
Thomas Peyrin
Steven Galbraith (Eds.)

 123

LN
CS

 1
12

73

24th International Conference on the Theory
and Application of Cryptology and Information Security
Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II

Advances in Cryptology –
ASIACRYPT 2018

Lecture Notes in Computer Science 11273

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Thomas Peyrin • Steven Galbraith (Eds.)

Advances in Cryptology –

ASIACRYPT 2018
24th International Conference on the Theory
and Application of Cryptology and Information Security
Brisbane, QLD, Australia, December 2–6, 2018
Proceedings, Part II

123

Editors
Thomas Peyrin
Nanyang Technological University
Singapore, Singapore

Steven Galbraith
University of Auckland
Auckland, New Zealand

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03328-6 ISBN 978-3-030-03329-3 (eBook)
https://doi.org/10.1007/978-3-030-03329-3

Library of Congress Control Number: 2018959424

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-2690-9197

Preface

ASIACRYPT 2018, the 24th Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held in Brisbane, Australia, during
December 2–6, 2018.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

Asiacrypt 2018 received a total of 234 submissions from all over the world. The
Program Committee selected 65 papers for publication in the proceedings of this
conference. The review process was made by the usual double-blind peer review by the
Program Committee, which consisted of 47 leading experts of the field. Each sub-
mission was reviewed by at least three reviewers and five reviewers were assigned to
submissions co-authored by Program Committee members. This year, the conference
operated a two-round review system with rebuttal phase. In the first-round review the
Program Committee selected the 145 submissions that were considered of value for
proceeding to the second round. In the second-round phase the Program Committee
further reviewed the submissions by taking into account their rebuttal letter from the
authors. The selection process was assisted by a total of 347 external reviewers. These
three-volume proceedings contain the revised versions of the papers that were selected.
The revised versions were not reviewed again and the authors are responsible for their
contents.

The program of Asiacrypt 2018 featured three excellent invited talks by Mitsuru
Matsui, Melissa Chase, and Vanessa Teague. The conference also featured a traditional
rump session that contained short presentations on the latest research results of the
field. The Program Committee selected the work “Block Cipher Invariants as Eigen-
vectors of Correlation Matrices” by Tim Beyne for the Best Paper Award of Asiacrypt
2018. Two more papers, “Learning Strikes Again: the Case of the DRS Signature
Scheme” by Yang Yu and Léo Ducas, and “Tighter Security Proofs for GPV-IBE in the
Quantum Random Oracle Model” by Shuichi Katsumata, Shota Yamada, and Takashi
Yamakawa, were solicited to submit the full versions to the Journal of Cryptology. The
program chairs selected Chris Brzuska and Bart Mennink for the Best PC Member
Award.

Many people contributed to the success of Asiacrypt 2018. We would like to thank
the authors for submitting their research results to the conference. We are very grateful
to all of the PC members as well as the external reviewers for their fruitful comments
and discussions on their areas of expertise. We are greatly indebted to Josef Pieprzyk,
the general chair, for his efforts and overall organization. We would also like to thank
Waleed Alkalabi, Niluka Arasinghe, Mir Ali Rezazadeh Baee, Lynn Batten, Xavier
Boyen, Ed Dawson, Ernest Foo, Mukhtar Hassan, Udyani Herath, Qingyi Li, Georg
Lippold, Matthew McKague, Basker Palaniswamy, Anisur Rahman, Leonie Simpson,
Shriparen Sriskandarajah, Gabrielle Stephens, and Chathurika Don Wickramage, the

local Organizing Committee for their continuous support. We thank Craig Costello,
Léo Ducas, and Pierre Karpman for expertly organizing and chairing the rump session.

Finally we thank Shai Halevi for letting us use his nice software for the paper
submission and review process. We also thank Alfred Hofmann, Anna Kramer, and
their colleagues for handling the editorial process of the proceedings published in
Springer’s LNCS series.

December 2018 Thomas Peyrin
Steven Galbraith

VI Preface

ASIACRYPT 2018

The 24th Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

December 2–6, 2018, Brisbane, Australia

General Chair

Josef Pieprzyk CSIRO, Data61, Australia

Program Co-chairs

Thomas Peyrin Nanyang Technological University, Singapore
Steven Galbraith University of Auckland, New Zealand

Program Committee

Martin Albrecht Royal Holloway University of London, UK
Prabhanjan Ananth MIT, USA
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd CryptoExperts, France
Daniel J. Bernstein University of Illinois at Chicago, USA
Chris Brzuska Aalto University, Finland
Bernardo David Tokyo Institute of Technology, Japan
Nico Döttling Friedrich-Alexander University Erlangen-Nürnberg, Germany
Léo Ducas CWI, The Netherlands
Jens Groth University College London, UK
Dawu Gu Shanghai Jiao Tong University, China
Goichiro Hanaoka AIST, Japan
Viet Tung Hoang Florida State University, USA
Takanori Isobe University of Hyogo, Japan
Jérémy Jean ANSSI, France
Stefan Kölbl Technical University of Denmark, Denmark
Ilan Komargodski Cornell Tech, USA
Kaoru Kurosawa Ibaraki University, Japan
Virginie Lallemand Ruhr-Universität Bochum, Germany
Gaëtan Leurent Inria, France
Benoît Libert CNRS and ENS de Lyon, France
Helger Lipmaa University of Tartu, Estonia

Atul Luykx Visa Research, USA
Stefan Mangard TU Graz, Austria
Bart Mennink Radboud University, The Netherlands
Brice Minaud Royal Holloway University of London, UK
Mridul Nandi Indian Statistical Institute, India
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Elisabeth Oswald University of Bristol, UK
Arpita Patra Indian Institute of Science, India
Giuseppe Persiano Università di Salerno, Italy and Google, USA
Carla Ràfols Universitat Pompeu Fabra, Spain
Amin Sakzad Monash University, Australia
Jae Hong Seo Hanyang University, Korea
Ling Song Institute of Information Engineering, Chinese Academy

of Sciences, China
Nanyang Technological University, Singapore

Douglas Stebila University of Waterloo, Canada
Marc Stevens CWI, The Netherlands
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT laboratories, Japan
Yosuke Todo NTT Secure Platform Laboratories, Japan
Dominique Unruh University of Tartu, Estonia
Gilles Van Assche STMicroelectronics, Belgium
Frederik Vercauteren KU Leuven, Belgium
Bo-Yin Yang Academia Sinica, Taiwan
Yu Yu Shanghai Jiao Tong University, China
Aaram Yun UNIST, Korea

External Reviewers

Behzad Abdolmaleki
Aysajan Abidin
Shweta Agrawal
Estuardo Alpirez Bock
Joël Alwen
Abdelrahaman Aly
Andris Ambainis
Elena Andreeva
Jan-Pieter d’Anvers
Kazumaro Aoki
Nuttapong Attrapadung
Karim Baghery
Shi Bai
Gustavo Banegas
Subhadeep Banik

Paulo Barreto
Gilles Barthe
Hridam Basu
Aurélie Bauer
Carsten Baum
Christof Beierle
Adi Ben-Zvi
Ela Berners-Lee
David Bernhard
Pauline Bert
Ward Beullens
Rishiraj Bhattacharyya
Jean-Francois Biasse
Nina Bindel
Bruno Blanchet

VIII ASIACRYPT 2018

Olivier Blazy
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Cecilia Boschini
Raphael Bost
Christina Boura
Florian Bourse
Dusan Bozilov
Andreas Brasen Kidmose
Jacqueline Brendel
Ignacio Cascudo
Dario Catalano
Andrea Cerulli
Avik Chakraborty
Debrup Chakraborty
Long Chen
Yu Chen
Yu Long Chen
Wonhee Cho
Ashish Choudhury
Chitchanok Chuengsatiansup
Michele Ciampi
Sandro Coretti
Alain Couvreur
Ben Curtis
Dana Dachman-Soled
Joan Daemen
Nilanjan Datta
Pratish Datta
Alex Davidson
Thomas De Cnudde
Luca De Feo
Lauren De Meyer
Gabrielle de Micheli
Fabrizio De Santis
Rafael Del Pino
Cyprien Delpech de Saint Guilhem
Yi Deng
Amit Deo
David Derler
Apoorvaa Deshpande
Lin Ding
Ning Ding
Christoph Dobraunig

Rafael Dowsley
Alexandre Duc
Avijit Dutta
Ratna Dutta
Sébastien Duval
Edward Eaton
Maria Eichlseder
Ali El Kaafarani
Keita Emura
Naomi Ephraim
Muhammed Esgin
Thomas Espitau
Martianus Frederic Ezerman
Leo (Xiong) Fan
Antonio Faonio
Oriol Farràs
Prastudy Fauzi
Serge Fehr
Dario Fiore
Tore Frederiksen
Thomas Fuhr
Eiichiro Fujisaki
Benjamin Fuller
Philippe Gaborit
Clemente Galdi
Nicolas Gama
Chaya Ganesh
Si Gao
Luke Garratt
Romain Gay
Nicholas Genise
Rosario Gennaro
Essam Ghadafi
Anirban Ghatak
Satrajit Ghosh
Junqing Gong
Alonso González
Hannes Gross
Paul Grubbs
Charles Guillemet
Siyao Guo
Qian Guo
Kyoohyung Han
Javier Herranz
Julia Hesse
Harunaga Hiwatari

ASIACRYPT 2018 IX

Thang Hoang
Dennis Hofheinz
Seungwan Hong
Akinori Hosoyamada
Kathrin Hövelmanns
James Howe
Andreas Huelsing
Ilia Iliashenko
Ai Ishida
Masahito Ishizaka
Mitsugu Iwamoto
Tetsu Iwata
Håkon Jacobsen
Christian Janson
Dirmanto Jap
Jinhyuck Jeong
Ashwin Jha
Luke Johnson
Antoine Joux
Pierre Karpman
Shuichi Katsumata
Andrey Kim
Dongwoo Kim
Duhyeong Kim
Jeongsu Kim
Jihye Kim
Jiseung Kim
Myungsun Kim
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Yashvanth Kondi
Ben Kreuter
Toomas Krips
Veronika Kuchta
Marie-Sarah Lacharite
Junzuo Lai
Esteban Landerreche
Tanja Lange
Joohee Lee
Iraklis Leontiadis
Tancrède Lepoint
Jie Li
Qinyi Li
Shun Li
Wei Li

Xiangyu Li
Fuchun Lin
Donxi Liu
Fukang Liu
Hanlin Liu
Junrong Liu
Shengli Liu
Ya Liu
Zhen Liu
Zhiqiang Liu
Victor Lomne
Yu Long
Xianhui Lu
Yuan Lu
Chen Lv
Shunli Ma
Xuecheng Ma
Rusydi Makarim
Giulio Malavolta
Mary Maller
Alex Malozemoff
Yoshifumi Manabe
Avradip Mandal
Mark Manulis
Marco Martinoli
Daniel Masny
Pedro Maat Costa Massolino
Takahiro Matsuda
Alexander May
Sogol Mazaheri
Patrick McCorry
Florian Mendel
Peihan Miao
Vincent Migliore
Kazuhiko Minematsu
Matthias Minihold
Takaaki Mizuki
Andrew Morgan
Paz Morillo
Fabrice Mouhartem
Pratyay Mukherjee
Alireza Naghipour
Yusuke Naito
Maria Naya-Plasencia
Ryo Nishimaki
Ariel Nof

X ASIACRYPT 2018

Wakaha Ogata
Emmanuela Orsini
Rafail Ostrovsky
Carles Padró
Tapas Pandit
Louiza Papachristodoulou
Alain Passelègue
Kenny Paterson
Goutam Paul
Michaël Peeters
Chris Peikert
Massimo Perillo
Léo Perrin
Edoardo Persichetti
Peter Pessl
Thomas Peters
Christophe Petit
Stjepan Picek
Zaira Pindado
Bertram Poettering
Eamonn Postlethwaite
Thomas Prest
Emmanuel Prouff
Elizabeth Quaglia
Adrián Ranea
Shahram Rasoolzadeh
Divya Ravi
Ling Ren
Guénaël Renault
Joost Renes
Joost Rijneveld
Thomas Roche
Paul Rösler
Mélissa Rossi
Dragos Rotaru
Yann Rotella
Arnab Roy
Sujoy Sinha Roy
Sylvain Ruhault
Mohammad Sabt
Mohammad Reza Sadeghi
Yusuke Sakai
Simona Samardzijska
Olivier Sanders
John Schanck
Peter Scholl

André Schrottenloher
Jacob Schuldt
Peter Schwabe
Danping Shi
Kyoji Shibutani
SeongHan Shin
Ferdinand Sibleyras
Janno Siim
Javier Silva
Thierry Simon
Luisa Siniscalchi
Kit Smeets
Yongha Son
Gabriele Spini
Christoph Sprenger
Martijn Stam
Damien Stehle
Ron Steinfeld
Joshua Stock
Ko Stoffelen
Shifeng Sun
Siwei Sun
Moon Sung Lee
Koutarou Suzuki
Alan Szepieniec
Akira Takahashi
Katsuyuki Takashima
Benjamin Tan
Adrian Thillard
Jean-Pierre Tillich
Elmar Tischhauser
Radu Titiu
Junichi Tomida
Ni Trieu
Boaz Tsaban
Thomas Unterluggauer
Christine Van Vredendaal
Prashant Vasudevan
Serge Vaudenay
Philip Vejre
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Benoît Viguier
Jorge L. Villar
Srinivas Vivek

ASIACRYPT 2018 XI

Antonia Wachter-Zeh
Alexandre Wallet
Michael Walter
Peng Wang
Ping Wang
Yuyu Wang
Man Wei
Zihao Wei
Friedrich Wiemer
Tim Wood
Joanne Woodage
Thomas Wunderer
Keita Xagawa
Haiyang Xue
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kang Yang
Qianqian Yang
Kan Yasuda
Kevin Yeo

Scott Yilek
Kazuki Yoneyama
Jingyue Yu
Yang Yu
Xingliang Yuan
Thomas Zacharias
Michal Zajac
Rina Zeitoun
Mark Zhandry
Bin Zhang
Cong Zhang
Fan Zhang
Jiang Zhang
Juanyang Zhang
Ren Zhang
Yingjie Zhang
Raymond K. Zhao
Shuoyao Zhao
Linfeng Zhou
Vincent Zucca

Local Organizing Committee

General Chair

Josef Pieprzyk CSIRO, Data61, Australia

Advisors

Lynn Batten Deakin University, Australia
Ed Dawson QUT, Australia

Members

Waleed Alkalabi QUT, Australia
Niluka Arasinghe QUT, Australia
Mir Ali Rezazadeh

Baee
QUT, Australia

Xavier Boyen QUT, Australia
Ernest Foo QUT, Australia
Mukhtar Hassan QUT, Australia
Udyani Herath QUT, Australia
Qingyi Li QUT, Australia
Georg Lippold Mastercard, Australia
Matthew McKague QUT, Australia
Basker Palaniswamy QUT, Australia
Anisur Rahman QUT, Australia

XII ASIACRYPT 2018

Leonie Simpson QUT, Australia
Shriparen

Sriskandarajah
QUT, Australia

Gabrielle Stephens QUT, Australia
Chathurika Don

Wickramage
QUT, Australia

ASIACRYPT 2018 XIII

Contents – Part II

Symmetric-Key Cryptanalysis

Programming the Demirci-Selçuk Meet-in-the-Middle Attack
with Constraints . 3

Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun,
and Lei Hu

Cryptanalysis of MORUS . 35
Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent,
Brice Minaud, Yann Rotella, Yu Sasaki, and Benoît Viguier

New MILP Modeling: Improved Conditional Cube Attacks
on Keccak-Based Constructions . 65

Ling Song, Jian Guo, Danping Shi, and San Ling

On the Concrete Security of Goldreich’s Pseudorandom Generator 96
Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi,
and Yann Rotella

Public Key and Identity-Based Encryption

A Framework for Achieving KDM-CCA Secure Public-Key Encryption 127
Fuyuki Kitagawa and Keisuke Tanaka

Understanding and Constructing AKE via Double-Key Key
Encapsulation Mechanism . 158

Haiyang Xue, Xianhui Lu, Bao Li, Bei Liang, and Jingnan He

Identity-Based Encryption Tightly Secure Under
Chosen-Ciphertext Attacks . 190

Dennis Hofheinz, Dingding Jia, and Jiaxin Pan

Short Digital Signatures and ID-KEMs via Truncation
Collision Resistance . 221

Tibor Jager and Rafael Kurek

Asiacrypt 2018 Award Paper I

Tighter Security Proofs for GPV-IBE in the Quantum Random
Oracle Model . 253

Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa

Side-Channels

New Instantiations of the CRYPTO 2017 Masking Schemes 285
Pierre Karpman and Daniel S. Roche

Statistical Ineffective Fault Attacks on Masked AES
with Fault Countermeasures . 315

Christoph Dobraunig, Maria Eichlseder, Hannes Gross,
Stefan Mangard, Florian Mendel, and Robert Primas

Tight Private Circuits: Achieving Probing Security with the Least
Refreshing . 343

Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain

Attacks and Countermeasures for White-box Designs 373
Alex Biryukov and Aleksei Udovenko

Signatures

Signatures with Flexible Public Key: Introducing Equivalence Classes
for Public Keys. 405

Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider

Compact Multi-signatures for Smaller Blockchains 435
Dan Boneh, Manu Drijvers, and Gregory Neven

Multi-key Homomorphic Signatures Unforgeable Under
Insider Corruption . 465

Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong,
and Sherman S. M. Chow

Attribute-Based Signatures for Unbounded Languages
from Standard Assumptions . 493

Yusuke Sakai, Shuichi Katsumata, Nuttapong Attrapadung,
and Goichiro Hanaoka

Asiacrypt 2018 Award Paper II

Learning Strikes Again: The Case of the DRS Signature Scheme 525
Yang Yu and Léo Ducas

Leakage-Resilient Cryptography

How to Securely Compute with Noisy Leakage
in Quasilinear Complexity . 547

Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain

XVI Contents – Part II

Leakage-Resilient Cryptography from Puncturable Primitives
and Obfuscation . 575

Yu Chen, Yuyu Wang, and Hong-Sheng Zhou

Functional/Inner Product/Predicate Encryption

Unbounded Inner Product Functional Encryption from Bilinear Maps 609
Junichi Tomida and Katsuyuki Takashima

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 640
Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

Improved Inner-Product Encryption with Adaptive Security
and Full Attribute-Hiding . 673

Jie Chen, Junqing Gong, and Hoeteck Wee

Decentralized Multi-Client Functional Encryption for Inner Product. 703
Jérémy Chotard, Edouard Dufour Sans, Romain Gay,
Duong Hieu Phan, and David Pointcheval

Practical Fully Secure Unrestricted Inner Product Functional Encryption
Modulo p . 733

Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker

Correction to: Cryptanalysis of MORUS . C1
Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent,
Brice Minaud, Yann Rotella, Yu Sasaki, and Benoît Viguier

Author Index . 765

Contents – Part II XVII

Symmetric-Key Cryptanalysis

Programming the Demirci-Selçuk
Meet-in-the-Middle Attack

with Constraints

Danping Shi1,2, Siwei Sun1,2,3(B), Patrick Derbez4, Yosuke Todo5, Bing Sun6,
and Lei Hu1,2,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{shidanping,sunsiwei,hulei}@iie.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security,

University of Chinese Academy of Sciences, Beijing, China
4 Univ Rennes, CNRS, IRISA, Rennes, France

patrick.derbez@irisa.fr
5 NTT Secure Platform Laboratories, Tokyo, Japan

todo.yosuke@lab.ntt.co.jp
6 College of Liberal Arts and Sciences,

National University of Defense Technology, Changsha, China
happy come@163.com

Abstract. Cryptanalysis with SAT/SMT, MILP and CP has increased
in popularity among symmetric-key cryptanalysts and designers due to
its high degree of automation. So far, this approach covers differential,
linear, impossible differential, zero-correlation, and integral cryptanaly-
sis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack
is one of the most sophisticated techniques that has not been automated
with this approach. By an in-depth study of Derbez and Fouque’s work
on DS-MITM analysis with dedicated search algorithms, we identify the
crux of the problem and present a method for automatic DS-MITM
attack based on general constraint programming, which allows the crypt-
analysts to state the problem at a high level without having to say how
it should be solved. Our method is not only able to enumerate distin-
guishers but can also partly automate the key-recovery process. This
approach makes the DS-MITM cryptanalysis more straightforward and
easier to follow, since the resolution of the problem is delegated to off-
the-shelf constraint solvers and therefore decoupled from its formulation.
We apply the method to SKINNY, TWINE, and LBlock, and we get the
currently known best DS-MITM attacks on these ciphers. Moreover, to
demonstrate the usefulness of our tool for the block cipher designers,
we exhaustively evaluate the security of 8! = 40320 versions of LBlock
instantiated with different words permutations in the F functions. It
turns out that the permutation used in the original LBlock is one of the
64 permutations showing the strongest resistance against the DS-MITM

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 3–34, 2018.
https://doi.org/10.1007/978-3-030-03329-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_1&domain=pdf

4 D. Shi et al.

attack. The whole process is accomplished on a PC in less than 2 h. The
same process is applied to TWINE, and similar results are obtained.

Keywords: Demirci-Selçuk meet-in-the-middle attack
Automated cryptanalysis · Constraint programming · MILP

1 Introduction

Cryptanalysis of block ciphers is a highly technical, time consuming and error-
prone process. On the one hand, the attackers have to perform a variety of
cryptanalytic techniques, including differential attack [1], linear attack [2], inte-
gral attack [3–5], etc., to see which technique leads to the best attack. On the
other hand, the designers need to repeat all these different attacks again and
again to identify the optimal choices of parameters and building blocks which
meet the security and implementation requirements. Therefore, automatic tools
are indispensable to the community, which significantly reduce the manual work
and make a thorough exploration of the design/analysis space possible.

One paradigm for automatic symmetric-key cryptanalysis getting increasing
popularity in recent years is to model the problem by means of constraints, which
includes the methods based on SAT/SMT (satisfiability modulo theory) [6–8],
MILP (mixed-integer linear programming) [9–13], and classical constraint pro-
gramming [14,15]. In this paper, these methods are collectively referred to as
the general constraint programming (CP) based approach, or just CP based app-
roach for short. So far, the CP based approach covers a wide range of symmetric-
key cryptanalysis techniques. For instance, we can determine the minimum num-
ber of differentially or linearly active S-boxes of a block cipher with MILP [9]; we
can search for actual differential characteristics, linear characteristics, and inte-
gral distinguishers with SAT/SMT, MILP or classical constraint programming
[8,10,11,14]; and we can search for impossible differentials and zero-correlation
linear approximations [12,16] in a similar way.

Compared with search algorithms implemented from scratch in general pur-
pose programming languages [17–24], the CP based approach allows the crypt-
analysts to state the problem very naturally, and at a high level without having
to say how it should be solved. The resolution of the problem is delegated to
generic solvers, and therefore decoupled from the formulation of the problem.
As Eugene C. Freuder stated [25]: Constraint programming represents one of the
closest approaches computer science has yet made to the Holy Grail of program-
ming : the user states the problem, the computer solves it.

However, the Demirci-Selçuk meet-in-the-middle attack (DS-MITM) attack
[26], introduced by Demirci and Selçuk at FSE 2008 to attack the famous
Advanced Encryption Standard (AES) [27], is one of the cryptanalytic tech-
niques which has not been automated with general constraint programming due
to its extraordinary sophistication. After a series of improvements of the attack
with various creative techniques [28–32], the DS-MITM attack reaches the best
known attack on 7-round AES-128, 9-round AES-256 and 10-round AES-256

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 5

in the single-key model. The attack has been applied to several specific block
ciphers [33–36] as well as on generic balanced Feistel constructions [37]. Most
recently, Guo et al. show generic attacks on unbalanced Feistel ciphers based on
the DS-MITM technique which penetrate a large number of rounds of some spe-
cific class of unbalanced Feistels [38]. Note that despite sharing the same name
with the traditional MITM attacks in some literature (the attacks on some block
ciphers [39,40] and on a number of hash functions, e.g. [41,42]), the DS-MITM
attack concerned in this paper follows a different and a more complex strategy.

Related Work and Our Contribution. In [30,31], Derbez and Fouque presented
a tool implemented in C/C++ for finding the DS-MITM attack with dedicated
search algorithm. In this paper, we present the first CP-based tool for finding
the DS-MITM attack automatically. Our approach is based on a novel modelling
technique in which we introduce several different types of variables for every
input/output word of all operations, and impose constraints on these variables
such that from a solution of these variables satisfying all the constraints we can
deduce a DS-MITM distinguisher or DS-MITM attack.

Compared with Derbez and Fouque’s tool [30,31] which was implemented
in the general purpose programming language C/C++, the CP based method
allows the cryptanalysts to state the problem at a high level very naturally,
without considering how to maintain the relationships between the variables
explicitly with dedicated algorithms. Therefore, our tool should be very useful
in fast prototyping in the process of block cipher design.

In [43], Lin et al. modeled the problem of searching for DS-MITM distin-
guishers as an integer programming model. However, their integer programming
model is incomplete and is solved by a dedicated search algorithm. Secondly,
Lin et al. ’s work only focuses on the distinguisher part. Our CP based approach
can not only enumerate distinguishers but also partly automate the key-recovery
process of the attack. Moreover, by applying our CP based approach to LBlock,
the same cipher targeted in [43], we show it finds better distinguishers as well
as better attacks. To demonstrate the effectiveness of our approach, we apply
it to SKINNY [44], TWINE [45], and LBlock [46]. We produce so far the best
DS-MITM attacks on these well-known ciphers automatically.

For LBlock, we can not only find an 11-round DS-MITM distinguisher
which is 2 rounds longer than the one(s) presented in [43], but also construct
the first DS-MITM attack on 21-round LBlock. We also rediscover the same
attack on TWINE-128 given in [34], and identify the first DS-MITM attack on
20-round TWINE-80. In addition, we report the first concrete DS-MITM analysis
of SKINNY. A remarkable fact is that our tool identify an 10.5-round DS-MITM
distinguisher in a few seconds, while its designers expect an upper-bound of 10
rounds against such distinguishers in [44]. A summary of these results are given
in Table 1.

We also show how helpful our tool can be in the block cipher design process
by searching for the best choices of block shuffles in LBlock and TWINE. We
scan over 40320 variants of LBlock, and 887040 variants of TWINE. We iden-
tify permutations which are potentially stronger than the permutations in the
original designs. We make the source code of this work publicly available at

6 D. Shi et al.

https://github.com/siweisun/MITM.

In addition, all supplementary materials referred later on are provided in an
extended version of this paper at https://github.com/siweisun/MITM.

Organization. In Sect. 2, we give the notations used in this paper. An intro-
duction of the DS-MITM attack is presented in Sect. 3. We show the general
principle of how to model the DS-MITM attack in Sect. 4, and subsequently in
Sect. 5 the technical detail of the modelling method is given. Section 6 discusses
how to use our method in practice. In Sect. 7, we apply our approach to SKINNY,
TWINE, LBlock, AES, ARIA, and SIMON. In Sect. 8, we discuss how to use our
tool to find high-quality building blocks (with respect to the DS-MITM attack)
in the process of block cipher design. Section 9 is the conclusion.

Table 1. A summary of the results. Though the focus of this paper is the DS-MITM
attack, we also list other types of attacks which achieve currently known best results
against the ciphers targeted. For the DS-MITM attack, the number of rounds attacked
is presented in the form of a + b, where a shows how many rounds are covered by the
underlying DS-MITM distinguisher, while b is the number orouter rounds added when
performing a key-recovery attack. Therefore, b = 0 indicates a distinguishing attack.

Target Rounds Time Data Memory Method Ref

LBlock 11 + 10 270.20 248 CP 261.91 DS-MITM Sect. 7.2

9 + 0 274.5 − − DS-MITM Dist. [43]

23 274.5 259.5CP 274.3 ID [47]

23 275.36 259CP 274 ID [48]

23 272 262.1 Kp 260 MultiD ZC [47]

23 276 262.1 Kp 260 MultiD ZC [49]

TWINE80 11 + 9 277.44 232 CP 282.91 DS-MITM Sect. 7.3

23 279.09 257.85 CP 284.06 ID [50]

23 273 262.1 KP 260 MultiD ZC [47]

TWINE128 11 + 14 2124.7 248 CP 2109 DS-MITMa [34]

25 2124.5 259.1 CP 278.1 ID [34]

25 2119 262.1 KP 260 MultiD ZC [47]

25 2122.12 262.1 KP 260 MultiD ZC [49]

SKINNY-

128-384

10.5+11.5 2382.46 296 CP 2330.99 DS-MITM Sect. 7.1

11 + 11 2373.48 292.22 CP 2147.22 ID [51]
a We find the attacks with the same complexity.

2 Notations

An n-bit state state with n = cnc is alternatively regarded as a sequence
(state[0], state[1], · · · , state[nc − 1]) of nc c-bit words. Let A = [j0, j1, · · · , js−1]
be an ordered set of integers such that 0 ≤ j0 < · · · < js−1 < nc. Then state[A]
is used to represent state[j0]|| · · · ||state[js−1], where state[j] is the j-th c-bit word
of state and || is the operation of bit string concatenation.

https://github.com/siweisun/MITM
https://github.com/siweisun/MITM

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 7

Definition 1. A set {P 0, · · · , PN−1} ⊆ F
cnc
2 = F

n
2 of N = 2sc n-bit values for

state is a δ(A)-set for state with A = [k0, k1, · · · , ks−1] if P 0[A] ⊕ P j [A] = j
(1 ≤ j < N), and P i[k] = P j [k] for all i, j ∈ {0, · · · , N −1} and k /∈ A. That is,
{P 0, · · · , PN−1} traverse the s c-bit words specified by A while share the same
value in other word positions.

An r-round iterative block cipher E with r = r0 + r1 + r2, depicted in Fig. 1,
is a keyed permutation which transforms an n-bit state state0 into state2r step by
step with nonlinear and linear operations. In our indexing scheme, as illustrated
in Fig. 1, state2k is the input state of round k, state2k+1 is the output state of the
nonlinear operation of round k, and state2(k+1) is the output of round k or the
input of round k + 1 for k ∈ {0, · · · , r0 + r1 + r2 − 1}. For the sake of simplicity
and concreteness, we will conduct the discussion based on Fig. 1, which visualizes
the structure of a common SP cipher. Without loss of generality, we assume that
the key addition is performed after the linear layer L as illustrated in Fig. 1. The
basic rule is that we should always introduce a new state for the direct input
to the nonlinear layer. For example, if the key addition is performed in between
state2i and the NL operation, then a new state (representing the direct input to
NL) should be introduced in between the key addition and the NL operation,
and the original state may be omitted (regarding the new state as an output
obtained by masking the output of the previous round with the subkey).

Note that though our discussion are based on a SP cipher illustrated in Fig. 1,
the ideas and techniques presented in this paper are general enough to be applied
to other structures, such as Feistel and Generalized Feistel structures.

For convenience, a δ(A)-set {P 0, · · · , PN−1} is denoted by Pδ(A), and let
ΔE(Pδ(A),B) be the sequence [C0[B]⊕C1[B], · · · , C0[B]⊕CN−1[B]], where Ci =
E(P i) and B = [j0, · · · , jt−1] such that 0 ≤ j0 < · · · < jt−1 < nc.

Let P , P
′ ∈ F

n
2 be two values of state0 shown in Fig. 1, which are often

regarded as plaintexts since state0 is the input of the encryption algorithm. The
value P creates a series of intermediate values during the encryption process. We
define P (statei) as the intermediate value at statei created by the partial encryp-
tion of P . Sometimes we only care about the value of P (statei) at some specified
word positions indexed by an ordered set I, which is denoted by P (statei[I]).
We define P ⊕P

′
(statei) and P ⊕P

′
(statei[I]) to be the intermediate differences

P (statei) ⊕ P
′
(statei) and P (statei[I]) ⊕ P

′
(statei[I]) respectively. Let C and

C
′
be the ciphertexts of P and P

′
. An intermediate value can also be regarded

as the result of a partial decryption of the ciphertext C. Therefore, we define
C(statei), C(statei[I]), C ⊕C

′
(statei), and C ⊕C

′
(statei[I]) similarly. Note that

in the above notations, the intermediate values or differences of intermediate val-
ues are specified with respect to some plaintexts or ciphertexts. We may as well
specify them with respect to some intermediate values, say Q = P (statej) and
Q

′
= P

′
(statej). Hence, we may have notations such as Q(statei), Q(statei[I]),

Q ⊕ Q
′
(statei), and Q ⊕ Q

′
(statei[I]), whose meanings should be clear from the

context.
To make the notation succinct, if not stated explicitly, we always assume

that A = [k0, · · · , ks−1], B = [j0, · · · , jt−1], and a state state is viewed as a

8 D. Shi et al.

Plaintext

Ā
state0

NL

state1

L

k0

state2
E0

(0 → · · · → r0 − 1)

Involved Key: kE0

...
state2(r0−1)

NL

state2(r0−1)+1

L

kr0−1A
state2r0

NL

state2r0+1

L

kr0
state2(r0+1)

E1
(r0 → · · · → r0 + r1 − 1)...

state2(r0+r1−1)

NL

state2(r0+r1−1)+1

L

kr0+r1−1

B
state2(r0+r1)

NL

state2(r0+r1)+1

L

kr0+r1
state2(r0+r1+1)

E2
(r0 + r1 → · · · → r0 + r1 + r2 − 1)

Involved Key: kE2

...
state2(r0+r1+r2−1)

NL

state2(r0+r1+r2−1)+1

L

kr0+r1+r2−1

state2(r0+r1+r2)

Ciphertext

Fig. 1. An r-round SP block cipher E = E2◦E1◦E0 with r = r0+r1+r2, whose round
function consists of a layer of nonlinear operation and a layer of linear operation. A
DS-MITM key-recovery attack is performed based on a DS-MITM distinguisher placed
at E1. A more detailed explanation of this figure will be given in Sect. 3.2.

a sequence of n bits or a sequence of nc c-bit words. Moreover, we make the
following assumption which is very natural for a block cipher.

Assumption 1. Let the nonlinear layer in Fig. 1 be a parallel application of
nc c × c invertible S-boxes, and I = [j : Q ⊕ Q

′
(state2k[j]) �= 0, 0 ≤ j <

nc] be an ordered set, where Q and Q
′

are two values for state2k. If we know
the value of Q(state2k[I]), then we can derive the value of Q ⊕ Q

′
(state2k+1)

with the knowledge of Q ⊕ Q
′
(state2k[I]). Similarly, we can derive the value of

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 9

Q⊕Q
′
(state2k) with the knowledge of Q(state2k+1[I]) and Q⊕Q

′
(state2k+1[I]).

In other words, we can derive the value of the output/input differences if we
know the value of input/output values and differences at the active positions.

3 The Demirci-Selçuk Meet-in-the-Middle Attack

3.1 The DS-MITM Distinguisher

The DS-MITM attack relies on a special differential-type distinguisher. Com-
pared with ordinary differential distinguishers, the DS-MITM distinguishers gen-
erally lead to much stronger filters.

Let F be a keyed permutation, and Qδ(A) = {Q0, · · · , QN−1} be a δ(A)-set
for the input state of F . If F is a random permutation, then it can be shown
that there are (2ct)2

cs−1 possibilities for ΔF (Qδ(A),B). But for a block cipher
F , it is possible that the sequence ΔF (Qδ(A),B) can be fully determined with
the knowledge of d c-bit words. For instance, from the values of one internal
state and the master key one can derive the values for all the internal states.
Therefore, given Qδ(A), we can get at most 2cd possible cases of ΔF (Qδ(A),B) by
traversing the d c-bit words. We call d the (A,B)-degree of F , which is denoted
by DegF (A,B), or simply Deg(A,B) if F can be inferred from the context. If
DegF (A,B) = d is small enough such that λ = 2cd/(2ct)2

cs−1 = 2c(d−t·(2cs−1)) <
1, or d < t · (2cs − 1), then we can use this property as a distinguisher and
construct a key-recovery attack on F . Therefore, a DS-MITM distinguisher of a
keyed permutation F can be regarded as a tuple (A,B,DegF (A,B)).

3.2 Key Recovery Attack Based on DS-MITM Distinguisher

We now describe how a key-recovery attack can be performed with a DS-MITM
distinguisher. This part should be read while referring to Fig. 1.

As shown in Fig. 1, we divide the target cipher E into 3 parts: E0, E1, and
E2, where Ei is a keyed permutation with ri rounds. As depicted in Fig. 1, E0

covers rounds (0 → · · · → r0−1), E1 covers rounds (r0 → · · · → r0+r1−1), and
E2 covers rounds (r0 + r1 → · · · → r0 + r1 + r2 − 1). According to our indexing
scheme, as illustrated in Fig. 1, state0 is the input state of E0; state2r0 is the
output state of E0 which is also the input state of E1; state2(r0+r1) is the output
of E1 or the input of E2; finally, state2(r0+r1+r2) is the output of E2.

In the attack, we place a DS-MITM distinguisher (A,B,DegE1
(A,B)) at E1,

and prepare a δ(Ā)-set Pδ(Ā) of chosen plaintexts for state0, where Ā is the
ordered set of integers k (0 ≤ k < nc) such that V 0 ⊕V j(state0[k]) �= 0 for some
δ(A)-set Vδ(A) = {V 0, · · · , V N−1} for state2r0 (the input state of E1) and some
j ∈ {0, · · · , N − 1}. Note that Ā can be obtained by propagating the differences
created by Vδ(A) for state2r0 (the input of E1) reversely against E0.

Then we select an arbitrary plaintext P 0 from Pδ(Ā), and guess the secret
key information kE0 ∈ F

e0
2 with which we can find P 1, · · · , PN−1 in Pδ(Ā) such

that Qδ(A) = {Q0, · · · , QN−1} where Qj = E0(P j) forms a δ(A)-set for state2r0 .

10 D. Shi et al.

Finally, we guess the secret key information kE2 ∈ F
e2
2 involved in E2 with which

we can determine the sequence

ΔE1(Qδ(A),B) = [C0 ⊕ C1(state2(r0+r1)[B]), · · · , C0 ⊕ CN−1(state2(r0+r1)[B])]

by partial decryption with E2, where Cj = E(P j).
If the resulting sequence is not one of the possible ΔE1(Qδ(A),B) sequences

which can be determined with the DegE1
(A,B) = d c-bit parameters, the guesses

of kE0 and kE2 are certainly incorrect and therefore rejected. Similar to [52], we
adopt the notion of |kE0 ∪kE2 | to represent the log of the entropy of the involved
secret key bits in the outer rounds from an information theoretical point of view.

3.3 Complexity Analysis

Offline Phase. Store all the 2cd possibilities of the sequence ΔE1(Qδ(A),B) in a
hash table. The time complexity is 2cd ·2cs ·ρE1CE , and the memory complexity
is (2cs − 1) · ct · 2cd bits, where CE is the time complexity of one encryption with
E, and ρE1 is typically computed in literature as Deg(A,B) divided by the total
number of S-boxes in E.

Online Phase. For each of the 2|kE0∪kE2 | possible guesses, if the resulting
sequence ΔE1(Qδ(A),B) is not in the hash table precomputed, then the guess
under consideration is certainly not correct and is discarded. The time complex-
ity of this step is 2|kE0∪kE2 | ·2sc ·ρE0∪E2CE , where ρE0∪E2 is typically computed
as the number of S-boxes involved in the outer rounds divided by the total
number of S-boxes in E. After this step, the 2|kE0∪kE2 | key space is reduced
approximately to λ · 2|kE0∪kE2 |, where λ = 2c(d−t·(2cs−1)).

4 Modelling the DS-MITM Attack with Constraints:
A High Level Overview

In this section, we give a high level overview of our modelling method with the
aid of Figs. 1 and 2, which serves as a road map for the next section (Sect. 5),
where the technical details are presented. To model the attack with constraint
programming (CP) for the cipher E = E2 ◦ E1 ◦ E0 shown in Fig. 1, we proceed
as the following steps.

Step 1. Modelling the distinguisher part

• Introduce three types (X, Y , and Z) of 0-1 variables for each word of the states
state2r0 , · · · , state2(r0+r1) involved in E1. We denote the sets of all type-X,
type-Y and type-Z variables by Vars(X), Vars(Y) and Vars(Z), respectively.

• Introduce a set of constraints over Vars(X) to model the propagation of the
forward differential, and introduce a set of constraints over Vars(Y) to model
the backward determination relationship.

• Impose a set of constraints on Vars(Z) such that a type-Z variable for statei[j]
is 1 if and only if the type-X and type-Y variables for statei[j] are 1 simulta-
neously.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 11

Remark 1. Under the above configuration, every instantiation of the variables
in Vars(X), Vars(Y), and Vars(Z) corresponds to a potential DS-MITM distin-
guisher. Therefore, all distinguishers can be enumerated with the above model.
Also note that the key addition can be omitted while searching for distinguish-
ers if it does not affect the propagation of the forward differential and back-
ward determination relationship. This is the case for all the examples presented
in this paper, where key additions are only involved in computing the actual
complexities.

Step 2. Modelling the outer rounds

• Introduce a type-M variable for each word of the states state0, · · · , state2r0

involved in E0, and impose a set of constraints over Vars(M) to model the
backward differential. Note that there are both type-X and type-M variables
for state2r0 . We require that the corresponding type-X and type-M variables
for each of the nc words of state2r0 are equal.

• Introduce a type-W variable for each word of the states state2(r0+r1), · · · ,
state2(r0+r1+r2) involved in E2, and impose a set of constraints over Vars(W)
to model the forward determination relationship. Note that there are both
type-Y and type-W variables for state2(r0+r1). We require that the corre-
sponding type-Y and type-W variables for each of the nc words of state2(r0+r1)

are equal.

Remark 2. Every solution of Vars(M) and Vars(W) helps us to identify the infor-
mation that needs to be guessed in the outer rounds, which will be clearer in
the following.

E0

M

E1

X, Y, Z

E2

W

Fig. 2. A high level overview of the modelling method for DS-MITM attack

The overall modelling strategy is depicted in Fig. 2. In summary, given a full
solution of the variables such that all constraints are fulfilled, we can extract the
following information

• A : The variables in Vars(X) for state2r0 whose values are 1 indicate A;
• B : The variables in Vars(Y) for state2(r0+r1) whose values are 1 indicate B;
• DegE1

(A,B) : The variables in Vars(Z) for state2j , r0 ≤ j < r0 + r1 whose
values are 1 indicate DegE1

(A,B);

12 D. Shi et al.

• Ā and guessed materials in E0 : The variables in Vars(M) whose values are
1 indicate Ā and guessed materials in E0 which tells us how to prepare the
plaintexts leading a δ(A) set at state2r0 ;

• Guessed materials in E2 : The variables in Vars(W) whose values are 1 indi-
cate the Guessed materials in E2 with which we can derive the sequence of
differences at state2(r0+r1) from the ciphertexts.

Together this information forms a DS-MITM attack on E. Note that the guessed
materials in E0 and E2 still need to be converted to guessed key materials, which
can be done manually or automatically fairly straightforwardly.

According to the semantics of Vars(Z), if we draw the propagation pat-
terns of Vars(X) and Vars(Y) in two figures, then the propagation pattern of
Vars(Z) can be obtained by superposition of the two figures. Therefore, the key
to understand the details of the modelling of DS-MITM attack is the so-called
forward/backward differential and forward/backward determination relationship.
To make the description succinct and without loss of generality, we introduce
the concepts based on a 5-round keyed permutation shown in Figs. 4 and 6. We
will also give two concrete examples of the forward differential and backward
determination of a 3-round toy SPN block cipher with 32-bit (4-byte) block
size. The round function shown in Fig. 3 of the toy cipher consists of an S-box
layer (a parallel application of four 8 × 8 Sboxes), and a linear layer L with
yi =

⊕
j∈{0,1,2,3}−{i} xj for i ∈ {0, 1, 2, 3}.

S

S

S

S

x0

x1

x2

x3

L

AK

y0

y1

y2

y3

Fig. 3. The round function of the toy cipher

4.1 Forward Differential and Backward Differential

As shown in Fig. 4, given a set Qδ(A) of N values {Q0, · · · , QN−1} for state4 which
forms a δ(A) set for the input state of round 2. For every word statei[j] (4 ≤
i ≤ 10, 0 ≤ j < nc), we introduce a 0-1 variable Xi[j]. We say that the set of
0-1 variables {Xi[j] : 4 ≤ i ≤ 10, 0 ≤ j < nc} models the forward differential of
Qδ(A) in rounds (2 → 3 → 4) if the following conditions are satisfied.

– Conditions for state4 (the starting point of the forward differential, which is
also the input of round 2) : ∀j ∈ A, X4[j] = 1 and ∀j /∈ A, X4[j] = 0

– Conditions for rounds (2 → 3 → 4): Xi[j] = 0 (5 ≤ i ≤ 10, 0 ≤ j < nc) if and
only if ∀Qk ∈ Qδ(A), Q0 ⊕ Qk(statei[j]) = 0

Similarly, as depicted in Fig. 4, we say that the set of variables {Xi[j] : 0 ≤
i ≤ 4, 0 ≤ j < nc} models the backward differential of Qδ(A) in rounds (1 → 0)
if the following conditions are satisfied.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 13

– Conditions for state4 (the starting point of the backward differential, which
is also the output of round 1): ∀j ∈ A, X4[j] = 1 and ∀j /∈ A, X4[j] = 0

– Conditions for rounds (1 → 0): Xi[j] = 0 (0 ≤ i < 4, 0 ≤ j < nc) if and only
if ∀Qk ∈ Qδ(A), Q0 ⊕ Qk(statei[j]) = 0

NL

L

state0

state1 Round 0

NL

L

state2

state3 Round 1

NL

L

state4

state5 Round 2

NL

L

state6

state7 Round 3

NL

L

state8

state9 Round 4

state10

A

Fig. 4. Forward/backward differential illustrated on a 5-round keyed permutation

Let us give a concrete example. Let A = [3] and Qδ(A) = {(0, 0, 0, x) ∈ (F8
2)

4 :
x ∈ F

8
2}. Then the set of variables Xi[j] with 0 ≤ i ≤ 6 and 0 ≤ j < 4 shown in

Fig. 5 models forward differential of Qδ(A) in rounds (0 → 1 → 2) if we impose
the following constraints on Xi[j]. Since the values in Qδ(A) are active at the
third byte, we have X0[0] = X0[1] = X0[2] = 0,X0[3] = 1. For the S-layers in the
toy cipher, we have X2i[j] = X2i+1[j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear layers,
we enforce 3X2(i+1)[j] − X2i+1[j + 1] − X2i+1[j + 2] − X2i+1[j + 3] ≥ 0 to ensure
that X2(i+1)[j] will be equal to 1 when any one of X2i+1[j + 1], X2i+1[j + 2],
X2i+1[j + 3] is 1. We also add the constraint

X2i+1[j + 1] + X2i+1[j + 2] + X2i+1[j + 3] − X2(i+1)[j] ≥ 0

to dictate that X2(i+1)[j] must be 0 when all of X2i+1[j + 1], X2i+1[j + 2],
X2i+1[j + 3] are 0, where 0 ≤ i ≤ 2, 0 ≤ j < 4 and the indexes are computed
modulo 4. With these constraints, the Xi[j] variables propagate in a pattern
depicted in Fig. 5.

14 D. Shi et al.

state0 state1

X0[0]

X0[1]

X0[2]

X0[3]

S

S

S

S

X1[0]

X1[1]

X1[2]

X1[3]

L

AK

state2 state3

X2[0]

X2[1]

X2[2]

X2[3]

S

S

S

S

X3[0]

X3[1]

X3[2]

X3[3]

L

AK

state4 state5

X4[0]

X4[1]

X4[2]

X4[3]

S

S

S

S

X5[0]

X5[1]

X5[2]

X5[3]

L

AK

state6

X6[0]

X6[1]

X6[2]

X6[3]

Fig. 5. The forward differential of a 3-round toy cipher

4.2 Forward Determination and Backward Determination

As shown in Fig. 6, given a set Q = {Q0, · · · , QN−1} of N values for state6 and an
ordered set B of indices, we say that the set of variables {Yi[j] : 6 ≤ i ≤ 10, 0 ≤
j < nc} models the forward determination relationship of {Q0(state6[B]), · · · ,
QN−1(state6[B])} in rounds (3 → 4) if the following conditions hold.

– Conditions for state6 (the starting point of the forward determination rela-
tionship, which is also the input of round 3) : ∀j ∈ B, Y6[j] = 1 and ∀j /∈ B,
Y6[j] = 0

– Conditions for rounds (3 → 4): For 6 ≤ i < 10, ∀k ∈ {0, · · · , N −1}, with the
knowledge of Q0⊕Qk(statei+1[Bi+1]) (and Q0(statei+1[Bi+1]) if statei+1 is an
output state of a nonlinear layer) one can deduce the value Q0⊕Qk(statei[Bi]),
where Bi+1 = [j : Yi+1[j] = 1, 0 ≤ j < nc] for 6 ≤ i < 10 and B6 = B.

Similarly, as shown in Fig. 6, we say that the set of 0-1 variables {Yi[j] :
0 ≤ i ≤ 6, 0 ≤ j < nc} models the backward determination relationship of
{Q0(state6[B]), · · · , QN−1(state6[B])} in rounds (2 → 1 → 0) if the following
conditions hold.

– Conditions for the state6 (the starting point of the backward determination
relationship, which is also the output of round 2): ∀j ∈ B, Y6[j] = 1 and
∀j /∈ B, Y6[j] = 0

– Conditions for rounds (2 → 1 → 0): For 0 < i ≤ 6, ∀k ∈ {0, · · · , N − 1} from
the knowledge of the values Q0 ⊕Qk(statei−1[Bi−1]), (and Q0(statei−1[Bi−1])
if statei−1 is an input state of a nonlinear layer), one can determine the value
Q0 ⊕ Qk(statei[Bi]), where Bi−1 = [j : Yi−1[j] = 1, 0 ≤ j < nc] for 0 < i ≤ 6,
and B6 = B.

Now we show a concrete example. Assume that we have a set
{Q0, · · · , Q255} = {(0, 0, 0, x) ∈ (F8

2)
4 : x ∈ F

8
2} of 28 values for state0, as

depicted in Fig. 7. After the 3-round encryption of the toy cipher, we get a set
{C0, · · · C255} of 28 values for state6. Let B = [3]. The set of variables Yi[j] with
0 ≤ i ≤ 6 and 0 ≤ j < 4 shown in Fig. 7 models backward determination of
{C0, · · · C255} in rounds (2 → 1 → 0) if we impose the following constraints on
Yi[j].

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 15

NL

L

state0

state1 Round 0

NL

L

state2

state3 Round 1

NL

L

state4

state5 Round 2

NL

L

state6

state7 Round 3

NL

L

state8

state9 Round 4

state10

B

Fig. 6. The forward/backward determination relationship illustrated on a 5-round
keyed permutation

Since B = [3], we have Y6[0] = Y6[1] = Y6[2] = 0, Y6[3] = 1. For the S layers
in the toy cipher, we have Y2i[j] = Y2i+1[j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear
layers, we add 3Y2i+1[j]−Y2(i+1)[j+1]−Y2(i+1)[j+2]−Y2(i+1)[j+3] ≥ 0 to ensure
that Y2i+1[j] must be 1 when any one of Y2(i+1)[j+1], Y2(i+1)[j+2], Y2(i+1)[j+3]
is 1, and Y2(i+1)[j + 1] + Y2(i+1)[j + 2] + Y2(i+1)[j + 3] − Y2i+1[j] ≥ 0 to dictate
that Y2i+1[j] must be 0 when all of Y2(i+1)[j +1], Y2(i+1)[j +2], Y2(i+1)[j +3] are
0, where the indexes are computed modulo 4. With these constraints, the Yi[j]
variables propagate in a pattern depicted in Fig. 7.

state0 state1

Y0[0]

Y0[1]

Y0[2]

Y0[3]

S

S

S

S

Y1[0]

Y1[1]

Y1[2]

Y1[3]

L

AK

state2 state3

Y2[0]

Y2[1]

Y2[2]

Y2[3]

S

S

S

S

Y3[0]

Y3[1]

Y3[2]

Y3[3]

L

AK

state4 state5

Y4[0]

Y4[1]

Y4[2]

Y4[3]

S

S

S

S

Y5[0]

Y5[1]

Y5[2]

Y5[3]

L

AK

state6

Y6[0]

Y6[1]

Y6[2]

Y6[3]

Fig. 7. The backward determination of a 3-round toy cipher

16 D. Shi et al.

Note that the concepts introduced in this section are generic and not limited
to SP ciphers. For instance, we depicted the propagation patterns of the forward
differential and backward determination of a Feistel cipher with 8-bit block size
and 4 × 4 S-box in Fig. 8a and b respectively.

S S S

(a) Forward differential

S S S

(b) Backward determination

Fig. 8. The forward differential and backward determination of a 3-round toy cipher
with Feistel structure

5 Modelling the DS-MITM Attack with Constraints:
The Technical Details

Given a cipher E = E2 ◦ E1 ◦ E0, we show how to model the distinguisher part
(E1), and subsequently the key-recovery part (E0 and E2). These models for E1,
E0 and E2 jointly lead to a model for DS-MITM attack on E. Note that this
part of the paper should be read while referring to Fig. 1.

5.1 CP Model for E1: The Distinguisher Part

We introduce 2 sets of variables Vars(X) = {Xi[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤
j < nc} and Vars(Y) = {Yi[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤ j < nc} for all the
words of the states {statei[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤ j < nc} involved in the
r1 rounds of E1 as shown in Fig. 1.

We then impose a set of constraints on Vars(X) such that Vars(X) models
the forward differential of a δ(A)-set Qδ(A) = {Q0, · · · , QN−1} for state2r0 with
A = [j : X2r0 [j] = 1, 0 ≤ j < nc] in rounds (r0 → r0 + 1 → · · · → r0 + r1 − 1).
Also, another set of constraints is imposed on Vars(Y) such that Vars(Y) models
the backward determination relationship of

{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}

with B = [j : Y2(r0+r1)[j] = 1, 0 ≤ j < nc] in rounds (r0 + r1 − 1 → · · · → r0).
Finally, we introduce a new set of variables Vars(Z) = {Zi[j] : 2r0 ≤ i ≤
2(r0 + r1), 0 ≤ j < nc} and impose a set of constraints on Vars(Z) such that
Zi[j] = 1 if and only if Xi[j] = Yi[j] = 1. The variables in Vars(X), Vars(Y), and
Vars(Z) together with the constraints imposed on them form a CP model.

Then we have the following observations which can be easily derived from the
Assumption 1 made at the end of Sect. 2 and the definition of forward/backward
differential and forward/backward determination relationship.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 17

Observation 1. If Vars(X) models the forward differential of a δ(A)-set

Qδ(A) = {Q0, · · · , QN−1}

for state2r0 (Fig. 1) with A = [j : X2r0 [j] = 1, 0 ≤ j < nc] in rounds (r0 →
r0 + 1 → · · · → r0 + r1 − 1), then for an arbitrary ordered set B of indices, we
can determine the sequence of differences

ΔE1(Qδ(A),B) = [Q0 ⊕ Q1(state2(r0+r1)[B]), · · · , Q0 ⊕ QN−1(state2(r0+r1)[B])]

from the knowledge of the following set of intermediate values of Q0.

{Q0(state2i[j]) : X2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc}.

Observation 2. Let Qδ(A) = {Q0, · · · , QN−1} be a δ(A) set for state2r0 for an
arbitrary A. If Vars(Y) models the backward determination relationship of

{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}

with B = [j : Y2(r0+r1)[j] = 1, 0 ≤ j < nc] in rounds (r0 + r1 − 1 → · · · → r0),
then we can determine the sequence of differences

ΔE1(Qδ(A),B) = [Q0 ⊕ Q1(state2(r0+r1)[B]), · · · , Q0 ⊕ QN−1(state2(r0+r1)[B])]

from the knowledge of the following set of intermediate values of Q0

{Q0(state2i[j]) : Y2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc}.

Note that Observations 1 and 2 are stated with an arbitrary ordered set A
and B respectively. Therefore, if we know the intermediate values of Q0(state[j])
such that X2i[j] and Y2i[j] are equal to 1 simultaneously, we can determine
the sequence ΔE1(Qδ(A),B) with the specific A and B corresponding to the
underlying values of Vars(X) and Vars(Y).

Observation 3. Let A = [j : X2r0 [j] = 1, 0 ≤ j < nc], B = [j : Y2(r0+r1)[j] =
1, 0 ≤ j < nc], and Qδ(A) = {Q0, · · · , QN−1} be a δ(A) set for state2r0 . Then
from the knowledge of the following

∑r0+r1−1
i=r0

∑nc−1
j=0 Z2i[j] c-bit words

{Q0(state2i[j]) : Z2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc},

we can determine the value of the sequence of differences

ΔE1(Qδ(A),B) = [Q0 ⊕ Q1(state2(r0+r1)[B]), · · · , Q0 ⊕ QN−1(state2(r0+r1)[B])].

From the above observations, it is easy to see that any solution of
Vars(X), Vars(Y), and Vars(Z) corresponds to a DS-MITM distinguisher
(A,B,DegE1

(A,B)) with A = [j : X2r0 [j] = 1, 0 ≤ j < nc], B = [j :
Y2(r0+r1)[j] = 1, 0 ≤ j < nc], and DegE1

(A,B) =
∑r0+r1−1

i=r0

∑nc−1
j=0 Z2i[j].

18 D. Shi et al.

5.2 CP Model for the Outer Rounds E0 and E2

The CP Model for E0. As discussed in Sect. 3, the attacker needs to prepare
a set Pδ(Ā) of chosen plaintexts based on the distingusher (A,B,DegE1

(A,B))
placed at E1. According to the definition of Ā, there must be P 1, · · · , PN−1 in
Pδ(Ā) such that Qδ(A) = {Q0, · · · , Qn−1} forms a δ(A)-set for state2r0 , where
Qj = E0(P j).

For E0 we introduce a set of 0-1 variables Vars(M) = {Mi[j] : 0 ≤ i ≤
2r0, 0 ≤ j < nc} and impose a set of constraints on Vars(M) such that Vars(M)
models the backward differential of the δ(A)-set Qδ(A) with A = {j : X2r0 [j] =
1, 0 ≤ j < nc} in rounds (r0 − 1 → · · · → 0). Then according to the definition
of backward differential and assumption 1, we have the following observation.

Observation 4. Given P 0 ∈ Pδ(Ā), the set

Guess(E0) = {P 0(state2i[j]) : M2i[j] = 1, 0 < i < r0, 0 ≤ j < nc}

of
r0−1∑

i=1

nc−1∑

j=0

M2i[j] c-bit words needs to be guessed to find P 1, · · · , PN−1 in Pδ(Ā).

The CP Model for E2. After the guess of Guess(E0), we obtain a set {P 0, · · · ,
PN−1} ⊆ Pδ(Ā) such that Qδ(A) = {Q0, · · · , QN−1} with Qj = E0(P j) forms a
δ(A) set for state2r0 (under the guess). Let Cj = E(P j), 0 ≤ j < N . Then we
want to get the sequence

ΔE1(Qδ(A),B) = {Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}
by decrypting {C0, · · · , CN−1} with E2.

For E2 we introduce a set of 0-1 variables Vars(W) = {Wi[j] : 2(r0 +
r1) ≤ i ≤ 2(r0 + r1 + r2), 0 ≤ j < nc} and impose a set of constraints
on Vars(W) such that Vars(W) models the forward determination of the set
{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])} with B = {j : Y2(r0+r1)[j] =
1, 0 ≤ j < nc} in rounds (r0 + r1 → · · · → r0 + r1 + r2 − 1).

Observation 5. Given {C0, · · · , CN−1}, the set

Guess(E2) = {Q0(state2i[j]) : W2i[j] = 1, r0 + r1 ≤ i < r0 + r1 + r2, 0 ≤ j < nc}

of
r0+r1+r2−1∑

i=r0+r1

nc−1∑

j=0

W2i[j] c-bit words needs to be guessed to determine the

sequence

ΔE1(Qδ(A),B) = [C0 ⊕ C1(state2(r0+r1)[B]), · · · , C0 ⊕ CN−1(state2(r0+r1)[B])].

Remark. There is still a gap between Guess(Ei) and kEi
for i ∈ {0, 2}. To

perform the attack (see Sect. 3), we need to identify kEi
rather than Guess(Ei).

As we will show in Sects. 7.1, 7.2 and 7.3, it is fairly straightforward to convert
Guess(Ei) to kEi

.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 19

6 How to Use the Modelling Technique in Practice?

The modelling technique for DS-MITM attack can be applied in several scenar-
ios. In the following, we identify two of them and give a discussion of possible
extensions.

6.1 Enumeration of DS-MITM Distinguishers

In Sect. 5, the descriptions of the modelling of E1 (the distinguisher part) and the
outer rounds (E0 and E2) are intentionally separated to have a method whose
only purpose is to search for DS-MITM distinguishers.

When we target a cipher with DS-MITM attack, probably the first that come
into mind is to identify a DS-MITM distinguisher covering as many rounds as
possible. To this end, we can build a model with the method presented in Sect. 5
for k rounds of the target cipher, and add one more constraint dictating that

Deg(A,B) =
r0+r1−1∑

i=r0

nc−1∑

j=0

Z2i[j] < |K|c

to prevent the complexity of the offline phase from being too high, where |K|c is
the number of c-bit words in the master key of the target cipher. Then we can
enumerate all solutions using a constraint solver. If the solutions of the model
lead to valid distinguishers, we can increase k and try to find distinguishers
covering more rounds.

6.2 Fast Prototyping for DS-MITM Attacks

Given a keyed permutation E = E2◦E1◦E0, it is difficult to determine which DS-
MITM distinguisher covering E1 will lead to the best attack, though intuitively
a distinguisher (A,B,Deg(A,B)) with smaller Deg(A,B) is preferred. In this
situation, we can set up a model for the whole E2 ◦ E1 ◦ E0 with the constraints

⎧
⎪⎪⎨

⎪⎪⎩

Deg(A,B) =
∑r0+r1−1

i=r0

∑nc−1
j=0 Z2i[j] < |K|c

r0−1∑

i=1

nc−1∑

j=0

M2i[j] +
r0+r1+r2−1∑

i=r0+r1

nc−1∑

j=0

W2i[j] < |K|c

The resolution of the model leads to both a distinguisher covering E1 and
an attack based on the distinguisher simultaneously, which should be very use-
ful in fast prototyping of DS-MITM attack in the analysis and design of block
ciphers. Note that the output of the tool is a distinguisher (A,B,Deg(A,B)) and
the secret information Guess(E0) and Guess(E2), which needs to be converted to
kE0 and kE2 automatically or manually. Then the so-called key-bridging tech-
nique [29,47] can be applied to give an estimation of |kE0 ∪ kE2 |.

Another strategy is to find all k-round distinguishers (A,B,Deg(A,B)) with
Deg(A,B) < d for some integer d. Then various generic or dedicated optimization
techniques [29] (some of which may be unknown at present) can be applied based
on these distinguishers to see which one leads to the best attack.

20 D. Shi et al.

7 Applications

7.1 Application to SKINNY

In this section, we apply our method to SKINNY-128-384 (the TK3 version
with 128-bit block size, 384-bit key, and 0-bit tweak) to have a concrete example
demonstrating the method presented in Sect. 4. The specification of SKINNY
can be found in [44], and we omit it from this paper due to space restrictions.

The indexing scheme we used for analyzing SKINNY is illustrated in Fig. 9,
which is essentially the same as Fig. 1, except that the states are drawn as 4 × 4
squares and the NL layer is composed of a parallel application of 16 Sboxes and
a shift row operation.

To model an r-round DS-MITM distinguisher, we introduce 3 sets Vars(X),
Vars(Y), and Vars(Z) of variables for all the states involved in rounds (k, k + 1,
· · · , k + r − 1), where Vars(X) = {Xi[j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < nc}
models the forward differential, Vars(Y) = {Yi[j] : 2k ≤ i ≤ 2(k + r), 0 ≤
j < nc} models the backward determination relationship, and Vars(Z) =
{Zi[j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < nc} such that Zi[j] = 1 if and only
if Xi[j] = Yi[j] = 1. Note that the logical statement of Zi[j] can be con-
verted into allowed tuples of (Zi[j],Xi[j], Yi[j]), that is (Zi[j],Xi[j], Yi[j]) ∈
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, which can be modeled in CP or MILP triv-
ially [10,14]. So the only question left is what kind of constraints should be
imposed on Vars(X) and Vars(Y) such that they model the intended properties.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

SB,AC

AK,SR

MC SB,AC

AK,SR

MC· · · · · ·

state2i state2i+1 state2(i+1) state2(i+1)+1 state2(i+2)

Round i Round i+ 1

Fig. 9. The indexing scheme used for the rounds, states, and words of SKINNY

The Constraints Imposed on Vars(X). Firstly, according to the definition of
forward differential and the SB, AC, AK, SR operations of SKINNY, we have
X2i+1[4a+b] = X2i[4a+(b−a) mod 4] for k ≤ i < k+r, where a, b ∈ {0, 1, 2, 3}
are used to index the rows and columns of a state respectively. Secondly, for every
column b ∈ {0, 1, 2, 3} and k ≤ i < k + r, we impose the following constraints
due to the MC operation

• X2(i+1)[b] = 0 if and only if X2i+1[b] = X2i+1[b + 8] = X2i+1[b + 12] = 0;
• X2(i+1)[b + 4] = X2i+1[b];
• X2(i+1)[b + 8] = 0 if and only if X2i+1[b + 4] = X2i+1[b + 8] = 0;
• X2(i+1)[b + 12] = 0 if and only if X2i+1[b] = X2i+1[b + 8] = 0.

Note that all constraints given in the above can be converted to allowed
tuples of some variables and therefore can be easily modeled by the CP approach.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 21

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0

state0 state1

Round 1

state2 state3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 2

state4 state5

Round 3

state6 state7

Round 4

state8

Fig. 10. Forward differential of a δ(A) set for state0 in rounds (0 → 1 → 2 → 3) with
A = [13]

An example solution of a set of variables modelling the forward differential of
4-round SKINNY is visualized in Fig. 10.

The Constraints Imposed on Vars(Y). Similarly, according to the definition
of backward determination relationship and the SB, AC, AK, SR operations of
SKINNY, we have Y2i+1[4a+ b] = Y2i[4a+(b− a) mod 4] for k ≤ i < k + r and
a, b ∈ {0, 1, 2, 3}. In addition, for every column b ∈ {0, 1, 2, 3} and k ≤ i < k + r,
we impose the following constraints

• Y2i+1[b] = 0 if and only if Y2(i+1)[b] = Y2(i+1)[b + 4] = Y2(i+1)[b + 12] = 0;
• Y2i+1[b + 4] = Y2(i+1)[b + 8];
• Y2i+1[b + 8] = 0 if and only if Y2(i+1)[b] = Y2(i+1)[b + 8] = Y2(i+1)[b + 12] = 0;
• Y2i+1[b + 12] = Y2(i+1)[b].

An example solution of a set of variables modelling the backward determina-
tion relationship of 4-round SKINNY is visualized in Fig. 11. According to the
constraints imposed on Vars(Z), if Vars(X) and Vars(Y) are assigned to values
as illustrated in Figs. 10 and 11 respectively, then we can derive the values of
Vars(Z) by superposition of Figs. 10 and 11, as depicted in Fig. 12.

Additional Constraints. We require
∑

Xi[j] �= 0,
∑

Yi[j] �= 0, and
∑

Zi[j] �=
0 to exclude the trivial solution where all variables are assigned to 0. Also, to

Fig. 11. The backward determination relationship of {Q0(state8[B]), · · · ,
QN−1(state8[B])} for state8 in rounds (3 → 2 → 1 → 0) with B = [11]

22 D. Shi et al.

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0

state0 state1

Round 1

state2 state3

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 2

state4 state5

Round 3

state6 state7

Round 4

state8

Fig. 12. A visualization of an instantiation of Vars(Z) according to the values assigned
to Vars(X) and Vars(Y), which can be regarded as a superposition of Figs. 10 and 11

make the time complexity of the offline phase not exceeding the complexity of
the exhaustive search attack, we require

∑
Z2i[j] ≤ |K|c = 384/8 = 48.

Objective Functions. The objective function is to minimize
∑k+r−1

i=k

∑15
j=0

Z2i[j] to make Deg(A,B) as small as possible.

Cipher-Specific Constraints. For SKINNY, we can reduce the number of
guessed parameters by exploiting the properties of its linear transformation.
According to the MC operation of SKINNY, for an intermediate value Q and
b ∈ {0, 1, 2, 3}, we have
⎧
⎪⎪⎨

⎪⎪⎩

Q(state2(i+1)[b]) = Q(state2i+1[b]) + Q(state2i+1[b + 8]) + Q(state2i+1[b + 12])
Q(state2(i+1)[b + 4]) = Q(state2i+1[b])
Q(state2(i+1)[b + 8]) = Q(state2i+1[b + 4]) + Q(state2i+1[b + 8])
Q(state2(i+1)[b + 12]) = Q(state2i+1[b]) + Q(state2i+1[b + 8])

Hence, the tuple (Q(state2i+1[b + 8]), Q(state2(i+1)[b + 4]), Q(state2(i+1)[b +
12])) can be fully determined when any two of the three entries are known.
Similarly, the tuple (Q(state2i+1[b+12]), Q(state2(i+1)[b]), Q(state2(i+1)[b+12]))
can be fully determined when any two of the three entries are known. To take
these facts into account, we introduce two new sets {φi : k ≤ i < k + r} and
{ϕi : k ≤ i < k + r} of 0-1 variables , and include the following constraints for
b ∈ {0, 1, 2, 3}
• φi = 1 if and only if Z2i+1[b + 8] + Z2(i+1)[b + 4] + Z2(i+1)[b + 12] = 3;
• ψi = 1 if and only if Z2i+1[b + 12] + Z2(i+1)[b] + Z2(i+1)[b + 12] = 3;

We also need to set the objective function to minimize

k+r−1∑

i=k

15∑

j=0

Z2i[j] −
k+r−1∑

i=k

(φi + ψi).

Using the above model, we can find a DS-MITM distinguisher for 10.5-
round SKINNY-128-384 in 2 s. In [44], the designers of SKINNY expected that
there should be no DS-MITM distinguisher covering more than 10 rounds of

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 23

SKINNY since partial-matching can work at most (6− 1)+ (6− 1) = 10 rounds.
Hence, our result concretize the 10-round distinguisher, and actually our tool
found DS-MITM distinguishers of SKINNY covering more than 10 rounds. An
enumeration of all DS-MITM distinguishers covering 10.5-round SKINNY with
40 ≤ Deg(A,B) ≤ 48 is performed and the results are listed in Table 2. Note
that distinguishers with Deg(A,B) > 48 are ineffective for an attack. We then
try to get an attack on SKINNY by modelling E1 (the distinguisher part), E0

and E2 (the outer rounds) as a whole with the method presented in Sect. 4.
We omit the detailed description of the constraints for Vars(M) and Vars(W)
introduced for E0 and E2 since they are similar to the constraints imposed on
Vars(X) and Vars(Y) given previously. As a result, we identify a DS-MITM attack
on 22-round SKINNY-128-384 based on a distinguisher (A,B,Deg(A,B)) with
A = [14], B = [7], and deg(A,B) = 40, which is shown in Fig. 17 in [supplementary
material]. The secret intermediate values Guess(E0) and Guess(E2) created by P 0

in the outer rounds are presented in Fig. 18 in [supplementary material A]. To per-
form the attack, we still need to convert Guess(E0) and Guess(E2) into the secret
information of subkeys manually, which is visualized in Fig. 19 in [supplementary
material A]. Then we perform the key-bridging technique [29,47] on kin and kout,
and find that |kin ∪ kout| ≤ 376.

Complexity Analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 28×40 × 28×1 × 40

16×22CE ≈ 2324.86CE , and the
memory complexity is (28 − 1) × 8 × 1 × 28×40 ≈ 2330.99 bits. In the online
phase, the time complexity is 247×8 × 28×1 × 57+64

22×16CE ≈ 2382.46CE . The data
complexity of the attack is 28×12 = 296, which can be obtained from the input
state of Fig. 18 in [supplementary material A].

7.2 Application to LBlock

The indexing scheme we used for analyzing LBlock is shown in Fig. 13, where the
AK is the subkey xor operation, SB is a parallel application of 8 4 × 4 S-boxes,
and LN is a permutation permuting j to LN[j].

To model an r-round DS-MITM distinguisher of LBlock, we introduce 3 sets
Vars(X), Vars(Y), and Vars(Z) of variables for all the states involved in rounds
(k, k +1, · · · , k + r −1), where Vars(X) = {XL

i [j],XR
i [j] : k ≤ i ≤ k + r, 0 ≤ j <

nc}∪{XS
i [j],XM

i [j] : k ≤ i < k + r, 0 ≤ j < nc} models the forward differential,
Vars(Y) = {Y L

i [j], Y R
i [j] : k ≤ i ≤ k + r, 0 ≤ j < nc} ∪ {Y S

i [j], Y M
i [j] : k ≤

i < k + r, 0 ≤ j < nc} models the backward determination relationship, and
Vars(Z) = {ZL

i [j], ZR
i [j] : k ≤ i ≤ k + r, 0 ≤ j < nc} ∪ {ZS

i [j], ZM
i [j] : k ≤ i <

k + r, 0 ≤ j < nc} such that

• ZL
i [j] = 1 if and only if XL

i [j] = Y L
i [j] = 1

• ZR
i [j] = 1 if and only if XR

i [j] = Y R
i [j] = 1

• ZS
i [j] = 1 if and only if XS

i [j] = Y S
i [j] = 1

• ZM
i [j] = 1 if and only if XM

i [j] = Y M
i [j] = 1

24 D. Shi et al.

Table 2. An enumeration of all DS-MITM distinguishers for 10.5-round SKINNY-128-
384 with 40 ≤ Deg(A, B) ≤ 48.

