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Abstract. In (STOC, 2008), Gentry, Peikert, and Vaikuntanathan pro-
posed the first identity-based encryption (GPV-IBE) scheme based on
a post-quantum assumption, namely, the learning with errors (LWE)
assumption. Since their proof was only made in the random oracle
model (ROM) instead of the quantum random oracle model (QROM), it
remained unclear whether the scheme was truly post-quantum or not. In
(CRYPTO, 2012), Zhandry developed new techniques to be used in the
QROM and proved security of GPV-IBE in the QROM, hence answering
in the affirmative that GPV-IBE is indeed post-quantum. However, since
the general technique developed by Zhandry incurred a large reduction
loss, there was a wide gap between the concrete efficiency and secu-
rity level provided by GPV-IBE in the ROM and QROM. Furthermore,
regardless of being in the ROM or QROM, GPV-IBE is not known to
have a tight reduction in the multi-challenge setting. Considering that
in the real-world an adversary can obtain many ciphertexts, it is desir-
able to have a security proof that does not degrade with the number of
challenge ciphertext.

In this paper, we provide a much tighter proof for the GPV-IBE in
the QROM in the single-challenge setting. In addition, we also show
that a slight variant of the GPV-IBE has an almost tight reduction in
the multi-challenge setting both in the ROM and QROM, where the
reduction loss is independent of the number of challenge ciphertext. Our
proof departs from the traditional partitioning technique and resembles
the approach used in the public key encryption scheme of Cramer and
Shoup (CRYPTO, 1998). Our proof strategy allows the reduction algo-
rithm to program the random oracle the same way for all identities and
naturally fits the QROM setting where an adversary may query a super-
position of all identities in one random oracle query. Notably, our proofs
are much simpler than the one by Zhandry and conceptually much eas-
ier to follow for cryptographers not familiar with quantum computation.
Although at a high level, the techniques used for the single and multi-
challenge setting are similar, the technical details are quite different. For
the multi-challenge setting, we rely on the Katz-Wang technique (CCS,
2003) to overcome some obstacles regarding the leftover hash lemma.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 253–282, 2018.
https://doi.org/10.1007/978-3-030-03329-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_9&domain=pdf


254 S. Katsumata et al.

Keywords: Identity-Based Encryption
Quantum random oracle models · LWE assumption
Tight security reduction · Multi-challenge security

1 Introduction

1.1 Background

Shor [Sho94] in his breakthrough result showed that if a quantum computer
is realized, then almost all cryptosystems used in the real world will be bro-
ken. Since then, a significant amount of studies have been done in the area
of post-quantum cryptography, whose motivation is constructing cryptosystems
secure against quantum adversaries. Recently in 2016, the National Institute of
Standards and Technology (NIST) initiated the Post-Quantum Cryptography
Standardization, and since then post-quantum cryptography has been gathering
increasingly more attention.

Random Oracles in Quantum World. In general, security proofs of practi-
cal cryptographic schemes are given in the random oracle model (ROM) [BR93],
which is an idealized model where a hash function is modeled as a publicly acces-
sible oracle that computes a random function. Boneh et al. [BDF+11] pointed
out that the ROM as in the classical setting is not reasonable when considering
security against quantum adversaries, since quantum adversaries may compute
hash functions over quantum superpositions of many inputs. Considering this
fact, as a reasonable model against quantum adversaries, they proposed a new
model called the quantum random oracle model (QROM), where a hash function
is modeled as a quantumly accessible random oracle. As discussed in [BDF+11],
many commonly-used proof techniques in the ROM do not work in the QROM.
Therefore even if we have a security proof in the ROM, we often require new
techniques to obtain similar results in the QROM.

Identity-Based Encryption in QROM. Identity-Based Encryption (IBE)
is a generalization of a public key encryption scheme where the public key of
a user can be any arbitrary string such as an e-mail address. The first IBE
scheme based on a post-quantum assumption is the one proposed by Gentry
et al. (GPV-IBE) [GPV08], which is based on the learning with errors (LWE)
assumption [Reg05]. To this date, GPV-IBE is still arguably the most efficient
IBE scheme that is based on a hardness assumption that resists quantum attacks.
However, since their original security proof was made in the ROM instead of the
QROM, it was unclear if we could say the scheme is truly post-quantum. Zhandry
[Zha12b] answered this in the affirmative by proving that the GPV-IBE is indeed
secure in the QROM under the LWE assumption, hence truly post-quantum, by
developing new techniques in the QROM.

Tight Security of GPV-IBE. However, if we consider the tightness of the
reduction, the security proof of the GPV-IBE by Zhandry [Zha12b] does not
provide a satisfactory security. Specifically, GPV-IBE may be efficient in the
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ROM, but it is no longer efficient in the QROM. In general, a cryptographic
scheme is said to be tightly secure under some assumption if breaking the security
of the scheme is as hard as solving the assumption. More precisely, suppose that
we proved that if there exists an adversary breaking the security of the scheme
with advantage ε and running time T , we can break the underlying assumption
with advantage ε′ and running time T ′. We say that the scheme is tightly-secure
if we have ε′/T ′ ≈ ε/T . By using this notation, Zhandry gave a reduction from
the security of GPV-IBE to the LWE assumption with ε′ ≈ ε2/(QH + QID)4 and
T ′ ≈ T + (QH + QID)2 · poly(λ) where QH denotes the number of hash queries,
QID denotes the number of secret key queries, λ denotes the security parameter,
and poly denotes some fixed polynomial. Though the reduction is theoretically
interesting, the meaning of the resulting security bound in a realistic setting
is unclear. For example, if we want to obtain 128-bit security for the resulting
IBE, and say we had ε = 2−128, QH = 2100, QID = 220, then even if we ignore
the blowup for the running time, we would have to start from at least a 656-bit
secure LWE assumption, which incurs a significant blowup of the parameters.
Indeed, Zhandry left it as an open problem to give a tighter reduction for the
GPV-IBE.

Multi-challenge Tightness. The standard security notion of IBE considers
the setting where an adversary obtains only one challenge ciphertext. This is
because security against adversaries obtaining many challenge ciphertexts can
be reduced to the security in the above simplified setting. However, as pointed out
by Hofheinz and Jager [HJ12], tightness is not preserved in the above reduction
since the security degrades by the number of ciphertexts. Therefore tightly secure
IBE in the single-challenge setting does not imply tightly secure IBE in the multi-
challenge setting. On the other hand, in the real world, it is natural to assume
that an adversary obtains many ciphertexts, and thus tight security in the multi-
challenge setting is desirable. However, there is no known security proof for the
GPV-IBE or its variant that does not degrade with the number of challenge
ciphertexts even in the classical setting.

1.2 Our Contribution

We provide much tighter security proofs for the GPV-IBE in the QROM in the
single-challenge setting. Furthermore, we provide a multi-challenge tight variant
of GPV-IBE that is secure both in the ROM and QROM. In the following, we
describe the tightness of our security proofs by using the same notation as in
the previous section.

– In the single-challenge setting, we give a reduction from the security of GPV-
IBE to the LWE assumption with ε′ ≈ ε and T ′ = T +(QH+QID)2 ·poly(λ). If
we additionally assume quantumly secure pseudorandom functions (PRFs),
then we further obtain a tighter reduction, which gives ε′ ≈ ε and T ′ =
T + (QH + QID) · poly(λ). This is the first security proof for GPV-IBE whose
security bound does not degrade with QH or QID even in the classical setting.
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We note that the same security bound can be achieved without assuming
PRFs in the classical ROM.

– We give a slight variant of GPV-IBE scheme whose multi-challenge security
is reduced to the LWE assumption with ε′ = ε/poly(λ) and T ′ ≈ T + (QH +
QID + Qch)2 · poly(λ) where Qch denotes the number of challenge queries. If
we additionally assume quantumly secure PRFs, then we further obtain a
tighter reduction. Namely, ε′ is the same as the above, and T ′ = T + (QH +
QID + Qch) · poly(λ). This is the first variant of the GPV-IBE scheme whose
security bound does not degrade with Qch even in the classical setting. We
note that the same security bound can be achieved without assuming PRFs
in the classical ROM.

Moreover, our security proofs are much simpler than the one by Zhandry
[Zha12b]. In his work, he introduced new techniques regarding indistinguisha-
bility of oracles against quantum adversaries. Though his techniques are general
and also useful in other settings (e.g., [Zha12a]), it involves some arguments on
quantum computation, and they are hard to follow for cryptographers who are
not familiar with quantum computation. On the other hand, our proofs involve
a minimal amount of discussions about quantum computation, and our proofs
are done almost similar to the counterparts in the classical ROM.

