
New MILP Modeling: Improved
Conditional Cube Attacks on
Keccak-Based Constructions

Ling Song1,2(B), Jian Guo1(B), Danping Shi2(B), and San Ling1(B)

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{guojian,lingsan}@ntu.edu.sg
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
{songling,shidanping}@iie.ac.cn

Abstract. In this paper, we propose a new MILP modeling to find bet-
ter or even optimal choices of conditional cubes, under the general frame-
work of conditional cube attacks. These choices generally find new or
improved attacks against the keyed constructions based on Keccak per-
mutation and its variants, including Keccak-MAC, KMAC, Keyak, and
Ketje, in terms of attack complexities or the number of attacked rounds.
Interestingly, conditional cube attacks were applied to round-reduced
Keccak-MAC, but not to KMAC despite the great similarity between
Keccak-MAC and KMAC, and the fact that KMAC is the NIST standard
way of constructing MAC from SHA-3. As examples to demonstrate the
effectiveness of our new modeling, we report key recovery attacks against
KMAC128 and KMAC256 reduced to 7 and 9 rounds, respectively; the best
attack against Lake Keyak with 128-bit key is improved from 6 to 8
rounds in the nonce-respected setting and 9 rounds of Lake Keyak can
be attacked if the key size is of 256 bits; attack complexity improvements
are found generally on other constructions. Our new model is also applied
to Keccak-based full-state keyed sponge and gives a positive answer to
the open question proposed by Bertoni et al. whether cube attacks can
be extended to more rounds by exploiting full-state absorbing. To ver-
ify the correctness of our attacks, reduced-variants of the attacks are
implemented and verified on a PC practically. It is remarked that this
work does not threaten the security of any full version of the instances
analyzed in this paper.

Keywords: Keccak · SHA-3 · KMAC · Keyak · Ketje · Full-state
Conditional cube attack · MILP

1 Introduction

The Keccak hash function family [5] is a proposal designed by Bertoni et al. and
submitted to the SHA-3 competition [22] in 2008. It was selected as the final win-
ner of the competition in 2012, and subsequently standardized as SHA-3 [29] in
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 65–95, 2018.
https://doi.org/10.1007/978-3-030-03329-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_3&domain=pdf

66 L. Song et al.

2015 by the National Institute of Standards and Technology of the U.S. (NIST).
It supports four digest sizes from {224, 256, 384, 512} to achieve different security
levels. The standard SHA-3 and the original Keccak design differ only in the
way how messages are padded, and hence share almost all security analysis.

Since the Keccak hash function was made public in 2008, it has attracted
intensive cryptanalysis from the research community in many different settings.
Against the three major properties of hash functions: collision, preimage and
second-preimage resistance, the best practical collision/preimage attacks are
up to 6 and 4 out of the total 24 rounds, respectively. By observing the low
algebraic degree of the Sbox in Keccak, Guo et al. [17] proposed the linear
structures for up to 3 rounds of Keccak, where the Sbox can be re-expressed as
linear transformations when the input is restricted to specific affine subspaces.
In [27], Song et al. found the first practical collision against 5-round Keccak-
224, where they used 3-round “connectors” based on the pioneer work by Qiao
et al. [23] and Dinur et al. [12].

There is also a line of research on analyzing the security of keyed construc-
tions based on Keccak-p—the Keccak permutations with variable width and
rounds. Message authentication codes are naturally among the first keyed con-
structions based on Keccak-p, e.g., Keccak-MAC [4] and KMAC [30]. In [13],
Dinur et al. proposed the first cube attack against Keccak-MAC for up to
7-round key recovery and 8-round forgery attacks. The attack complexities were
subsequently improved by Huang et al. using conditional cube attacks [19]. The
authenticated encryption schemes Keyak [7] and Ketje [6] are also based on
Keccak-p and its variants. Similar to the attacks against Keccak-MAC, the
conditional cube attack was applied to Keyak for up to 8 out of 12 rounds [19],
and to Ketje [15,20] for up to 7 out of 13 rounds. Differently from the tradi-
tional way of reducing the strength of the design by round number, there is a
recent attack against full Ketje with tweaked rate size by Fuhr et al. [16]. Kra-
vatte [2] is a pseudorandom function by instantiating the Farfalle construction
with Keccak-p. Algebraic attacks on Kravatte, including cube attacks, which
take advantage of structural properties of Farfalle, were proposed in [9].

Following a similar design strategy used for Keccak-MAC, KMAC [30] is the
standard way of constructing MAC from SHA-3 by NIST. The major design dif-
ference is that, the master key is processed as an independent data block before
processing the message in KMAC, while it was processed together with some mes-
sage bits as the first data block in Keccak-MAC. Hence, at the point of inject-
ing the first message block, the internal state for KMAC is totally unknown, while
most bits of that for Keccak-MAC are known. Similar observations were discov-
ered and made use of in the so-called “Full-State Keyed Duplex (FKD)” [10,21]
to improve the efficiency of keyed sponge constructions. It is interesting to note,
despite the great similarity between Keccak-MAC and KMAC, there is no exist-
ing cryptanalysis result against KMAC to the best of our knowledge. Also, for FKD
no cube attack is proposed by exploiting the full-state absorption, as stated by
the Keyak designers in [7]:

New MILP Modeling 67

Whether these attacks can still be extended to more rounds by exploiting
full-state absorbing remains an open question.

Our Contributions. Based on the previous works [15,19,20] on conditional
cube attacks against Keccak-based keyed constructions, we propose a new
Mixed Integer Linear Programming (MILP) modeling. While the length of cube
tester (the zero-sum property) is determined entirely by the algebraic degrees of
the underlying permutations, the conditional cube attack could only be improved
by finding cube variables with lesser conditions and keeping the cube size large
enough meanwhile. Our new MILP modeling is able to capture the character-
istics of 2 Keccak rounds, as well as the linear structures used in the first
round. This new modeling is generic and imposes no unnecessary conditions,
hence could be able to find optimal conditional cubes, in terms of cube size and
number of conditions, whenever possible. This comes with a few key techniques:

1. We are able to model 2 Keccak rounds together, i.e., Sbox layer of the first
round, the linear layer followed by the Sbox layer again of the second round.
To do this, we exhaustively list the propagations of variables through the first
Sbox layer so to keep the output of the Sbox linear. The second round is dealt
in different ways.

– For normal Keccak-based constructions, we classify the situation of the
linear layer in the second round into two cases depending on whether
there is spreading of variables and model them each individually.

– For FKD, we describe column sums of the state after the Sbox layer of
the first round with inequalities. With this, the diffusion of the second
round can be described precisely with MILP.

With all these together, we are able to convert all the necessary constraints
in the search of conditional cubes into the MILP language.

2. For FKD, instead of the initial state, the internal state value just before the
first Sbox layer are used as (conditional) variables by setting the variables
in the column parity kernel. This simple change removes all the unnecessary
constraints brought up by the linear layer of the first Keccak round, and
enlarges the space covered by our search program.

We apply this new MILP modeling to Keccak-based keyed constructions
including Keccak-MAC, KMAC, Keyak, Ketje, and FKD and find new or
better results for each of the constructions. Specifically

– For KMAC, due to the fact that it processes the key as an independent block
compared with Keccak-MAC, it should provide better security and hence
becomes harder for the attacker. With the same security level of 128 bits, we
find attacks against KMAC128 reduced to 7 rounds, the same number of rounds
found for Keccak-MAC in previous works. For KMAC256 aiming for 256 bits
security, we find attacks up to 9 rounds combining a technique to invert the
last round. Details are summarized in Table 1.

68 L. Song et al.

– General complexity improvements are also found on the attacks against
Keyak and Ketje. Notably, we improve the attack against Lake Keyak
with 128-bit keys from 6 to 8 rounds in the nonce-respected setting and 9
rounds of Lake Keyak can be attacked if the key size is 256 bits. Details are
summarized in Table 2.

– Conditional cubes that fully linearize the first two rounds are targeted by
our modeling and the open question of FKD is answered by extending cube
attacks by one additional round.

Table 1. Summary of our attacks on KMAC, and Keccak-MAC with related works.

Target Key size Capacity Rounds Time (Data) Reference

KMAC128 128 256 7/24 276 Section 6.1

KMAC256 256 512 9/24 2147

Keccak-MAC 128 256/512 7/24 272 [19]

768 7/24 275 [20]

1024 6/24 258.3

1024 6/24 240 Section 5.3

1024 7/24 2111 [25]

Very recently, another two MILP models [8,25] were proposed for cube-
attack-like cryptanalysis [13], together with some new results for keyed Keccak
modes. In particular, 7 rounds of Keccak-MAC-512 can be attacked. In cube-
attack-like cryptanalysis, only the first round is linearized and the idea is to
choose cube variables such that they multiply with a small number of key bits in
the first round. Therefore, one only needs to pay attention to the diffusion of the
linear layer in the first round. Due to this, cube-attack-like cryptanalysis per-
forms well especially when the degrees of freedom is limited, e.g., smaller versions
of Ketje. The drawback is that cube-attack-like cryptanalysis is not suitable for
constructions with fully unknown internal state, e.g., KMAC and Keccak-based
FKD which are our main targets of conditional cube attacks. Whereas, in con-
ditional cube attacks, one has to deal with two rounds in which more degrees
of freedom are needed to control the diffusion of cube variables. Also, finding
good conditional cubes is more challenging. However, if sufficient degrees of free-
dom are available, conditional cube attacks can exploit this and provide better
attacks. Examples include attacks on all instances of Keyak, Ketje Major and
Ketje Minor.