No. A B Deg(A, B) No. A B Deg(A, B) No. A B Deg(A, B)

1 [15] [4] 40 21 [13] [6, 4] 45 41 [13] [5] 46

2 [12] [5] 40 22 [14] [7, 5] 45 42 [12] [4] 46

3 [13] [6] 40 23 [13] [6, 4] 45 43 [14] [6] 46

4 [14] [7] 40 24 [15] [4, 6] 45 44 [15] [7] 46

5 [15] [5] 42 25 [13] [5] 45 51 [13] [4, 6] 47

6 [12] [6] 42 26 [15] [6] 45 52 [12] [7, 5] 47

7 [13] [7] 42 27 [14] [4] 45 53 [14] [5, 7] 47

8 [14] [4] 42 28 [13] [4] 45 54 [15] [6, 4] 47

9 [13] [5] 43 29 [14] [5] 45 49 [13] [6] 47

10 [14] [6] 43 30 [14] [6] 45 50 [13] [6] 47

11 [12] [4] 43 31 [12] [4] 45 51 [14] [7] 47

12 [15] [7] 43 32 [15] [5] 45 52 [12] [5] 47

13 [12] [7] 44 33 [13] [7] 45 53 [12] [5] 47

14 [13] [4] 44 34 [12] [6] 45 54 [14] [7] 47

15 [12] [7] 44 35 [15] [7] 45 55 [15] [4] 47

16 [13] [4] 44 36 [12] [7] 45 56 [15] [4] 47

17 [13] [4] 44 37 [14] [4, 6] 46 57 [15] [7, 5] 48

18 [14] [5] 44 38 [13] [7, 5] 46 58 [14] [6, 4] 48

19 [14] [5] 44 39 [15] [5, 7] 46 59 [12] [4, 6] 48

20 [13] [4] 44 40 [12] [6, 4] 46 60 [13] [5, 7] 48

Note that the logical statement of Vars(Z) can be converted into allowed tuples,
e.g. (ZL

i [j],XL
i [j], Y L

i [j]) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, which can be
modeled in CP or MILP trivially [10,14]. So the only question left is what kind
of constraints should be imposed on Vars(X) and Vars(Y) such that they model
the intended properties.

The Constraints Imposed on Vars(X). According to the definition of forward
differential and the AK, SB, LN, ≪ 8, XOR operations of LBlock, we have the
following constraints

• XL
i [j] = XS

i [j] = XR
i+1[j], for k ≤ i < k + r and 0 ≤ j ≤ 7;

• XM
i [LN [j]] = XS

i [j], for k ≤ i < k + r and 0 ≤ j ≤ 7;
• XL

i+1[j] = 0 if and only if XR
i [(j + 2) mod 8] = XM

i [j] = 0, for k ≤ i < k + r
and 0 ≤ j ≤ 7.

The Constraints Imposed on Vars(Y). Similarly, according to the definition
of the backward determination relationship and the AK, SB, LN, ≪ 8, XOR
operations of LBlock, we have the following constraints

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 25

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

0 0

0 0

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

1 1

1 1

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

2 2

2 2

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

3 3

3 3

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

4 4

4 4

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

5 5

5 5

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

6 6

6 6

XL
i XR

i

XS
i XM

i

XL
i+1 XR

i+1

7 7

7 7

Round i

SB

LN

≪ 8

SK

Fig. 13. The indexing scheme used for LBlock

• For k ≤ i < k+r and 0 ≤ j ≤ 7, Y L
i [j] = 0 if and only if Y R

i+1[j] = Y S
i [j] = 0;

• Y M
i [LN [j]] = Y S

i [j], for k ≤ i < k + r and 0 ≤ j ≤ 7;
• For XOR and SR operations: Y M

i [j] = Y R
i [(j + 2) mod 8] = Y L

i+1[j]

According to the constraints imposed on Vars(Z), if Vars(X) and Vars(Y) are
assigned to values as illustrated in Fig. 14a and b, then we can derive the values
of Vars(Z) by superposition of Fig. 14a and b, which is depicted in Fig. 14c.

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

(a) Forward differential

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

(b) Backward determination

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

SB

LN

≪ 8

SK

(c) Vars(Z)

Fig. 14. An instantiation of the Vars(X), Vars(Y) and Vars(Z)

Additional Constraints. We require
∑

XL
k [j] +

∑
XR

k [j] �= 0,
∑

Y L
k+r[j] +

∑
Y R

k+r[j] �= 0, to exclude the trivial solution where all variables are assigned
to 0. Also, to make the time complexity of the offline phase not exceeding the
complexity of the exhaustive search, we require

∑
ZS

i [j] < |K|c = 80/4 = 20 .

26 D. Shi et al.

Objective Functions. The objective function is to minimize
∑k+r−1

i=k

∑7
j=0

ZS
i [j] to make Deg(A,B) as small as possible.

By integrating the above model with the models of E0 and E2 with
some simple tweak, we identify a DS-MITM attack on 21-round LBLOCK.
The distinguisher used in the attack is an 11-round DS-MITM distinguisher
(A,B,Deg(A,B)) with A = [12], B = [12], and deg(A,B) = 14, which is shown
in Fig. 20 in [supplementary material]. The secret intermediate values Guess(E0)
and Guess(E2) created by P 0 in the outer rounds are presented in Fig. 21 in
[supplementary material] marked with red color. To perform the attack, we con-
vert Guess(E0) and Guess(E2) into the secret information of subkeys manually,
which is visualized in Fig. 22 in [supplementary material], where there are 22
nibbles in kin and 12 nibbles in kout. Then we perform the key-bridging tech-
nique [29,47] on kin and kout, and find that |kin ∪kout| ≤ 69, which is illustrated
in Fig. 23 in [supplementary material].

Complexity Analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 24×14×24×1× 14

21×8CE ≈ 256.42CE , and the memory
complexity is (24 − 1)× 4× 1× 24×14 ≈ 261.91 bits. In the online phase, the time
complexity is 269 × 24×1 × 12+12

21×8 CE ≈ 270.20CE . The data complexity of the
attack is 24×12 = 248, which can be obtained from input state (Round 0) of
Fig. 21 in [supplementary material].

7.3 Application to TWINE-80

With the method presented in Sect. 4, we find a DS-MITM attack on 20-round
TWINE-80 based on a distinguisher (A,B,Deg(A,B)) with A = [3], B = [9, 13],
and deg(A,B) = 19, which is shown in Fig. 24 in [supplementary material]. The
secret intermediate values Guess(E0) and Guess(E2) created by P 0 in the outer
rounds are presented in Fig. 25 in [supplementary material]. To perform the attack,
we convert Guess(E0) and Guess(E2) into the secret information of subkeys man-
ually, which is visualized in Fig. 26 in [supplementary material]. Then we perform
the key-bridging technique [29,47] on kin and kout, and find that |kin∪kout| ≤ 76,
which is illustrated in Fig. 27 in [supplementary material].

Complexity Analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 24×19×24×1× 19

20×8CE ≈ 276.93CE , and the memory
complexity is (24 − 1)× 4× 2× 24×19 ≈ 282.91 bits. In the online phase, the time
complexity is 276×24×1× 7+20

20×8CE ≈ 277.44CE . The data complexity of the attack
is 24×8 = 232, which can be obtained from input state (Round 0) of Fig. 25 in
[supplementary material].

7.4 Applications to AES, ARIA, and SIMON

We also apply our method to AES, ARIA, and SIMON. However, no better
result is obtained. Still, We would like to provide some information about our
analysis for the sake of completeness.

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 27

For AES, our tool can recover the base DS-MITM attacks behind all attacks
(including the best ones) presented in [28–30,32,53]. However, currently known
best attacks on AES exploit the differential enumeration technique [28] which
our tool cannot take into account automatically. To deal with this, we use a
2-step approach. First, we list all the distinguishers that may lead to a valid
attack using the fact that, at best, the differential enumeration technique can
decrease the memory complexity by a factor strictly less than 2n, where n is
the state size. For AES-128 we would only add the constraint dictating that two
consecutive states cannot be fully active in the distinguisher. Then in a second
step, we can obtain the concrete complexities of the attacks derived from the
distinguishers by applying known techniques. Usually, the distinguisher leading
to the best attack has the lowest number of active bytes. But some manual work
is inevitable to really optimize the attacks. Actually, during our analysis, our
code generates figures based on the distinguishers automatically, which greatly
facilitates subsequent manual analysis and the checking of correctness. Note that
the first step alone can be used to get an upper bound on the number of rounds
one may attack (independent of any tricks involving manual work): if there is
no distinghuisher then there is no attack.

For ARIA, we obtain the same result presented in [54]. Unlike the other
targets presented in the paper which are modeled using MILP, we also provide a
Choco [55] implementation for finding the DS-MITM distinguishers of the ARIA
cipher to show that we can choose from MILP/SAT/SMT/CP as the modeling
language freely. This fact is important since the solvers are being improved
constantly, and thus we can expect the resolution of more difficult instances
in the future. We also try our tool on bit-oriented ciphers like SIMON. For
SIMON32/64, only an 8-round DS-MITM distinguisher is identified, which is far
less than the rounds can be penetrated by differential attacks.

8 Applications in the Process of Block Cipher Design

In the design process, the designer typically first fixes the general structure of
the block cipher. Then she or he tries to identify the optimal local components in
terms of security, efficiency, power consumption etc. by a tweaking-and-analysis
style iterative approach. Therefore, it is important to have efficient tools at hands
such that a thorough exploration of the design space can be performed. In this
section, we show that our tool can be applied in this situation by tweaking
the block ciphers LBlock and TWINE. Note that unlike Ivica’s tool [56], where
nature-inspired meta-heuristics are employed, our method essentially performs
an DS-MITM distinguishing attack for each possible instantiation of the target
cipher, and pick the optimal ones according to the results.

For LBlock-80, we tweak the 8-nibble to 8-nibble permutation. We exhaus-
tively search for the 11-round DS-MITM distinguishers with the lowest Deg(A,B)
for the 8! = 40320 cases. The distribution of the 40320 cases in terms of
Deg(A,B) is shown in Fig. 15. According to Fig. 15, we can make several inter-
esting observations. Firstly, there are many very weak permutations with very

28 D. Shi et al.

Fig. 15. The horizontal axis shows Deg(A, B) of the 11-round distinguisher (N/A
means there is no valid distinguisher found), while the vertical axis indicates the cor-
responding numbers of permutations

low deg(A,B) which obviously should be avoided. In extreme cases, there are
12560 permutations with Deg(A,B) = 0. Secondly, the number of permutations
with high resistance against DS-MITM attack is small. There are 64 permuta-
tions (listed in Table 3 in [supplementary material]) among the 40320 ones with
Deg(A,B) = 14, and actually the original permutation of LBlock is chosen from
these good permutations.

For TWINE-80, we tweak the word shuffle of 16 nibbles. There are totally
16! ≈ 244.25 possibilities, which is out of reach of our computational power.
However, according to [57], we only need to consider the 8!×8! even-odd shuffles.
Let P = (P0, P1), be the word shuffle where P0 is the shuffle of all even positions
while P1 is the shuffle of all odd positions. Then it can be shown that (P0, P1)
is equivalent to (Q ◦ P1 ◦ Q−1, Q ◦ P2 ◦ Q−1), where Q is an arbitrary word
shuffle. Therefore, the number of cases can be further reduced since the 8! × 8!
shuffles can be divided into 22 × 8! = 887040 equivalent classes with respect
to the DS-MITM attack. We exhaustively search for the 11-round DS-MITM
distinguishers with the lowest Deg(A,B) for the 887040 cases. The distribution of
the 887040 cases in terms of Deg(A,B) is shown in Fig. 16. According to Fig. 16,
we can make several interesting observations. Firstly, there are many very weak
permutations with very low deg(A,B) which obviously should be avoided. In
extreme cases, there are 528631 permutations with Deg(A,B) = 0. Secondly, the
number of permutations with high resistance against DS-MITM attack is small.
There are only 344 permutations among the 887040 ones with Deg(A,B) = 14,
and actually the original permutation of TWINE is chosen from these good
permutations. Finally, we identify a set of 12 permutations for which we can
not find any 11-round distinguisher, indicating that they are stronger than the
original permutation in TWINE-80 with respect to the DS-MITM attack.

Since both the DS-MITM attack in this paper and the word-oriented trun-
cated impossible differential attack are structure attacks whose effectiveness is
not affected by the details of the underlying S-boxes, we are wondering whether
there is a set of strongest word shuffles with respect to the DS-MITM attack

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 29

Fig. 16. The horizontal axis shows Deg(A, B) of the 11-round distinguisher (N/A
means there is no valid distinguisher found), while the vertical axis indicates the cor-
responding numbers of permutations

and impossible differential attack simultaneously. We exhaustively analysis the
887040 TWINE variants. It turns out that for any variant there is a 14-round
impossible differential, and there are 144 variants with no 15-round impossible
differential. Finally, we identify a set of 12 word shuffles with no 15-round impos-
sible differential and no 11-round DS-MITM distinguisher (listed in Table. 4 in
[supplementary material]). Note that the word shuffle used in TWINE is not in
this set. Therefore, it is potentially better to use one from these 12 word shuffles.

9 Conclusion and Discussion

In this paper, we present the first tool for automatic Demirci-Selçuk meet-in-
the-middle analysis based on constraint programming. In our approach, the for-
mulation and resolution of the model are decoupled. Hence, the only thing needs
to do by the cryptanalysts is to specify the problem in some modeling language,
and the remaining work can be done with any open-source or commercially avail-
able constraint solvers. This approach should be very useful in fast prototyping
block cipher designs. Finally, we would like to identify a set of limitations of our
approach, overcoming which is left for future work.

Limitations. First of all, some important techniques for improving the DS-
MITM attack have not been integrated into our framework yet, including (but
not limited to) the differential enumeration technique, and using several distin-
guishers in parallel. Secondly, we cannot guarantee the optimality of the attacks
produced by our tool, due to the heuristic natures of the key-recovery process,
and the lack of automatically considering cipher specific properties. Finally, we
do not know how to apply our method to ARX based constructions.

Acknowledgments. The authors thank the anonymous reviewers for many helpful
comments, and Gaëtan Leurent for careful reading and shepherding our paper. The
work is supported by the Chinese Major Program of National Cryptography Develop-
ment Foundation (Grant No. MMJJ20180102), the National Natural Science Founda-
tion of China (61732021, 61802400, 61772519, 61802399), the Youth Innovation Pro-
motion Association of Chinese Academy of Sciences, and the Institute of Information
Engineering, CAS (Grant No. Y7Z0251103). Patrick Derbez is supported by the French

30 D. Shi et al.

Agence Nationale de la Recherche through the CryptAudit project under Contract
ANR-17-CE39-0003.

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

3. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

4. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

5. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

6. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 26

7. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: application to Salsa20. IACR Cryptology ePrint Archive, Report 2013/328
(2013). http://eprint.iacr.org/2013/328

8. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher
Family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 8

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

10. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

11. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 24

12. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 7

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/978-3-319-39555-5_26
http://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 31

13. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

14. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 37

15. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Anal-
ysis of AES, SKINNY, and others with constraint programming. IACR Trans.
Symmetric Cryptol. 2017(1), 281–306 (2017)

16. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive 2016, 689 (2016)

17. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

18. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanaly-
sis with applications to CAESAR candidates. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 490–509. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 20

19. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04852-9 12

20. Biryukov, A., Nikolić, I.: Search for related-key differential characteristics in DES-
like ciphers. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 18–34. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 2

21. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 11

22. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-
reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 169–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 10

23. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS,
vol. 9453, pp. 612–630. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 25

24. Mella, S., Daemen, J., Assche, G.V.: New techniques for trail bounds and appli-
cation to differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2017(1),
329–357 (2017)

25. Freuder, E.C.: In pursuit of the holy grail. Constraints 2(1), 57–61 (1997)
26. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:

Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 7

27. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-642-21702-9_2
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-662-04722-4

32 D. Shi et al.

28. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 10

29. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

30. Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk meet-in-the-middle attacks
against reduced-round AES. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
541–560. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3 28

31. Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossi-
ble differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 157–184. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 6

32. Li, R., Jin, C.: Meet-in-the-middle attacks on 10-round AES-256. Des. Codes Cryp-
togr. 80(3), 459–471 (2016)

33. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 10

34. Biryukov, A., Derbez, P., Perrin, L.: Differential analysis and meet-in-the-middle
attack against round-reduced TWINE. In: Leander, G. (ed.) FSE 2015. LNCS,
vol. 9054, pp. 3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48116-5 1

35. Li, L., Jia, K., Wang, X., Dong, X.: Meet-in-the-middle technique for truncated
differential and its applications to CLEFIA and camellia. In: Leander, G. (ed.)
FSE 2015. LNCS, vol. 9054, pp. 48–70. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48116-5 3

36. Dong, X., Li, L., Jia, K., Wang, X.: Improved attacks on reduced-round camellia-
128/192/256. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 59–83.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 4

37. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic
feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I.
LNCS, vol. 8873, pp. 458–477. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45611-8 24

38. Guo, J., Jean, J., Nikolic, I., Sasaki, Y.: Meet-in-the-middle attacks on classes of
contracting and expanding feistel constructions. IACR Trans. Symmetric Cryptol.
2016(2), 307–337 (2016)

39. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. IEEE Comput. 10(6), 74–84 (1977)

40. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19574-7 16

41. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 5

https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-48116-5_10
https://doi.org/10.1007/978-3-662-48116-5_1
https://doi.org/10.1007/978-3-662-48116-5_1
https://doi.org/10.1007/978-3-662-48116-5_3
https://doi.org/10.1007/978-3-662-48116-5_3
https://doi.org/10.1007/978-3-319-16715-2_4
https://doi.org/10.1007/978-3-662-45611-8_24
https://doi.org/10.1007/978-3-662-45611-8_24
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/978-3-642-03356-8_5

Programming the Demirci-Selçuk Meet-in-the-Middle Attack 33

42. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: first results on full tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 4

43. Lin, L., Wu, W., Wang, Y., Zhang, L.: General model of the single-key meet-in-
the-middle distinguisher on the word-oriented block cipher. In: Lee, H.-S., Han,
D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 203–223. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12160-4 13

44. Beierle, C., et al.: The SKINNY Family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

45. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6 22

46. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

47. Lin, L., Wu, W., Zheng, Y.: Automatic search for key-bridging technique: applica-
tions to LBlock and TWINE. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp.
247–267. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-
5 13

48. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible dif-
ferential attacks against round-reduced lblock. IACR Cryptology ePrint Archive
2014, 279 (2014)

49. Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanal-
ysis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08344-5 1

50. Zheng, X., Jia, K.: Impossible differential attack on reduced-round TWINE. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 123–143. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12160-4 8

51. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57339-7 7

52. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossi-
ble differential attacks: applications to CLEFIA, camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 179–
199. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

53. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 7

54. Akshima, Chang, D., Ghosh, M., Goel, A., Sanadhya, S.K.: Improved meet-in-
the-middle attacks on 7 and 8-round ARIA-192 and ARIA-256. In: Biryukov, A.,
Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 198–217. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26617-6 11

55. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017)

https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-319-12160-4_13
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-662-52993-5_13
https://doi.org/10.1007/978-3-662-52993-5_13
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/978-3-319-12160-4_8
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-662-46706-0_7
https://doi.org/10.1007/978-3-319-26617-6_11

34 D. Shi et al.

56. Nikolić, I.: How to use metaheuristics for design of symmetric-key primitives. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp.
369–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 13

57. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

https://doi.org/10.1007/978-3-319-70700-6_13
https://doi.org/10.1007/978-3-642-13858-4_2

Cryptanalysis of MORUS

Tomer Ashur1(B), Maria Eichlseder2(B), Martin M. Lauridsen7(B),
Gaëtan Leurent3(B), Brice Minaud4(B), Yann Rotella3(B), Yu Sasaki5(B),

and Benôıt Viguier6(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
tomer.ashur@esat.kuleuven.be

2 Graz University of Technology, Graz, Austria
maria.eichlseder@iaik.tugraz.at

3 Inria, Paris, France
{gaetan.leurent,yann.rotella}@inria.fr

4 Royal Holloway University of London, Egham, UK
brice.minaud@gmail.com

5 NTT, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

6 Radboud University, Nijmegen, Netherlands
b.viguier@science.ru.nl
7 Copenhagen, Denmark

mail@martinlauridsen.info

Abstract. MORUS is a high-performance authenticated encryption
algorithm submitted to the CAESAR competition, and recently selected
as a finalist. There are three versions of MORUS: MORUS-640 with a
128-bit key, and MORUS-1280 with 128-bit or 256-bit keys. For all ver-
sions the security claim for confidentiality matches the key size. In this
paper, we analyze the components of this algorithm (initialization, state
update and tag generation), and report several results.

As our main result, we present a linear correlation in the keystream
of full MORUS, which can be used to distinguish its output from random
and to recover some plaintext bits in the broadcast setting. For MORUS-
1280, the correlation is 2−76, which can be exploited after around 2152

encryptions, less than what would be expected for a 256-bit secure cipher.
For MORUS-640, the same attack results in a correlation of 2−73, which
does not violate the security claims of the cipher.

To identify this correlation, we make use of rotational invariants in
MORUS using linear masks that are invariant by word-rotations of the
state.Thismotivates us to introduce single-word versions of MORUS called
MiniMORUS, which simplifies the analysis. The attack has been imple-
mented and verified on MiniMORUS, where it yields a correlation of 2−16.

We also study reduced versions of the initialization and finalization
of MORUS, aiming to evaluate the security margin of these components.
We show a forgery attack when finalization is reduced from 10 steps to

The original version of this chapter was revised: The email address, city and country
of the author Martin M. Lauridsen has been corrected. The correction to this chapter
is available at https://doi.org/10.1007/978-3-030-03329-3 26

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 35–64, 2018.
https://doi.org/10.1007/978-3-030-03329-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-03329-3_26

36 T. Ashur et al.

3, and a key-recovery attack in the nonce-misuse setting when initial-
ization is reduced from 16 steps to 10. These additional results do not
threaten the full MORUS, but studying all aspects of the design is useful
to understand its strengths and weaknesses.

Keywords: MORUS · CAESAR · Authenticated encryption
Nonce respecting · Linear cryptanalysis · Confidentiality

1 Introduction

Authenticated Encryption (AE) schemes combine the functionality of symmetric
encryption schemes and message authentication codes. Based on a shared secret
key K, they encrypt a plaintext message M to a ciphertext C and authentication
tag T in order to protect both the confidentiality and the authenticity of M .
Most modern authenticated encryption algorithms are nonce-based schemes with
associated data (AEAD), where (C, T) additionally depends on a unique nonce
N (or initialization value IV) and optional associated metadata A. One of the
most prominent standardized AEAD designs is AES-GCM [8,13], which is widely
deployed in protocols such as TLS (since v1.2).

To address the growing need for modern authenticated encryption designs
for different application scenarios, the CAESAR competition was launched in
2013 [4]. The goal of this competition is to select a final portfolio of AEAD
designs for three different use-cases: (1) lightweight hardware characteristics, (2)
high-speed software performance, and (3) robustness. The competition attracted
57 first-round submissions, 7 of which were recently selected as finalists in the
fourth selection round.

MORUS is one of the three finalists for use-case (2), together with OCB and
AEGIS. This family of authenticated ciphers by Wu and Huang [19] provides
three main variants: MORUS-640 with a 128-bit key and MORUS-1280 with
either a 128-bit or a 256-bit key. The design approach is reminiscent of classical
stream cipher designs and continuously updates a relatively large state with a
few fast operations. MORUS can be efficiently implemented in both software and
hardware; in particular, the designers claim that the software performance even
surpasses AES-GCM implementations using Intel’s AES-NI instructions, and that
MORUS is the fastest authenticated cipher not using AES-NI [19].

Related Work. In the MORUS submission document, the designers discuss the
security of MORUS against several attacks, including algebraic, differential, and
guess-and-determine attacks. The main focus is on differential properties, and
not many details are given for other attack vectors. In third-party analysis, Mil-
eva et al. [14] propose a distinguisher in the nonce-reuse setting and practically
evaluate the differential behaviour of toy variants of MORUS. Shi et al. [17] ana-
lyze the differential properties of the finalization reduced to 2 out of 10 steps,
but find no attacks. Dwivedi et al. [6] discuss the applicability of SAT solvers
for state recovery, but the resulting complexity of 2370 for MORUS-640 is well
beyond the security claim. Dwivedi et al. [7] also propose key-recovery attacks

Cryptanalysis of MORUS 37

for MORUS-1280 if initialization is reduced to 3.6 out of 16 steps, and discuss
the security of MORUS against internal differentials and rotational cryptanal-
ysis. Salam et al. [16] apply cube attacks to obtain distinguishers for up to 5
out of 16 steps of the initialization of MORUS-1280 with negligible complexity.
Additionally, Kales et al. [9] and Vaudenay and Vizár [18] independently pro-
pose state-recovery and forgery attacks on MORUS in a nonce-misuse setting
with negligible data and time complexities.

Finally, a keystream correlation similar in nature to our main attack was
uncovered by Minaud [15] on the authenticated cipher AEGIS [20,21], another
CAESAR finalist. AEGIS shares the same overall structure as MORUS, but uses
a very different state update function, based on the parallel application of AES
rounds, rather than the shift/AND/XOR operations used in MORUS. Similar
to our attack, the approach in [15] is to build a linear trail linking ciphertext
bits, while canceling the contribution of inner state bits. How the trail is built
depends primarily on the state update function, and how it lends itself to linear
cryptanalysis. Because the state update function differs significantly between
AEGIS and MORUS, the process used to build the trail is also quite different.

Our Contributions. Our main contribution is a keystream distinguisher on full
MORUS-1280, built from linear approximations of its core StateUpdate function.
In addition, we provide results for round-reduced MORUS, targeting both the
initialization or finalization phases of the cipher.

In more detail, our main result is a linear approximation [11,12] linking plain-
text and ciphertext bits spanning five consecutive encryption blocks. Moreover,
the correlation does not depend on the secret key of the cipher. In principle,
this property could be used as a known-plaintext distinguisher, or to recover
unknown bits of a plaintext encrypted a large number of times. For MORUS-
1280 with 256-bit keys, the linear correlation is 2−76 and can be exploited using
about 2152 encrypted blocks.

To the best of our knowledge, this is the first attack on full MORUS in the
nonce-respecting setting. We note that rekeying does not prevent the attack:
the biases are independent of the secret encryption key and nonce, and can be
exploited for plaintext recovery as long as a given plaintext segment is encrypted
sufficiently often, regardless of whether each encryption uses a different key. A
notable feature of the linear trail underpinning our attack is also that it does
not depend on the values of rotation constants: a very similar trail would exist
for most choices of round constants.

To obtain this result, we propose a simplified abstraction of MORUS, called
MiniMORUS. MiniMORUS takes advantage of certain rotational invariants in
MORUS and simplifies the description and analysis of the attack. We then show
how the attack can be extended from MiniMORUS to the real MORUS. To confirm
the validity of our analysis, we practically verified the correlation of the full
linear trail for MiniMORUS, as well as the correlation of trail fragments for the
full MORUS. Our analysis is also backed by a symbolic evaluation of the full trail
equation and its correlation on all variants of MORUS.

In addition to the previous attack on full MORUS, we provide two secondary
results: (1) we analyze the security of MORUS against forgery attacks with

38 T. Ashur et al.

round-reduced finalization; and (2) we analyze its security against key recovery
in a nonce-misuse setting, with round-reduced initialization. While this extra
analysis does not threaten full MORUS, it complements the main result to pro-
vide a better overall understanding of the security of MORUS. More precisely,
we present a forgery attack for round-reduced MORUS-1280 with success prob-
ability 2−88 for a 128-bit tag if the finalization is reduced to 3 out of 10 steps.
This nonce-respecting attack is based on a differential analysis of the padding
rule. The second result targets round-reduced initialization with 10 out of 16
steps, and extends a state-recovery attack (which can be mounted e.g. in a
nonce-misuse setting) into a key-recovery attack.

Outline. This paper is organized as follows. We first provide a brief descrip-
tion of MORUS in Sect. 2. In Sect. 3, we introduce MiniMORUS, an abstraction
of MORUS based on a certain class of rotational invariants. We analyze this
simplified scheme in Sect. 4 and provide a ciphertext-only linear approximation
with a weight of 16. We then extend our result to the full scheme in Sect. 5,
showing a correlation in the keystream over 5 steps, and discuss the implications
of our observation for the security of MORUS in Sect. 6. In Sect. 7, we present
our results on the security of MORUS with round-reduced initialization (in a
nonce-misuse setting) or finalization. We conclude in Sect. 8.

2 Preliminaries

MORUS is a family of authenticated ciphers designed by Wu and Huang [19].
An instance of MORUS is parametrized by a secret key K. During encryption, it
takes as input a plaintext message M , a nonce N , and possibly some associated
data A, and outputs a ciphertext C together with an authentication tag T . In
this section, we provide a brief description of MORUS and introduce the notation
for linear approximations.

2.1 Specification of MORUS

The MORUS family supports two internal state sizes: 640 and 1280 bits, referred
to as MORUS-640 and MORUS-1280, respectively. Three parameter sets are rec-
ommended: MORUS-640 supports 128-bit keys and MORUS-1280 supports either
128-bit or 256-bit keys. The tag size is 128 bits or shorter. The designers strongly
recommend using a 128-bit tag. With a 128-bit tag, integrity is claimed up to
128 bits and confidentiality is claimed up to the number of key bits (Table 1).

State. The internal state of MORUS is composed of five q-bit registers Si,
i ∈ {0, 1, 2, 3, 4}, where q = 128 for MORUS-640 and q = 256 for MORUS-1280.
The internal state of MORUS may be represented as S0‖S1‖S2‖S3‖S4. Registers
are themselves divided into four q/4-bit words. Throughout the paper, we denote
the word size by w = q/4, i.e., w = 32 for MORUS-640 and w = 64 for MORUS-
1280.

Cryptanalysis of MORUS 39

Table 1. Security goals of MORUS.

Confidentiality (bits) Integrity (bits)

MORUS-640-128 128 128

MORUS-1280-128 128 128

MORUS-1280-256 256 128

Table 2. Rotation constants bi for ≪w and b′
i for ≪ in round i of MORUS.

Bit-wise rotation ≪w Word-wise rotation ≪
b0 b1 b2 b3 b4 b′

0 b′
1 b′

2 b′
3 b′

4

MORUS-640 5 31 7 22 13 32 64 96 64 32

MORUS-1280 13 46 38 7 4 64 128 192 128 64

The encryption process of MORUS consists of four parts: initialization, asso-
ciated data processing, encryption, and finalization. During the initialization
phase, the value of the state is initialized using a key and nonce. The associated
data and the plaintext are then processed block by block. Then the internal state
undergoes the finalization phase, which outputs the authentication tag.

Every part of this process relies on iterating the StateUpdate function at
the core of MORUS. Each call to the StateUpdate function is called a step. The
internal state at step t is denoted by St

0‖St
1‖St

2‖St
3‖St

4, where t = −16 before
the initialization and t = 0 after the initialization.

The StateUpdate Function. StateUpdate takes as input the internal state
St = St

0‖St
1‖St

2‖St
3‖St

4 and an additional q-bit value mt (recall that q is the size
of a register), and outputs an updated internal state.

StateUpdate is composed of 5 rounds with similar operations. The additional
input mt is used in rounds 2 to 5, but not in round 1. Each round uses the bit-wise
rotation (left circular shift) operation inside word, denoted ≪w in the following
and Rotl xxx yy in the design document. It divides a q-bit register value into 4
words of w = q/4 bits, and performs a rotation on each w-bit word. The bit-wise
rotation constants bi for round i are defined in Table 2. Additionally, each round
uses rotations on a whole q-bit register by a multiple of the word size, denoted
≪ in the following and <<< in the design document. The word-wise rotation
constants b′

i are also listed in Table 2.
St+1 ← StateUpdate(St,mt) is defined as follows, where · denotes bit-wise

AND, ⊕ is bit-wise XOR, and mi is defined depending on the context:

Round 1: St+1
0 ← (St

0 ⊕ (St
1 · St

2) ⊕ St
3) ≪w b0, St

3 ← St
3 ≪ b′

0.

Round 2: St+1
1 ← (St

1 ⊕ (St
2 · St

3) ⊕ St
4 ⊕ mi) ≪w b1, St

4 ← St
4 ≪ b′

1.

Round 3: St+1
2 ← (St

2 ⊕ (St
3 · St

4) ⊕ St
0 ⊕ mi) ≪w b2, St

0 ← St
0 ≪ b′

2.

40 T. Ashur et al.

Round 4: St+1
3 ← (St

3 ⊕ (St
4 · St

0) ⊕ St
1 ⊕ mi) ≪w b3, St

1 ← St
1 ≪ b′

3.

Round 5: St+1
4 ← (St

4 ⊕ (St
0 · St

1) ⊕ St
2 ⊕ mi) ≪w b4, St

2 ← St
2 ≪ b′

4.

Initialization. The initialization of MORUS-640 starts by loading the 128-bit
key K128 and the 128-bit nonce N128 into the state together with constants c0, c1:

S−16
0 = N128, S−16

1 = K128, S−16
2 = 1128, S−16

3 = c0, S−16
4 = c1.

Then, StateUpdate(St, 0) is iterated 16 times for t = −16,−15, . . . ,−1. Finally,
the key is XORed into the state again with S0

1 ← S0
1 ⊕ K128.

The initialization of MORUS-1280 differs slightly due to the difference in
register size and the two possible key sizes, and uses either K = K128‖K128 (for
MORUS-1280-128) or K = K256 (for MORUS-1280-256) to initialize the state:

S−16
0 = N128 ‖ 0128, S−16

1 = K, S−16
2 = 1256, S−16

3 = 0256, S−16
4 = c0 ‖ c1.

After iterating StateUpdate 16 times, the state is updated with S0
1 ← S0

1 ⊕ K.

Associated Data Processing. After initialization, the associated data A is
processed in blocks of q ∈ {128, 256} bits. For the padding, if the last associated
data block is not a full block, it is padded to q bits with zeroes. If the length
of A, denoted by |A|, is 0, then the associated data processing phase is skipped;
else, the state is updated as

St+1 ← StateUpdate(St, At) for t = 0, 1, . . . , �|A|/q� − 1.

Encryption. Next, the message is processed in blocks Mt of q ∈ {128, 256} bits
to update the state and produce the ciphertext blocks Ct. If the last message
block is not a full block, a string of 0’s is used to pad it to 128 or 256 bits for
MORUS-640 and MORUS-1280, respectively, and the padded full block is used
to update the state. However, only the partial block is encrypted. Note that if
the message length denoted by |M | is 0, encryption is skipped. Let u = �|A|/q�
and v = �|M |/q�. The following is performed for t = 0, 1, . . . , v − 1:

Ct ← M t ⊕ Su+t
0 ⊕ (Su+t

1 ≪ b′
2) ⊕ (Su+t

2 · Su+t
3),

Su+t+1 ← StateUpdate(Su+t,M t).

Finalization. The finalization phase generates the authentication tag T using
10 more StateUpdate steps. We only discuss the case where T is not truncated.
The associated data length and the message length are used to update the state:

1. L ← |A| ‖ |M | for MORUS-640 or L ← |A| ‖ |M | ‖ 0128 for MORUS-1280,
where |A|, |M | are represented as 64-bit integers.

2. Su+v
4 ← Su+v

4 ⊕ Su+v
0 .

3. For t = u + v, u + v + 1, . . . , u + v + 9, compute St+1 ← StateUpdate(St, L).
4. T = Su+v+10

0 ⊕(Su+v+10
1 ≪ b′

2)⊕(Su+v+10
2 ·Su+v+10

3), or the least significant
128 bits of this value in case of MORUS-1280.

Cryptanalysis of MORUS 41

2.2 Notation

In the following, we use linear approximations [11] that hold with probability
Pr(E) = 1

2 + ε, i.e., they are biased with bias ε. The correlation cor(E) of the
approximation and its weight weight(E) are defined as

cor(E) := 2Pr(E) − 1 = 2ε,

weight(E) := − log2 | cor(E)|,
where log2() denotes logarithm in base 2. By the Piling-Up Lemma, the correla-
tion (resp. weight) of an XOR of independent variables is equal to the product
(resp. sum) of their individual correlations (resp. weights) [11].

We also recall the following notation from the previous section, where an
encryption step refers to one call to the StateUpdate function:

Ct : the ciphertext block output during the t-th encryption step.
Ct

j : the j-th bit of Ct, with Ct
0 being the rightmost bit.

St
i : the i-th register at the beginning of t-th encryption step.

St
i,j : the j-th bit of St

i , with St
i,0 being the rightmost bit.

In the above notation, bit positions are always taken modulo the register size q,
i.e., q = 128 for MORUS-640 and q = 256 for MORUS-1280.

For simplicity, in the remainder, the 0-th encryption step will often denote
the encryption step where our linear trail starts. Any encryption step could be
chosen for that purpose, as long as at least four more encryption steps follow.
In particular the 0-th encryption step from the perspective of the trail does not
have to be the first encryption step after initialization.

3 Rotational Invariance and MiniMORUS

To simplify the description of the attack, we assume all plaintext blocks are zero.
This assumption will be removed in Sect. 5.3, where we will show that plaintext
bits only contribute linearly to the trail. Recall that the inner state of the cipher
consists of five 4w-bit registers S0, . . . , S4, each containing four w-bit words.

3.1 Rotationally Invariant Linear Combinations

We begin with a few observations about the StateUpdate function. Besides XOR
and AND operations, the StateUpdate function uses two types of bit rotations:

1. bit-wise rotations perform a circular shift on each word within a register;
2. word-wise rotations perform a circular shift on a whole register.

The second type of rotation always shifts registers by a multiple of the word size
w. This amounts to a (circular) permutation of the words within the register: for
example, if a register contains the words (A,B,C,D), and a word-wise rotation
by w bits to the left is performed, then the register now contains the words
(B,C,D,A).

To build our linear trail, we start with a linear combinations of bits within a
single register.

42 T. Ashur et al.

Definition 1 (Rotational Invariance). Recall that w denotes the word size
in bits, and 4w is the size of a register. A linear combination of the form:

St
i,j(0) ⊕ St

i,j(1) ⊕ · · · ⊕ St
i,j(k)

is said to be rotationally invariant iff the set of bits St
i,j(0), . . . , S

t
i,j(k) is left

invariant by a circular shift by w bits; that is, iff:

{j(i) : i ≤ k} = {j(i) + w mod 4w : i ≤ k}.

Example. The following linear combination is rotationally invariant for MORUS-
640, i.e. w = 32:

St
0,0 ⊕ St

0,32 ⊕ St
0,64 ⊕ St

0,96. (1)

This definition naturally extends to a linear combination across multiple reg-
isters, and also across ciphertext blocks. The value of such a linear combination
is unaffected by word-wise rotations, since those rotations always shift registers
by a multiple of the word size. On the other hand, since bit-wise rotations always
shift all four words within a register by the same amount, bit-wise rotations pre-
serve the rotational invariance property. Moreover, the XOR of two rotationally
invariant linear combinations is also rotationally invariant.

This naturally leads to the idea of building a linear trail using only rotation-
ally invariant linear combinations, which is what we are going to do. As a result,
the effect of word-wise rotations can be ignored. Moreover, since all linear combi-
nations we consider are going to be rotationally invariant, they can be described
by truncating the linear combination to the first word of a register. Indeed, an
equivalent way of saying a linear combination is rotationally invariant, is that it
involves the same bits in each word within a register. For example, in the case
of (1) above, the four bits involved are the first bit of each of the four words.

3.2 MiniMORUS

In fact, we can go further and consider a reduced version of MORUS where
each register contains a single word instead of four. The StateUpdate func-
tion is unchanged, except for the fact that word-wise rotations are removed: see
Fig. 1. We call these reduced versions MiniMORUS-640 and MiniMORUS-1280,
for MORUS-640 and MORUS-1280 respectively. Since registers in MiniMORUS
contain a single word, bit-wise and word-wise rotations are the same operation;
for simplicity we write ≪ for bit-wise rotations.

Since the trail we are building is relatively complex, we will first describe
it on MiniMORUS. We will then extend it to the full MORUS via the previous
rotational invariance property.

4 Linear Trail for MiniMORUS

In this section, we describe how we build a trail for MiniMORUS, then compute
its correlation and validate the correlation experimentally.

Cryptanalysis of MORUS 43

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

Fig. 1. MiniMORUS state update function.

4.1 Overview of the Trail

To build a linear trail for MiniMORUS, we combine the following five trail frag-
ments αt

i, βt
i , γt

i , δti , εti, where the subscript i denotes a bit position, and the
superscript t denotes a step number:

– αt
i approximates (one bit of) state word S0 using the ciphertext;

– βt
i approximates S1 using S0 and the ciphertext;

– γt
i approximates S4 using two approximations of S1 in consecutive steps;

– δti approximates S2 using two approximations of S4 in consecutive steps;
– εti approximates S0 using two approximations of S2 in consecutive steps.

The trail fragments are depicted on Fig. 2. In all cases except αt
i, the trail

fragment approximates a single AND gate by zero, which holds with probability
3/4, and hence the trail fragment has weight 1. In the case of αt

i, two AND gates
are involved; however the two gates share an entry in common, and in both cases
the other entry also has a linear contribution to the trail, which results in an
overall contribution of the form (see [3, Sect. 3.3])

x · y ⊕ x · z ⊕ y ⊕ z = (x ⊕ 1) · (y ⊕ z).

As a result, the trail fragment αt
i also has a weight of 1. Another way of looking

at this phenomenon is that the trail holds for two different approximations of
the AND gates: the alternative approximation is depicted by a dashed line on
Fig. 2.

44 T. Ashur et al.

The way we are going to use each trail fragment may be summarized as
follows, where in each case, elements to the left of the arrow → are used to
approximate the element on the right of the arrow:

αt
i : Ct

i → St+1
0,i+b0

βt
i : Ct

i , S
t
0,i → St

1,i

γt
i : St

1,i, S
t+1
1,i+b1

→ St
4,i

δti : St
4,i, S

t+1
4,i+b4

→ St+1
2,i

εti : St
2,i, S

t+1
2,i+b2

→ St+1
0,i .

In more detail, the idea is that by using αt
i, we are able to approximate a

bit of S0 using only a ciphertext bit. By combining αt
i with βt+1

i+b0
, we are then

able to approximate a bit of S1 (at step t + 1) using only ciphertext bits from
two consecutive steps. Likewise, γt

i allows us to “jump” from S1 to S4, i.e. by
combining αt

i with βt
i and γt

i with appropriate choices of parameters t and i
for each, we are able to approximate one bit of S4 using only ciphertext bits.
Notice however that γt

i requires approximating S1 in two consecutive steps; and
so the previous combination requires using αt

i and βt
i twice at different steps. In

the same way, δti allows us to jump from S4 to S2; and εti allows jumping from
S2 back to S0. Eventually, we are able to approximate a bit of S0 using only
ciphertext bits via the combination of all trail fragments αt

i, βt
i , γt

i , δti , and εti.
However, the same bit of S0 can also be approximated directly by using αt

i

at the corresponding step. Thus that bit can be linearly approximated from two
different sides: the first approximation uses a combination of all trail fragments,
and involves successive approximations of all state registers (except S3) spanning
several encryption steps, as explained in the previous paragraph. The second
approximation only involves using αt

i at the final step reached by the previous
trail. By XORing up these two approximations, we are left with only ciphertext
bits, spanning five consecutive encryption steps.

Of course, the overall trail resulting from all of the previous combinations
is quite complex, especially since γt

i , δti , and εti each require two copies of the
preceding trail fragment in consecutive steps: that is, εti requires two approxima-
tions of S2, which requires using δti twice; and δti in turn requires using γt

i twice,
which itself requires using αt

i and βt
i twice. Then αt

i is used one final time to close
the trail. The full construction with the exact bit indices for MiniMORUS-640
and MiniMORUS-1280 is illustrated in Fig. 3, where the left and right half each
show half of the full trail. One may naturally wonder if some components of this
trail are in conflict. In particular, products of bits from registers S2 and S3 are
approximated multiple times, by αt

i, βt
i and γt

i . To address this concern, and
ensure that all approximations along the trail are in fact compatible, we now
compute the full trail equation explicitly.

Cryptanalysis of MORUS 45

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i + b0

αt
i: weight 1 (not 2)

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

βt
i : weight 1

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i i

i + b1

γt
i : weight 1

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i + b4

δti : weight 1

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i + b2

εti: weight 1

MiniMORUS-640:

αt
i : Ct

i → St+1
0,i+5

βt
i : Ct

i , S
t
0,i → St

1,i

γt
i : St

1,i, S
t+1
1,i+31 → St

4,i

δti : St
4,i, S

t+1
4,i+13 → St+1

2,i

εti : St
2,i, S

t+1
2,i+7 → St+1

0,i .

MiniMORUS-1280:

αt
i : Ct

i → St+1
0,i+13

βt
i : Ct

i , S
t
0,i → St

1,i

γt
i : St

1,i, S
t+1
1,i+46 → St

4,i

δti : St
4,i, S

t+1
4,i+4 → St+1

2,i

εti : St
2,i, S

t+1
2,i+38 → St+1

0,i .

MiniMORUS instances

Fig. 2. MiniMORUS linear trail fragments.

46 T. Ashur et al.

S0 S1 S2 S3 S4C

27

0

α27

0 0
0

β08

13

α8,2626

31

0

31

0

γ0

0

13
0
×

δ0

31 31 31
β13,3113

13
13

7

12

α7

13

12

13

γ13

12
12 12

β12

χ1: weight 7 (not 11)

S0 S1 S2 S3 S4C

2

7

α2

7 7
7

β715

20

α15,1,271

6

27

0

7

6

7

γ7

7

20
7

δ7

0×

7
0

ε0

6 6 6
β20,620

20
20

14

19

α14

20

19

20

γ20

19
19 19

β19

χ2: weight 9 (not 13)

MiniMORUS-640

S0 S1 S2 S3 S4C

51

0

α51

0 0
0

β055

4

α55,3333

46

0

46

0

γ0

0

4
0
×

δ0

46 46 46
β4,464

4
4

37

50

α37

4

50

4

γ4

50
50 50

β50

χ1: weight 7 (not 11)

MiniMORUS-1280

S0 S1 S2 S3 S4C

25

38

α25

38 38
38

β387

20

α7,1,5129

42

51

0

38

20

38

γ38

38

42
38

δ38

0×

38
0

ε0

42 42 42
β20,4220

20
20

11

24

α11

42

24

42

γ42

24
24 24

β24

χ2: weight 9 (not 13)

Fig. 3. MiniMORUS: two approximations for S2
2,0. Numbers in each diagram denote bit

positions used in the linear approximation, i.e. subscripts of α, β, γ, δ and ε. χ1 and χ2

are two halves of the full trail which we experimentally verify.

Cryptanalysis of MORUS 47

4.2 Trail Equation

The equation corresponding to each of the five trail fragments αt
i, βt

i , γt
i , δti , εti

may be written explicitly as At
i, Bt

i, Ct
i, Dt

i, Et
i as follows. For each equation,

we write on the left-hand side of the equality the biased linear combination used
in the trail; and on the right-hand side, the remainder of the equation, which
must have non-zero correlation (in all cases the correlation is 2−1).

At
i : Ct

i ⊕ St+1
0,i+b0

= St
1,i ⊕ St

3,i ⊕ St
1,i · St

2,i ⊕ St
2,i · St

3,i

Bt
i : Ct

i ⊕ St
0,i ⊕ St

1,i = St
2,i · St

3,i

Ct
i : St

1,i ⊕ St+1
1,i+b1

⊕ St
4,i = St

2,i · St
3,i

Dt
i : St

4,i ⊕ St+1
4,i+b4

⊕ St+1
2,i = St+1

0,i · St+1
1,i

Et
i : St

2,i ⊕ St+1
2,i+b2

⊕ St+1
0,i = St

3,i · St
4,i

From an algebraic point of view, building the full trail amounts to adding up
copies of the previous equations for various choices of t and i, so that eventually
all Sx

y,z terms on the left-hand side cancel out. Then we are left with only cipher-
text terms on the left-hand side, while the right-hand side consists of a sum of
biased expressions. By measuring the correlation of the right-hand side expres-
sion, we are then able to determine the correlation of the linear combination of
ciphertext bits on the left-hand side. We now set out to do so.

In order to build the equation for the full trail, we start with E2
0:

S2
2,0 ⊕ S3

2,b2 ⊕ S3
0,0 = S2

3,0 · S2
4,0.

In order to cancel the S3
0,0 term on the left-hand side, we add to the equation

A2
−b0

(where the sum of two equations of the form a = b and c = d is defined to
be a + c = b + d). This yields:

S2
2,0 ⊕ S3

2,b2 ⊕ C2
−b0

= S2
3,0 · S2

4,0 ⊕ S2
1,−b0 ⊕ S2

3,−b0 ⊕ S2
1,−b0 · S2

2,−b0 ⊕ S2
2,−b0 · S2

3,−b0 .

We then need to cancel two terms of the form St
2,i. To do this, we add to

the equations Dt
i for appropriate choices of t and i. This replaces the two St

2,i

terms by four St
4,i terms. By using equation Bt

i four times, we can then replace
these four St

4,i terms by eight St
1,i terms. By applying equation Bt

i eight times,
these eight St

1,i terms can in turn be replaced by eight St
0,i terms (and some

ciphertext terms). Finally, applying At
i eight times allows to replace these eight

St
0,i terms by only ciphertext bits. Ultimately, for MiniMORUS-1280, this yields

the equation:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

= S0
1,51 · S0

2,51 ⊕ S0
2,51 · S0

3,51 ⊕ S0
1,51 ⊕ S0

3,51 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
2,25 · S1

3,25 ⊕ S1
1,25 ⊕ S1

3,25 weight 1

48 T. Ashur et al.

⊕ S1
1,33 · S1

2,33 ⊕ S1
2,33 · S1

3,33 ⊕ S1
1,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
2,55 · S1

3,55 ⊕ S1
1,55 ⊕ S1

3,55 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 ⊕ S2
1,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
2,29 · S2

3,29 ⊕ S2
1,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
2,37 · S2

3,37 ⊕ S2
1,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
2,51 · S2

3,51 ⊕ S2
1,51 ⊕ S2

3,51 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
2,11 · S3

3,11 ⊕ S3
1,11 ⊕ S3

3,11 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

The equation for MiniMORUS-640 is very similar, and is given in the full
version of this paper [2].

4.3 Correlation of the Trail

In the equation for MiniMORUS-1280 from the previous section, each line on
the right-hand side of the equality involves distinct St

i,j terms (in the sense that
no two lines share a common term), and each line has a weight of 1. By the
Piling-Up Lemma, it follows that if we assume distinct St

i,j terms to be uniform
and independent, then the expression on the right-hand side has a weight of
16. Hence the linear combination of ciphertext bits on the left-hand side has a
correlation of 2−16. The same holds for MiniMORUS-640.

The correlation is surprising high. The full trail uses trail fragments εti, δti ,
γt
i , βt

i , and αt
i, once, twice, 4 times, 8 times, and 9 times, respectively. Since

each trail fragment has a weight of 1, this would suggest that the total weight
should be 1 + 2 + 4 + 8 + 9 = 24 rather than 16. However, when combining
trail fragments βi and γi, notice that the same AND is computed at the same
step between registers S2 and S3 (equivalently, notice that the right-hand side
of equations Bt

i and Ct
i is equal). In both cases it is approximated by zero.

When XORing the corresponding equations, these two ANDs cancel each other,
which saves two AND gates. Since γt

i is used four times in the course of the full
trail, this results in saving 8 AND gates overall, which explains why the final
correlation is 2−16 rather than 2−24.

Cryptanalysis of MORUS 49

4.4 Experimental Verification

To confirm that our analysis is correct, we ran experiments on an implementation
of MiniMORUS-1280 and MiniMORUS-640. We consider two halves χ1 and χ2

of the full trail (depicted on Fig. 3), as well as the full trail itself, denoted by
χ. In each case, we give the weight predicted by the analysis from the previous
section, and the weight measured by our experiments. Results are displayed on
Table 3. While our analysis predicts a correlation of 2−16, experiments indicate a
slightly better empirical correlation of 2−15.5 for MORUS-640. The discrepancy
of 2−0.5 probably arises from the fact that register bits across different steps are
not completely independent.

The programs we used to verify the bias experimentally are available at:
https://github.com/ildyria/MorusBias

Table 3. Experimental verification of trail correlations.

Approximations for MiniMORUS-640 Weight

Predicted Measured

χ1 S2,2
0 = C0

27 ⊕ C1
0,8,26 ⊕ C2

7,13,31 ⊕ C3
12 7 7

χ2 S2,2
0 = C1

2 ⊕ C2
1,7,15,27 ⊕ C3

6,14,20 ⊕ C4
19 9 9

χ 0 = C0
27 ⊕ C1

0,2,26,8 ⊕ C2
1,13,15,27,31 ⊕ C3

6,12,14,20 ⊕ C4
19 16 15.5

Approximations for MiniMORUS-1280

χ1 S2,2
0 = C0

51 ⊕ C1
0,33,55 ⊕ C2

4,37,46 ⊕ C3
50 7 7

χ2 S2,2
0 = C1

25 ⊕ C2
7,29,38,51 ⊕ C3

11,20,42 ⊕ C4
24 9 9

χ 0 = C0
51 ⊕ C1

0,25,33,55 ⊕ C2
4,7,29,37,38,46,51 ⊕ C3

11,20,42,50 ⊕ C4
24 16 15.9

5 Trail for Full MORUS

In the previous section, we presented a linear trail for the reduced ciphers
MiniMORUS-1280 and MiniMORUS-640. We now turn to the full ciphers MORUS-
1280 and MORUS-640.

5.1 Making the Trail Rotationally Invariant

In order to build a trail for the full MORUS, we proceed exactly as we did for
MiniMORUS, following the same path down to step and word rotation values,
with one difference: in order to move from the one-word registers of MiniMORUS
to the four-word registers of full MORUS, we make every term St

i,j and Ct
j

rotationally invariant, in the sense of Sect. 3. That is, for every St
i,j (resp. Ct

j)
component in every trail fragment and every equation, we expand the term by
adding in the terms St

i,j+w, St
i,j+2w, St

i,j+3w (resp. Ct
j+w, Ct

j+2w, Ct
j+3w), where

https://github.com/ildyria/MorusBias

50 T. Ashur et al.

as usual w denotes the word size. For example, if w = 64 (for MORUS-1280),
the term S3

2,0 is expanded into:

S3
2,0 ⊕ S3

2,64 ⊕ S3
2,128 ⊕ S3

2,192.

Thus, translating the trail from one of the MiniMORUS ciphers to the cor-
responding full MORUS cipher amounts to making every linear combination
rotationally invariant—indeed, that was the point of introducing MiniMORUS in
the first place. Concretely, in order to build the full trail equation for MORUS,
we write rotationally invariant versions of equations At

i, Bt
i, Ct

i, Dt
i, Et

i from
Sect. 4.2, and then combine them in exactly the same manner as before. This way,
the biased linear combination on MiniMORUS-1280 given in Sect. 4.2, namely:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

ultimately yields the following biased rotationally invariant linear combination
on the full MORUS-1280:

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55 ⊕ C1
64 ⊕ C1

89

⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183 ⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247

⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37 ⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93

⊕ C2
101 ⊕ C2

102 ⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243 ⊕ C3
11 ⊕ C3

20

⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114 ⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178

⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242 ⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

We refer the reader to the full version of this paper [2] for the corresponding
linear combination on MORUS-640.

5.2 Correlation of the Full Trail

The rotationally invariant trail on full MORUS may be intuitively understood
as consisting of four copies of the original trail on MiniMORUS. Indeed, the only
difference between full MORUS (for either version of MORUS) and four inde-
pendent copies of MiniMORUS comes from word-wise rotations, which permute
words within a register. But as observed in Sect. 3, word-wise rotations preserves
the rotational invariance property; and so, insofar as we only ever use rotationally
invariant linear combinations on all registers along the trail, word-wise rotations
have no effect.

Following the previous intuition, one may expect that the weight of the full
trail should simply be four times the weight of the corresponding MiniMORUS
trail, namely 64 for both MORUS-1280 and MORUS-640. However, reality is a
little more complex, as the full trail does not exactly behave as four copies of
the original trail when one considers nonlinear terms.

Cryptanalysis of MORUS 51

To understand why that might be the case, assume a nonlinear term S0
2,0 ·S0

3,0

arising from some part of the trail, and another term S0
2,0 · S0

3,w arising from a
different part of the trail (where w denotes the word size). Then when we XOR
the various trail fragments together, in MiniMORUS these two terms are actually
equal and will cancel out, since word-wise rotations by multiples of w bits are
ignored. However in the real MORUS these terms are of course distinct and do
not cancel each other.

In the actual trail for (either version of) full MORUS, this exact situation
occurs when combining trail fragments βt

i and γt
i . Indeed, βt

i requires approxi-
mating the term St

2,i ·St
3,i, while γt

i requires approximating the term St
2,i ·St

3,i−w

(cf. Fig. 4). While in MiniMORUS, these terms cancel out, in the full MORUS,
when adding up four copies of the trail to achieve rotational invariance, we end
up with the sum:

St
2,i · St

3,i ⊕ St
3,i · St

2,i+w ⊕ St
2,i+w · St

3,i+w ⊕ St
3,i+w · St

2,i+2w

⊕ St
2,i+2w · St

3,i+2w ⊕ St
3,i+2w · St

2,i+3w ⊕ St
2,i+3w · St

3,i+3w ⊕ St
3,i+3w · St

2,i. (2)

It may be observed that the products occurring in the equation above involve
eight terms forming a ring. The weight of this expression can be computed by
brute force, and is equal to 3.

For MORUS-1280, since the trail fragment γt
i is used four times, this phe-

nomenon adds a contribution of 4 · 3 = 12 to the overall weight of the full trail.
This results in a total weight of 4 ·16+12 = 76 (recall that the weight of the trail
on MiniMORUS-1280 is 16). We have confirmed this by explicitly computing the
full trail equation in Appendix A, and evaluating its exact weight like we did for
MiniMORUS in Sect. 4.3. That is, since the equation is quadratic, we may view
it as a graph, which we split into connected components; we then compute the
weight of each connected component separately by brute force, and then add
up the weights of all components per the Piling-Up Lemma. Overall, the full
trail equation given in Appendix A yields a weight of 76 for the full trail on
MORUS-1280.

In the case of MORUS-640, collisions between rotation constants further com-
plicate the analysis. Specifically, when using trail fragment βt

i , the term St
2,i ·St

3,i

occurs. As explained previously, a partial collision with the term St
2,i ·St

3,i−w from
trail fragment γt

i results in Eq. (2). However trail fragment αt
i+d is once used in

the course of the full trail with an offset of d = b1 + b4 − b0 − b2 (relative to
γt
i), which in the case of MORUS-640 is equal to 31 + 13 − 5 − 7 = 0 mod 32.

This creates another term St
2,i · St

3,i, which ultimately destroys one of the four
occurrences of Eq. (2). Therefore, when computing the full trail equation on
MORUS-640, we get that the weight of the trail is 73 (cf. the full version of this
paper for the full trail equation for MORUS-640).

5.3 Taking Variable Plaintext into Account

In our analysis so far, for the sake of simplicity, we have assumed that all plain-
text blocks are zero. We now examine what happens if we remove that assump-
tion, and integrate plaintext variables into our analysis. What we show is that

52 T. Ashur et al.

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i + b1

=

MiniMORUS: weight 0 (not 2)

·
M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i + b1

MORUS: weight 4 × 1 (not 4 × 2)

Fig. 4. Weight of βt
i ⊕ γt

i for MiniMORUS and MORUS.

plaintext variables only contribute linearly to the trail. In other words, the full
trail equation with plaintext variables is equal to the full trail equation with
all-zero plaintext XORed with a linear combination of plaintext variables.

To see this, recall that plaintext bits contribute to the encryption process in
two ways (cf. Sect. 2.1):

1. They are added to some bits derived from the state to form the ciphertext.
2. During each encryption step, the StateUpdate function adds a plaintext block

to every register except S0.

The effect of Item 1 is that whenever we use a ciphertext bit in our full trail
equation, the corresponding plaintext bit also needs to be XORed in. Because
ciphertext bits only contribute linearly to the trail equation, this only adds a
linear combination of plaintext bits to the equation.

Regarding Item 2, recall that the full trail equation is a linear combination of
(the rotationally invariant version of) equations At

i, Bt
i, Ct

i, Dt
i, Et

i in Sect. 4.2.
Also observe that in each equation, state bits that are shifted by a bit-wise rota-
tion only contribute linearly. Because plaintext bits are XORed into each register
at the same time bit-wise rotation is performed, this implies that plaintext bits
resulting from Item 2 also only contribute linearly. In fact in all cases, it so hap-

Cryptanalysis of MORUS 53

pens that updating the equation to take plaintext variables into account simply
involves XORing in the plaintext bit M t

i .
It may be observed that message blocks in the StateUpdate function only

contribute linearly to the state, and in that regard play a role similar to key
bits in an SPN cipher; and indeed in SPN ciphers, it is the case that key bits
contribute linearly to linear trails [11]. In this light the previous result may not
be surprising.

In the end, with variable plaintext, our trail yields a biased linear combina-
tion of ciphertext bits and plaintext bits. In regards to attacks, this means the
situation is effectively the same as with a biased stream cipher: in particular if
the plaintext is known we obtain a distinguisher; and if a fixed unknown plain-
text is encrypted multiple times (possibly also with some known variable part)
then our trail yields a plaintext recovery attack.

6 Discussion

We now discuss the impact of these attacks on the security of MORUS.

Keystream Correlation. We emphasize that the correlation we uncover
between plaintext and ciphertext bits is absolute, in the sense that it does not
depend on the encryption key, or on the nonce. This is the same situation as
the keystream correlations in AEGIS [15]. As such, they can be leveraged to
mount an attack in the broadcast setting, where the same message is encrypted
multiple times with different IVs and potentially different keys [10]. In partic-
ular, the broadcast setting appears in practice in man-in-the-browser attacks
against HTTPS connections following the BEAST model [5]. In this scenario, an
attacker uses Javascript code running in the victim’s browser (by tricking the
victim to visit a malicious website) to generate a large number of request to a
secure website. Because of details of the HTTP protocol, each request includes
an authentication token to identify the user, and the attacker can target this
token as a repeated plaintext. Concretely, correlations in the RC4 keystream
have been exploited in this setting, leading to the recovery of authentication
cookies in practice [1].

Data Complexity. The design document of MORUS imposes a limit of 264

encrypted blocks for a given key. However, since our attack is independent of
the encryption key, and hence immune to rekeying, this limitation does not
apply: all that matters for our attack is that the same plaintext be encrypted
enough times.

With the trail presented in this work, the data complexity is clearly out of
reach in practice, since exploiting the correlation would require 2152 encrypted
blocks for MORUS1280, and 2146 encrypted blocks for MORUS640. The data
complexity could be slightly lowered by leveraging multilinear cryptanalysis;
indeed, the trail holds for any bit shift, and if we assume independence, we could

54 T. Ashur et al.

run w copies of the trail in parallel on the same encrypted blocks (recall that
w is the word size, and the trail is invariant by rotation by w bits). This would
save a factor 25 on the data complexity for MORUS640, and 26 for MORUS1280;
but the resulting complexity is still out of reach.

However, MORUS1280 with a 256-bit key claims a security level of 256 bits
for confidentiality, and an attack with complexity 2152 violates this claim, even
if it is not practical.

Design Considerations. The existence of this trail does hint at some weakness
in the design of MORUS. Indeed, a notable feature of the trail is that the values
of rotation constants are mostly irrelevant: a similar trail would exist for most
choices of the constants. That it is possible to build a trail that ignores rotation
constants may be surprising. This would have been prevented by adding a bit-
wise rotation to one of the state registers at the input of the ciphertext equation.

7 Analysis on Initialization and Finalization of Reduced
MORUS

The bias in the previous sections analysed the encryption part of the MORUS.
In this section, for comprehensive security analysis of MORUS, we provide new
attacks on reduced version of the initialization and the finalization. We empha-
size that the results in this section do not threaten any security claim by the
designers. However, we believe that investigating all parts of the design with
different approaches from the existing work on MORUS provides a better under-
standing and will be useful especially when the design will be tweaked in future.

7.1 Forgery with Reduced Finalization

We present forgery attacks on 3 out of 10 steps of MORUS-1280 that claims 128-
bit security for integrity. The attack only works for a limited number of steps,
while it works in the nonce-respecting setting. As far as we know, this is the first
attempt to evaluate integrity of MORUS in the nonce-respecting setting.

Overview. A general strategy for forgery attacks in the nonce-respecting setting
is to inject some difference in a message block and propagate it so that it can
be canceled by a difference in another message block. However this approach
does not work well against MORUS due to its large state size which prevents an
attacker from easily controlling the differences in different registers.

Here we focus on the property that the padding for an associated data A and
a message M is the zero-padding, hence A and A′ = A‖0∗ and M and M ′ = M‖0
result in identical states after the associated data processing and the encryption
parts, as long as A,A′ and M,M ′ fit in the same number of blocks. During the
finalization, since A,A′ (resp. M,M ′) have different lengths, the corresponding
64-bit values |A| (resp. |M |) are different, which appears as Δ|A| (resp. Δ|M |)

Cryptanalysis of MORUS 55

during the finalization, and is injected through the message input interface. Our
strategy is to propagate this difference to the 128-bit tags T and T ′ such that
their difference ΔT appears with higher probability than 2−128. All in all, the
forgery succeeds as long as the desired ΔT is obtained or in other words, the
attacker does not have to cancel the state difference, which is the main advantage
of attacking the finalization part of the scheme.

Note that if the attacker uses different messages M,M ′, not only the new tag
T ′ but also new ciphertext C ′ must be guessed correctly. Because the encryption
of MORUS is a simple XOR of the key stream, C ′ can be easily guessed. For this
purpose, the attacker should first query a longer message M ′ = M‖0∗ to obtain
C ′. Then, C can be obtained by truncating C ′.

Differential Trails. Recall that the message input during the finalization of
MORUS-1280 is |A| ‖ |M | ‖ 0128 where |A| and |M | are 64-bit strings. We set
Δ|A| to be of low Hamming weight, e.g., 0x0000000000000001. This difference
propagates through 3 steps as specified in Table 4.

Recall that each step consists of 5 rounds and the input message is absorbed
to the state in rounds 2 to 5. The trail in Table 4 initially does not have any
difference and the same continues even after round 1. Differences start to appear
from round 2 and they will go through the bitwise-AND operation from round 4.
We need to pay 1 bit to control each active AND gate. The probability evaluation
for round 15 can be ignored since in this round only S4 is non-linearly updated,
while S4 is never used for computing the tag. Finally, bitwise-AND in the tag
computation is taken into account. Note that the tag is only 128 LSBs, thus the
number of active AND gates should be counted only for those bits. As shown in
Table 4, we can have a particular tag difference ΔT with probability 2−88. Thus
after observing A and corresponding T , A‖0 and (T ⊕ ΔT) is a valid pair with
probability 2−88.

Remarks. The fact that the S4 is updated in the last round but is not used
in the tag generation implies that the MORUS finalization generally includes
unnecessary computations with respect to security. It may be interesting to tweak
the design such that the tag can also depend on S4. Indeed in Table 4, we can
observe some jump-up of the probability in the tag computation. This is because
the non-linearly involved terms are S2 · S3, and S3 that was updated 2 rounds
before has a high Hamming weight. In this sense, involving S4 in non-linear
terms of the tag computation imposes more difficulties for the attacker.

7.2 Extending State Recovery to Key Recovery

Kales et al. [9] showed that the internal state of MORUS-640 can be recovered
under the nonce-misuse scenario using 25 plaintext-ciphertext pairs. As claimed
by [9] the attack is naturally extended to MORUS-1280 though Kales et al. [9]
did not demonstrate specific attacks. The recovered state allows the attacker to
mount a universal forgery attack under the same nonce. However, the key still

56 T. Ashur et al.

cannot be recovered because the key is used both at the beginning and end of the
initialization, which prevents the attacker from backtracking the state value to
the initial state. In this section, we show that meet-in-the-middle attacks allow
the attacker to recover the key faster than exhaustive search for a relatively large
number of steps, i.e., 10 out of 16 steps in MORUS-1280.

Overview. We divide the 10 steps of the initialization computation into two
subsequent parts F0 and F1. (We later set that F0 is the first 4 steps and F1

is the last 6 steps.) Let S−10 be the initial state value before setting the key,
i.e., S−10 = (N ‖ 0128, 0256, 1256, 0256, c0 ‖ c1). Also let S0 be 1280-bit state
value after the initialization, which is now assumed to be recovered with the
nonce-misuse analysis [9]. We then have the following relation.

F1 ◦ F0

(
S−10 ⊕ (0,K, 0, 0, 0)

) ⊕ (0,K, 0, 0, 0) = S0.

We target the variant MORUS-1280-128, where K = K128 ‖ K128.
Here, our strategy is to recover K128 by independently processing F0 and

F−1
1 to find the following match.

F0(S−10 ⊕ (0,K128‖K128, 0, 0, 0)) ?= F−1
1 (S0 ⊕ (0,K128‖K128, 0, 0, 0)).

To evaluate the attack complexity, we consider the following parameters.

– G0: a set of bits of K128 that are guessed for computing F0.
– G1: a set of bits of K128 that are guessed for computing F−1

1 .
– G2: a set of bits in the intersection of G0 and G1.
– x bits can match after processing F0 and F−1

1 .

Suppose that the union of G0 and G1 covers all the bits of K128. The attack
exhaustively guesses G2 and performs the following procedure for each guess.

1. F0 is computed 2|G0|−|G2| times and the results are stored in a table T .
(Because |G1|− |G2| bits are unknown, only a part of the state is computed.)

2. F−1
1 is computed 2|G1|−|G2| times and for each result we check the match with

any entry in T .
3. There are 2|G0|−|G2|+|G1|−|G2| combinations, and the number of valid matches

reduces to 2|G0|−|G2|+|G1|−|G2|−x after matching the x bits.
4. Check the correctness of the guess by using one plaintext-ciphertext pair.

In the end, F0 is computed 2|G2| · 2|G0|−|G2| = 2|G0| times. Similarly, F−1
1

is computed 2|G1| times. The number of the total candidates after the x-bit
match is 2|G2| · 2|G0|−|G2|+|G1|−|G2|−x = 2|G0|+|G1|−|G2|−x. Hence, the key K128

is recovered with complexity

max(2|G0|, 2|G1|, 2|G0|+|G1|−|G2|−x).

Suppose that we choose |G0| and |G1| to be balanced i.e., |G0| = |G1|. Then,
the complexity is

max(2|G0|, 22|G0|−|G2|−x).

Cryptanalysis of MORUS 57

Two terms are balanced when x = |G0| − |G2|. Hence, the number of matched
bits in the middle of two functions must be greater than or equal to the number
of independently guessed bits to compute F0 and F−1

1 .
In the attack below, we choose |G0| = |G1| = 127 and |G2| = 126 (equiv-

alently |G2| − |G0| = |G2| − |G1| = 1) in order to aim x = 1-bit match in the
middle, which maximizes the number of attacked rounds.

Full Diffusion Rounds. We found that StepUpdate was designed to have good
diffusion in the forward direction. Thus, once the state is recovered, the attacker
can perform the partial computation in the backward direction longer than the
forward direction. We set G0 and G1 as follows.

G0 = {1, 2, · · · , 127} Bit position 0 is unknown.
G1 = {0, 1, · · · , 7, 9, 10, · · · , 127} Bit position 8 is unknown.

Those will lead to 4 matching bits after the 4-step forward computation and the
6-step backward computation. The analysis of the diffusion is given in Table 5.
In the end, K128 can be recovered faster than the exhaustive search by 1 bit,
i.e., with complexity 2127.

Remarks. The matching state does not have to be a border of a step. It can
be defined on a border of a round, or even in some more complicated way. We
did not find the extension of the number of attacked steps even with this way.

As can be seen in Table 5, the updated register in step i is independent of
the update function in step i + 1 in the forward direction, and starts to impact
from step i + 2. By modifying this point, the diffusion speed can increase faster,
which makes this attack harder.

8 Conclusion

This work provides a comprehensive analysis of the components of MORUS. In
particular, we show that MORUS-1280’s keystream exhibits a correlation of 2−76

between certain ciphertext bits. This enables a plaintext recovery attack in the
broadcast setting, using about 2152 blocks of data. While the amount of data
required is impractical, this seems to violate the security claims of MORUS-1280
because the attack works even if the key is refreshed regularly. Moreover, the
broadcast setting is practically relevant, as was shown with attacks against RC4
as used in TLS [1].

We have shared an earlier version of this paper with the authors of MORUS
and they agree with the technical details of the keystream bias. However they
consider that it is not a significant weakness in practice because it requires more
than 264 ciphertexts bits. In the context of the CAESAR competition, we believe
that certificational attacks such as this one should be taken into account, in order
to select a portfolio of candidates that reflects the state of the art in terms of
cryptographic design.

58 T. Ashur et al.

Acknowledgments. The results presented here were originally found during the Flex-
ible Symmetric Cryptography workshop held at the Lorentz Center in Leiden, Nether-
lands. The authors would like to thank Meltem Sonmez Turan, who participated in the
initial discussion. The second author was supported by the European Union’s H2020
grant 644052 (HECTOR). The fourth and sixth authors are partially supported by the
French Agence Nationale de la Recherche through the BRUTUS project under Contract
ANR-14-CE28-0015. The fifth author was supported by EPSRC Grant EP/M013472/1.

A Trail Equations

In this section, we provide the full trail equation for MORUS-1280. Trail equa-
tions for MORUS-640 are available in the full version of this paper [2]. In each
case, we decompose the right-hand side of the equality (involving state bits)
into connected components, and compute the weight of each of these connected
components. If we assume that distinct state bits are uniformly random and
independent, then each connected component is independent. By the Piling-Up
Lemma, it follows that the weight of the full equation is equal to the sum of the
weights of the connected components.