1.3 Technical Overview

GPV-IBE. First, we briefly describe the GPV-IBE [GPV08], which is the main
target of this paper. A master public key is a matrix A ∈ Z

n × m
q and a master

secret key is its trapdoor TA ∈ Z
m × m, which enables one to compute a short

vector e ∈ Z
m
q such that Ae = u given an arbitrary vector u ∈ Z

n
q . A private key

skID for an identity ID ∈ ID is a short vector e ∈ Z
m
q such that Ae = uID where

uID = H(ID) for a hash function H : ID → Z
n
q , which is modeled as a random

oracle. A ciphertext for a message M ∈ {0, 1} consists of c0 = u�
IDs+x+M�q/2�

and c1 = A�s + x. Here s is a uniformly random vector over Z
n
q and x,x are

small “noise” terms where each entries are sampled from some specific Gaussian
distribution χ. Decryption can be done by computing w = c0 − c�

1 eID ∈ Zq and
deciding if w is closer to 0 or to �q/2� modulo q.

Security Proof in Classical ROM. The above IBE relies its security on the
LWE assumption, which informally states the following: given a uniformly ran-
dom matrix [A|u] ← Z

n × (m+1)
q and some vector b ∈ Z

m+1
q , there is no PPT

algorithm that can decide with non-negligible probability whether b is of the
form [A|u]�s + x′ for some s ← Z

n
q and x′ ← χm+1, or a uniformly random

vector over Z
m+1
q , i.e., b ← Z

m+1
q . Below, we briefly recall the original security

proof in the classical ROM given by Gentry et al. [GPV08] and see how the
random oracle is used by the reduction algorithm. The proof relies on a key
lemma which states that we can set H(ID) and e in the “reverse order” from
the real scheme. That is, we can first sample e from some distribution and pro-
gram H(ID) := Ae so that their distributions are close to uniformly random as
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in the real scheme. In the security proof, a reduction algorithm guesses i ∈ [Q]
such that the adversary’s i-th hash query is the challenge identity ID∗ where Q
denotes the number of hash queries made by the adversary. Then for all but the
i-th hash query, the reduction algorithm programs H(ID) in the above manner,
and for the i-th query, it programs the output of H(ID∗) to be the vector u
contained in the LWE instance that is given as the challenge. Specifically, the
reduction algorithm sets the challenge user’s identity vector uID∗ as the random
vector u contained in the LWE instance. If the guess is correct, then it can embed
the LWE instance into the challenge ciphertexts c∗

0 and c∗
1; in case it is a valid

LWE instance, then (c∗
0, c

∗
1) is properly set to (u�

ID∗s + x + M�q/2�,A�s + x)
as in the real scheme. Therefore, the challenge ciphertext can be switched to
random due to the LWE assumption. After this switch, M is perfectly hidden
and thus the security of GPV-IBE is reduced to the LWE assumption. Since the
reduction algorithm programs the random oracle in the same way except for the
challenge identity, this type of proof methodology is often times referred to as
the “all-but-one programming”.

Security Proof in QROM in [Zha12b]. Unfortunately, the above proof cannot
be simply extended to a proof in the QROM. The reason is that in the QROM,
even a single hash query can be a superposition of all the identities. In such a
case, to proceed with the above all-but-one programming approach, the reduction
algorithm would have to guess a single identity out of all the possible identities
which he hopes that would be used as the challenge identity ID∗ by the adversary.
Obviously, the probability of the reduction algorithm being right is negligible,
since the number of possible identities is exponentially large. This is in sharp
contrast with the ROM setting, where the reduction algorithm was allowed to
guess the single identity out of the polynomially many (classical) random oracle
queries made by the adversary. Therefore, the all-but-one programming as in
the classical case cannot be used in the quantum case. To overcome this barrier,
Zhandry [Zha12b] introduced a useful lemma regarding what he calls the semi-
constant distribution. The semi-constant distribution with parameter 0 < p < 1
is a distribution over functions from X to Y such that a function chosen according
to the distribution gives the same fixed value for random p-fraction of all inputs,
and behaves as a random function for the rest of the inputs. He proved that
a function according to the semi-constant distribution with parameter p and a
random function cannot be distinguished by an adversary that makes Q oracle
queries with advantage greater than 8

3Q4p2. In the security proof, the reduction
algorithm partitions the set of identities into controlled and uncontrolled sets.
The uncontrolled set consists of randomly chosen p-fraction of all identities, and
the controlled set is the complement of it. The reduction algorithm embeds an
LWE instance into the uncontrolled set, and programs the hash values for the
controlled set so that the decryption keys for identities in the controlled set
can be extracted efficiently. Then the reduction algorithm works as long as the
challenge identity falls inside the uncontrolled set and all identities for secret
key queries fall inside the controlled set (otherwise it aborts). By appropriately
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setting p, we can argue that the probability that the reduction algorithm does
not abort is non-negligible, and thus the security proof is completed. Though
this technique is very general and useful, a huge reduction loss is inherent as long
as we take the above strategy because the reduction algorithm has to abort with
high probability. It may be useful to point out for readers who are familiar with
IBE schemes in the standard model that the above technique is conceptually
very similar to the partitioning technique which is often used in the context of
adaptively secure IBE scheme in the standard model [Wat05,ABB10,CHKP10].
The reason why we cannot make the proof tight is exactly the same as that for
the counterparts in the standard model.

Our Tight Security Proof in QROM. As discussed above, we cannot obtain
a tight reduction as long as we use a partitioning-like technique. Therefore we
take a completely different approach, which is rather similar to that used in the
public key encryption scheme of Cramer and Shoup [CS98], which has also been
applied to the pairing-based IBE construction of Gentry [Gen06]. The idea is
that we simulate in a way so that we can create exactly one valid secret key for
every identity. Note that this is opposed to the partitioning technique (and the
all-but-one programming technique) where the simulator cannot create a secret
key for an identity in the uncontrolled set. To create the challenge ciphertext,
we use the one secret key we know for that challenge identity. If the adversary
can not tell which secret key the ciphertext was created from and if there are
potentially many candidates for the secret key, we can take advantage of the
entropy of the secret key to statistically hide the message.

In more detail, the main observation is that the secret key e, i.e. a short
vector e such that Ae = u, retains plenty of entropy even after fixing the public
values A and u. Therefore, by programming the hash value u of an identity,
we can easily create a situation where the simulator knows exactly one secret
key out of the many possible candidates. Furthermore, the simulator knowing a
secret key eID∗ such that AeID∗ = uID∗ , can simulate the challenge ciphertext
by creating c∗

0 = e�
ID∗c∗

1 + M�q/2� and c∗
1 = A�s + x. Here, the key observation

is that we no longer require the LWE instance (uID∗ ,u�
ID∗s + x) to simulate

the challenge ciphertext. Though the distribution of c∗
0 simulated as above is

slightly different from that of the real ciphertext due to the difference in the
noise distributions, we ignore it in this overview. In the real proof, we overcome
this problem by using the noise rerandomization technique by Katsumata and
Yamada [KY16]. Then we use the LWE assumption to switch c∗

1 to random.
Finally, we argue that e�

ID∗c∗
1 is almost uniform if the min-entropy of eID∗ is

high and c∗
1 is uniformly random due to the leftover hash lemma. Therefore, all

information of the message M is hidden and thus the proof is completed.
Finally, we observe that the above proof naturally fits in the QROM setting.

The crucial difference from the partitioning technique is that in our security proof
we program the random oracle in the same way for all identities. Therefore even
if an adversary queries a superposition of all identities, the simulator can simply
quantumly perform the programming procedure for the superposition. Thus the
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proof in the classical ROM can be almost automatically converted into the one
in the QROM in this case.