Organization. The remaining part of the paper is organized as follows.
Section 2 gives a detailed description of Keccak-p based constructions, includ-
ing Keccak, KMAC, Keyak and Ketje, followed by an introduction in Sect. 3 to
related works. Our new MILP model is presented in Sects. 4 and 5, and applied

New MILP Modeling 69

Table 2. Summary of our attacks on Keyak, Ketje and comparison with related
works

Target Key size Rounds Time (Data) Memory nonce-respected Reference

Lake Keyak 128 6/12 237 - Yes [13]

128 8/12 274 - No [19]

128 8/12 271.01 - Yes Section 6.2

256 9/14 2137.05 - Yes

River Keyak 128 8/12 277 - Yes Section 6.2

Ketje Major 128 7/13 283 - Yes [20]

128 7/13 271.24 - Yes Section 6.2

Ketje Minor 128 7/13 281 - Yes [20]

128 7/13 273.03 - Yes Section 6.2

Ketje SR v1 128 7/13 2115 250 Yes [15]

128 7/13 291 - Yes Section 6.2

FKD[1600] 128 9/- 290 - No Section 6.3

Ketje Jr v1 96 5/13 236.86 218 Yes [25]

Ketje Jr v2 96 5/13 234.91 215 Yes

Ketje Sr v2 128 7/13 299 233 Yes

to the key recovery attacks of KMAC, Keyak, Ketje and full-state keyed duplex
(FKD) in Sect. 6. Finally, Sect. 7 concludes the paper. Details of cubes are pro-
vided in the full version of this paper [26].

2 Description of KMAC, Keyak and Ketje

2.1 Keccak-p

The Keccak-p permutations are specified with two parameters: the width of the
permutation in bits b and the number of rounds nr . The Keccak-p permutation
with nr rounds and width b is denoted by Keccak-p[b, nr], where nr is any
positive integer and b can be any value of the form 25 · 2l for l = 0, · · · , 6. The
b-bit state a for the Keccak-p[b,nr] permutation is seen as a three-dimensional
array of bits, namely a[5][5][w] with w = 2l. The expression a[x][y][z] with 0 ≤
x, y < 5, 0 ≤ z < w, denotes the bit with (x, y, z) coordinate. The coordinates
are always considered within modulo 5 for x and y and modulo w for z. The one-
dimensional portion a[∗][y][z] is called a row, a[x][∗][z] a column and a[x][y][∗] a
lane. A lane of the state is also denoted by a[x][y] by omitting the z index. At
lane level, the state a[x][y] becomes a 5 × 5 array as shown in Fig. 1 with x for
the column index and y for the row index.

The Keccak-p[b,nr] permutation iterates an identical round function (up to
a difference of round-dependent constant addition) nr times, each of which con-
sists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with details as follows.

θ: a[x][y][z] = a[x][y][z] ⊕ ⊕4
y=0 a[x − 1][y][z] ⊕ ⊕4

y=0 a[x + 1][y][z − 1].

70 L. Song et al.

Fig. 1. Lane coordinates. Each square stands for a lane in the state.

ρ: a[x][y][z] = a[x][y][(z − T (x, y))],where T (x, y)s are rotation constants.
π: a[y][2x + 3y][z] = a[x][y][z].
χ: a[x][y][z] = a[x][y][z] ⊕ (a[x + 1][y][z] ⊕ 1) · a[x + 2][y][z].
ι: a[0][0] = a[0][0] ⊕ RCir ,where RCir is the ir-th round constant.

Here, ‘⊕’ denotes XOR and ‘·’ denotes logic AND. Expressions in the x and
y coordinates should, as mentioned, be taken in modulo 5 and expressions in the
z coordinate modulo w.

The Keccak-f family of permutations is a specification of the Keccak-p
family to the case of nr = 12+2l, that is Keccak-f [b] = Keccak-p[b, 12+2l].
The permutation underlying SHA-3 and KMAC is of width 1600 bits and 24 rounds,
i.e., Keccak-f [1600] = Keccak-p[1600, 24].

2.2 The Sponge Construction and KMAC

The sponge construction is a framework for constructing hash functions from
permutations, as depicted in Fig. 2. The construction consists of three com-
ponents: an underlying b-bit permutation f , a parameter r called rate and a
padding rule. The capacity is defined as c := b − r. A hash function following
this construction takes in a message M as input and outputs a digest of d bits.
Given the message M , it is first padded and split into r-bit blocks. The b-bit
state is initialized to be all zeros. The sponge construction then proceeds in two
phases. In the absorbing phase, each message block is XORed into the first r
bits of the state, followed by application of the permutation f . This process is
repeated until all message blocks are processed. Then, the sponge construction
switches to the squeezing phase, where each iteration returns the first r bits of
the state as output and then applies the permutation f to the current state.
This repeats until d bits digest are obtained.

The Keccak hash function follows the sponge construction and takes
Keccak-f [1600] as the underlying permutation. In 2015, Keccak was formally
standardized by NIST as SHA-3 [29], based on which more functions, including
cSHAKE128, cSHAKE256 and KMAC, are derived in the NIST Special Publi-
cation 800-185 [30].

KMAC (Keccak Message Authentication Code) is a keyed hash function with
a variable-length output, and can be used as a pseudorandom function. It has

New MILP Modeling 71

Fig. 2. Sponge construction [3].

Fig. 3. KMAC processing one message block

two variants: KMAC128 and KMAC256, based on Keccak[c = 256](M,L) and
Keccak[c = 512](M,L), whose capacities are set to be 256 and 512 bits, respec-
tively. The input of KMAC consists of the key K, the main message M , the output
length L, the name string N = “KMAC” and the optional customization bit
string S of any length (including 0). Given these inputs, KMAC first processes
a block encoded from the public values N and S. Then it accepts a block of
the padded key, and absorbs message blocks from the third call of permutation
f onwards. Figure 3 demonstrates the procedure of KMAC processing one mes-
sage block. Different from Keccak, KMAC supports variable-length output, e.g.,
KMAC128 supports any output of length no less than 256 bits and at least 512
bits for KMAC256.

Keccak-MAC [4] is a Keccak-based MAC where Keccak directly takes
the combination of a key and a message, i.e., K||M as input. The key size is
assumed to be 128 bits.

2.3 The Duplex Construction and Keyak, Ketje

The duplex construction [4] is closely related to the sponge construction, and
is mostly used for authenticated encryption. Following variants of the duplex

72 L. Song et al.

construction, Keyak and Ketje [6,7] are two Keccak-p based authenticated
encryption schemes. Figure 4(a) shows the scheme of Keyak which employs an
almost full-state keyed duplex construction [10]. It consists of five instances. In
this paper, we focus on River Keyak and Lake Keyak which are based on
Keccak-p[800, 12] and Keccak-p[1600, 12] respectively. The capacity for both
versions is 256. Note that any attack on Lake Keyak is also applicable to the
three remaining instances.

Fig. 4. (a) Keyak and (b) Ketje, where the finalization is omitted.

Figure 4(b) displays the scheme of Ketje. It employs a twisted version of
Keccak-p, denoted by Keccak-p�, where Keccak-p� = π◦Keccak-p ◦π−1.
Specifically, the underlying permutations f0 = Keccak-p[b, 12] and f1 =
Keccak-p[b, 1]. Ketje has four instances which are:

Name b ρ

Ketje JR 200 16

Ketje SR 400 32

Ketje Minor 800 128

Ketje Major 1600 256

In the old version of Ketje, Keccak-p, instead of Keccak-p�, is used.
Full-state Keyed Duplex (resp. Full-state Keyed Sponge) [10,21] is general-

ized from duplex (resp. sponge) for better efficiency by allowing full-state absorp-
tion. This idea has been applied to Keyak which absorbs data blocks of length
greater than r bits.

2.4 Notations

In this paper, r and c in bold denote the rate and capacity for the sponge
construction. b in bold stands for the width in bits of the permutation. The first
three mappings θ, π, ρ of the round function of Keccak-p are linear, and we

New MILP Modeling 73

denote their composition by λ � π ◦ ρ ◦ θ. The nonlinear layer χ applying to
each row is called an Sbox. Only one-block padded messages are considered in
our attacks for KMAC while there is no restriction on message length for attacks
on other instances.

For describing the model, we use variables a, b, c, d in lowercase to denote
states and the capital ones, namely A,B,C,D to denote their activeness, i.e., a
bit is active if it contains cube variables. The demension of the cube is denoted
by d, and the number of conditions is denoted by t.

