of exponent bounds M�, which is a problem
we will return to in Sect. 6.

Algorithm 9 completes a Diffie–Hellman key exchange by applying a combi-
nation of Elkies and Vélu walks (Algorithms 5 and 7, respectively).

4 Public Parameter Selection

It is evident that the choice of public parameters has a heavy impact on the exe-
cution time: smaller Elkies primes, and smaller multiplicative orders of the Frobe-
nius eigenvalues, will lead to better performance. Since all of this information is
contained in the value of #E(Fq), we now face the problem of constructing ordi-
nary elliptic curves of prescribed order modulo small primes. Unfortunately, and
in contrast with the supersingular case, no polynomial-time method to achieve
this is known in general: the CM method [3,64], which solves this problem when
the corresponding class groups are small, is useless in our setting (see Sect. 5).

In this section we describe how to use the Schoof–Elkies–Atkin (SEA) point
counting algorithm with early abort, combined with the use of certain modular
curves, to construct curves whose order satisfies some constraints modulo small
primes. This is faster than choosing curves at random and computing their orders
completely until a convenient one is found, but it still does not allow us to use
the full power of Algorithm VéluStep.

378 L. De Feo et al.

Algorithm 8: KeyGen for cryptosystems in the isogeny graph on Ellq(O)
with walks based on S, and initial curve E0. The ideal lists SEE , SV V , and
SV E , and the walk bounds M�, are system parameters.
Input: ()
Output: A secret key (k�)�∈S and the corresponding public key j(E)

1 E ← E0

2 for (�, λ, μ) ∈ SEE do
3 k� ← Random([−M�, M�])
4 if k� ≥ 0 then ν ← λ
5 else ν ← μ
6 E ← ElkiesWalk(E, (�, ν), |k�|)
7 for (�, λ, ν) ∈ SV V do
8 k� ← Random([−M�, M�])
9 if k� ≥ 0 then ν ← λ

10 else ν ← μ
11 E ← VéluWalk(E, (�, ν), |k�|)
12 for (�, λ) ∈ SV E do
13 k� ← Random([0, M�])
14 E ← VéluWalk(E, (�, λ), k�)

15 return ((k�)�∈S , j(E))

Algorithm 9: DH for the isogeny graph on Ellq(O) with primes in S.
The ideal lists SEE , SV V , and SV E , and the walk bounds M�, are system
parameters. Public key validation is not included here, but (if desired)
should be carried out as detailed in Sect. 5.4.
Input: A private key kA = (kA,�)�∈S corresponding to a walk (s1, . . . , sn), and

a public key jB = j(EB) for EB ∈ Ellq(O)
Output: A shared secret j(

∏n
i=1 si · EB)

1 E ← EllipticCurveFromJInvariant(jB)
2 if not CheckTrace(E, t) then
3 E ← QuadraticTwist(E)

4 for (�, λ, μ) ∈ SEE do
5 if kA,� ≥ 0 then ν ← λ
6 else ν ← μ
7 E ← ElkiesWalk(E, (�, ν), |kA,�|)
8 for (�, λ, μ) ∈ SV V do
9 if kA,� ≥ 0 then ν ← λ

10 else ν ← μ
11 E ← VéluWalk(E, (�, ν), |kA,�|)
12 for (�, λ) ∈ SV E do
13 E ← VéluWalk(E, (�, λ), kA,�)

14 return j(E)

Towards Practical Key Exchange from Ordinary Isogeny Graphs 379

Early-abort SEA. The SEA algorithm [52,58] is the state-of-the-art point-count-
ing algorithm for elliptic curves over large-characteristic finite fields. In order to
compute N = #E(Fp), it computes N modulo a series of small Elkies primes �,
before combining the results via the CRT to get the true value of N .

Cryptographers are usually interested in generating elliptic curves of prime
or nearly prime order, and thus without small prime factors. While running SEA
on random candidate curves, one immediately detects if N ≡ 0 (mod �) for the
small primes �; if this happens then the SEA execution is aborted, and restarted
with a new curve.

Here, the situation is the opposite: we want elliptic curves whose cardinality
has many small prime divisors. To fix ideas, we choose the 512-bit prime

p := 7

⎛

⎝
∏

2≤�≤380, � prime

�

⎞

⎠ − 1 .

Then, according to Remark 1, Algorithm VéluStep can be used for �-isogenies
in both directions for any prime � ≤ 380, as soon as the order of its eigenvalues
is small enough. We now proceed as follows:

– Choose a smoothness bound B (we used B = 13).
– Pick elliptic curves E at random in Fp, and use the SEA algorithm, aborting

when any � ≤ B with #E(Fp) 	≡ 0 (mod �) is found.
– For each E which passed the tests above, complete the SEA algorithm to

compute #E(Fp), and estimate the key exchange running time using this
curve as a public parameter (see Sect. 6).

– The “fastest” curves now give promising candidates for #E(Fp).

In considering the efficiency of this procedure, it is important to remark
that very few curves will pass the early-abort tests. The bound B should be
chosen to balance the overall cost of the first few tests with that of the complete
SEA algorithm for the curves which pass them. Therefore, its value is somewhat
implementation-dependent.

Finding the maximal order. Once a “good” curve E has been computed, we want
to find a curve E0 having the same number of points, but whose endomorphism
ring is maximal, and to ensure that its discriminant is a large integer. Therefore,
we attempt to factor the discriminant Δπ of Z[π]: if it is squarefree, then E
already has maximal endomorphism ring, and in general the square factors of
Δπ indicate which ascending isogenies have to be computed in order to find E0.

Remark 2. Factoring random 512-bit integers is not hard in general, and dis-
criminants of quadratic fields even tend to be slightly smoother than random
integers.

If a discriminant fails to be completely factored, a conservative strategy would
be to discard it, but ultimately undetected large prime-square factors do not
present a security issue because computing the possible corresponding large-
degree isogenies is intractable (see Sect. 5).

380 L. De Feo et al.

Using the modular curve X1(N). Since we are looking for curves with smooth car-
dinalities, another improvement to this procedure is available: instead of choos-
ing elliptic curves uniformly at random, we pick random candidates using an
equation for the modular curve X1(N) [65], which guarantees the existence of a
rational N -torsion point on the sampled elliptic curve. This idea is used in the
procedure of selecting elliptic curves in the Elliptic Curve Method for factor-
ing [70,71]. In our implementation we used N = 17, and also incorporated the
existence test in [54] for Montgomery models for the resulting elliptic curves.

Results. We implemented this search using the Sage computer algebra system.
Our experiments were conducted on several machines running Intel Xeon E5520
processors at 2.27GHz. After 17,000 hours of CPU time, we found the Mont-
gomery elliptic curve E : y2 = x3 + Ax2 + x over Fp with p as above, and

A = 108613385046492803838599501407729470077036464083728319343246605668887327977789
32142488253565145603672591944602210571423767689240032829444439469242521864171 .

The trace of Frobenius t of E is

−147189550172528104900422131912266898599387555512924231762107728432541952979290 .

There is a rational �-torsion point on E, or its quadratic twist, for each � in

{3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723} ;
each of these primes is Elkies. Furthermore, End(E) is the maximal order, and
its discriminant is a 511-bit integer that has the following prime factorization:

−23·20507·67429·11718238170290677·12248034502305872059
·60884358188204745129468762751254728712569
·68495197685926430905162211241300486171895491480444062860794276603493 .

In Sect. 6, we discuss the practical performance of our key-exchange protocol
using these system parameters. Other proposals for parameters are given in [39].

5 Security

We now address the security of the CRS primitive, and derived protocols. Intu-
itively, these systems rely on two assumptions:

1. given two curves E and E′ in Ellq(O), it is hard to find a (smooth degree)
isogeny φ : E→E′; and

2. the distribution on Ellq(O) induced by the random walks sampled in Algo-
rithm 8 is computationally undistinguishable from the uniform distribution.

We start by reviewing the known attacks for the first problem, both in the
classical and the quantum setting. Then, we formalize security assumptions and
give security proofs against passive adversaries. Finally, we discuss key validation
and protection against active adversaries.

Towards Practical Key Exchange from Ordinary Isogeny Graphs 381

5.1 Classical Attacks

We start by addressing the following, more general, problem:

Problem 1. Given two ordinary elliptic curves E,E′ defined over a finite field
Fq, such that #E(Fq) = #E′(Fq), find an isogeny walk (φi)1≤i≤n such that
φn ◦ · · · ◦ φ1(E) = E′.

The curves in Problem 1 are supposed to be sampled uniformly, though
this is never exactly the case in practice. This problem was studied before the
emergence of isogeny-based cryptography [28,29,31], because of its applications
to conventional elliptic-curve cryptography [31,37,67]. The algorithm with the
best asymptotic complexity is due to Galbraith, Hess and Smart [31]. It consists
of three stages:

Stage 0. Use walks of ascending isogenies to reduce to the case where End(E) ∼=
End(E′) is the maximal order.

Stage 1. Start two random walks of horizontal isogenies from E and E′; detect
the moment when they collide using a Pollard-rho type of algorithm.

Stage 2. Reduce the size of the obtained walk using index-calculus techniques.

To understand Stage 0, recall that all isogenous elliptic curves have the same
order, and thus the same trace t of the Frobenius endomorphism π. We know
that End(E) is contained in the ring of integers OK of K = Q(

√
Δπ), where

Δπ = t2 − 4q is the Frobenius discriminant. As before we write Δπ = d2ΔK ,
where ΔK is the discriminant of OK ; then for any � | d, the �-isogeny graph
of E contains ascending and descending �-isogenies; these graphs are referred to
as volcanoes [26] (see Fig. 3). Ascending isogenies go from curves with smaller
endomorphism rings to curves with larger ones, and take us to a curve with
End(E) � OK in O(log d) steps; they can be computed efficiently using the
algorithms of [22,26,35,41]. Assuming7 all prime factors of d are in O(log q), we
can therefore compute Stage 0 in time polynomial in log q.

The set Ellq(OK) has the smallest size among all sets Ellq(O) for O ⊂ OK , so
it is always interesting to reduce to it. This justifies using curves with maximal
endomorphism ring in the definition of the protocol in Sect. 3. When Δπ is
square-free, Z[π] is the maximal order, and the condition is automatically true.

The collision search in Stage 1 relies on the birthday paradox, and has a
complexity of O(

√
h(OK)).

It is known that, on average, h(OK) ≈ 0.461 · · · √|ΔK | (see [15, 5.10]),
and, assuming the extended Riemann hypothesis, we even have a lower bound
(see [47])

h(OK) ≥ 0.147 · · · (1 + o(1))
√|ΔK |

log log |ΔK | .

Since ΔK ∼ q, we expect Stage 1 to take time O(q1/4), which justifies a choice
of q four times as large as the security parameter. Unfortunately, class numbers
7 This is typical for isogeny-based protocols. No counter-example has ever been con-

structed.

382 L. De Feo et al.

Fig. 3. 3-isogeny graph (volcano) containing the curve with j(E) = 607 over F6007. A
larger vertex denotes a larger endomorphism ring.

are notoriously difficult to compute, the current record being for a discriminant
of 300 bits [5]. Computing class numbers for ∼ 500-bit discriminants seems to
be expensive, albeit feasible; thus, we can only rely on these heuristic arguments
to justify the security of our proposed parameters.

The horizontal isogeny produced by Stage 1 is represented by an ideal con-
structed as a product of exponentially many small ideals. Stage 2 converts this
into a sequence of small ideals of length polynomial in log q. Its complexity is
bounded by that of Stage 1, so it has no impact on our security estimates.

Remark 3. The Cohen–Lenstra heuristic [16] predicts that the odd part of C(OK)
is cyclic with overwhelming probability, and other heuristics [33] indicate that
h(OK) is likely to have a large prime factor. However, since there is no known
way in which the group structure of C(OK) can affect the security of our protocol,
we can disregard this matter. No link between the group structure of E(Fq) itself
and the security is known, either.

5.2 Quantum Attacks

On a quantum computer, an attack with better asymptotic complexity is given
by Childs, Jao and Soukharev in [13]. It consists of two algorithms:

1. A (classical) algorithm that takes as input an elliptic curve E∈Ellq(O) and
an ideal a∈C(O), and outputs the curve a·E;

2. A generic quantum algorithm for the dihedral hidden subgroup problem
(dHSP), based upon previous work of Kuperberg [43,44] and Regev [55].

The ideal evaluation algorithm has sub-exponential complexity Lq(12 ,
√
3
2).

However, after a subexponential-time classical precomputation, any adversary
can know the exact class group structure; in that case, this ideal evaluation

Towards Practical Key Exchange from Ordinary Isogeny Graphs 383

step could possibly be performed in polynomial time (and non-negligible success
probability) using LLL-based methods, as discussed in [63] and [19, Sect. 5].

The dHSP algorithm uses the ideal evaluation algorithm as a (quantum) black
box, the number of queries depending on the variant. Childs–Jao–Soukharev gave
two versions of this algorithm, Kuperberg’s [43] and Regev’s [55]. However, both
are superseded by Kuperberg’s recent work [44]: his new algorithm solves the
dHSP in any abelian group of order N using 2O(

√
log N) quantum queries and

classical space, but only O(logN) quantum space. Given this estimate, we expect
the bit size of q to grow at worst like the square of the security parameter.

Unfortunately, the analysis of Kuperberg’s new algorithm is only asymptotic,
and limited to N of a special form; it cannot be directly used to draw conclusions
on concrete cryptographic parameters at this stage, especially since the value of
the constant hidden by the O() in the exponent is unclear. Thus, it is hard
to estimate the impact of this attack at concrete security levels such as those
required by NIST [53].

Nevertheless, we remark that the first version of Kuperberg’s algorithm, as
described in [55, Algorithm 5.1 and Remark 5.2] requires O(23

√
log N logN) black-

box queries and ∼ 23
√
log N qubits of memory. Although the quantum memory

requirements of this algorithm are rather high, we will take its query complexity
as a crude lower bound for the complexity of Kuperberg’s newer algorithm in the
general case. Of course, this assumption is only heuristic, and should be validated
by further study of quantum dHSP solvers; at present time, unfortunately, no
precise statement can be made.

Table 1 thus proposes various parameter sizes, with associated numbers of
quantum queries based on the observations above; we also indicate the estimated
time to (classically) precompute the class group structure according to [5].8
Whenever the quantum query complexity alone is enough to put a parameter in
one of NIST’s security categories [53], we indicate it in the table. We believe that
using query complexity alone is a very conservative choice, and should give more
than enough confidence in the post-quantum security properties of our scheme.

The system parameters we proposed in Sect. 4 correspond to the first line of
Table 1, thus offering at least 56-bit quantum and 128-bit classical security.

5.3 Security Proofs

We now formalize the assumptions needed to prove the security of the key
exchange protocol, and other derived protocols such as PKEs and KEMs, in
various models. Given the similarity with the classical Diffie–Hellman proto-
col on a cyclic group, our assumptions are mostly modeled on those used in
that context. Here we are essentially following the lead of Couveignes [19] and
Stolbunov [62,63]. However, we take their analyses a step further by explicitly
modeling the hardness of distinguishing random walks on Cayley graphs from

8 Computing the class group structure is an instance of the hidden subgroup problem,
and thus can be solved in quantum polynomial time by Shor’s algorithm.

384 L. De Feo et al.

Table 1. Suggested parameter sizes and associated classical security, class group com-
putation time, and query complexity, using the heuristic estimations of Sect. 5.2.

logΔK log h(OK) classical security L|ΔK |(1/2, 1) quantum queries NIST category

512 256 2128 256.6 > 256

688 344 2172 267.0 > 264 1
768 384 2192 271.4 > 267 1

1024 512 2256 284.2 > 276 1
1656 828 2414 2110.8 > 296 3
3068 1534 2767 2156.9 > 2128 5

the uniform distribution: this yields stronger proofs and a better separation of
security concerns.

For the rest of this section q is a prime power, O is an order in a quadratic
imaginary field with discriminant Δ ∼ q, C(O) is the class group of O, Ellq(O) is
the (non-empty) set of elliptic curves with complex multiplication by O, and E0

is a fixed curve in Ellq(O). Finally, S is a set of ideals of O with norm polynomial
in log q, and σ is a probability distribution on the set S∗ of isogeny walks (i.e.
finite sequences of elements in S) used to sample secrets in the key exchange
protocol. We write x

σ∈ X for an element taken from a set X according to σ, and

x
R∈ X for an element taken according to the uniform distribution.
Our security proofs use four distributions on Ellq(O)3:

Gq,Δ :=
{
(a·E0, b·E0, ab·E0)

∣
∣
∣
∣ a, b

R∈ C(O)
}

,

Wq,Δ,σ :=
{(

(ai)i·E0, (bj)j ·E0, (ai)i·(bj)j ·E0

) ∣
∣
∣ (ai)i, (bj)j

σ∈ S∗
}

,

Rq,Δ,σ :=
{

(
(ai)i·E0, (bi)i·E0, E

′)
∣
∣
∣
∣ (ai)i, (bi)i

σ∈ S∗, E′ R∈ Ellq(O)
}

,

Uq,Δ :=
{
(Ea, Eb, Eab)

∣
∣
∣
∣ Ea, Eb, Eab

R∈ Ellq(O)
}

.

The assumption needed to prove security of the protocols is the hardness of
a problem analogous to the classic Decisional Diffie–Hellman (DDH) problem.

Definition 1 (Isogeny Walk DDH (IW-DDH)). Given a triplet of curves
(Ea, Eb, Eab) sampled with probability 1

2 from Rq,Δ,σ and 1
2 from Wq,Δ,σ, decide

from which it was sampled.

We split this problem into two finer-grained problems. The first is that of
distinguishing between commutative squares sampled uniformly at random and
commutative squares sampled from the distribution σ.

Definition 2 (Isogeny Walk Distinguishing (IWD)). Given a triplet of
curves (Ea, Eb, Eab) sampled with probability 1

2 from Wq,Δ,σ and 1
2 from Gq,Δ,

decide from which it was sampled.

Towards Practical Key Exchange from Ordinary Isogeny Graphs 385

The second problem is a group-action analogue of DDH. It also appears in [19]
under the name vectorization, and in [62,63] under the name DDHAP.

Definition 3 (Class Group Action DDH (CGA-DDH)). Given a triplet
of curves (Ea, Eb, Eab) sampled with probability 1

2 from Gq,Δ and 1
2 from Uq,Δ,

decide from which it was sampled.

We want to prove the security of protocols based on the primitive of Sect. 3
under the CGA-DDH and IWD assumptions combined. To do this we give a
lemma showing that CGA-DDH and IWD together imply IW-DDH. The tech-
nique is straightforward: we use an IW-DDH oracle to solve both the CGA-DDH
and IWD problems, showing that at least one of the two must be solvable with
non-negligible advantage. The only technical difficulty is that we need an efficient
way to simulate the uniform distribution on Ellq(O); for this, we use another
Cayley graph on Ellq(O), with a potentially larger edge set, that is proven in [37]
to be an expander under the generalized Riemann hypothesis (GRH).

We let AdvA
IW-DDH be the advantage of an adversary A against IW-DDH,

defined as the probability that A answers correctly, minus 1/2:

2AdvA
IW-DDH = Pr

[
A(Rq,Δ,σ) = 1

] − Pr
[
A(Wq,Δ,σ) = 1

]
.

We define AdvA
CGA-DDH and AdvA

IWD similarly. Switching answers if needed, we
can assume all advantages are positive. We let AdvX(t) denote the maximum of
AdvA

X over all adversaries using at most t resources (running time, queries, etc.).

Lemma 1. Assuming GRH, for q large enough and for any bound t on running
time, and for any ε > 0,

AdvIW-DDH(t) ≤ 2AdvIWD(t + poly(log q, log ε)) + AdvCGA-DDH(t) + ε .

Proof (Sketch). We start with an adversary A for IW-DDH, and we construct
two simulators S and T for CGA-DDH and IWD respectively.

– The simulator S simply passes its inputs to A, and returns A’s response.
– The simulator T receives a triplet (Ea, Eb, Eab) taken from Gq,Δ or Wq,Δ,σ,

and flips a coin to decide which of the two following actions it will do:
• forward (Ea, Eb, Eab) to A, and return the bit given by A; or
• generate a random curve Ec∈Ellq(O), forward (Ea, Eb, Ec) to A, and

return the opposite bit to the one given by A.

The curve Ec must be sampled from a distribution close to uniform for the
simulator T to work. The only way at our disposal to sample Ec uniformly would
be to sample a uniform c∈C(O) and take Ec = c·E0, but this would be too costly.
Instead we use [37, Theorem 1.5], combined with standard results about random
walks in expander graphs (for instance, an easy adaptation of the proof of [37,
Lemma 2.1]), to sample Ec so that any curve in Ellq(O) is taken with probability
between (1 − ε)/h(O) and (1 + ε)/h(O), using only poly(log q, log ε) operations.

386 L. De Feo et al.

We can consider this sampling as follows: with probability 1 − ε, sample Ec

uniformly, and with probability ε sample it from an unknown distribution.
Now, if T forwarded (Ea, Eb, Eab) untouched, then we immediately get

2AdvT
IWD = AdvA

IW-DDH − AdvS
CGA-DDH ;

if T forwarded (Ea, Eb, Ec), then we get

2AdvT
IWD ≥ AdvA

IW-DDH − (1 − ε)AdvS
CGA-DDH − ε .

Averaging over the two outcomes concludes the proof. ��
Finally, we define an isogeny-walk analogue of the classic Computational

Diffie–Hellman (CDH) problem for groups. Using the same techniques as above,
we can prove the security of the relevant protocols based only on CGA-CDH
and IWD, without the generalized Riemann hypothesis.

Definition 4 (Class Group Action CDH (CGA-CDH)). Given Ea = a·E0

and Eb = b·E0 with a, b
R∈ C(O), compute the curve Eab = ab·E0.

Stolbunov proved the security of HHS Diffie–Hellman under the equivalent of
CGA-DDH [62]. Repeating the same steps, we can prove the following theorem.

Theorem 1. If the CGA-DDH and IWD assumptions hold, assuming GRH, the
key-agreement protocol defined by Algorithms 8 and 9 is session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk [11].

Similarly, we can prove the IND-CPA security of the hashed ElGamal pro-
tocol derived from Algorithm 8 by replicating the techniques of e.g. [30, Sect.
20.4.11].

Theorem 2. Assuming CGA-CDH and IWD, the hashed ElGamal protocol
derived from Algorithms 8 and 9 is IND-CPA secure in the random oracle model.

A heuristic discussion of the IWD assumption. From its very definition, the IWD
problem depends on the probability distribution σ we use to sample random
walks in the isogeny graph. In this paragraph, we provide heuristic arguments
suggesting that the IWD instances generated by Algorithm 9 are hard, provided

1. the keyspace size is at least
√|ΔK |, and

2. S is not too small, i.e. the number of isogeny degrees used is in Ω(log q).

Proving rapid mixing of isogeny walks with such parameters seems out of
reach at present, even under number-theoretic hypotheses such as GRH. The
best results available, like [37, Theorem 1.5] (used in the proof of Lemma 1),
typically require isogeny degrees in Ω((log q)B) for some B > 2, and fully random
walks that are not, for example, skewed towards smaller-degree isogenies.

However, numerical evidence suggests that these theoretical results are too
weak. In [37, 7.2], it is asked whether an analogue of the previous theorem would

Towards Practical Key Exchange from Ordinary Isogeny Graphs 387

be true with the sole constraint B > 1. In [31, Sect. 3], it is mentioned that many
fewer split primes are needed to walk in the isogeny graph than theoretically
expected. Practical evidence also suggests that the rapid mixing properties are
not lost with skewed random walks: such walks are used in [28] to accelerate
an algorithm solving Problem 1. We believe that these experiments can bring
some evidence in favor of relying on the IWD assumptions with more aggres-
sive parameters than those provided by GRH, although further investigation is
required.

5.4 Key Validation and Active Security

Modern practice in cryptography mandates the use of stronger security notions
than IND-CPA. From the DLP assumption, it is easy to construct protocols with
strong security against active adversaries. For example, it is well-known that the
hashed ElGamal KEM achieves IND-CCA security in the random oracle model
under various assumptions [1,2,20].

All of these constructions crucially rely on key validation: that is, Alice must
verify that the public data sent by Bob defines valid protocol data (e.g., valid
elements of a cyclic group), or abort if this is not the case. Failure to perform
key validation may result in catastrophic attacks, such as small subgroup [46],
invalid point [6], and invalid curve attacks [14].

In our context, key validation amounts to verifying that the curve sent by
Bob really is an element of Ellq(OK). Failure to do so exposes Alice to an invalid
graph attack, where Bob forces Alice onto an isogeny class with much smaller
discriminant, or different Elkies primes, and learns something on Alice’s secret.

Fortunately, key validation is relatively easy for protocols based on the CRS
primitive. All we need to check is that the received j-invariant corresponds to a
curve with the right order, and with maximal endomorphism ring.

Verifying the curve order. Since we already know the trace t of the Frobenius
endomorphism of all curves in Ellq(O), we only need to check that the given
E has order q + 1 − t. Assuming that E is cyclic, or contains a cyclic group of
order larger than 4

√
q, a very efficient randomized algorithm consists in taking

a random point P and verifying that it has the expected order. This task is easy
if the factorization of q + 1 − t is known.

Concretely, the curve given in Sect. 4 has order

N = 22 · 32 · 5 · 7· 11 · 132 · 17 · 103 · 523 · 821 · 1174286389 · (432-bit prime) ,

and its group structure is Z/2Z × Z/N
2 Z. To check that a curve is in the same

isogeny class, we repeatedly take random points until we find one of order N/2.

Verifying the endomorphism ring level. The curve order verification proves that
End(E) is contained between Z[π] and OK . We have already seen that there is
only a finite number of possible rings: their indices in OK must divide d where
d2 = Δπ/ΔK . Ascending and descending isogenies connect curves with different

388 L. De Feo et al.

endomorphism rings, thus we are left with the problem of verifying that E is on
the crater of any �-volcano for � | d. Assuming no large prime divides d, this check
can be accomplished efficiently by performing random walks in the volcanoes, as
described in [41, Sect. 4.2] or [26]. Note that if we choose Δπ square-free, then
the only possible endomorphism ring is OK , and there is nothing to be done.

Concretely, for the curve of Sect. 4 we have Δπ/ΔK = 22, so there are exactly
two possible endomorphism rings. Looking at the action of the Frobenius endo-
morphism, we see that End(E) = OK if and only if E[2] � (Z/2Z)2.

Example 2. Let p and O be as in Sect. 4. Suppose we are given the value

α = 67746537624003763704733620725115945552778190049699052959500793811735672493775
18737748913882816398715695086623890791069381771311397884649111333755665289025

in Fp. It is claimed that α is in Ellp(O); that is, it is a valid public key for
the system with parameters defined in Sect. 4. Following the discussion above,
to validate α as a public key, it suffices to exhibit a curve with j-invariant α,
full rational 2-torsion, and a point of order N/2. Using standard formulæ, we
find that the two Fp-isomorphism classes of elliptic curves with j-invariant α are
represented by the Montgomery curve Eα/Fp : y2 = x(x2 + Ax + 1) with

A = 41938099794353656685283683753335350833889799939411549418804218343694887415884
66125999279694898695485836446054238175461312078403116671641017301728201394907

and its quadratic twist E′
α. Checking the 2-torsion first, we have Eα[2](Fp) ∼=

E′
α[2](Fp) ∼= (Z/2Z)2, because A2 − 4 is a square in Fp. Trying points on Eα, we

find that (23,
√

23(232 + 23A + 1)) in Eα(Fp) has exact order N/2. We conclude
that End(Eα) = O, so α is a valid public key. (In fact, Eα is connected to the
initial curve by a single 3-isogeny step.)

Consequences for cryptographic constructions. Since both of the checks above
can be done much more efficiently than evaluating a single isogeny walk, we
conclude that key validation is not only possible, but highly efficient for protocols
based on the CRS construction. This stands in stark contrast to the case of SIDH,
where key validation is known to be problematic [32], and even conjectured to
be as hard as breaking the system [68].

Thanks to this efficient key validation, we can obtain CCA-secure encryption
from the CRS action without resorting to generic transforms such as Fujisaki–
Okamoto [27], unlike the case of SIKE [4,34]. This in turn enables applica-
tions such as non-interactive key exchange, for which no practical post-quantum
scheme was known prior to [12].

6 Experimental Results

In order to demonstrate that our protocol is usable at standard security levels,
we implemented it in the Julia programming language. This proof of concept
also allowed us to estimate isogeny step costs, which we needed to generate the
initial curve in Sect. 4. We developed several Julia packages9, built upon the
9 The main code is available at https://github.com/defeo/hhs-keyex/, and the addi-

tional dependencies at https://github.com/defeo/EllipticCurves.jl/ and https://
github.com/defeo/ClassPolynomials.jl/.

https://github.com/defeo/hhs-keyex/
https://github.com/defeo/EllipticCurves.jl/
https://github.com/defeo/ClassPolynomials.jl/
https://github.com/defeo/ClassPolynomials.jl/

Towards Practical Key Exchange from Ordinary Isogeny Graphs 389

computer algebra package Nemo [25]. Experiments were conducted using Julia
0.6 and Nemo 0.7.3 on Linux, with an Intel Core i7-5600U cpu at 2.60GHz.

Consider the time to compute one step for an ideal s = (�, π − λ). Using
Elkies steps, this is approximately the cost of finding the roots of the modular
polynomial: roughly 0.017 · � seconds in our implementation. Using Vélu steps,
the cost is approximately that of one scalar multiplication in E(Fqr); timings for
the extension degrees r relevant to our parameters appear in Table 2.

Table 2. Timings for computing scalar multiplications in E(Fpr), the dominant oper-
ation in VéluStep (Algorithm 6), as a function of the extension degree r.

r 1 3 4 5 7 8 9

time (s) 0.02 0.10 0.15 0.24 0.8 1.15 1.3

Using this data, finding efficient walk length bounds M� offering a sufficient
keyspace size is easily seen to be an integer optimization problem. We used
the following heuristic procedure to find a satisfactory solution. Given a time
bound T , let KeySpaceSize(T) be the keyspace size obtained when each M�

is the greatest such that the total time spent on �-isogenies is less than T .
Then, if n is the (classical) security parameter, we look for the least T such that
KeySpaceSize(T) ≥ 22n (according to Sect. 5), using binary search. While the
M� we obtain are most likely not the best possible, intuitively the outcome is
not too far from optimal.

In this way, we obtain a proposal for the walk length bounds M� to be used
in Algorithm 8 along with the curve found in Sect. 4, to achieve 128-bit classical
security. Table 3 lists the isogeny degrees amenable to Algorithm 6, each with the
corresponding extension degree r (a star denotes that the twisted curve allows
us to use both directions in the isogeny graph, as in Remark 1). Table 4 lists
other primes for which we apply Algorithm 5.

Table 3. Primes � amenable to Algorithm 6 (VéluStep) for our candidate isogeny
graph, with corresponding extension degrees r and proposed walk length bounds M�.

r M� � r M� � r M� �

1* 409 3, 5, 7, 11, 13, 17, 103 4 54 1013, 1181 8 7 881
1 409 523, 821, 947, 1723 5 34 31*, 61*, 1321 9 6 37*, 1693
3 81 19*, 661 7 10 29*, 71*, 547

Using these parameters, we perform one isogeny walk in approximately 520 s.
These timings are worst-case: the number of isogeny steps is taken to be exactly
M� for each �. This is about as fast as Stolbunov’s largest parameter [62], which
is for a prime of 428 bits and a keyspace of only 216 bits.

390 L. De Feo et al.

Table 4. Primes � amenable to Algorithm 5 (ElkiesWalk) for our candidate isogeny
graph, with proposed walk length bounds M�.

M� � M� � M� �

20 23 6 73 2 157, 163, 167, 191, 193, 197, 223, 229
11 41 5 89 1 241, 251, 257, 277, 283, 293, 307
10 43 4 107, 109, 113 1 317, 349, 359
9 47 3 131, 151

We stress that our implementation is not optimised. General gains in field
arithmetic aside, optimised code could easily beat our proof-of-concept imple-
mentation at critical points of our algorithms, such as the root finding steps in
Algorithms 3 and 4.

For comparison, without Algorithm 6 the total isogeny walk time would
exceed 2000 seconds. Our ideas thus yield an improvement by a factor of over 4
over the original protocol. A longer search for efficient public parameters would
bring further improvement.

7 Conclusion

We have shown that the Couveignes–Rostovtsev–Stolbunov framework can be
improved to become practical at standard pre- and post-quantum security levels;
even more so if an optimized C implementation is made. The main obstacle to
better performance is the difficulty of generating optimal system parameters:
even with a lot of computational power, we cannot expect to produce ordinary
curve parameters that allow us to use only Vélu steps. In this regard, the CSIDH
protocol [12], which overcomes this problem using supersingular curves instead
of ordinary ones, is promising.

One particularly nice feature of our protocol is its highly efficient key valida-
tion, which opens a lot of cryptographic doors. However, side-channel-resistant
implementations remain an interesting problem for future work.

Acknowledgments. We would like to thank Wouter Castryck, Tanja Lange, Chloe
Martindale, Lorenz Panny, and Joost Renes for sharing a draft of their paper with us,
and Alexandre Gélin and François Morain for fruitful discussions. De Feo acknowledges
the support of the French Programme d’Investissements d’Avenir under the national
project RISQ n◦ P141580-3069086/DOS0044212.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: an encryption scheme based on
the Diffie-Hellman problem. Cryptology ePrint Archive, Report 1999/007 (1999),
https://eprint.iacr.org/1999/007

https://eprint.iacr.org/1999/007

Towards Practical Key Exchange from Ordinary Isogeny Graphs 391

2. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

3. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp.
61(203), 29–68 (1993). https://doi.org/10.2307/2152935

4. Azarderakhsh, R., et al.: Supersingular Isogeny Key Encapsulation (2017). http://
sike.org

5. Biasse, J.F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field
based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) Information Security and
Privacy, pp. 233–247. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14081-5_15

6. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, Mihir (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_8

7. Bostan, A., Morain, F., Salvy, B., Schost, É.: Fast algorithms for computing isoge-
nies between elliptic curves. Math. Comput. 77(263), 1755–1778 (2008). https://
doi.org/10.1090/S0025-5718-08-02066-8

8. Bröker, R., Lauter, K.E., Sutherland, A.V.: Modular polynomials via isogeny volca-
noes. Math. Comput. 81(278), 1201–1231 (2012). https://doi.org/10.1090/S0025-
5718-2011-02508-1

9. Bruinier, J.H., Ono, K., Sutherland, A.V.: Class polynomials for nonholomorphic
modular functions. J. Num. Theory 161, 204–229 (2016). https://doi.org/10.1016/
j.jnt.2015.07.002

10. Buchmann, J., Williams, H.C.: A key-exchange system based on imagi-
nary quadratic fields. J. Crypt. 1(2), 107–118 (1988). https://doi.org/10.1007/
BF02351719

11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6_28

12. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Galbraith, S.D., Peyrin, T. (eds.)
ASIACRYPT 2018, LNCS, vol. 11274, pp. 380–411. Springer (2018)

13. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Crypto. 8(1), 1–29 (2014)

14. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Des. Codes Crypt. 36(1), 33–43 (2005). https://doi.org/10.1007/
s10623-003-1160-8

15. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, New
York (1993). https://doi.org/10.1007/978-3-662-02945-9

16. Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Jager,
H. (ed.) Number Theory Noordwijkerhout 1983, pp. 33–62. Springer, Heidelberg
(1984). https://doi.org/10.1007/BFb0099440

17. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbi-
trary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
- ASIACRYPT 2017, ASIACRYPT 2017. Lecture Notes in Computer Science,
vol. 10625. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-
9_11

18. Costello, C., Smith, B.: Montgomery curves and their arithmetic. J.
Crypt. Eng. 8(3), 227–240 (2017). https://doi.org/10.1007/s13389-017-0157-6.
hal.inria.fr/hal-01483768

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.2307/2152935
http://sike.org
http://sike.org
https://doi.org/10.1007/978-3-642-14081-5_15
https://doi.org/10.1007/978-3-642-14081-5_15
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1090/S0025-5718-08-02066-8
https://doi.org/10.1090/S0025-5718-08-02066-8
https://doi.org/10.1090/S0025-5718-2011-02508-1
https://doi.org/10.1090/S0025-5718-2011-02508-1
https://doi.org/10.1016/j.jnt.2015.07.002
https://doi.org/10.1016/j.jnt.2015.07.002
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/s10623-003-1160-8
https://doi.org/10.1007/s10623-003-1160-8
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/BFb0099440
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/s13389-017-0157-6
https://hal.inria.fr/hal-01483768

392 L. De Feo et al.

19. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

20. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). https://doi.org/10.1137/S0097539702403773

21. De Feo, L.: Mathematics of isogeny based cryptography. CoRR abs/1711.04062
(2017). http://arxiv.org/abs/1711.04062

22. De Feo, L., Hugounenq, C., Plût, J., Schost, É.: Explicit isogenies in quadratic
time in any characteristic. LMS J. Comput. Math. 19(A), 267–282 (2016)

23. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptography 78(2), 425–440 (2016). https://doi.org/
10.1007/s10623-014-0010-1

24. Serre, J.-P.: A Course in Arithmetic. GTM, vol. 7. Springer, New York (1973).
https://doi.org/10.1007/978-1-4684-9884-4

25. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra
and number theory packages for the Julia programming language. In: Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic Com-
putation, ISSAC 2017, pp. 157–164. ACM, New York, (2017). https://doi.org/10.
1145/3087604.3087611

26. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory, ANTS 2002. Lecture Notes
in Computer Science, vol. 2369. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45455-1_23

27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

28. Galbraith, S., Stolbunov, A.: Improved algorithm for the isogeny problem for ordi-
nary elliptic curves. Appl. Algebra Eng. Commun. Comput. 24(2), 107–131 (2013).
https://doi.org/10.1007/s00200-013-0185-0

29. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite
fields. LMS J. Comput. Math. 2, 118–138 (1999). https://doi.org/10.1112/
S1461157000000097

30. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge Univer-
sity Press, Cambridge (2012). https://www.math.auckland.ac.nz/sgal018/crypto-
book/crypto-book.html

31. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS weil descent attack. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_3

32. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

33. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_18

34. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

35. Ionica, S., Joux, A.: Pairing the volcano. Math. Comput. 82(281), 581–603 (2013)

https://eprint.iacr.org/2006/291
https://doi.org/10.1137/S0097539702403773
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-1-4684-9884-4
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00200-013-0185-0
https://doi.org/10.1112/S1461157000000097
https://doi.org/10.1112/S1461157000000097
https://www.math.auckland.ac.nz/sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/sgal018/crypto-book/crypto-book.html
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/3-540-44448-3_18
https://doi.org/10.1007/978-3-319-70500-2_12

Towards Practical Key Exchange from Ordinary Isogeny Graphs 393

36. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography,
PQCrypto 2011. Lecture Notes in Computer Science, vol. 7071. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

37. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an
application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504
(2009). https://doi.org/10.1016/j.jnt.2008.11.006

38. Jao, D., Soukharev, V.: A subexponential algorithm for evaluating large degree iso-
genies. In: Hanrot, G., Morain, F., Thomé, E. (eds.) Algorithmic Number Theory,
ANTS 2010. Lecture Notes in Computer Science, vol. 6197. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14518-6_19

39. Kieffer, J.: Étude et accélération du protocole d’échange de clés de Couveignes-
Rostovtsev-Stolbunov. Master’s thesis, Inria Saclay & Université Paris VI (2017)

40. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key
cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6_10

41. Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkley (1996)

42. Kohel, D.R.: Echidna databases (2018). http://iml.univ-mrs.fr/~kohel/dbs/
43. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden

subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)
44. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihe-

dral hidden subgroup problem. In: Severini, S., Brandao, F. (eds.) 8th Confer-
ence on the Theory of Quantum Computation, Communication and Cryptography
(TQC 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 22,
pp. 20–34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2013). https://doi.org/10.4230/LIPIcs.TQC.2013.20, http://drops.dagstuhl.de/
opus/volltexte/2013/4321

45. Lang, S.: Elliptic Functions Graduate Texts in Mathematics. Springer, New York
(1987). https://doi.org/10.1007/978-1-4612-4752-4

46. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
249–263. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052240

47. Littlewood, J.E.: On the class-number of the corpus p(
√

k). Proc. London Math.
Soc. 2(1), 358–372 (1928)

48. Maze, G., Monico, C., Rosenthal, J.: Public key cryptography based on semigroup
actions. Adv. Math. Commun. 1(4), 489–507 (2007). https://doi.org/10.3934/amc.
2007.1.489

49. Mestre, J.: La méthode des graphes. Exemples et applications. In: Proceedings of
the International Conference on Class Numbers and Fundamental Units of Alge-
braic Number Fields (Katata), pp. 217–242 (1986)

50. Miret, J.M., Moreno, R., Sadornil, D., Tena, J., Valls, M.: An algorithm to compute
volcanoes of 2-isogenies of elliptic curves over finite fields. Appli. Math. Comput.
176(2), 739–750 (2006)

51. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. comput. 48(177), 243–264 (1987)

52. Morain, F.: Calcul du nombre de points sur une courbe elliptique dans un corps fini:
aspects algorithmiques. J. Théor. Nombres Bordeaux 7(1), 255–282 (1995). http://
jtnb.cedram.org/item?id=JTNB_1995__7_1_255_0, les Dix-huitièmes Journées
Arithmétiques, Bordeaux (1993)

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1016/j.jnt.2008.11.006
https://doi.org/10.1007/978-3-642-14518-6_19
https://doi.org/10.1007/3-540-44598-6_10
https://doi.org/10.1007/3-540-44598-6_10
http://iml.univ-mrs.fr/~kohel/dbs/
https://doi.org/10.4230/LIPIcs.TQC.2013.20
http://drops.dagstuhl.de/opus/volltexte/2013/4321
http://drops.dagstuhl.de/opus/volltexte/2013/4321
https://doi.org/10.1007/978-1-4612-4752-4
https://doi.org/10.1007/BFb0052240
https://doi.org/10.3934/amc.2007.1.489
https://doi.org/10.3934/amc.2007.1.489
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_255_0
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_255_0

394 L. De Feo et al.

53. National institute of standards and technology: announcing request for nomina-
tions for public-key post-quantum cryptographic algorithms (2016). https://www.
federalregister.gov/d/2016-30615

54. Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic curves with the montgomery-form
and their cryptographic applications. In: Imai, H., Zheng, Y. (eds.) Public Key
Cryptography, PKC 2000. Lecture Notes in Computer Science, vol. 1751. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_17

55. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space June 2004. arXiv:quant-ph/0406151. http://arxiv.
org/abs/quant-ph/0406151

56. Renes, J.: Computing isogenies between montgomery curves using the action of (0,
0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_11

57. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 April 2006. http://eprint.iacr.org/2006/
145/

58. Schoof, R.: Counting points on elliptic curves over finite fields. J. de Théorie des
Nombres de Bordeaux 7(1), 219–254 (1995)

59. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

60. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves Graduate
Texts in Mathematics. Springer, New York (1994)

61. Stolbunov, A.: Reductionist security arguments for public-key cryptographic
schemes based on group action. In: Mjølsnes, S.F., (ed.) Norsk informasjonssikker-
hetskonferanse (NISK) (2009)

62. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

63. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
64. Sutherland, A.V.: Accelerating the CM method. LMS J. Comput. Math. 15, 172–

204 (2012). https://doi.org/10.1112/S1461157012001015
65. Sutherland, A.V.: Constructing elliptic curves over finite fields with prescribed

torsion. Math. Comput. 81, 1131–1147 (2012)
66. Sutherland, A.V.: Modular polynomials (2018). https://math.mit.edu/~drew/

ClassicalModPolys.html
67. Teske, E.: An elliptic curve trapdoor system. J. Crypt. 19(1), 115–133 (2006).

https://doi.org/10.1007/s00145-004-0328-3
68. Urbanik, D., Jao, D.: SoK: The problem landscape of SIDH. Cryptol-

ogy ePrint Archive, Report 2018/336 (2018). https://doi.org/10.1145/3197507.
3197516, https://eprint.iacr.org/2018/336

69. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273,
A238–A241 (1971)

70. Zimmermann, P., Dodson, B.: 20 years of ECM. In: Hess, F., Pauli, S., Pohst,
M. (eds.) Algorithmic Number Theory, ANTS 2006. Lecture Notes in Computer
Science, vol. 4076, pp. 525–542. Springer, Heidelberg (2006). https://doi.org/10.
1007/11792086_37

71. Zimmermann, P., et al.: GMP-ECM software (2018). http://ecm.gforge.inria.fr/

https://www.federalregister.gov/d/2016-30615
https://www.federalregister.gov/d/2016-30615
https://doi.org/10.1007/978-3-540-46588-1_17
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/quant-ph/0406151
https://doi.org/10.1007/978-3-319-79063-3_11
http://eprint.iacr.org/2006/145/
http://eprint.iacr.org/2006/145/
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1112/S1461157012001015
https://math.mit.edu/~drew/ClassicalModPolys.html
https://math.mit.edu/~drew/ClassicalModPolys.html
https://doi.org/10.1007/s00145-004-0328-3
https://doi.org/10.1145/3197507.3197516
https://doi.org/10.1145/3197507.3197516
https://eprint.iacr.org/2018/336
https://doi.org/10.1007/11792086_37
https://doi.org/10.1007/11792086_37
http://ecm.gforge.inria.fr/

CSIDH: An Efficient Post-Quantum
Commutative Group Action

Wouter Castryck1, Tanja Lange2, Chloe Martindale2, Lorenz Panny2,
and Joost Renes3

1 Department of Mathematics, imec-COSIC, KU Leuven, Leuven, Belgium
wouter.castryck@esat.kuleuven.be

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

tanja@hyperelliptic.org, chloemartindale@gmail.com, lorenz@yx7.cc
3 Digital Security Group, Radboud Universiteit, Nijmegen, The Netherlands

j.renes@cs.ru.nl

Abstract. We propose an efficient commutative group action suitable
for non-interactive key exchange in a post-quantum setting. Our con-
struction follows the layout of the Couveignes–Rostovtsev–Stolbunov
cryptosystem, but we apply it to supersingular elliptic curves defined
over a large prime field Fp, rather than to ordinary elliptic curves. The
Diffie–Hellman scheme resulting from the group action allows for public-
key validation at very little cost, runs reasonably fast in practice, and
has public keys of only 64 bytes at a conjectured AES-128 security level,
matching NIST’s post-quantum security category I.

Keywords: Post-quantum cryptography · Class-group action
Isogeny-based cryptography · Non-interactive key exchange
Key confirmation

1 Introduction

During the past five to ten years, elliptic-curve cryptography (ECC) has taken
over public-key cryptography on the internet and in security applications. Many
protocols such as Signal (https://signal.org) or TLS 1.3 rely on the small key
sizes and efficient computations to achieve forward secrecy, often meaning that
keys are used only once. However, it is also important to notice that security does

Author list in alphabetical order; See https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was supported in part by the Commission
of the European Communities through the Horizon 2020 program under project num-
ber 643161 (ECRYPT-NET), 645622 (PQCRYPTO), 645421 (ECRYPT-CSA), and
CHIST-ERA USEIT (NWO project 651.002.004); the Technology Foundation STW
(project 13499 – TYPHOON) from the Dutch government; and the Research Founda-
tion - Flanders (FWO) through the WOG Coding Theory and Cryptography. The first
listed author is affiliated on a free basis with the Department of Mathematics, Ghent
University. Date of this document: 2018.09.07.
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 395–427, 2018.
https://doi.org/10.1007/978-3-030-03332-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_15&domain=pdf
https://signal.org
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

396 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

not break down if keys are reused. Indeed, some implementations of TLS, such
as Microsoft’s SChannel, reuse keys for some fixed amount of time rather than
for one connection [2]. Google’s QUIC (https://chromium.org/quic) relies on
servers keeping their keys fixed for a while to achieve quick session resumption.
Several more examples are given by Freire, Hofheinz, Kiltz, and Paterson in
their paper [25] formalizing non-interactive key exchange. Some applications
require this functionality and for many it provides significant savings in terms of
roundtrips or implementation complexity. Finding a post-quantum system that
permits non-interactive key exchange while still offering decent performance is
considered an open problem. Our paper presents a solution to this problem.

Isogeny-based cryptography is a relatively new kind of elliptic-curve cryptog-
raphy, whose security relies on (various incarnations of) the problem of finding
an explicit isogeny between two given isogenous elliptic curves over a finite field
Fq. One of the main selling points is that quantum computers do not seem to
make the isogeny-finding problem substantially easier. This contrasts with reg-
ular elliptic-curve cryptography, which is based on the discrete-logarithm prob-
lem in a group and therefore falls prey to a polynomial-time quantum algorithm
designed by Shor in 1994 [57].

The first proposal of an isogeny-based cryptosystem was made by Couveignes
in 1997 [17]. It described a non-interactive key exchange protocol where the
space of public keys equals the set of Fq-isomorphism classes of ordinary elliptic
curves over Fq whose endomorphism ring is a given order O in an imaginary
quadratic field and whose trace of Frobenius has a prescribed value. It is well-
known that the ideal-class group cl(O) acts freely and transitively on this set
through the application of isogenies. Couveignes’ central observation was that
the commutativity of cl(O) naturally allows for a key-exchange protocol in the
style of Diffie and Hellman [23]. His work was only circulated privately and thus
not picked up by the community; the corresponding paper [17] was never for-
mally published and posted on ePrint only in 2006. The method was eventually
independently rediscovered by Rostovtsev and Stolbunov in 2004 (in Stolbunov’s
master’s thesis [60] and published on ePrint as [54] in 2006). In 2010, Childs, Jao
and Soukharev [12] showed that breaking the Couveignes–Rostovtsev–Stolbunov
scheme amounts to solving an instance of the abelian hidden-shift problem, for
which quantum algorithms with a time complexity of Lq[1/2] are known to exist;
see [43,52]. While this may be tolerable (e.g., classical subexponential factoriza-
tion methods have not ended the widespread use of RSA), a much bigger concern
is that the scheme is unacceptably slow: despite recent clever speed-ups due to
De Feo, Kieffer, and Smith [21,41], several minutes are needed for a single key
exchange at a presumed classical security level of 128 bits. Nevertheless, in view
of its conceptual simplicity, compactness, and flexibility, it seems a shame to
discard the Couveignes–Rostovtsev–Stolbunov scheme.

The attack due to Childs–Jao–Soukharev strongly relies on the fact that
cl(O) is commutative, hence indirectly on the fact that O is commutative. This
led Jao and De Feo [38] to consider the use of supersingular elliptic curves, whose
full ring of endomorphisms is an order in a quaternion algebra; in particular it
is non-commutative. Their resulting (interactive) key-agreement scheme, which
nowadays goes under the name “Supersingular Isogeny Diffie–Hellman” (SIDH),

https://chromium.org/quic

CSIDH: An Efficient Post-Quantum Commutative Group Action 397

has attracted almost the entire focus of isogeny-based cryptography over the past
six years. The current state-of-the-art implementation is SIKE [37], which was
recently submitted to the NIST competition on post-quantum cryptography [48].

It should be stressed that SIDH is not the Couveignes–Rostovtsev–Stolbunov
scheme in which one substitutes supersingular elliptic curves for ordinary elliptic
curves; in fact SIDH is much more reminiscent of a cryptographic hash function
from 2006 due to Charles, Goren, and Lauter [11]. SIDH’s public keys consist of
the codomain of a secret isogeny and the image points of certain public points
under that isogeny. Galbraith, Petit, Shani, and Ti showed in [29] that SIDH
keys succumb to active attacks and thus should not be reused, unless combined
with a CCA transform such as the Fujisaki–Okamoto transform [26].

In this paper we show that adapting the Couveignes–Rostovtsev–Stolbunov
scheme to supersingular elliptic curves is possible, provided that one restricts to
supersingular elliptic curves defined over a prime field Fp. Instead of the full ring
of endomorphisms, which is non-commutative, one should consider the subring of
Fp-rational endomorphisms, which is again an order O in an imaginary quadratic
field. As before cl(O) acts via isogenies on the set of Fp-isomorphism classes of
elliptic curves whose Fp-rational endomorphism ring is isomorphic to O and
whose trace of Frobenius has a prescribed value; in fact if p ≥ 5 then there is
only one option for this value, namely 0, in contrast with the ordinary case. See
e.g. [70, Theorem 4.5], with further details to be found in [8,22] and in Sect. 3
of this paper. Starting from these observations, the desired adaptation of the
Couveignes–Rostovtsev–Stolbunov scheme almost unrolls itself; the details can
be found in Sect. 4. We call the resulting scheme CSIDH, where the C stands for
“commutative”.1

While this fails to address Jao and De Feo’s initial motivation for using
supersingular elliptic curves, which was to avoid the Lq[1/2] quantum attack due
to Childs–Jao–Soukharev, we show that CSIDH eliminates the main problem of
the Couveignes–Rostovtsev–Stolbunov scheme, namely its inefficiency. Indeed,
in Sect. 8 we will report on a proof-of-concept implementation which carries out
a non-interactive key exchange at a presumed classical security level of 128 bits
and a conjectured post-quantum security level of 64 bits in about 80ms, while
using key sizes of only 64 bytes. This is over 2000 times faster2 than the current
state-of-the-art instantiation of the Couveignes–Rostovtsev–Stolbunov scheme
by De Feo, Kieffer and Smith [21,41], which itself presents many new ideas and
speedups to even achieve that speed.

For comparison, we remark that SIDH, which is the NIST submission with the
smallest combined key and ciphertext length, uses public keys and ciphertexts
of over 300 bytes each. More precisely SIKE’s version p503 uses uncompressed
keys of 378 bytes long [37] for achieving CCA security. The optimized SIKE

1 Since this work was started while being very close to a well-known large body of salt
water, we pronounce CSIDH as ["si:saId] rather than spelling out all the letters.

2 This speed-up is explained in part by comparing our own C implementation to the
sage implementation of De Feo–Kieffer–Smith.

398 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

implementation is about ten times faster than our proof-of-concept C imple-
mentation, but even at 80ms, CSIDH is practical.

Another major advantage of CSIDH is that we can efficiently validate public
keys, making it possible to reuse a key without the need for transformations to
confirm that the other party’s key was honestly generated.

Finally we note that just like the original Couveignes–Rostovtsev–Stolbunov
scheme, CSIDH relies purely on the isogeny-finding problem; no extra points are
sent that could potentially harm security, as argued in [50].

To summarize, CSIDH is a new cryptographic primitive that can serve as
a drop-in replacement for the (EC)DH key-exchange protocol while maintain-
ing security against quantum computers. It provides a non-interactive (static–
static) key exchange with full public-key validation. The speed is practical while
the public-key size is the smallest for key exchange or KEM in the portfolio of
post-quantum cryptography. This makes CSIDH particularly attractive in the
common scenario of prioritizing bandwidth over computational effort. In addi-
tion, CSIDH is compatible with 0-RTT protocols such as QUIC.

Why supersingular? To understand where the main speed-up comes from, it
suffices to record that De Feo–Kieffer–Smith had the idea of choosing a field of
characteristic p, where p is congruent to −1 modulo all small odd primes � up to
a given bound. They then look for an ordinary elliptic curve E/Fp such that
#E(Fp) is congruent to 0 modulo as many of these �’s as possible, i.e., such that
points of order � exist over Fp. These properties ensure that �O decomposes as a
product of two prime ideals l = (�, π − 1) and l = (�, π+1), where π denotes the
Frobenius endomorphism. For such primes the action of the corresponding ideal
classes [l] and [l] = [l]−1 can be computed efficiently through an application of
Vélu-type formulae to E (resp. its quadratic twist Et), the reason being that only
Fp-rational points are involved. If this works for enough primes �, we can expect
that a generic element of cl(O) can be written as a product of small integral
powers of such [l], so that the class-group action can be computed efficiently.
However, finding an ordinary elliptic curve E/Fp such that #E(Fp) is congruent
to 0 modulo many small primes � is hard, and the main focus of De Feo–Kieffer–
Smith is on speeding up this search. In the end it is only practical to enforce
this for 7 primes, thus they cannot take full advantage of the idea.