Tight Security in Multi-challenge Setting. Unfortunately, the above idea
does not extend naturally to the tightly-secure multi-challenge setting. One
can always prove security in the multi-challenge setting starting from a scheme
that is single-challenge secure via a hybrid argument, however, as mentioned by
Hofheinz and Jager [HJ12], this type of reduction does not preserve tightness. A
careful reader may think that the above programming technique can be extended
to the multi-challenge setting, hence bypassing the hybrid argument. We briefly
explain why this is not the case. Informally, in the above proof, the reduc-
tion algorithm embeds its given LWE instance (A,A�s + x) into the challenge
ciphertext by creating (c∗

0 = e�
ID∗c∗

1 + M�q/2�, c∗
1 = A�s + x), where eID∗ is the

secret key of the challenge user uID∗ . Therefore, since the c∗
1 component of every

ciphertext is an LWE instance for the same public matrix A, to simulate multi-
ple challenge ciphertexts in the above manner, the reduction algorithm must be
able to prepare a special type of LWE instance (A, {A�s(k) +x(k)}k∈[N ]), where
N = poly(λ) is the number of challenge ciphertext queried by the adversary. It
can be easily seen that this construction is tightly-secure in the multi-challenge
setting with the same efficiency as the single-challenge setting, if we assume
that this special type of LWE problem is provided to the reduction algorithm
as the challenge. However, unfortunately, we still end up losing a factor of N in
the reduction when reducing the standard LWE problem to this special LWE
problem. In particular, we only shifted the burden of having to go through the
N hybrid arguments to the assumption rather than to the scheme. As one may
have noticed, there is a way to bypass the problem of going through the N hybrid
arguments by using conventional techniques (See [Reg05,Reg10]) of construct-
ing an unlimited number of fresh LWE instances given a fixed number of LWE
instances. However, this techniques requires the noise of the newly created LWE
instances to grow proportionally to the number of created instances. In partic-
ular, to create the above special LWE instance from a standard LWE instance,
we require the size of the noise x(k) to grow polynomially with N , where recall
that N can be an arbitrary polynomial. Hence, although we can show a tightly
secure reduction in the multi-challenge setting, for the concrete parameters of
the scheme to be independent of N , we need to assume the super-polynomial
LWE assumption to cope with the super-polynomial noise blow up. This is far
more inefficient than in the single-challenge setting where we only require a
polynomial LWE assumption.

To overcome this problem, we use the “lossy mode” of the LWE problem.
It is well known that the secret vector s is uniquely defined given an LWE
instance (A,A�s+x) for large enough samples. A series of works, e.g., [GKPV10,
BKPW12,AKPW13,LSSS17] have observed that if we instead sample A from a
special distribution that is computationally indistinguishable from the uniform
distribution, then (A,A�s + x) leaks almost no information of the secret s,
hence the term “lossy mode”. This idea can be leveraged to prove (almost) tight
security of the above single-challenge construction, where the reduction loss is
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independent of the number of challenge ciphertext. A first attempt of using this
idea is as follows: During the security proof of the GPV-IBE, we first change
the public matrix A to a lossy matrix Ã and generate the secret keys and
program the random oracle in the same way as before. To create the challenge
ciphertexts, the reduction algorithm honestly samples s(k), x(k), x(k) and sets
(c∗

0 = u�
ID∗s(k) + x(k) + M(k)�q/2�, c∗

1 = A�s(k) + x(k)). Now, it may seem that
owing to the lossy mode of LWE, we can rely on the entropy of the secret vector
s(k) to argue that c∗

0 is distributed uniformly random via the leftover hash lemma.
The main difference between the previous single-challenge setting is that we can
rely on the entropy of the secret vector s(k) rather than on the entropy of the
secret key eID∗ . Since each challenge ciphertext is injected with fresh entropy
and we can argue statistically that a single challenge ciphertext is not leaking
any information on the message, the reduction loss will be independent of the
number of challenge ciphertext query N .

Although the above argument may seem correct at first glance, it incurs
a subtle but a fatal flaw, thus bringing us to our proposed construction. The
problem of the above argument is how we use the leftover hash lemma. To use
the lemma correctly, the vector uID∗ viewed as a hash function is required to be
universal. This is true in case uID∗ is set as AeID∗ , where A ← Z

n × m
q and eID∗ is

sampled from some appropriate distribution. However, this is not true anymore
once we change A to a lossy matrix Ã, since Ã now lives in an exponentially
small subset of Z

n × m
q , hence, we can no longer rely on the entropy of s(k) to

statistically hide the message. To overcome this problem, our final idea is to use
the Katz-Wang [KW03] technique. Specifically, we slightly alter the encryption
algorithm of GPV-IBE to output the following instead:

c0 = u�
ID||0s+x0 +M�q/2�, c1 = u�

ID||1s+x1 +M�q/2�, and c2 = A�s+x,

where uID||b = H(ID||b) for b ∈ {0, 1}. During the security proof, the reduction
algorithm sets uID||0 and uID||1 so that one of them is uniformly random over Zn

q

and the other is constructed as AeID. Then, for the ciphertext cb corresponding
to the uniformly random vector uID||b, we can correctly use the leftover hash
lemma to argue that cb statistically hides the message M. By going through one
more hybrid argument, we can change both c0, c1 into random values that are
independent of the message M. Note that instead of naively using the Katz-
Wang technique, by reusing the c2 component, the above GPV-IBE variant only
requires one additional element in Zq compared to the original GPV-IBE. Fur-
thermore, in the actual construction, we do not require the noise terms x0, x1 in
c0, c1 since we no longer rely on the LWE assumption to change c0, c1 into random
values. Our construction and security reduction does not depend on the number
of challenge ciphertext query N and in particular, can be proven under the poly-
nomial LWE assumption, which is only slightly worse than the single-challenge
construction. In addition, due to the same reason as the single-challenge setting,
our classical ROM proof can be naturally converted to a QROM proof.
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1.4 Discussion

Similar Techniques in Other Works. The idea to simulate GPV-IBE in a
way so that we can create exactly one valid secret key for every secret key query
is not new. We are aware of few works that are based on this idea. Gentry et al.
[GPV08] mentioned that by using this technique, they can prove the security of
the GPV-IBE in the standard model based on a non-standard interactive variant
of the LWE (I-LWE) assumption which requires a hash function to define. Here
since the hash function is given to the adversary, a quantum adversary may query
quantum states to the hash functions on its own. Therefore, in addition with the
fact that the I-LWE assumption is made in the standard model, the statement
made by [GPV08] would hold in the QROM as well. However, they only gave
a sketch of the proof, and did not give a formal proof. Alwen et al. [ADN+10]
use the idea to construct an identity-based hash proof system (IB-HPS) based
on the mechanism of GPV-IBE. We note that they assume the modulus q to be
super-polynomial. Outside the context of identity-based primitives, Applebaum
et al. [ACPS09] and Bourse et al. [BDPMW16] provide an analysis of rerandom-
izing LWE samples which can be seen as a refinement of the idea mentioned in
[GPV08]. [ACPS09] constructs a KDM-secure cryptosystem based on the LWE
problem and [BDPMW16] shows a simple method for constructing circuit pri-
vate fully homomorphic encryption schemes (FHE) based on the lattice-based
FHE scheme of Gentry et al. [GSW13]. Both of their analysis only requires the
modulus q to be polynomial. In summary, though similar ideas have been used,
all of the previous works are irrelevant to tight security or the security in the
QROM.

On Parameter-Tightness of Our Schemes. In the above overview, we
focused on the tightness of the security proof. Here, we provide some discussions
on how the parameters compare to the original GPV-IBE scheme [GPV08]. For
the single challenge setting, our parameters are only a small factor worse than
the GPV-IBE scheme. This is because the only difference is using the noise reran-
domization technique of [KY16], which only slightly degrades the noise-level.1

For the multi-challenge setting, the situation is more different. In this case, the
parameters are much worse than the original (single-challenge secure) GPV-IBE
scheme. This is because we have to go through the lossy-mode of LWE which
requires for larger parameters. The concrete parameters are provided in Sect. 4.2.

Relation to CCA-Secure PKE. By applying the Canetti-Halevi-Katz trans-
formation [CHK04] to our single-challenge-secure IBE scheme, we obtain a public
key encryption (PKE) scheme secure against chosen ciphertext attacks (CCA)
that is tightly secure in the single-challenge setting under the LWE assumption
in the QROM. We note that Saito et al. [SXY18] already proposed such a PKE

1 Our parameter selection in the main body may seem much worse compared to GPV-
IBE, but this is only because we choose the parameters conservatively. Specifically,
we can set the parameters to be only slightly worse than GPV-IBE by setting them
less conservatively as in [GPV08]. Please, see end of Sect. 3.2 for more details.
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scheme in the single-challenge setting that is more efficient than the scheme
obtained by the above transformation.

On Running Time of Reductions. In the above overview, we ignore the
running time of reductions. Though it seems that the above described reductions
run in nearly the same time as the adversaries, due to a subtle problem of
simulating random oracles against quantum adversaries, there is a significant
blowup by a square factor of the number of queries the adversaries make. In the
classical ROM, when we simulate a random oracle in security proofs, we usually
sample a random function in a lazy manner. That is, whenever an adversary
queries a point that has not been queried before, a reduction algorithm samples
a fresh randomness and assigns it as a hash value for that point. However, this
cannot be done in the QROM because an adversary may query a superposition of
all the inputs in a single query. Therefore a reduction algorithm has to somehow
commit to the hash values of all inputs at the beginning of the simulation.

Zhandry [Zha12b] proved that an adversary that makes Q queries cannot
distinguish a random function and a 2Q-wise independent hash function via
quantum oracle accesses. Therefore we can use a 2Q-wise independent hash to
simulate a random oracle. However, if we take this method, the simulator has to
evaluate a 2Q-wise independent hash function for each hash query, and this is
the reason why the running time blowups by Ω(Q2).