3 Related Works and Motivations

3.1 Cube Attacks

The cube attack, a variant of higher order differential attacks, was introduced
by Dinur and Shamir [14] in 2009. It considers the output bit of a cipher as an
unknown Boolean polynomial f(k0, · · · , kn−1, v0, · · · , vm−1) where k0, · · · , kn−1

are secret input variables and v0, · · · , vm−1 are public input variables. Given a
monomial tI = vi1 · · · vid , I = {i1, · · · , id} (d ≤ m), any Boolean polynomial f
can be written as the sum of terms which are supersets of tI and terms that are
not divisible by tI :

f(k0, · · · , kn−1, v0, · · · , vm−1) = tI · pSI
+ q(k0, · · · , kn−1, v0, · · · , vm−1),

where pSI
is called the superpoly of I in f . The basic idea of cube attacks and

cube testers [1] is that the sum of the outputs over the cube which contains all
possible values for vi1 , · · · , vid (called cube variables) is exactly pSI

, while this
is a random function for a random polynomial. By carefully selecting I, cube
attacks aim to find a low-degree polynomial pSI

in secret variables, and cube
testers aim to distinguish pSI

from a random function, e.g., pSI
= 0.

In [13], Dinur et al. applied cube attacks and cube testers to the keyed
variants of Keccak, including Keccak-MAC, Keyak and a Keccak stream
cipher.

3.2 Conditional Cube Attacks

In [19], Huang et al. developed conditional cube testers for the keyed Keccak
sponge function, where the propagation of certain cube variables are controlled in
the first few rounds if some conditions are satisfied. There are two major advan-
tages of conditional cube testers over ordinary cube testers. One is to potentially
reduce the algebraic degree of the permutation under the conditions, and hence
the required cube dimension to carry out the attack can be reduced accordingly.
The other advantage of conditional cubes is that the conditions, which control
how the conditional cube variables propagate in the first few rounds, are related
to the initial state values, which may contain the key information. By observing
the cube sum of the final output, one may recover the key.

To proceed further, we recall the definition of conditional cube variables and
a theorem from [19] below.

74 L. Song et al.

Definition 1 ([19]). Cube variables that have propagation controlled in the first
round and are not multiplied with each other in the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other in the first round and are not multiplied with any conditional
cube variable in the second round are called ordinary cube variables.

Theorem 1 ([19]). For (n + 2)-round Keccak sponge function (n > 0), if
there are p (0 ≤ p < 2n + 1) conditional cube variables v0, · · · , vp−1, and q =
2n+1 −2p+1 ordinary cube variables, u0, · · · , uq−1 (If q = 0, we set p = 2n +1),
then the term v0v1 · · · vp−1u0 · · · uq−1 will not appear in the output polynomials
of (n + 2)-round Keccak sponge function.

Using conditional cube testers, better key recovery attacks were obtained for
Keccak-MAC and Keyak in [19]. Later, the attacks on Keccak-MAC were
further improved with better conditional cubes found by an MILP model in [20].

Attack Procedure. In previous works [19,20], the number of conditional cube
variables is chosen to be 1, i.e., p = 1. Then, over a conditional cube with dimen-
sion d = 2n, the cube sum is zero for (n + 1)-round Keccak sponge function if
the conditions are satisfied. For such a conditional cube whose conditions involve
t-bit secret information, the (n+1)-round attack proceeds in two steps as follows.

1. Guess the t-bit secret information and set the conditions accordingly.
2. Query the 2d = 22

n

outputs and calculate the cube sum. If the cube sum is
zero, mark the guess as a candidate for the t-bit secret information.

The attack has a time and data complexity of 2d+t = 22
n+t. If t is far less

than the output length, the t-bit secret information can be recovered uniquely.
There may exist conditions that do not involve any secret information, but only
conditions involving secret information affect the complexities. In the following,
t is referred to the number of bits of secret information in conditions.

3.3 Linear Structures

In [17], Guo et al. developed a technique named linear structure which allows
linearization of Keccak-f for up to 3 rounds. Based on the linear structures,
a series of new zero-sum distinguishers of Keccak-f were proposed, as well as
several new preimage attacks against Keccak.

Let a[x][y], x = 0, 2, y = 0, 1, 2, 3 be variables and a[x][4] =
⊕3

y=0 a[x][y]⊕αx

with any constant αx so that variables in each column sum to a constant. The
core idea is to reduce the diffusion effect of θ. With all columns sum to constants,
the variables do not propagate through θ. Note θ is the only mapping in λ with
diffusion property, so λ does not diffuse the variables under this setting. Figure 5
shows how the variables influence the internal state under the transformation of
Keccak-f round function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. All bits of the lanes with orange
slashes have algebraic degree 1, those lanes with orange dots have algebraic

New MILP Modeling 75

degree at most 1 (meaning it is either a variable of degree 1 or a constant), and
the other lanes are all constants where gray, light gray and white bits stand
for values 1, 0, and arbitrary constants, respectively. Note the algebraic degrees
remain through the linear operations θ, ρ, π, and ι. The only non-linear operation
is the χ which increases the algebraic degree through the AND operation of two
adjacent bits. As shown in the figure, all variables before χ are not adjacent to
each other, which makes sure that the algebraic degree of the state bits remains
at most 1 after one round function R.

Moreover, bit 1 (0) on the left (right) of the variable helps to restrict the
diffusion of variables through χ, while an unknown neighboring constant diffuses
the variable in an uncertain way, as denoted by lanes with orange dots where
the variable has an uncertain coefficient. This structure has degrees of freedom
512. Also, it can be regarded as a cube of dimension 512 that linearizes the first
round.

Fig. 5. 1-round linear structure of Keccak-p with the degrees of freedom up to 512,
with bits in orange slashes (resp. dots) of degree 1 (resp. at most 1), and gray, light
gray and white bits being values 1, 0, and arbitrary unknown constants, respectively.

3.4 Motivations

Through the linear structure, the diffusion effect of variables through χ is illus-
trated, which enables us to give a full description of χ using MILP. Then we
consider the possibility of building a new MILP model for searching conditional
cube attacks for Keccak-p based constructions, especially for finding optimal
conditional cubes for constructions with fully unknown internal state.

Impact of p. If the number of conditional cube variables p increases by 1, the
dimension d of the required cube reduces by 1 but t increases by at least 1. So
there is no need to have more than one conditional cube variable for most cases.
Therefore, we set p = 1 in our attacks on KMAC, Keyak and Ketje.

However, multiple conditional cube variables may be useful for analyzing
Full-state Keyed Sponge (FKS) or Full-state Keyed Duplex (FKD) [10,21] where
full-state message absorption is used. Due to full-state degrees of freedom, a large
number of conditional cube variables may exist and even without any condition.
The following table shows the comparison between two extreme cases where
p = 1 and p = 2n + 1, latter of which means all cube variables are conditional
cube variables and thus the first two rounds are fully linearized. If p is large

76 L. Song et al.

p Dimension nr rounds with zero sum

1 2n n + 1

2n + 1 2n + 1 n + 2

enough and 2d+t = 22
n+1−p+1+t < 2|K|, the cube attack can be extended by one

round.
For clarity, we define two types of conditional cubes as follows.

Type I. Among all cube variables, there is only one conditional cube variable.
Type II. All cube variables are conditional cube variables, i.e., all the cube

variables do not multiply with each other in the first two rounds.

In [7], it is stated that whether cube attacks can be extended to more rounds
by exploiting full-state absorbing remains an open question. In this paper, we
try to answer the open question by exploiting Type II cubes.

4 Modeling Each Step with MILP

MIL is a general mathematical tool, which takes an objective function and a
system of linear inequalities with respect to real numbers as input, and aims to
search for an optimal solution which not only satisfies all the inequalities but
also minimizes/maximizes the objective function.

Cryptanalysis using MILP takes five main steps as shown in Fig. 6. Firstly,
one defines variables which are mostly binary for the cryptanalytical problem.
Secondly, she identifies links between the variables, which deeply depend on the
cryptanalytical problem. Based on the links, she then generates all valid patterns
for the variables which can be described with inequalities, using existing meth-
ods. In this paper, we use the convex hull method [28] together with a selection
algorithm from [24]. Once the cryptanalytical problem is converted to an MILP
problem, it can be solved with an MILP solver. Cryptanalysis using other tools
such as SAT solvers works in a similar way. Since the last two steps are straight-
forward, the first three steps are the core part for MILP-based cryptanalysis
which will be our focus in Sects. 4 and 5.

Fig. 6. Workflow of cryptanalysis using MILP

In this section, through a 1-round linear structure of KMAC we first show where
the conditions come from, and formulate the time complexity of conditional cube
attacks. Then we describe each step of the Keccak-p round function using

New MILP Modeling 77

inequalities. The full model for searching conditional cubes will be introduced in
the next section. Note that our modeling is described under the assumption that
the internal state of the target constructions is fully unknown. The difference of
the model for constructions with partially known internal state will be discussed
in Sect. 5.3.

4.1 A 1-Round Linear Structure of KMAC

Suppose the internal state before injecting messages is denoted by k[x][y], 0 ≤
x, y < 5. For convenience, the r-bit message block is denoted as a[x][y], 0 ≤
x, y < 5, where the last c bits are set to 0. Figure 7 provides a 1-round linear
structure of KMAC128 and shows the transformation of the internal state under
the first round function R after absorbing the message block. Following the same
notations in Sect. 3.3, lanes with orange slashes denote variables, lanes with
orange dots have algebraic degree at most 1, and bits in white lanes are constants.
Here, the first four lanes of the first and the third columns of a[x][y] are set to be
variables such that the sum

⊕3
y=0 a[x, y] equals to certain constants for x = 0, 2.