However, in the supersingular case the property #E(Fp) = p+1 implies that
#E(Fp) is congruent to 0 modulo all primes � | p + 1 that we started from in
building p! Concretely, our proof-of-concept implementation uses 74 small odd
primes, corresponding to prime ideals l1, l2, . . . , l74 for which we heuristically
expect that almost all elements of our 256-bit size class group can be writ-
ten as [l1]e1 [l2]e2 · · · [l74]e74 , where the exponents ei are taken from the range
{−5, . . . , 5}; indeed, one verifies that log (2 · 5 + 1)74 ≈ 255.9979. The action of
such an element can be computed as the composition of at most 5 ·74 = 370 easy
isogeny evaluations. This should be compared to using 7 small primes, where the
same approach would require exponents in a range of length about 2256/7 ≈ 236,
in view of which De Feo–Kieffer–Smith also resort to other primes with less
beneficial properties, requiring to work in extensions of Fp.

CSIDH: An Efficient Post-Quantum Commutative Group Action 399

The use of supersingular elliptic curves over Fp has various other advantages.
For instance, their trace of Frobenius t is 0, so that the absolute value of the
discriminant |t2 − 4p| = 4p is as large as possible. As a consequence, generically
the size of the class group cl(O) is close to its maximal possible value for a fixed
choice of p. Conversely, this implies that for a fixed security level we can make
a close-to-minimal choice for p, which directly affects the key size. Note that
this contrasts with the CM construction from [9], which could in principle be
used to construct ordinary elliptic curves having many points of small order, but
whose endomorphism rings have very small class groups, ruling them out for the
Couveignes–Rostovtsev–Stolbunov key exchange.

To explain why key validation works, note that we work over Fp with p ≡ 3
(mod 8) and start from the curve E0 : y2 = x3+x with Fp-rational endomorphism
ring O = Z[π]. As it turns out, all Montgomery curves EA : y2 = x3 + Ax2 + x
over Fp that are supersingular appear in the cl(O)-orbit of E0. Moreover their
Fp-isomorphism class is uniquely determined by A. So all one needs to do upon
receiving a candidate public key y2 = x3+Ax2+x is check for supersingularity,
which is an easy task; see Sect. 5. The combination of large size of cl(O) and
representation by a single Fp-element A explains the small key size of 64 bytes.

1.1 One-Way Group Actions

Although non-interactive key exchange is the main application of our primitive,
it is actually more general: It is (conjecturally) an instance of Couveignes’ hard
homogeneous spaces [17], ultimately nothing but a finite commutative group
action for which some operations are easy to compute while others are hard.
Such group actions were first formalized and studied by Brassard and Yung [7].
We summarize Couveignes’ definition:

Definition 1. A hard homogeneous space consists of a finite commutative group
G acting freely and transitively on some set X.
The following tasks are required to be easy (e.g., polynomial-time):
– Compute the group operations in G.
– Sample randomly from G with (close to) uniform distribution.
– Decide validity and equality of a representation of elements of X.
– Compute the action of a group element g ∈ G on some x ∈ X.

The following problems are required to be hard (e.g., not polynomial-time):
– Given x, x′ ∈ X, find g ∈ G such that g ∗ x = x′.
– Given x, x′, y ∈ X such that x′ = g ∗ x, find y′ = g ∗ y.

Any such primitive immediately implies a natural Diffie–Hellman protocol: Alice
and Bob’s private keys are random elements a, b of G, their public keys are a∗x0

resp. b ∗ x0, where x0 ∈ X is a public fixed element, and the shared secret is
b ∗ (a ∗ x0) = a ∗ (b ∗ x0). The private keys are protected by the difficulty of
the first hard problem above, while the shared secret is protected by the second
problem. Note that traditional Diffie–Hellman on a cyclic group C is an instance
of this, where X is the set of generators of C and G is the multiplicative group
(Z/#C)∗ acting by exponentiation.

400 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

1.2 Notation and Terminology

We stress that throughout this paper, we consider two elliptic curves defined over
the same field identical whenever they are isomorphic over that field. Note that
we do not identify curves that are only isomorphic over some extension field, as
opposed to what is done in SIDH, for instance. In the same vein, for an elliptic
curve E defined over a finite field Fp, we let Endp(E) be the subring of the
endomorphism ring End(E) consisting of endomorphisms defined over Fp.3 This
subring is always isomorphic to an order in an imaginary quadratic number field.
Conversely, for a given order O in an imaginary quadratic field and an element
π ∈ O, we let E��p(O, π) denote the set of elliptic curves E defined over Fp with
Endp(E) ∼= O such that π corresponds to the Fp-Frobenius endomorphism of E.
In particular, this implies that ϕ ◦ β = β ◦ ϕ for all Fp-isogenies ϕ between two
curves in E��p(O, π) and all β ∈ O interpreted as endomorphisms.
Ideals are always assumed to be non-zero.
The notation “ log” refers to the base-2 logarithm.

Acknowledgements. This project started during a research retreat on post-
quantum cryptography, organized by the European PQCRYPTO and ECRYPT-
CSA projects in Tenerife from 29 January until 1 February 2018. We would like
to thank Jeffrey Burdges, whose quest for a flexible post-quantum key exchange
protocol made us look for speed-ups of the Couveignes–Rostovtsev–Stolbunov
scheme. We are grateful to Luca De Feo, Jean Kieffer, and Ben Smith for sharing
a draft of their paper in preparation, and to Daniel J. Bernstein, Luca De Feo,
Jeroen Demeyer, Léo Ducas, Steven Galbraith, David Jao, and Fré Vercauteren
for helpful feedback.

2 Isogeny Graphs

Good mixing properties of the underlying isogeny graph are relevant for the
security of isogeny-based cryptosystems. Just as in the original Couveignes–
Rostovtsev–Stolbunov cryptosystem, in our case this graph is obtained by taking
the union of several large subgraphs (each being a union of large isomorphic cycle
graphs) on the same vertex set, one for each prime � under consideration; see
Fig. 1 for a (small) example. Such a graph is the Schreier graph associated with
our class-group action and the chosen generators. We refer to the lecture notes of
De Feo [19, Sect. 14.1] for more background and to [40] for a discussion of its rapid
mixing properties. One point of view on this is that one can quickly move between
distant nodes in the subgraph corresponding to one generator by switching to the
subgraph corresponding to another generator. This thereby replaces the square-
and-multiply algorithm in exponentiation-based cryptosystems (such as classical
Diffie–Hellman).

The goal of this section is to analyze the structure of the individual cycles.

3 This constraint only makes a difference for supersingular curves: in the ordinary
case, all endomorphisms are defined over the base field.

CSIDH: An Efficient Post-Quantum Commutative Group Action 401

Fig. 1. Union of the supersingular �-isogeny graphs for � ∈ {3, 5, 7} over F419. CSIDH
makes use of the larger component, corresponding to curves whose ring of F419-rational
endomorphisms is isomorphic to Z[

√−419].

Definition 2. For a field k and a prime � � char k, the k-rational �-isogeny graph
Gk,� is defined as having all the elliptic curves defined over k as its vertices, and
having a directed edge (E1, E2) for each k-rational �-isogeny from E1 to E2.4

Remark 3. A priori Gk,� is a directed graph, but given two elliptic curves E1

and E2 whose j-invariants are not in {0, 1728}, there are exactly as many edges
(E2, E1) as (E1, E2), obtained by taking dual isogenies. Annoyingly, the nodes
with j-invariants 0 and 1728 are more complicated, since these are exactly the
curves with extra automorphisms: an elliptic curve E in Gk,� has fewer incoming
than outgoing edges if and only if either j(E) = 0 and

√−3 ∈ k, or if j(E) =
1728 and

√−1 ∈ k. Throughout this paper, we will assume for simplicity that√−3,
√−1 /∈ k, so that neither of these automorphisms are defined over k and

we may view Gk,� as an undirected graph. In the case of a finite prime field
k = Fp, it suffices to restrict to p ≡ 11 (mod 12), which will be satisfied in the
class of instantiations we suggest.

If k = Fq is a finite field, then Gk,� is a finite graph that is the disjoint union
of ordinary connected components and supersingular connected components.
The ordinary components were studied in Kohel’s PhD thesis [42]. Due to their
regular structure, these components later became known as isogeny volcanoes.

In general (e.g. over non-prime fields), the supersingular components may
bear no similarity at all to the volcanoes of the ordinary case. Traditionally,
following Pizer [51], one instead studies the unique supersingular component of
Gk,� where k = Fq, which turns out to be a finite (�+1)-regular Ramanujan
graph and forms the basis for the SIDH protocol.

However, Delfs and Galbraith [22] showed that if k = Fp is a finite prime
field, then all connected components are volcanoes, even in the supersingular case
4 Due to our convention of identifying k-isomorphic curves, we also identify isogenies

if they are k-isomorphic, i.e., equal up to post-composition with a k-isomorphism.

402 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

(where the depth is at most 1 at � = 2 and 0 otherwise). We present a special
case of a unified statement, restricting our attention to the cases in which GFp,�

is a cycle. Recall that Endp(E) is an order O in the imaginary quadratic field

Endp(E) ⊗Z Q ∼= Q(
√

t2 − 4p) = K,

where |t| ≤ 2
√

p denotes the (absolute value of the) trace of the Frobenius
endomorphism, and that two curves are isogenous over Fp if and only if their
traces of Frobenius are equal [66, Theorem 1].

Theorem 4 (Kohel, Delfs–Galbraith). Let p ≥ 5 be a prime number and
let V be a connected component of GFp,�. Assume that p ≡ 11 (mod 12) or that
V contains no curve with j-invariant 0 or 1728. Let t be the trace of Frobenius
common to all vertices in V , and let K be as above. Assume that � � t2 − 4p.

Then all elliptic curves in V have the same Fp-rational endomorphism ring
O ⊆ K, and O is locally maximal at �. Moreover if t2−4p is a (non-zero) square
modulo �, then V is a cycle whose length equals the order of [l] in cl(O), where
l is a prime ideal dividing �O. If not, then V consists of a single vertex and no
edges.

Proof. In the case of an ordinary component this is just a special case of [65,
Theorem 7]. In the case of a supersingular component this follows from the
proof of [22, Theorem 2.7]. (In both cases, we could alternatively (re)prove this
theorem by proving that an �-isogeny can only change the conductor of the
endomorphism ring of an elliptic curve locally at � and applying Theorem 7.) �

In the ordinary case a curve and its quadratic twist can never appear in
the same component because they have a different trace of Frobenius. This is
the main difference with the supersingular case, where this possibility is not
excluded. To avoid confusion, we clarify that by the quadratic twist of a given
elliptic curve E : y2 = f(x) over Fp we mean the curve Et : dy2 = f(x), where
d ∈ F

∗
p is any non-square. If p ≡ 3 (mod 4) and j(E) = 1728 then this may

deviate from what some readers are used to, because in this case Et and E are
Fp-isomorphic. Note that such a curve is necessarily supersingular.

Remark 5. In fact, if p ≡ 3 mod 4 then there are two non-isomorphic curves
over Fp with j-invariant 1728, namely y2 = x3 − x and y2 = x3 + x, whose
endomorphism rings are the full ring of integers Z[(1 +

√−p)/2] and the order
Z[

√−p] of conductor 2 respectively. The connected component of each curve
is “symmetric”: if E is n steps along GFp,� in one direction from a curve of
j-invariant 1728 then the curve that is n steps in the other direction is the
quadratic twist of E. In the case of GF83,3 we can see this in Fig. 2, which is
taken from [22, Fig. 8].

It is also interesting to observe that the symmetry around j = 1728 confirms
the known fact that the class numbers of Z[(1 +

√−p)/2] and Z[
√−p] are odd,

at least in the case that p ≡ 3 (mod 4); see [47].

CSIDH: An Efficient Post-Quantum Commutative Group Action 403

Fig. 2. The two supersingular components of GF83,3. The curves in the top component
have Fp-rational endomorphism ring Z[(1+

√−83)/2], while those in the lower compo-
nent correspond to Z[

√−83]. Running clockwise through these components corresponds
to the repeated action of [(3, π − 1)].

3 The Class-Group Action

It is well-known that the ideal-class group of an imaginary quadratic order O
acts freely via isogenies on the set of elliptic curves with Fp-rational endomor-
phism ring O. Using this group action on a set of ordinary elliptic curves for
cryptographic purposes was first put forward by Couveignes [17] and indepen-
dently rediscovered later by Rostovtsev and Stolbunov [54,60]. Our suggestion
is to use the equivalent of their construction in the supersingular setting, thus
the following discussion covers both cases at once. For concreteness, we focus on
prime fields with p ≥ 5 and point out that the ordinary (but not the supersingu-
lar) case generalizes to all finite fields. We recall the following standard lemma:

Lemma 6. Let E/Fp be an elliptic curve and G a finite Fp-rational (i.e., stable
under the action of the Fp-Frobenius) subgroup of E. Then there exists an elliptic
curve E′/Fp and a separable isogeny ϕ : E → E′ defined over Fp with kernel G.
The codomain E′ and isogeny ϕ are unique up to Fp-isomorphism.5

Proof. [59, Proposition III.4.12, Remark III.4.13.2, and Exercise III.3.13e]. �

The ideal-class group. We recall the definitions and basic properties of class
groups of quadratic orders that will be needed in the following. This section is
based on [18, Sect. 7]. Let K be a quadratic number field and O ⊆ K an order
(that is, a subring which is a free Z-module of rank 2). The norm of an O-ideal
a ⊆ O is defined as N(a) = |O/a|; it is equal to gcd({N(α) | α ∈ a}). Norms are
multiplicative: N(ab) = N(a)N(b).
5 This statement remains true in vast generality, but we only need this special case.

404 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

A fractional ideal of O is an O-submodule of K of the form αa, where α ∈ K∗

and a is an O-ideal.6 Fractional ideals can be multiplied and conjugated in
the evident way, and the norm extends multiplicatively to fractional ideals. A
fractional O-ideal a is invertible if there exists a fractional O-ideal b such that
ab = O. If such a b exists, we define a−1 = b. Clearly all principal fractional
ideals αO, where α ∈ K∗, are invertible.

By construction, the set of invertible fractional ideals I(O) forms an abelian
group under ideal multiplication. This group contains the principal fractional
ideals P (O) as a (clearly normal) subgroup, hence we may define the ideal-class
group of O as the quotient

cl(O) = I(O)/P (O) .

Every ideal class [a] ∈ cl(O) has an integral representative, and for any non-zero
M ∈ Z there even exists an integral representative of norm coprime to M .

There is a unique maximal order of K with respect to inclusion called the
ring of integers and denoted OK . The conductor of O (in OK) is the index
f = [OK : O]. Away from the conductor, ideals are well-behaved; every O-ideal
of norm coprime to the conductor is invertible and factors uniquely into prime
ideals.

The class-group action. Fix a prime p ≥ 5 and an (ordinary or supersingular)
elliptic curve E defined over Fp. The Frobenius endomorphism π of E satisfies
a characteristic equation

π2 − tπ + p = 0

in Endp(E), where t ∈ Z is the trace of Frobenius. The curve E is supersingular
if and only if t = 0. The Fp-rational endomorphism ring Endp(E) is an order O
in the imaginary quadratic field K = O ⊗Z Q ∼= Q(

√
Δ), where Δ = t2 − 4p.

We note that O always contains the Frobenius endomorphism π, and hence the
order Z[π].

Any invertible ideal a of O splits into a product of O-ideals as (πO)ras, where
as � πO. This defines an elliptic curve E/a and an isogeny

ϕa : E → E/a

of degree N(a) as follows [70]: the separable part of ϕa has kernel
⋂

α∈as
kerα, and

the purely inseparable part consists of r iterations of Frobenius. The isogeny ϕa

and codomain E/a are both defined over Fp and are unique up to Fp-isomorphism
(by Lemma 6), justifying the notation E/a. Multiplication of ideals corresponds
to the composition of isogenies. Since principal ideals correspond to endomor-
phisms, two ideals lead to the same codomain if and only if they are equal
up to multiplication by a principal fractional ideal. Moreover, every Fp-isogeny

6 Note that the use of the word “ideal” is inconsistent in the literature. We make the
convention that “ideal” without qualification refers to an integral O-ideal (i.e., an
ideal in the sense of ring theory), while fractional ideals are clearly named as such.

CSIDH: An Efficient Post-Quantum Commutative Group Action 405

ψ between curves in E��p(O, π) comes from an invertible O-ideal in this way, and
the ideal as can be recovered from ψ as as = {α ∈ O | kerα ⊇ kerψ}. In other
words:

Theorem 7. Let O be an order in an imaginary quadratic field and π ∈ O such
that E��p(O, π) is non-empty. Then the ideal-class group cl(O) acts freely and
transitively on the set E��p(O, π) via the map

cl(O) × E��p(O, π) −→ E��p(O, π)
([a], E) �−→ E/a,

in which a is chosen as an integral representative.

Proof. See [70, Theorem 4.5]. Erratum: [55, Theorem 4.5]. �
To emphasize the fact that we are dealing with a group action, we will from now
on write [a] ∗ E or simply [a]E for the curve E/a defined above.

The structure of the class group. The class group cl(O) is a finite abelian
group whose cardinality is asymptotically [58]

#cl(O) ≈
√

|Δ|.
More precise heuristics actually predict that #cl(O) grows a little bit faster than√|Δ|, but the ratio is logarithmically bounded so we content ourselves with
the above estimate. The exact structure of the class group can be computed
in subexponential time L|Δ|[1/2;

√
2 + o(1)] using an algorithm of Hafner and

McCurley [33]. Unfortunately, this requires too much computation for the sizes
of Δ we are working with, but there are convincing heuristics concerning the
properties of the class group we need. See Sect. 7.1 for these arguments. If the
absolute value |t| of the trace of Frobenius is “not too big”, the discriminant
Δ is about the size of p, hence by the above approximation we may assume
#cl(O) ≈ √

p. This holds in particular when E is supersingular, where t = 0,
hence |Δ| = 4p.

We are interested in primes � that split in O, i.e., such that there exist
(necessarily conjugate) distinct prime ideals l, l of O with �O = ll. Such � are
known as Elkies primes in the point-counting literature. The ideal l is generated
as l = (�, π−λ), where λ ∈ Z/� is an eigenvalue of the Frobenius endomorphism π
on the �-torsion, and its conjugate is l = (�, π−p/λ), where by abuse of notation
p/λ denotes any integral representative of that quotient modulo �. Note that �
splits in O if and only if Δ is a non-zero square modulo �.

Computing the group action. Any element of the class group can be rep-
resented as a product of small prime ideals [10, Propositions 9.5.2 and 9.5.3],
hence we describe how to compute [l]E for a prime ideal l = (�, π − λ). There
are (at least) the following ways to proceed, which vary in efficiency depending
on the circumstances [21,41]:

406 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

– Find Fp-rational roots of the modular polynomial Φ�(j(E), y) to determine
the two j-invariants of possible codomains (i.e., up to four non-isomorphic
curves, though in the ordinary case wrong twists can easily be ruled out);
compute the kernel polynomials [42] χ ∈ Fp[x] for the corresponding isogenies
(if they exist); if (xp, yp) = [λ](x, y) modulo χ and the curve equation, then
the codomain was correct, else another choice is correct.

– Factor the �th division polynomial ψ�(E) over Fp; collect irreducible factors
with the right Frobenius eigenvalues (as above); use Kohel’s algorithm [42,
Sect. 2.4] to compute the codomain.

– Find a basis of the �-torsion—possibly over an extension field—and compute
the eigenspaces of Frobenius; apply Vélu’s formulas [69] to a basis point of
the correct eigenspace to compute the codomain.

As observed in [21,41], the last method is the fastest if the necessary extension
fields are small. The optimal case is λ = 1; in that case, the curve has a rational
point defined over the base field Fp. If in addition p/λ = −1, the other eigenspace
of Frobenius modulo � is defined over Fp2 , so both codomains can easily be
computed using Vélu’s formulas over an at most quadratic extension (but in
fact, a good choice of curve model allows for pure prime field computations,
see Sect. 8; alternatively one could switch to the quadratic twist). Note that if
p ≡ −1 (mod �), then λ = 1 automatically implies p/λ = −1.

Much of De Feo–Kieffer–Smith’s work [21,41] is devoted to finding an ordi-
nary elliptic curve E with many small Elkies primes � such that both E and
its quadratic twist Et have an Fp-rational �-torsion point. Despite considerable
effort leading to various improvements, the results are discouraging. With the
best parameters found within 17 000 h of CPU time, evaluating one class-group
action still requires several minutes of computation to complete. This suggests
that without new ideas, the original Couveignes–Rostovtsev–Stolbunov scheme
will not become anything close to practical in the foreseeable future.

4 Construction and Design Choices

In this section, we discuss the construction of our proposed group action and jus-
tify our design decisions. For algorithmic details, see Sect. 8. Notice that the main
obstacle to performance in the Couveignes–Rostovtsev–Stolbunov scheme—
constructing a curve with highly composite order—becomes trivial when using
supersingular curves instead of ordinary curves, since for p ≥ 5 any supersingular
elliptic curve over Fp has exactly p + 1 rational points.

The cryptographic group action described below is a straightforward imple-
mentation of this construction. Note that we require p ≡ 3 (mod 4) so that we
can easily write down a supersingular elliptic curve over Fp and so that an imple-
mentation may use curves in Montgomery form. It turns out that this choice is
also beneficial for other reasons. In principle, this constraint is not necessary for
the theory to work, although the structure of the isogeny graph changes slightly
(see [22] and Remark 3 for details).

CSIDH: An Efficient Post-Quantum Commutative Group Action 407

Parameters. Fix a large prime p of the form 4 · �1 · · · �n − 1, where the �i

are small distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp; it
is supersingular since p ≡ 3 (mod 4). The Frobenius endomorphism π satisfies
π2 = −p, so its Fp-rational endomorphism ring is an order in the imaginary
quadratic field Q(

√−p). More precisely, Proposition 8 (below) shows Endp(E0) =
Z[π], which has conductor 2.

Rational Elkies primes. By Theorem4, the choices made above imply that the
�i-isogeny graph is a disjoint union of cycles. Moreover, since π2−1 ≡ 0 (mod �i)
the ideals �iO split as �iO = lili, where li = (�i, π − 1) and li = (�i, π + 1). In
other words, all the �i are Elkies primes. In particular, we can use any one of
the three algorithms described at the end of Sect. 3 to walk along the cycles.

Furthermore, the kernel of ϕli is the intersection of the kernels of the scalar
multiplication [�i] and the endomorphism π − 1. That is, it is the subgroup
generated by a point P of order �i which lies in the kernel of π − 1 or, in other
words, is defined over Fp. Similarly, the kernel of ϕli

is generated by a point Q
of order �i that is defined over Fp2 but not Fp and such that π(Q) = −Q. This
greatly simplifies and accelerates the implementation, since it allows performing
all computations over the base field (see Sect. 8 for details).

Sampling from the class group. Ideally,7 we would like to know the exact
structure of the ideal-class group cl(O) to be able to sample elements uniformly
at random. However, such a computation is currently not feasible for the size of
discriminant we need, hence we resort to heuristic arguments. Assuming that the
li do not have very small order and are “evenly distributed” in the class group, we
can expect ideals of the form le1

1 le2
2 · · · len

n for small ei to lie in the same class only
very occasionally. For efficiency reasons, it is desirable to sample the exponents
ei from a short range centered around zero, say {−m, . . . ,m} for some integer
m. We will argue in Sect. 7.1 that choosing m such that 2m + 1 ≥ n

√
#cl(O) is

sufficient. Since the prime ideals li are fixed global parameters, the ideal
∏

i l
ei
i

may simply be represented as a vector (e1, . . . , en).

Evaluating the class-group action. Computing the action of an ideal class
represented by

∏
i l

ei
i on an elliptic curve E proceeds as outlined in Sect. 3.

Since π2 = −p ≡ 1 (mod �i), we are now in the favourable situation that the
eigenvalues of Frobenius on all �i-torsion subgroups are +1 and −1. Hence we
can efficiently compute the action of li (resp. li) by finding an Fp-rational point
(resp. Fp2 -rational with Frobenius eigenvalue −1) of order �i and applying Vélu-
type formulas. This step could simply be repeated for each ideal l±1

i whose action
is to be evaluated, but see Sect. 8 for a more efficient method.

7 No pun intended.

408 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

5 Representing and Validating Fp-isomorphism Classes

A major unsolved problem of SIDH is its lack of public-key validation, i.e., the
inability to verify that a public key was honestly generated. This shortcoming
leads to polynomial-time active attacks [29] on static variants for which coun-
termeasures are expensive. For example, the actively secure variant SIKE [37]
applies a transformation proposed by Hofheinz, Hövelmanns, and Kiltz [36]
which is similar to the Fujisaki–Okamoto transform [26], essentially doubling the
running time on the recipient’s side compared to an ephemeral key exchange.

The following proposition tackles this problem for our family of CSIDH
instantiations. Moreover, it shows that the Montgomery coefficient forms a
unique representative for the Fp-isomorphism class resulting from the group
action, hence may serve as a shared secret without taking j-invariants.

Proposition 8. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8), and let E/Fp be
a supersingular elliptic curve. Then Endp(E) = Z[π] if and only if there exists
A ∈ Fp such that E is Fp-isomorphic to the curve EA : y2 = x3 + Ax2 + x.
Moreover, if such an A exists then it is unique.

Proof. First suppose that E is isomorphic over Fp to EA for some A ∈ Fp. If EA

has full Fp-rational 2-torsion, then Table 1 of [16] shows that either EA or its
quadratic twist must have order divisible by 8. However, both have cardinality
p + 1 ≡ 4 (mod 8). Hence EA can only have one Fp-rational point of order 2.
With Theorem 2.7 of [22], we can conclude Endp(E) = Endp(EA) = Z[π].

Now assume that Endp(E) = Z[π]. By Theorem 7, the class group cl(Z[π])
acts transitively on E��p(Z[π], π), so in particular there exists [a] ∈ cl(Z[π]) such
that [a]E0 = E, where E0 : y2 = x3 + x. Choosing a representative a that has
norm coprime to 2p yields a separable Fp-isogeny ϕa : E0 → E of odd degree.
Thus, by [53, Proposition 1] there exists an A ∈ Fp and a separable isogeny
ψ : E0 → EA : y2 = x3 + Ax2 + x defined over Fp such that kerψ = kerϕa. As
isogenies defined over Fp with given kernel are unique up to post-composition
with Fp-isomorphisms (Lemma 6), we conclude that E is Fp-isomorphic to EA.

Finally, let B ∈ Fp such that EA
∼= EB : Y 2 = X3 +BX2 +X. Then by [59,

Proposition III.3.1(b)] there exist u ∈ F
∗
p and r, s, t ∈ Fp such that

x = u2X + r , y = u3Y + su2X + t .

Substituting this into the curve equation for EA and subtracting the equation
of EB (scaled by u6) equals zero in the function field and thus leads to a linear
relation over Fp between the functions 1, X, X2, Y , and XY . Writing ∞ for the
point at infinity of EB , it follows from Riemann–Roch [59, Theorem 5.4] that
L(5(∞)) is a 5-dimensional Fp-vector space with basis {1,X, Y,X2,XY }. Hence
the obtained linear relation must be trivial, and a straightforward computation
yields the relations

s = t = 0 , 3r2 + 2Ar + 1 = u4 ,

3r + A = Bu2 , r3 + Ar2 + r = 0.

CSIDH: An Efficient Post-Quantum Commutative Group Action 409

But since EA only has a single Fp-rational point of order 2, the only r ∈ Fp such
that r3 + Ar2 + r = 0 is simply r = 0. In that case u4 = 1, and hence u = ±1
since p ≡ 3 (mod 8). In particular, u2 = 1 and thus A = B. �
Therefore, by choosing public keys to consist of a Montgomery coefficient A ∈ Fp,
Proposition 8 guarantees that A represents a curve in the correct isogeny class
E��p(O, π), where π =

√−p and O = Z[π], under the assumption that it is
smooth (i.e. A /∈ {±2}) and supersingular.

Verifying supersingularity. As p ≥ 5, an elliptic curve E defined over Fp

is supersingular if and only if #E(Fp) = p + 1 [59, Exercise 5.10]. In general,
proving that an elliptic curve has a given order N is easy if the factorization of
N is known; exhibiting a subgroup (or in particular, a single point) whose order
d is a divisor of N greater than 4

√
p implies the order must be correct. Indeed,

the condition d > 4
√

p implies that there exists only one multiple of d in the
Hasse interval [p+ 1− 2

√
p; p+ 1+ 2

√
p] [35]. This multiple must be the group

order by Lagrange’s theorem.
Now note that a random point generally has very large order d. In our case

E(Fp) ∼= Z/4 × ∏n
i=1 Z/�i, so that �i | d with probability (�i − 1)/�i. Ignoring

the even part, this shows that the expected order is lower bounded by

n∏

i=1

(
�i − 1 +

1
�i

)
.

This product is about the same size as p, and it is easily seen that a random point
will with overwhelming probability have order (much) greater than 4

√
p. This

observation leads to a straightforward verification method, see Algorithm 1.8

Algorithm 1. Verifying supersingularity.

Input: An elliptic curve E/Fp, where p = 4 · �1 · · · �n − 1.
Output: supersingular or ordinary.

Randomly pick a point P ∈ E(Fp) and set d ← 1.
for each �i do

Set Qi ← [(p + 1)/�i]P .
If [�i]Qi �= ∞ then return ordinary. // since #E(Fp) � p + 1
If Qi �= ∞ then set d ← �i · d. // since �i | ordP

If d > 4
√

p then return supersingular.

If the condition d > 4
√

p does not hold at the end of Algorithm 1, the point P
had too small order to prove #E(Fp) = p + 1. In this case one may retry with
a new random point P (although this outcome has negligible probability and

8 The same idea gives rise to a simpler Monte Carlo algorithm which does not require
the factorization of p + 1 but has a chance of false positives [64, Sect. 2.3].

410 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

could just be ignored). There is no possibility of wrongly classifying an ordinary
curve as supersingular.

Note moreover that if x-only Montgomery arithmetic is used (as we suggest)
and the point P is obtained by choosing a random x-coordinate in Fp, there is no
need to differentiate between points defined over Fp and Fp2 ; any x-coordinate in
Fp works. Indeed, any point that has an x-coordinate in Fp but is only defined
over Fp2 corresponds to an Fp-rational point on the quadratic twist, which is
supersingular if and only if the original curve is supersingular.

There are more optimized variants of this algorithm; the bulk of the work
are the scalar multiplications required to compute the points Qi = [(p+1)/�i]P .
Since they are all multiples of P with shared factors, one may more efficiently
compute all Qi at the same time using a divide-and-conquer strategy (at the
expense of higher memory usage). See Sect. 8, and in particular Algorithm3, for
details.

6 Non-interactive Key Exchange

Starting from the class-group action on supersingular elliptic curves and the
parameter choices outlined in Sects. 3 and 4, one obtains the following non-
interactive key-exchange protocol.

Setup. Global parameters of the scheme are a large prime p = 4 · �1 · · · �n −1,
where the �i are small distinct odd primes, and the supersingular elliptic curve
E0 : y2 = x3 + x over Fp with endomorphism ring O = Z[π].

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, each
sampled randomly from a range {−m, . . . , m}. These integers represent the
ideal class [a] = [le1

1 · · · len
n] ∈ cl(O), where li = (�i, π−1). The public key is the

Montgomery coefficient A ∈ Fp of the elliptic curve [a]E0 : y2 = x3 +Ax2 + x
obtained by applying the action of [a] to the curve E0.

Key exchange. Suppose Alice and Bob have key pairs ([a], A) and ([b], B).
Upon receiving Bob’s public key B ∈ Fp \{±2}, Alice verifies that the elliptic
curve EB : y2 = x3 + Bx2 + x is indeed in E��p(O, π) using Algorithm 1.
She then applies the action of her secret key [a] to EB to compute the curve
[a]EB = [a][b]E0. Bob proceeds analogously with his own secret [b] and Alice’s
public key A to compute the curve [b]EA = [b][a]E0. The shared secret is the
Montgomery coefficient S of the common secret curve [a][b]E0 = [b][a]E0

written in the form y2 = x3 + Sx2 + x, which is the same for Alice and Bob
due to the commutativity of cl(O) and Proposition 8.

Remark 9. Besides key exchange, we expect that our cryptographic group action
will have several other applications, given the resemblance with traditional
Diffie–Hellman and the ease of verifying the correctness of public keys. We refer
to previous papers on group actions for a number of suggestions in this direction,

CSIDH: An Efficient Post-Quantum Commutative Group Action 411

in particular Brassard–Yung [7], Couveignes [17, Sect. 4], and Stolbunov [61]. We
highlight the following 1-bit identification scheme, which in our case uses a key
pair ([a], A) as above. One randomly samples an element [b] ∈ cl(O) and com-
mits to a curve E′ = [b]E0. Depending on a challenge bit b, one then releases
either [b] or [c] := [b][a]−1, as depicted in Fig. 3. As already pointed out in Stol-
bunov’s PhD thesis [62, Sect. 2.B], this can be turned into a signature scheme by
repeated application of the 1-bit protocol and by applying the Fiat–Shamir [24]
or Unruh [68] transformation. However, we point out that it is not immediately
clear how to represent [c] in a way that is efficiently computable and leaks no
information about the secret key [a]. We leave a resolution of this issue for future
research, but mention that a related problem was recently tackled by Galbraith,
Petit and Silva [30] who studied a similar triangular identification protocol in
the context of SIDH.9

E0 EA

E′

[a]

[b] [c]

Fig. 3. A 1-bit identification protocol.

7 Security

The central problem of our new primitive is the following analogue to the classical
discrete-logarithm problem.

Problem 10 (Key recovery). Given two supersingular elliptic curves E,E′ defined
over Fp with the same Fp-rational endomorphism ring O, find an ideal a of O
such that [a]E = E′. This ideal must be represented in such a way that the
action of [a] on a curve can be evaluated efficiently, for instance a could be given
as a product of ideals of small norm.

Note that just like in the classical group-based scenario, security notions of
Diffie–Hellman schemes built from our primitive rely on slightly different hard-
ness assumptions (cf. Sect. 1.1) that are straightforward translations of the com-
putational and decisional Diffie–Hellman problems. However, continuing the
analogy with the classical case, and since we are not aware of any ideas to attack
the key exchange without recovering one of the keys, we will assume in the fol-
lowing analysis that the best approach to breaking the key-exchange protocol is
to solve Problem 10.

We point out that the “inverse Diffie-Hellman problem” is easy in the context
of CSIDH: given [a]E0 we can compute [a]−1E0 by mere quadratic twisting; see
Remark 5. This contrasts with the classical group-based setting [28, Sect. 21.1].
9 The “square” SIDH counterparts of this protocol, as considered in [20,30,71], are

not meaningful in the case of a commutative group action.

412 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

Note that just like identifying a point (x, y) with its inverse (x,−y) in an ECDLP
setting, this implies a security loss of one bit under some attacks: An attacker
may consider the curves [a]E and [a]−1E identical, which reduces the search
space by half.

No torsion-point images. One of the most worrying properties of SIDH
seems to be that Alice and Bob publish the images of known points under
their secret isogenies along with the codomain curve, i.e., a public key is of
the form (E′, ϕ(P), ϕ(Q)) where ϕ : E → E′ is a secret isogeny and P,Q ∈ E
are publicly known points. Although thus far nobody has succeeded in mak-
ing use of this extra information to break the original scheme, Petit presented
an attack using these points when overstretched, highly asymmetric parameters
are used [50]. The Couveignes–Rostovtsev–Stolbunov scheme, and consequently
our new scheme CSIDH, does not transmit such additional points—a public key
consists of only an elliptic curve. Thus we are confident that a potential future
attack against SIDH based on these torsion points would not apply to CSIDH.

Chosen-ciphertext attacks. As explained in Sect. 5, the CSIDH group action
features efficient public-key validation. This implies it can be used without apply-
ing a CCA transform such as the Fujisaki–Okamoto transform [26], thus enabling
efficient non-interactive key exchange and other applications in a post-quantum
world.

7.1 Classical Security

We begin by considering classical attacks.

Exhaustive key search. The most obvious approach to attack any cryptosys-
tem is to simply search through all possible keys. In the following, we will argue
that our construction provides sufficient protection against key search attacks,
including dumb brute force and (less naïvely) a meet-in-the-middle approach.

As explained in Sect. 4, a private key of our scheme consists of an exponent
vector (e1, . . . , en) where each ei is in the range {−m, . . . , m}, representing the
ideal class [le1

1 le2
2 · · · len

n] ∈ cl(O). There may (and typically will) be multiple such
vectors that represent the same ideal class and thus form equivalent private keys.
However, we argue (heuristically) that the number of short representations per
ideal class is small. Here and in the following, “short” means that all ei are in the
range {−m, . . . ,m}. The maximum number of such short representations imme-
diately yields the min-entropy10 of our sampling method, which measures the
amount of work a brute-force attacker has to do while conducting an exhaustive
search for the key.

10 The min-entropy of a random variable is the negative logarithm of the probability
of the most likely outcome.

CSIDH: An Efficient Post-Quantum Commutative Group Action 413

We assume in the following discussion that cl(O) is “almost cyclic” in the
sense that it has a very large cyclic component, say of order N not much smaller
than #cl(O). According to a heuristic of Cohen and Lenstra, this is true with
high probability for a “random” imaginary quadratic field [13, Sect. 9.I], and this
conjecture is in line with our own experimental evidence. So suppose

ρ : cl(O) � (Z/N,+)

is a surjective group homomorphism (which may be thought of as a projection to
the large cyclic subgroup followed by an isomorphism) and define αi = ρ([li]). We
may assume that α1 = 1; this can be done without loss of generality whenever
at least one of the [li] has order N in the class group. For some fixed [a] ∈ cl(O),
any short representation [le1

1 le2
2 · · · len

n] = [a] yields a short solution to the linear
congruence

e1 + e2α2 + · · · + enαn ≡ ρ([a]) (mod N),

so counting solutions to this congruence gives an upper bound on the number
of short representations of [a]. These solutions are exactly the points in some
shifted version (i.e., a coset) of the integer lattice spanned by the rows of the
matrix

L =

⎛

⎜⎜⎜⎜
⎜
⎝

N 0 0 · · · 0
−α2 1 0 · · · 0
−α3 0 1 · · · 0

...
...

...
. . .

...
−αn 0 0 · · · 1

⎞

⎟⎟⎟⎟
⎟
⎠

,

so by applying the Gaussian heuristic [49, Chap. 2, Definition 8] one expects

vol [−m;m]n /detL = (2m + 1)n/N

short solutions. Since we assumed cl(O) to be almost cyclic, this ratio is not
much bigger than (2m + 1)n/#cl(O), which is not very large for our choice of
m as small as possible with (2m + 1)n ≥ #cl(O).

As a result, we expect the complexity of a brute-force search to be around
2log

√
p−ε for some positive ε that is small relative to log

√
p. To verify our claims,

we performed computer experiments with many choices of p of up to 40 bits
(essentially brute-forcing the number of representations for all elements) and
found no counterexamples to the heuristic result that our sampling method loses
only a few bits of brute-force security compared to uniform sampling from the
class group. For our sizes of p, the min-entropy was no more than 4 bits less
than that of a perfectly uniform distribution on the class group (i.e. ε ≤ 4). Of
course this loss factor may grow in some way with bigger choices of p (a plot of
the data points for small sizes suggests an entropy loss proportional to log log p),
but we see no indication for it to explode beyond a few handfuls of bits, as long
as we find m and n so that (2m + 1)n is not much larger than #cl(O).

414 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

Meet-in-the-middle key search. Since a private key trivially decomposes
into a product of two smooth ideals drawn from smaller sets (e.g. splitting
[le1
1 le2

2 · · · len
n] as [le1

1 · · · leν
ν] · [leν+1

ν+1 · · · len
n] for some ν ∈ {1, . . . , n}), the usual time-

memory trade-offs à la baby-step giant-step [56] with an optimal time complexity
of O

(√
#cl(O)

) ≈ O(4
√

p) apply.11 Another interpretation of this algorithm is
finding a path between two nodes in the underlying isogeny graph by construct-
ing a breadth-first tree starting from each of them, each using a certain subset of
the edges, and looking for a collision. Details, including a memoryless variation
of this concept, can be found in Delfs and Galbraith’s paper [22], and for the
ordinary case in [27].

Remark 11. The algorithms mentioned thus far scale exponentially in the size of
the key space, hence they are asymptotically more expensive than the quantum
attacks outlined below which is subexponential in the class-group size. This
implies one could possibly balance the costs of the different attacks and use
a key space smaller than #cl(O) without any loss of security (unless the key
space is chosen particularly badly, e.g., as a subgroup), which leads to improved
performance. We leave a more thorough analysis of this idea for future work.

Pohlig–Hellman-style attacks. Notice that the set E��p(O, π) we are act-
ing on does not form a group with efficiently computable operations (that
are compatible with the action of cl(O)). Thus there seems to be no way to
apply Pohlig–Hellman-style algorithms making use of the decomposition of finite
abelian groups. In fact, the Pohlig–Hellman algorithm relies on efficiently com-
putable homomorphisms to proper subgroups, which in the setting at hand would
correspond to an efficient algorithm that “projects” a given curve to the orbit
of E0 under a subgroup action. Therefore, we believe the structure of the class
group to be largely irrelevant (assuming it is big enough); in particular, we do
not require it to have a large prime-order subgroup.

7.2 Quantum Security

We now discuss the state of quantum algorithms to solve Problem 10.

Grover’s algorithm and claw finding. Applying Grover search [32] via claw
finding as described in [38] is fully applicable to CSIDH as well, leading to an
attack on Problem10 in O(6

√
p) calls to a quantum oracle that computes our

group action. The idea is to split the search space for collisions into a classical
O(6

√
p) target part and a O(3

√
p) search part on which a quantum search is

applied. Our choices of p that lead to classical security are also immediately large
enough to imply quantum security against this attack (cf. [48, Sect. 4.A.5 in Call

11 Strictly speaking, the complexity depends on the size of the subset one samples
private keys from, rather than the size of the class group, but as was argued before,
these are approximately equal for our choice of m and n.

CSIDH: An Efficient Post-Quantum Commutative Group Action 415

for Proposals]). That is, the number of queries to our quantum oracle necessary to
solve Problem10 is larger than the number of quantum queries to an AES oracle
needed to retrieve the key of the corresponding AES instantiation via Grover’s
algorithm. For example, an AES-128 key can be recovered with approximately
264 (quantum) oracle queries, which requires us to set p > 2384. However, p
is much larger than that (see Table 1) due to the existence of subexponential
quantum attacks.

The abelian hidden-shift problem. A crucial result by Kuperberg [43] is an
algorithm to solve the hidden-shift problem with time, query and space com-
plexity 2O(

√
log N) in an abelian group H of order N . He also showed that any

abelian hidden-shift problem reduces to a dihedral hidden-subgroup problem
on a different but closely related oracle. A subsequent alternative algorithm by
Regev [52] achieves polynomial quantum space complexity with an asymptoti-
cally worse time and query complexity of 2O(

√
log N log log N). A follow-up algo-

rithm by Kuperberg [44] uses 2O(
√
log N) time, queries and classical space, but

only O(logN) quantum space. All these algorithms have subexponential time
and space complexity.

Attacking the isogeny problem. The relevance of these quantum algorithms
to Problem 10 has been observed by Childs–Jao–Soukharev [12] in the ordinary
case and by Biasse–Jao–Sankar [4] in the supersingular setting. By defining func-
tions f0, f1 : cl(O) → E��p(O, π) as f0 : [b] �→ [b]E and f1 : [b] �→ [b]E′ = [b][a]E,
the problem can be viewed as an abelian hidden-shift problem with respect to f0
and f1. We note that each query requires evaluating the functions fi on arbitrary
ideal classes (i.e. without being given a representative that is a product of ideals
of small prime norm) which is non-trivial. However, Childs–Jao–Soukharev show
this can be done in subexponential time and space [12, Sect. 4].

Subexponential vs. practical. An important remark about all these quan-
tum algorithms is that they do not immediately lead to estimates for runtime
and memory requirements on concrete instantiations with H = cl(O). Although
the algorithms by Kuperberg and Regev are shown to have subexponential com-
plexity in the limit, this asymptotic behavior is not enough to understand the
space and time complexity on actual (small) instances. For example, Kuperberg’s
first paper [43, Theorem 3.1] mentions O(23

√
log N) oracle queries to achieve a

non-negligible success probability when N is a power of a small integer. It also
presents a second algorithm that runs in Õ(3

√
2 log3 N) = O(21.8

√
log N) [43, The-

orem 5.1]. His algorithms handle arbitrary group structures but he does not work
out more exact counts for those. Of course, this does not contradict the time
complexity of 2O(

√
log N) as stated above, but for a concrete security analysis

the hidden constants certainly matter a lot and ignoring the O typically under-
estimates the security. Childs–Jao–Soukharev [12, Theorem 5.2] prove a query

416 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

complexity of

LN

[
1/2,

√
2
]
= exp

[(√
2 + o(1)

)√
lnN ln lnN

]
, (1)

where N = #cl(O), for using Regev’s algorithm for solving the hidden-shift
problem. This estimates only the query complexity, so does not include the cost
of queries to the quantum oracle (i.e. the isogeny oracle). Childs–Jao–Soukharev
present two algorithms to compute the isogeny oracle, the fastest of which is due
to Bisson [5]. In [12, Remark 4.8] Childs–Jao–Soukharev give an upper bound of

Lp[1/2, 1/
√
2] = exp

[(
1/

√
2 + o(1)

)√
ln p ln ln p

]
(2)

on the running time of Bisson’s algorithm.

Remark 12. Childs–Jao–Soukharev compute the total cost for computing the
secret isogeny in [12, Remark 5.5] to be Lp[1/2, 3/

√
2] (using Regev and Bis-

son’s algorithms, requiring only polynomial space). They appear to obtain this
by setting N = p when multiplying (1) and (2), but as N ∼ √

p this is an
overestimation and should be Lp[1/2, 1 + 1/

√
2]. Either way, this is the largest

asymptotic complexity of the estimates. Also, Galbraith and Vercauteren [31]
point out this algorithm actually has superpolynomial space complexity due to
the high memory usage of the isogeny oracle in [12], but see [39].

Childs–Jao–Soukharev additionally compute the total time Lp[1/2, 1/
√
2] for

computing the secret isogeny combining Kuperberg [43] and Bisson. This requires
superpolynomial storage (also before considering the memory usage of the ora-
cle). Note that in this combination the costs of the oracle computation dominate
asymptotically.

It is important to mention that asymptotically worse algorithms may provide
practical improvements on our “small” instances over either of the algorithms
studied by Childs–Jao–Soukharev: For example, Couveignes [17, Sect. 5] provides
heuristic arguments that one can find smooth representatives of ideal classes by
computing the class-group structure (which can be done in polynomial time
on a quantum computer [34]) and applying a lattice-basis-reduction algorithm
such as LLL [45] to its lattice of relations. This might be more efficient than
using Childs–Jao–Soukharev’s subexponential oracle. However, note that this
method makes evaluating the oracle several times harder for the attacker than
for legitimate users, thus immediately giving a few additional bits of security,
since users only evaluate the action of very smooth ideals by construction. We
believe further research in this direction is necessary and important, since it will
directly impact the cost of an attack, but we consider a detailed analysis of all
these algorithms and possible trade-offs to be beyond the scope of this work.12

Remark 13. After we posted a first version of this paper on the Cryptology
ePrint Archive, there were three independent attempts at assessing the security
of CSIDH.
12 The page margins are certainly too narrow to contain such an analysis.

CSIDH: An Efficient Post-Quantum Commutative Group Action 417

Biasse, Iezzi, and Jacobson [3] work out some more details of the attack
ideas mentioned above for Regev’s algorithm. They focus on the class-group-
computation part of the oracle and they work out how to represent random
elements of the class group as a product of small prime ideals. Their analysis is
purely asymptotic and an assessment of the actual cost on specific instances is
explicitly left for future work.

Bonnetain and Schrottenloher [6] determine (quantum) query complexities
for breaking CSIDH under the assumption that the quantum memory can be
made very large, which implies that Kuperberg’s faster algorithms would be
applicable. They estimate the number of oracle queries as (5π2/4)21.8

√
log N .

The 1.8 appears to approximate the
√
2 log 3 in Kuperberg [43, Theorem 5.1].

They state 21.8
√
log N+2.3 for the number of qubits.

While we ignored Kuperberg’s algorithm due to the large memory costs,
they take the stance that “the most time-efficient version is relevant”, and so
do not ignore this algorithm. For small N the number of qubits stated in [6]
might be possible, which makes Kuperberg’s algorithm indeed relevant for these
sizes. However, this also highlights the high cost of computing the oracle, which
Childs–Jao–Soukharev placed at Lp[1/2, 1/

√
2]. Bonnetain and Schrottenloher

investigate the oracle computation using Couveignes’ LLL idea and improve it
using better lattice basis reduction.

The current version of Bonnetain–Schrottenloher [6] also presents concrete
estimates for the attack costs for our parameter sets, but unfortunately this ver-
sion ignores most of the cost of evaluating isogenies. For example: (1) Algorithm2
in our paper makes heavy use of input-dependent branches, which is impossible
in superposition [39, Sect. 4]; (2) [6] skips finding points of order �i which are
needed as the kernel of the �i isogeny; (3) [6] applies a result for multiplication
costs in F2n to multiplications in Fp. We analyzed the (significantly higher) cost
of a quantum oracle for isogeny evaluation and conclude that the current esti-
mates of Bonnetain–Schrottenloher do not imply that the 512-bit parameters
stated below are broken under NIST level 1.

Jao, LeGrow, Leonardi, and Ruiz-Lopez recently made a preprint [39] of their
MathCrypt paper available to us. They address the issue of superpolynomial
space in the oracle computation identified by Galbraith and Vercauteren (stated
above) and give a new algorithm for finding short representations of elements.
Their paper focuses on the asymptotic analysis of the oracle step so that they
achieve overall polynomial quantum space, but does not obtain any concrete cost
estimates.

7.3 Instantiations

Finally we present estimates for some sizes of p.

Security estimates. As explained in Sect. 7.1, the best classical attack has
query complexity O(4

√
p), and the number of queries has been worked out for dif-

ferent quantum attacks. We consider [12] in combination with Regev and Kuper-
berg (Lp

[
1/2, 3/

√
2
]

and Lp

[
1/2, 1/

√
2
]
, respectively) as well as the pure query

418 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

complexity of Regev’s and Kuperberg’s algorithms (LN

[
1/2,

√
2
]
, O(23

√
log N),

and O(21.8
√
log N), respectively). We summarize the resulting attack complexi-

ties, ignoring the memory costs and without restricting the maximum depth of
quantum circuits, for some sizes of p in Table 1. We note again that we expect
these complexities to be subject to more careful analysis, taking into account the
implicit constants, the (in-)feasibility of long sequential quantum operations, and
the large memory requirement. We also include the recent estimates on the query
complexity and full attack complexity by Bonnetain and Schrottenloher [6].

We point out a recent analysis [1] which shows that the classical attack on
SIDH (which is the same for CSIDH) is likely slower in practice than current
parameter estimates assumed, which is due to the huge memory requirements
of the searches. Similarly, the cost of the quantum attacks is significantly higher
than just the query complexity times the cost of the group action because eval-
uating the oracle in superposition is significantly more expensive than a regular
group action.

Table 1. Estimated attack complexities ignoring limits on depth. The three rightmost
columns state costs for the complete attack; the others state classical and quantum
query complexities. All numbers are rounded to whole bits and use N = #cl(O) =

√
p,

o(1) = 0, and all hidden O-constants 1, except for numbers taken from [6].

CSIDH-log p C
la

ss
ic

al
lo
g

4√ p

R
eg

ev
[5

2]
lo
g

L
N
[1

/
2,

√ 2]

K
up

er
be

rg
[4

3]
3√ lo

g
N

K
up

er
be

rg
[4

3]
1.
8√ lo

g
N

T
ab

le
7

in
[6

]

[1
2]

-R
eg

ev
lo
g

L
p
[1

/
2,
3/

√ 2]

[1
2]

-K
up

er
be

rg
lo
g

L
p
[1

/
2,
1/

√ 2]

T
ab

le
8

in
[6

]

CSIDH-512 128 62 48 29 32.5 139 47 71
CSIDH-1024 256 94 68 41 44.5 209 70 88
CSIDH-1792 448 129 90 54 57.5 288 96 104

Recall that public keys consist of a single element A ∈ Fp, which may be
represented using �log p� bits. A private key is represented as a list of n integers
in {−m, . . . ,m}, where m was chosen such that n log(2m + 1) ≈ log

√
p, hence

it may be stored using roughly (log p)/2 bits. Therefore the rows of Table 1
correspond to public key sizes of 64, 128, and 224 bytes, and private keys are
approximately half that size when encoded optimally.

Security levels. We approximate security levels as proposed by NIST for the
post-quantum standardization effort [48, Sect. 4.A.5]. That is, the k-bit security
level means that the required effort for the best attacks is at least as large as that
needed for a key-retrieval attack on a block cipher with a k-bit key (e.g. AES-k
for k ∈ {128, 192, 256}). In other words, under the assumption that the attacks

CSIDH: An Efficient Post-Quantum Commutative Group Action 419

query an oracle on a circuit at least as costly as AES, we should have a query
complexity of at least 2k−1 resp.

√
2k to a classical resp. quantum oracle. NIST

further restricts the power of the quantum computation to circuits of maximum
depth 240 up to 296, meaning that theoretically optimal tradeoffs (such as the
formulas in Table 1 above) might not be possible for cryptographic sizes.

The parameters for CSIDH-log p were chosen to match the query complexity
of Regev’s attack on the hidden-shift problem (see the third column in Table 1)
for roughly 2k/2, which should match NIST levels 1-3 as the group action com-
putation has depth at least as large as AES.

Some other algorithms give lower estimates which makes it necessary to eval-
uate the exact cost of the oracle queries or compute the lower-order terms in the
complexity. The analysis in [6, Table 8] states lower overall costs compared to
AES. While this is a signficant improvement, we believe that this does not affect
our security claim when accounting precisely for the actual cost of oracle queries,
as stated above. Our preliminary analysis shows costs of more than 250 qubit
operations for evaluating the oracle for log p = 512, where [6] assumes 237. This
means that the NIST levels are reached even with the low query numbers in [6].
More analysis is certainly needed and it is unclear whether that will result in
larger or smaller choices of p.

Note that adjusting parameters only involves changing the prime p (and a
few numbers derived from it) and is therefore very simple, should it turn out
that our initial estimates are insufficient.

8 Implementation

In this section, we outline our most important tricks to make the system easier
to implement or the code faster. As pointed out earlier, the crucial step is to use
a field of size 4 · �1 · · · �n − 1, where the �i are small distinct odd primes; this
implies that all �i are Elkies primes for a supersingular elliptic curve over Fp and
that the action of ideals (�i, π ± 1) can be computed efficiently using Fp-rational
points. See Sect. 4 for these design decisions. The following section focuses on
lower-level implementation details.

Montgomery curves. The condition p+1 ≡ 4 (mod 8) implies that all curves
in E��p(Z[π], π) can be put in the form y2 = x3 +Ax2 + x (cf. Proposition 8) for
some A ∈ Fp via an Fp-isomorphism. This is commonly referred to as the Mont-
gomery form [46] of an elliptic curve and is popular due to the very efficient
arithmetic on its x-line. This extends well to computations of isogenies on the
x-line, as was first shown by Costello–Longa–Naehrig [15, Sect. 3]. Our imple-
mentation uses exactly the same formulas for operations on curves. For isogeny
computations on Montgomery curves we use a projectivized variant (to avoid
almost all inversions) of the formulas from Costello–Hisil [14] and Renes [53].
This can be done as follows.