One possible way to avoid this huge blowup is to simulate a random oracle by
a PRF secure against quantum accessible adversaries. Since the time needed to
evaluate a PRF is some fixed polynomial in the security parameter, the blowup
for the running time can be made Q · poly(λ) which is significantly better than
Ω(Q2). However, in order to use this method, we have to additionally assume
the existence of quantumly secure PRFs. Such PRFs can be constructed based
on any quantumly-secure one-way function [Zha12a], and thus they exist if the
LWE assumption holds against quantum adversaries. However, the reduction for
such PRFs are non-tight and thus we cannot rely on them in the context of tight
security. Our suggestion is to use a real hash function to implement PRFs and
to assume that it is a quantumly secure PRF. We believe this to be a natural
assumption if we are willing to idealize a hash function as a random oracle. (See
also the discussion in Sect. 2.2.)

1.5 Related Work

Schemes in QROM. Boneh et al. [BDF+11] introduced the QROM, and gave
security proofs for the GPV-signature [GPV08] and a hybrid variant of the
Bellare-Rogaway encryption [BR93] in the QROM. We note that their security
proof for the GPV-signature is tight. Zhandry [Zha12b] proved that GPV-IBE
and full-domain hash signatures are secure in the QROM. Targhi and Unruh
[TU16] proposed variants of Fujisaki-Okamoto transformation and OAEP that
are secure in the QROM. Some researchers studied the security of the Fiat-
Shamir transform in the QROM [ARU14,Unr15,Unr17]. Unruh [Unr14b] pro-
posed a revocable quantum timed-release encryption scheme in the QROM.
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Unruh [Unr14a] proposed a position verification scheme in the QROM. Recently,
some researchers studied tight securities in the QROM. Alkim et al. [ABB+17]
proved that the signature scheme known as TESLA [BG14] is tightly secure
under the LWE assumption. Saito et al. [SXY18] proposed a tightly CCA secure
variant of the Bellare-Rogaway encryption. Kiltz et al. [KLS18] gave a tight
reduction for the Fiat-Shamir transform in the QROM.

Tightly Secure IBEs. The first tightly secure IBE scheme from lattices in
the single challenge setting and in the standard model was proposed by Boyen
and Li [BL16]. While the construction is theoretically interesting and elegant, it
is very inefficient and requires LWE assumption with super-polynomial approx-
imation factors. As for the construction from bilinear maps, the first tightly
secure IBE from standard assumptions in the single challenge setting and in the
random oracle model was proposed by Katz and Wang [KW03]. Coron [Cor09]
gave a tight reduction for a variant of the original Boneh-Franklin IBE [BF01].
Later, the first realization in the standard model was proposed by Chen and Wee
[CW13]. In the subsequent works, it is further extended to the multi-challenge
setting [HKS15,AHY15,GDCC16]. They are efficient but are not secure against
quantum computers.

2 Preliminaries

Notations. For n ∈ N, denote [n] as the set {1, · · · , n}. For a finite set S,
we let U(S) denote the uniform distribution over S. For a distribution D and
integer k > 0, define (D)k as the distribution

∏
i∈[k] D. For a distribution or

random variable X we write x ← X to denote the operation of sampling a
random x according to X. For a set S, we write s ← S as a shorthand for
s ← U(S). Let X and Y be two random variables over some finite set SX , SY ,
respectively. The statistical distance Δ(X,Y ) between X and Y is defined as
Δ(X,Y ) = 1

2Σs∈SX∪SY
|Pr[X = s] − Pr[Y = s]|. The min-entropy of a random

variable X is defined as H∞(X) = − log(maxx Pr[X = x]), where the base of the
logarithm is taken to be 2 throughout the paper. For a bit b ∈ {0, 1}, b̄ denotes
1−b. For sets X and Y, Func(X ,Y) denotes the set of all functions from X to Y.
For a vector v ∈ R

n, denote ‖v‖ as the standard Euclidean norm. For a matrix
R ∈ R

n × n, denote ‖R‖ as the length of the longest column and ‖R‖GS as the
longest column of the Gram-Schmidt orthogonalization of R.

2.1 Quantum Computation

We briefly give some backgrounds on quantum computation. We refer to [NC00]
for more details. A state |ψ〉 of n qubits is expressed as

∑
x∈{0,1}n αx |x〉 ∈ C

2n

where {αx}x∈{0,1}n is a set of complex numbers such that
∑

x∈{0,1}n |αx|2 = 1
and {|x〉}x∈{0,1}n is an orthonormal basis on C

2n

(which is called a computa-
tional basis). If we measure |ψ〉 in the computational basis, then the outcome is
a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes
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|x〉. An evolution of quantum state can be described by a unitary matrix U ,
which transforms |x〉 to U |x〉. A quantum algorithm is composed of quantum
evolutions described by unitary matrices and measurements. We also consider a
quantum oracle algorithm, which can quantumly access to certain oracles. The
running time Time(A) of a quantum algorithm A is defined to be the number
of universal gates (e.g., Hadamard, phase, CNOT, and π/8 gates) and measure-
ments required for running A. (An oracle query is counted as a unit time if A
is an oracle algorithm.) Any efficient classical computation can be realized by a
quantum computation efficiently. That is, for any function f that is classically
computable, there exists a unitary matrix Uf such that Uf |x, y〉 = |x, f(x) ⊕ y〉,
and the number of universal gates to express Uf is linear in the size of a classical
circuit that computes f .

Quantum Random Oracle Model. Boneh et al. [BDF+11] introduced the
quantum random oracle model (QROM), which is an extension of the usual
random oracle model to the quantum setting. Roughly speaking, the QROM is an
idealized model where a hash function is idealized to be a quantumly accessible
oracle that simulates a random function. More precisely, in security proofs in the
QROM, a random function H : X → Y is uniformly chosen at the beginning of
the experiment, and every entity involved in the system is allowed to access to
an oracle that is given

∑
x,y αx,y |x, y〉 and returns

∑
x,y αx,y |x,H(x) ⊕ y〉. We

denote a quantum algorithm A that accesses to the oracle defined as above by
A|H〉. In the QROM, one query to the random oracle is counted as one unit time.
As in the classical case, we can implement two random oracles H0 and H1 from
one random oracle H by defining H0(x) := H(0||x) and H1(x) := H(1||x). More
generally, we can implement n random oracles from one random oracle by using
�log n�-bit prefix of an input as index of random oracles.

As shown by Zhandry [Zha12b], a quantum random oracle can be simulated
by a family of 2Q-wise independent hash functions against an adversary that
quantumly accesses to the oracle at most Q times. As a result, he obtained the
following lemma.

Lemma 1 ([Zha12b, Theorem 6.1]). Any quantum algorithm A making quan-
tum queries to random oracles can be efficiently simulated by a quantum algo-
rithm B, which has the same output distribution, but makes no queries. Espe-
cially, if A makes at most Q queries to a random oracle H : {0, 1}a → {0, 1}b,
then Time(B) ≈ Time(A) + Q · T 2Q-wise

a,b where T 2Q-wise
a,b denotes the time to eval-

uate a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

The following lemma was shown by Boneh et al. [BDF+11]. Roughly speak-
ing, this lemma states that if an oracle outputs independent and almost uniform
value for all inputs, then it is indistinguishable from a random oracle even with
quantum oracle accesses.

Lemma 2 ([BDF+11, Lemma 3]). Let A be a quantum algorithm that makes at
most Q oracle queries, and X and Y be arrbitrary sets. Let H be a distribution
over Func(X ,Y) such that when we take H

$← H, for each x ∈ X , H(x) is
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identically and independently distributed according to a distribution D whose
statistical distance is within ε from uniform. Then for any input z. We have

Δ(A|RF〉(z),A|H〉(z)) ≤ 4Q2
√

ε

where RF ← Func(X ,Y) and H ← H.

2.2 Pseudorandom Function

We review the definition of quantum-accessible pseudorandom functions (PRFs)
[BDF+11].

Definition 1 (Quantum-accessible PRF). We say that a function F : K ×
X → Y is a quantum-accessible pseudorandom function if for all PPT adver-
saries A, its advantage defined below is negligible:

AdvPRFA,F (λ) :=
∣
∣
∣ Pr

[A|RF〉(1λ
)

= 1
] − Pr

[A|F (K,·)〉(1λ
)

= 1
]∣∣
∣

where RF ← Func(X ,Y) and K ← K.

