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Abstract. In this work, we propose two IPE schemes achieving both
adaptive security and full attribute-hiding in the prime-order bilinear
group, which improve upon the unique existing result satisfying both
features from Okamoto and Takashima [Eurocrypt ’12] in terms of
efficiency.

– Our first IPE scheme is based on the standard k-lin assumption and
has shorter master public key and shorter secret keys than Okamoto
and Takashima’s IPE under weaker dlin = 2-lin assumption.

– Our second IPE scheme is adapted from the first one; the security is
based on the xdlin assumption (as Okamoto and Takashima’s IPE)
but now it also enjoys shorter ciphertexts.

Technically, instead of starting from composite-order IPE and apply-
ing existing transformation, we start from an IPE scheme in a very
restricted setting but already in the prime-order group, and then grad-
ually upgrade it to our full-fledged IPE scheme. This method allows us
to integrate Chen et al.’s framework [Eurocrypt ’15] with recent new
techniques [TCC ’17, Eurocrypt ’18] in an optimized way.

1 Introduction

Attribute-based encryption (ABE) is an advanced public-key encryption system
supporting fine-grained access control [20,31]. In an ABE system, an authority
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publishes a master public key mpk for encryption and issues secret keys to users
for decryption; a ciphertext for message m is associated with an attribute x while
a secret key is associated with a policy f , a boolean function over the set of all
attributes; when f(x) = 1, the secret key can be used to recover message m.
The basic security requirement for ABE is message-hiding : an adversary holding
a secret key with f(x) = 0 cannot infer any information about m from the
ciphertext; furthermore, this should be ensured when the adversary has more
than one such secret key, which is called collusion resistance.

In some applications, an additional security notion attribute-hiding [10,22]
is desirable, which concerns the privacy of attribute x instead of message m.
In the literature, there are two levels of attribute-hiding: (1) weak attribute-
hiding is against an adversary who holds multiple secret keys with f(x) = 0;
(2) full attribute-hiding is against an adversary holding any kind of secret keys
including those with f(x) = 1. Nowadays we have seen many concrete ABE
schemes [7,9,18–21,24–26,30,33]. Based on the seminal dual system method [32],
we even reached generic frameworks for constructing and analyzing ABE [2–
6,11,12,35] in bilinear groups. Many of them, including both concrete ABE
schemes and generic frameworks, have already achieved weak attribute-hiding
[9,11,12,18,19,21].

However it is much harder to obtain ABE with the full attribute-hiding fea-
ture. In fact, all known schemes only support so-called inner-product encryption
(IPE), in which both ciphertexts and secret keys are associated with vectors and
the decryption procedure succeeds when the two vectors has zero inner-product.
Furthermore, almost all of them are selectively or semi-adaptively secure which
means the adversary has to choose the vectors associated with the challenge
ciphertext (called challenge vector/attribute) before seeing mpk or before seeing
any secret keys [10,22,29,36]. Both of them are much weaker than the standard
adaptive security (i.e., the one we have mentioned in the prior paragraph) where
the choice can be made at any time. (Note that Wee achieved simulation-based
security in [36].) What’s worse, some schemes [10,22] are built on the composite-
order group, on which group operations are slower and more memory space is
required to store group elements. The best result so far comes from Okamoto and
Takashima [27]: the IPE scheme is adaptively secure and fully attribute-hiding
based on external decisional linear assumption1 (xdlin) in efficient prime-order
bilinear groups.

1.1 Our Results

In this work, we propose two IPE schemes in prime-order bilinear groups
achieving both adaptive security and full attribute-hiding, which improve upon
Okamoto and Takashima’s IPE scheme [27] in terms of space efficiency:
1 The construction is originally based on the decisional linear assumption in sym-
metric prime-order bilinear group. In this paper, we will work with asymmetric
bilinear group where their proof will be translated into a proof based on the exter-
nal decisional linear assumption. Note that xdlin assumption is stronger than dlin
assumption.
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– Our first construction is proven secure under standard k-Linear (k-lin)
assumption. When instantiating with k = 2 (i.e., dlin assumption), it enjoys
shorter master public key and secret keys under weaker assumption than
Okamoto and Takashima’s IPE, but we have slightly larger ciphertexts. With
parameter k = 1 (i.e., sxdh assumption), we can also achieve shorter cipher-
texts but at the cost of basing the security on a stronger assumption.

– Our second construction is proven secure under the xdlin assumption, which
is stronger than dlin assumption. This gives another balance point between
(space) efficiency and assumption. Now we can get better efficiency than
Okamoto and Takashima’s IPE in terms of master public key, ciphertext
and secret keys without sacrificing anything — Okamoto and Takashima also
worked with xdlin.

A detailed comparison is provided in Table 1.

Table 1. Comparison among our two IPE schemes and Okamoto and Takashima’s
IPE [27]. All schemes are built on an asymmetric prime-order bilinear group
(p, G1, G2, GT , e : G1 × G2 → GT ). In the table, |G1|, |G2|, |GT | denote the sizes of
group elements in G1, G2, GT .

Scheme |mpk| |ct| |sk| Assumption

OT12 [27] (12n + 16)|G1| + |GT | (5n + 1)|G1| + |GT | 11|G2| xdlin

Section 3.4 (10n + 16)|G1| + 2|GT | (5n + 3)|G1| + |GT | 8|G2| dlin

(3n + 5)|G1| + |GT | (3n + 2)|G1| + |GT | 5|G2| sxdh

Section 4.4 (8n + 14)|G1| + 2|GT | (4n + 3)|G1| + |GT | 7|G2| xdlin

1.2 Our Technique in Composite-Order Groups

As a warm-up, we present a scheme in asymmetric composite-order bilinear
groups. Here, we will rely on composite-order groups whose order is the prod-
uct of four primes; this is different from the settings of adaptively secure ABE
schemes and selectively secure full attribute-hiding inner product encryption
where it suffices to use two primes.

The Scheme. Assume an asymmetric composite-order bilinear group G =
(N,GN , HN , GT , e : GN × HN → GT ) where N = p1p2p3p4. Let g1, h14 be
respective random generators of subgroups Gp1 ,Hp1p4 . Pick α, u,w1, . . . , wn ←
ZN . We describe an IPE scheme for n dimensional space over ZN as follows.

mpk : g1, gu
1 , gw1

1 , . . . , gwn
1 , e(g1, h14)α

sky : h
α+(y1w1+···+ynwn)r
14 , hr

14

ctx : gs
1, g

s(u·x1+w1)
1 , . . . , g

s(u·xn+wn)
1 , H(e(g1, h14)αs) · m

(1)
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where x = (x1, . . . , xn) ∈ Z
n
N and y = (y1, . . . , yn) ∈ Z

n
N . The construction is

adapted from Chen et al. IPE [11] (without attribute-hiding feature) by embed-
ding it into groups with four subgroups. This allows us to carry out the proof
strategy introduced by Okamoto and Takashima [27], which involves a non-trivial
extension of the standard dual system method [32]. We only give a high-level
sketch for the proof below but show the complete game sequence in Fig. 1 for
reference.

As is the case for adaptively secure ABE [32,35], we will rely on the following
private-key one-ciphertext one-key fully attribute-hiding inner product encryp-
tion scheme in the proof of security. Here, g3, h3 denote the respective generators
for the subgroups of order p3.

sky : hα+y1w1+···+ynwn

3

ctx : gu·x1+w1
3 , . . . , gu·xn+wn

3 , gα
3 · m

(2)

Note that the scheme satisfies (simulation-based) information-theoretic security
in the selective setting, which immediately yields (indistinguishability-based)
adaptive security via complexity leveraging.