A.1 Trail Equation for Full MORUS-1280

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55 ⊕ C1
64 ⊕ C1

89

⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183 ⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247

⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37 ⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93

⊕ C2
101 ⊕ C2

102 ⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243 ⊕ C3
11 ⊕ C3

20

⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114 ⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178

⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242 ⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

= S1
2,0 · S1

3,192 ⊕ S1
2,0 · S1

3,0 ⊕ S1
2,64 · S1

3,0 ⊕ S1
2,64 · S1

3,64

⊕ S1
2,128 · S1

3,64 ⊕ S1
2,128 · S1

3,128 ⊕ S1
2,192 · S1

3,128 ⊕ S1
2,192 · S1

3,192 weight 3

⊕ S2
2,4 · S2

3,4 ⊕ S2
2,68 · S2

3,4 ⊕ S2
2,68 · S2

3,68 ⊕ S2
2,132 · S2

3,68

⊕ S2
2,132 · S2

3,132 ⊕ S2
2,196 · S2

3,132 ⊕ S2
2,196 · S2

3,196 ⊕ S2
2,4 · S2

3,196 weight 3

⊕ S2
2,102 · S2

3,38 ⊕ S2
2,102 · S2

3,102 ⊕ S2
2,166 · S2

3,102 ⊕ S2
2,166 · S2

3,166

⊕ S2
2,230 · S2

3,166 ⊕ S2
2,230 · S2

3,230 ⊕ S2
2,38 · S2

3,230 ⊕ S2
2,38 · S2

3,38 weight 3

⊕ S3
2,42 · S3

3,42 ⊕ S3
2,106 · S3

3,42 ⊕ S3
2,106 · S3

3,106 ⊕ S3
2,170 · S3

3,106

⊕ S3
2,170 · S3

3,170 ⊕ S3
2,234 · S3

3,170 ⊕ S3
2,234 · S3

3,234 ⊕ S3
2,42 · S3

3,234 weight 3

⊕ S0
1,51 · S0

2,51 ⊕ S0
1,51 ⊕ S0

2,51 · S0
3,51 ⊕ S0

3,51 weight 1

⊕ S0
1,115 · S0

2,115 ⊕ S0
1,115 ⊕ S0

2,115 · S0
3,115 ⊕ S0

3,115 weight 1

⊕ S0
1,179 · S0

2,179 ⊕ S0
1,179 ⊕ S0

2,179 · S0
3,179 ⊕ S0

3,179 weight 1

⊕ S0
1,243 · S0

2,243 ⊕ S0
1,243 ⊕ S0

2,243 · S0
3,243 ⊕ S0

3,243 weight 1

Cryptanalysis of MORUS 59

⊕ S1
1,25 · S1

2,25 ⊕ S1
1,25 ⊕ S1

2,25 · S1
3,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
1,33 ⊕ S1

2,33 · S1
3,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
1,55 ⊕ S1

2,55 · S1
3,55 ⊕ S1

3,55 weight 1

⊕ S1
1,89 · S1

2,89 ⊕ S1
1,89 ⊕ S1

2,89 · S1
3,89 ⊕ S1

3,89 weight 1

⊕ S1
1,97 · S1

2,97 ⊕ S1
1,97 ⊕ S1

2,97 · S1
3,97 ⊕ S1

3,97 weight 1

⊕ S1
1,119 · S1

2,119 ⊕ S1
1,119 ⊕ S1

2,119 · S1
3,119 ⊕ S1

3,119 weight 1

⊕ S1
1,153 · S1

2,153 ⊕ S1
1,153 ⊕ S1

2,153 · S1
3,153 ⊕ S1

3,153 weight 1

⊕ S1
1,161 · S1

2,161 ⊕ S1
1,161 ⊕ S1

2,161 · S1
3,161 ⊕ S1

3,161 weight 1

⊕ S1
1,183 · S1

2,183 ⊕ S1
1,183 ⊕ S1

2,183 · S1
3,183 ⊕ S1

3,183 weight 1

⊕ S1
1,217 · S1

2,217 ⊕ S1
1,217 ⊕ S1

2,217 · S1
3,217 ⊕ S1

3,217 weight 1

⊕ S1
1,225 · S1

2,225 ⊕ S1
1,225 ⊕ S1

2,225 · S1
3,225 ⊕ S1

3,225 weight 1

⊕ S1
1,247 · S1

2,247 ⊕ S1
1,247 ⊕ S1

2,247 · S1
3,247 ⊕ S1

3,247 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
1,7 ⊕ S2

2,7 · S2
3,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
1,29 ⊕ S2

2,29 · S2
3,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
1,37 ⊕ S2

2,37 · S2
3,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
1,51 ⊕ S2

2,51 · S2
3,51 ⊕ S2

3,51 weight 1

⊕ S2
1,71 · S2

2,71 ⊕ S2
1,71 ⊕ S2

2,71 · S2
3,71 ⊕ S2

3,71 weight 1

⊕ S2
1,93 · S2

2,93 ⊕ S2
1,93 ⊕ S2

2,93 · S2
3,93 ⊕ S2

3,93 weight 1

⊕ S2
1,101 · S2

2,101 ⊕ S2
1,101 ⊕ S2

2,101 · S2
3,101 ⊕ S2

3,101 weight 1

⊕ S2
1,115 · S2

2,115 ⊕ S2
1,115 ⊕ S2

2,115 · S2
3,115 ⊕ S2

3,115 weight 1

⊕ S2
1,135 · S2

2,135 ⊕ S2
1,135 ⊕ S2

2,135 · S2
3,135 ⊕ S2

3,135 weight 1

⊕ S2
1,157 · S2

2,157 ⊕ S2
1,157 ⊕ S2

2,157 · S2
3,157 ⊕ S2

3,157 weight 1

⊕ S2
1,165 · S2

2,165 ⊕ S2
1,165 ⊕ S2

2,165 · S2
3,165 ⊕ S2

3,165 weight 1

⊕ S2
1,179 · S2

2,179 ⊕ S2
1,179 ⊕ S2

2,179 · S2
3,179 ⊕ S2

3,179 weight 1

⊕ S2
1,199 · S2

2,199 ⊕ S2
1,199 ⊕ S2

2,199 · S2
3,199 ⊕ S2

3,199 weight 1

⊕ S2
1,221 · S2

2,221 ⊕ S2
1,221 ⊕ S2

2,221 · S2
3,221 ⊕ S2

3,221 weight 1

⊕ S2
1,229 · S2

2,229 ⊕ S2
1,229 ⊕ S2

2,229 · S2
3,229 ⊕ S2

3,229 weight 1

⊕ S2
1,243 · S2

2,243 ⊕ S2
1,243 ⊕ S2

2,243 · S2
3,243 ⊕ S2

3,243 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
1,11 ⊕ S3

2,11 · S3
3,11 ⊕ S3

3,11 weight 1

⊕ S3
1,75 · S3

2,75 ⊕ S3
1,75 ⊕ S3

2,75 · S3
3,75 ⊕ S3

3,75 weight 1

⊕ S3
1,139 · S3

2,139 ⊕ S3
1,139 ⊕ S3

2,139 · S3
3,139 ⊕ S3

3,139 weight 1

⊕ S3
1,203 · S3

2,203 ⊕ S3
1,203 ⊕ S3

2,203 · S3
3,203 ⊕ S3

3,203 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
0,64 · S2

1,64 weight 1

60 T. Ashur et al.

⊕ S2
0,128 · S2

1,128 weight 1

⊕ S2
0,192 · S2

1,192 weight 1

⊕ S3
0,230 · S3

1,230 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
2,110 · S2

3,110 weight 1

⊕ S2
2,174 · S2

3,174 weight 1

⊕ S2
2,238 · S2

3,238 weight 1

⊕ S2
3,64 · S2

4,0 weight 1

⊕ S2
3,128 · S2

4,64 weight 1

⊕ S2
3,192 · S2

4,128 weight 1

⊕ S2
3,0 · S2

4,192 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
0,102 · S3

1,102 weight 1

⊕ S3
0,166 · S3

1,166 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S3
2,84 · S3

3,84 weight 1

⊕ S3
2,114 · S3

3,114 weight 1

⊕ S3
2,148 · S3

3,148 weight 1

⊕ S3
2,178 · S3

3,178 weight 1

⊕ S3
2,212 · S3

3,212 weight 1

⊕ S3
2,242 · S3

3,242 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

⊕ S4
2,88 · S4

3,88 weight 1

⊕ S4
2,152 · S4

3,152 weight 1

⊕ S4
2,216 · S4

3,216 weight 1

The total weight of the trail is 76.

Cryptanalysis of MORUS 61

Table 4. Differential propagation through 3 Steps. Five lines for round i denote the
difference of S0, · · · , S4 after the round i transformation.

ytilibaborpdetalumuccAthgieWecnereffidetatSdnuoR
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

Ini 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 −
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

1 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

2 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

3 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

4 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1
0020000000000080 0000000000000000 0000000000000000 0000000000000000 2
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−15 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0020000000000080 0000000000000000 0000000000000000 0000000000000000 2
0000040000000010 0000000000000000 0000000000000000 0000000000000000 2
0000000000100004 0000000000000000 0000000000000000 0000000000000000 2
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−36 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000040000000010 0000000000000000 0000000000000000 0000000000000000 2
0000000000100004 0000000000000000 0000000000000000 0000000000000000 2
0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−67 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−108 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−149 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4
0220000080000080 0000000000000000 0000000800000000 1000000000004000 7
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−2010 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0220000080000080 0000000000000000 0000000800000000 1000000000004000 7
4000140000000010 0000000000000000 0000400000000100 0000000000010000 7
0000100000100044 0000000200008000 0001000000000000 0000000008000200 9
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−2811 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
4000140000000010 0000000000000000 0000400000000100 0000000000010000 7
0000100000100044 0000000200008000 0001000000000000 0000000008000200 9
0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−3912 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−5313 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

2−6914 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14
0228000280020080 0000040000000000 2000008000202008 1000004000004021 18
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

15 0020000000000080 0004000000400000 0000800100005002 0400114000040000 14 −
0228000280020080 0000040000000000 2000008000202008 1000004000004021 18
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

ΔT 600080830020f00a 1405414005044421 2−88

62 T. Ashur et al.

Table 5. Analysis of the diffusion and matching bits over 10 steps. ‘0’ and ‘1’ denote
that the state bit can and cannot be computed from a partial knowledge of K128,
respectively. After the partial computations from each direction, 4 bits of S−6 can
match.

ecnereffiDetatSdnuoR
0000000000000000 0000000000000000 0000000000000000 0000000000000000

S−10 ⊕ K128

0000000000000000 0000000000000001 0000000000000000 0000000000000001
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000002000 0000000000000000 0000000000002000 0000000000000000
0000000000000000 0000400000000000 0000000000000000 0000400000000000

1 0008000000000000 0000000000000000 0008000000000000 0000000000000000
0000000000100000 0020000000000000 0000000000100000 0020000000000000
0000000000020000 0084000000000000 0000000000020000 0084000000000000
0800000000000004 0000000204000001 0800000000000004 0000000204000001
8000000a00000000 0000002110000004 8000000a00000000 0000002110000004

2 0400010221000000 008000400a000081 0400010221000000 008000400a000081
1000050001000244 4200118a08000280 1000050001000244 4200118a08000280
880004a0a0200858 4840123350000050 880004a0a0200858 4840123350000050
023d63c00050a850 00a1442000489380 023d63c00050a850 00a1442000489380
02b63380056aaa48 00b5563005dcd6c0 02b63380056aaa48 00b5563005dcd6c0

3 d42ab556bf5dfcd6 5a26f633a8556aaa d42ab556bf5dfcd6 5a26f633a8556aaa
5fbbf556bd556c65 7aab99aaee6bea2c 5fbbf556bd556c65 7aab99aaee6bea2c
abff7f3ad7feafad cfff777ffddffd6d abff7f3ad7feafad cfff777ffddffd6d
fff77dfffffdcf57 fefad7efffdffbf7 fff77dfffffdcf57 fefad7efffdffbf7
ffffffffffffbfff fffbf7fffddfff77 ffffffffffffbfff fffbf7fffddfff77

4 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff fffbffffefffffff ffffffffffffffff fffbffffefffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

hctamstib-2hctamstib-2
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

5 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff
ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7
ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7
fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757

6 fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757
7ffd75b6cdfff357 fffbf5a6ccfcfb73 7ffd75b6cdfff357 fffbf5a6ccfcfb73
7ffbf5a6ccfcf373 7ff975b6ccfff353 7ffbf5a6ccfcf373 7ff975b6ccfff353
7efbf5a6cc7cf353 7fd975a6cceff353 7efbf5a6cc7cf353 7fd975a6cceff353
7eb950a4cc78e353 7dd07184cced7153 7eb950a4cc78e353 7dd07184cced7153

7 7eb950a4cc78e353 7dd07184ccec7153 7eb950a4cc78e353 7dd07184ccec7153
7cd051044c6c3153 3e985024cc48a313 7cd051044c6c3153 3e985024cc48a313
3c905004cc482313 7c9051044c6c2113 3c905004cc482313 7c9051044c6c2113
2c905004c4482113 7c9050040c682113 2c905004c4482113 7c9050040c682113
2810100444082112 5c1010040c402113 2810100444082112 5c1010040c402113

8 2810100444082112 1c1010040c402113 2810100444082112 1c1010040c402113
0c00100404400113 2800000404082112 0c00100404400113 2800000404082112
0800000404002112 0800100404400113 0800000404002112 0800100404400113
0800000404002112 0800100004000112 0800000404002112 0800100004000112
0000000404000102 0000100004000110 0000000404000102 0000100004000110

9 0000000404000102 0000000004000110 0000000404000102 0000000004000110
0000000004000110 0000000000000102 0000000004000110 0000000000000102
0000000000000100 0000000004000110 0000000000000100 0000000004000110
0000000000000100 0000000004000100 0000000000000100 0000000004000100
0000000000000000 0000000004000100 0000000000000000 0000000004000100

10 0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000100 0000000000000000 0000000000000100 0000000000000000
0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000000

S0 ⊕ K128

0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security Symposium 2013, pp. 305–
320. USENIX Association (2013)

2. Ashur, T., et al.: Cryptanalysis of MORUS. Cryptology ePrint Archive, Report
2018/464 (2018). https://eprint.iacr.org/2018/464

https://eprint.iacr.org/2018/464

Cryptanalysis of MORUS 63

3. Ashur, T., Rijmen, V.: On linear hulls and trails. In: Dunkelman, O., Sanadhya,
S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 269–286. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49890-4 15

4. CAESAR Committee: CAESAR: Competition for authenticated encryption:
security, applicability, and robustness. Call for submissions (2013). http://
competitions.cr.yp.to/caesar-call.html

5. Duong, T., Rizzo, J.: Here come the ⊕ ninjas. Ekoparty (2011)
6. Dwivedi, A.D., Klouček, M., Morawiecki, P., Nikolić, I., Pieprzyk, J., Wójtowicz,

S.: SAT-based cryptanalysis of authenticated ciphers from the CAESAR compe-
tition. Cryptology ePrint Archive, Report 2016/1053 (2016). https://eprint.iacr.
org/2016/1053

7. Dwivedi, A.D., Morawiecki, P., Wójtowicz, S.: Differential and rotational crypt-
analysis of round-reduced MORUS. In: Samarati, P., Obaidat, M.S., Cabello, E.
(eds.) E-Business and Telecommunications - ICETE/SECRYPT 2017, pp. 275–284.
SciTePress (2017)

8. Dworkin, M.J.: NIST SP 800–38D: Recommendation for block cipher modes of
operation: Galois/Counter Mode (GCM) and GMAC. National Institute of Stan-
dards and Technology (NIST) Special Publication (SP) (2007). https://www.nist.
gov/node/562956

9. Kales, D., Eichlseder, M., Mendel, F.: Note on the robustness of CAESAR candi-
dates. IACR Cryptology ePrint Archive, Report 2017/1137 (2017). https://eprint.
iacr.org/2017/1137

10. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45473-X 13

11. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

12. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

13. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

14. Mileva, A., Dimitrova, V., Velichkov, V.: Analysis of the authenticated cipher
MORUS (v1). In: Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS,
vol. 9540, pp. 45–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29172-7 4

15. Minaud, B.: Linear biases in AEGIS keystream. In: Joux, A., Youssef, A. (eds.)
SAC 2014. LNCS, vol. 8781, pp. 290–305. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-13051-4 18

16. Salam, M.I., Simpson, L., Bartlett, H., Dawson, E., Pieprzyk, J., Wong, K.K.:
Investigating cube attacks on the authenticated encryption stream cipher MORUS.
In: IEEE Trustcom/BigDataSE/ICESS 2017, pp. 961–966. IEEE (2017)

17. Shi, T., Guan, J., Li, J., Zhang, P.: Improved collision cryptanalysis of authenti-
cated cipher MORUS. In: Artificial Intelligence and Industrial Engineering - AIIE
2016. Advances in Intelligent Systems Research, vol. 133, pp. 429–432. Atlantis
Press (2016)

https://doi.org/10.1007/978-3-319-49890-4_15
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
https://eprint.iacr.org/2016/1053
https://eprint.iacr.org/2016/1053
https://www.nist.gov/node/562956
https://www.nist.gov/node/562956
https://eprint.iacr.org/2017/1137
https://eprint.iacr.org/2017/1137
https://doi.org/10.1007/3-540-45473-X_13
https://doi.org/10.1007/3-540-45473-X_13
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-29172-7_4
https://doi.org/10.1007/978-3-319-29172-7_4
https://doi.org/10.1007/978-3-319-13051-4_18
https://doi.org/10.1007/978-3-319-13051-4_18

64 T. Ashur et al.

18. Vaudenay, S., Vizár, D.: Under pressure: security of CAESAR candidates beyond
their guarantees. Cryptology ePrint Archive, Report 2017/1147 (2017). https://
eprint.iacr.org/2017/1147

19. Wu, H., Huang, T.: The authenticated cipher MORUS (v2). Submission to
CAESAR: competition for authenticated encryption. Security, applicability, and
robustness (Round 3 and Finalist), September 2016. http://competitions.cr.yp.to/
round3/morusv2.pdf

20. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–201.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 10

21. Wu, H., Preneel, B.: AEGIS: A fast authenticated encryption algorithm (v1.1).
Submission to CAESAR: Competition for Authenticated Encryption. Security,
Applicability, and Robustness (Round 3 and Finalist), September 2016. http://
competitions.cr.yp.to/round3/aegisv11.pdf

https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147
http://competitions.cr.yp.to/round3/morusv2.pdf
http://competitions.cr.yp.to/round3/morusv2.pdf
https://doi.org/10.1007/978-3-662-43414-7_10
http://competitions.cr.yp.to/round3/aegisv11.pdf
http://competitions.cr.yp.to/round3/aegisv11.pdf

New MILP Modeling: Improved
Conditional Cube Attacks on
Keccak-Based Constructions

Ling Song1,2(B), Jian Guo1(B), Danping Shi2(B), and San Ling1(B)

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{guojian,lingsan}@ntu.edu.sg
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
{songling,shidanping}@iie.ac.cn

Abstract. In this paper, we propose a new MILP modeling to find bet-
ter or even optimal choices of conditional cubes, under the general frame-
work of conditional cube attacks. These choices generally find new or
improved attacks against the keyed constructions based on Keccak per-
mutation and its variants, including Keccak-MAC, KMAC, Keyak, and
Ketje, in terms of attack complexities or the number of attacked rounds.
Interestingly, conditional cube attacks were applied to round-reduced
Keccak-MAC, but not to KMAC despite the great similarity between
Keccak-MAC and KMAC, and the fact that KMAC is the NIST standard
way of constructing MAC from SHA-3. As examples to demonstrate the
effectiveness of our new modeling, we report key recovery attacks against
KMAC128 and KMAC256 reduced to 7 and 9 rounds, respectively; the best
attack against Lake Keyak with 128-bit key is improved from 6 to 8
rounds in the nonce-respected setting and 9 rounds of Lake Keyak can
be attacked if the key size is of 256 bits; attack complexity improvements
are found generally on other constructions. Our new model is also applied
to Keccak-based full-state keyed sponge and gives a positive answer to
the open question proposed by Bertoni et al. whether cube attacks can
be extended to more rounds by exploiting full-state absorbing. To ver-
ify the correctness of our attacks, reduced-variants of the attacks are
implemented and verified on a PC practically. It is remarked that this
work does not threaten the security of any full version of the instances
analyzed in this paper.

Keywords: Keccak · SHA-3 · KMAC · Keyak · Ketje · Full-state
Conditional cube attack · MILP

1 Introduction

The Keccak hash function family [5] is a proposal designed by Bertoni et al. and
submitted to the SHA-3 competition [22] in 2008. It was selected as the final win-
ner of the competition in 2012, and subsequently standardized as SHA-3 [29] in
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 65–95, 2018.
https://doi.org/10.1007/978-3-030-03329-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_3&domain=pdf

66 L. Song et al.

2015 by the National Institute of Standards and Technology of the U.S. (NIST).
It supports four digest sizes from {224, 256, 384, 512} to achieve different security
levels. The standard SHA-3 and the original Keccak design differ only in the
way how messages are padded, and hence share almost all security analysis.

Since the Keccak hash function was made public in 2008, it has attracted
intensive cryptanalysis from the research community in many different settings.
Against the three major properties of hash functions: collision, preimage and
second-preimage resistance, the best practical collision/preimage attacks are
up to 6 and 4 out of the total 24 rounds, respectively. By observing the low
algebraic degree of the Sbox in Keccak, Guo et al. [17] proposed the linear
structures for up to 3 rounds of Keccak, where the Sbox can be re-expressed as
linear transformations when the input is restricted to specific affine subspaces.
In [27], Song et al. found the first practical collision against 5-round Keccak-
224, where they used 3-round “connectors” based on the pioneer work by Qiao
et al. [23] and Dinur et al. [12].

There is also a line of research on analyzing the security of keyed construc-
tions based on Keccak-p—the Keccak permutations with variable width and
rounds. Message authentication codes are naturally among the first keyed con-
structions based on Keccak-p, e.g., Keccak-MAC [4] and KMAC [30]. In [13],
Dinur et al. proposed the first cube attack against Keccak-MAC for up to
7-round key recovery and 8-round forgery attacks. The attack complexities were
subsequently improved by Huang et al. using conditional cube attacks [19]. The
authenticated encryption schemes Keyak [7] and Ketje [6] are also based on
Keccak-p and its variants. Similar to the attacks against Keccak-MAC, the
conditional cube attack was applied to Keyak for up to 8 out of 12 rounds [19],
and to Ketje [15,20] for up to 7 out of 13 rounds. Differently from the tradi-
tional way of reducing the strength of the design by round number, there is a
recent attack against full Ketje with tweaked rate size by Fuhr et al. [16]. Kra-
vatte [2] is a pseudorandom function by instantiating the Farfalle construction
with Keccak-p. Algebraic attacks on Kravatte, including cube attacks, which
take advantage of structural properties of Farfalle, were proposed in [9].

Following a similar design strategy used for Keccak-MAC, KMAC [30] is the
standard way of constructing MAC from SHA-3 by NIST. The major design dif-
ference is that, the master key is processed as an independent data block before
processing the message in KMAC, while it was processed together with some mes-
sage bits as the first data block in Keccak-MAC. Hence, at the point of inject-
ing the first message block, the internal state for KMAC is totally unknown, while
most bits of that for Keccak-MAC are known. Similar observations were discov-
ered and made use of in the so-called “Full-State Keyed Duplex (FKD)” [10,21]
to improve the efficiency of keyed sponge constructions. It is interesting to note,
despite the great similarity between Keccak-MAC and KMAC, there is no exist-
ing cryptanalysis result against KMAC to the best of our knowledge. Also, for FKD
no cube attack is proposed by exploiting the full-state absorption, as stated by
the Keyak designers in [7]:

New MILP Modeling 67

Whether these attacks can still be extended to more rounds by exploiting
full-state absorbing remains an open question.

Our Contributions. Based on the previous works [15,19,20] on conditional
cube attacks against Keccak-based keyed constructions, we propose a new
Mixed Integer Linear Programming (MILP) modeling. While the length of cube
tester (the zero-sum property) is determined entirely by the algebraic degrees of
the underlying permutations, the conditional cube attack could only be improved
by finding cube variables with lesser conditions and keeping the cube size large
enough meanwhile. Our new MILP modeling is able to capture the character-
istics of 2 Keccak rounds, as well as the linear structures used in the first
round. This new modeling is generic and imposes no unnecessary conditions,
hence could be able to find optimal conditional cubes, in terms of cube size and
number of conditions, whenever possible. This comes with a few key techniques:

1. We are able to model 2 Keccak rounds together, i.e., Sbox layer of the first
round, the linear layer followed by the Sbox layer again of the second round.
To do this, we exhaustively list the propagations of variables through the first
Sbox layer so to keep the output of the Sbox linear. The second round is dealt
in different ways.

– For normal Keccak-based constructions, we classify the situation of the
linear layer in the second round into two cases depending on whether
there is spreading of variables and model them each individually.

– For FKD, we describe column sums of the state after the Sbox layer of
the first round with inequalities. With this, the diffusion of the second
round can be described precisely with MILP.

With all these together, we are able to convert all the necessary constraints
in the search of conditional cubes into the MILP language.

2. For FKD, instead of the initial state, the internal state value just before the
first Sbox layer are used as (conditional) variables by setting the variables
in the column parity kernel. This simple change removes all the unnecessary
constraints brought up by the linear layer of the first Keccak round, and
enlarges the space covered by our search program.

We apply this new MILP modeling to Keccak-based keyed constructions
including Keccak-MAC, KMAC, Keyak, Ketje, and FKD and find new or
better results for each of the constructions. Specifically

– For KMAC, due to the fact that it processes the key as an independent block
compared with Keccak-MAC, it should provide better security and hence
becomes harder for the attacker. With the same security level of 128 bits, we
find attacks against KMAC128 reduced to 7 rounds, the same number of rounds
found for Keccak-MAC in previous works. For KMAC256 aiming for 256 bits
security, we find attacks up to 9 rounds combining a technique to invert the
last round. Details are summarized in Table 1.

68 L. Song et al.

– General complexity improvements are also found on the attacks against
Keyak and Ketje. Notably, we improve the attack against Lake Keyak
with 128-bit keys from 6 to 8 rounds in the nonce-respected setting and 9
rounds of Lake Keyak can be attacked if the key size is 256 bits. Details are
summarized in Table 2.

– Conditional cubes that fully linearize the first two rounds are targeted by
our modeling and the open question of FKD is answered by extending cube
attacks by one additional round.

Table 1. Summary of our attacks on KMAC, and Keccak-MAC with related works.

Target Key size Capacity Rounds Time (Data) Reference

KMAC128 128 256 7/24 276 Section 6.1

KMAC256 256 512 9/24 2147

Keccak-MAC 128 256/512 7/24 272 [19]

768 7/24 275 [20]

1024 6/24 258.3

1024 6/24 240 Section 5.3

1024 7/24 2111 [25]

Very recently, another two MILP models [8,25] were proposed for cube-
attack-like cryptanalysis [13], together with some new results for keyed Keccak
modes. In particular, 7 rounds of Keccak-MAC-512 can be attacked. In cube-
attack-like cryptanalysis, only the first round is linearized and the idea is to
choose cube variables such that they multiply with a small number of key bits in
the first round. Therefore, one only needs to pay attention to the diffusion of the
linear layer in the first round. Due to this, cube-attack-like cryptanalysis per-
forms well especially when the degrees of freedom is limited, e.g., smaller versions
of Ketje. The drawback is that cube-attack-like cryptanalysis is not suitable for
constructions with fully unknown internal state, e.g., KMAC and Keccak-based
FKD which are our main targets of conditional cube attacks. Whereas, in con-
ditional cube attacks, one has to deal with two rounds in which more degrees
of freedom are needed to control the diffusion of cube variables. Also, finding
good conditional cubes is more challenging. However, if sufficient degrees of free-
dom are available, conditional cube attacks can exploit this and provide better
attacks. Examples include attacks on all instances of Keyak, Ketje Major and
Ketje Minor.

Organization. The remaining part of the paper is organized as follows.
Section 2 gives a detailed description of Keccak-p based constructions, includ-
ing Keccak, KMAC, Keyak and Ketje, followed by an introduction in Sect. 3 to
related works. Our new MILP model is presented in Sects. 4 and 5, and applied

New MILP Modeling 69

Table 2. Summary of our attacks on Keyak, Ketje and comparison with related
works

Target Key size Rounds Time (Data) Memory nonce-respected Reference

Lake Keyak 128 6/12 237 - Yes [13]

128 8/12 274 - No [19]

128 8/12 271.01 - Yes Section 6.2

256 9/14 2137.05 - Yes

River Keyak 128 8/12 277 - Yes Section 6.2

Ketje Major 128 7/13 283 - Yes [20]

128 7/13 271.24 - Yes Section 6.2

Ketje Minor 128 7/13 281 - Yes [20]

128 7/13 273.03 - Yes Section 6.2

Ketje SR v1 128 7/13 2115 250 Yes [15]

128 7/13 291 - Yes Section 6.2

FKD[1600] 128 9/- 290 - No Section 6.3

Ketje Jr v1 96 5/13 236.86 218 Yes [25]

Ketje Jr v2 96 5/13 234.91 215 Yes

Ketje Sr v2 128 7/13 299 233 Yes

to the key recovery attacks of KMAC, Keyak, Ketje and full-state keyed duplex
(FKD) in Sect. 6. Finally, Sect. 7 concludes the paper. Details of cubes are pro-
vided in the full version of this paper [26].

2 Description of KMAC, Keyak and Ketje

2.1 Keccak-p

The Keccak-p permutations are specified with two parameters: the width of the
permutation in bits b and the number of rounds nr . The Keccak-p permutation
with nr rounds and width b is denoted by Keccak-p[b, nr], where nr is any
positive integer and b can be any value of the form 25 · 2l for l = 0, · · · , 6. The
b-bit state a for the Keccak-p[b,nr] permutation is seen as a three-dimensional
array of bits, namely a[5][5][w] with w = 2l. The expression a[x][y][z] with 0 ≤
x, y < 5, 0 ≤ z < w, denotes the bit with (x, y, z) coordinate. The coordinates
are always considered within modulo 5 for x and y and modulo w for z. The one-
dimensional portion a[∗][y][z] is called a row, a[x][∗][z] a column and a[x][y][∗] a
lane. A lane of the state is also denoted by a[x][y] by omitting the z index. At
lane level, the state a[x][y] becomes a 5 × 5 array as shown in Fig. 1 with x for
the column index and y for the row index.

The Keccak-p[b,nr] permutation iterates an identical round function (up to
a difference of round-dependent constant addition) nr times, each of which con-
sists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with details as follows.

θ: a[x][y][z] = a[x][y][z] ⊕ ⊕4
y=0 a[x − 1][y][z] ⊕ ⊕4

y=0 a[x + 1][y][z − 1].

70 L. Song et al.

Fig. 1. Lane coordinates. Each square stands for a lane in the state.

ρ: a[x][y][z] = a[x][y][(z − T (x, y))],where T (x, y)s are rotation constants.
π: a[y][2x + 3y][z] = a[x][y][z].
χ: a[x][y][z] = a[x][y][z] ⊕ (a[x + 1][y][z] ⊕ 1) · a[x + 2][y][z].
ι: a[0][0] = a[0][0] ⊕ RCir ,where RCir is the ir-th round constant.

Here, ‘⊕’ denotes XOR and ‘·’ denotes logic AND. Expressions in the x and
y coordinates should, as mentioned, be taken in modulo 5 and expressions in the
z coordinate modulo w.

The Keccak-f family of permutations is a specification of the Keccak-p
family to the case of nr = 12+2l, that is Keccak-f [b] = Keccak-p[b, 12+2l].
The permutation underlying SHA-3 and KMAC is of width 1600 bits and 24 rounds,
i.e., Keccak-f [1600] = Keccak-p[1600, 24].

2.2 The Sponge Construction and KMAC

The sponge construction is a framework for constructing hash functions from
permutations, as depicted in Fig. 2. The construction consists of three com-
ponents: an underlying b-bit permutation f , a parameter r called rate and a
padding rule. The capacity is defined as c := b − r. A hash function following
this construction takes in a message M as input and outputs a digest of d bits.
Given the message M , it is first padded and split into r-bit blocks. The b-bit
state is initialized to be all zeros. The sponge construction then proceeds in two
phases. In the absorbing phase, each message block is XORed into the first r
bits of the state, followed by application of the permutation f . This process is
repeated until all message blocks are processed. Then, the sponge construction
switches to the squeezing phase, where each iteration returns the first r bits of
the state as output and then applies the permutation f to the current state.
This repeats until d bits digest are obtained.

The Keccak hash function follows the sponge construction and takes
Keccak-f [1600] as the underlying permutation. In 2015, Keccak was formally
standardized by NIST as SHA-3 [29], based on which more functions, including
cSHAKE128, cSHAKE256 and KMAC, are derived in the NIST Special Publi-
cation 800-185 [30].

KMAC (Keccak Message Authentication Code) is a keyed hash function with
a variable-length output, and can be used as a pseudorandom function. It has

New MILP Modeling 71

Fig. 2. Sponge construction [3].

Fig. 3. KMAC processing one message block

two variants: KMAC128 and KMAC256, based on Keccak[c = 256](M,L) and
Keccak[c = 512](M,L), whose capacities are set to be 256 and 512 bits, respec-
tively. The input of KMAC consists of the key K, the main message M , the output
length L, the name string N = “KMAC” and the optional customization bit
string S of any length (including 0). Given these inputs, KMAC first processes
a block encoded from the public values N and S. Then it accepts a block of
the padded key, and absorbs message blocks from the third call of permutation
f onwards. Figure 3 demonstrates the procedure of KMAC processing one mes-
sage block. Different from Keccak, KMAC supports variable-length output, e.g.,
KMAC128 supports any output of length no less than 256 bits and at least 512
bits for KMAC256.

Keccak-MAC [4] is a Keccak-based MAC where Keccak directly takes
the combination of a key and a message, i.e., K||M as input. The key size is
assumed to be 128 bits.

2.3 The Duplex Construction and Keyak, Ketje

The duplex construction [4] is closely related to the sponge construction, and
is mostly used for authenticated encryption. Following variants of the duplex

72 L. Song et al.

construction, Keyak and Ketje [6,7] are two Keccak-p based authenticated
encryption schemes. Figure 4(a) shows the scheme of Keyak which employs an
almost full-state keyed duplex construction [10]. It consists of five instances. In
this paper, we focus on River Keyak and Lake Keyak which are based on
Keccak-p[800, 12] and Keccak-p[1600, 12] respectively. The capacity for both
versions is 256. Note that any attack on Lake Keyak is also applicable to the
three remaining instances.

Fig. 4. (a) Keyak and (b) Ketje, where the finalization is omitted.

Figure 4(b) displays the scheme of Ketje. It employs a twisted version of
Keccak-p, denoted by Keccak-p�, where Keccak-p� = π◦Keccak-p ◦π−1.
Specifically, the underlying permutations f0 = Keccak-p[b, 12] and f1 =
Keccak-p[b, 1]. Ketje has four instances which are:

Name b ρ

Ketje JR 200 16

Ketje SR 400 32

Ketje Minor 800 128

Ketje Major 1600 256

In the old version of Ketje, Keccak-p, instead of Keccak-p�, is used.
Full-state Keyed Duplex (resp. Full-state Keyed Sponge) [10,21] is general-

ized from duplex (resp. sponge) for better efficiency by allowing full-state absorp-
tion. This idea has been applied to Keyak which absorbs data blocks of length
greater than r bits.

2.4 Notations

In this paper, r and c in bold denote the rate and capacity for the sponge
construction. b in bold stands for the width in bits of the permutation. The first
three mappings θ, π, ρ of the round function of Keccak-p are linear, and we

New MILP Modeling 73

denote their composition by λ � π ◦ ρ ◦ θ. The nonlinear layer χ applying to
each row is called an Sbox. Only one-block padded messages are considered in
our attacks for KMAC while there is no restriction on message length for attacks
on other instances.

For describing the model, we use variables a, b, c, d in lowercase to denote
states and the capital ones, namely A,B,C,D to denote their activeness, i.e., a
bit is active if it contains cube variables. The demension of the cube is denoted
by d, and the number of conditions is denoted by t.

3 Related Works and Motivations

3.1 Cube Attacks

The cube attack, a variant of higher order differential attacks, was introduced
by Dinur and Shamir [14] in 2009. It considers the output bit of a cipher as an
unknown Boolean polynomial f(k0, · · · , kn−1, v0, · · · , vm−1) where k0, · · · , kn−1

are secret input variables and v0, · · · , vm−1 are public input variables. Given a
monomial tI = vi1 · · · vid , I = {i1, · · · , id} (d ≤ m), any Boolean polynomial f
can be written as the sum of terms which are supersets of tI and terms that are
not divisible by tI :

f(k0, · · · , kn−1, v0, · · · , vm−1) = tI · pSI
+ q(k0, · · · , kn−1, v0, · · · , vm−1),

where pSI
is called the superpoly of I in f . The basic idea of cube attacks and

cube testers [1] is that the sum of the outputs over the cube which contains all
possible values for vi1 , · · · , vid (called cube variables) is exactly pSI

, while this
is a random function for a random polynomial. By carefully selecting I, cube
attacks aim to find a low-degree polynomial pSI

in secret variables, and cube
testers aim to distinguish pSI

from a random function, e.g., pSI
= 0.

In [13], Dinur et al. applied cube attacks and cube testers to the keyed
variants of Keccak, including Keccak-MAC, Keyak and a Keccak stream
cipher.

3.2 Conditional Cube Attacks

In [19], Huang et al. developed conditional cube testers for the keyed Keccak
sponge function, where the propagation of certain cube variables are controlled in
the first few rounds if some conditions are satisfied. There are two major advan-
tages of conditional cube testers over ordinary cube testers. One is to potentially
reduce the algebraic degree of the permutation under the conditions, and hence
the required cube dimension to carry out the attack can be reduced accordingly.
The other advantage of conditional cubes is that the conditions, which control
how the conditional cube variables propagate in the first few rounds, are related
to the initial state values, which may contain the key information. By observing
the cube sum of the final output, one may recover the key.

To proceed further, we recall the definition of conditional cube variables and
a theorem from [19] below.

74 L. Song et al.

Definition 1 ([19]). Cube variables that have propagation controlled in the first
round and are not multiplied with each other in the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other in the first round and are not multiplied with any conditional
cube variable in the second round are called ordinary cube variables.

Theorem 1 ([19]). For (n + 2)-round Keccak sponge function (n > 0), if
there are p (0 ≤ p < 2n + 1) conditional cube variables v0, · · · , vp−1, and q =
2n+1 −2p+1 ordinary cube variables, u0, · · · , uq−1 (If q = 0, we set p = 2n +1),
then the term v0v1 · · · vp−1u0 · · · uq−1 will not appear in the output polynomials
of (n + 2)-round Keccak sponge function.

Using conditional cube testers, better key recovery attacks were obtained for
Keccak-MAC and Keyak in [19]. Later, the attacks on Keccak-MAC were
further improved with better conditional cubes found by an MILP model in [20].

Attack Procedure. In previous works [19,20], the number of conditional cube
variables is chosen to be 1, i.e., p = 1. Then, over a conditional cube with dimen-
sion d = 2n, the cube sum is zero for (n + 1)-round Keccak sponge function if
the conditions are satisfied. For such a conditional cube whose conditions involve
t-bit secret information, the (n+1)-round attack proceeds in two steps as follows.

1. Guess the t-bit secret information and set the conditions accordingly.
2. Query the 2d = 22

n

outputs and calculate the cube sum. If the cube sum is
zero, mark the guess as a candidate for the t-bit secret information.

The attack has a time and data complexity of 2d+t = 22
n+t. If t is far less

than the output length, the t-bit secret information can be recovered uniquely.
There may exist conditions that do not involve any secret information, but only
conditions involving secret information affect the complexities. In the following,
t is referred to the number of bits of secret information in conditions.

3.3 Linear Structures

In [17], Guo et al. developed a technique named linear structure which allows
linearization of Keccak-f for up to 3 rounds. Based on the linear structures,
a series of new zero-sum distinguishers of Keccak-f were proposed, as well as
several new preimage attacks against Keccak.

Let a[x][y], x = 0, 2, y = 0, 1, 2, 3 be variables and a[x][4] =
⊕3

y=0 a[x][y]⊕αx

with any constant αx so that variables in each column sum to a constant. The
core idea is to reduce the diffusion effect of θ. With all columns sum to constants,
the variables do not propagate through θ. Note θ is the only mapping in λ with
diffusion property, so λ does not diffuse the variables under this setting. Figure 5
shows how the variables influence the internal state under the transformation of
Keccak-f round function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. All bits of the lanes with orange
slashes have algebraic degree 1, those lanes with orange dots have algebraic

New MILP Modeling 75

degree at most 1 (meaning it is either a variable of degree 1 or a constant), and
the other lanes are all constants where gray, light gray and white bits stand
for values 1, 0, and arbitrary constants, respectively. Note the algebraic degrees
remain through the linear operations θ, ρ, π, and ι. The only non-linear operation
is the χ which increases the algebraic degree through the AND operation of two
adjacent bits. As shown in the figure, all variables before χ are not adjacent to
each other, which makes sure that the algebraic degree of the state bits remains
at most 1 after one round function R.

Moreover, bit 1 (0) on the left (right) of the variable helps to restrict the
diffusion of variables through χ, while an unknown neighboring constant diffuses
the variable in an uncertain way, as denoted by lanes with orange dots where
the variable has an uncertain coefficient. This structure has degrees of freedom
512. Also, it can be regarded as a cube of dimension 512 that linearizes the first
round.

Fig. 5. 1-round linear structure of Keccak-p with the degrees of freedom up to 512,
with bits in orange slashes (resp. dots) of degree 1 (resp. at most 1), and gray, light
gray and white bits being values 1, 0, and arbitrary unknown constants, respectively.

3.4 Motivations

Through the linear structure, the diffusion effect of variables through χ is illus-
trated, which enables us to give a full description of χ using MILP. Then we
consider the possibility of building a new MILP model for searching conditional
cube attacks for Keccak-p based constructions, especially for finding optimal
conditional cubes for constructions with fully unknown internal state.

Impact of p. If the number of conditional cube variables p increases by 1, the
dimension d of the required cube reduces by 1 but t increases by at least 1. So
there is no need to have more than one conditional cube variable for most cases.
Therefore, we set p = 1 in our attacks on KMAC, Keyak and Ketje.

However, multiple conditional cube variables may be useful for analyzing
Full-state Keyed Sponge (FKS) or Full-state Keyed Duplex (FKD) [10,21] where
full-state message absorption is used. Due to full-state degrees of freedom, a large
number of conditional cube variables may exist and even without any condition.
The following table shows the comparison between two extreme cases where
p = 1 and p = 2n + 1, latter of which means all cube variables are conditional
cube variables and thus the first two rounds are fully linearized. If p is large

76 L. Song et al.

p Dimension nr rounds with zero sum

1 2n n + 1

2n + 1 2n + 1 n + 2

enough and 2d+t = 22
n+1−p+1+t < 2|K|, the cube attack can be extended by one

round.
For clarity, we define two types of conditional cubes as follows.

Type I. Among all cube variables, there is only one conditional cube variable.
Type II. All cube variables are conditional cube variables, i.e., all the cube

variables do not multiply with each other in the first two rounds.

In [7], it is stated that whether cube attacks can be extended to more rounds
by exploiting full-state absorbing remains an open question. In this paper, we
try to answer the open question by exploiting Type II cubes.

4 Modeling Each Step with MILP

MIL is a general mathematical tool, which takes an objective function and a
system of linear inequalities with respect to real numbers as input, and aims to
search for an optimal solution which not only satisfies all the inequalities but
also minimizes/maximizes the objective function.

Cryptanalysis using MILP takes five main steps as shown in Fig. 6. Firstly,
one defines variables which are mostly binary for the cryptanalytical problem.
Secondly, she identifies links between the variables, which deeply depend on the
cryptanalytical problem. Based on the links, she then generates all valid patterns
for the variables which can be described with inequalities, using existing meth-
ods. In this paper, we use the convex hull method [28] together with a selection
algorithm from [24]. Once the cryptanalytical problem is converted to an MILP
problem, it can be solved with an MILP solver. Cryptanalysis using other tools
such as SAT solvers works in a similar way. Since the last two steps are straight-
forward, the first three steps are the core part for MILP-based cryptanalysis
which will be our focus in Sects. 4 and 5.

Fig. 6. Workflow of cryptanalysis using MILP

In this section, through a 1-round linear structure of KMAC we first show where
the conditions come from, and formulate the time complexity of conditional cube
attacks. Then we describe each step of the Keccak-p round function using

New MILP Modeling 77

inequalities. The full model for searching conditional cubes will be introduced in
the next section. Note that our modeling is described under the assumption that
the internal state of the target constructions is fully unknown. The difference of
the model for constructions with partially known internal state will be discussed
in Sect. 5.3.

4.1 A 1-Round Linear Structure of KMAC

Suppose the internal state before injecting messages is denoted by k[x][y], 0 ≤
x, y < 5. For convenience, the r-bit message block is denoted as a[x][y], 0 ≤
x, y < 5, where the last c bits are set to 0. Figure 7 provides a 1-round linear
structure of KMAC128 and shows the transformation of the internal state under
the first round function R after absorbing the message block. Following the same
notations in Sect. 3.3, lanes with orange slashes denote variables, lanes with
orange dots have algebraic degree at most 1, and bits in white lanes are constants.
Here, the first four lanes of the first and the third columns of a[x][y] are set to be
variables such that the sum

⊕3
y=0 a[x, y] equals to certain constants for x = 0, 2.

The capacity of KMAC128 consists of four lanes, so these lanes can not be chosen
as variables. As can be seen from Fig. 7, the output of the first round function
is linear since there are no adjacent variables at the input of χ. This 1-round
linear structure of KMAC128 has a degree of freedom up to 384. A similar 1-round
linear structure can also be constructed for KMAC256.

As can be seen, the first round can be linearized without any condition on
constants by just excluding neighbouring variables before χ. Let us consider
constructing a conditional cube, where at least one variable should be selected
such that it is not multiplied with any other variables in the second round,
while there is no such restriction for the rest of the variables. Specifically, if an
input bit of the χ in the second round contains the conditional variable, its two
neighbouring bits should be constants. According to the property of Keccak-p
(specifically the θ), each neighbouring bit is calculated from 11 output bits of
the first round. These 11 bits may be variables or constants, depending on the
actual constant values involved in the χ of the first round.

Fig. 7. 1-round linear structure of KMAC128 with the degrees of freedom up to 384, with
bits in orange slashes (resp. dots) of degree 1 (resp. at most 1), and white bits being
arbitrary unknown constants, respectively.

78 L. Song et al.

Unlike the linear structure proposed in [17], all the constants before χ of the
first round are not controllable because of the unknown initial state. Hence, it
is impossible to determine how the variables are propagated due to the logic
AND, where ANDing with 1 allows propagation, and no propagation otherwise.
This makes it hard to track the positions of all variables in the second round
deterministically, hence increases the difficulty to find conditional cubes fulfilling
the requirement that there is no multiplication (a.k.a. AND operation) with any
conditional cube variables in the second round. However, if part of constants
meets certain conditions, then it can be guaranteed that the conditional cube
variable do not multiply with any variable in the second round and thus con-
ditional cubes can be constructed. This is where bit conditions come from for
conditional cubes.

Given a 2n-dimensional conditional cube with one conditional cube variable
and t bit conditions, it requires a time complexity of 22

n+t to recover t bits of
the internal state for an (n+1)-round Keccak-p based construction. Hence the
overall complexity to recover the internal state is around � |b|

t � · 22n+t. Once the
internal state is recovered, the key can be computed directly. It is inferred that
the smaller t is, the lower the time complexity would be. So the aim of our new
MILP model is to find conditional cubes with minimal bit conditions, meanwhile
keeping the cube dimension large enough.

4.2 Modeling the Non-linear Layer

The first observation before giving the MILP model is that, although one input
bit to the first χ is calculated from 11 bits of the initial state, it is unnecessary
for us to start from the initial state, as there is a bijective relation (the λ)
between it and the state just before the χ. In the meanwhile, the 1-round linear
structure could be started from the middle as well. Hence, instead of trying to
derive everything from the very beginning, we start from the state just before
χ. This simple yet crucial observation will reduce the complexity of the problem
significantly, as will be seen later.

Recall that the message block is denoted by a, and b = λ(a), and k stands
for the secret internal state. Let k′ = λ(k). Thus, b ⊕ k′ is the input of the
first χ and c indicates the output. The tuple (x, y, z) denotes the coordinates
of one bit in the state. Additional notations A,B,C, V and H are used for
the modeling. Specifically, A[x][y][z] (B[x][y][z] or C[x][y][z]) is 1 if a[x][y][z]
(b[x][y][z] or c[x][y][z]) is active and 0 otherwise, while V [x][y][z] = 1 indicates a
bit condition that b[x][y][z]+k′[x][y][z] should be fixed to H[x][y][z]. The number
of bit conditions is denoted by t.

Note, we are to model two layers of χ. Without losing any degree of freedom,
we do it in two steps by modeling the first χ without imposing any additional
condition, and the second χ using the output from our modeling of the first χ,
i.e., nested modeling. This may cost higher search complexity compared with
previous works at first glance, we will see the effectiveness and power later. Due
to the generality of our modeling, we could find optimal solutions whenever it is
practical to solve.

New MILP Modeling 79

Although χ is the only non-linear operation of Keccak-p, modeling it into
inequalities is non-trivial. Let us look at the computation of one bit through χ.
According to the algebraic expression of χ, c[x][y][z] = b[x][y][z] ⊕ (1 ⊕ b[x +
1][y][z]) · b[x + 2][y][z]. For a conditional cube, the output bits of the first round
should be linear, which can be guaranteed by the constraint that variables do not
appear in adjacent input bits, namely B[x][y][z] + B[x + 1][y][z] ≤ 1. However,
the value of input constants influences the diffusion of variables through χ and
further influences the second round, as shown in Fig. 5. However, as we find
out, the diffusion patterns of variables through χ fall in a smaller than expected
set as listed in Table 3, which makes the modeling of all cases possible without
imposing any additional conditions. To make it clear, we explain some rows of
Table 3. The first two rows mean that if both b[x + 1][y][z] and b[x + 2][y][z]
are constants, then the constants can be any value and c[x][y][z] will inherit
the same activeness from b[x][y][z]. The third row means that if b[x + 2][y][z] is
active and b[x][y][z], b[x + 1][y][z] are constants but the value of b[x + 1][y][z] is
uncertain, then c[x][y][y] contains uncertain propagation from b[x + 2][y][z] and
its algebraic degree is at most 1. On the contrary, if the value of b[x + 1][y][z]
is restricted to 1 (resp. 0) as in the fourth (resp. fifth) row, c[x][y][z] turns to
be inactive (active) definitely. The fifth row can be ignored since it costs a bit
condition but still diffuses the variable from b[x + 2][x][y] to c[x][y][z], making
the second round denser. The remaining rows can be explained similarly. Next,
we generate a set of inequalities (see Table 7 in Appendix B) to describe these
0–1 patterns.

Table 3. Diffusion of variables through χ, where coordinates [y][z]s are omitted and
symbol ‘*’ denotes arbitrary value.

B[x] B[x + 1] B[x + 2] V [x + 1] V [x + 2] H[x + 1] H[x + 2] C[x]

0 0 0 * * * * 0

1 0 0 * * * * 1

0 0 1 0 0 * * 1

0 0 1 1 0 1 * 0

0 0 1 1 0 0 * 1a

0 1 0 0 0 * * 1

0 1 0 0 1 * 0 0

0 1 0 0 1 * 1 1

1 0 1 0 0 * * 1

1 0 1 1 0 * * 1
a This row can be excluded

80 L. Song et al.

4.3 Modeling the Linear Layer

The linear layer λ consists of three steps: θ, ρ and π, the latter two of which just
change the positions of the state bits. Hence, we focus on modeling θ. θ adds
two columns to a bit. If both columns have even parity, then the bit does not
change at all after θ. If all columns have even parity, then it is said that the state
is in the column parity kernel (CP-kernel). While the original column parity is
defined on values, in the context of cube attacks, it refers to activeness.

Following [25], we introduce F [x][z] and G[x][z] to describe the parity of a
column in the state.

– The column is not active, i.e., there is no variable: G[x][z] = 0, F [x][z] = 0;
– The column is active and the column sum is active: G[x][z] = 1, F [x][z] = 0;
– The column is active and the column sum is inactive: G[x][z] = 0, F [x][z] = 1;

As can be seen, G[x][z] = 1 indicates that the column sum contains variables,
and only constants otherwise. If G[x][z] = 0 for all columns, then the cube lies
in the CP-kernel. F [x][z] = 1 means that the column contains variables but
the variables sum to certain constant, by consuming one bit degree of freedom.
Suppose A[x][y][z], y = 0, · · · , 4 stands for the activeness of column (x, z), then
the patterns of A[x][y][z], y = 0, · · · , 4 and F [x][z], G[x][z] fall into a set of
1 + 5 + (32 − 6) × 2 = 58 discrete points in R

7. The inequalities model this set
are derived and listed in Table 8.

The activeness of the output of θ now can be calculated from A[x][y][z]
and G[x][z]. Assume B[x][y][z] denotes the activeness of θ’s output (elsewhere
B[x][y][z] denotes the activeness of the output of the linear layer). Then B[x][y][z]
= 1 if any of A[x][y][z], G[x−1][z] and G[x+1][z−1] is 1; otherwise B[x][y][z] = 0.
This can be modeled by the following inequalities.

B[x][y][z] − A[x][y][z] ≥ 0,

B[x][y][z] − G[x − 1][z] ≥ 0, B[x][y][z] − G[x + 1][z − 1] ≥ 0,

A[x][y][z] + G[x − 1][z] + G[x + 1][z − 1] − B[x][y][z] ≥ 0. (1)

If only cubes in the CP-kernel are of interest, set G[x][z] = 0 and inequalities
in (1) can be replaced with B[x][y][z] = A[x][y][z]. In this way, the model of the
linear layer is simplified.

5 Modeling the Search for Conditional Cubes

This section presents a full model for searching conditional cubes of both types.
The conditional cube requires conditional cube variables not to multiply with
any variable even in the second round, which means their neighboring bits before
the second χ should be constants. For the Type I, we could fix the positions of
the conditional cube variable (we place the same variable at two bit positions in
the same column of the initial state) and focus only on it and its neighboring bits.
Whereas for Type II, attention should be paid to the diffusion of all variables
in the second round. Due to this difference for the second round, our model for
searching conditional cubes of both types will be constructed separately.

New MILP Modeling 81

5.1 Model for Searching Conditional Cubes of Type I

Modeling the Second Round. The neighboring bits of the conditional cube
variable before the second χ should be constants. Suppose these neighboring bits
are denoted by si. According to the round function R, each neighboring bit si is
calculated from 11 bits of c[x][y][z]. There are two cases depending on whether
there is any variable among the 11 bits:

Case 1. For these 11 bits, none of them are variables, i.e., C[x][y][z] = 0;
Case 2. There are variables among the 11 bits and the XOR of these 11 bits

form a linear equation which consumes one bit degree of freedom.

We introduce one more dummy variable Si for si to indicate which case hap-
pens, where Si = 0 for Case 1 and Si = 1 for Case 2. Case 1 is simple, while
for Case 2 one needs to pay attention to “uncertain propagations” or lanes with
orange dots in Fig. 7 since no exact information can be derived from a linear
equation containing variables with uncertain coefficients. So once Case 2 hap-
pens, additional conditions should be imposed to avoid uncertain propagations.

Similarly, all possible patterns of Si and its related bits can be enumerated as
shown in Table 4 and the set of inequalities are provided in Table 9. Specifically,
if c[x][y][z] is required in calculating si, the inequalities in Table 9 are added to
the MILP model.

Table 4. Influence of conditional cube variables in the second round. Symbol ‘*’ denotes
arbitrary value.

Si B[x][y][z] B[x + 1][y][z] B[x + 2][y][z] V [x + 1][y][z] V [x + 2][y][z]

0 * * * * *

1 0 0 0 * *

1 1 0 0 * *

1 1 0 1 1 0

1 0 0 1 1 0

1 0 1 0 0 1

Modeling the Search for Conditional Cubes. The following constraints
are generated for searching conditional cubes of Type I.

1. Constraints for the linear layer of the first round, according to Sect. 4.3;
2. Constraints for the nonlinear layer of the first round, according to Table 7;
3. Constraints for the conditional cube variable in the first round. If a input bit

b[x][y][z] of χ involves the conditional cube variable, then we fix its neigh-
boring bits to constants such that it does not diffuse to other positions.
It requires

B[x − 1][y][z] = 0, B[x + 1][y][z] = 0,
V [x − 1][y][z] = 1, V [x + 1][y][z] = 1. (2)

H[x − 1][y][z] = 1,H[x + 1][y][z] = 0.

82 L. Song et al.

4. Constraints for the conditional cube variable in the second round, according
to Table 9;

5. Constraint for the dimension. If a 2n-dimensional conditional cube is required,
then set

∑
A[x][y][z] −

∑
F [x][z] −

∑
Si = 2n, (3)

where
∑

F [x][z] +
∑

Si is the number of consumed degrees of freedom.
6. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (4)

Besides, there may exist additional constraints. For example, the last c bits and
some padded bits cannot be variables. When all constraints are generated, an
MILP solver is invoked to find a solution that minimizes the objective.

5.2 Model for Searching Conditional Cubes of Type II

Modeling the Second Round. For Type II conditional cubes, all the cube
variables should not multiply with each other in the second round. Therefore the
diffusion of each cube variable in the second round becomes indispensable and
must be modeled. Beside the activeness of the input of the second round, the
diffusion of cube variables also depends on the activeness of column sums which
is the core part to be modeled.

Recall that we start from b, the input of χ in the first round and c = χ(b).
Let d = λ(c) by omitting the ι step of the first round, and D[x][y][z] denotes
the activeness of d. From the algebraic expression of χ, namely, c[x][y][z] =
b[x][y][z] ⊕ (1 ⊕ b[x + 1][y][z]) · b[x + 2][y][z], it is known that if B[x][y][z] = 1,
then C[x][y][z] = 1. If the sum of column (x, z) of b is inactive, then in what
circumstance the sum of column (x, z) of c is also active? This is what we need
to explore. Note that, columns with an inactive sum do not diffuse to other
columns, which is beneficial to the linearization of the second round.

Suppose G1[x][z] = 1 means the sum of column (x, z) in b is active and
G1[x][z = 0] otherwise. Let G2[x][z] play the same role for c. With G2[x][z] and
C[x][y][z], the linear layer in the second round can be modeled just as the linear
layer in the first round. To make the second round linear, we only need to add
the constraint D[x][y][z] + D[x + 1][y][z] ≤ 1. So the only problem unsolved is
to model the activeness of columns of c.

The value of G2[x][z] is influenced by three columns of b at (x, z), (x + 1, z)
and (x + 1, z). This is the most complex relation to be modeled in this paper.
Specifically, variables at position (x, y, z) of b propagate to position (x, y, z) of c
for sure; variables at positions (x + 1, y, z) and (x + 2, y, z) of b may diffuse to
position (x, y, z) of c. The sum of column (x, z) of c is inactive, i.e., G2[x][z] = 0
only if all the following three conditions hold.

New MILP Modeling 83

– G1[x][z] = 0.
– No variable in column (x + 1) of b propagates to column (x, z) of c.
– (a) No variable in column (x+2) of b propagates to column (x, z) of c, or (b)

all the variables in column (x + 2) of b propagate to column (x, z) of c and
G1[x + 2][z] = 01.

In the following, the three conditions will be analyzed in detail individually.

1. The effect of variables in column (x, z). C[x][z] = 1 if B[x][z] = 1, so
G2[x][z] = 1 if G1[x][z] = 1.

2. The effect of variables in column (x + 1, z) of b depends on conditions in
column (x + 2, z). If there is any uncertain propagation of variables from
column (x + 1, z), G[x][z] = 1. Additionally, P [x][y][z] is introduced where
P [x][y][z] = 1 if the variable at (x + 1, y, z) is propagated to (x, y, z) with an
uncertain coefficient and P [x][y][z] = 0 otherwise. The relation of P [x][y][z]
and B[x + 1][y][z], V [x + 2][y][z] is described in the following table.

P [x] B[x + 1] V [x + 2] inequalities

0 0 * −P [x] + B[x + 1] ≥ 0

1 1 0 −P [x] − V [x + 2] ≥ −1

0 1 1 P [x] − B[x + 1] + V [x + 2] ≥ 0

The effect of column (x + 1, z) to column (x, z) is denoted by M [x][z] where
M [x][z] = 1, i.e., there exist uncertain propagations of variables from column
(x + 1, z) if any P [x][y][z], y = 0, · · · , 4 is 1. This can be described with
inequalities in (5).

M [x][z] − P [x][y][z] ≥ 0, y = 0, · · · , 4.
∑

y

P [x][y][z] − M [x][z] ≥ 0. (5)

3. The effect of variables in column (x + 2, z) of b is relatively complicated. As
shown previously, there are two cases that column (x+2, z) of b does not affect
G2[x][z]. To identify these two cases, we introduce Q1[x][y][z], Q2[x][y][z],
N1[x][z], N2[x][z] and N3[x][z]. Q1[x][y][z] and N1[x][z] play similar roles as
P [x][y][z] and M [x][z], i.e., N1[x][z] = 1 if there is uncertain propagation
from column (x + 2, z).
Q2[x][y][z] = 1 if the variable at (x + 2, y, z) of b is propagated to (x, y, z) of

1 The reason why the modeling for the effects of column (x+2, z) and column (x+1, z)
are different lies in the following fact. If the constant on the right side of a cube
variable consumes a condition, we can constrained the constant to 0 directly, since 1
is worse under all circumstance as shown in Table 3. On the contrary, if the condition
is imposed to the constant on the left side of a cube variable, the constant can be
restricted to either 0 or 1 and no one has an absolute advantage over the other.

84 L. Song et al.

c for sure. Let N2[x][z] = 0 if and only if
∑

y Q2[x][y][z] = 0. Let N3[x][z] = 0
if

∑
y Q2[x][y][z] =

∑
y B[x + 2][y][z], i.e., all variables in column (x + 2, z)

of b are diffused to column (x, z) of c.
Q1[x][y][z] and Q2[x][y][z] can be modeled as shown in the following table.

Q1[x] Q2[x] B[x + 2] V [x + 1] H[x + 1] Inequalities

0 0 0 0 * −Q1[x] − Q2[x] + B[x + 2] ≥ 0

0 0 0 1 * Q1[x] − B[x + 2] + V [x + 1] ≥ 0

1 0 1 0 * −Q1[x] − V [x + 1] ≥ −1

0 1 1 1 0 Q1[x] + Q2[x] − B[x + 2] + H[x + 1] ≥ 0

0 0 1 1 1 −Q2[x] − H[x + 1] ≥ −1

The relation between N1[x][z], N2[x][z] and Q1[x][y][z], Q2[x][y][z] can also
be described in the same way as in (5). To model N3[x][z], a large integer I
is used to express the IF-ELSE logic that N3[x][z] = 0 if

∑
y Q2[x][y][z] =∑

y B[x+2][y][z] as long as I is larger than 5, say 100. The exact inequalities
are shown in (6).

∑

y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≤ I − 1,

∑

y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≥ 0. (6)

According to our model, (N1[x][z], N2[x][z], N3[x][z]) = (0, 0, ∗) indicates the
first case, and (N1[x][z], N2[x][z], N3[x][z]) = (0, 1, 0) stands for the second
case.

As can be derived from the above analysis, when (a) (M [x][z], N1[x][z],
N2[x][z], N3[x][z]) = (0, 0, 0, ∗), or (b) (M [x][z], N1[x][z], N2[x][z], N3[x][z]) =
(0, 0, 1, 0), and G1[x+2][z] = 0, G2[x][z] = G1[x][z]; otherwise G2[x][z] is 1. The
inequalities in Table 10 can be used to model this property.

Modeling the Search for Conditional Cubes. After introducing special
techniques for modeling the column parity of the state in the second round, we
can build the whole model for searching conditional cubes that linearize the first
two rounds. Note that we start from the input of χ in the first round.

1. Describe the column parity of b using G1[x][z], F1[x][z], according to Table 8.
2. Constraints for χ in the first round, according to Sect. 4.2;
3. Constraints for modeling the column parity of c, according to this subsection.
4. Constraints for the linear layer in the second round, according to Sect. 4.3;
5. Constraints for χ in the second round, i.e., D[x][y][z] + D[x + 1][y][z] ≤ 1.

New MILP Modeling 85

6. Constraint for the dimension. If a (2n + 1)-dimensional conditional cube is
required, then set

∑
C[x][y][z] −

∑
F1[x][z] = 2n + 1, (7)

where
∑

F1[x][z] is the number of consumed degrees of freedom.
7. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (8)

5.3 Discussion and Comparison

Model for Constructions with Partially Known Internal State. While
minimal conditions means optimal conditional cubes for Keccak-p-based con-
struction with fully unknown internal state, such as KMAC, it is not the case if the
internal state is partially known even though the number of conditions involving
the key is still minimized. Note that the conditions are imposed on certain input
bits of the first χ and each bit involves some key information. For Keccak-
p-based construction with partially unknown internal state, t bit conditions do
not necessarily contain t-bit key information. For example, in the 64-dimensional
cube of Ketje SR v1, there are 27 bit conditions all of which involve the key
but contain only 26-bit information of the key due to dependency.

Comparison with the Existing MILP Model. Recently, Li et al. proposed
an MILP model for searching cubes of Type I [20]. Their model sets every
b[x][y][z] to a constant if it relates to the neighboring bits of the conditional
variable in the first two rounds. In our model, we incorporate the full diffusion
effect of χ and hence consider a broader class of conditional cubes. In particular,
b[x][y][z] can be a variable even if it relates to the neighboring bits of the condi-
tional variable in the second round. As a result, more conditional cubes can be
found with a greater range of dimension. As demonstrated in Table 5, better con-
ditional cubes are found using our model under the same setting. In particular,
given the dimension, our model returns conditional cubes with much fewer bit
conditions. For example, the 32-dimensional conditional cube of Keccak-MAC-
512 in [20] requires 24 bit conditions involving the key, while using our model,
the number of bit conditions can be only 3 (n = 5 and t = 3), which reduces
the time complexity of attacking 6-round Keccak-MAC-512 from 258.3 [20] to
� |k|

t � ·22n+t = � 128
3 � ·225+3 ≈ 240. Our cube of Keccak-MAC-512 is provided in

Table 5. Moreover, our models cover both types of conditional cubes while Li et
al.’s model aims for only Type I conditional cubes.

6 Applications

In this section, we apply our models to conditional cubes attacks on KMAC, Keyak
and Ketje where Type I cubes are used. In order to extend the cube attacks
on Keccak-p based constructions with full-state absorption, we exploit Type
II cubes.

86 L. Song et al.

Table 5. Comparison with the previous MILP model on Keccak-MAC with the con-
ditional cube placed at (2, 0, 0) and (2, 1, 0). The number of bit conditions only takes
those involving key bits into account.

Variant Dimension #Conditions Reference

Keccak-MAC-384 65 8 [20]

97 8 This

65 2

Keccak-MAC-512 32 24 [20]

32 3 This

50 24

6.1 Conditional Cube Attacks on KMAC

In this subsection, techniques described in Sects. 4 and 5.1 are used to find
conditional cubes for KMAC, based on which key recovery attacks can be mounted
on 7-round KMAC128 and 9-round KMAC256 respectively.

Cube Attack on KMAC128. For KMAC128, the capacity is 256, which covers only
four lanes. By placing the conditional cube variable at two bits in a column of a2,
our MILP model could find large conditional cubes with 4 bit conditions which
are least possible conditions. To make the attack clear, a toy cube of KMAC is intro-
duced first, as shown in Table 6. This cube is selected from the CP-kernel and has
dimension 16, and the conditional cube variable is placed at a[0][0][0], a[0][1][0].
The 4-bit conditions can be derived directly from the positions of the conditional
cube variable since only the conditional cube variable contributes to bit condi-
tions in this case. Note that, b = λ(a) and the relation between a[x][y][z] and
b[x][y][z] is not expressed explicitly in the bit conditions. The remaining 15 ordi-
nary cube variables can be extracted from A[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < 64
which are represented as a 5 × 5 array of lanes and labeled as ‘Positions of cube
variables’ in the table. In the remainder of the paper, the bit conditions are
omitted if they come only from the conditional cube variable.

For KMAC128, 64-dimensional conditional cubes are enough for attacking 7
rounds of KMAC128. In the following, multiple 64-dimensional conditional cubes
are used for the recovery of the internal state. Once the internal state is recovered,
the key can be derived directly.

1. Recover t bits of the internal state. Given a 64-dimensional conditional
cube with t bit conditions where t = 4 for KMAC128, the t bits of the secret
internal state k′[x][y][z] involving in the conditions are guessed and then the
constant part of the messages is chosen such that the t bit conditions are
satisfied. The right guess is detected by assigning all possible values to each

2 There is an exception that no conditional cube can be found when the conditional
variable is placed in lanes (1, 0), (1, 1).

New MILP Modeling 87

Table 6. A conditional cube of KMAC in the CP-kernel. Positions of cube variables are
derived from a 5× 5 array of lanes in hexadecimal using the little-endian format where
‘0’ is replaced with ‘−’.

Positions of cube variables

4----------2---1|----------------|---------------1|----------------|----------------

66------41-28-11|----------------|---------1-----1|----------------|----------------

26------414-8-1-|----------------|---------1------|----------------|----------------

24--------4---1-|----------------|----------------|----------------|----------------

----------------|----------------|----------------|----------------|----------------

The conditional cube variable: a[0][0][0] = a[0][1][0] = v0

Ordinary cube variables

a[0][1][4] = v1, a[0][1][24] = a[0][2][24] = v6, a[0][1][61] = v11,

a[0][2][4] = v2, a[0][1][30] = a[0][2][30] = v7, a[0][2][61] = v12,

a[0][3][4] = v1 + v2, a[0][1][57] = a[0][2][57] = v8, a[0][3][61] = v11 + v12,

a[0][1][15] = a[0][2][15] = v3, a[0][1][58] = v9, a[0][0][62] = a[0][1][62] = v13,

a[0][0][17] = a[0][1][17] = v4, a[0][2][58] = v10, a[2][0][0] = a[2][1][0] = v14,

a[0][2][22] = a[0][3][22] = v5, a[0][3][58] = v9 + v10, a[2][1][24] = a[2][2][24] = v15.

Conditions

b[0][3][36] = k
′
[0][3][36] + 1, b[2][3][36] = k

′
[2][3][36],

b[4][0][0] = k
′
[4][0][0] + 1, b[1][0][0] = k

′
[1][0][0].

cube variable and checking the sum of all outputs under the guess. If the cube
sum is zero, then the corresponding guess is the right one with overwhelming
probability and then the t bits of the secret internal state are recovered. The
time complexity for recovering the t bits of the internal state is 264+t = 268.

2. Recover t lanes of the internal state. Due to the z-axis translation invari-
ance of Keccak-p, a conditional cube is still a conditional cube after being
rotated along the z-axis. A cube and all its rotations are z-axis equivalent.
However, for KMAC the padding rule may break the z-axis equivalence. To
avoid it from happening, the last lane of the r-bit message block is set to be
inactive. Therefore, by rotating the cube bit by bit, t lanes of the internal
state would be recovered in 26 · 268 = 274 calls of 7-round KMAC128.

3. Recover the whole internal state. Ten z-axis equivalent conditional cubes
are used to recover the full internal state. The details of these cubes are given
in [26], and the order of the lanes recovered are displayed in Fig. 8. The total
time complexity of recovering the whole internal state is 26 · 264(1 · 24 + 3 ·
23 + 6 · 22) = 276.

Cube Attack on KMAC256. KMAC256 has a capacity of 512 bits which is equiv-
alent to 8 lanes. Including the last lane of the message block where certain bits
are padded, there are 9 lanes which can not contain variables. Apart from this,
the cube search for KMAC256 remains as that for KMAC128. Our MILP model
could find many 128-dimensional conditional cubes which can be used to attack

88 L. Song et al.

Fig. 8. The lanes recovered using ten z-axis equivalent conditional cubes. The underline
means bits of these lanes are involved in conditions but they are already known.

8 rounds of KMAC256. Since the output length of KMAC256 can be more than 320
bits, the first 5 lanes of the output can be reversed through the χ of the last
round. This immediately increases the attacked rounds by one, as this inversion
covers the χ of the last round, while λ does not increase the algebraic degree.
As a result, 9 rounds of KMAC256 can be attacked.

Choice of the Conditional Cube Variable. When we place the conditional cube
variable at two bit positions of the same column in a, the obtained cubes gener-
ally have more than 30 bit conditions. The increase of bit conditions is caused
by the increase of capacity. In order to reduce the number of bit conditions, we
place the conditional cube variable in a 2-round CP-kernel so that it does not
diffuse even in the second round, leading to a small set of constraints for the
conditional cube variable. As studied in [11], the minimal Hamming weight of
a 2-round CP-kernel differential trail of Keccak-f [1600] is 6. Among all the
2-round CP-kernel differential trails, only those which have no difference in the
last 9 lanes can be applied to the conditional cube search of KMAC256. Fortu-
nately, there is one (only one) 2-round CP-kernel differential trail satisfying this
requirement. The active bit positions of the 2-round CP-kernel differential trail
are

[(0, 0, 0), (0, 1, 0), (1, 0, 63), (1, 2, 63), (2, 1, 30), (2, 2, 30)].

By setting the conditional cube variable to these six bit positions, our MILP
model returns 128-dimensional cubes with 12 bit conditions, with which 11 lanes
(one lane overlapped) of the internal state can be recovered. With these 11 lanes
known, cubes with the conditional cube variable placed at two bit positions of
a column of a[x][y][z], 0 ≤ y < 3 can then be exploited to recover the remaining
lanes.

To recover the whole internal state, three z-axis equivalent conditional cubes
as shown in [26] are used and lanes recovered in each cube are displayed in
Fig. 9. As can be learned from the figure, the time complexity of the internal
state recovery is 26 · 2128(212 + 211 + 23) = 2146.58 calls of 9-round KMAC256.

New MILP Modeling 89

Fig. 9. The lanes recovered using three z-axis equivalent conditional cubes. The under-
line means bits of these lanes are involved in conditions but they are already known.

6.2 Conditional Cube Attacks on Keyak and Ketje

This subsection considers conditional cube attacks of Keyak and Ketje under
the nonce respect setting, i.e., the cube variables are placed among the posi-
tions where the nonce is loaded, and suppose there is no associated data to be
processed.

Figure 10 shows the key pack of Keyak and Ketje respectively (for Ketje,
it shows the key pack after π−1), where blue positions stand for the key, light
blue positions denote padded or encoded bits and white positions are the nonce.
This means that the cube variable should be placed in white lanes. Unlike KMAC,
the internal state of both Keyak and Ketje is known except the key part.
Due to the dependence of key bits in conditions, our model may not guarantee
optimal solutions.

Fig. 10. Key pack of Keyak and Ketje where the blue part means the key, the light
blue part denotes padded or encoded bits and the white part is the nonce.

All instances of Keyak and Ketje considered in this paper use 128-bit keys,
except Lake Keyak, where 256-bit keys are supported by replacing Keccak-p
[1600, 12] with Keccak-p[1600, 14]. Our main results are as follows and sum-
marized in Table 2.

Lake Keyak128. Using a 64-dimensional cube with 2 bit conditions involving
the key (see [26]), the key recovery attack of 8-round Lake Keyak128 costs
a data and time complexities 22 · 264 · 32 + 264 = 271.01 where the last χ can
be partially reversed due to large output length.

Lake Keyak256. Using a 128-dimensional cube with 4 bit conditions involving
the key (see [26]), the key recovery attack of 9-round Lake Keyak256 costs
a data and time complexities less than 24 · 2128 +23 · 2128 · 63+2128 = 2137.05.

90 L. Song et al.

River Keyak. Using a 64-dimensional cube with 12 bit conditions involving the
key (see [26], these 12 bit conditions involve 11 bits key information), the key
recovery attack of 8-round River Keyak costs a data and time complexities
211 · 264 + 210 · 264 · 6 + 2128−71 = 277.00.