420 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

For a fixed prime � ≥ 3, a point P of order �, and an integer k ∈ {1, . . . , �−1},
let (Xk : Zk) be the projectivized x-coordinate of [k]P . Then by defining ci ∈ Fp

such that
�−1∏

i=1

(Ziw + Xi) =
�−1∑

i=0

ciw
i

as polynomials in w, we observe that

(τ(A − 3σ) : 1) =
(
Ac0c�−1 − 3(c0c�−2 − c1c�−1) : c2�−1

)
,

where

τ =
�−1∏

i=1

Xi

Zi
, σ =

�−1∑

i=1

(
Xi

Zi
− Zi

Xi

)

and A is the Montgomery coefficient of the domain curve. By noticing that
x([k]P) = x([�−k]P) for all k ∈ {1, . . . , (�−1)/2} we can reduce the computation
needed by about half. That is, we can compute (τ(A−3σ) : 1) iteratively in about
5�M+ �S operations13, noting that τ(A − 3σ) is the Montgomery coefficient of
the codomain curve of an isogeny with kernel 〈P 〉 [53, Proposition 1]. If necessary,
a single division at the end of the computation suffices to obtain an affine curve
constant. We refer to the implementation for more details.

Note that for a given prime �, we could reduce the number of field operations
by finding an appropriate representative of the isogeny formulas modulo (a factor
of) the �-division polynomial ψ� (as done in [15] for 3- and 4-isogenies). Although
this would allow for a more efficient implementation, we do not pursue this now
for the sake of simplicity.

Rational points. Recall that the goal is to evaluate the action of (the class
of) an ideal le1

1 · · · len
n on a curve E ∈ E��p(Z[π], π), where each li = (�i, π − 1)

is a prime ideal of small odd norm �i and the ei are integers in a short range
{−m, . . . ,m}. We assume E is given in the form EA : y2 = x3 + Ax2 + x.

The obvious way to do this is to consider each factor l±1
i in this product

and to find the abscissa of a point P of order �i on E, which (depending on
the sign) is defined over Fp or Fp2\Fp. This exists by our choice of p and �i (cf.
Sect. 4). Finding such an abscissa amounts to sampling a random Fp-rational
x-coordinate, checking whether x3+Ax2+x is a square or not (for l+1

i resp. l−1
i)

in Fp (and resampling if it was wrong), followed by a multiplication by (p+1)/�i

and repeating from the start if the result is ∞. The kernel of the isogeny given
by l±1

i is then 〈P 〉, so the isogeny may be computed using Vélu-type formulas.
Repeating this procedure for all l±1

i gives the result.
However, fixing a sign before sampling a random point effectively means

wasting about half of all random points, including an ultimately useless square
test. Moreover, deciding on a prime �i before sampling a point and doing the
cofactor multiplication wastes another proportion of the points, including both

13 Here M and S denote a multiplication and squaring in Fp.

CSIDH: An Efficient Post-Quantum Commutative Group Action 421

an ultimately useless square test and a scalar multiplication. Both of these issues
can be remedied by not fixing an �i before sampling a point, but instead taking
any x-coordinate, determining the smallest field of definition (i.e. Fp or Fp2) of
the corresponding point, and then performing whatever isogeny computations
are possible using that point (based on its field of definition and order). The
steps are detailed in Algorithm2.

Algorithm 2. Evaluating the class-group action.

Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B such that [le11 · · · len

n]EA = EB (where EB : y2 = x3 + Bx2 + x).

While some ei �= 0 do
Sample a random x ∈ Fp.
Set s ← +1 if x3 + Ax2 + x is a square in Fp, else s ← −1.
Let S = {i | ei �= 0, sign(ei) = s}. If S = ∅ then start over with a new x.
Let k ← ∏

i∈S �i and compute Q ← [(p + 1)/k]P .

For each i ∈ S do
Compute R ← [k/�i]Q. If R = ∞ then skip this i.
Compute an isogeny ϕ : EA → EB : y2 = x3 + Bx2 + x with kerϕ = R.
Set A ← B, Q ← ϕ(Q), k ← k/�i, and finally ei ← ei − s.

Return A.

Due to the commutativity of cl(O), and since we only decrease (the absolute
value of) each ei once we successfully applied the action of l±1

i to the current
curve, this algorithm indeed computes the action of [le1

1 le2
2 · · · len

n].

Remark 14. Since the probability that a random point has order divisible by �i

(and hence leads to an isogeny step in Algorithm 2) grows with �i, the isogeny
steps for big �i are typically completed before those for small �i. Hence it may
make sense to sample the exponents ei for ideals li from different ranges depend-
ing on the size of �i, or to not include any very small �i in the factorization of
p + 1 at all to reduce the expected number of repetitions of the loop above.
Note moreover that doing so may also improve the performance of straightfor-
ward constant-time adaptions of our algorithms, since it yields stronger upper
bounds on the maximum number of required loop iterations (at the expense of
slightly higher cost per isogeny computation). Varying the choice of the �i can
also lead to performance improvements if the resulting prime p has lower Ham-
ming weight. Finding such a p is a significant computational effort but needs to
be done only once; all users can use the same finite field.

Remark 15. Algorithm2 is obviously strongly variable-time when implemented
naïvely. Indeed, the number of points computed in the isogeny formulas is linear
in the degree, hence the iteration counts of certain loops in our implementation
are very directly related to the private key. We note that it would not be very
hard to create a constant-time implementation based on this algorithm by always
performing the maximal required number of iterations in each loop and only

422 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

storing the results that were actually needed (using constant-time conditional
instructions), although this incurs quite a bit of useless computation, leading to
a doubling of the number of curve operations on average. We leave the design of
optimized constant-time algorithms for future work.

Public-key validation. Recall that the public-key validation method outlined
in Sect. 5 essentially consists of computing [(p+1)/�i]P for each i, where P is a
random point on E. Performing this computation in the straightforward way is
simple and effective. On the other hand, a divide-and-conquer approach, such as
the following recursive algorithm, yields better speeds at the expense of slightly
higher memory usage. Note that Algorithm3 only operates on public data, hence
need not be constant-time in a side-channel resistant implementation.

Algorithm 3. Batch cofactor multiplication. [63, Algorithm 7.3]

Input: An elliptic-curve point P and positive integers (k1, . . . , kn).
Output: The points (Q1, . . . , Qn), where Qi =

[∏
j �=i kj

]
P .

If n = 1 then return (P). // base case
Set m ← 	n/2
 and let u ← ∏m

i=1 ki, v ← ∏n
i=m+1 ki.

Compute L ← [v]P and R ← [u]P .
Recurse with input L, (k1, . . . , km) giving (Q1, . . . , Qm). // left half
Recurse with input R, (km+1, . . . , kn) giving (Qm+1, . . . , Qn). // right half
Return (Q1, . . . , Qn).

This routine can be used for verifying that an elliptic curve E/Fp is supersingular
as follows: Pick a random point P ∈ E(Fp) and run Algorithm3 on input [4]P
and (�1, . . . , �n) to obtain the points Qi = [(p + 1)/�i]P . Then continue like in
Algorithm1 to verify that E is supersingular using these precomputed points.

In practice, it is not necessary to run Algorithm3 as a black-box function
until it returns all the points Q1, . . . , Qn: The order checking in Algorithm1
can be performed as soon as a new point Qi becomes available, i.e., in the base
case of Algorithm3. This reduces the memory usage (since the points Qi can be
discarded immediately after use) and increases the speed (since the algorithm
terminates as soon as enough information was obtained) of public-key valida-
tion using Algorithms 1 and 3. We note that the improved performance of this
algorithm compared to Algorithm1 alone essentially comes from a time-space
trade-off, hence the memory usage is higher (cf. Sect. 8.1). On severely memory-
constrained devices one may instead opt for the naïve algorithm, which requires
less space but is slower.

8.1 Performance Results

On top of a minimal implementation in the sage computer algebra system [67]
for demonstrative purposes, we created a somewhat optimized proof-of-concept
implementation of the CSIDH group action for a particular 512-bit prime p.

CSIDH: An Efficient Post-Quantum Commutative Group Action 423

While this implementation features 512-bit field arithmetic written in assembly
(for Intel Skylake processors), it also contains generic C code supporting other
field sizes and can therefore easily be ported to other computer architectures or
parameter sets if desired.14

The prime p is chosen as p = 4 · �1 · · · �74 − 1 where �1 through �73 are the
smallest 73 odd primes and �74 = 587 is the smallest prime distinct from the
other �i that renders p prime. This parameter choice implies that public keys
have a size of 64 bytes. Private keys are stored in 37 bytes for simplicity, but an
optimal encoding would reduce this to only 32 bytes. Table 2 summarizes perfor-
mance numbers for our proof-of-concept implementation. Note that private-key
generation is not listed as it only consists of sampling n random integers in a
small range {−m, . . . , m}, which has negligible cost.

Table 2. Performance numbers of our proof-of-concept implementation, averaged over
10 000 runs on an Intel Skylake i5 processor clocked at 3.5GHz.

Clock cycles Wall-clock time Stack memory

Key validation 5.5 · 106 cc 2.1ms 4 368 bytes

Group action 106 · 106 cc 40.8ms 2 464 bytes

We emphasize that both our implementations are intended as a proof of concept
and unfit for production use; in particular, they are explicitly not side-channel
resistant and may contain any number of bugs. We leave the design of hardened
and more optimized implementations for future work.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.-J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: SAC 2018 (2018)

2. Bernstein, D.J., van Gastel, B., Janssen, W., Lange, T., Schwabe, P., Smetsers, S.:
TweetNaCl: a crypto library in 100 tweets. In: Aranha, D.F., Menezes, A. (eds.)
LATINCRYPT 2014. LNCS, vol. 8895, pp. 64–83. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16295-9_4

3. Biasse, J.-F., Iezzi, A., Jacobson Jr., M.J.: A note on the security of CSIDH (2018).
https://arxiv.org/abs/1806.03656. To be published at Kangacrypt 2018

4. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2_25

5. Bisson, G.: Computing endomorphism rings of elliptic curves under the GRH. J.
Math. Cryptol. 5(2), 101–114 (2012)

14 All our code is published in the public domain and is available for download at
https://yx7.cc/code/csidh/csidh-latest.tar.xz.

https://doi.org/10.1007/978-3-319-16295-9_4
https://doi.org/10.1007/978-3-319-16295-9_4
https://arxiv.org/abs/1806.03656
https://doi.org/10.1007/978-3-319-13039-2_25
https://yx7.cc/code/csidh/csidh-latest.tar.xz

424 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

6. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-
nary isogeny-based schemes. IACR Cryptology ePrint Archive 2018/537, version
20180621:135910 (2018). https://eprint.iacr.org/2018/537/20180621:135910

7. Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-38424-3_7

8. Bröker, R.: A p-adic algorithm to compute the Hilbert class polynomial. Math.
Comput. 77(264), 2417–2435 (2008)

9. Bröker, R., Stevenhagen, P.: Efficient CM-constructions of elliptic curves over finite
fields. Math. Comput. 76(260), 2161–2179 (2007)

10. Buchmann, J., Vollmer, U.: Binary Quadratic Forms: An Algorithmic Approach.
Algorithms and Computation in Mathematics, vol. 20. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-46368-9

11. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

12. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

13. Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In:
Jager, H. (ed.) Number Theory Noordwijkerhout 1983. LNM, vol. 1068, pp. 33–62.
Springer, Heidelberg (1984)

14. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9_11

15. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4_21

16. Costello, C., Smith, B.: Montgomery curves and their arithmetic: the case of large
characteristic fields. IACR Cryptology ePrint Archive 2017/212 (2017). https://ia.
cr/2017/212

17. Couveignes, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006/291 (2006). https://ia.cr/2006/291

18. Cox, D.A.: Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex
Multiplication. Pure and Applied Mathematics, 2nd edn. Wiley, Hoboken (2013)

19. De Feo, L.: Mathematics of isogeny based cryptography (2017). https://arxiv.org/
abs/1711.04062

20. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

21. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Galbraith, S.D., Peyrin, T. (eds.) ASIACRYPT 2018, LNCS,
vol. 11274, pp. xx–yy. Springer, Heidelberg (2018)

22. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016)

23. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

https://eprint.iacr.org/2018/537/20180621:135910
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-3-540-46368-9
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://ia.cr/2017/212
https://ia.cr/2017/212
https://ia.cr/2006/291
https://arxiv.org/abs/1711.04062
https://arxiv.org/abs/1711.04062
https://doi.org/10.1007/3-540-47721-7_12

CSIDH: An Efficient Post-Quantum Commutative Group Action 425

25. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7_17

26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

27. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields.
LMS J. Computat. Math. 2, 118–138 (1999)

28. Galbraith, S.D.: Mathematics of Public-Key Cryptography. Cambridge University
Press, Cambridge (2012)

29. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

30. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8_1

31. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quant. Inf. Process. 17. IACR Cryptology ePrint Archive 2017/774
(2018). https://ia.cr/2017/774

32. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC,
pp. 212–219. ACM (1996)

33. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Am. Math. Soc. 2(4), 837–850 (1989)

34. Hallgren, S.: Fast quantum algorithms for computing the unit group and class
group of a number field. In: STOC, pp. 468–474. ACM (2005)

35. Hasse, H.: Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die Struk-
tur des Meromorphismenrings. Die Riemannsche Vermutung. J. für die reine und
angewandte Mathematik 175, 193–208 (1936)

36. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A Modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_12

37. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D.: SIKE. Submission to [48]. http://sike.org

38. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

39. Jao, D., LeGrow, J., Leonardi, C., Ruiz-Lopez, L.: A subexponential-time, polyno-
mial quantum space algorithm for inverting the CM group action. In: MathCrypt
2018 (2018, to appear)

40. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an
application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504
(2009)

41. Kieffer, J.: Étude et accélération du protocole d’échange de clés de Couveignes-
Rostovtsev-Stolbunov. Mémoire du Master 2, Université Paris VI (2017). https://
arxiv.org/abs/1804.10128

https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://ia.cr/2017/774
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
http://sike.org
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://arxiv.org/abs/1804.10128
https://arxiv.org/abs/1804.10128

426 W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes

42. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkeley (1996)

43. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

44. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC, LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

45. Lenstra Jr., H.W., Lenstra, A.K., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

46. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

47. Mordell, L.J.: The congruence (p − 1/2)! ≡ ±1 (mod p). Am. Math. Mon. 68(2),
145–146 (1961)

48. National Institute of Standards and Technology: Post-quantum Cryptography
Standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

49. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-02295-1

50. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

51. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. Am. Math. Soc. (N.S.)
23(1), 127–137 (1990)

52. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space (2004). https://arxiv.org/abs/quant-ph/0406151

53. Renes, J.: Computing isogenies between Montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_11

54. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006/145 (2006). https://ia.cr/2006/145

55. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser.
A 46(2), 183–211 (1987)

56. Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings
of Symposia in Pure Mathematics, vol. 20, pp. 415–440 (1971)

57. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

58. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica 1(1),
83–86 (1935)

59. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-
387-09494-6

60. Stolbunov, A.: Public-key encryption based on cycles of isogenous elliptic curves.
Master’s thesis, Saint-Petersburg State Polytechnical University (2004). (in Rus-
sian)

61. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

62. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian
University of Science and Technology (2011)

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-319-70697-9_12
https://arxiv.org/abs/quant-ph/0406151
https://doi.org/10.1007/978-3-319-79063-3_11
https://ia.cr/2006/145
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6

CSIDH: An Efficient Post-Quantum Commutative Group Action 427

63. Sutherland, A.V.: Order computations in generic groups. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2007). https://groups.csail.mit.edu/cis/theses/
sutherland-phd.pdf

64. Sutherland, A.V.: Identifying supersingular elliptic curves. LMS J. Comput. Math.
15, 317–325 (2012)

65. Sutherland, A.V.: Isogeny volcanoes. In: ANTS X. Open Book Series, vol. 1, pp.
507–530. MSP (2012). https://arxiv.org/abs/1208.5370

66. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Mathe-
maticae 2(2), 134–144 (1966)

67. The Sage Developers: SageMath, The Sage Mathematics Software System, Version
8.1 (2018). https://sagemath.org

68. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_10

69. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des
Sciences de Paris 273, 238–241 (1971)

70. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure 2, 521–560 (1969)

71. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7_9

https://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf
https://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf
https://arxiv.org/abs/1208.5370
https://sagemath.org
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9

Computing Supersingular Isogenies
on Kummer Surfaces

Craig Costello(B)

Microsoft Research, Redmond, USA
craigco@microsoft.com

Abstract. We apply Scholten’s construction to give explicit isogenies
between the Weil restriction of supersingular Montgomery curves with
full rational 2-torsion over Fp2 and corresponding abelian surfaces over
Fp. Subsequently, we show that isogeny-based public key cryptography
can exploit the fast Kummer surface arithmetic that arises from the the-
ory of theta functions. In particular, we show that chains of 2-isogenies
between elliptic curves can instead be computed as chains of Richelot
(2, 2)-isogenies between Kummer surfaces. This gives rise to new possi-
bilities for efficient supersingular isogeny-based cryptography.

Keywords: Supersingular isogenies · SIDH · Kummer surface
Richelot isogeny · Scholten’s construction

1 Introduction

Public key cryptography based on supersingular isogenies is gaining increased
popularity due to its conjectured quantum-resistance. In November 2017, an
actively secure key encapsulation mechanism called SIKE [22], which is based on
Jao and De Feo’s supersingular isogeny Diffie-Hellman (SIDH) protocol [16,23],
was submitted to NIST in response to their call for quantum-resistant public
key solutions [34]. When compared to other proposals of quantum-resistant key
encapsulation mechanisms, SIKE currently offers an interesting bandwidth ver-
sus performance trade-off; its keys are appreciably smaller than its code- and
lattice-based counterparts, but the times required for encapsulation and decap-
sulation are significantly higher. This performance drawback of supersingular
isogeny-based cryptography is the main practical motivation for this paper.

This Work. 15 years ago, Scholten [31] showed that if E is an elliptic curve
defined over a quadratic extension field L of a non-binary field K, and if its entire
2-torsion is L-rational, then a genus-2 curve C can be constructed over K such
that its Jacobian JC is isogenous to the Weil restriction ResL

K(E). Fortuitously,
supersingular isogeny-based cryptography currently uses elliptic curves that pre-
cisely meet these requirements. In particular, state-of-the-art implementations
(e.g., [14,15]) of SIDH fix a large prime field K = Fp with p = 2i3j − 1 for
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 428–456, 2018.
https://doi.org/10.1007/978-3-030-03332-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_16&domain=pdf

Computing Supersingular Isogenies on Kummer Surfaces 429

i > j > 100, construct L = Fp2 , and work in the supersingular isogeny class of
elliptic curves over Fp2 whose group structures are all isomorphic to Zp+1×Zp+1.
This necessarily means that all curves in the supersingular isogeny class have
full rational 2-torsion, can be written in Montgomery form, and that for any
such curve E/Fp2 , Scholten’s construction can be used to write down the curve
C/Fp whose Jacobian JC is isogenous to the Weil restriction of E with respect
to Fp2/Fp.

In Proposition 1 we use Scholten’s construction to write down a curve whose
Jacobian is isogenous to the Weil restriction of any supersingular curve that
satisfies the above requirements. Although the existence of this isogeny is guar-
anteed by his construction, Scholten does not provide the isogeny itself, and as is
pointed out in [6, Sect. 2], the construction does not guarantee that this isogeny
is efficiently computable. In our supersingular setting, however, we are able to
derive simple explicit isogenies between the two varieties; these turn out to be
dual (2, 2)-isogenies whose compositions are, by definition, the multiplication-
by-2 morphism on the corresponding varieties.

The application of Scholten’s construction and the derivation of the explicit
maps above allows us to study SIDH computations on abelian surfaces over Fp,
rather than on elliptic curves over Fp2 . In particular, rather than using Vélu’s
formulas [35] to compute secret 2e-isogenies as chains of 2- and/or 4-isogenies
on elliptic curves over Fp2 [16], we show that the same secret isogenies can
instead be computed as a chain of (2, 2)-isogenies on Jacobian varieties over Fp.
While computing isogenies on higher genus abelian varieties is, in general, much
more complicated than Vélu’s formulas for elliptic curve isogenies, the special
case of (2, 2)-isogenies between genus-2 Jacobians dates back to the works of
Richelot [29,30] from almost two centuries ago. Subsequently, the computation
of Richelot isogenies is already well-documented in the literature (cf. [10,33]),
and this allows us to tailor the explicit formulas to our scenario of computing
chains of (2, 2)-isogenies on supersingular Jacobians.

Crucial to the efficacy of this work is that we are able to compute (2, 2)-
isogenies on the Kummer surfaces associated to supersingular Jacobians, rather
than in the full Jacobian groups. This allows us to leverage the fast Kummer
surface arithmetic arising from the classical theory of theta functions, which was
first proposed for computational purposes by the Chudnovsky brothers [12], and
which was brought to life in cryptography by Gaudry [19]. In his article [19,
Remark 3.5], Gaudry points out that the fast (pseudo-)doublings on Kummer
surfaces are the result of pushing points back and forth through a (2, 2)-isogenous
variety, i.e., that the corresponding (2, 2)-isogenies split the multiplication-by-2
map on the associated Kummer surface. This observation plays a key role in
deriving efficient isogenies on fast Kummer surfaces.

Related Work. This paper relies on the results of several authors:-

– The construction in Scholten’s unpublished manuscript [31] is at the heart of
this work. It gives rise to Proposition 1 which paves the way for the rest of
the paper.

430 C. Costello

– In 2014, Bernstein and Lange [6] revived Scholten’s work when they proposed
using his construction in the context of (hyper)elliptic curve cryptography
(H)ECC to convert keys back and forth between elliptic and hyperelliptic
curves, in such a way so as to exploit advantageous properties of both set-
tings. They were also the first to explicitly derive instances of the isogenies
alluded to by Scholten, and to show that they can be efficient enough to be
used in online cryptographic computations. The setting considered in [6] has
the advantage of having a single elliptic-and-hyperelliptic curve pair that is
fixed once-and-for-all (meaning the back-and-forth maps also remain fixed),
while in our scenario we will need general-purpose maps that can handle
any supersingular Montgomery curves efficiently at runtime. However, in the
supersingular setting, we have the advantage that our Jacobians have a fixed
embedding degree of k = 2, and we can therefore exploit the existence of
an efficiently computable trace map; this allows us to derive much simpler
back-and-forth isogenies than those presented in [6].

– Renes and Smith [28] recently introduced qDSA: the quotient digital signature
algorithm. In order to instantiate their scheme on fast Kummer surfaces,
they deconstructed the pseudo-doubling map into the explicit (2, 2)-isogenies
alluded to by Gaudry [19, Remark 3.5]; this deconstruction (depicted in [28,
Fig. 1]) plays a key role in this paper. Indeed, it was their explicit treatment of
the dual Kummer surface and subsequent illustration of simple (2, 2)-isogenies
between fast Kummer surfaces that, in part, inspired the present work.

– Being able to study Kummer surface arithmetic as a viable alternative in
the supersingular isogeny landscape is made easier by virtue of the fact that
state-of-the-art SIDH implementations already work entirely in the Kummer
variety, E/{±}, of a given supersingular elliptic curve E. In their article
introducing SIDH, Jao and De Feo [23] showed that, in addition to its widely
known application of computing scalar multiplications, fast Montgomery x-
only style arithmetic [25] could also be used to push points through isogenies.
In more recent work, Costello, Longa and Naehrig [14] exploited a similar
optimisation when computing the isogenous curves in SIDH, observing that
isogeny arithmetic is twist-agnostic in SIDH in a similar fashion to point
arithmetic being twist-agnostic in Bernstein’s Curve25519 ECC software [3].
Subsequently, in the SIKE proposal [22], all elliptic curve points are only ever
represented up to sign and all elliptic curves are only ever represented up to
quadratic twist. Ultimately, this means that when we move to genus 2, we
are able to work in the pre-existing SIDH infrastructure and replace abelian
surfaces with Kummer surfaces and points on abelian surfaces with points on
these Kummer surfaces.

– One significant hurdle to overcome in order to exploit fast isogenies on our
Kummer surfaces it that the (2, 2)-isogeny that splits pseudo-doublings1 cor-
responds to a special kernel, and in SIDH computations we need isogenies that

1 By definition, every (2, 2)-isogeny will give the multiplication-by-2 map when com-
posed with its dual, but here we are referring to the specific (2, 2)-isogeny alluded
to in [19, Remark 3.5], and made explicit by the dualising procedure in [28, Fig. 1].

Computing Supersingular Isogenies on Kummer Surfaces 431

work identically for general kernel elements, or at least identically for all of the
kernel elements that can arise in a large-degree supersingular isogeny routine.
This was achieved in the elliptic curve case by De Feo, Jao and Plût [16], who
use an isomorphism to move the general Montgomery 2-torsion point (α, 0)
with α �= 0 to the special 2-torsion point (0, 0). However, in our case, the ker-
nels of Richelot isogenies are non-cyclic, and finding the isomorphism to move
general kernels to special kernels is less obvious. Our overcoming this hurdle
on Jacobians (see Sect. 4) is aided by the use of quadratic splittings intro-
duced by Smith in his treatment of Richelot kernels [33, Chap. 8], and our
overcoming this hurdle on fast Kummer surfaces (see Sect. 5) employs the
technique of [16, Sect. 4.3.2], which uses higher order torsion points (lying
above the kernel) to avoid square root computations.

Roadmap. Section 2 provides background and sets notation. Section 3 defines
the abelian surfaces corresponding to supersingular Montgomery curves (by way
of Proposition 1), and gives the back-and-forth maps between these two objects.
Section 4 then studies (2, 2)-isogenies on supersingular abelian surfaces and, in
particular, it shows how to replace even-power elliptic curve isogenies defined
over Fp2 with chains of (2, 2)-isogenies inside full Jacobians defined over Fp.
This lays the foundations to move to Kummer surfaces in Sect. 5, where the
(2, 2)-isogenies simplify and become much faster. Implications for isogeny-based
cryptography are discussed in Sect. 6.

There are many constants, variables and formulas in this work, so the risk of
typographical error is high. Thus, for readers wanting to verify or replicate this
work, illustrative Magma source files can be found at

https://www.microsoft.com/en-us/download/details.aspx?id=57309.

Before going any further, we stress that this paper in no way changes the security
picture of isogeny-based cryptography, and that using Kummer surfaces over
Fp instead of elliptic curves over Fp2 can be viewed as a mere implementation
choice. The efficient back-and-forth maps in Sect. 3 show that any conceivable
hard problem that can be posed in one setting can be efficiently ported over to
the other setting.

2 Preliminaries

This section gives the necessary background for the remainder of the paper. We
start with a brief summary of some jargon for non-experts. An abelian variety is
a general term for a projective algebraic variety that possesses an algebraic group
law. When we quotient an abelian variety by the map that takes elements to their
inverses, we get the associated Kummer variety. There are two examples that are
relevant in this paper. An elliptic curve is an abelian variety of dimension 1, and
its quotient by {±1} gives the associated Kummer line; if E is a short Weierstrass
or Montgomery curve, then a geometric point P ∈ E can be parameterised on

https://www.microsoft.com/en-us/download/details.aspx?id=57309

432 C. Costello

the Kummer line E/{±1} by its x-coordinate, x(P), which is why it is often
called the x-line. An abelian surface is an abelian variety of dimension 2, and
all such instances in this work occur as Jacobian groups of genus-2 hyperelliptic
curves; if C is a genus-2 curve and JC is its Jacobian, then the quotient JC/{±1}
is called a Kummer surface.

Supersingular Montgomery Curves. State-of-the-art SIDH implementa-
tions (cf. [14,15]) currently employ large prime fields of the form p = 2i3j − 1
with i > j > 100, so that, over Fp2 , the supersingular isogeny class consists
entirely of curves whose abelian group structure is isomorphic to Zp+1 × Zp+1.
This necessarily means that all of the curves in the isogeny class have full Fp2 -
rational 2-torsion, and moreover, that they can be written in Montgomery form
over Fp2 as By2 = x3+Ax2+x. Rather than parameterising Montgomery curves
in this way, we will make an arbitrary choice of one of the two rational 2-torsion
points (α, 0) with α /∈ {−1, 0, 1} (the other is (1/α, 0)), and from hereon will use
Eα to denote the curve

Eα/K : y2 = x(x − α)(x − 1/α), (1)

the j-invariant of which is

j(Eα) = 256
(α4 − α2 + 1)3

α4(α2 − 1)2
.

Note that the j-invariant is the same for Eα as it is for the curve δy2 = x(x −
α)(x − 1/α); this is because δ only helps fix the quadratic twist, i.e., only fixes
the curve up to K̄-isomorphism. As mentioned in Sect. 1, point and isogeny
arithmetic is independent of δ, so our curves need only be defined up to twist.

Throughout the paper we will often be making implicit use of the following
result, which is essentially due to Auer and Top [1].

Lemma 1. If Eα/Fp2 : y2 = x(x−α)(x−1/α) is supersingular, then α ∈ (F×
p2)2,

and α2 − 1 ∈ (F×
p2)8.

Proof. The group structure of Eα implies that at least one of the three 2-torsion
points (0, 0), (α, 0) and (1/α, 0) must be in [2]E(Fp2), so α ∈ (F×

p2)2 by [1,
Lemma 2.1]. Thus, there exists ε ∈ Fp2 such that ε2 = −α3, and it follows
that E is isomorphic over Fp2 to the curve Ẽ : y2 = x(x − 1)(x + α2 − 1) via
(x, y) �→ (−αx+1, εy). Applying [1, Proposition 3.1] yields that α2−1 ∈ (F×

p2)8. ��

Abelian Surfaces. Over a field K of characteristic not 2, every genus-2 curve
is birationally equivalent to a curve of the form C : y2 = f(x), where f(x) ∈ K[x]
is of degree 6 and has no repeated factors. In this work we will only encounter
such curves where f(x) splits completely in K[x], so we will often be writing
them in the form

C/K : y2 = (x − z1)(x − z2)(x − z3)(x − z4)(x − z5)(x − z6), (2)

Computing Supersingular Isogenies on Kummer Surfaces 433

where zi ∈ K for i ∈ {1, . . . , 6}, and where we write y2 instead of δy2 for the
same reason as for the elliptic curve case above.

Denote the difference zi − zj by (ij). Following Igusa [21, p. 620], define the
quantities

I2 :=
∑

(12)2(34)2(56)2,

I4 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 :=
∏

(12)2, (3)

where the sums and product above run over all of the distinct expressions
obtained by permuting the index set {1, . . . , 6}. The invariants I2, I4, I6, and
I10 are called the Igusa-Clebsch invariants, and they play an analogous role to
the j-invariant of an elliptic curve: two curves C and C ′, with respective Igusa-
Clebsch invariants (I2, I4, I6, I10) and (I ′

2, I
′
4, I

′
6, I

′
10), are isomorphic over K̄ if

and only if

(I2 : I4 : I6 : I10) = (I ′
2 : I ′

4 : I ′
6 : I ′

10) ∈ P(2, 4, 6, 10)(K̄),

i.e., if and only if there exists a λ ∈ K̄× such that

(I ′
2, I

′
4, I

′
6, I

′
10) = (λ2I2, λ

4I4, λ
6I6, λ

10I10).

Observe that, as in the elliptic curve case, the invariants here are independent
of δ, i.e., are twist-independent. For a, b, c, d ∈ K with ad �= bc and e ∈ K×, the
map

κ(a,b,c,d) : C → C ′, (x, y) �→
(

ax + b

cx + d
,

ey

(cx + d)3

)
(4)

is a K-rational isomorphism to the curve C ′. Up to isomorphism and quadratic
twist, and by abuse of notation, we can write C ′ as C ′ : y2 =

∏6
i=1(x − z′

i),
where z′

i = (azi + b)/(czi + d). Let {�0, �1, �∞, �λ, �μ, �ν} = {z1, . . . , z6} be some
relabeling of the roots of the sextic in (2). Setting

a = �1 − �∞, b = �0(�∞ − �1), c = �1 − �0, and d = �∞(�0 − �1)

in (4) yields a map κ(a,b,c,d) : C → Cλ,μ,ν , where

Cλ,μ,ν : y2 = x(x − 1)(x − λ)(x − μ)(x − ν)

is the so-called Rosenhain form of C. Under κ(a,b,c,d), the points (�λ, 0), (�μ, 0)
and (�ν , 0) on C are respectively sent to (λ, 0), (μ, 0) and (ν, 0) on Cλ,μ,ν , while
the points (�0, 0), (�1, 0) and (�∞, 0) are respectively sent to (0, 0), (1, 0), and the
point at infinity on Cλ,μ,ν . There are 6! = 720 possible relabelings of the six zi,
and as such there are 720 possible (ordered) triples (λ, μ, ν) of Rosenhain invari-
ants. In this work we can identify the Jacobian variety, JC , of the curve C/K with

434 C. Costello

the degree zero divisor class group of C, i.e., with Pic0K(C) = Div0
K(C)/PrinK(C)

(cf. [18, Sect. 7.8]). In this way a point in the affine part of JC (see [18, p. 204])
is represented using the Mumford representation of the corresponding divisor
D ∈ Pic0K(C); if D is reduced and non-zero, then the effective component of the
support of D either contains 1 or 2 (not necessarily unique) K̄-rational points on
C. In the first (so-called degenerate) case, if (x1, y1) is the only such point (and
its multiplicity is 1) in the support of D, then (x1, y1) ∈ C(K), and its Mumford
representation is (x − x1, y1) ∈ K[x] × K[x]. In the general case, when (x1, y1)
and (x2, y2) with x1 �= x2 are the two K̄-rational points on C in supp(D), then
the corresponding Mumford representation is

(x2 + u1x + u0, v1x + v0) ∈ K[x] × K[x],

where

u1 = −x1 − x2 , u0 = x1x2 , v1 =
y2 − y1
x2 − x1

, and v0 =
y1x2 − x1y2

x2 − x1
. (5)

Note that, in general, the Mumford representation of a point in JC(K) can
always be written in K[x] × K[x], but this does not imply that the underlying
points on C(K̄) are K-rational.

If (x2+u1x+u0, v1x+v0) is a generic point in JC , then the map κ(a,b,c,d) : C →
C ′ in (4) induces a map between their Jacobians, where, for elements with �1 =
c2u0 − cdu1 + d2 and �2 = ad − bc such that �1�2 �= 0, we have (x2 + u1x +
u0, v1x + v0) �→ (x2 + u′

1x + u′
0, v

′
1x + v′

0), with

u′
1 = �−1

1 ((ad + bc)u1 − 2acu0 − 2bd) , u′
0 = �−1

1

(
a2u0 − abu1 + b2

)
,

v′
0 = −e(�21�2)

−1
(
ac2(u0u1v1 − u2

1v0 + u0v0) − c(2ad + bc)(u0v1 − u1v0)

− d(ad + 2bc)v0 + bd2v1

)
, (6)

and v′
1 = e(�21�2)

−1
(
c2(cu1 − 3d)(u0v1 − u1v0) + cv0(c2u0 − 3d2) + d3v1

)
.

Weil Restriction of Scalars. The Weil restriction of scalars is the process
of re-writing a system of equations over a finite extension L/K as a system of
equations in more variables over K – we refer to [18, Sect. 5.7] for a more general
discussion. In this work it can be considered as merely a formality to increase
dimension so that speaking of isogenies makes sense. The Weil restriction of our
one-dimensional varieties Eα/Fp2 (with respect to the extension Fp2 = Fp(i)
with i2 + 1) is the two-dimensional variety

Wα := Res
Fp2

Fp
(Eα) = V

(
W0(x0, x1, y0, y1),W1(x0, x1, y0, y1)

)
,

where

W0 = (α2
0 + α2

1)
(
α0(x

2
0 − x2

1) − 2α1x0x1 + δ0(y
2
0 − y2

1) − 2y0y1δ1 − x0(x
2
0 − 3x2

1 + 1)
)

+ α0(x
2
0 − x2

1) + 2α1x0x1 and

W1 = (α2
0 + α2

1)
(
α1(x

2
0 − x2

1) + 2α0x0x1 + δ1(y
2
0 − y2

1) + 2y0y1δ0 − x1(3x2
0 − x2

1 + 1)
)

+ α1(x
2
1 − x2

0) + 2α0x0x1

Computing Supersingular Isogenies on Kummer Surfaces 435

are obtained by putting x = x0 + x1 · i, y = y0 + y1 · i as well as α = α0 + α1 · i
and δ = δ0 + δ1 · i (with x0, x1, y0, y1, α0, α1, δ0, δ1 ∈ Fp) into (1). In terms
of dimension, it now makes sense to speak of isogenies between Wα and the
two-dimensional abelian surfaces described in the next section.

We make the disclaimer that oftentimes we will speak loosely and refer to
isogenies and maps between Eα, intermediate curves, and abelian surfaces, but
that from hereon it should be clear that, technically speaking, these maps are
only well-defined when speaking of the corresponding Weil restrictions of these
elliptic curves with respect to Fp2/Fp.

Power-of-2 Elliptic Curve Isogenies in SIDH. Understanding how 2e-
isogenies are computed in SIDH is key in understanding the directions we take
in Sects. 4 and 5. Recall the three 2-torsion points on Eα as (0, 0), (α, 0) and
(1/α, 0); in general, each of these corresponds to a different 2-isogeny emanating
from Eα. Following [16, Sect. 4.3.2] and [27, Sect. 4.2], when the kernel is gener-
ated by the special point (0, 0), applying Vélu’s formulas [35] to write down the
isogeny allows us to (re)write the image curve in Montgomery form2. However,
when the kernel is generated by one of the other two points, direct application of
Vélu’s formulas makes writing the image curve in Montgomery form much less
obvious. This was achieved in [16,27] by using an isomorphism to move these two
kernel points to (0, 0) on an isomorphic curve (which differs depending whether
the kernel is 〈(α, 0)〉 or 〈(1/α, 0)〉), prior to invoking Vélu.

In our case we follow an analogous path. From the work in [28], we have a
very simple Kummer surface isogeny that corresponds to a special kernel O, and
we use an isomorphism to move our two more general kernels, Υ and Υ̃ , prior to
applying the isogeny (see Sects. 4 and 5 for the definitions of O, Υ and Υ̃).

We point out that this analogue is not a coincidence, and is made concrete
in Lemma 2. Moreover, just like in the elliptic curve case where (0, 0) cannot
arise as the kernel of a repeated isogeny in SIDH (because it gives rise to the
dual isogeny – see [16]), in our case it is O that corresponds to the dual so our
kernel will, with the possible exception of the very first (2, 2)-isogeny, only ever
correspond to Υ and Υ̃ .

3 Abelian Surfaces Isogenous to Supersingular
Montgomery Curves

This section links supersingular Montgomery curves defined over Fp2 with
abelian surfaces defined over Fp. We start with Proposition 1, which writes down
the genus-2 curve Cα/Fp arising from Scholten’s construction; its proof is post-
poned until after we have derived the back-and-forth (2, 2)-isogenies between
the given Weil restriction and abelian surface. We point out that the exposition

2 The importance of the codomain curve sharing the same form as the domain curve
is a result of our need to repeat many small isogeny computations (which we want
to be as efficient and uniform as possible).

436 C. Costello

below is simplified by assuming3 p ≡ 3 mod 4 so that Fp2 = Fp(i) with i2+1 = 0,
but treating the complimentary or general case is analogous. The only impactful
restriction made in addition to Scholten’s requirements is that of supersingular-
ity. As mentioned in Sect. 1, this gives rise to simpler maps than those in [6] by
way of the trace map, but several of our intermediate steps may still be useful
beyond the supersingular scenario.

Proposition 1. Let p ≡ 3 mod 4, let Fp2 = Fp(i) with i2 + 1 = 0, and let

Eα/Fp2 : y2 = x(x − α)(x − 1/α)

be supersingular with α �∈ Fp. Write α = α0 + α1 · i with α0, α1 ∈ Fp. The Weil
restriction of scalars of Eα(Fp2) with respect to Fp2/Fp is (2, 2)-isogenous to the
Jacobian, JCα

, of

Cα/Fp : y2 = f1(x)f2(x)f3(x), (7)

where

f1(x) = x2 +
2α0

α1
· x − 1,

f2(x) = x2 − 2α0

α1
· x − 1, and

f3(x) = x2 − 2α0(α2
0 + α2

1 − 1)
α1(α2

0 + α2
1 + 1)

· x − 1.

Remark 1 (Singular quadratic splittings and split Jacobians). We immediately
point out that the fi(x) in Proposition 1 are linearly dependent; namely, f3(x) =
1/(N+1)·f1(x)+N/(N+1)·f2(x), where N = NFp2/Fp

(α) = α2
0+α2

1. Oftentimes
in the literature, this is referred to as the singular scenario, where the Jacobian
of Cα is reducible, or split (e.g., [10, Theorem 14.1.1(ii)] and [33, Proposition
8.3.1]). However, we stress that those results do not necessarily imply that this
splitting occurs over Fp; Cassels and Flynn assume that they are working in the
algebraic closure [10, p. 154] and Smith’s construction of the linear polynomials
on [33, p. 119] also requires a field extension in the general case. Indeed, if all of
the elliptic curves in our isogeny graph were (2, 2)-isogenous to a Jacobian that
is split over Fp, this would have serious implications on the quantum security
of SIDH (see [11]). We conjecture that the Jacobian of Cα only splits over Fp

when the j-invariant of Eα is itself defined over Fp, and note that adhering to
the constructions in [10] and [33] (over the algebraic closure) yields an isogeny
between JCα

(Fp2) and E2
α(Fp2), which manifests JCα

being supersingular [26,
Theorem 4.2].

3 In the current landscape of isogeny-based cryptography, the assumption of p ≡
3 mod 4 is standard [14–16,22].

Computing Supersingular Isogenies on Kummer Surfaces 437

Fixing Roots of the Sextic. Following Lemma 1, let γ, β ∈ Fp2 be such that

γ2 = α and β2 = (α2 − 1)/α, (8)

and write β = β0 + β1 · i and γ = γ0 + γ1 · i for β0, β1, γ0, γ1 ∈ Fp. The curve
Cα/Fp from Proposition 1 will henceforth be written as

Cα/Fp : y2 = (x − z1)(x − z2)(x − z3)(x − z4)(x − z5)(x − z6),

where

z1 :=
β0

β1
, z2 :=

γ0
γ1

, z3 := −γ0
γ1

, z4 := −β1

β0
, z5 := −γ1

γ0
, z6 :=

γ1
γ0

, (9)

and where we note at once that

z3 = −z2 , z4 = −1/z1 , z5 = −1/z2 , and z6 = 1/z2.

Furthermore, observe that any combination of the choices of roots for γ and β
in (8) gives rise to the same values of the zi in (9).

Mapping from Eα (Fp2) to JCα
(Fp). The (2, 2)-isogeny from (the Weil restric-

tion of) Eα(Fp2) to the Jacobian JCα
(Fp) will be derived as the composition of

maps between intermediate curves. We start by defining the curve

Ẽα/Fp2 : y2 = (x − r1)(x − r2)(x − r3),

with

r1 := (α − 1/α)p−1, r2 := αp−1, and r3 := 1/αp−1.

Fix β̂ such that β̂2 = r3 − r2 (it is easy to see that β̂ always exists over Fp2),
and define an isomorphism between Eα and Ẽα as

ψ : Eα → Ẽα, (x, y) �→
(
(β̂/β)2 · x + r1 , (β̂/β)3 · y

)
.

Following [31, Lemma 2.1], define C̃α/Fp2 as the hyperelliptic curve

C̃α/Fp2 : y2 = (x2 − r1)(x2 − r2)(x2 − r3),

where we have the map

ω : C̃α → Ẽα, (x, y) �→ (x2, y).

Observing that r1, r2 and r3 are all square in Fp2 , let W be the set of x-
coordinates of the six Weierstrass points of C̃α. A key step in Scholten’s con-
struction is to choose a map φ that, restricted to x-coordinates, leaves φ(W)
invariant under the action of Galois. With Fp2 = Fp(i), our choice is

φ : C̃α(Fp2) → Cα(Fp2),

(x, y) �→
(

−i · x − 1
x + 1

,
y

w

(
1 − x − 1

x + 1

)3
)

,

438 C. Costello

where w := r3(1 − r1)(r2 − 1)2 and Cα is the curve from Proposition 1. An
important observation here is that Cα is defined over Fp, while C̃α is defined
over Fp2 , and the map φ is between the Fp2 -rational points on these curves.

Composing the image of the pullback ω∗ (see [18, Definition 8.3.1]) with φ
(which is extended linearly into JCα

(Fp2) via the Abel-Jacobi map as in (5)),
induces the map

ρ : Ẽα(Fp2) → JCα
(Fp2),

(x̃, ỹ) �→ (x2 + u1x + u0, v1 + v0),

where

u1 = 2i ·
(

x̃ + 1
x̃ − 1

)
, u0 = −1, v1 = −4i · ỹ(x̃ + 3)

w(x̃ − 1)2
, v0 =

4ỹ

w(x̃ − 1)
.

Since JCα
is defined over Fp and is supersingular with embedding degree

k = 2, we can use the trace map T to move elements from JCα
(Fp2) into JCα

(Fp),
i.e.,

T : JCα
(Fp2) → JCα

(Fp),

P �→
∑

σ∈Gal(Fp2/Fp)

σ(P),

which for generic elements in JCα
(Fp2), becomes

T : (x
2
+ u1x + u0, v1x + v0) �→ (x

2
+ u1x + u0, v1x + v0) ⊕J (x

2
+ u

p
1x + u

p
0 , v

p
1x + v

p
0),

where ⊕J denotes the addition law in JCα
(Fp2), explicit formulas for which are

in [20, Sect. 5].
Finally, we can now define the map from (the Weil restriction of) Eα(Fp2)

to JCα
(Fp) as

η : Eα(Fp2) → JCα
(Fp),

P �→ (T ◦ ρ ◦ ψ)(P).

Mapping from JCα (Fp) to Eα (Fp2). We start by writing down φ−1, the
inverse of φ, as

φ−1 : Cα(Fp2) → C̃α(Fp2),

(x, y) �→
(

−x − i

x + i
, −i · yw

(x + i)3

)
.

Extending φ−1 linearly to Div
Fp

(Cα) (and recalling our identification of JCα
(K)

and Pic0K(Cα) – see Sect. 2) induces a map ρ̂, defined for generic elements in the
affine part of JCα

(Fp) as

ρ̂ : JCα
(Fp) → Ẽα(Fp2) × Ẽα(Fp2),

P �→
(
(ω ◦ φ−1)(x1, y1)), (ω ◦ φ−1)(x2, y2)

)
,

Computing Supersingular Isogenies on Kummer Surfaces 439

where the Mumford representation of P ∈ JCα
(Fp) is exactly as in (5), with

(x1, y1), (x2, y2) ∈ Cα(Fp2).
We can now define the full map from JCα

(Fp) to Eα(Fp2) as

η̂ : JCα
(Fp) → Eα(Fp2),

P �→
(
ψ−1 ◦ ⊕Ẽ ◦ ρ̂

)
(P),

where ⊕Ẽ : Ẽα × Ẽα → Ẽα is the addition law on Ẽα, and the inverse of the
isomorphism ψ is

ψ−1 : Ẽα → Eα, (x, y) �→
(
(β/β̂)2 · (x − r1) , (β/β̂)3 · y

)
.

Kernels and Group Structures. Let OEα
be the point at infinity on Eα.

The kernel of the map η : Eα(Fp2) → JCα
(Fp) is

ker(η) = Eα[2] = {OEα
, (0, 0), (α, 0), (1/α, 0)} ,

which is isomorphic to Z2 × Z2.
Let OJ be the identity in JCα

. The kernel of the map η̂ : JCα
(Fp) → Eα(Fp2)

is

ker(η̂) = {OJ , ((x − z1)(x − z4), 0) , ((x − z3)(x − z6), 0) , ((x − z2)(x − z5), 0)} ,

a maximal 2-Weil isotropic subgroup of JCα
[2], which is also isomorphic to Z2 ×

Z2. It is readily verified that, up to isomorphism, we have (η̂ ◦ η) = [2]Eα
, where

[2]Eα
is the multiplication-by-2 map on Eα. Similarly, up to isomorphism, we

have (η ◦ η̂) = [2]J , where [2]J is the multiplication-by-2 map on JCα
. Thus, η

and η̂ are the (unique, up to isomorphism) dual isogenies of one another.
As abelian groups, we have

Eα(Fp2) ∼= Zp+1 × Zp+1,

and

JCα
(Fp) ∼= Z2 × Z2 × Z p+1

2
× Z p+1

2
. (10)

Proof (of Proposition 1). This follows from [31]. Eα is isomorphic to Ẽα under
ψ (indeed, Ẽα is a monic version of the second curve in [31, Lemma 3.1], when
Eα is the first). Thus, under ω : (x, y) �→ (x2, y), Ẽα and JCα

have the same L-
polynomial and are therefore isogenous [31, Lemma 2.1]. It remains to show that
η is a (2, 2)-isogeny, which is an immediate consequence of ker(ω∗) ⊆ Ẽα[2] [18,
Exercise 10.5.2] and the definition of ρ. ��

4 Richelot Isogenies on Supersingular Abelian Surfaces

This section studies Richelot (2, 2)-isogenies whose domain is the Jacobian, JCα
,

of the curve Cα defined in Proposition 1. This lays the foundations for the

440 C. Costello

following section, where we will study these isogenies as they are pushed down
onto a corresponding Kummer surface Kα = JCα

/{±1}. Readers should rest
assured that, as is usual in the genus-2 landscape, the situation looks much
more complicated on the full Jacobian (e.g., in (13)) than it does once we move
to a well-specified Kummer surface.

In general, there are 15 Richelot isogenies emanating from JCα
, but we will

be restricting our focus to the three that correspond to the 2-isogenies on Eα.

Kernels of (2, 2)-Isogenies as Quadratic splittings. Recall the labeling of
the roots z1, . . . , z6 ∈ Fp of the sextic f(x) ∈ Fp[x] in (9). As an abelian group,
the 2-torsion of JCα

, JCα
[2], is isomorphic to (Z/2Z)4; it consists of the zero

element, OJ , together with the 15 points whose Mumford representations are
((x − zi)(x − zj), 0), where i, j ∈ {1, . . . 6} and i �= j. We will use Gi,j to denote
the quadratic polynomial (x− zi)(x− zj) ∈ Fp[x] and write Pi,j ∈ JCα

[2] for the
non-zero 2-torsion point whose Mumford representation is Pi,j = (Gi,j , 0).

Following [33, Sect. 8.1], kernels of (2, 2)-isogenies are called (2, 2)-subgroups,
and these correspond to the maximal 2-Weil isotropic subgroups of JCα

[2].
Smith [33, Sect. 8.2] formalises this connection by introducing quadratic split-
tings. In our case, a quadratic splitting is simply a choice of factorisation
of the sextic polynomial f(x) in Proposition 1 into three quadratic factors
in Fp[x]; one such choice was already illustrated in (7). Henceforth, for any
{i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}, we use the notation (Gi,j , Gk,l, Gm,n) ∈ Fp[x]3

to denote the corresponding quadratic splitting of f(x) = Gi,j ·Gk,l ·Gm,n. There
are 15 choices of splittings, and each corresponds to a unique (2, 2)-subgroup:
the quadratic splitting (Gi,j , Gk,l, Gm,n) corresponds to the (2, 2)-subgroup of
JCα

[2] generated by any two of the three points in {Pi,j , Pk,l, Pm,n} (the third
point is the sum of the other two). In this way, we see that (2, 2)-subgroups are
isomorphic to (Z/2Z)2.

(2, 2)-Subgroups Corresponding to the Montgomery 2-Torsion. Out
of the 15 possible splittings described above, there are three splittings we are
interested in; those where the subsequent (2, 2)-isogenies on JCα

correspond to
the three 2-isogenies on Eα. We make these splittings concrete in the following
lemma.

Lemma 2. Let Eα̂/Fp2 , Eα′/Fp2 and Eα′′/Fp2 be three Montgomery curves that
are respectively Fp2-isomorphic to Eα/〈(0, 0)〉, Eα/〈(α, 0)〉, and Eα/〈(1/α, 0)〉,
and let Cα̂/Fp, Cα′/Fp and Cα′′/Fp be the corresponding hyperelliptic curves (as
in Proposition 1). Furthermore, fix the three quadratic splittings O, Υ , and Υ̃ ,
as

O = (O1, O2, O3) := (G2,3, G5,6, G1,4),
Υ = (Υ1, Υ2, Υ3) := (G4,5, G1,2, G3,6), and

Υ̃ = (Υ̃1, Υ̃2, Υ̃3) := (G1,6, G3,4, G2,5).

Computing Supersingular Isogenies on Kummer Surfaces 441

Then, up to isomorphism, the image curves CO, CΥ and CΥ̃ of the Richelot
(2, 2)-isogenies (with respective kernels corresponding to O, Υ and Υ̃) are such
that

CO = Cα̂, and {CΥ , CΥ̃ } = {Cα′ , Cα′′}.

Proof. Direct substitution of (9) gives

O1 = x2 − γ2
0

γ2
1

, O2 = x2 − γ2
1

γ2
0

, O3 = x2 +
(

β2
1 − β2

0

β0β1

)
x − 1, (11)

Υ1 = x
2 +

(
β1γ0 + γ1β0

β0γ0

)
x +

β1γ1

β0γ0
, Υ2 = x

2 −
(

β0γ1 + γ0β1

β1γ1

)
x +

β0γ0

β1γ1
, Υ3 = x

2 +

⎛
⎝ γ2

0 − γ2
1

γ0γ1

⎞
⎠ x − 1,

and

Υ̃1 = x
2 −

(
β0γ0 + γ1β1

β1γ0

)
x +

β0γ1

β1γ0
, Υ̃2 = x

2 +

(
β0γ0 + γ1β1

β0γ1

)
x +

β1γ0

β0γ1
, Υ̃3 = x

2 +

⎛
⎝ γ2

1 − γ2
0

γ0γ1

⎞
⎠ x − 1.

In each case, if the splitting is written as

S =
(
x2 + g1,1x + g1,0, x

2 + g2,1x + g2,0, x
2 + g3,1x + g3,0

)
,

then the curve with the corresponding (2, 2)-isogenous Jacobian (cf. [10, Sect.
9.2]) is isomorphic to

CS : y2 = h(x) = h1(x)h2(x)h3(x),

where

h1(x) = (g1,1 − g2,1)x2 + 2 (g1,0 − g2,0) x + g1,0g2,1 − g2,0g1,1,

h2(x) = (g2,1 − g3,1)x2 + 2 (g2,0 − g3,0) x + g2,0g3,1 − g3,0g2,1, and

h3(x) = (g3,1 − g1,1)x2 + 2 (g3,0 − g1,0) x + g3,0g1,1 − g1,0g3,1. (12)

Now, following Sect. 2, and using (8), we first write α̂ = (α + 1)/(1 − α), α′ =
2α(α + βγ) − 1 and α′′ = (2 − α2 + 2βγ · i)/α2, and then write each of these
constants in terms of its two Fp components (under the basis {1, i} for Fp2/Fp

as usual). We can then apply Proposition 1 to write down Cα̂, Cα′ and Cα′′ .
Using (3), lengthy but straightforward calculations show that the result follows
from comparing the Igusa-Clebsch invariants of these three curves to those of
the curves CO, CΥ and CΥ̃ obtained above. ��

The explicit Richelot isogeny corresponding to O. Equation (12) writes
down the curve whose Jacobian is (2, 2)-isogenous to that of a given genus-2
curve; here the prescribed kernel can be any (2, 2)-subgroup. To fully describe
the isogeny, we also need to write down explicit formulas for pushing points in
the domain Jacobian through the corresponding isogeny, which is the purpose

442 C. Costello

of this subsection. However, we first note that we will only be needing explicit
formulas for the special case when the kernel subgroup corresponds to a quadratic
splitting of the form of O in (11). To compute isogenies when the splitting is of
the form of Υ and/or Υ̃ , we will be (pre)composing the isogeny described in this
subsection with the isomorphisms (that transform these splittings into splittings
of the form of O) in the next subsection. For reasons analogous to Montgomery
2-isogenies in the elliptic curve case (see Sect. 2), proceeding in this way makes
life easier when we move down to the Kummer surface in Sect. 5.