Zhandry [Zha12a] proved that some known constructions of classical PRFs
including the tree-based construction [GGM86] and lattice-based construction
[BPR12] are also quantum-accessible PRFs. However, these reductions are non-
tight, and thus we cannot rely on these results when aiming for tight security.
Fortunately, we can use the following lemma which states that we can use a
quantum random oracle as a PRF similarly to the classical case.

Lemma 3 ([SXY18, Lemma 2.2]). Let � be an integer. Let H : {0, 1}� ×X → Y
and H′ : X → Y be two independent random functions. If an unbounded time
quantum adversary A makes a query to H at most QH times, then we have

∣
∣
∣Pr[A|H〉,|H(K,·)〉(1λ) = 1 | K ← {0, 1}�] − Pr[A|H〉,|H′〉(1λ) = 1]

∣
∣
∣ ≤ QH · 2

−�+1
2 .

2.3 Identity-Based Encryption

Syntax. We use the standard syntax of IBE [BF01]. Let ID be the ID space
of the scheme. If a collision resistant hash function CRH : {0, 1}∗ → ID is
available, one can use an arbitrary string as an identity. An IBE scheme is
defined by the following four algorithms.

Setup(1λ) → (mpk,msk): The setup algorithm takes as input a security param-
eter 1λ and outputs a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID) → skID: The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and an identity ID ∈ ID.
It outputs a private key skID. We assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M) → C: The encryption algorithm takes as input a mas-
ter public key mpk, an identity ID ∈ ID, and a message M. It outputs a
ciphertext C.
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Decrypt(mpk, skID, C) → M or ⊥: The decryption algorithm takes as input the
master public key mpk, a private key skID, and a ciphertext C. It outputs the
message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ ID,
and all M in the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1 − negl(λ)

holds, where the probability is taken over the randomness used in (mpk,msk) ←
Setup(1λ), skID ← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion
is defined by the following game between a challenger and an adversary A. Let
CTSam(·) be a sampling algorithm that takes as input a master public key of
the scheme and outputs an element in the ciphertext space.

- Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk)
and gives mpk to A. The challenger also picks a random coin coin ← {0, 1}
and keeps it secretly. After given mpk, A can adaptively make the following two
types of queries to the challenger. These queries can be made in any order and
arbitrarily many times.

Secret Key Queries. If A submits ID ∈ ID to the challenger, the challenger
returns skID ← KeyGen(mpk,msk, ID).

Challenge Queries. If A submits a message M∗ and an identity ID∗ ∈ ID to the
challenger, the challenger proceeds as follows. If coin = 0, it runs Encrypt(mpk,
ID∗,M∗) → C∗ and gives the challenge ciphertext C∗ to A. If coin = 1, it
chooses the challenge ciphertext C∗ from the distribution CTSam(mpk) as C∗ $←
CTSam(mpk) at random and gives it to A.

We prohibit A from making a challenge query for an identity ID∗ such that
it has already made a secret key query for the same ID = ID∗ and vice versa.

- Guess. Finally, A outputs a guess ĉoin for coin. The advantage of A is defined
as

AdvIBEA,Π(λ) =
∣
∣
∣
∣Pr[ĉoin = coin] − 1

2

∣
∣
∣
∣ .

We say that Π is adaptively-anonymous secure, if there exists efficiently sam-
pleable distribution CTSam(mpk) and the advantage of any PPT A is negligible
in the above game. The term anonymous captures the fact that the ciphertext
does not reveal the identity for which it was sent to. (Observe that CTSam(mpk)
depends on neither of ID∗ nor M∗.)

Single Challenge Security. We can also consider a variant of the above secu-
rity definition where we restrict the adversary to make the challenge query only
once during the game. We call this security notion “single challenge adaptive
anonymity”, and call the notion without the restriction “multi challenge secu-
rity”. By a simple hybrid argument, we can show that these definitions are in
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fact equivalent in the sense that one implies another. However, the proof that
the former implies the latter incurs a huge security reduction loss that is linear in
the number of challenge queries. Since the focus of this paper is on tight security
reductions, we typically differentiate these two notions.

Remark 1. We say that an IBE scheme is stateful if the key generation algorithm
has to record all previously issued secret keys, and always outputs the same
secret key for the same identity. By the technique by Goldreich [Gol86], a stateful
scheme can be converted to a stateless one (in which the key generation algorithm
need not remember previous executions) by using PRFs. Since PRFs exist in the
QROM without assuming any computational assumption as shown in Lemma3,
if we make the key size of PRFs sufficiently large, this conversion hardly affects
the tightness. Therefore in this paper, we concentrate on constructing tightly
secure stateful IBE scheme for simplicity.

2.4 Background on Lattices

A (full-rank-integer) m-dimensional lattice Λ in Z
m is a set of the form

{∑
i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent

vectors in Z
m. We call B the basis of the lattice Λ. For any positive inte-

gers n,m and q ≥ 2, a matrix A ∈ Z
n×m
q and a vector u ∈ Z

n
q , we define

Λ⊥(A) = {z ∈ Z
m|Az = 0 mod q}, and Λ⊥

u (A) = {z ∈ Z
m|Az = u mod q}.

Gaussian Measures. For an m-dimensional lattice Λ, the discrete Gaussian
distribution over Λ with center c and parameter σ is defined as DΛ,σ,c(x) =
ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where ρσ,c(x) is a Gaussian function defined as
exp(−π‖x−c‖2/σ2) and ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Further for an m-dimensional

shifted lattice Λ+ t, we define the Gaussian distribution DΛ+t,σ with parameter
σ as the process of adding the vector t to a sample from DΛ,σ,−t. Finally, we
call D a B-bounded distribution, if all the elements in the support of D have
absolute value smaller than B.

Discrete Gaussian Lemmas. The following lemmas are used to manipulate
and obtain meaningful bounds on discrete Gaussian vectors.

Lemma 4 (Adopted from [GPV08], Lemma 5.2). Let n,m, q be positive
integers such that m ≥ 2n log q and q a prime. Let σ be any positive real such
that σ ≥ √

n + log m. Then for all but 2−Ω(n) fraction of A ∈ Z
n×m
q , we have

that the distribution of u = Ae mod q for e ← DZm,σ is 2−Ω(n)-close to uni-
form distribution over Z

n
q . Furthermore, for a fixed u ∈ Z

n
q , the conditional

distribution of e ← DZm,σ, given Ae = u mod q is DΛ⊥
u (A),σ.

The following lemma is obtained by combining Lemma 4.4 in [MR07] and
Lemma 5.3 in [GPV08].

Lemma 5 ([MR07], [GPV08]). Let σ > 16
√

log 2m/π and u be any vector in
Z

n
q . Then, for all but q−n fraction of A ∈ Z

n×m
q , we have that

Pr
x←D

Λ⊥
u ,σ

(A)
[‖x‖ > σ

√
m] < 2−(m−1).



268 S. Katsumata et al.

The following lemma can be obtained by a straightforward combination of
Lemma 2.6, Lemma 2.10 and Lemma 5.3 in [GPV08] (See also [PR06,Pei07]).

Lemma 6 ([PR06,Pei07,GPV08]). Let σ > 16
√

log 2m/π and u be any vector
in Z

n
q . Then, for all but q−n fraction of A ∈ Z

n×m
q , we have

H∞(DΛ⊥
u (A),σ) ≥ m − 1.

The following is a useful lemma used during the security proof. It allows the
simulator to create new LWE samples from a given set of LWE samples (i.e.,
the LWE challenge provided to the simulator) for which it does not know the
associating secret vector.2 We would like to note that the following lemma is
built on top of many previous results [Reg05,Pei10,BLP+13] and is formatted
in a specific way to be useful in the security proof for LWE-based cryptosystems.

Lemma 7 (Noise Rerandomization, [KY16], Lemma 1). Let q, �,m be pos-
itive integers and r a positive real satisfying r > Ω(

√
n). Let b ∈ Z

m
q be arbi-

trary and z chosen from DZm,r. Then there exists a PPT algorithm ReRand
such that for any V ∈ Z

m×� and positive real σ > s1(V), the output of
ReRand(V,b+z, r, σ) is distributed as b′ = V�b+z′ ∈ Z

�
q where the distribution

of z′ is within 2−Ω(n) statistical distance of DZ�,2rσ.

Sampling Algorithms. The following lemma states useful algorithms for sam-
pling short vectors from lattices. In particular, the second preimage sampler is
the exact gaussian sampler of [BLP+13], Lemma 2.3.

Lemma 8. ([GPV08,MP12,BLP+13]) Let n,m, q > 0 be integers with m >
3n�log q�.
– TrapGen(1n, 1m, q) → (A,TA): a randomized algorithm that outputs a matrix

A ∈ Z
n×m
q and a full-rank matrix TA ∈ Z

m×m, where TA is a basis for
Λ⊥(A), the distribution of A is 2−Ω(n)-close to uniform and ‖TA‖GS =
O(

√
n log q).