Ketje Major. Using a 64-dimensional cube with 3 bit conditions involving the
key (see [26]), the key recovery attack of 7-round Ketje Major costs a data
and time complexities 23 · 264 · 3+22 · 264 · 2+21 · 264 · (64− 5)+264 = 271.24.

Ketje Minor. Using a 64-dimensional cube with 4 bit conditions involving the
key (see [26]), the key recovery attack of 7-round Ketje Minor costs a data
and time complexities less than 24 · 264 + 23 · 264 · 63 + 264 = 273.03.

For Ketje SR and Ketje JR, our model could not find better attacks than
the existing ones in [15]. However, for Ketje SR with Keccak-p as the underly-
ing permutation, namely, Ketje SR v1, better attacks on 7-round Ketje SR are
found using a 64-dimensional cube with 27 bit conditions (see [26], involve 26 bits
key information) and the time and data complexities are 226 · 264 · 2 + 2128−54 =
291.00. Therefore, Ketje instances using Keccak-p� are stronger than those
instances using Keccak-p under our attacks.

6.3 Conditional Cube Attacks on Full-State Keyed Duplex

In this subsection, we consider conditional cube attacks on Keccak-p based
FKD (or FKS) which provides full-state degrees of freedom. We assume that the
first data block is absorbed after the application of the underlying permutation,
as in Keyak. Therefore, the internal state before injecting the first data block
is fully unknown. This is not a nonce-respected attack since the cube will be
constructed on the full-state data block.

For convenience, FKD with Keccak-p[b, nr] as the underlying permutation
is denoted by FKD[b]. A direct application of linear structures shows that 512-
dimensional Type II cubes for FKD[1600] can be constructed by constraining 960
bits to certain constants. However, in key/state recovery attacks the number of
bit conditions allowed is limited. In this subsection, we apply our model for
searching Type II cubes of FKD[b], and try to find some useful cubes with a
small number of bit conditions.

When the number of bit conditions is set to 0, Type II cubes of FKD[1600]
can be found with dimension at least 48. If the dimension is set to 65, a Type
II cube with 25 bit conditions is found, as shown in [26]. Since the first two
rounds are linearized, the cube sum of 8-round Keccak is zero. Thus, this cube
can be used to attack 8-round FKD[1600] by recovering the internal state in a
similar way to the attack on KMAC. As long as the rate r is greater than 320
bits, a 9-round attack of FKD[1600] can be achieved by partially reversing the
last round. The time complexity is about 265+25 = 290. For more experimental
results, please refer to Appendix A.

Compared with cube attacks on Keccak-p based constructions where r-
bit messages are absorbed, cube attacks on FKD[1600] can be extended to one

New MILP Modeling 91

more round by exploiting the full-state absorption. With this, the open question
proposed by the Keyak designers in [7] now is answered.

The idea of full-state absorption has already been applied to Keyak which
absorbs data blocks of more than r bits each but less than b bits. For example,
Lake Keyak processes data blocks of 1536 bits, less than 1600 bits. A simple
way to adapt our attack on 9-round FKD[1600] to Lake Keyak is to find a
Type II cube with dimension 129 (65+64). However, such a cube with increased
dimension could not be found in a practical amount of time. Therefore, the
extended attack does not apply to Lake Keyak.

6.4 Experimental Verification and Codes

Since the attacks in this paper are impractical with current computation power,
the correctness of the attacks is verified on cubes with small dimensions. We
do no change to the attacks except reducing the number of rounds for the cube
tester in the middle, so the attack complexity reduces to a practical level. We
implement two Type I conditional cube attacks: one based on the 16-dimensional
toy cube in Table 6 for fast verification, and the other based on a 32-dimensional
cube for attacking 7-round KMAC256 (or 6-round KMAC128). A conditional cube
attack on 7-round FKD[1600] is also implemented with a 32-dimensional cube
of Type II. Note that this cube has three bit conditions which are set intention-
ally; otherwise, there can be no condition. The correctness of our attacks are
confirmed by these three experiments. The source codes for experimental veri-
fication are available via http://team.crypto.sg/VerificationCodesConCube.zip.
The codes for building our models are available through http://team.crypto.sg/
modelConCube.zip.

7 Conclusions

In the paper, we proposed new MILP models for searching two types of condi-
tional cubes for Keccak-p based keyed constructions. Particularly, we incorpo-
rated the diffusion effect of variables through the non-linear layer and took a
broader class of Type I conditional cubes into account and we proposed a model
for searching Type II conditional cube for the first time. With the new models,
conditional cubes with desired dimensions and least bit conditions were found
for KMAC. As a result, key recovery attacks of 7-round KMAC128, 9-round KMAC256
can be mounted respectively. To the best of our knowledge, these are the first
cryptanalysis results against KMAC. Using our model, we solve the open ques-
tion of FKD by extending the conditional cube attack by one additional round.
The application of our model to Keyak and Ketje gives rise to new attacks
or better attacks with reduced complexities. Specifically, the number of rounds
attacked against Lake Keyak with 128-bit keys is improved from 6 to 8 in the
nonce-respected setting and 9 rounds of Lake Keyak can be attacked when using
256-bit keys; attack complexities are reduced generally on other constructions.

http://team.crypto.sg/VerificationCodesConCube.zip
http://team.crypto.sg/modelConCube.zip
http://team.crypto.sg/modelConCube.zip

92 L. Song et al.

Acknowledgement. Ling Song and Danping Shi are partially supported by the Fun-
damental Theory and Cutting Edge Technology Research Program of Institute of Infor-
mation Engineering, CAS (Grant No. Y7Z0251103), Youth Innovation Promotion Asso-
ciation CAS, the National Natural Science Foundation of China (Grants No. 61802399,
61802400, 61732021, 61772519 and 61472415) and Chinese Major Program of National
Cryptography Development Foundation (Grant No. MMJJ20180102).

A Experimental Details

The model for searching Type II cubes for FKD[1600] has 37440 inequalities
on 15040 variables, which is about 1.8 times of the model for searching Type I
conditional cubes. Even though the search for Type I conditional cubes takes
seconds or minutes, the solving time of the model for Type II cubes increases
exponentially. We solve the model for finding Type II conditional cubes with
Gurobi optimizer [18] on a server with 64 cores at 2.3 GHz, and Gurobi could
not finish the optimization in a practical amount of time.

Type II cubes for FKD[1600] can be found with dimension d ≥ 65. However,
for FKD[800], when we set the number of conditions t ≤ 62 and the objective to
maximize the dimension, Gurobi shows after running 8 days that the dimension
falls in [62, 94], but to extend the attack by one more round, a 65-dimensional
Type II conditional cube is required.

B Inequalities

Table 7. Inequalities modeling the non-linear operation χ in the first round, where
coordinates [y][z]s are omitted.

−B[x] − B[x + 1] ≥ −1

−B[x] + C[x] ≥ 0

−B[x + 2] − V [x + 2] ≥ −1

−B[x + 1] − V [x + 1] ≥ −1

−B[x] − B[x + 1] − H[x + 2] + C[x] ≥ −1

B[x] − V [x + 1] − H[x + 1] − C[x] ≥ −2

B[x] − V [x + 2] + H[x + 2] − C[x] ≥ −1

B[x] + B[x + 1] + B[x + 2] − C[x] ≥ 0

−B[x + 1] − B[x + 2] + V [x + 1] + V [x + 2] + C[x] ≥ 0

−B[x + 1] − B[x + 2] + V [x + 2] + H[x + 1] + C[x] ≥ 0

New MILP Modeling 93

Table 8. Inequalities modeling the parity of a column

−F [x][z] − G[x][z] ≥ −1

−A[x][0][z] + F [x][z] + G[x][z] ≥ 0

−A[x][1][z] + F [x][z] + G[x][z] ≥ 0

−A[x][2][z] + F [x][z] + G[x][z] ≥ 0

−A[x][3][z] + F [x][z] + G[x][z] ≥ 0

−A[x][4][z] + F [x][z] + G[x][z] ≥ 0

A[x][0][z] + A[x][1][z] + A[x][2][z] + A[x][3][z] + A[x][4][z] − 2F [x][z] − G[x][z] ≥ 0

Table 9. Inequalities modeling the non-linear operation χ in the second round

−Si − B[x + 1][y][z] − B[x + 2][y][z] ≥ −2

−Si − B[x + 1][y][z] + V [x + 2][y][z] ≥ −1

−Si − B[x + 2][y][z] + V [x + 1][y][z] ≥ −1

−Si − B[x + 1][y][z] − V [x + 1][y][z] ≥ −2

−Si − B[x + 2][y][z] − V [x + 2][y][z] ≥ −2

−Si − B[x][y][z] − B[x + 1][y][z] ≥ −2

Table 10. Inequalities modeling the column parity of the input of the second round.

G2[x][z] − G1[x][z] ≥ 0

G2[x][z] − N1[x][z] ≥ 0

G2[x][z] − M [x][z] ≥ 0

−G2[x][z] + G1[x][z] + M [x][z] + N1[x][z] + N2[x][z] ≥ 0

G2[x][z] − G1[x + 2][z] − N2[x][z] ≥ −1

G2[x][z] − N2[x][z] − N3[x][z] ≥ −1

−G2[x][z] + G1[x][z] + G1[x + 2][z] + M [x][z] + N1[x][z] + N3[x][z] ≥ 0

References

1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recov-
ery attacks on reduced-round MD6 and Trivium. In: Handschuh, H., Lucks, S.,
Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography, 11.01. - 16.01.2009.
Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Germany (2009). http://drops.dagstuhl.de/opus/volltexte/2009/
1944/

http://drops.dagstuhl.de/opus/volltexte/2009/1944/
http://drops.dagstuhl.de/opus/volltexte/2009/1944/

94 L. Song et al.

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge func-
tions. Submission to NIST (Round 3) (2011). http://sponge.noekeon.org/CSF-0.
1.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28496-0 19

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference,
January 2011. http://keccak.noekeon.org, version 3.0

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Ketje v2. Candidate of CAESAR Competition, September 2016

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Keyak v2. Candidate of CAESAR Competition, September 2016

8. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: Milp-aided cube-attack-like crypt-
analysis on Keccak keyed modes. Designs, Codes and Cryptography, August 2018.
https://doi.org/10.1007/s10623-018-0526-x

9. Chaigneau, C., Fuhr, T., Gilbert, H., Guo, J., Jean, J., Reinhard, J., Song, L.:
Key-recovery attacks on full kravatte. IACR Trans. Symmetric Cryptol. 2018(1),
5–28 (2018). https://doi.org/10.13154/tosc.v2018.i1.5-28

10. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 21

11. Daemen, J., Van Assche, G.: Differential propagation analysis of Keccak. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34047-5 24

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
Keccak. J. Cryptol. 27(2), 183–209 (2014). https://doi.org/10.1007/s00145-012-
9142-5

13. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
733–761. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 28

14. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

15. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like attack on round-reduced initial-
ization of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1), 259–280 (2017).
https://doi.org/10.13154/tosc.v2017.i1.259-280

16. Fuhr, T., Naya-Plasencia, M., Rotella, Y.: State-recovery attacks on modified Ketje
Jr. IACR Trans. Symmetric Cryptol. 2018(1), 29–56 (2018). https://tosc.iacr.org/
index.php/ToSC/article/view/843

17. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I.
LNCS, vol. 10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 9

18. Gurobi: Gurobi Optimizer. http://www.gurobi.com/

https://tosc.iacr.org/index.php/ToSC/article/view/801
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
http://keccak.noekeon.org
https://doi.org/10.1007/s10623-018-0526-x
https://doi.org/10.13154/tosc.v2018.i1.5-28
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/s00145-012-9142-5
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.13154/tosc.v2017.i1.259-280
https://tosc.iacr.org/index.php/ToSC/article/view/843
https://tosc.iacr.org/index.php/ToSC/article/view/843
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
http://www.gurobi.com/

New MILP Modeling 95

19. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 9

20. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 4

21. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 19

22. NIST: SHA-3 COMPETITION. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html (2007–2012)

23. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol.
10212, pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 8

24. Sasaki, Y., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

25. Song, L., Guo, J.: Cube-Attack-like cryptanalysis of round-reduced Keccak using
MILP. To appear in IACR Trans. Symmetric Cryptol. 2018(3) (2018). https://
eprint.iacr.org/2018/810

26. Song, L., Guo, J., Shi, D., Ling, S.: New MILP Modeling: Improved Conditional
Cube Attacks on Keccak-based Constructions. Cryptology ePrint Archive, Report
2017/1030 (2017). https://eprint.iacr.org/2017/1030

27. Song, L., Liao, G., Guo, J.: Non-full Sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 15

28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

29. The U.S. National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Federal Informa-
tion Processing Standard, FIPS 202, 5th August 2015. http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf

30. The U.S. National Institute of Standards and Technology: SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special
Publication 800–185, 21 December 2016. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf

https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-662-48800-3_19
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2017/1030
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-662-45611-8_9
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

On the Concrete Security of Goldreich’s
Pseudorandom Generator

Geoffroy Couteau1(B), Aurélien Dupin2,3,4, Pierrick Méaux5, Mélissa Rossi2,6,7,
and Yann Rotella7

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
geoffroy.couteau@kit.edu

2 Thales Communications and Security, Gennevilliers, France
3 CentraleSupélec, Rennes, France

4 Irisa, Rennes, France
dupin.aurelien@gmail.com

5 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

pierrick.meaux@uclouvain.be
6 École Normale Supérieure de Paris, Département d’informatique,

CNRS, PSL Research University, Paris, France
melissa.rossi@ens.fr
7 Inria, Paris, France

yann.rotella@inria.fr

Abstract. Local pseudorandom generators allow to expand a short ran-
dom string into a long pseudo-random string, such that each output bit
depends on a constant number d of input bits. Due to its extreme effi-
ciency features, this intriguing primitive enjoys a wide variety of applica-
tions in cryptography and complexity. In the polynomial regime, where
the seed is of size n and the output of size ns for s > 1, the only known
solution, commonly known as Goldreich’s PRG, proceeds by applying a
simple d-ary predicate to public random size-d subsets of the bits of the
seed.

While the security of Goldreich’s PRG has been thoroughly inves-
tigated, with a variety of results deriving provable security guarantees
against class of attacks in some parameter regimes and necessary crite-
ria to be satisfied by the underlying predicate, little is known about its
concrete security and efficiency. Motivated by its numerous theoretical
applications and the hope of getting practical instantiations for some of
them, we initiate a study of the concrete security of Goldreich’s PRG,
and evaluate its resistance to cryptanalytic attacks. Along the way, we
develop a new guess-and-determine-style attack, and identify new crite-
ria which refine existing criteria and capture the security guarantees of
candidate local PRGs in a more fine-grained way.

Keywords: Pseudorandom generators · Algebraic attacks
Guess-and-determine · Gröbner basis

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 96–124, 2018.
https://doi.org/10.1007/978-3-030-03329-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_4&domain=pdf

On the Concrete Security of Goldreich’s PRG 97

1 Introduction

One of the most fundamental problems in cryptography is the question of what
makes an efficiently computable function hard to invert. The quest for the sim-
plest design which leads to a primitive resisting all known attacks is at the heart
of both symmetric and asymmetric cryptography: while we might be able to
build seemingly secure primitives by relying on more and more complex designs
to thwart cryptanalysis attempts, such a “security by obscurity” approach is
unsatisfying. Instead, as advocated almost two decades ago by Goldreich [Gol00],
we should seek to construct the simplest possible function that we do not know
how to invert efficiently. Only this way, Goldreich argued, can we better under-
stand what really underlies the security of cryptographic constructions.

Random Local Functions. In an attempt to tackle this fundamental problem,
Goldreich suggested a very simple candidate one-way function as a promising
target for cryptanalysis: let (n,m) be integers, and let (σ1, . . . , σm) be a list of m
subsets of [n], such that each subset is of small size: for any i ≤ m, |σi| = c(n),
where c(n) � n (in actual instantiations, c(n) can for example be logarithmic in
n, or even constant). Fix a simple predicate P : {0, 1}c(n) �→ {0, 1}, and define
the function f : {0, 1}n �→ {0, 1}m as follows: on input x ∈ {0, 1}n, for any subset
S of [n], let x[σ] denote the subset of the bits of x indexed by σ. Compute f(x)
as P (x[σ1])|| · · · ||P (x[σm]) (that is, f(x) is computed by applying the predicate
P to all subsets of the bits of x indexed by the sets σ1, . . . , σm). We call random
local functions the functions obtained by instantiating this template.

In his initial proposal, Goldreich advocated instantiating the above method-
ology with m ≈ n and c(n) = O(log n), and conjectured that if the subsets
(σ1, . . . , σm) form an expander graph1, and for an appropriate choice of the
predicate P , it should be infeasible to invert the above function f in polynomial
time. While setting c(n) to O(log n) offers stronger security guarantees, the more
extreme design choice c(n) = O(1) (also discussed in Goldreich’s paper) enhances
the above candidate with an appealing feature: it enjoys constant input locality
(which puts it into the complexity class NC0), hence it is highly parallelizable
(it can be computed in constant parallel time). It appeared in subsequent works
that a stronger variant of Goldreich’s conjecture, which considers m � n and
claims that f is in fact a pseudorandom generator, was of particular interest; we
will elaborate on this later on.

Local Pseudorandom Generators. The question of whether cryptographic
primitives can exist in weak complexity classes such as NC0 has attracted a lot
of attention in the cryptographic community. A primitive of particular interest,
which has been the focus of most works on the subject, is the notion of pseudoran-
dom generators (PRGs), which are functions G : {0, 1}n �→ {0, 1}m extending a
1 The subsets form an expander graph if for some k, every k subsets cover k + Ω(n)

elements of [n]. In practice, it suffices to pick once for all the subsets (σ1, . . . , σm)
at random to guarantee that they will be expanding except with o(1) probability.

98 G. Couteau et al.

short random seed into a longer, pseudorandom string. The existence of PRGs in
NC0 was first considered by Cryan and Miltersen in [CM01]. Remarkably, it was
shown by Applebaum, Ishai, and Kushilevitz [AIK04,AIK08] that cryptograph-
ically secure pseudorandom generators (with linear stretch m = O(n)) exist in
a complexity class as low as NC0

4 (the class of constant depth, polysize circuits
where each output bit depends on at most 4 input bits), under widely believed
standard assumption for the case of PRG with sublinear stretch (such as fac-
torization, or discrete logarithm), and under a specific intractability assumption
related to the hardness of decoding “sparsely generated” linear codes, for the
case of PRG with linear stretch. While this essentially settled the question of the
existence of linear stretch PRGs in NC0, an intriguing open question remained:
could PRGs in NC0 have polynomial stretch, m = poly(n)?

Some early negative results were given by Cryan and Miltersen [CM01] (who
ruled out the existence of PRGs in NC0

3 with stretch m > 4n) and Mossel,
Shpilka, and Trevisan [MST03] (who ruled out the existence of PRGs in NC0

4

with stretch m > 24n). The authors of [CM01] also conjectured that any can-
didate PRG with superlinear stretch in NC0 would be broken by simple, linear
distinguishing tests2; this conjecture was refuted in [MST03], who gave a con-
crete candidate PRG in NC0, by instantiating a random local function with
c = 5, and the predicate

P5 : (x1, x2, x3, x4, x5) �→ x1 + x2 + x3 + x4x5.

where the + denotes the addition in F2 i.e. the xor.
They proved that this PRG fools linear tests, even when m is a (sufficiently

small) polynomial in n. By the previously mentioned negative result on PRGs
in NC0

4, this candidate PRG, which has locality 5, achieves the best possible
locality. Recently, there has been a renewed interest in the study of this local
PRG, now commonly known as Goldreich’s PRG, and its generalizations [BQ09,
App12,OW14,CEMT14,App15,ABR16,AL16,IPS08,LV17,BCG+17].

1.1 Implications of Polynomial-Stretch Local Pseudorandom
Generators

The original motivation for the study of local pseudorandom generators was the
intriguing possibility of designing cryptographic primitives that can be evaluated
in constant time, using polynomially many cores. While this is already a strong
motivation in itself, it was observed in several works that the existence of (poly-
stretch) local PRGs had a number of non-trivial implications, and is at the heart
of feasibility results for several high-end cryptographic primitives. We provide
below a brief overview.

– Secure computation with constant computational overhead. In the recent
work [IKOS08], the authors explored the possibility of computing crypto-
graphic primitives with essentially optimal efficiency, namely, constant over-
head over a naive insecure implementation of the same task. One of their main

2 A linear test attempts to distinguish a string from random by checking whether the
xor of a subset of the bits of the string is biased toward either 0 or 1.

On the Concrete Security of Goldreich’s PRG 99

results establishes the existence of constant-overhead two-party computation
protocols for any boolean circuit, assuming the existence of poly-stretch local
PRGs (and oblivious transfers). In a recent work [ADI+17a], this result was
extended to arithmetic circuits, using an arithmetic generalization of local
PRGs.

– Indistinguishability obfuscation (iO). Introduced in the seminal paper of
Barak et al. [BGI+01], iO is a primitive that has received a considerable
attention from the crypto community in the past years, as a long sequence
of works starting with [SW14] has demonstrated that iO had tremendous
theoretical implications, to the point that it is often referred to as being a
“crypto-complete” primitive. All known candidate constructions of iO rely,
directly or indirectly, on a primitive called k-linear map, for some degree k.
Recently, a sequence of papers (culminating with [LT17]) has attempted to
find out the minimal k for which a k-linear map would imply the existence
of iO (with the ultimate goal of reaching k = 2, as bilinear maps are well
understood objects). These works have established a close relation between
this value k and the existence of pseudorandom generators with poly-stretch,
and locality k.3

– MPC-friendly primitives. Historically, the design of symmetric cryptographic
primitives (such as block ciphers, pseudorandom generators, and pseudo-
random functions) has been motivated by efficiency considerations (mem-
ory consumption, hardware compatibility, ease of implementation, ...). The
field of multiparty computation (MPC), where parties want to jointly eval-
uate a function on secret inputs, has led to the emergence of new efficiency
considerations: the efficiency of secure evaluation of symmetric primitives
is strongly related to parameters such as the circuit depth of the prim-
itive, and the number of its AND gates. This observation has motivated
the design of MPC-friendly symmetric primitives in several recent works
(e.g. [ARS+15,CCF+16,MJSC16,GRR+16]). Local pseudorandom genera-
tors make very promising candidate MPC-friendly PRGs (and lead, through
the GGM transform [GGM84], to promising candidates for MPC-friendly
pseudorandom functions). Secure evaluation of such symmetric primitives
enjoys a wide variety of applications.

– Cryptographic capsules. In [BCG+17], Boyle et al. studied the recently intro-
duced primitive of homomorphic secret sharing (HSS). An important impli-
cation of HSS is that, assuming the existence of a local PRG with poly-
stretch, one can obtain multiparty computation protocols in the preprocessing
model4 where the amount of communication between the parties is consider-
ably smaller than the circuit size of the function, by constructing a primitive

3 The locality requirement can in fact be weakened to a related notion of block locality.
4 In this model, n parties securely compute a function f on private inputs (x1, . . . , xn);

in the preprocessing phase, the parties have access to f (but not to the input), and
generate some preprocessing material. Then, in the online phase, the parties execute
an information-theoretically secure protocol to compute f(x), using the preprocessed
material. MPC protocols in the preprocessing model are among the most promising
candidates for getting practical solutions to the multiparty computation problem.

100 G. Couteau et al.

called cryptographic capsule which, informally, allows to compress correlated
(pseudo-)random coins. MPC protocols with low-communication preprocess-
ing have numerous appealing applications; however, the efficiency of the con-
structions of cryptographic capsule strongly depends on the locality and seed
size of the underlying local PRG (both should be as small as possible to get
a reasonably efficient instantiation).

In addition to the above (non-exhaustive) overview, we note that the exis-
tence of poly-stretch local pseudorandom generators also enjoys interesting
complexity-theoretic implications. For example, they have been shown in [AIK08]
to imply strong (tight) bounds on the average-case inapproximability of con-
straints satisfactions problems such as Max3SAT.

1.2 On the Security of Goldreich’s PRG

In this section, we provide a brief overview of the state-of-the-art regarding the
security of local pseudorandom generators. For a more detailed and well-written
overview dating from 2015, we refer the reader to [App15].

Positive Results: Security Against Class of Attacks. The seminal paper
of Goldreich [Gol00] made some preliminary observations on necessary properties
for a local one-way function. Namely, the predicate P must satisfy some non-
degeneracy properties, such as being non-linear (otherwise, one could inverse the
function using Gaussian elimination). It also noted that to avoid a large class of
natural “backtracking” attacks, which make a guess on the values of bit inputs
based on local observations and attempt to combine many local solutions into
a global solution, the subsets (S1, . . . , Sm) should be sufficiently expanding : for
some k, every k subsets should cover k + Ω(n) elements of [n]. The security
of Goldreich’s candidate one-way function against a large class of backtracking
algorithm was formally analyzed in [AHI05,CEMT14], where it was proven that
two restricted types of backtracking algorithms (called “drunk” and “myopic”
backtracking algorithms) take exponential time to invert the function (with high
probability). They also ran experiments to heuristically evaluate its security
against SAT solvers (and observed experimentally an exponential increase in
running time as a function of the input length).

The pseudorandomness of random local functions was originally analyzed
in [MST03]. They proved (among other results) that the random local function
instantiated with the predicate P5 : (x1, x2, x3, x4, x5) �→ x1 + x2 + x3 + x4x5

fools all F2-linear distinguishers for a stretch up to m(n) = n1.25−ε (for an arbi-
trary small constant ε). This result was later extended to a larger stretch n1.5−ε

in [OW14]. In the same paper, the authors proved that this candidate PRG is also
secure against a powerful class of attacks, the Lasserre/Parrilo semidefinite pro-
gramming (SDP) hierarchy, up to the same stretch. Regarding security against
F2-linear attacks, a general dichotomy theorem was proven in [ABR12], which
identified a class of non-degenerate predicates and showed that for most graphs,

On the Concrete Security of Goldreich’s PRG 101

a local PRG instantiated with a non-degenerate predicate is secure against lin-
ear attacks, and for most graphs, a local PRG instantiated with a degenerate
predicate is insecure against linear distinguishers. In general, to fool F2-linear
distinguishers, the predicate should have high algebraic degree (in particular, a
random local function instantiated with a degree-� predicate cannot be pseudo-
random for a stretch � (m ≡ n�), as it is broken by a straightforward Gaussian
elimination attack).

Being pseudorandom seems to be a much stronger security property than
being one-way. Nevertheless, in the case of random local functions, it was shown
in [App12] that the existence of local pseudorandom generators follows from the
existence of one-way random local functions (with sufficiently large output size).

Negative Results. The result of O’Donnell and Witmer [OW14] regarding
security against SDP attacks is almost optimal, as attacks from this class are
known to break the candidate for a stretch Θ(n1.5 log n). More generally, opti-
mizing SDP attacks leads to a polytime inversion algorithm for any predicate
P which is (even slightly) correlated with some number c of its inputs, as soon
as the output size exceeds m ∈ Ω(nc/2 + n log n) [OW14,App15]. Therefore, a
good predicate should have high resiliency (i.e. it should be k-wise independent,
for a k as large as possible). This result shows, in particular, that a random
local function with a constant locality d and with an output size m > poly(d) ·n
is insecure when instantiated with a uniformly random predicate P . Combin-
ing this observation with the result of Siegenthaler [Sie84], which studied the
correlation of d-ary predicates, gives a polytime inversion algorithm for any ran-
dom local function implemented with a d-ary predicate, and with an output size
m ∈ Ω(n1/2�2d/3� log n).

Bogdanov and Qiao [BQ09] studied the security of random local functions
when the output is sufficiently larger than the input (i.e., m ≥ Dn, for a large
constant D). They proved that for sufficiently large D, inverting a random local
function could be reduced to finding an approximate inverse (i.e. finding any x′

which is close to the inverse x in Hamming distance), by showing how to invert
the function with high probability given an advice x′ close to x. For random local
function with an output size polynomial in n, m = ns for some s, this leads to a
subexponential-time attack [App15]: fix a parameter ε, assign random values to
the (1− 2ε)n first inputs, and create a list that enumerates over all possible 2εn
assignments for the remaining variables. Then the list is guaranteed to contain a
value x′ that agree with the preimage x on a (1/2+ε)n fraction of the coordinates
with good probability. By applying the reduction of [BQ09], using each element
of the list as an advice string, one recovers the preimage in time poly(n) · 22εn

provided that m = Ω(n/ε2d) (d is the arity of the predicate P). In the case of the
5-ary predicate P5, this leads to an attack in subexponential-time 2O(n1−(s−1)/2d)

(e.g. using s = 1.45 gives an attack in time 2O(n0.955)).
By the previous observations, we know that the predicate of a random local

function must have high resiliency and high algebraic degree to lead to a pseu-
dorandom function. A natural question is whether this characterization is also

102 G. Couteau et al.

sufficient; this question was answered negatively in [AL16], who proved that a
predicate must also have high bit-fixing degree to fool linear attacks.5 In par-
ticular, this observation disproved a previous conjecture of Applebaum that
XOR-AND predicates (which are natural generalizations of the predicate P5)
could lead to local PRGs with stretch greater than 2 that fools all linear tests
(see [AL16, Corollary 1.3]).

In the same work, Applebaum and Lovett considered the class of alge-
braic attacks on local pseudorandom function, which are incomparable to linear
attacks. An algebraic attack against a function f : {0, 1}n �→ {0, 1}m starts
with an output y and uses it to initialize a system of polynomial equations over
the input variables x = (x1, . . . , xn). The system is further manipulated and
extended until a solution is found or until the system is refuted. Applebaum
and Lovett proved that a predicate must also have high rational degree to fool
algebraic attacks (a predicate P has rational degree e if it is the smallest inte-
ger for which there exist degree e polynomials Q and R, not both zero, such
that PQ = R). Indeed, if e < s then P is not s-pseudorandom against alge-
braic attacks (see [AL16], Theorem 1.4). In the symmetric cryptography com-
munity, the rational degree denotes the well-known algebraic immunity crite-
rion on Boolean function that underlies the so-called algebraic attacks on stream
ciphers [CM03,Cou03]. An algebraic immunity of e implies an r-bit fixing degree
greater than or equal to e−r ([DGM05], Proposition 1), giving that an high alge-
braic immunity guarantees both high rational degree and high bit fixing degree.
The algebraic degree is equivalent to the 0-bit fixing degree, then it leads to
the following characterization: a predicate of a random local function must have
high resiliency and high algebraic immunity. In light of this characterization,
the authors of [AL16] suggested the XOR-MAJ predicate as a promising candi-
date for building high-stretch local PRGs, the majority function having optimal
algebraic immunity [DMS05].

Security Against Subexponential Attacks. While there is a large body of
work that studied the security of random local functions, leading to a detailed
characterization of the parameters and predicates that lead to insecure instanti-
ations, relatively little is known on the exact security of local PRGs instantiated
with non-degenerated parameters. In particular, most papers only prove that
some classes of polytime attacks provably fail to break candidates local PRGs;
however, these results do not preclude the possible existence of non-trivial subex-
ponential attacks (specifically, these polytime attacks do not “degrade grace-
fully” into subexponential attacks when appropriate parameters are chosen for
the PRG; instead, they do always and provably not succeed). To our knowl-
edge, the only results in this regard are the proof from [AHI05,CEMT14] that
many backtracking-type attacks require exponential time to invert a random
local function, and the subexponential-time attack arising from the work of Bog-
danov and Qiao [BQ09]. However, as we saw above, the latter attack only gives
5 A predicate P has r-bit fixing degree e if the minimal degree of the restriction of P

obtained by fixing r inputs is e.

On the Concrete Security of Goldreich’s PRG 103

a slightly-subexponential algorithm, in time 2O(n1−(s−1)/2d) for a d-ary predicate,
and an ns-stretch local PRG.

1.3 Our Goals and Results

In this work, we continue the study of the most common candidate local pseu-
dorandom generators. However, we significantly depart from the approach of
previous works, in that we wish to analyze the concrete security of local PRGs.
To our knowledge, all previous works were only concerned about establishing
asymptotic security guarantees for candidate local PRGs, without providing any
insight on, e.g., which parameters can be conjectured to lead to a primitive with
a given bit-security. Our motivations for conducting this study are twofold.

– Several recent results, which we briefly overviewed in Sect. 1.1, indicate that
(poly-stretch) local PRGs enjoy important theoretical applications. However,
the possibility of instantiating these applications with concrete PRG candi-
dates remains unclear, as their efficiency quickly deteriorates with the param-
eters of the underlying PRG. For example, the iO scheme of [LT17], which
requires low-degree multilinear maps and therefore might be a viable app-
roach to obtain efficiency improvements in iO constructions (as candidate
high-degree multilinear maps are prohibitively expensive); however, it has a
cost cubic in the seed size of a poly-stretch local PRG, which renders it practi-
cal only if we can safely use local PRGs with reasonably small seeds. Overall,
we believe that there is a growing need for a better understanding of the
exact efficiency of candidate local PRGs, and providing concrete estimations
can prove helpful for researchers willing to understand which efficiency could
potentially be obtained for local-PRG-based primitives.

– At a more theoretical level, previous works on (variants of) Goldreich’s PRG
have identified criteria which characterize the predicates susceptible to lead
to secure local PRGs. Identifying such criteria is particularly relevant to the
initial goal set up by Goldreich in [Gol00], which is to understand what charac-
teristics of a function is the source of its cryptographic hardness, by designing
the simplest possible candidate that resists all attacks we know of. However,
existing criteria only distinguish predicates leading to insecure instances from
those leading to instances for which no polynomial-time attack is known. We
believe that it is also of particular relevance to this fundamental question
to find criteria which capture in a more fine-grained way the cryptographic
hardness of random local functions.

Our Results. We provide new cryptanalytic insights on the security of Goldre-
ich’s pseudorandom generator.

– A new subexponential attack on Goldreich’s PRG. We start by devising a
new attack on Goldreich’s PRG. Our attack relies on a guess-and-determine
technique, in the spirit of the recent attack [DLR16] on the FLIP family of
stream ciphers [MJSC16]. The complexity of our attack is 2O(n2−s) where s is

104 G. Couteau et al.

the stretch and n is the seed size. This complements O’Donnel and Witmer’s
result [OW14] showing that Goldreich’s PRG is likely to be secure for stretch
up to 1.5, with a more fine-grained complexity estimation. We implemented
our attack and provide experimental results regarding its concrete efficiency,
for various seed size and stretch parameters.

– Generalization. We generalize the previous attack to a large class of predi-
cates, which are divided into two parts, a linear part and a non-linear part,
XORed together. This captures all known candidate generalizations of Gol-
dreich’s PRG. Our attack takes subexponential time as soon as the stretch of
the PRG is strictly above one. Importantly, our attack does not depend on the
locality of the predicate, but only on the number of variables involved in the
non-linear part. In a recent work [AL16], Applebaum and Lovett put forth an
explicit candidate local PRG (of the form XOR-MAJ), as a concrete target
for cryptanalytic effort. Our attack gives a new subexponential algorithm for
attacking this candidate.

– Extending the Applebaum-Lovett polynomial-time algebraic attack. Apple-
baum and Lovett recently established that local pseudorandom generators
can be broken in polynomial time, as long as the stretch s of the PRG is
greater than the rational degree e of its predicate. We extend this result
as follows: we show that the seed of a large class of local PRGs (which
include all existing candidates) can be recovered in polynomial time whenever
s ≥ e − log Ne/ log n, where e is the rational degree, n is the seed size, and
Ne is the number of independent annihilators of the predicate6 of degree at
most e.

– Linearization and Gröbner attack. We complement our study with an analysis
of the efficiency of algebraic attacks à la Gröbner on Goldreich’s PRG. While
it is known that Goldreich’s PRG (and its variants) provably resists such
attacks for appropriate choices of (asymptotic) parameters [AL16], little is
known about its exact security against such attacks for concrete choices of
parameters. We evaluated the concrete security of Goldreich’s PRG against
an order-two linearization attack. The existence of such an attack allows to
derive bounds on Gröbner basis performance. Using an implemented proof of
concept, we introduce heuristic bounds for vulnerable parameters.

As illustrated by our attacks, both the number of annihilators of the predicate
and the r bit fixing algebraic immunity play an important role in the security
of Golreich’s PRG. These criteria were overlooked in all previous works on local
PRGs. Last but not least, our concrete analysis indicates that Gröbner basis
attacks, although provably “ruled out” asymptotically, matters when studying
the vulnerabilities of Goldreich’s PRG, and the security of concrete instances.

1.4 Organization of the Paper

Section 2 introduces necessary preliminaries on predicates and local pseudoran-
dom generators. Section 3 describes a guess-and-determine attack on Goldreich’s
6 An annihilator of a predicate P is a non-zero polynomials Q such that Q · P = 0.

On the Concrete Security of Goldreich’s PRG 105

PRG instantiated with the predicate P5 and analyzes it, where the proofs are
given in the full version of our paper [CDM+18]. Section 4 extends this attack
to all predicates of the form XOR-MAJ, where the proofs are given in the full
version of our paper. Eventually, still in the full version of our paper, an order
2 linearization attack on Goldreich’s PRG is described. The same full version of
our paper considers the case of using Goldreich’s PRG with ordered subset (as
was initially advocated in [Gol00]) and provides indications that this weakens
its concrete security. Finally, the full version of our paper improves the theorem
of Applebaum and Lovett, by taking into account the number of annihilators of
the predicate. The full version of our paper contains missing proofs on collisions.

2 Preliminaries

Throughout this paper, n denotes the size of the seed of the PRGs considered. A
probabilistic polynomial time algorithm (PPT, also denoted efficient algorithm)
runs in time polynomial in the parameter n. A positive function f is negligible
if for any polynomial p there exists a bound B > 0 such that, for any integer
k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on n occurs with overwhelming
probability when its probability is at least 1 − negl(n) for a negligible function
negl. Given an integer k, we write [k] to denote the set {1, . . . , k}. Given a finite
set S, the notation X

$← S means a uniformly random assignment of an element
of S to the variable X. Given a string x ∈ {0, 1}k for some k and a subset σ of
[k], we let x[σ] denote the subsequence of the bits of x whose index belong to σ.
Moreover, the i-th bit of x[σ] will be denoted by xσi

.

2.1 Hypergraphs

Hypergraphs generalize the standard notion of graphs (which are defined by a
set of nodes and a set of edges, an edge being a pair of nodes) to a more general
object defined by a set of nodes and a set of hyperedges, each hyperedge being
an arbitrary subset of the nodes. We define an (n,m, d)-hypergraph G to be a
hypergraph with n vertices and m hyperedges, each hyperedge having cardinality
d. The hyperedges are assumed to be ordered from 1 to m, and each hyperedge
{i1, i2, . . . , id} is ordered and satisfies ij �= ik for all j ≤ d, k ≤ d, j �= k. We will
consider hypergraphs satisfying some expansion property, defined below.

Definition 1 (Expander Graph). An (n,m, d)-hypergraph G, denoted
(σ1, . . . , σm), is (α, β)-expanding if for any S ⊂ [m] such that |S| ≤ α · m,
it holds that | ∪i∈S σi| ≥ β · |S| · d.

2.2 Predicates

The constructions of local pseudorandom generators that we will consider in this
work rely on predicates satisfying some specific properties. Formally, a predicate
P of arity d is a function P : {0, 1}d �→ {0, 1}. We define below the two properties
that were shown to be necessary for instantiating local PRGs:

106 G. Couteau et al.

– Resiliency. A predicate P is k-resilient if it has no nontrivial correlation with
any linear combination of up to k of its inputs. An example of predicate with
maximal resiliency is the parity predicate (i.e., the predicate which xors all
its inputs).

– Algebraic Immunity. A predicate P has algebraic immunity e, referred to as
AI(P) = e, if the minimal degree of a non null function g such that Pg = 0 (or
(P + 1)g = 0) on all its entries is e. A local PRG built from a AI-e predicate
cannot be pseudorandom with a stretch ne due to algebraic attacks.

Note that the algebraic immunity (also referred as rational degree in [AL16])
implies a lower bound on the degree and on the bit-fixing degree. Moreover, a
high algebraic immunity implies at least the same degree. Hence, for now on,
those two criterion are considered as the relevant criteria for evaluating the
security of Goldreich’s PRG.

We define a particular family of predicates which have been considered as a
potential instantiation:

Definition 2 (XOR�Mk predicates). We call XOR�Mk predicate a predicate P
of arity � + k such that M is a predicate of arity k and:

P (x1, . . . , x�, z1, . . . , zk) =
�∑

i=1

xi + M(z1, . . . , zk).

We define also a subfamily of XOR�Mk predicates, which have been considered
in [AL16]:

Definition 3 (XOR�MAJk predicates). We call XOR�MAJk predicate a pred-
icate P of arity � + k such that P is a XOR�Mk predicate such that M is the
majority function in k variables:

M(z1, . . . , zk) = 1 ⇔ wH(z1, . . . , zk) ≥
⌈

k

2

⌉
,

where wH denotes the Hamming weight.

2.3 Pseudorandom Generators

Definition. A pseudorandom generator is a deterministic process that expands
a short random seed into a longer sequence, so that no efficient adversary can
distinguish this sequence from a uniformly random string of the same length.
Formally,

Definition 4 (Pseudorandom Generator). A m(n)-stretch pseudorandom
generator, for a polynomial m, is an efficient uniform deterministic algorithm
PRG which, on input a seed x ∈ {0, 1}n, outputs a string y ∈ {0, 1}m(n). It satis-
fies the following security notion: for any probabilistic polynomial-time adversary
Adv,

Pr[y $← {0, 1}m(n) : Adv(pp, y) = 1]

≈Pr[x $← {0, 1}n
, y ← PRG(x) : Adv(pp, y) = 1]

On the Concrete Security of Goldreich’s PRG 107

Here ≈ denotes that the absolute value of the difference of the two probabilities
is negligible in the security parameters, and pp stands for the public parameters
of the PRG. For any n ∈ N, we denote PRGn the function PRG restricted to n-bit
inputs. A pseudorandom generator PRG is d-local (for a constant d) if for any
n ∈ N, every output bit of PRGn depends on at most d input bits.

Goldreich’s Pseudorandom Generator. Goldreich’s candidate local PRGs
form a family FG,P of local PRGs: PRGG,P : {0, 1}n �→ {0, 1}m, parametrized
by an (n,m, d)-hypergraph G = (σ1, . . . , σm) (where m = m(n) is polynomial in
n), and a predicate P : {0, 1}d �→ {0, 1}, defined as follows: on input x ∈ {0, 1}n,
PRGG,P returns the m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm

1
, . . . , xσm

d
)).

Conjecture 1 (Informal). If G is a sufficiently expanding (n,m, d) hypergraph
and P is a predicate with sufficiently high resiliency and high algebraic immunity,
then the function PRGG,P is a secure pseudorandom generator.

Note that picking an hypergraph G uniformly at random suffices to ensure
that it will be expanding with probability 1 − o(1). However, picking a random
graph will always give a non-negligible probability of having an insecure PRG.
To see that, observe that when the locality d is constant, a random hypergraph G
will have two hyperedges containing the same vertices with probability 1/poly(n);
for any such graph G, the output of PRGG,P on a random input can be trivially
distinguished from random. Therefore, the security of random local functions
is usually formulated non-uniformly, by stating that for a 1 − o(1) fraction of
all hypergraphs G (and appropriate choice of P), no polytime adversary should
be able to distinguish the output of PRGG,P from random with non-negligible
probability.

Fixed Hypergraph Versus Random Hypergraphs. Goldreich’s candidates
local pseudorandom generators require to use a sufficiently expanding hyper-
graph. Unfortunately, building concrete graphs satisfying the appropriate expan-
sion properties is a non-trivial task. Indeed, all known concrete constructions of
expanding bipartite hypergraphs fail to achieve parameters which would allow
to construct a PRG with constant locality. Therefore, to our knowledge, in all
works using local PRG (see e.g. [IKOS08,App13,Lin17,ADI+17b,BCG+17]), it
is always assumed (implicitly or explicitly) that the hypergraph G of the PRG
is picked uniformly at random (which makes it sufficiently expanding with prob-
ability 1− o(1), even in the constant-locality setting) in a one-time setup phase.
Therefore, this is the setting we assume for our cryptanalysis.

Notations. In the first part of this work, we focus on the predicate P5, assuming
that the subsets σ1, ..., σm are random subsets. The predicate P5 can be regarded
as a Boolean function of five variables:

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5.

108 G. Couteau et al.

The predicate P5 has algebraic degree 2 and an algebraic immunity of 2, and
is 2-resilient. Let n be the size of the input, i.e. the number of initial random
bits. We define the stretch s and denote the size m of the output as m = ns.
Let x1, . . . , xn ∈ F2 be the input random bits and y1, . . . , ym ∈ F2 be the output
bits. The m public equations Ei for 1 ≤ i ≤ m are drawn as follows:

– a subsequence of [n] of size 5 is chosen uniformly at random. Let us call it

σi = [σi
1, σ

i
2, σ

i
3, σ

i
4, σ

i
5].

– Ei is the quadratic equation of the form

xσi
1
+ xσi

2
+ xσi

3
+ xσi

4
xσi

5
= yi.

The public system Σ that we consider is then defined with the m equations,
that is (Ei)1≤i≤m.

Ordered and Unordered. There are two different cases to consider:

1. (Ordered case) σi is ordered, i.e. σi
1 < σi

2 < σi
3 < σi

4 < σi
5.

2. (Unordered case) The order σi’s elements is arbitrary.

However, in the core of the paper, we will consider the unordered case, as
we’ll provide evidence that the vulnerabilities are even more important for the
ordered case in the full version of our paper [CDM+18].

Matrix Inversion Complexity. Our attacks require a sparse matrix inversion
algorithm. We consider the Wiedemann’s algorithm [Wie86], the complexity of
which is O(n2) in our context, since there are less than d ·n non-zero elements of
our matrices. Other algorithms could be used, but the complexity of our attacks
would have to be modified accordingly.

3 Guess and Determine Cryptanalysis of Goldreich’s
PRG with P5

In this section, we describe a new subexponential seed recovery attack on Gol-
dreich’s PRG when instantiated within the predicate P5. Our attack is a Guess
and Determine like attack, which is a widely used technique in symmetric crypt-
analysis [HR00,EJ00]. As an example, a similar attack [DLR16] has been done
on the preliminary version of the stream cipher FLIP [MJSC16] (which can be
interpreted as an instance of Goldreich’s PRG with linear locality and fixed secu-
rity parameters). The idea of guessing elements before making algebraic analysis
has been also introduced in [Bet11] under the name of hybrid attacks. In the
following, we sketch a similar idea applied to the highly structured Goldreich’s
PRG.

On the Concrete Security of Goldreich’s PRG 109

3.1 Overview of the Attack

Using the above notations, we further make the following observations on Gol-
dreich’s PRG instantiated with P5.

Observations

Quasi-linearity. If either xσi
4

or xσi
5

is known, then the corresponding equa-
tion becomes a linear equation. This is the main vulnerability that we use to
mount our attack.
Collisions. If two equations have the same monomial of degree 2, then the
sum of these equations becomes linear (details are given in Sect. 3.2). Using
this phenomenon, we can also get linear equations. We first analyze the num-
ber c of pairs of equations that shares a monomial of degree 2. Let the notion
of collision refer to this phenomenon.

Definition 5 (Collision). A collision is a couple (i, j) ∈ [m]2 such that i �= j
and {σi

4, σ
i
5} = {σj

4, σ
j
5}.

Combining both observations, a subexponential attack can be derived. The
main idea is to find linear equations using collisions and quasi-linearity.

The Attack

step 1. Find all collisions and derive the corresponding linear equations. Let
c be the number of linear equations obtained with this step.
step 2. Take a small subset of � variables in {x1, . . . , xn}, called xi1 , . . . , xi�

,
such that by guessing them, n − c new equations are generated (� is formally
defined in Definition 6).
step 3. For all 2� possible values of (xi1 , . . . , xi�

), build the system of at least
n linear equations, solve it7, find a candidate seed and check if that candidate
matches the public evaluation of the PRG. If so, then it is the secret seed and
the guess is correct.

Definition 6 (Number of guesses �). Let an instance of Goldreich’s PRG be
generated with n variables and m equations. Let c be the number of collisions.
Let us define � as a sufficient number of guesses required to build n − c linear
equations.

The above attack works as long as the systems of linear equations obtained
in step 2 and 3 above contain an invertible subsystem of size sufficiently large
to recover the seed. Our experiments confirm that this is always the case. We
formalize this observation with a combinatorial hypothesis: define Dn to be the
distribution over Fn×n

2 obtained by sampling the hypergraph of Goldreich’s PRG

7 If more than n linear equations are recovered from Step 1 and 2, the system is
unlikely to be solvable for an incorrect guess. In that case, it is not necessary to
check if the public output matches with the candidate seed.

110 G. Couteau et al.

at random (with d = 5), finding c linear equations from the collisions, taking the
smallest subset of variables which suffices to recover n′ ≥ n − c additional linear
equations, guessing at random the value of these variables, and outputting the
n × n matrix An of the linear system (if n′ > n, we truncate to n equations for
simplicity).

Hypothesis 1. There exists a constant γ such that for every sufficiently large
n ∈ N, the matrix An contains with overwhelming probability an invertible
subsystem of γ · n equations, where the probability is taken over the coins of
An

$← Dn.

In the full version of this work [CDM+18], we provide a detailed analysis of
Hypothesis 1. Specifically:

– By applying the result of [BQ09], which describes a polytime seed recovery
attack given an approximate preimage of the PRG, we formally show that
Hypothesis 1 implies that our attack succeeds with overwhelming probability.

– We conduct detailed experimentations. In our experiments, the matrix An

always contains an invertible subsystem of γ · n equations, with γ > 0.9.
– We show that Hypothesis 1 is related to well-established conjectures in math-

ematics, related to the distribution of the rank of random sparse matrices.
Unfortunately, formally proving Hypothesis 1, even under some heuristics
(e.g. replacing Dn by the uniform distribution over sparse matrices), appears
to be a highly non-trivial mathematical problem, which requires techniques
far out of the scope of the current paper.

– Eventually, we show that our attack can be modified to (provably) break
the pseudorandomness of Goldreich’s PRG, without having to rely on any
unproved hypothesis. Hence, Hypothesis 1 seems to be only necessary for
showing that our attack breaks the one-wayness of Goldreich’s PRG.

In the next part, we give more details of our attack and we prove that the
complexity of this attack will always be smaller than

O(n22n2−s

).

We later introduce experimental results in Sect. 3.3.

3.2 Complexity Analysis and Details

Assessing the Number of Collisions. As previously noticed, collisions can be
used to build linear equations. For example, let us assume we have the following
two equations in Σ:

xσi
1
+ xσi

2
+ xσi

3
+ xσi

4
xσi

5
= yi (1)

xσj
1

+ xσj
2

+ xσj
3

+ xσi
4
xσi

5
= yj (2)

then adding Eqs. (1) and (2) gives us the following linear equation:

xσi
1
+ xσi

2
+ xσi

3
+ xσj

1
+ xσj

2
+ xσj

3
= yi + yj

On the Concrete Security of Goldreich’s PRG 111

However, we stress that if we had a third colliding equation:

xσk
1

+ xσk
2

+ xσk
3

+ xσi
4
xσi

5
= yk (3)

then we could only produce a single other linear equation (w.l.o.g. (1) + (3)),
since the other combination ((2) + (3)) would be linearly equivalent to the two
previous linear equations.

Hence, this problem can be seen as a balls-into-bins problem: m balls are
randomly thrown into

(
n
2

)
bins and we want to know how many balls in aver-

age hit a bin that already contains at least one ball. Indeed, this number will
approximate the value c of the algorithm.

Proposition 1 (Average number of collisions). Let n be the number of vari-
ables, and m be the number of equations, let C be the random variable counting
the number of collisions on the degree two monomials in the whole system. Then,
the average number of collisions is:

E(C) = m −
(

n

2

)
+

(
n

2

)((
n
2

) − 1(
n
2

)
)m

∈ O(n2(s−1)).

The proof of this proposition is given in the full version [CDM+18]. Table 1
gives the evaluation of this formula for some set of parameters. Our experimental
results (see Sect. 3.3) corroborate these expectations and show that the number
of collisions is always very close to this expected average.

Table 1. Average number of collisions

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771

s = 1.4 83 145 254 442 773

s = 1.3 28 42 64 97 147

We now assess the complexity of the first step.

Lemma 1. In the worst case, Step 1 has complexity O(m · log(m)).

The proof is given in the full version of our paper [CDM+18].

Finding the Smallest Subset of Guesses. The dominant term of the com-
plexity of our attack is given by the number of guesses � we have to make in the
second step. Thus, minimizing � is important. Consequently, the variables of the
seed that we guess correspond to those appearing the most in the monomials
of degree two. Then, the worst case happens when the instance of the PRG is
such that there is no best set of guesses. In this specific unlikely setting, each
guess generates the exact same amount of linear equations. Here, we bound the
number of guesses with the minimum number of guesses for a worst case system.

112 G. Couteau et al.

Proposition 2 (Number of guesses). For any instance with n variables, m
equations and c collisions, an upper bound on the sufficient number of guesses
required to build n − c linear equations is:

� ≤
⌊

n(n − c)
2(m − c) + n

+ 1
⌋

. (4)

The proof is given in the full version of our paper [CDM+18]. Eventually,
Eq. 4 can be approximated with

⌊
n(n − c)

2(m − c) + n
+ 1

⌋
� O

(
n2−s

2

)
. (5)

We show further in Sect. 3.3 that experimental results are much better. We
stress that this theoretical worst case expectation is far from experience. Some
explanations of this gap are given in the full version of our paper.

The complexity of Step 2 is given by the following lemma.
Lemma 2. Step 2 has complexity O(� ·m) which is O(n2) with Eq. 5 estimation.

The proof is given in the full version of our paper.

Solving the Linear System. Now, � variables {xi1 , . . . , xi�
} are chosen to be

guessed and an exhaustion over all the 2� values of these variables is necessary.
For every possible guess, one can try to solve the linear equations collected in
the previous steps. In the case that more than n equations are collected, the
system is overdetermined and thus may not be solvable. If so, then the guess is
incorrect, else we obtain a candidate seed. This candidate can be either confirmed
or rejected using the public quadratic system and the public output of the PRG.
If the candidate is rejected, then the guess is also incorrect. However, if the
candidate matches the public evaluation of the PRG, then the candidate seed is
the secret seed with overwhelming probability8 and the search can be stopped.

The complexity of this attack is given by the following lemma.
Lemma 3. The complexity of Step 3 is

O
(
nω2

n2−s

2

)
,

which is also the asymptotic complexity of the full attack.
The proof is given in the full version of our paper [CDM+18].

3.3 Experiment

Distribution of the Number of Collisions. The theoretical results of Table 1
are verified in practice, as shown in Fig. 1 for the particular case of n = 1024
and s = 1.4. As expected with the analytical formula, the number of collisions is
very close to 254 in average. Moreover, our experimental results are very dense
around the average, suggesting that the distribution has a low variance.
8 It is very unlikely that two seeds give the same output by evaluating the same

quadratic system. Even though, if it is the case, this procedure still finds an equiv-
alent seed which makes the system insecure.

On the Concrete Security of Goldreich’s PRG 113

200 250 300
0

20

40

60

Number of collisions

Fig. 1. Number of collisions for n =
1024 and s = 1.4 with 2000 tests

64 65 66 67 68 69
0

200

400

600

800

Number of guesses

Fig. 2. Number of guesses for n =
2048 and s = 1.3 with 2000 tests

Table 2. Theoretical number of
guesses in the worst case

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21

s = 1.4 6 11 17 27 44

s = 1.3 13 23 39 65 110

Table 3. Experimental number of
guesses in average

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21

s = 1.4 6 11 17 27 44

s = 1.3 13 23 39 65 110

Implementation of the Attack. Since the study of this paper is the concrete
security of Goldreich’s PRG, it is important to practically check if the attack
presented in Sect. 3.1 can be efficient when implemented. For this purpose, we
provide a proof of concept in Python.

One can note that the practical attack should be on average more efficient
than assessed theoretically. Indeed, the asymptotic complexity of Proposition 3
is estimated in the worst case and pessimistic approximations were made on
n − c and on the value of �. Hence, we experimented this attack for different
stretches and different values of n and we effectively noticed that the complexity
in average is much smaller than the expected complexity. Table 2 represents the
theoretical number of guesses necessary to recover the seed and Table 3 represents
the average number of guesses actually needed in the experiment. Moreover, we
also noticed that the number of guesses needed to invert the system has a very
low variance, as shown in Fig. 2.

With this experiment, we were able to estimate the practical security of Gol-
dreich’s PRG against the guess and determine approach with 80 bits of security.
Indeed, for one instance of the PRG, the complexity of the seed recovery can
be easily derived from the number � of guesses as 2�nω. So to assess the 80
bits security, one can evaluate the average number of guesses necessary for one
choice of (n, s) and check if the complexity is lower than 280. For that, for 30
values of n ∈ [27, 214], we delimited the smallest stretch for which the average
number of guesses allows a 80 bits attack. Each average has been done on 1000

114 G. Couteau et al.

29 210 211 212 213 214
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
P
R
G

above: < 80 bits security

Fig. 3. Limit stretch for vulnerable instances. The gray zone above the curve denotes
the insecure choices of parameters.

measurements because the variance was very small. Figure 3 represents the limit
on vulnerable (n, s) parameters. Above the line, the parameters are on average
insecure against the guess and determine attack.

Candidate Non-vulnerable Parameters. We were able to estimate the prac-
tical range of parameters that appear to resist to this attack. To assess them, we
estimated the number of guesses necessary and deduced the bit security. With
many measurements (1024 for each set of parameters), we could find the limit
stretch for parameters that are, not vulnerable to our attack. The couples (n, s)
that possess the maximal s with an expected security of 80 or 128 bits9 are
conjectured to be the limit for non vulnerable parameters. These couples10 are
represented by the two lines in Fig. 4.

We also introduce certain parameters in Table 4 as challenges for improving
the cryptanalysis of Goldreich’s PRG. These parameters correspond to choices of
the seed size and the stretch which cannot be broken in less than 280 (resp. 2128)
operations with the attacks of this paper. Further study is required to assess
confidence in the security level given by these parameters.

9 We actually took a margin of 10% to take into account the possible improvements
of our implementation.

10 This curve should not be extrapolated because outside of its range, Gröbner attacks
seem more powerful, see Fig. 5.

On the Concrete Security of Goldreich’s PRG 115

Table 4. Challenge parameters for seed recovery attacks. The first line contains the
parameter n and below are represented the associated stretches s.

Elementary operations 512 1024 2048 4096

<280 1.120 1.215 1.296 1.361

<2128 1.048 1.135 1.222 1.295

29 210 211 212

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Size of the seed

St
re
tc
h
of

th
e
P
R
G

below: conjectured > 80 bits security
below: conjectured > 128 bits security

Fig. 4. Limit stretch for conjectured non vulnerable instances.

3.4 Other Algebraic Cryptanalysis

To complement this attack, we also made an analysis of the efficiency of alge-
braic attacks with Gröbner basis on Goldreich’s PRG. While it is known that
Goldreich’s PRG (and its variants) provably resists such attacks for appropriate
choices of (asymptotic) parameters ([AL16], Theorem 5.5), little is known about
its exact security against such attacks for concrete choices of parameters.

Since Goldreich’s PRG is far from a Boolean random quadratic system, the
performance of a Gröbner basis strategy is hard to assess with the existing
theory. In order to give an intuition on how Gröbner basis algorithms would
behave on Goldreich’s PRG with predicate P5, we provide in the full version
of our paper [CDM+18] an easy-to-understand order two linearization attack.
This polynomial attack leads to a practical seed recovery for certain parameters
(n, s) and we derive a heuristic bound for vulnerable (n, s) for 80 bits of security.
The existence of such an attack allows to estimate bounds on Gröbner basis
performance. Using an implemented proof of concept, we introduce heuristic

116 G. Couteau et al.

29 210 211 212 213 214
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Size of the seed

St
re
tc
h
of

th
e
P
R
G

Guess and determine
Order 2 linearization

Fig. 5. Limit stretch for vulnerable parameters with 80 bits of security against both
guess and determine (Sect. 3) and order 2 linearization attacks (See the full version of
our paper). The gray zone above the curves denotes the insecure choices of parameters.

bounds for vulnerable parameters. From this linearization attack performance
and complexity, we derive a heuristic bound on vulnerable (n, s) parameters
against a Gröbner basis technique. We refer the reader to the full version of our
paper for the complete analysis.

3.5 Conclusion

We described in this section a guess and determine attack against Goldreich’s
PRG. In the full version of our paper, we complement this result with an analysis
of the security of Goldreich’s PRG against an order 2 linearization attack (à la
Gröbner). We represent on Fig. 5 the range of parameters for which Goldreich’s
PRG is conjectured to have 80 bits of security against those two attacks. As illus-
trated on the graph, the guess and determine approach targets more parameters
for low n while the linearization attack performs better for n > 4000. Although
Goldreich’s PRG is conjectured to be theoretically secure for a stretch approach-
ing 1.5 by an arbitrary constant, our analysis shows that a very large seed must
be used to achieve at least 80 bits of security with such stretch. In particular, if a
stretch of 1.4 is needed, no seed smaller than 5120 bits should be used. Similarly,
for a stretch as small as 1.1, the seed must be at least 512 bits long.

On the Concrete Security of Goldreich’s PRG 117

4 Generic Attacks Against Goldreich’s PRG

Beyond the predicate P5 we investigate the security of other predicates for higher
stretches, and show that the considered criteria are not sufficient to determine the
security. In the full version of our paper, we prove that the number of independent
annihilators of the predicate has to be taken into account. Hence, the algebraic
immunity is not enough, as we provide a new bound on the stretch that refines
the theorem of Applebaum and Lovett. On the other side, we provide in this
section an improvement of the guess and determine technique, combined with an
algebraic attack. This generalization can be seen as an hybrid attack as defined
in [Bet11].

4.1 A Subexponential-Time Algorithm

The theorem of Applebaum and Lovett for polynomial-time algorithms regarding
algebraic attacks can be improved, as shown in the full version of our paper. In
this section, we focus on subexponential-time algorithms. The idea here is to
generalize our initial attack of Sect. 3 against the PRG instantiated with the
predicate P5, to all other considered predicates. Therefore we generalize the
attack to all XOR�Mk predicates and then more particularly to the XOR�MAJk

predicates.

The Principle. Let n be the size of the seed of the PRG with stretch s, and
let P be a predicate with locality d. The general idea is to guess r variables
of the seed, and solve the corresponding system of equations for each possible
value of those r bits. For each equation obtained, an equation of smaller or equal
degree can be derived using the principle of the algebraic immunity. Then, the
complexity of the attack mainly depends on the values of r and the algebraic
immunity of the functions we obtain. It corresponds to the general principle of
algebraic attacks with guess and determine [MJSC16], for which we can affine the
complexity in the particular case of XOR�Mk predicates. We begin by considering
the complexity of an attack targeting the degree of the M predicate after guessing
some bits, based on the following remark:

Remark 1. As soon as k − 1 variables among the k variables of M are fixed, a
linear equation can be found, as the output of M depends on only one variable
and as XOR� is linear.

The Attack. Our sub-exponential time algorithm works as follows:

step 1. Fix r variables of the seed (xi1 , . . . , xir
), with r ∈ O

(
n

k−s
k−1

)
.

step 2. For all 2r possible values of xi1 , . . . , xir
, recover the corresponding

linear system of equations.
step 3. Solve the system in (n− r)ω operations; if there is a contradiction go
back to step 2, otherwise add the solution to the list.
step 4. Return the list of solutions.

118 G. Couteau et al.

This attack works as long as the system of linear equations obtained in step
3 above contains an invertible subsystem of size sufficiently large to recover the
seed. We then apply Hypothesis 1 with An being the linear system obtained by
guessing at random the 2r possible values of xi1 , . . . , xir

.

Complexity Analysis. The complexity is dominated by Step 3, as we repeat
this step 2r times (we have to solve a system of linear equations of size n −
r for each possible values of the r bits), the complexity of this algorithm is
sub-exponential: O(nω2r). Eventually, the final complexity is determined by the
following proposition:

Proposition 3. For an overwhelming proportion of Goldreich’s PRG instanti-
ated with a XOR�Mk predicate, under Hypothesis 1 on step 2 system, the com-
plexity order of the previous algorithm can be approximated by:

2n
k−s
k−1 · nω.

The proof is given in the full version of our paper.

Remark 2. It is important to notice that the parameter of this attack does
not rely directly on the locality, but only on the number k of variables that
appear in the nonlinear part M, hence, it improves the complexity of [BQ09].
Indeed, the generic complexity of Bogdanov and Qiao is roughly O(2n1−(s−1)/2d

)
where d denotes the locality, as our algorithm has a complexity that is in
O

(
nω · 2n1−(s−1)/(k−1)

)
, with k − 1 < d, by definition of k.

Moreover, the predicate requires a high resiliency to avoid linear attacks,
and one of the most natural constructions to build a resilient function is to
add an independent linear part to a function. It corresponds to the XOR�Mk

predicates, which have a resiliency of at least � − 1 given by the xor part. It is
also possible to build resilient functions differently, which seems to be a better
choice regarding this attack. For the case of P5, we have k = 2, that gives us an
attack in O(nω2n2−s

).

Possible Improvement. This algorithm only relies on the number of variables
of the non-linear part, but not on its algebraic immunity. Instead of fixing vari-
ables in order to obtain linear equations in the non-linear part of a XOR�Mk

predicate, an attacker can fix variables in order to recover equations of degree
greater than 1. Indeed, using the algebraic immunity of the M predicate, the
attacker can recover such equations by fixing less than k bits in the M part. By
doing so, it appears that the relevant criterion regarding this attack is no longer
the algebraic immunity, neither the r-bit fixing degree defined in [AL16], but a
generalization of the two. The efficiency of the attack will depend on the alge-
braic immunity of the predicates obtained after doing some guesses, and on the
probability of getting predicates (in fewer variables) with this algebraic immu-
nity (or smaller). A lower bound on the algebraic immunity that can be obtained

On the Concrete Security of Goldreich’s PRG 119

with r guesses is given by the r-bit fixing algebraic immunity (introduced first in
term of recurrent algebraic immunity in [MJSC16] to bound the complexity of
algebraic attacks combined with guess and determine) defined in the following
sense:

Definition 7 (r-bit fixing algebraic immunity). Let f be a Boolean function with
d variables. For any 0 ≤ r ≤ d, and b = (b1, . . . , br) ∈ {0, 1}r, i = (i1, . . . , ir) ∈
[d]r such that i1 < i2 < · · · < ir, we note f(b,i) the restriction of f where the r
variables indexed by i1, . . . , ir are fixed to the value b1, . . . , br. Then f has r-bit
fixing algebraic immunity a if

min
(
AI(f(b,i)) : i = (i1, . . . , ir) ∈ [d]r, i1 < i2 < · · · < ir, b ∈ {0, 1}r

)
= a

where AI denotes the algebraic immunity.

For the case of XOR�Mk predicates we prove in the full version of our paper
[CDM+18] an upper bound on the r-bit fixing algebraic immunity. Thereafter,
determining the number of predicates with this algebraic immunity that could be
reached guessing r variables will lead to other sub-exponential time algorithms.
The description and analysis of this algorithm applied on XOR�Mk predicates is
given in the full version of our paper. However, this algorithm only generalizes the
result given by the first algorithm as it considers systems of equations of degree
greater than one. But it does not assume any property on the M predicate, and
leads to consider the maximum algebraic immunity that can be provided by
this part when some variables are fixed. Considering the principle of the r-bit
fixing algebraic immunity, we can try to find guesses which lower this algebraic
immunity, leading to an attack with even better complexity.

In the following, we show on the XOR-MAJ predicates how only taking into
account specific values of guessed bits (but changing the positions that we guess)
enables to target a low algebraic immunity with enough equations.

Application to XOR-MAJ Predicates. In the previous algorithms, we fix
r bits that never change, but we test all possible values for those bits. However,
it might be of interest to change the bits that we guess, by taking into account
a specific value for those bits, such that we decrease more drastically the degree
of the equations that we get. Using the notations of Definition 7, it boils down
to finding values of b ∈ {0, 1}r such that AI(f(i,b)) is low for enough i.

Let us consider the XOR�MAJk predicate (Definition 3), then our initial algo-
rithm breaks the construction with complexity O(nω2n(k−s)/(k−1)

), and its gen-

eralization with complexity O

(
2n

1+j−s+�(k−j)/2�
j

nω(� k−j
2 �+1)

)
for all integer j

such that 1 ≤ j ≤ k. Moreover, this algorithm is an improvement only for bigger
stretches. In the following, we change the way we make our guesses, in order to
capture how the r-bit fixing algebraic immunity is a relevant criterion.

In these algorithms, one can notice that fixing j bits among the k variables
that appear in the majority function can derive different degrees of equations,

120 G. Couteau et al.

depending on the value of the bits that are guessed: fixing
⌈

k
2

⌉
bits all to 0 (or

all to 1) will derive directly linear equations. Indeed, for the majority function,
if strictly more than half of the bits are supposed to be all zero, then the corre-
sponding output has to be 0 by definition of the majority, and respectively 1 if
all these bits are ones. On the other side, fixing a quarter of bits to be ones and
a quarter of bits to be zero will derive an other majority function taken other
half of the bits, which is clearly non-linear for k big enough.

Hence, instead of fixing r bits and guess all possible values of those bits, we
choose r bits, guessing that all those bits are all one or all zero, and repeat this
until the guess is right (the position of the r guessed variables changes, not the
value). This particular guess-and-determine is exactly what Duval, Lallemand
and Rotella investigated in [DLR16] on the FLIP family of stream ciphers (and
which complexity can be bounded through the r-bit fixing algebraic immunity,
[MJSC16] Sect. 3.4).

Description of the Algorithm

step 1. Fix randomly r variables of the seed (xi1 , . . . , xir
).

step 2. Assume that all of them are equal to zero, solve the corresponding
linear system, add the solution to the list.
step 3. Assume that all the r variables are equal to one, solve the corre-
sponding linear system, add the solution to the list.
step 4. If in the solution list there is one with no contradiction with the PRG
output, output the solution as the seed. Otherwise, empty the list and go
back to Step 1.

As for the first algorithm, we assume that Hypothesis 1 is verified with An

representing the linear systems of Step 2 and 3.

Complexity Analysis. The complexity is dominated by the number of repetition
of Step 2 and Step 3, we determine it through the following proposition:

Proposition 4. For an overwhelming proportion of Goldreich’s PRG instanti-
ated with a XOR�MAJk predicate, under Hypothesis 1 for Step 2 and 3 systems,
the seed can be recovered in time complexity of order:

nω2n

1− s−1

� k
2 �+1

.

The proof is given in the full version of our paper.
This algorithm captures something else than the previous ones, as it shows

that one has to consider all possible choices of guesses in order to evaluate exactly
the security of such constructions. In other words, it shows that the r-bit fixing
algebraic immunity is exactly the relevant criterion to resist our attack, as it
defines the smallest algebraic immunity that can be considered for an attack.
However, one must also take the probability that a corresponding guess happens
on the equations into account. Hence there exists a trade-off between the choice
of the good guesses, and the probability that the corresponding equation of small
degree can be derived.

On the Concrete Security of Goldreich’s PRG 121

4.2 Open Questions

The attacks and their variants described here asked lot of open questions. For
the polynomial time algorithm using the number of linearly independent anni-
hilators, we do not take into account some dependencies into different equations
as explained in the full version of our paper [CDM+18]. Hence, the condition on
the stretch that we gave could be improved by considering dependencies on the
subsets.

For the subexponential-time attack that uses the r bit fixing algebraic immu-
nity, we do not know if the bound given in the full version of our paper is tight,
that is if there exist predicates, such that fixing any bits will still derive Boolean
functions with fewer variables that reach the maximal algebraic immunity. In
other words, is it possible to have a perfect predicate regarding the r bit fixing
algebraic immunity? Recalling that it is the relevant criterion in this context.

Moreover, this bound does not depend on the value of the bits that are
guessed, whereas this might have an influence, as shown on the XOR-MAJ pred-
icate. For example, the Boolean function x0 +x1x2x3x4 is of algebraic immunity
2, but fixing x1 to be 1 will derive a Boolean function that is still of algebraic
immunity 2, but fixing x1 = 0 will bring directly an equation of degree 1. Hence,
all choices of guess are not equivalent, implying that different choices of guesses
could improve the complexity of our subexponential-time algorithm, depending
strongly on the predicate.

Last but not least, how the first idea of using different annihilators can
improve the subexponential-time algorithms using guess and determine?

Acknowledgments. We thank Jean-Pierre Tillich and Benny Applebaum for useful
discussions and observations. We also are indebted to Guénaël Renault for fruitful
discussions about Gröbner basis approaches, and to the reviewers of ASIACRYPT for
their useful comments. This research has been partially funded by ANRT under the
programs CIFRE N 2015/1158 and 2016/1583. We acknowledge the support of the
French Programme d’Investissement d’Avenir under national project RISQ P141580.
The first author was supported by ERC grant 724307 (project PREP-CRYPTO). The
fifth author was partially supported by the French Agence Nationale de la Recherche
through the BRUTUS project under Contract ANR-14-CE28-0015.