Bost and Mestre [8] derive explicit (2, 2)-isogenies from Richelot correspon-
dences [33, Definition 8.4.7]. In general, correspondences are divisors on the prod-
uct C ×C ′ of the two curves C and C ′, and the theory of correspondences relates
such divisors to homomorphisms between their Jacobians (see [33, Chap. 3]). In
this paper we focus on the particular case of the Richelot correspondence

VO := V

(
O1(x1)O′

1(x2) + O2(x1)O′
2(x2),

y1y2 − O1(x1)O′
1(x2)(x1 − x2)

)

on Cα×CO. With O1 and O2 as in (11), and with O′
1 and O′

2 as their derivatives,
we get

VO = V

(
4x2(x2

1 − 2α2
0/α2

1 − 1),
α2
1y1y2 + 2x2(4α2

0 + 4α0γ
2
1 + α2

1(1 − x2
1))(x1 − x2)

)
.

Following [33, Sect. 3.3], and viewing VO as a curve on Cα × CO, we make
use of the coverings

πVO
1 : VO → Cα, ((x1, y1), (x2, y2)) �→ (x1, y1)

and
πVO
2 : VO → CO, ((x1, y1), (x2, y2)) �→ (x2, y2),

and compose the pullback πVO∗
1 with the pushforward πVO

2∗ to obtain4 the induced
isogeny

ϕO : JCα
→ JCO

,

defined on general elements of JCα
as

ϕO : (x2 + u1x + u0, v1x + v0) �→ (x2 + u′
1x + u′

0, v
′
1x + v′

0), (13)

where

u′
1 = −α1(u2

1 − 1)(N + 1)
α0(N − 1)

, u′
0 = u2

1, v′
0 = 2M · u1(α0(N − 1) − u1α1(N + 1))

v1α1(N + 1)
,

and

v′
1=2M · (α1u1(N + 1))2 − (N2 − 1)α1α0u1 − N(N + 2α0 + 1)(N − 2α0 + 1))

α0α1(N2 − 1)v1
,

4 Those unfamiliar with these maps can view this process informally as follows: for
a fixed (x1, y1), take the image as the divisor sum of the (in this case) two points,
P and Q, whose coordinates satisfy the resulting equations in (x2, y2). This gives
a map (x1, y1) �→ (P) + (Q) between Div(Cα) and Div(CO) that can be extended
(linearly) to give a map from Pic0(Cα) to Pic0(CO), and then from JCα to JCO .

Computing Supersingular Isogenies on Kummer Surfaces 443

with N = α2
0 + α2

1 and M = (u2
1 − 2α0/α1u1 − 1)(u2

1 + 2α0/α1u1 − 1), and with

CO : y2 = ε0x
(
x2 − ε1x − 1

) (
x2 − ε2x − 1

)
,

where ε0 = 4α0(N−1)
α1(N+1) , ε1 = 2α0(N+1)+4N

α1(N−1) and ε2 = 2α0(N+1)−4N
α1(N−1) .

Isomorphisms of (2,2)-kernels. As mentioned in Sect. 2, we follow a similar
path to that which was taken in the elliptic curve case and precompose the
isogeny described above with isomorphisms that transform the (2, 2)-kernels Υ
and Υ̃ to be of the same form as O, but on an isomorphic curve.

Our situation is more complicated than the elliptic curve case because our
kernels are non-cyclic, meaning that they cannot be defined using a single point
in the Jacobian. But, in the scenario of chained (2, 2)-isogeny computations
on supersingular abelian surfaces, we are able to overcome this and still use
individual 2-torsion points Pi,j to distinguish between the three kernel splittings
O, Υ , and Υ̃ . If n is the even integer (p + 1)/4, and if OJ is the identity on JCα

,
then [n]JCα

is a (2, 2)-subgroup (see (10)), and in our case is always one of

[n]JCα
= {OJ , (O1, 0), (Υ1, 0), (Υ̃1, 0)},

or
[n]JCα

= {OJ , (O2, 0), (Υ2, 0), (Υ̃2, 0)}.

In either case, if P is a point of exact order 2� with � > 1 in JCα
, then we see

that [2�−1]P �= OJ reveals which of the three splittings O, Υ or Υ̃ , corresponds
to our (2, 2)-kernel. Moreover, as discussed at the end of Sect. 2, in SIDH our
kernel will always correspond to one of Υ or Υ̃ , since O generates the dual of the
previous isogeny.

Our task is now to define an isomorphism that moves the kernels Υ and Υ̃
into a kernel of the same form as O, but on an isomorphic curve. For a given
point P = (x2 + u1x + u0, v1x + v0) in JCα

, we define

ξP : JCα
→ JC′

α

as the isomorphism of Jacobians corresponding to κa,b,c,d : Cα → C ′
α from (4),

with

d = 1, c = −u0 − 1 +
√

(u0 − 1)2 + u2
1

u1
,

b = −
√

−u1(2c(u0 − 1) − u1)
u1

, and a = −b
2u0 + cu1

2c + u1
. (14)

When P = (x2+u1x+u0, 0) is a 2-torsion point, the induced isomorphism of
Jacobians in (6) simplifies significantly. Straightforward calculations reveal that,
when P corresponds to the quadratic splitting Υ (i.e., when P ∈ {Υ1, Υ2}), we
have

{
ξ(Υ1,0)((Υ1, 0)) , ξ(Υ1,0)((Υ2, 0))

}
=

{
ξ(Υ2,0)((Υ1, 0)) , ξ(Υ2,0)((Υ2, 0))

}

=
{

((x2 − γ′2
0 /γ′2

1), 0) , ((x2 − γ′2
1 /γ′2

0), 0)
}

,

444 C. Costello

and

ξ(Υ1,0)((Υ3, 0)) = ξ(Υ2,0)((Υ3, 0)) =
(

x2 +
(

β′2
1 − β′2

0

β′
0β

′
1

)
x − 1, 0

)
,

for some γ′
0, γ

′
1, β

′
0, β

′
1 ∈ Fp such that β′ = β′

0+β′
1·i ∈ Fp2 and γ′ = γ′

0+γ′
1·i ∈ Fp2

satisfy γ′2β′2 = γ′4 − 1, which comes from the relation in (8). Thus, the (2, 2)-
subgroup corresponding to the splitting Υ on JCα

is isomorphic (via either ξ(Υ1,0)

or ξ(Υ2,0)) to the splitting

O′ =
(

x2 − γ′2
0 /γ′2

1 , x2 − γ′2
1 /γ′2

0 , x2 + (β′2
1 − β′2

0)/(β′
0β

′
1)x − 1

)

on JC′
α
.

Crucially, the analogous statements apply when the point P corresponds to
the quadratic splitting Υ̃ (i.e., when P ∈ {Υ̃1, Υ̃2}), with the only difference being
different values of γ′

0, γ
′
1, β

′
0, β

′
1 ∈ Fp and a different (but still isomorphic) image

curve JC′
α
.

Finally, we fix
ϕP := (ϕO ◦ ξP)

as the (2, 2)-isogeny of Jacobians whose kernel is the (2, 2)-subgroup correspond-
ing to Υ if P ∈ {(Υ1, 0), (Υ2, 0)}, or corresponding to Υ̃ if P ∈ {(Υ̃1, 0), (Υ̃2, 0)}.
It is important to point out that ϕP is computed in the same way regardless of
whether P corresponds to Υ or to Υ̃ .

To summarise, we have so far derived all of the ingredients necessary to
replace chained 2-isogenies on elliptic curves over Fp2 with chained (2, 2)-
isogenies on Jacobians over Fp. However, the combination of a relatively ineffi-
cient ϕP and point doublings in the full Jacobian is what prompts us to now
push this arithmetic down onto the corresponding fast Kummer surfaces.

Remark 2. It is not surprising that the isomorphism in (14) that transforms the
(2, 2)-kernels Υ and Υ̃ into a kernel of the form of O (but on an isomorphic curve)
seems to require square roots. Indeed, De Feo, Jao and Plût [16] encountered the
same problem in their treatment of 2-isogenies between Montgomery curves, but
noticed that the square roots were related to rational functions of torsion ele-
ments lying above their kernels, so were able to use these higher order points to
avoid square roots and efficiently chain together 2-isogenies in the SIDH frame-
work. We employ this same technique in the next section to avoid square roots
during Kummer isogeny computations, and claim that (if there was any practical
motivation to sort out these details) the square roots in (14) could also be cir-
cumvented by using points of order 4 lying above P ∈ JCα

. Indeed, the functions
of u0 and u1 in (14) being squares in Fp is undoubtedly related to their being
the output of a point doubling in JCα

. Finally, we point out that in the case of
2-isogenies on Montgomery elliptic curves, Renes [27, Sect. 4] recently removed
the need for any higher order points, giving explicit formulas that depend only
on the kernel element of order 2.

Computing Supersingular Isogenies on Kummer Surfaces 445

5 Richelot Isogenies on Supersingular Kummer Surfaces

The efficacy of this work relies on our being able to push ϕP down onto specific
choices of Kummer surfaces.

Supersingular Kummer Surfaces. Following the initial works of the Chud-
novskys [12] and of Gaudry [19], a number of authors have exploited the fast
Kummer surface arithmetic in the context of modern HECC (cf. [4,5,7]). We
draw on the applicable techniques from that line of work in this paper, and in
particular adopt the Chudnovskys’ [12] squared Kummer surface approach that
was first exploited in high-speed HECC by Bernstein [4] and for fast factorisation
by Cosset [13].

Choices of notations and parameterisations of Kummer surfaces have varied
in the literature (see [28, Table 1]). We will aim to stick to that used in [28], but
warn that our supersingular Kummer surfaces are special and will be defined as
such. Kummer surfaces and their arithmetic are defined by fixing four funda-
mental theta constants, and the special squared Kummer surfaces used in this
paper work entirely with their squares, denoted μ1, μ2, μ3 and μ4.

Following [7, Sect. 5.2], the μi can be computed from the Rosenhain form
Cλ,μ,ν of the associated genus-2 curve, as

μ4 = 1, μ3 =

√
λμ

ν
, μ2 =

√
μ(μ − 1)(λ − ν)
ν(ν − 1)(λ − μ)

, μ1 = μ2μ3
ν

μ
. (15)

In the supersingular scenario, with the sextic form of genus-2 curves as in (9),
we will fix the transformation to Rosenhain form that sends the point (z1, 0) to
(0, 0), the point (z2, 0) to (1, 0), the point (z4, 0) to the unique point at infinity,
the point (z3, 0) to (λ, 0), the point (z6, 0) to (μ, 0), and the point (z5, 0) to (ν, 0).
We achieve this by taking a = z2 − z4, b = −az1, c = z2 − z1 and d = −cz4, i.e.,

κ(a,b,c,d) : Cα → Cλ,μ,ν

(x, y) �→
((

β0γ0 + β1γ1

γ0β1 − γ1β0

)
·
(

β1x − β0

β0x + β1

)
, ey ·

(
β0β1γ1

(β1γ0 − β0γ1)(β0x + β1)

)3
)

,

with e2 = ac(a − c)(a − νc)(a − μc)(a − λc), and where

λ := −
(β0γ1 + β1γ0)(β0γ0 + β1γ1)

(β0γ0 − β1γ1)(β0γ1 − β1γ0)
, μ :=

(β0γ0 + β1γ1)(β0γ0 − β1γ1)

(β0γ1 + β1γ0)(β0γ1 − β1γ0)
, ν := −

(β0γ0 + β1γ1)
2

(β0γ1 − β1γ0)2
.

Thus, we see that ν = λμ, meaning that (15) simplifies to

μ4 := 1, μ3 := 1, μ2 :=
(

γ2
0 − γ2

1

γ2
0 + γ2

1

)
/
√

λ, μ1 :=
(

γ2
0 − γ2

1

γ2
0 + γ2

1

)
·
√

λ.

Previous works in the realm of high-speed HECC do not have μ3 = 1 in
addition to μ4 = 1 (because the chances of finding a secure such Kummer surface

446 C. Costello

over a given field are very small), which is why we stated above that our Kummer
surfaces are special. One bonus of having μ3 = 1 is a simplified description of
the Kummer surface, and for a fixed5 Kummer surface of this form, another is
more efficient arithmetic for the pseudo-group operations.

Our special squared Kummer surface, KSqr, is defined as

KSqr : F · X1X2X3X4 =
(
X2

1 + X2
2 + X3

3 + X2
4 − G(X1 + X2)(X3 + X4) − H(X1X2 + X3X4)

)2
,

where

F := 4μ1μ2
(μ1 + μ2 + 2)2(μ1 + μ2 − 2)2

(μ1μ2 − 1)2
, G := μ1 + μ2, and H :=

μ2
1 + μ2

2 − 2

μ1μ2 − 1
.

Elements on KSqr are projective points (X1 : X2 : X3 : X4) ∈ P
3 satisfying

this equation, and the zero element is OK = (μ1 : μ2 : 1 : 1).
Let τ and τ̃ be the roots of x2 − Gx + 1 in Fp[x], and observe that τ · τ̃ = 1.

On KSqr, the three (2, 2)-subgroups corresponding to those defined in Sect. 4 are

O = (OK, O1, O2, O3) =
(
(μ1 : μ2 : 1 : 1), (1 : 1 : μ1 : μ2), (1 : 1 : μ2 : μ1), (μ2 : μ1 : 1 : 1)

)
,

Υ = (OK, Υ1, Υ2, Υ3) =
(
(μ1 : μ2 : 1 : 1), (1 : 0 : 0 : τ), (1 : 0 : τ : 0), (μ1 − τ : μ2 − τ : 0 : 0)

)
,

Υ̃ = (OK, Υ̃1, Υ̃2, Υ̃3) =
(
(μ1 : μ2 : 1 : 1), (1 : 0 : 0 : τ̃), (1 : 0 : τ̃ : 0), (μ1 − τ̃ : μ2 − τ̃ : 0 : 0)

)
.

(16)

Pseudo-doublings and ϕO on KSqr. Our (2, 2)-isogenies and pseudo-
doublings on KSqr will be comprised of three sub-operations. Define H : P3 → P

3

as the 4-way Hadamard transform in P
3, i.e.,

H : (�1 : �2 : �3 : �4) �→ (�1 + �2 + �3 + �4 : �1 + �2 − �3 − �4 : �1 − �2 + �3 − �4 : �1 − �2 − �3 + �4),

together with the coordinate squaring operation S : P3 → P
3, as

S : (�1 : �2 : �3 : �4) �→ (�21 : �22 : �23 : �24),

and the coordinate scaling operation C(d1 : d2 : d3 : d4) : P
3 → P

3, as

C(d1 : d2 : d3 : d4) : (�1 : �2 : �3 : �4) �→ (�1/d1 : �2/d2 : �3/d3 : �4/d4)
= (π1�1 : π2�2 : π3�3 : π4�4),

where πi = d1d2d3d4/di for i ∈ {1, 2, 3, 4}. It follows that H requires at most 8
field additions, S requires at most 4 field squarings, and C(d1 : d2 : d3 : d4) requires
at most 10 field multiplications if the πi are not precomputed, and at most 4
field multiplications if they are.

5 When we move from Kummer to Kummer in SIDH, we will not be normalising μ3

and μ4, so the only savings that remain are those that arise from μ3 = μ4.

Computing Supersingular Isogenies on Kummer Surfaces 447

Following [28, Sect. 4], define the dual squared Kummer surface as

K̂Sqr
O : F̂ · X1X2X3X4 =

(
X2

1 + X2
2 + X3

3 + X2
4 − Ĝ(X1 + X2)(X3 + X4) − Ĥ(X1X2 + X3X4)

)2

,

where

F̂ := 64μ
2
1μ

2
2
(μ1 + μ2 + 2)(μ1 + μ2 − 2)

(μ1μ2 − 1)2(μ1 − μ2)2
, Ĝ := 2

(
μ1 + μ2

μ1 − μ2

)
, and Ĥ := 2

(
μ1μ2 + 1

μ1μ2 − 1

)
.

In the previous section we derived formulas for computing ϕO in the full
Jacobian – see (13). The corresponding isogeny on the Kummer surface is defined
(with abuse of notation) as

ϕO : KSqr → K̂Sqr
O ,

P �→
(
C(μ̂1 : μ̂2 : μ̂3 : μ̂4) ◦ S ◦ H

)
(P),

where μ̂1 := (μ1 +μ2 +2)/2, μ̂2 := (μ1 +μ2 −2)/2, and μ̂3 := μ̂4 := (μ1 −μ2)/2.
For the pseudo-doubling map, we compose ϕO with its dual, ϕ̂O : K̂Sqr →

KSqr, which simply replaces C(μ̂1 : μ̂2 : μ̂3 : μ̂4) with C(μ1 : μ2 : μ3 : μ4). The kernel
of ϕO is the (2, 2)-subgroup O in (16), and the kernel of ϕ̂O is the (2, 2)-
subgroup consisting of (μ̂1 : μ̂2 : μ̂3 : μ̂4), (μ̂2 : μ̂1 : μ̂4 : μ̂3), (μ̂3 : μ̂4 : μ̂1 : μ̂2), and
(μ̂4 : μ̂3 : μ̂2 : μ̂1).
Isomorphisms and ϕP on KSqr. We now turn to defining the (2, 2)-isogenies
whose kernels are Υ and Υ̃ in (16).

Observe that there is a subtle difference between our description ϕO and
ϕ̂O above, and those described in the journey around the hexagon in [28,
Fig. 1]. We define ϕO as ϕO =

(
C(μ̂1 : μ̂2 : μ̂3 : μ̂4) ◦ S ◦ H

)
, swapping the order

of the scaling and squaring morphisms in [28, Fig. 1], which instead takes
ϕO =

(
S ◦ C(ν̂1 : ν̂2 : ν̂3 : ν̂4) ◦ H

)
, where ν̂2

i = μ̂i for i = 1, 2, 3, 4 (this is analo-
gous for ϕ̂O, but with ν2

i = μi). In their intended application to HECC, this
ordering makes no difference, since the (presumably Fp-rational) νi and ν̂i are
always fixed public parameters. In our case, however, all of the Kummer param-
eters change each time we compute an isogeny, and the ordering here turns out
to be crucial; we will never be computing the νi or ν̂i (or, at least, not in time for
their use in the pseudo-doublings that typically take place prior to the following
isogeny computation in the SIDH framework).

Nevertheless, viewing the first two steps from KSqr around the hexagon
exactly as in [28, Fig. 1] aids our derivation of the isomorphisms. The first step
is the Hadamard isomorphism, which moves us from KSqr to KInt, and the next
step is the scaling isomorphism C(ν̂1 : ν̂2 : ν̂3 : ν̂4), which takes us from KInt to K̂Can

O ;
here KInt is exactly as in [28] and K̂Can

O corresponds to K̂Can in [28]. Writing
OCan as the image of O under CO ◦ H with CO := C(ν̂1 : ν̂2 : ν̂3 : ν̂4), and similarly

448 C. Costello

for Υ and Υ̃ , reveals that

OCan =
(
(a : b : c : d), (a : −b : c : −d), (a : −b : −c : d), (a : b : −c : −d)

)
,

ΥCan =
(
(a : b : c : d), (d : c : b : a), (c : d : a : b), (b : a : d : c)

)
, and

Υ̃Can =
(
(a : b : c : d), (d : −c : −b : a), (c : −d : a : −b), (b : a : −d : −c)

)
,

(17)

where (a : b : c : d) = (ν̂1 : ν̂2 : ν̂3 : ν̂4) is the neutral element on K̂Can
O . Note that

K̂Can is the Kummer surface used by Gaudry, which is why the points in (17)
match up with those in [19, Sect. 3.4].

We now proceed analogously to the treatment in Sect. 4. When ΥCan is the
intended (2, 2)-kernel, we seek an isomorphism that will transform ΥCan into a
(2, 2)-subgroup whose four elements act like the four elements in OCan, but on
an isomorphic surface. At the same time, this isomorphism should also trans-
form the two subgroups in {OCan, Υ̃Can} into two subgroups whose elements act
like those in the two subgroups in {ΥCan, Υ̃Can}, but on an isomorphic surface.
Here the term ‘act’ refers to the action of translation by the 2-torsion elements
of the corresponding Kummer surfaces. In the case of the 2-torsion on K̂Can

O ,
these actions (explained in [19, Sect. 3.4]) are extremely simple: for example,
translating (x : y : z : t) ∈ K̂Can

O by the element (c : −d : a : −b) gives the point
(y : − x : t : − z).

We observe that when the (2, 2)-kernel is ΥCan, its image under the Hadamard
transform satisfies these constraints, but when the (2, 2)-kernel is Υ̃Can, we need
to use a modified transform H̃ : (x : y : z : t) �→ H(−x : y : z : t). Looking closer,
and using the relationship τ τ̃ = 1 in (16), we see that we can instead replace
the scaling CO with scalings CΥ and CΥ̃ that depend on the subgroup at hand,
and to follow both by the original Hadamard transform H.

Importantly, the function for computing the constants for the coordinate
scalings CΥ and CΥ̃ is independent of which subgroup we are in; the values of
the torsion elements are what changes the values of the scaling constants, which
is crucial for obtaining a uniform isogeny algorithm. As alluded to above, to
avoid the computation of square roots, the formulas for computing the scaling
constants also take as input a point of order 4 on KSqr.

Let Q ∈ KSqr be a point of order 4 such that P = [2]Q ∈ {Υ, Υ̃}; writing
Q′ = H(Q) = (Q′

1 : Q′
2 : Q′

3 : Q′
4) and P ′ = H(P) = (P ′

1 : P ′
2 : P ′

3 : P ′
4), then the

coordinate scaling is

CQ,P : (X1 : X2 : X3 : X4) �→ (π1X1 : π2X2 : π3X3 : π4X4),

where
π1 = P ′

2Q
′
4, π2 = P ′

1Q
′
4, and π3 = π4 = P ′

2Q
′
1,

when P ∈ {Υ1, Υ̃1} (such that its last coordinate is non-zero), and where

π1 = P ′
2Q

′
3, π2 = P ′

1Q
′
3, and π3 = π4 = P ′

2Q
′
1,

Computing Supersingular Isogenies on Kummer Surfaces 449

when P ∈ {Υ2, Υ̃2} (such that its second to last coordinate is non-zero).
In our target application of chained (2, 2)-isogenies in the SIDH framework,

the 2-torsion points that represent our (2, 2)-kernels are either always of the
form of Υ1 and Υ̃1, or they are always of the form of Υ2 and Υ̃2. Thus, the
function that computes the scaling constants can be determined at setup and
fixed once-and-for-all in an implementation.

Let G ∈ {Υ, Υ̃} and let P ∈ G with P = [2]Q. We can now define the full
(2, 2)-isogeny with (2, 2)-kernel G as

ϕP : KSqr → KSqr/G,

R �→ (S ◦ H ◦ CQ,P ◦ H) (R). (18)

Note that all four elements of the (2, 2)-kernel G map to the neutral element
(μ′

1 : μ′
2 : 1 : 1) on KSqr/G.

In Fig. 1 we summarise the situation by making use of [28, Fig. 1]. The arrows
in the middle comprise half of their hexagon; this corresponds to ϕO, whose
kernel is the subgroup O. Note that our SIDH-style computations will never
compute this isogeny, and that we will always be taking either the top or bottom
path, depending on whether our (2, 2)-kernel is Υ or Υ̃ .

Fig. 1. An illustration of the two (2, 2)-isogenies corresponding to the subgroups Υ and
Υ̃ , based on the diagram in [28, Fig. 1]. Here CΥ is used to denote CQ,P when P ∈ Υ ,
and CΥ̃ is used to indicate CQ,P when P ∈ Υ̃ .

We point out that our use of the 4-torsion point Q above the 2-torsion point
P means that we must modify the computational strategy to account for this; we
refer to [16, Sect. 4.3.2], where this was done when 8-torsion points lying above
2-torsion kernel elements were incorporated into the computational strategies.

Operation Counts. Even though our Kummer surfaces are defined by the
projective tuple (μ1 : μ2 : 1 : 1), once we move into an SIDH computation (where
we avoid inversions in the main loop), we cannot expect the surface constants to
be normalised in this fashion, so in our context all multiplications by constants
are counted as generic multiplications (the analogue in the elliptic curve case
was treating the Montgomery coefficient in P

1 – see [14]). In the HECC context,

450 C. Costello

pseudo-doublings on fast Kummer surfaces incur 6 multiplications by curve con-
stants, but this is because 2 of the constants were normalised; in our case, pseudo-
doublings incur 4 multiplications during each of the scalings D(μ1 : μ2 : μ3 : μ4) and
D(μ̂1 : μ̂2 : μ̂3 : μ̂4). This brings the operation count for a pseudo-doubling to 8 mul-
tiplications, 8 squarings, and 16 additions, and the operation count for pushing a
point through a (2, 2)-isogeny to 4 multiplications, 4 squarings, and 16 additions.
Note that both of these counts are obtained by assuming that the inverted con-
stants in the coordinate scalings have been precomputed during the computation
of the (2, 2)-isogenous Kummer surface.

It therefore remains to tally the operations required to compute the isogenous
Kummer surface constants. Firstly, we point out that an optimised implementa-
tion does not actually need to compute or use the constants F , G and H defining
the surface, since these are not used directly in the pseudo-group law computa-
tions. The only constants needed are those in the two coordinate scalings that
occur during pseudo-doublings; we obtain these by pushing any kernel point
through the (2, 2)-isogeny to get the squared theta constants (μ′

1 : μ′
2 : μ′

3 : μ′
4)

that define the image surface, a further 6 multiplications to obtain a projec-
tive tuple equivalent to (1/μ′

1 : 1/μ′
2 : 1/μ′

3 : 1/μ′
4), and then 8 more additions

and 6 more multiplications to compute a projective tuple whose coordinates are
projectively equivalent to the inverses of the coordinates of H(μ′

1 : μ′
2 : μ′

3 : μ′
4).

In total, the computation of the set of isogenous surface constants requires 19
multiplications, 4 squarings, and 28 additions. These counts are used in Table 1
in the next section.

6 Implications for Isogeny-Based Cryptography

We discuss potential implications and practical considerations of the Kummer
surface approach in the realm of SIDH. The takeaway message is that this paper
is a first step towards exploring the use of Kummer surfaces in isogeny-based
cryptography, and that more work needs to be done to determine whether they
will be utilised in real-world implementations. For example, it is possible that
our approach to computing the isogeny ϕP is sub-optimal, and that faster meth-
ods will be discovered, or that there are more specialised parameterisations of
supersingular Kummer surfaces that provide even faster arithmetic.

Efficiency of (2,2)-Isogenies in SIDH. In Table 1, we compare (2, 2)-
isogenies on Kummer surfaces with 2-isogenies on elliptic curves, by comparing
the operation counts for isolated operations in both scenarios. On the elliptic
curve side, the current state-of-the-art implementations actually use repeated
4-isogenies as they are slightly faster [14,16,27], so to take this into account
we simply double the relevant operation counts for the (2, 2)-isogenies reported
above (recall from Lemma 2 that our (2, 2)-isogenies correspond to 2-isogenies
on the elliptic curves). Operation counts for the relevant 4-isogeny operations in
the elliptic curve case are exactly as in the optimised version of the SIKE imple-
mentation [22], and for the relevant 2-isogeny operations are exactly as in [27,
Table 1].

Computing Supersingular Isogenies on Kummer Surfaces 451

We use M, S and A to denote multiplications, squarings and additions in
Fp2 , and use m, s and a to denote the same respective operations in Fp. It is com-
mon to approximate the former in terms of the latter by assuming Karatsuba-like
routines for Fp2 operations, but this can be rather crude. To give a fairer com-
parison, we benchmarked these field operations directly using v3.0 of Microsoft’s
SIDH library6: on a 3.4GHz Intel i7-6700 (Skylake) architecture, and over the
751-bit prime from [14], this benchmarking reported M = 1004 cycles, S = 763
cycles, and A = 80 cycles, while m = 349 cycles and a = 43 cycles. The current
library does not have a tailored squaring routine over Fp, because the routines
for Fp2 operations never call Fp squarings as a subroutine. Thus, we give two
cycle count approximations for the Kummer case: one that assumes s = m (i.e.,
that the Fp multiplication routine is called to compute squarings), and one that
assumes s = 0.8m, a common ratio used to approximate the speedup obtained
by optimising tailored field squarings. We note that using cycle counts instead
of Karatsuba approximations favours the elliptic curve setting over this work.
For example, when using the above clock cycles as units, we have M < 3m, but
a common approximation is that M ≈ 3m + 5a � 3m.

Table 1. Field arithmetic required for the three main isolated operations on one side
of the SIDH framework, comparing chained 2-isogenies on Montgomery curves over
Fp2 (previous work) with chained Richelot isogenies on Kummer surfaces over Fp (this
work). Further explanation in text.

Operation chained 2-isogenies on
Montgomery curves
over Fp2 (previous
work)

chained (2, 2)-isogenies
on Kummer surfaces
over Fp (this work)

M S A ≈ cycles m s a ≈ cycles

s = m s = 0.8 m

doubling 4 2 4 5862 8 8 16 6272 5714

2-isog. curve - 2 1 2088 19 4 28 9231 8952

2-isog. point 4 0 4 4336 4 4 16 3480 3200

quadrupling 8 4 8 11724 16 16 32 12544 11427

4-isog. curve - 4 5 3452 38 8 56 18462 17903

4-isog. point 6 2 6 8030 8 8 32 6960 6401

The approximations in Table 1 suggest that the Kummer surface approach
of computing Richelot isogenies over Fp will be competitive with the previ-
ous approaches that apply Vélu’s formulas to the x-line of Montgomery elliptic
curves over Fp2 . The main operations of interest are ‘quadrupling’ and ‘4-isog.
point’, since these costs and their ratios are what determines the optimal strategy

6 See https://github.com/Microsoft/PQCrypto-SIDH.

https://github.com/Microsoft/PQCrypto-SIDH

452 C. Costello

(see [16]), and they are computed many more times than the ‘4-isog. curve’ oper-
ation. Moreover, doubling the (2, 2)-isogeny operation counts is only accurate in
the case of the point operations; in terms of the curve operations, we would not
need to compute the full set of the surface constants of the intermediate curve in
back-to-back (2, 2)-isogenies, so a more careful approach to computing the image
curve in this case would likely lead to counts close to half of those in this row
(on our side). One caveat worth mentioning is that the special Kummer surfaces
in this work will also have a fast ladder for computing scalar multiplications, as
well as a fast three-point ladder that is typically used before any isogenies are
computed in the SIDH framework.

Of course, the only way to determine if the Kummer approach can outper-
form the elliptic curve approach is to present an optimised implementation of
Kummer surface isogenies within the SIDH framework, e.g., one that factors in
the cost ratios of pseudo-doublings and (2, 2)-isogenies to derive optimal strate-
gies for the full SIDH isogeny computation – see [16, Sect. 4.2]. We leave such
an implementation as future work (perhaps until the motivation is heightened
by odd-power Kummer isogenies that can be used on the other side of the SIDH
protocol, as we discuss below), but also mention that Kummer arithmetic is
especially amenable to aggressive vectorised implementations (see [5]).

Utilising Kummer Surfaces in Practice. We discuss two potential options
for taking advantage of Kummer surface arithmetic in the SIDH framework, and
the practical considerations of each. The first option is that the public parameters
and wire transmissions are as usual, i.e., using (points on) elliptic curves, but
that Kummer arithmetic is internally preferred by at least one party. The second
assumes that Kummer arithmetic is preferred everywhere, and that the SIDH
framework is defined to facilitate this.
Option 1 – Kummer arithmetic in private. Suppose Alice wants to compute her
secret isogenies on Kummer surfaces while engaging in an SIDH protocol that is
specified entirely using elliptic curves. In terms of the public parameters, her eas-
iest option would be to convert them (offline and once-and-for-all) into Kummer
parameters by first using the map η : Eα → JCα

in Sect. 3, and then applying
the usual maps from JCα

to KSqr. While this process seems complicated at a
first glance, a closer inspection of these maps reveals that an optimised conver-
sion in this direction would only require a few dozen field multiplications; the
x-coordinates of three co-linear points on Eα (see [14,22]) are all Alice needs
to compute the corresponding Kummer surface and the three Kummer points
required to kick-start her computations. Indeed, the only additional information
she needs to convert Bob’s public key down to the Kummer domain is the initial
2-torsion point (α, 0) (assuming Bob sends her information for the curve coeffi-
cient instead), and this requires at most one square root in Fp2 , which is not a
deal-breaker.

In the other direction, after computing her public key or shared secret on
KSqr, Alice needs to lift this information back up to Eα in order to comply
with Bob. The maps lifting from KSqr back up to JCλ,μ,ν

are naturally more

Computing Supersingular Isogenies on Kummer Surfaces 453

complicated than their inverses [13,19], but again the SIDH x-only framework
simplifies the process significantly; we can recover the x-coordinate on Eα given
only the values of u1, u0 and v2

0 (corresponding to the Mumford coordinates of
a point in JCα

), and we can lift up from K to these values without any square
roots – see [19, Sect. 4.3].

In any case, equipped with the efficient maps in Sect. 3, we do not see any
theoretical or practical obstacle preventing Alice from complying, should the
efficiency of the Kummer warrant a small conversion overhead at either or both
sides of the main isogeny computation.
Option 2 – Kummer arithmetic everywhere. If both sides of the SIDH proto-
col eventually warrant Kummer arithmetic (see below), then defining the public
parameters to facilitate this is easy. The main issues we foresee involve main-
taining the size of the public keys in the compressed setting.

Firstly, in the uncompressed scenario, transmitting elliptic curves and Kum-
mer surfaces in the current framework has the same cost; Montgomery curves
are specified up to twist with one element in Fp2 , and our supersingular Kummer
surfaces are completely specified by two elements of Fp (μ1 and μ2). Unambigu-
ously specifying points on Montgomery curves amounts to sending one element
of Fp2 and a sign bit; on the Kummer side, the elegant techniques in [28, Sect. 6]
show that Kummer points can be specified by two elements of Fp and two sign
bits, meaning we lose at most one bit per group element. Rather than sending any
curve coefficients over the wire, recent works (including the SIKE proposal [22])
have instead specified public keys as three co-linear Montgomery x-coordinates,
from which the underlying Montgomery curve can be recovered on the other
side [14]. We have not yet investigated this analogue in the Kummer surface
setting, but even if it does not work in a straightforward way, reverting back to
the original form of public keys (from [16]) adds at most 4 bits to the public key
sizes. To summarise, we would lose at most a few bits to specify uncompressed
SIDH entirely using Kummer surfaces.

In terms of the shared secret, both parties would eventually arrive at a fast
supersingular Kummer surface specified by (μ1 : μ2 : 1 : 1). While we have yet to
investigate convenient Kummer surface invariants that could act as the shared
secret, we remark that emperical evidence seems to suggest that the approach of
computing λ, μ and ν = λμ from (15) and normalising the Igusa-Clebsch invari-
ants in P(2, 4, 6, 10)(Fp) makes the SIDH protocol commute. We leave further
investigation into appropriate invariants as future work.

In terms of optimal compression of public keys, applying the techniques in [2]
directly to the Kummer setting seems less straightforward, but again we cannot
see any reason preventing this possibility7. This too needs further investigation,
but we point out that as a fallback, we could of course always map the problem
of compression back to the elliptic curve setting (moving back to the first option
above), and specify the compressed public keys accordingly.

7 In recent years Kummer surfaces have been shown to be more cryptographically
versatile [24,28] than originally thought [32].

454 C. Costello

Of course, there are several other possibilities that lie somewhere between
the two options above, e.g., where the two parties send information in such a
way that the overall cost of the protocol is minimised.

Beyond (2,2)-Isogenies. The case for the Kummer approach in supersingular
isogeny-based cryptography would be much stronger if it were able to be applied
efficiently for both parties. There has been some explicit work done in the case
of (3, 3)- and (5, 5)-isogenies (cf. [9,17]), but those situations appear much more
complicated than the case of Richelot isogenies, and we leave their investigation
as future work. One hope in this direction is the possibility of pushing odd degree
�-isogeny maps from the elliptic curve setting to the Kummer setting by way of
the maps in Sect. 3. This was difficult in the case of 2-isogenies because the
maps themselves are (2, 2)-isogenies (e.g., their kernel is the 2-torsion on Eα),
but in the case of odd degree isogenies there is nothing obvious preventing this
approach.

Acknowledgements. Big thanks to Joost Renes for his help in ironing out some kinks
on the Kummer surfaces, to Michael Naehrig for several helpful discussions during the
preparation of this work, and to the anonymous reviewers for their useful comments.

References

1. Auer, R., Top, J.: Legendre elliptic curves over finite fields. J. Number Theor.
95(2), 303–312 (2002)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Emura, K., Hanaoka, G., Zhang, R. (eds.)
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, AsiaPKC@AsiaCCS, Xi’an, China, 30 May – 03 June 2016, pp. 1–10.
ACM (2016)

3. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

4. Bernstein, D.J.: Elliptic vs. Hyperelliptic, part I. Talk at ECC, September 2006.
(http://cr.yp.to/talks/2006.09.20/slides.pdf)

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45611-8 17

6. Bernstein, D.J., Lange, T.: Hyper-and-elliptic-curve cryptography. LMS J. Com-
put. Math. 17(A), 181–202 (2014)

7. Bos, J.W., Costello, C., Hisil, H., Lauter, K.E.: Fast cryptography in genus 2. J.
Cryptol. 29(1), 28–60 (2016)

8. Bost, J.-B., Mestre, J.-F.: Moyenne arithmético-géométrique et périodes des
courbes de genre 1 et 2. Gaz. Math. 38, 36–64 (1988)

9. Bruin, N., Flynn, E.V., Testa, D.: Descent via (3, 3)-isogeny on Jacobians of genus
2 curves. Acta Arithmetica 165, 201–223 (2014)

10. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a Middlebrow Arithmetic of Curves
of Genus 2, vol. 230. Cambridge University Press, Cambridge (1996)

https://doi.org/10.1007/11745853_14
http://cr.yp.to/talks/2006.09.20/slides.pdf
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/978-3-662-45611-8_17

Computing Supersingular Isogenies on Kummer Surfaces 455

11. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

12. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4),
385–434 (1986)

13. Cosset, R.: Factorization with genus 2 curves. Math. Comput. 79(270), 1191–1208
(2010)

14. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

15. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2017)

16. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

17. Flynn, E.V.: Descent via (5, 5)-isogeny on Jacobians of genus 2 curves. J. Number
Theor. 153, 270–282 (2015)

18. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

19. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. Math. Cryptol.
1(3), 243–265 (2007)

20. Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. J. Cryptol. 30(2),
572–600 (2017)

21. Igusa, J.: Arithmetic variety of moduli for genus two. Ann. Math. 612–649 (1960)
22. Jao, D., et al.: SIKE: Supersingular Isogeny Key Encapsulation (2017). sike.org/
23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

24. Lubicz, D., Robert, D.: Arithmetic on abelian and Kummer varieties. Finite Fields
Appl. 39, 130–158 (2016)

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

26. Oort, F.: Subvarieties of moduli spaces. Inventiones Mathematicae 24(2), 95–119
(1974)

27. Renes, J.: Computing isogenies between montgomery curves using the action of (0,
0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 11

28. Renes, J., Smith, B.: qDSA: small and secure digital signatures with curve-based
Diffie-Hellman key pairs. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10625, pp. 273–302. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70697-9 10

29. Richelot, F.: Essai sur une methode generale pour determiner la valuer des inte-
grales ultra-elliptiques, fondee sur des transformations remarquables des ce tran-
scendantes. CR Acad. Sci. Paris 2, 622–627 (1836)

30. Richelot, F.: De transformatione integralium Abelianorum primi ordinis commen-
tatio. J. für die reine und angewandte Mathematik 16, 221–284 (1837)

31. Scholten, J.: Weil restriction of an elliptic curve over a quadratic exten-
sion (2003). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&
rep=rep1&type=pdf

https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-319-70697-9_10
https://doi.org/10.1007/978-3-319-70697-9_10
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7987&rep=rep1&type=pdf

456 C. Costello

32. Smart, N.P., Siksek, S.: A fast Diffie-Hellman protocol in genus 2. J. Cryptol. 12(1),
67–73 (1999)

33. Smith, B.A.: Explicit endomorphisms and correspondences. Ph.D. thesis, Univer-
sity of Sydney (2005)

34. The National Institute of Standards and Technology (NIST): Submission require-
ments and evaluation criteria for the post-quantum cryptography standardization
process, December 2016

35. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

Foundations

Robustly Reusable Fuzzy Extractor
from Standard Assumptions

Yunhua Wen1 and Shengli Liu1,2,3(B)

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{happyle8,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. A fuzzy extractor (FE) aims at deriving and reproducing
(almost) uniform cryptographic keys from noisy non-uniform sources.
To reproduce an identical key R from subsequent readings of a noisy
source, it is necessary to eliminate the noises from those readings. To
this end, a public helper string P , together with the key R, is produced
from the first reading of the source during the initial enrollment phase.

In this paper, we consider computational fuzzy extractor. We formal-
ize robustly reusable fuzzy extractor (rrFE) which considers reusability
and robustness simultaneously in the Common Reference String (CRS)
model. Reusability of rrFE deals with source reuse. It guarantees that
the key R output by fuzzy extractor is pseudo-random even if the initial
enrollment is applied to the same source several times, generating mul-
tiple public helper strings and keys (Pi, Ri). Robustness of rrFE deals
with active probabilistic polynomial-time adversaries, who may manip-
ulate the public helper string Pi to affect the reproduction of Ri. Any
modification of Pi by the adversary will be detected by the robustness
of rrFE.

– We show how to construct an rrFE from a Symmetric Key Encap-
sulation Mechanism (SKEM), a Secure Sketch (SS), an Extractor
(Ext), and a Lossy Algebraic Filter (LAF). We characterize the key-
shift security notion of SKEM and the homomorphic properties of
SS, Ext and LAF, which enable our construction of rrFE to achieve
both reusability and robustness.

– We present an instantiation of SKEM from the DDH assumption.
Combined with the LAF by Hofheinz (EuroCrypt 2013), homomor-
phic SS and Ext, we obtain the first rrFE based on standard assump-
tions.

Keywords: Fuzzy extractor · Reusability · Robustness
Standard assumptions

1 Introduction

Uniformly distributed keys are pivots of cryptographic primitives. However, it
is not easy for us to create, memorize and safely store random keys. In practice,
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 459–489, 2018.
https://doi.org/10.1007/978-3-030-03332-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_17&domain=pdf

460 Y. Wen and S. Liu

there are plenty of noisy sources, which possess high entropy and provide similar
but not identical reading at each enrollment. Such sources include biometrics
like fingerprint, iris, face and voice [9,17,19,20], Physical Unclonable Functions
[21,23] and quantum sources [3,16]. How to make use of these noisy sources to
derive uniform and reproducible keys for cryptographic applications is exactly
the concern of Fuzzy Extractors [12].

Fuzzy extractor. A fuzzy extractor FE consists of a pair of algorithms
(Gen,Rep). It works as follows. The generation algorithm Gen takes as input a
reading w of some source and outputs a public helper string P and an extracted
key R. The reproduction algorithm Rep takes as input the public helper string
P and a reading w′ of the same source (w′ is a noisy version of w). It reproduces
R if w and w′ are close enough. The security of fuzzy extractor requires that R
is statistically (or computationally) indistinguishable from a uniform one, even
conditioned on the public helper string P .

With a fuzzy extractor FE, one may invoke Gen to generate a random key R
and a public helper string P from a noisy source, then he stores the helper string
P (publicly), and uses the key R in a cryptographic application. Note that it is
not necessary for the user to store R. Whenever key R is needed again, he just
re-reads the (noisy) source and invokes Rep to reproduce R with the help of P .

However, there are two limitations of FE, leading to two issues.

– The extracted key R is (pseudo)random under the assumption that no more
than a single extraction is performed on the noisy source by Gen. In reality,
biometric information, like fingerprint or iris, is unique and cannot be changed
or created. One may hope that the same source is enrolled multiple times by
Gen to generate different keys R1, R2, . . . , Rρ for different applications. But
no security guarantee can be provided for any Ri if ρ ≥ 2.

– The security notion of FE only considers passive adversary and says nothing
about active attacks. If the public helper string P is modified by an active
adversary, then the reproduction algorithm Rep may generate a wrong key
˜R. In this case, one might not realize that ˜R is a wrong one, and it may lead
to unbearable economic loss.

The first issue can be resolved by reusable FE and the second by robust FE.

Reusable Fuzzy Extractor. Reusable Fuzzy Extractor aims to address the
first issue. It allows of multiple extractions from the same source, i.e., apply Gen
to correlated readings w,w1, . . . , wρ of a source to obtain keys and public helper
strings (P,R) {Pi, Ri}i∈{1,2,...,ρ}. Define [ρ] := {1, 2, . . . , ρ}. Reusability of FE
asks for pseudorandomness of R, even conditioned on {Pi, Ri}i∈[ρ] and P .

The concept of reusable FE was first proposed by Boyen [4], who pre-
sented two reusable FE constructions with outsider security and insider secu-
rity respectively. Outsider security considers the pseudorandomness of R even
if the adversary is able to adaptively choose δi and see Pi (but not Ri), where
(Pi, Ri) ← Gen(w + δi). It can be regarded as weak reusability in the sense that
the adversary sees only {Pi}i∈[ρ]. Insider security is stronger by allowing the

Robustly Reusable Fuzzy Extractor from Standard Assumptions 461

adversary to obtain not only {Pi}i∈[ρ] but also R̃i ← Rep(P̃i, w + δ̃i) where P̃i

and δ̃i are chosen by the adversary. However, the construction for insider security
in [4] relies on the random oracle model. Meanwhile, the perturbation δi in the
reusable FE constructions [4] is very special and independent of w, no matter for
outsider security or insider security. Apon et al. [2] adapted the FE proposed by
Fuller et al. [14] to obtain a weakly reusable FE. They also gave a reusable FE
based on the LWE assumption. Their security model is similar to [4] but has no
special requirements on δi except that dis(δi) ≤ t. However, just like [14] their
reusable FE can only tolerate a logarithmic fraction of errors. With the same
security model, a reusable FE tolerating linear fraction of errors from the LWE
assumption was proposed in [24].

Canetti et al. [6] constructed a reusable FE for Hamming distance. The secu-
rity model of their reusable FE makes no assumption about how repeating read-
ings are correlated, but their construction only tolerates sub-linear fraction of
errors. Moreover, their construction of FE has to rely on a powerful tool named
“digital locker”. Up to now, digital locker can only be instantiated with a hash
function modeled as random oracle or constructed from the non-standard strong
vector DDH assumption. Following the line of constructing reusable FE from
digital locker, Alamelou et al. [1] constructed a reusable FE for both the set dif-
ference metric and Hamming distance. Their construction tolerates linear frac-
tion of errors but requires that noisy secrets distributions have enough entropy
in each symbol of a large alphabet.

Recently, Wen et al. [26] proposed a reusable FE from the DDH assumption
which can tolerate linear fraction of errors. But a strong requirement is imposed
on the input distribution: any differences between two distinct inputs should not
leak too much information of the source w.

As far as we know, the available works on reusable FE follow three lines
according to the correlations among source readings wi’s. The first line considers
arbitrary correlations among wi’s and has to rely on non-standard assumptions
or random oracle. The second line imposes strong requirements on the source, i.e.,
any differences between two distinct inputs should not leak too much information
of the source wi. The third line considers δi (= wi −w) controlled by adversaries.
See Fig. 1. The related works are also summarized in Table 1.

Robust Fuzzy Extractor. Robust Fuzzy Extractor aims to address the second
issue. Robustness of FE requires that any modification of P by an adversary
will be detected. Boyen et al. [5] introduced the concept of robust FE, and
proposed a general way of converting a FE to a robust one. In their approach,
a hash function is employed and modeled as a random oracle. Dodis et al. [10]
strengthened robustness to post-application robustness, which guarantees that
the FE will detect any modification of P by adversary who also sees R. Later,
robust FE was slightly improved in [18]. Nevertheless, it was shown in [13] that
in the information theoretic setting, it is impossible to construct a robust FE
if the entropy rate of W is less than half in the plain model. Cramer et al. [7]
broke this barrier by building a robust FE in the Common Reference String
(CRS) model. Recall that CRS can be hardwired or hardcoded into the system

462 Y. Wen and S. Liu

Fig. 1. Related works about reusable FE and robust FE. H(wi|wi − wj) is the average
min-entropy of wi conditioned on wi − wj.

so that CRS can be observed but not modified by adversaries. See Fig. 1 and
Table 1 for related works of robust FE.

We stress that up to now there is no work ever considering robustness of
reusable FE or reusability of robust FE in the standard model, since designing
reusable FE or robust FE alone is already an uneasy task.

Table 1. Comparison with known FE schemes. “Robustness?” asks whether the
scheme achieves robustness; “Reusability?” asks whether the scheme achieves reusabil-
ity; “Standard Assumption ?” asks whether the scheme is based on standard assump-
tions. “Linear Errors?” asks whether the scheme can correct linear fraction of errors.
“–” represents the scheme is an information theoretical one.

FE Schemes Robustness? Reusability? Standard Assumption? Linear Errors?

FMR13 [14] ✗ ✗ ✔ ✗

DRS04 [12], Boy04 [4] ✗ weak – ✔

CFPRS16 [6] ✗ ✔ ✗ ✗

Boy04 [4] ABCG16 [1] ✗ ✔ ✗ ✔

ACEK17 [2] ✗ ✔ ✔ ✗

BDKOS05 [5] ✔ ✗ ✗ ✔

DKRS06 [10], KR08 [18], CDFPW08 [7] ✔ ✗ – ✔

WL18 [24], WLH18 [26] ✗ ✔ ✔ ✔

Ours ✔ ✔ ✔ ✔

1.1 Our Contributions

We consider how to construct fuzzy extractors satisfying reusability and robust-
ness simultaneously based on standard assumptions in the CRS model.

– We formalize robustly reusable fuzzy extractor (rrFE) whose security notions
include both reusability and post-application robustness in the computational
setting.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 463

– We propose a general construction of rrFE from a Symmetric Key Encapsu-
lation Mechanism (SKEM), a Secure Sketch (SS), an Extractor (Ext), and a
Lossy Algebraic Filter (LAF) in the CRS model.

• We characterize the required security notion of SKEM and the homomor-
phic properties of SS, Ext and LAF, which enable the construction of
rrFE to achieve both reusability ad robustness.

• SKEM is a primitive similar to Key Encapsulation Mechanism (KEM),
but the encapsulation and decapsulation make use of the same secret
key. We define Key-Shift (KS) security for SKEM, which says that the
encapsulated key is pseudorandom, even if the adversary sees multiple
encapsulations under shifted secret keys where the shifts are designated
by the adversary. We present an instantiation of SKEM and prove its
KS-security from the DDH assumption.

– We obtain the first rrFE tolerating linear fraction of errors based on standard
assumptions by instantiating SKEM, LAF, SS and Ext. More precisely, SKEM
is built from the DDH assumption and LAF by Hofheinz (EuroCrypt 2013)
is based on the DLIN assumption.

Our construction is the first FE possessing both reusability and robustness.
Meanwhile, our construction is able to tolerate a linear fraction of errors. How-
ever, we do not assume arbitrary correlations between different readings of w.
Instead, we assume that the shifts between different readings are controlled by
the adversary in the security model, just like [2]. Our work can be regarded as
a step forward from the the third and fourth branches in Fig. 1.

Table 1 compares our rrFE with the available reusable FE and robust FE.

1.2 Our Approach

Our work stems from the traditional sketch-and-extract paradigm [11] due to
Dodis et al. First, we review the traditional sketch-and-extract paradigm [11].
Then we introduce a new primitive called Symmetric Key Encapsulation Mech-
anism (SKEM) and define for it a so-called Key-Shift security. We also recall the
definition of Lossy Algebraic Filter (LAF) introduced by Hofheinz [15]. Equipped
with SKEM and LAF, we show how to construct a robustly reusable Fuzzy Extrac-
tor (rrFE) from SS, Ext, SKEM and LAF. Finally, we describe the high level
idea of why our construction of rrFE achieves both reusability and robustness.

The Sketch-and-Extract Paradigm. In [11], Dodis et al. proposed a
paradigm of constructing FE from secure sketch and extractor.

Secure Sketch (SS) is used for removing noises from fuzzy inputs. An SS
scheme consists of a pair of algorithms SS = (SS.Gen, SS.Rec). Algorithm SS.Gen
on input w outputs a sketch s; algorithm SS.Rec on input s and w′ recovers w as
long as w and w′ are close enough. For SS, it is required that W still has enough
entropy conditioned on s.

An extractor Ext distills an almost uniform key R from the non-uniform
random variable W of enough entropy, with the help of a random seed iext.

The sketch-and-extract construction of FE = (Gen,Rep) [11] works as follows.

464 Y. Wen and S. Liu

– Gen(w, iext): Set P := (SS.Gen(w), iext), R := Ext(w, iext). Output (P,R).
– Rep(w′, P = (s, iext)): Recover w := SS.Rec(w′, s) and output R :=

Ext(w, iext).

Symmetric Key Encapsulation Mechanism. For reusability, we introduce a
technical tool called symmetric key encapsulation mechanism (SKEM). It is sim-
ilar to Key Encapsulation Mechanism (KEM) [8], except that the encapsulation
and decapsulation algorithms share the same secret key sk.

– Encapsulation algorithm SKEM.Enc takes as input the secret key sk, and
outputs a ciphertext c and an encapsulated key k ∈ K.

– Decapsulation algorithm SKEM.Dec recovers the key k, on input c and sk.

The requirement for SKEM is key-shift security. That is, (c, k) ← SKEM.Enc(sk)
is computationally indistinguishable from (c, u), where u is uniformly chosen
from K, even if the adversary has an access to a key-shift encapsulation oracle
SKEM.Enc(sk + Δi), where Δi is chosen by the adversary adaptively.

Lossy Algebraic Filter. For robustness, we introduce a technical tool named
lossy algebraic filter (LAF) by Hofheinz [15]. It is a family of functions indexed
by a public key Fpk and a tag tag. A tag is lossy, injective or neither. A func-
tion from that family takes a vector X = (Xi)ni=1 ∈ Z

n
p as input. If tag is an

injective tag, then the function LAFFpk,tag(·) is an injective function. If tag is
lossy, then the function is lossy in the sense that the value only depends on
a linear combination of

∑n
i=1 uiXi ∈ Zp (instead of the whole X), where the

coefficients {ui}i∈[n] are independent of the lossy tag and depend only on the
public key. In particular, evaluating the same input X under multiple lossy tags
with respect to a common public key only reveals the same linear combination
∑n

i=1 uiXi ∈ Zp, thus leaking at most log p bits of information about X. It is
required that there are many lossy tags and with a trapdoor one can efficiently
sample a lossy tag. Additionally, LAF has two more properties named evasive-
ness and indistinguishability. Evasiveness demands that without the trapdoor,
any PPT adversary can hardly find a new non-injective tag even given many
lossy tags; indistinguishability demands that it is hard to distinguish lossy tags
from random tags for all PPT adversaries.