The capacity of KMAC128 consists of four lanes, so these lanes can not be chosen
as variables. As can be seen from Fig. 7, the output of the first round function
is linear since there are no adjacent variables at the input of χ. This 1-round
linear structure of KMAC128 has a degree of freedom up to 384. A similar 1-round
linear structure can also be constructed for KMAC256.

As can be seen, the first round can be linearized without any condition on
constants by just excluding neighbouring variables before χ. Let us consider
constructing a conditional cube, where at least one variable should be selected
such that it is not multiplied with any other variables in the second round,
while there is no such restriction for the rest of the variables. Specifically, if an
input bit of the χ in the second round contains the conditional variable, its two
neighbouring bits should be constants. According to the property of Keccak-p
(specifically the θ), each neighbouring bit is calculated from 11 output bits of
the first round. These 11 bits may be variables or constants, depending on the
actual constant values involved in the χ of the first round.

Fig. 7. 1-round linear structure of KMAC128 with the degrees of freedom up to 384, with
bits in orange slashes (resp. dots) of degree 1 (resp. at most 1), and white bits being
arbitrary unknown constants, respectively.

78 L. Song et al.

Unlike the linear structure proposed in [17], all the constants before χ of the
first round are not controllable because of the unknown initial state. Hence, it
is impossible to determine how the variables are propagated due to the logic
AND, where ANDing with 1 allows propagation, and no propagation otherwise.
This makes it hard to track the positions of all variables in the second round
deterministically, hence increases the difficulty to find conditional cubes fulfilling
the requirement that there is no multiplication (a.k.a. AND operation) with any
conditional cube variables in the second round. However, if part of constants
meets certain conditions, then it can be guaranteed that the conditional cube
variable do not multiply with any variable in the second round and thus con-
ditional cubes can be constructed. This is where bit conditions come from for
conditional cubes.

Given a 2n-dimensional conditional cube with one conditional cube variable
and t bit conditions, it requires a time complexity of 22

n+t to recover t bits of
the internal state for an (n+1)-round Keccak-p based construction. Hence the
overall complexity to recover the internal state is around � |b|

t � · 22n+t. Once the
internal state is recovered, the key can be computed directly. It is inferred that
the smaller t is, the lower the time complexity would be. So the aim of our new
MILP model is to find conditional cubes with minimal bit conditions, meanwhile
keeping the cube dimension large enough.

4.2 Modeling the Non-linear Layer

The first observation before giving the MILP model is that, although one input
bit to the first χ is calculated from 11 bits of the initial state, it is unnecessary
for us to start from the initial state, as there is a bijective relation (the λ)
between it and the state just before the χ. In the meanwhile, the 1-round linear
structure could be started from the middle as well. Hence, instead of trying to
derive everything from the very beginning, we start from the state just before
χ. This simple yet crucial observation will reduce the complexity of the problem
significantly, as will be seen later.

Recall that the message block is denoted by a, and b = λ(a), and k stands
for the secret internal state. Let k′ = λ(k). Thus, b ⊕ k′ is the input of the
first χ and c indicates the output. The tuple (x, y, z) denotes the coordinates
of one bit in the state. Additional notations A,B,C, V and H are used for
the modeling. Specifically, A[x][y][z] (B[x][y][z] or C[x][y][z]) is 1 if a[x][y][z]
(b[x][y][z] or c[x][y][z]) is active and 0 otherwise, while V [x][y][z] = 1 indicates a
bit condition that b[x][y][z]+k′[x][y][z] should be fixed to H[x][y][z]. The number
of bit conditions is denoted by t.

Note, we are to model two layers of χ. Without losing any degree of freedom,
we do it in two steps by modeling the first χ without imposing any additional
condition, and the second χ using the output from our modeling of the first χ,
i.e., nested modeling. This may cost higher search complexity compared with
previous works at first glance, we will see the effectiveness and power later. Due
to the generality of our modeling, we could find optimal solutions whenever it is
practical to solve.

New MILP Modeling 79

Although χ is the only non-linear operation of Keccak-p, modeling it into
inequalities is non-trivial. Let us look at the computation of one bit through χ.
According to the algebraic expression of χ, c[x][y][z] = b[x][y][z] ⊕ (1 ⊕ b[x +
1][y][z]) · b[x + 2][y][z]. For a conditional cube, the output bits of the first round
should be linear, which can be guaranteed by the constraint that variables do not
appear in adjacent input bits, namely B[x][y][z] + B[x + 1][y][z] ≤ 1. However,
the value of input constants influences the diffusion of variables through χ and
further influences the second round, as shown in Fig. 5. However, as we find
out, the diffusion patterns of variables through χ fall in a smaller than expected
set as listed in Table 3, which makes the modeling of all cases possible without
imposing any additional conditions. To make it clear, we explain some rows of
Table 3. The first two rows mean that if both b[x + 1][y][z] and b[x + 2][y][z]
are constants, then the constants can be any value and c[x][y][z] will inherit
the same activeness from b[x][y][z]. The third row means that if b[x + 2][y][z] is
active and b[x][y][z], b[x + 1][y][z] are constants but the value of b[x + 1][y][z] is
uncertain, then c[x][y][y] contains uncertain propagation from b[x + 2][y][z] and
its algebraic degree is at most 1. On the contrary, if the value of b[x + 1][y][z]
is restricted to 1 (resp. 0) as in the fourth (resp. fifth) row, c[x][y][z] turns to
be inactive (active) definitely. The fifth row can be ignored since it costs a bit
condition but still diffuses the variable from b[x + 2][x][y] to c[x][y][z], making
the second round denser. The remaining rows can be explained similarly. Next,
we generate a set of inequalities (see Table 7 in Appendix B) to describe these
0–1 patterns.

Table 3. Diffusion of variables through χ, where coordinates [y][z]s are omitted and
symbol ‘*’ denotes arbitrary value.

B[x] B[x + 1] B[x + 2] V [x + 1] V [x + 2] H[x + 1] H[x + 2] C[x]

0 0 0 * * * * 0

1 0 0 * * * * 1

0 0 1 0 0 * * 1

0 0 1 1 0 1 * 0

0 0 1 1 0 0 * 1a

0 1 0 0 0 * * 1

0 1 0 0 1 * 0 0

0 1 0 0 1 * 1 1

1 0 1 0 0 * * 1

1 0 1 1 0 * * 1
a This row can be excluded

80 L. Song et al.

4.3 Modeling the Linear Layer

The linear layer λ consists of three steps: θ, ρ and π, the latter two of which just
change the positions of the state bits. Hence, we focus on modeling θ. θ adds
two columns to a bit. If both columns have even parity, then the bit does not
change at all after θ. If all columns have even parity, then it is said that the state
is in the column parity kernel (CP-kernel). While the original column parity is
defined on values, in the context of cube attacks, it refers to activeness.

Following [25], we introduce F [x][z] and G[x][z] to describe the parity of a
column in the state.

– The column is not active, i.e., there is no variable: G[x][z] = 0, F [x][z] = 0;
– The column is active and the column sum is active: G[x][z] = 1, F [x][z] = 0;
– The column is active and the column sum is inactive: G[x][z] = 0, F [x][z] = 1;

As can be seen, G[x][z] = 1 indicates that the column sum contains variables,
and only constants otherwise. If G[x][z] = 0 for all columns, then the cube lies
in the CP-kernel. F [x][z] = 1 means that the column contains variables but
the variables sum to certain constant, by consuming one bit degree of freedom.
Suppose A[x][y][z], y = 0, · · · , 4 stands for the activeness of column (x, z), then
the patterns of A[x][y][z], y = 0, · · · , 4 and F [x][z], G[x][z] fall into a set of
1 + 5 + (32 − 6) × 2 = 58 discrete points in R

7. The inequalities model this set
are derived and listed in Table 8.

The activeness of the output of θ now can be calculated from A[x][y][z]
and G[x][z]. Assume B[x][y][z] denotes the activeness of θ’s output (elsewhere
B[x][y][z] denotes the activeness of the output of the linear layer). Then B[x][y][z]
= 1 if any of A[x][y][z], G[x−1][z] and G[x+1][z−1] is 1; otherwise B[x][y][z] = 0.
This can be modeled by the following inequalities.

B[x][y][z] − A[x][y][z] ≥ 0,

B[x][y][z] − G[x − 1][z] ≥ 0, B[x][y][z] − G[x + 1][z − 1] ≥ 0,

A[x][y][z] + G[x − 1][z] + G[x + 1][z − 1] − B[x][y][z] ≥ 0. (1)

If only cubes in the CP-kernel are of interest, set G[x][z] = 0 and inequalities
in (1) can be replaced with B[x][y][z] = A[x][y][z]. In this way, the model of the
linear layer is simplified.

5 Modeling the Search for Conditional Cubes

This section presents a full model for searching conditional cubes of both types.
The conditional cube requires conditional cube variables not to multiply with
any variable even in the second round, which means their neighboring bits before
the second χ should be constants. For the Type I, we could fix the positions of
the conditional cube variable (we place the same variable at two bit positions in
the same column of the initial state) and focus only on it and its neighboring bits.
Whereas for Type II, attention should be paid to the diffusion of all variables
in the second round. Due to this difference for the second round, our model for
searching conditional cubes of both types will be constructed separately.