In the proof of security (outlined in Fig. 1), we will first switch the ciphertext
to having just a p2p3p4-component via the subgroup decision assumption. At the
beginning of the proof, all the secret keys will have a p4-component, and at the
end, all the secret keys will have a p2-component; throughout, the secret keys
will also always have a p1-component but no p3-components at the beginning or
the end. To carry out the change in the secret keys from p4-components to p2-
components, we will switch the keys one by one. For the switch, we will introduce
a p3-component into one secret key and then invoke security of the above private-
key one-ciphertext one-key scheme in the p3-subgroup. It is important here that
throughout the hybrids, at most one secret key has a p3-component.

1.3 Our Technique in Prime-Order Groups

Assume a prime-order bilinear group G = (p,G1, G2, GT , e : G1×G2 → GT ) and
let [·]1, [·]2, [·]T denote the entry-wise exponentiation on G1, G2, GT , respectively.
Naively, we simulate a composite-order group whose order is the product of four
primes using vectors of dimension 4k “in the exponent” under k-lin assumption.
That is, we replace

g1, h14 �→ [A1]1, [B14]2
where A1 ← Z

4k×k
p ,B14 ← Z

4k×2k
p . However, the resulting IPE scheme is less

efficient than Okamoto and Takashima’s scheme [27]. Instead, we will show that
it suffices to use

A1 ← Z
(k+1)×k
p , B14 ← Z

(2k+1)×k
p (3)

Then, with the correspondence by Chen et al. [11,13,16]:

α �→ k ∈ Z
k+1
p u,wi �→ U,Wi ∈ Z

(k+1)×(2k+1)
p ∀i ∈ [n]

s �→ s ∈ Z
k
p, r �→ r ∈ Z

k
p

gs
1 �→ [s�A�

1 ]1, hr
14 �→ [B14r]2

gsw
1 �→ [s�A�

1 W]1, hwr
14 �→ [WB14r]2

(4)
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Fig. 1. Game sequence for composite-order IPE. In the table, x0 = (x1,0, . . . , xn,0)
and x1 = (x1,1, . . . , xn,1) are the challenge vectors; b ∈ {0, 1} is the secret bit we hope
to hide against the adversary. The gray background highlights the difference between
adjacent games. The column “ct” shows the structure of the challenge ciphertext on four
subgroups whose generators are g1, g2, g3, g4, while the next column gives the subgroup
where every secret keys lie in. In the last column, the notation “p1 �→ p2p3p4 in G” is
indicating the subgroup decision assumption stating that Gp1 ≈c Gp2p3p4 .

we have the following prime-order IPE scheme:

mpk : [A�]1, [A
�U]1, [A

�W1]1, . . . , [A
�Wn]1, [A

�k]T
sky : [k+ (y1 · W1 + · · · + yn · Wn)B14r]2, [B14r]2
ctx : [s�A�

1 ]1, [s
�A�

1 (x1 · U+W1)]1, . . . , [s
�A�

1 (xn · U+Wn)]1, [c
�k]T · m

(5)

Note that, with matrices A1 ∈ Z
(k+1)×k
p and B ∈ Z

(2k+1)×k
p , we only simulate

two and three subgroups, respectively, rather than four subgroups; meanwhile
some of them are simulated as low-dimension subspaces. Although it has become
a common optimization technique to adjust dimensions of subspaces, it is not
direct to justify that we can work with less subspaces. In fact, these optimizations
are based on elaborate investigations of the proof strategy sketched in Sect. 1.2.
In the rest of this section, we explain our method leading to the optimized
parameter shown in (3).

Our Translation. We start from an IPE scheme in a very restricted setting
and then gradually upgrade it to our full-fledged IPE scheme in the prime-order
group. In particular, we follow the roadmap

private-key one-key IPE Step 1−−−−→
[11,13]

private-key IPE Step 2−−−−→
[11,36]

public-key IPE

The private key one-key IPE corresponds to scheme (2) over p3-subgroup (cf.
Game2.j−1.2 in Fig. 1). In Step 1, we move from one-key to multi-key model using
the technique from [13], which is related to the argument just after we change
ciphertext in proof of scheme (1) (cf. Game2.0 to Game2.q and Game3 in Fig. 1).
In Step 2, we move from private-key to public-key setting with the compiler
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in [36], which is related to the change of ciphertext at the beginning of the proof
(cf. Game1 in Fig. 1). By handling these proof techniques underlying the proof
sketched in Sect. 1.2 (cf. Fig. 1) one by one as above, we are able to integrate
Chen et al.’s framework [11] with recent new techniques [13,36] in an optimized
way.

Private-key IPE in One-key Setting. We start from a private-key IPE where
the ciphertext is created from msk rather than mpk. We also consider a
weaker one-key model where the adversary can get only one secret key. Pick
α, u,w1, . . . , wn ←r Zp and let message m ∈ Zp. We give the following private-
key IPE over Zp:

msk : α, u,w1, . . . , wn

sky : α + (y1 · w1 + · · · + yn · wn)
ctx : x1 · u + w1, . . . , xn · u + wn, α · m

(6)

Analogous to scheme (2), the scheme satisfies (simulation-based) information-
theoretic security in the selective setting (cf. [36]). By the implication from
simulation-based security to indistinguishability-based security and standard
complexity leveraging technique, we have the following statement: For adap-
tively chosen x0 = (x1,0, . . . , xn,0) ∈ Z

n
p , x1 = (x1,1, . . . , xn,1) ∈ Z

n
p and

y = (y1, . . . , yn) ∈ Z
n
p satisfying either 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0 or 〈x0,y〉 =

〈x1,y〉 = 0 and all b ∈ {0, 1}, we have

{ x1,b · u + w1, . . . , xn,b · u + wn, y1 · w1 + · · · + yn · wn }
≡ { x1,1−b · u + w1, . . . , xn,1−b · u + wn, y1 · w1 + · · · + yn · wn } (7)

Note that the statement here is different from that used in Fig. 1 (where xi,0 is
in the place of xi,1−b). Looking ahead, this choice is made to employ the “change
of basis” technique when moving from one-key to multi-key model (see the next
paragraph).

Private-key IPE in Multi-key Setting. To handle multiple keys revealed to the
adversary, we employ Chen et al.’s prime-order generic framework2 [11] based on
the dual system method [32] to scheme (6). The framework works with prime-
order finite cyclic group G on which the k-lin assumption holds. Let [·] denote
the entry-wise exponentiation on G. In order to avoid collusion of multiple
secret keys, we will re-randomize each secret key [8,31,34] using fresh vector
d ← span(B1) where B1 ← Z

(k+1)×k
p , which supports standard dual system

method [32] with a hidden subspace B2 ← Z
k+1
p . For this purpose, we need to

do the following “scalar to vector” substitutions:

u ∈ Zp �→ u ∈ Z
1×(k+1)
p and wi ∈ Zp �→ wi ∈ Z

1×(k+1)
p ∀i ∈ [n].

