
Decentralized Multi-Client Functional
Encryption for Inner Product

Jérémy Chotard1,2,3, Edouard Dufour Sans2,3, Romain Gay2,3,
Duong Hieu Phan1, and David Pointcheval2,3(B)

1 XLIM, University of Limoges, CNRS, Limoges, France
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

{jeremy.chotard,edufoursans,romain.gay,phan,david.pointcheval}@ens.fr
3 Inria, Paris, France

Abstract. We consider a situation where multiple parties, owning data
that have to be frequently updated, agree to share weighted sums of
these data with some aggregator, but where they do not wish to reveal
their individual data, and do not trust each other. We combine tech-
niques from Private Stream Aggregation (PSA) and Functional Encryp-
tion (FE), to introduce a primitive we call Decentralized Multi-Client
Functional Encryption (DMCFE), for which we give a practical instan-
tiation for Inner Product functionalities. This primitive allows various
senders to non-interactively generate ciphertexts which support inner-
product evaluation, with functional decryption keys that can also be
generated non-interactively, in a distributed way, among the senders.
Interactions are required during the setup phase only. We prove adaptive
security of our constructions, while allowing corruptions of the clients,
in the random oracle model.

Keywords: Decentralized · Multi-Client · Functional encryption
Inner product

1 Introduction

Functional Encryption (FE) [9,15,18,28] is a new paradigm for encryption which
extends the traditional “all-or-nothing” requirement of Public-Key Encryption
in a much more flexible way. FE allows users to learn specific functions of the
encrypted data: for any function f from a class F , a functional decryption key
dkf can be computed such that, given any ciphertext c with underlying plain-
text x, using dkf , a user can efficiently compute f(x), but does not get any
additional information about x. This is the most general form of encryption as
it encompasses identity-based encryption, attribute-based encryption, broadcast
encryption.

However, whereas the input can be large, like a high-dimensional vector, the
basic definition of FE implies that the input data comes from only one party: all
the coordinates of the vector are provided by one party, and all are encrypted
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 703–732, 2018.
https://doi.org/10.1007/978-3-030-03329-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_24&domain=pdf

704 J. Chotard et al.

at the same time. In many practical applications, the data are an aggregation of
information that comes from different parties that may not trust each other.

A naive way to distribute the ciphertext generation would be to take an FE
scheme and to have a trusted party handling the setup and the key generation
phases, while the encryption procedure would be left to many clients to exe-
cute by Multi-Party Computation (MPC). This straw man construction has two
obvious weaknesses:

1. Generating any ciphertext requires potentially heavy interactions, with every-
body simultaneously on line, and the full ciphertext has to be generated at
once, with all the components being known at the same time;

2. Some authority (the trusted third party) reserves the power to recover every
client’s private data.

Multi-Client Functional Encryption [16,20] addresses the former issue of
independent generation of the ciphertext, and we introduce Decentralized Multi-
Client Functional Encryption to address the latter, without any central authority
nor master secret key.
Multi-Client Functional Encryption. In Multi-Client Functional Encryption
(MCFE), as defined in [16,20], the single input x to the encryption procedure is
broken down into an input vector (x1, . . . , xn) where the components are inde-
pendent. An index i for each client and a (typically time-based) label � are used
for every encryption: (c1 = Encrypt(1, x1, �), . . . , cn = Encrypt(n, xn, �)). Anyone
owning a functional decryption key dkf , for an n-ary function f and multiple
ciphertexts for the same label �, c1 = Encrypt(1, x1, �), . . . , cn = Encrypt(n, xn, �),
can compute f(x1, . . . , xn) but nothing else about the individual xi’s. The com-
bination of ciphertexts generated for different labels does not give a valid global
ciphertext and the adversary learns nothing from it. MCFE is similar to the
naive construction described above with MPC, except that ciphertext genera-
tion now simply takes one round, and each ciphertext ci can also be generated
independently for the others.

Decentralized Multi-Client Functional Encryption. Still, MCFE requires a trusted
party to generate a master key msk and to distribute the encryption keys eki to
the clients and the functional decryption keys dkf to the decryptors. In our sce-
nario, however, the clients do not want to rely on any authority. We would thus
be interested in a decentralized version of MCFE, where no authority is involved,
but the generation of functional decryption keys remains an efficient process
under the control of the clients themselves. We introduce the notion of Decen-
tralized Multi-Client Functional Encryption (DMCFE), in which the authority
is removed and the clients work together to generate appropriate functional
decryption keys. We stress that the authority is not simply distributed to a
larger number of parties, but that the resulting protocol is indeed decentralized :
each client has complete control over their individual data and the functional
keys they authorize the generation of.

Decentralized Multi-Client Functional Encryption for Inner Product 705

1.1 A Use Case

Consider a financial firm that wants to compute aggregates of several companies’
private data (profits, number of sales) so that it can better understand the
dynamics of a sector. The companies may be willing to help the financial firm
understand the sector as whole, or may be offered compensation for their help,
but they don’t trust the financial firm or each other with their individual data.
After setting up a DMCFE, each company encrypts its private data with a time-
stamp label under its private key. Together, they can give the financial firm a
decryption aggregation key that only reveals a sum on the companies’ private
data weighted by public information (employee count, market value) for a given
time-stamp. New keys can retroactively decrypt aggregates on old data.

1.2 Related Work

In their more general form, FE and MCFE schemes have been introduced in [5,6,
10,16–19,27,30] but unfortunately, they all rely on non standard cryptographic
assumptions (indistinguishability obfuscation, single-input FE for circuits, or
multilinear maps). It is more important in practice, and it is an interesting
challenge, to build FE for restricted (but concrete) classes of functions, satisfying
standard security definitions, under well-understood assumptions.

Inner-Product Functional Encryption. In 2015, Abdalla, Bourse, De Caro, and
Pointcheval [1] considered the question of building FE for inner-product func-
tions. In their paper, they show that inner-product functional encryption (IP-
FE) can be efficiently realized under standard assumptions like the Decisional
Diffie-Hellman (DDH) and Learning-with-Errors (LWE) assumptions [26], but
in a weak security model, named selective security. Later on, Agrawal, Libert
and Stehlé [4] considered adaptive security for IP-FE and proposed construc-
tions whose security is based on DDH, LWE or Paillier’s Decisional Composite
Residuosity (DCR) [25] assumptions.

Private Stream Aggregation (PSA). This notion, also referred to as Privacy-
Preserving Aggregation of Time-Series Data, is an older primitive introduced
by Shi et al. [29]. It is quite similar to our target DMCFE scheme, however
PSA does not consider the possibility of adaptively generating different keys for
different inner-product evaluations, but only enables the aggregator to compute
the sum of the clients’ data for each time period. PSA also typically involves a
Differential Privacy component, which has yet to be studied in the larger setting
of DMCFE. Further research on PSA has focused on achieving new properties or
better efficiency [8,11,13,21,23,24] but not on enabling new functionalities.

Multi-Input Functional Encryption. Goldwasser et al. [16] introduced the notion
of Multi-Input Functional Encryption (MIFE) which breaks down a single input
x into an input vector (x1, . . . , xn) where the components are independent (as
does MCFE), but for which there is no notion of ciphertext index or label: user
i can enter xi and encrypt it as ci = Encrypt(xi). Anyone owning a func-
tional decryption key dkf , for an n-ary function f and multiple ciphertexts

706 J. Chotard et al.

c1 = Encrypt(x1), . . . , cn = Encrypt(xn), can compute f(x1, . . . , xn) but noth-
ing else about the individual xi’s. Numerous applications of MIFE have been
given in detail in [16].

As with MCFE, general purpose MIFE schemes rely on indistinguishability
obfuscation or multilinear maps, which we currently do not know how to instan-
tiate under standard cryptographic assumptions. Extending IP-FE to the multi-
input setting has proved technically challenging. [3] builds the first Multi-Input
IP-FE, that is, each input slot encrypts a vector xi ∈ Z

m
p for some dimension

m, each functional decryption key is associated with a vector y, and decryp-
tion recovers 〈x,y〉 where x := (xi‖ · · · ‖xn), y ∈ Z

n·m
p , and n denotes the

number of slots, which can be set up arbitrarily. They prove their construction
secure under standard assumptions (SXDH, and in fact, k-Lin for any k ≥ 1) in
bilinear groups. Concurrently, [22] build a two-input (i.e. n = 2) FE using sim-
ilar assumptions in bilinear groups. Very recently, [2,12] gave a function-hiding
multi-input FE for inner products, where the functional decryption keys do not
reveal their underlying functions. [2] also gives a generic transformation from
single to multi-input for IP-FE, which gives the first multi-input constructions
whose security rely on DDH, LWE, or DCR.