Our Construction. Our rrFE stems from the basic “sketch-and-extract” FE
[11], but an SKEM and an LAF are integrated to this basic FE to achieve
reusability and robustness. The construction is shown in Fig. 2.

In our construction, the reading w of a source plays two roles, one is for
extraction(reproduction) of R (˜R), the other is for authentication (verification).
We stress that LAFFpk,tag(w) can be regarded as a message authentication code
(MAC)1, where w is the authentication key, tag is the message, and the output
of LAF is just the authenticator σ.
1 The traditional MAC does not apply in the scenario of robust fuzzy extractor: the

adversary can arbitrarily modify the public helper string P , so the key of the MAC
is modified accordingly. As a result, the message and the authentication key are not
independent anymore.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 465

Fig. 2. Construction of robustly reusable fuzzy extractor.

Below describes how the generation algorithm of our rrFE works.

– The common reference string crs consists of the public parameter pp of SKEM,
the random seed iext of Ext, and the public key Fpk of LAF.

– The reading w of a source is fed not only to SS and Ext, but also to LAF.
This results in a sketch s from SS.Gen, a secret key sk from Ext, and an
authenticator σ from LAF.

– We do not take the output sk of Ext as the final extracted key. Instead, the
output sk of Ext serves as the secret key of SKEM.Enc, which in turn outputs
a ciphertext c and an encapsulated key k. This encapsulated key k is served
as the final extracted key R := k.

– The evaluation of LAF on w under tag tag = (s, c, t′) results in an authen-
ticator σ, where t′ is randomly chosen. The public helper string is set as
P := (s, c, t′, σ).

Given the public helper string ˜P = (s̃, c̃, ˜t′, σ̃) and a reading w′, the
reproduction algorithm of our rrFE will return the reproduced key ˜R :=
SKEM.Dec(Ext(w̃, iext), c̃) only if the distance of w̃ := SS.Rec(w′, s̃) and w′ is
no more than a predetermined threshold t and the computed authenticator
σ̃′ := LAFFpk,(s̃,c̃,˜t′)(w̃) is identical to the authenticator σ̃ contained in ˜P .

466 Y. Wen and S. Liu

Reusability. Reusability says that the extracted key R is pseudorandom even if
the PPT adversary knows P = (s, c, t, σ) and can adaptively asks the generation
oracle with shift δi to get multiple {Pi = (si, ci, t

′
i, σi), Ri}i∈[ρ] where (Pi, Ri) ←

Gen(w + δi).
To achieve reusability, we require that the underlying building blocks SS, Ext

and LAF are homomorphic and SKEM is key-shift secure. Recall that iext and
Fpk are parts of crs so they are independent of each other and distributed as
designed. The high level idea of proving reusability is as follows.

1. By the homomorphic property of SS, Ext and LAF, we have
• si := SS.Gen(wi) = SS.Gen(w + δi) = SS.Gen(w) + SS.Gen(δi)= s + SS.Gen(δi);
• ski = Ext(wi, iext) = Ext(w + δi, iext) = Ext(w, iext) + Ext(δi, iext) = sk +

Ext(δi, iext);
• σi := LAFFpk,tagi

(w + δi) = LAFFpk,tagi
(w) + LAFFpk,tagi

(δi) = σ + LAFFpk,tagi

(δi).

Observe that the knowledge of SS.Gen(w),Ext(w) and {LAFFpk,tagi
(w)}i∈[ρ]

suffices for the challenger to simulate the whole view of the adversary in the
reusability experiment.

2. By the indistinguishability property of LAF, {tagi}i∈[ρ] can be replaced
with lossy tags. Now the challenger can use SS.Gen(w),Ext(w) and S :=
{LAFFpk,tag(w) for all lossy tags} to simulate the view of the adversary.

3. By the lossiness of LAF, the information of W leaked by S is at most log p
bits. By the security of SS, the information of W leaked by SS.Gen(w) is
also bounded. Meanwhile, SS.Gen(w) and set S are independent of iext due
to the independence between (W,Fpk) and iext (note that the lossy tag space
is determined by Fpk). Consequently, sk := Ext(w, iext) is almost uniform
conditioned on SS.Gen(w) and S.

4. Observe that (ci, ki) ← SKEM.Enc(ski) can be regarded as encapsulations
under shifted key ski := sk + Ext(δi). With a uniform sk (conditioned on
SS.Gen(w) and S), the KS-security of SKEM makes sure that R := k is
pseudorandom given P and {Pi = (si, ci, t

′
i, σi), Ri = ki}i∈[ρ], where (c, k) ←

SKEM.Enc(sk).

Robustness. Robustness states that even if the PPT adversary can adaptively
asks the generation oracle with shift δi to get (Pi, Ri) ← Gen(w + δi), it is still
hard to forge a fresh valid P̃ .

Following 1, 2 and 3 of the above analysis for reusability, the view of
adversary in the robustness experiment can be simulated with the knowledge
of SS.Gen(w) and S. Note that the SS.Gen(w) and set S only leak bounded
information of W . Consequently, even if the adversary sees {Pi, Ri}i∈[ρ], there
is still enough entropy left in W . By the evasiveness of LAF, the forged tag
˜tag = (s̃, c̃, ˜t′) contained in ˜P = (s̃, c̃, ˜t′, σ̃) must be injective, hence LAFFpk,˜tag(·)
is an injective function. Consequently, the entropy of W is intactly transferred
to σ̃′ := LAFFpk,˜tag(w̃) and the forged authenticator σ̃ hits the value of σ̃′ with
negligible probability.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 467

2 Preliminaries

Let λ be the security parameter. We write PPT short for probabilistic
polynomial-time. Let [ρ] denote set {1, 2 · · · , ρ}. Let �x� denote the smallest
integer that is not smaller than x. If X is a distribution, x ← X denotes sam-
pling x according to distribution X; if X is a set, x ←$ X denotes choosing x from

X uniformly. For a set X, let |X| denote the size of X. Let
y

︷︸︸︷

xxx and xxx
︸︷︷︸

y

denote

y := xxx. For a primitive XX and a security notion YY, by ExpYY
XX,A(·) ⇒ 1,

we mean that the security experiment outputs 1 after interacting with an adver-
sary A; by AdvYY

XX,A(1λ), we denote the advantage of a PPT adversary A and
define AdvYY

XX(1λ) := maxPPTA AdvYY
XX,A(1λ). Our security proof will proceed by

a sequence of games. By a
G= b we mean that a equals b or is computed as b in

game G. By GA ⇒ b, we mean that game G outputs b after interacting with A.

2.1 Metric Spaces

A metric space is a set M with a distance function dis : M × M 	→ [0,∞).
We usually consider multi-dimensional metric spaces of form M = Fn for some
alphabet F (usually a finite filed Fp) equipped with the Hamming distance. For
any two element w,w′ ∈ M, the Hamming distance dis(w,w′) is the number of
coordinates in which they differ. For an element w ∈ M, let dis(w) := dis(w, 0).

2.2 Min-Entropy, Statistical Distance and Extractor

Definition 1 (Min-Entropy). For a random variable X, the min-entropy of
X is defined by H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of
X given Y is defined by ˜H∞(X|Y) = − log[Ey←Y (maxx Pr[X = x|Y = y])].

Obviously, for a deterministic function f and a randomized function g with the
random coins R independent of X, we have that

˜H∞ (X | Y, f(Y)) = ˜H∞(X | Y). (1)
˜H∞(X | Y, g(Y,R)) = ˜H∞(X | Y). (2)

Lemma 1. [11] If Y takes at most 2λ possible values, then ˜H∞(X | Y) ≥
˜H∞(X) − λ.

Definition 2 (Statistical Distance). For two random variables X and Y
over a set M, the statistical distance of X and Y is given by SD(X,Y) =
1
2

∑

w∈M |Pr[X = w] − Pr[Y = w]|. If SD(X,Y) ≤ ε, X and Y are called

ε-statistically indistinguishable, denoted by X
ε≈ Y .

468 Y. Wen and S. Liu

Lemma 2. [22] Let M1 and M2 be finite sets, X and Y be random variables
over M1, and f : M1 	→ M2 be a function. Then SD(f(X), f(Y)) ≤ SD(X,Y).

Definition 3 (Average-Case Strong Extractor [11]). We call a function
Ext : M × I 	→ SK an average-case (M,m,SK, ε)-strong extractor with seed
space I, if for all pairs of random variables (X,Y) such that X ∈ M and ˜H∞(X |
Y) ≥ m, we have

(Ext(X, I), I, Y)
ε≈ (U, I, Y), (3)

where I and U are uniformly distributed over I and SK, respectively.

2.3 Secure Sketch

Definition 4 (Secure Sketch [11]). An (m, m̂, t)-secure sketch (SS) SS =
(SS.Gen,SS.Rec) for metric space M with distance function dis, consists of a
pair of PPT algorithms and satisfies correctness and security.

– SS.Gen on input w ∈ M, outputs a sketch s.
– SS.Rec takes as input w′ ∈ M and a sketch s, and outputs w̃.

Correctness. ∀w ∈ M, if dis(w,w′) ≤ t, then SS.Rec(w′,SS.Gen(w)) = w.
Security. For any random variable W over M with min-entropy m, we have
˜H∞(W | SS.Gen(W)) ≥ m̂.

Lemma 3. [5]. Let SS = (SS.Gen,SS.Rec) be an (m, m̂, t)-SS for M, if W0,W1

are two random variables over M satisfying dis(W0,W1) ≤ t, then for any vari-
able Y , we have ˜H∞(W1 | (SS.Gen(W0), Y)) ≥ ˜H∞(W0 | (SS.Gen(W0), Y)).

2.4 Lossy Algebraic Filter

Our construction of robustly reusable fuzzy extractor relies on a technical tool,
named lossy algebraic filter which is proposed by Hofheinz [15].

Definition 5 (Lossy Algebraic Filter). An (lLAF, n)-lossy algebraic filter
LAF = (FGen,FEval,FTag) consists of three PPT algorithms.

– Key generation. FGen(1λ) outputs a public key Fpk together with a trap-
door Ftd, i.e., (Fpk, Ftd) ← FGen(1λ). The public key Fpk contains an lLAF-
bit prime p and defines a tag space Ttag = {0, 1}∗ × T ′, a lossy tag space
Tlossy ⊆ Ttag and an injective tag space Tinj ⊆ Ttag. A tag tag = (t, t′) ∈ Ttag

consists of a core tag t′ ∈ T ′ and an auxiliary tag t ∈ {0, 1}∗. Ftd is a trapdoor
that allows of sampling lossy tags.

– Evaluation. FEval takes as input the public key Fpk, a tag tag = (t, t′),
and X = (Xi)ni=1 ∈ Z

n
p, and outputs LAFFpk,tag(X), i.e., LAFFpk,tag(X) =

FEval(Fpk, tag,X).
– Lossy tag generation. FTag takes as input the trapdoor Ftd and an aux-

iliary tag t, and returns a core tag t′, i.e., t′ ← FTag(Ftd, t), such that
tag = (t, t′) is a lossy tag.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 469

We require the following:

– Lossiness. If tag ∈ Tinj , then the function LAFFpk,tag(·) is injective. If tag ∈
Tlossy, then LAFFpk,tag(X) depends only on

∑n
i=1 uiXi mod p for ui ∈ Zp

that only depends on Fpk.
– Indistinguishability. For all PPT adversaries, it is hard to distinguish lossy

tags from random tags. Formally,

AdvindLAF,A(1λ) :=
∣

∣

∣Pr
[

A(1λ, Fpk)FTag(Ftd,·) = 1
]

− Pr
[

A(1λ, Fpk)OT ′ (·) = 1
]∣

∣

∣

is negligible for all PPT adversary A, where (Fpk, Ftd) ← FTag(1λ) and
OT ′(·) is the oracle that ignores its input and samples a random core tag t′.

– Evasiveness. For all PPT adversaries, without the trapdoor, non-injective
tags are hard to find, even given multiple lossy tags. More precisely,

AdvevaLAF,A(1λ) := Pr
[

tag /∈ Tinj | tag ← A(1λ, Fpk)FTag(Ftd,·)
]

is negligible for all PPT admissible adversary A where (Fpk, Ftd) ← FGen(1λ).
We call A is admissible if A never outputs a tag obtained from its oracle.

Remark 1. If tag = (t, t′), we use FEval(Fpk, t, t′,X) to denote FEval(Fpk,
tag,X).

Remark 2. Let us consider multiple, say m, evaluations of LAF of the same X =
(X1,X2, . . . , Xn) under a fixed public key Fpk but different tags (tj , t′j). Accord-
ing to the lossiness property of LAF, each evaluation of FEval(Fpk, tj , t

′
j ,X) is

completely determined by
∑n

i=1 uiXi and (tj , t′j), so there exists a function
f such that FEval(Fpk, tj , t

′
j ,X) = f

(
∑n

i=1 uiXi, (tj , t′j)
)

. Suppose that Fpk is
independent of X. As long as tags {(tj , t′j)}j∈[m] are independent of X or are
(randomized) functions of

∑n
i=1 uiXi, we have

˜H∞
(

X
∣

∣

∣

{

FEval(Fpk, tj , t
′
j , X)

}

j∈[m]

)

= ˜H∞

(

X

∣

∣

∣

∣

{

f
(

∑n

i=1
uiXi, (tj , t

′
j)

)}

j∈[m]

)

≥ ˜H∞
(

X
∣

∣

∣

∑n

i=1
uiXi

)

≥ ˜H∞(X) − log p, (4)

where the last but one step is due to Eq. (2) and the last step is by Lemma 1.

2.5 Homomorphic Properties

We assume that the domains and codomains of Ext, SS and LAF are groups
with operation “+” (we abuse “+” for different group operations for simplicity).
Now we characterize homomorphic properties of Ext, SS and LAF.

Definition 6 (Homomorphic Average-Case Strong Extractor). An
average-case (M,m,SK, ε)-strong extractor Ext : M×I → SK is homomorphic
if for all w1, w2 ∈ M, all iext ∈ I, we have Ext(w1 + w2, iext) = Ext(w1, iext) +
Ext(w2, iext).

470 Y. Wen and S. Liu

It was shown in [11], universal hash functions are average-case strong extractors.
In particular, Ext(x, i) : Zl+1

q × Z
l
q → Zq defined by

Ext(x, i) := x0 + i1x1 + · · · + ilxl (5)

is an average-case strong (Zl+1
q ,m,Zq, ε)-extractor with log q ≤ m + 2 log ε, as

shown in [22]. Obviously, it is homomorphic.

Definition 7 (Homomorphic Secure Sketch). A secure sketch is homomor-
phic if for all w1, w2 ∈ M, SS.Gen(w1 + w2) = SS.Gen(w1) + SS.Gen(w2).

The syndrome-based secure sketch [12] is homomorphic (see the full version [25]).

Definition 8 (Homomorphic Lossy Algebraic Filter). We call an
(lLAF, n)-LAF with domain Z

n
p is homomorphic if for all (Fpk, Ftd) ← FGen(1λ),

all tag ∈ Ttag and all w1, w2 ∈ Z
n
p, the following holds FEval(Fpk, tag, w1 +w2) =

FEval(Fpk, tag, w1) + FEval(Fpk, tag, w2).

The LAF constructed from the DLIN assumption in [15] is homomorphic. See
the full version [25] for the specific construction of homomorphic LAF.

2.6 Decisional Diffie-Hellman Assumption

Definition 9 (Decisional Diffie-Hellman Assumption). The decisional
Diffie-Hellman assumption holds w.r.t. a group generation algorithm IG, if

AdvDDH
IG,A(1λ) := |Pr[A((G, q, g), gx, gy, gz) = 1] − Pr[A((G, q, g), gx, gy, gxy) = 1]|

is negligible for all PPT adversary A, where (G, q, g) ← IG(1λ), G is a cyclic
group of order q with generator g and x, y, z ←$ Zq.

3 Symmetric Key Encapsulate Mechanism

3.1 Definition of SKEM

In this section, we propose a new primitive called symmetric key encapsulate
mechanism (SKEM). It is one of the core technical tools in our rrFE.

Definition 10 (Symmetric Key Encapsulate Mechanism). A symmetric
key encapsulate mechanism SKEM = (SKEM.Init, SKEM.Enc, SKEM.Dec) con-
sists of a triple of PPT algorithms.

– SKEM.Init takes as input the security parameter 1λ and outputs public parame-
ter pp which implicitly defines the secret key space SK, encapsulated key space
K and ciphertext space, i.e., pp ← SKEM.Init(1λ).

– SKEM.Enc takes as input pp and the secret key sk, and outputs a ciphertext
c and an encapsulated key k ∈ K, i.e., (c, k) ← SKEM.Enc(pp, sk).

Robustly Reusable Fuzzy Extractor from Standard Assumptions 471

– SKEM.Dec takes as input pp, the secret key sk and a ciphertext c, and outputs
k ∈ K, i.e., k ← SKEM.Dec(pp, sk, c).

The correctness of SKEM is that for all pp ← SKEM.Init(1λ), sk ∈ SK, (c, k) ←
SKEM.Enc(pp, sk), k′ ← SKEM.Dec(pp, sk, c), we have k′ = k.

We require pseudorandomness of the encapsulated key under key-shift attack.
Roughly speaking, the encapsulated key is pseudorandom even if the adversary
observes multiple encapsulations under shifted secret key where the shift Δi is
designated by the adversary adaptively. The formal definition is given below.

Definition 11 (KS-Security of SKEM). A SKEM SKEM = (SKEM.Init,
SKEM.Enc,SKEM.Dec) is Key-Shift (KS) secure if for all PPT adversary A,

AdvksSKEM,A(1λ) := |Pr[ExpksSKEM,A(1) ⇒ 1] − Pr[ExpksSKEM,A(0) ⇒ 1]|

is negligible. Here ExpksSKEM,A(β), β ∈ {0, 1}, is an experiment played between an
adversary A and a challenger C as follows.
ExpksSKEM,A(β):

– C invokes pp ← SKEM.Init(1λ), samples sk ←$ SK and returns pp to A.
– Challenge: Challenger C invokes (c, k) ← SKEM.Enc(pp, sk). If β = 0, it

resets k with k ←$ K. Finally it returns (c, k) to A.
– During the whole experiment, A may adaptively make encapsulation oracle

queries of the following form:
– A submits a shift Δi ∈ SK to challenger C.
– C invokes (ci, ki) ← SKEM.Enc(pp, sk + Δi), and returns (ci, ki) to A.

– As long as A outputs a guessing bit β′, the experiment outputs β′.

3.2 Construction of Symmetric Key Encapsulate Mechanism

We instantiate a KS-secure SKEM from the DDH assumption, and the construc-
tion is given in Fig. 3.

Fig. 3. Construction of SKEM with KS-security from the DDH assumption.

Theorem 1. If the DDH assumption holds with respect to IG, then SKEM con-
structed in Fig. 3 is KS-secure. More precisely, for any PPT adversary A,

AdvksSKEM,A(1λ) ≤ AdvDDH
IG (1λ).

472 Y. Wen and S. Liu

Proof. Suppose that there exists a PPT adversary A who has advantage ε in the
key-shift attack of SKEM in Fig. 3, then we can construct a PPT algorithm B
with the same advantage ε in solving the DDH problem.

Given (G, q, g, gx, gy, gd), where x, y are uniformly and independently chosen
from Zq, algorithm B simulates an environment for A as follows.

– Algorithm B returns pp = (G, q, g) to A and implicitly sets sk := x.
– Algorithm B returns (gy, gd) to A.
– When adversary A makes an encapsulation query with Δi ∈ Zp, algorithm

B uniformly chooses yi ← Zq and sets ci := gyi , ki := (gxgΔi)yi and returns
(ci, ki) to A.

– When adversary A returns a bit β′, algorithm B returns β′ to its own chal-
lenger.

Obviously, B simulates answers to the encapsulation queries for A perfectly. For
the challenge,

– If d = xy, then B perfectly simulates ExpksSKEM,A(1) for A.
– If d = z, where z ←$ Zq, then B perfectly simulates ExpksSKEM,A(0) for A.

Consequently,

AdvDDH
IG,B(1λ) = Pr[B((G, q, g), gx, gy, gxy) = 1] − Pr[B((G, q, g), gx, gy, gz) = 1]

= | Pr[ExpksSKEM,A(1) ⇒ 1] − Pr[ExpksSKEM,A(0) ⇒ 1]| = AdvksSKEM,A(1λ).

This completes the proof of Theorem 1. �

4 Robustly Reusable Fuzzy Extractor

In this section, we define robustly reusable fuzzy extractor (rrFE) and present a
construction of rrFE in the CRS model.

4.1 Definition of Robustly Reusable Fuzzy Extractor

First, we recall the definition of fuzzy extractor presented in [7].

Definition 12 (Fuzzy Extractor). An (M,m,R, t, ε)-fuzzy extractor FE for
metric space M consists of three PPT algorithms (Init,Gen,Rep),

– Init on input security parameter 1λ outputs common reference string crs, i.e.,
crs ← Init(1λ).

– Gen on input the common reference string crs and w ∈ M, outputs a public
helper string P and an extracted string R ∈ R, i.e., (P,R) ← Gen(crs, w).

– Rep takes as input the common reference string crs, public helper string P and
w′ ∈ M, and outputs an extracted string R or ⊥, i.e., R/⊥ ← Rep(crs, P, w′).

Robustly Reusable Fuzzy Extractor from Standard Assumptions 473

It satisfies the following properties.

Correctness. If dis(w,w′) ≤ t, then for any crs ← Init(1λ), (P,R) ← Gen(crs, w)
and R′ ← Rep(crs, P, w′), it holds that R′ = R.

Privacy. For any distribution W over metric space M with H∞(W) ≥ m, any
PPT adversary A, it holds that

AdvindFE,A(1λ) := |Pr[A(crs, P,R) = 1] − Pr[A(crs, P, U) = 1]| ≤ ε,

where crs ← Init(1λ), (P,R) ← Gen(crs,W) and U ←$ R.

A fuzzy extractor is reusable if its privacy is retained even if the same noisy
source is reused multiple times. We follow the definition of reusability of fuzzy
extractor from [2] (which is called “strong reusability” in [2]).

Definition 13 (Reusable Fuzzy Extractor). A fuzzy extractor rFE = (Init,
Gen,Rep) is an (M,m,R, t, ε1)-reusable fuzzy extractor if it is a fuzzy extractor
with ε1-reusability. An (M,m,R, t, ε1)-fuzzy extractor is ε1-reusable, if for any
distribution W over metric space M with H∞(W) ≥ m, for any PPT adversary
A, it holds that

AdvreurFE,A(1λ) := |Pr[ExpreurFE,A(1) ⇒ 1] − Pr[ExpreurFE,A(0) ⇒ 1]| ≤ ε1,

where ExpreurFE,A(β), β ∈ {0, 1}, describes the reusability experiment played
between an adversary A and a challenger C.

ExpreurFE,A(β) : // β ∈ {0, 1}

1. Challenger C invokes crs ← Init(1λ) and returns crs to A.
2. C samples w ← W and invokes (P,R) ← Gen(crs, w). If β = 1, return (P,R)

to A; otherwise, it chooses U ←$ R and returns (P,U) to A.
3. A may adaptively make queries of the following form:

– A submits a shift δi ∈ M satisfying dis(δi) ≤ t to C.
– C invokes (Pi, Ri) ← Gen(crs, w + δi), and returns (Pi, Ri) to A.

4. As long as A outputs a guessing bit β′, the experiment outputs β′.

Robust fuzzy extractor guarantees that any modification of the public helper
string by a PPT adversary will be detected. Now, combining the definition of
reusability in [2] and robustness of fuzzy extractor in [7], we give the definition
of robustly reusable fuzzy extractor.

Definition 14 (Robustness of Reusable Fuzzy Extractor). Let rrFE =
(Init,Gen,Rep) be an (M,m,R, t, ε1)-reusable fuzzy extractor. We say rrFE is
ε2-robust if for any distribution W over metric space M with H∞(W) ≥ m, for
any PPT adversary A, it holds that

AdvrobrrFE,A(1λ) := Pr[ExprobrrFE,A(1λ) ⇒ 1] ≤ ε2,

where ExprobrrFE,A(1λ) describes the robustness experiment played between an adver-
sary A and a challenger C.

474 Y. Wen and S. Liu

ExprobrrFE,A(1λ):

1. Challenger C invokes crs ← Init(1λ), and returns crs to A.
2. C samples w ← W , invokes (P,R) ← Gen(crs, w) and returns (P,R) to A.
3. A may adaptively make queries of the following form:

– A submits a shift δi ∈ M satisfying dis(δi) ≤ t to challenger C.
– C invokes (Pi, Ri) ← Gen(crs, w + δi), and returns (Pi, Ri) to A.

4. A submits its forgery (˜P , ˜δ) to C. A wins if dis(˜δ) ≤ t, ˜P is fresh (i.e., ˜P is
different from P and those Pi) and Rep(crs, ˜P ,w + ˜δ) �= ⊥. The experiment
outputs 1 if A wins and 0 otherwise.

Definition 15 (Robustly Reusable Fuzzy Extractor). An (M,m,R,
t, ε1, ε2)-robustly reusable fuzzy extractor (rrFE) is an (M,m,R, t, ε1)-reusable
fuzzy extractor with ε2-robustness.

Remark 3. In the robustness experiment, the adversary submits not only ˜P , but
also the shift ˜δ. In the previous works, such as [8], the authors considered two
perturbation styles: (1) the shift is independent of W ; (2) the shift can arbitrarily
depend on W . In our definition, the shift is controlled by the adversary, and it
just sits in the middle of the two styles. The reason we adopt such a definition is
to make the perturbation style consistent with that in the reusability experiment.

4.2 Construction of Robustly Reusable Fuzzy Extractor

Figure 4 illustrates our construction of robustly reusable FE rrFE =
(Init,Gen,Rep) for metric space M, which makes use of the following building
blocks:

– A key-shift secure symmetric key encapsulation mechanism SKEM =
(SKEM.Init, SKEM.Enc,SKEM.Dec). Let its secret key space be SK and encap-
sulation key space be K.

– A homomorphic average-case (M, m̂,SK, εext)-strong extractor Ext.
– A homomorphic (m − �log p�, m̂, 2t)-secure sketch SS = (SS.Gen,SS.Rec) for

metric space M with m̂ − �log p� ≥ ω(log λ).
– A homomorphic (lLAF, n)-lossy algebraic filter LAF = (FGen,FEval,FTag) with

domain Z
n
p, lLAF = �log p�, and tag space {0, 1}∗ × T ′. We assume that any

w ∈ M can be explained as an element in Z
n
p.

The correctness of the fuzzy extractor follows from the correctness of the under-
lying SS and SKEM.

Theorem 2. If the underlying SKEM is key-shift secure with secret key space
SK and encapsulation key space K, Ext is a homomorphic average-case (M, m̂,
SK, εext)-strong extractor, SS is a homomorphic (m−�log p�, m̂, 2t)-secure sketch
for metric space M with m̂ − �log p� ≥ ω(log λ), and LAF is a homomorphic
(lLAF, n)-lossy algebraic filter with domain Z

n
p and lLAF = �log p�, and every

element in M can be explained as an element in Z
n
p, then the fuzzy extractor

Robustly Reusable Fuzzy Extractor from Standard Assumptions 475

Fig. 4. Construction of robustly reusable fuzzy extractor rrFE.

rrFE in Fig. 4 is an (M,m,K, t, ε1, ε2)-robustly reusable fuzzy extractor, where
ε1 = 2AdvindLAF(1

λ)+2εext+AdvksSKEM(1λ) and ε2 = AdvindLAF(1
λ)+εext+AdvevaLAF(1

λ)+
2−ω(log λ).

Proof. All we have to do is to show that rrFE is ε1-reusable and ε2-robust, which
are proved in Theorems 3 and 4 respectively.

Theorem 3. Given the building blocks specified in Theorem2, the fuzzy extrac-
tor rrFE in Fig. 4 is ε1-reusable, where ε1 = 2AdvindLAF(1

λ) + 2εext +AdvksSKEM(1λ).

Proof. We will prove this theorem by a sequence of games. The changes from
Game Gj to Game Gj+1 are underlined.

Game G0: It is exactly experiment ExpreurFE,A(1). More precisely,

1. Challenger C invokes (Fpk, Ftd) ← FGen(1λ) and pp ← SKEM.Init(1λ), sam-
ples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

2. C samples w ← W , invokes s ← SS.Gen(w), sk ← Ext(w, iext), (c, k) ←
SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ←$ T ′, computes σ ←
FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), R := k, and returns (P,R) to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C invokes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, invokes σi ← FEval(Fpk, ti, t

′
i, w+δi), sets

Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

4. If A outputs a bit β′, the game outputs β′.

Obviously,
Pr[ExpreurFE,A(1) ⇒ 1] = Pr[GA

0 ⇒ 1]. (6)

Game G1: It is the same as G0, except for conceptual changes of generating
(Pi, Ri). More precisely,

476 Y. Wen and S. Liu

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ← $ T ′, computes σi := FEval(Fpk, ti, t

′
i, w)+

FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns (Pi, Ri) to

A.

Lemma 4. Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1].

Proof. By the homomorphic property of the deterministic secure sketch, we have:

si
G0= SS.Gen(w + δi) = SS.Gen(w) + SS.Gen(δi) = s + SS.Gen(δi)

G1= si.

By the homomorphic property of Ext, we have:

ski
G0= Ext(w + δi, iext) = Ext(w, iext) + Ext(δi, iext) = sk + Ext(δi, iext)

G1= ski.

Similarly, by the homomorphic property of LAF, we have:

σi
G0= FEval(Fpk, ti, t

′
i, w + δi) = FEval(Fpk, ti, t

′
i, w) + FEval(Fpk, ti, t

′
i, δi)

G1= σi.

Thus the changes are just conceptual, and Lemma 4 follows. �

Game G2: It is the same as G1, except that the core tags t′, t′i are not uniformly
chosen any more. Now they are generated by FTag in G2. More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t), com-
putes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), R := k, and returns (P,R)
to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,

t′i, w)+FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 5. |Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ AdvindLAF(1
λ).

Proof. Assume there exists a PPT adversary A such that
|Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]| = ε. We construct a PPT algorithm B who, given

Fpk, can distinguish oracle FTag(Ftd, ·) from oracle OT ′(·) with advantage ε.
Algorithm B simulates an environment for A as follows:

– Given Fpk, algorithm B invokes pp ← SKEM.Init(1λ), samples a seed iext ←$ I,
sets crs := (Fpk, iext, pp), and returns crs to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk) and sets t := (s, c).

– B queries its own oracle with t = (s, c), and the oracle replies B with t′.
After receiving t′ from its oracle, B invokes σ ← FEval(Fpk, t, t′, w), sets
P := (t = (s, c), t′, σ), R := k, and returns (P,R) to A.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 477

– Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, algorithm B computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski)
and sets ti = (si, ci).

– B queries its oracle with ti := (si, ci), and the oracle replies B with t′i.
After receiving t′i from its oracle, B computes σi := FEval(Fpk, ti, t

′
i, w)+FEval

(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

– When A outputs a bit β′, algorithm B returns β′.

Observe that if the oracle to which B has access is FTag(Ftd, ·), then B perfectly
simulates G2 for A; otherwise it perfectly simulates G1 for A. Thus

AdvindLAF,B(1λ) = |Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]|.

This completes the proof of Lemma 5. �

GameG3: It is the same as G2, except that sk is changed to a uniform one.
More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), samples ̂sk ←$ SK,
computes (c, k) ← SKEM.Enc(pp, ̂sk), sets t := (s, c), generates t′ ← FTag
(Ftd, t), computes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), R := k, and
returns (P,R) to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := ̂sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 6. |Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ εext.

Proof. Assume that A makes ρ queries to the challenger. The only difference
between G2 and G3 is that sk ← Ext(w, iext) in G2 is changed to ̂sk ←$ SK in
G3. We will show that the views of adversary A in G2 and G3 are statistically
indistinguishable.

Since Fpk, Ftd and pp are independent of W , we have

˜H∞(W | (Fpk, Ftd, pp)) = ˜H∞(W) ≥ m. (7)

Define S := {σ | σ = FEval(Fpk, t, t′,W) ∧ tag = (t, t′) ∈ Tlossy}, which collects
all function values w.r.t. the same W and the same Fpk but under all possible
lossy tags. By the lossiness of LAF, S only reveals log p bits information of W
(see Remark 2). According to Lemma 1 and Eq. (7), we have

˜H∞(W | (Fpk, Ftd, pp,S)) ≥ ˜H∞(W | (Fpk, Ftd, pp)) − log p ≥ m − log p. (8)

Since SS is a (m − log p, m̂, 2t)-secure sketch, we have

˜H∞(W | (s = SS.Gen(W), Fpk, Ftd, pp,S)) ≥ m̂.

478 Y. Wen and S. Liu

Define AuxiliaryInput := (s = SS.Gen(W), Fpk, Ftd, pp, S). Obviously
AuxiliaryInput is independent of iext. According to Eq. (3), the average-case
(M, m̂,SK, εext)-strong extractor Ext implies

(

sk, iext, (s = SS.Gen(W), Fpk, Ftd, pp, S
︸ ︷︷ ︸

AuxiliaryInput

)
) εext≈

(

̂sk, iext, (s = SS.Gen(W), Fpk, Ftd, pp, S
︸ ︷︷ ︸

AuxiliaryInput

)
)

, (9)

where sk := Ext(W, iext) and ̂sk ←$ SK. Since crs = (Fpk, iext, pp), Eq. (9) implies
(

sk, s = SS.Gen(W), crs, Ftd, S
︸ ︷︷ ︸

Ω

) εext≈
(

̂sk, s = SS.Gen(W), crs, Ftd, S
︸ ︷︷ ︸

Ξ

)

. (10)

Let w be a specific value taken by random variable W .
Recall that P = (s, c, t′, σ) and R = k, where s ← SS.Gen(w), (c, k) ←

SKEM.Enc(pp, sk), t := (s, c), t′ ← FTag(Ftd, t), σ ← FEval(Fpk, t, t′, w). Obvi-
ously, (P,R) can be regarded as an output of some randomized function on input
Ω.

Define ̂P := (s, ĉ, ̂t′, σ̂) and ̂R := ̂k, where s ← SS.Gen(w), (ĉ,̂k) ←
SKEM.Enc (pp, ̂sk), ̂t = (s, ĉ), ̂t′ ← FTag(Ftd,̂t), σ̂ ← FEval(Fpk,̂t, ̂t′, w). In
other words, (̂P , ̂R) is the helper string and the extracted string generated with
the random key ̂sk. Then (̂P , ̂R) can be regarded as an output of the same
randomized function on input Ξ as that for (P,R).

According to Lemma 2, Formula (10) implies

(

Ω
︷ ︸︸ ︷

sk := Ext(W, iext), s = SS.Gen(W), crs, Ftd, S, P, R
︸ ︷︷ ︸

Ω0

) εext≈
(

Ξ
︷ ︸︸ ︷

̂sk ←$ SK, s = SS.Gen(W), crs, Ftd, S, ̂P, ̂R
︸ ︷︷ ︸

Ξ0

)

,

in short,

⎛

⎜

⎝
Ω,P,R
︸ ︷︷ ︸

Ω0

⎞

⎟

⎠

εext≈

⎛

⎜

⎝
Ξ, ̂P , ̂R
︸ ︷︷ ︸

Ξ0

⎞

⎟

⎠
. (11)

Before A submits its first query δ1 in G2, its view is described by 〈crs, P,R〉.
Obviously, δ1 can be computed by some randomized function of 〈crs, P,R〉 (the
function is determined by A’s strategy). Naturally, it can be regarded as an
output of some randomized function on input Ω0.

Similarly, the first query ̂δ1 of A in G3 is determined by the same randomized
function of its view 〈crs, ̂P , ̂R〉, hence it can also be regarded as an output of the
same randomized function of Ξ0.

By Lemma 2 again, Formula (11) implies
(

Ω, P, R, δ1
︸ ︷︷ ︸

Ω′
0

) εext≈
(

Ξ, ̂P, ̂R, ̂δ1
︸ ︷︷ ︸

Ξ′
0

)

. (12)

Recall that P1 := (s1, c1, t′1, σ1), R1 := k1, where s1 = s + SS.Gen(δ1), sk1 =
sk +Ext(δ1, iext), (c1, k1) ← SKEM.Enc(pp, sk1), t1 = (s1, c1), t′1 ← FTag(Ftd, t1)

Robustly Reusable Fuzzy Extractor from Standard Assumptions 479

σ1 = FEval(Fpk, t1, t
′
1, w) + FEval(Fpk, t1, t

′
1, δ1). Note that (t1, t′1) is a lossy tag,

hence FEval(Fpk, t1, t
′
1, w) ∈ S. Obviously, P1 and R1 can be determined by some

randomized function of Ω′
0.

Define ̂P1 := (ŝ1, ĉ1, ̂t′1, σ̂1), ̂R1 := ̂k1, where ŝ1 = s + SS.Gen(̂δ1), ̂sk1 =
̂sk +Ext(̂δ1, iext), (ĉ1, ̂k1) ← SKEM.Enc(pp, ̂sk1), ̂t1 = (ŝ1, ĉ1), ̂t′1 ← FTag(Ftd, ̂t1)
σ̂1 = FEval(Fpk, ̂t1, ̂t′1, w) + FEval(Fpk, ̂t1, ̂t′1,

̂δ1). Similarly, ̂P1 and ̂R1 can be
determined by the same randomized function of of Ξ ′

0.
Applying Lemma 2 once more, Formula (12) implies

⎛

⎜

⎜

⎜

⎝

Ω′
0

︷ ︸︸ ︷

Ω, P, R, δ1, P1, R1
︸ ︷︷ ︸

Ω1

⎞

⎟

⎟

⎟

⎠

εext≈

⎛

⎜

⎜

⎜

⎝

Ξ′
0

︷ ︸︸ ︷

Ξ, ̂P, ̂R, ̂δ1, ̂P1, ̂R1
︸ ︷︷ ︸

Ξ1

⎞

⎟

⎟

⎟

⎠

. (13)

By induction on i ∈ [ρ], we have that
⎛

⎜

⎜

⎜

⎝

Ω, P, R, {δi, Pi, Ri}i∈[ρ]
︸ ︷︷ ︸

Ωρ

⎞

⎟

⎟

⎟

⎠

εext≈

⎛

⎜

⎜

⎜

⎝

Ξ, ̂P, ̂R, {̂δi, ̂Pi, ̂Ri}i∈[ρ]
︸ ︷︷ ︸

Ξρ

⎞

⎟

⎟

⎟

⎠

. (14)

More precisely,
⎛

⎜

⎜

⎜

⎝

Ω
︷ ︸︸ ︷

sk := Ext(W, iext), s = SS.Gen(W), crs, Ftd, S, P, R, {δi, Pi, Ri}i∈[ρ]
︸ ︷︷ ︸

Ωρ

⎞

⎟

⎟

⎟

⎠

εext≈

⎛

⎜

⎜

⎜

⎝

Ξ
︷ ︸︸ ︷

sk := Ext(W, iext), s = SS.Gen(W), crs, Ftd, S, ̂P, ̂R, {̂δi, ̂Pi, ̂Ri}i∈[ρ]
︸ ︷︷ ︸

Ξρ

⎞

⎟

⎟

⎟

⎠

. (15)

(15) implies

⎛

⎜

⎜

⎜

⎝

crs, P, R, {δi, Pi, Ri}i∈[ρ]
︸ ︷︷ ︸

Ω∗
ρ

⎞

⎟

⎟

⎟

⎠

εext≈

⎛

⎜

⎜

⎜

⎝

crs, ̂P, ̂R, {̂δi, ̂Pi, ̂Ri}i∈[ρ]
︸ ︷︷ ︸

Ξ∗
ρ

⎞

⎟

⎟

⎟

⎠

. (16)

Observe that Ω∗
ρ is just the whole view of A in G2, and Ξ∗

ρ is the whole
view of A in G3. The statistical distance of Ω∗

ρ and Ξ∗
ρ is smaller than εext. As

a consequence, we have |Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ εext. �

Game G4: It is the same as G3, except that R is uniformly chosen from K instead
of being output by SKEM. More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), samples ̂sk ←
$ SK, computes (c, k) ← SKEM.Enc(pp, ̂sk), sets t := (s, c), generates t′ ←
FTag(Ftd, t), computes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), samples
R ←$ K, and returns (P,R) to A.

Lemma 7. |Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]| ≤ AdvksSKEM(1λ).

480 Y. Wen and S. Liu

Proof. Assume there exists a PPT adversary A such that |Pr[GA
3 ⇒ 1] −

Pr[GA
4 ⇒ 1]| = ε. We construct a PPT algorithm B who can implement the

key-shift attack with the same advantage ε. Algorithm B simulates an environ-
ment for A as follows:

– After receiving pp from its own challenger, algorithm B invokes (Fpk, Ftd) ←
FGen(1λ), samples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs
to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), asks the chal-
lenge oracle of SKEM to get (c, k). Then B sets t := (s, c), generates t′ ←
FTag(Ftd, t), computes σ ← FEval(Fpk, t, t′, w), sets P := (t = (s, c), t′, σ),
R := k, and returns (P,R) to A.

– Upon receiving a shift δi ∈ M queried from A with dis(δi) ≤ t, algorithm
B computes si := s + SS.Gen(δi), Δi := Ext(δi, iext), asks its encapsulation
oracle with Δi to obtain (ci, ki), where (ci, ki) ← SKEM.Enc(pp, sk + Δi).
Then B sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi :=
FEval(Fpk, ti, t

′
i, w) + FEval (Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki,

and returns (Pi, Ri) to A.
– When A outputs a bit β′, algorithm B outputs β′ to its own challenger.

Note that if (c, k) is generated by (c, k) ← SKEM.Enc(pp, sk), then algorithm
B perfectly simulates G3 for A; otherwise k is uniformly chosen from K, then
algorithm B perfectly simulates G4 for A. Hence B shares exactly the same advan-
tage with A. Thus Advmrka

SKEM,B(1λ) = |Pr[GA
3 ⇒ 1]−Pr[GA

4 ⇒ 1]| ≤ Advmrka
SKEM(1λ).

This completes the proof of Lemma 7. �

Game G5: It is the same as G4, except that the generation of ̂sk is changed back
to sk ← Ext(w, iext). More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t), com-
putes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), samples R ←$ K, and
returns (P,R) to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 8. |Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]| ≤ εext.

Proof. The proof is similar to the proof of Lemma6, since the changes from G4

to G5 is symmetric to that from G2 to G3. We omit the proof here. �

Game G6: It is the same as G5, except that the core tags are changed back to
random tags. More precisely,

Robustly Reusable Fuzzy Extractor from Standard Assumptions 481

2. C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ←$ T ′, computes
σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), samples R ←$ K, and returns
(P,R) to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, C computes si :=
s+SS.Gen(δi), ski := sk+Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski), sets ti :=
(si, ci), samples t′i ←$ T ′, computes σi := FEval(Fpk, ti, t

′
i, w) + FEval(Fpk, ti,

t′i, δi), sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

Lemma 9. |Pr[GA
5 ⇒ 1] − Pr[GA

6 ⇒ 1]| ≤ AdvindLAF(1
λ).

Proof. The proof is similar to the proof of Lemma5, since the changes from G5

to G6 is symmetric to that from G1 to G2. We omit the proof here. �

Game G7: It is the same as G6, except for conceptual changes of generating
(Pi, Ri). More precisely,

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, computes σi ← FEval(Fpk, ti, t

′
i, w + δi),

sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

Lemma 10. Pr[GA
6 ⇒ 1] = Pr[GA

7 ⇒ 1].

Proof. The proof is identical to the proof of Lemma4, since the changes from
G6 to G7 is symmetric to that from G0 to G1. We omit the proof here. �

Note that G7 is identical to experiment ExpreurFE,A(0). Thus

Pr[ExpreurFE,A(0) ⇒ 1] = Pr[G7 ⇒ 1]. (17)

Taking all things together, by Eq. (6), Lemmas 4–10 and Eq. (17), we have that

AdvreurFE,A ≤ 2AdvindLAF(1
λ) + 2εext + AdvksSKEM(1λ).

This completes the proof of Theorem 3. �

Theorem 4. Given the building blocks specified in Theorem2, the fuzzy extrac-
tor rrFE in Fig. 4 is ε2-robust, where ε2 = AdvindLAF(1

λ) + εext + AdvevaLAF(1
λ) +

2−ω(log λ).

Proof. Similar to the proof of reusability, we will prove this theorem by a
sequence of games again. The changes from Game Gj to adjacent Game Gj+1 are
underlined. Let winj denote the event that adversary A wins in Gj . Gj outputs
1 if A wins and 0 otherwise. Obviously, Pr[winj] = Pr[GA

j ⇒ 1].
Game G0: It is identical to the robustness experiment ExprobrrFE,A(1λ).

1. Challenger C invokes (Fpk, Ftd) ← FGen(1λ) and pp ← SKEM.Init(1λ), sam-
ples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

482 Y. Wen and S. Liu

2. Challenger C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), samples t′ ←$ T ′, computes σ ←
FEval(Fpk, t, t′, w), sets P := (t = (s, c), t′, σ), R := k, and returns (P,R) to
A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si ← SS.Gen(w + δi), ski ← Ext(w + δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, computes σi ← FEval(Fpk, ti, t

′
i, w + δi),

sets Pi := (ti = (si, ci), t′i, σi), Ri := ki, and returns (Pi, Ri) to A.
4. A submits to C its forgery (˜P , ˜δ) with ˜P = (˜t = (s̃, c̃), ˜t′, σ̃). A wins if dis(˜δ) ≤

t, ˜P is fresh and Rep(crs, ˜P ,w + ˜δ) �= ⊥. Recall that Rep(crs, ˜P ,w + ˜δ) �= ⊥ if
and only if dis(w̃, w + ˜δ) ≤ t and σ̃′ = σ̃ holds, where w̃ ← SS.Rec(w + ˜δ, s̃)
and σ̃′ ← FEval(Fpk,˜t, ˜t′, w̃). The game outputs 1 if A wins and 0 otherwise.

Obviously,
Pr[GA

0 ⇒ 1] = Pr[ExprobrrFE,A(1λ) ⇒ 1]. (18)

Game G1: It is the same as G0, except for conceptual changes of generating
(Pi, Ri). More precisely,

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext) , (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), samples t′i ←$ T ′, computes σi ← FEval(Fpk, ti, t

′
i, w)+

FEval(Fpk, ti, t
′
i, δi), sets Pi := (ti = (si, ci), t′i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 11. Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1].

Proof. The changes are just conceptual by the homomorphic properties of SS,
Ext, LAF. Similar to the proof of Lemma4, Lemma 11 follows. �
Game G2: It is the same as G1, except that the core tags t′, t′i are not uniformly
chosen any more. Now they are generated by FTag in G2. More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c), generates t′ ← FTag(Ftd, t), com-
putes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), R := k, and returns (P,R)
to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,

t′i, w) + FEval(Fpk, ti, t
′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 12. |Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ AdvindLAF(1
λ).

Proof. The proof is similar to that of Lemma 5 (the difference is the output
strategy of algorithm B). Assume there exists a PPT adversary A such that
|Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]| = ε. We construct a PPT algorithm B who, given

Fpk, can distinguish oracle FTag(Ftd, ·) from oracle OT ′(·) with advantage ε.
Algorithm B simulates an environment for A as follows:

Robustly Reusable Fuzzy Extractor from Standard Assumptions 483

– Given Fpk, algorithm B invokes pp ← SKEM.Init(1λ), samples a seed iext ←$ I,
sets crs = (Fpk, iext, pp), and returns crs to A.

– Algorithm B samples w ← W , computes s ← SS.Gen(w), sk ← Ext(w, iext),
(c, k) ← SKEM.Enc(pp, sk), sets t := (s, c) and queries its oracle with
t to obtain t′. After receiving t′ from its oracle, B computes σ ←
FEval(Fpk, t, t′, w), sets P := (t = (s, c), t′, σ), R := k, and gives (P,R) to
A.

– Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, algorithm B computes
si := s + SS.Gen(δi), ski := sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti := (si, ci) and queries its oracle with ti to obtain t′i. After receiving t′i
from its oracle, B computes σi := FEval(Fpk, ti, t

′
i, w) + FEval (Fpk, ti, t

′
i, δi),

sets Pi := (si, ci, t
′
i, σi), Ri := ki, and returns (Pi, Ri) to A.

– When A submits its forgery (˜P = (s̃, c̃, ˜t′, σ̃), ˜δ), algorithm B checks whether
A wins. B returns 1 if A wins; otherwise, it returns 0.

Recall that A wins means that conditions dis(˜δ) ≤ t, ˜P is fresh and
Rep(crs, ˜P ,w+˜δ) �= ⊥ are satisfied. These conditions can be efficiently checked by
B. Moreover, if the oracle to which B has access is FTag(Ftd, ·), then B perfectly
simulates G2 for A; otherwise it perfectly simulates G1 for A. Thus

AdvindLAF,B(1λ) =
∣

∣ Pr[win1] − Pr[win2]
∣

∣ =
∣

∣ Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]
∣

∣.

This completes the proof of Lemma 12. �
Game G3: It is the same as G2, except that sk is changed to a uniform one.
More precisely,

2. Challenger C samples w ← W , computes s ← SS.Gen(w), samples ̂sk ←$ SK,
computes (c, k) ← SKEM.Enc(pp, ̂sk), sets t := (s, c), generates t′ ←
FTag(Ftd, t), computes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ), R := k,
and returns (P,R) to A.

3. Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, challenger C computes
si := s + SS.Gen(δi), ski := ̂sk + Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski),
sets ti = (si, ci), generates t′i ← FTag(Ftd, ti), computes σi := FEval(Fpk, ti,
t′i, w) + FEval(Fpk, ti, t

′
i, δi), sets Pi := (si, ci, t

′
i, σi), Ri := ki, and returns

(Pi, Ri) to A.

Lemma 13.
∣

∣ Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]
∣

∣ ≤ εext.

Proof. The only difference between G2 and G3 is that sk ← Ext(w, iext) in G2 is
changed to ̂sk ←$ SK in G3. The proof is exactly the same as that of Lemma 6.

Assume that A makes ρ queries to the challenger before submitting its forgery
(˜P , ˜δ). Following similar arguments as those in the proof Lemma6, we can show
that the views of adversary A before submitting the forgery in G2 and G3 are
statistically indistinguishable, i.e.,

(

crs, P,R, {δi, Pi, Ri}i∈[ρ]
︸ ︷︷ ︸

Ω∗
ρ

)

εext≈
(

crs, ̂P , ̂R, {̂δi, ̂Pi, ̂Ri}i∈[ρ]
︸ ︷︷ ︸

Ξ∗
ρ

)

. (19)

484 Y. Wen and S. Liu

Here Ω∗
ρ summerizes the view of A in G2, and Ξ∗

ρ the view of A in G3 before
A submits its forgery. The statistical distance of Ω∗

ρ and Ξ∗
ρ is smaller than εext.

As a consequence,
∣

∣ Pr[win2] − Pr[win3]
∣

∣ =
∣

∣ Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]
∣

∣ ≤ εext.

�

Lemma 14. Pr[win3] ≤ AdvevaLAF(1
λ) + 2−ω(log λ).

Proof. Let bad denote the event that A’s forgery ˜P = (˜t, ˜t′, σ̃) contains a non-
injective tag, i.e., (˜t, ˜t′) /∈ Tinj . We have

Pr[win3] = Pr[win3 ∧ bad] + Pr[win3 ∧ ¬bad]. (20)

Thus it suffices to prove the following two claims.

Claim. Pr[win3 ∧ bad] ≤ AdvevaLAF(1
λ).

Proof. If there exists a PPT adversary A whose forgery makes win3∧bad happen
in G3, we can construct a PPT algorithm B attacking on LAF’s evasiveness. Given
Fpk and a lossy tag generation oracle FTag(Ftd, ·), B aims to output a new lossy
tag. To this end, B simulates G3 for A as follows:

– After receiving Fpk from its own challenger, B invokes pp ← SKEM.Init(1λ),
samples a seed iext ←$ I, sets crs = (Fpk, iext, pp), and returns crs to A.

– B samples w ← W , computes s ← SS.Gen(w), samples ̂sk ←$ SK, computes
(c, k) ← SKEM.Enc(pp, ̂sk), and sets t := (s, c).

– B asks its own lossy tag generation oracle FTag(Ftd, ·) with t = (s, c)
and obtains t′ from the oracle. Obviously the oracle generates t′ by t′ ←
FTag(Ftd, t).

B computes σ ← FEval(Fpk, t, t′, w), sets P := (s, c, t′, σ) and R := k, and
returns (P,R) to A.

– Upon receiving a shift δi ∈ M from A with dis(δi) ≤ t, B computes si :=
s+SS.Gen(δi), ski := ̂sk +Ext(δi, iext), (ci, ki) ← SKEM.Enc(pp, ski) and sets
ti := (si, ci).

– B asks its own lossy tag generation oracle FTag(Ftd, ·) with ti = (si, ci)
and obtains t′i from the oracle. Obviously the oracle generates t′i by t′i ←
FTag(Ftd, ti).

B computes σi := FEval(Fpk, ti, t
′
i, w)+ FEval(Fpk, ti, t

′
i, δi), sets

Pi := (si, ci, t′i, σi) and Ri := ki, and returns (Pi, Ri) to A.

– When A outputs its forgery
(

˜P = (˜t = (s̃, c̃), ˜t′, σ̃), ˜δ
)

, B returns the tag

(˜t, ˜t′) to it own challenger.

Robustly Reusable Fuzzy Extractor from Standard Assumptions 485

Note that B perfectly simulates G3 for A, since its oracle generates lossy tags
with FTag(Ftd, ti).

If event win3 ∧ bad occurs, the forged helper string ˜P must be fresh, i.e.,
˜P �= P and ˜P �= Pi for i ∈ [ρ]. Define freshT as the event that the forged tag
(˜t, ˜t′) is a fresh one, i.e., (˜t, ˜t′) �= (t, t′) and (˜t, ˜t′) �= (ti, t′i) for all i ∈ [ρ]. Clearly,

Pr[win3 ∧ bad] = Pr[win3 ∧ bad ∧ ¬freshT
︸ ︷︷ ︸

Case 1

] + Pr[win3 ∧ bad ∧ freshT
︸ ︷︷ ︸

Case 2

]. (21)

Case 1. In this case, freshT does not happen. Then we have (˜t, ˜t′) = (t, t′)
or (˜t, ˜t′) = (ti, t′i) for some i ∈ [ρ]. With loss of generality, we assume that
(˜t, ˜t′) = (ti, t′i). Clearly ˜t = ti implies s̃ = si. Note that dis(δi) ≤ t and
dis(˜δ) ≤ t, thus dis(w + ˜δ, w + δi) ≤ dis(w + ˜δ, w) + dis(w,w + δi) ≤ 2t. By
the correctness of (m − �log p�, m̂, 2t)-secure sketch SS, we have w̃ = w + δi,
where w̃ ← SS.Rec(w + ˜δ, si) and si ← SS.Gen(w + δi). As a result,

σ̃′ = FEval(˜t, ˜t′, w̃) = FEval(ti, t′i, w + δi) = σi.

If win3 occurs, then σ̃ = σ̃′ must hold. This implies ˜P = (˜t, ˜t′, σ̃) =
(ti, t′i, σi) = Pi. This contradicts to the requirement of win3 that ˜P is fresh.
Thus we have

Pr[win3 ∧ bad ∧ ¬freshT] = 0. (22)

Case 2. If both bad and freshT occur, then the forged tag (˜t, ˜t′) is a fresh non-
injective tag. Observe that B perfectly simulates G3 for A, then B succeeds
in outputting a fresh non-injective tag, as long as bad ∧ freshT occurs. Con-
sequently,

Pr[win3 ∧ bad ∧ freshT] ≤ Pr[bad ∧ freshT] = AdvevaLAF,B(1λ). (23)

Combining (21), (22) and (23) together, we have

Pr[win3 ∧ bad] ≤ AdvevaLAF,B(1λ).