References

[ABR12] Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-
bias generators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
600–617. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 34

[ABR16] Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias
generators. J. Cryptol. 29(3), 577–596 (2016)

[ADI+17a] Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. Cryptol-
ogy ePrint Archive, Report 2017/617 (2017). http://eprint.iacr.org/2017/
617

https://doi.org/10.1007/978-3-642-28914-9_34
https://doi.org/10.1007/978-3-642-28914-9_34
http://eprint.iacr.org/2017/617
http://eprint.iacr.org/2017/617

122 G. Couteau et al.

[ADI+17b] Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 8

[AHI05] Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for
the running time of DPLL algorithms on satisfiable formulas. J. Autom.
Reason. 35(1–3), 51–72 (2005)

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

[AIK08] Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators
with linear stretch in NC0. Comput. Complex. 17(1), 38–69 (2008)

[AL16] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions and their countermeasures. In: 48th ACM STOC, pp. 1087–1100.
ACM Press, June 2016

[App12] Applebaum, B.: Pseudorandom generators with long stretch and low local-
ity from random local one-way functions. In: 44th ACM STOC, pp. 805–
816. ACM Press, May 2012

[App13] Applebaum, B.: Pseudorandom generators with long stretch and low local-
ity from random local one-way functions. SIAM J. Comput. 42(5), 2008–
2037 (2013)

[App15] Applebaum, B.: The cryptographic hardness of random local functions -
survey. Cryptology ePrint Archive, Report 2015/165 (2015). http://eprint.
iacr.org/2015/165

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 17

[BCG+17] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic
secret sharing: optimizations and applications. In: ACM CCS 2017, pp.
2105–2122. ACM Press (2017)

[Bet11] Bettale, L.: Cryptanalyse algebrique: outils et applications, Ph.D. thesis
(2011)

[BGI+01] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BQ09] Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function.
In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM
-2009. LNCS, vol. 5687, pp. 392–405. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03685-9 30

[CCF+16] Canteaut, A., et al.: Stream ciphers: a practical solution for efficient
homomorphic-ciphertext compression. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 313–333. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-52993-5 16

[CDM+18] Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete
security of Goldreich’s pseudorandom generator (2018)

[CEMT14] Cook, J., Etesami, O., Miller, R., Trevisan, L.: On the one-way function
candidate proposed by Goldreich. ACM Trans. Comput. Theor. (TOCT)
6(3), 14 (2014)

[CM01] Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall,
J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 24

https://doi.org/10.1007/978-3-319-63688-7_8
http://eprint.iacr.org/2015/165
http://eprint.iacr.org/2015/165
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-03685-9_30
https://doi.org/10.1007/978-3-642-03685-9_30
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/3-540-44683-4_24

On the Concrete Security of Goldreich’s PRG 123

[CM03] Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with lin-
ear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 345–359. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 21

[Cou03] Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear
feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
176–194. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 11

[DGM05] Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically significant
boolean functions: construction and analysis in terms of algebraic immu-
nity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
98–111. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760 7

[DLR16] Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of
stream ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 457–475. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 17

[DMS05] Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean
functions with maximum possible annihilator immunity. Cryptology ePrint
Archive, Report 2005/229 (2005). http://eprint.iacr.org/2005/229

[EJ00] Ekdahl, P., Johansson, T.: SNOW - a new stream cipher. In: Proceedings
of First NESSIE Workshop, Heverlee (2000)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer
Society Press, October 1984

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
Cryptology ePrint Archive, Report 2000/063 (2000). http://eprint.iacr.
org/2000/063

[GRR+16] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-
friendly symmetric key primitives. In: ACM CCS 2016, pp. 430–443. ACM
Press, October 2016

[HR00] Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial
in word-oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-44448-3 23

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with con-
stant computational overhead. In: 40th ACM STOC, pp. 433–442. ACM
Press, May 2008

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. Cryptology ePrint Archive, Report 2008/465 (2008)

[Lin17] Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 20

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 21

[LV17] Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom
generators and applications to indistinguishability obfuscation. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 119–137.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 5

https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/11502760_7
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
http://eprint.iacr.org/2005/229
http://eprint.iacr.org/2000/063
http://eprint.iacr.org/2000/063
https://doi.org/10.1007/3-540-44448-3_23
https://doi.org/10.1007/3-540-44448-3_23
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-70500-2_5

124 G. Couteau et al.

[MJSC16] Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream
ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 13

[MST03] Mossel, E., Shpilka, A., Trevisan, L.: On e-Biased generators in NC0. In:
44th FOCS, pp. 136–145. IEEE Computer Society Press, October 2003

[OW14] ODonnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In: IEEE 29th Conference on Computational Com-
plexity (CCC), pp. 1–12. IEEE (2014)

[Sie84] Siegenthaler, T.: Correlation-immunity of nonlinear combining functions
for cryptographic applications (corresp.). IEEE Trans. Inf. Theor. 30(5),
776–780 (1984)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

[Wie86] Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theor. 32(1), 54–62 (1986)

https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13

Public Key and Identity-Based
Encryption

A Framework for Achieving KDM-CCA
Secure Public-Key Encryption

Fuyuki Kitagawa(B) and Keisuke Tanaka(B)

Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

Abstract. We propose a framework for achieving a public-key encryp-
tion (PKE) scheme that satisfies key dependent message security against
chosen ciphertext attacks (KDM-CCA security) based on projective hash
function. Our framework can be instantiated under the decisional diffie-
hellman (DDH), quadratic residuosity (QR), and decisional composite
residuosity (DCR) assumptions. The constructed schemes are KDM-
CCA secure with respect to affine functions and compatible with the
amplification method shown by Applebaum (EUROCRYPT 2011). Thus,
they lead to PKE schemes satisfying KDM-CCA security for all func-
tions computable by a-priori bounded size circuits. They are the first
PKE schemes satisfying such a security notion in the standard model
using neither non-interactive zero knowledge proof nor bilinear pairing.
The above framework based on projective hash function captures only
KDM-CCA security in the single user setting. However, we can prove the
KDM-CCA security in the multi user setting of our concrete instantia-
tions by using their algebraic structures explicitly. Especially, we prove
that our DDH based scheme satisfies KDM-CCA security in the multi
user setting with the same parameter setting as in the single user setting.

Keywords: Key dependent message security
Chosen ciphertext security · Projective hash function

1 Introduction

1.1 Backgrounds

Key dependent message (KDM) security, introduced by Black, Rogaway and
Shrimpton [3], guarantees confidentiality of communication even if an adversary
can get a ciphertext of secret keys. KDM security is useful for many practical
applications including anonymous credential systems [7] and hard disk encryp-
tion systems (e.g., BitLocker [4]). KDM security is defined with respect to a
function family F . Let n denote the number of keys and sk = (sk1, · · · , skn)
be secret keys. Informally, a PKE scheme is said to be F-KDM secure if confi-
dentiality of messages is protected even when an adversary can see a ciphertext
of f(sk) under the k-th public key for any f ∈ F and k ∈ {1, · · · , n}. In this

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 127–157, 2018.
https://doi.org/10.1007/978-3-030-03329-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_5&domain=pdf

128 F. Kitagawa and K. Tanaka

paper, we focus on constructing PKE schemes that satisfy KDM security against
chosen ciphertext attacks, namely KDM-CCA security in the standard model.

Camenisch, Chandran and Shoup [6] proposed the first KDM-CCA secure
PKE based on the Naor-Yung paradigm [16]. They showed that for any func-
tion class F , F-KDM-CPA secure PKE can be transformed into F-KDM-CCA
secure one assuming non-interactive zero knowledge (NIZK) proof. They also
showed a concrete instantiation based on the decisional diffie-hellman (DDH)
assumption on a bilinear pairing. Subsequently, Hofheinz [10] showed more effi-
cient KDM-CCA secure PKE. His scheme is circular secure (KDM-CCA secure
with respect to selection functions) relying on both the DDH and decisional
composite residuosity (DCR) assumptions on a bilinear pairing.

The first KDM-CCA secure PKE using neither NIZK proof nor bilinear pair-
ing was proposed by Lu, Li and Jia [14]. They claimed their scheme is KDM-CCA
secure with respect to affine functions (Faff -KDM-CCA secure) relying on both
the DDH and DCR assumptions. However, a flow on their security proof was later
discovered by Han, Liu and Lyu [9]. Han et al. also showed a new Faff -KDM-CCA
secure PKE scheme based on the construction methodology of Lu et al. In addi-
tion, they constructed KDM-CCA secure PKE with respect to bounded degree
polynomial functions. Their schemes are efficient and secure relying on both the
DDH and DCR assumptions.

Despite the above previous efforts, it is still open whether we can construct
KDM-CCA secure PKE based on a single computational assumption using
neither NIZK proof nor bilinear pairing. All existing KDM-CCA secure PKE
schemes without NIZK proof were proved to be secure relying on both the DDH
and DCR assumptions. These schemes are proposed based on a specific algebraic
structure and it is crucial to assume the hardness of both the DDH and DCR
problems on the specific algebraic structure. Thus, it seems difficult to construct
KDM-CCA secure PKE based on a single computational assumption using their
techniques.

Moreover, it is also an open question whether we can construct KDM-CCA
secure PKE with respect to all functions computable by bounded size circuits
(Fall-KDM-CCA secure) using neither NIZK proof nor bilinear pairing. The only
existing way to construct Fall-KDM-CCA secure PKE is to utilize the amplifi-
cation method shown by Applebaum [2]. Applebaum showed if a PKE scheme
is KDM-CCA secure with respect to projection functions, we can transform it
into a Fall-KDM-CCA secure one, where projection function is a function whose
each output bit depends on only a single bit of an input. Kitagawa, Matsuda,
Hanaoka and Tanaka [12] later showed we can perform such a transformation
even if the underlying PKE is only KDM-CCA secure with respect to projection
functions whose output is one bit.

Among existing KDM-CCA secure schemes, only Camenisch et al.’s scheme is
compatible with those transformations. Thus, a construction of Fall-KDM-CCA
secure PKE using neither NIZK proof nor bilinear pairing is not known so far.

A Framework for Achieving KDM-CCA Secure PKE 129

1.2 Our Results

Based on the above back ground, we show the following results.

A framework achieving KDM-CCA security in the single user setting. First, we
propose a framework to construct PKE that is Faff -KDM-CCA secure in the
single user setting based on projective hash function. Our framework can be
instantiated based on the DDH, quadratic residuosity (QR), and DCR assump-
tions. More specifically, we obtain the following theorem.

Theorem 1 (Informal). Under each of the DDH, QR, and DCR assumptions,
there exists PKE that is Faff-KDM-CCA secure in the single user setting.

These schemes are also KDM-CCA secure with respect to projection functions
of single-bit output thus compatible with the amplification method of Apple-
baum [2] and Kitagawa et al. [12]. Thus, we obtain the following corollary.

Corollary 1 (Informal). Under each of the DDH, QR, and DCR assumptions,
there exists PKE that is Fall-KDM-CCA secure in the single user setting.

KDM -CCA secure PKE in the multi user setting. Then, we focus on KDM-CCA
security in the multi user setting. Although the above framework based on pro-
jective hash function captures only KDM-CCA security in the single user setting,
we can prove the KDM-CCA security in the multi user setting of our concrete
instantiations by using their algebraic structures explicitly.

Our DDH based construction is an extension of the KDM-CPA secure
scheme proposed by Boneh, Halevi, Hamburg and Ostrovsky [4]. Similarly to
Boneh et al., using the self-reducibility of the DDH problem, we can prove the
KDM-CCA security in the multi user setting of our DDH based construction
with the same parameter setting as in the single user setting. Especially, we
formally prove the following theorem.

Theorem 2 (Informal). Under the DDH assumption, there exists PKE that
is Faff-KDM-CCA secure in the multi user setting.

Since the DDH based construction is compatible with the results by Apple-
baum [2] and Kitagawa et al. [12], we obtain the following corollary.

Corollary 2 (Informal). Under the DDH assumption, there exists PKE that
is Fall-KDM-CCA secure in the multi user setting.

Our QR and DCR based constructions are extensions of the KDM-CPA secure
scheme proposed by Brakerski and Goldwasser [5]. If we allow the length of a
secret key to depend on the number of users, we can also prove the KDM-CCA
security in the multi user setting of our DCR and QR based schemes using a
technique similar to Brakerski and Goldwasser. We briefly explain how to prove
it after the proof of multi user security of the DDH based scheme.

We summarize our results and previous results in Fig. 1.

130 F. Kitagawa and K. Tanaka

Scheme Functions Assumption Free of pairing Amplification Flexible parameter

[6] Affine DDH
[10] Circular DDH+DCR
[9]-1 Affine DDH+DCR
[9]-2 polynomial DDH+DCR

Ours 1 Affine DDH
Ours 2 Affine QR
Ours 3 Affine DCR

Fig. 1. Comparison of KDM-CCA secure PKE schemes. “Amplification” indicates
whether we can transform the scheme into Fall-KDM-CCA secure one using the results
of Applebaum [2] and Kitagawa et al. [12]. “Flexible parameter” indicates whether we
can prove KDM-CCA security in the multi user setting of the scheme without making
the length of a secret key depend on the number of users.

1.3 Technical Overview

Our starting point is the constructions of PKE proposed by Wee [19] that is
KDM secure in the single user setting (hereafter, KDM(1) security). He showed
how to construct KDM(1)-CPA secure PKE based on homomorphic projective
hash function. His framework captures the previous constructions proposed by
Boneh et al. [4] and Brakerski and Goldwasser [5].

Projective hash function was originally introduced by Cramer and Shoup [8]
to construct PKE satisfying indistinguishability against chosen ciphertext
attacks (IND-CCA security). Thus, we have a natural question whether we can
construct KDM(1)-CCA secure PKE based on projective hash function.

We answer the above question affirmatively with a simple construction.
Below, we first review the construction proposed by Wee [19].

KDM(1)-CPA Secure PKE Based on Homomorphic Projective Hash
Function. We consider a group C and its subgroup V satisfying the subgroup
indistinguishability, that is, uniform distributions over C and V are computation-
ally indistinguishable. Based on C and V, we define projective hash function as
follows. A projective hash function is a family H of hash functions Λsk : C → K
indexed by a key sk ∈ SK, where K is a group. Let μ be a projection map defined
over SK. We require Λsk be projective, that is, for every c ∈ V, the value of Λsk(c)
is determined by only c and pk = μ(sk). In addition, we require that there exist a
public evaluation algorithm Pub that given pk, c ∈ V, and a witness w of c ∈ V,
outputs Λsk(c). Below, we denote group operations of C and K by “·” and “+”,
respectively.

Using a projective hash function H, we can naturally construct a PKE scheme
Π as follows. When generating a key pair (pk, sk), we sample random sk and
compute pk = μ(sk). When encrypting a message m ∈ K, we first sample c

r←− V
with a witness w of c ∈ V. Then, we compute d ← Pub(pk, c, w) + m and set
(c, d) as a ciphertext. When decrypting (c, d), we compute m ← d − Λsk(c).

A Framework for Achieving KDM-CCA Secure PKE 131

Π is IND-CPA secure if H is smooth, that is, the value of Λsk(c) is statistically
chose to uniform given pk = μ(sk) and c, where sk

r←− SK and c
r←− C.1 We

prove the IND-CPA security of Π as follows. We first switch c∗ used to encrypt
the challenge message to c∗ r←− C by using the subgroup indistinguishability.
Then, the distribution of the resulting ciphertext is close to uniform due to the
smoothness and thus IND-CPA security follows.

KDM security from homomorphism. Wee [19] showed Π is also KDM(1)-CPA
secure if H is homomorphic, that is, for every c0, c1 ∈ C, it holds that Λsk(c0 ·
c1) = Λsk(c0)+Λsk(c1). More precisely, Π is KDM(1)-CPA secure with respect to
functions defined as fe(sk) = Λsk(e), where e ∈ C. Note that this function class
corresponds to the set of affine functions in his instantiations.

If H is homomorphic, we can change the distribution of an encryption of
fe(sk), that is (c,Pub(pk, c, w) + Λsk(e)) as

(c,Pub(pk, c, w) + Λsk(e)),where c
r←− V

= (c, Λsk(c) + Λsk(e)),where c
r←− V (by projective property)

= (c, Λsk(c · e)),where c
r←− V (by homomorphism)

≈c (c, Λsk(c · e)),where c
r←− C (by subgroup indistinguishability)

≈s

(
c · e−1, Λsk(c)

)
,where c

r←− C (sincee ∈ C)

≈c

(
c · e−1, Λsk(c)

)
,where c

r←− V (by subgroup indistinguishability)

=
(
c · e−1,Pub(pk, c, w)

)
,where c

r←− V (by projective property),

where w denotes a witness of c ∈ V, and ≈c and ≈s denote computational
indistinguishability and statistical indistinguishability, respectively. This means
that we can simulate an encryption of fe(sk) without sk. Then, based on the
standard hybrid argument, we can prove the KDM(1)-CPA security of Π using
the smoothness of H similarly to the proof for the IND-CPA security of Π.

Extension to KDM(1)-CCASecurePKE. We can construct IND-CCA
secure PKE by adding 2-universal projective hash function to the construc-
tion of Π. More precisely, we use a projective hash function Ĥ consisting of
hash functions Λ̂ŝk indexed by ŝk ∈ ŜK defined on C and V.2 Let μ̂ and ˆPub be
the projection map and public evaluation algorithm of Ĥ. We require that Ĥ
be 2-universal, that is, for every p̂k, c, c∗ ∈ C \ V, and K,K∗ ∈ K, Λ̂ŝk(c) = K

holds with only negligible probability under the condition that p̂k = μ̂
(
ŝk
)

and

Λ̂ŝk(c
∗) = K∗, where ŝk

r←− ŜK.
We modify Π into IND-CCA secure Π′ as follows. When generating a key pair,

in addition to (pk, sk), we sample ŝk
r←− ŜK and compute p̂k = μ̂

(
ŝk
)
. A public

1 More specifically, this property is called average-case smoothness in general.
2 In the actual construction of IND-CCA secure PKE, we need to use 2-universal

projective hash function defined on C × K and V × K. Such a primitive is called
extended projective hash function [8]. For simplicity, we ignore this issue here.

132 F. Kitagawa and K. Tanaka

key and secret key of Π′ are
(
pk, p̂k

)
and

(
sk, ŝk

)
, respectively. When encrypting

a message, we first compute c and d in the same way as Π using pk. Then, we
compute π ← ˆPub

(
p̂k, c, w

)
and set (c, d, π) as the resulting ciphertext. When

decrypting (c, d, π), we first check whether π = Λ̂ŝk(c) holds and if so decrypt a
message in the same way as Π using sk. Otherwise, we output ⊥.

Since Ĥ is 2-universal, an adversary cannot compute Λ̂ŝk(c) correctly for
c ∈ C\V even if he obtain a single hash value Λ̂ŝk (c∗) for c∗ ∈ C\V in the challenge
ciphertext. In other words, the adversary cannot make a valid decryption query
(c, d, π) for c ∈ C \ V. Then, from the projective property of H, the adversary
cannot obtain information of sk other than pk through decryption queries. Thus,
we can reduce the IND-CCA security of Π′ to the smoothness of H.

Problems for proving KDM (1)-CCA security. Even if H is homomorphic, we
cannot prove the KDM(1)-CCA security of Π′ straightforwardly. In the security
game of KDM(1)-CCA security, an adversary can obtain an encryption of ŝk
in addition to that of sk. Thus, we need to eliminate ŝk from the view of the
adversary to use the 2-universal property of Ĥ.

Moreover, if we can do that, there is another problem. Consider functions
of the form fe

(
sk, ŝk

)
= Λsk(e) + f

(
ŝk
)
, where e ∈ C and f : ŜK → K is a

function. If H is homomorphic, using a similar argument as Wee [19], we can
simulate an encryption of fe

(
sk, ŝk

)
by

(
c · e−1,Pub(pk, c, w) + f

(
ŝk
)

, Λ̂ŝk

(
c · e−1

))
,

where c ∈ V and w is an witness of c ∈ V. Even if we can eliminate f
(
ŝk
)

from the second component, the third component Λ̂ŝk

(
c · e−1

)
incurs another

problem. e is an element chosen by an adversary in the security game, and thus
c · e−1 might not be included in V. Thus, the adversary can obtain a hash value
Λ̂ŝk

(
c · e−1

)
for c · e−1 /∈ V through each KDM query fe. In this case, we cannot

rely on the 2-universal property of Ĥ to argue about decryption queries made
by the adversary if he makes multiple KDM queries. Therefore, we also need to
eliminate Λ̂ŝk

(
c · e−1

)
from the view of the adversary.

Our solution: Double layered encryption. We solve the above two problems
at once by extending double layered encryption techniques originally used to
expand the plaintext space of an IND-CCA secure PKE scheme [11,15]. More
precisely, by adding an outer encryption layer, we put the estimation of the prob-
ability that an adversary makes an “illegal” decryption query off till the end of
the sequence of games where all information about the inner layer is eliminated
from the challenge ciphertexts. We use an IND-CCA secure PKE scheme Πcca

as the outer layer encryption scheme. When encrypting a message, we first gen-
erate (c, d, π) in the same way as Π′ and then encrypt them by Πcca. We call the
resulting PKE scheme Πkdm.

A Framework for Achieving KDM-CCA Secure PKE 133

Of course, if we just maintain a secret key csk of Πcca as a part of a secret-key
of Πkdm, we cannot use the IND-CCA security of Πcca. Thus, we add a modifica-
tion. We maintain csk after encrypting by H. More precisely, we modify the key
generation procedure of Πkdm as follows. We first generate (pk, sk) and

(
p̂k, ŝk

)

in the same way as Π′ and generate a key pair (cpk, csk) of Πcca. Moreover, we
sample c∗ r←− C and compute d∗ r←− Λsk(c∗) + csk.3 The resulting public key and
secret key of Πkdm are

(
pk, p̂k, cpk

)
and

(
sk, ŝk, c∗, d∗

)
, respectively.

The overview of the security proof is as follows. Let A be an adversary for
the KDM(1)-CCA security of Πkdm. We consider functions of the form

fe

(
sk, ŝk, c∗, d∗

)
= Λsk(e) + f

(
ŝk, c∗, d∗

)
,

where e ∈ C and f : ŜK×C ×K → K is a function. This set of functions includes
affine functions in the actual instantiations.

1. We first change the security game so that we do not need sk to simulate KDM
queries using the projective property and homomorphism of H and subgroup
indistinguishability. Note that we do not need the smoothness of H to make
this change as explained before.
After this change, the answer to a KDM query fe is of the form

Enccpk

(
c · e−1,Pub(pk, c, w) + f

(
ŝk, c∗, d∗

)
, Λ̂ŝk

(
c · e−1

))
.

2. Then, we change the security game so that a decryption query CT made by
A is replied with ⊥ if c /∈ V, where (c, d, π) ← Deccsk(CT). The probability
that this change affects the behavior of A is bounded by the probability that
A makes a decryption query CT such that c /∈ V and π = Λ̂ŝk(c), where
(c, d, π) ← Deccsk(CT). We call such a decryption query a bad decryption
query. Since ŝk is contained in answers to KDM queries, we cannot estimate
the probability at this point. However, as noted above, we can put the esti-
mation off till the end of the sequence of games, and thus we continue the
sequence.

3. By the previous change on how decryption queries are replied, we can use the
smoothness of H. We eliminate csk encrypted in (c∗, d∗) using the smoothness
of H.

4. Then, we can use IND-CCA security of Πcca. We change the security game so
that a KDM query made by A is replied with CT ← Enccpk (0). In this game,
the advantage of A is 0.

To complete the security proof, we need to estimate the probability that A
makes a bad decryption query. In the final game, ŝk is hidden from the view of
A and he cannot obtain any hash value Λ̂ŝk(c) for c /∈ V. Thus, the probabil-
ity is negligible in the final game if Ĥ is 2-universal. In fact, since the univer-
sal property of Ĥ is sufficient for this argument, we use a universal projective
3 Without loss of generality, we assume that the secret-key space of Πcca is K.

134 F. Kitagawa and K. Tanaka

hash function instead of a 2-universal one in the actual construction. Then, the
remaining problem is whether the probability that A makes a bad decryption
query changes during the sequence of games.

The probability does not change by the third step since the view of A before
the third step is statistically close to that after the third step from the smooth-
ness of H. In addition, if we can efficiently detect a bad decryption query made
by A, we can prove that the probability does not change by the fourth step based
on the IND-CCA security of Πcca. For the purpose, in this work, we require there
exist a trapdoor that enables us to efficiently check the membership of V for pro-
jective hash function. We can complete the security proof under the existence of
such a trapdoor.

Instantiations. We instantiate the above framework based on the DDH, QR,
and DCR assumptions by extending the instantiations of KDM(1)-CPA secure
PKE by Wee [19]. Therefore, the DDH based construction is also an extension
of that proposed by Boneh et al. [4], and the QR and DCR based constructions
are also extensions of those proposed by Brakerski and Goldwasser [5]. In all
constructions, we can make a trapdoor for checking the membership of V. We
briefly review the DDH based instantiation.

The DDH based instantiation. In the DDH based instantiation, we set

C = G
� and V = {(gr

1, . . . , g
r
�) |r ∈ Zp} ,

where G is a cyclic group of order p, g1, . . . , g� are random generators of G, and
� is a parameter determined in the analysis. The uniform distribution over C and
V are computationally indistinguishable based on the DDH assumption on G.
Moreover, the discrete logarithms αi such that gi = gαi for every i ∈ [�] can be
used as a trapdoor to efficiently decide the membership of V, where g is another
generator and [�] denotes {1, . . . , �}.

We construct homomorphic projective hash function H exactly in the same
way as Wee [19]. A secret key sk is randomly chosen s = s1 · · · s� ∈ {0, 1}�. The
corresponding public key is g0 =

∏
i∈[�] g

si
i . When hashing c = (c1, . . . , c�) ∈ C,

we compute
∏

i∈[�] c
si
i . We see that this construction satisfies the projective prop-

erty and homomorphism. Moreover, we can prove the (average-case) smoothness
of it based on the leftover hash lemma by taking � appropriately.

We construct a universal projective hash function Ĥ as follows. A secret
key ŝk is randomly chosen (x1, . . . , x�) ∈ Z

�
p. The corresponding public key is

ĝ0 =
∏

i∈[�] g
xi
i . When hashing c = (c1, . . . , c�) ∈ C, we compute

∏
i∈[�] c

xi
i .

This construction can be seen as an extension of that proposed by Cramer and
Shoup [8], and we can prove its projective property and universal property.

The QR and DCR based instantiations. In the QR based construction, we use
the same C, V, and H as Wee [19]. However, in the QR based construction, we
slightly modify how to mask csk in the key generation. Roughly speaking, this is
because a hash value of H uniformly distributes over a group of order 2, and thus
we need parallelization in order to mask csk using the smoothness of H. In the

A Framework for Achieving KDM-CCA Secure PKE 135

modified version of construction, we avoid such parallelization. However, in the
construction of a universal projective hash function Ĥ, we still need a parallelized
construction similarly to IND-CCA secure PKE based on the QR assumption
proposed by Cramer and Shoup [8]. When we consider CCA security, if the
underlying group has a small prime factor, we need a parallelized construction.

In the DCR based construction, we also apply some modifications to the
construction of C, V, and H used by Wee. In the construction of Wee, the under-
lying group has a small prime factor 2. Therefore, in a naive construction, we
need parallelization. However, by defining hash functions so that every time we
compute a hash value, we first perform a squaring, we can make the small factor
useless to attack the scheme without parallelization. By this modification, the
range of hash functions become a group whose order does not have a small prime
factor and we can avoid parallelization.

Overhead of our constructions. The overhead of communicational complexity
(that is, the size of public-keys and ciphertexts) of our KDM(1)-CCA secure
PKE schemes from its KDM(1)-CPA secure counterparts [19] is very small in
the DDH and DCR based constructions. A public-key and hash value of Ĥ are
just a single group element in the DDH and DCR based constructions. Moreover,
we can use highly efficient IND-CCA secure PKE schemes [13,17] as the outer
layer scheme. In this case, the overhead of communicational complexity is only
few group elements.

Extension to Multi User Setting. Although the above framework based on
projective hash function captures only KDM(1)-CCA security, we can prove the
KDM-CCA security in the multi user setting of concrete instantiations.

As noted before, our DDH based construction is an extension of that proposed
by Boneh et al. [4], and our QR and DCR based constructions are extensions of
those proposed by Brakerski and Goldwasser [5]. In both works, they first show
the KDM(1)-CPA security of their schemes, and then prove its KDM-CPA secu-
rity in the multi user setting by extending the proof for KDM(1)-CPA security.

By using similar techniques, we can prove KDM-CCA security in the multi
user setting of our schemes. Especially, we prove the KDM-CCA security in
the multi user setting of our DDH based construction with the same parameter
setting as in the single user setting. We also briefly explain how to prove the
KDM-CCA security in the multi user setting of our QR and DCR based con-
structions after proving the multi user security of the DDH based construction.

2 Preliminaries

We define some cryptographic primitives after introducing some notations and
left-over hash lemma.

Notations. In this paper, x
r←− X denotes choosing an element from a finite set

X uniformly at random, and y ← A(x) denotes assigning to y the output of an

136 F. Kitagawa and K. Tanaka

algorithm A on an input x. For bit strings x and y, x‖y denotes the concatenation
of x and y. For an integer �, [�] denotes the set of integers {1, . . . , �}.

λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is a negligible function if f(λ) tends to 0 faster than
1
λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being a
negligible function.

We introduce the left-over hash lemma.

Lemma 1 (Left-over hash lemma). Let X, Y , and Z are sets. Let H :=
{h : X → Y } be a family of 2-universal hash functions. Let aux : X → Z be a

function. Then, the distributions (h, h(x), aux(x)) and (h, y, aux(x)) are
√

|Y ||Z|
4·|X| -

close, where h
r←− H, x

r←− X, and y
r←− Y .

2.1 Public Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Let M be the message space of PKE. The key generation algo-
rithm KG, given a security parameter 1λ, outputs a public key pk and a secret key
sk. The encryption algorithm Enc, given a public key pk and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk
and ciphertext CT, outputs a message m̃ ∈ {⊥}∪M. As correctness, we require
Dec(sk,Enc(pk,m)) = m for every m ∈ M and (pk, sk) ← KG(1λ).

Next, we define key dependent message security against chosen ciphertext
attacks (KDM-CCA security) for PKE.

Definition 1 (KDM-CCA security). Let PKE be a PKE scheme, F function
family, and n the number of keys. We define the F-KDM(n)-CCA game between
a challenger and an adversary A as follows. Let SK and M be the secret key
space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates n key pairs (pkk, skk) ← KG(1λ) (k ∈ [n]). The challenger sets sk :=
(sk1, . . . , skn) and sends (pk1, . . . , pkn) to A. Finally, the challenger prepares
a list Lkdm which is initially empty.

2. A may adaptively make the following queries polynomially many times.
KDM queries A sends (j, f0, f1) ∈ [n]×F×F to the challenger. We require

that f0 and f1 be functions such that f : SKn → M. The challenger
returns CT ← Enc

(
pkj , f

b(sk)
)

to A. Finally, the challenger adds (j,CT)
to Lkdm.

Decryption queries A sends (j,CT) to the challenger. If (j,CT) ∈ Lkdm,
the challenger returns ⊥ to A. Otherwise, the challenger returns m ←
Dec (skj ,CT) to A.

3. A outputs b′ ∈ {0, 1}.
We say that PKE is F-KDM(n)-CCA secure if for any PPT adversary A, we

have Advkdmcca
PKE,F,A,n(λ) =

∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

A Framework for Achieving KDM-CCA Secure PKE 137

In addition, we say that PKE is F-KDM-CCA secure if it is F-KDM(n)-CCA
secure for any polynomial n = n(λ).

Remark 1 (Difference with the previous definitions). In the original definition of
KDM security defined by Black et al. [3], an adversary is required to distinguish
an encryption of f(sk) from that of some constant message such as 0, where f
is a function chosen by the adversary.

In our definition of KDM-CCA security, an adversary chooses two functions
(f0, f1) and is required to distinguish an encryption of f0(sk) from that of f1(sk).
Such a definition was previously used by Alperin-sheriff and Peikert [1] when they
defined KDM security for identity-based encryption to simplify their security
proof. We also adopt this definition to simplify our security proofs.

These two types of definitions are equivalent if the function class F contains
a constant function. This is the case for affine functions and projection functions
that we focus on.

IND-CCA security is a special case of KDM-CCA security. More specifically,
we can define IND-CCA security by restricting functions an adversary can query
as KDM queries in the KDM-CCA game to constant functions. Thus, we omit
the definition of IND-CCA security.

2.2 Projective Hash Function

We review the notion of projective hash function introduced by Cramer and
Shoup [8] after introducing the notion of subset membership problem.

Definition 2 (Subset membership problem). Let C be a group and V be a
subgroup of C. We say that the subset membership problem is hard for (C,V) if
uniform distributions over C and V are computationally indistinguishable.

In this work, for a subset membership problem (C,V), we require that there
exist a trapdoor that enables us to efficiently check the membership of V. More-
over, we require that we can efficiently sample c from V with a witness of c ∈ V.

Definition 3 (Projective hash function). A projective hash function H is a
tuple (C,V,K,SK,PK, Λ, μ). C and K are groups and V is a subgroup of C. SK
and PK are sets. The hash function Λsk indexed by sk ∈ SK, given c ∈ C, outputs
a hash value K ∈ K. The projection map μ, given sk ∈ SK, outputs pk ∈ PK.
We require that H be projective, that is, for any sk ∈ SK and c ∈ V, the value
of Λsk(c) is determined only by c and pk = μ(sk). In addition, we require that
there exist a public evaluation algorithm Pub, given pk = μ(sk), c ∈ V, and an
witness w that c ∈ V, outputs Λsk(c), where sk ∈ SK.

In addition, we say that H is homomorphic if for any sk ∈ SK and c0, c1 ∈ C,
it holds that Λsk(c0 ·c1) = Λsk(c0)+Λsk(c1), where “·” and “+” denote operations
in C and K, respectively.

We define two security notions for projective hash function.

138 F. Kitagawa and K. Tanaka

Definition 4 (Average-case smoothness). Let H = (C,V,K,SK,PK, Λ, μ)
be a projective hash function. We say that H is average-case smooth if the dis-
tributions (pk, c, Λsk(c)) and (pk, c,K) are statistically close, where sk

r←− SK,
pk = μ(sk), c

r←− C, and K
r←− K.

Definition 5 (Universal property). Let H = (C,V,K,SK,PK, Λ, μ) be a
projective hash function. We say that H is universal if for any pk ∈ PK , c ∈
C \ V, K ∈ K, we have Pr

sk
r←−SK [Λsk(c) = K|μ(sk) = pk] = negl(λ).

3 KDM(1)-CCA Secure PKE Based on Homomorphic
Projective Hash Function

In this section, we show a framework for achieving KDM(1)-CCA secure PKE
based on homomorphic projective hash function.

Let H = (C,V,K,SK,PK, Λ, μ) be a homomorphic projective hash function
with a public evaluation algorithm Pub. We denote the group operations of
C and K by “·” and “+”, respectively. Let Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, μ̂

)
be a

projective hash function with a public evaluation algorithm ˆPub. Let Πcca =
(KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-key space of
Πcca is K for simplicity. Using these building blocks, we construct the following
PKE scheme Πkdm = (KGkdm,Enckdm,Deckdm). The message space of Πkdm is M.
We use an invertible map φ : M → K in the construction.

KGkdm(1λ):
– Generate sk

r←− SK and compute pk ← μ(sk).
– Generate ŝk

r←− ŜK and compute p̂k ← μ̂
(
ŝk
)
.

– Generate (cpk, csk) ← KGcca(1λ).
– Generate c∗ r←− C and compute d∗ ← Λsk(c∗) + csk.
– Return PK :=

(
pk, p̂k, cpk

)
and SK :=

(
sk, ŝk, c∗, d∗

)
.

Enckdm(PK,m):
– Parse

(
pk, p̂k, cpk

)
← PK.

– Generate c
r←− V with an witness w of c ∈ V.

– Compute K ← Pub(pk, c, w) and d ← K + φ(m).
– Compute π ← ˆPub

(
p̂k, c, w

)
.

– Return CT ← Enccca (cpk, (c, d, π)).
Deckdm(SK,CT):

– Parse
(
sk, ŝk, c∗, d∗

)
← SK.

– Compute csk ← d∗ − Λsk(c∗).
– Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in

C × K × K̂, return ⊥. Otherwise, compute as follows.
– If π 	= Λ̂ŝk(c), return ⊥. Otherwise, return m ← φ−1 (d − Λsk(c)).

A Framework for Achieving KDM-CCA Secure PKE 139

Correctness. We have Pub(pk, c, w) = Λsk(c) and ˆPub
(
p̂k, c, w

)
= Λ̂ŝk(c) for

c ∈ V, where w is a witness of c ∈ V. Then, the correctness of Πkdm follows from
that of Πcca.

Πkdm is KDM-CCA secure with respect to the function family Fphf consisting
of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= φ−1

(
Λsk(e) + φ

(
f
(
ŝk, c∗, d∗

)))
,

where e ∈ C and f : ŜK × C × K → M is a function. This class corresponds
to affine and projection functions in the instantiations. Formally, we prove the
following theorem.

Theorem 3. Let the subset membership problem (C,V) be hard. Let H be
average-case smooth and Ĥ universal. Let Πcca be IND-CCA secure. Then, Πkdm

is Fphf-KDM(1)-CCA secure.

Proof of Theorem 3. Let A be an adversary that attacks the Fphf -KDM(1)-CCA
security of Πkdm. We proceed the proof via a sequence of games. For every t ∈
{0, . . . , 8}, let SUCt be the event that A succeeds in guessing the challenge bit b
in Game t.

Game 0: This is the original Fphf -KDM(1)-CCA game regarding Πkdm. We have
Advkdmcca

Πkdm,Fphf ,A,1(λ) =
∣
∣Pr[SUC0] − 1

2

∣
∣.

1. The challenger chooses a challenge bit b
r←− {0, 1}, and runs as follows.

(a) Generate sk
r←− SK and compute pk ← μ(sk).

(b) Generate ŝk
r←− ŜK and compute p̂k ← μ̂

(
ŝk
)
.

(c) Generate (cpk, csk) ← KGcca

(
1λ
)
.

(d) Generate c∗ r←− C and compute d∗ ← Λsk(c∗) + csk.
(e) Send PK :=

(
pk, p̂k, cpk

)
to A and prepare a list Lkdm.

2. The challenger responds to queries made by A.
For a KDM query ((e0, f0), (e1, f1)) made by A, the challenger responds
as follows.
(a) Generate c

r←− V with a witness w of c ∈ V.
(b) Compute K ← Pub(pk, c, w) and d ← K+Λsk(eb)+φ

(
f b
(
ŝk, c∗, d∗

))
.

(c) Compute π ← ˆPub
(
p̂k, c, w

)
.

(d) Return CT ← Enccca (cpk, (c, d, π)) to A and add CT to Lkdm.
For a decryption query CT made by A, the challenger returns ⊥ to
A if CT ∈ Lkdm, and otherwise responds as follows.
(a) Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is

not in C × K × K̂, return ⊥ to A. Otherwise, responds as follows.
(b) Return ⊥ if π 	= Λ̂ŝk(c) and m ← φ−1 (d − Λsk(c)) otherwise.

3. A outputs b′ ∈ {0, 1}.

140 F. Kitagawa and K. Tanaka

Game 1: Same as Game 0 except that when A makes a KDM query, the chal-
lenger computes K ← Λsk(c) and π ← Λ̂ŝk(c) instead of K ← Pub(pk, c, w)

and π ← ˆPub
(
p̂k, c, w

)
, respectively.

Due to the projective property of H and Ĥ, this change is only conceptual
and thus we have |Pr[SUC0] − Pr[SUC1]| = 0.

Game 2: Same as Game 1 except that when A makes a KDM query, the chal-
lenger generates c

r←− C.

We have |Pr[SUC1] − Pr[SUC2]| = negl(λ) by the hardness of the subset mem-
bership problem (C,V).

Game 3: Same as Game 2 except that the challenger generates c
r←− C and uses

c′ = c · (eb)−1 instead of c when A makes a KDM query ((e0, f0), (e1, f1)).

We have |Pr[SUC2] − Pr[SUC3]| = 0 since if c uniformly distributes over C,
then so does c · (eb)−1.

By this change, the answer to a KDM query ((e0, f0), (e1, f1)) in Game 3 is
Enccca (cpk, (c′, d, π)), where

c′ = c · (eb)−1, d = Λsk(c · (eb)−1) + Λsk(eb) + φ
(
f b
(
ŝk, c∗, d∗

))
, π = Λ̂ŝk (c′) ,

and c
r←− C. Moreover, by the homomorphism of H, d = Λsk(c) +

φ
(
f b
(
ŝk, c∗, d∗

))
holds.

Game 4: Same as Game 3 except that when A makes a KDM query, the chal-
lenger generates c

r←− V with a witness w of c ∈ V.

We have |Pr[SUC3] − Pr[SUC4]| = negl(λ) by the hardness of the subset mem-
bership problem (C,V).

Game 5: Same as Game 4 except that when A makes a KDM query, the chal-
lenger computes d ← Pub(pk, c, w) + φ

(
f b
(
ŝk, c∗, d∗

))
. Note that the chal-

lenger still computes π with π ← Λ̂ŝk(c
′).

Due to the projective property of H, this change is only conceptual and thus
we have |Pr[SUC4] − Pr[SUC5]| = 0.

At this point, sk is not needed to compute answers to KDM queries. More
precisely, the answer to a KDM query ((e0, f0), (e1, f1)) is Enccca (cpk, (c′, d, π)),
where

c′ = c · (eb)−1, d = Pub(pk, c, w) + φ
(
f b
(
ŝk, c∗, d∗

))
, π = Λ̂ŝk (c′) ,

c
r←− V, and w is a witness of c ∈ V.

A Framework for Achieving KDM-CCA Secure PKE 141

Game 6: Same as Game 5 except how the challenger responds decryption
queries made by A. In this game, the challenger returns ⊥ for a decryption
query related to c /∈ V. More precisely, the challenger responds as follows.

For a decryption query CT made by A, the challenger returns ⊥ to A if
CT ∈ Lkdm, and otherwise responds as follows.
1. Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in

V × K × K̂, return ⊥ to A. Otherwise, respond as follows.
2. Return ⊥ if π 	= Λ̂ŝk(c) and m ← φ−1 (d − Λsk(c)) otherwise.

We define the following event in Game t (t = 5, · · · , 8).

BDQt: A makes a decryption query CT /∈ Lkdm which satisfies c ∈ C \ V and
π = Λ̂ŝk(c), where (c, d, π) ← Deccca(csk,CT). We call such a decryption
query a “bad decryption query”.

Games 5 and 6 are identical games unless A makes a bad decryption query
in each game. Therefore, we have |Pr[SUC5] − Pr[SUC6]| ≤ Pr[BDQ6].

Below, we let td be a trapdoor for efficiently deciding the membership of V.

Game 7: Same as Game 6 except that the challenger generates d∗ r←− K.

By the previous change, A cannot obtain information of sk other than pk
through decryption queries in Games 6 and 7. Moreover, as noted above, KDM
queries are replied without using sk in Games 6 and 7. Thus, the view of A in
Games 6 and 7 can be perfectly simulated by (pk, c∗, Λsk(c∗)) and (pk, c∗, d∗),
respectively, where sk

r←− SK, pk ← μ(sk), c∗ r←− C, and d∗ r←− K. Therefore, we
have |Pr[SUC6] − Pr[SUC7]| = negl(λ) and |Pr[BDQ6] − Pr[BDQ7]| = negl(λ) from
the average-case smoothness of H.4

csk is now eliminated from the view of A. Thus, we can use IND-CCA security
of Πcca.

Game 8: Same as Game 7 except that when A makes a KDM query, the chal-
lenger computes CT ← Enccca

(
cpk,

(
1C , 1K, 1K̂

))
, where 1C , 1K, and 1K̂ are

identity elements of C, K, and K̂, respectively.

From the IND-CCA security of Πcca, we have |Pr[SUC7] − Pr[SUC8]| = negl(λ).
Moreover, since reduction algorithms for IND-CCA security of Πcca can detect

a bad decryption query made by A by utilizing decryption queries, td, and ŝk,
we obtain |Pr[BDQ7] − Pr[BDQ8]| = negl(λ) from the IND-CCA security of Πcca.
4 In terms of reduction, we can construct a computationally unbounded adversary B

that given (pk, c∗, d∗), distinguishes whether d∗ ← Λsk(c
∗) or d∗ r←− K using A. The

only non-trivial part of the construction of B is how B responds to decryption queries
made by A. After Game 6, bad decryption queries made by A are replied with ⊥.
In addition, if a decryption query is not a bad decryption query, computationally
unbounded B can reply to the decryption query correctly without using sk. This is
done by extracting a witness related to the decryption query and computing the
hash value with Pub.

142 F. Kitagawa and K. Tanaka

We see that the value of b is information theoretically hidden from the view
of A in Game 8. Thus, we have

∣
∣Pr[SUC8] − 1

2

∣
∣ = 0.

We estimate Pr[BDQ8]. In Game 8, ŝk is hidden from the view of A except p̂k.
Moreover, A cannot obtain any hash value Λ̂ŝk(c) for c ∈ C \ V since an answer
to a KDM query is computed as CT ← Enccca

(
cpk,

(
1C , 1K, 1K̂

))
in Game 8.

Therefore, from the universal property of Ĥ, we obtain Pr[BDQ8] = negl(λ).5

From the above arguments, we see that Advkdmcca
Πkdm,Fphf ,A,1(λ) = negl(λ). Since

the choice of A is arbitrary, Πkdm is Fphf -KDM(1)-CCA secure. � (Theorem 3)

Remark 2. (Shrink secret keys). We do not need to require any structure and
homomorphism for ŝk and csk. Then, we can shrink them into a single pseudo-
random function key Kprf and modify the construction so that Λsk (c∗) masks
Kprf . Moreover, we can maintain c∗ and d∗ = Λsk (c∗) + Kprf as a part of the
corresponding public key. If we do so, the resulting secret key is just sk.

4 Instantiation Based on the DCR Assumption

We can instantiate our framework shown in Sect. 3 under the DDH, QR, and
DCR assumptions. Due to the space constraints, we show the instantiation under
the DCR assumption only. For Instantiations under the DDH and QR assump-
tions, See full version of this paper.

Definition 6 (DCR assumption). Let N = PQ be a Blum integer for λ-bit
safe primes P,Q ≡ 3 mod 4 such that P = 2p + 1 and Q = 2q + 1 for primes p
and q. Let n = pq. We can decompose Z

∗
N2 as an internal direct product GN ⊗

〈−1〉 ⊗ Gn ⊗ G2, where 〈−1〉 is the subgroup of Z∗
N2 generated by −1 mod N2,

and GN , Gn, and G2 are cyclic groups of order N , n, and 2, respectively. Let
T = 1 + N ∈ Z

∗
N2 . T has order N , and thus it generates GN .

We say that the DCR assumption holds if for any PPT algorithm A, we have
|Pr[A(N, y) = 1]−Pr[A(N, y′) = 1]| = negl(λ), where y

r←− GN ⊗〈−1〉⊗Gn and
y′ r←− 〈−1〉 ⊗ Gn.

We define N , GN , Gn, 〈−1〉, and T as in Definition 6. Let g1, . . . , g� be random
generators of Gn, where � is determined later. We can generate a random gen-
erator g of Gn by generating μ

r←− Z
∗
N2 and setting g = μ2N mod N2. Then, g is

a generator of Gn with high probability.
We define C and V as

C =
{(

T d1 · (−1)γ1 · gr
1, . . . , T

d� · (−1)γ� · gr
�

)

|d1, . . . , d� ∈ ZN , γ1, . . . , γ� ∈ Z2, r ∈ Zn

}
, and

V = {((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�) |γ1, . . . , γ� ∈ Z2, r ∈ Zn} .

5 Similarly to the estimation of |Pr[SUC6] − Pr[SUC7]|, in terms of reduction, we can
construct a computationally unbounded reduction that responds a decryption query
from A correctly without knowing ŝk by extracting a witness and using ˆPub.

A Framework for Achieving KDM-CCA Secure PKE 143

V is a subgroup of C and subset membership problem of (C,V) is hard under
the DCR assumption. As shown by previous works [5,19], two distributions{
T di · (−gi)r

}
i∈[�]

and {(−gi)r}i∈[�] are computationally indistinguishable under

the DCR assumption, where di
r←− ZN for every i ∈ [�] and r

r←− Z2n. We see that
uniform distributions over C and V are also computationally indistinguishable
under the DCR assumption.

Let g be another generator of Gn. Then, there exists αi ∈ Z
∗
n such that

gαi = gi for every i ∈ [�]. The trapdoor for checking the membership of V is P ,
Q, and {αi}i∈[�].

When sampling a random element c = (c1, . . . , c�) from V, we randomly
choose r

r←− ZN−1
4

and γi
r←− Z2 for every i ∈ [�], and set ci ← (−1)γi · gr

i for
every i ∈ [�]. The distribution of c is statistically close to the uniform distribution
over V. Moreover, r is a witness of c ∈ V. We can sample a random element from
C in a similar fashion.

For (C,V) defined above, we construct two projective hash functions H =
(C,V,K,SK,PK, Λ, μ) and Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, μ̂

)
. The construction of

H is a slightly modified version of projective hash function based on the DCR
assumption proposed by Wee [19] thus is a generalization of the KDM-CPA
secure PKE scheme proposed by Brakerski and Goldwasser [5]. For the reason
we need a modification, see Remark 3 after the constructions.

4.1 Construction of H
We define QRNs = GNs−1 ⊗Gn and JNs = GNs−1 ⊗〈−1〉⊗Gn = 〈−1〉⊗QRNs .
We define SK = {0, 1}�, PK = Gn, and K = QRNs . For every sk = s1 · · · s� ∈
{0, 1}� and c = (c1, . . . , c�) ∈ C, we also define μ and Λ as

μ(sk) =
∏

i∈[�]

g2si
i and Λsk(c) =

∏

i∈[�]

c2si
i .

Projective property. Let sk = s1 · · · s� ∈ {0, 1}�, pk =
∏

i∈[�] g
2si
i , and c =

((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�), where r ∈ Zn and γi ∈ Z2 for every i ∈ [�]. We
define the public evaluation algorithm Pub as Pub(pk, c, r) = pkr. We see that

pkr =

⎛

⎝
∏

i∈[�]

g2si
i

⎞

⎠

r

=
∏

i∈[�]

(gr
i)2si =

∏

i∈[�]

((−1)γi · gr
i)2si = Λsk(c)

and thus H satisfies projective property.

Homomorphism. For every sk = s1 · · · s� ∈ {0, 1}�, c = (c1, . . . , c�) ∈ C, and
c′ = (c′

1, . . . , c
′
�) ∈ C, we have

Λsk(c) · Λsk(c′) =
∏

i∈[�]

c2si
i ·

∏

i∈[�]

(c′
i)

2si =
∏

i∈[�]

(ci · c′
i)

2si = Λsk(c · c′)

and thus H is homomorphic.

144 F. Kitagawa and K. Tanaka

Average-case smoothness. Similarly to Wee [19], we prove a weaker property that
is sufficient for our construction.

For an element e = T d · gr ∈ QRNs , we define e mod Gn = T d. Let c =
(c1, . . . , c�) =

(
T d1 · (−1)γ1 · gr

1, . . . , T
d� · (−1)γ� · gr

�

)
, where d1, . . . , d� ∈ ZN ,

γ1, . . . , γ� ∈ Z2, and r ∈ Zn. We have

Λsk(c) mod Gn =
∏

i∈[�]

(
T di · gr

i

)2si mod Gn = T 2
∑

i∈[�] disi mod N .

The leftover hash lemma implies that the following two distributions
⎛

⎝c,
∑

i∈[�]

disi mod N,
∏

i∈[�]

g2si
i

⎞

⎠ and

⎛

⎝c,K,
∏

i∈[�]

g2si
i

⎞

⎠

are
√

N ·n
4·2� -close, where sk = s1 · · · s�

r←− {0, 1}�, c = (c1, . . . , c�)
r←− C, and

K
r←− ZN . Moreover, if K is uniformly at random over ZN , then so does 2K mod N .

Therefore, by setting � = 3 log N , the distribution of Λsk(c) mod Gn is statisti-
cally close to uniform over GN .

4.2 Construction of Ĥ
We define ŜK = Z

�
Nn,6 P̂K = Gn, and K̂ = QRNs . For every ŝk = (x1, . . . , x�) ∈

ŜK and c = (c1, . . . , c�) ∈ C, we also define μ̂ and Λ̂ as

μ̂
(
ŝk
)

=
∏

i∈[�]

g2xi
i and Λ̂ŝk(c) =

∏

i∈[�]

c2xi
i .

Projective property. For every ŝk = (x1, . . . , x�) ∈ ŜK, p̂k =
∏

i∈[�] g
2xi
i , and

c = ((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�), where r ∈ Zn and γi ∈ Z2 for every i ∈ [�], we

define the public evaluation algorithm ˆPub as ˆPub
(
p̂k, c, r

)
= p̂k

r
. Similarly to

H, we see that Ĥ satisfies projective property.

Universal property. We need to prove that the universal property holds not only
for all c ∈ C \ V but also all c ∈ J

�
Ns \ C. This is because we cannot efficiently

check the membership of C. Note that we can check the membership of JNs by
computing Jacobi symbol with respect to N , and Jacobi symbol with respect to
N can be computed without factorizations of N , that is P and Q [18, Sect. 12.3].

For every c ∈ J
�
Ns \ C, we define Λ̂ŝk(c) in the same way as above. For every

p̂k ∈ P̂K, c = (c1, . . . , c�) ∈ J
�
Ns , and π ∈ K̂, we consider the following probability

6 In the actual construction, we sample ŝk from Z
λ×�
N(N−1)

4

to sample ŝk without knowing

n. The uniform distributions over Z
λ×�
Nn and Z

λ×�
N(N−1)

4

are statistically close.

A Framework for Achieving KDM-CCA Secure PKE 145

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g2xi
i = p̂k

⎤

⎦

= Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g
2(xi mod n)
i = p̂k

⎤

⎦ . (1)

We first consider the case where at least one element of c = (c1, . . . , c�) is
not in 〈−1〉 ⊗ Gn. Suppose that ci∗ ∈ JNs \ 〈−1〉 ⊗ Gn for some i∗ ∈ [�].

For two elements e0, e1 ∈ QRNs , we write e0 ≡ e1 mod Gn to denote that
e0 mod Gn = e1 mod Gn. For two elements e0, e1 ∈ QRNs , if e0 = e1 holds, then
so does e0 ≡ e1 mod Gn. Thus, the probability of Eq. 1 is bounded by

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i ≡ π mod Gn

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g
2(xi mod n)
i = p̂k

⎤

⎦ .

For every i ∈ [�], c2xi
i mod Gn is determined by only xi mod N and independent

of xi mod n from the Chinese Remainder Theorem since N = PQ and n = pq
are relatively prime. Therefore, the above probability is

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i ≡ π mod Gn

⎤

⎦ .

Since ci∗ /∈ 〈−1〉 ⊗ Gn, we can write ci∗ = T di∗ · (−1)γi∗ · gri∗ , where di∗ ∈ ZN

such that di∗ 	= 0, γi∗ ∈ Z2, and ri∗ ∈ Zn. We have

c2xi∗
i∗ = T 2di∗ (xi∗ mod N) · g2ri∗ (xi∗ mod n).

Then, the above probability is the same as

Pr
xi

r←−ZNn

⎡

⎢
⎣T 2di∗ (xi∗ mod N) ≡ π ·

⎛

⎝
∏

i∈[�],i �=i∗
c2xi
i

⎞

⎠

−1

mod Gn

⎤

⎥
⎦ .

This probability is smaller than 1
P or 1

Q . Thus, in this case, the probability of
Eq. 1 is negligible in λ.

We next consider the case where all elements of c = (c1, . . . , c�) /∈ V are in
〈−1〉⊗Gn. In this case, we can write ci = (−1)γi ·gri

i , where γi ∈ Z2 and ri ∈ Zn

for every i ∈ [�]. Since c /∈ V, there exist i1, i2 ∈ [�] such that ri1 	= ri2 . Let g be
a generator of Gn. Since gi is a generator of Gn, there exists αi ∈ Z

∗
n such that

gi = gαi for every i ∈ [�]. The probability of Eq. 1 is 0 if π /∈ Gn, and thus we
consider cases of π ∈ Gn. Then, the probability of Eq. 1 is the same as

Pr
xi

r←−Zn

⎡

⎣2
∑

i∈[�]

αirixi ≡ logg π mod n

∣
∣
∣
∣
∣
∣
2
∑

i∈[�]

αixi ≡ logg p̂k mod n

⎤

⎦ .

146 F. Kitagawa and K. Tanaka

Since r1 	≡ r2 mod n, either ri1 	≡ ri2 mod p or ri1 	≡ ri2 mod q holds. Without
loss of generality, we assume that ri1 	≡ ri2 mod p. Since p and q are primes, the
above probability is bounded by

Pr
xi

r←−Zn

⎡

⎣
∑

i∈[�]

αirixi ≡ 2−1 · logg π mod p

∣
∣
∣
∣
∣
∣

∑

i∈[�]

αixi ≡ 2−1 · logg p̂k mod p

⎤

⎦ .

Since ri1 	≡ ri2 mod p, two equations
∑

i∈[�]

αirixi ≡ 2−1 · logg π mod p, and
∑

i∈[�]

αixi ≡ 2−1 · logg p̂k mod p

are linearly independent. Therefore, the above probability is 1
p .

Thus, for every c ∈ J
�
Ns \ V, the probability of Eq. 1 is negligible in λ.

Remark 3 (Difference with previous works [5,19]). The difference between our
construction and previous works is that when we compute a hash value of c, we
first square each element of c. By this operation, the ranges of H and Ĥ are
QRNs = GN · Gn.

If we do not perform squaring, the ranges will be JNs = GN · 〈−1〉 · Gn and
hash values of some elements can be predicted with high probability since the
order of 〈−1〉 is 2. In fact, we can correctly guess the hash value of (−1, . . . ,−1) ∈
〈−1〉� with probability at least 1

2 . In this case, to achieve universal property of
Ĥ, we need parallelization similarly to the QR based construction.

One might think we have another option where C and V are defined as sub-
groups of QRNs and Gn, respectively. This option is not working. The reason is
that we cannot efficiently check the membership of QRNs . Therefore, if we use
such C and V, we still need to take elements of JNs into account, and thus we
need squaring.

4.3 Associated Function Class

The message space of the DCR based construction is ZN . We define φ(m ∈
ZN) = Tm. Let Fdcr be a family of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= φ−1

(
Λsk

(
T e1/2, . . . , T e�/2

)
+ φ

(
f
(
ŝk, c∗, d∗

)))

= φ−1
(
T

∑
i∈[�] eisi+f(ŝk,c∗,d∗)

)

=

⎛

⎝
∑

i∈[�]

eisi + f
(
ŝk, c∗, d∗

)
⎞

⎠ mod N,

where 1
2 denotes the inverse of 2 modulo N , ei ∈ ZN for every i ∈ [�], and f is a

function whose range is ZN . The DCR based construction is Fdcr-KDM(1)-CCA
secure. In the construction, we can maintain ŝk, c∗, and d∗ as bit strings. In this
case, the above function class includes affine functions and projection functions.

A Framework for Achieving KDM-CCA Secure PKE 147

5 KDM-CCA Secure PKE from the DDH Assumption

Although our framework shown in Sect. 3 captures only KDM(1)-CCA secu-
rity, we can prove the KDM-CCA security of concrete instantiations. In this
section, we prove that our concrete instantiation based on the DDH assumption
is KDM-CCA secure. We also briefly explain how to prove the multi user security
of our QR and DCR based schemes in Remark 5 at the end of this section. We
first introduce the DDH assumption, and then provide the construction.

Definition 7 (DDH assumption). Let G be a cyclic group of order p and g a
random generator of G. We say that the DDH assumption holds if for any PPT
algorithm A, |Pr[A(p, g, gx, gy, gxy) = 1] − Pr[A(p, g, gx, gy, gz) = 1] = negl(λ)|
holds, where x, y, z

r←− Zp.

Let G be a cyclic group of prime order p and g a random generator of G. Let
Πcca = (KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-
key space of Πcca is G for simplicity. We construct the following PKE scheme
Πddh = (KGddh,Encddh,Decddh). The message space of Πddh is {0, 1}.

KGddh(1λ):
– Generate g1, . . . , g�

r←− G.
– Generate s = s1 · · · s�

r←− {0, 1}� and x1, . . . , x�
r←− Zp.

– Compute g0 ←∏
i∈[�] g

si
i and ĝ0 ←∏

i∈[�] g
xi
i .

– Generate (cpk, csk) ← KGcca(1λ).
– Generate wi

r←− Zp and set ei ← gwi
i for every i ∈ [�].

– Compute e0 ←∏
i∈[�] e

si
i and u ← e0 · csk.

– Set v := {xi}i∈[�] ‖ {ei}i∈[�] ‖u.

– Return PK :=
(
{gi}i∈[�] , g0, ĝ0, cpk

)
and SK := (s, v).

Encddh(PK,m):
– Parse

(
{gi}i∈[�] , g0, ĝ0, cpk

)
← PK.

– Generate r
r←− Zp and compute ci ← gr

i for every i ∈ [�].
– Compute d ← gm · gr

0 and π ← ĝr
0.

– Return CT ← Enccca

(
cpk,

(
{ci}i∈[�] , d, π

))
.

Decddh(SK,CT):
– Parse

(
s, {xi}i∈[�] ‖ {ei}i∈[�] ‖u

)
← SK.

– Compute csk ← u ·
(∏

i∈[�] e
si
i

)−1

.

– Compute
(
{ci}i∈[�] , d, π

)
← Deccca(csk,CT). If the decryption result is

not in G
�+2, returns ⊥. Otherwise, compute as follows.

– Return ⊥ if π 	= ∏
i∈[�] c

xi
i and m ← logg

(
d ·
(∏

i∈[�] c
si
i

)−1
)

otherwise.

148 F. Kitagawa and K. Tanaka

Correctness. In the decryption algorithm, we need to compute discrete logarithm
on G. We can efficiently perform this operation since we restrict the message

space to {0, 1}. The decryption algorithm returns ⊥ if d ·
(∏

i∈[�] c
si
i

)−1

/∈ {1, g}.
Then, the correctness of Πddh follows from that of Πcca.

Let n be the number of key pairs in the security game. We define Fddh as a
function family consisting of functions described as

f ′
(
{sk, vk}k∈[n]

)
=
∑

k∈[n]

〈ak, sk〉 + f
(
{vk}k∈[n]

)
,

where 〈·, ·〉 denotes inner product over Z, ak ∈ {0, 1}�, and f is a function such
that

∑
k∈[n] 〈ak, sk〉 + f

(
{vk}k∈[n]

)
∈ {0, 1} for every {sk}k∈[n] and {vk}k∈[n].

By maintaining {vk}k∈[n] as bit strings, Fddh includes projection functions of
single-bit output. Πkdm is KDM-CCA secure with respect to Fddh. Formally, we
prove the following theorem.

Theorem 4. Let Πcca be IND-CCA secure. Assuming the DDH problem is hard
on G, Πddh is Fddh-KDM-CCA secure.

Remark 4 (Extension to affine functions). We can construct a DDH based PKE
scheme that is KDM-CCA secure with respect to affine functions by applying
the following modifications to the above construction. We set the message space
as G. Let SK ∈ {0, 1}L be a bit string that is a concatenation of s and bit
representation of v. We maintain a secret-key SK = s1 · · · sL as (gs1 , . . . , gsL).
Then, the construction is Faff -KDM-CCA secure, where Faff is a function class
consisting of functions described as

f (SK1, . . . ,SKn) =

⎛

⎝
∏

i∈[L]

(gski)aki

⎞

⎠ · a0,

where SKk = sk1 · · · skL for every k ∈ [n], a0 ∈ G and aki ∈ Zp for every i ∈ [�]
and k ∈ [n]. This is exactly the affine functions defined by Boneh et al. [4].

Proof of Theorem 4. Let n be the number of keys. Let A be an adversary
that attacks the Fddh-KDM-CCA security of Πddh. We proceed the proof via
a sequence of games. For every t ∈ {0, . . . , 11}, let SUCt be the event that A
succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original Fddh-KDM(n)-CCA game regarding Πddh. We have
Advkdmcca

Πddh,Fddh,A,n(λ) =
∣
∣Pr[SUC0] − 1

2

∣
∣.

1. The challenger chooses b
r←− {0, 1} and generates (PKk,SKk) for every

k ∈ [n] as follows.
(a) Generate gk1, . . . , gk�

r←− G.
(b) Generate sk = sk1 · · · sk�

r←− {0, 1}� and xk1, . . . , xk�
r←− Zp.

A Framework for Achieving KDM-CCA Secure PKE 149

(c) Compute gk0 ←∏
i∈[�] (gki)

ski and ĝk0 ←∏
i∈[�] (gki)

xki .
(d) Generate (cpkk, cskk) ← KGcca(1λ).
(e) Generate wki

r←− Zp and set eki ← (gki)
wki for every i ∈ [�].

(f) Compute ek0 ←∏
i∈[�] (eki)

ski and uk ← ek0 · cskk.
(g) Set vk := {xki}i∈[�] ‖ {eki}i∈[�] ‖uk.

(h) Set PKk :=
(
cpkk, {gki}i∈[�] , gk0, ĝk0

)
and SKk := (sk, vk).

The challenger sends {PKk}k∈[n] to A and prepares a list Lkdm.
2. The challenger responds to queries made by A.

For a KDM query
(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
(a) Set m :=

∑
k∈[n]

〈
ab

k, sk

〉
+ f b

(
{vk}k∈[n]

)
.

(b) Generate r
r←− Zp and compute ci ← (gji)

r for every i ∈ [�].
(c) Compute d ← gm · (gj0)

r and π ← (ĝj0)
r.

(d) Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

For a decryption query (j,CT) made by A, the challenger returns ⊥
to A if (j,CT) ∈ Lkdm, and otherwise responds as follows.

(a) Compute
(
{ci}i∈[�] , d, π

)
← Deccca(cskj ,CT). If the decryption result

is not in G
�+2, return ⊥ and otherwise respond as follows.

(b) Return ⊥ if π 	= ∏
i∈[�] c

xji

i and m ← logg

(
d ·
(∏

i∈[�] c
sji

i

)−1
)

oth-

erwise.
3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except how the challenger computes {eki}i∈[�],k∈[n].

The challenger generates wi
r←− Zp for every i ∈ [�] and computes eki ←

(gki)
wi for every i ∈ [�] and k ∈ [n].

We have |Pr[SUC0] − Pr[SUC1]| = negl(λ) since ((g1i)w1i , . . . , (gni)wni) and
((g1i)wi , . . . , (gni)wi) are computationally indistinguishable by the DDH assump-
tion for every i ∈ [�].

Game 2: Same as Game 1 except how the challenger generates {sk}k∈[n] and

{gki}i∈[�],k∈[n]. The challenger first generates s = s1 · · · s�
r←− {0, 1}� and

g1, . . . g�
r←− G. Then, for every k ∈ [n], the challenger generates Δk

r←− {0, 1}�

and computes sk ← s ⊕ Δk. In addition, for every i ∈ [�] and k ∈ [n], the
challenger generates γki

r←− Zp and computes gki ← gγki

i .

|Pr[SUC1] − Pr[SUC2]| = 0 holds since the difference between Game 1 and 2 is
only conceptual.

From Game 3 to 7, we change the game so that we do not need s to respond
to KDM queries made by A.

150 F. Kitagawa and K. Tanaka

In Game 2, we have gk0 =
∏

i∈[�] (gki)
ski =

∏
i∈[�] (g

γki

i)si⊕Δki , where Δki is
the i-th bit of Δk for every i ∈ [�]. For every i ∈ [�] and k ∈ [n], we have

si ⊕ Δki =

{
si (Δki = 0)
1 − si (Δki = 1)

.

Thus, by defining

δki =

{
1 (Δki = 0)
−1 (Δki = 1)

, (2)

for every i ∈ [�] and k ∈ [n], we have

gk0 =
∏

i∈Δk

gγki

i ·
∏

i∈[�]

gδkiγkisi

i =
∏

i∈Δk

gki ·
∏

i∈[�]

gδkiγkisi

i

for every k ∈ [n], where
∏

i∈Δk
Xi denotes

∏
i∈[�] X

Δki
i .7

Game 3: Same as Game 2 except that the challenger uses δkiγki instead of
γki for every i ∈ [�] and k ∈ [n]. More precisely, the challenger computes
gki ← gδkiγki

i for every i ∈ [�] and k ∈ [n], and gk0 ←∏
i∈Δk

gki ·∏i∈[�] g
γkisi

i

for every k ∈ [n]. Note that δki · δki = 1 for every i ∈ [�] and k ∈ [n].

If γki distributes uniformly at random, then so does δkiγki for every i ∈ [�]
and k ∈ [n]. Therefore, we have |Pr[SUC2] − Pr[SUC3]| = 0.

Game 4: Same as Game 3 except how the challenger computes gk0, gk1, . . . , gk�

for every k ∈ [n]. The challenger generates γk for every k ∈ [n] and computes
gki ← gγkδki

i for every i ∈ [�] and k ∈ [n]. Moreover, the challenger computes
gk0 ←∏

i∈Δk
gki ·∏i∈[�] g

γksi

i for every k ∈ [n].

|Pr[SUC3] − Pr[SUC4]| = negl(λ) holds since (gγk1
1 , . . . , gγk�

�) and (gγk

1 , . . . , gγk

�)
are computationally indistinguishable by the DDH assumption for every k ∈ [n].

Below, we let g0 =
∏

i∈[�] g
si
i . In Game 4, for every k ∈ [n], we have

gki = gγkδki

i (i ∈ [�]) , and

gk0 =
∏

i∈Δk

gki ·
∏

i∈[�]

gγksi

i =

(
∏

i∈Δk

gki

)

· gγk

0 .

Then, the answer to a KDM query
(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

in

Game 4 is Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
, where

ci = (gji)r = (gr
i)γjδji (i ∈ [�]) , d = g

∑
k∈[k]〈ab

k,sk〉+fb({vk}k∈[n]) · (gj0)r ,

π = (ĝj0)
r =

∏

i∈[�]

c
xji

i , and r
r←− Zp.

7 That is,
∏

i∈Δk
Xi denotes the summation of Xi over positions i such that Δki = 1.

A Framework for Achieving KDM-CCA Secure PKE 151

We also have
∑

k∈[n]

〈
ab

k, sk

〉
=
∑

k∈[n]

〈
ab

k, s ⊕ Δk

〉
=
∑

k∈[n]

∑

i∈Δk

ab
ki +

∑

k∈[n]

∑

i∈[�]

ab
kiδkisi,

where summation is done over Z and ab
ki is the i-th bit of ab

k for every i ∈ [�].
Thus, by defining

Y b =
∑

k∈[n]

∑

i∈Δk

ab
ki + f b

(
{vk}k∈[n]

)
and μb

i =
∑

k∈[n]

ab
kiδki (i ∈ [�]) , (3)

we have

d = gY b+
∑

i∈[�] μb
i si ·

⎛

⎝
∏

i∈Δj

gji

⎞

⎠

r

·
⎛

⎝
∏

i∈[�]

gsi
i

⎞

⎠

γjr

= gY b ·
∏

i∈Δj

ci ·
∏

i∈[�]

(
gμb

i · (gr
i)γj

)si

.

Note that Y b and
{
μb

i

}
i∈[�]

are computed from
({

ab
k

}
k∈[n]

, f b
)

and
{δki}i∈[�],k∈[n].

Hereafter, we show the difference from the previous game by colored parts.

Game 5: Same as Game 4 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r1, . . . , r�
r←− Zp.

3. Compute ci ← (gri
i)γjδji for every i ∈ [�].

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�]

(
gμb

i · (gri
i)γj

)si

.

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr
1, . . . , g

r
�) and (gr1

1 , . . . , gr�

�) are computationally
indistinguishable. Thus, we have |Pr[SUC4] − Pr[SUC5]| = negl(λ).

Game 6: Same as Game 5 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r1, . . . , r�
r←− Zp.

3. Compute ci ←
(
g−μb

i · gri
i

)δji

for every i ∈ [�].

152 F. Kitagawa and K. Tanaka

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�] g

risi
i .

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

We can make this change in two steps. We first replace g
riγj

i with gri
i . We

then replace gri
i with g−μb

i · gri
i . Since ri is uniformly at random for every i ∈ [�],

the answer to a KDM query made by A identically distributes between Game 5
and 6. Thus, we have |Pr[SUC5] − Pr[SUC6]| = 0.

Game 7: Same as Game 6 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r
r←− Zp.

3. Compute ci ←
(
g−μb

i · gr
i

)δji

for every i ∈ [�].

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�] g

rsi
i .

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr
1, . . . , g

r
�) and (gr1

1 , . . . , gr�

�) are computationally
indistinguishable. Thus, |Pr[SUC6] − Pr[SUC7]| = negl(λ) holds.

In Game 7, d generated to respond to a KDM query is of the form

d = gY b ·
∏

i∈Δj

ci ·
∏

i∈[�]

grsi
i = gY b ·

⎛

⎝
∏

i∈Δj

ci

⎞

⎠ · gr
0.

Thus, we can reply to a KDM query made by A using g0 instead of s in Game 7.
Next, we eliminate secret keys of Πcca from the view of A. For this aim, we

make ek0 that is used to mask cskk uniformly at random for every k ∈ [n]. We
first change how the challenger responds to decryption queries made by A.

Game 8: Same as Game 7 except how the challenger responds to decryption
queries.
For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if
(j,CT) ∈ Lkdm, and otherwise responds as follows.

1. Compute
(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). If the decryption result is

not in G
�+2, return ⊥. Otherwise, compute as follows.

2. Let ci = (gji)
ri for every i ∈ [�].8 If there exists i′ ∈ {2, . . . , �} such that

r1 	= ri′ , return ⊥. Otherwise, respond as follows.
8 Note that such ri exists unless gji is the identity element since ci ∈ G for every

i ∈ [�]. The probability that gji is the identity element is negligible. Thus, we ignore
this issue for simplicity.

A Framework for Achieving KDM-CCA Secure PKE 153

3. Return ⊥ if π 	=∏i∈[�] c
xji

i and otherwise m ← logg

(
d ·
(∏

i∈[�] c
sji

i

)−1
)

.

We define the following event in Game i (i = 7, . . . , 11).

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following
conditions, where

(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT).

–
(
{ci}i∈[�] , d, π

)
∈ G

�+2. Then, let ci = gri
ji , where ri ∈ Zp for every i ∈ [�].

– There exists i′ ∈ {2, . . . , �} such that r1 	= ri′ .
– π =

∏
i∈[�] c

xji

i .

We call such a decryption query a “bad decryption query”.
Games 7 and 8 are identical games unless A make a bad decryption query in

each game. Therefore, we have |Pr[SUC7] − Pr[SUC8]| ≤ Pr[BDQ8].
For every k ∈ [n], we have

eki = (gki)wi = (gwi
i)γkδki (i ∈ [�])

ek0 =
∏

i∈[�]

(eki)ski =

(
∏

i∈Δk

eki

)
∏

i∈[�]

(eki)
δkisi =

(
∏

i∈Δk

eki

)⎛

⎝
∏

i∈[�]

gwisi
i

⎞

⎠

γk

.

Note that δki · δki = 1 for every i ∈ [�] and k ∈ [n].

Game 9: Same as Game 8 except that e0
r←− G is used instead of

∏
i∈[�] g

wisi
i .

The view of A in Games 8 and 9 can be perfectly simulated by
⎛

⎝g1, . . . , g�, g
w1
1 , . . . , gw�

� ,
∏

i∈[�]

gwisi
i , g0

⎞

⎠ and (g1, . . . , g�, g
w1
1 , . . . , gw�

� , e0, g0) ,

respectively, where gi
r←− G and wi

r←− Zp for every i ∈ [�], s = s1 · · · s�
r←−

{0, 1}�, e0
r←− G, and g0 =

∏
i∈[�] g

si
i . By the leftover hash lemma, the view

of A in Game 8 is 2− �−2λ
2 -close to that in Game 9. Thus, by setting � = 3λ,

|Pr[SUC8] − Pr[SUC9]| = negl(λ) and |Pr[BDQ8] − Pr[BDQ9]| = negl(λ) hold.
There exists αi ∈ Zp such that gαi = gi for every i ∈ [�]. Then, for every

k ∈ [n], we have

gki = gαiγkδki = (gγk)αiδki (i ∈ [�]) , gk0 =
∏

i∈[�]

(gki)ski

eki = (gki)wi (i ∈ [�]) , and ek0 =

(
∏

i∈Δk

eki

)

eγk

0 .