In multi-input FE, every ciphertext for every slot can be combined with any
other ciphertext for any other slot, and used with functional decryption keys
to decrypt an exponential number of values, as soon as there are more than
one ciphertext per slot. This “mix-and-match” feature is crucial for some of
the applications of MIFE, such as building Indistinguishability Obfuscation [16].
However, it also means the information leaked about the underlying plaintext
is enormous, and in many applications, the security guarantees simply become
void, especially when many functional decryption keys are queried. In the case of
inner product, as soon as m well-chosen functional decryption keys are queried
(i.e. for linearly independent vectors), the plaintexts are completely revealed. In
the multi-client setting however, since only ciphertexts with the same label (think
of it as a time-stamp, for instance) can be combined for decryption, information
leakage of the plaintext is much reduced.

The fact that clients have more control over how much information is leaked
about their data, and that we remove the need for a central authority in the
case of DMCFE, makes our schemes better suited for real-world use.

1.3 Multi-Client Functional Encryption

We remark that, as for MIFE, private-key MCFE is more relevant than its public-
key counterpart (this is explained in [16], or [3] in the context of IP-FE).

Essentially, in a public-key MCFE, an encryption of unknown plaintext xi (for
some label �) can be used together with encryptions of arbitrarily chosen values
x′

j for each slot j ∈ [n] (for the same label �) and a functional decryption key
for some function f , to obtain the value f(x′

1, · · · , x′
i1

, xi, x
′
i+1, · · · , x′

n). Since
the values x′

j for j �= i are arbitrarily chosen, this reveals typically too much
information on xi for practical uses. In the case of inner product, that means
that, from Enc(i, xi, �), dky , and the public key, one can efficiently extract the

Decentralized Multi-Client Functional Encryption for Inner Product 707

values xiyi +
∑

j �=i x′
jyj for chosen x′

j , which exactly reveals the partial inner
product xiyi (see [3] for more details on the limitations of public-key IP-FE in
the multi-input setting).

Security is defined with an indistinguishability game, where the adversary has
to distinguish between encryptions of chosen plaintexts (x0

i)i∈[n] and (x1
i)i∈[n].

The inherent leakage of information about the plaintext given by functional
decryption keys dkf is captured by a Finalize procedure in the security game,
where the advantage is set to zero if the adversary performed a trivial attack,
in the sense that correctness allows the adversary to distinguish encryptions
of (x0

i)i∈[n] from (x1
i)i∈[n], simply because the underlying functions f of the

decryption keys tell apart these plaintexts, i.e. f(x0
1, · · · , x0

n) �= f(x1
1, · · · , x1

n).
In the public-key setting, in order to prevent the adversary from a triv-

ial win, one should make the restriction that the adversary is only allowed to
ask functional decryption keys dkf for functions f that satisfy f(x0

1, ·, . . . , ·) =
f(x1

1, ·, . . . , ·), f(·, x0
2, . . . , ·) = f(·, x1

2, . . . , ·), . . . , f(·, ·, . . . , x0
n) = f(·, ·, . . . , x1

n).
Again, this would essentially exclude any function. A private-key encryption
solves this issue, and is still well-suited for practical applications.

In this paper, we will thus consider this private-key setting which naturally
fits the MCFE (and DMCFE) model as each component in the plaintext is sepa-
rately provided by a different client. In such a case, the corruption of some clients
is an important issue, since several of them could collude to learn information
about other clients’ inputs. More precisely, we propose such an MCFE for Inner-
Product functions in Sect. 4, that is secure even against adaptive corruptions of
the senders.

1.4 Decentralized Multi-Client Functional Encryption

While it allows independent generation of the ciphertexts, MCFE (like MIFE)
still assumes the existence of a trusted third-party who runs the SetUp algorithm
and distributes the functional decryption keys. This third-party, if malicious or
corrupted, can easily undermine any client’s privacy. We are thus interested
in building a scheme in which such a third-party is entirely taken out of the
equation.

We thus introduce the notion of Decentralized Multi-Client Functional
Encryption (DMCFE), in which the setup phase and the generation of func-
tional decryption keys are decentralized among the same clients as the ones that
generate the ciphertexts. We are interested in minimizing interactions during
those operations. While one can do it, in a generic way, using MPC, our target
is at least a non-interactive generation of the functional decryption keys, that we
achieve in Sect. 5, again for Inner-Product functions. The one-time setup phase
might remain interactive, but this has to be done once only.

1.5 Technical Overview

We briefly showcase the techniques that allow us to build efficient MCFE
and DMCFE schemes. The schemes we introduce later enjoy adaptive security

708 J. Chotard et al.

(aka full security), where encryption queries are made adaptively by the adver-
sary against the security game, but for the sake of clarity, we will here give an
informal description of a selectively-secure scheme from the DDH assumption,
where queries are made beforehand. Namely, the standard security notion for FE
is indistinguishability-based, where the adversary has access to a Left-or-Right
oracle, that on input (m0,m1) either always encrypts m0 or always encrypts m1.
While for the adaptive security, the adversary can query this oracle adaptively,
in the selective setting, all queries are made at the beginning, before seeing the
public parameters.

We first design a secret-key MCFE scheme building up from the public-key
FE scheme introduced by Abdalla et al. [1] (itself a selectively-secure scheme)
where we replace the global randomness with a hash function (modeled as a
random oracle for the security analysis), in order to make the generation of
the ciphertexts independent for each client. The comparison is illustrated in
Fig. 1. Note that for the final decryption to be possible, one needs the function
evaluation γ to be small enough, within this discrete logarithm setting. This
is one limitation, which is still reasonable for real-world applications that use
concrete numbers, that are not of cryptographic size.

Fig. 1. Comparison of the Inner-Product FE scheme from Abdalla et al. [1] and a
similar MCFE obtained by introducing a hash function H.

If we write c0 = gr in the single input case and c0 = H(�) in the Multi-Client
case, we have ci = gxic0

si for i ∈ [n] in both cases. In the public-key scheme
from [1], si was private, and only vi = gsi was known to the encryptor. Since we
are now dealing with private encryption, the encryptor can use si. Correctness
then follows from

gγ =
∏

i cyi

i

c0dky
=

∏
i (gxic0

si)yi

c0dky
=

g
∑

i xiyic0
∑

i yisi

c0dky
=

g
∑

i xiyic0
dky

c0dky
= g〈x,y〉.

We further define this MCFE scheme and prove it selectively secure under the
DDH assumption in Appendix B.

Decentralized Multi-Client Functional Encryption for Inner Product 709

We can easily decentralize the above protocol using standard MPC tech-
niques, but as we mentioned, our main goal is to minimize interactions during
the DKeyGen protocol. This simple protocol can illustrate our main insight: we
need to provide the aggregator with the decryption key 〈s,y〉. Since the si’s are
owned individually by the clients, we are interested in a protocol that would let
them send shares from which the decryptor would recover an agreed upon Inner
Product on their individual inputs. This sounds like a job for MCFE.

More precisely, sending Ẽncrypt(si) under some other key ti would not solve
our problem, because we would still need to provide 〈t,y〉 to enable decryption,
so we send Ẽncrypt(yisi) under ti. Now we only need to compute one decryption
key: the key for the inner product with vector 1 = (1, . . . , 1), namely

∑
i ti.

There is one final caveat. The result of the inner product evaluation requires
a final discrete logarithm computation, and we are no longer operating on real-
world data, but on random elements from Zp. Any attempt to recover the discrete
logarithm is hopeless, and we are stuck with g〈s,y〉. We work around this issue
by using pairings, which effectively enable us to decrypt using only g〈s,y〉. The
standard SXDH assumption on pairing groups states that the DDH assumption
holds in both groups, so introducing pairings doesn’t compromise the security
of our scheme. Our fully-secure DMCFE from pairings, that inherits from this
approach, is described in Sect. 5.