– SamplePre(A,TA,u, σ) : a randomized algorithm that, given a matrix A ∈
Z

n×m
q , a basis TA ∈ Z

m×m for Λ⊥(A), a vector u ∈ Z
n
q and a Gaussian

parameter σ > ‖TA‖GS · √
log(2m + 4)/π, outputs a vector e ∈ Z

m sampled
from a distribution 2−Ω(n)-close to DΛ⊥

u (A),σ.
– SampleZ(σ) : a randomized algorithm that, given a Gaussian parameter σ >

16(
√

log 2m/π) , outputs a vector e ∈ Z
m sampled from a distribution 2−Ω(n)-

close to DZm,σ.

Hardness Assumptions. We define the Learning with Errors (LWE) problem
introduced by Regev [Reg05].

2 Compared to [KY16] our choice of parameter is more conservative since we consider
2−Ω(n) statistical distance rather than 2−ω(log n).
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Definition 2 (Learning with Errors). For integers n = n(λ),m = m(n), a
prime q = q(n) > 2, an error distribution over χ = χ(n) over Z, and a PPT
algorithm A, the advantage for the learning with errors problem LWEn,m,q,χ of
A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣
∣
∣ Pr

[A(
A,A�s + z

)
= 1

] − Pr
[A(

A,w + z
)

= 1
]∣∣
∣

where A ← Z
n×m
q , s ← Z

n
q , w ← Z

m
q , z ← χm. We say that the LWE assumption

holds if AdvLWEn,m,q,χ

A is negligible for all PPT A.

The (decisional) LWEn,m,q,DZ,αq
for αq > 2

√
n has been shown by Regev

[Reg05] to be as hard as approximating the worst-case SIVP and GapSVP
problems to within Õ(n/α) factors in the �2-norm in the worst case. In the
subsequent works, (partial) dequantumization of the reduction were achieved
[Pei09,BLP+13].

We also define the LWE assumption against adversaries that can access to a
quantum random oracle as is done by Boneh et al. [BDF+11].

Definition 3 (Learning with Errors relative to Quantum Random
Oracle). Let n, m, q and χ be the same as in Definition 2, and a, b be some
positive integers. For a PPT algorithm A, the advantage for the learning with
errors problem LWEn,m,q,χ of A relative to a quantum random oracle is defined
as follows:

Adv
LWEn,m,q,χ

A,QROa,b
(λ) =

∣
∣
∣ Pr

[A|H〉(A,A�s + z
)

= 1
] − Pr

[A|H〉(A,w + z
)

= 1
]∣∣
∣

where A ← Z
n×m
q , s ← Z

n
q , w ← Z

m
q , z ← χm, H $← Func({0, 1}a, {0, 1}b). We

say that the LWE assumption relative to an (a, b)-quantum random oracle holds
if AdvLWEn,m,q,χ

A,QROa,b
(λ) is negligible for all PPT A.

It is easy to see that the LWE assumption relative to a quantum random
oracle can be reduced to the LWE assumption with a certain loss of the time
for the reduction by Lemma 1. Alternatively, if we assume the existence of a
quantumly-accessible PRF, then the reduction loss can be made smaller. Namely,
we have the following lemmas.

Lemma 9. For any n, m, q, χ, a, b, and an algorithm A making at most Q
oracle queries, there exists an algorithm B such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) = Adv

LWEn,m,q,χ

B (λ)

and Time(B) ≈ Time(A)+Q·T 2Q-wise
a,b where T 2Q-wise

a,b denotes the time to evaluate
a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

Lemma 10. Let F : K × {0, 1}a → {0, 1}b be a quantumly-accessible PRF. For
any n, m, q, χ, a, b and an algorithm A making at most Q oracle queries, there
exist algorithms B and C such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) ≤ Adv

LWEn,m,q,χ

B (λ) + AdvPRFC,F (λ)
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and Time(B) ≈ Time(A)+Q ·TF and Time(C) ≈ Time(A) where TF denotes the
time to evaluate F .

In this paper, we give reductions from the security of IBE schemes to the
LWE assumption relative to a quantrum random oracle. Given such reductions,
we can also reduce them to the LWE assumption or to the LWE assumption
plus the security of quantumly-accessible PRFs by Lemma 9 or 10, respectively.
The latter is tighter than the former at the cost of assuming the existence of
quantumly-accessible PRFs.

Remark 2. A keen reader may wonder why we have to require the extra assump-
tion on the existence of PRFs when we are working in the QROM, since as we
mentioned earlier in Sect. 2.2, it seems that we can use a QRO as a PRF. The
point here is that during the security reduction, the simulator (which is given the
classical LWE instance) must simulate the QRO query to the adversary against
the LWE problem relative to a quantum random oracle query, hence, the simula-
tor is not in possession of the QRO. Note that the reason why we are able to use
the QRO as a PRF as mentioned in Remark 1 is because the simulator is aiming
to reduce the LWE problem relative to a quantum random oracle query to the
IBE scheme. Specifically, in this case the simulator can use the QRO provided
by its challenge to simulate a PRF.

3 Tightly Secure Single Challenge GPV-IBE

In this section, we show that we can give a tight security proof for the origi-
nal GPV-IBE [GPV08] in the single-challenge setting if we set the parameters
appropriately. Such proofs can be given in both the classical ROM and QROM
settings.

3.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}�ID , where �ID(λ) denotes
the identity-length. Let also H : {0, 1}�ID → Z

n
q be a hash function treated

as a random oracle during security analysis. The IBE scheme GPV is given as
follows. For simplicity, we describe the scheme as a stateful one. As remarked in
Remark 1, we can make the scheme stateless without any additional assumption
in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, and
Gaussian parameters α′, σ, where all these values are implicitly a function
of the security parameter λ. The precise parameter selection is specified in
the following section. It then runs (A,TA) ← TrapGen(1n, 1m, q) to generate
a matrix A ∈ Z

n×m
q with a trapdoor TA ∈ Z

m×m such that ‖TA‖GS ≤
O(n log q). Then it outputs

mpk = A and msk = TA
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KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns
it. Otherwise it computes uID = H(ID) and samples eID ∈ Z

m such that

AeID = uID mod q

using eID ← SamplePre(A,TA,uID, σ). It returns skID = eID as the secret key.
Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s ← Z

n
q ,

x ← DZm,α′q and x ← DZ,α′q. Then it sets uID = H(ID) and computes

c0 = u�
IDs + x + M�q/2�, c1 = A�s + x.

Finally, it outputs the ciphertext C = (c0, c1) ∈ Zq × Z
m
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1) with a secret key skID,
it computes w = c0 − c�

1 eID ∈ Zq and outputs 0 if w is closer to 0 than to
�q/2� modulo q. Otherwise it outputs 1.

3.2 Correctness and Parameter Selection

The following shows correctness of the above IBE scheme.

Lemma 11 (Correctness). Suppose the parameters q, σ, and α′ are such that

σ > ‖TA‖GS ·
√

log(2m + 4)/π, α′ < 1/8σm.

Let eID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A,
eID, C). If ID = ID′, then with overwhelming probability we have M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = c0 − e�
IDc1 = M�q/2� + x + e�

IDx︸ ︷︷ ︸
error term

.

By Lemma 8 and the condition posed on the choice of σ, we have that the
distribution of eID is 2−Ω(n) close to DΛ⊥

u (A),σ. Therefore, by Lemma 5, we have
x ≤ α′q

√
m, ‖x‖ ≤ α′q

√
m, and ‖eID‖ ≤ σ · √

m except for 2−Ω(n) probability.
Then, the error term is bounded by

|h�x − e�
IDx| ≤ x + |e�

IDx| ≤ 2α′qσm.

Hence, for the error term to have absolute value less than q/4, it suffices to
choose q and α′ as in the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the
security proof work, we need the following restrictions. Note that we will prove
the security of the scheme under the LWE assumption whose noise rate is α,
which is lower than α′ that is used in the encryption algorithm.

– The error term is less than q/4 (i.e., α′ < 1/8mσ by Lemma 11)
– TrapGen operates properly (i.e., m > 3n log q by Lemma 8)
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– Samplable from DΛ⊥
u (A),σ (i.e., σ > ‖TA‖GS · √

log(2m + 4)/π =
O(

√
n log m log q) by Lemma 8),

– σ is sufficiently large so that we can apply Lemmas 4 and 6 (i.e., σ >√
n + log m, 16

√
log 2m/π),

– We can apply Lemma 7 (i.e., α′/2α >
√

n(σ2m + 1)),
– LWEn,m,q,DZ,αq

is hard (i.e., αq > 2
√

n).