2 Note that, with their framework, we can work out a public key IPE directly, but we
focus on the technique handling multiple secret keys at the moment.
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Then the re-randomization is done by multiplying u and each wi in secret keys
by d and moving them from Zp to G. This yields the following private-key IPE:

msk : α,u,w1, . . . ,wn

sky : [α + (y1 · w1 + · · · + yn · wn)d], [d] where d ← span(B1)
ctx : x1 · u+w1, . . . , xn · u+wn, [α] · m

(8)

To carry out the non-trivial extension by Okamoto and Takashima [27] which
involves three subgroups of HN (cf. game sequence from Game2.0 to Game2.q),
we increase the dimension of vectors u,w1, . . . ,wn, d in secret keys by k (i.e.,
from k + 1 to 2k + 1) as in [13] such that the support of d can accommodate
three subspaces defined by

(B1,B2,B3) ← Z
(2k+1)×k
p × Z

2k+1
p × Z

(2k+1)×k
p

where B1,B2,B3 play the roles similar to p4, p2, p3-subgroup respectively. Fol-
lowing the proof strategy in [13] and statement (7) for the one-key scheme (6),
we can change secret keys and the challenge ciphertext revealed to the adversary
into the form:

sky : [α + (y1 · w1 + · · · + yn · wn)d], [d] where d ← span(B1, B2 )

ct∗ : {xi,b · u(1) + xi,1−b · u(2) + xi,b · u(3) +wi}i∈[n], [α] · m

where u(1) (resp. u(2), u(3)) is a random vector orthogonal to span(B2,B3)
(resp. span(B1,B3), span(B1,B2)). Finally, by the “change of basis” commonly
appeared in the proof with dual pairing vector space [23,27] (and a simple sta-
tistical argument), we claim that ct∗ has the same distribution as

x1,0 · u0 + x1,1 · u1 +w1, . . . , xn,0 · u0 + xn,1 · u1 +wn, [α] · m

where u0,u1 ← Z
1×(2k+1)
p . This means that ct∗ hides b and scheme (8) is fully

attribute-hiding.
Note that the support of randomness d (after the change) is span(B1,B2)

rather than span(B2), which simulates p2-subgroup in the composite-order
scheme (1). This is crucial to derive more efficient IPE scheme but slightly com-
plicates the final argument above where “change of basis” technique has to be
used to deal with xi,b · u(1) interplaying with B1-component in sky.

(Public-key) IPE scheme. To upgrade our private-key IPE to public-key IPE,
we will employ the “private-key to public-key” compiler in [36]. The compiler
relies on bilinear groups (p,G1, G2, GT , e : G1 × G2 → GT ) in which the k-lin
assumption holds. In detail, we do the following “vector to matrix”/“scalar to
vector” substitution for entries in msk and secret keys:

u,w1, . . . ,wn ∈ Z
1×(2k+1)
p �→ U,W1, . . . ,Wn ∈ Z

(k+1)×(2k+1)
p

α ∈ Zp �→ k ∈ Z
k+1
p
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and publish them as parts of mpk in the form of

[A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T where A ← Z
(k+1)×k
p .

In the ciphertext, we translate u,w1, . . . ,wn into [c�U]1, [c�W1]1, . . . , [c�Wn]1
where c ← span(A) and translate [α]2 into [c�k]T . Finally, secret keys are now
moved to group G2. This results in the following IPE scheme:

mpk : [A]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T
sky : [k+ (y1 · W1 + · · · + yn · Wn)d]2, [d]2 where d ← span(B1)
ctx : [c�]1, [x1 · c�U+ c�W1]1, . . . , [xn · c�U+ c�Wn]1, [c�k]T · m

where c ← span(A)

(9)

Note that the translation does not involve (B1,B2,B3) we just introduced.
To prove the security of the resulting public-key IPE scheme, we first show

that we can change the support of c from span(A) to Z
k+1
p by the following

statement implied by the k-lin assumption:

( [A]1, [c ← span(A)]1 ) ≈c ( [A]1, [c ← Z
k+1
p ]1 ).

Since (A | c) is full-rank with overwhelming probability, we can see that

˜msk = (A�U,A�W1, . . . ,A�Wn,A�k )
and msk∗ = ( c�U, c�W1, . . . , c�Wn, c�k )

are distributed independently. Then the security of scheme (9) can be reduced to
that of private-key scheme (8) by observations: (i) ˜msk is necessary for generating
mpk in scheme (9); (ii) we can view a ciphertext in scheme (9) as a ciphertext
of our private-key IPE scheme under master secret key msk∗; (iii) a secret key
in scheme (9) can be produced from a secret key of private-key IPE scheme (8)
under master secret key msk∗ with the help of ˜msk.

How to Shorten the Ciphertext. The ciphertext size of our IPE scheme (9) mainly
depends on the width of matrix U and Wi, which is further determined by the
dimensions of subspaces defined by B1,B2,B3. Therefore, in order to reduce
the ciphertext size, we employ the “dimension compress” technique used in [16].
The basic idea is to let B1 and B3 “share some dimensions” and finally decrease
the width of U and Wi, the cost is that we have to use the xdlin assumption.
Compared with our first scheme, a qualitative difference is that the private-key
variant now works with bilinear maps. This is not needed when we work with
the k-lin assumption in the first scheme.

Organization. The paper is organized as follows. In Sect. 2, we review some
basic notions. The next two sections, Sects. 3 and 4, will be devoted to our two
IPE schemes, respectively. In both sections, we will first develop a private-key
scheme and then transform it to the public-key version as [36].
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2 Preliminaries

Notation. Let A be a matrix over Zp. We use span(A) to denote the column
span of A, use basis(A) to denote a basis of span(A), and use (A1|A2) to denote
the concatenation of matrices A1,A2. By span(A�), we are indicating the row
span of A�. We let In be the n-by-n identity matrix and 0 be a zero matrix of
proper size. Given an invertible matrix B, we use B∗ to denote its dual satisfying
B�B∗ = I.

2.1 Inner-Product Encryption

Algorithms. An inner-product encryption (IPE) scheme consists of four algo-
rithms (Setup,KeyGen,Enc,Dec):

Setup(1λ, n) → (mpk,msk). The setup algorithm gets as input the security param-
eter λ and the dimension n of the vector space. It outputs the master public
key mpk and the master key msk.

KeyGen(msk,y) → sky. The key generation algorithm gets as input msk and a
vector y. It outputs a secret key sky for vector y.

Enc(mpk,x,m) → ctx. The encryption algorithm gets as input mpk, a vector x
and a message m. It outputs a ciphertext ctx for vector x.

Dec(ctx, sky) → m. The decryption algorithm gets as a ciphertext ctx for x and
a secret key sky for vector y satisfying 〈x,y〉 = 0. It outputs message m.

Correctness. For all vectors x,y satisfying 〈x,y〉 = 0 and all m, it holds that

Pr[Dec(ctx, sky) = m] = 1,

where (mpk,msk) ← Setup(1λ, n), ctx ← Enc(mpk,x,m), sky ← KeyGen(msk,y).

Security. For a stateful adversary A, we define the advantage function

AdvipeA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b = b′ :

(mpk,msk) ← Setup(1λ, n);
(x0,x1,m0,m1) ← AKeyGen(msk,·)(mpk);
b ←r {0, 1}; ct∗ ← Enc(mpk,xb,mb);
b′ ← AKeyGen(msk,·)(ct∗)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

with the following restrictions on all queries y that A submitted to
KeyGen(msk, ·):
– if m0 	= m1, we require that 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0;
– if m0 = m1, we require that either 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0 or 〈x0,y〉 =

〈x1,y〉 = 0.

An IPE scheme is adaptively secure and fully attribute-hiding if for all PPT
adversaries A, the advantage AdvipeA (λ) is a negligible function in λ.

Private-key IPE. In a private-key IPE, the Setup algorithm does not output
mpk; and the Enc algorithm takes msk instead of mpk as input. The adaptive
security and full attribute-hiding can be defined analogously except that A only
gets ct∗ and has access to KeyGen(msk, ·). The advantage function is denoted by
Advipe*A (λ). Accordingly, we may call the standard IPE public-key IPE.
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2.2 Prime-Order Groups and Matrix Diffie-Hellman Assumptions

A group generator G takes as input security parameter λ and outputs group
description G = (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and
GT are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate
bilinear map. We require that group operations in G1, G2 and GT as well the
bilinear map e are computable in deterministic polynomial time with respect to
λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators.
We employ the implicit representation of group elements: for a matrix M over
Zp, we define [M]1 = gM1 , [M]2 = gM2 , [M]T = gMT , where exponentiations are
carried out component-wise. Given A and [B]2, we let A 
 [B]2 = [AB]2; for
[A]1 and [B]2, we let e([A]1, [B]2) = [AB]T .