1.6 Contributions

Practical constructions of functional encryption for specific classes of functions is
of high interest. In this paper, we focus on MCFE and DMCFE for Inner Product.

We present the first solutions for Inner-Product Functional Encryption in the
Multi-Client and Decentralized Multi-Client settings:

1. Efficiency: the proposed schemes are highly practical as their efficiency is
comparable to that of the DDH-based IP-FE scheme from [4]. A value xi is
encrypted as a unique group element Ci. The setup phase, key generation and
decryption all take time linear in the number of participants, and encryption
takes time linear in its input.

2. Security under a standard assumption: our schemes are all adaptively
secure under either the classical DDH assumption or the standard SXDH
assumption.

3. Security against adaptive corruptions: In addition, we successfully
address corruptions of clients, even adaptive ones in the MCFE setting, explor-
ing what Goldwasser et al. [16] highlighted as an “interesting direction”.

4. Non interactivity: The DMCFE scheme we present in Sect. 5 has a key
generation protocol that does not require interactions.

Refer to Fig. 2 for a comparison of the different schemes mentioned here. We leave
open the problems of considering LWE-based or Paillier-based constructions and
of extending this work beyond inner-product functions.

710 J. Chotard et al.

Fig. 2. Comparison of different cryptographic solutions to the problem of linearly
aggregating Private Multi-Client data.

2 Definitions and Security Models

This section is devoted to defining MCFE and DMCFE and the security models
that are appropriate for those primitives, in the indistinguishability setting.

2.1 Multi-Client Functional Encryption

An MCFE scheme encrypts vectors of data from several senders and allows the
controlled computation of functions on these heterogeneous data. We now define
a private-key MCFE as in [16,20]:

Definition 1 (Multi-Client Functional Encryption). A multi-client func-
tional encryption on M over a set of n senders is defined by four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public
parameters mpk, the master secret key msk and the n encryption keys eki;

– Encrypt(eki, xi, �): Takes as input a user encryption key eki, a value xi to
encrypt, and a label �, and outputs the ciphertext C�,i;

– DKeyGen(msk, f): Takes as input the master secret key msk and a function
f : Mn → R, and outputs a functional decryption key dkf ;

– Decrypt(dkf , �,C): Takes as input a functional decryption key dkf , a label �,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈ Mn for the label �, or ⊥ otherwise.

We make the assumption that mpk is included in msk and in all the encryption
keys eki as well as the functional decryption keys dkf . The correctness property
states that, given (mpk,msk, (eki)i) ← SetUp(λ), for any label �, any function
f : Mn → R, and any vector x = (xi)i ∈ Mn, if C�,i ← Encrypt(eki, xi, �), for
i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then Decrypt(dkf , �,C� = (C�,i)i) =
f(x = (xi)i).

The security model is quite similar to the one defined for FE, but as noted
in [16,20], one has to consider corruptions, since the senders do not trust each
other, and they can collude and give their secret keys to the adversary who will
play on their behalf.

Decentralized Multi-Client Functional Encryption for Inner Product 711

Definition 2 (IND-Security Game for MCFE). Let us consider an MCFE
scheme over a set of n senders. No adversary A should be able to win the fol-
lowing security game against a challenger C:

– Initialization: the challenger C runs the setup algo-
rithm (mpk,msk, (eki)i) ← SetUp(λ) and chooses a random bit b

$← {0, 1}.
It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x0, x1, �): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C�,i generated
by Encrypt(eki, x

b, �). We note that any further query for the same pair (�, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(f): A has unlimited and adap-
tive access to the DKeyGen(msk, f) algorithm for any input function f of its
choice. It is given back the functional decryption key dkf ;

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β

$← {0, 1}:
1. some QEncrypt(i, x0

i , x
1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label � and for some function f asked to QDKeyGen, there exists a

pair of vectors (x0 = (x0
i)i,x

1 = (x1
i)i) such that f(x0) �= f(x1), when

– x0
i = x1

i , for all i ∈ CS;
– QEncrypt(i, x0

i , x
1
i , �)-queries have been asked for all i ∈ HS.

We say this MCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1] − P [β = 1|b = 0]| is negligible.

Informally, this is the usual Left-or-Right indistinguishability [7], but where the
adversary should not be able to get ciphertexts or functional decryption keys
that trivially help distinguish the encrypted vectors:

1. since the encryption might be deterministic, if we allow Left-or-Right encryp-
tion queries even for corrupted encryption keys, these queries should be on
identical messages: with the encryption key, the adversary could simply re-
encrypt and compare in case of deterministic encryption;

2. intuitively, if some input is missing, no function evaluation can be done by
the adversary, so we enforce the adversary to ask QEncrypt-queries for all the
non-corrupted keys (since the adversary can generate any ciphertext itself for
the corrupted components) as soon as one label is used;

712 J. Chotard et al.

3. for any functional decryption key, all the possible evaluations should not
trivially allow the adversary to distinguish the ciphertexts generated through
QEncrypt-queries (on honest components).

In all these cases, the guess of the adversary is not considered (a random bit
β is output). Otherwise, this is a legitimate attack, and the guess b′ of the
adversary is output. We stress that we bar the adversary from querying several
ciphertexts under the same pair (�, i). In real life, it is of course the responsibility
of the senders not to encrypt under the same label twice (as explained in the
introduction, the labels are typically time-stamps, only used once).

Remark 3. While the third constraint aims at preventing the adversary from
trivially winning by guessing the bit b from the evaluation of a functional decryp-
tion, the two first might look artificial, but they are required for our proof to go
through with our constructions:

– with a probabilistic encryption scheme, one could hope to remove the first
one, but up to now, we only have deterministic constructions, which is quite
classical in the private-key setting (such as symmetric encryption);

– depending on the scheme, an encryption on an “inactive” component (a com-
ponent that has no impact on the value of a function f , for instance the ith
ciphertext in the case of fy : x → 〈x,y〉 when yi = 0) might not be needed
for a complete evaluation, as is the case in our schemes (see Sect. 4). More-
over, our keys are homomorphic: from dkfy

and dkfy ′ , one can easily obtain
dkfy +y ′ . Rather than defining the inactivity of components of functions in
the span of those queried, we simply require that ciphertexts be obtained
for every component for a given label (either through an explicit query to
QEncrypt or thanks to the encryption key obtained from QCorrupt), which is
consistent with the use-case we outlined in Sect. 1.1. One could also enforce,
by construction, all the queries to be asked and otherwise guarantee that
no information is leaked about the plaintexts, which is not the case of our
schemes.

Weaker Notions. One may define weaker variants of indistinguishability, where
some queries can only be sent before the initialization phase:

– Selective Security (sel-IND): the encryption queries (QEncrypt) are sent
before the initialization;

– Static Security (sta-IND): the corruption queries (QCorrupt) are sent before
the initialization.

2.2 Decentralized Multi-Client Functional Encryption

In MCFE, an authority owns a master secret key msk to generate the functional
decryption keys. We would like to avoid such a powerful authority, and make
the scheme totally decentralized among the owners of the data (the senders).
We thus define DMCFE, for Decentralized Multi-Client Functional Encryption.

Decentralized Multi-Client Functional Encryption for Inner Product 713

In this context, there are n senders (Si)i, for i = 1, . . . , n, who will play the role
of both the encrypting players and the functional decryption key generators,
for a functional decryptor FD. Of course, the senders do not trust each other
and they want to control the functional decryption keys that will be generated.
There may be several functional decryptors, but since they could collude and
combine all the functional decryption keys, in the description below, and in the
security model, we will consider only one functional decryptor FD. As already
noticed, we could simply use the definition of MCFE [16,20], where the setup and
the functional decryption key algorithms are replaced by MPC protocols among
the clients. But this could lead to a quite interactive process. We thus focus
on efficient one-round key generation protocols DKeyGen that can be split in a
first step DKeyGenShare that generates partial keys and the combining algorithm
DKeyComb that combines partial keys into the functional decryption key.