New MILP Modeling 81

5.1 Model for Searching Conditional Cubes of Type I

Modeling the Second Round. The neighboring bits of the conditional cube
variable before the second χ should be constants. Suppose these neighboring bits
are denoted by si. According to the round function R, each neighboring bit si is
calculated from 11 bits of c[x][y][z]. There are two cases depending on whether
there is any variable among the 11 bits:

Case 1. For these 11 bits, none of them are variables, i.e., C[x][y][z] = 0;
Case 2. There are variables among the 11 bits and the XOR of these 11 bits

form a linear equation which consumes one bit degree of freedom.

We introduce one more dummy variable Si for si to indicate which case hap-
pens, where Si = 0 for Case 1 and Si = 1 for Case 2. Case 1 is simple, while
for Case 2 one needs to pay attention to “uncertain propagations” or lanes with
orange dots in Fig. 7 since no exact information can be derived from a linear
equation containing variables with uncertain coefficients. So once Case 2 hap-
pens, additional conditions should be imposed to avoid uncertain propagations.

Similarly, all possible patterns of Si and its related bits can be enumerated as
shown in Table 4 and the set of inequalities are provided in Table 9. Specifically,
if c[x][y][z] is required in calculating si, the inequalities in Table 9 are added to
the MILP model.

Table 4. Influence of conditional cube variables in the second round. Symbol ‘*’ denotes
arbitrary value.

Si B[x][y][z] B[x + 1][y][z] B[x + 2][y][z] V [x + 1][y][z] V [x + 2][y][z]

0 * * * * *

1 0 0 0 * *

1 1 0 0 * *

1 1 0 1 1 0

1 0 0 1 1 0

1 0 1 0 0 1

Modeling the Search for Conditional Cubes. The following constraints
are generated for searching conditional cubes of Type I.

1. Constraints for the linear layer of the first round, according to Sect. 4.3;
2. Constraints for the nonlinear layer of the first round, according to Table 7;
3. Constraints for the conditional cube variable in the first round. If a input bit

b[x][y][z] of χ involves the conditional cube variable, then we fix its neigh-
boring bits to constants such that it does not diffuse to other positions.
It requires

B[x − 1][y][z] = 0, B[x + 1][y][z] = 0,
V [x − 1][y][z] = 1, V [x + 1][y][z] = 1. (2)

H[x − 1][y][z] = 1,H[x + 1][y][z] = 0.

82 L. Song et al.

4. Constraints for the conditional cube variable in the second round, according
to Table 9;

5. Constraint for the dimension. If a 2n-dimensional conditional cube is required,
then set

∑
A[x][y][z] −

∑
F [x][z] −

∑
Si = 2n, (3)

where
∑

F [x][z] +
∑

Si is the number of consumed degrees of freedom.
6. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (4)

Besides, there may exist additional constraints. For example, the last c bits and
some padded bits cannot be variables. When all constraints are generated, an
MILP solver is invoked to find a solution that minimizes the objective.

5.2 Model for Searching Conditional Cubes of Type II

Modeling the Second Round. For Type II conditional cubes, all the cube
variables should not multiply with each other in the second round. Therefore the
diffusion of each cube variable in the second round becomes indispensable and
must be modeled. Beside the activeness of the input of the second round, the
diffusion of cube variables also depends on the activeness of column sums which
is the core part to be modeled.

Recall that we start from b, the input of χ in the first round and c = χ(b).
Let d = λ(c) by omitting the ι step of the first round, and D[x][y][z] denotes
the activeness of d. From the algebraic expression of χ, namely, c[x][y][z] =
b[x][y][z] ⊕ (1 ⊕ b[x + 1][y][z]) · b[x + 2][y][z], it is known that if B[x][y][z] = 1,
then C[x][y][z] = 1. If the sum of column (x, z) of b is inactive, then in what
circumstance the sum of column (x, z) of c is also active? This is what we need
to explore. Note that, columns with an inactive sum do not diffuse to other
columns, which is beneficial to the linearization of the second round.

Suppose G1[x][z] = 1 means the sum of column (x, z) in b is active and
G1[x][z = 0] otherwise. Let G2[x][z] play the same role for c. With G2[x][z] and
C[x][y][z], the linear layer in the second round can be modeled just as the linear
layer in the first round. To make the second round linear, we only need to add
the constraint D[x][y][z] + D[x + 1][y][z] ≤ 1. So the only problem unsolved is
to model the activeness of columns of c.

The value of G2[x][z] is influenced by three columns of b at (x, z), (x + 1, z)
and (x + 1, z). This is the most complex relation to be modeled in this paper.
Specifically, variables at position (x, y, z) of b propagate to position (x, y, z) of c
for sure; variables at positions (x + 1, y, z) and (x + 2, y, z) of b may diffuse to
position (x, y, z) of c. The sum of column (x, z) of c is inactive, i.e., G2[x][z] = 0
only if all the following three conditions hold.

New MILP Modeling 83

– G1[x][z] = 0.
– No variable in column (x + 1) of b propagates to column (x, z) of c.
– (a) No variable in column (x+2) of b propagates to column (x, z) of c, or (b)

all the variables in column (x + 2) of b propagate to column (x, z) of c and
G1[x + 2][z] = 01.

In the following, the three conditions will be analyzed in detail individually.

1. The effect of variables in column (x, z). C[x][z] = 1 if B[x][z] = 1, so
G2[x][z] = 1 if G1[x][z] = 1.

2. The effect of variables in column (x + 1, z) of b depends on conditions in
column (x + 2, z). If there is any uncertain propagation of variables from
column (x + 1, z), G[x][z] = 1. Additionally, P [x][y][z] is introduced where
P [x][y][z] = 1 if the variable at (x + 1, y, z) is propagated to (x, y, z) with an
uncertain coefficient and P [x][y][z] = 0 otherwise. The relation of P [x][y][z]
and B[x + 1][y][z], V [x + 2][y][z] is described in the following table.

P [x] B[x + 1] V [x + 2] inequalities

0 0 * −P [x] + B[x + 1] ≥ 0

1 1 0 −P [x] − V [x + 2] ≥ −1

0 1 1 P [x] − B[x + 1] + V [x + 2] ≥ 0

The effect of column (x + 1, z) to column (x, z) is denoted by M [x][z] where
M [x][z] = 1, i.e., there exist uncertain propagations of variables from column
(x + 1, z) if any P [x][y][z], y = 0, · · · , 4 is 1. This can be described with
inequalities in (5).

M [x][z] − P [x][y][z] ≥ 0, y = 0, · · · , 4.
∑

y

P [x][y][z] − M [x][z] ≥ 0. (5)

3. The effect of variables in column (x + 2, z) of b is relatively complicated. As
shown previously, there are two cases that column (x+2, z) of b does not affect
G2[x][z]. To identify these two cases, we introduce Q1[x][y][z], Q2[x][y][z],
N1[x][z], N2[x][z] and N3[x][z]. Q1[x][y][z] and N1[x][z] play similar roles as
P [x][y][z] and M [x][z], i.e., N1[x][z] = 1 if there is uncertain propagation
from column (x + 2, z).
Q2[x][y][z] = 1 if the variable at (x + 2, y, z) of b is propagated to (x, y, z) of

1 The reason why the modeling for the effects of column (x+2, z) and column (x+1, z)
are different lies in the following fact. If the constant on the right side of a cube
variable consumes a condition, we can constrained the constant to 0 directly, since 1
is worse under all circumstance as shown in Table 3. On the contrary, if the condition
is imposed to the constant on the left side of a cube variable, the constant can be
restricted to either 0 or 1 and no one has an absolute advantage over the other.

84 L. Song et al.

c for sure. Let N2[x][z] = 0 if and only if
∑

y Q2[x][y][z] = 0. Let N3[x][z] = 0
if

∑
y Q2[x][y][z] =

∑
y B[x + 2][y][z], i.e., all variables in column (x + 2, z)

of b are diffused to column (x, z) of c.
Q1[x][y][z] and Q2[x][y][z] can be modeled as shown in the following table.

Q1[x] Q2[x] B[x + 2] V [x + 1] H[x + 1] Inequalities

0 0 0 0 * −Q1[x] − Q2[x] + B[x + 2] ≥ 0

0 0 0 1 * Q1[x] − B[x + 2] + V [x + 1] ≥ 0

1 0 1 0 * −Q1[x] − V [x + 1] ≥ −1

0 1 1 1 0 Q1[x] + Q2[x] − B[x + 2] + H[x + 1] ≥ 0

0 0 1 1 1 −Q2[x] − H[x + 1] ≥ −1

The relation between N1[x][z], N2[x][z] and Q1[x][y][z], Q2[x][y][z] can also
be described in the same way as in (5). To model N3[x][z], a large integer I
is used to express the IF-ELSE logic that N3[x][z] = 0 if

∑
y Q2[x][y][z] =∑

y B[x+2][y][z] as long as I is larger than 5, say 100. The exact inequalities
are shown in (6).