Game 10: Same as Game 9 except that for every k ∈ [n], the challenger gener-
ates ek0 ← (∏

i∈Δk
eki

)
ezk
0 , where zk

r←− Zp.

154 F. Kitagawa and K. Tanaka

|Pr[SUC9] − Pr[SUC10]| = negl(λ) holds since (g, e0, g
γk , eγk

0) and (g, e0, g
γk ,

ezk
0) are computationally indistinguishable by the DDH assumption for every

k ∈ [n].
Moreover, we can efficiently check whether A makes a bad decryption query

or not by using {cskk}k∈[n], {αi}i∈[�], and {xki}i∈[�],k∈[n]. Therefore, we also have
|Pr[BDQ9] − Pr[BDQ10]| = negl(λ) by the DDH assumption.

In Game 10, ek0 distributes uniformly at random for every k ∈ [n]. Therefore,
A cannot obtain any information of cskk from uk = ek0 · cskk for every k ∈ [n],
and thus we can use IND-CCA security of Πcca.

Game 11: Same as Game 10 except that the challenger responds to KDM
queries made by A with CT ← Enccca

(
cpkj , 0(�+2)·|g|).

By the IND-CCA security of Πcca, we obtain |Pr[SUC10] − Pr[SUC11]| =
negl(λ).

Moreover, we can efficiently check whether A makes a bad decryption query
or not by using decryption queries for Πcca, {αi}i∈[�], and {xki}i∈[�],k∈[n]. Thus,
|Pr[BDQ10] − Pr[BDQ11]| = negl(λ) also holds by the IND-CCA security of Πcca.

The value of b is information theoretically hidden from the view of A in
Game 11. Thus, we have

∣
∣Pr[SUC11] − 1

2

∣
∣ = 0.

In Game 11, xk1, . . . , xk� are hidden from the view of A except ĝk0 =∏
i∈[�] (gki)

xki for every k ∈ [n]. Note that A cannot obtain information of
xk1, . . . , xk� other than ĝk0 through decryption queries for every k ∈ [n]. The
reason is as follows. If a decryption query (j,CT) made by A is not a bad decryp-
tion query, there exists r1 ∈ Zp such that ci = (gji)r1 for every i ∈ [�], where(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). Then, we have

∏

i∈[�]

c
xji

i =
∏

i∈[�]

(gji)
r1xji =

⎛

⎝
∏

i∈[�]

(gji)
xji

⎞

⎠

r1

= (ĝj0)
r1 .

In addition, bad decryption queries made by A are replied with ⊥ in Game 11.
This means that for every k ∈ [n], A cannot obtain information of xk1, . . . , xk�

other than ĝk0 through decryption queries.
We estimate Pr[BDQ11]. Let (j,CT) be a decryption query made by A and

let
(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). Suppose that

(
{ci}i∈[�] , d, π

)
∈ G

�+2,

ci = (gji)
ri for every i ∈ [�], and there exists i′ ∈ {2, . . . , �} such that r1 	= ri′ .

The probability that this query is a bad decryption query is

Pr
xji

r←−Zp

⎡

⎣
∏

i∈[�]

c
xji

i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

(gji)
xji = ĝj0

⎤

⎦ . (4)

This probability is the same as

Pr
xji

r←−Zp

⎡

⎣
∑

i∈[�]

αiγjδjirixji = logg π mod p

∣
∣
∣
∣
∣
∣

∑

i∈[�]

αiγjδjixji = logg ĝj0 mod p

⎤

⎦ .

A Framework for Achieving KDM-CCA Secure PKE 155

αi 	= 0 and γj 	= 0 holds for every i ∈ [�] and j ∈ [n] with high probability and
thus we assume so. Then, two equations

∑

i∈[�]

αiγjδjirixji = logg π mod p and
∑

i∈[�]

αiγjδjixji = logg ĝj0 mod p

are linearly independent, and thus the probability shown in Eq. 4 is 1
p . Therefore,

we obtain Pr[BDQ11] = negl(λ).
From the above arguments, we have Advkdmcca

Πddh,Fddh,A,n(λ) = negl(λ). Since the
choice of A and n is arbitrary, Πddh is Fddh-KDM-CCA secure. � (Theorem 4)

Remark 5 (The multi user security of the QR and DCR based schemes). Our
QR and DCR based constructions are based on those proposed by Brakerski
and Goldwasser [5]. If we allow the length of secret keys to depend on the num-
ber of users n, we can prove that our QR and DCR based constructions are
KDM(n)-CCA secure using a technique similar to Brakerski and Goldwasser.

To prove KDM(n)-CCA security, we need to eliminate encrypted n secret
keys of the outer IND-CCA secure PKE scheme contained in secret keys of the
KDM-CCA secure scheme. In the above proof of DDH based scheme, by using
the self reducibility of the DDH problem, we complete such a task by making a
single group element

∏
i∈[�] g

wisi
i random using the leftover hash lemma.

However, when proving the KDM(n)-CCA security of the QR and DCR based
constructions, to complete such a task, we need to make n group elements ran-
dom using the leftover hash lemma. Therefore, in that case, we need to set the
length of secret keys depending on n similarly to the proof of KDM(n)-CPA
security by Brakerski and Goldwasser.

Acknowledgement. A part of this work was supported by Input Output Hong
Kong, Nomura Research Institute, NTT Secure Platform Laboratories, Mitsubishi
Electric, JST CREST JPMJCR14D6, JST OPERA, JSPS KAKENHI JP16H01705,
JP16J10322, JP17H01695.

References

1. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 20

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

3. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6

156 F. Kitagawa and K. Tanaka

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 7

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

6. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for
polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 11

10. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 31

11. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 39

12. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Completeness of single-bit
projection-KDM security for public key encryption. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 201–219. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 11

13. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

14. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryp-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol.
9056, pp. 559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46800-5 22

15. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616
(2009)

16. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

17. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 19

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-29011-4_39
https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/3-540-45539-6_19

A Framework for Achieving KDM-CCA Secure PKE 157

18. Shoup, V.: A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, Cambridge (2006)

19. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS,
vol. 9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 7

https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-49387-8_7

Understanding and Constructing AKE
via Double-Key Key Encapsulation

Mechanism

Haiyang Xue1,2,3, Xianhui Lu1,2,3(B), Bao Li1,2,3, Bei Liang4,
and Jingnan He1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{hyxue12,xhlu}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security,

University of Chinese Academy of Sciences, Beijing, China
4 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Motivated by abstracting the common idea behind several
implicitly authenticated key exchange (AKE) protocols, we introduce a
primitive that we call double-key key encapsulation mechanism (2-key
KEM). It is a special type of KEM involving two pairs of secret-public
keys and satisfying some function and security property. Such 2-key KEM
serves as the core building block and provides alternative approaches to
simplify the constructions of AKE. To see the usefulness of 2-key KEM,
we show how several existing constructions of AKE can be captured as
2-key KEM and understood in a unified framework, including widely
used HMQV, NAXOS, Okamoto-AKE, and FSXY12-13 schemes. Then,
we show (1) how to construct 2-key KEM from concrete assumptions, (2)
how to adapt the classical Fujisaki-Okamoto transformation and KEM
combiner to achieve the security requirement of 2-key KEM, (3) an
elegant Kyber-AKE over lattice using the improved Fujisaki-Okamoto
technique.

Keywords: Authenticated key exchange · CK model
Key encapsulation mechanism

1 Introduction

Key exchange (KE), which enables two parties to securely establish a common
session key while communicating over an insecure channel, is one of the most
important and fundamental primitives in cryptography. After the introduction of
Diffie-Hellman key exchange in [12], cryptographers have devised a wide selection
of the KE with various use-cases. One important direction is authenticated key
exchange (AKE). The main problems that the following works focus on are
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 158–189, 2018.
https://doi.org/10.1007/978-3-030-03329-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_6&domain=pdf

Understanding and Constructing AKE 159

specified as security models [5–7,15,24], efficient and provably-secure realizations
[1–3,7,15,16,22,24–27,29,34,35].

In an AKE protocol, each party has a pair of secret-public keys, a static/long-
term public key and the corresponding static/long-term secret key. The static
public key is interrelated with a party’s identity, which enables the other par-
ties to verify the authentic binding between them. A party who wants to share
information with another party generates ephemeral one-time randomness which
is known as ephemeral secret keys, computes session state (which is originally
not explicitly defined [7], but nowadays it is generally agreed [15,24] that the
session state should at least contain ephemeral secret keys) from ephemeral and
static secret keys and incoming message, then outputs corresponding ephemeral
public outgoing message. Then each party uses their static secret keys and the
ephemeral secret keys along with the transcripts of the session to compute a
shared session key.

Many studies have investigated the security notion of AKE including BR
model and Canetti-Krawczyk (CK) model [7]. Fujioka et al. [15] re-formulated
the desirable security notion of AKE in [23], including resistance to KCI (key
compromise impersonation attack), wPFS (weak perfect forward attack) and
MEX (maximal exposure attack), as well as provable security in the CK model,
and called it the CK+ security model. LaMacchia et al. [24] also proposed a very
strong security model, called the eCK model. The CK model and the eCK model
are incomparable [6], and the eCK model is not stronger than the CK model
while the CK+ model is [15]. However, each of these two models, eCK and CK+

can be theoretically seen as a strong version of the AKE security model.
To achieve a secure AKE in one of the above security models (CK, CK+,

eCK), the solutions are divided into two classes: explicit AKE and implicit AKE.
The solution of explicit AKE is to explicitly authenticate the exchanged mes-
sages between the involved parties by generally using additional primitives i.e.,
signature or MAC to combine with the underlying KE, such as IKE [8], SIGMA
[22], TLS [2,21] etc.; while the solution of implicit AKE initiated by [25], is to
implicitly authenticate each party by its unique ability so as to compute the
resulted session key. These kinds of implicit AKE schemes include (H)MQV
[23,26], Okamoto [27,28], NAXOS [24], OAKE [34], FSXY variants [1,15,16,33],
and AKE from lattice assumptions [3,35].

Motivation. In this paper, we focus on the second class, i.e., constructions of
implicit AKE. Based on different techniques and assumptions, many implicit
AKE protocols have been proposed in recent years [15,16,23,24,27,28,34].

However, the constructing techniques and methods of the existing implicit
AKE protocols are somewhat separate and the study on the highly accurate
analysis of AKE’s requirement for the building block is critically in a shortage,
especially for the exact underlying primitives that serve as fundamental building
blocks and capture the common idea and technique behind the constructions and
security proofs of AKE. On the contrary, with respect to explicit AKE Canetti
and Krawcayk [8,22] gave the frame of “SIGin-and-MAc” (later extended by
[29]) which provides a good guideline for designing explicit AKE.

160 H. Xue et al.

In fact, Boyd et al. [1] and Fujioka et al. [15,16] initiated the research on
studying frameworks of implicit AKE. Boyd et al. firstly noticed the connection
between AKE and key encapsulation mechanism (KEM), then Fujioka et al.
provided CK+ secure AKE protocols from chosen ciphertext (CCA) secure KEM
in the random oracle and standard models. Although the paradigm of connecting
the AKE with KEM is of great significance, it can not be applied to explain many
widely-used and well-known constructions of AKE such as HMQV and its variant
[23,34] which are built on the challenge-respond signature; AKE protocol in [27]
which results from universal hash proof [10]; as well as NAXOS [24].

Hence, one of the important problems on AKE is to give an even more general
framework for constructing AKE that is able to not only unify the existing struc-
tures of AKE protocol as much as possible, but also to systemize and simplify
the construction and analysis methods of AKE protocol. It will be useful and
helpful for understanding the existing works and future studying on formaliza-
tion of the AKE construction under a unified framework with some well-studied
and simple cryptographic primitive as building block.

1.1 Our Contributions

– Based on the above motivations and observations, we introduce double-key key
encapsulation mechanism (2-key KEM) and its secure notions, i.e., [IND/OW-
CCA, IND/OW-CPA] security. We also show its distinction with previous sim-
ilar notions.

– Based on the [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM, we present
unified frames of CK+ secure AKE, which in turn conceptually capture the
common pattern for the existing constructions and security proof of AKE,
including well-known HMQV [23], NAXOS [24], Okamoto-AKE [27,28], and
FSXY12 [15], FSXY13 [16].

– We investigate the constructions of 2-key KEM based on concrete assump-
tions. We also show the failure of implying [IND/OW-CCA, IND/OW-CPA]
secure 2-key KEM from KEM combiner and the classical Fujisaki-Okamoto
(FO) transformation. Hence, with a slight but vital modification by taking
public key as input to the hash step we provide improved KEM combiner and
improved FO to adapt them in our 2-key KEM setting.

– Equipped with 2-key KEM and our frame above, we propose a post-quantum
AKE based on Module-LWE assumption, which consumes less communica-
tions than Kyber [3] using frame of FSXY13 [16].

2-Key Key Encapsulation Mechanism. Generally, the 2-key KEM scheme
is a public key encapsulation with two pairs of public and secret keys, but the
main distinctions are the functionality and security.

The encapsulation and decapsulation algorithms: instead of taking as input
single public key to generate a random key K and a ciphertext C and single
secret key to decapsulate ciphertext C, each algorithm takes two public keys
(pk1, pk0) to generate (C,K) and only with both two secret keys (sk1, sk0) the
decapsulation algorithm can decapsulate C.

Understanding and Constructing AKE 161

We define the security notion of 2-key KEM/PKE in the attacking model
[IND/OW-CCA, IND/OW-CPA] which captures the idea that the 2-key KEM is
secure under one secret-public key pair even if another pair of secret-public
key is generated by the adversary. Informally, the [IND/OW-CCA, ·] denotes the
security model where adversary A aims to attack the ciphertext under pk1 and
pk∗

0 (with its control over the generation of pk∗
0), and it is allowed to query

a strong decapsulation oracle that will decapsulate the ciphertext under pk1

and arbitrary pk′
0 (generated by challenger); while [·, IND/OW-CPA] denotes

the security model where adversary B aims to attack the ciphertext under
pk0 and pk∗

1 (with its control over the generation of pk∗
1). We say a 2-key

KEM is [IND/OW-CCA, IND/OW-CPA] secure if it is both [IND/OW-CCA, ·] and
[·, IND/OW-CPA] secure.

Compared with classical definition of CCA security, the [CCA, ·] adversary of
2-key KEM has two main enhancements: (1) one of the challenge public keys pk∗

0 ,
under which the challenge ciphertext is computed, is generated by the adversary;
(2) the adversary is allowed to query a strong decryption oracle, and get decap-
sulation of the ciphertext under arbitrary public keys (pk∗

1 , pk′
0) where pk′

0 is
generated by the challenger.

AKE from 2-Key KEM. Equipped with [IND/OW-CCA, IND/OW-CPA] 2-key
KEM, by taking pk1 as static public key and pk0 as ephemeral public key, we
give several general frames of CK+ secure AKE, AKE, AKEro-pkic-lr and AKEstd,
depending on different tricks. The CK+ security of our AKE is decomposed
to the [IND/OW-CCA, ·] security (corresponding to KCI and MEX security) and
[·, IND/OW-CPA] security (corresponding to wPFS) of 2-key KEM. Furthermore,
to resist the leakage of partial randomness, a function f(sskB , eskB) is required
so that if one of sskB and eskB is leaked f(sskB , eskB) is still computationally
indistinguishable with a random string.

In Table 1 we summarize which one of our general frames is used to explain
which one of the existing AKE protocols by employing the specific tricks and
assumptions. Our general protocols capture the common idea of constructing
CK+ secure AKE. And depending on 2-key KEM and different tricks, it facili-
tates a number of instantiations, including HMQV [23], NAXOS [24], Okamoto
[27], FSXY12 [15], and FSXY13 [16].

By considering an AKE protocol in such a framework based on 2-key KEM,
the complicated security proofs of existing AKE is decomposed into several
smaller cases each of which is easier to work with. Moreover, this general scheme
not only explains previous constructions, but also yields efficient AKE from lat-
tice problems. After giving [IND-CPA, IND-CPA] twin-kyber under Module-LWE
assumption, we obtain a post-quantum AKE with less communications.

Constructions of 2-Key KEM. In addition to show that existing AKEs imply
[CCA, CPA] secure 2-key KEM, we investigate the general constructions.

Putting Public Key in the Hashing or PRF step. The Fujisaki-Okamoto (FO)
[14,18] transformation and KEM combiner are general techniques of classical
CCA security for one-key KEM. We show the failure of implying [IND/OW-

162 H. Xue et al.

Table 1. The unification of AKEs. Comb. is the abbreviation for combiner. GDH is
the Gap-DH assumption. RO is the notion of random oracle. Std is the shortened form
of standard model. πPRF means the pairwise-independent random source PRF [28]

Frameworks Models Concrete AKEs Assumptions Tricks

AKE RO FSXY13 [16], Kyber [3] OW-CCA Modified KEM Comb.

RO AKE-2Kyber (Sect.7) M-LWE Modified FO

AKEro-pkic-lr RO HMQV [23] OAKE [34] GDH, KEA1 Remarks 1–3

RO NAXOS [24] GDH Remarks 1, 2

AKEstd Std FSXY12 [15] IND-CCA Modified KEM Comb.

Std Okamoto [28] DDH, πPRF Twisted PRF

CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the classical
FO transformation by giving particular attacks on concrete schemes. Hence, we
show that with a slight but vital modification, when extracting encapsulated
key, by taking public key as input to the hash or PRF step, the modified KEM
combiner and FO transformation work for 2-key KEM.

1.2 Strong Point of the AKE via 2-Key KEM

The main advantage of our contributions is that we use a non-interactive prim-
itive to handle the complex requirement of interactive protocols. The function-
ality and security requirements of [CCA, CPA] secure 2-key KEM are relatively
easier to work with and understand. As it is known, in AKE we have to consider
complex and diverse adversaries. However, when considering the AKE under
our unified framework based on 2-key KEM, all the attacking strategies in CK+

model can be simplified to the singular security of 2-key KEM.
The non-interactive 2-key KEM helps us to highly simplify the construc-

tions for AKE as well as to understand the essential working mechanism. In
fact, KEM is relatively well-studied and intensively analyzed. Following the
first practical CCA secure PKE [9], there have been a number of CCA secure
PKE/KEM schemes based on both concrete assumptions [3,9,30,31] and general
cryptographic primitives [11,19,30]. Therefore, it is possible for us to employ the
established and nature technique of classical KEM to construct 2-key KEM, and
further AKE.

2 Preliminary

For a variable x, if x is a bit string, denote [x]i as the i-th bit of x; if x is a
polynomial, denote [x]i as the i-th coefficient of x; if x is a sets of vectors (with
string or number) denote [x]i as the sets of all i-th element of vectors in x;

Understanding and Constructing AKE 163

2.1 CK+ Security Model

We recall the CK+ model introduced by [23] and later refined by [15,16], which
is a CK [7] model integrated with the weak PFS, resistance to KCI and MEX
properties. Since we focus on two-pass protocols in this paper, for simplicity,
we show the model specified to two pass protocols.

In AKE protocol, Ui denotes a party indexed by i, who is modeled as prob-
abilistic polynomial time (PPT) interactive Turing machines. We assume that
each party Ui owns a static pair of secret-public keys (sski, spki), where the
static public key is linked to Ui’s identity, using some systems i.e. PKI, such
that the other parties can verify the authentic binding between them. We do not
require the well-formness of static public key, in particular, a corrupted party
can adaptively register any static public key of its choice.

Session. Each party can be activated to run an instance called a session.
A party can be activated to initiate the session by an incoming message of
the forms (Π, I, UA, UB) or respond to an incoming message of the forms
(Π,R, UB , UA,XA), where Π is a protocol identifier, I and R are role identifiers
corresponding to initiator and responder. Activated with (Π, I, UA, UB), UA is
called the session initiator. Activated with (Π,R, UB , UA,XA), UB is called the
session responder.

According to the specification of AKE, the party creates randomness which
is called ephemeral secret key, computes and maintains a session state, and com-
pletes the session by outputting a session key and erasing the session state. Note
that Canetti-Krawczyk [7] defines session state as session-specific secret infor-
mation but leaves it up to a protocol to specify which information is included in
session state; LaMacchia et al. [24] explicitly set all random coins used by a party
in a session as session-specific secret information and call it ephemeral secret key.
We require that the session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initia-
tor UA creates a session state and outputs XA, then may receive an incoming
message of the forms (Π, I, UA, UB ,XA,XB) from the responder UB , then may
computes the session key SK. On the contrary, the responder UB outputs XB ,
and may compute the session key SK. We say that a session is completed if its
owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If
UA is the initiator, the session identifier is sid = (Π, I, UA, UB , XA) or sid =
(Π, I, UA, UB ,XA,XB), which denotes UA as an owner and UB as a peer. If
UB is the responder, the session is identified by sid = (Π,R, UB , UA,XA,XB),
which denotes UB as an owner and UA as a peer. The matching session of
(Π, I, UA, UB ,XA,XB) is (Π,R, UB , UA,XA,XB) and vice versa.

Adversary. The adversary A is modeled in the following to capture real attacks
in open networks.

– Send(message): A could send message in one of the forms: (Π, I, UA, UB),
(Π,R, UB , UA,XA), or (Π, I, UA, UB ,XA,XB), and obtains the response.

164 H. Xue et al.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session
key SK for sid.

– SessionStateReveal(sid): The adversary A obtains the session state of the
owner of sid if the session is not completed. The session state includes all
ephemeral secret keys and intermediate computation results except for imme-
diately erased information but does not include the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the
static secret, session states and session keys stored at UA); in addition, from
the moment UA is corrupted all its actions may be controlled by A.

Freshness. Let sid∗ = (Π, I, UA, UB ,XA,XB) or (Π, I, UA, UB ,XA,XB) be a
completed session between honest users UA and UB. If the matching session
of sid∗ exists, denote it by sid∗. We say session sid∗ is fresh if A does not
queries: (1) SessionStateReveal(sid∗), SessionKeyReveal(sid∗), and SessionStateRe-

veal(sid∗), SessionKeyReveal(sid∗) if sid∗ exists; (2) SessionStateReveal(sid∗) and
SessionKeyReveal(sid∗) if sid∗ does not exist.

Security Experiment. The adversary A could make a sequence of the queries
described above. During the experiment, A makes the query of Test(sid∗), where
sid∗ must be a fresh session. Test(sid∗) select random bit b ∈U {0, 1}, and return
the session key held by sid∗ if b = 0; and return a random key if b = 1.

The experiment continues until A returns b′ as a guess of b. The adversary
A wins the game if the test session sid∗ is still fresh and b′ = b. The advantage
of the adversary A is defined as Advck+

Π (A) = Pr [A wins] − 1
2 .

Definition 1. We say that a AKE protocol Π is secure in the CK+ model if
the following conditions hold:
(Correctness:) if two honest parties complete matching sessions, then they both
compute the same session key except with negligible probability.
(Soundness:) for any PPT A, Advck+

Π (A) is negligible for the test session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid∗ does not exist.
2. the ephemeral secret key of the owner of sid∗ is given to A, if sid∗ does not

exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid∗

are given to A, if sid∗ exists.
4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid∗ are given

to A, if sid∗ exists.
5. the static secret key of the owner of sid∗ and the static secret key of the peer

of sid∗ are given to A, if sid∗ exists.
6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗

are given to A, if sid∗ exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of
exposure of static and ephemeral secret keys listed in Definition 1, and these ten
cases cover wPFS, resistance to KCI, and MEX.

Understanding and Constructing AKE 165

Table 2. The behavior of AKE adversary in CK+ model. sid∗ is the matching session
of sid∗, if it exists. “Yes” means that there exists sid∗, “No” means do not. sskA(sskB)
means the static secret key of A(B). eskA(eskB) is the ephemeral secret key of A(B)
in sid∗ or sid∗ if there exists. “

√
” means the secret key may be revealed to adversary,

“×” means is not. “-” means the secret key does not exist

Event Case sid∗ sid∗ sskA eskA eskB sskB Security

E1 1 A No
√ × - × KCI

E2 2 A No × √
- × MEX

E3 2 B No × -
√ × MEX

E4 1 B No × - × √
KCI

E5 5 A or B Yes
√ × × √

wPFS

E6 4 A or B Yes × √ √ × MEX

E7-1 3 A Yes
√ × √ × KCI

E7-2 3 B Yes × √ × √
KCI

E8-1 6 A Yes × √ × √
KCI

E8-2 6 B Yes
√ × √ × KCI

3 2-Key Key Encapsulation Mechanism and Basic
Results

3.1 2-Key Key Encapsulation Mechanism

Generally, a double-key (2-key) KEM is a public key encapsulation
with two pairs of public and secret keys. Formally, a 2-key KEM
2KEM = (KeyGen1,KeyGen0,Encaps,Decaps) is a quadruple of PPT algorithms
together with a key space K.

– KeyGen1(λ, pp): on inputs security parameter λ, and public parameters pp,
output a pair of public-secret keys (pk1, sk1). In order to show the randomness
that is used, we denote key generation algorithm as KeyGen1(λ, pp; r). For
simplicity, sometimes we omit the input security parameter λ and public
parameter pp and denote it as KeyGen1(r) directly.

– KeyGen0(λ): on inputs security parameter λ output a pair of public and secret
keys (pk0, sk0).

– Encaps(pk1, pk0; auxe): on input public keys pk1, pk0 and auxiliary input
auxe (if there is), output ciphertext c and encapsulated key k in key
space K. Sometimes, we explicitly add the randomness r and denote it as
Encaps(pk1, pk0, r; auxe).

– Decaps(sk1, sk0, c; auxd): on input secret keys sk0, sk1, auxiliary input auxd
(if there is) and c, output key k.

Correctness. For (pk1, sk1) ← KeyGen1(λ, pp), (pk0, sk0) ← KeyGen0(λ, pp)
and (c, k) ← Encaps(pk1, pk0), we require that Decaps(sk1, sk0, c) = k holds with
all but negligible probability.

166 H. Xue et al.

Security. We consider two kinds of security i.e., indistinguishability and
one-wayness in the attacking model [ATK1,ATK0]. More precisely, in our
[ATK1,ATK0] security model for 2KEM, we consider two adversaries, i.e., A =
(A1,A2) attacking pk1 (controlling the generation of pk∗

0) and B = (B1,B2)
attacking pk0 (controlling the generation of pk∗

1). In Fig. 1 below we show the
security games of one-wayness and indistinguishable security corresponding to
[IND/OW-ATK1, ·] and [·, IND/OW-ATK0] respectively.

To be clear, the auxiliary inputs auxe and auxd may contain public part,
called public auxiliary input, and secret part, called secret auxiliary input. In
the security games, both the challenger and adversary have public auxiliary
input, while only the challenger has the secret auxiliary input. For simplicity, we
do not explicitly show auxe and auxd in the security games.

Fig. 1. The [ATK1, ·], and [·,ATK0] games of 2KEM for adversaries A and B. The
oracles Oleak0 , OATK1 , Oleak1 , and OATK0 are defined in the following

On the i-th query of Oleak0 , the challenger generates (pki
0, sk

i
0) ←

KeyGen0(ri
0), sets L0 = L0 ∪ {(pki

0, sk
i
0, r

i
0)} and returns (pki

0, sk
i
0, r

i
0) to adver-

sary A. On the i-th query of Oleak1 , the challenger generates (pki
1, sk

i
1) ←

KeyGen1(ri
1), sets L1 = L1 ∪ {(pki

1, sk
i
1, r

i
1)} and returns (pki

1, sk
i
1, r

i
1) to

adversary B.
Depending on the definition of oracle OATK1 the adversary A accesses, and

OATK0 that the adversary B accesses, we get CPA and CCA notions respectively.

– if OATK1(pk′
0,c′) = −, it implies CPA notion;

– if OATK1(pk′
0,c′) �= −, it works as following: If pk′

0 ∈ [L0]1∧(c′ �= c∗∨pk′
0 �= pk∗

0),
compute k′ ← Decaps(sk1, sk

′
0, c

′), and return the corresponding k′, otherwise
return ⊥. This case implies CCA notion.

Understanding and Constructing AKE 167

– if OATK0(pk′
1,c′) = −, it implies CPA notion;

– if OATK0(pk′
1,c′) �= −, it works as following: If pk′

1 ∈ [L1]1∧(c′ �= c∗∨pk′
1 �= pk∗

1),
compute k′ ← Decaps(sk′

1, sk0, c
′), and return the corresponding k′, otherwise

return ⊥. This case implies CCA notion.

Let A = (A1,A2) be an adversary against pk1 of 2KEM. We define the
advantage of A winning in the game IND-ATK1 and OW-ATK1 respectively
as: Adv[IND-ATK1,·]

2KEM (A) =
∣
∣
∣Pr[IND-ATK1A ⇒ 1] − 1

2

∣
∣
∣, and Adv[OW-ATK1,·]

2KEM (A) =

Pr[OW-ATK1A ⇒ 1], where game [IND-ATK1, ·] and [OW-ATK1, ·] are described
in Fig. 1.

We say that 2KEM is [IND-ATK1, ·] secure, if Adv[IND-ATK1,·]
2KEM (A) is negligible;

that 2KEM is [OW-ATK1, ·] secure, if Adv[OW-ATK1,·]
2KEM (A) is negligible, for any PPT

adversary A. The [·, IND-ATK0] and [·,OW-ATK0] security can be defined in the
same way. Here to avoid repetition we omit their description.

[ATK1, ATK0] Security. The scheme 2KEM is called [ATK1,ATK0] secure if it
is both [ATK1, ·] and [·,ATK0] secure for any PPT algorithms A and B. By the
combination of adversaries A and B attacking different security (i.e., indistin-
guishability and one-wayness), we could get 16 different definitions of security
for 2-key KEM. What we concern in this paper is the [CCA, CPA] security in
both indistinguishability and one-wayness setting. For simplicity, we abbreviate
the security model as [IND/OW-CCA, IND/OW-CPA].

3.2 Differences Between [CCA, ·] Security and Previous Definitions

In order to avoid confusion, we re-clarify the definition of [IND/OW-CCA, ·] secu-
rity and analyze its difference with previous similar notions, including classical
CCA security, KEM combiner [17], and completely non-malleable scheme [13].

Compared with classical CCA adversary, the [CCA, ·] adversary of 2-key
KEM (1) has the capability of choosing one of the challenge public key pk∗

0 ; (2)
could query a strong decryption oracle, which decapsulates the ciphertext under
several public keys (pk∗

1 , pk′
0) where pk′

0 is generated by the challenger. While
in the classical definition of decapsulation oracle the adversary could only query
decapsulation oracle with ciphertext under the challenge public keys (pk∗

1 , pk∗
0).

Very recently, Giacon et. al [17] study combiners for KEMs. That is, given a
set of KEMs, an unknown subset of which might be arbitrarily insecure, Giacon
et. al investigate how they can be combined to form a single KEM that is secure
if at least one ingredient KEM is. The KEM combiners treated by Giacon et al.
have a parallel structure: If the number of KEMs to be combined is n, a public
key of the resulting KEM consists of a vector of n public keys; likewise for secret
keys. The encapsulation procedure performs n independent encapsulations, one
for each combined KEM. The ciphertext of the resulting KEM is simply the con-
catenation of all generated ciphertexts. The session key is obtained as a function
of keys and ciphertexts. Although from the literature our 2-key KEM looks like
the two KEM combiner, the security requirement and concrete constructions
between them are completely different. Since the two KEM combiner considers

168 H. Xue et al.

the problem that if one of two KEMs is insecure and the other one is CCA
secure, how to combine them to obtain a CCA secure single KEM. In fact, the
adversary of KEM combiner security model is the classical CCA adversary (it
can only query the decryption oracle under certain public keys). Actually, in
Sect. 6.1, we show there exists [CCA, ·] adversary to attack a CCA secure two
KEM combiner.

Aiming to construct non-malleable commitments, Fischlin [13] considered
completely non-malleable (NM) schemes. The complete NM scheme is later
extended to indistinguishability setting by Barbosa and Farshim [4] with a strong
decryption oracle, which allows the adversary to queries with ciphertext under
arbitrary public key of its choice. Note that our [CCA, ·] is also modeled to allow
the adversary to query a strong (but weaker than complete NM) decapsulation
oracle with ciphertext under several public keys that are chosen by challenger
instead of by adversary. On the other hand, the complete NM adversary is not
allowed to choose part of challenge public key, while [CCA, ·] is.

Based on the above observations, we give comparison among these different
definitions by considering two public keys in Table 3. For convenience, we con-
sider classical CCA and complete NM schemes in which public keys are expressed
as two public keys (pk1, pk0) and let KEM combiner be two combiner of KEM.
The differences among security requirements are the capability of adversary,
namely, whether the adversary is allowed to choose part of the challenge public
keys, or under which public keys the ciphertexts that adversary is allowed to
query decryption oracle with are computed.

Table 3. The differences of related definitions. “Cha.” is the abbreviation of “chal-
lenge”. C denote the challenger and A denote the adversary. We use A(sk∗

0) to denote
that A breaks the KEM under pk∗

0 . In both Classical CCA and KEM combiner the
decapsulation oracle only returns when (pk1, pk0) = (pk∗

1 , pk∗
0), while in Complete NM

(pk1, pk0) could be arbitrary public keys chosen by adversary, and in [CCA, ·], pk0 could
be arbitrary public key chosen by challenger.

Definitions Cha. PK (pk∗
1 , pk

∗
0) Cha. ciphertext c∗ ODec((pk1, pk0), c

′)

Classical CCA (pk∗
1 , pk

∗
0) ← C c∗ under (pk∗

1 , pk
∗
0) (pk1, pk0) = (pk∗

1 , pk
∗
0)

KEM Combiner [17] (pk∗
1 , pk

∗
0) ← C, A(sk∗

0) c∗
1||c∗

0, c
∗
i under pk∗

i (pk1, pk0) = (pk∗
1 , pk

∗
0)

Complete NM [13] (pk∗
1 , pk

∗
0) ← C c∗ under (pk∗

1 , pk
∗
0) (pk1, pk0) ← A

[CCA, ·] pk∗
1 ← C, pk∗

0 ← A c∗ under (pk∗
1 , pk

∗
0) pk1 = pk∗

1 , pk0 ← C

3.3 Basic Definitions and Results Related to 2-Key KEM

[CCA, ·] Security with Non-adaptive Adversary. We can define a weak
[CCA, ·] adversary, who is not able to adaptively choose the challenge public key.
In this case, taking the adversary A attacking pk1 as an example, the challenge
public key pk∗

0 is generated by challenger instead of A, which means pk∗
0 ∈ [L0]1.

Public Key Independent Ciphertext. The concept of public-key-
independent-ciphertext (PKIC) was first proposed in [33]. We extend it to 2-key

Understanding and Constructing AKE 169

KEM setting. The PKIC 2-key KEM allows a ciphertext to be generated indepen-
dently from one of two public keys, while the encapsulated key underlay in such
ciphertext to be generated with the randomness and both two public keys. More
precisely, algorithm (c, k) ← Encaps(pk1, pk0, r) can be realized in two steps: in
step 1, ciphertex c is generated from pk1 and randomness r. We precisely denote
it as c ← Encaps0(pk1, -, r); in step 2, the encapsulated key k in c is generated
from r, pk1, and pk0. We precisely denote it as k ← Encaps1(pk1, pk0, r).

Classical One-Key KEM and 2-Key KEM. Note that given a concrete 2-key
KEM, usually it is not obvious and natural to regress to one-key KEM by setting
pk0 = -. However given any classical one-key KEM, it can be seen as a 2-key
KEM with KeyGen0 not in use and pk0 = -. At that time, the [OW/IND-CCA, ·]
security of this 2-key KEM return to the classical OW/IND-CCA security of the
underlying KEM.

Min-Entropy. In case of 2-key KEM with PPT adversary A, for (pk1, sk1) ←
KeyGen1 and pk0 ← A or (pk0, sk0) ← KeyGen0 and pk1 ← A, we define
the min-entropy of Encaps(pk1, pk0) by γ(pk1, pk0,A) = − log maxc∈C Pr[c =
Encaps(pk1, pk0)]. We say that KEM is γ-spread if for every (pk1, sk1) ←
KeyGen1 and pk0 ← A or (pk0, sk0) ← KeyGen0 and pk1 ← A, γ(pk1, pk0,A) ≥
γ, which means for every ciphertext c ∈ C, it has Pr[c = Encaps(pk1, pk0)] ≤ 2−γ .

4 Authenticated Key Exchange from 2-Key KEM

In this section, we propose CK+ secure AKEs from [CCA,CPA] secure 2-key
KEM in both random oracle and standard models. Before showing our AKEs,
we need a primitive of random function with half of leakage, that is used by
several existing AKEs.

Definition 2 (Random Function with half of leakage (hl-RF)). Let
f : Dsk × Db → R be a function from domain Dsk × Db to R. Denote
KeyGen → Dsk × Dpk as key generation algorithm for some KEM. Let Db,R
be the uniformly distributions over Db, R. It is called (ε1, ε2) hl-RF with respect
to KeyGen, if for (pk, sk) ← KeyGen, the following distributions are computa-
tional indistinguishable with advantage ε1, ε2.

{(pk, sk, f(sk, b))|b ← Db} =ε1 {(pk, sk, U)|U ← R};
{(pk, b, f(sk, b))|b ← Db} =ε2 {(pk, b, U)|b ← Db, U ← R}.

The hk-RF can be achieved in both random oracle model and standard model.

– In the random oracle model, if f is a hash function, without the knowledge
of b, the output of f is totally random; if KEM with respect to KeyGen
is secure, without the knowledge of sk the output of f is computational
indistinguishable with a random string (otherwise the adversary must query
random oracle with sk which against the security of KEM) given pk. Then
Eq. 2 holds. This structure is known as NAXOS trick [24].

170 H. Xue et al.

– Let F ′ : Db × {0, 1}λ → R and F ′′ : Dsk × Db → R be two pseudo random
functions (PRFs). If assume KeyGen outputs an additional string s ← {0, 1}λ,
after obtaining (pk, sk), set sk = (sk||s). If f(sk, b) = F ′

b(1
λ) ⊕ F ′′

s (b), then
even given pk, without the knowledge of s or b, f(sk, b) is computational
indistinguishable with random distribution over R. This is known as twisted
PRF trick [15,27].

4.1 AKE from 2-Key KEM in Random Oracle Model

Roadmap: We first give a basic AKE from two [OW-CCA, OW-CPA] secure 2-
key KEMs. Utilizing extra properties of 2-key KEM, like PKIC or resistance of
leakage of partial randomness, we then present two elegant AKEs based on 2-key
KEM with different property.

Let 2KEM = (KeyGen1,KeyGen0,Encaps,Decaps) be a [OW-CCA, OW-CPA]
secure 2-key KEM with secret key space Dsk1 × Dsk0 , random space R. Let
H : {0, 1}∗ → {0, 1}λ be hash function, fA : Dsk1 × {0, 1}∗ → R and fB :
Dsk1 × {0, 1}∗ → R be hl-RFs. The CK+ secure AKE is presented in Fig. 2.

Stage 0: static secret-public key pair and public parameters. Each user’s
static secret-public key pair is generated using KeyGen1. Sample one pair of
key (cpk0, csk0) ← KeyGen0 (which need not to be randomly generated). Set
cpk0 as the predetermined ephemeral public key which will be used by initiator
afterwards and csk0 as the predetermined ephemeral secret key that will be used
by responder. Let (cpk0, csk0) be parts of public parameters.

Stage 1: Initiator UA generates two randomness rA, rA0; it computes (CB ,KB)
under public key pkB and predetermined cpk0 with randomness fA(skA, rA),
and generates ephemeral secret-public key (pkA0, skA0) ← KeyGen0(rA0). Then
it sends CB , pkA0 to UB.

Stage 2: Responder UB generates randomness rB ; it computes (CA,KA) under
public keys pkA and pkA0 with randomness fB(skB , rB); UB sends CA to UA

and de-encapsulates CB using skB and predetermined csk0 to obtain K ′
B ; it then

computes SK = H(UA, UB , pkA, pkB , CB , pkA0, CA,KA,K ′
B), and erases K ′

B .

Stage 3: UA de-encapsulates CA using skA and skA0 to obtain K ′
A and computes

SK = H(UA, UB , pkA, pkB , CB , pkA0, CA,K ′
A,KB).

The session state of sid owned by UA consists of ephemeral secret key rA0, rA,
decapsulated key K ′

A and encapsulated key KB ; The session state of sid owned
by UB consists of ephemeral secrete key rB and encapsulated key KA.

Theorem 1. If the underlying 2KEM is [OW-CCA,OW-CPA] secure and γ-
spread, fA, fB are (ε1, ε2) hl-RFs, and there are N users in the AKE protocol
and the upbound of sessions between two users is l, for any PPT adversary A
against AKE with totally q times of CK+ queries, there exists S s.t.,

Advck+
AKE(A) ≤ 1

2
+ min

{

N2l · Adv[OW-CCA,·]
2KEM (S) + N2lq · (ε1 + ε2 + 2−γ),

N2l · Adv[·,OW-CPA]
2KEM (S) + N2lq · ε2

}

.

Understanding and Constructing AKE 171

Fig. 2. AKE from [OW-CCA, OW-CPA] secure 2KEM in random oracle model. cpk0, csk0

are predetermined and default ephemeral keys and they are part of the public param-
eters. si here is (UA, UB , pkA, pkB , CB , pkA0, CA)

Proof of Theorem 1. Let Succ be the event that the guess of A against freshed
test session is correct. Let AskH be the event that A poses (UA, UB , pkA, pkB , CB ,
pkA0, CA,KA,KB) to H, where CB , pkA0, CA are the views of the test session
and KA,KB are the keys encapsulated in the test session. Let AskH be the
complement of AskH. Then,

Pr[Succ] = Pr[Succ ∧ AskH] + Pr[Succ ∧ AskH] ≤ Pr[Succ ∧ AskH] + Pr[AskH],

where the probability is taken over the randomness used in CK+ experiment.
We then show that Pr[Succ ∧ AskH] ≤ 1/2 (as in Lemma 1) and Pr[AskH] is

negligible (as in Lemma 2) in all the events (listed in Table 2) of CK+ model.
Followed by Lemmas 1 and 2, we acheive the security of AKE in CK+ model.
Thus, we only need to prove Lemmas 1 and 2.

Lemma 1. If H is modeled as a random oracle, we have Pr[Succ∧AskH] ≤ 1/2.

Proof of Lemma 1. If Pr[AskH] = 0 then the claim is straightforward, otherwise
we have Pr[Succ ∧ AskH] = Pr[Succ|AskH]Pr[AskH] ≤ Pr[Succ|AskH]. Let sid
be any completed session owned by an honest party such that sid �= sid∗ and
sid is not matching sid∗. The inputs to sid are different from those to sid∗ and
sid∗ (if there exists the matching session of sid∗). If A does not explicitly query
the view and keys to oracle, then H(UA, UB , pkA, pkB , CB , pkA0, CA,KA,KB) is
completely random from A’s point of view. Therefore, the probability that A
wins when AskH does not occur is exactly 1/2.

Lemma 2. If the underlying 2KEM is [OW-CCA,OW-CPA] secure, the probabil-
ity of event AskH defined above is negligible. Precisely,

Pr[AskH] ≤ min

{

N2l · Adv[OW-CCA,·]
2KEM (S) + N2lq · (ε1 + ε2 + 2−γ),

N2l · Adv[·,OW-CPA]
2KEM (S) + N2lq · ε2

}

.

Please refer the full version [32] for the formal proof. we give a sketch of proof
here. In the following, to bound Pr[AskH], we work with the events in Table 4.

172 H. Xue et al.

Table 4. The bounds of AskH ∧ Askh in the proof of Lemma 2. Refer Table 2 for the
meanings of notions.

Events sid∗ sid∗ sskA eskA eskB sskB Bounds

AskH ∧ E1 A No
√ × - × Adv

[OW-CCA,·]
2KEM , pk1 = pkB , pk∗

0 = cpk0

AskH ∧ E2 A No × √
- × Adv

[OW-CCA,·]
2KEM , pk1 = pkB , pk∗

0 = cpk0

AskH ∧ E3 B No × -
√ × Adv

[OW-CCA,·]
2KEM , pk1 = pkA, pk∗

0 ← A
AskH ∧ E4 B No × - × √

Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗

0 ← A
AskH ∧ E5 A/B Yes

√ × × √
Adv

[·,OW-CPA]
2KEM , pk0 = pk0(sid

∗) pk∗
1 ∈ [L1]1

AskH ∧ E6 A/B Yes × √ √ × Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗

0 ∈ [L0]1

AskH ∧ E7-1 A Yes
√ × √ × Adv

[OW-CCA,·]
2KEM , pk1 = pkB pk∗

0 = cpk0

AskH ∧ E7-2 B Yes × √ × √
Adv

[OW-CCA,·]
2KEM , pk1 = pkA, pk∗

0 ∈ [L0]1

AskH ∧ E8-1 A Yes × √ × √
Adv

[OW-CCA,·]
2KEM , pk1 = pkA, pk∗

0 ∈ [L0]1

AskH ∧ E8-2 B Yes
√ × √ × Adv

[OW-CCA,·]
2KEM , pk1 = pkB , pk∗

0 = cpk0

Due to the [OW-CCA, ·] security of 2KEM with pk1 = pkA and pk∗
0 generated

by A, the probability of events AskH∧E3 and AskH∧E4 is negligible; Due to the
[OW-CCA, ·] security of KEM with pk1 = pkB and pk∗

0 = cpk0, the probability
of events AskH ∧ E1, AskH ∧ E2, AskH ∧ E7-1 and AskH ∧ E8-2 is negligible;
Due to the [OW-CCA, ·] security of 2KEM with pk1 = pkA and pk∗

0 ∈ [L0]1, the
probability of events AskH∧ E6, AskH∧ E7-2 and AskH∧ E8-1 is negligible. Due
to the [·,OW-CPA] security with pk∗

1 ∈ [L1]1, the probability of event AskH∧ E5

is negligible.
Here, we only take AskH∧E3 as an example to explain in detail. For the other

cases we can deal with them in a similar way. In the event E3, the test session
sid∗ has no matching session, and the ephemeral secret keys rB of UB is given
to A. In case of AskH ∧ E3, the [OW-CCA, ·] adversary S performs as follows.
It simulates the CK+ games, and transfers the probability that the event AskH
performed by A occurs to the advantage of attacking [OW-CCA, ·] security.

In order to simulate the random oracles, S maintains two lists for H oracle
and SessionKeyReveal respectively. H-oracle and SessionKeyReveal are related,
which means the adversary may ask SessionKeyReveal without the encapsulated
keys at first, and then may ask H-oracle with the encapsulated keys. Thus, the
reduction must ensure consistency with the random oracle queries to H and
SessionKeyReveal. The decryption oracle for [OW-CCA, ·] game would help to
maintain the consistency of H-oracle and SessionKeyReveal.

On receiving the public key pk1 from the [OW-CCA, ·] challenger, to simulate
the CK+ game, S randomly chooses two parties UA, UB and the i-th session as
a guess of the test session with success probability 1/N2l. S, picks one preset
(cpk0, csk0) ← KeyGen0 as public parameters, runs KeyGen1 to set all the static
secret and public key pairs (pkP , skP) for all N users UP except for UA. Specially,
S sets the static secret and public key pairs (pkB , skB) for UB , and sets pkA = pk1.

Without knowing the secret key of UA, S chooses totally random rA as part of
ephemeral secret key and totally random RA for Encaps. Since fA is (ε1, ε2) hl-
RF, the difference between simulation with modification of rA and real game

Understanding and Constructing AKE 173

is bounded by ε1. When a ephemeral public key pkP0 is needed, S queries
(pki

0, sk
i
0, r

i
0) ← Oleak0 and sets pkP0 = pki

0. When a session state revealed to a
session owned by UA, is queried, S returns rA and ri

0 of this session as part of
ephemeral secret key.

On receiving the i-th session (C ′
B , pk∗

0) from UA (that is sent by A in the CK+

games), S returns pk∗
0 to the [OW-CCA, ·] challenger and receives the challenge

ciphertext C∗ under public key pk1 and pk∗
0 . Then S returns C∗ to UA as the

response of i-th session from UB . S chooses a totally independent randomness
rB as the ephemeral secret key of UB for C∗ and leaks it to adversary A. Since
fB is (ε1, ε2) hl-RF, the difference between simulation with modification of rB

and real game is bounded by ε2.
S simulates the oracle queries of A and maintains the hash lists. Spe-

cially, when AskH happens, which means A poses (UA, UB , pkA, pkB , C ′
B , pk∗

0 ,
C∗,KA,KB) to H, where C ′

B , pk∗
0 , C∗ are the views of the test session and KB

is the key encapsulated in C ′
B , S returns KA as the guess of K∗ encapsulated in

C∗, which contradicts with the [OW-CCA, ·] security for pk1 = pkA, pk∗
0 ← A. ��

4.1.1 If 2-Key KEM Is PKIC
As we notice in AKE, the session state of sid owned by UB does not contain
decapsulated key K ′

B . If the underlying 2-key KEM is PKIC (which is defined in
Sect. 3.3), and UB also sends ephemeral public key pkB0 out in every session, K ′

B

is encapsulated under two public keys pkB and pkB0, then K ′
B could be included

in session state, and the predetermined ephemeral public key cpk0 can be omit-
ted. Let 2KEMpkic = (KeyGen1,KeyGen0,Encaps0,Encaps1,Decaps) be PKIC and
[OW-CCA,OW-CPA] secure 2-key KEM. The AKE can be modified to include K ′

B

as session state by (1) replacing 2KEM with 2KEMpkic; (2) requiring UB to gener-
ate a fresh (pkB0, skB0) ← KeyGen0 and send out ephemeral public key pkB0; (3)
encapsulating and separating (CB ,KB) ← Encaps(pkB , pkB0, RA) in two steps
and computing CB ← Encaps0(pkB , -, RA) and KB ← Encaps1(pkB , pkB0, RA).
The modified protocol AKEro-pkic is shown in Fig. 3.

Note that the encapsulation algorithm of PKIC 2-key KEM can be split
into two steps. Since the generation of ciphertext CB does not require pkB0, we
denote it as CB ← Encaps0(pkB , -, RA). The computation of encapsulated key
KB requires pkB0, and we denote it as KB ← Encaps1(pkB , pkB0, RA).

Since the proof mainly follows that of Theorem 1, we only show the difference
here. The main difference is the analysis of Pr[AskH] in Lemma 2. Now, the
probability of events AskH∧E1, AskH∧E2, AskH∧E7-1, AskH∧E8-2 is bounded
by the [OW-CCA, ·] security of 2KEMpkic with pk∗

0 chosen by A rather than the
predetermined cpk0. Precisely, in those events, when the adversary queries the
session state of UB whose secret key is unknown to simulator S, in AKE, S
queries the decryption oracle of 2KEM with cpk0 and CB (when adversary queries
Send(Π, R, UB , UP , CB , pkA0)), while in AKEpkic, S queries the decryption oracle
of 2KEMpkic with (pkB0, CB) chosen by A. This modification does not affect the
proof of security.

174 H. Xue et al.

Fig. 3. AKEro-pkic from PKIC [OW-CCA, OW-CPA] secure 2KEM. Here si = (UA, UB ,
pkA, pkB , CB , pkA0, CA, pkB0). The boxed argument is the difference with AKE

4.1.2 If PKIC 2-Key KEM Is Even Secure with Leakage of Partial
Randomness

We can further refine the framework AKEro-pkic based on two observations: (1)
From the proof of Theorem 1 (especially Lemma 2), we can see that the only
purpose of fA and fB is to preserve the [OW-CCA, ·] security with pk1 = pkA

and the [·,OW-CPA] security with pk0 = pkA0 even if part of randomness, rB

or skB is leaked to the adversary. If the underlying 2-key KEM itself is strong
enough to preserve the [OW-CCA,OW-CPA] security with respect to some func-
tion fA(skA, rA) (resp. fB(skB , rA)), and leakage of skA or rA for fixed pkA (resp.
skB or rB for fixed pkB), the functions fA and fB don’t have to be hl-RFs. (2) if
the 2-key KEM is strong enough to preserve security even when the randomness
rB0 used to generate pkB0 is generated from fB0(skB , rB) for some function fB0,
then we could regard fB0(skB , rB) as a random string using to compute pkB0.
The same holds when (pkA0, skA0) ← KeyGen0(rA0) where rA0 = fA0(skA, rA)
for some function fA0.

Therefore, the problem comes down to study the security of 2-key KEM when
CA (under public keys pkA and pkA0) shares the randomness of pkB and pkB0.

Definition 3. We say 2-key KEM is leakage resistant of partial randomness
with respect to fB and fB0 (they need not to be hl-RFs), if the following property
holds. Under public key pkA and pkA0, the [OW-CCA,OW-CPA] security still
holds where the ciphertext is computed as Encaps(pkA, pkA0, fB(skB , rB)) for
some fixed pkB (where (pkB , skB) ← KeyGen1), when either rB and pkB0 or skB

and pkB0 are given to adversary, where (pkB0, skB0) ← KeyGen0(fB0(skB , rB)).

Equipped with PKIC 2-key KEM that resists to the leakage of partial ran-
domness with respect to fB and fB0, we set fA0(skA, rA) and fB0(skB , rB) as
the randomness for KeyGen0, and denote the result AKE as AKEro-pkic-lr in Fig. 4.
The session state of sid owned by UA consists of rA, K ′

A and KB , the session
state of sid owned by UB consists of rB , KA and K ′

B .

Understanding and Constructing AKE 175

Fig. 4. AKEro-pkic-lr. Here si = (UA, UB , pkA, pkB , CB , pkA0, CA, pkB0). The boxed argu-
ment is the main difference with AKEro-pkic

Remark 1. As in the definition of 2-key KEM, both Encaps and Decaps allow to
have auxiliary input auxe or auxd. In AKEro-pkic-lr (AKE and AKEro-pkic), the static
public keys are generated by KeyGen1 during the registration phase (i.e., Stage
0) and publicly available. Thus, in the protocol, it makes sense that Encaps and
Decaps algorithms take the static public keys as public auxiliary input. And for
user UA (resp. UB), it is also reasonable that Encaps executed by UA (resp. UB)
takes his static secret key skA (resp. skB) as auxiliary input. In this sense, one
couple of 2KEM is really “coupled” with each other.

Remark 2. Since CA share the randomness of pkB0 and secret key of pkB , if the
2-key KEM and function fB/fB0 further satisfy that CA is publicly computable
from pkB and pkB0, we can omit CA in the communications. The same holds for
CB , if it is publicly computable from pkA and pkA0, we can omit CB .

Remark 3. Note that the computation of fB is part of Encaps(pkA, pkA0, RB)
algorithm. fB may take pkA as input. At that time, to be clear, we denote
fB(skB , rB) as fB(skB , rB , pkA). It is similar in the case of fA.

With these modifications, we should handle the proof more carefully. The
main challenge is that the ciphertext CA, static public key pkB , ephemeral public
key pkB0 are correlated (the same holds for CB , pkA, and pkA0). We should
handle the problem that, since CA shares the randomness with pkB0 and secret
key of pkB , when applying the [OW-CCA, ·] security of 2-key KEM with pk1 =
pkA in event AskH ∧ E3, AskH ∧ E6, not only skA but also skB is unknown to
simulator S. (The same situation occurs when applying [OW-CCA, ·] security of
2-key KEM with pk1 = pkB in event AskH ∧ E2).

The way to solving this problem is to bring in another [OW-CCA, ·] challenge.
As an example, we sketch the proof of event AskH∧E3 to show how this resolves
the above problem. The main modification is for the proof of Lemma 2. In case
of AskH∧E3, the [OW-CCA, ·] adversary S performs as follows. On receiving the
public key pk1 from the [OW-CCA, ·] challenger, to simulate the CK+ game, S

176 H. Xue et al.

randomly chooses two parties UA, UB and the i-th session as a guess of the test
session. S runs KeyGen1 to generate all static public keys except UA and UB . S
queries the first [OW-CCA, ·] challenger to get pk1, and sets pkA = pk1. S queries
the second [OW-CCA, ·] challenger again to get another pk′

1 and sets pkB = pk′
1.

Note that now S does not know the secret key of both pkA and pkB . Here
S generates (pk∗

B0, sk
∗
B0) by itself. S sends pk∗

B0 to the second challenge to get
challenge ciphertext C∗

B and keeps both pk∗
B0 and C∗

B secret to CK+ adversary
A. On receiving the i-th session (C ′

B , pk∗
A0) from UA (that is sent by A in the

CK+ games), S queries the first [OW-CCA, ·] challenger with pk∗
A0 and obtains

C∗
A, pkB0 and its randomness rB0. S returns C∗

A and pkB0 to UA as the response
of i-th session from UB , and sets pk∗

A0 as the public key under which C∗
A is

encrypted. S also leaks rB0 to adversary as the ephemeral secret key.
With the first [OW-CCA, ·] challenge, S could partially maintain the hash list

and SessionStateReveal and SessionKeyReveal with strong decapsulation oracle
when UB is not involved. When UB is involved, the second [OW-CCA, ·] challenge
is needed. Note that since 2-key KEM is γ-spread, the probability that A queries
a message with CB = C∗

B is bounded by q × 2−γ . The simulation is perfect and
the other part of proof proceeds the same with Lemma 2.

4.2 AKE from 2-Key KEM in Standard Model

The protocol AKE/AKEro-pkic in random oracle model can be easily extended to
one that is secure in the standard model, denoted by AKEstd/AKEstd-pkic, via the
following steps:

1. replacing the [OW-CCA,OW-CPA] secure 2-key KEM in random oracle model
with the [IND-CCA, IND-CPA] secure 2-key KEM in standard model;

2. instantiating the hl-RF functions fA, fB in standard model instead of the
random oracle model. As noted after the definition, the instantiation of hl-
RF in standard model require PRF and extra randomness. Thus every user
holds extra random secret sP ← {0, 1}λ as part of the static secret key and
RA = fA(skA||sA, rA), RB = fB(skB ||sB , rB).

3. replacing the random oracle H(si,KA,KB) with FKA
(si) ⊕ F̂KB

(si), to
extract session key, where F and F̂ are PRFs.

Actually, converting a scheme in the random oracle model into that in the stan-
dard model is generally not trivial, and there are many negative results. However,
without taking advantage of strong property of random oracle, our step 2 and
3 just use the property that if the input is unknown then the output is totally
random. The difficult part is step 1. Once the 2-key KEM in random oracle
model is replaced by [IND-CCA, IND-CPA] secure 2-key KEM in standard model,
the proof of security for AKE in standard model is straightforward.

5 Unification of Prior Works

In this section, we show that existing AKEs, HMQV [23], NAXOS [24], Okamoto
[27], and FSXY framework [15,16], can be explained in our unified frameworks.

Understanding and Constructing AKE 177

5.1 HMQV-AKE

In HMQV [23], the 2-key KEM is initiated by 2KEMHMQV in Fig. 5. Let h and
Ĥ be hash functions. Let G be a group of prime order p with g as a generator.
Both Encaps and Decaps algorithms have auxiliary input auxe = (B, b) where
B = gb and auxd = B. Note that, here, B is the public auxiliary input and b
is the secret auxiliary input. By applying AKEro-pkic-lr, Remarks 1–3, we present
how the HMQV scheme is integrated in our unified framework of AKE and how
it is built from the view of 2-key KEM in Fig. 6.

Fig. 5. The [OW-CCA, OW-CCA] secure 2KEMHMQV implied by HMQV.

Theorem 2. Under the Gap-DH and KEA1 assumptions1, 2KEMHMQV in Fig. 5
is [OW-CCA, OW-CCA] secure with the resistance to the leakage of partial ran-
domness with respect to fB(b, y, A) = y + b · h(gy, A) and fB0(b, y) = y in the
random oracle model.

Please refer the full version [32] for the proof of Theorem 2.
As said in Remark 3, fB takes A as input and fB(b, y, A) = y+b·h(gy, A). By

Theorem 2, 2KEMHMQV is [OW-CCA, OW-CCA] secure even if partial randomness
(b or y) is leaked with respect to fB(b, y, A) = y + b · h(gy, A) and fB0(b, y) = y.
By changing the role of A and B, X and Y , we also get a dual scheme of
2KEMHMQV, with respect to fA(a, x,B) = x + a · h(gx, B) and fA0(a, x) = x.
Obviously, 2KEMHMQV is PKIC, which means that the ciphertext is independent
of the public key pk0. Thus the Encaps algorithm can be split into two steps
Encaps0 and Encaps1. However, when integrating 2KEMHMQV into AKEro-pkic-lr to
reproduce HMQV, one may doubt that whether auxe = (B, b) or (A, a) required
by Encaps and auxd = B or A required by Decaps influence the reconstruction.
As explained in Remark 2, since B and A are the static public keys and generated
during the registration phase, they can be used as the public auxiliary input by
any user during the execution phase. As a static secret key, b can be used by UB

as secret auxiliary input during the execution phase. Based on the above analysis,
applying AKEro-pkic-lr and Remarks 1–3 to 2KEMHMQV, HMQV is reconstructed
in Fig. 6.

Moreover, A, B are static public keys, and d, e are publicly computable, CA,
CB can be publicly computed from pkB0 = Y and pkA0 = X. Thus, we can
apply Remark 1 to omit CB = XAd and CA = Y Bd in the communications.
1 For formal definitions of Gap-DH and KEA1 assumptions, please refer HMQV.

178 H. Xue et al.

Fig. 6. Understanding HMQV with 2KEMHMQV in the frame AKEro-pkic-lr where si =
(UA, UB , A, B, CB , X, CA, Y).

5.2 NAXOS-AKE

In [24], the 2-key KEM is initiated by 2KEMNAXOS in Fig. 7. Let G be a group of
prime order p with g as a generator. Let h : Zp × Zp → Zp and Ĥ : Zp × Zp →
{0, 1}λ be hash functions. By applying AKEro-pkic-lr and Remarks 1–2, in Fig. 8,
we present how the NAXOS scheme is integrated in our unified framework of
AKE and how it is built from the view of 2-key KEM.

Fig. 7. The [OW-CCA, OW-CCA] secure 2KEMNAXOS implied by NAXOS

Theorem 3. Under the Gap-DH assumption, 2KEMNAXOS is [OW-CCA,
OW-CCA] secure even with the leakage of one of y0 and b where fB(b, y0) =
h(b, y0) and fB0(b, y0) = h(b, y0) in the random oracle model.

By Theorem 3, 2KEMNAXOS is [OW-CCA, OW-CCA] secure even if partial ran-
domness (b or y0) is leaked with respect to fB(b, y0) = h(b, y0) and fB0(b, y0) =
h(b, y0). Obviously, 2KEMNAXOS is PKIC. We split Encaps algorithm into two
steps Encaps0 and Encaps1. As explained in Remark 2, since b is static secret
key and generated by UB , in the execution phase UB takes it as secret auxiliary
input. Based on the above analysis, applying AKEro-pkic-lr and Remarks 1–2 to
2KEMNAXOS, NAXOS is reconstructed in Fig. 8.

Moreover, CA is equal to pkB0 = Y and CB is equal to pkA0 = X. Thus we
can apply Remark 2 to omit CB = X and CA = Y in the communications.

5.3 Okamoto-AKE

In Okamoto-AKE [27], the 2-key KEM is initiated by 2KEMOka in Fig. 9. In
2KEMOka, the computation is proceeded over group G of prime order p with

Understanding and Constructing AKE 179

Fig. 8. Understanding NAXOS with 2KEMnaxos in the frame AKEro-pkic-lr where si =
(UA, UB , A, B, X, Y).

generator g, htcr is a target-collision resistant (TCR) hash function and F̄ is
a pairwise-independent random source PRF. (Please refer [27] for the formal
definition of pairwise-independent random source PRFs.)

Fig. 9. The [IND-CCA, IND-CPA] secure 2KEMOka implied by Okamato-AKE.

Let G be a group of order p with the generator g. Let 1G = gp be the identity
element. The DDH assumption states that {(G, ga, gb, gab)}λ is computationally
indistinguishable from {(G, ga, gb, gc)}λ, where a, b, c are randomly and indepen-
dently chosen in Zp. If c = ab, (g, ga, gb, gc) is called a DDH tuple, otherwise it’s
called a non-DDH tuple. Denote the advantage of any PPT algorithm B solving
DDH problem as Advddh

B = |Pr[B(ga, gb, gab) = 1] − Pr[B(ga, gb, gc) = 1]|.
Theorem 4. Under the DDH assumption, if htcr is a TCR hash function and
F̄ is a pairwise-independent random source PRF, then 2KEMOka in Fig. 9 is
[IND-CCA, IND-CPA] secure in the standard model.

Please refer the full version [32] for the formal proof of Theorem 4.
By applying AKEstd, in Fig. 10, we present how the Okamato scheme is inte-

grated in our unified framework of AKE and how it is built from the view of 2-key
KEM. Let F ′ : {0, 1}λ×{0, 1}λ → Zp and F ′′ : Zp×{0, 1}λ → Zp be PRFs. In the
frame of AKEstd, by setting sA = a0, sB = b0, rA = x′

1||x′
2, rA0 = x3, rB = y′

1||y′
2,

choosing cpk0 = 1G, csk0 = p, initiating fA and fB as F ′
x′
1
(1k) ⊕ F ′′∑4

0 ai
(x′

2) and

F ′
y′
1
(1k)⊕F ′′∑4

0 bi
(y′

2), and applying 2KEMOka as 2-key KEM, we will get Okamoto
AKE in Fig. 10.

180 H. Xue et al.

Fig. 10. Understanding Okamoto-AKE from 2KEMOka where si = (UA, UB , CB ,
X3, CA) in frame AKEstd. Some notions are borrowed from 2KEMOka

5.4 FSXY12-AKE and FSXY13-AKE

Fujioka et al. in PKC 12 (called FSXY12 [15]) proposed a construction of AKE
from IND-CCA secure KEM and IND-CPA secure KEM in the standard model.
In FSXY12 [15], UB sends a ciphertext of IND-CCA secure KEM and a cipher-
text of IND-CPA secure KEM, and the session key is computed from these two
encapsulated keys, public key of IND-CPA secure KEM, and ciphertext in the
PRF functions. As we point out in Sect. 6.1, the FSXY12 scheme implies a trivial
[IND-CCA, IND-CPA] secure 2-key KEM from the improved KEM combiner in the
standard model. More precisely, in AKEstd, cpk0 and csk0 is set to be empty; CB

is just cB1||-, where cB1 is the ciphertext of IND-CCA secure one-key KEM under
pkB ; CA is replaced by the concatenation of cA1||cA0, where cA1 is the ciphertext
of IND-CCA secure one-key KEM under pkA with encapsulated key kA1 and cA0

is the ciphertext of IND-CPA secure one-key KEM under pkA0 with encapsulated
key kA0; and KA is replaced by FkA1(pkA0, cA1||cA0) ⊕ FkA0(pkA0, cA1||cA0). To
make it clearer, in Sect. 6.1 we explain why we should put public key in PRFs
when combining two KEMs. Note that FSXY12 implicitly did it in the same
way by putting sid in PRF. Thus, due to this observation, our frame of AKEstd

with improved KEM combiner can be used to explain the FSXY12 scheme.
Considering efficiency, Fujioka et al. in AsiaCCS 13 (called FSXY13 [16])

proposed AKE from OW-CCA secure KEM and OW-CPA secure KEM in the
random oracle model. In FSXY13 [16], UB sends a ciphertext of OW-CCA secure
KEM and a ciphertext of OW-CPA secure KEM. The session key is computed
from these two encapsulated keys, public key of CPA secure KEM, and ciphertext
in the hashing step. As we point out in Sect. 6.1, the FSXY13 scheme implies a
trivial [OW-CCA,OW-CPA] secure 2-key KEM from the improved KEM combiner
in the random oracle model. Precisely, in AKE, cpk0 and csk0 is set to be empty;
CB is just cB1||-, where cB1 is the ciphertext of OW-CCA secure one-key KEM
under pkB ; CA is replaced by the concatenation of cA1||cA0, where cA1 is the

Understanding and Constructing AKE 181

ciphertext of OW-CCA secure one-key KEM under pkA with encapsulated key
kA1 and cA0 is the ciphertext of OW-CPA secure one-key KEM under pkA0

with encapsulated key kA0; and KA is replaced by Ĥ(pkA0, k1||kA0, cA1||cA0).
In Sect. 6.1 we explain why we should put public key in hashing step when
combining two KEMs. Note that FSXY13 implicitly did it in the same way
by putting sid in hashing step. Thus, our frame of AKE with improved KEM
combiner works for explaining the FSXY13 scheme.

6 More General Constructions for 2-Key KEM

In this section we investigate how to improve the KEM combiner [17] and
Fujisaki-Okamoto transformation [14,18] so as to yield more general construc-
tions of 2-key KEM, which are much more well-suited for lattice assumptions.

6.1 Improved Combiner of Two KEMs

Giacon et al. [17] propose two KEM combiner and yield a new single KEM that
is classical CCA secure as long as one of the ingredient KEMs is. We show that
the simple KEM combiner does not work for our 2-key KEM. Furthermore, we
show that with a slight but vital modification the combiner could work.

6.1.1 The Failure to Imply [OW-CCA, ·] Secure 2key KEM from KEM
Combiner

We give a scheme that is a CCA secure two KEM combiner but is not [OW-CCA, ·]
secure.

Let h and H be hash functions. Let G =< g > be a group with prime order
p. Let pk1 = (g1, g2 = ga

1), sk1 = a, the ciphertext be c1 = (gr
1, g

r
2 · m) where

r = h(m) and the encapsulated key be k1 = H(m). By the FO transformation
[14] and DDH assumption, the first KEM is one-way-CCA secure. Let pk0 =
(h1, h2 = hb

1), sk0 = b, the ciphertext be c0 = hx
1 and the encapsulated key be

k0 = H(hx
2); and obviously the second KEM is IND-CPA secure.

Let the combined ciphertext be (c1||c0) and combined encapsulated key be
K = Ĥ(k1||k0, c1||c0), by the KEM combiner [17] (Lemma 6 and Example 3
in [17]), the combined KEM is CCA secure. However, such combined KEM is
not [OW-CCA, ·] secure which means there exists an adversary A that can break
[OW-CCA, ·] game.

Note that c0 = hx
1 encapsulates the key k∗

0 = H(hx
2) under public key

pk0 = (h1, h2) while it encapsulates the same key k∗
0 = H(hx

2) under public
key pk0 = (hc

1, h
c
2) for some c ∈ Zp. The [OW-CCA, ·] adversary A first queries

the Oleak oracle and gets pk0 = (h1, h2). Then it randomly chooses c ∈ Zp and
sets pk∗

0 = (hc
1, h

c
2). After receiving c∗

1||c∗
0 under public keys pk1 and pk∗

0 , A
queries the decryption oracle with (pk1, pk0, c

∗
1||c∗

0), and would receive exactly
K∗ = Ĥ(k∗

1 ||k∗
0 , c∗

1||c∗
0).

182 H. Xue et al.

6.1.2 Improvement on KEM Combiner to Achieve [CCA,CPA] Secure
2-Key KEM

Inspired by the attacks above, we propose a improved combiner of CCA
secure and CPA secure KEMs to achieve [CCA,CPA] secure 2-key KEM.
Let KEMcca = (KeyGencca,Encapscpa,Decapscca) be IND-CCA secure KEM,
KEMcpa = (KeyGencpa,Encapscpa,Decapscpa) be IND-CPA secure KEM. Let Ĥ
be a hash function and F be a PRF. The improved combiner is shown in
Fig. 11, where function f(pk0, k1||k0, c) can be initiated by Ĥ(pk0, k1||k0, c) or
Fk1(pk0, c) ⊕ Fk0(pk0, c). Our main modification is to take public key as input
to the hash function or PRF when generating encapsulated key.

Fig. 11. The [CCA, CPA] secure 2KEMf in random oracle or standard model depending
on the instantiation of f(pk0, k1||k0, c).

Theorem 5. Let the underlying two KEMs be IND-CCA and IND-CPA secure.
If f(pk0, k1||k0, c) = Ĥ(pk0, k1||k0, c) for a hash function Ĥ, 2KEMf in Fig. 11
is [OW-CCA, OW-CCA] secure in random oracle model; if f(pk0, k1||k0, c) =
Fk1(pk0, c) ⊕ Fk0(pk0, c) for PRF F , 2KEMf in Fig. 11 is [IND-CCA, IND-CPA]
secure in standard model.

Please refer the full version [32] for the proof.

6.2 Modified FO Transformation

In this section, we investigate the constructions of passively 2-key PKE and give
a modified FO transformation which can be used to transform a passively secure
2-key PKE to an adaptively secure 2-key KEM.

6.2.1 Passively Secure 2-Key PKE
As the preparation for realizing adaptively secure 2-key KEM and the modified
FO transformation, similar to the notion of 2-key KEM, we can also provide the
notion of 2-key (public key encryption) PKE.

Informally, a 2-key PKE 2PKE=(KeyGen0, KeyGen1, Enc, Dec) is a quadruple
of PPT algorithms together with a plaintext space M and a ciphertext space
C, where KeyGen1 outputs a pair of public and secret keys (pk1, sk1), KeyGen0
outputs a pair of keys (pk0, sk0), Enc(pk1, pk0,m) outputs the ciphertext C ∈ C,
and Dec(sk1, sk0, C) outputs a plaintext m. Sometimes, we explicitly add the
randomness r to Enc and denote it as Enc(pk1, pk0,m, r). Here we only describe

Understanding and Constructing AKE 183

Fig. 12. The [IND-CPA, ·], and [·, IND-CPA] games of 2PKE for adversaries A and B.

the [IND-CPA, IND-CPA] security game in Fig. 12. For more concrete and full
definition of 2-key PKE please refer the full version [32].
Passively Secure Twin-ElGamal from DDH Assumption. Our con-
struction is actually a conjoined ElGamal encryption. Let’s call it twin-
ElGamal. The [IND-CPA, IND-CPA] secure twin-ElGamal 2PKEcpaddh =
(KeyGen1,KeyGen0,Enc,Dec) is presented in detail in Fig. 13.

Fig. 13. The [IND-CPA, IND-CPA] secure 2PKEcpaddh under DDH assumption

Theorem 6. Under the DDH assumption, the twin-ElGamal 2PKEcpaddh scheme
shown in Fig. 13 is [IND-CPA, IND-CPA] secure.

Please refer the full version [32] for the proof.