Definition 4 (Decentralized Multi-Client Functional Encryption). A
decentralized multi-client functional encryption on M between a set of n senders
(Si)i, for i = 1, . . . , n, and a functional decrypter FD is defined by the setup
protocol and four algorithms:

– SetUp(λ): This is a protocol between the senders (Si)i that eventually gener-
ate their own secret keys ski and encryption keys eki, as well as the public
parameters mpk;

– Encrypt(eki, xi, �): Takes as input a user encryption key eki, a value xi to
encrypt, and a label �, and outputs the ciphertext C�,i;

– DKeyGenShare(ski, �f): Takes as input a user secret key ski and a label �f , and
outputs the partial functional decryption key dkf,i for a function f : Mn → R
that is described in �f ;

– DKeyComb((dkf,i)i, �f): Takes as input the partial functional decryption keys
and eventually outputs the functional decryption key dkf ;

– Decrypt(dkf , �,C): Takes as input a functional decryption key dkf , a label �,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈ Mn for the label �, or ⊥ otherwise;

We make the assumption that mpk is included in all the secret and encryp-
tion keys, as well as the (partial) functional decryption keys. Similarly, the
function f might be included in the (partial) functional decryption keys.
The correctness property states that, given (mpk, (ski)i, (eki)i) ← SetUp(λ), for
any label �, any function f : Mn → R, and any vector x = (xi)i ∈
Mn, if C�,i ← Encrypt(eki, xi, �), for i ∈ {1, . . . , n}, and dkf ← DKeyComb
((DKeyGenShare(ski, �f))i, �f), then we have Decrypt(dkf , �,C� = (C�,i)i) =
f(x = (xi)i).

The security model is quite similar to the one defined above for MCFE, except
that for the DKeyGen protocol, the adversary has access to transcripts of the
communications and can make some senders play maliciously. Corrupt-queries
additionally reveal the secret keys ski.

Definition 5 (IND-Security Game for DMCFE). Let us consider a DMCFE
scheme between a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

714 J. Chotard et al.

– Initialization: the challenger C runs the setup pro-
tocol (mpk, (ski)i, (eki)i) ← SetUp(λ) and chooses a random bit b

$← {0, 1}.
It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x0, x1, �): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C�,i generated
by Encrypt(eki, x

b, �). We note that any further query for the same pair (�, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(i, f): A has unlimited and adap-
tive access to the (non-corrupted) senders running the DKeyGenShare(ski, f)
algorithm for any input function f of its choice. It is given back the partial
functional decryption key dkf,i;

– Corruptions queries QCorrupt(i): A can make an unlimited number of adap-
tive corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β

$← {0, 1}:
1. some QEncrypt(i, x0

i , x
1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label � and for some function f asked to QDKeyGen for all i ∈ HS,

there exists a pair of vectors (x0 = (x0
i)i,x

1 = (x1
i)i) such that f(x0) �=

f(x1), when
– x0

i = x1
i , for all i ∈ CS;

– QEncrypt(i, x0
i , x

1
i , �)-queries have been asked for all i ∈ HS.

We say this DMCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1] − P [β = 1|b = 0]| is negligible.

We define sel-IND (selective) and sta-IND (static) security for DMCFE as we
did for MCFE.

3 Notations and Assumptions

3.1 Groups

Prime Order Group. We use a prime-order group generator GGen, a proba-
bilistic polynomial time (PPT) algorithm that on input the security parameter
1λ returns a description G = (G, p, P) of an additive cyclic group G of order p
for a 2λ-bit prime p, whose generator is P .

Decentralized Multi-Client Functional Encryption for Inner Product 715

We use implicit representation of group elements as introduced in [14]. For
a ∈ Zp, define [a] = aP ∈ G as the implicit representation of a in G. More gener-
ally, for a matrix A = (aij) ∈ Z

n×m
p we define [A] as the implicit representation

of A in G:

[A] :=

⎛

⎝
a11P ... a1mP

an1P ... anmP

⎞

⎠ ∈ G
n×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G

be an element in G. Note that from a random [a] ∈ G it is generally hard
to compute the value a (discrete logarithm problem in G). Obviously, given
[a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a + b] = [a] + [b] ∈ G.

Pairing Group. We also use a pairing group generator PGGen, a PPT algo-
rithm that on input 1λ returns a description PG = (G1, G2, p, P1, P2, e) of asym-
metric pairing groups where G1, G2, GT are additive cyclic groups of order p
for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Define PT := e(P1, P2), which is a generator of GT . We again use implicit repre-
sentation of group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs

as the implicit representation of a in Gs. Given [a]1, [a]2, one can efficiently com-
pute [ab]T using the pairing e. For two matrices A, B with matching dimensions
define e([A]1, [B]2) := [AB]T ∈ GT .

Compatibility. Our construction from Sect. 4 uses a prime-order group, while
the one from Sect. 5 uses pairing groups. Since the latter use the former as a build-
ing block, we must use groups that are compatible with each other. Notice that
one can generate a prime-order group either with G := (G, p, P) $← GGen(1λ),
but also using PG := (G1, G2, p, P1, P2, e)

$← PGGen(1λ), and setting G := G1.
This is possible here because we use asymmetric pairings and rely on the SXDH
assumption in the pairing group, which is DDH in G1 and G2. More details on
computational assumptions follow.

3.2 Computational Assumptions

Definition 6 (Decisional Diffie-Hellman Assumption). The Decisional
Diffie-Hellman Assumption states that, in a prime-order group G $← GGen(1λ),
no PPT adversary can distinguish between the two following distributions with
non-negligible advantage:

{([a], [r], [ar]) | a, r
$← Zp} and {([a], [r], [s]) | a, r, s

$← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a
random element from the span of [a] for a = (1

a
), from a random element in G

2:
[a] · r = [ar] = ([r]

[ar]
) ≈ ([r]

[s]
) .

716 J. Chotard et al.

Definition 7 (Symmetric eXternal Diffie-Hellman Assumption). The
Symmetric eXternal Diffie-Hellman (SXDH) Assumption states that, in a pairing
group PG $← PGGen(1λ), the DDH assumption holds in both G1 and G2.

4 A Fully-Secure MCFE for Inner Product

After the first construction drafted in the introduction, from the Abdalla et
al. [1] selectively-secure FE, we propose another construction of MCFE for inner
product adapted from the Agrawal et al. [4] scheme. We also provide the full
security analysis under the DDH assumption, since the security proof of our
DMCFE construction will rely on it.

Overview of the Construction. This construction is an extension of the previous
one proposed in the introduction: we first extended the scheme from Abdalla et
al. [1] in the multi-client setting with a hash function. Because of the selective
security of the underlying scheme, our first proposal was just selectively secure
too. We now adapt the Agrawal et al. [4] scheme, in the same manner. This
construction and its proof of adaptive security are for the sake of clarity, since
the proof of our next DMCFE will be made clearer when reducing to this one.

4.1 Description

We use a prime-order group, and the bracket notation, as defined in Sect. 3.1.

– SetUp(λ): Takes as input the security parameter, and generates prime-order
group G := (G, p, P) $← GGen(1λ), and H a full-domain hash function onto
G

2. It also generates the encryption keys si
$← Z

2
p, for i = 1, . . . , n. The public

parameters mpk consist of (G, p, g,H), while the encryption keys are eki = si

for i = 1, . . . , n, and the master secret key is msk = ((eki)i), (in addition to
mpk, which is omitted);

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�] := H(�) ∈ G

2, and outputs the
ciphertext [ci] = [u�

� si + xi] ∈ G;
– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function

defined by y as fy (x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i si · yi) ∈ Z

n
p × Z

2
p;

– Decrypt(dky , �, ([ci])i∈[n]): Takes as input a functional decryption key dky =
(y,d), a label �, and ciphertexts. It computes [u�] := H(�), [α] =

∑
i[ci] · yi −

[u�
�] ·d, and eventually solves the discrete logarithm to extract and return α.

Note that, as for [4], the result α must be polynomially bounded to efficiently
compute the discrete logarithm in the last decryption step: let x,y ∈ Z

n
p , we

have:

[α] =
∑

i

[ci] · yi − [u�
�] · d =

∑

i

[u�
� si + xi] · yi − [u�

�] ·
∑

i

yisi

=
∑

i

[u�
�] · siyi +

∑

i

[xi] · yi − [u�
�] ·

∑

i

yisi = [
∑

i

xiyi].