We review the matrix Diffie-Hellman (MDDH) assumption on G1 [14]. The
mddhk,� assumption on G2 can be defined analogously and it is known that
k-lin ⇒ mddhk,� [14].

Assumption 1 (MDDHk,� Assumption). Let � > k ≥ 1. We say that the
mddhk,� assumption holds with respect to G if for all PPT adversaries A, the
following advantage function is negligible in λ.

Adv
mddhk,�

A (λ) :=
∣

∣Pr[A(G, [M]1, [Ms]1) = 1] − Pr[A(G, [M]1, [u]1) = 1]
∣

∣

where G ← G(1λ), M ← Z
�×k
p , s ← Z

k
p and u ← Z

�
p.

We also use the external decisional linear (xdlin) assumption on G2 [1]:

Assumption 2 (XDLIN Assumption). We say that the xdlin assumption
holds with respect to G if for all PPT adversaries A, the following advantage
function is negligible in λ.

AdvxdlinA (λ) :=
∣
∣Pr[A(G, D, T0 = [a3(s1 + s2)]2) = 1] − Pr[A(G, D, T1 ← G2) = 1]

∣
∣

where G ← G(1λ) and D = ( [a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2 ) with
a1, a2, a3, s1, s2 ← Zp.

3 Construction from k-lin Assumption

3.1 Preparation

Fix parameters �1, �2, �3 ≥ 1 and let � := �1 + �2 + �3. We use basis

B1 ← Z
�×�1
p , B2 ← Z

�×�2
p , B3 ← Z

�×�3
p ,

and its dual basis (B‖
1,B

‖
2,B

‖
3) such that B�

i B
‖
i = I (known as non-degeneracy)

and B�
i Bj = 0 if i 	= j (known as orthogonality), as depicted in Fig. 2.

Assumption. We review the sdG2
B1 �→B1,B2

assumption [13,15,17] as follows. By
symmetry, one may permute the indices for subspaces.
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B1 B2 B3

B‖
1 B‖

2 B‖
3

Fig. 2. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy.

Lemma 1 (mddh�1,�1+�2 ⇒ sdG2
B1 �→B1,B2

). Under the mddh�1,�1+�2 assumption
in G2, there exists an efficient sampler outputting random ([B1]2, [B2]2, [B3]2)
(as described above) along with base basis(B‖

3) and basis(B‖
1,B

‖
2) (of arbitrary

choice) such that the following advantage function is negligible in λ.

Adv
sdG2

B1 �→B1,B2
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ( [B1]2, [B2]2, [B3]2, basis(B
‖
1,B

‖
2), basis(B

‖
3) )

t0 ← span(B1), t1 ← span(B1,B2).

Facts. With basis (B1,B2,B3), we can uniquely decompose w ∈ Z
1×�
p as

w =
∑

β∈[3] w
(β) where w(β) ∈ span(B‖

β

�
).

In the paper, we use notation w(β) to denote the projection of w onto span(B‖
β

�
)

and define w(β1β2) = w(β1) + w(β2) for β1, β2 ∈ [3]. Furthermore, we highlight
two facts: (1) For β ∈ [3], it holds that wBβ = w(β)Bβ ; (2) For all β∗ ∈ [3], it
holds that

{

w(β∗) , {w(β)}β 
=β∗
} ≡ { w∗ , {w(β)}β 
=β∗

}

when w ← Z
1×�
p and w∗ ← span(B‖

β∗
�
).

3.2 Step One: A Private-Key IPE in Prime-Order Groups

Our first prime-order private-key IPE is described as follows. We use the basis
described in Sect. 3.1 with (�1, �2, �3) = (k, 1, k). As mentioned in Sect. 1.2, we
do not need bilinear map for this private-key IPE. However, for our future use
in Sect. 3.4, we describe the IPE in bilinear groups and note that only one of
source groups is used.

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample B1 ← Z
(2k+1)×k
p

and pick u,w1, . . . ,wn ← Z
1×(2k+1)
p , α ← Zp. Output

msk = (G, α,u,w1, . . . ,wn,B1 ).
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– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

k
p and output

sky = (K0 = [α + (y1 · w1 + · · · + yn · wn)B1r]2, K1 = [B1r]2 )

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ G2. Output

ctx = (C1 = x1 · u+w1, . . . , Cn = xn · u+wn, C = [α]2 · m )

– Dec(ctx, sky): Parse ctx = (C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn) ∈ Z

n
p . Output

m′ = C · ((y1 · C1 + · · · + yn · Cn) 
 K1) · K−1
0 .

The correctness is straightforward.

3.3 Security of Private-Key IPE

We will prove the following theorem.

Theorem 1. Under the k-lin assumption, the private-key IPE scheme
described in Sect. 3.2 is adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

Following [11,35], we can reduce the case m0 	= m1 to the case m0 = m1 by
arguing that an encryption for mb is indistinguishable with an encryption for
m0. Therefore it is sufficient to prove the following lemma for m0 = m1.

Lemma 2. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B1,B2,B3 such that

Advipe*A (λ) ≤ Q · Advsd
G2
B1 �→B1,B3

B1
(λ) + Q · Advsd

G2
B3 �→B3,B2

B2
(λ) + Q · Advsd

G2
B1 �→B1,B3

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

Game sequence. We prove Lemma2 via the following game sequence, which
is summarized in Fig. 3.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

x1,b · u+w1, . . . , xn,b · u+wn, [α]2 · m0.

Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

x1,b · u(13) + x1,1−b · u(2) +w1, . . . , xn,b · u(13) + xn,1−b · u(2) +wn, [α]2 · m0.

We claim that Game1 ≡ Game0. This follows from facts that (1) secret keys

will not reveal w(2)
1 , . . . ,w(2)

n ; (2) for all x0,x1 ∈ Z
n
p and u(2) ∈ span(B‖

2

�
),

it holds

{ xi,b · u(2) +w(2)
i }i∈[n] ≡ { xi,1−b · u(2) +w(2)

i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B‖
2

�
). See Lemma 4 for more details.
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Fig. 3. Game sequence for private-key IPE based on k-lin assumption. The gray back-
ground highlights the difference between adjacent games. Here, B1,B2,B3 play a role
similar to the p4, p2, p3-subgroups in Fig. 1.

– Game2.j for j ∈ [0, q] is identical to Game1 except that the first j secret keys
are

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2.j−1 ≈c Game2.j for j ∈ [q] and give a proof sketch later.
– Game3 is identical to Game2.q except that the challenge ciphertext is

{ xi,0 · u(12)
0 + xi,1 · u(12)

1 + xi,b · u(3) +wi }i∈[n], [α]2 · m0.

where u0,u1 ← Z
1×(2k+1)
p . We claim that Game2.q ≡ Game3. This follows from

the “change of basis” technique used in dual pairing vector spaces [23,28]. In
particular, we argue that

(

xi,b

︷︸︸︷

u(1) ,

xi,1−b

︷︸︸︷

u(2) ) ≡ (u(12)
0 ,u(12)

1 )

when u,u0,u1 and basis B1,B2 are chosen at random. Here we use the fact
that randomness d in secret keys reveals no information about the basis of
span(B1,B2). See Lemma 5 for more details.

– Game4 is identical to Game3 except that the challenge ciphertext is

x1,0 · u0 + x1,1 · u1 +w1, . . . , xn,0 · u0 + xn,1 · u1 +wn, [α]2 · m0
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in which the adversary has no advantage in guessing b. We claim that Game3 ≡
Game4. The proof is similar to that for Game1 ≡ Game0. See Lemma 6 for
details.

Proving Game2.j−1 ≈c Game2.j . We now prove Game2.j−1 ≈c Game2.j and thus
complete the proof for Lemma 2. For all j ∈ [q], we employ the following game
sequence, which has been included in Fig. 3.

– Game2.j−1.1 is identical to Game2.j−1 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B3) .