6.2.2 Modified FO Transformation from Passive to Adaptive
Security

In the random oracle model, the FO [14,18] technique is able to transform a
passively secure one-key encryption scheme to an adaptively secure scheme. We
show that the classical FO transformation does not work for our 2-key encryp-
tion scheme. Then we show that with a slight but vital modification the FO
transformation could work.

The Failure of Classical FO Transform on 2-key KEM. We give a novel
twin-ElGamal scheme by injecting redundant public keys, and show that such
twin-ElGamal scheme after FO transformation is still OW-CCA secure, but not
[OW-CCA, ·] secure.

The KeyGen0 algorithm of 2PKEcpaddh chooses a random z ← Zp, and sets
pk0 = (g, h0, g0 = gz), sk0 = (a0, z). The algorithm KeyGen1,Enc,Dec are the

184 H. Xue et al.

same as in 2PKEcpaddh. Obviously this novel twin-ElGamal scheme is IND-CPA
secure under DDH assumption. Let 2PKEfo

cpaddh be the scheme by applying clas-
sical FO transform on the novel twin-Elgamal. It is OW-CCA secure. Note that
the encapsulated key is K = H(m, c) where H is a hash function.

However, there exists an [IND-CCA, ·] attacker A of 2PKEfo
cpaddh that works as

follows: A first queries the Oleak0 and gets pk1
0 = (g, h0, g0 = gz), sk1

0 = (a0, z).
Then A chooses g′

0 �= g0 ∈ G, and sets pk∗
0 = (g, h0, g

′
0) as challenge public key.

On receiving challenge ciphertext c∗ under (pk1, pk∗
0), A queries Oow-cca with

(pk1
0, c

∗). Since pk1
0 �= pk∗

0 , Oow-cca would return K ′. A just outputs K ′. Since
c∗ encapsulated the same key K∗ = H(m, c∗) under both public keys (pk1, pk1

0)
and (pk1, pk∗

0). A will succeed with probability 1.

Modification on FO Transform to Achieve [IND-CCA, IND-CCA] Secure
2-Key KEM from 2-Key PKE. Motivated by the above attacks, we give a
modified FO transform by a slight but vital modification from “Hashing” in [18]
to “Hashing with public key as input”. Actually, taking the public keys as input
to hash function is also motivated by the fact that: from the perspective of proof,
“Hashing with public key as input” would help to preserve the consistency of
strong decryption oracle and hashing list.

Since we take the decryption failure into account, let’s firstly recall and adapt
the definition of correctness for decryption in [18] to our 2-key setting. When
2PKE = 2PKEG is defined with respect to a random oracle G, it is said to be
δqG-correct if for adversary A making at most qG queries to random oracle G, it
holds that Pr[COR-ROA2PKE ⇒ 1] ≤ δqG , where the correctness game COR-RO is
defined as following: (pk1, sk1) ← KeyGen1(pp), (pk0, sk0) ← KeyGen0(pp), m ←
AG(·)(pk1, sk1, pk0, sk0), c ← Enc(pk1, pk0,m). Return Dec(sk1, sk0, c)

?= m.
Let 2PKE = (KeyGen1′,KeyGen0′,Enc,Dec) be a [IND-CPA, IND-CPA] secure

2-key PKE with message space M. The [IND-CCA, IND-CCA] secure 2KEM =
(KeyGen1,KeyGen0,Encaps,Decaps) are described as in Fig. 14.

Fig. 14. The [IND-CCA, IND-CCA] secure 2-key KEM 2KEM by modified FO

Theorem 7. For any [IND-CCA, ·] adversary C, or [·, IND-CCA] adversary D
against 2KEM with at most qD queries to decapsulation oracle DECAPS, qH

Understanding and Constructing AKE 185

(resp. qG) queries to random oracle H (resp. G), there are [IND-CPA, ·] adversary
A, or [·, IND-CPA] adversary B against 2PKE, that make at most qH (resp. qG)
queries to random oracle H (resp. G) s.t.

Adv[IND-CCA,·]
2KEM (C) ≤ qH

2l
+

qH + 1
|M | + qG · δ + 4Adv[IND-CPA,·]

2PKE (A).

Please refer the full version [32] for the proof.

7 Efficient Post-quantum AKE from Module-LWE

With the above analysis and tools, we give a more compact AKE from Module-
LWE assumption with less communications than Kyber [3]. The roadmap is
that we first give a [IND-CPA, IND-CPA] secure 2-key PKE from Module-LWE,
by applying the modified FO transform in Sect. 6.2.2 and the AKE in Sect. 4.1
step by step, and we finally obtain a AKE scheme.

Let q be a prime and Rq denote the ring Zq[x]/(xn + 1). Define the centered
binomial distribution Bη for positive integer η as: sample (a1, · · · , aη, b1, · · · , bη)
uniformly from {0, 1}, and output

∑η
i=1(ai − bi). Denote s ← βη as that each

of s’s coefficient is generated according to Bη. Let k,m be a positive inte-
ger parameter. For PPT adversary A, the advantage Advmlwe

m,k,η(A) of solv-
ing Module-LWE problem is the advantage of distinguishing two distributions
{(A ← Rm×k

q ,As + e)|(s, e) ← βk
η × βk

η} and {(A ← Rm×k
q ,b ← Rm

q)}.
Let dt1 , dt0 , du1 , du0 , dv be positive numbers, depending on the special choice

of the parameters settings, and n = 256. Every message in M = {0, 1}n can
be seen as a polynomial in Rq with coefficients in {0, 1}. Let A be a random
k × k matrix in Rq. Let �x� be the rounding of x to the closest integer. For
distribution X, let ∼ X = Samp(r) be sample algorithm with randomness r
according to distribution X.

For an even (resp. odd) positive integer α, we define r′ = r mod ±α to be
the unique element r′ in the range −α

2 < r′ ≤ α
2 (resp. −α−1

2 ≤ r′ ≤ α−1
2) such

that r′ = r mod α. For any positive integer α, define r′ = r mod +α to be the
unique element r′ in the range 0 < r′ < α such that r′ = r mod α. When the
exact representation is not important, we simplify it as r mod α. For x ∈ Q,
d ≤ log2 q, define the compress function as Compq(x, d) = �(2d)/q ·x� mod +2d,
and the decompress function as Decompq(x, d) = �q/(2d)·x�. And when applying
the Comp and Decomp function to x, the procedure is applied to coefficient.

Twin-Kyber. Our construction, called twin-kyber, is an extension of kyber
scheme [3] in the same conjoined way for our twin-ElGamal scheme. With
the parameters above, twin-kyber 2PKEmlwe = (KeyGen1, KeyGen0, Enc, Dec)
is shown in Fig. 15.

Theorem 8. If there is a PPT adversary A against [IND-CPA, IND-CPA]
security of 2PKEmlwe, there exists B such that, Adv

[IND-CPA,IND-CPA]
2PKEmlwe

(A) ≤
2Advmlwe

k+1,k,η(B).

186 H. Xue et al.

Fig. 15. The [IND-CPA, IND-CPA] secure 2PKEmlwe under Module-LWE assumption.

Please refer the full version [32] for the analysis of decryption failure and proof.
By applying the modified FO transformation to 2PKEmlwe, we obtain a [OW-CCA,
OW-CCA] secure 2KEMmlwe. Then by setting cpk0 = (0)k and csk0 = (0)k, and
integrating 2KEMmlwe to AKE in Sect. 4, a novel and efficient post-quantum AKE
from Module-LWE assumption is constructed.

The parameter setting and comparison are given in Tables 5 and 6. Note
that by setting dt1 = dt0 = �log q� we actually do not apply compress on public
keys. (which fix one bug of the security proof in [3]). One may doubt that with
q = 3329 we can not apply NTT technique to accelerate the multiplications of
two polynomials f(x) × g(x) over Rq, since 512 � 3328. Actually, we can fix this
gap. Separate f(x) = fB(x2) + xfA(x2), g(x) = g2(x2) + xg1(x2) into a series
of odd power and a series of even power, then f(x) × g(x) = fB(x2)g2(x2) +
(fA(x2)g2(x2) + fB(x2)g1(x2))x + fA(x2)g1(x2)x2. Then we can apply NTT to
fi(y)gj(y) over Zq[y]/(y128 + 1) by setting y = x2 since 256|3328.

Table 5. The parameters for 2KEMmlwe. δ is the decryption failure.

Scheme n k q η (dt1 , dt0 , du1 , du0 , dv) δ Security Level

2KEMmlwe 256 4 3329 1 (12, 12, 9, 9, 5) 2−174.3 256

Table 6. The message size for Kyber in frame of FSXY13 and ours in frame of AKE.

AKEs Assumptions Sec UA → UB (Bytes) UB → UA (Bytes)

Kyber.AKE Advmlwe
5,4,5 256 2912 3008

AKE from 2KEMmlwe Advmlwe
5,4,5 256 2838 2464

Understanding and Constructing AKE 187

Acknowledgments. Haiyang Xue was supported by the National Natural Science
Foundation of China 61602473, 61672019, 61772522, and the National Cryptography
Development Fund MMJJ20170116. Xianhui Lu was supported by the National Natural
Science Foundation of China 61572495. Bao Li was supported by the National Natural
Science Foundation of China 61772515. Jingnan He was supported by the National
Natural Science Foundation of China 61672030. Bei Liang was partially supported by
the STINT grant (no 3720596). This work was supported by the National 973 Program
of China under Grant 2014CB340603 and the Fundamental theory and cutting edge
technologyResearch Program of Institute of Information Engineering, CAS (Grant No.
Y7Z0291103).

References

1. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

2. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570 (2015)

3. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE Symposium on Security and Privacy, pp. 353–367. Code is available in
https://github.com/pq-crystals/kyber

4. Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability:
indistinguishability characterisation and efficient construction without random ora-
cles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5 10

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

6. Cremers, C.J.F.: Session-state reveal is stronger than ephemeral key reveal: attacking
the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9 2

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

8. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 10

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://github.com/pq-crystals/kyber
https://doi.org/10.1007/978-3-642-14081-5_10
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-642-01957-9_2
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4

188 H. Xue et al.

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comput.
30, 391–437 (2000)

12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

13. Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
779–790. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 63

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

15. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

16. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
AsiaCCS, pp. 83–94 (2013)

17. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 7

18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

19. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

20. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 34

21. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

22. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

23. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 33

24. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

25. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key distribution
systems. Trans. IECE Jpn. E69(2), 99–106 (1986)

26. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: SAC 1995, pp. 22–32 (1995)

https://doi.org/10.1007/11523468_63
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-642-01001-9_34
https://doi.org/10.1007/978-3-642-01001-9_34
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1

Understanding and Constructing AKE 189

27. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation Without Ran-
dom Oracles. IACR ePrint report 2007/473, full version of [28]

28. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 29

29. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

30. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196 (2008)

31. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 17

32. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and Constructing AKE
via Double-key Key Encapsulation Mechanism IACR ePrint report 2018/817

33. Yoneyama, K.: One-round authenticated key exchange with strong forward secrecy
in the standard model against constrained adversary. In: Hanaoka, G., Yamauchi,
T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 69–86. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34117-5 5

34. Yao, A.C.C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-
Hellman protocols. In: CCS 2013, pp. 1113–1128 (2013)

35. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 24

https://doi.org/10.1007/978-3-540-76900-2_29
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-642-14623-7_17
https://doi.org/10.1007/978-3-642-34117-5_5
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24

Identity-Based Encryption Tightly Secure
Under Chosen-Ciphertext Attacks

Dennis Hofheinz1, Dingding Jia2,3,4(B), and Jiaxin Pan1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{Dennis.Hofheinz,Jiaxin.Pan}@kit.edu

2 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, Beijing, China

jiadingding@iie.ac.cn
3 Data Assurance and Communication Security Research Center,

IIE, CAS, Beijing, China
4 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. We propose the first identity-based encryption (IBE) scheme
that is (almost) tightly secure against chosen-ciphertext attacks. Our
scheme is efficient, in the sense that its ciphertext overhead is only seven
group elements, three group elements more than that of the state-of-the-
art passively (almost) tightly secure IBE scheme. Our scheme is secure
in a multi-challenge setting, i.e., in face of an arbitrary number of chal-
lenge ciphertexts. The security of our scheme is based upon the stan-
dard symmetric external Diffie-Hellman assumption in pairing-friendly
groups, but we also consider (less efficient) generalizations under weaker
assumptions.

Keywords: Identity-based encryption · Chosen-ciphertext security
Tight security reductions

1 Introduction

Tight Security. Usually, security reductions are used to argue the security of a
cryptographic scheme S. A reduction reduces any attack on S to an attack on
a suitable computational problem P . More specifically, a reduction constructs a
successful P -solver AP out of any given successful adversary AS on S. Intuitively,
a reduction thus shows that S is at least as hard to break/solve as P .

Ideally, we would like a reduction to be tight, in the sense that the constructed
AP has the same complexity and success probability as the given AS . A tight
security reduction implies that the security of S is tightly coupled with the
hardness of P . From a more practical perspective, a tight security reduction
allows for more efficient parameter choices for S, when deriving those parameters
from the best known attacks on P .

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 190–220, 2018.
https://doi.org/10.1007/978-3-030-03329-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_7&domain=pdf

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 191

Current State of the Art. Tight reductions have been studied for a variety of
cryptographic primitives, such as public-key encryption [6,17,27–29,37,38], sig-
nature schemes [1,2,4,8,10,12,13,18,27,29,32,37,43], identity-based encryption
(IBE) [3,8,11,12,21,22,31], non-interactive zero-knowledge proofs [17,29,37],
and key exchange [5,26].

Existing tight reductions and corresponding schemes differ in the type and
quality of tightness, and in the incurred cost of tightness. For instance, most of
the referenced works provide only what is usually called “almost tight” reduc-
tions. In an almost tight reduction, the success probability of AP may be smaller
than AS , but only by a factor depends only on the security parameter (but not,
e.g., on the size of AS). Furthermore, some reductions consider the scheme only
in a somewhat restricted setting, such as an IBE setting in which only one chal-
lenge ciphertext is considered.

Our Goal: (Almost) Tightly CCA-Secure IBE Schemes in the Multi-challenge
Setting. In this work, we are interested in (almost) tight reductions for IBE
schemes. As remarked above, there already exist a variety of (almost) tightly
secure IBE schemes. However, most of these schemes only provide security of
one challenge ciphertext, and none of them provide security against chosen-
ciphertext attacks. Security of many challenge ciphertexts is of course a more
realistic notion; and while this notion is polynomially equivalent to the one-
challenge notion, the corresponding reduction is far from tight, and defeats the
purpose of tight security of the overall scheme in a realistic setting. Further-
more, chosen-ciphertext security guarantees security even against active adver-
saries [42].

On the Difficulty of Achieving Our Goal. Achieving many-challenge IBE secu-
rity and chosen-ciphertext security appears to be technically challenging. First,
with the exception of [21,22], all known IBE constructions that achieve (almost)
tight many-challenge security rely on composite-order groups, and are thus com-
paratively inefficient. The exception [22] (like its predecessor [21]) constructs an
efficient (almost) tightly secure IBE scheme in the many-challenge setting by
adapting and implementing the “(extended) nested dual system groups” frame-
work [12,31] in prime-order groups. Since this work is closest to ours, we will
take a closer look at it after we have described our technical contribution. We
stress, however, that also [22] does not achieve chosen-ciphertext security.

Second, canonical approaches to obtain chosen-ciphertext security do not
appear to apply to existing tightly secure IBE schemes. For instance, it is known
that hierarchical identity-based encryption (HIBE) implies chosen-ciphertext
secure IBE [9]. However, currently no tightly secure HIBE schemes are known,
and in fact there are lower bounds on the quality of (a large class of) security
reductions for HIBE schemes [36].

Another natural approach to achieve chosen-ciphertext security is to equip
ciphertexts with a non-interactive zero-knowledge (NIZK) proof of knowledge of
the corresponding plaintext. Intuitively, a security reduction can use this NIZK

192 D. Hofheinz et al.

proof to extract the plaintext message from any adversarially generated decryp-
tion query. Highly optimized variants of this outline are responsible for highly
efficient public-key encryption schemes (e.g., [14,15,35,41]).

It is plausible that this approach can be used to turn, e.g., the tightly secure
schemes of [21,22] into chosen-ciphertext secure schemes. However, this requires
a NIZK proof system which is tightly secure and sound even in the presence of
many simulated proofs. While such proof systems are constructible by combin-
ing Groth-Sahai proofs [24] with a tightly secure structure-preserving signature
scheme [18] (see also [23,29]), the resulting NIZK and IBE schemes would not be
very efficient. In fact, efficient suitable NIZK schemes are only known for simple
languages [17], which do not appear compatible with the complex IBE schemes
of [21,22].

Our Results. We provide a tightly chosen-ciphertext secure IBE scheme in the
multi-challenge setting. Our scheme builds upon a new tightly chosen-plaintext
secure IBE scheme whose efficiency is comparable with that of the state-of-the-
art scheme of [22]. However, unlike [22], our scheme is compatible with the
highly efficient NIZK proof system of [17]. This allows to upgrade our scheme to
chosen-ciphertext security by adding an efficient consistency proof (that consists
of only three group elements) to ciphertexts. We briefly remark that, similar to
previous schemes [3,8,21,22], our scheme also achieves a (somewhat weak) form
of anonymity. We compare the efficiency of our scheme with existing state-of-
the-art schemes in Table 1.

Table 1. Comparison between known (almost) tightly and adaptively secure IBEs in
prime-order groups from standard assumptions. We count the number of group elements
in G (for symmetric pairings), G1,G2, and GT . |pk| denotes the size of the (master)
public key, and |C| denotes the ciphertext overhead (on top of the message size).‘MC’
denotes many-challenge security, and ‘CCA’ chosen-ciphertext security. ‘Loss’ denotes
the reduction loss, and ‘Assump.’ the assumption reduced to. H : G × GT × GT → Zq

is a universal one-way hash function and |H| denotes the size of the representation of
H. |CH| is the size of the hash key of a chameleon hash CH : Gk+1

1 → {0, 1}L and |R| is
the size of its randomness.

Scheme |pk| |C| MC CCA Loss Assump

Gen06 [19] 5|G1| + |H| |G| + 2|GT | –
√

O(1) q-ABDHE

CW13 [12] 2k2(2λ + 1)|G1| + k|GT | 4k|G1| – – O(λ) k-LIN

BKP14 [8] (2λk2 + 2k)|G1| (2k + 1)|G1| – – O(λ) k-LIN

AHY15 [3] (16λ + 8)|G1| + 2|GT | 8|G1| √
– O(λ) k-LIN

GCD+16 [21] (6λk2 + 3k2)|G1| + k|GT | 6k|G1| √
– O(λ) k-LIN

GCD+16 [21] (4λk2 + 2k2)|G1| + k|GT | 4k|G1| √
– O(λ) k-LINAI

GDCC16 [22] (2λk2 + 3k2)|G1| + k|GT | 4k|G1| √
– O(λ) k-LIN

HLQG18 [25] (4λk2 + k2 + 2k)|G1| + |CH| (2k + 1)|G1| + |R| –
√

O(λ) k-LIN

Ours
((5 + 4λ)k2 + (2 + 2λ)k)|G1|

+(2λk2 + 4k2 + k)|G2| (6k + 1)|G1| √ √
O(λ) k-LIN

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 193

1.1 Technical Overview

The Approach of Blazy, Kiltz, and Pan (BKP). Our starting point is the
MAC→IBE transformation of Blazy, Kiltz, and Pan (BKP) [8], which in turn
abstracts the IBE construction of Chen and Wee [12], and generalizes the
PRF→signatures transformation of Bellare and Goldwasser [7]. The BKP trans-
formation assumes an “affine message authentication code” (affine MAC), i.e.,
a MAC in which verification consists in checking a system of affine equations.
The variables in these affine equations comprise the MAC secret key, and the
(public) coefficients are derived from the message to be signed.

This affine MAC is turned into an IBE scheme as follows: the IBE master
public key pk = Com(K) consists of a commitment to the MAC secret key K. An
IBE user secret key usk[id] for an identity id consists of a MAC tag τid on the
message id, along with a NIZK proof that τid indeed verifies correctly relative
to pk. The key observation of BKP is now that we can implement commitments
and NIZK proof using the Groth-Sahai proof system [24]. Since the used MAC is
affine, the corresponding verification involves only linear equations, which makes
the corresponding proofs rerandomizable.

Now an IBE ciphertext C essentially contains a rerandomized version of the
public, say, left-hand side of the NIZK equations for verifying the validity of τid.
The corresponding right-hand side can be computed either from the randomiza-
tion information (known to the sender), or using the NIZK proof for τid (known
to the receiver through usk[id]). Of course, this technique relies on subtleties of
the Groth-Sahai proof system that our high-level overview cannot cover.

Advantages and Limitations of the BKP Approach. The BKP approach has the
nice property that the (one-challenge, chosen-plaintext) security of the resulting
IBE scheme can be tightly reduced to the (one-challenge) security of the MAC
scheme. In particular, BKP also gave a MAC scheme which is tightly secure in a
one-challenge setting under a standard computational assumption. At the same
time, BKP only consider one IBE challenge ciphertext, and chosen-plaintext
security. In particular in large-scale scenarios with huge amounts of ciphertexts
and active adversaries, this again defeats the purpose of a tight reduction.

First Modification: Achieving Many-Challenge Security. We will first show that
the BKP reduction can be easily extended to the many-challenge case, assum-
ing of course that the underlying MAC scheme is secure in the many-challenge
setting. In this, the actual difficulty lies in constructing a suitable MAC scheme.
We do so by adapting the affine MAC MACBKP of BKP, using ideas from the
recent (almost) tightly secure PKE scheme of Gay et al. [17].

More specifically, MACBKP operates in a group G = 〈g〉 of order q. We use the
implicit notation [x] := gx for group elements. MACBKP assumes a public matrix
[B] ∈ G

n×n of a dimension n that depends on the underlying computational
assumption. Its secret key is of the form

skMAC = ((xi,b)i,b, x
′
0) ∈ (Zn

q)�·2 × Zq,

194 D. Hofheinz et al.

and a tag for a message m ∈ {0, 1}� is of the form

τ = ([t], [u]) ∈ G
n × G with

t = Bs ∈ Z
n
q for s $← Z

n′
q

u =
∑

i
x�

i,mi
t + x′

0 ∈ Zq

. (1)

Verification checks that u is of the form from (1).
We sketch now a bit more specifically how MACBKP’s security proof proceeds,

assuming an adversary A in the EUF-CMA security game. The overall strategy
is to gradually randomize all u values issued in A’s tag queries. This is equivalent
to using different and independent “virtual” secret keys for each message. Hence,
once this is done, A cannot be successful by an information-theoretic argument.

The main difficulty in randomizing all u is that a reduction must be able to
still evaluate A’s success in forging a tag for fresh message. In particular, the
reduction must be able to compute u∗ =

∑
x�

i,m∗
i
t∗ + x′

0 for a message m∗ and
value t∗ adaptively selected by A. The solution chosen by BKP, following Chen
and Wee [12], is to iterate over all bit indices i. For each i, the reduction guesses
the i-th bit m∗

i of A’s forgery message, and embeds a computational challenge
into xi,1−m∗

i
. This allows to randomize all u in issued tags with mi �= m∗

i , and still
be able to evaluate u∗. The corresponding reduction loses a multiplicative factor
of only O(�). However, note that this strategy would not work with multiple
challenges (i.e., potential forgeries (m∗, τ∗)) from A. For instance, the simulation
above is always only able to verify a given τ∗ for exactly one of the two messages
m∗

0 = 0� and m∗
1 = 1�.

Our solution here is to instead employ the randomization strategy used by
Gay et al. [17] in the context of public-key encryption. Namely, we first increase
the dimension of x. This allows us to essentially randomize both tags for mes-
sages with mi = 0 and mi = 1 simultaneously, using different parts of the xi,b

independently. In particular, we will embed computational challenges in different
parts of both xi,0 and xi,1. This allows to adapt the argument of Gay et al. to
the case of MACs, and hence to prove a slight variant of the BKP MAC secure
even under many-challenge attacks.

Second Modification: Achieving Chosen-Ciphertext Security. So far, we could
almost completely follow the BKP approach, with only a slight twist to the BKP
MAC, and by adapting the proof strategy of Gay et al. However, the resulting
scheme is still not chosen-ciphertext secure. To achieve chosen-ciphertext secu-
rity, we will follow one of the generic approaches outlined above. In this, the
modular structure of the BKP IBE, and the simplicity of the used MAC will
pay off.

More concretely, following Naor and Yung [41], we will add a NIZK proof to
each ciphertext. Unlike in the generic paradigm of achieving chosen-ciphertext
security via NIZK proofs, we do not explicitly prove knowledge of the cor-
responding plaintext. Instead, following Cramer and Shoup [14,15], we prove
only consistency of the ciphertext, in the sense that the ciphertext is a possible
output of the encryption algorithm. Compared to a NIZK proof of knowledge

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 195

(of plaintext), this yields a much more efficient scheme, but also requires more
subtle proof of security.

Our security argument is reminiscent of that of Cramer and Shoup, but of
course adapted to the IBE setting. Our reduction will be able to generate user
decryption keys for all identities. These decryption keys will function perfectly
well on consistent (in the above sense) ciphertexts at all times in the proof, but
their action on inconsistent ciphertexts will be gradually randomized. Hence,
adversarial decryption queries, whose consistency is guaranteed by the attached
NIZK proof, will be decrypted correctly at all times. On the other hand, all
generated challenge ciphertexts will be made inconsistent and will be equipped
with simulated NIZK proofs early on.

Unlike Cramer and Shoup, who considered only one challenge ciphertext (for
a PKE scheme), we need a very powerful NIZK scheme which enjoys (almost)
tight unbounded simulation-soundness. Fortunately, the language for which we
require this scheme is linear (due to the restriction to affine MACs), and hence
we can use (a slight variant of) the highly efficient NIZK scheme from [17].

We stress that this proof blueprint is compatible with the proof of the BKP
transformation, even when adapted to many challenges as explained above. In
particular, we are able to extend the BKP transformation not only to many chal-
lenges, but also (and additionally) to chosen-ciphertext security. The resulting
transformation is black-box and works for any given affine MAC that is secure
in a many-challenge setting.

1.2 More on Related Work

We are not aware of any (almost) tightly chosen-ciphertext secure IBE scheme in
the many-challenge setting. A natural idea is of course to adapt existing (almost)
tightly chosen-plaintext secure schemes to chosen-ciphertext security. As we have
explained in Sect. 1 above, straightforward generic approaches fail. However,
another natural approach is to look at concrete state-of-the-art IBE schemes,
and try to use their specific properties. Since we are interested in schemes in
prime-order groups for efficiency reasons, the scheme to consider here is that of
Gong et al. [22] (cf. also Table 1).

Remark About and Comparison to the Work of Gong et al. Interestingly, Gong
et al. also take the BKP scheme as a basis, and extend it to (chosen-plaintext)
many-challenge security, even in a setting with many instances of the IBE
scheme itself. However, they first interpret and then extend the BKP scheme
in the framework of (extended) nested dual system groups [12,31]. Remark-
ably, the resulting IBE scheme looks similar to the chosen-plaintext secure,
many-challenge scheme that we use as a stepping stone towards many-challenge
chosen-ciphertext security. In particular, the efficiency characteristics of those
two schemes are comparable.

Still, for the express purpose of achieving chosen-ciphertext security, we found
it easier to stick to (an extension of) the original BKP transformation and strat-
egy, for two reasons. First, the modularity of BKP allows us to give an abstract

196 D. Hofheinz et al.

MAC→IBE transformation that achieves chosen-ciphertext security. This allows
to isolate the intricate many-challenge security argument for the MAC from the
orthogonal argument to achieve chosen-ciphertext security. Since the argument
for tight security is directly woven into the notion of (extended) nested dual
systems groups, it does not seem clear how to similarly isolate arguments (and
proof complexity) for the scheme and strategy of Gong et al.

Second, as hinted above, our strategy to obtain chosen-ciphertext security
requires a NIZK proof to show consistency of a ciphertext. With the BKP con-
struction, consistency translates to a statement from a linear language, which
allows to employ very efficient NIZK proof systems. For the construction of Gong
et al., it is not clear how exactly such a consistency language would look like. In
particular, it is not clear at all if highly efficient NIZK proofs for linear languages
can be used.1

2 Basic Preliminaries

2.1 Notations

We use x $← S to denote the process of sampling an element x from S uniformly
at random if S is a set. For positive integers k > 1, η ∈ Z

+ and a matrix
A ∈ Z

(k+η)×k
q , we denote the upper square matrix of A by A ∈ Z

k×k
q and the

lower η rows of A by A ∈ Z
η×k
q . Similarly, for a column vector v ∈ Z

k+η
q , we

denote the upper k elements by v ∈ Z
k
q and the lower η elements of v by v ∈ Z

η
q .

For a bit string m ∈ {0, 1}n, mi denotes the ith bit of m (i ≤ n) and m|i denotes
the first i bits of m.

All our algorithms are probabilistic polynomial time unless we stated oth-
erwise. If A is an algorithm, then we write a $← A(b) to denote the random
variable that outputted by A on input b.

Games. We follow [8] to use code-based games for defining and proving secu-
rity. A game G contains procedures Init and Finalize, and some additional
procedures P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables
in a game are undefined (denoted by ⊥), and all sets are empty (denote by ∅).
An adversary A is executed in game G (denote by GA) if it first calls Init,
obtaining its output. Next, it may make arbitrary queries to Pi (according to
their specification), again obtaining their output. Finally, it makes one single
call to Finalize(·) and stops. We use GA ⇒ d to denote that G outputs d after
interacting with A, and d is the output of Finalize.

2.2 Collision Resistant Hash Functions

Let H be a family of hash functions H : {0, 1}∗ → {0, 1}λ. We assume that it is
efficient to sample a function from H, which is denoted by H $← H.
1 To be clear: we do not claim that the scheme of Gong et al. cannot be upgraded to

chosen-ciphertext security. However, it seems that such an upgrade would require a
more complex restructuring of their proof strategy.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 197

Definition 1 (Collision resistance). We say a family of hash functions H is
(t, ε)-collision-resistant (CR) if for all adversaries A that run in time t,

Pr[x �= x′ ∧ H(x) = H(x′) | H $← H, (x, x′) $← A(1λ,H)] ≤ ε.

2.3 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 ×G2 is an efficient computable
(non-degenerated) bilinear map. Define PT := e(P1, P2), which is a generator
in GT . In this paper, we only consider Type III pairings, where G1 �= G2 and
there is no efficient homomorphism between them. All our constructions can be
easily instantiated with Type I pairings by setting G1 = G2 and defining the
dimension k to be greater than 1.

We use implicit representation of group elements as in [16]. For s ∈ {1, 2, T}
and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.
Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the implicit repre-

sentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
q } ⊂ Z

n
q denotes the linear span of

A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
q } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the matrix Diffie-Hellman (MDDH) and
related assumptions [16].

Definition 2 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. Let Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
q and

u $← Z
�
q.

Definition 3 (D�,k-Matrix Diffie-Hellman assumption). Let D�,k be a
matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix Diffie-
Hellman (D�,k-MDDH) is (t, ε)-hard relative to GGen in group Gs if for all adver-
saries A with running time t, it holds that

|Pr[A(G, [A]s, [Aw]s) = 1] − Pr[A(G, [A]s, [u]s) = 1]| ≤ ε,

where the probability is taken over G $← GGen(1λ), A $← D�,k,w $← Z
k
q and

u $← Z
�
q.

We define the Dk-Kernel Diffie-Hellman (Dk-KerMDH) assumption [39]
which is a natural search variant of the Dk-MDDH assumption.

198 D. Hofheinz et al.

Definition 4 (Dk-Kernel Diffie-Hellman assumption). Let Dk be a matrix
distribution and s ∈ {1, 2}. We say that the Dk-kernel Matrix Diffie-Hellman
(Dk-KerMDH) is (t, ε)-hard relative to GGen in group Gs if for all adversaries
A that runs in time t, it holds that

Pr[c�A = 0 ∧ c �= 0|[c]3−s
$← A(G, [A]s)] ≤ ε,

where the probability is taken over G $← GGen(1λ), A $← Dk.

The following lemma shows that the Dk-KerMDH assumption is a relaxation
of the Dk-MDDH assumption since one can use a non-zero vector in the kernel
of A to test membership in the column space of A.

Lemma 1 (Dk-MDDH ⇒ Dk-KerMDH [39]). For any matrix distribution Dk,
if Dk-MDDH is (t, ε)-hard in Gs, then Dk-KerMDH is (t′, ε)-hard in Gs, where
t′ ≈ t.

The uniform distribution is a particular matrix distribution that deserves special
attention, as an adversary breaking the U�,k assumption can also distinguish
between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [17] that Uk-MDDH and
U�,k-MDDH assumptions are equivalent.

Definition 5 (Uniform distribution). Let k, � ∈ N with � > k. We call U�,k

a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of rank

k in polynomial time.

Lemma 2 (D�,k-MDDH ⇒ U�,k-MDDH ⇔ Uk-MDDH [16,17]). For � > k, let
D�,k be a matrix distribution, then if D�,k-MDDH is (t, ε)-hard in Gs, U�,k-MDDH
is (t′, ε)-hard in Gs, where t′ ≈ t. If Uk-MDDH is (t, ε)-hard in Gs, U�,k-MDDH
is (t′, ε)-hard in Gs, where t′ ≈ t, vice versa.

For Q ∈ N, W $← Z
k×Q
q ,U $← Z

�×Q
q , consider the Q-fold D�,k-MDDH problem

which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold D�,k-MDDH problem contains Q independent instances of the D�,k-MDDH
problem (with the same A but different wi). The following lemma shows that the
two problems are tightly equivalent. The reduction quality is tighter for uniform
distribution.

Lemma 3 (Random self-reducibility [16]). For � > k and any matrix distri-
bution D�,k, D�,k-MDDH is random self-reducible. In particular, for any Q ≥ 1, if
D�,k-MDDH is (t, ε)-hard relative to GGen in group Gs, then Q-fold D�,k-MDDH
is (t′, ε′)-hard relative to GGen in group Gs, where t ≈ t′ + Q · poly(λ), ε′ ≤
(� − k)ε + 1

q−1 , and for D�,k = U�,k, ε′ ≤ ε + 1
q−1 .

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 199

3 Affine MACs in the Multi-Challenge Setting

3.1 Definition

We recall the definition of affine MACs from [8] and extend its security require-
ments of pseudorandomness to the multi-challenge setting.

Definition 6 (Affine MACs). Let par be system parameters which contain a
pairing group description G = (G1,G2,GT , q, P1, P2, e) of prime order q, and let
n be a positive integer, MAC = (GenMAC,Tag,VerMAC) is an affine MAC over Z

n
q

if the following conditions hold:

1. skMAC
$← GenMAC(par), where skMAC = (B,X0, ...,X�,x′

0, ...,x
′
�′) ∈ Z

n×n′
q ×

(Zη×n
q)�+1 × (Zη

q)�′+1, n′, �, �′ and η are positive integers and the rank of B
is at least 1.

2. τ $← Tag(skMAC,m), where τ := ([t]2, [u]2) ∈ G
n
2 × G

η
2 is computed as

t := Bs ∈ Z
n
q for s $← Z

n′
q (2)

u :=
�∑

i=0

fi(m)Xit +
�′∑

i=0

f ′
i(m)x′

i ∈ Z
η
q (3)

for some public defining functions fi : M → Zq and f ′
i : M → Zq. Note that

only u is the message dependent part.
3. VerMAC(skMAC,m, τ = ([t]2, [u]2)) output 1 iff (3) holds, 0 otherwise.

Definition 7. An affine MAC over Z
n
q is (Qe, Qc, t, ε)-mPR-CMA (pseudoran-

dom against chosen-message and multi-challenge attacks) if for all A that runs
in time t, makes at most Qe queries to the evaluation oracle, Eval, and at most
Qc queries to the challenge oracle, Chal, the following holds

|Pr[mPR-CMAA
0 ⇒ 1] − Pr[mPR-CMAA

1 ⇒ 1]| ≤ ε,

where experiments mPR-CMA0 and mPR-CMA1 are defined in Fig. 1.

Fig. 1. Games mPR-CMA0 and mPR-CMA1 for defining mPR-CMA security.

200 D. Hofheinz et al.

Our notion is a generalization of the PR-CMA security in [8]. In [8] an adver-
sary A can only query the challenge oracle Chal at most once, while here A
can ask multiple times.

3.2 Instantiation

We extend the tightly secure affine MAC MACNR[Dk] from [8] to the multi-
challenge setting. Instead of choosing random vectors xi,b ∈ Z

k
q as the MAC

secret keys in the original, here we choose random matrices Xi,b ∈ Z
2k×k
q such

that in the security proof we can randomize all the tags and at the same time
answer multiple challenge queries in a tight way.

Let G := (G1,G2,GT , q, P1, P2, e) be an asymmetric pairing group and par :=
G. Our affine MAC MACmc

NR := (GenMAC,Tag,VerMAC) for message space {0, 1}L

is defined as follows.

GenMAC(par):

A $← U2k,k

B := A ∈ Z
k×k
q

For 1 ≤ i ≤ L and b = 0, 1:
Xi,b

$← Z
2k×k
q

x′ $← Z
2k
q

skMAC := (B,X1,0, . . . ,XL,1,x
′)

Return skMAC

Tag(skMAC,m ∈ {0, 1}L):

s $← Z
k
q , t := Bs ∈ Z

k
q

Xm :=
∑L

i=1 Xi,mi

u := Xmt + x′ ∈ Z
2k
q

Return τ = ([t]2, [u]2)

VerMAC(skMAC, τ,m):

Parse τ := ([t]2, [u]2)
Xm :=

∑L
i=1 Xi,mi

If [u]2 = [Xmt + x′]2
then

return 1
Else return 0.

Our scheme can be present by using any D2k,k distribution and some of them
have compact representation and give more efficient scheme. For simplicity of
presentation, we present our scheme based on the U2k,k distribution.

Fig. 2. Games G0, G1,i (0 ≤ i ≤ L), G2, G3 for the proof of Theorem 1. RFi : {0, 1}i →
Z
2k
q is a random function. Boxed codes are only executed in the games marked in the

same box style at the top right of every procedure. Non-boxed codes are always run.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 201

Fig. 3. Games G1,i, G1,i+1, Hi,1,..., Hi,5 (0 ≤ i ≤ L) for the proof of Lemma 5. RFi :

{0, 1}i → Z
2k
q , ZFi,OFi : {0, 1}i → Z

k
q are three independent random functions.

Theorem 1. If the U2k,k-MDDH problem is (t1, ε1)-hard in G1 and (t2, ε2)-hard
in G2, the U2k-MDDH problem is (t3, ε3)-hard in G1, then MACmc

NR is (Qe, Qc,
tA, ε)-mPR-CMA-secure with t1 ≈ t2 ≈ t3 ≈ tA + (Qe + Qc)poly(λ), and ε ≤
4Lε1 + 3Lε2 + 3ε3 + 2−Ω(λ), where poly(λ) is independent of tA.

Proof. We prove the theorem via a sequence of games as shown in Fig. 2.

Lemma 4 (G0 to G1,0). Pr[mPR-CMAA
0 ⇒ 1] = Pr[GA

0 ⇒ 1] = Pr[GA
1,0 ⇒ 1].

Proof. G0 is the original game and it is the same as mPR-CMA0. In G1,0, we
define RF0(ε) as a fix random vector x′ $← Z

2k
q and then have Lemma 4. ��

Lemma 5 (G1,i to G1,i+1). If the U2k,k-MDDH problem is (t1, ε1)-hard in G1

and (t2, ε2)-hard in G2, then |Pr[GA
1,i ⇒ 1]−Pr[GA

1,i+1 ⇒ 1]| ≤ 4ε1+2ε2+2−Ω(λ)

and t1 ≈ t2 ≈ tA + (Qe + Qc)poly(λ), where poly(λ) is independent of tA.

Proof (of Lemma 5). To bound the difference between G1,i and G1,i+1, we intro-
duce a series of intermediate games Hi,1 to Hi,5 as in Fig. 3. An overview of the
transitions is given in Fig. 4.

Lemma 6 (G1,i to Hi,1). If the U2k,k-MDDH problem is (t1, ε1)-hard in G1, then
|Pr[GA

1,i ⇒ 1] − Pr[HA
i,1 ⇒ 1]| ≤ 2ε1 + 2/(q − 1) and t1 ≈ tA + (Qe + Qc)poly(λ),

where poly(λ) is independent of tA.

202 D. Hofheinz et al.

Fig. 4. Overview of the transitions in the proof of Lemma 5. We highlight the respective
changes between the games in gray . RFi : {0, 1}i → Z

2k
q , and ZFi,OFi : {0, 1}i → Z

k
q

are three independent random functions.

Proof. Let A0,A1
$← U2k,k. We define an intermediate game H

′
i,1 which is the

same as G1,i except for Chal: precisely, if m∗
i+1 = 0 then we pick h uniformly

random from Span(A0); otherwise, h $← Z
2k
q . Oracles Init,Eval and Finalize

are simulated as in G1,i.
The difference between G1,i and H′

i,1 is bounded by a straightforward reduc-
tion to break the Qc-fold U2k,k-MDDH problem in G1 with [A0]1 as the challenge
matrix. Thus, by Lemma 3 we have

|Pr[GA
1,i ⇒ 1] − Pr[H

′A
i,1 ⇒ 1]| ≤ ε1 +

1
q − 1

.

Similarly, we can bound H′
i,1 and Hi,1 with the U2k,k-MDDH assumption in G1,

namely,

|Pr[H
′A
i,1 ⇒ 1] − Pr[HA

i,1 ⇒ 1]| ≤ ε1 +
1

q − 1
.

Here we have t1 ≈ tA + (Qe + Qc)poly(λ), where poly(λ) is independent of tA. ��

After switching [h]1 in Chal to the right span, the following reductions can
have A0 and A1 over Zq. Since the rank of A0 and that of A1 are both k, we
can efficiently compute the kernel matrix A⊥

0 ∈ Z
2k×k
q (resp. A⊥

1) of A0 (resp.
A1). We note that A�

0 A⊥
0 = 0 = A�

1 A⊥
1 and (A⊥

0 | A⊥
1) ∈ Z

2k×2k
q is a full-

rank matrix with overwhelming probability 1−2−Ω(λ), since A0 and A1 are two
random matrices.

Let ZFi and OFi be two independent random functions mapping from {0, 1}i

to Z
k
q .

Lemma 7 (Hi,1 to Hi,2). |Pr[HA
i,1 ⇒ 1] − Pr[HA

i,2 ⇒ 1]| ≤ 2−Ω(λ).

Proof. The difference between these two games is statistically bounded. In Hi,2,
we just rewrite RFi(m|i) as

RFi(m|i) := (A⊥
0 | A⊥

1)
(
ZFi(m|i)
OFi(m|i)

)
(4)

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 203

Since (A⊥
0 | A⊥

1) is a full-rank matrix with overwhelming probability 1 − k
q and

ZFi, OFi : {0, 1}i → Z
k
q are two independent random functions, RFi : {0, 1}i →

Z
2k
q in (4) is a random function as well. Thus, Hi,1 and Hi,2 are distributed the

same except with probability 2−Ω(λ). ��

The following step is a main difference to MACNR[Dk] in the original BKP
framework [8]. Here our reduction can randomize Eval queries with the MDDH
assumption and at the same time it can answer multiple Chal queries, while the
original MACNR[Dk] can not. Precisely, to be able to go from RFi to RFi+1, the
security reduction of MACNR[Dk] (cf. Lemma 3.6 in [8]) guesses b $← {0, 1} which
stands for the (i + 1)-th bit of m∗ and implicitly embeds TD := DD

−1
in the

secret key xi+1,1−b. Note that the reduction does not know xi+1,1−b, but, since
the adversary A only has at most one query to Chal and b is hidden from A, the
reduction can hope m∗

i+1 �= 1 − b (with probability 1/2) and it can simulate the
experiment. However, this proof strategy does not work in the multi-challenge
setting, since A can ask two challenge queries with one query which has b in the
(i + 1)-th position and 1 − b in the other.

By increasing the dimension of Xj,β , our strategy is first embedding A⊥
0 TD

in Xi+1,0 such that we can add entropy to x′
m in the span of A⊥

0 and at the same
time upon Chal queries with 0 in the (i + 1)-th position TD will be canceled
out, and then add entropy to x′

m in the span of A⊥
1 in the similar way.

Lemma 8 (Hi,2 to Hi,3). If the U2k,k-MDDH problem is (t2, ε2)-hard in G2, then
|Pr[HA

i,2 ⇒ 1] − Pr[HA
i,3 ⇒ 1]| ≤ ε2 + 2−Ω(λ) and t2 ≈ tA + (Qe + Qc)poly(λ),

where poly(λ) is independent of tA.

Proof. We bound the difference between Hi,2 and Hi,3 by the Qe-fold
U2k,k-MDDH assumption in G2. Formally, on receiving a Qe-fold U2k,k-MDDH

challenge ([D]2, [F]2 := ([f1, · · · , fQe]2)) ∈ G
2k×k
2 × G

2k×Qe

2 , where Qe denotes
the number of evaluation queries, we construct a reduction B2 as in Fig. 5. Let
ZFi,ZF

′
i be two independent random functions, we define ZFi+1 as

ZFi+1(m|i+1) :=

{
ZFi(m|i) + ZF′

i(m|i) if mi+1 = 0
ZFi(m|i) if mi+1 = 1

Note that ZFi+1 is a random function, given ZFi and ZF′
i are two independent

random functions. If an adversary A queries messages m with mi+1 = 1 to Eval
and Chal, then A’s view in Hi,2 is the same as that in Hi,3. Thus, we only focus
on messages with mi+1 = 0.

For queries with Chal, if m∗
i+1 = 0, B2 does not have Xi+1,0 = X̂ +

A⊥
0 DD

−1
, since B2 does not know DD

−1
either over Zq or G2, but, since

h ∈ Span(A0) for such m∗, (A⊥
0 DD

−1
)�h = 0 and thus B2 computes

h0 = (Xm\i+1 + X̂ + A⊥
0 DD

−1
)�h = (Xm\i+1 + X̂)�h.

204 D. Hofheinz et al.

Fig. 5. Description of B2(par, ([D]2, [F]2)) for proving Lemma 8.

For queries with Eval, if mi+1 = 0, we write fc :=
(

Dwc

Dwc + rc

)
for some

wc ∈ Z
k
q , where rc ∈ Z

k
q is 0 if [F]2 is from the real U2k,k-MDDH distribution,

or rc is random otherwise. Then, we have

um := x′
m + Xm\(i+1)tm + X̂tm + A⊥

0 Ds + A⊥
0 fc

= x′
m + Xm\(i+1)tm + X̂tm + A⊥

0 Ds + A⊥
0 (Dwc + rc)

= x′
m + Xm\(i+1)tm + X̂tm + A⊥

0 D(s + wc) + A⊥
0 rc

= x′
m + Xm\(i+1)tm + X̂tm + A⊥

0 DD
−1

D(s + wc)︸ ︷︷ ︸
tm

+A⊥
0 rc

= Xmtm + A⊥
1 OFi(m|i) + A⊥

0 ZFi(m|i)︸ ︷︷ ︸
x′
m

+A⊥
0 rc

Now it is clear that if rc = 0 then um is distributed as in Hi,2; if rc is random,
then we define ZF′

i(m|i) := rc and um is distributed as in Hi,3. ��

The proof of Lemma 9 is very similar to that of Lemma 8 except that it
handles cases with mi+1 = 1. More precisely, we define

OFi+1(m|i+1) :=

{
OFi(m|i) if mi+1 = 0
OFi(m|i) + OF′

i(m|i) if mi+1 = 1
,

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 205

where OFi,OF
′
i are two independent random functions mapping from {0, 1}i to

Z
k
q . By the similar arguments of Lemma 8, we have the following lemma.

Lemma 9 (Hi,3 to Hi,4). If the U2k,k-MDDH problem is (t2, ε2)-hard in G2,
then |Pr[HA

i,3 ⇒ 1] − Pr[HA
i,4 ⇒ 1]| ≤ ε2 + 2−Ω(λ) and t2 ≈ tA.

Lemmata 10 and 11 are the reverse of Lemmata 6 and 7, and we omit the
detailed proofs.

Lemma 10 (Hi,4 to Hi,5). |Pr[HA
i,4 ⇒ 1] − Pr[HA

i,5 ⇒ 1]| ≤ 2−Ω(λ).

Lemma 11 (Hi,5 to G1,i+1). If the U2k,k-MDDH problem is (t1, ε1)-hard in G1,
then |Pr[HA

i,5 ⇒ 1] − Pr[GA
1,i+1 ⇒ 1]| ≤ 2ε1 + 2−Ω(λ) and t2 ≈ tA + (Qe +

Qc)poly(λ), where poly(λ) is independent of tA.

Lemma 12 (G1,L to G2). If the U2k-MDDH problem is (t3, ε3)-hard in G1, then

|Pr[GA
1,L ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ 3ε3 + 2−Ω(λ) and t3 ≈ tA + (Qe + Qc)poly(λ),

where poly(λ) is independent of tA.

Proof. Firstly we bound the difference between G1,L and G2′ by the Qc-fold
U2k-MDDH assumption in G1, where G′

2 is the same as G1,L except that on a
challenge query, we pick a random h1

$← Zq for each query in G′
2.

Formally, on receiving a Qc-fold U2k-MDDH challenge ([D]1, [F]1 := ([f1, · · · ,

fQc]1)) ∈ G
(2k+1)×2k
1 × G

(2k+1)×Qc

1 , where Qc denotes the number of challenge
queries, we construct a reduction B2 as in Fig. 6.

For Eval queries, since um is information-theoretically hidden by RF(m),
we can just pick um uniformly random. For Chal queries, we write fc :=

Fig. 6. Description of B′(G1, ([D]1, [F]1) interpolating between G
′
2 and G1,L.

206 D. Hofheinz et al.

Fig. 7. Description of B′(G1, ([D]1, [F]1) interpolating between G
′′
2 and G

′
2.

(
Dwc

Dwc + rc

)
for some wc ∈ Z

2k
q , where rc ∈ Zq is 0 if [F]2 is from the real

U2k-MDDH distribution, and rc is random otherwise. Then, we have

h1 := RF′(m∗)�fc + fc = RF′(m∗)�fc + Dwc + rc

= RF′(m∗)�fc + DD
−1

fc + rc = (RF′(m∗)� + DD
−1

)︸ ︷︷ ︸
RF(m∗)�

fc + rc.

If rc = 0 then h1 is distributed as in G1,L; if rc is random then h1 is distributed
as in G′

2.
Next we bound the difference between G′

2 and G′′
2 by the Qc-fold U3k,2k-MDDH

assumption in G1, where G′′
2 is the same as G

′
2 except that when answering Chal

with m∗
1 = 0, one picks a random h0

$← Z
k
q for each query. And the difference

between G′
2 and G′′

2 can be bounded by the Qc-fold U3k,2k-MDDH assumption
in G1. Formally, on receiving a Qc-fold U3k,2k-MDDH challenge ([D]1, [F]1 :=
([f1, · · · , fQc]1)) ∈ G

3k×2k
1 × G

3k×Qc

1 , where Qc denotes the number of challenge
queries, we construct a reduction B2 as in Fig. 7.

For Eval(m) queries, since um is information-theoretically hidden by RF(m),
here we just pick um uniformly random.

For Chal(m∗) queries, if m∗
1 = 1, G′′

2 and G′
2 are the same, if m∗

1 = 0, we

write fc :=
(

Dwc

Dwc + rc

)
for some wc ∈ Z

2k
q , where rc ∈ Z

k
q is 0 if [F]2 is from

the real U3k,2k-MDDH distribution, and rc is random otherwise. Then, we have

h0 := X�
m∗\1h + fc = X�

m∗\1h + Dwc + rc = X�
m∗\1h + DD

−1
fc + rc

= (X�
m∗\1 + DD

−1
)

︸ ︷︷ ︸
X�

m∗

fc + rc.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 207

If rc = 0 then h0 is distributed as in G′
2; if rc is random then h0 is distributed

as in G′′
2 . The difference between G′′

2 and G2 can be bounded by the Qc-fold
U3k,2k-MDDH assumption in a similar way. ��

��

We perform all the previous changes of Fig. 2 in a reverse order without
changing the simulation of Chal. Then we have the following lemma.

Lemma 13 (G2 to G3). If the U3k,k-MDDH problem is (t2, ε2)-hard in G2, then
|Pr[GA

2 ⇒ 1] − Pr[mPR-CMAA
1 ⇒ 1]| ≤ Lε2 + 2−Ω(λ) and t1 ≈ t2 ≈ tA + (Qe +

Qc)poly(λ), where poly(λ) is independent of tA.

By observing G3 is the same as mPR-CMA1, we sum up Lemmata 4 to 13 and
conclude Theorem 1. ��

4 Quasi-adaptive Zero-Knowledge Arguments for Linear
Subspaces

4.1 Definition

The notion of quasi-adaptive non-interactive zero-knowledge arguments
(QANIZK) is proposed by Jutla and Roy [33], where the common reference string
CRS depends on the specific language for which proofs are generated. In the fol-
lowing we define a tag-based variant of QANIZK [17,34]. For simplicity, we only
consider arguments for linear subspaces.

Let par be the public parameters for QANIZK and Dpar be a probability
distribution over a collection of relations R = {R[M]1} parametrized by a
matrix [M]1 ∈ G

n×t
1 (n > t) with associated language L[M]1 = {[c0]1 : ∃r ∈

Z
t
q, s.t. [c0]1 = [Mr]1}. We consider witness sampleable distributions [33] where

there is an efficiently sampleable distribution D′
par outputs M′ ∈ Z

n×t
q such that

[M′]1 distributes the same as [M]1. We note that the matrix distribution in
Definition 2 is sampleable.

Definition 8 (Tag-based QANIZK). A tag-based quasi-adaptive non-inter-
active zero-knowledge argument (QANIZK) for a language distribution Dpar con-
sists of four PPT algorithms Π = (GenNIZK,Prove,VerNIZK,Sim).

– The key generation algorithm GenNIZK(par, [M]1) returns a common reference
string crs and the trapdoor td, where crs defines a tag space T .

– The proving algorithm Prove(crs, tag, [c0]1, r) returns a proof π.
– The deterministic verification algorithm VerNIZK(crs, tag, [c0]1, π) returns 1 or

0, where 1 indicates that π is a valid proof for [c0]1 ∈ L[M]1 .
– The simulation algorithm Sim(crs, td, tag, [c0]1) returns a proof π for [c0]1 ∈

L[M]1 .

(Perfect Completeness.) For all λ, all [M]1, all ([c0]1, r) with [c0]1 = [Mr]1,
all (crs, td) ∈ GenNIZK(par, [M]1), and all π ∈ Prove(crs, tag, [c0]1, r), we have
VerNIZK(crs, tag, [c0]1, π) = 1.

208 D. Hofheinz et al.

Fig. 8. USS security game for QANIZK

We require Π to have the following security. Here we require a stronger version
of unbounded simulation soundness than the usual one in [17,34], where an
adversary is allowed to submit a forgery with a reused tag.

Definition 9 (Perfect Zero-Knowledge). A tag-based QANIZK Π is per-
fectly zero-knowledge if for all λ, all [M]1, all ([c0]1, r) with [c0]1 = [Mr]1, and
all (crs, td) ∈ GenNIZK(par, [M]1), the following two distributions are identical:

Prove(crs, tag, [c0]1, r) and Sim(crs, td, tag, [c0]1).

Definition 10 (Unbounded Simulation Soundness). A tag-based QANIZK
Π is (Qs, t, ε)-unbounded simulation sound (USS) if for any adversary A that
runs in time t, it holds that Pr[USSA ⇒ 1] ≤ ε, where Game USS is defined in
Fig. 8.

4.2 Construction: QANIZK with Unbounded Simulation Soundness

We (slightly) modify the QANIZK scheme in [17] to achieve our stronger
unbounded simulation soundness (as in Definition 10). Let par :=
(G1,G2,GT , q, P1, P2, e,H) be the system parameter, where H : T × G

n+k
1 →

{0, 1}λ is chosen uniformly from a collision-resistant hash function family H.
Our QANIZK scheme Π is defined as in Figure 9.

Theorem 2. The QANIZK system Πuss defined in Fig. 9 has perfect complete-
ness and perfect zero-knowledge. Suppose in addition that the distribution of
matrix M is witness sampleable, the Dk-MDDH is (t1, ε1)-hard in G1, the
Dk-KerMDH is (t2, ε2)-hard in G2, H is a (t3, ε3)-collision resistant hash func-
tion family, then Πuss is (t, ε)-USS, where t1 ≈ t2 ≈ t3 ≈ t + Qspoly(λ), and
ε ≤ ε2 + 4λε1 + ε3 + 2−Ω(λ), poly(λ) is a polynomial independent of t.

The proof is similar to that of [17] and we give the formal proof in the full
version.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 209

Fig. 9. Construction of Πuss.

5 Identity-Based Key Encapsulation Mechanism

We give our generic construction of an identity-based key encapsulation mecha-
nism (IBKEM) from an affine MAC. Here we only focus on IBKEMs, since, even
in the multi-instance, multi-challenge setting, a constrained CCA (resp. CPA)
secure IBKEM can be transformed to a CCA (resp. CPA) secure identity-based
encryption (IBE) in an efficient and tightly secure way by using an authenti-
cated symmetric encryption scheme. One can prove this by adapting the known
techniques from [20,30] in a straightforward way.

5.1 Definition

Let par be a set of system parameters.

Definition 11 (Identity-based key encapsulation mechanism). An iden-
tity-based key encapsulation mechanism (IBKEM) has four algorithms IBKEM :=
(Setup,Ext,Enc,Dec) with the following properties:

– The key generation algorithm Setup(par) returns the (master) public/secret
key (pk, sk). We assume that pk implicitly defines an identity space ID, a
symmetric key space K, and a ciphertext space C.

– The user secret-key generation algorithm Ext(sk, id) returns a user secret key
usk[id] for an identity id ∈ ID.

– The encapsulation algorithm Enc(pk, id) returns a symmetric key K ∈ K
together with a ciphertext C ∈ C with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the
decapsulated key K ∈ K or the rejection symbol ⊥.

210 D. Hofheinz et al.

(Perfect correctness). We require that for all pairs (pk, sk) $← Setup(par),
all identities id ∈ ID, all usk[id] $← Ext(sk, id) and all (K,C) $← Enc(pk, id),
Pr[Dec(usk[id], id,C) = K] = 1.

We define indistinguishability against constrained chosen-ciphertext and
chosen-identity attacks for IBKEM in the multi-challenge setting.

Definition 12 (mID-CCCA security). An identity-based key encapsulation
scheme IBKEM is (Qext, Qenc, Qdec, t, ε)-mID-CCCA-secure if for all A with negli-
gible uncert(A) that runs in time t, makes at most Qext user secret-key queries,
Qenc encryption queries and Qdec decryption queries,

|Pr[mID-CCCAA
0 ⇒ 1] − Pr[mID-CCCAA

1 ⇒ 1]| ≤ ε,

where the security game is defined as in Fig. 10, here predi : K → {0, 1} denotes
the predicate sent in the ith decryption query, the uncertainty of knowledge about
keys corresponding to decryption queries is defined as

uncert(A) :=
1

Qdec

Qdec∑

i=1

Pr
K

$←K
[predi(K) = 1].

If an adversary is not allowed to query Dec, then we get the security notion of
indistinguishability against chosen-plaintext and chosen-identity attacks.

Definition 13 (mID-CPA security). An identity-based key encapsulation sche-
me IBKEM is (Qext, Qenc, t, ε)-mID-CPA-secure if IBKEM is (Qext, Qenc, 0, t, ε)-
mID-CCCA-secure.

Remark 1 (Ext queries with the same identity). For simplicity, we assume that
an adversary can query Ext with the same identity at most once. This is without

Fig. 10. Games mID-CCCA0 and mID-CCCA1 for defining mID-CCCA-security.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 211

loss of generality when assuming that the scheme is made deterministic, e.g.,
by generating the randomness in Ext with a (tightly secure) pseudorandom
function such as the Naor-Reingold PRF [40]. Thus the anonymity we achieve
here is usually called weak anonymity [22].

Remark 2 (On uncert(A)). When we prove the IND-CCA security of the hybrid
IBE scheme by combining an IND-CCCA secure ID-KEM together with an
unconditionally one-time secure authenticated encryption scheme AE, the term
(Qdec + Qenc)uncert(A) is related to the one-time integrity of AE and can be
made exponentially small (since it does not necessarily rely on any computa-
tional assumption). Hence, in line with previous works (e.g., [17]), we still call
our reduction (almost) tight.

5.2 Two Transformations

We construct two generic transformations of IBKEM from affine MACs, IBKEM1

and IBKEM2. Let par := (G1,G2,GT , q, P1, P2, e), MAC := (GenMAC,Tag,
VerMAC) be an affine MAC and Π := (GenNIZK,Prove,VerNIZK,Sim) be a QANIZK
system for linear language L[M]1 := {[c0]1 : ∃r ∈ Z

k
q s.t. c0 = Mr}, where

M ∈ Uk+η,k. Our IBKEMs IBKEM1 and IBKEM2 are defined in Fig. 11.
It is worth mentioning that if we instantiate our schemes with the SXDH

assumption then we have: 4 elements in user secret keys, 4 elements in cipher-
texts, and (2λ+4) elements in master public keys for IBKEM1 (which is denoted
by (|usk|, |C|, |pk|) = (4, 4, 2λ + 4)); and (|usk|, |C|, |pk|) = (4, 7, 8λ + 12) for
IBKEM2. We give concrete instantiations in the full version based on the MDDH
and SXDH assumptions, respectively.

IBKEM1 is mID-CPA-secure and it follows the same idea as IBE[MAC,Dk] in
[8]. Since our underlying MAC is secure in the multi-challenge setting, IBKEM1

is ID-CPA-secure in the multi-challenge setting, and it can be also viewed as an
alternative abstraction of [22] in the BKP framework.

The difficulty for IBKEM1 to achieve mID-CCCA security is that decryption
answers may leak information about usk[id] for challenge id. We observe that if
ciphertexts satisfy that (c0 = Mr)∧(c1 = (

∑�
i=0 fi(id)Zi) ·r) for some r (we call

such ciphertexts as “well-formed”), then the decrypted K reveals no more infor-
mation about usk[id] than pk. Since “c0 ∈ Span(M)” is a linear statement, we can
introduce the efficient unbounded simulation-sound QANIZK from Section 4 to
reject Dec queries with [c0]1 /∈ Span([M]1). Furthermore, due to the randomness
contained in usk[id], if c0 ∈ Span(M) but c1 is not “well-formed”, the decrypted
K will be randomly distributed and thus it will be rejected by the decryption
oracle. Note that [c1]1 works as the tag for QANIZK argument. We refer the
proof of Theorem 4 for technical details.

Theorem 3 (mID-CPA Security of IBKEM1). If the Uk-MDDH is (t1, ε1)-hard
in G1, and MAC is a (Qe, Qc, t2, ε2)-mPR-CMA-secure affine MAC, then IBKEM1

is (Qext, Qenc, t, ε)-mID-CPA-secure, where Qext ≤ Qe, Qenc ≤ Qc, t1 ≈ t2 ≈
t + (Qext + Qenc)poly(λ) and ε ≤ 2(ε1 + ε2 + 2−Ω(λ)).

212 D. Hofheinz et al.

Fig. 11. IBKEM1 and IBKEM2 . Gray instructions are only executed in IBKEM2 .

The proof of Theorem 3 is an extension of Theorem 4.3 in [8] in the multi-
challenge setting. We leave the proof in the full version.

Theorem 4 (mID-CCCA Security of IBKEM2). If the Uk-MDDH is (t1, ε1)-
hard in G1, MAC is a (Qe, Qc, t2, ε2)-mPR-CMA-secure affine MAC, Π is a
(Qs, t3, ε3)-USS QANIZK, then IBKEM2 is (Qext, Qenc, Qdec, t, ε)-mID-CCCA-sec-
ure, where Qext ≤ Qe, Qenc ≤ Qc ≈ Qs, t3 ≈ t1 ≈ t2 ≈ t + (Qdec + Qenc +
Qext)poly(λ) and ε ≤ 2(ε1 + ε2 + ε3 + 2Qdec · uncert(A) + 2−Ω(λ)).

It is easy to verify the correctness of IBKEM1 and IBKEM2.

Proof (of Theorem 4). We define a series of games in Fig. 12 to prove the
mID-CCCA security of IBKEM2. A brief overview of game changes is described as
in Fig. 13. For a simple presentation of Fig. 12, we define Xid :=

∑�
i=0 fi(id)Xi,

Yid :=
∑�

i=0 fi(id)Yi, Zid :=
∑�

i=0 fi(id)Zi, x′
id :=

∑�′

i=0 f ′
i(id)x

′
i, y′

id :=
∑�′

i=0 f ′
i(id)y

′
i, z′

id :=
∑�′

i=0 f ′
i(id)z

′
i for an id ∈ {0, 1}L.

Lemma 14 (G0 to G1). Pr[mID-CCCAA
0 ⇒ 1] = Pr[GA

0 ⇒ 1] = Pr[GA
1 ⇒ 1]

Proof. G0 is the real attack game. In G1, we change the simulation of c1 and K
in Enc(id∗) by substituting Zi and z′

i with their respective definitions:

c1 = Zid∗r = (Y�
id∗ | X�

id∗)Mr = (Y�
id∗ | X�

id∗)c0

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 213

Fig. 12. Games G0-G6 for the proof of Theorem 4.

and K = (y′�
id∗ | x′�

id∗)Mr = (y′
id∗

� | x′
id∗

�)c0. This change is only concep-
tual. Moreover, we simulate the QANIZK proof π in Enc(id∗) by using Π’s
zero-knowledge simulator. By the perfect zero-knowledge property of Π, G1 is
identical to G0. ��

Lemma 15 (G1 to G2). If the Uk+η,k-MDDH problem is (t1, ε1)-hard in G1,
then |Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]| ≤ ε1 + 2−Ω(λ) and t1 ≈ tA + (Qdec + Qenc +

Qext)poly(λ), where poly is a polynomial independent of tA.

214 D. Hofheinz et al.

Fig. 13. Overview of game changes for proof of Theorem 4

Lemma 15 can be proved by a straightforward reduction to the Qenc-fold
Uk+η,k-MDDH problem in G1 and we omit it here.

Lemma 16 (G2 to G3). If the tag-based QANIZK Π is (Qs, t3, ε3)-USS, then
|Pr[GA

2 ⇒ 1] − Pr[GA
3 ⇒ 1]| ≤ ε3 + Qdecuncert(A) and Qs ≥ Qenc, t3 ≈ tA +

(Qdec + Qext + Qenc)poly(λ), where poly is a polynomial independent of tA.

Proof. The difference between G2 and G3 happens when an adversary queries
the decryption oracle Dec with (id,C = ([c0]1, [c1]1, π), pred) where id /∈ Qusk ∧
pred(Dec(usk[id], id,C)) = 1 ∧ c0 /∈ Span(M) ∧ VerNIZK(crs, [c1]1, [c0]1, π) = 1.
That is bounded by the unbounded simulation soundness (USS) of Π. Formally,
we construct an algorithm B in Fig. 14 to break the USS of Π and we highlight
the important steps with gray.

We analyze the success probability of B. For a Dec(id,C, predi) query, we
have the following two cases:

– ([c1]1, [c0]1, π) = ([c∗
1]1, [c

∗
0]1, π

∗) for some (id∗,C∗) ∈ Cenc with id �= id∗. In
this case, B cannot break the USS property, but the adversary A can ask such
a query with predi(Dec(usk[id], id,C)) = 1 with probability uncert(A). More
precisely, we have

K = [c�
0]1 ◦ [w]2 − [c�

1]1 ◦ [t]2
= [c�

0]1 ◦ [w]2 − [c�
0 (Yid∗ | Xid∗)]1 ◦ [t]2

= [c�
0]1 ◦ [(Yid | Xid)t]2 − [c�

0 (Yid∗ | Xid∗)]1 ◦ [t]2
= [c�

0]1 ◦ [(YΔ | XΔ)t]2,

where YΔ := Yid−Yid∗ and XΔ := Xid−Xid∗ . By id /∈ Qusk, the correspond-
ing t is randomly distributed in the adversary’s view. Clearly, (YΔ | XΔ) �= 0,
since id �= id∗. Thus, K is randomly distributed and A can output a predi such
that predi(K) = 1 with probability uncert(A).

– ([c1]1, [c0]1, π) �= ([c∗
1]1, [c

∗
0]1, π

∗) for all (id∗,C∗) ∈ Cenc. In this case, ([c1]1,
[c0]1, π) is a valid proof to break the USS of Π.

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 215

Fig. 14. Description of B with oracle access to InitNIZK,Sim,FinalizeNIZK of the USS
games of Fig. 8 for the proof of Lemma 16.

To sum up, the success probability of B is at least |Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒
1]| − Qdec · uncert(A). ��

Lemma 17 (G3 to G4). |Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]| ≤ Qdec · uncert(A).

Proof. An adversary A can distinguish G4 from G3 if A asks the decryption
oracle Dec with (id,C = ([c0]1, [c1]1, π), pred) where c1 �= ZidM

−1 · c0 but
pred(Dec(usk[id], id,C)) = 1.

We show that, before an identity id is queried to Ext, for any (c0, c1), the

value K = c�
0

(
vid

uid

)
− c�

1 tid is uniformly random from the adversary’s view,

where ([tid]2, [uid]2, [vid]2) ∈ Ext(id):

K = c�
0

(
vid

uid

)
− c�

1 tid = c�
0

(
((t�

idZid + z′
id − u�

id · M) · M−1
)�

uid

)
− c�

1 tid

= c�
0 (M

−1
)�z′

id
� + (c�

0 − (MM
−1

c0)�)︸ ︷︷ ︸
Δ1

uid + ((Zid · M−1 · c0)� − c�
1)︸ ︷︷ ︸

Δ2

tid

216 D. Hofheinz et al.

In G3 and G4, a Dec query with c0 /∈ Span(M) and id /∈ Qusk will be rejected,
and thus we have Δ1 = 0. As id has never been queried to Ext, tid is uniformly
random to the adversary. Thus, if c1 �= ZidM

−1
c0 (namely, Δ2 �= 0) then K

is random and a query of this form will be rejected except with probability
uncert(A). By the union bound, the difference between G3 and G4 is bounded by
Qdec · uncert(A). ��

Lemma 18 (G4 to G5). Pr[GA
4 ⇒ 1] = Pr[GA

5 ⇒ 1].

Proof. The change from G4 to G5 is only conceptual. By Zi = (Y�
i | X�

i)M, we
have Y�

i = (Zi−X�
i ·M)·(M)−1, and similarly we have y′�

i = (z′
i−x′�

i ·M)·M−1
.

For Ext(id), by substituting Y�
i and y′�

i , we obtain

v� =
(
t�(Zid − X�

id · M) + (z′
id − x′

id
� · M)

)
M

−1

=

⎛

⎜⎝t�Zid + z′
id − (t�X�

id + x′
id

�)︸ ︷︷ ︸
u�

·M

⎞

⎟⎠ · M−1

Note that we can compute [v]2 in G5, since A, z′
i and Zi are known explicitly

over Zq and [t]2 and [u]2 are known.
c0 from Enc(id∗) is uniformly random in G4 and G5. By h = c0−M ·M−1

c0,
we have

c1 = Zid∗ · M−1
c0 + X�

id∗ · (c0 − M · M−1
c0)

= (Y�
id∗M + X�

id∗M) · M−1
c0 + X�

id∗ · (c0 − M · M−1
c0)

= (Y�
id∗ | X�

id∗)c0

and c1 is distributed as in G4. The distribution of K can be proved by a similar
argument. ��

Lemma 19 (G5 to G6). If MAC is (Qe, Qc, t2, ε2)-mPR-CMA-secure, then
|Pr[GA

5 ⇒ 1] − Pr[GA
6 ⇒ 1]| ≤ ε2 with Qext ≤ Qe, Qenc ≤ Qc, t2 ≈

tA + (Qdec + Qext + Qenc)poly(λ), where poly is a polynomial independent of
tA.

Proof. In G6, we answer the Enc(id) query by choosing random K and ([c0]1,
[c1]1). We construct an adversary D in Fig. 15 to bound the differences between
G5 and G6 with the mPR-CMA security of MAC. The decryption oracle Dec
is simulated as in G5 and G6. Now if D is in mPR-CMA1 then the simulated
distribution is identical to G6; otherwise, it is identical to G5. ��

We observe that G6 is computationally indistinguishable from mID-CCCArand

by a reverse arguments of Lemmata 14 to 19 without changing the distribution
of K in Enc. More precisely, we can argue this by switching the ciphertexts from
random to real and removing all the additional rejection rules in Dec. Thus, we
conclude Theorem 4. ��

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 217

Fig. 15. Description of D (with access to oracles InitMAC,Eval,Chal,FinalizeMAC of
the mPR-CMA0/mPR-CMA1 games of Fig. 1) for the proof of Lemma 19.

Remark 3 (Anonymity). In G6 all the challenge ciphertexts are independent of
the challenge identity id∗: [c1]1 is uniform and [c0]1 and π are independent of
id∗. Thus, our scheme is trivially anonymous.

Acknowledgments. We thank the anonymous reviewers for their comments and, in
particular, for pointing a problem in our definition of unbounded simulation sound-
ness, and one in the proof of Theorem 4 in a previous version of this paper. The first
author was supported by ERC Project PREP-CRYPTO (724307) and DFG grants
(HO 4534/4-1, HO 4534/2-2), the second author was supported by the National Nature
Science Foundation of China (Nos. 61502484, 61572495, 61772515), the Fundamental
theory and cutting edge technology Research Program of Institute of Information Engi-
neering, CAS (Grant No. Y7Z0291103) and the National Cryptography Development
Fund (No. MMJJ20170116), and the third author was supported by the DFG grant
(HO 4534/4-1). This work was done while the second author was visiting KIT. The
visit was supported by China Scholarship Council.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

2. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19

218 D. Hofheinz et al.

3. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

4. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

7. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 19

8. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

10. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36563-X 7

11. Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master pub-
lic key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 9

12. Chen, J., Wee, H.: Fully, (almost) tightly secure ibe and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

13. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668 22

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-36563-X_7
https://doi.org/10.1007/978-3-662-54365-8_9
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/11967668_22
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks 219

17. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

18. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

19. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679 27

20. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting,
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp.
159–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 6

21. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 6

22. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-
dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 21

23. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

24. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

25. Han, S., Liu, S., Qin, B., Gu, D.: Tightly CCA-secure identity-based encryption
with ciphertext pseudorandomness. Designs, Codes and Cryptography 86(3), 517–
554 (2018). https://doi.org/10.1007/s10623-017-0339-3

26. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 65–94.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 3

27. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

28. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

29. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

30. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

31. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/s10623-017-0339-3
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36

220 D. Hofheinz et al.

32. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-
preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 5

33. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

34. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

35. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

36. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

37. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 1

38. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

39. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

40. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October
1997

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

42. Shoup, V., Shoup, V.: Why chosen ciphertext security matters. IBM research report
RZ 3076 (1998)

43. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-
tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-662-45608-8_1
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3

Short Digital Signatures and ID-KEMs
via Truncation Collision Resistance

Tibor Jager(B) and Rafael Kurek

Paderborn University, Paderborn, Germany
{tibor.jager,rafael.kurek}@upb.de

Abstract. Truncation collision resistance is a simple non-interactive
complexity assumption that seems very plausible for standard crypto-
graphic hash functions like SHA-3. We describe how this assumption
can be leveraged to obtain standard-model constructions of public-key
cryptosystems that previously seemed to require a programmable ran-
dom oracle. This includes the first constructions of identity-based key
encapsulation mechanisms (ID-KEMs) and digital signatures over bilin-
ear groups with full adaptive security and without random oracles, where
a ciphertext or signature consists of only a single element of a prime-
order group. We also describe a generic construction of ID-KEMs with
full adaptive security from a scheme with very weak security (“selective
and non-adaptive chosen-ID security”), and a similar generic construc-
tion for digital signatures.