Decentralized Multi-Client Functional Encryption for Inner Product 717

4.2 Security Analysis

Theorem 8 (IND-Security). The above MCFE protocol (see Sect. 4.1) is IND-
secure under the DDH assumption, in the random oracle model. More precisely,
we have

AdvIND(A) ≤ 2Q · AdvddhG (t) + AdvddhG (t + 4Q × tG) +
2Q

p
,

for any adversary A, running within time t, where Q is the number of (direct
and indirect—asked by QEncrypt-queries—) queries to H (modeled as a random
oracle), and tG is the time for an exponentiation in G.

We stress that this Theorem supports both adaptive encryption queries and
adaptive corruptions.

Proof Technique. To obtain adaptive security, we use a technique that consists
of first proving perfect security in the selective variant of the involved games,
then, using a guessing (a.k.a. complexity leveraging) argument, which incurs an
exponential security loss, we obtain the same security guarantees in the adaptive
games. Since the security in the selective game is perfect (the advantage of any
adversary is exactly zero), the exponential security loss is multiplied by a zero
term, and the overall adaptive security is preserved. This technique has been used
before in [31] in the context of Attribute-Based Encryption, or more recently,
in [2,3] in the context of multi-input IP-FE. We defer to [31, Remark 1] and [3,
Remark 5] for more details on this proof technique.

Proof. We proceed using hybrid games, described in Fig. 3. Let A be a PPT
adversary. For any game Gindex, we denote by Advindex := |Pr[Gindex(A)|b =
1]−Pr[Gindex(A)|b = 0]|, where the probability is taken over the random coins of
Gindex and A. Also, by event Gindex(A), or just Gindex when there is no ambiguity,
we mean that the Finalize procedure in game Gindex (defined as in Definition 2)
returns β = 1 from the adversary’s answer b′ when interacting with A.

Game G0: This is the IND-security game as given in Definition 2. Note that the
hash function H is modeled as a random oracle RO onto G

2. This is essentially
used to generate [u�] = H(�).

Game G1: We simulate the answers to any new RO-query by a truly random
pair in G

2, on the fly. The simulation remains perfect, and so Adv0 = Adv1.
Game G2: We simulate the answers to any new RO-query by a truly random

pair in the span of [a] for a := (1
a
), with a

$← Zp. This uses the Multi-
DDH assumption, which tightly reduces to the DDH assumption using the
random-self reducibility (see Lemma 10, in Appendix A): Adv1 − Adv2 ≤
AdvddhG (t + 4Q × tG), where Q is the number of RO-queries and tG the time
for an exponentiation.

Game G3: We simulate any QEncrypt query as the encryption of x0
i instead of

xb
i and go back for the answers to any new RO query by a truly random pair

in G
2.

718 J. Chotard et al.

Fig. 3. Games for the proof of Theorem 8. Here, RF, RF′, RF′′ are random functions
onto G

2, Zp, and Z
∗
p, respectively, that are computed on the fly. In each procedure, the

components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 2.

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G2 and G3 will be proven
using a hybrid technique on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since
a second similar query is answered as the first one. We detail this proof because
the technique is important.

G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 � G3.q.2: We first change the distribution of the output of the q-th RO-

query, from uniformly random in the span of [a] to uniformly random over
G

2, using the DDH assumption. Then, we use the basis ((1
a
), (−a

1
)) of Z

2
p, to

write a uniformly random vector over Z
2
p as u1 ·a+u2 ·a⊥, where u1, u2

$← Zp.
Finally, we switch to u1 · a + u2 · a⊥ where u1

$← Zp, and u2
$← Z

∗
p, which

only changes the adversary view by a statistical distance of 1/p: Adv3.q.1 −
Adv3.q.2 ≤ AdvddhG (t) + 1/p. The last step with u2 ∈ Z

∗
p will be important to

guarantee that u�
� a

⊥ �= 0.

Decentralized Multi-Client Functional Encryption for Inner Product 719

Fig. 4. Games G�
3.q.2 and G�

3.q.3, with q ∈ [Q], for the proof of Theorem 8. Here, RF,
RF′ are random functions onto G

2, and Zp, respectively, that are computed on the fly.
In each procedure, the components inside a solid (gray) frame are only present in the
games marked by a solid (gray) frame.

G3.q.2 � G3.q.3: We now change the generation of the ciphertext [ci] := [u�
�] ·

si+[xb
i] by [ci] := [u�

�]·si+[x0
i], where [u�] corresponds to the q-th RO-query.

We then prove this does not change the adversary’s view.
Note that if the output of the q-th RO-query is not used by QEncrypt-queries,
then the games G3.q.2 and G3.q.3 are identical. But we can show this is true
too when there are RO-queries that are really involved in QEncrypt-queries,
and show that Adv3.q.2 = Adv3.q.3 in that case too, in two steps. In Step 1,
we show that there exists a PPT adversary B� such that Adv3.q.t = (p2 +
1)n ·Adv�

3.q.t(B�), for t = 2, 3, where the games G�
3.q.2 and G�

3.q.3 are selective
variants of games G3.q.2 and G3.q.3 respectively (see Fig. 4), where QCorrupt
queries are asked before the initialization phase. In Step 2, we show that
for all PPT adversaries B�, we have Adv�

3.q.2(B�) = Adv�
3.q.3(B�). This will

conclude the two steps.
Step 1. We build a PPT adversary B� playing against G�

3.q.t for t = 2, 3, such
that Adv3.q.t = (p2 + 1)n · Adv�

3.q.t(B�).

720 J. Chotard et al.

Adversary B� first guesses for all i ∈ [n], zi
$← Z

2
p ∪ {⊥}, which it sends

to its selective game G�
3.q.t. That is, each guess zi is either a pair of values

(x0
i , x

1
i) queried to QEncrypt, or ⊥, which means no query to QEncrypt. Then,

it simulates A’s view using its own oracles. When B� guesses successfully (call
E that event), it simulates A’s view exactly as in G3.q.t. If the guess was not
successful, then B� stops the simulation and outputs a random bit β. Since
event E happens with probability (p2 + 1)−n and is independent of the view
of adversary A: Adv�

3.q.t(B�) is equal to

∣
∣
∣ Pr[G�

3.q.t|b = 0, E] · Pr[E] +
Pr[¬E]

2
− Pr[G�

3.q.t|b = 1, E] · Pr[E] − Pr[¬E]
2

∣
∣
∣

= Pr[E] · |Pr[G�
3.q.t|b = 0, E] − Pr[G�

3.q.t|b = 1, E]| = (p2 + 1)−n · Adv3.q.t.

Step 2. We assume the values (zi)i∈[n] sent by B� are consistent, that is, they
don’t make the game end and return a random bit, and Finalize on b′ does
not return a random bit independent of b′ (call E′ this event).
We show that games G�

3.q.2 and G�
3.q.3 are identically distributed, conditioned

on E′. To prove it, we use the fact that the two following distributions are
identical, for any choice of γ:

(si)i∈[n],zi=(x0
i ,x1

i)
and

(
si + a⊥ · γ(xb

i − x0
i)

)
i∈[n],zi=(x0

i ,x1
i)

,

where a⊥ := (−a
1

) ∈ Z
2
p and si

$← Z
2
p, for all i = 1, . . . , n. This is true since

the si are independent of the zi (note that this is true because we are in
a selective setting, while this would not necessarily be true with adaptive
QEncrypt-queries). Thus, we can re-write si into si +a⊥ · γ(xb

i − x0
i) without

changing the distribution of the game.
We now take a look at where the extra terms a⊥ · γ(xb

i − x0
i) actually appear

in the adversary’s view:

– They do not appear in the output of QCorrupt, because we assume event E′

holds, which implies that if zi �= ⊥, then i is not queried to QCorrupt or
x1

i = x0
i .

– They might appear in QDKeyGen(y) as

dky =
∑

i∈[n]

si · yi + a⊥ · γ
∑

i:zi=(x0
i ,x1

i)
yi(xb

i − x0
i) .

But the gray term equals 0 by the constraints for E′ in Definition 2: for all
i ∈ HS, zi �= ⊥; if i ∈ CS and zi �= ⊥, x1

i = x0
i ; and f(x0) = f(x1), hence∑

i:zi=(x0
i ,x1

i)
yi(xb

i − x0
i) = 0.