To satisfy these requirements, for example, we can set the parameters
m, q, σ, α, α′ as follows:

m = n1+κ, q = 10n3.5+4κ, σ = n0.5+κ,

α′q = n2+2κ, αq = 2
√

n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks
running in time 2λ, we may set n = Ω̃(λ). In the above, we round up m to
the nearest integer and q to the nearest largest prime. We remark that though
the above parameter is worse compared to the original GPV-IBE scheme, this is
due to our conservative choice of making the statistical error terms appearing in
the reduction cost 2−Ω(n) rather than the standard negligible notion 2−ω(log λ).
The latter choice of parameters will lead to better parameters, which may be as
efficient as the original GPV-IBE.

3.3 Security Proof in QROM

The following theorem addresses the security of GPV in the classical ROM set-
ting. Our analysis departs from the original one [GPV08] and as a consequence
much tighter. The proof can be found in the full version.

Theorem 1. The IBE scheme GPV is adaptively-anonymous single-challenge
secure in the random oracle model assuming the hardness of LWEn,m,q,DZ,αq

.
Namely, for any classical adversary A making at most QH random oracle queries
to H and QID secret key queries, there exists an algorithm B such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,D

Z,αq

B (λ) + (QH + QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID) · poly(λ).

As we explained in the introduction, our analysis in the ROM can be easily
be extended to the QROM setting. We can prove the following theorem that
addresses the security of the GPV-IBE scheme in the QROM setting. The anal-
ysis here is different from that by Zhandry [Zha12b], who gave the first security
proof for the GPV-IBE scheme in the QROM setting and our analysis here is
much tighter.

Theorem 2. The IBE scheme GPV is adaptively-anonymous single-challenge
secure assuming the hardness of LWEn,m,q,DZ,αq

in the quantum random oracle
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model. Namely, for any quantum adversary A making at most QH queries to |H〉
and QID secret key queries, there exists a quantum algorithm B making QH+QID

quantum random oracle queries such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,D

Z,αq

B,QRO�ID,�r
(λ) + (Q2

H + QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID) · poly(λ)

where �r denotes the length of the randomness for SampleZ.

Proof (Proof of Theorem 2). Let CTSam(mpk) be an algorithm that outputs a
random element from Zq × Z

m
q and A be a quantum adversary that attacks the

adaptively-anonymous security of the IBE scheme. Without loss of generality,
we can assume that A makes secret key queries on the same identity at most
once. We show the security of the scheme via the following games. In each game,
we define Xi as the event that the adversary A wins in Gamei.

Game0: This is the real security game for the adaptively-anonymous security.
At the beginning of the game, the challenger chooses a random function H :
{0, 1}�ID → Z

n
q . Then it generates (A,TA) $← TrapGen(1n, 1m, q) and gives A

to A. Then it samples coin
$← {0, 1} and keeps it secret. During the game, A

may make (quantum) random oracle queries, secret key queries, and a challenge
query. These queries are handled as follows:

– When A makes a random oracle query on a quantum state
∑

ID,y αID,y |ID〉 |y〉,
the challenger returns

∑
ID,y αID,y |ID〉 |H(ID) ⊕ y〉.

– When A makes a secret key query on ID, the challenger samples eID =
SamplePre(A,TA,uID, σ) and returns eID to A.

– When A makes a challenge query for ID∗ and a message M∗, the chal-
lenger returns (c0, c1)

$← Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$←

CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
outputs ĉoin. By definition, we have

∣
∣ Pr[X0] − 1

2

∣
∣ =

∣
∣ Pr[ĉoin − coin] − 1

2

∣
∣ =

AdvIBEA,GPV(λ).

Game1: In this game, we change the way the random oracle H is simulated.
Namely, the challenger first chooses another random function Ĥ

$← Func({0, 1}�ID ,

{0, 1}�r ). Then we define H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)), and
use this H throughout the game. For any fixed ID, the distribution of H(ID) is
identical and its statistical distance from the uniform distribution is 2−Ω(n) for
all but 2−Ω(n) fraction of A due to Lemma 4 since we choose σ >

√
n + log m.

Note that in this game, we only change the distribution of uID for each identity,
and the way we create secret keys are unchanged. Then due to Lemma 2, we
have

∣
∣ Pr[X0] − Pr[X1]

∣
∣ = 2−Ω(n) + 4Q2

H

√
2−Ω(n) = Q2

H · 2−Ω(n).

Game2: In this game, we change the way secret key queries are answered. By
the end of this game, the challenger will no longer require the trapdoor TA to
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generate the secret keys. When A queries a secret key for ID, the challenger
returns eID := SampleZ(σ; Ĥ(ID)). For any fixed uID ∈ Z

n
q , let e(1)

ID,uID
and e(2)

ID,uID

be random variables that are distributed according to the distributions of eID
conditioning on H(ID) = uID in Game1 and Game2, respectively. Due to Lemma 8,
we have Δ(e(1)

ID,uID
,DΛ⊥

uID
(A),σ) ≤ 2−Ω(n). On the other hand, due to Lemma 4,

we have Δ(e(2)
ID,uID

,DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret

keys eID, we have
∣
∣ Pr[X1] − Pr[X2]

∣
∣ = QID · 2−Ω(n).

Game3: In this game, we change the way the matrix A is generated. Concretely,
the challenger chooses A ← Z

n×m
q without generating the associated trapdoor

TA. By Lemma 8, the distribution of A differs at most by 2−Ω(n). Since the
challenger can answer all the secret key queries without the trapdoor due to the
change we made in the previous game, the view of A is altered only by 2−Ω(n).
Therefore, we have

∣
∣ Pr[X2] − Pr[X3]

∣
∣ = 2−Ω(n).

Game4: In this game, we change the way the challenge ciphertext is created when
coin = 0. Recall in the previous games when coin = 0, the challenger created
a valid challenge ciphertext as in the real scheme. In this game, to create the
challenge ciphertext for identity ID∗ and message bit M∗, the challenger first
computes eID∗ := SampleZ(σ; Ĥ(ID∗)) and uID∗ := AeID∗ . Then the challenger
picks s ← Z

n
q , x̄ ← DZm,αq and computes v = A�s + x̄ ∈ Z

m
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
) → c′ ∈ Z

m+1
q

from Lemma 7, where Im is the identity matrix with size m. Let c′
0 ∈ Zq denote

the first entry of c′ and c1 ∈ Z
m
q denote the remaining entries of c′. Finally, the

challenger outputs the challenge ciphertext as

C∗ = (c0 = c′
0 + M∗�q/2�, c1). (1)

We now proceed to bound |Pr[X3]−Pr[X4]|. We apply the noise rerandomization
lemma (Lemma 7) with V = [eID∗ |Im], b = A�s and z = x̄ to see that the
following equation holds:

c′ = V�b + x′ =
(
A · [eID∗ |Im]

)�
s + x′ = [uID∗ |A]�s + x′

where x′ is distributed according to a distribution whose statistical distance is at
most 2−Ω(n) from DZm+1,α′q. Here, the last equality follows from AeID∗ = uID∗

and we can appropriately apply the noise rerandomization lemma since we have
the following for our parameter selection:

α′/2α >
√

n(σ2m + 1) ≥
√

n(‖eID∗‖2 + 1) ≥ √
n · s1([eID∗ |Im]),

where the second inequality holds with 1−2−Ω(n) probability. It therefore follows
that the statistical distance between the distributions of the challenge cipher-
text in Game3 and Game4 is at most 2−Ω(n). Therefore, we may conclude that∣
∣ Pr[X3] − Pr[X4]

∣
∣ = 2−Ω(n).
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Game5: In this game, we further change the way the challenge ciphertext is cre-
ated when coin = 0. If coin = 0, to create the challenge ciphertext the challenger
first picks b ← Z

m
q , x̄ ← DZm,αq and computes v = b + x̄ ∈ Z

m
q . It then

runs the ReRand algorithm as in Game4. Finally, it sets the challenge cipher-
text as in Eq. (1). We claim that

∣
∣ Pr[X4] − Pr[X5]

∣
∣ is negligible assuming the

hardness of the LWEn,m,q,DZ,αq
problem relative to a quantum random oracle

|Ĥ〉 : {0, 1}�ID → {0, 1}�r . To show this, we use A to construct an adversary B
that breaks the LWE assumption relative to |Ĥ〉.