We claim that Game2.j−1.1 ≈c Game2.j−1. This follows from the sdG2
B1 �→B1,B3

assumption: given [B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3), it holds that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2.

In the reduction, we sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p and pick

u(13) ← span((B‖
1|B‖

3)
�) and u(2) ← span(B‖

2

�
)

using basis(B‖
1,B

‖
3) and basis(B‖

2), respectively. The challenge ciphertext is
generated using

{xi,b · u(13) + xi,1−b · u(2) +wi }i∈[n];

the jth secret key is created from w1, . . . ,wn and [t]2 while the remaining
keys can be generated using [B1]2 and [B2]2 along with α,w1, . . . ,wn. See
Lemma 7 for more details.

– Game2.j−1.2 is identical to Game2.j−1.1 except that the challenge ciphertext
is

{xi,b · u(1) + xi,1−b · u(2) + xi,1−b · u(3) +wi }i∈[n], [α]2 · m0.

We claim that Game2.j−1.2 ≡ Game2.j−1.1. This follows from facts that: (1)
u(3) and w(3)

i are only revealed from the challenge ciphertext and the jth
secret key; (2) for all x0, x1 and y with the restriction that (a) 〈x0,y〉 =
〈x1,y〉 = 0; or (b) 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0, it holds that

(

ct
︷ ︸︸ ︷

x1,b · u(3) +w(3)
1 , . . . , xn,b · u(3) +w(3)

n ,

sk
︷ ︸︸ ︷

y1 · w(3)
1 + · · · + yn · w(3)

n )

≡ ( x1,1−b · u(3) +w(3)
1 , . . . , xn,1−b · u(3) +w(3)

n , y1 · w(3)
1 + · · · + yn · w(3)

n ).

See Lemma 8 for more details.
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– Game2.j−1.3 is identical to Game2.j−1.2 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B3) .

We claim that Game2.j−1.3 ≈c Game2.j−1.2. This follows from the sdG2
B3 �→B3,B2

assumption: given [B1]2, [B2]2, [B3]2, basis(B
‖
1), basis(B

‖
2,B

‖
3), it holds that

[t ← span(B3)]2 ≈c [t ← span(B2,B3)]2.

In the reduction, we sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p and pick

u(1) ← span(B‖
1

�
) and u(23) ← span((B‖

2|B‖
3)

�)

using basis(B‖
1) and basis(B‖

2,B
‖
3), respectively. The challenge ciphertext is

generated using

{xi,b · u(1) + xi,1−b · u(23) +wi }i∈[n]

the jth secret key is created from α,w1, . . . ,wn and [B1], [t]2 while the
remaining keys can be generated using [B1,B2]2 along with α,w1, . . . ,wn.
See Lemma 9 for more details.

– Game2.j−1.4 is identical to Game2.j−1.3 except that the challenge ciphertext
is

{xi,b · u(1) + xi,1−b · u(2) + xi,b · u(3) +wi }i∈[n], [α]2 · m0.

We claim that Game2.j−1.4 ≡ Game2.j−1.3. The proof is identical to that for
Game2.j−1.2 ≡ Game2.j−1.1. See Lemma 10 for more details.

– Game2.j−1.5 is identical to Game2.j−1.4 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2.j−1.5 ≈c Game2.j−1.4. The proof is identical to that
for Game2.j−1 ≈c Game2.j−1.1. See Lemma 11 for more details. Note that
Game2.j−1.5 = Game2.j .

3.4 Step Two: From Private-Key to Public-Key

We describe our prime-order full-fledged IPE, which is derived from our private-
key IPE in Sect. 3.2 via the “private-key to public-key” compiler [36].

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample A ← Z
(k+1)×k
p ,

B1 ← Z
(2k+1)×k
p and pick

U,W1, . . . ,Wn ← Z
(k+1)×(2k+1)
p and k ← Z

k+1
p .

Output

mpk = (G, [A�]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T )
msk = (k,W1, . . . ,Wn,B1 ).
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– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

k
p and output

sky = (K0 = [k+ (y1 · W1 + · · · + yn · Wn)B1r]2,K1 = [B1r]2 )

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Sample s ← Z

k
p and

output
ctx = (C0 = [s�A�]1, { Ci = [s�A�(xi · U+Wi)]1 }i∈[n], C = [s�A�k]T · m )

– Dec(ctx, sky): Parse ctx = (C0, C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn). Output

m′ = C · e(y1 
 C1 · · · yn 
 Cn,K1) · e(C0,K0)−1.

The correctness is straightforward.

Security. We will prove the following theorem.

Theorem 2. Under the k-lin assumption, the IPE scheme described above is
adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

For the same reason as in Sect. 3.3, we prove the lemma for the m0 = m1, which
shows that the security of the IPE described above is implied by that of our
private-key IPE in Sect. 3.2 and the mddhk assumption.

Lemma 3. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B0,B such that

AdvipeA (λ) ≤ Advmddhk

B0
(λ) + Advipe*B (λ)

and Time(B0),Time(B) ≈ Time(A).

We prove Lemma 3 via the following game sequence.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[c�]1, [c�(x1,b · U+W1)]1, . . . , [c�(xn,b · U+Wn)]1, e([c�]1, [k]2) · m0

where c ← span(A). Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that we pick c ← Z

k+1
p when generating

the challenge ciphertext. We claim that Game1 ≈c Game0. This follows from
the mddhk assumption:

[c ← span(A)]1 ≈c [c ← Z
k+1
p ] given [A]1.

In the reduction, we sample k,U,W1, . . . ,Wn and B1. The master public
key mpk and the challenge ciphertext are simulated using k,U,W1, . . . ,Wn

along with [A]1, [c]1; all secret keys can be created honestly. See Lemma 12
for details.
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It remains to show that the advantage in guessing b ∈ {0, 1} in Game1 is negli-
gible. This follows from the security of our private-key IPE in Sect. 3.2. For A
and c, define

A�U = ˜U ∈ Z
k×(2k+1)
p A�Wi = ˜Wi ∈ Z

k×(2k+1)
p A�k = ˜k ∈ Z

k
p

c�U = u ∈ Z
1×(2k+1)
p c�Wi = wi ∈ Z

1×(2k+1)
p c�k = α ∈ Zp

We can then rewrite mpk as

[A�]1, [˜U]1, [˜W1]1, . . . , [˜Wn]1, [˜k]T ;

the challenge ciphertext (in Game1) becomes

[c�]1, [x1,b · u+w1 ]1, . . . , [xn,b · u+wn ]1, e([1]1, [α]2) · m0.

Assume that (A|c) is full-rank which occurs with high probability and define

T =
(

A�

c�

)−1

, we have Wi = T
(

˜Wi
wi

)

and k = T
(

˜k
α

)

, a secret key can be
rewritten as

T 

(

[˜k+ (y1 · ˜W1 + · · · + yn · ˜Wn)d]2
[α + (y1 · w1 + · · · + yn · wn)d]2

)

, [d]2.

Observe that the underlined parts are exactly the ciphertext and secret keys
of our private-key IPE in Sect. 3.2; and (˜U,˜Wi, ˜k), (u,wi, α) are distributed
uniformly and independently. This means we can simulate mpk honestly and
transform a ciphertext/secret key from our private-key IPE to its public-key
counterpart using A, c, ˜U, ˜Wi, ˜k. This is sufficient for the reduction from the
public-key IPE to private-key IPE. See Lemma 13 for more details.

3.5 Lemmas for Private-Key IPE

Let Advx be the advantage function with respect to A in Gamex. We prove the
following lemma for the game sequence in Sect. 3.3.

Lemma 4 (Game0 ≡ Game1). Adv0(λ) = Adv1(λ).