– Eventually, they appear in the output of the QEncrypt-queries which use [u�]
computed on the q-th RO-query, since for all others, the vector [u�] lies in
the span of [a], and a�a⊥ = 0. We thus have [ci] := [u�

�] · si + (xb
i −

x0
i)γ[u�

�]a⊥ + [xb
i]. Since u�

� a
⊥ �= 0, we can choose γ = −1/u�

� a
⊥ mod p,

and then [ci] = [u�
�] · si + [x0

i], which is the encryption of x0
i . We stress that

Decentralized Multi-Client Functional Encryption for Inner Product 721

γ is independent of the index i, and so this simultaneously converts all the
encryptions of xb

i into encryptions of x0
i . Finally, reverting these statistically

perfect changes, we obtain that [ci] is identically distributed to [u�
�] ·si +[x0

i],
as in game G�

3.q.3.

Thus, when event E′ happens, the games are identically distributed. When ¬E
happens, the games both return β

$← {0, 1}: Adv�
3.q.2(B�) = Adv�

3.q.3(B�). As a
conclusion, we get Adv3.q.2 = Adv3.q.3.

G3.q.3 � G3.q+1.1: This transition is the reverse of G3.q.1 � G3.q.2, namely, we
use the DDH assumption to switch back the distribution of [u�] computed
on the q-th RO-query from uniformly random over G

2 (conditioned on the
fact that u�

� a
⊥ �= 0) to uniformly random in the span of [a]: Adv3.q.3 −

Adv3.q+1.1 ≤ AdvddhG (t) + 1/p.

As a conclusion, since G3.Q+1.1 = G3, we have Adv2 − Adv3 ≤ 2Q(AdvddhG (t) +
1/p). In addition, Adv3 = 0, which concludes the proof.

5 A Statically-Secure DMCFE for Inner Product

Overview of the Scheme. Our construction of MCFE for inner product uses func-
tional decryption keys dky = (y, 〈s,y〉) = (y,d), where d = 〈s,y〉 =

∑
i siyi =

〈t,1〉, with ti = siyi, for i = 1, . . . , n, and 1 = (1, . . . , 1). Hence, one can
split msk = s into mski = si, define T (mski,y) = ti = siyi and F (t) = 〈t,1〉.
We could thus wish to use the above generic construction from the introduction
with our MCFE for inner product, that is self-enabling, to describe a DMCFE
for inner product. However, this is not straightforward as our MCFE only allows
small results for the function evaluations, since a discrete logarithm has to be
computed. While, for real-life applications, it might be reasonable to assume
the plaintexts and any evaluations on them are small enough, it is impossible
to recover such a large scalar as d = 〈s,y〉, which comes up when we use our
scheme to encrypt encryption keys.

Nevertheless, following this idea we can overcome the concern above with
pairings: One can only recover [d], but using a pairing e : G1 × G2 → GT , one
can use our MCFE in both G1 and G2. This allows us to compute the functional
decryption in GT , to get [〈x,y〉]T , which is decryptable as 〈x,y〉 is small enough.

5.1 Construction

Let us describe the new construction, using an asymmetric pairing group, as in
Sect. 3.1.

– SetUp(λ): Generates PG := (G1, G2, p, P1, P2, e)
$← PGGen(1λ). Samples two

full-domain hash functions H1 and H2 onto G
2
1 and G

2
2 respectively. Each

sender Si generates si
$← Z

2
p for all i ∈ [n], and interactively generates Ti

$←
Z
2×2
p such that

∑
i∈[n] Ti = 0. One then sets mpk ← (PG,H1,H2), and for

i = 1, . . . , n, eki = si, ski = (si,Ti);

722 J. Chotard et al.

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�]1 := H1(�) ∈ G

2
1, and outputs

the ciphertext [ci]1 = [u�
� si + xi]1 ∈ G1;

– DKeyGenShare(ski,y): on input y ∈ Z
n
p that defines the function fy (x) =

〈x,y〉, and the secret key ski = (si,Ti), it computes [vy]2 := H2(y) ∈ G
2
2,

[di]2 := [yi · si + Tivy]2, and returns the partial decryption key as dky ,i :=
([di]2).

– DKeyComb((dky ,i)i∈[n],y): the partial decryption keys (dky ,i = ([di]2))i∈[n],
lead to dky := (y, [d]2), where [d]2 =

∑
i∈[n][di]2;

– Decrypt(dky , �, ([ci]1)i∈[n]): on input the decryption key dky = [d]2, the label
�, and ciphertexts ([ci]1)i∈[n], it computes [α]T :=

∑
i∈[n] e([ci]1, [yi]2) −

e([u�]�1 , [d]2), and eventually solve the discrete logarithm in basis [1]T to
extract and return α.

Correctness: Let x,y ∈ Z
n
p , we have:

[d]2 =
∑

i∈[n]

[di]2 =
∑

i∈[n]

[yi · si + Tivy]2

= [
∑

i∈[n]

yi · si]2 + [vy]2 ·
∑

i∈[n]

Ti = [
∑

i∈[n]

yi · si]2.

Thus:

[α]T :=
∑

i∈[n]

e([ci]1, [yi]2) − e([u�]�1 , [d]2)

=
∑

i

[(u�
� si + xi)yi]T − [

∑

i∈[n]

yiu
�
� si]T = [

∑

i

xiyi]T .

5.2 Security Analysis

Theorem 9 (sta-IND-Security). The above DMCFE protocol (see Sect. 5.1)
is sta-IND secure under the SXDH assumption, in the random oracle model.
Namely, for any PTT adversary A, there exist PPT adversaries B1 and B2 such
that:

AdvIND(A) ≤ 2Q1 · AdvddhG1
(t) + 2Q2 · AdvddhG2

(t) +
2Q1 + 2Q2

p

+ AdvddhG1
(t + 4Q1 × tG1) + 2 · AdvddhG2

(t + 4Q2 × tG2),

where Q1 and Q2 are the number of (direct and indirect) queries to H1 and H2

respectively (modeled as random oracles). The former being asked by QEncrypt-
queries and the latter being asked by QDKeyGen-queries.

We stress that this Theorem supports adaptive encryption queries, but static
corruptions only.

Decentralized Multi-Client Functional Encryption for Inner Product 723

Proof. We proceed using hybrid games, described in Fig. 5, with similar nota-
tions as in the previous proof.

Game G0: This is the sta-IND-security game as given in Definition 5, but with
the set CS of corrupted senders known from the beginning. Note that the hash
functions H1 and H2 are modeled as random oracles. The former is used to
generate [u�]1 := H1(�) ∈ G

2
1 and the latter [vy]2 := H2(y) ∈ G

2
2.

Game G1: We replace the hash function H2 by a random oracle RO2 that
generates random pairs from G

2
2 on the fly. In addition, for any QDKeyGen-

query on a corrupted index i ∈ CS, one generates the partial functional
decryption key by itself, without explicitly querying QDKeyGen. Hence, we
can assume that A does not query QCorrupt and QDKeyGen on the same
indices i ∈ [n]. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: Now, the outputs of RO2 are uniformly random in the span of [b]2
for b := (1

a′), with a′ $← Zp. As in the previous proof, we have Adv1 −Adv2 ≤
AdvddhG2

(t + 4Q2 × tG2), where Q2 is the number of RO2-queries and tG2 the
time for an exponentiation.

Game G3: We replace all the partial key decryption answers by dky ,i := [yi ·
si +wi · (b⊥)�vy +Tivy]2, for new wi

$← Z
2
p, such that

∑
i wi = 0, for each

y. We show below that Adv2 = Adv3.
Game G4: We switch back the distribution of all the vectors [vy]2 output by

RO2, from uniformly random in the span of [b]2, to uniformly random over
G

2
2, thus back to H2(y). This transition is reverse to the two first transitions

of this proof: Adv3 − Adv4 ≤ AdvddhG2
(t + 4Q2 × tG2).