�

Claim. Pr[win3|¬bad] ≤ 2−ω(log λ).

Proof. In G3, adversary A interacts with the challenger and presents its forgery
(˜P , ˜δ) at the end. Define A’s view before it submits its forgery as

view := (crs, P,R, {δi, Pi, Ri}i∈[ρ]) =
(

crs, (s, c, t′, σ), k, {δi, (si, ci, t
′
i, σi), ki}i∈[ρ]

)

.

Given the forgery (˜P = (s̃, c̃, ˜t′, σ̃), ˜δ), A wins if Rep(crs, ˜P ,w + ˜δ) �= ⊥, ˜P

is fresh and dis(˜δ) ≤ t. In the mean time, Rep(crs, ˜P ,w + ˜δ) �= ⊥ if and only
if dis(w̃, w + ˜δ) ≤ t and σ̃ = σ̃′ hold, where w̃ ← SS.Rec(w + ˜δ, s̃) and σ̃′ ←
FEval(Fpk, t̃, t̃′, w̃). Therefore,

486 Y. Wen and S. Liu

Pr [win3 ∧ ¬bad] = Pr

[

˜P is fresh ∧ dis(˜δ) ≤ t ∧
dis(w̃, w + ˜δ) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad

∣

∣

∣

∣

∣

G3

]

≤ Pr
[

dis(w̃, w + ˜δ) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad
∣

∣

∣ G3

]

.

Now that bad does not occur, then the tag ˜tag = (˜t = (s̃, c̃), ˜t′) contained in ˜P
must be an injective tag. Thus LAFFpk,(t,t′)(·) is injective and entropy preserving.
This means σ̃′ := FEval(Fpk,˜t, ˜t′, ˜W) has the same entropy as ˜W . Consequently,
it will be hard for adversary A to forge a valid σ̃ (i.e., σ̃ = σ̃′) if ˜W has enough
min-entropy conditioned on A’s view in G3.

The outline of the proof is as follows.

– First, we prove that if dis(w̃, w + ˜δ) ≤ t, then

˜H∞(˜W | view) ≥ ˜H∞(W | view). (24)

– Next, we show that
˜H∞(W | view) ≥ ω(log λ). (25)

– Formulas (24) and (25) give ˜H∞(˜W | view) ≥ ω(log λ).
If the event bad does not happen, (˜t, ˜t′) must be an injective tag, hence
LAFFpk,(˜t,˜t′)(·) is an injective function, and σ̃′ = FEval(Fpk,˜t, ˜t′, ˜W) preserves

the entropy of ˜W . So we have

Pr[win3|¬bad] ≤ Pr
[

dis(w̃, w + ˜δ) ≤ t ∧ σ̃ = σ̃′ ∧ ¬bad
∣

∣

∣ G3

]

≤ 2−ω(log λ).

It remains to prove (24) and (25).

Proof of (24). Define the random variable ˜W := SS.Rec(s̃,W + ˜δ), where W
is the random variable in the robustness game. Let w, w̃ denote the values
taken by the random variables W, ˜W , respectively.
If A wins, then dis(w + ˜δ, w̃) ≤ t. By Lemma 3, we have

˜H∞
(

˜W |
(

SS.Gen(W + ˜δ), view , ˜δ
))

≥ ˜H∞
(

W + ˜δ |
(

SS.Gen(W + ˜δ), view , ˜δ
))

.

(26)
Note that SS.Gen(W + ˜δ) = SS.Gen(W) + SS.Gen(˜δ). The sketch s =
SS.Gen(W) belongs to view , so SS.Gen(W+˜δ) can be computed from view and
˜δ. As a result, according to Eq. (1),

˜H∞
(

W + ˜δ |
(

SS.Gen(W + ˜δ), view , ˜δ
))

= ˜H∞
(

W + ˜δ |
(

view , ˜δ
))

. (27)

Robustly Reusable Fuzzy Extractor from Standard Assumptions 487

Note that ˜δ is determined by A after seeing view , therefore, it can be further
eliminated from the condition because of Eq. (2), and we have

˜H∞
(

W |
(

view , ˜δ
))

= ˜H∞ (W | view) . (28)

With Eqs. (27) and (28), we have

˜H∞
(

W + ˜δ |
(

SS.Gen(W + ˜δ), view , ˜δ
))

= ˜H∞ (W | view) . (29)

Similarly, we have

˜H∞
(

˜W |
(

SS.Gen(W + ˜δ), view , ˜δ
))

= ˜H∞
(

˜W | view
)

. (30)

Combining (26), (29) and (30), we have

˜H∞
(

˜W | view
)

≥ ˜H∞ (W | view) . (31)

Proof of (25). The general idea of the proof is that we will, step by step, show
that the view of adversary can be perfectly simulated by a simulator with S
and s, where S := {σ | σ = FEval(Fpk, t, t′,W) ∧ tag = (t, t′) ∈ Tlossy} and
s = SS.Gen(W). By the lossiness of LAF, the information of W leaked by S is
at most log p bits. By the fact that SS is a (m−�log p�, m̂, 2t)-secure sketch and
the fact that m̂−�log p� ≥ ω(log λ), we have that ˜H∞(W | view

)

≥ ω(log λ).
Details can be found in the full version [25].

�

Taking all things together, by Eq. (18) and Lemmas 11–14, it follows that

AdvrobrrFE,A ≤ AdvindLAF(1
λ) + εext + AdvevaLAF(1

λ) + 2−ω(log λ).

�

Corollary 1. If SS is instantiated by a syndrome-based secure sketch, Ext is
instantiated as Eq. (5), LAF is instantiated with the scheme in [15], and SKEM
is instantiated with the scheme shown in Fig. 3, then the construction in Fig. 4
results in a robustly reusable fuzzy extractor based on the DLIN assumption and
the DDH assumption.

Remark 4. Since there exist efficient linear error correcting codes which can
correct linear fraction of errors, the syndrome-based secure sketch is able to
correct linear fraction of errors as well, so is our robustly reusable fuzzy extractor.

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments. The authors are supported by the National Natural Science Foundation of China
(NSFC No. 61672346).

488 Y. Wen and S. Liu

References

1. Alamélou, Q., et al.: Pseudoentropic isometries: a new framework for fuzzy extrac-
tor reusability. In: Kim, J., Ahn, G., Kim, S., Kim, Y., López, J., Kim, T. (eds.)
AsiaCCS 2018, pp. 673–684. ACM (2018). http://doi.acm.org/10.1145/3196494.
3196530

2. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors
from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp.
1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2 1

3. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature
404(6775), 247–255 (2000)

4. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P.D. (eds.) CCS 2004, pp. 82–91. ACM (2004). http://doi.acm.org/10.
1145/1030083.1030096

5. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

6. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

7. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). https://doi.org/10.1137/S0097539702403773

9. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Techn.
14(1), 21–30 (2004). https://doi.org/10.1109/TCSVT.2003.818350

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authen-
ticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 14

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008). https://doi.org/10.1137/060651380

12. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

13. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) STOC 2009, pp. 601–610. ACM
(2009). http://doi.acm.org/10.1145/1536414.1536496

14. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-42033-7 10

http://doi.acm.org/10.1145/3196494.3196530
http://doi.acm.org/10.1145/3196494.3196530
https://doi.org/10.1007/978-3-319-60080-2_1
http://doi.acm.org/10.1145/1030083.1030096
http://doi.acm.org/10.1145/1030083.1030096
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1109/TCSVT.2003.818350
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/11818175_14
https://doi.org/10.1137/060651380
https://doi.org/10.1007/978-3-540-24676-3_31
http://doi.acm.org/10.1145/1536414.1536496
https://doi.org/10.1007/978-3-642-42033-7_10

Robustly Reusable Fuzzy Extractor from Standard Assumptions 489

15. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 31

16. Imamog, A., et al.: Quantum information processing using quantum dot spins and
cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)

17. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circuits Syst. Video Techn. 14(1), 4–20 (2004). https://doi.org/10.
1109/TCSVT.2003.818349

18. Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: Ostrovsky,
R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 156–171.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 11

19. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition, 2nd edn. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-0-85729-932-1

20. Marasco, E., Ross, A.: A survey on antispoofing schemes for fingerprint recognition
systems. ACM Comput. Surv. 47(2), 28:1–28:36 (2014). https://doi.org/10.1145/
2617756

21. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) CCS 2010, pp. 237–249. ACM (2010). http://doi.acm.org/10.
1145/1866307.1866335

22. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2006)

23. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: DAC 2007, pp. 9–14. IEEE (2007). http://doi.acm.
org/10.1145/1278480.1278484

24. Wen, Y., Liu, S.: Reusable fuzzy extractor from LWE. In: Susilo, W., Yang, G.
(eds.) ACISP 2018. LNCS, vol. 10946, pp. 13–27. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93638-3 2

25. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions.
Cryptology ePrint Archive, Report 2018/818 (2018). https://eprint.iacr.org/2018/
818

26. Wen, Y., Liu, S., Han, S.: Reusable fuzzy extractor from the decisional Diffie-
Hellman assumption. Des. Codes Cryptogr. 86, 2495–2512 (2018). https://doi.
org/10.1007/s10623-018-0459-4

https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1109/TCSVT.2003.818349
https://doi.org/10.1109/TCSVT.2003.818349
https://doi.org/10.1007/978-3-540-85855-3_11
https://doi.org/10.1007/978-0-85729-932-1
https://doi.org/10.1145/2617756
https://doi.org/10.1145/2617756
http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1278480.1278484
http://doi.acm.org/10.1145/1278480.1278484
https://doi.org/10.1007/978-3-319-93638-3_2
https://doi.org/10.1007/978-3-319-93638-3_2
https://eprint.iacr.org/2018/818
https://eprint.iacr.org/2018/818
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4

Simple and More Efficient PRFs
with Tight Security from LWE

and Matrix-DDH

Tibor Jager1(B), Rafael Kurek1, and Jiaxin Pan2

1 Paderborn University, Paderborn, Germany
{tibor.jager,rafael.kurek}@upb.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
jiaxin.pan@kit.edu

Abstract. We construct efficient and tightly secure pseudorandom func-
tions (PRFs) with only logarithmic security loss and short secret keys.
This yields very simple and efficient variants of well-known construc-
tions, including those of Naor-Reingold (FOCS 1997) and Lewko-Waters
(ACM CCS 2009). Most importantly, in combination with the construc-
tion of Banerjee, Peikert and Rosen (EUROCRYPT 2012) we obtain the
currently most efficient LWE-based PRF from a weak LWE-assumption
with a much smaller modulus than the original construction. In compari-
son to the only previous construction with this property, which is due to
Döttling and Schröder (CRYPTO 2015), we use a modulus of similar size,
but only a single instance of the underlying PRF, instead of λ · ω(log λ)
parallel instances, where λ is the security parameter. Like Döttling and
Schröder, our security proof is only almost back-box, due to the fact that
the number of queries made by the adversary and its advantage must be
known a-priori.

Technically, we introduce all-prefix universal hash functions
(APUHFs), which are hash functions that are (almost-)universal, even if
any prefix of the output is considered. We give simple and very efficient
constructions of APUHFs, and show how they can be combined with
the augmented cascade of Boneh et al. (ACM CCS 2010) to obtain our
results. Along the way, we develop a new and more direct way to prove
security of PRFs based on the augmented cascade.

Keywords: Pseudorandom functions · LWE · MDDH
Augmented cascade · Tight security

1 Introduction

A pseudorandom function (PRF) is a function F : K×D → G with the following
security property. For random k

$← K, the function F (k, ·) is computationally

The first and second authors were supported by DFG grant JA 2445/1-1. The third
author was supported by DFG grant HO 4534/4-1.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 490–518, 2018.
https://doi.org/10.1007/978-3-030-03332-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_18&domain=pdf

Simple and More Efficient PRFs with Tight Security 491

indistinguishable from a random function R(·), given oracle access to either
F (k, ·) or R(·). PRFs are a foundational cryptographic primitive with countless
applications, see [Gol01,Bel06,BG90,GGM84,Kra10] for example. While PRFs
can be constructed generically from one-way functions (via pseudorandom gen-
erators) [GGM86], this generic construction is rather inefficient. Therefore we
seek to construct efficient PRFs from as-weak-as-possible assumptions and with
tight security proof.

Tight security. In a cryptographic security proof, we often consider an adversary
A against a primitive like a PRF, and describe a reduction B that runs A as a
subroutine to break some computational problem which is assumed to be hard.
Let (tA, εA) and (tB, εB) denote the running time and success probability of A
and B, respectively. Then we say that the reduction B loses a factor �, if

tB
εB

≥ � · tA
εA

A reduction is usually considered “efficient”, if � is bounded by a polynomial in
the security parameter. We say that a reduction is “tight”, if � is small. Our goal
is to construct reductions B such that � is as small as possible. Ideally we would
like to have � = O(1) constant, but there are many examples of cryptographic
constructions and primitives where this is impossible to achieve [Cor02,KK12,
HJK12,LW14,BJLS16].

State of the art. Many constructions of efficient number-theoretic PRFs,
including the very general Matrix-DDH-based construction of [EHK+17] (with
the well-known algebraic constructions of Naor-Reingold [NR97] and Lewko-
Waters [LW09] as special cases), as well as the LWE-based PRF of Banerjee,
Peikert, and Rosen [BPR12], can in retrospect be seen as concrete instantiations
of the augmented cascade framework of Boneh et al. [BMR10]. For these construc-
tions, the size of the secret key and the loss in the security proof grow linearly1

with the length n of the function input. Thus, efficiency and security both depend
on the size of the input space. In order to extend the input space to {0, 1}∗, one
can generically apply a collision-resistant hash function H : {0, 1}∗ → {0, 1}n,
where n = 2λ and λ denotes the security parameter, to the input before pro-
cessing it in the PRF. This yields secret keys consisting of n = O(λ) elements
(where the concrete type of elements depends on the particular instantiation of
the augmented cascade) and a security loss of � = n = O(λ).

Contributions. We introduce all-prefix universal hash functions (APUHFs) as a
special type of hash functions that are universal, even if the output of the hash
function is truncated. We also describe a very simple and efficient construction,
which is based on the hash function of Dietzfelbinger et al. [DHKP97], as well
as a generic construction from pairwise independent hash functions with range
{0, 1}n for some n ∈ N.
1 As common in the literature, we count the number of elements here, not their bit

size that increases with the security parameter.

492 T. Jager et al.

Then we show that by combining the augmented cascade with an APUHF,
we are able to significantly improve both the asymptotic size of secret keys and
the security loss of these constructions. Specifically, we achieve keys consisting of
only a slightly super-logarithmic number of elements m = ω(log λ) and an only
logarithmic security loss O(log λ). Both the number of elements in the secret
key and tightness are independent of the input size n, except for the key of
the APUHF, which consists of n bits when instantiated with the APUHF of
Dietzfelbinger et al. [DHKP97]. Based on this generic result, we then obtain
simple variants of algebraic PRFs based on a large class of Matrix-DDH assump-
tions [EHK+17], which include the PRFs of Naor and Reingold [NR97] and its
generalization by Lewko and Waters [LW09] as special cases.

Furthermore, we obtain a simple variant of the PRF of Banerjee, Peikert and
Rosen [BPR12] (BPR). This PRF is based on the learning-with-errors (LWE)
assumption [Reg05], and has the property that the required size of the LWE mod-
ulus depends on the length of the PRF input. More precisely, the lower bound
on the LWE modulus p is exponential in the input length n = Θ(λ). We observe
this in almost all the well-known LWE-based PRFs such as [BLMR13,BP14]. In
order to improve efficiency and to base security on a weaker LWE assumption,
it is thus desirable to make p as small as possible. We show that simply encod-
ing the PRF input with an APUHF before processing it in the original BPR
construction makes it possible to reduce the lower bound on the LWE modulus
p from exponential to only slightly super-polynomial in the security parameter,
which yields a weaker assumption and a significant efficiency improvement (see
Sect. 5.2 for details). Furthermore, even for an arbitrary polynomially-bounded
input size n, our construction requires to store only m = ω(log λ) matrices,
independent of the size n of the input space {0, 1}n, plus a single bitstring of
length n when instantiated with the APUHF of Dietzfelbinger et al. [DHKP97].
In contrast, the original construction from [BPR12] requires Θ(n) matrices.

A similar improvement of the LWE modulus p was achieved by a different
BPR variant due to Döttling and Schröder in [DS15], via a technique called
on-the-fly adaptation. However, their construction requires to run λ · ω(log λ)
copies of the BPR PRF in parallel, while ours requires only a single copy plus
an APUHF. Thus, our approach is significantly more efficient, and also more
direct, as it essentially corresponds to the original BPR function, except that an
APUHF is applied to the input. This simplicity gives not only a useful conceptual
perspective on the construction of tightly secure PRFs, but it also makes schemes
easier to implement securely.

Another advantage of our approach is that the resulting PRF construc-
tion is extremely simple. It is essentially identical to the augmented cascade
from [BMR10], except that an APUHF h is applied to the input before it is pro-
cessed by the PRF. More precisely, let F̂m be a PRF that is constructed from
an m-fold application of an underlying function F via the augmented cascade
construction from [BMR10]. Then our construction F̂ (K,x) has the form

F̂ (K,x) := F̂m(s, h(x))

Simple and More Efficient PRFs with Tight Security 493

where the key of our new function is a tuple K = (s, h) consisting of a random
key s for the augmented cascade construction and a random function h

$← H
from a family H = {h : {0, 1}n → {0, 1}m} of APUHFs.

We remark that we require an additional property called perfect one-time
security (“1-uniformity”) of the underlying function F of the augmented cas-
cade, and thus technically our variant of [BMR10] is slightly less general. How-
ever, this is a minor restriction, as we show that this property is satisfied by
all known instantiations of the augmented cascade. Furthermore, our security
proof assumes that the reduction “knows” sufficiently close approximations of
the number of queries Q and the advantage εA of the adversary. Thus, the proof
shows how such non-black-box knowledge can be used to achieve more efficient
PRFs with short keys and very tight security from weaker assumptions.

Technical approach. Technically, our argument is inspired by the construction
of adaptively-secure PRFs from non-adaptively secure ones by Berman and
Haitner [BH12]. Essentially, an augmented cascade PRF with m-bit input is a
function F̂m : Sm ×K ×{0, 1}m → K with key space Sm ×K. In the sequel, let
(s1, . . . , sm, k) ∈ Sm ×K be a key for F̂m and h : {0, 1}n → {0, 1}m. For a string
a ∈ {0, 1}m we write av:w to denote the substring (av, . . . , aw) ∈ {0, 1}w−v+1 of
a. Let j be an integer with j ≤ m (we will explain later how to choose j in a
suitable way).

We start from the observation that, for each j ∈ {1, . . . , m}, we can imple-
ment an augmented cascade PRF F̂m equivalently as a two-step algorithm, which
proceeds as follows.

1. In the first step, the function F̂m processes only the first j bits h(x)1:j ∈
{0, 1}j of h(x), to compute an intermediate value kx that depends only on
the first j bits of h(x):

kx = F̂ j((s1, ..., sj), k, h(x)1:j)

2. Then the remaining m− j bits are processed, starting from kx, by computing

y = F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

The resulting function is identical to the function F̂m, so this is merely a specific
way to implement F̂m, which will be particularly useful to describe our approach.

To explain how we prove security, let x(1), . . . , x(Q) denote the sequence of
pairwise distinct oracle queries issued by the adversary in the PRF security
experiment, and suppose for now that it holds h(x(u))1:j �= h(x(v))1:j for u �= v.
Our goal is to show that then the security of F̂m is implied by the security of F̂ j ,
which is a PRF with shorter input. Intuitively, this holds due to the following
two-step argument.

1. We replace F̂ j with a random function R, which is computationally indistin-
guishable thanks to the security of F̂ j . Note that now the intermediate value
kx = R(h(x)1:j) is an independent random value for each oracle query made
by the adversary, because we assume h(x(u))1:j �= h(x(v))1:j for u �= v.

494 T. Jager et al.

2. Next we argue that now also F̂m is distributed exactly like a random function.
We achieve this by identifying an additional property required from F̂m−j

that we call perfect one-time security. This property guarantees that

Pr
kx

$←K

[
F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m) = y

]
=

1
|K|

for all (sj+1, ..., sm), h(x)j+1:m, y) ∈ Sm−j × {0, 1}m−j × K. This is sufficient
to show that indeed now the function

F̂m−j((sj+1, ..., sm), R(h(x)1:j), h(x)j+1:m)

is a random function, because we have h(x(u))1:j �= h(x(v))1:j for u �= v.

It remains to ensure that h(x(u))1:j �= h(x(v))1:j holds for all u �= v with
“sufficiently large” probability and for some “sufficiently small” value of j. Here
we use the all-prefix universal hash function, in combination with an argument
which on a high level follows similar proofs from [BH12] and [DS15]. The main
difference is that we use the all-prefix universality to argue that setting j :=⌈
log(2Q2/εA)

⌉
= O(log λ), where Q is the number of oracle queries made by the

adversary in the PRF security experiment and εA is its advantage, is sufficient
to guarantee that h(x(u))1:j �= h(x(v))1:j holds with sufficiently large probability
for all u �= v.

Note that we have j = O(log λ), so that we only have to require security of a
“short-input” augmented cascade F̂ j with j = O(log λ). For our algebraic instan-
tiations based on Matrix-DDH problems, this yields tightness with a security
loss of only O(log λ). For our application to the LWE-based PRF of Banerjee,
Peikert and Rosen [BPR12], this yields that we have to require only a weaker
LWE assumption. Furthermore, since we need only that m ≥ j holds for all pos-
sible values of j, and we have j =

⌈
log(2Q2/εA)

⌉
= O(log λ), it is sufficient to

set m = ω(log λ) slightly super-logarithmic, which yields short secret keys and
efficient evaluation for all instantiations.

Our proof technique, in particular the perfect one-time security property, can
also be seen as an alternative and more direct way of proving the augmented
cascade construction secure, while Boneh et al. used the somewhat more complex
q-parallel security of the underlying PRF.

Why all-prefix universal hash functions? We stress that we need an all-prefix
universal hash function, which works for any possible prefix length j. This is
necessary to make the construction and the security proof independent of par-
ticular values Q and εA of a particular adversary, because j depends on these
values via the definition j =

⌈
log(2Q2/εA)

⌉
. All-prefix universality guarantees

basically that a suitable value of j exists for any efficient adversary. This is also
required to achieve tightness. See Sect. 4.7 for further discussion.

More related work. There were several other works about the domain extension
of PRFs. The first one is due to Levin [Lev87]. It shows that larger inputs can be

Simple and More Efficient PRFs with Tight Security 495

hashed with a universal hash function if the underlying PRF has a sufficiently
large domain. Otherwise it is vulnerable to the so called “birthday attack”. The
framework of Jain, Pietrzak, and Tentes [JPT12] works for small domains, but
has a rather lossy security proof and is not very efficient, as it needs O(log q)
invocations of the underlying pseudo-random generator (PRG), where q is the
upper bound of queries to the PRF. Additionally, as the authors already men-
tion, it seems not to work for number-theoretic PRFs like the Naor-Reingold
PRF. It was revisited by Chandran and Garg [CG14]. Bernam et al. show how
to circumvent the “birthday attack” using Cuckoo Hashing [BHKN13] via two
invocations of the original PRF.

2 Preliminaries

Let λ ∈ N denote a security parameter. All our results are in the asymptotic set-
ting, that is, we view all expressions involving λ as functions in λ. This includes
the running time tA = tA(λ) and success probability εA = εA(λ) of adversaries,
even though we occasionally omit λ in this case to simplify our notation. Sim-
ilarly, all algorithms implicitly receive the security parameter 1λ as their first
input. We say that an algorithm is efficient, if it runs in (probabilistic) polyno-
mial time in λ.

Notation. If A is a finite set, then we write a
$← A to denote the action of

sampling a uniformly random element a from A. If A is a probabilistic algorithm,
then a

$← A(x) denotes the action of running A(x) on input x with uniform coins
and output a. For v, w ∈ N and v < w, we write �v, w� := {v, . . . , w} ⊂ N to
denote the interval of positive integers from v to w, and set �w� := {1, . . . , w} ⊂
N. For a bit string a = (a1, . . . , an) ∈ {0, 1}n and v, w ∈ �n� with v ≤ w, we
write av:w to denote the substring (av, . . . , aw) of a, and ai to denote the i-th
bit ai.

2.1 Pseudorandom Functions

Let K,D be sets such that there is an efficient algorithm that samples uniformly
random elements k

$← K. Let F : K × D → G be an efficiently computable
function. For an adversary A define the following security experiment ExpprfA,F (λ).

1. The experiment generates a random key k
$← K and tosses a coin b

$← {0, 1}.
2. The experiment provides adversary AO(1λ) with an oracle O which takes as

input x ∈ D and responds as follows.

O(x) =

{
F (k, x) if b = 1
R(x) if b = 0

where R : D → G is a random function. When the adversary terminates and
outputs a bit b′, then the experiment outputs 1 if b = b′, and 0 otherwise.

496 T. Jager et al.

Let x1, . . . , xQ ∈ D be the sequence of queries issued by A throughout the
security experiment. We assume that we always have Q ≥ 1, as otherwise the
output of A is independent of b. Furthermore, we assume that A never issues the
same query twice. More precisely, we assume xu �= xv for u �= v. This is without
loss of generality, since both F (k, ·) and R(·) are deterministic functions.

Definition 1. We say that adversary A (tA, εA, Q)-breaks the pseudorandom-
ness of F , if A runs in time tA, issues Q queries in the PRF security experiment,
and

Pr
[
ExpprfA,F (λ) = 1

]
≥ 1/2 + εA

2.2 (Almost-)Universal Hash Functions

Let us first recall the standard definition of universal hash functions.

Definition 2 ([CW79]). A family H of hash functions mapping finite set {0, 1}n

to finite set {0, 1}m is universal, if for all x, x′ ∈ {0, 1}n with x �= x′ holds that

Pr
h

$←H
[h(x) = h(x′)] ≤ 2−m.

We will also consider almost-universal hash functions, as defined below.

Definition 3. A family H of hash functions mapping finite set {0, 1}n to finite
set {0, 1}m is almost-universal, if for all x, x′ ∈ {0, 1}n with x �= x′ holds that

Pr
h

$←H
[h(x) = h(x′)] ≤ 2−m+1.

Universal and almost-universal hash functions can be constructed efficiently and
without additional complexity assumptions, see e.g. [CW79,DHKP97,IKOS08].

3 All-Prefix Universal Hash Functions

In this section, we define all-prefix almost universal hash functions and describe
two constructions. The first one is based on the almost-universal hash function
of Dietzfelbinger et al. [DHKP97], and yields an all-prefix almost-universal hash
function. The second one is based on pairwise independent hash functions with
suitable range, and yields an all-prefix universal hash function.

3.1 Definitions

Recall that for a bit string a = (a1, . . . , an) ∈ {0, 1}n and v, w ∈ �n� with v ≤ w,
we write av:w := (av, . . . , aw).

Definition 4. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m.
We say that H is a family of all-prefix universal hash functions, if for all x, x′ ∈
{0, 1}n with x �= x′ and all w ∈ �m� holds that

Pr
h

$←H
[h(x)1:w = h(x′)1:w] ≤ 2−w.

Simple and More Efficient PRFs with Tight Security 497

Note that all-prefix universality essentially means that for all prefixes of length
w the truncation of h to its first w bits h(x)1:w is a universal hash function. We
also define the slightly weaker notion of all-prefix almost-universality.

Definition 5. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m.
We say that H is a family of all-prefix almost-universal hash functions
(APUHFs), if for all x, x′ ∈ {0, 1}n with x �= x′ and all w ∈ �m� holds that

Pr
h

$←H
[h(x)1:w = h(x′)1:w] ≤ 2−w+1.

3.2 First Construction (Almost-Universal)

We construct a simple and efficient APUHF family based on the almost-universal
hash function of Dietzfelbinger et al. [DHKP97], which is defined as follows. Let
m,n ∈ N with m ≤ n. Let

Hn,m := {ha : a ∈ �2n − 1� and a is odd} (1)

be the family of hash functions, which for x ∈ Z2n is defined as

ha(x) := (ax mod 2n) div 2n−m, (2)

Before we prove that this function is all-prefix almost-universal, we first state
the following lemma of Dietzfelbinger et al. [DHKP97].

Lemma 1 ([DHKP97]). Let n and m be positive integers with m ∈ �n�. If
x, y ∈ Z2n are distinct and ha ∈ Hn,m is chosen at random, then

Pr[ha(x) = ha(y)] ≤ 2−m+1

Thus, Hn,m is a family of almost-universal hash functions in the sense of Defi-
nition 3.

All-prefix almost-universality of Hn,m. Now we prove that the hash function
family Hn,m of Dietzfelbinger et al. [DHKP97] is not only almost-universal, but
also satisfies the stronger property of all-prefix almost-universality.

Theorem 1. Hn,m is a family of all-prefix almost-universal hash functions in
the sense of Definition 5.

Proof. Let ω,m, n be any positive integers with ω ≤ m ≤ n. Note that if ha(·)
is a function in Hn,m then ha(·)1:ω is a function in Hn,ω. Further note that
Lemma 1 holds for all ω ∈ �n�, which proves the claim. 	

In the sequel, we will sometimes write h instead of ha, when it is clear from
the context that h is be chosen uniformly random from Hn,m.

498 T. Jager et al.

3.3 Second Construction (Universal)

While the almost-universal construction from Sect. 3.2 is already sufficient for
all our applications, it is natural to ask whether also all-prefix universal hash
functions (not almost-universal) can be constructed. We will show that each
pairwise-independent family of hash functions with range {0, 1}n is also a family
of all-prefix universal hash functions. To this end, let us first recall the notion of
pairwise independent hash functions.

Definition 6. Let H be a family of hash functions with domain {0, 1}n and
range {0, 1}m. We say that H is pairwise independent, if for all x, x′ ∈ {0, 1}n

with x �= x′ and all y, z ∈ {0, 1}m holds that

Pr
h

$←H
[h(x) = y ∧ h(x′) = z] = 2−2m.

We first show that pairwise independence implies all-prefix pairwise inde-
pendence, which is defined below. Then we show that this implies all-prefix
universality.

Let us write xi to denote the i-th bit of the bit string x.

Definition 7. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m.
We say that H is all-prefix pairwise independent, if for all x, x′ ∈ {0, 1}n with
x �= x′ and all y, z′ ∈ {0, 1}m holds that

Pr
h

$←H
[h(x)1:w = y1:w ∧ h(x′)1:w = z1:w] = 2−2w

for all w ∈ �m�.

Lemma 2. If H is pairwise independent, then it is also all-prefix pairwise inde-
pendent.

Proof. We have

Pr
h

$←H
[h(x)1:j = y1:j ∧ h(x′)1:j = z1:j]

= Pr
h

$←H

⎡
⎣
⎛
⎝ ⋃

y′∈{0,1}m−j

h(x) = (y1:j ‖ y′)

⎞
⎠ ∧

⎛
⎝ ⋃

z′∈{0,1}m−j

h(x′) = (z1:j ‖ z′)

⎞
⎠
⎤
⎦

=
∑

y′∈{0,1}m−j

∑
z′∈{0,1}m−j

Pr
h

$←H
[h(x) = (y1:j ‖ y′) ∧ h(x′) = (z1:j ‖ z′)]

=
∑

y′∈{0,1}m−j

∑
z′∈{0,1}m−j

1
22m

=
2m−j · 2m−j

22m
=

1
22j

.

	

Now it remains to show that all-prefix pairwise independence implies all-

prefix universality.

Simple and More Efficient PRFs with Tight Security 499

Lemma 3. If H is all-prefix pairwise independent, then it is also all-prefix uni-
versal.

Proof. It holds that

Pr
h

$←H
[h(x)1:j = h(x′)1:j] =

∑
y1:j∈{0,1}j

Pr
h

$←H
[h(x)1:j = y1:j ∧ h(x′)1:j = y1:j] (3)

=
∑

y1:j∈{0,1}j

1
22j

=
1
2j

,

where (3) holds because of Lemma 2. 	

Example instantiation. Let n ∈ N and let

Hn := {ha,b : a, b ∈ {0, 1}n}
be the family of hash functions

ha,b : GF (2n) → GF (2n);x → ax + b,

where the arithmetic operations are in GF (2n). Since it is well-known that Hn

is pairwise independent we leave the following theorem without proof.

Theorem 2. Hn is a family of all-prefix universal hash functions.

Note that in the explicit construction of GF (2n) the choice of the irreducible
polynomial has big impact on the efficiency of the arithmetic operations.

4 Augmented Cascade PRFs with Tighter Security

In this section, we show that APUHFs enable the instantiation of augmented cas-
cade PRFs [BMR10] with shorter keys of slightly super-logarithmic size ω(log λ).
The security proof loses only a factor O(log λ), independent of the input size of
the PRF, assuming that (reasonably close bounds) on the number of queries Q
and the success probability 1/2+ εA of the PRF adversary A are known a priori.
In contrast, the loss of the previous security proof of [BMR10] is linear in the
input size of the PRF (which is usually linear in λ), but does not assume any a
priori knowledge about A.

4.1 Augmented Cascade PRFs

Boneh et al. [BMR10] showed how to construct a PRF

F̂m : (Sm × K) × Xm → K

with key space (Sm × K) and input space X from an augmented cascade of
functions

F : (S × K) × X → K

The augmented cascade construction is described in Fig. 1. Boneh et al. [BMR10]
prove that F̂m is a secure PRF, if F is parallel secure in the following sense.

500 T. Jager et al.

Fig. 1. Definition of function F̂m of Boneh et al. [BMR10].

Definition 8 ([BMR10]). For a function F : (S × K) × X → K define F (Q) as
the function

F (Q) : (S × KQ) × (X × �Q�) → K ((s, k1, ..., kq), (x, i)) → F ((s, ki), x) .

We say that A (tA, εA, Q)-breaks the Q-parallel security of F : (S×K)×X → K,
if it (tA, εA, Q)-breaks the pseudorandomness of F (Q) in the sense of Definition 1.

Theorem 3 ([BMR10]). From each adversary A that (tA, εA, Q)-breaks the
pseudorandomness of F̂m, one can construct an adversary B that (tB, εB, Q)-
breaks the Q-parallel security of F (Q) with

tB = Θ(tA) and εB ≥ εA
m

Note that the security loss of this construction is linear in the length m of the
input of function F̂m.

4.2 The Augmented Cascade with Encoded Input

We consider augmented cascade PRFs which are almost identical to the construc-
tion of Boneh et al. [BMR10], except that we apply an all-prefix almost-universal
hash function to the input before processing it in the augmented cascade, and
show that this enables a tighter security proof. We consider the special case with
input space X = {0, 1}, which encompasses the MDDH-based construction of
Escala et al. [EHK+17] and thus includes in particular both the instantiations
of Naor-Reingold [NR97] and Lewko-Waters [LW09].

Let Hn,m be a family of all-prefix almost-universal hash functions according
to Definition 5, and let F : (S × K) × {0, 1} → K be a function. We define the
corresponding augmented cascade PRF with Hn,m-encoded input as the function

F̂Hn,m : Sm × K × Hn,m × {0, 1}n → K

((s1, ..., sm), k, h, x) → F̂m((s1, ..., sm), k, h(x)) (4)

where F̂m is the augmented cascade construction of Boneh et al. [BMR10],
applied to F as described in Fig. 1.

Remark 1. Note that evaluating the PRF requires only m recursions in the aug-
mented cascade, and that, accordingly, the secret key consists of only m elements

Simple and More Efficient PRFs with Tight Security 501

and the description of h, while the input size can be any polynomial number of n
bits, with possibly n � m. We will later show that it suffices to set m = ω(log λ)
slightly super-logarithmic, thanks to the input encoding with an all-prefix almost-
universal hash function. Also the security loss of this construction is only O(log λ)
and independent of the size of the input n.

4.3 Preparation for the Security Proof

In this section we describe a few technical observations which will simplify the
security proof. Furthermore, we define perfect one-time security as an additional
property of a function F (s, x, k), which will also be required for the proof. We
will argue later that the Matrix-DDH-based instantiations of the augmented cas-
cade of [EHK+17], including the functions of Naor-Reingold [NR97] and Lewko-
Waters [LW09], all satisfy this additional notion. Moreover, we will show that
the LWE-based PRF of [BPR12] can be viewed as an augmented cascade and it
is perfectly one-time secure.

An observation about the augmented cascade. The following observation will be
useful to follow the security proof more easily. Suppose we want to compute

z = F̂m((s1, ..., sm), k, h(x))

then, due to the recursive definition of F̂m, we can equivalently proceed in the
following two steps.

1. Let i ∈ �m�. We first process the first i bits h(x)1:i of h(x) with (s1, . . . , si, k),
and compute and “intermediate key” kx as

kx := F̂ i((s1, . . . , si), k, h(x)1:i)

2. Then we process the remaining m−i bits h(x)i+1:m of h(x) with the remaining
key elements (si+1, . . . , sm, kx) by computing

z = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

We formulate this observation as a lemma.

Lemma 4. For all i ∈ �m�, we have

F̂m((s1, ..., sm), k, h(x)) = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

where kx := F̂ i((s1, . . . , si), k, h(x)1:i).

Perfect One-Time Security. We will furthermore require an additional security
property of F , which we call perfect one-time security, and show that this prop-
erty is satisfied by all instantiations of function F considered in this section. We
demand that F (s, x, k) is identically distributed to a random function R(x), if it
is only evaluated once. This must hold over the uniformly random choice k

$← K,
and for any s ∈ S and x ∈ {0, 1}.

502 T. Jager et al.

Definition 9. We say that a function F : S × K × {0, 1}m → K is perfectly
one-time secure, if

Pr
k

$←K

[F (s, k, x) = k′] =
1

|K|
for all (s, x, k′) ∈ S × {0, 1}m × K.

Perfect one-time security basically guarantees uniformity of the hash function,
if it is evaluated only once (“1-uniformity”).

The following lemma follows directly from Definition 9. It will be useful to
prove security of our variant of the augmented cascade.

Lemma 5. Let m ∈ N and F : S ×K ×{0, 1} → K be perfectly one-time secure.
Then the augmented cascade F̂m constructed from F is also perfectly one-time
secure. That is

Pr
k

$←K

[
F̂m((s1, ..., sm), k, x) = k′

]
=

1
|K|

for all ((s1, ..., sm), k′, x) ∈ Sm × K × {0, 1}m.

Proof. For a uniformly random chosen k it holds that Pr [F (s1, k, x1) = k1] = 1
|K|

for all (s1, k, x1) ∈ S × K × {0, 1} because of the perfect one-time security of
F . Thus the input for the second iteration stays uniformly random. Due to
the recursive construction executing all the following iterations will keep this
distribution, which gives us the perfect one-time security of F̂m. 	

4.4 Security Proof

Now we are ready to prove the following theorem.

Theorem 4. Let m = ω(log λ) be (slightly) super-logarithmic, Hn,m be a family
of all-prefix almost universal hash functions and F be perfectly one-time secure.

From each adversary A that (tA, εA, Q)-breaks the pseudorandomness of
F̂Hn,m with Q/εA = poly(λ) for some polynomial poly, we can construct an
adversary B that (tB, εB, Q)-breaks the pseudorandomness of F̂ j, where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

Proof. In the sequel let j = j(λ) be defined such that

j :=
⌈
log(2Q2/εA)

⌉
(5)

Observe that we have j(λ) ≤ m(λ) for sufficiently large λ, because the fact that
we have Q/εA = poly(λ) for some polynomial poly and j < log(2Q2/εA) + 1
together yield that j = O(log λ), while we have m = ω(log λ).

Remark 2. Note that although we have j = O(log(2Q2/εA)) = O(log λ), the
constant hidden in the big-O notation depends on the adversary.

Simple and More Efficient PRFs with Tight Security 503

We describe a sequence of games, where Game 0 is the original PRF security
experiment, and in the last game the probability that the experiment outputs 1
is 1/2, such that no adversary can have any advantage. Let Xi denote the event
that the experiment outputs 1 in Game i, and let Oi denote the oracle provided
by the experiment in Game i.

Game 0. This is the original security experiment. In particular, we have

O0(x) =

{
F̂Hn,m((s1, ..., sm), k, h, x) if b = 1
R(x) if b = 0

where R is a random function. Therefore, by definition, it holds that

Pr [X0] = 1/2 + εA

Game 1. We change the way how the oracle implements function F̂Hn,m . That
is, we modify the behaviour of O1 in case b = 1, while in case b = 0 oracle O1

proceeds identical to O0. Recall that

F̂Hn,m((s1, ..., sm), k, h, x) = F̂m ((s1, ..., sm), k, h(x))

O1 implements this function in a specific way. Using the observation from
Lemma 4, it computes F̂m ((s1, ..., sm), k, h(x)) in two steps:

1. kx := F̂ j((s1, . . . , sj), k, h(x)1:j),
2. z := F̂m−j((sj+1, ..., sm, kx, h(x)j+1:m),

where j is as defined above, and we use that j ≤ m. By Lemma 4, this is just
a specific way to implement function F̂m, so the change is purely conceptual and
we have

Pr [X1] = Pr [X0]

Game 2. This game is identical to Game 1, except that we replace the function
F̂m implemented by oracle O1 partially with a random function. More precisely,
oracle O2 chooses a second random function Rj : {0, 1}j → K. If b = 1, then it
computes z = O2(x) as

1. kx := Rj(h(x)1:j)
2. z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

If b = 0, then it proceeds exactly like O1. The proof of the following lemma is
postponed to Sect. 4.5.

Lemma 6. From each A that runs in time tA and issues Q oracle queries one
can construct an adversary B that (tB, εB, Q)-breaks the pseudorandomness of
F̂ j where

tB = Θ(tA) and εB = |Pr [X1] − Pr [X2]| (6)

504 T. Jager et al.

Game 3. This game is identical to Game 2, but O3 performs an additional
check. Whenever A makes an oracle query x, O3 checks whether there has been
a previous oracle query x′ such that

h(x)1:j = h(x′)1:j

If this holds, then O3 raises event coll, and the experiment outputs a random
bit and terminates. Note that the check is always performed, for both values
b ∈ {0, 1}. Since both games are identical until coll, we have

|Pr [X2] − Pr [X3]| ≤ Pr [coll]

Again, the proof of the following lemma is postponed, to Sect. 4.6.

Lemma 7. If F is perfectly one-time secure, then Pr [coll] ≤ εA/2 and
Pr

[
X3 | coll] = 1/2.

We finish the proof of Theorem4 before we prove Lemmas 6 and 7. We have

Pr [X3] = Pr [X3 | coll] · Pr [coll] + Pr
[
X3 | coll] · (1 − Pr [coll]) (7)

Recall that X3 denotes the probability that the experiment outputs 1, which
happens if and only if A outputs b′ with b = b′. By construction of the experiment,
we abort and output a random bit in Game 3, if coll occurs. In combination with
Lemma 7 we thus get

Pr [X3 | coll] = Pr
[
X3 | coll] = 1/2

Plugging this into (7) yields

Pr [X3] = 1/2 · Pr [coll] + 1/2 · (1 − Pr [coll]) = 1/2 (8)

Lower bound on εB. Finally, using (8), the bounds from Lemmas 6 and 7, and
the fact that Pr [X0] = Pr [X1], we obtain a lower bound on εB:

1/2 + εA = Pr [X0] = Pr [X1] ≤ Pr [X2] + εB ≤ 1/2 + εA/2 + εB
⇐⇒ εB ≥ εA/2

Furthermore, by Lemma 6, algorithm B runs in time tB = Θ(tA) and issues Q
oracle queries. 	

4.5 Proof of Lemma 6

Adversary B plays the pseudorandomness security experiment with function F̂ j .
Let O denote the PRF oracle provided to B in this game. B runs A as a subrou-
tine by simulating the security experiment as follows.

Initialization. B samples a bit b
$← {0, 1}, a hash function h ← Hn,m, and picks

(sj+1, ..., sm), where si ← S for all i ∈ �j + 1,m�.

Simple and More Efficient PRFs with Tight Security 505

Handling of oracle queries. Whenever A queries x ∈ {0, 1}n, B proceeds as
follows.

– If b = 0, then B proceeds exactly like the original experiment. That is, it
responds with R(x), where R : {0, 1}n → K is a random function.

– If b = 1, then B computes h(x) and queries O to obtain kx := O(h(x)1:j).
Then it computes

z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

and returns z to A.

Finalization. Finally, when A terminates, then B outputs whatever A outputs,
and terminates.

Analysis of B. Note that the running time of B is essentially identical to the
running time of A plus a minor number of additional operations, thus we have
tB = Θ(tA). If O(x) = F̂ j((s1, ..., sj , k), h(x)1:j), then by Lemma 4 it holds that
z = F̂m((s1, ..., sm, k), h(x)). Thus, the view of A is identical to Game 1. If O(x)
implements a random function, then its view is identical to Game 2. This yields
the claim.

4.6 Proof of Lemma 7

In order to show that Pr [coll] ≤ εA/2, we prove that all queries of A are inde-
pendent of h, regardless of b = 0 or b = 1, until coll occurs. This allows us to
derive an upper bound on coll. Consider the sequence of queries x1, . . . , xQ made
by A. Recall that we assume xu �= xv for u �= v without loss of generality.

The case b = 0. In this case, O3(xi) is a random function R(xi), and therefore
all information observed by A is independent of h, until coll occurs. Thus, the
view of A is equivalent to a world in which the experiment does not choose h at
the beginning, but only after A has made all queries, and only then computes
h(xi)1:j for all i ∈ �Q� and outputs a random bit if a collision occurred. By the
almost-universality, we thus obtain that

Pr [coll | b = 0] ≤
Q∑

i=2

i − 1
2j−1

≤ Q2

2j
≤ Q2εA

2Q2
=

εA
2

.

Note that we use here that j ≥ log(2Q2/εA), which holds due to the definition
of j in (5).

The case b = 1. We may assume without loss of generality that Q > 0, as other-
wise A receives no information about b and thus we would have εA = 0. Consider
the first query O3(x1) of A. The oracle proceeds as follows. At first it computes
kx1 := Rj(h(x1)1:j). Since Rj is a random function, this value is independent
of h. In the next step it computes z1 := F̂m−j((sj+1, ..., sm), kx1 , h(x1)j+1:m),

506 T. Jager et al.

which is still uniformly random. To see this, note that the perfect one-time secu-
rity of F guarantees perfect one-time security of F̂m−j as shown in Lemma 5.
Thus A gains no information about h at this point and the next query cannot
be adaptive with regard to h.

Now if A queries O3(x2), then the experiment will evaluate the random
functions Rj on a different position than in the first query, unless

h(x1)1:j = h(x2)1:j (9)

Due to the fact that the response to x1 was independent of h and the almost-
universality of h, (9) happens with probability at most 1/2j−1. Therefore, again
by the perfect one-time security of F , A receives another uniformly random value
z2, which is independent of h, except with probability at most 1/2j−1. Continuing
this argument inductively over all Q queries of A, we see that on its i-th query A
will receive a random response which is independent of h, except with probability
(i−1)/2j−1, provided that all previous responses were independent of h. A union
bound now yields

Pr [coll | b = 1] ≤
Q∑

i=2

i − 1
2j−1

≤ Q2

2j
≤ Q2εA

2Q2
=

εA
2

.

It remains to show that Pr
[
X3 | coll] = 1/2. Let us consider the case b = 1.

If coll occurs, then there are no collisions, such that the oracle calls random
function Rj on always different inputs, each time receiving an independent, uni-
formly random value. Applying the perfect one-time security of F̂m−j again, the
response of the oracle to each query is therefore uniformly distributed and inde-
pendent of all other queries. Thus, provided that no collision occurs, the view
in case b = 1 is perfectly indistinguishable from the case b = 0, which yields the
claim.

4.7 On the Necessity of the “all-prefix” Property

One may ask at this point whether the “all-prefix” property is really necessary,
or whether it is possible to use a standard universal hash function with fixed
output space {0, 1}j instead.

Let us explain why the “all-prefix” property is not only sufficient, but also
necessary. Recall that j depends on the particular values of Q and εA of a
particular given adversary, via the definition j =

⌈
log(2Q2/εA)

⌉
in (5). One may

wonder why we set j so precisely, depending on the given adversary, rather than
simply choosing j sufficiently large such that it would work for any efficient
adversary.

The purpose of this precise choice is because we have to find the right balance
between two properties that we need to obtain tight security:

1. On the one hand, we need j to be sufficiently large, such that the probability
of a collision of (the j-bit prefix of) the universal hash function is sufficiently
unlikely.

Simple and More Efficient PRFs with Tight Security 507

2. On the other hand, we have to keep j short enough, in order to get a tight
reduction.

This is why we make the value j dependent on the given adversary, specifically
on the particular values of Q and εA.

We stress that we do this only in the security proof, but not in the PRF
construction itself. That is, we do not simply fix j to be the largest value of j
such that the collision probability is sufficiently small for any adversary, because
then for certain adversaries j could be “too large” such that the reduction would
not be tight. Similarly, if we used a standard universal hash function with output
length j, then this would also fix j to some specific value in the construction of
the PRF, and thus would again make the PRF construction only tightly secure
for certain adversaries that match this particular choice of j, but not necessarily
for all efficient adversaries.

For example using a standard UHF with m = ω(log λ) is sufficient to bound
the collision probability, but this yields only super-logarithmic tightness, and
thus would be worse than in the construction of Döttling and Schröder [DS15],
while with an APUHF we achieve logarithmic tightness.

Hence, the important new feature that all-prefix universality provides is that
it guarantees that a suitable choice of j exists for any efficient adversary. This
makes the construction independent of a particular class of adversaries that
match a certain fixed value of j, while at the same time it ensures that the
security proof depends tightly on the particularly given adversary. Hence, using
an APUHF instead of a standard universal hash function is not just sufficient,
but also necessary in order to capture all efficient adversaries and to keep the
security proof tight.

We note that Döttling and Schröder [DS15] also use multiple instances of the
underlying pseudorandom function, with increasing security, in order to achieve
tightness. Essentially, we replace these multiple instances with a single instance,
in combination with an all-prefix universal hash function. From an abstract high-
level perspective, in our approach each prefix implicitly corresponds to one PRF
instance of [DS15]. This makes our construction significantly more efficient.

5 Applications

5.1 Efficient and Tightly-Secure PRF from Matrix Diffie-Hellman
Assumptions

We recall the definition of the matrix Diffie-Hellman (MDDH) assumption and
the pseudorandom function (PRF) from [EHK+17]. We consider a variant where
an all-prefix almost-universal hash function is applied to the input before it is
processed by the PRF. We note that the MDDH assumption generalizes the
Decisional Diffie-Hellman (DDH) and Decisional d-Linear (d-LIN) assumptions,
and, moreover, it gives us a framework to analyze the algebraic structure behind
the Diffie-Hellman-based cryptographic primitives. Thus, our results can be car-
ried on to the Naor-Reingold PRF (based on the DDH assumption) [NR97] and
the Lewko-Waters PRF (based on the d-LIN assumption) [LW09].

508 T. Jager et al.

Notations and the MDDH Assumption. Let G := (G, P, q) be a description of an
additive group G with random generator P and prime order q. Following the
“implicit notation” of [EHK+13], we write [a] shorthand for aP . More generally,
for a matrix A = (aij) ∈ Z

n×m
q , we define [A]s as the implicit representation of

A in G:

[A] :=

⎛
⎝

a11P ... a1mP

an1P ... anmP

⎞
⎠ ∈ G

n×m

Let us first recall the definition of the matrix Diffie-Hellman (MDDH) prob-
lem [EHK+13,EHK+17].

Definition 10 (Matrix distribution). Let �, d ∈ N and � > d. We call D�,d

a matrix distribution if it outputs matrices in Z
�×d
q of full rank d in polynomial

time, namely, it is efficiently samplable. We define Dd := Dd+1,d.

Without loss of generality, we assume the first d rows of A $← D�,d form a full-
rank and invertible matrix, and we denote it by A and the rest � − d rows by
A.

Definition 11 (Transformation matrix). Let D�,d be a matrix distribution
and A be a matrix from it. The transformation matrix of A is defined as T :=
A · A−1 ∈ Z

(�−d)×d
q .

The D�,d-MDDH problem is to distinguish the two distributions ([A], [Aw])
and ([A], [u]) where A $← D�,d, w $← Z

d
q and u $← Z

�
q.

Definition 12 (D�,d-Matrix Diffie-Hellman assumption, D�,d-MDDH).
Let D�,d be a matrix distribution. We say that adversary A (tA, εA)-breaks the
D�,d-Matrix Diffie-Hellman (D�,d-MDDH) assumption in group G, if A runs in
time tA and

|Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]| ≥ εA,

where the probability is taken over A $← D�,d,w
$← Z

d
q ,u

$← Z
�
q.

Examples of D�,d-MDDH. [EHK+13,EHK+17] define distributions Ld, Cd,
SCd, ILd, and Ud which corresponds to the d-Linear, d-Cascade, d-Symmetric-
Cascade, d-Incremental-Linear, and d-Uniform assumption, respectively. All
these assumptions are proven secure in the generic group model [EHK+13,
EHK+17] and form a hierarchy of increasingly weaker assumptions.

A simple example is the L1-MDDH assumption for d = 1, which is the DDH
assumption: Choose a,w, z

$← Zq, and the DDH assumption states that the
following two distributions are computationally indistinguishable:

([1, a, w, aw]) ≈c ([1, a, w, z]).

Simple and More Efficient PRFs with Tight Security 509

This can be represented via the L1-MDDH assumption which states the following
two distributions are computationally indistinguishable:

([a
1] , [aw

w]) =: ([A] , [Aw]) ≈c ([A] , [u]) := ([a
1] , [z

w]).

For d = 1 the transformation matrix T contains only one element, and for L1-
MDDH the corresponding transformation matrix is T = 1

a .
We give more examples of matrix distributions from [EHK+13,EHK+17] for

d = 2 in AppendixA.

The PRF construction of [EHK+17] and its security. Let G := (G, P, q) be a
description of an additive group G with random generator P and prime order
q. Let D�,d be a matrix distribution and we assume that (� − d) divides d and
define t := d/(� − d).

Following the approach of Sect. 5.3 of [EHK+17], we choose a random vector
h $← Z

d
q , and, for i = 1, ...,m and j = 1, ..., t, we choose Ai,j

$← D�,d and compute

transformation matrices T̂i,j := Ai,jA
−1

i,j ∈ Z
(�−d)×d
q and define the aggregated

transformation matrices

Ti :=

⎛
⎜⎝

T̂i,1

...
T̂i,t

⎞
⎟⎠ ∈ Z

d×d
q ,

and S := (T1, ...,Tm). Here, for i ∈ {1, ...,m}, we require that Ti has full rank.
We note that this requirement can be satisfied by all the matrix distributions
described in [EHK+17] with overwhelming probability. This implies the distri-
bution of our Ti’s is statistically close to that in [EHK+17], up to a negligibly
small statistical distance of 1/(q −1). Thus, their security results can be applied
here.

Now let S := Z
d×d
q , K := G

d, and X := {0, 1}. The basis of the PRF
construction from [EHK+17] is the function FMDDH : S × K × X → K defined
as

FMDDH(T, [h], x) :=

{
[h] if x = 0
[T · h] if x = 1

(10)

By applying the augmented cascade of Boneh et al. [BMR10] (Fig. 1) to
FMDDH, Escala et al. [EHK+17] obtain their PRF Fm

MDDH with key space
(Z(d×d)

q)m × G
d and domain {0, 1}m:

Fm
MDDH : (Z(d×d)

q)m × G
d × {0, 1}m → G

Fm
MDDH(S, [h], x) :=

[(∏
i:xi=1

Ti

)
· h
]

(11)

where S := (T1, ...,Tm). The following theorem was proven in [EHK+13,
EHK+17].