Proof. It is sufficient to prove that, for all u ← Z
1×(2k+1)
p , it holds that

(

sk
︷ ︸︸ ︷

w1B1, . . . ,wnB1,

ct
︷ ︸︸ ︷

{xi,b · u(13) + xi,b · u(2) +wi }i∈[n] )
≡ (w1B1, . . . ,wnB1, {xi,b · u(13) + xi,1−b · u(2) +wi }i∈[n] )

when w1, . . . ,wn ← Z
1×(2k+1)
p . By the facts shown in Sect. 3.1, it is implied by

the statement that, for all u(2) ∈ span(B‖
2

�
), it holds that

{xi,b · u(2) +w(2)
i }i∈[n] ≡ {w(2)

i }i∈[n] ≡ {xi,1−b · u(2) +w(2)
i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B‖
2

�
). This completes the proof. ��
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Lemma 5 (Game2.q ≡ Game3). Adv2.q(λ) = Adv3(λ).

Proof. We simulate Game2.q as follows:

Setup. We alternatively prepare basis (B1,B2,B3 ) as follows: Sample ˜B1,B3 ←
Z
(2k+1)×k
p , ˜B2 ← Z

2k+1
p and compute dual basis ˜B‖

1,
˜B‖
2,B

‖
3 as usual. Pick

R ← GLk+1(Zp) and define

(B1|B2) = (˜B1|˜B2)R and (B‖
1|B‖

2) = (˜B‖
1|˜B‖

2)R
∗.

This does not change the distribution of basis. We then sample
α,u,w1, . . . ,wn honestly.

Key queries. On input y = (y1, . . . , yn), output

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(˜B1, ˜B2).

Although we sample d using ˜B1, ˜B2, the vector is uniformly distributed over
span(B1,B2) as required and our simulation is perfect.

Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, we create the challenge
ciphertext honestly using (B‖

1,B
‖
2,B

‖
3). That is, we pick b ← {0, 1} and out-

put

{xi,b · v0 + xi,1−b · v1 + xi,b · u(3) +wi }i∈[n], [α]2 · m0

where u(3) ← span(B‖
3

�
) and

v0 = u(1) ← span(B‖
1

�
) and v1 = u(2) ← span(B‖

2

�
).

Observe that, we have a 2-by-(k + 1) matrix V of rank 2 such that
(

—v0—
—v1—

)

= V(B‖
1|B‖

2)
� = VR−1

︸ ︷︷ ︸

uniformly over Z
2×(k+1)
p

(˜B‖
1|˜B‖

2)
�.

Since R is independent of other part of simulation, VR−1 are uniformly
distributed over Z

2×(k+1)
p and thus it is equivalent to sample v0,v1 ←

span((˜B‖
1|˜B‖

2)
�) when creating the challenge ciphertext. This leads to the simu-

lation of Game3 (with respect to ˜B1, ˜B2,B3). ��
Lemma 6 (Game3 ≡ Game4). Adv3(λ) = Adv4(λ).

Proof The proof is similar to that for Lemma 4, except that we work with u(3),
u(3)
0 , u(3)

1 , w(3)
i instead. ��

Lemma 7 (Game2.j−1 ≈c Game2.j−1.1). There exists adversary B1 with
Time(B1) ≈ Time(A) such that

|Adv2.j−1.1(λ) − Adv2.j−1(λ) | ≤ Adv
sdG2

B1 �→B1,B3
B1

(λ).
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Proof. This follows from the sdG2
B1 �→B1,B3

assumption stating that, given

[B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3), it holds that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2.

On input [B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3) and [t]2, the adversary B1

works as follows:

Setup. Sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p . Implicitly sample u by pick-

ing

u(13) ← span((B‖
1|B‖

3)
�) and u(2) ← span(B‖

2

�
)

using basis(B‖
1,B

‖
3) and basis(B‖

2), respectively.
Key Queries. On the κth query y = (y1, . . . , yn), output

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ←
⎧

⎨

⎩

span(B1,B2) κ < j;
t κ = j;
span(B1) κ > j;

using [B1]2, [B2]2 and [t]2
Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, pick b ← {0, 1} and

output

x1,b · u(13) + x1,1−b · u(2) +w1, . . . , xn,b · u(13) + xn,1−b · u(2) +wn, [α]2 · m0.

Observe that, when t is uniformly distributed over span(B1), the simula-
tion is identical to Game2.j−1; otherwise, when t is uniformly distributed
over span(B1,B3), the simulation is identical to Game2.j−1.1. This proves the
lemma. ��
Lemma 8 (Game2.j−1.1 ≡ Game2.j−1.2). Adv2.j−1.1 = Adv2.j−1.2.

Proof. By complexity leveraging and the facts shown in Sect. 3.1, it is sufficient to
prove the following statement: for all x0, x1 and y (corresponding to the jth key
query) satisfying that (a) 〈x0,y〉 = 〈x1,y〉 = 0; or (b) 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0,
it holds that

(

ct
︷ ︸︸ ︷

x1,b · u(3) +w(3)
1 , . . . , xn,b · u(3) +w(3)

n ,

sk
︷ ︸︸ ︷

y1 · w(3)
1 + · · · + yn · w(3)

n )
≡ ( x1,1−b · u(3) +w(3)

1 , . . . , xn,1−b · u(3) +w(3)
n , y1 · w(3)

1 + · · · + yn · w(3)
n )

when u(3),w(3)
1 , . . . ,w(3)

n ← span(B‖
3

�
). By the linearity, it in turn follows from

the following statement

{x1,b · u + w1, . . . , xn,b · u + wn, y1 · w1 + · · · + yn · wn }
≡ { x1,1−b · u + w1, . . . , xn,1−b · u + wn, y1 · w1 + · · · + yn · wn }
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where u,w1, . . . , wn ← Zp. This follows from the statistical argument for all
x = (x1, . . . , xn) which is implicitly used in the proof of Wee’s simulation-based
selectively secure IPE [36]: by programming w̃i = xi · u + wi for all i ∈ [n], we
have

{x1 · u + w1, . . . , xn · u + wn, y1 · w1 + · · · + yn · wn }
≡ { w̃1, . . . , w̃n, (y1 · w̃1 + · · · + yn · w̃n) − u · (x1y1 + · · · + xnyn) }

which means that the left-hand side distributions for all vector x not orthogonal
to y are identical (since u hides the information about the inner-product) and
so do all vector x orthogonal to y. This proves the above statement and thus
proves the lemma. ��
Lemma 9 (Game2.j−1.2 ≈c Game2.j−1.3). There exists adversary B2 with
Time(B2) ≈ Time(A) such that

|Adv2.j−1.3(λ) − Adv2.j−1.2(λ) | ≤ Adv
sdG2

B3 �→B3,B2
B2

(λ).

Proof. The proof is analogous to that for Lemma 7 (Game2.j−1 ≈c

Game2.j−1.1). ��
Lemma 10 (Game2.j−1.3 ≡ Game2.j−1.4). Adv2.j−1.3 = Adv2.j−1.4.

Proof. The proof is identical to that for Lemma 8 (Game2.j−1.1 ≈c

Game2.j−1.2). ��
Lemma 11 (Game2.j−1.4 ≈c Game2.j−1.5). There exists adversary B3 with
Time(B3) ≈ Time(A) such that

|Adv2.j−1.5(λ) − Adv2.j−1.4(λ) | ≤ Adv
sdG2

B1 �→B1,B3
B3

(λ).

Proof. The proof is analogous to that for Lemma 7 (Game2.j−1 ≈c

Game2.j−1.1). ��

3.6 Lemmas for Public-Key IPE

Let Advx be the advantage function with respect to A in Gamex. We prove the
following lemma for the game sequence in Sect. 3.4.

Lemma 12 (Game0 ≡ Game1). There exists adversary B0 with Time(B0) ≈
Time(A) such that

|Adv1(λ) − Adv0(λ) | ≤ Advmddhk

B0
(λ).