∑

y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≤ I − 1,

∑

y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≥ 0. (6)

According to our model, (N1[x][z], N2[x][z], N3[x][z]) = (0, 0, ∗) indicates the
first case, and (N1[x][z], N2[x][z], N3[x][z]) = (0, 1, 0) stands for the second
case.

As can be derived from the above analysis, when (a) (M [x][z], N1[x][z],
N2[x][z], N3[x][z]) = (0, 0, 0, ∗), or (b) (M [x][z], N1[x][z], N2[x][z], N3[x][z]) =
(0, 0, 1, 0), and G1[x+2][z] = 0, G2[x][z] = G1[x][z]; otherwise G2[x][z] is 1. The
inequalities in Table 10 can be used to model this property.

Modeling the Search for Conditional Cubes. After introducing special
techniques for modeling the column parity of the state in the second round, we
can build the whole model for searching conditional cubes that linearize the first
two rounds. Note that we start from the input of χ in the first round.

1. Describe the column parity of b using G1[x][z], F1[x][z], according to Table 8.
2. Constraints for χ in the first round, according to Sect. 4.2;
3. Constraints for modeling the column parity of c, according to this subsection.
4. Constraints for the linear layer in the second round, according to Sect. 4.3;
5. Constraints for χ in the second round, i.e., D[x][y][z] + D[x + 1][y][z] ≤ 1.

New MILP Modeling 85

6. Constraint for the dimension. If a (2n + 1)-dimensional conditional cube is
required, then set

∑
C[x][y][z] −

∑
F1[x][z] = 2n + 1, (7)

where
∑

F1[x][z] is the number of consumed degrees of freedom.
7. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (8)

5.3 Discussion and Comparison

Model for Constructions with Partially Known Internal State. While
minimal conditions means optimal conditional cubes for Keccak-p-based con-
struction with fully unknown internal state, such as KMAC, it is not the case if the
internal state is partially known even though the number of conditions involving
the key is still minimized. Note that the conditions are imposed on certain input
bits of the first χ and each bit involves some key information. For Keccak-
p-based construction with partially unknown internal state, t bit conditions do
not necessarily contain t-bit key information. For example, in the 64-dimensional
cube of Ketje SR v1, there are 27 bit conditions all of which involve the key
but contain only 26-bit information of the key due to dependency.

Comparison with the Existing MILP Model. Recently, Li et al. proposed
an MILP model for searching cubes of Type I [20]. Their model sets every
b[x][y][z] to a constant if it relates to the neighboring bits of the conditional
variable in the first two rounds. In our model, we incorporate the full diffusion
effect of χ and hence consider a broader class of conditional cubes. In particular,
b[x][y][z] can be a variable even if it relates to the neighboring bits of the condi-
tional variable in the second round. As a result, more conditional cubes can be
found with a greater range of dimension. As demonstrated in Table 5, better con-
ditional cubes are found using our model under the same setting. In particular,
given the dimension, our model returns conditional cubes with much fewer bit
conditions. For example, the 32-dimensional conditional cube of Keccak-MAC-
512 in [20] requires 24 bit conditions involving the key, while using our model,
the number of bit conditions can be only 3 (n = 5 and t = 3), which reduces
the time complexity of attacking 6-round Keccak-MAC-512 from 258.3 [20] to
� |k|

t � ·22n+t = � 128
3 � ·225+3 ≈ 240. Our cube of Keccak-MAC-512 is provided in

Table 5. Moreover, our models cover both types of conditional cubes while Li et
al.’s model aims for only Type I conditional cubes.

6 Applications

In this section, we apply our models to conditional cubes attacks on KMAC, Keyak
and Ketje where Type I cubes are used. In order to extend the cube attacks
on Keccak-p based constructions with full-state absorption, we exploit Type
II cubes.

86 L. Song et al.

Table 5. Comparison with the previous MILP model on Keccak-MAC with the con-
ditional cube placed at (2, 0, 0) and (2, 1, 0). The number of bit conditions only takes
those involving key bits into account.

Variant Dimension #Conditions Reference

Keccak-MAC-384 65 8 [20]

97 8 This

65 2

Keccak-MAC-512 32 24 [20]

32 3 This

50 24

6.1 Conditional Cube Attacks on KMAC

In this subsection, techniques described in Sects. 4 and 5.1 are used to find
conditional cubes for KMAC, based on which key recovery attacks can be mounted
on 7-round KMAC128 and 9-round KMAC256 respectively.

Cube Attack on KMAC128. For KMAC128, the capacity is 256, which covers only
four lanes. By placing the conditional cube variable at two bits in a column of a2,
our MILP model could find large conditional cubes with 4 bit conditions which
are least possible conditions. To make the attack clear, a toy cube of KMAC is intro-
duced first, as shown in Table 6. This cube is selected from the CP-kernel and has
dimension 16, and the conditional cube variable is placed at a[0][0][0], a[0][1][0].
The 4-bit conditions can be derived directly from the positions of the conditional
cube variable since only the conditional cube variable contributes to bit condi-
tions in this case. Note that, b = λ(a) and the relation between a[x][y][z] and
b[x][y][z] is not expressed explicitly in the bit conditions. The remaining 15 ordi-
nary cube variables can be extracted from A[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < 64
which are represented as a 5 × 5 array of lanes and labeled as ‘Positions of cube
variables’ in the table. In the remainder of the paper, the bit conditions are
omitted if they come only from the conditional cube variable.

For KMAC128, 64-dimensional conditional cubes are enough for attacking 7
rounds of KMAC128. In the following, multiple 64-dimensional conditional cubes
are used for the recovery of the internal state. Once the internal state is recovered,
the key can be derived directly.

1. Recover t bits of the internal state. Given a 64-dimensional conditional
cube with t bit conditions where t = 4 for KMAC128, the t bits of the secret
internal state k′[x][y][z] involving in the conditions are guessed and then the
constant part of the messages is chosen such that the t bit conditions are
satisfied. The right guess is detected by assigning all possible values to each

2 There is an exception that no conditional cube can be found when the conditional
variable is placed in lanes (1, 0), (1, 1).

New MILP Modeling 87

Table 6. A conditional cube of KMAC in the CP-kernel. Positions of cube variables are
derived from a 5× 5 array of lanes in hexadecimal using the little-endian format where
‘0’ is replaced with ‘−’.

Positions of cube variables

4----------2---1|----------------|---------------1|----------------|----------------

66------41-28-11|----------------|---------1-----1|----------------|----------------

26------414-8-1-|----------------|---------1------|----------------|----------------

24--------4---1-|----------------|----------------|----------------|----------------

----------------|----------------|----------------|----------------|----------------

The conditional cube variable: a[0][0][0] = a[0][1][0] = v0

Ordinary cube variables

a[0][1][4] = v1, a[0][1][24] = a[0][2][24] = v6, a[0][1][61] = v11,

a[0][2][4] = v2, a[0][1][30] = a[0][2][30] = v7, a[0][2][61] = v12,

a[0][3][4] = v1 + v2, a[0][1][57] = a[0][2][57] = v8, a[0][3][61] = v11 + v12,

a[0][1][15] = a[0][2][15] = v3, a[0][1][58] = v9, a[0][0][62] = a[0][1][62] = v13,

a[0][0][17] = a[0][1][17] = v4, a[0][2][58] = v10, a[2][0][0] = a[2][1][0] = v14,

a[0][2][22] = a[0][3][22] = v5, a[0][3][58] = v9 + v10, a[2][1][24] = a[2][2][24] = v15.

Conditions

b[0][3][36] = k
′
[0][3][36] + 1, b[2][3][36] = k

′
[2][3][36],

b[4][0][0] = k
′
[4][0][0] + 1, b[1][0][0] = k

′
[1][0][0].

cube variable and checking the sum of all outputs under the guess. If the cube
sum is zero, then the corresponding guess is the right one with overwhelming
probability and then the t bits of the secret internal state are recovered. The
time complexity for recovering the t bits of the internal state is 264+t = 268.

2. Recover t lanes of the internal state. Due to the z-axis translation invari-
ance of Keccak-p, a conditional cube is still a conditional cube after being
rotated along the z-axis. A cube and all its rotations are z-axis equivalent.
However, for KMAC the padding rule may break the z-axis equivalence. To
avoid it from happening, the last lane of the r-bit message block is set to be
inactive. Therefore, by rotating the cube bit by bit, t lanes of the internal
state would be recovered in 26 · 268 = 274 calls of 7-round KMAC128.

3. Recover the whole internal state. Ten z-axis equivalent conditional cubes
are used to recover the full internal state. The details of these cubes are given
in [26], and the order of the lanes recovered are displayed in Fig. 8. The total
time complexity of recovering the whole internal state is 26 · 264(1 · 24 + 3 ·
23 + 6 · 22) = 276.

Cube Attack on KMAC256. KMAC256 has a capacity of 512 bits which is equiv-
alent to 8 lanes. Including the last lane of the message block where certain bits
are padded, there are 9 lanes which can not contain variables. Apart from this,
the cube search for KMAC256 remains as that for KMAC128. Our MILP model
could find many 128-dimensional conditional cubes which can be used to attack

88 L. Song et al.

Fig. 8. The lanes recovered using ten z-axis equivalent conditional cubes. The underline
means bits of these lanes are involved in conditions but they are already known.