510 T. Jager et al.

Theorem 5 ([EHK+17, Theorem 12]). From each adversary A that (tA, εA, Q)-
breaks the security of Fm

MDDH with input space {0, 1}m we can construct an adver-
sary B that (tB, εB)-breaks the D�,d-MDDH assumption in G with

tB = Θ(tA) and εB ≥ εA
dm

Note that d is a constant, so that the security loss is linear in the size m of the
input space.

Our construction. By additionally encoding the input with an APUHF as
described in (4), we finally obtain the function F

Hn,m

MDDH : Sm × K × Hn,m ×
{0, 1}n → K as

F
Hn,m

MDDH(S, [h], h, x) = Fm
MDDH(S, [h], h(x)) =

⎡
⎣
⎛
⎝

m∏
i:h(x)i=1

Ti

⎞
⎠ · h

⎤
⎦ (12)

In order to apply Theorem 4 to show that this particular instance of the aug-
mented cascade with encoded input is a secure PRF with key space Sm × K ×
Hn,m and domain {0, 1}n, we merely have to prove that function FMDDH is
perfectly one-time secure.

Lemma 8. Function FMDDH from (10) is perfectly one-time secure.

Proof. We have to show that

Pr
[h]

$←Gd

[FMDDH(T, [h], x) = [h′]] =
1

|G|d .

for all (T, x, [h′]) ∈ S × {0, 1} × G
d.

If x = 0 then FMDDH(T, [h], 0) = [h], which is a random vector in G
d by

definition. If x = 1 then FMDDH(T, [h], 1) = [Th], which is again a random
vector, due to the fact that T is a full-rank matrix. 	

By combining Theorem 4 with Theorem 5 we now obtain the following result,
which shows that setting m = ω(log λ) is sufficient to achieve tight security.

Theorem 6. Let m = ω(log λ) be (slightly) super-logarithmic and Hn,m be a
family of all-prefix almost universal hash functions. From each adversary A that
(tA, εA, Q)-breaks the security of F

Hn,m

MDDH with Q/εA = poly(λ) for some polyno-
mial poly we can construct an adversary B’ that (t′B, ε′

B)-breaks the D�,d-MDDH
assumption in G with

t′B = Θ(tA) and ε′
B ≥ εA

2dj

where j = O(log λ).

Simple and More Efficient PRFs with Tight Security 511

Proof. Theorem 4 shows that from each adversary A that (tA, εA, q)-breaks the
pseudorandomness of F

Hn,m

MDDH with Q/εA = poly(λ) for some polynomial poly,
we can construct an adversary B that (tB, εB, Q)-breaks the pseudorandomness
of the function F j

MDDH with input space {0, 1}j , where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

Theorem 5 in turn shows that from each adversary B that (tB, εB, Q)-breaks
the security of F j

MDDH we can construct an adversary B’ that (t′B, ε′
B)-breaks the

D�,d-MDDH assumption in G with

t′B = Θ(tB) and ε′
B ≥ εB

dj
≥ εA

2dj

which yields the claim. 	

Comparison to the DDH-based PRF of [NR97]. One particularly interesting
instantiation of Fm

MDDH is based on the L1-MDDH assumption, which is an
improvement over the famous Naor-Reingold construction based on the DDH
(namely, L1-MDDH) assumption from [NR97]. In Fm

MDDH, we sample Ai from
D�,d and then compute the aggregated transformation matrices Ti. For the L1

distribution, we can equivalently pick random elements Ti from Zq.
Let G be a group of prime order q, S := Zq, K := G, X := {0, 1}n and

m = ω(log λ) as above. Then we choose T1, . . . , Tm, a
$← Zq and obtain a PRF

with domain {0, 1}n as

F
Hn,m

DDH (S, [a], h, x) =

⎡
⎣
⎛
⎝

m∏
i:h(x)i=1

Ti

⎞
⎠ · a

⎤
⎦ .

Note that the resulting PRF is identical to the original Naor-Reingold func-
tion [NR97], except that an APUHF h is applied to the input x before it
is processed in the Naor-Reingold construction. For the original construction
from [NR97] both the size of the secret key and the tightness loss of the security
proof (based on the DDH assumption in G) are linear in the bit-length of the
function input. We show that merely by encoding the input with an APUHF
one can obtain shorter secret keys of size m = ω(log λ) and with security loss
O(log λ) (based on the same assumption as [NR97]), even for input size n � m.

Comparison to the Matrix-DDH PRF of [DS15]. Döttling and Schröder [DS15]
also described a variant of the Matrix-DDH-based PRF of [EHK+13]. Their PRF
is the function

FDS15
MDDH(S, [h], x) :=

⎡
⎣
⎛
⎝

m∏
j=1

(Ti + x2j · I)
⎞
⎠ · h

⎤
⎦ (13)

where S, [h], and m are as in our construction, and x ∈ Zq. Thus, in compar-
ison, our construction from (12) uses the same value of m, but is somewhat

512 T. Jager et al.

simpler that (13) and also slightly more efficient to evaluate. In particular, the
computation of the terms of the form (x2j · I) is replaced with a single evalua-
tion of the APUHF h. Another difference is that the domain of their function
is restricted to x ∈ Zq, while in our case x ∈ {0, 1}n can be any bit string of
polynomially-bounded length n = n(λ).

5.2 More Efficient LWE-Based PRFs

We recall the learning with error (LWE) assumption. Then we apply our results
to the LWE-based PRF from Banerjee, Peikert and Rosen [BPR12].

Definition 13 (Learning With Errors assumption, LWE). Let p be a mod-
ulus, N be a positive integer, and χα := DZp,α be a Gaussian distribution with
noise parameter α. Let h $← Z

N
p be a random vector. We say that adversary A

(tA, εA)-breaks the LWEp,N,α assumption if it runs in time tA and

|Pr[A(h,h�s + e) = 1] − Pr[A(h, u) = 1]| ≥ εA,

where h $← Z
N
p , s $← Z

N
p , e

$← χα and u
$← Zp.

Let �·� be the rounding function, which rounds a real number to the largest
integer which does not exceed it. Let p ≥ q. For an element h ∈ Zp, we define the
rounding function �·�q : Zp → Zq as �h�q := �(q/p)h�, and for a vector h ∈ Z

N
p ,

the rounding function �h�q is defined component-wise.

The PRF construction of [BPR12] and its security. Let S := χN×N
α and K := Z

N
p ,

and X := {0, 1}. We assume that S ∈ S has full rank. The basis of the PRF
of [BPR12] is the function FLWE : S × K × X → K,

FLWE(S,h, x) :=

{
h if x = 0
S · h if x = 1

(14)

We apply a slightly different augmented cascade transformation in Fig. 1
to obtain the PRF of [BPR12] with key space (χ(N×N)

α)m × Z
N
p and domain

{0, 1}m:

Fm
LWE : (χ(N×N)

α)m × Z
N
p × {0, 1}m → Zq

Fm
LWE(S,h, x) :=

⌊(
m∏

i:xi=1

Si

)
· h
⌉

q

(15)

where S := (S1, ...,Sm) and h $← Z
N
p . Different to Fig. 1, we apply the rounding

function on the output of Fig. 1.

Theorem 7 ([BPR12, Theorem 5.2]). Let χα = DZ,α be a Gaussian distribution
with parameter α > 0, let m be a positive integer that denotes the length of

Simple and More Efficient PRFs with Tight Security 513

message inputs. Define B := m(Cα
√

N)m for a suitable universal constant C.
Let p, q be two moduli such that p > q · B · Nω(1).

From each adversary A that (tA, εA, Q)-breaks the security of Fm
LWE with

input space {0, 1}m (for an arbitrary positive integer m) we can construct an
adversary B that (tB, εB)-breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥ εA
m · N

Note that B is an important parameter, since it determines the size of the LWE
modulus p and contains the expensive term Nm/2, which is exponential in m.
Thus, a smaller m can give us a smaller p, which in turn yields a weaker LWE
assumption and a much more efficient PRF. In the following, we apply our results
to Fm

LWE to reduce m from polynomial to logarithmic in security parameter λ.

Our construction. By additionally encoding the input with an APUHF as
described in (4), we finally obtain F

Hn,m

LWE : (χ(N×N)
α)m ×Z

N
p ×Hn,m ×{0, 1}m →

Z
N
q as

Fm
LWE(S,h, h(x)) :=

⎢⎢⎢⎣
⎛
⎝

m∏
i:h(x)i=1

Si

⎞
⎠ · h

⎤
⎥⎥⎥

q

(16)

In order to apply Theorem4 to show that this particular instance of the aug-
mented cascade with encoded input is a secure PRF with key space Sm × K ×
Hn,m and domain {0, 1}n, we have to prove that function FLWE is perfectly
one-time secure.

Lemma 9. Function FLWE from (14) is perfectly one-time secure.

Proof. We have to show that

Pr
h

$←Zp

[FLWE(S,h, x) = h′] =
1

pN
.

for all (S, x,h′) ∈ S × {0, 1} × Z
N
p .

If x = 0 then FLWE(S,h, 0) = h, which is a random vector in Z
N
p by definition.

If x = 1 then FLWE(S,h, 1) = S · h, which is again a random vector, due to the
fact that S is a full-rank matrix. 	

We recall the following useful notations and corollary for the proof of The-
orem 8 given below. We define an error sampling function E : {0, 1}j → Z

N

and for x ∈ {0, 1}j and j ∈ �m� we define the randomized version of F j
LWE

as F̃ j
LWE(x) =

(∏j
i:xi=1 Si

)
· h + E(x). The proof of Theorem 5.2 and Lemma

5.5 in [BPR12] show that F̃ j
LWE is pseudorandom based on the decisional LWE

assumption and it holds that Fm
LWE(x) =

⌊(∏m
i>j∧xi=1 Si

)
· F̃ j

LWE(x)
⌉

q
, except

with negligible probability. We summarize this in the following corollary.

514 T. Jager et al.

Corollary 1. Let all the parameters be defined as in Theorem7. There exists
an efficiently randomized error sampling function E : {0, 1}j → Z

N , such
that, from each adversary A that (tA, εA, Q)-breaks the security of F̃ j

LWE(x) =(∏j
i:xi=1 Si

)
· h + E(x) with input x ∈ {0, 1}j (for j ∈ �m�) we can construct

an adversary B that (tB, εB)-breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥ εA
m · N

.

Moreover, except with probability 2−Ω(N), we have

Fm
LWE(x) =

⎢⎢⎢⎣
⎛
⎝

m∏
i>j∧xi=1

Si

⎞
⎠ · F̃ j

LWE(x)

⎤
⎥⎥⎥

q

.

Theorem 8. Let m = ω(log λ) be (slightly) super-logarithmic and Hn,m be a
family of all-prefix almost universal hash functions. Let χα = DZ,α be a Gaussian
distribution with parameter α > 0, let m be a positive integer denotes the length
of message inputs. Define B := m(Cα

√
N)m for a suitable universal constant

C. Let p, q be two moduli such that p > q · B · Nω(1).
From each adversary A that (tA, εA, Q)-breaks the security of F

Hn,m

LWE with
Q/εA = poly(λ) for some polynomial poly we can construct an adversary B’ that
(t′B, ε′

B)-breaks the LWEp,N,α assumption with

t′B = Θ(tA) and ε′
B ≥ εA

2j · N
− 2−Ω(N)

where j = O(log λ).

Proof. The proof is the same as the one for Theorem 4. The only difference is
between Games 1 and 2. Here we do one intermediate game transition Game 1’:
We simulate O1(x) by returning Fm

LWE(x) =
⌊(∏m

i>j∧xi=1 Si

)
· F̃ j

LWE(x)
⌉

q
and

O0 by returning a random vector in Z
N
q .

By the second statement of Corollary 1, the difference between Games 1 and 1’
is bounded by the statistical difference 2−Ω(N). Moreover, the difference between
Games 1’ and 2 is bounded by the security of F̃ j

LWE. By the first statement of
Corollary 1 we can conclude the proof. 	

Comparison to the LWE PRF of [DS15]. Döttling and Schröder [DS15] describe
a different variant of the BPR PRF. Their approach is to instantiate their Con-
struction 1 with the BPR PRF and then obtain the following function

FDS15
LWE (K,h, x) =

L⊕
i=1

λ⊕
j=1

F 2i

LWE(S,h,Bin(j)||H2i,j(x))

where L = ω(log λ), for each j ∈ �λ� the function H2i,j : {0, 1}n → {0, 1}i+1 is
chosen from a suitable universal hash function family with range {0, 1}i+1, and
S is chosen the same as ours.

Simple and More Efficient PRFs with Tight Security 515

Compared with FDS15
LWE , our variant has shorter secret keys: instead of having

L · λ many hash functions, we only have a single one. In terms of computation
efficiency, instead of running Hi and F i

LWE for L · λ times, we only run the hash
function and Fm

LWE once.

6 Conclusion

We have introduced all-prefix (almost-)universal hash functions (APUHFs) as a
tool to generically improve the augmented cascade construction of pseudorandom
functions by Boneh, Montgomery, and Raghunathan [BMR10]. By generically
applying an APUHF to the function input before processing it in the augmented
cascade, we are able to reduce both the key size and the tightness of the security
proof by one order of magnitude. We gave simple and very efficient constructions
of such a function families, based on the almost-universal hash function family
of Dietzfelbinger et al. [DHKP97], which can be evaluated by essentially a single
modular multiplication, and generically on pairwise-independent hash functions.

For the instantiation based on Matrix-DDH assumptions of [EHK+13], which
includes the classical constructions of Naor-Reingold [NR97] and the Lewko-
Waters [LW09] as special cases, this yields asymptotically short keys consisting
of only ω(log λ) elements, and tight security with loss only O(log λ). These param-
eters are similar to the respective constructions of Döttling and Schröder [DS15],
but our instantiation is conceptually much simpler and slightly more efficient.

For the LWE-based instantiation based of Banerjee, Peikert and
Rosen [BPR12] (BPR), we are able to reduce the required size of the LWE mod-
ulus p from exponential to super-polynomial in the security parameter, which
significantly improves efficiency and allows to prove security under a weaker LWE
assumption. Again, the latter is similar to a result from [DS15], but we replace
their relatively expensive generic construction, which requires to run λ · ω(log λ)
instances of the BPR function in parallel, with a single instance plus an all-prefix
almost-universal hash function.

We believe that APUHFs may have many further applications in cryptogra-
phy beyond pseudorandom functions. This may include, for example, construc-
tions of more efficient cryptosystems with tight provable security, such as digital
signatures or public-key encryption schemes. In particular constructions using
arguments similar to pseudorandom functions based on the augmented cascade,
such as [CW13,GHKW16], seem to be promising targets.

Acknowledgements. We would like to thank all anonymous reviewers for their help-
ful comments.

A Further Examples of Matrix Distributions

Let us recall some further examples for matrix distributions from [EHK+13,
EHK+17] for completeness and self-containedness.

L2 : A =
(

a1 0
0 a2
1 1

)
, C2 : A =

(
a1 0
1 a2
0 1

)
, IL2 : A =

(
a1 0
0 a1+1
1 1

)
,

516 T. Jager et al.

SC2 : A =
(

a1 0
1 a1
0 1

)
, U2 : A =

(
a1 a2
a3 a4
a5 a6

)
,

where a1, . . . , a6
$← Zq. The corresponding transformation matrices are as follow,

L2 : T = (
1
a1

,
1
a2

), C2 : T = (± 1
a1a2

,∓ 1
a2

), IL2 : T = (
1
a1

,
1

a1 + 1
)

SC2 : T = (± 1
a2
1

,∓ 1
a1

), U2 : T = (
a4a5 − a3a6

a1a4 − a2a3
,
a1a6 − a2a5

a1a4 − a2a3
).

The advantage of SCd and ILd is that they can be represented by one group
element and have the same security guarantee as the d-Linear assumption.

References

[Bel06] Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–
619. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 36

[BG90] Bellare, M., Goldwasser, S.: New paradigms for digital signatures and mes-
sage authentication based on non-interactive zero knowledge proofs. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 19

[BH12] Berman, I., Haitner, I.: From non-adaptive to adaptive pseudoran-
dom functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
357–368. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 20

[BHKN13] Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving
reductions via Cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 40–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36594-2 3

[BJLS16] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryp-
tographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 10

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40041-4 23

[BMR10] Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudoran-
dom functions with improved efficiency from the augmented cascade. In:
Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
131–140. ACM Press, October 2010

[BP14] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudoran-
dom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 20

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 42

https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-642-28914-9_20
https://doi.org/10.1007/978-3-642-28914-9_20
https://doi.org/10.1007/978-3-642-36594-2_3
https://doi.org/10.1007/978-3-642-36594-2_3
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42

Simple and More Efficient PRFs with Tight Security 517

[CG14] Chandran, N., Garg, S.: Balancing output length and query bound in
hardness preserving constructions of pseudorandom functions. In: Meier,
W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
89–103. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-
2 6

[Cor02] Coron, J.-S.: Optimal security proofs for PSS and other signature schemes.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

[CW79] Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput.
Syst. Sci. 18(2), 143–154 (1979)

[CW13] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system
groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 25

[DHKP97] Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable
randomized algorithm for the closest-pair problem. J. Algorithms 25(1),
19–51 (1997)

[DS15] Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-
fly adaptation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 329–350. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 16

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 8

[EHK+17] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applica-
tions of random functions (extended abstract). In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidel-
berg (1985). https://doi.org/10.1007/3-540-39568-7 22

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GHKW16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption
without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 1

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cam-
bridge University Press, Cambridge (2001)

[HJK12] Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal secu-
rity reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30057-8 5

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
constant computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC, pp. 433–442. ACM Press, May 2008

[JPT12] Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of
pseudorandom functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 369–382. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 21

https://doi.org/10.1007/978-3-319-13039-2_6
https://doi.org/10.1007/978-3-319-13039-2_6
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-28914-9_21
https://doi.org/10.1007/978-3-642-28914-9_21

518 T. Jager et al.

[KK12] Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revis-
ited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 537–553. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 32

[Kra10] Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF
scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 34

[Lev87] Levin, L.A.: One way functions and pseudorandom generators. Combina-
torica 7(4), 357–363 (1987)

[LW09] Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the deci-
sional linear assumption and weaker variants. In: Al-Shaer, E., Jha, S.,
Keromytis, A.D. (eds.) ACM CCS 2009, pp. 112–120. ACM Press, Novem-
ber 2009

[LW14] Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 58–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 4

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society
Press, October 1997

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4

Simulatable Channels: Extended Security
that is Universally Composable

and Easier to Prove

Jean Paul Degabriele(B) and Marc Fischlin

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{jeanpaul.degabriele,marc.fischlin}@cryptoplexity.de

http://www.cryptoplexity.de

Abstract. Ever since the foundational work of Goldwasser and Micali,
simulation has proven to be a powerful and versatile construct for formu-
lating security in various areas of cryptography. However security defini-
tions based on simulation are generally harder to work with than game
based definitions, often resulting in more complicated proofs. In this work
we challenge this viewpoint by proposing new simulation-based security
definitions for secure channels that in many cases lead to simpler proofs
of security. We are particularly interested in definitions of secure chan-
nels which reflect real-world requirements, such as, protecting against
the replay and reordering of ciphertexts, accounting for leakage from the
decryption of invalid ciphertexts, and retaining security in the presence
of ciphertext fragmentation. Furthermore we show that our proposed
notion of channel simulatability implies a secure channel functionality
that is universally composable. To the best of our knowledge, we are the
first to study universally composable secure channels supporting these
extended security goals. We conclude, by showing that the Dropbear
implementation of SSH-CTR is channel simulatable in the presence of
ciphertext fragmentation, and therefore also realises a universally com-
posable secure channel. This is intended, in part, to highlight the merits
of our approach over prior ones in admitting simpler security proofs in
comparable settings.

Keywords: Secure channels · Ciphertext fragmentation
Universal composability · SSH · Subtle authenticated encryption

1 Introduction

Over the years, several security notions for symmetric encryption have been pro-
posed in the cryptographic literature. In [8] Bellare et al. studied four notions
of confidentiality: semantic security, find-then-guess security, left-or-right secu-
rity, and real-or-random security, and showed them to be all equivalent. Another
notion, used in [1], demands indistinguishability between encryptions of real mes-
sages and encryptions of some fixed message of the same length. This is known
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 519–550, 2018.
https://doi.org/10.1007/978-3-030-03332-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_19&domain=pdf

520 J. P. Degabriele and M. Fischlin

to be equivalent to the other four definitions and indeed we will make extensive
use of it in this work. Perhaps the most popular notion of confidentiality today
is indistinguishability from random bits, often denoted as IND$-CPA, which was
put forward in [27,28]. This requires ciphertexts to be indistinguishable from
random strings of the same length. In [27] Rogaway gave a number of reasons
why he prefers this notion over all others, arguing that it is stronger, easier to
prove, yielding more versatile objects, and being conceptually simpler. Indeed
these are likely to be the reasons to which this notion owes its popularity.

In our view, however, the aspect that makes IND$-CPA fundamentally dif-
ferent from all other notions is that it requires the encryption of real messages
to be indistinguishable from something computed without any knowledge of the
secret key. Thus, at its core is the idea that encryption be simulatable, where in
this specific case the simulator is required to be of a specific type. The all-in-one
notion of authenticated encryption introduced in [29], requiring indistinguisha-
bility of the encryption from $(·) and of the decryption from ⊥(·), can be similarly
viewed as requiring that both processes be simulatable. It is then natural to ask
if there is something special about these two specific simulators, or if they can
be generalised further.

It turns out that a more general formulation is possible, and this is exactly
what we set out to explore in this work. As we shall see, formulating security
this way requires some care in order to guarantee the level of security that we
expect. In this respect, we identify some necessary restrictions that need to be
imposed on the simulators in order to meet their intended goal. We also establish
relations between the notions that we propose and also uncover certain interest-
ing connections, for instance, if (and only if) encryption can be simulated by a
stateless algorithm, then the encryption is key private. In addition, our security
notions have the added nice feature that, unlike other security definitions, there
are no prohibited queries that the adversary is not allowed to make.

Beyond being of theoretical interest, there is also a more pragmatic reason
motivating our study of these security notions. We are primarily interested in
symmetric encryption with advanced properties such as protecting against replay
and reordering of ciphertexts, maintaining security in the presence of inadver-
tent leakage from invalid ciphertexts, and supporting ciphertext fragmentation.
Such properties are particularly relevant to the security of encryption schemes
that are deployed in practice. A number of prior works [2,5,6,9,11,12,20,21,26]
have provided treatments of symmetric encryption with such properties, some
of which are rather intricate. We believe that our corresponding security def-
initions, based on simulation, can help to tame this complexity. For instance,
most works treat chosen ciphertext security and ciphertext integrity separately.
One reason for this is that the all-in-one notion of authenticated encryption does
not lend itself well to these extended settings. In particular, indistinguishability
from random strings is too strong a requirement. In practice ciphertexts will be
encoded or prepended with additional fields that render them easy to distin-
guish. In the presence of ciphertext fragmentation [2,11,26], this is particularly
hard to achieve since it implies that ciphertext boundaries should remain hidden.

Simulatable Channels 521

However, because decryption can now process ciphertexts in a bit-by-bit fashion,
ciphertext boundaries are implicitly demarcated by the point at which decryp-
tion returns an output. Another complication is that the combination of chosen
plaintext security and ciphertext integrity, embodied by the all-in-one notion,
no longer implies chosen ciphertext security for schemes which may return more
than one error message [12]. Our notion of channel simulatability with Integrity,
which can be viewed as a generalisation of the all-in-one notion of Rogaway and
Shrimpton, overcomes all these limitations. Another reason why our notions are
easier to work with is that they bring the security goal closer to the starting
point. Our goal in a security proof will now be to transform the scheme into a
simulated one, but because the structure that this simulator needs to satisfy is
very loose, it will normally require fewer and simpler steps.

Yet another perk of channel simulatability, is that it also guarantees universal
composability. More precisely, we show that a scheme being channel simulatable
with integrity implies that it realises a universally composable secure channel. In
particular, it is universally composable even when leakage from invalid cipher-
texts and ciphertext fragmentation are taken into account. Moreover, channel
simulatability is conceptually much simpler and easier to use than the universal
composability framework.

We conclude by presenting a proof that the Dropbear SSH-CTR implemen-
tation satisfies channel simulatability with integrity. In a recent measurement
study [2] it was found that Dropbear is the most ubiquitous SSH implementa-
tion on the Internet, with counter mode being the preferred choice of ciphersuite
– hence our choice to analyse this scheme. The security of SSH-CTR, in the case
of OpenSSH, was analysed by Paterson and Watson in [26]. While the difference
between the two implementations is not major and their treatment did take
ciphertext fragmentation and multiple errors into account, their security model
had some limitations which were pointed out and addressed in [2,11]. Further-
more, our treatment guarantees universal composability, which is not known to
be implied by any of the prior works. However, we mostly intend this result to
serve as testament to the simplicity of our approach and invite the reader to
contrast our proof with that in [26].

2 Preliminaries

We start by surveying some prior related works, which we will later build upon.

Leakage from Invalid Ciphertexts. In most padding-oracle attacks, such
as [4,16,17], information is leaked to the adversary during the decryption of
invalid ciphertexts rather than valid ones. Consequently such attacks are not
captured by the usual security models where invalid ciphertexts invariably gen-
erate the same error symbol. This motivated Boldyreva et al. to revisit the the-
ory of authenticated encryption in the case where distinguishable error symbols
may be returned [12]. In [5] Andreeva et al. set out to model the case where the
decrypted plaintext, or part thereof, becomes available to the adversary – known

522 J. P. Degabriele and M. Fischlin

as Release of Unverified Plaintext (RUP) security. This work employs a syntax
where decryption is split into two algorithms, decryption and verification. Com-
bined with the correctness requirement, this has the undesirable consequence
that their security model does not capture padding-oracle attacks, since the
padding cannot form part of the released plaintext. Yet in [5] RUP security
was in part motivated by the need to protect against such attacks. A related
notion, called Robust Authenticated Encryption (RAE), was put forward in [21]
in which the adversary also gets access to a plaintext string even if the cipher-
text was deemed invalid. RAE is formulated rather differently however, here a
scheme is required to be indistinguishable from a randomly-sampled injection
with variable expansion augmented with a leakage simulator. This renders RAE
a relatively strict security notion, attainable only by a limited set of schemes that
generally require two pass encryption and decryption. The above security notions
were unified in [6], for the case of nonce-based encryption, under the name Sub-
tle Authenticated Encryption. Here a nonce-based scheme is augmented with a
leakage function, to model the information leaked from the decryption of invalid
ciphertexts, due to the scheme’s implementation. The usual nonce-based secu-
rity notions are then augmented by additionally providing the adversary with
oracle access to the leakage function. We adopt a syntax similar to Subtle AE,
adapted to the secure channel setting. Consequently our security notions do
capture leakage from invalid ciphertexts.

Ciphertext Fragmentation. Secure channels realised over TCP/IP need to
be able to decrypt ciphertexts that may be fragmented in an arbitrary way. The
mechanisms needed to support ciphertext fragmentation have been exploited to
break confidentiality in the secure channel realisations of SSH [3] and IPsec [17]
which employ CBC encryption. These attacks exposed a limitation of our secu-
rity models, notably the affected secure channel realisation in SSH was proven
secure in [9] in a model which did not account for ciphertext fragmentation.
To amend this Paterson and Watson [26] proposed a model which accounted
for ciphertext fragmentation and used it to show that when SSH is instantiated
with counter mode encryption it is secure in this extended security model. The
proposed security definition, however, was closely tied to the SSH design and
suffered from a number of other issues which limited its applicability and gener-
ality. These issues were addressed in [11] which studied ciphertext fragmentation
more generally and introduced the related security notions of boundary hiding
and resilience to denial of service. In [20] Fischlin et al. consider an extended
setting where in addition to supporting ciphertext fragmentation, encryption
takes as input a stream of data (rather than atomic messages) which it may
fragment arbitrarily and encrypt separately. Recently in [2] Albrecht et al. did
a measurement study of SSH deployment and then used the framework of [11]
to analyse the security of three newly introduced ciphersuites in OpenSSH. In
this work we propose simulation-based security definitions supporting ciphertext
fragmentation, following the approach used in [2,11].

Simulatable Channels 523

2.1 Notation

Unless otherwise stated, an algorithm may be randomised. An adversary is an
algorithm. For any adversary A and algorithms X ,Y, . . . we use AX (·),Y(·),... ⇒
z to denote the process of running A with fresh coins and oracle access to
algorithms X ,Y, . . . and returning an output z. By convention the running time
of an adversary refers to the sum of its actual running time and the size of its
description. We generically refer to the resources of an adversary as any subset
of the following quantities: its running time, the number of queries that it makes
to its oracles, and the total length (in bits) of its oracle queries. If S is a set then
|S| denotes its size, and y � S denotes the process of selecting an element from
S uniformly at random and assigning it to y.

We use % to denote the integer modulo operation. For a bit b and a positive
integer n, we denote by bn the string composed of b repeated n times. With
{0, 1}n we denote the set of all binary strings of length n, and {0, 1}∗ denotes
the set of all binary strings of finite length. The empty string is represented by
ε. For any two strings u and v, |u| and |u|B denote the length of u in bits and
bytes, respectively, u‖v denotes their concatenation, u ⊕ v denotes their bitwise
XOR, u � v denotes the prefix predicate which assumes the value true if and
only if there exists w ∈ {0, 1}∗ such that v = u ‖ w. We use u[i, j] to denote the
substring of u from bit i to bit j inclusive, where the indexes start at 1 and ∗
points to the end of the string. Similarly, u[i, j]B denotes the substring from byte
i to byte j. If i is a non-negative integer, then 〈i〉� denotes the unsigned �-bit
canonical binary representation of i. Accordingly, 〈·〉−1 represents the inverse
mapping which maps strings of any length to N. We use {0, 1}∗∗ to denote the
set of all string sequences.

In every experiment where an adversary interacts with an encryption oracle
(real or simulated), we assume that a transcript is maintained of its queries
and responses. More specifically, a transcript T is an ordered list of message-
ciphertext pairs (m, c), where each entry corresponds to an encryption query.
We endow this list with a next() method which returns its entries, one entry per
call, in the same order in which they were created – similarly to a queue. Other
times, we will treat T as a set and test whether a specific pair (m, c) is in T.
When present in an experiment, the sync flag is initially set to true.

It is often convenient to write distinguishing advantages in a compact form.
That is, given an adversary A which interacts with oracles X1,X2 or with oracles
Z1,Z2, we write

Δ
A

[X1,X2

Z1,Z2

]
:=

∣∣Prob
[AX1,X2 ⇒ 1

] − Prob
[AZ1,Z2 ⇒ 1

]∣∣ .

According to this notation we can for example apply the triangle inequality
∣∣Prob

[AX1,X2 ⇒ 1
] − Prob

[AZ1,Z2 ⇒ 1
]∣∣

≤ ∣∣Prob
[AX1,X2 ⇒ 1

] − Prob
[AY1,Y2 ⇒ 1

]∣∣
+

∣∣Prob
[AY1,Y2 ⇒ 1

] − Prob
[AZ1,Z2 ⇒ 1

]∣∣

524 J. P. Degabriele and M. Fischlin

and write

Δ
A

[X1,X2

Z1,Z2

]
≤ Δ

A

[X1,X2

Y1,Y2

]
+ Δ

A

[Y1,Y2

Z1,Z2

]
.

Similarly, if an adversary A′ simulates oracles X2 resp. Z2 to A through some
other oracles X ′

2 resp. Z ′
2 by modifying the answers, e.g., if X2 and Z2 output

truncated answers of X ′
2 and Z ′

2, but otherwise executes A, then we can write

Δ
A

[X1,X2

Z1,Z2

]
≤ Δ

A

[X1,X ′
2

Z1,Z ′
2

]
.

Note that, strictly speaking, the right hand side considers adversary A′, but since
this adversary only adapts the oracle replies we take this already into account by
using the other oracles in the notation. Moreover, in all cases, A′ will consume
the same resources as A, except for a small overhead in its running time to
adapt the oracle queries and responses. Since this overhead is usually minor in
comparison to the overall running time, we ignore it.

Syntax. We consider two types of symmetric encryption, atomic encryp-
tion [8,9] and encryption supporting ciphertext fragmentation [2,11]. In both
cases we allow invalid ciphertexts to leak information to the adversary, as in
Subtle AE [6]. However, in contrast to Subtle AE our focus is on symmetric
channels rather than nonce-based symmetric encryption. We view the latter as
a stepping stone to building the former, and we believe that the utility of our
security definitions manifests itself when considering symmetric encryption with
more complex functionalities than nonce-based encryption.

An atomic symmetric encryption scheme SE = (K, E ,D) is a triple of algorithms:

– The randomised key generation algorithm K returns a secret key K. We will
slightly abuse notation and use K to also identify the key space associated to
the key generation algorithm.

– The encryption algorithm E : K × {0, 1}∗ → {0, 1}∗, may be randomised,
stateful or both. It takes as input the secret key K ∈ K, a plaintext message
m ∈ {0, 1}∗, and returns a ciphertext in {0, 1}∗. For stateful versions it may
update its internal state when executed.

– The decryption algorithm D : K×{0, 1}∗ → ({,⊥}×{0, 1}∗) is deterministic
and may be stateful. It takes the secret key K, a ciphertext c ∈ {0, 1}∗,
to return a tuple (v,m) such that v ∈ {,⊥} indicates the validity of the
corresponding ciphertext and m is a binary string representing a message or
some leakage. It may update its state upon execution.

Note that decryption may either return (,m), indicating that the ciphertext
was valid and decrypts to the message m ∈ {0, 1}∗, or (⊥,m), indicating that
the ciphertext was invalid where m ∈ {0, 1}∗ may represent an error message,
some internal value, or some other form of leakage. The leakage-free setting is
modeled by returning (⊥, ε) in response to an invalid ciphertext.

Simulatable Channels 525

We further require that an atomic encryption scheme satisfies the follow-
ing standard correctness condition. We write c1, . . . , cn ← EK(m1, . . . ,mn) as
shorthand to denote the sequence of encryption operations c1 ← EK(m1), c2 ←
EK(m2), . . . , cn ← EK(mn). Similarly, (v1,m′

1), . . . , (vn,m′
n) ← DK(c1, . . . , cn)

denotes the analogous sequence of decryption operations.

Definition 1 (Atomic Correctness). For all keys K output by K and all
message sequences m1, . . . ,mn ∈ {0, 1}∗∗, if c1, . . . , cn ← EK(m1, . . . ,mn) and
(v1,m′

1), . . . , (vn,m′
n) ← DK(c1, . . . , cn), then for all 1 ≤ i ≤ n it holds that

vi = and m′
i = mi.

We only require decryption to recover the honestly generated messages when
ciphertexts are decrypted in the same order as they were produced. This slightly
weaker correctness requirement allows us to cater for schemes with a stateful
decryption algorithm.

A symmetric encryption scheme supporting ciphertext fragmentation SE =
(K, E ,D) is a triple of algorithms, where K and E act as before. The deterministic
and possibly stateful decryption algorithm D : K×{0, 1}∗ → ({,⊥}×{0, 1}∗)∗,
this time, takes as input the secret key K and a ciphertext fragment f ∈ {0, 1}∗,
and returns a sequence of one or more tuples (v,m) or the empty string. Here
v ∈ {,⊥} indicates whether the corresponding ciphertext part is valid or not,
and m is a binary string representing the recovered message (when v =) or
leakage from an invalid ciphertext (when v = ⊥).

In contrast to the atomic case, decryption may now return more than one
tuple. This is because a ciphertext fragment could be composed of a concatena-
tion of ciphertexts in which case a tuple is returned for each ciphertext. Alter-
natively, a ciphertext fragment may not contain sufficient information to recover
the message or even determine its validity, in which case decryption returns no
output. Accordingly, we will generally denote the process of decrypting a cipher-
text fragment by (v1,m′

1) . . . (v�,m
′
�) ← DK(f), where a single output and no

output are indicated by � = 1 and � = 0 respectively. Note also that in order to
support ciphertext fragmentation decryption must necessarily be stateful.

For schemes supporting ciphertext fragmentation we also require a stronger
correctness condition. Namely, decryption should recover the original sequence
of messages even when the ciphertexts returned by the encryption algorithm are
concatenated together, optionally appended with an arbitrary string, and the
result is arbitrarily fragmented into substrings which are individually submitted
for decryption in their original order. This is stated formally below, using anal-
ogous notation for composite encryption and decryption operations as before.

Definition 2 (Correctness Under Ciphertext Fragmentation). For all
keys K output by K, all message sequences m1, . . . ,mn ∈ {0, 1}∗∗, and all cipher-
text fragment sequences f1, . . . , fk ∈ {0, 1}∗∗, if c1, . . . , cn ← EK(m1, . . . ,mn)
and (v1,m′

1) . . . (v�,m
′
�) ← DK(f1, . . . , fk), where c1 ‖ . . . ‖ cn � f1 ‖ . . . ‖ fk,

then it holds that m′
i = mi and vi = for all 1 ≤ i ≤ n.

526 J. P. Degabriele and M. Fischlin

A Note on Our Choice of Syntax. Our syntax for schemes supporting
ciphertext fragmentation differs from that used in [2,11] in three main ways.
The most significant difference is that our syntax is more restrictive about how
decryption should behave. The syntax in [2,11] allows decryption to return a
message in separate chunks, similarly to online decryption [22]. Moreover, what
chunk of the message is returned, and when, may vary from scheme to scheme
for a given sequence of ciphertext fragments. The only requirement is that the
concatenation of the outputs be an encoding of the original sequence of mes-
sages. In our case, we ultimately want to relate our security notion to an ideal
functionality in the UC framework. Specifying such a functionality forces us to
choose a concrete output behaviour for decryption. We opted for a functionality
where the message is returned all at once, which is how protocols like TLS and
SSH behave in practice. This choice is reflected in our syntax, which allows for
slightly simpler security definitions. We encounter a similar issue if we try to
extend encryption to take a stream as its input [20]. We would again be forced
to decide on a specific functionality regarding how the plaintext stream is to be
fragmented. The most natural and common choice in practice, is to separately
encrypt each message fragment as soon as it is input to the encryption algorithm.
In turn this would yield a syntax that is equivalent to the one we already have.

The other two differences, however, are merely cosmetic. Instead of decryp-
tion returning error symbols from some set {⊥1,⊥2, . . . }, decryption now returns
⊥ together with a string. Clearly this is without loss of generality, as the former
case can be easily be mapped to the latter. Thirdly, due to the differences we just
described, the end of message symbol (¶), previously used to delineate message
boundaries in the decryption output, becomes redundant in our setting and we
therefore drop it.

One notable exception that is not captured by our syntax is the InterMAC
scheme, described in [11], which does exhibit an online decryption behaviour. It
should be possible to formulate a different ideal functionality, that reflects Inter-
MAC’s behaviour, and replicate our general approach for that setting. However,
we do not pursue that direction in this work.

2.2 Security Without Simulation

For atomic encryption schemes we consider two types of security, plain and
stateful. The plain notions of confidentiality and integrity are IND-CCA and
INT-CTXT, which correspond to the similarly named notions from Bellare and
Namprempre [10] extended to the (stronger) subtle security setting of [6], where
subtleties refer to leakage from different error messages or release of unverified
plaintexts. Note that subtle security follows directly from our extended syntax
rather than any specific alteration in the security definitions. Stateful notions of
confidentiality (IND-sfCCA) and integrity (INT-sfCTXT) were introduced in [9]
to additionally protect against the replay and reordering of ciphertexts. Again,
through our choice of syntax, we here extend these stateful notions to the subtle
setting. We emphasize that our syntax of atomic encryption schemes requires

Simulatable Channels 527

neither encryption nor decryption to be stateful. However the decryption algo-
rithm must be stateful in order for a scheme to satisfy stateful security – hence
the name. For schemes supporting ciphertext fragmentation the confidentiality
and integrity analogues are IND-sfCFA and INT-sfCFRG from [2,11] which we
here adapt to our syntax. In all three cases, the weaker IND-CPA notion is the
usual one since it is unaffected by subtle security, stateful security, or ciphertext
fragmentation.

Fig. 1. Decryption oracles for defining IND-CCA, IND-sfCCA, IND-sfCFA, INT-CTXT,
INT-sfCTXT, and INT-sfCFRG security. T is a live transcript of the adversary’s queries
to its encryption oracle containing message-ciphertext pairs.

Definition 3 (Confidentiality). Let SE = (K, E ,D) be an atomic symmet-
ric encryption scheme. Let algorithms Dec and sfDec be as specified in Fig. 1,
then for any adversary A we define the corresponding IND-CCA and IND-sfCCA
advantages as:

Advind-ccaSE (A) =
∣∣∣Pr

[
AEK(·),Dec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),Dec(·) ⇒ 1

]∣∣∣ ,

and

Advind-sfccaSE (A) =
∣∣∣Pr

[
AEK(·),sfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),sfDec(·) ⇒ 1

]∣∣∣ ,

where in both cases the probabilities are over K � K and the algorithms’
coin tosses. Alternatively, if SE is a symmetric encryption scheme supporting
ciphertext fragmentation, then for any adversary A the corresponding IND-sfCFA
advantage is given by:

Advind-sfcfaSE (A) =
∣∣∣Pr

[
AEK(·),cfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),cfDec(·) ⇒ 1

]∣∣∣ ,

528 J. P. Degabriele and M. Fischlin

where cfDec is as specified in Fig. 1. A scheme SE is said to be (ε,RA)-NN
secure, for NN ∈ {IND-CCA, IND-sfCCA, IND-sfCFA}, if for any adversary A
with resources at most RA, its NN advantage is bounded by ε.

In the above definition, EK(0|·|) is an oracle that on input m returns an encryp-
tion of 0|m|. This formulation of confidentiality is equivalent (up to a small
constant factor in the advantages) to the more popular left-or-right and real-or-
random formulations.

Definition 4 (Ciphertext Integrity). Let SE = (K, E ,D) be an atomic sym-
metric encryption scheme. Let algorithms Dec and sfDec be as specified in Fig. 1
and FORGE denote the event that the decryption oracle returns a pair (v,m′)
where v = . Then for any adversary A the corresponding INT-CTXT and
INT-sfCTXT advantages are defined as:

Advint-ctxtSE (A) = Pr
[

K � K, AEK(·),Dec(·) : FORGE
]
,

and

Advint-sfctxtSE (A) = Pr
[

K � K, AEK(·),sfDec(·) : FORGE
]
.

Alternatively, if SE is a symmetric encryption scheme supporting ciphertext frag-
mentation, let algorithm cfDec be as specified in Fig. 1 and FORGE denote the
event that the decryption oracle return an output (v1,m′

1), . . . , (v�,m
′
�) where

vi = for some 1 ≤ i ≤ �. Then for any adversary A the corresponding
INT-sfCFRG advantage is given by:

Advint-sfcfrgSE (A) = Pr
[

K � K, AEK(·),cfDec(·) : FORGE
]
,

where cfDec is as specified in Fig. 1. A scheme SE is said to be (ε,RA)-NN
secure, for NN ∈ {INT-CTXT, INT-sfCTXT, INT-sfCFRG}, if for any adversary
A with resources at most RA, its NN advantage is bounded by ε.

In Sect. 3 we establish a relation between encryption simulatability and key
privacy. Key privacy was considered in [1,19] for stateless symmetric encryption
and then covered more extensively in [7] for the case of public-key encryption.
Our definition of key-privacy roughly follows the definitions used in [1,19] but we
adapt them to cater for stateful schemes. Roughly speaking, the prior definitions
would give the adversary access to two encryption oracles and it would then have
to distinguish whether the two oracles use the same key or not. Counter mode
encryption would not satisfy this definition since an adversary can easily detect
two encryptions under the same key and counter value. However counter mode
is meant to be used in a way that never re-uses the same counter value (as
even confidentiality would fail in that case) and such a situation should never
arise in practice. Accordingly we progress the state of the two encryption oracles
simultaneously, by encrypting every message by both instances and return to
the adversary only one ciphertext which it is allowed to select via an extra bit b
given to the oracle. This is stated more formally below.

Simulatable Channels 529

Definition 5 (Key Privacy). Let SE = (K, E ,D) be a symmetric encryption
scheme, atomic or supporting ciphertext fragmentation. Let 〈O0(·),O1(·)〉(b,m)
be the exclusive oracle combination described in Fig. 2, then for any adversary
A we define its KP-CPA advantage as:

Advkp-cpaSE (A) =
∣∣∣Pr

[
A〈EK(·),EK̄(·)〉(·,·) ⇒ 1

]
− Pr

[
A〈EK(·),EK(·)〉(·,·) ⇒ 1

]∣∣∣ ,

where the probabilities are over the choice of K, K̄ � K resp. K � K, and the
algorithms’ coin tosses. A scheme SE is said to be (ε,RA)-KP-CPA secure, if for
any adversary A with resources at most RA, its KP-CPA advantage is bounded
by ε.

Fig. 2. Exclusive oracle combination used in the KP-CPA security definition.

3 Encryption Simulatability

3.1 Defining Encryption Simulatability

As observed in the introduction, IND$-CPA security stands out from other defi-
nitions of confidentiality in that it employs an encryption oracle ($(·)) that does
not make use of the encryption key. In particular, we might ask what is spe-
cial about it that if encryption is indistinguishable from it, then confidentiality
is guaranteed? The absence of the encryption key suggests a notion of encryp-
tion simulatability and that perhaps pseudorandomness is not really necessary.
Indeed this turns out to be the case, but we are still missing one ingredient.
The simulator needs to emulate encryption without any knowledge of the mes-
sage contents except its length. Otherwise the scheme m ← EK(m) would be
trivially simulatable but is clearly insecure. A formal definition of encryption
simulatability is given below.

Definition 6 (Encryption Simulatability). Let SE = (K, E ,D) be a sym-
metric encryption scheme, either atomic or supporting ciphertext fragmentation.
For an adversary A and a simulator S we define the corresponding ES advantage
as:

AdvesSE(A,S) = Pr
[

K � K : AEK(·) ⇒ 1
]

− Pr
[

K � K : AS(|·|) ⇒ 1
]

530 J. P. Degabriele and M. Fischlin

The scheme SE is said to be (ε,RS ,RA)-ES secure if there exists a randomised
and possibly stateful simulator S, requiring at most RS resources per query,
such that for any adversary A, requiring at most RA resources, its respective
advantage AdvesSE(A,S) is bounded by ε.

The presence of a simulator in our definition is perhaps reminiscent of other
simulation-based security definitions, such as semantic security and even zero
knowledge. Intuitively, encryption simulatability says that interacting with the
encryption algorithm should convey no knowledge of the key or the message
contents. There are some important differences however. In contrast to semantic
security, here the simulator is emulating the encryption algorithm rather than
the adversary. The simulator cannot depend on the adversary either, due to the
reversed order of quantifiers. Finally, contrary to the case of zero knowledge,
here the simulator is not allowed to rewind the adversary.

3.2 Understanding Encryption Simulatability

We motivated ES as a generalisation of IND$-CPA, and indeed from the definition
it follows straight away that IND$-CPA implies ES for any length-regular scheme.
Showing that the reverse implication does not hold, i.e., ES �=⇒ IND$-CPA is
also straightforward, e.g., if the ciphertext contains redundant 0-bits. Despite
the differences we mentioned previously, between semantic security (equivalently
IND-CPA) and ES, the two notions turn out to be equivalent. In essence, for
any IND-CPA symmetric encryption scheme there exists a stateful encryption
simulator which samples a fresh key at the beginning and runs the encryption
algorithm on that key and a fixed message of the length indicated in its input.
This is stated more formally together with the reverse implication in Theorem1.

Theorem 1 (IND-CPA ⇐⇒ ES). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme.

(a) Then for any encryption simulator S it holds that:

Advind-cpaSE (A) ≤ 2 · AdvesSE(A,S).

(b) Furthermore, there exists a stateful encryption simulator S̄(�), which on its
first input runs K̄ � K once and responds to every query with EK̄(0�), such
that:

AdvesSE(A, S̄) ≤ Advind-cpaSE (A).

Proof. For any adversary A its IND-CPA advantage given by:

Advind-cpaSE (A) = Δ
A

[EK(·)
EK(0|·|)

]
.

By the triangle inequality we obtain:

≤ Δ
A

[EK(·)
S(|·|)

]
+ Δ

A

[S(|·|)
EK(0|·|)

]
.

Simulatable Channels 531

Now the first distinguishing game is exactly the ES game, whereas the second
game can be reduced to the ES game. In particular, any query m can be simulated
by querying 0|m| in the ES game, since |0|m|| = |m|. Thus it follows that:

Advind-cpaSE (A) ≤ 2 · AdvesSE(A,S).

This proves the first part of the theorem, we now prove the other direction. For
the given simulator S̄ and any adversary A we have that:

AdvesSE(A, S̄) = Δ
A

[EK(·)
EK̄(0|·|)

]
.

Applying the triangle inequality we obtain:

≤ Δ
A

[EK(·)
EK(0|·|)

]
+ Δ

A

[EK(0|·|)
EK̄(0|·|)

]
.

Now note that the first term is exactly the IND-CPA advantage, whereas the
second term is zero because the two oracles are distributional identical, i.e. for
any sequence of queries they yield identically distributed responses (over the
choice of the key and potentially the randomness of the encryption scheme).
Thus, the result follows:

AdvesSE(A, S̄) ≤ Advind-cpaSE (A) + 0.

��
One could also consider chosen-ciphertext extensions of encryption simulata-

bility (ES-ATK for ATK ∈ {CCA, sfCCA,CFA}) by additionally providing the
adversary with access to the corresponding decryption oracle from Fig. 1. While
the first implication extends to these settings, i.e. ES-ATK =⇒ IND-ATK, the
implication in the other direction does not! The reason can be seen in the above
proof for the IND-CPA case. In the final step of the proof the second advantage
term in the proof is no longer zero when a decryption oracle is available. To see
why, consider an IND-CCA scheme where every ciphertext is valid, i.e. decrypts
to some string [18]. Now modify this scheme such that it uses two keys, one used
for encryption and decryption and the other is appended to the ciphertexts dur-
ing encryption. Decryption now checks whether the correct key is appended to
the ciphertext, if so it proceeds to decrypt the rest of the ciphertext and returns
an error otherwise. The resulting scheme is still IND-CCA secure but a simulator
can only guess the right key with negligible probability. An adversary can distin-
guish the two cases by modifying the part of the ciphertext which is not the key
and observe whether its decryption returns a string or an error message. This
separation extends easily to the sfCCA and CFA settings. Thus the equivalence
between encryption simulatability and semantic security does not extend to the
chosen-ciphertext setting.

Interestingly, if we further require that the simulator be stateless, meaning
that it maintains no state and uses independent coins in each call, then encryp-
tion simulatability additionally guarantees key privacy. The implication holds

532 J. P. Degabriele and M. Fischlin

for schemes which are either stateless or whose state progression is indepen-
dent of the coins used, which is usually the case in practice, e.g., if a counter is
incremented for each call.

Theorem 2 (ES ∧ Stateless(S) =⇒ KP-CPA). Let SE = (K, E ,D) be a sym-
metric encryption scheme such that E uses fresh coins on each call, and is either
stateless or it progresses its state independently of its coins. Then for a stateless
simulator S using fresh coins on every query and any adversary A, it holds that:

Advkp-cpaSE (A) ≤ 3 · AdvesSE(A,S).

Proof. For any adversary A the KP-CPA advantage is given by:

Advkp-cpaSE (A) = Δ
A

[〈EK(·), EK̄(·)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.

By the triangle inequality, for any encryption simulator S we have that:

≤ Δ
A

[〈EK(·), EK̄(·)〉(·, ·)
〈EK(·),S(|·|)〉(·, ·)

]
+ Δ

A

[〈EK(·),S(|·|)〉(·, ·)
〈S(|·|),S(|·|)〉(·, ·)

]

+ Δ
A

[〈S(|·|),S(|·|)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.

Each of the above terms can be reduced to the encryption simulatability game.
In the first term the reduction (playing against EK̄(·) or S(|·|)) simulates the
first oracle EK(·) by sampling an independent encryption key K. In the second
term the reduction simulates the second oracle by running its own copy of the
simulator. The third reduction is where we require the simulator to be stateless
and the encryption algorithm to have a state progression that is independent
of its coins. The reduction uses one instance of the simulator to emulate two
independent ones, which is only possible if the simulator answers each query
independently. Similarly for encryption, if the state progression depends only
on the key and the message sequence, then both instances of the left and right
oracle will progress through the same sequence of states and can therefore be
emulated via a single instance. Thus we obtain:

Advkp-cpaSE (A) ≤ Δ
A

[EK̄(·)
S(|·|)

]
+ Δ

A

[EK(·)
S(|·|)

]
+ Δ

A

[S(|·|)
EK(·)

]
≤ 3 · AdvesSE(A,S).

��
We emphasise that the above implication necessitates that the simulator be

stateless. That is, if the simulator is allowed to be stateful then ES does not
imply KP-CPA. In particular, a scheme may leak a fixed portion of its key in its
ciphertexts and still be IND-CPA secure. Then by Theorem 1 the scheme has a
stateful encryption simulator, but clearly the scheme is not key private.

Simulatable Channels 533

A Length-Hiding Variant. Our definition of encryption simulatability could
be extended to offer a limited form of length hiding by replacing the length func-
tion |·| with a rounding length function �·�. This would partition the message
space into intervals according to the message length. Then messages of differing
lengths but wich fall within the same interval would map to the same input
to the simulator. Intuitively, the simulator can now only leak the length inter-
val that the message belongs to but not its precise length. This security notion
nicely captures the intended protection against traffic analysis offered by prac-
tical schemes which pad messages up to a multiple of the block length or some
larger value.

4 Decryption Simulatability

It also makes sense to consider an analogous security notion where decryption
is required to be simulatable. Although not stated explicitly, security proofs
often involve either simulating part of the decryption oracle or employ a specific
type of simulator. Indeed ciphertext integrity can be viewed as requiring the
existence of a specific type of decryption simulator—one which returns ⊥ to
every query. Error predictability [20] and leakage simulation [6] are two other
examples where parts of the decryption algorithm is simulated. The notion we
propose is a generalisation of these ideas, adapted to the channel setting, where
we require the whole decryption algorithm to be simulatable. It also allows us
to argue about the chosen ciphertext security of schemes which do not provide
ciphertext integrity, such as the schemes proposed in [18], where any string
constitutes a valid ciphertext but it will decrypt to a random-looking message.

4.1 Defining Decryption Simulatability

When defining decryption simulatability it makes sense to also give the adver-
sary access to the encryption algorithm. Then simulation of decryption requests
is only possible if as usual we prohibit the adversary from forwarding the cipher-
texts it obtains from the encryption oracle. In this particular case, however, we
have an alternative option. We can lift these restrictions from the adversary and
instead give the decryption simulator access to a live transcript of the encryp-
tion queries. Intuitively, this information is already known to the adversary and
should result in an equivalent security notion. However, as it turns out, this
intuition is not quite correct. We need to restrict the simulator’s access to the
transcript in order for security to be preserved.

To see why, consider the classical example where we alter a scheme by append-
ing a redundant bit to the ciphertext during encryption and ignore this bit during
decryption. This modification renders the scheme malleable and thereby fails to
be IND-CCA even if the underlying scheme is. However the resulting scheme does
have a decryption simulator if it is given unrestricted access to the encryption
transcript. In particular, the decryption simulator could use the transcript to
simulate the decryption of ciphertexts which are not in the transcript. More

534 J. P. Degabriele and M. Fischlin

concretely, let us assume that the underlying scheme is IND-CPA secure and
provides ciphertext integrity. Now, if the encryption of m returned c‖0 and the
adversary queries c‖1, the simulator can, through the available transcript, detect
that this is a mauled ciphertext and return m as its response. Alternatively, if
the ciphertext is unrelated to a prior encryption query, the simulator returns
⊥. Thus, if we were to allow unrestricted access to the transcript, the resulting
notion of decryption simulatability would not suffice to reduce IND-CCA security
to IND-CPA security.