Proof. The proof is direct, we omit it here and refer the reader to the full paper. ��
Lemma 13 (Advantage in Game1). There exists adversary B with Time(B) ≈
Time(A) such that

Adv1(λ) ≤ Advipe*B (λ).
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Proof. We construct the adversary B as below:

Setup. Sample (A, c) ← Z
(k+1)×k
p × Z

k+1
p and compute T =

(

A�

c�

)−1

. Since
(A|c) is full-rank which occurs with high probability, T is well-defined. Pick

˜U,˜W1, . . . ,˜Wn ← Z
k×(2k+1)
p and ˜k ← Z

k
p

and output

mpk = ( [A�]1, [˜U]1, [˜W1]1, . . . , [˜Wn]1, [˜k]T ).

Key Queries. On input y, adversary B forwards the query to its environment
and receives (K0,K1). Compute

˜K0 = [˜k]2 · ((y1 · ˜W1 + · · · + yn · ˜Wn) 
 K0)

and output

sky =
(

T 

(

˜K0
K0

)

, K1

)

.

Ciphertext. On input (x0,x1,m0,m1), adversary B sends query (x0,x1, 1, 1) to
its environment and receives (C1, . . . , Cn, C). Create the challenge ciphertext
as

[c�]1, [C1]1, . . . , [Cn ]1, e([1]1, C) · m0.

The adversary B outputs A’s guess bit. By the observation in Sect. 3.4, mpk
is simulated perfectly; if (K0,K1) is a private-key IPE secret key, secret keys
we computed is for our public-key IPE; if (C1, . . . , Cn, C) is a private-key IPE
ciphertext for b = 0, the ciphertext we created is a public-key IPE ciphertext for
b = 0; this also holds for b = 1. This readily proves the lemma. ��

4 Construction from xdlin Assumption

In this section, we improve the IPE scheme presented in Sect. 3 by the optimiza-
tion technique in [16]. As in Sect. 3, we will first develop a private-key IPE from
that in Sect. 3.2 and then compile it into the public-key setting.

4.1 Correspondence

Applying the technique in [16] to our private-key IPE in Sect. 3.2, we basically
overlap span(B1) and span(B3) so that the total dimension decreases. Techni-
cally, we work with basis

B1 ← Z
�×�1
p , B2 ← Z

�×�2
p , B3 ← Z

�×�3
p , B4 ← Z

�×�4
p
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where �1, �2, �3, �4 ≥ 1 and � := �1 + �2 + �3 + �4, and follow the correspondence:

Sec 3.1 this section
B1 �→ (B1 | B4)
B2 �→ B2

B3 �→ (B3 | B4)

(10)

saying that B1 and B3 used in Sect. 3 are replaced by (B1|B4) and (B3|B4),
respectively, whose spans interact at span(B4). Analogous to Sect. 3.1, we can
define its dual basis (B‖

1,B
‖
2,B

‖
3,B

‖
4) and decompose w ∈ Z

1×�
p as w(1)+w(2)+

w(3) +w(4).
Assumptions. With the correspondence (10), the assumption sdG2

B1 �→B1,B3
used

in Sect. 3.3 will be replaced by sdG2
B1,B4 �→B1,B3,B4

defined as follows.

Lemma 14 (mddh�1+�4,�1+�3+�4 ⇒ sdG2
B1,B4 �→B1,B3,B4

). Under mddh�1+�4,�1+�3+�4

assumption in G2, there exists an efficient sampler outputting random
([B1]2, [B2]2, [B3]2, [B4]2) along with base basis(B‖

2) and basis(B‖
1,B

‖
3,B

‖
4) (of

arbitrary choice) such that the following advantage function is negligible in λ.

Adv
sdG2

B1,B4 �→B1,B3,B4
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ( [B1]2, [B2]2, [B3]2, [B4]2, basis(B
‖
2), basis(B

‖
1,B

‖
3,B

‖
4) ),

t0 ← span(B1,B4), t1 ← span(B1,B3,B4).

The proof is analogous to that for Lemma 1 (cf. [13]).
Also, we replace sdG2

B3 �→B2,B3
assumption in Sect. 3.3 with external subspace

decision assumption xsdG2
B3,B4 �→B2,B3,B4

defined as below.

Assumption 3 (xsdG2
B3,B4 �→B2,B3,B4

). We say that xsdG2
B3,B4 �→B2,B3,B4

assumption holds if there exists an efficient sampler outputting random ([B1]2,
[B2]2, [B3]2, [B4]2) along with base basis(B‖

1), basis(B
‖
4) and [basis(B‖

2,B
‖
3)]1 (of

arbitrary choice) such that the following advantage function is negligible in λ.

Adv
xsdG2

B3,B4 �→B2,B3,B4
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ( [B1]2, [B2]2, [B3]2, [B4]2, basis(B
‖
1), [basis(B

‖
2,B

‖
3)]1, basis(B

‖
4) ),

t0 ← span(B3,B4), t1 ← span(B2,B3,B4).

We note that we do not give out basis(B‖
2,B

‖
3,B

‖
4) as usual; instead, basis(B‖

4)
on Zp and [basis(B‖

2,B
‖
3)]1 on G1 are provided. We then prove the following

lemma saying that, for a specific set of parameters, the assumption is implied
by xdlin assumption.
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Lemma 15 (xdlin ⇒ xsdG2
B3,B4 �→B2,B3,B4

). Under the external decisional lin-
ear assumption (xdlin) [1] (cf. Sect. 2.2), the xsdG2

B3,B4 �→B2,B3,B4
assumption

holds for parameter �2 = �3 = �4 = 1.

Proof. For any PPT adversary A, we construct an algorithm B with Time(B) ≈
Time(A) such that

Adv
xsdG2

B3,B4 �→B2,B3,B4
A (λ) ≤ AdvxdlinB (λ).

On input ( [a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2, T ) where a1, a2, a3,
s1, s2 ← Zp and T is either [a3(s1 + s2)]2 or uniformly distributed over G2,
algorithm B works as follows:

Programming B1,B2,B3,B4 and B‖
1,B

‖
2,B

‖
3,B

‖
4. Sample ˜B ← GL3+�1(Zp)

and define

(B1,B2,B3,B4) = ˜B
( I�1

1 a3 a3
a2

a1

)

and (B‖
1,B

‖
2,B

‖
3,B

‖
4) = ˜B∗

⎛

⎝

I�1
1

−a3a−1
2 a−1

2

−a3a−1
1 a−1

1

⎞

⎠

Algorithm B can simulate [B1,B2,B3,B4]2 using [a1, a2, a3]2.
Simulating basis(B‖

1), basis(B
‖
4). We define

basis(B‖
1) = ˜B∗

(

I�1
0

)

and basis(B‖
4) = ˜B∗(a−1

1 e3+�1)a1 = ˜B∗e3+�1 ,

both of which can be simulated using ˜B∗.
Simulating [basis(B‖

2,B
‖
3)]1. We define

basis(B‖
2,B

‖
3) = ˜B∗

(

0
1

−a3a−1
2 a−1

2

−a3a−1
1

)

( a1
a1a3 a2 ) = ˜B∗

(

0
a1

1−a3

)

such that [basis(B‖
2,B

‖
3)]1 (over G1) can be simulated using ˜B∗ and [a1, a3]1.

Simulating the challenge. Output the challenge
(

[0]2
T

[a2s2]2
[a1s1]2

)

.

Observe that if T = [a3(s1 + s2)]2, the output challenge is uniformly distributed
over [span(B3,B4)]2; if T is uniformly distributed over G2, the output challenge
is then uniformly distributed over [span(B2,B3,B4)]2. This readily proves the
lemma. ��
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4.2 Step One: A Private-Key IPE from XDLIN Assumption

Our second private-key IPE is described as follows, which is translated from the
private-key IPE in Sect. 3.2 with the correspondence (10). Here we employ the
basis defined in Sect. 4.1 with parameter (�1, �2, �3, �4) = (1, 1, 1, 1).