8 rounds of KMAC256. Since the output length of KMAC256 can be more than 320
bits, the first 5 lanes of the output can be reversed through the χ of the last
round. This immediately increases the attacked rounds by one, as this inversion
covers the χ of the last round, while λ does not increase the algebraic degree.
As a result, 9 rounds of KMAC256 can be attacked.

Choice of the Conditional Cube Variable. When we place the conditional cube
variable at two bit positions of the same column in a, the obtained cubes gener-
ally have more than 30 bit conditions. The increase of bit conditions is caused
by the increase of capacity. In order to reduce the number of bit conditions, we
place the conditional cube variable in a 2-round CP-kernel so that it does not
diffuse even in the second round, leading to a small set of constraints for the
conditional cube variable. As studied in [11], the minimal Hamming weight of
a 2-round CP-kernel differential trail of Keccak-f [1600] is 6. Among all the
2-round CP-kernel differential trails, only those which have no difference in the
last 9 lanes can be applied to the conditional cube search of KMAC256. Fortu-
nately, there is one (only one) 2-round CP-kernel differential trail satisfying this
requirement. The active bit positions of the 2-round CP-kernel differential trail
are

[(0, 0, 0), (0, 1, 0), (1, 0, 63), (1, 2, 63), (2, 1, 30), (2, 2, 30)].

By setting the conditional cube variable to these six bit positions, our MILP
model returns 128-dimensional cubes with 12 bit conditions, with which 11 lanes
(one lane overlapped) of the internal state can be recovered. With these 11 lanes
known, cubes with the conditional cube variable placed at two bit positions of
a column of a[x][y][z], 0 ≤ y < 3 can then be exploited to recover the remaining
lanes.

To recover the whole internal state, three z-axis equivalent conditional cubes
as shown in [26] are used and lanes recovered in each cube are displayed in
Fig. 9. As can be learned from the figure, the time complexity of the internal
state recovery is 26 · 2128(212 + 211 + 23) = 2146.58 calls of 9-round KMAC256.

New MILP Modeling 89

Fig. 9. The lanes recovered using three z-axis equivalent conditional cubes. The under-
line means bits of these lanes are involved in conditions but they are already known.

6.2 Conditional Cube Attacks on Keyak and Ketje

This subsection considers conditional cube attacks of Keyak and Ketje under
the nonce respect setting, i.e., the cube variables are placed among the posi-
tions where the nonce is loaded, and suppose there is no associated data to be
processed.

Figure 10 shows the key pack of Keyak and Ketje respectively (for Ketje,
it shows the key pack after π−1), where blue positions stand for the key, light
blue positions denote padded or encoded bits and white positions are the nonce.
This means that the cube variable should be placed in white lanes. Unlike KMAC,
the internal state of both Keyak and Ketje is known except the key part.
Due to the dependence of key bits in conditions, our model may not guarantee
optimal solutions.

Fig. 10. Key pack of Keyak and Ketje where the blue part means the key, the light
blue part denotes padded or encoded bits and the white part is the nonce.

All instances of Keyak and Ketje considered in this paper use 128-bit keys,
except Lake Keyak, where 256-bit keys are supported by replacing Keccak-p
[1600, 12] with Keccak-p[1600, 14]. Our main results are as follows and sum-
marized in Table 2.

Lake Keyak128. Using a 64-dimensional cube with 2 bit conditions involving
the key (see [26]), the key recovery attack of 8-round Lake Keyak128 costs
a data and time complexities 22 · 264 · 32 + 264 = 271.01 where the last χ can
be partially reversed due to large output length.

Lake Keyak256. Using a 128-dimensional cube with 4 bit conditions involving
the key (see [26]), the key recovery attack of 9-round Lake Keyak256 costs
a data and time complexities less than 24 · 2128 +23 · 2128 · 63+2128 = 2137.05.

90 L. Song et al.

River Keyak. Using a 64-dimensional cube with 12 bit conditions involving the
key (see [26], these 12 bit conditions involve 11 bits key information), the key
recovery attack of 8-round River Keyak costs a data and time complexities
211 · 264 + 210 · 264 · 6 + 2128−71 = 277.00.

Ketje Major. Using a 64-dimensional cube with 3 bit conditions involving the
key (see [26]), the key recovery attack of 7-round Ketje Major costs a data
and time complexities 23 · 264 · 3+22 · 264 · 2+21 · 264 · (64− 5)+264 = 271.24.

Ketje Minor. Using a 64-dimensional cube with 4 bit conditions involving the
key (see [26]), the key recovery attack of 7-round Ketje Minor costs a data
and time complexities less than 24 · 264 + 23 · 264 · 63 + 264 = 273.03.

For Ketje SR and Ketje JR, our model could not find better attacks than
the existing ones in [15]. However, for Ketje SR with Keccak-p as the underly-
ing permutation, namely, Ketje SR v1, better attacks on 7-round Ketje SR are
found using a 64-dimensional cube with 27 bit conditions (see [26], involve 26 bits
key information) and the time and data complexities are 226 · 264 · 2 + 2128−54 =
291.00. Therefore, Ketje instances using Keccak-p� are stronger than those
instances using Keccak-p under our attacks.

6.3 Conditional Cube Attacks on Full-State Keyed Duplex

In this subsection, we consider conditional cube attacks on Keccak-p based
FKD (or FKS) which provides full-state degrees of freedom. We assume that the
first data block is absorbed after the application of the underlying permutation,
as in Keyak. Therefore, the internal state before injecting the first data block
is fully unknown. This is not a nonce-respected attack since the cube will be
constructed on the full-state data block.

For convenience, FKD with Keccak-p[b, nr] as the underlying permutation
is denoted by FKD[b]. A direct application of linear structures shows that 512-
dimensional Type II cubes for FKD[1600] can be constructed by constraining 960
bits to certain constants. However, in key/state recovery attacks the number of
bit conditions allowed is limited. In this subsection, we apply our model for
searching Type II cubes of FKD[b], and try to find some useful cubes with a
small number of bit conditions.

When the number of bit conditions is set to 0, Type II cubes of FKD[1600]
can be found with dimension at least 48. If the dimension is set to 65, a Type
II cube with 25 bit conditions is found, as shown in [26]. Since the first two
rounds are linearized, the cube sum of 8-round Keccak is zero. Thus, this cube
can be used to attack 8-round FKD[1600] by recovering the internal state in a
similar way to the attack on KMAC. As long as the rate r is greater than 320
bits, a 9-round attack of FKD[1600] can be achieved by partially reversing the
last round. The time complexity is about 265+25 = 290. For more experimental
results, please refer to Appendix A.

Compared with cube attacks on Keccak-p based constructions where r-
bit messages are absorbed, cube attacks on FKD[1600] can be extended to one

New MILP Modeling 91

more round by exploiting the full-state absorption. With this, the open question
proposed by the Keyak designers in [7] now is answered.

The idea of full-state absorption has already been applied to Keyak which
absorbs data blocks of more than r bits each but less than b bits. For example,
Lake Keyak processes data blocks of 1536 bits, less than 1600 bits. A simple
way to adapt our attack on 9-round FKD[1600] to Lake Keyak is to find a
Type II cube with dimension 129 (65+64). However, such a cube with increased
dimension could not be found in a practical amount of time. Therefore, the
extended attack does not apply to Lake Keyak.

6.4 Experimental Verification and Codes

Since the attacks in this paper are impractical with current computation power,
the correctness of the attacks is verified on cubes with small dimensions. We
do no change to the attacks except reducing the number of rounds for the cube
tester in the middle, so the attack complexity reduces to a practical level. We
implement two Type I conditional cube attacks: one based on the 16-dimensional
toy cube in Table 6 for fast verification, and the other based on a 32-dimensional
cube for attacking 7-round KMAC256 (or 6-round KMAC128). A conditional cube
attack on 7-round FKD[1600] is also implemented with a 32-dimensional cube
of Type II. Note that this cube has three bit conditions which are set intention-
ally; otherwise, there can be no condition. The correctness of our attacks are
confirmed by these three experiments. The source codes for experimental veri-
fication are available via http://team.crypto.sg/VerificationCodesConCube.zip.
The codes for building our models are available through http://team.crypto.sg/
modelConCube.zip.

7 Conclusions

In the paper, we proposed new MILP models for searching two types of condi-
tional cubes for Keccak-p based keyed constructions. Particularly, we incorpo-
rated the diffusion effect of variables through the non-linear layer and took a
broader class of Type I conditional cubes into account and we proposed a model
for searching Type II conditional cube for the first time. With the new models,
conditional cubes with desired dimensions and least bit conditions were found
for KMAC. As a result, key recovery attacks of 7-round KMAC128, 9-round KMAC256
can be mounted respectively. To the best of our knowledge, these are the first
cryptanalysis results against KMAC. Using our model, we solve the open ques-
tion of FKD by extending the conditional cube attack by one additional round.
The application of our model to Keyak and Ketje gives rise to new attacks
or better attacks with reduced complexities. Specifically, the number of rounds
attacked against Lake Keyak with 128-bit keys is improved from 6 to 8 in the
nonce-respected setting and 9 rounds of Lake Keyak can be attacked when using
256-bit keys; attack complexities are reduced generally on other constructions.

http://team.crypto.sg/VerificationCodesConCube.zip
http://team.crypto.sg/modelConCube.zip
http://team.crypto.sg/modelConCube.zip

92 L. Song et al.

Acknowledgement. Ling Song and Danping Shi are partially supported by the Fun-
damental Theory and Cutting Edge Technology Research Program of Institute of Infor-
mation Engineering, CAS (Grant No. Y7Z0251103), Youth Innovation Promotion Asso-
ciation CAS, the National Natural Science Foundation of China (Grants No. 61802399,
61802400, 61732021, 61772519 and 61472415) and Chinese Major Program of National
Cryptography Development Foundation (Grant No. MMJJ20180102).