To overcome this limitation we will wrap the simulator S with a fixed wrapper
algorithm that has access to the transcript and possibly overwrites the outputs
of S. Specifically, the wrapper will detect whether a ciphertext corresponds to a
prior encryption query and replace the output of S with the message in the tran-
script, unnoticeable for the simulator. Equivalently, the resulting algorithm can
be viewed as a composite decryption simulator where the wrapper component
has access to the transcript but its functionality is fixed and S has no access
to the transcript but its functionality is unrestricted and may depend on the
scheme. We consider three different wrappers V, W, and Z, described in Fig. 3,
each yielding a different notion of decryption simulatability. The first, denoted by
DS, is plain decryption simulatability and is intended for atomic schemes. State-
ful decryption simulatability (SDS) corresponds to the stateful family of security
notions which additionally protect against replay and reordering. Fragmented
decryption simulatability (FDS) is intended for schemes supporting ciphertext
fragmentation.

Definition 7 (Decryption Simulatability). Let SE = (K, E ,D) be an atomic
symmetric encryption scheme. For an adversary A and a decryption simulator
S we define the corresponding DS and SDS advantages as:

AdvdsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AEK(·),V[S](·) ⇒ 1
]
,

and

AdvsdsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AEK(·),W[S](·) ⇒ 1
]
.

where the probabilities are over K � K and the algorithms’ coin tosses. Alterna-
tively, if SE is a symmetric encryption scheme supporting ciphertext fragmenta-
tion, its corresponding FDS advantage is given by:

AdvfdsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AEK(·),Z[S](·) ⇒ 1
]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {DS,SDS,FDS},
if there exists a randomised and possibly stateful simulator S, requiring at most
RS resources per query, such that for any adversary A, requiring at most RA
resources, its respective advantage AdvnnSE(A,S) is bounded by ε.

Simulatable Channels 535

Fig. 3. The V and W wrappers for an atomic decryption simulator and the Z wrap-
per for the decryption simulator supporting ciphertext fragmentation, used to define
decryption simulatability and channel simulatability. In all three cases the boxed code
is omitted. In the suppressing variants V, W, and Z the boxed lines of code replace
the lines above them. T is a live transcript of the adversary’s queries to the encryption
oracle and is not accessible to S. Note that (ε, ε) represents the empty string.

4.2 Decryption Simulatability and Chosen-Ciphertext Security

The next theorem states that, as intended, decryption simulatability suffices
to reduce chosen ciphertext security to chosen plaintext security. We here
state the theorem for the case of schemes supporting ciphertext fragmenta-
tion but analogous results hold for atomic schemes in the plain security set-
ting (IND-CPA ∧ DS =⇒ IND-CCA) as well as the stateful security setting
(IND-CPA ∧ SDS =⇒ IND-sfCCA).

Theorem 3 (IND-CPA ∧ FDS =⇒ IND-sfCFA). Let SE = (K, E ,D) be a sym-
metric encryption scheme supporting ciphertext fragmentation. Then for any
adversary A and any decryption simulator S it holds that:

Advind-sfcfaSE (A) ≤ Advind-cpaSE (A) + 2 · AdvfdsSE(A,S).

Proof. Observe that the decryption oracle cfDec(·) in Fig. 1 is identical to
Z[DK](·), where Z is described in Fig. 3. Then, for any adversary A its IND-sfCFA
advantage is given by:

Advind-sfcfaSE (A) = Δ
A

[EK(·) ,Z[DK](·)
EK(0|·|),Z[DK](·)

]
.

536 J. P. Degabriele and M. Fischlin

By the triangle inequality, for any decryption simulator S it holds that:

≤ Δ
A

[EK(·),Z[DK](·)
EK(·), Z[S](·)

]
+ Δ

A

[EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]

+ Δ
A

[EK(0|·|), Z[S](·)
EK(0|·|),Z[DK](·)

]
.

By means of a reduction on the third term we now replace every encryption query
m with 0|m|. Note how this is only possible because the wrapper is suppressing
and would not be possible otherwise. In particular, in one case the transcript
stores m whereas in the other it stores 0|m|. However, in both cases the oracle’s
behaviour is identical since the suppressing wrapper does not make use of the
messages in the transcript. We now have that:

≤ Δ
A

[EK(·),Z[DK](·)
EK(·), Z[S](·)

]
+ Δ

A

[EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]

+ Δ
A

[EK(·), Z[S](·)
EK(·),Z[DK](·)

]
.

We now reduce the first and third terms to the FDS game. We employ a straight-
forward reduction that applies Z to the decryption oracle, and observe that
applying Z after Z is equivalent to applying Z directly. This means we can sim-
ulate Z[DK] resp. Z[S] through Z[DK] and Z[S], and we can then also take
advantage of Z[DK] = DK . Regarding the second term, it can be reduced to
IND-CPA by running a local copy of the decryption simulator and wrapper. This
yields:

≤ Δ
A

[EK(·),DK(·)
EK(·),Z[S](·)

]
+ Δ

A

[EK(·)
EK(0|·|)

]
+ Δ

A

[EK(·),Z[S](·)
EK(·),DK(·)

]
,

= AdvfdsSE(A,S) + Advind-cpaSE (A) + AdvfdsSE(A,S).

��
Note that chosen ciphertext security does not imply decryption simulatabil-

ity, i.e. IND-CCA �=⇒ DS. To show this separation we can use again the same
counterexample that we used in the discussion following Theorem 1. That is, a
scheme can leak part of the key in its ciphertext and still be IND-CCA secure.
Then decryption can behave differently, by returning a string or an error mes-
sage, depending on whether a ciphertext contains the right key or not. Now, since
a decryption simulator does not know the key, it cannot successfully emulate this
behaviour and is therefore not DS secure. However, for the case of encryption
simulatability the implication is valid, that is, ES-CCA =⇒ DS. In particular,
we can simulate decryption by running the algorithm on an independently sam-
pled key. Thus, if encryption is simulatable to an adversary with oracle access to
decryption, it follows that decryption is simulatable to an adversary with oracle

Simulatable Channels 537

access to encryption. Analogous relations hold for stateful security and schemes
supporting ciphertext fragmentation. Below we state more formally, with proof,
the relation for the fragmentation setting.

Theorem 4 (ES-sfCFA =⇒ FDS). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme supporting ciphertext fragmentation. Then there exists a stateful
decryption simulator SD(c), which on its first input runs K̄ � K and responds
to every query using DK̄(c), such that for any encryption simulator SE it holds
that:

AdvfdsSE(A,SD) ≤ 2 · Adves-sfcfaSE (A,SE).

Proof. For the given simulator SD, which decrypts under a freshly chosen key
K̄, and any adversary A the FDS advantage is given by:

AdvfdsSE(A,SD) = Δ
A

[EK(·), DK(·)
EK(·),Z[SD](·)

]
= Δ

A

[EK(·), DK(·)
EK(·),Z[DK̄](·)

]
.

By the triangle inequality, for any encryption simulator SE it holds that:

≤ Δ
A

[EK(·) , DK(·)
SE(|·|),Z[DK](·)

]
+ Δ

A

[SE(|·|),Z[DK](·)
EK(·) ,Z[DK̄](·)

]
.

By the correctness of the scheme, we can replace DK(·) by Z[DK](·) in the upper
row of the first term. With respect to the second term we drop the decryption
oracle since it can be simulated locally by sampling an independent key and
maintaining a local transcript for simulating the wrapper. We thus have:

≤ Δ
A

[EK(·) ,Z[DK](·)
SE(|·|),Z[DK](·)

]
+ Δ

A

[SE(|·|)
EK(·)

]
.

The first term can now be reduced to a similar game employing a suppressing
wrapper since the suppressed queries can be answered by maintaining a local
copy of the transcript. Therefore:

= Δ
A

[EK(·) ,Z[DK](·)
SE(|·|),Z[DK](·)

]
+ Δ

A

[SE(|·|)
EK(·)

]
,

and the result now follows

= Adves-sfcfaSE (A,SE) + AdvesSE(A,SE).

��

4.3 Decryption Simulatability and Ciphertext Integrity

Informally, decryption simulatability says that access to the decryption algo-
rithm is of no use to an adversary, thereby allowing us to reduce chosen cipher-
text security to chosen plaintext security. However, by itself, this does not guar-
antee ciphertext integrity. Luckily, we only need to impose a minor additional

538 J. P. Degabriele and M. Fischlin

requirement on the simulator for it to cover ciphertext integrity. Essentially, the
requirement is that the simulator always returns an error for mauled cipher-
texts. It then follows that the real decryption algorithm can only deviate from
this behaviour with negligible probability. In our definition we conveniently make
use of the suppressing variants of the wrapper algorithms, from Fig. 3, in order
to filter out any ciphertexts that were obtained from the encryption oracle.

Definition 8 (Decryption Simulatability with Integrity). Let SE =
(K, E ,D) be an atomic symmetric encryption scheme. Then SE is said to be
(ε,RS ,RA)-DS-I or (ε,RS ,RA)-SDS-I secure, if it is respectively (ε,RS ,RA)-
DS or (ε,RS ,RA)-SDS secure, and, in addition, the corresponding simulator S
augmented with V or W respectively never (with probability zero) outputs a pair
(v,m′) where v = .

Similarly, if SE is a symmetric encryption scheme supporting ciphertext frag-
mentation it is said to be (ε,RS ,RA)-FDS-I secure if it is (ε,RS ,RA)-FDS secure
and its corresponding simulator S is such that Z[S] never (with probability zero)
returns an output (v1,m′

1), . . . , (v�,m
′
�) where vi = for some 1 ≤ i ≤ �.

Informally, the above says that the simulator will never return a valid output
for a ciphertext that is not in the transcript (DS-I) or once the queries become out
of sync (SDS-I and FDS-I). Note that such a property can be verified simply by
inspecting the code of the simulator. Thus no additional steps may be required
to prove ciphertext integrity if the decryption simulator already satisfies this
condition.

The following theorem says that decryption simulatability with integrity
implies the usual notions of ciphertext integrity. We prove this only for schemes
supporting ciphertext fragmentation, but analogous theorems and proofs hold
for the atomic setting, i.e. DS-I =⇒ INT-CTXT and SDS-I =⇒ INT-sfCTXT.

Theorem 5 (FDS-I =⇒ INT-sfCFRG). Let SE = (K, E ,D) be a symmetric
encryption scheme supporting ciphertext fragmentation and let S be a decryp-
tion simulator such that it is (ε,RS ,RA)-FDS-I secure. Then SE is (ε,RA)-
INT-sfCFRG secure.

Proof. Note that cfDec(·) is identical to Z[DK](·). Hence for any simulator S
and any adversary A with at most RA resources, we have that:

Δ
A

[EK(·),cfDec(·)
EK(·), Z[S](·)

]
= Δ

A

[EK(·),Z[DK](·)
EK(·), Z[S](·)

]
.

Then, by a straightforward reduction that applies Z to the decryption oracle and
observing that Z[Z[S]](·) is identical to Z[S](·), it follows that:

≤ Δ
A

[EK(·),DK(·)
EK(·),Z[S](·)

]
,

= AdvfdsSE(A,S).

Simulatable Channels 539

From the above relation it then follows that:

Advint-sfcfrgSE (A) = Pr
[

K � K, AEK(·),cfDec(·) : FORGE
]
,

≤ Pr
[

AEK(·),Z[S](·) : FORGE
]

+ AdvfdsSE(A,S).

Now since SE is (ε,RS ,RA)-FDS-I secure, there exists a simulator such that the
first term is zero and the second term is bounded by ε, thus:

≤ ε.

Comparing DS to Prior Notions. We are not the first to consider notions
requiring the decryption algorithm to be simulatable. Two notable cases are the
works of Andreeva et al. [5] and that of Hoang, Krovetz, and Rogaway [21].
Below is a comparison of our notion with these

Inspired by plaintext awareness the authors of [5] propose two security
notions called PA1 and PA2, which involve an extractor algorithm that essen-
tially acts as a decryption simulator. Their first notion, PA1, roughly corresponds
to a notion of decryption simulatability where the simulator has unrestricted
access to the transcript. As we described in Sect. 4.1, such a formulation would
not suffice to guarantee chosen-ciphertext security and results in a weaker notion.
Accordingly, the authors put forward PA2 where the extractor no longer has
access to the transcript and the adversary is prohibited from querying cipher-
text to the extractor that it obtains from its encryption oracle. We note, however,
that a our notions and relations are not directly comparable to those in [5] since
their work assumes a different syntax. Apart from being nonce-based and requir-
ing encryption to be deterministic, their syntax splits decryption into separate
decryption and verification algorithms. This choice of syntax has important con-
sequences, where for instance, their resulting IND-CCA notion is weaker than
the traditional one, see [6].

A decryption simulator also appears in the definition of Robust Authenti-
cated Encryption (RAE) from [21]. RAE security requires that a (nonce-based)
encryption scheme be indistinguishable from an idealised scheme where encryp-
tion is a randomly-sampled injection, and decryption can be viewed as answering
its queries either by looking up the transcript or via a simulator. That is, the
idealised decryption oracle in RAE essentially behaves as our combination of a
decryption simulator and wrapper algorithm. Note that in RAE the decryption
simulator appears in conjunction with an ideal encryption oracle, whereas in DS
it appears in conjunction with the real encryption algorithm. As such, RAE is
perhaps more akin to ES ∧ DS (discussed in Sect. 5.1). Indeed, RAE security
could be viewed as a special case of ES∧DS (translated to the nonce-based set-
ting), where the encryption simulator is further restricted to be a pseudorandom
injection.

5 Channel Simulatability

We can now go a step further and require that both encryption and decryption
be simulatable.

540 J. P. Degabriele and M. Fischlin

5.1 Defining Channel Simulatability

A natural formulation is to require that there exist an encryption simulator SE

and a decryption simulator SD such that no adversary can distinguish between
unrestricted oracle access to EK(·) and DK(·) or SE(|·|) and V[SD](·). Such
a notion turns out to be equivalent to ES ∧ DS, i.e. the requirement that a
scheme satisfy both simulatability notions ES and DS. This notion can be viewed
as a stronger analogue of IND-CCA security. Indeed, because decryption simu-
latability reduces IND-CCA security to IND-CPA security and encryption simu-
latability implies IND-CPA, it follows that ES ∧ DS =⇒ IND-CCA. Similarly
ES ∧DS-I, where decryption simulatability also ensures integrity, can be viewed
as an analogue and a generalisation of the combined authenticated encryption
security notion from [29]. Clearly, all of the above also holds for stateful security
(ES∧SDS-I) and for schemes supporting ciphertext fragmentation (ES∧FDS-I).

We believe these notions are appealing for a number of reasons. On an intu-
itive level, these notions say that an adversary’s computational abilities are not
any better when it is given oracle access to the channel, since it can be simu-
lated. That is, the ability to choose the messages that get encrypted, replay,
reorder and fragment ciphertexts arbitrarily, and observe the output of the
decryption algorithm (possibly augmented with additional leakage such as error
messages and the release of unverified plaintext) are of no help to the adversary.
Moreover, there are no prohibited or suppressed queries, as is the case with all
CCA and authenticated encryption type of definitions. Being single-game def-
initions, they are also easier to prove than their two-game counterparts used
in [2,9,11,20,26]. Further backing to the claim that these notions are easier to
prove can be found in Sect. 7. Finally, as we will show later on, any scheme that
meets these notions realises a universally composable secure channel. Thus our
notions guarantee composability under extended security requirements, such as
the presence of leakage from invalid ciphertexts [5,6,12,21], protection against
replay and reordering [9], and security in the presence of ciphertext fragmenta-
tion [2,11,20,26].

However the above formulation, requiring separate simulators, has some limi-
tations. For instance the schemes used in SSH, which include an encrypted length
field as part of their ciphertext – see Sect. 7 or [2,26], cannot meet this notion.
In particular, because a ciphertext may be delivered as multiple fragments, the
length field is used by the decryption algorithm to determine the total length of
the ciphertext and accordingly at which point to verify the MAC tag. As such
the decryption simulator needs to be able to predict, both for in-sync and out-
of-sync ciphertexts, after how many bytes it should return an output. Note that
the contents of length field are known to the adversary and any inconsistency
between the real scheme and the simulated one would allow it to distinguish the
two. At the same time, the encryption simulator cannot leak this information
anywhere in the ciphertext, except through its size, as otherwise it would either
not constitute a good simulator, or the encryption used to protect the length
field in the real scheme is insecure. Consequently, for the schemes used in SSH

Simulatable Channels 541

there can exist no pair of simulators that satisfy the security definition outlined
above.

In the case of SSH-CTR this issue can be overcome by allowing the simulators
to share a random tape that they can then use to one-time-pad the length field.
In general, the more freedom we give the simulators to share resources and
communicate the easier it becomes to satisfy such a security notion. We therefore
lift all such restrictions by replacing the two simulators with a single simulator
having separate interfaces for encryption and decryption, S(e, ·) and S(d, ·).
The resulting notion, which we call channel simulatability (CS) is stated more
formally in Defintion 9 and in Defintion 10. Note that ES∧DS =⇒ CS since two
separate simulators can easily be combined into one, but the converse is not true.
While it is easy to see that channel simulatability retains the appealing properties
that we mentioned earlier, the SSH example we just described separates it from
ES ∧ DS. We must therefore make sure that channel simulatability still offers
an adequate level of security. We assert this in Theorems 6 and 10, where we
prove that it guarantees chosen ciphertext security and integrity. The results are
stated for schemes supporting ciphertext fragmentation but analogous results
hold in the atomic setting for plain and stateful security. In Sect. 6 we show that
channel simulatability implies UC-realising the secure channel ideal functionality.
By transitivity, it follows that ES ∧ DS also guarantees universal composability.

Definition 9 (Channel Simulatability). Let SE = (K, E ,D) be a symmetric
encryption scheme. For any adversary A and a channel simulator S we define
the corresponding CS and SCS advantages as:

AdvcsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AS(e,|·|),V[S](d,·) ⇒ 1
]
,

and,

AdvscsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AS(e,|·|),W[S](d,·) ⇒ 1
]
,

where the probabilities are over K � K and the algorithms’ coin tosses. Alterna-
tively, if SE is a symmetric encryption scheme supporting ciphertext fragmenta-
tion, its corresponding FCS advantage is given by:

AdvfcsSE(A,S) = Pr
[

AEK(·),DK(·) ⇒ 1
]

− Pr
[

AS(e,|·|),Z[S](d,·) ⇒ 1
]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {CS,SCS,FCS}, if
there exists a randomised and possibly stateful simulator S such that every query
of the form S(e, ·) or S(d, ·) requires at most RS resources, and for any adver-
sary A, requiring at most RA resources, its respective advantage AdvnnSE(A,S) is
bounded by ε.

Theorem 6 (FCS =⇒ IND-sfCFA). Let SE = (K, E ,D) be a symmetric
encryption scheme supporting ciphertext fragmentation. Then for any adversary
A and any channel simulator S it holds that:

Advind-sfcfaSE (A) ≤ 2 · AdvfcsSE(A,S).

542 J. P. Degabriele and M. Fischlin

Proof. Observing that cfDec(·) is identical to Z[DK](·), it follows that for any
adversary A:

Advind-sfcfaSE (A) = Δ
A

[EK(·) ,Z[DK](·)
EK(0|·|),Z[DK](·)

]
.

By the triangle inequality, for any channel simulator S it follows that:

≤ Δ
A

[EK(·) ,Z[DK](·)
S(e, |·|),Z[S](d, ·)

]
+ Δ

A

[S(e, |·|),Z[S](d, ·)
EK(0|·|),Z[DK](·)

]
.

In the second term, since the wrapper is suppressing, we can replace every
encryption query m with 0|m|, reducing it to:

≤ Δ
A

[EK(·) ,Z[DK](·)
S(e, |·|),Z[S](d, ·)

]
+ Δ

A

[S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK](·)

]
.

Through a straightforward reduction that applies Z to the decryption oracle and
observing that applying Z after Z is equivalent to applying Z directly, we obtain:

≤ Δ
A

[EK(·) ,Z[DK](·)
S(e, |·|),Z[S](d, ·)

]
+ Δ

A

[S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK](·)

]
,

and the result follows

= AdvfcsSE(A,S) + AdvfcsSE(A,S).

��

5.2 Channel Simulatability with Integrity

Just like decryption simulatability, channel simulatability can easily be extended
to guarantee ciphertext integrity by additionally requiring an easily verifiable
property from the channel simulator. Informally, we require that, by design, the
simulator never return a valid output for a ciphertext that is not in the transcript
(CS-I) or once the queries become out of sync (SCS-I and FCS-I).

Definition 10 (Channel Simulatability with Integrity). Let SE =
(K, E ,D) be an atomic symmetric encryption scheme. Then SE is said to be
(ε,RS ,RA)-CS-I or (ε,RS ,RA)-SCS-I secure, if it is respectively (ε,RS ,RA)-CS
or (ε,RS ,RA)-SCS secure, and, in addition, the corresponding channel simula-
tor S is such that V[S](d, ·), or respectively W[S](d, ·), never (with probability
zero) outputs a pair (v,m′) where v = .

Similarly, if SE is a symmetric encryption scheme supporting ciphertext frag-
mentation it is said to be (ε,RS ,RA)-FCS-I secure if it is (ε,RS ,RA)-FCS secure
and its corresponding simulator S is such that Z[S](d, ·) never (with probability
zero) returns an output (v1,m′

1), . . . , (v�,m
′
�) where vi = for some 1 ≤ i ≤ �.

Simulatable Channels 543

The theorem below states that channel simulatability with integrity implies
the respective notion of ciphertext integrity. The theorem is stated for the case
of ciphertext fragmentation, but analogous results hold for the atomic schemes.
Its proof is similar to that of Theorem5 with some minor adaptations. A proof
can be found in the full version of this paper.

Theorem 7 (FCS-I =⇒ INT-sfCFRG). Let SE = (K, E ,D) be a symmetric
encryption scheme supporting ciphertext fragmentation and let S be a chan-
nel simulator such that it is (ε,RS ,RA)-FCS-I secure. Then SE is (ε,RA)-
INT-sfCFRG secure.

6 Simulatable Channels and Universal Composability

In this section we show that any scheme satisfying channel simulatability with
integrity realises a universally composable channel.

6.1 UC Framework

The universal composition framework [13] is a simulation-based security notion
for a protocol π implementing some ideal functionality F . The approach
requires that for any adversary AUC attacking a real protocol π between parties
P1, P2, . . . there exists an ideal-model adversary SUC (or, simulator) interacting
in a world where all parties are connected to the ideal functionality F . The only
task of the parties in this ideal world is to forward their inputs to F and output
the responses of F . The communication with the ideal functionality is not visible
to other parties and cannot be tampered with.

We give here only an informal introduction to the model and refer to [13] for
the details. The UC model is different from other simulation-based notions in
that it uses an interactive distinguisher to decide in which of the two worlds the
execution takes place. This interactive distinguisher is called the environment
EUC, since it represents other potentially ongoing protocols and thereby ensures
composability. The environment determines the input of the parties, learns their
outputs, and can interact with the (real or ideal) adversary. To distinguish inputs
for different sessions, the UC model assumes that globally unique and publicly
known session identifiers sid are assigned to each protocol execution.

Let REALAUC,EUC,π(n) be the random variable denoting the environment’s
output in a real-world execution, where AUC interacts with the protocol π for
security parameter n, and IDEALSUC,EUC,F (n) be the corresponding random vari-
able when interacting with SUC in the ideal world. We say that a protocol π
securely realises F if for any probabilistic polynomial time (PPT) adversary
AUC there exists a PPT simulator SUC such that for any PPT environment EUC

the random variables REALAUC,EUC,π and IDEALSUC,EUC,F are computationally
indistinguishable. For concrete security one would measure the difference in the
output distributions exactly. By viewing a potential distinguisher of the envi-
ronment’s output as part of the environment itself, we can equivalently assume
that the environment only outputs a bit to indicate which world it is in.

544 J. P. Degabriele and M. Fischlin

A secure channel functionality has been given in [15]. It consists of a stage
in which the channel between two parties Pi and Pj is established. Once this
is done, party Pi can securely transmit messages m to the other party. This is
performed by sending m to the secure channel functionality. The functionality
then informs the adversary about a transmission, but keeps the actual message
m secret. Only the length |m| of the message is revealed to the adversary. The
adversary can then decide when to deliver the next message to the receiving
party Pj .

We adapt this secure channel functionality to the unidirectional setting, i.e.,
only party Pi sends messages, and it is a single-instance functionality, i.e., it
only allows to establish a single channel. The UC composition theorem allows
to extend this simple form of a channel to more complex constructions. The
resulting secure channel functionality is described in Fig. 4.

Fig. 4. Ideal functionality for a secure channel (with static corruptions).

6.2 Simulatable Channels with Integrity are Universally
Composable

Here we show that simulatable channels (with integrity) are also universally
composable. The necessity of the integrity property stems from the definition of
the ideal channel functionality: The UC adversary can only demand to deliver
messages which have been actually inserted into the channel; it cannot make
the receiving party output further messages. In contrast, simulatable channels
without integrity in principle allow the simulator to output other messages as
well. Put differently, the secure channel functionality stipulates integrity by con-
struction.

We are, of course, faced with the problem that the two parties need to share
a key in the symmetric setting, without having a way to communicate securely
yet. Previous solutions [14] assumed that the keys are established by running
a suitable key exchange protocol first. To abstract out this step, we design our
protocol πSC in the hybrid setting where an ideal functionality FKE establishes a

Simulatable Channels 545

shared key between the two parties. That is, πSC may call the ideal functionality
FKE, shown in Fig. 5, as part of the protocol steps. We parameterise this func-
tionality by a key generation algorithm K to describe the underlying distribution
over keys. The concrete implementation of the key establishment protocol is a
matter of choice, but the UC framework says that any protocol realising FKE

securely, can then be composed with our protocol πSC to yield a secure, fully
implemented protocol for FSC. We assume that the session identifier sid ′ of the
sub procedure has a one-to-one correspondence with the session identifier sid of
the calling protocol, e.g., are given by sid‖0 and sid‖1.

Fig. 5. Ideal functionality for key establishment (with static corruptions).

Construction 8. Let SE = (K, E ,D) be an encryption scheme. Define the pro-
tocol πSC in the FK

KE-hybrid model follows:

– On input (EstCh, sid, Pi, Pj) to Pi make a call (EstKey, sid ′, Pi, Pj) to FK
KE.

– On input (EstKey, sid ′, Pi, Pj ,K) from FK
KE to Pi or Pj store (sid, Pi, Pj ,K).

– On input (Send, sid,m) to Pi check for an entry (sid, Pi, Pj ,K). If found,
compute c ← E(K,m), and possibly update the state, and send (sid, c) to Pj.

– On input (sid, f) check for an entry (sid, Pi, Pj ,K). If found, compute the
sequence (v1,m1), . . . , (v�,m�) ← D(K, f), possibly updating the state, and
for each vi = output (Sent, sid,mi) (in this order).

We state our theorem with respect to the stateful fragmentation notion FCS-I.
The result also transfers straightforwardly to the stateless and stateful atomic
cases CS-I and SCS-I.

Theorem 9. If SE = (K, E ,D) supports fragmentation and is channel simu-
latable with integrity (FCS-I) then the protocol πSC securely realises FSC in the
FK

KE-hybrid model.

The idea is to turn the channel simulator S, embedded into a wrapper Z,
into a UC simulator SUC, interacting with the channel functionality FSC instead.
The reduction then shows that any UC environment EUC (in combination with
a fixed but sufficiently general UC dummy adversary ÃUC) against this UC
simulator can be transformed into a channel simulatability adversary A. Note
that the order of quantifiers is important here: the UC simulator SUC works
for any environment EUC just as the channel simulator S works for any channel

546 J. P. Degabriele and M. Fischlin

Fig. 6. The SSH-CTR scheme as implemented in Dropbear.

adversary A. Integrity of the channel ensures that the simulation of the UC
simulator SUC is sound. The proof appears in the full version of this paper.

Unfortunately, we cannot show that universal composability implies channel
simulatability (with or without integrity). The reason is that ciphertexts may
carry redundancy, e.g., an extra bit appended to the ciphertext c‖0, which still
allows a UC simulator to detect an altered but valid ciphertext, say, c‖1, and

Simulatable Channels 547

to ask the ideal functionality to forward the next message in the queue. Our
channel simulator, on the other hand, does not know the message encapsulated
in c‖0 and the wrapper would not reveal it either.

6.3 Other Work on Composable Secure Channels

In [23], Küsters and Tuengerthal consider two ideal functionalities, one for
encryption and one for authenticated encryption and present matching proto-
cols which realise these functionalities iff the underlying symmetric encryption
schemes respectively satisfy IND-CCA and IND-CPA ∧ INT-CTXT. These results
are limited to atomic and single-error encryption schemes. More importantly,
however, the ideal functionalities considered therein are significantly different
from that in [15] (and consequently also to ours): They consider the stronger
notion of adaptive corruptions and thus have to deal with the committing prop-
erty of encryption schemes. At the same time, their composition, in an inter-
mediate step, uses an encryption scheme with full key reveals, such that the
problem of key cycles —the environment asking for circular encryptions of a key
under that key— must be taken care of. In contrast, [15] and we here work with
the common notion of secret keys.

An alternative formulation of secure channels can be found in [24,25], in
the language of Maurer’s Constructive Cryptography framework. We believe
that an analogue of Theorem9 should also hold for the Constuctive Cryptogra-
phy framework. That is, any scheme that is channel simulatable with integrity
(CS-I/SCS-I/FCS-I) can be used to convert an insecure channel into a secure
channel.

7 Dropbear’s SSH-CTR Implementation is FCS-I Secure

Dropbear is an SSH distribution intended specifically for resource-constrained
devices such as embedded systems. In a measurement study performed in early
2016 [2] it was found to be the most widely deployed SSH implementation on
the Internet. Owing to its minimalist design it only implements a handful of
ciphersuites. Following the attack from [3] which affected CBC encryption, it
added support for counter mode encryption and set this as the default. The
study from [2] identified counter-mode encryption as the preferred choice for
more than 90% of the Dropbear servers.

The SSH-CTR scheme described in Fig. 6 is an accurate representation of
SSH’s symmetric encryption using counter mode that we extracted from Drop-
bear’s open source code. Throughout it is assumed that compression is disabled.
At various points during decryption a ciphertext may be deemed to be invalid
resulting in the connection being torn down. We model this by setting a closed
flag at which point all subsequent calls to the decryption algorithm will return
an error of the form (⊥,CONN CLOSED). Dropbear does not return specific
error messages prior to closing a connection, however we adopt a conservative
approach and return distinct error messages for every decryption failure that

548 J. P. Degabriele and M. Fischlin

results in a connection tear-down. This only serves to strengthen our security
result, since security will hold even if an adversary can distinguish these events
through timing information or some other means.

We next show that SSH-CTR is FCS-I secure. To prove this, we need to
transform the scheme, through a sequence of game hops, into a pair of algorithms
such that (a) both algorithm do not make use of the key, (b) encryption does
not make use of the message contents, and (c) decryption only returns error
messages for out-of-sync ciphertexts. This is easier than it sounds, in particular
by the point where we switch from a block cipher and MAC to their idealised
forms (i.e. random functions) we have already eliminated the key. We then only
need a couple of simple probabilistic arguments to reach our goal. The advantage
of channel simulatability is that we can focus on specific portions of the code
without having to worry about its functionality as a whole. For example, we do
not have to worry about the parts of the code which handle the reconstruction
of ciphertexts and validating of the length field. Indeed if the scheme made use
of a nonce-based AEAD scheme, such as GCM, we would only need one game
hop to prove channel simulatability.

Below is a formal statement of the security theorem. Its proof can be found
in the full version of this paper

Theorem 10 (SSH-CTR is FCS-I secure). Let SSH-CTR be the encryption
scheme supporting ciphertext fragmentation, composed of a blockcipher BC and
a MAC algorithm MAC, described in Fig. 6. Then there exists a simulator S such
that for any FCS-I adversary Afcs attempting to distinguish S from SSH-CTR,
running in time t, making at most qe encryption queries totalling μe bits, and
at most qd decryption queries totalling μd bits, it holds that:

AdvfcsSSH-CTR(Afcs) ≤ AdvprfBC(t′, qf) +
q2f

2blocksize+1
+ AdvprfMAC(t′, qm) + 2−macsize,

where qf = �μe+40qe
blocksize � + qe + �μd+40qd

blocksize � + qd, qm = qe + qd, and t′ ≈ t.

Furthermore, S is such that Z[S](d, ·) never returns an output (v1,m′
1), . . . ,

(v�,m
′
�) where vi = for some 1 ≤ i ≤ �.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptol. 20(3), 395 (2007)

2. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, pp. 1480–1491. ACM Press, October 2016

3. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: 2009 IEEE Symposium on Security and Privacy, pp. 16–26. IEEE Com-
puter Society Press, May 2009

4. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, pp. 526–
540. IEEE Computer Society Press, May 2013

Simulatable Channels 549

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

6. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robust-
ness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9 6

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

9. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 2002,
pp. 1–11. ACM Press, November 2002

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

11. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmet-
ric encryption in the presence of ciphertext fragmentation. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 40

12. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

15. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

16. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 34

17. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt
configurations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS
2010, pp. 493–504. ACM Press, October 2010

18. Desai, A.: New paradigms for constructing symmetric encryption schemes secure
against chosen-ciphertext attack. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol.
1880, pp. 394–412. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44598-6 25

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-319-27239-9_6
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-29011-4_40
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/3-540-44598-6_25
https://doi.org/10.1007/3-540-44598-6_25

550 J. P. Degabriele and M. Fischlin

19. Fischlin, M.: Pseudorandom function tribe ensembles based on one-way permu-
tations: improvements and applications. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 432–445. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 30

20. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 27

21. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

22. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 24

23. Küsters, R., Tuengerthal, M.: Universally composable symmetric encryption. In:
Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF
2009, Port Jefferson, New York, USA, 8–10 July 2009, pp. 293–307. IEEE Com-
puter Society (2009). https://doi.org/10.1109/CSF.2009.18

24. Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and integrity: a con-
structive perspective. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 209–
229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 12

25. Maurer, U., Tackmann, B.: On the soundness of authenticate-then-encrypt: for-
malizing the malleability of symmetric encryption. In: Al-Shaer, E., Keromytis,
A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 505–515. ACM Press, October
2010

26. Paterson, K.G., Watson, G.J.: Plaintext-dependent decryption: a formal security
treatment of SSH-CTR. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 345–361. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 18

27. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25937-4 22

28. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press, November 2001

29. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

https://doi.org/10.1007/3-540-48910-X_30
https://doi.org/10.1007/3-540-48910-X_30
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1109/CSF.2009.18
https://doi.org/10.1007/978-3-642-28914-9_12
https://doi.org/10.1007/978-3-642-13190-5_18
https://doi.org/10.1007/978-3-642-13190-5_18
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23

Correction to: Constructing Ideal Secret
Sharing Schemes Based on Chinese Remainder

Theorem

Yu Ning, Fuyou Miao, Wenchao Huang, Keju Meng, Yan Xiong,
and Xingfu Wang

Correction to:
Chapter “Constructing Ideal Secret Sharing Schemes Based
on Chinese Remainder Theorem” in: T. Peyrin
and S. Galbraith (Eds.): Advances in Cryptology – ASIACRYPT
2018, LNCS 11274,
https://doi.org/10.1007/978-3-030-03332-3_12

Two references to papers by T. Galibus et al. have been added to this paper because
these publications, published in 2007 and 2008, contain results mentioned in the
present paper. The authors of the present paper were unaware of these publications and
obtained their results independently.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-03332-3_12

© International Association for Cryptologic Research 2021
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, p. C1, 2021.
https://doi.org/10.1007/978-3-030-03332-3_20

https://doi.org/10.1007/978-3-030-03332-3_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-03332-3_12
https://doi.org/10.1007/978-3-030-03332-3_20

Author Index

Abe, Masayuki I-627
Aono, Yoshinori I-405
Ashur, Tomer II-35
Attrapadung, Nuttapong II-493

Backes, Michael II-405
Badrinarayanan, Saikrishna III-118
Bai, Shi I-369
Barelli, Élise I-93
Beimel, Amos III-332
Belaïd, Sonia II-343
Ben-Efraim, Aner III-3
Beullens, Ward I-35
Beyne, Tim I-3
Bhaumik, Ritam I-336
Biryukov, Alex II-373
Blackburn, Simon R. I-35
Boneh, Dan II-435
Bonnetain, Xavier I-560
Bootle, Jonathan I-494, I-595
Brzuska, Chris III-222

Cash, David I-181
Castagnos, Guilhem II-733
Castryck, Wouter III-395
Cerulli, Andrea I-595
Chaidos, Pyrros III-191
Chan, T.-H. Hubert III-158
Chen, Jie II-673
Chen, Long I-435
Chen, Yu Long I-244
Chen, Yu II-575
Chotard, Jérémy II-703
Chow, Sherman S. M. II-465
Costello, Craig III-428
Couteau, Geoffroy II-96
Couvreur, Alain I-93

Datta, Pratish II-640
De Feo, Luca III-365
Debris-Alazard, Thomas I-62
Degabriele, Jean Paul III-519
Delaplace, Claire I-494
Delignat-Lavaud, Antoine III-222

Derbez, Patrick II-3
Desmoulins, Nicolas I-121
Dobraunig, Christoph II-315
Drijvers, Manu II-435
Ducas, Léo I-465, II-525
Dufour Sans, Edouard II-703
Dupin, Aurélien II-96

Eichlseder, Maria II-35, II-315
Espitau, Thomas I-494

Fischlin, Marc III-519
Fouque, Pierre-Alain I-121, I-494
Fournet, Cédric III-222
Fourtounelli, Olga III-191

Gay, Romain II-703
Gong, Junqing II-673
Gordon, S. Dov III-59, III-141
Goudarzi, Dahmun II-343, II-547
Grassi, Lorenzo I-527
Gross, Hannes II-315
Groth, Jens I-595
Guo, Chun I-213
Guo, Jian II-65

Hanaoka, Goichiro II-493
Hanzlik, Lucjan II-405
Hazay, Carmit III-86
He, Jingnan II-158
Hofheinz, Dennis II-190
Hosoyamada, Akinori I-275
Hu, Lei II-3
Huang, Wenchao III-310

Jager, Tibor II-221, III-490
Jain, Abhishek III-118
Jakobsen, Sune I-595
Jia, Dingding II-190
Joux, Antoine II-547
Jutla, Charanjit S. I-627

Kamara, Seny I-149
Karpman, Pierre II-285

Katsumata, Shuichi II-253, II-493
Katz, Jonathan III-141, III-158
Kiayias, Aggelos III-191
Kieffer, Jean III-365
Kitagawa, Fuyuki II-127
Kluczniak, Kamil II-405
Kohbrok, Konrad III-222
Kohlweiss, Markulf III-222
Kolesnikov, Vladimir III-34
Kurek, Rafael II-221, III-490

Laguillaumie, Fabien II-733
Lai, Russell W. F. II-465, III-279
Lange, Tanja III-395
Lauridsen, Martin M. II-35
Lee, ByeongHak I-305
Lee, Jooyoung I-305
Leurent, Gaëtan II-35
Li, Bao II-158
Liang, Bei II-158
Ling, San II-65
List, Eik I-336
Liu, Feng-Hao I-181
Liu, Shengli III-459
Lu, Xianhui II-158

Malavolta, Giulio III-279
Maller, Mary I-595
Mangard, Stefan II-315
Martindale, Chloe III-395
Méaux, Pierrick II-96
Mendel, Florian II-315
Meng, Keju III-310
Mennink, Bart I-244
Miao, Fuyou III-310
Minaud, Brice II-35
Moataz, Tarik I-149

Nandi, Mridul I-244, I-336
Nayak, Kartik III-158
Naya-Plasencia, María I-527, I-560
Neven, Gregory II-435
Nguyen, Phong Q. I-405
Ning, Yu III-310

O’Neill, Adam I-181
Ohkubo, Miyako I-627

Okamoto, Tatsuaki II-640
Onete, Cristina I-121
Orsini, Emmanuela III-86
Ostrovsky, Rafail III-118

Pan, Jiaxin II-190, III-490
Panny, Lorenz III-395
Pellet-Mary, Alice I-465
Peter, Naty III-332
Phan, Duong Hieu II-703
Pointcheval, David II-703
Polychroniadou, Antigoni III-158
Primas, Robert II-315

Ranellucci, Samuel III-59
Renes, Joost III-395
Rivain, Matthieu II-343, II-547
Roche, Daniel S. II-285
Rossi, Mélissa II-96
Rotella, Yann II-35, II-96
Roy, Arnab I-627

Sakai, Yusuke II-493
Sanders, Olivier I-121
Sasaki, Yu II-35
Schneider, Jonas II-405
Scholl, Peter III-86
Schröder, Dominique III-279
Schrottenloher, André I-527
Shen, Yixin I-405
Shi, Danping II-3, II-65
Shi, Elaine III-158
Smith, Benjamin III-365
Song, Ling II-65
Soria-Vazquez, Eduardo III-86
Stehlé, Damien I-369
Sun, Bing II-3
Sun, Siwei II-3

Tai, Raymond K. H. II-465
Takashima, Katsuyuki II-609, II-640
Tanaka, Keisuke II-127
Tibouchi, Mehdi I-494
Tillich, Jean-Pierre I-62
Todo, Yosuke II-3
Tomida, Junichi II-609
Tucker, Ida II-733

552 Author Index

Udovenko, Aleksei II-373

Viguier, Benoît II-35
Visconti, Ivan III-118

Wang, Lei I-213
Wang, Xiao III-59, III-141
Wang, Xingfu III-310
Wang, Yuyu II-575
Wee, Hoeteck II-673
Wei, Puwen III-250
Wen, Weiqiang I-369
Wen, Yunhua III-459
Wong, Harry W. H. II-465

Xiong, Yan III-310
Xue, Haiyang II-158

Yamada, Shota II-253
Yamakawa, Takashi II-253
Yasuda, Kan I-275
Yu, Yang II-525
Yuan, Quan III-250

Zacharias, Thomas III-191
Zhandry, Mark I-181
Zhang, Cong I-181
Zhang, Zhenfei I-435
Zhang, Zhenfeng I-435
Zheng, Yuliang III-250
Zhou, Hong-Sheng II-575

Author Index 553

	Preface
	ASIACRYPT 2018
	Contents – Part III
	Multi-Party Computation
	On Multiparty Garbling of Arithmetic Circuits
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Notation, Conventions, and Security Assumption
	2.3 Multiparty Garbling
	2.4 Multifield-Shared Bits

	3 Multiparty Multiplication Gates
	3.1 Garbler Half Gate
	3.2 Evaluator Half Gate
	3.3 Summing the Two Half Gates

	4 Selector Gates
	4.1 Charateristic 2 to Characteristic p Projection Gates
	4.2 Designated Selector Gate Construction

	5 Protocol for Secure Computation
	6 Correctness and Security
	References

	Free IF: How to Omit Inactive Branches and Implement S-Universal Garbled Circuit (Almost) for Free
	1 Introduction
	1.1 Motivating Applications
	1.2 Background and Related Work

	2 Our Contributions
	3 Technical Overview of Our Approach
	3.1 Extending the BHR Framework: Decoupling the Topology
	3.2 Outline of the Presentation

	4 Preliminaries
	4.1 Notation
	4.2 Defining S-Universal GC

	5 Extending the BHR Framework
	5.1 BHR Garbling Schemes
	5.2 Intuition for Topology Decoupling and Composition
	5.3 Definition of Topology-Decoupling Circuit Garbling
	5.4 Output Manipulation Extension

	6 S-UC Construction from Topology-Decoupling Circuit Garbling
	6.1 Standard Garbling Schemes are Topology-Decoupling with Extended Correctness

	7 Performance Calculation and Comparison
	References

	Secure Computation with Low Communication from Cross-Checking
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 Our Main Construction
	3.1 Concrete Performance
	3.2 Multiplayer Extensions

	4 Security Proof
	4.1 Proof of Security for Preprocessing
	4.2 Proof of Security of the Main Protocol

	5 Cross Check from Veto
	6 Adding Robustness
	6.1 Robust Evaluation Simulator

	References

	Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT)
	1 Introduction
	2 Preliminaries
	2.1 Resharing

	3 Information-Theoretic MACs with Short Keys
	3.1 Operations on []P(h),P(1)-Shared Values
	3.2 Converting to a More Compact Representation

	4 Correlated OT on Short Strings
	5 Bit Authentication with Short Keys
	5.1 Authenticated Bit Functionality FaBit
	5.2 Bit Authentication Protocol
	5.3 Efficiency Analysis

	6 Actively Secure MPC Protocol with Short Keys
	6.1 The Online Phase
	6.2 The Preprocessing Phase

	7 Triple Generation
	7.1 Half Authenticated Triples
	7.2 Correct Non-leaky Authenticated Triples

	8 Complexity Analysis
	References

	Non-interactive Secure Computation from One-Way Functions
	1 Introduction
	2 Technical Overview
	3 Related Work
	4 Preliminaries
	5 Construction
	5.1 Protocol
	5.2 Correctness

	6 Security Proof: Malicious Receiver
	6.1 Simulator Description
	6.2 Hybrids

	7 Security Proof: Malicious Sender
	7.1 Simulator Description
	7.2 Hybrids

	8 Extension
	A UC Framework and Ideal Functionalities
	References

	ORAM
	Simple and Efficient Two-Server ORAM
	1 Introduction
	1.1 Summary of Our Results
	1.2 Overview of Our Construction

	2 Background
	2.1 Oblivious RAM
	2.2 Private Path Retrieval

	3 A Two-Server ORAM Scheme
	3.1 Description of Our Scheme
	3.2 Analysis
	3.3 Optimizations

	References

	More is Less: Perfectly Secure Oblivious Algorithms in the Multi-server Setting
	1 Introduction
	1.1 Technical Roadmap
	1.2 Related Work

	2 Definitions
	2.1 Execution Model
	2.2 Perfect Security Under a Semi-Honest Adversary
	2.3 Definition of k-Server Oblivious RAM
	2.4 Resource Assumptions and Cost Metrics

	3 Core Building Blocks: Definitions and Constructions
	3.1 Useful Definitions
	3.2 Permute and Unpermute
	3.3 Stable Compaction
	3.4 Merging

	4 Three-Server One-Time Oblivious Memory
	4.1 Definition: Three-Server One-Time Oblivious Memory
	4.2 Construction

	5 3-Server ORAM with O(log2 N) Simulation Overhead
	5.1 Position-Based ORAM
	5.2 ORAM Construction from Position-Based ORAM

	References

	Real World Protocols
	A Universally Composable Framework for the Privacy of Email Ecosystems
	1 Introduction
	2 Background
	2.1 Notation
	2.2 IND-CPA Security of Public-Key Encryption Schemes
	2.3 Related Work

	3 A UC Framework for the Privacy of Email Ecosystems
	3.1 Entities and Protocols of an Email Ecosystem
	3.2 A Global Clock Functionality
	3.3 A UC Definition of E-mail Privacy

	4 Formalizing Privacy Notions via Types of Leakage Functions
	5 An Email Ecosystem with Optimal Privacy
	6 A Parallel Mix Email Ecosystem with t Strata
	7 The Combinatorics of Parallel Mixing
	7.1 A Brief Discussion on Convergence Speed

	References

	State Separation for Code-Based Game-Playing Proofs
	1 Introduction
	2 Proof Methodology
	2.1 Composing Oracle Definitions
	2.2 Graphical Representation of Package Composition
	2.3 Games and Adversaries

	3 KEY Package Composition
	4 KEM-DEMs
	4.1 Composition and Proof

	5 Multi-Instance Packages and Composition
	5.1 Multi-Instance Lemma
	5.2 Multi-Instance Key Lemma

	6 Composition of Forward-Secure Key Exchange
	References

	Security of the Blockchain Against Long Delay Attack
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Blockchain Protocol
	2.3 Ftree Model

	3 Blockchain Model with Long Delays
	4 Properties of Our Blockchain Model
	4.1 Chain Growth
	4.2 Common Prefix

	5 State of the Main Chain
	5.1 Record the State of the Main Chain
	5.2 Properties of TreeMC
	5.3 Relation with the View of (,C)

	6 Proofs of Security
	6.1 Chain Growth
	6.2 Common Prefix

	7 Long Delay Attack on Common Prefix
	7.1 Long Delay Attack
	7.2 Balance Attack

	A Chernoff Bound for Negative Binomial Distribution
	B Long Delay Attack on Common Prefix
	References

	Secret Sharing
	Homomorphic Secret Sharing for Low Degree Polynomials
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Homomorphic Encryption

	3 Definition of Homomorphic Secret Sharing
	4 Main Construction in the Public-Key Model
	4.1 Construction
	4.2 Discussion
	4.3 Efficiency Analysis
	4.4 Security Proof

	5 Multi-key Construction in the Plain Model
	5.1 Intuition
	5.2 Construction

	6 Collusion-Resistance
	7 Applications
	7.1 Server-Aided Secure Evaluation of Low-Degree Polynomials
	7.2 Round-Optimal Server-Aided Multiparty Computation in the Plain Model

	References

	Constructing Ideal Secret Sharing Schemes Based on Chinese Remainder Theorem
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Chinese Remainder Theorem (CRT)
	2.3 Irreducible Polynomials over a Finite Field
	2.4 Secret Sharing
	2.5 Review of Asmuth-Bloom's Scheme asmuth1983modular
	2.6 Review of Shamir's Scheme shamir1979share

	3 Threshold Scheme Based on CRT for Polynomial Ring over Finite Field
	3.1 The Scheme
	3.2 Security Analysis
	3.3 Information Rate
	3.4 Comparison

	4 Shamir's Scheme as a Special Case of Our Scheme
	5 A Weighted Threshold Secret Sharing Scheme
	5.1 The Weighted Threshold Scheme
	5.2 Discussion of the Weighted Threshold Scheme

	6 Conclusion
	References

	Optimal Linear Multiparty Conditional Disclosure of Secrets Protocols
	1 Introduction
	1.1 Our Results
	1.2 Our Technique
	1.3 Related Works

	2 Preliminaries
	2.1 Conditional Disclosure of Secrets Protocols
	2.2 Secret-Sharing Schemes

	3 Linear CDS Protocols for 2 and 3 Parties
	3.1 A Linear 2-Party CDS Protocol
	3.2 A Linear 3-Party CDS Protocol

	4 Linear k-Party CDS Protocols
	4.1 A Linear k-Party CDS Protocol for an Odd k
	4.2 A Linear k-Party CDS Protocol for an Even k

	5 Linear k-Party CDS Protocols for Unbalanced Functions
	6 Linear k-Party CDS Protocols for Functions with Inputs of Different Sizes
	7 Linear Secret-Sharing Schemes Realizing k-Uniform Access Structures
	7.1 General k-Uniform Access Structures
	7.2 Sparse and Dense k-Uniform Access Structures

	8 Lower Bounds for Linear Schemes Realizing k-Uniform Access Structures
	8.1 Lower Bounds on the Size of One Share and Implications to CDS Protocols
	8.2 Lower Bounds on the Total Share Size

	References

	Isogeny-Based Cryptography
	Towards Practical Key Exchange from Ordinary Isogeny Graphs
	1 Introduction
	2 Isogenies and Complex Multiplication
	2.1 Isogenies Between Elliptic Curves
	2.2 Isogeny Graphs
	2.3 Complex Multiplication

	3 Key Exchange from Isogeny Graphs
	3.1 Walks in Isogeny Graphs
	3.2 Computing Isogeny Walks
	3.3 Sampling Isogeny Walks for Key Exchange

	4 Public Parameter Selection
	5 Security
	5.1 Classical Attacks
	5.2 Quantum Attacks
	5.3 Security Proofs
	5.4 Key Validation and Active Security

	6 Experimental Results
	7 Conclusion
	References

	CSIDH: An Efficient Post-Quantum Commutative Group Action
	1 Introduction
	1.1 One-Way Group Actions
	1.2 Notation and Terminology

	2 Isogeny Graphs
	3 The Class-Group Action
	4 Construction and Design Choices
	5 Representing and Validating Fp-isomorphism Classes
	6 Non-interactive Key Exchange
	7 Security
	7.1 Classical Security
	7.2 Quantum Security
	7.3 Instantiations

	8 Implementation
	8.1 Performance Results

	References

	Computing Supersingular Isogenies on Kummer Surfaces
	1 Introduction
	2 Preliminaries
	3 Abelian Surfaces Isogenous to Supersingular Montgomery Curves
	4 Richelot Isogenies on Supersingular Abelian Surfaces
	5 Richelot Isogenies on Supersingular Kummer Surfaces
	6 Implications for Isogeny-Based Cryptography
	References

	Foundations
	Robustly Reusable Fuzzy Extractor from Standard Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach

	2 Preliminaries
	2.1 Metric Spaces
	2.2 Min-Entropy, Statistical Distance and Extractor
	2.3 Secure Sketch
	2.4 Lossy Algebraic Filter
	2.5 Homomorphic Properties
	2.6 Decisional Diffie-Hellman Assumption

	3 Symmetric Key Encapsulate Mechanism
	3.1 Definition of SKEM
	3.2 Construction of Symmetric Key Encapsulate Mechanism

	4 Robustly Reusable Fuzzy Extractor
	4.1 Definition of Robustly Reusable Fuzzy Extractor
	4.2 Construction of Robustly Reusable Fuzzy Extractor

	References

	Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH
	1 Introduction
	2 Preliminaries
	2.1 Pseudorandom Functions
	2.2 (Almost-)Universal Hash Functions

	3 All-Prefix Universal Hash Functions
	3.1 Definitions
	3.2 First Construction (Almost-Universal)
	3.3 Second Construction (Universal)

	4 Augmented Cascade PRFs with Tighter Security
	4.1 Augmented Cascade PRFs
	4.2 The Augmented Cascade with Encoded Input
	4.3 Preparation for the Security Proof
	4.4 Security Proof
	4.5 Proof of Lemma6
	4.6 Proof of Lemma7
	4.7 On the Necessity of the ``all-prefix'' Property

	5 Applications
	5.1 Efficient and Tightly-Secure PRF from Matrix Diffie-Hellman Assumptions
	5.2 More Efficient LWE-Based PRFs

	6 Conclusion
	A Further Examples of Matrix Distributions
	References

	Simulatable Channels: Extended Security that is Universally Composable and Easier to Prove
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Security Without Simulation

	3 Encryption Simulatability
	3.1 Defining Encryption Simulatability
	3.2 Understanding Encryption Simulatability

	4 Decryption Simulatability
	4.1 Defining Decryption Simulatability
	4.2 Decryption Simulatability and Chosen-Ciphertext Security
	4.3 Decryption Simulatability and Ciphertext Integrity

	5 Channel Simulatability
	5.1 Defining Channel Simulatability
	5.2 Channel Simulatability with Integrity

	6 Simulatable Channels and Universal Composability
	6.1 UC Framework
	6.2 Simulatable Channels with Integrity are Universally Composable
	6.3 Other Work on Composable Secure Channels

	7 Dropbear's SSH-CTR Implementation is FCS-I Secure
	References

	Correction to: Constructing Ideal Secret Sharing Schemes Based on Chinese Remainder Theorem
	Correction to: Chapter “Constructing Ideal Secret Sharing Schemes Based on Chinese Remainder Theorem” in: T. Peyrin and S. Galbraith (Eds.): Advances in Cryptology – ASIACRYPT 2018, LNCS 11274, https://doi.org/10.1007/978-3-030-03332-3_12

	Author Index