In order to prove the gap between G2 and G3, we do a new hybrid proof:

Game G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 � G3.q.2: As in the previous proof, we first change the distribution of

the output of the q-th RO2-query, from uniformly random in the span of
[b] to uniformly random over G

2, using the DDH assumption. Then, we use
the basis ((1

a′), (−a′

1
)) of Z

2
p, to write a uniformly random vector over Z

2
p

as v1 · b + v2 · b⊥, where v1, v2
$← Zp. Finally, we switch to v1 · b + v2 · b⊥

where v1
$← Zp, and v2

$← Z
∗
p, which only changes the adversary view by a

statistical distance of 1/p: Adv3.q.1 −Adv3.q.2 ≤ AdvddhG (t)+1/p. The last step
with v2 ∈ Z

∗
p will be important to guarantee that v�

y b
⊥ �= 0.

G3.q.2 � G3.q.3: We now change the simulation of dky ,i from dky ,i = [yi · si +
Tivy]2 to dky ,i = [yi ·si +RFi(y)+Tivy]2, with some RFi functions onto Z

2
p

such that
∑

i RFi(y) = 0 for any input y. We prove Adv3.q.2 = Adv3.q.3.
To this aim, we use the fact that the two following distributions are identical,
for any choice of wi

$← Z
2
p, such that

∑
i wi = 0:

(Ti)i∈HS and (Ti + wi(b⊥)�)i∈HS ,

where for all i ∈ [n], Ti
$← Z

2×2
p such that

∑
i Ti = 0, and b⊥ := (−a′

1
).

The extra terms (wi(b⊥)�)i∈HS only appear in the output of the queries to
QDKeyGen which use the vector [vy]2 computed on the q-th RO2-query (if

724 J. Chotard et al.

Fig. 5. Games for the proof of Theorem 9. Here, RF, RF′ are random functions onto
G

2
2 and Zp, respectively, that are computed on the fly. The RFi are random functions

conditioned on the fact that
∑

i∈[n] RFi is the zero function. In each procedure, the

components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 5

there are such queries), because for all other queries, [vy]2 lies in the span of
[b]2, and b�b⊥ = 0. We thus have dky ,i := [yi · si + wi · (b⊥)�vy + Tivy]2.
Since vy is such that v�

y b
⊥ �= 0, (b⊥)�vy �= 0. In that case, the vectors

Decentralized Multi-Client Functional Encryption for Inner Product 725

wi · (b⊥)�vy are uniformly random over Z
2
p such that

∑
i wi · (b⊥)�vy = 0,

which is as in G3.q.3, by setting RFi(y) := wi · (b⊥)�vy .
G3.q.3 � G3.q+1.1: This transition is the reverse of G3.q.1 � G3.q.2, namely, we

use the DDH assumption to switch back the distribution of [vy]2 to uniformly
random in the span of [b]2: Adv3.q.3 − Adv3.q+1.1 ≤ AdvddhG2

(t) + 1/p.

Then one can note that G3.Q2+1.1 = G3, but also that in Game G4, all the
dky ,i output by QDKeyGen can be computed only knowing

∑
i∈[n] si · yi, which

is exactly the functional decryption key dky from our MCFE in Sect. 4.1. This
follows from the fact that the values RFi(y) perfectly mask the vectors si · yi,
up to revealing

∑
i∈[n] si · yi (as the RFi must sum up to the zero function).

Thus, we can reduce to the IND-security of the MCFE from Sect. 4.1 (or even
sta-IND-security) by designing an adversary B against the MCFE from Sect. 4.1:
Adversary B first samples Ti

$← Z
2×2
p for all i ∈ [n], such that

∑
i∈[n] Ti = 0.

It sends CS given by A (set of static corruptions), then it receives mpk from the
MCFE security game, as well as the secret keys si for i ∈ CS. It forwards mpk
as well as (si,Ti) for i ∈ CS to A. Then

– B answers oracle calls to RO1, RO2 and QEncrypt from A using its own oracles.
– To answer QDKeyGen(i,y): if i is the last non-corrupted index for y, B queries

its own QDKeyGen oracle on y, to get dky :=
∑

i si · yi ∈ Z
2
p, computes

[vy]2 := H2(y), and returns dky ,i := [dky +RFi(y)+Tivy]2 to A. Otherwise,
it computes [vy]2 := H2(y), and returns dky ,i := [RFi(y)+Tivy]2 to A. The
random functions RFi are computed on the fly, such that their sum is the
zero function.

We stress that this last simulation requires to know CS and HS, hence static
corruptions only. From this reduction, one gets

Adv4 ≤ 2Q1 · AdvddhG1
(t) + AdvddhG1

(t + 4Q1 × tG1) +
2Q1

p
,

where Q1 denotes the number of calls to RO1, tG1 denotes the time to compute
an exponentiation in G1. This concludes the proof.

6 Conclusion

Multi-Client Functional Encryption and Decentralized Cryptosystems are invalu-
able tools for many emerging applications such as cloud services or big data.
These applications often involve many parties who contribute their data to
enable the extraction of knowledge, while protecting their individual privacy
with minimal trust in the other parties, including any central authority. We make
an important step towards combining the desired functionalities and properties
by introducing the notion of Decentralized Multi-Client Functional Encryption.
It opens some interesting directions:

726 J. Chotard et al.

– For inner-product, in the DDH-based setting with ElGamal-like encryption,
we have a strong restriction on the plaintexts, since the inner-product has to
be small, in order to allow complete decryption of the scalar evaluation. It is
an interesting problem to consider whether the LWE-based and DCR-based
schemes can address this issue.

– Getting all the desired properties, namely efficiency, new functionalities and
the strongest security level, is a challenging problem. One of the main chal-
lenges is to construct an efficient, non-interactive DMCFE which is fully secure
(adaptive encryptions and adaptive corruptions), for a larger class of func-
tions than that of inner-product functions. The security analyses of our con-
crete constructions heavily rely on the linear properties of inner-product func-
tions, however, the global methodology of the constructions themselves is not
restricted to the inner-product setting. Therefore, new constructions could
follow it.

Acknowledgments. This work was supported in part by the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Cryp-
toCloud), the European Community’s Horizon 2020 Project FENTEC (Grant Agree-
ment no. 780108), the Google PhD fellowship, the ANR ALAMBIC (ANR16-CE39-
0006) and the French FUI ANBLIC Project.

A Multi DDH Assumption

Theorem 10. For any distinguisher A running within time t, the best advan-
tage A can get in distinguishing

Dm = {(X, (Yj , Zj = CDH(X,Yj))j) | X,Yj
$← G, j = 1, . . . , m}

D′
m = {(X, (Yj , Zj)j) | X,Yj , Zj

$← G, j = 1, . . . , m}.

is bounded by Advddh(t + 4m × tG), where tG is the time for an exponentiation
in G.

Proof. One can first note that the best advantage one can get, within time t,
between

D = {(X,Y,Z = CDH(X,Y)) | X,Y
$← G}

D′ = {(X,Y,Z) | X,Y,Z
$← G}.

is bounded by Advddh(t). This is actually the DDH assumption. One can note
that Dm and D′

m can be rewritten as

Dm = {(X, (Yj = gujY vj , Zj = Xuj · CDH(X,Y)vj)j) | X,Y
$← G, uj , vj

$← Zp}
D′

m = {(X, (Yj = gujY vj , Zj = Xuj · Zvj)j) | X,Y,Z
$← G, uj , vj

$← Zp},

Since, from (X,Y,Z), the m tuples require 4 additional exponentiations per
index j, one get the expected bound.

Decentralized Multi-Client Functional Encryption for Inner Product 727

B A Selectively-Secure MCFE

B.1 Description

In this section, we formally present the selectively secure MCFE scheme for inner
product we described in Sect. 1. It is inspired by Abdalla et al.’s scheme [1]:

– SetUp(λ): Takes as input the security parameter, and generates a group G of
prime order p ≈ 2λ, g ∈ G a generator, and H a full-domain hash function
onto G. It also generates the encryption keys si

$← Zp, for i = 1, . . . , n,
and sets s = (si)i. The public parameters mpk consist of (G, p, g,H), while
the master secret key is msk = s and the encryption keys are eki = si for
i = 1, . . . , n (in addition to mpk, which is omitted);

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�] := H(�) ∈ G, and outputs the
ciphertext [ci] = [u�si + xi] ∈ G;

– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function
defined by y as fy (x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i siyi) ∈ Z

n
p × Zp;

– Decrypt(dky , �, ([ci])i∈[n]): Takes as input a decryption key dky = (y, d), a
label �. It computes [u�] := H(�), [α] =

∑
i yi · [ci] − d · [u�], and eventually

solves the discrete logarithm to extract and return α.