A Experimental Details

The model for searching Type II cubes for FKD[1600] has 37440 inequalities
on 15040 variables, which is about 1.8 times of the model for searching Type I
conditional cubes. Even though the search for Type I conditional cubes takes
seconds or minutes, the solving time of the model for Type II cubes increases
exponentially. We solve the model for finding Type II conditional cubes with
Gurobi optimizer [18] on a server with 64 cores at 2.3 GHz, and Gurobi could
not finish the optimization in a practical amount of time.

Type II cubes for FKD[1600] can be found with dimension d ≥ 65. However,
for FKD[800], when we set the number of conditions t ≤ 62 and the objective to
maximize the dimension, Gurobi shows after running 8 days that the dimension
falls in [62, 94], but to extend the attack by one more round, a 65-dimensional
Type II conditional cube is required.

B Inequalities

Table 7. Inequalities modeling the non-linear operation χ in the first round, where
coordinates [y][z]s are omitted.

−B[x] − B[x + 1] ≥ −1

−B[x] + C[x] ≥ 0

−B[x + 2] − V [x + 2] ≥ −1

−B[x + 1] − V [x + 1] ≥ −1

−B[x] − B[x + 1] − H[x + 2] + C[x] ≥ −1

B[x] − V [x + 1] − H[x + 1] − C[x] ≥ −2

B[x] − V [x + 2] + H[x + 2] − C[x] ≥ −1

B[x] + B[x + 1] + B[x + 2] − C[x] ≥ 0

−B[x + 1] − B[x + 2] + V [x + 1] + V [x + 2] + C[x] ≥ 0

−B[x + 1] − B[x + 2] + V [x + 2] + H[x + 1] + C[x] ≥ 0

New MILP Modeling 93

Table 8. Inequalities modeling the parity of a column

−F [x][z] − G[x][z] ≥ −1

−A[x][0][z] + F [x][z] + G[x][z] ≥ 0

−A[x][1][z] + F [x][z] + G[x][z] ≥ 0

−A[x][2][z] + F [x][z] + G[x][z] ≥ 0

−A[x][3][z] + F [x][z] + G[x][z] ≥ 0

−A[x][4][z] + F [x][z] + G[x][z] ≥ 0

A[x][0][z] + A[x][1][z] + A[x][2][z] + A[x][3][z] + A[x][4][z] − 2F [x][z] − G[x][z] ≥ 0

Table 9. Inequalities modeling the non-linear operation χ in the second round

−Si − B[x + 1][y][z] − B[x + 2][y][z] ≥ −2

−Si − B[x + 1][y][z] + V [x + 2][y][z] ≥ −1

−Si − B[x + 2][y][z] + V [x + 1][y][z] ≥ −1

−Si − B[x + 1][y][z] − V [x + 1][y][z] ≥ −2

−Si − B[x + 2][y][z] − V [x + 2][y][z] ≥ −2

−Si − B[x][y][z] − B[x + 1][y][z] ≥ −2

Table 10. Inequalities modeling the column parity of the input of the second round.

G2[x][z] − G1[x][z] ≥ 0

G2[x][z] − N1[x][z] ≥ 0

G2[x][z] − M [x][z] ≥ 0

−G2[x][z] + G1[x][z] + M [x][z] + N1[x][z] + N2[x][z] ≥ 0

G2[x][z] − G1[x + 2][z] − N2[x][z] ≥ −1

G2[x][z] − N2[x][z] − N3[x][z] ≥ −1

−G2[x][z] + G1[x][z] + G1[x + 2][z] + M [x][z] + N1[x][z] + N3[x][z] ≥ 0

References

1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recov-
ery attacks on reduced-round MD6 and Trivium. In: Handschuh, H., Lucks, S.,
Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography, 11.01. - 16.01.2009.
Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Germany (2009). http://drops.dagstuhl.de/opus/volltexte/2009/
1944/

http://drops.dagstuhl.de/opus/volltexte/2009/1944/
http://drops.dagstuhl.de/opus/volltexte/2009/1944/

94 L. Song et al.

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge func-
tions. Submission to NIST (Round 3) (2011). http://sponge.noekeon.org/CSF-0.
1.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28496-0 19

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference,
January 2011. http://keccak.noekeon.org, version 3.0

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Ketje v2. Candidate of CAESAR Competition, September 2016

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Keyak v2. Candidate of CAESAR Competition, September 2016

8. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: Milp-aided cube-attack-like crypt-
analysis on Keccak keyed modes. Designs, Codes and Cryptography, August 2018.
https://doi.org/10.1007/s10623-018-0526-x

9. Chaigneau, C., Fuhr, T., Gilbert, H., Guo, J., Jean, J., Reinhard, J., Song, L.:
Key-recovery attacks on full kravatte. IACR Trans. Symmetric Cryptol. 2018(1),
5–28 (2018). https://doi.org/10.13154/tosc.v2018.i1.5-28

10. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 21

11. Daemen, J., Van Assche, G.: Differential propagation analysis of Keccak. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34047-5 24

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
Keccak. J. Cryptol. 27(2), 183–209 (2014). https://doi.org/10.1007/s00145-012-
9142-5

13. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
733–761. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 28

14. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

15. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like attack on round-reduced initial-
ization of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1), 259–280 (2017).
https://doi.org/10.13154/tosc.v2017.i1.259-280

16. Fuhr, T., Naya-Plasencia, M., Rotella, Y.: State-recovery attacks on modified Ketje
Jr. IACR Trans. Symmetric Cryptol. 2018(1), 29–56 (2018). https://tosc.iacr.org/
index.php/ToSC/article/view/843

17. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I.
LNCS, vol. 10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 9

18. Gurobi: Gurobi Optimizer. http://www.gurobi.com/

https://tosc.iacr.org/index.php/ToSC/article/view/801
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
http://keccak.noekeon.org
https://doi.org/10.1007/s10623-018-0526-x
https://doi.org/10.13154/tosc.v2018.i1.5-28
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.13154/tosc.v2017.i1.259-280
https://tosc.iacr.org/index.php/ToSC/article/view/843
https://tosc.iacr.org/index.php/ToSC/article/view/843
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
http://www.gurobi.com/

New MILP Modeling 95

19. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 9

20. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 4

21. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 19

22. NIST: SHA-3 COMPETITION. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html (2007–2012)

23. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol.
10212, pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 8

24. Sasaki, Y., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

25. Song, L., Guo, J.: Cube-Attack-like cryptanalysis of round-reduced Keccak using
MILP. To appear in IACR Trans. Symmetric Cryptol. 2018(3) (2018). https://
eprint.iacr.org/2018/810

26. Song, L., Guo, J., Shi, D., Ling, S.: New MILP Modeling: Improved Conditional
Cube Attacks on Keccak-based Constructions. Cryptology ePrint Archive, Report
2017/1030 (2017). https://eprint.iacr.org/2017/1030

27. Song, L., Liao, G., Guo, J.: Non-full Sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 15

28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

29. The U.S. National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Federal Informa-
tion Processing Standard, FIPS 202, 5th August 2015. http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf

30. The U.S. National Institute of Standards and Technology: SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special
Publication 800–185, 21 December 2016. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf

https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-662-48800-3_19
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2017/1030
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-662-45611-8_9
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

	New MILP Modeling: Improved Conditional Cube Attacks on Keccak-Based Constructions
	1 Introduction
	2 Description of KMAC, Keyak and Ketje
	2.1 Keccak-p
	2.2 The Sponge Construction and KMAC
	2.3 The Duplex Construction and Keyak, Ketje
	2.4 Notations

	3 Related Works and Motivations
	3.1 Cube Attacks
	3.2 Conditional Cube Attacks
	3.3 Linear Structures
	3.4 Motivations

	4 Modeling Each Step with MILP
	4.1 A 1-Round Linear Structure of KMAC
	4.2 Modeling the Non-linear Layer
	4.3 Modeling the Linear Layer

	5 Modeling the Search for Conditional Cubes
	5.1 Model for Searching Conditional Cubes of Type I
	5.2 Model for Searching Conditional Cubes of Type II
	5.3 Discussion and Comparison

	6 Applications
	6.1 Conditional Cube Attacks on KMAC
	6.2 Conditional Cube Attacks on Keyak and Ketje
	6.3 Conditional Cube Attacks on Full-State Keyed Duplex
	6.4 Experimental Verification and Codes

	7 Conclusions
	A Experimental Details
	B Inequalities
	References