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample B14 = (B1|B4) ←
Z
4×2
p and pick u,w1, . . . ,wn ← Z

1×4
p , α ← Zp. Output

msk = (G, α,u,w1, . . . ,wn,B14 ).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

2
p and output

sky = (K0 = [α + (y1 · w1 + · · · + yn · wn)B14r]2, K1 = [B14r]2 )

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Output

ctx = (C1 = [x1 · u+w1]1, . . . , Cn = [xn · u+wn]1, C = [α]T · m )

– Dec(ctx, sky): Parse ctx = (C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn) ∈ Z

n
p . Output

m′ = C · e(y1 
 C1 · · · yn 
 Cn,K1) · e([1]1,K0)−1.

The correctness is straightforward. Compared with the construction in Sect. 3.2,
we now have ciphertexts over G1 instead of Zp and the bilinear map is required
for decryption procedure. However the total dimension � = 4 is smaller than that
in Sect. 3.1 when k = 2 (corresponding to dlin assumption), which is � = 5.

4.3 Security

We will prove the following theorem.

Theorem 3. Under the xdlin assumption, the private-key IPE scheme
described in Sect. 4.2 is adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

As before, we only need to prove the following lemma for m0 = m1.

Lemma 16. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B1,B2,B3 such that

Advipe*A (λ) ≤ Q · Advsd
G2
B1,B4 �→B1,B3,B4

B1
(λ) + Q · Advxsd

G2
B3,B4 �→B2,B3,B4

B2
(λ)

+Q · Advsd
G2
B1,B4 �→B1,B3,B4

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

Game sequence. With the correspondence in Sect. 4.1, the proof for Lemma 16
is almost the same as that for Lemma 2 presented in Sect. 3. Here we only give
the game sequence, summarized in Fig. 4.
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Fig. 4. Game sequence for Private-key IPE based on xdlin. The gray background
highlights the difference between adjacent games.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[x1,b · u+w1]1, . . . , [xn,b · u+wn]1, [α]T · m0.

Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

{ [xi,b · u(134) + xi,1−b · u(2) +wi]1 }i∈[n], [α]T · m0.

We claim that Game1 ≡ Game0. The proof is analogous to that for Game1 ≡
Game0 in Sect. 3.3.

– Game2.j for j ∈ [0, q] is identical to Game1 except that the first j secret keys
are

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2.j−1 ≈c Game2.j for j ∈ [q] and give a proof sketch later.
– Game3 is identical to Game2.q except that the challenge ciphertext is

{ [ xi,0 · u(124)
0 + xi,1 · u(124)

1 + xi,b · u(3) +wi]1 }i∈[n], [α]T · m0.

where u0,u1 ← Z
1×(k+1)
p . We claim that Game2.q ≡ Game3. The proof is

analogous to that for Game2.q ≡ Game3 in Sect. 3.3 using “change of basis”
technique [23,28], except that we now work with subspace span(B1,B2,B4)
corresponding to span(B1,B2) there (cf. Section 4.1).

– Game4 is identical to Game3 except that the challenge ciphertext is

[ x1,0 · u0 + x1,1 · u1 +w1]1, . . . , [ xn,0 · u0 + xn,1 · u1 +wn]1, [α]T · m0
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We claim that Game3 ≡ Game4 and the adversary has no advantage in
guessing b in Game4. The proof for the former claim is similar to that for
Game1 ≡ Game0.

Proving Game2.j−1 ≈c Game2.j . We now proves Game2.j−1 ≈c Game2.j which
completes the proof for Lemma 16. For all j ∈ [q], we employ the following game
sequence, which has been included in Fig. 4.

– Game2.j−1.1 is identical to Game2.j−1 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B3,B4) .

We claim that Game2.j−1.1 ≈c Game2.j−1. This follows from the
sdG2

B1,B4 �→B1,B3,B4
assumption with a reduction analogous to that for

Game2.j−1.1 ≈c Game2.j−1 in Sect. 3.3.
– Game2.j−1.2 is identical to Game2.j−1.1 except that the challenge ciphertext is

{ [xi,b · u(14) + xi,1−b · u(2) + xi,1−b · u(3) +wi]1 }i∈[n], [α]T · m0.

We claim that Game2.j−1.2 ≡ Game2.j−1.1. The proof is analogous to that for
Game2.j−1.2 ≡ Game2.j−1.1 in Sect. 3.3.

– Game2.j−1.3 is identical to Game2.j−1.2 except that the j-th secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B3,B4) .

We claim that Game2.j−1.3 ≈c Game2.j−1.2. This follows from
xsdG2

B3,B4 �→B2,B3,B4
assumption. The proof is analogous to that for

Game2.j−1.3 ≡ Game2.j−1.2 in Sect. 3.3. Note that, in the reduction, we simu-
late the challenge ciphertext over G1 using [basis(B‖

2,B
‖
3)]1.

– Game2.j−1.4 is identical to Game2.j−1.3 except that the challenge ciphertext is

{ [xi,b · u(14) + xi,1−b · u(2) + xi,b · u(3) +wi]1}i∈[n], [α]T · m0.

We claim that Game2.j−1.4 ≡ Game2.j−1.3. The proof is identical to that for
Game2.j−1.2 ≡ Game2.j−1.1.

– Game2.j−1.5 is identical to Game2.j−1.4 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2.j−1.5 ≈c Game2.j−1.4. The proof is identical to that for
Game2.j−1 ≈c Game2.j−1.1. Note that Game2.j−1.5 = Game2.j .

4.4 Step Two: From Private-Key to Public-Key

Following the “private-key to public-key” compiler [36], we transform the private-
key IPE in Sect. 4.2 to the following public-key IPE:
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– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample A ← Z
3×2
p ,B14 ←

Z
4×2
p and pick

U,W1, . . . ,Wn ← Z
3×4
p and k ← Z

3
p.

Output

mpk = (G, [A�]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T )
msk = (k,W1, . . . ,Wn,B14 ).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

2
p and output

sky = (K0 = [k+ (y1 · W1 + · · · + yn · Wn)B14r]2,K1 = [B14r]2 )

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Sample s ← Z

2
p and

output

ctx = (C0 = [s�A�]1, {Ci = [s�A�(xi · U+Wi)]1}i∈[n], C = [s�A�k]T · m )

– Dec(ctx, sky): Parse ctx = (C0, C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn). Output

m′ = C · e(y1 
 C1 · · · yn 
 Cn,K1) · e(C0,K0)−1.

The correctness is straightforward.
Security. We will prove the following theorem.

Theorem 4. Under the xdlin assumption, the IPE scheme described above is
adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

Concretely, we prove the following lemma, showing that the security of the
above IPE is implied by that of our private-key IPE in Sect. 4.2 and the mddh2

assumption.

Lemma 17. For any adversary A that makes at most Q key queries, there exists
adversaries B0,B such that

AdvipeA (λ) ≤ Advmddh2
B0

(λ) + Advipe*B (λ)

and Time(B0),Time(B) ≈ Time(A).

We prove Lemma 17 via the following game sequence, as in Sect. 3.4.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[c�]1, [c�(x1,b · U+W1)]1, . . . , [c�(xn,b · U+Wn)]1, e([c�]1, [k]2) · mb

where c ← span(A). Here b ← {0, 1} is a secret bit.
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– Game1 is identical to Game0 except that we sample c ← Z
k+1
p when generating

the challenge ciphertext. We claim that Game1 ≈c Game0. This follows from
mddh2 assumption and the proof is analogous to that for Game1 ≈c Game0
in Sect. 3.4.

Analogous to Sect. 3.4 and Sect. 3.6, we can prove that adversary’s advantage in
Game1 is bounded by that against our private-key IPE in Sect. 4.2.
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