As for Abdalla et al.’s scheme [1], the result α should not be too large to allow
the final discrete logarithm computation.

Correctness: if the scalar dk in the decryption functional key dky = (y, dk) is
indeed dk = 〈s,y〉, then

[α] =
∑

i

yi · [ci] − d · [u�] =
∑

i

yi · [u�si + xi] − [u�] ·
∑

i

siyi

= [u�] ·
∑

i

siyi + [
∑

i

xiyi] − [u�] ·
∑

i

siyi = [
∑

i

xiyi].

B.2 Selective Security

Like Abdalla et al.’s original scheme [1], our protocol can only be proven secure in
the weaker security model, where the adversary has to commit in advance to all of
the pairs of messages for the Left-or-Right encryption oracle (QEncrypt-queries).
However, it can adaptively ask for functional decryption keys (QDKeyGen-
queries) and encryption keys (QCorrupt-queries). Concretely, the challenger is
provided (plaintext,label) pairs: (xb

j,i, �j)b∈{0,1},i∈[n],j∈[Q], where Q is the num-
ber of query to QEncrypt(i, ·, ·), each one for a different label �j (note that in the
security model, we assume each slots are queried the same number of time, on
different labels). The challenge ciphertexts Ci,j = Encrypt(eki, x

b
j,i, �j), for the

random bit b, are returned to the adversary.
Note that the adversary committing to challenge ciphertexts also limits its

ability to corrupt users during the game: it must corrupt clients for which it
didn’t ask a ciphertext and cannot corrupt any client from which it asked a
ciphertext for x0

j,i �= x1
j,i.

728 J. Chotard et al.

B.3 Security Analysis

Theorem 11 (sel-IND Security). The MCFE protocol described above (see
Appendix B.1) is sel-IND secure under the DDH assumption, in the random
oracle model. More precisely, we have

AdvIND(A) ≤ 2Q · AdvddhG (t),

for any adversary A, running within time t, where Q is the number of encryption
queries per slot.

Fig. 6. Games G0, G1, (G2.)q∈[Q+1], for the proof of Theorem 11. Here, RF is a random
function onto G, that is computed on the fly. Note that QEncrypt is only used as a
subroutine of the initialization of the game and is not accessible to the adversary. In
each procedure, the components inside a solid frame are only present in the games
marked by a solid frame.

Proof. We proceed using hybrid games, described in Fig. 6, with the same nota-
tions as in the previous proofs.

Game G0: This is the sel-IND security game as given in Definition 2 (see the
paragraph about weaker models), with all the encryption queries being sent

Decentralized Multi-Client Functional Encryption for Inner Product 729

first: they are stored in zj,i = (x0
j,i, x

1
j,i), for j ∈ [Q] and i ∈ [n], where j is for

the j-th H-query that specifies the label �j and i is for the index of the sender.
If the query is not asked, we have zj,i = ⊥. Note that the hash function H is
modeled as a random oracle RO onto G. This is used to generate [u�] = H(�).

Game G1: We simulate the answers to any new RO query by computing a
truly random element of G, on the fly. The simulation remains perfect, so
Adv0 = Adv1.

Game G2: We simulate every encryption as the encryption of x0
i instead of xb

i .

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G1 and G2 will be proven
using an hybrid argument on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since
a second similar query is answered as the first one.

G2.1: This is exactly game G1. Thus, Adv1 = Adv2.1.
G2.q � G2.q+1: We change the generation of the ciphertexts from [cq,i] :=

[u�qsi + xb
q,i] to [cq,i] := [u�qsi + x0

q,i]. We proceed in three steps:
Step 1. We use the fact that the two following distributions are identical, for
any choice of γ:

(si)i∈[n],zq,i=(x0
q,i,x

b
q,i)

and
(
si + γ(x0

q,i − xb
q,i)

)
i∈[n],zq,i=(x0

q,i,x
1
q,i)

,

where si
$← Zp, for all i ∈ [n]. This is true since the si are independent of

the zq,i (we are in a selective setting, so the si’s are generated after the zq,i’s
have been chosen). Thus, we can re-write si into si + γ(x0

q,i − xb
q,i) without

changing the distribution of the game.
Note that when Finalize does not output a random bit β

$← {0, 1} independent
of the guess b′, γ does not appear in the outputs of QCorrupt(i), since it
must be that x0

i = x1
i or zq,i = ⊥, and it does not appear in the output of

QDKeyGen(y) either, since
∑

i si · yi +
∑

i γ(x0
q,i − xb

q,i)yi , where the gray
term equals zero by Definition 1. The fact that γ does not appear in the
outputs of these oracles will be crucial for step 2, which applies DDH on [γ].
Step 2. We use the DDH assumption to replace the [u�qγ] that appear in the
output of the q-th query to QEncrypt queries with [r�q + 1] with r�q

$← Zp.
This is possible since the rest of the adversary view can be generated only
from [γ] and [r�q + 1]. This increases the adversary’s advantage by no more
than AdvddhG (t). We now have:

[cq,i] :=[u�qsi + (x0
q,i − xb

q,i)(r�q + 1) + xb
q,i]

=[u�qsi + r�q (x
0
q,i − xb

q,i) + x0
q,i − xb

q,i + xb
q,i]

=[u�qsi + r�q (x
0
q,i − xb

q,i) + x0
q,i].

Step 3. We switch [r�q] in the output of the q-query to QEncrypt back to [u�qγ],
using the DDH assumption again. This is possible since the adversary’s view
is simulatable solely from [γ], [u�q], and [r�q]. We finally undo the distribution
change on the si, which brings us to G2.q+1.

730 J. Chotard et al.

As a conclusion, since G2.Q+1 = G2, we have Adv1 − Adv2 ≤ 2Q · AdvddhG (t). In
addition, Adv2 = 0, which concludes the proof.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 21

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

5. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

6. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, part II. LNCS, vol. 10032, pp.
557–587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-
6 19

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

8. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21
(2016)

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

11. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

12. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-319-76581-5_9

Decentralized Multi-Client Functional Encryption for Inner Product 731

13. Emura, K.: Privacy-preserving aggregation of time-series data with public verifi-
ability from simple assumptions. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017.
LNCS, vol. 10343, pp. 193–213. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59870-3 11

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

16. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

20. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013). http://eprint.
iacr.org/2013/774

21. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 10

22. Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilin-
ear maps. IACR Cryptology ePrint Archive 2016, 432 (2016). http://eprint.iacr.
org/2016/432

23. Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing.
In: ICNP 2012, pp. 1–10. IEEE Computer Society (2012)

24. Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39077-7 4

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

27. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
463–472. ACM Press, October 2010

https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-32009-5_11
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
https://doi.org/10.1007/978-3-642-39884-1_10
http://eprint.iacr.org/2016/432
http://eprint.iacr.org/2016/432
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/3-540-48910-X_16

732 J. Chotard et al.

28. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 27

29. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011. The Internet Society, February 2011

30. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 33

31. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

	Decentralized Multi-Client Functional Encryption for Inner Product
	1 Introduction
	1.1 A Use Case
	1.2 Related Work
	1.3 Multi-Client Functional Encryption
	1.4 Decentralized Multi-Client Functional Encryption
	1.5 Technical Overview
	1.6 Contributions

	2 Definitions and Security Models
	2.1 Multi-Client Functional Encryption
	2.2 Decentralized Multi-Client Functional Encryption

	3 Notations and Assumptions
	3.1 Groups
	3.2 Computational Assumptions

	4 A Fully-Secure MCFE for Inner Product
	4.1 Description
	4.2 Security Analysis

	5 A Statically-Secure DMCFE for Inner Product
	5.1 Construction
	5.2 Security Analysis

	6 Conclusion
	A Multi DDH Assumption
	B A Selectively-Secure MCFE
	B.1 Description
	B.2 Selective Security
	B.3 Security Analysis

	References