B is given a problem instance of LWE as (A,v = b + x̄) ∈ Z
n×m
q × Z

m
q

where x̄ ← DZm,αq. The task of B is to distinguish whether b = A�s for some
s ← Z

n
q or b ← Z

m
q . First, we remark that B can simulate the quantum random

oracle |H〉 for A by using its own random oracle |Ĥ〉 because H is programmed
as H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)) by the modification we made
in Game1. B sets the master public key mpk to be the LWE matrix A. Note
that unlike the real IBE scheme, B does not require the master secret key TA

due to the modification we made in Game3. Namely, when A queries ID for the
key oracle, B just returns eID := SampleZ(σ; Ĥ(ID)). To generate the challenge
ciphertext, B first picks coin ← {0, 1}. If coin = 0, it generates the challenge
ciphertext as in Eq. (1) using v, and returns it to A. We emphasize that all B
needs to do to generate the ciphertext is to run the ReRand algorithm, which
it can do without the knowledge of the secret randomness s and x̄. If coin = 1,
B returns a random ciphertext using CTSam(mpk). At the end of the game, A
outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise.

It can be seen that if A,v is a valid LWE sample (i.e., v = A�s), the view of
the adversary corresponds to Game4. Otherwise (i.e., v ← Z

m
q ), it corresponds

to Game5. Therefore we have
∣
∣ Pr[X4] − Pr[X5]

∣
∣ = Adv

LWEn,m,q,D
Z,αq

B,QRO�ID,�r
(λ). As for

the running time, we have Time(B) = Time(A)+ (QH +QID) · poly(λ) since all B
has to do is to run A once plus to compute some additional computations that
can be done in a fixed polynomial time whenever A makes a quantum random
oracle or secret key query.

Game6: In this game, we further change the way the challenge ciphertext is
created. If coin = 0, to create the challenge ciphertext the challenger first picks
b ← Z

m
q , x′ ← DZm,α′q and computes

c′ = [eID∗ |Im]�b + x′.

It then parses c′ into c′
0 and c1 (as in Game4) and sets the challenge ciphertext

as Eq. (1). Similarly to the change from Game3 to Game4, we have
∣
∣ Pr[X5] −

Pr[X6]
∣
∣ = 2−Ω(n) by Lemma 7.

It remains to show that no adversary has non-negligible chance in winning
Game6. Notice that when coin = 0, the challenge ciphertext can be written as

c0 = e�
ID∗b + x′

0 + M�q/2�, c1 = b + x′
1,
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where x′
0 is the first entry of x′ and x′

1 is the remaining entries. It suffices to show
that the joint distribution of (b, e�

ID∗b) is statistically close to the uniform distri-
bution over Zm

q ×Zq, conditioned on uID∗ . From the view of A, eID∗ is distributed
as DΛ⊥

u(ID∗)(A),σ because all information of eID∗ revealed to A is H(ID∗) = AeID∗

where eID∗ = SampleZ(σ; Ĥ(ID∗)) and Ĥ(ID∗) is completely random from the
view of A. (Remark that Ĥ(ID∗) is used in the game only when A queries ID∗

to the key generation oracle, which is prohibited in the adaptively-anonymous
security game.) By Lemma 6, we have

H∞(eID∗) ≥ m − 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since
b is distributed uniformly at random over Z

m
q and conclude that (b, e�

ID∗b) is
√

q/2m−1-close to the uniform distribution by the leftover hash lemma. Hence,
we have Pr[X6] ≤ 2−Ω(n) +

√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

4 (Almost) Tightly Secure Multi-challenge IBE

In this section, we propose an IBE scheme that is (almost) tightly secure in
the multi-challenge setting. The security of the scheme is proven both in the
classical ROM and QROM settings. Our construction is obtained by applying
the Katz-Wang [KW03] technique to the original GPV-IBE scheme.

4.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}�ID , where �ID(λ) denotes
the identity-length. Let also H : {0, 1}�ID+1 → Z

n
q be a hash function treated

as a random oracle during the security analysis where �ID denotes the identity-
length. The IBE scheme GPVmult is given as follows. For simplicity, we describe
the scheme as a stateful one. As remarked in Remark 1, we can make the scheme
stateless without any additional assumption in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, γ, and
Gaussian parameters α, σ, where all these values are implicitly a function
of the security parameter λ. The precise parameter selection is specified in
the following section. It then runs (A,TA) ← TrapGen(1n, 1m, q) to generate
a matrix A ∈ Z

n×m
q with a trapdoor TA ∈ Z

m×m such that ‖TA‖GS ≤
O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it.
Otherwise it picks bID

$← {0, 1}, computes uID‖bID = H(ID‖bID), and samples
eID‖bID ∈ Z

m such that

AeID‖bID = uID‖bID mod q
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as eID‖bID ← SamplePre(A,TA,uID‖bID , σ). It returns skID = (bID, eID‖bID) as
the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s $←
U([−γ, γ]), x ← DZm,αq. Then it computes uID‖0 = H(ID‖0) and uID‖1 =
H(ID‖1) and sets the ciphertext as

c0 = u�
ID‖0s + M�q/2�, c1 = u�

ID‖1s + M�q/2�, c2 = A�s + x.

Finally, it outputs the ciphertext C = (c0, c1, c2) ∈ Zq × Zq × Z
m
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1, c2) with a secret key skID,
it computes w = cbID − c�

2 eID‖bID ∈ Zq and outputs 0 if w is closer to 0 than
to �q/2� modulo q. Otherwise it outputs 1.

4.2 Correctness and Parameter Selection

The following shows correctness of the above IBE scheme.

Lemma 12 (Correctness). Suppose the parameters q, σ, and α are such that

σ > ‖TA‖GS ·
√

log(2m + 4)/π, α < 1/4σm.

Let eID‖bID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ←
Dec(A, eID‖bID , C). If ID = ID′, then with overwhelming probability we have
M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = cbID − e�
ID‖bID

c2 = M�q/2� + e�
ID‖bID

x
︸ ︷︷ ︸
error term

.

By Lemma 8 and the condition posed on the choice of σ, we have that the
distribution of eID‖bID is 2−Ω(n) close to DΛ⊥

uID‖bID
(A),σ. Therefore, by Lemma 5,

we have ‖x‖ ≤ αq
√

m, and ‖eID‖bID‖ ≤ σ · √
m except for 2−Ω(n) probability.

Then, the error term is bounded by

|h�x − e�
IDx| ≤ |e�

IDx| ≤ αqσm.

Hence, for the error term to have absolute value less than q/4, it suffices to
choose q and α as in the statement of the lemma.

Parameter Selection. For example, we can set the parameters �, n,m, q, σ,
α, β, γ as follows:

n = 25�, m = n1+κ, σ = n0.5+κ, q = 5n5.5+3κ,

αq = n4+κ, βq = n, γ = n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks
running in time 2λ, we may set � = Ω̃(λ). In the above, we round up m to the
nearest integer and q to the nearest largest prime. As the case with the single-
challenge setting, if we make the more aggressive choice of using the negligible
notion 2−ω(log λ), we will be able to obtain better parameter selections. More
detailed discussion on the parameter selection can be found in the full version.
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4.3 Security

We can (almost) tightly prove the security of our IBE scheme GPVmult both in
the classical ROM and QROM settings. The following theorem addresses the
security of GPVmult in the classical ROM setting. The proof of the theorem can
be found in the full version.

Theorem 3. The IBE scheme GPVmult is adaptively-anonymous multi-
challenge secure assuming the hardness of LWE�,m,q,χ in the random oracle
model, where χ = DZ,αq. Namely, for any classical adversary A making at most
QH queries to H, Qch challenge queries, and QID secret key queries, there exists
an algorithm B such that

AdvIBEA,GPVmult
(λ) ≤ 3n · AdvLWE�,m,q,D

Z,αq

B (λ) + (QH + QID + Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID + Qch) · poly(λ).

As we explained in the introduction, our analysis in the ROM can be eas-
ily extended to the QROM setting. We can prove the following theorem that
addresses the security of GPVmult in the QROM. The proof can be found in the
full version.

Theorem 4. The IBE scheme GPVmult is adaptively-anonymous multi-
challenge secure assuming the hardness of LWE�,m,q,χ in the quantum random
oracle model, where χ = DZ,αq. Namely, for any classical adversary A making at
most QH quantum random oracle queries, Qch challenge queries, and QID secret
key queries, there exists an algorithm B making at most 3QH + 2QID + 6Qch

quantum random oracle queries such that

AdvIBEA,GPVmult
(λ) ≤ 3n ·AdvLWE�,m,q,D

Z,αq

B,QRO�ID+2,max{�r,(�log q�+2λ)×n}(λ) + (QH + QID + Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID + Qch) · poly(λ)

where �r denotes the length of the randomness for SampleZ.

These proofs are similar and obtained by combining the idea of using the lossy
mode for LWE with the Katz-Wang technique as we explained in Sect. 1.3. We
need some results on randomness extraction and lossy mode LWE during the
proof. The details can be found in the full version.
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