Keywords: Identity-based encryption · Digital signatures
Random oracle model · Extremely lossy functions · Provable security

1 Introduction

The random oracle model (ROM) [BR93] is often used to analyze the security
of cryptosystems in a hypothetical setting, where a cryptographic hash function
is modeled as an oracle that implements a truly random function. This provides
a very strong handle for formal security proofs. For example, an adversary in
this model has to explicitly query the oracle to evaluate the hash function,
and it is possible to adaptively “program” the hash function to map certain
input values to specific output values in the security proof. The random oracle
is a hypothetical concept, used only in a security proof, but instantiated in
practice with a standard cryptographic hash function, like SHA-3. This incurs
the additional assumption that this hash function is “secure enough” for the
given application.

Besides the well-known difficulty of instantiating random oracles [CGH98],
the major drawback of this approach is that the random oracle essentially is a
“perfect” hash function, which provides not only standard security properties,
like onewayness and collision resistance, but essentially all imaginable security
properties simultaneously. Therefore a security proof in the random oracle model
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 221–250, 2018.
https://doi.org/10.1007/978-3-030-03329-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_8&domain=pdf

222 T. Jager and R. Kurek

does not explain which precise security properties of a hash function are actually
necessary or sufficient for a given application. This is very undesirable, as we
want to understand the required security properties and we want to provide
cryptanalysts with clearly-defined cryptanalytic goals to attack the “security”
of cryptographic hash functions. Therefore the ROM is often seen as only a first
step towards achieving provably-secure constructions in the standard model.

The only known security proofs for many important cryptographic con-
structions seem to inherently require an adaptively programmable random ora-
cle [Nie02,FLR+10,HMS12,FF13]. There are many primitives for which it is
still unknown whether and how they can be instantiated without random ora-
cles, and where no standard-model security proofs based on classical complexity
assumptions on cryptographic hash functions are known so far. Several previ-
ous works isolated specific properties of random oracles, such as programmabil-
ity [HK08,HJK11,FHPS13,CFN15] or extreme lossyness [Zha16], and realized
these with standard-model constructions of special-purpose functions and based
on algebraic public-key techniques, which are relatively inefficient in comparison
to standard cryptographic hash functions. In the instead, we ask:

Which reasonable, simple, and non-interactive complexity assumptions for
standard cryptographic hash functions are sufficient to obtain instantia-
tions of cryptographic tools that currently require the ROM?

Hence, we do not ask for new non-standard hash functions that realize specific
properties of a random oracle, but for reasonable assumptions on standard hash
functions that are sufficient to avoid the random oracle. In this sense, we follow
a line of research initiated by Canetti in 1997 [Can97], and continued by the
UCE approach introduced by Bellare et al. [BHK13] and continued by Farshim
and Mittelbach [FM16].

Truncation collision resistance. Truncation collision resistance (TruCR) basi-
cally demands that there is no algorithm that finds collisions significantly faster
than the standard birthday collision algorithm, even when (short) prefixes of
hash values are considered. More precisely, let H : {0, 1}∗ → {0, 1}k be a cryp-
tographic hash function, and write Hj(x) to denote the first j bits of H(x).
Truncation collision resistance requires that two input values x, x′ with x �= x′

and Hj(x) = Hj(x′) cannot be found for any value of j with significantly better
time-to-success ratio than the standard birthday collision algorithm.

In contrast to the ROM, this assumption provides an explicit and well-defined
goal for the cryptanalysis of hash functions. It is a single simple assumption,
rather than a complex family of UCE assumptions of [BHK13], and based on
simple “symmetric-key techniques” (i.e., standard cryptographic hash functions).

Contributions. We show that truncation collision resistance enables several inter-
esting applications that previously required a random oracle. This includes:

– Identity-based key encapsulation schemes (ID-KEMs) with very short cipher-
texts (only a single group element) and full adaptive security.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 223

– Short digital signatures over bilinear groups with very short signatures (only
a single group element) and full adaptive security.

– Generic constructions of ID-KEMs and digital signatures with full adaptive
security from ID-KEMs and signatures with extremely weak “selective and
non-adaptive” security.

Due to the relatively large (but polynomially-bounded) security loss of our secu-
rity proofs, the practical value of our constructions is limited, if tightness is taken
into account. However, we see truncation collision resistance as a step towards
avoiding the random oracle for cryptosystems with minimal overhead.

Leveraging truncation collision resistance. In order to sketch how truncation
collision resistance can be used in a security proof, let us consider the case of
short digital signatures as an example. We work in the bilinear group setting,
where we have groups G1,G2,GT of prime order p, and an efficiently computable
bilinear map e : G1 × G2 → GT . Signatures consist of only one element of G1.
A secret key consist of � = log 4(k + 1) elements x1, . . . , x� ∈ Zp, where k is
the security parameter. The corresponding public key consists of one element
of G1 plus 4(k + 1) elements of G2. Thus, public and secret keys are larger
than for the random-oracle-based short signature scheme of Boneh, Lynn, and
Shacham [BLS04], but the signature size is identical.

Computing a signature on a message m works as follows. For a cryptographic
hash function H : {0, 1}∗ → {0, 1}4(k+1), let us write H2j (m) to denote the first
2j bits of H(m). In order to sign a message m, we first compute

G(m) =
�∏

j=1

(xj + H2j (m)) mod p.

Note that one can perform this computation very efficiently, as it involves only
elementary operations over Zp. Finally, the signature for m is

σ = g
1/G(m)
1 ∈ G1,

where g1 ∈ G1 is a generator. Thus, computing a signature requires to perform
only a single exponentiation in G1, plus a small number of additional operations
in Zp.

A signature can be verified by first computing g
G(m)
2 ∈ G2 from the group

elements contained in the public key, which involves O(k) operations in Zp, O(k)
multiplications in G2, and then testing whether

e(σ, g
G(m)
2) ?= e(g1, g2).

Note that this test requires only a single application of the bilinear map e to com-
pute e(σ, g

G(m)
2), because the term e(g1, g2) is independent of the given message

and signature, and can thus be precomputed.

224 T. Jager and R. Kurek

In order to sketch how truncation collision resistance is used in the security
proof, note that a signature has the form

σ = g
1/

∏�
j=1(xj+H2j (m))

1 , (1)

which can be viewed as an aggregation of � signatures of the form

σj = g
1/(xj+H2j (m))
1 . (2)

Let us view a signature σ as an �-tuple σ = (σ1, . . . , σ�), where σj is as in (2).
We describe later how these signatures can be aggregated to obtain our actual
scheme. Note that each σj is a Boneh-Boyen signature [BB04c] over the first 2j

bits of H(m). In the security proof, we will choose j such that it simultaneously
achieves the following two properties.

1. The index j is sufficiently small. Let m∗ be the message for which the assumed
adversary A forges a signature. We want that j is small enough, such that we
can guess H2j (m∗) ∈ {0, 1}2j

with reasonable success probability, even before
the security experiment starts, and we are able to prepare signatures for all
other values {0, 1}2j \ H2j (m∗).

2. At the same time, we will make sure that the index j is sufficiently large, such
that it is “sufficiently unlikely” that the adversary finds a collision for H2j .
More precisely, we want that it is “sufficiently unlikely” that the adversary
ever requests a signature for a message mi and then outputs a forgery for
message m∗ with H2j (mi) = H2j (m∗).

The main difficulty of our security analysis lies in the second property, therefore
let us consider this one more closely. Truncation collision resistance basically
guarantees that there is no algorithm that finds collisions with significantly better
time-to-success ratio than the standard birthday collision algorithm, even when
prefixes H2j (x) of hash values H(x) are considered. Of course we will not be able
to choose j such that the probability that A finds a collision is negligibly small
– at least not without sacrificing the first condition, which we cannot afford.
However, we will be able to choose j such that we can argue that the probability
that A finds a collision for H2j is at most ε/2, where ε is the success probability
of A in breaking our signature scheme. This is “sufficiently unlikely”, because
it means: while sometimes A may break the security of the signature scheme
by finding a collision, at least sometimes (more precisely: with probability at
least ε/2) the adversary will also be able to break the signature scheme without
finding a collision. This allows us to reduce the full EUF-CMA-security of our
scheme to the SUF-naCMA-security of the underlying Boneh-Boyen scheme.

Since Boneh-Boyen signatures are not known to be efficiently aggregable in
the sense of [BGLS03,LOS+06], we have to overcome another hurdle to obtain a
short signature scheme. Note that computing a signature that satisfies (1) essen-
tially yields a “polynomial in the exponent” in unknowns x1, . . . , x� of degree �.
In order to verify whether a given value σ indeed satisfies (1) using a bilinear
map, we therefore must to be able to compute group elements of the form

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 225

gx
b1
1 ···xb�

� . (3)

for all possible values of b1, . . . , b� ∈ {0, 1}. Note that these are 2� different
values, but we have � = O(log k) This allows us to include all required values of
the form (3) in the public key, which yields a public key of size O(k).

On the necessity of using � parallel copies. A signature σ in the construction
described above essentially consists of � aggregated copies of signatures σj , j ∈
[�]. The purpose of j is to find a balance the two properties described above,
but the “right” choice of j depends on the given adversary: different adversaries
may require a different value of j to achieve the right balance.

The fact that we essentially run several copies of the scheme in parallel may
appear artificial, but it is the only way that we currently know to guarantee a
suitable value of j for any possible adversary, and thus the only way we know
to prove security against any efficient adversary. There are other schemes that
essentially run many copies of an underlying scheme in parallel “only” to achieve
provable security. This includes, for instance, pseudorandom functions [DS15,
BH15] and digital signatures [BHJ+13,HW09a,BK10].

Comparison to other prefix-guessing techniques. The main difference between
our approach and the prefix-guessing technique of [HW09b,BK10] is that we
essentially guess a short prefix of the hash of the “target message” directly,
exploiting the truncation collision resistance to argue that this hash cannot be
equal to the hash of any chosen-message query. We do not have to know any
chosen-message queries of the adversary to do this, which makes the technique
also applicable to identity-based schemes like ID-KEMs. In contrast, the prefix-
guessing technique of [HW09b,BK10] guesses the shortest prefix of the target
message that is not equal to a prefix of a chosen-message query, which depends
on the chosen-message queries made by the adversary and therefore can only
be used to construct non-adaptively secure signatures (adaptive security is then
achieved in a second step, e.g. using [EGM96]).

2 Truncation Collision-Resistant Hashing

Intuitively, truncation collision resistance (TruCR) means that there exists no
algorithm which finds collisions with significantly better work factor [BR09] than
the trivial birthday collision algorithm. This must hold even if the output of the
hash function is truncated. This notion is strongly related to standard collision
resistance [RS04], but to our best knowledge has not yet been formally defined
or used as a basis for formal security proofs of cryptosystems.

Computational model. We consider algorithms as Turing machines, which operate
on a binary alphabet and write their output bit-by-bit to an output tape, where
each written bit takes one elementary machine operation.1 The running time of

1 We explain below how our results can be extended to models of computation where
an algorithm is able to output multiple bits per elementary machine operation.

226 T. Jager and R. Kurek

an algorithm is defined as the number of elementary operations performed by
this machine.

Truncation collision resistance. Let H = {H : {0, 1}∗ → {0, 1}α} be a family of
keyed hash functions and let Hi denote the function obtained by evaluating H
and truncating its output to the first i bits. Thus, H1(x) consists of the first bit
of H(x), and Hα(x) = H(x) for all x ∈ {0, 1}∗.

Definition 1. We say that adversary B i-breaks the truncation collision resis-
tance of H, if it runs in time tB and

Pr
H

$←H

[
(x0, . . . , xq)

$← B(H) :
∃u, v s.t.Hi(xu) = Hi(xv) ∧ xu �= xv

]
>

tB(tB − 1)
2i+1

.

The bound tB(tB − 1)/2i+1 in the above definition stems from the birth-
day bound, which states that an adversary which evaluates a random function
with range {0, 1}i at most q times will find a collision with probability at most
q(q − 1)/2i+1. Observe here that an adversary in our computational model must
perform at least q · log2 q computational operations in order to output q pairwise
distinct bit strings. Hence, in order to break TruCR, an algorithm must be better
than the trivial birthday attack algorithm by a factor larger than log2 q.

Constructing hash families from standard hash functions. Let H ′ be any standard
cryptographic hash function, such as SHA-3, for example. We can construct a
hash function family H as

H := {H : H(x) := H ′(r||x), r ∈ {0, 1}k}.

A uniformly random hash function H from the family is chosen by selecting
a uniformly random bit string r ∈ {0, 1}k. H(x) is evaluated by computing
H ′(r||x).

Strength of the TruCR assumption. We view truncation collision resistance as
a very natural security property for cryptographic hash functions. Note that
truncated versions of SHA-256 (to 224 bits) and SHA-512 (to 384 bits) have
been standardized by NIST [Nat15a]. Also the SHA-3 standard [Nat15b] defines
two extendable-output-functions (XOFs), in which the output length can be
adapted to any desired length.

Furthermore, recall that the standard way to determine the size of the out-
put of a hash function in practice is to fix a security parameter k, and to take
a hash function of output size 2k. For example, choosing SHA-256 (which has
256-bit hash values) for k = 128 is considered an adequate choice in practice, if
collision-resistance at “128-bit security level” is required. Note that one essen-
tially assumes here already that there is no significantly better collision attack
than the generic birthday algorithm. TruCR generalizes this assumption to pre-
fixes of the hash function output.

We also note that our applications will require hash functions with output
length 4(k + 1), rather than the “minimal” 2k. For example, for k = 127 we
would use SHA-512.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 227

In the full version [JK17], we also sketch how TruCR hash functions can be
constructed from standard assumptions.

Choice of computational model and weakening the TruCR assumption. Assume
a computational model where an algorithm is able to output many pairwise
distinct values x0, . . . , xq in a single elementary machine operation, and thus
within a single time unit. Note that such an algorithm would be able to trivially
break the TruCR assumption with a simple birthday attack. To overcome this
technical obstacle, we are working in a computational model where algorithms
are assumed to write their output bit-by-bit to an output tape.

In order to generalize this to a computational model where algorithms are
able to output any constant number of bits in parallel in a single step, we can
weaken Definition 1 by increasing the size of the prefix for which the adversary
has to find a collision. To this end, one would replace the requirement

Hi(xu) = Hi(xv).

in Definition 1 with Hi+c(xu) = Hi+c(xv) for some small constant value c (e.g.,
c ∈ {1, ..., 10}). This also allows to add some additional “safety margin” to the
assumption, if desired, at the cost of an additional constant tightness loss factor
of 2c in the security proofs of our constructions. In the remainder of the paper,
we will work with the original Definition 1, as it simplifies the exposition of our
main results.

Relation to ELFs. From a high-level perspective, truncation collision-resistant
hash functions are related to extremely lossy functions (ELFs), which were intro-
duced by Zhandry [Zha16]. In some applications, TruCR and ELFs can be used
in a very similar way to argue in a security proof, and it seems that some of our
applications can also be achieved by using an ELF instead. ELFs furthermore
allow for some additional applications, like the construction of output-intractable
hash functions or a standard-model instantiation of full-domain hash (the latter
in combination with indistinguishability obfuscation).

The main difference between Zhandry’s work and ours is that [Zha16] gives
new constructions of hash functions based on public-key techniques and the
reasonable exponential hardness assumption of the decisional Diffie-Hellman
problem in algebraic groups. Instead, following [Can97,BHK13,FM16], we use
standard cryptographic hash functions that are already widely-used in practice,
and a similarly reasonable complexity assumption for such functions. This par-
tially resolves the open problem posed in [Zha16] of constructing ELFs using
symmetric-key techniques: while we do not construct full ELFs, we show how
certain potential applications of ELFs can be realized based on standard hash
functions. We furthermore show how TruCR can be used to obtain interesting
new constructions: the first ID-KEM with full adaptive security and very short
ciphertexts (only a single element from a bilinear group), and the first digital
signature scheme with full adaptive security and very short signatures (again,
only single element from a bilinear group). One can also show that ELFs and
TruCR hash functions do not imply each other. Due to space limitations, this is
deferred to the full version of this paper [JK17].

228 T. Jager and R. Kurek

On assuming exponential hardness. Both the work of Zhandry [Zha16] and ours
assume exponential hardness of the underlying computational problems. The
construction of ELFs from [Zha16] assumes the exponential hardness of the
DDH assumption in suitable algebraic groups. This is a strong assumption, but
it appears reasonable, e.g., in certain elliptic curve groups, where the best known
algorithms for solving the DDH problem have exponential complexity. Further-
more, note that this matches the choice of elliptic curve groups in practice, where
typically a group of prime order ≈ 22k is expected to achieve “k-bit security”.
Similarly, we assume that for a cryptographic hash function there exists no sig-
nificantly better collision attack than the generic birthday collision algorithm,
which also has exponential complexity.

Useful technical lemma. To conclude our discussion of TruCR, we state a tech-
nical lemma, which will be useful to leverage truncation collision resistance in
security proofs. Intuitively, the lemma will provide bounds to ensure in our
security proofs that for each adversary with some running time t and success
probability ε there always exists a “good” index j such that H2j is “sufficiently
collision-resistant”, but at the same time the range {0, 1}2j

of H2j is “sufficiently
small”. As usual, all logarithms are to base 2 in the sequel.

Lemma 1. Let t ∈ N and ε ∈ (0, 1] with t/ε < 2k, and j :=
⌊
log log(4t2/ε)

⌋
+1.

Then it holds that

j ∈ {1, . . . , log 4(k + 1)},
4t2

22j+1
<

ε

2
and 22

j ≤
(

4t2

ε

)2

.

Proof. We first show that j ∈ {1, . . . , log 4(k+1)}. Since ε > 0, we trivially have
j ≥ 1. Additionally using that t/ε < 2k, we obtain

j =
⌊
log log(4t2/ε)

⌋
+ 1 ≤ log log(4t2/ε) + 1

< log log(22k+2) + 1 = log 4(k + 1).

To show 4t2/22
j+1 < ε/2, we compute

4t2

2 · 22j =
4t2

2 · 22�log log(4t2/ε)�+1
<

4t2

2 · 22log log(4t2/ε)
=

4t2

2 · (4t2/ε)
=

ε

2
.

Finally, we get 22
j ≤ (

4t2/ε
)2 from

22
j

= 22
�log log(4t2/ε)�+1 ≤ 22·2log log(4t2/ε)

= (4t2/ε)2.

�

3 Identity-Based Key Encapsulation

Recall that the commonly accepted standard security notion for identity-based
key encapsulation (ID-KEM) is adaptive chosen-ID security (IND-ID-CPA), as

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 229

introduced in [BFMLS08]. Here, the adversary in the security experiment may
adaptively choose both the “challenge identity” (i.e., the identity for which it
receives a challenge ciphertext) and the “key-query identities” (i.e., the identities
for which it requests a user secret key). A much weaker common standard secu-
rity notion is selective challenge-ID security (IND-sID-CPA) [CHK03,CHK04],
where the adversary has to announce the challenge identity and at the very
beginning of the security experiment, even before seeing the master public key,
but may adaptively query for user secret keys. In this work, we consider the even
weaker notion with selective challenge-identity and non-adaptive key-queries
(IND-snaID-CPA), where the adversary has to announce both the challenge iden-
tity and all key-query identities at the very beginning of the security experiment,
even before seeing the master public key (see Sect. 3.1 for formal definitions).

As a first application of TruCR, we describe a simple generic construction
of a fully adaptively IND-ID-CPA-secure ID-KEM from any ID-KEM which is
only IND-snaID-CPA-secure. This shows that if TruCR hash functions exist,
then ID-KEMs with full IND-ID-CPA-security are implied by IND-snaID-CPA-
secure ID-KEMs. The latter are usually significantly easier to construct. This
result also introduces a technique for leveraging truncation collision-resistance
in security proofs. The generic conversion is relatively efficient: it increases the
size of public parameters, user secret keys, and ciphertexts by a factor of only
O(log k), where k is the security parameter. The security reduction is non-tight,
but polynomial-time. Previous standard techniques to build an adaptively secure
ID-KEM from a selectively-secure one, e.g. by using admissible [BB04b] or pro-
grammable [HK08,Wat05] hash functions, work only non-generically for certain
schemes with specific properties. The only previously known generic way to turn
an IND-snaID-CPA-secure scheme into a fully IND-ID-CPA-secure one is to use
the programmable ROM.

Then we show how TruCR can be used to obtain the first ID-KEM with full
IND-ID-CPA-security without random oracles and with very short ciphertexts,
where the ciphertext overhead is only a single element from a prime-order group.
The only previously known ID-KEM with such short ciphertexts and adaptive
security is the construction of Boneh and Franklin [BF01], which only has a
security proof in the ROM. The adaptively secure standard-model scheme of
Wee [Wee16] requires significantly larger composite-order groups. Our scheme
is based on the selectively-secure Boneh-Boyen IBE scheme [BB04a] and proven
secure under a q-type assumption, but it shows that adaptively secure ID-KEMs
with such short ciphertext overhead can be constructed without random oracles.

On using complexity leveraging. Achieving adaptive security from selective secu-
rity is sometimes also possible by directly assuming exponential hardness of
breaking the underlying selectively-secure scheme, and then using complexity
leveraging. For instance, in order to convert an IND-sID-CPA-secure ID-KEM
into an IND-ID-CPA-secure one, we can simply guess the challenge identity id∗

chosen by the IND-ID-CPA adversary up front at the beginning of the secu-
rity experiment, and use this to implement a straightforward reduction to the
IND-sID-CPA of the considered scheme. Since the identity space usually has

230 T. Jager and R. Kurek

exponential size 2k where k is the security parameter, then this incurs an expo-
nential security loss of 2k, which must be compensated by choosing larger param-
eters for the underlying scheme. If the underlying scheme is exponentially secure,
then doubling the size of parameters, such as underlying algebraic groups for
instance, usually suffices in this case.

However, note that this complexity leveraging approach is not useful if one
starts from the weaker IND-snaID-CPA-security, as we do in this work. This is
because here we would have to guess not only the challenge identity id∗, but also
all q identities id1, . . . , idq of key-queries made by the IND-ID-CPA adversary up
front, which yields a security loss of

(
2k

q+1

) ≥ 2kq−log q ≈ 2kq. This cannot be easily
compensated with larger parameters, because even if the underlying scheme is
exponentially secure, then this would still require to increase the parameters by
a factor of about q, which is completely impractical.

Relation to a result by Döttling and Garg. There exists several (semi-)generic
constructions of strongly-secure signatures from signatures with weaker secu-
rity [EGM96,BSW06,SPW07,HW09b,BK10]. All these works have in common
that they can be applied only to signature scheme, but not to identity-based
schemes like ID-KEMs, because they are either probabilistic (e.g., based on
ephemeral one-time signatures or chameleon hash functions), or consider a set-
ting with a non-adaptive adversary, which is forced to output all chosen-message
queries before seeing the public key.

Döttling and Garg [DG17a] describe a generic construction of adaptively
secure IBE from selectively-secure IBE. Their approach is completely different
from ours, as it is based on the techniques introduced in [DG17b]. A ciphertext of
the adaptively secure scheme consists of n + 1 garbled circuits, � corresponding
labels, and � ciphertexts of a specific type of encryption scheme called one-
time signature with encryption (OTSE), plus a few additional values. Here, n is
the bit-length of identities and � denotes the length of encrypted messages. A
ciphertext of the OTSE scheme in turn consist of 2k ciphertexts of the underlying
selectively-secure scheme, where k is the security parameter. The size of public
and secret keys is similarly large.

In contrast, our generic construction is much more direct, and shows how
to construct an adaptively secure scheme that requires only log k copies of the
underlying scheme (with similarly short public and secret keys), but based on an
additional security assumption on the hash function. Our approach also enables
the construction of an adaptively secure scheme where a ciphertext consists only
of a single group element, which currently seems out of reach of the approach of
Döttling and Garg.

Another difference is that they start from the IND-sID-CPA security notion,
while we start from the even weaker IND-snaID-CPA notion. It is unclear whether
their results can be adopted to the same setting.

In summary, the construction of Döttling and Garg has the advantage of
not requiring an additional complexity assumption, but also seems rather far
away from practical applicability and is therefore currently mostly of theoretical
interest. In contrast, our construction requires an additional assumption, but is

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 231

more direct and incurs significantly less overhead, such that it already yields
very efficient schemes. Thus, both approaches achieve different goals.

3.1 Definitions and Security Notions

Definition 2. An ID-KEM consists of the following four PPT algorithms:

Setup(1k) returns the public parameters PP and the master secret key MSK.
We assume that PP defines (implicitly or explicitly) an identity space I, a
key space K and a ciphertext space C.

KeyGen(MSK, id) returns the user secret key USKid for identity id ∈ I.
Encap(PP, id) returns a tuple (C,K), where K ∈ K is a key and C ∈ C is a

ciphertext encapsulating K with respect to identity id.
Decap(USKid, C, id) returns the decapsulated key K ∈ K or an error symbol ⊥.

For perfect correctness we require that for all k ∈ N, all pairs (PP,MSK) gen-
erated by Setup(1k), all identities id ∈ I, all (K,C) output by Encap(PP, id) and
all USKid generated by KeyGen(MSK, id):

Pr[Decap(USKid, C, id) = K] = 1.

Adaptive security. Let us first recall the standard IND-CPA-security notion for
ID-KEMs from [BFMLS08]. To this end, consider the IND-ID-CPA security exper-
iment depicted in Fig. 1.

IND-snaID-CPAq,A
Π (k) IND-ID-CPAq,A

Π (k)

b
$← {0, 1}

(id∗, id1, ..., idq, st1) ← A1(1k)
(PP, MSK) $← Setup(1k)
USKidi

$← KeyGen(MSK, idi) ∀i ∈ [q]
K0

$← K; (C, K1)
$← Encap(PP, id∗)

b′ ← A2(st1, (USKidi)i∈[q], C, Kb)
Return (b′ == b)

b
$← {0, 1}

(PP, MSK) $← Setup(1k)
(id∗, st) ← AKeyGen(MSK,·)

1 (1k, PP)
K0

$← K; (C, K1)
$← Encap(PP, id∗)

b′ ← AKeyGen(MSK,·)
2 (st, C, Kb)

Return (b′ == b)

Fig. 1. The security experiments for ID-KEMs, executed with scheme
Π = (Setup,KeyGen,Encap,Decap) and adversary A = (A1, A2). The oracle

KeyGen(MSK, id) returns USKid
$← KeyGen(MSK, id) with the restriction that A is

not allowed to query oracle KeyGen(MSK, ·) for the target identity id∗.

Definition 3. We say that adversary A (tA, q, εA)-breaks the IND-ID-CPA secu-
rity of Π, if Pr[IND-ID-CPAq,A

Π (k) = 1] − 1
2 ≥ εA and tA is the running time of

A, including the security experiment.

232 T. Jager and R. Kurek

Remark 1. Including the running time of the security experiment into tA will
later allow us to simplify our security analysis and the statement of theorems
significantly.

Selective and non-adaptive security. We also define a very weak security notion
for ID-KEMs. Consider the IND-snaID-CPA security experiment depicted in
Fig. 1, where the attacker has to commit to both the challenge-ID id∗ the key-
query identities id1, . . . , idq non-adaptively and even before receiving the master
public key PP .

Definition 4. We say that A (tA, q, εA)-breaks the IND-snaID-CPA security of
Π, if it runs in time tA and

Pr[IND-snaID-CPAq,A
Π (k) = 1] − 1

2
≥ εA.

3.2 From Weak Security to Adaptive Security

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed hash
functions and define

� := log 4(k + 1).

Let Π ′ = (Setup′,KeyGen′,Encap′,Decap′) be an ID-KEM. We construct our
ID-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Compute (PPi,MPKi)
$← Setup′(1k) for all i ∈ {1, . . . , �} and H ← H

and define

PP = (H,PP1, . . . , PP�) and MSK = (MSK1, . . . , MSK�).

and output (PP,MSK).
User Key Generation. To create a private key for the identity id, compute

USKi
$← KeyGen′(MSKi,H2i(id)) for all i ∈ {1, . . . , �}. Define

USKid := (USK1, . . . , USK�)

and output USKid.
Encapsulation. On input PP = (H,PP1, . . . , PP�) and id, compute

(Ki, Ci)
$← Encap′(PPi,H2i(id)) for all i ∈ {1, . . . , �}. Then define K :=⊕�

i=1 Ki, where
⊕

denotes the XOR-operation and output (C,K) =
((C1, ..., C�),K).

Decapsulation. On input C = (C1, ...C�) and USKid, compute

Ki = Decap′(USKi, Ci)

for all i ∈ {1, . . . , �} and output K :=
⊕�

i=1 Ki.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 233

The correctness of Π follows immediately from the correctness of Π ′.
Security analysis. Recall that we have � := log 4(k+1), and that Lemma 1 shows
that for each adversary A with tA/εA < 2k, there exists an index j ∈ {1, . . . , �}
such that

j =
⌊
log log 4t2A/εA

⌋
+ 1. (4)

Theorem 1. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π such that tA/εA < 2k and let j be an index such that (4) is satisfied.
Given A and j, we can either construct an adversary Bj that (tB, qB, εB)-breaks
the IND-snaID-CPA-security of Π ′ with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j-breaks the truncation collision resistance of H.

Note that the theorem considers adversaries that for a given security parame-
ter k have “work factor” tA/εA below 2k. This deviates slightly from the common
asymptotic definition, where it is required that tA is polynomially-bounded and
εA is non-negligible. Assuming tA/εA < 2k is an alternative way of express-
ing that a cryptosystem is secure with respect to a given security parameter k
that originates from the “concrete security” approach of Bellare and Ristenpart
[BR09]. Note also that the security loss of reduction B is polynomially-bounded,
but relatively large.

Proof. We say that event collj occurs in the IND-ID-CPAq,A
Π (k) security experi-

ment, when A ever queries a user secret key for identity idz such that H2j (idz) =
H2j (id∗), where id∗ is the challenge identity. We distinguish between two cases.

Case 1: Pr [collj] > εA/2. In this case we are able to construct an adversary C
on the truncation collision resistance of H.

Construction of C. C runs the IND-ID-CPAq,A
Π (k) experiment. Whenever A issues

a query idi to KeyGen, then C additionally outputs idi. When A outputs the chal-
lenge identity id∗, then C outputs id∗. When A terminates, then C terminates,
too.

Running time of C. To bound the running time of C, note that it consists of the
time required to run A, plus the time required to simulate the experiment, plus
the time required to output the queries id1, . . . , idq, id

∗ made by A. Thus, since
tA already includes the running time of the experiment, the total running time
of C is bounded by tC ≤ 2 · tA.

Success probability of C. To analyze the success probability of C, let i := 2j . Note
that the success probability of C is equal to Pr [collj], and by definition of j and
Lemma 1 we have

Pr [collj] > εA/2 > 4t2A/2i+1 ≥ 2tA(2tA − 1)/2i+1 ≥ tC(tC − 1)/2i+1

so that indeed C breaks the truncation collision resistance of H.

234 T. Jager and R. Kurek

Case 2: Pr [collj] ≤ εA/2. In this case we construct an algorithm Bj on
the IND-snaID-CPA security of Π ′. Before we are able to describe Bj , we
will describe a short sequence of games, which gradually modifies the original
IND-ID-CPAq,A

Π (k) experiment. In the sequel let Gi denote the event that Game i
outputs 1.

Game 0 . This is the original IND-ID-CPAq,A
Π (k) security experiment. By defini-

tion, we have

Pr [G0] =
1
2

+ εA.

Game 1 . Game 1 is identical to Game 0, except that if collj occurs, then Game 1
outputs a random bit and aborts.

Using that G1∧¬collj ⇐⇒ G0∧¬collj and that Pr [collj] ≤ εA/2, we obtain

Pr [G1] ≥ Pr [G1 ∧ ¬collj] = Pr [G0 ∧ ¬collj] ≥ Pr [G0] − Pr [collj] ≥ 1
2

+
εA
2

.

Game 2 . In Game 2, we additionally guess a string ID∗ $← {0, 1}2j

uniformly
random. We raise event abortchal if adversary A requests a challenge ciphertext
for identity id∗ with H2j (id∗) �= ID∗.

We stress that this game merely defines event abortchal, as a preparation
for the analysis in the following game, but we do not make any changes to the
experiment. Thus, we have

Pr [G2] = Pr [G1] .

Note also that A receives no information about ID∗ and thus the events G2 and
abortchal are independent.

Game 3 . This game is identical to Game 2, except that we output a random bit
and abort the game, if abortchal occurs.

Using that G3 ∧ ¬abortchal ⇐⇒ G2 ∧ ¬abortchal we first get

Pr [G3] = Pr [G3 | abortchal] · (1 − Pr [¬abortchal]) + Pr [G3 ∧ ¬abortchal]
=

1
2

· (1 − Pr [¬abortchal]) + Pr [G2 ∧ ¬abortchal]

=
1
2

· (1 − Pr [¬abortchal]) + Pr [G2 | ¬abortchal] · Pr [¬abortchal]

=
1
2

+ Pr [¬abortchal] ·
(

Pr [G2 | ¬abortchal] − 1
2

)
.

Using now that Pr [G2 | ¬abortchal] = Pr [G2], since G2 and abortchal are inde-
pendent, the bound on Pr [G2] from Game 2, and finally using that our choice
of j and Lemma 1 yield that 22

j ≤ 16t4A/ε2A, we obtain

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 235

Pr [G3] =
1
2

+ Pr [¬abortchal] ·
(

Pr [G2 | ¬abortchal] − 1
2

)

=
1
2

+ Pr [¬abortchal] ·
(

Pr [G2] − 1
2

)

≥ 1
2

+
1

22j · εA
2

≥ 1
2

+
ε3A

32t4A
.

Construction of Bj . Now we are ready to construct Bj , which simulates Game 3
as follows.

Initialization. At the beginning of the experiment, Bj samples a random bit
string ID∗ ← {0, 1}2j

and defines 22
j −1 identities ID1, . . . , ID22

j −1, consisting
of all values in {0, 1}2j \ {ID∗}. It outputs these values to the IND-snaID-CPA
experiment, which then generates and responds with a key pair (PP ′,MSK ′) $←
Setup′(1k), user secret keys USK ′

IDs
, s ∈ {1, . . . , 22

j −1}, for the requested iden-
tities, and a challenge ciphertext (C ′,K ′), where (C ′,K) $← Encap′(PP ′, ID∗)
and either K ′ = K or K ′ is uniformly random.

Simulation of the public key. In order to simulate the public key, Bj generates
H ← H and � − 1 additional key pairs by running (PPi,MPKi)

$← Setup′ for
all i ∈ {1, . . . , �} \ {j}. Then it sets

PP = (H,PP1, ..., PPj−1, PP ′, PPj+1, ..., PPl).

Finally, Bj outputs PP to A. Note that this is a correctly distributed master
public key for scheme Π.

Simulation of key queries. Note that the two abort conditions introduced in
Games 1 and 3 together imply in particular that Bj aborts and outputs a random
bit, if A ever issues a key query for identity idz with H2j (idz) = ID∗. This is
because in this case either it holds that H2j (idz) = ID∗ �= H2j (id∗), in which
case abortchal occurs, or it holds that H2j (idz) = ID∗ = H2j (id∗), which means
that collj occurs. Thus, we only have to consider the case H2j (idz) �= ID∗ in
the sequel. Note also that Bj knows MSKi for all i �= j and user secret keys
for USK ′

IDs
for all IDs ∈ {0, 1}2j \ {ID∗}. Therefore it is able to compute and

return valid user secret keys to A for all identities idz with H2j (idz) �= ID∗.
Whenever A requests a user secret key for an identity idz ∈ {0, 1}∗, Bj

proceeds as follows. If there is no abort, then Bj computes

(USKi)
$← KeyGen′(MSKi,H2i(idz))

for all i ∈ {1, . . . , �} \ {j}. Recall that Bj has requested user secret keys for all
values H2j (idz) ∈ {0, 1}2j

with H2j (idz) �= ID∗, in particular for IDs ∈ {0, 1}2j

such that IDs = H2j (idz). Therefore it is able to efficiently determine and output

USKidz
= (USK1, ..., USKj−1, USK ′

IDs
, USKj+1, ..., USKl).

236 T. Jager and R. Kurek

Computing the challenge ciphertext. Recall that we only have to consider the
case H2j (id∗) = ID∗, as otherwise Bj outputs a random bit and aborts. Thus,
when adversary A outputs a challenge identity id∗ with H2j (id∗) = ID∗, then
Bj computes (Ci,Ki)

$← Encap′(PPi,H2i(id∗)) for all i ∈ {1, . . . , �} \ {j}, and
then

K :=
�⊕

i=1,i �=j

Ki ⊕ K ′ and C := (C1, . . . , Cj−1, C
′, Cj+1, . . . , C�),

where (C ′,K ′) is the tuple received from the IND-snaID-CPA-experiment. Bj

returns (C,K) to A and outputs whatever A outputs. Note that if K ′ is a “real”
key, then so is K, while if K ′ is “random”, then so is K.

Success probability of Bj . Since Bj provides a perfect simulation of Game 3 for
A, we have

Pr
[
IND-snaID-CPAq,B

Π′ (k) = 1
]

= Pr [G3] ≥ 1/2 +
ε3A

32t4A
.

Running time of Bj . The running time tB of Bj consists of the time needed
to execute A, the time required to simulate the IND-ID-CPA security experi-
ment, and the time required to request the 22

j − 1 user secret keys from the
IND-snaID-CPA experiment, plus a minor number of additional operations. Mak-
ing use of Lemma 1, we get

tB ≈ tA + O(
22

j − 1
) ≈ tA + O

(
t4A
ε2A

)
= O

(
t4A
ε2A

)
.

Remark 2. We remark also that tB ≈ tA if we instead consider the generic
construction of an IND-ID-CPA-secure ID-KEM from an IND-sID-CPA-secure one.
This is because in this case the reduction Bj does not have to issue all KeyGen
queries at the beginning of the experiment. Instead, it can make all queries “on
demand”, whenever A issues such a query. Their number is identical to the
number q of KeyGen made by A, so that we get a reduction which runs in strict
polynomial time.

Note also that Bj issues qB = 22
j − 1 < 4t4A/ε2A user key queries. This

completes the proof of Theorem 1.
�

3.3 Adaptively Secure ID-KEM with Short Ciphertexts

Now we show that it is possible to construct an ID-KEM with full adaptive
security, where a ciphertext consists of only a single element of a bilinear group.
A comparison to previous IBE-schemes, viewed as ID-KEMs, is given in Fig. 2.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 237

Scheme |G| |pk| |C| Security Assumption ROM Security Loss
[BF01] Prime 2 1 Full BDDH Yes O(qkey)
[BB04a] Prime 4 2 Selective strong q-DH No O(1)
[Wat05] Prime n + 3 2 Full BDDH No Õ(t2 + (n · qkey · ε−1)2)
[Wee16] Comp. 3 1 Full Dec. Subgrp. No O(qkey)
Ours Prime O(k) 1 Full q-DH No O(t7A/ε4A)

Fig. 2. Comparison of ID-based encryption schemes with short ciphertexts. The column
|G| refers to the order of the underlying group (prime or composite), |pk| is the number
of group elements in public keys (common descriptions of groups and hash functions not
included), where n is the length of identities and k the security parameter. All public
keys include one element from the target group of the pairing, except for [BF01]. |C| is
the number of group elements in the ciphertexts when viewed as a KEM. “Full” security
means IND-ID-CPA security as defined below, “selective” security is from [BB04a]. The
remaining columns state the hardness assumption in the security proof, whether the
Random Oracle Model is used, and the security loss of the reduction, where qkey is
the number of identity key queries, tA and εA the running time and advantage of the
adversary, and the loss is the value L that satisfies tB/εB = L · tA/εA, where tB and εB
are the success probability and running time of the reduction.

Building Block: Simplified Boneh-Boyen ID-KEM. The following ID-
KEM is based on the IBE scheme of Boneh and Boyen [BB04a]. Let G1,G2,GT

be groups of prime order p with generators g1, g2, gT , respectively, and let e :
G1 × G2 → GT be an efficiently computable pairing. We will use the implicit
notation of Escala et al. [EHK+13], and write [x]s shorthand for gx

s for all
s ∈ {1, 2, T}.

Simple ID-KEM based on the Boneh-Boyen IBE scheme. We use the following
scheme as a building block for our adaptively secure ID-KEM.

Setup. Choose two random elements x, y
$← Zp. Then define ν = e([1]1, [y]2).

The public parameters PP and the master secret key MSK are defined as
PP = ([1]1, [x]1, ν) and MSK = (x, y).

Key Generation. To create a private key for identity id ∈ Zp, compute and
return USKid = [y/(id + x)]2.

Encapsulation. To encapsulate a key K ∈ GT under public key id ∈ Zp, pick
a random r ∈ Zp and output (C,K) = ([id + x]r1, ν

r) ∈ G1 × GT .
Decapsulation. To decapsulate C using the private key USKid, compute and

output e(C,USKid).

Proving security of the simplified Boneh Boyen IBE. Consider the following
experiment q-BDDHI(1k), which was generalized to asymmetric bilinear groups
in [BB11]. With regard to the security parameter k, the challenger generates an
asymmetric pairing group and chooses x ∈ Zp uniformly at random. Then it
chooses T

$← GT and defines

238 T. Jager and R. Kurek

T0 := ([1]1, [x]1, [1]2, [x]2, . . . [xq]2, T),

T1 := ([1]1, [x]1, [1]2, [x]2, . . . [xq]2, e([1]1, [1]2)
1
x).

Finally, it flips a fair coin β
$← {0, 1} and outputs Tβ to the adversary. The task

of adversary B is to determine β.

Definition 5. We say that adversary B (t, ε)-solves the q-BDDHI problem, if it
runs in time t and

|Pr [B(T0)] − Pr [B(T1)]| ≥ ε.

It is straightforward to prove the IND-snaID-CPA-security of our simplified
Boneh-Boyen scheme using standard techniques from [BB04a,BB11], therefore
we state the following theorem without proof.

Theorem 2. From an adversary A that (tA, qs, εA)-breaks the IND-snaID-CPA-
security of the simplified Boneh-Boyen ID-KEM one can construct an algorithm
B that (tB, εB)-solves the q-BDDHI problem with q = qs + 1 such that

tB ≈ tA and εB = εA.

Adaptively Secure Construction. Encoding elements of {0, 1}4(k+1) as Zp-
elements. In order to simplify the notation and description of the construction
and its security analysis, we will henceforth make the implicit assumption that
elements of {0, 1}4(k+1) can be injectively encoded as elements of Zp. This is
of course easily possible by choosing p large enough, such that p > 4(k + 1).
However, this would yield an unnaturally large group order (a typical choice in
practice is 2k). In practice, one would map elements of {0, 1}4(k+1) to elements
in Zp by using a collision-resistant hash function h : {0, 1}4(k+1) → Zp, which for
our purposes is as good as an injective map. However, to simplify the description
of our scheme and its security proof we do not make h explicit in the sequel.

The construction. In the sequel, let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family
of keyed hash functions and define � := log 4(k + 1). We construct ID-KEM
scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Sample random generators [1]1 ∈ G1, [1]2 ∈ G2, elements y, x1, . . . , x� ∈
Zp and a hash function H ← H and define the master secret key MSK as

MSK = (y, x1, . . . , x�) ∈ Z
�+1
p .

Define bi(n) for positive integers i as the function that, on input of integer
n ≥ 0, outputs the i-th bit of the binary representation of n. Let F (MSK,n)
be the function that on input of MSK = (x1, . . . , x�) and an integer n ≥ 0
outputs

F (MSK,n) =
�∏

i=1

x
bi(n)
i .

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 239

The public parameters are defined as

PP = (H, [F (MSK, 0)]1, . . . , [F (MSK, 2� − 1]1, [1]2, ν),

where ν = e([1]1, [y]2).
Key Generation. The private key for identity id is computed as

USKid = [y/u(id)]2,

where

u(id) =
�∏

i=1

(H2i(id) + xi) ∈ Zp. (5)

Encapsulation. Observe that

u(id) =
�∏

i=1

(H2i(id) + xi) = d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id).
To encapsulate a key, first [u(id)]1 is computed. Note that this is possible
from H(id) and the values F (MSK,n) contained in the public parameters
(in particular, without knowing x1, . . . , x� explicitly), by computing

[u(id)]1 =

⎡

⎣d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
⎤

⎦

1

= [d0]1 ·
2�−1∏

n=1

[F (MSK,n)]dn
1 .

Finally, the ciphertext and key are computed as

(C,K) = ([u(id)]r1, ν
r) ∈ G

2
T

for uniformly random r
$← Zp.

Decapsulation. To recover K from a ciphertext C for identity id and a match-
ing user secret key [y/(u(id))]2, compute and output e(C,USKid).

Correctness. The correctness follows from

e(C,USKid) = e([u(id)]r1, [y/u(id)]2) = e([1]1, [y]2)r = νr.

Note that the scheme described above has extremely short ciphertexts, con-
sisting of only one element of G1, and also very efficient decapsulation, which
takes only a single pairing evaluation.

Theorem 3. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π such that tA/εA < 2k and let j be an index such that (4) is satisfied.
Given A and j, we can either construct an adversary Bj that (tB, qB, εB)-breaks
the IND-snaID-CPA-security of Π ′ with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j-breaks the truncation collision resistance of H.

240 T. Jager and R. Kurek

Proof. The proof of Theorem 3 is almost identical to the proof of Theorem 1.
The main difference is that we additionally use the algebraic structure of the
underlying Boneh-Boyen ID-KEM to achieve short ciphertexts.

Setup and initial input. Just like in the proof of Theorem 1, B picks a random
value ID∗ $← {0, 1}2j

and requests a challenge ciphertext for identity ID∗ and
user secret keys for all 22

j − 1 identities in the set {0, 1}2j \ {}. In response, B
receives public parameters PP ′ = ([1]1, [xj]1, ν) from the IND-snaID-CPA experi-
ment, as well as user secret keys [y/(ID + xj)]2 for all ID �= ID∗ and a challenge
ciphertext (C ′,K ′).

Additionally, B chooses �−1 integers xi for all i ∈ {1, . . . , �}\{j} and a hash
function H ← H.

Simulation of the public parameters. Note that B is not able to compute the
function F ((x1, . . . , x�), n) =

∏�
i=1 x

bi(n)
i for all values of n efficiently, since it

does not know xj . However, B is able to efficiently compute

[F ((x1, . . . , x�), n)]1 =

[
�∏

i=1

x
bi(n)
i

]

1

for all values of n from [xj]1 and the xi, i ∈ {1, . . . , �} \ {j}. This is sufficient to
properly simulate a public key of scheme Π.

Simulation of user secret keys. Using the user secret keys received from the
IND-snaID-CPA challenger, B is able to answer all secret key queries for all iden-
tities id with H2j (id) �= ID∗. To this end, it computes

USKid =

[
y/

�∏

i=1

(H2i(id) + xi)

]

2

= [y/(H2j (id) + xj)]
1/uj(id)
2 ,

where

uj(id) =
�∏

i=1,i �=j

(H2i(id) + xi)).

Creating the challenge ciphertext. B creates the challenge ciphertext as follows.
If A has selected a target identity id∗ with H2j (id∗) = ID∗, then B computes
C := (C ′)uj(id

∗) and outputs (C,K). Note that

C = [(H2j (id∗) + xj)]r
∏�

i=1,i�=j(H2i (id
∗)+xi) =

[
�∏

i=1

(H2i(id∗) + xi)

]r

1

such that C is a correctly distributed challenge ciphertext, and K is either “real”
or “random”, depending on the choice of the IND-snaID-CPA security experiment.

Analysis. The analysis of the success probability of B is identical to the analysis
from the proof of Theorem 1, and yields identical bounds. �

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 241

4 Digital Signatures

Recall that the commonly accepted security notion for digital signatures is exis-
tential unforgeability under adaptive chosen-message attacks, as introduced by
Goldwasser, Micali, and Rivest [GMR88] (EUF-CMA, see Sect. 4.1 for formal
definitions). There are several different ways to turn signatures schemes with
weaker security properties into ones with full EUF-CMA-security, even with-
out random oracles. These are either based on one-time signatures [EGM96]
or chameleon hash functions [KR00,BSW06,SPW07], and work generically for
any signature scheme. However, all these generic constructions start from an
existentially-unforgeable scheme, where the adversary has to select the “chosen-
message queries”, for which it requests a signature, even before seeing the public
key, but is able to choose the “target-message” for which it forges a signatures
adaptively (EUF-naCMA-security).

We consider the even weaker notion of selective unforgeability under non-
adaptive chosen-message attacks (SUF-naCMA) [HW09b,BK10], where the
adversary has to select both the “target-message” for which it forges a signatures
and the chosen-message queries for which it requests a signature already before
seeing the public key. We describe a generic construction of EUF-CMA-secure
digital signatures from signatures that are only SUF-naCMA-secure. This con-
struction is also relatively efficient: it increases the size of public keys, secret keys,
and signatures by a factor of only O(log k), where k is the security parameter.
Again, the security reduction is non-tight, but polynomial-time.

4.1 Definitions and Security Notions

Definition 6. A digital signature scheme consists of three PPT algorithms with
the following syntax.

Gen(1k) outputs a key pair (pk, sk). We assume that pk implicitly or explicitly
defines a message space M.

Sign(sk,m) on input of sk and message m ∈ M outputs a signature σ.
Vfy(pk,m, σ) outputs 1 if σ is a valid signature for m with respect to pk and

else 0.

Adaptive security. We recall the standard security notion existential unforgeabil-
ity under adaptive chosen message attack (EUF-CMA) depicted in Fig. 3. Note
that the adversary may choose the challenge-message m∗ after it has received
the public key pk and may adaptively query signatures for messages mi �= m∗.

Definition 7. We say that adversary A (tA, q, εA)-breaks the EUF-CMA security
of Σ = (Gen,Sign,Vfy), if Pr[EUF-CMAq,A

Σ (k) = 1] ≥ εA and tA is the running
time of A including the EUF-CMA security experiment.

Selective and non-adaptive security. We also define a very weak security notion
for digital signature schemes. Consider the SUF-naCMA security experiment
depicted in Fig. 3, where the attacker has to commit to both the challenge-
message m∗ the signing-query messages m1, . . . , mq non-adaptively and even
before receiving the public key pk.

242 T. Jager and R. Kurek

SUF-naCMAq,A
Σ (k) EUF-CMAq,A

Σ (k)

(m∗, m1, ..., mq, st1) ← A1(1k)
(pk, sk) $← Gen(1k)
σi

$← Sign(sk, mi) ∀i ∈ [q]
(m∗, σ∗) ← A2(st1, (σi)i∈[q])
If (∃i ∈ [q] : m∗ == mi) return 0
else return Vfy(pk, m∗, σ∗)

(pk, sk) $← Gen(1k)
(m∗, σ∗) ← ASign(sk,·)(1k, pk)
If (∃i ∈ [q] : m∗ == mi) return 0
else return Vfy(pk, m∗, σ∗)

Fig. 3. The security experiments for digital signature schemes, executed with scheme
Σ = (Gen, Sign,Vfy) and adversary A = (A1, A2). The oracle Sign(sk, m) returns

σ
$← Sign(sk, m) with the restriction that A is not allowed to query oracle Sign(sk, m∗)

for m∗.

Definition 8. We say that A (tA, q, εA)-breaks the SUF-naCMA security of Σ,
if it runs in time tA and Pr[SUF-naCMAq,A

Σ (k) = 1] ≥ εA.

4.2 From Weak Security to Adaptive Security

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed hash
functions and Σ′ = (Gen′,Sign′,Vfy′) a digital signature scheme. In the sequel, let
� := log 4(k +1). We construct our digital signature scheme Σ = (Gen,Sign,Vfy)
as follows.

– Key Generation. Algorithm Gen computes (pki, ski)
$← Gen′(1k) for all

i ∈ {1, . . . , �} and H ← H, defines

pk := (H, pk1, . . . , pk�) and sk = (sk1, . . . , sk�)

and outputs (pk, sk).
– Signing. To sign a message m, compute σi

$← Sign′(ski,H2i(m)) for all
i ∈ {1, . . . , �}, and return the signature σ = (σ1, . . . , σ�).

– Verification. To verify a signature σ = (σ1, . . . , σ�), return 1 if and only if
Vfy′(pki,H2i(m)) = 1 for all i ∈ [�].

Theorem 4. Let A be an adversary that (tA, qA, εA)-breaks the EUF-CMA-
security of Σ = (Gen,Sign,Vfy) such that tA/εA < 2k and let j be an index
such that (4) is satisfied. Given A and j, we can either construct an adversary
Bj that (tB, qB, εB)-breaks the SUF-naCMA-security of Σ′ = (Gen′,Sign′,Vfy′)
with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j- breaks the truncation collision resistance of H.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 243

The proof of Theorem 4 is nearly identical to the proof of Theorem 1, except
that some arguments and computing some bounds works slightly differently,
because in the ID-KEM setting from Theorem 1 we are considering an “indis-
tinguishability” security experiment, while in the digital signature setting of
Theorem 4 we consider a “search problem”. The full proof is contained in the
full version [JK17].

4.3 Very Short Signatures with Adaptive Security

The generic construction of adaptively secure digital signature schemes described
in Sect. 4.2 increases the size of keys and signatures by a factor of O(log k). Again
it is possible to obtain a more efficient scheme based on specific, number-theoretic
constructions. In this section we describe a variant of the Boneh-Boyen signature
scheme [BB04c] that applies a truncation collision resistant hash function to
achieve adaptive security without random oracles, and where a signature consists
of only a single group element. A comparison to previous short signature schemes
is given in Fig. 4.

Scheme |G| |pk| |σ| Security Assumption ROM Security Loss
[BLS04] Prime 2 1 Full CDH Yes O(qSig)
[BB04c] Prime 5 2 Selective strong q-DH No O(1)
[Wat05] Prime n + 3 2 Full CDH No O(n · qSig)
[HJK11] Prime n + k + 3 2 Full q-DH No O(n2 · qSig)
[BHJ+13] Prime O(log k) 3 Full CDH No O((ε−1 · qm+1

Sig)c/m)
[Wee16] Comp. 3 1 Full Dec. Subgrp. No O(qSig)
Ours Prime O(k) 1 Full q-DH No O(t7A/ε4A)

Fig. 4. Comparison of short signature schemes, instantiated with asymmetric pairings.
The column |G| refers to the order of the underlying groups (prime or composite), |pk|
is the number of group elements in public keys, where common descriptions of groups
and hash functions are not included, n is the length of messages, and k the security
parameter. All public keys include one element from the target group of the pairing,
except for [BLS04,HJK11,BHJ+13]. The column |σ| refers to the number of group
elements in the signature. “Full” security means EUF-CMA security as defined below,
“selective” security is from [BB04c]. The remaining columns state the assumption the
proof is based on, whether the Random Oracle Model is used, and the security loss of
the reduction, where qSig is the number of signing queries, tA and εA the running time
and advantage of the adversary, and the loss is computed as explained in Fig. 2. The
values m and c are system parameters influencing keys and signature sizes. Note that
[HJK11] present also other trade-offs with larger public keys consisting and shorter
signatures, but always strictly larger than one group element.

Building Block: Simplified Boneh-Boyen Signatures. Again we let G1,
G2, GT be groups of prime order p with generators g1, g2, gT , respectively,
and e : G1 × G2 → GT be an efficiently computable pairing. Recall that

244 T. Jager and R. Kurek

write [x]s shorthand for gx
s for all s ∈ {1, 2, T}, following [EHK+13]. The

Boneh-Boyen signature scheme [BB04c] consists of the following algorithms
Σ′ = (Gen′,Sign′,Vfy′).

Key generation. Algorithm Gen′(k) chooses a random integer x
$← Zp and

defines ν = e([1]1, [1]2). The public keys and the secret key are defined as
pk := ([1]1, [x]1, [1]2, ν) and sk := x.

Signing. Algorithm Sign′ receives as input sk = x and message m ∈ Zp, and
computes and returns σ := [1/(x + m)]2 ∈ G2.

Verification. Algorithm Vfy′ takes as input a public key pk = ([1]1, [x]1, ν) ∈
G

2
1 × G2, message m ∈ Zp, and σ ∈ G2. It returns 1 iff e ([x]1 · [1]m1 , σ) = ν.

Security. The original paper by Boneh and Boyen [BB04c] proves security of
this scheme in the sense of existential unforgeability under non-adaptive chosen-
message attacks (EUF-naCMA), under the strong (or “flexible”) q-Diffie-Hellman
assumption. We will require only a weaker notion of security, in the sense of selec-
tive unforgeability against non-adaptive chosen message attacks (SUF-naCMA),
which is achievable under a weaker, “non-flexible” q-type assumption.

Definition 9. We say that adversary A (εA, tA)-breaks the q-Diffie-Hellman
assumption in group G of order p, if it runs in time tA and

Pr
[
x

$← Zp;h
$← A([1], [x], [x2], . . . , [xq]) : h = [1/x]

]
≥ εA.

The above assumption is also known as the q-Diffie-Hellman Inversion assump-
tion [ZSS04]. By using the “generator-shifting” technique of [HJK11], one can
prove the following theorem along the lines of the original proof of Boneh and
Boyen [BB04c].

Theorem 5. From an adversary A that (tA, qs, εA)-breaks the SUF-naCMA-
security of Σ′ chosen-message queries, one can construct an adversary B that
(tB, εB)-breaks the q-Diffie-Hellman assumption with q = qs + 1, tB ≈ tA and
εB = εA.

Encoding elements of {0, 1}4(k+1) as Zp-elements. In order to simplify the nota-
tion and description of the construction and its security analysis, we will hence-
forth make the implicit assumption that elements of {0, 1}4(k+1) can be injec-
tively encoded as elements in Zp (see also the corresponding, more detailed
comment in Sect. 3.3).

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed
hash functions and � := log 4(k + 1). We construct signature scheme Σ =
(Gen,Sign,Vfy) as follows.

Key generation. Algorithm Gen(k) chooses � random integers x1, . . . , x�
$← Zp

and H ← H. It defines the secret key as sk := (x1, . . . , x�) ∈ Z
�
p. Note that

sk contains only � = log 4(k + 1) elements of Zp.

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 245

The public key is computed as follows. For a positive integer i ≥ 1, let bi(n)
be the function that, on input of integer n ≥ 0, outputs the i-th bit of the
(canonical) binary representation of n. Let F (sk, n) be the function that, on
input of sk = (x1, . . . , x�) and integer n ≥ 0, outputs

F (sk, n) :=
�∏

i=1

x
bi(n)
i .

The public key is defined as pk := (H, [F (sk, 0)]1, . . . , [F (sk, 2� −1)]1, [1]2, ν),
where ν = e([1]1, [1]2).

Signing. Algorithm Sign receives as input sk = (x1, . . . , x�) and message m ∈
{0, 1}∗. Let u(m) be the function

u(m) :=
�∏

i=1

(xi + H2i(m)) ∈ Zp, (6)

where bit strings H2i(m) are interpreted canonically as integers in Zp. Recall
here that by our assumption on p this is injective for all i ∈ {1, . . . , �}.

The signing algorithm computes and returns σ := [1/u(m)]2 ∈ G1.

Note that computing signatures is extremely efficient. It involves only the
computation of 1/u(m) ∈ Zp, which can be performed over the integers mod-
ulo p, where p is the group order, and then a single exponentiation in G1 to
compute g

1/u(m)
1 ∈ G1.

Verification. Algorithm Vfy takes as input a public key

pk = ([F (sk, 0)]1, . . . , [F (sk, 2� − 1)]1, [1]2, ν),

message m ∈ {0, 1}∗ and σ ∈ G2. Note here that [F (sk, 0)]1 = [1]1. The
algorithm returns 1 if and only if

e ([u(m)]1, σ) = ν. (7)

Here [u(m)]1 is computed as follows. Viewing u(m) =
∏�

i=1(xi + H2i(m)) as
a polynomial in � unknowns x1, . . . , x�, we can expand the product from (6)
to obtain the equation

u(m) =
�∏

i=1

(xi + H2i(m)) = d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
(8)

for integers di, which are efficiently computable from H(m). This yields the
equation

[u(m)]1 =

⎡

⎣d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)⎤

⎦

2

= [d0]2 ·
2�−1∏

n=0

[F (sk, n)]dn
2 . (9)

Therefore the verification algorithms proceeds as follows:

246 T. Jager and R. Kurek

1. From H(m) it computes the integers di as in (8).
2. Then it computes [u(m)]1 as in (9) from the group elements [F (sk, n)]1

contained in the public key.
3. Finally, it outputs 1 if and only if Eq. (7) holds.

Theorem 6. Let A be an adversary that (tA, qA, εA)-breaks the EUF-CMA-
security of Σ such that tA/εA < 2k and let j be an integer that such that
(4) is satisfied. Given A and j we can either construct an adversary Bj

that (tB, qB, εB)-breaks the SUF-naCMA security of the Boneh-Boyen signature
scheme Σ′ = (Gen′,Sign′,Vfy′) with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or and adversary C that 2j-breaks the truncation collision resistance of H.

The proof of Theorem 6 is almost identical to the proofs of Theorems 3 and 4.
It is contained in the full version [JK17].

5 Conclusion

Truncation collision resistance enables very efficient generic constructions of
adaptively-secure cryptographic primitives from building blocks with very weak
selective and non-adaptive security. We showed this for identity-based encryp-
tion and digital signatures, but expect further useful applications to other cryp-
tographic primitives.

Two particularly interesting applications are the first standard-model con-
structions of an ID-KEM where a ciphertext consist of only a single group ele-
ment of a prime-order group, and a digital signature scheme where signatures
consist of only a single prime-order group element. Both achieve full adaptive
security. Previously, it was not clear that this is possible without random oracles
and based on simple, non-interactive hardness assumptions.

Acknowledgements. We would like to thank all anonymous reviewers for their help-
ful comments.

References

[BB04a] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 14

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without ran-
dom oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 27

https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 247

[BB04c] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 4

[BB11] Boneh, D., Boyen, X.: Efficient selective identity-based encryption without
random oracles. J. Cryptol. 24(4), 659–693 (2011). October

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BFMLS08] Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic construc-
tions of identity-based and certificateless KEMs. J. Cryptol. 21(2), 178–
199 (2008)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 26

[BH15] Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom
functions. J. Cryptol. 28(2), 297–311 (2015)

[BHJ+13] Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Prac-
tical signatures from standard assumptions. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 28

[BHK13] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles
via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 23

[BK10] Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring sig-
natures and identity based encryption in the standard model. Cryptology
ePrint Archive, Report 2010/086 (2010). http://eprint.iacr.org/2010/086

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
J. Cryptol. 17(4), 297–319 (2004)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V., (eds.), ACM CCS 1993, pp. 62–
73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press, New York
(1993)

[BR09] Bellare, M., Ristenpart, T.: Simulation without the artificial abort: sim-
plified proof and improved concrete security for Waters’ IBE scheme. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 24

[BSW06] Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based
on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer,
Heidelberg (2006). https://doi.org/10.1007/11745853 15

[Can97] Canetti, R.: Towards realizing random oracles: hash functions that hide
all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 455–469. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052255

https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-40084-1_23
http://eprint.iacr.org/2010/086
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/BFb0052255

248 T. Jager and R. Kurek

[CFN15] Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go
private: constructions and applications to (homomorphic) signatures with
shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 13

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th ACM STOC, May 23–26, 1998,
pp. 209–218. ACM Press, Dallas (1998)

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryp-
tion scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 16

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 13

[DG17a] Döttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

[DG17b] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

[DS15] Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly
adaptation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 329–350. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 16

[EGM96] Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J.
Cryptol. 9(1), 35–67 (1996)

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic
framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 8

[FF13] Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction tech-
nique: the case of schnorr signatures. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–460. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38348-9 27

[FHPS13] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable
hash functions in the multilinear setting. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 513–530. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40041-4 28

[FLR+10] Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M.,
Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 18

[FM16] Farshim, P., Mittelbach, A.: Modeling random oracles under unpre-
dictable queries. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp.
453–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
52993-5 23

https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-662-52993-5_23
https://doi.org/10.1007/978-3-662-52993-5_23

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 249

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–
308 (1988)

[HJK11] Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assump-
tions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 647–666. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 35

[HK08] Hofheinz, D., Kiltz, E.: Programmable hash functions and their appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
21–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 2

[HMS12] Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the impossibility of con-
structing efficient key encapsulation and programmable hash functions in
prime order groups. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 812–831. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32009-5 47

[HW09a] Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under
standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 333–350. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01001-9 19

[HW09b] Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA
assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
654–670. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03356-8 38

[JK17] Jager, T., Kurek, R.: Short digital signatures and ID-based KEMs
via truncation collision resistance. Cryptology ePrint Archive, Report
2017/061 (2017). Full version of an ASIACRYPT 2018 paper. https://
eprint.iacr.org/2017/061

[KR00] Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000, San
Diego, CA, USA, February 2–4, 2000. The Internet Society (2000)

[LOS+06] Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential
aggregate signatures and multisignatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 28

[Nat15a] National Institute of Standards and Technology. FIPS PUB 180–4: Secure
Hash Standard. August 2015. https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf

[Nat15b] National Institute of Standards and Technology. FIPS PUB 202: SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions.
August 2015. https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf

[Nie02] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 8

[RS04] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: defi-
nitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-25937-4 24

https://doi.org/10.1007/978-3-642-25385-0_35
https://doi.org/10.1007/978-3-642-25385-0_35
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-642-32009-5_47
https://doi.org/10.1007/978-3-642-32009-5_47
https://doi.org/10.1007/978-3-642-01001-9_19
https://doi.org/10.1007/978-3-642-01001-9_19
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-642-03356-8_38
https://eprint.iacr.org/2017/061
https://eprint.iacr.org/2017/061
https://doi.org/10.1007/11761679_28
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-540-25937-4_24

250 T. Jager and R. Kurek

[SPW07] Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly
unforgeable signature into a strongly unforgeable signature. In: Abe, M.
(ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg
(2006). https://doi.org/10.1007/11967668 23

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 7

[Wee16] Wee, H.: Déjà Q: Encore! Un Petit IBE. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 9

[Zha16] Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 18

[ZSS04] Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from
bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.)
PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24632-9 20

https://doi.org/10.1007/11967668_23
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-662-49099-0_9
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-540-24632-9_20

Asiacrypt 2018 Award Paper I

Tighter Security Proofs for GPV-IBE
in the Quantum Random Oracle Model

Shuichi Katsumata1,2(B), Shota Yamada2(B), and Takashi Yamakawa3(B)

1 The University of Tokyo, Tokyo, Japan
shuichi katsumata@it.k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science, Tokyo, Japan
yamada-shota@aist.go.jp

3 NTT Secure Platform Laboratories, Tokyo, Japan
yamakawa.takashi@lab.ntt.co.jp

Abstract. In (STOC, 2008), Gentry, Peikert, and Vaikuntanathan pro-
posed the first identity-based encryption (GPV-IBE) scheme based on
a post-quantum assumption, namely, the learning with errors (LWE)
assumption. Since their proof was only made in the random oracle
model (ROM) instead of the quantum random oracle model (QROM), it
remained unclear whether the scheme was truly post-quantum or not. In
(CRYPTO, 2012), Zhandry developed new techniques to be used in the
QROM and proved security of GPV-IBE in the QROM, hence answering
in the affirmative that GPV-IBE is indeed post-quantum. However, since
the general technique developed by Zhandry incurred a large reduction
loss, there was a wide gap between the concrete efficiency and secu-
rity level provided by GPV-IBE in the ROM and QROM. Furthermore,
regardless of being in the ROM or QROM, GPV-IBE is not known to
have a tight reduction in the multi-challenge setting. Considering that
in the real-world an adversary can obtain many ciphertexts, it is desir-
able to have a security proof that does not degrade with the number of
challenge ciphertext.

In this paper, we provide a much tighter proof for the GPV-IBE in
the QROM in the single-challenge setting. In addition, we also show
that a slight variant of the GPV-IBE has an almost tight reduction in
the multi-challenge setting both in the ROM and QROM, where the
reduction loss is independent of the number of challenge ciphertext. Our
proof departs from the traditional partitioning technique and resembles
the approach used in the public key encryption scheme of Cramer and
Shoup (CRYPTO, 1998). Our proof strategy allows the reduction algo-
rithm to program the random oracle the same way for all identities and
naturally fits the QROM setting where an adversary may query a super-
position of all identities in one random oracle query. Notably, our proofs
are much simpler than the one by Zhandry and conceptually much eas-
ier to follow for cryptographers not familiar with quantum computation.
Although at a high level, the techniques used for the single and multi-
challenge setting are similar, the technical details are quite different. For
the multi-challenge setting, we rely on the Katz-Wang technique (CCS,
2003) to overcome some obstacles regarding the leftover hash lemma.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 253–282, 2018.
https://doi.org/10.1007/978-3-030-03329-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_9&domain=pdf

254 S. Katsumata et al.

Keywords: Identity-Based Encryption
Quantum random oracle models · LWE assumption
Tight security reduction · Multi-challenge security

1 Introduction

1.1 Background

Shor [Sho94] in his breakthrough result showed that if a quantum computer
is realized, then almost all cryptosystems used in the real world will be bro-
ken. Since then, a significant amount of studies have been done in the area
of post-quantum cryptography, whose motivation is constructing cryptosystems
secure against quantum adversaries. Recently in 2016, the National Institute of
Standards and Technology (NIST) initiated the Post-Quantum Cryptography
Standardization, and since then post-quantum cryptography has been gathering
increasingly more attention.

Random Oracles in Quantum World. In general, security proofs of practi-
cal cryptographic schemes are given in the random oracle model (ROM) [BR93],
which is an idealized model where a hash function is modeled as a publicly acces-
sible oracle that computes a random function. Boneh et al. [BDF+11] pointed
out that the ROM as in the classical setting is not reasonable when considering
security against quantum adversaries, since quantum adversaries may compute
hash functions over quantum superpositions of many inputs. Considering this
fact, as a reasonable model against quantum adversaries, they proposed a new
model called the quantum random oracle model (QROM), where a hash function
is modeled as a quantumly accessible random oracle. As discussed in [BDF+11],
many commonly-used proof techniques in the ROM do not work in the QROM.
Therefore even if we have a security proof in the ROM, we often require new
techniques to obtain similar results in the QROM.

Identity-Based Encryption in QROM. Identity-Based Encryption (IBE)
is a generalization of a public key encryption scheme where the public key of
a user can be any arbitrary string such as an e-mail address. The first IBE
scheme based on a post-quantum assumption is the one proposed by Gentry
et al. (GPV-IBE) [GPV08], which is based on the learning with errors (LWE)
assumption [Reg05]. To this date, GPV-IBE is still arguably the most efficient
IBE scheme that is based on a hardness assumption that resists quantum attacks.
However, since their original security proof was made in the ROM instead of the
QROM, it was unclear if we could say the scheme is truly post-quantum. Zhandry
[Zha12b] answered this in the affirmative by proving that the GPV-IBE is indeed
secure in the QROM under the LWE assumption, hence truly post-quantum, by
developing new techniques in the QROM.

Tight Security of GPV-IBE. However, if we consider the tightness of the
reduction, the security proof of the GPV-IBE by Zhandry [Zha12b] does not
provide a satisfactory security. Specifically, GPV-IBE may be efficient in the

Tighter Security Proofs for GPV-IBE 255

ROM, but it is no longer efficient in the QROM. In general, a cryptographic
scheme is said to be tightly secure under some assumption if breaking the security
of the scheme is as hard as solving the assumption. More precisely, suppose that
we proved that if there exists an adversary breaking the security of the scheme
with advantage ε and running time T , we can break the underlying assumption
with advantage ε′ and running time T ′. We say that the scheme is tightly-secure
if we have ε′/T ′ ≈ ε/T . By using this notation, Zhandry gave a reduction from
the security of GPV-IBE to the LWE assumption with ε′ ≈ ε2/(QH + QID)4 and
T ′ ≈ T + (QH + QID)2 · poly(λ) where QH denotes the number of hash queries,
QID denotes the number of secret key queries, λ denotes the security parameter,
and poly denotes some fixed polynomial. Though the reduction is theoretically
interesting, the meaning of the resulting security bound in a realistic setting
is unclear. For example, if we want to obtain 128-bit security for the resulting
IBE, and say we had ε = 2−128, QH = 2100, QID = 220, then even if we ignore
the blowup for the running time, we would have to start from at least a 656-bit
secure LWE assumption, which incurs a significant blowup of the parameters.
Indeed, Zhandry left it as an open problem to give a tighter reduction for the
GPV-IBE.

Multi-challenge Tightness. The standard security notion of IBE considers
the setting where an adversary obtains only one challenge ciphertext. This is
because security against adversaries obtaining many challenge ciphertexts can
be reduced to the security in the above simplified setting. However, as pointed out
by Hofheinz and Jager [HJ12], tightness is not preserved in the above reduction
since the security degrades by the number of ciphertexts. Therefore tightly secure
IBE in the single-challenge setting does not imply tightly secure IBE in the multi-
challenge setting. On the other hand, in the real world, it is natural to assume
that an adversary obtains many ciphertexts, and thus tight security in the multi-
challenge setting is desirable. However, there is no known security proof for the
GPV-IBE or its variant that does not degrade with the number of challenge
ciphertexts even in the classical setting.

1.2 Our Contribution

We provide much tighter security proofs for the GPV-IBE in the QROM in the
single-challenge setting. Furthermore, we provide a multi-challenge tight variant
of GPV-IBE that is secure both in the ROM and QROM. In the following, we
describe the tightness of our security proofs by using the same notation as in
the previous section.

– In the single-challenge setting, we give a reduction from the security of GPV-
IBE to the LWE assumption with ε′ ≈ ε and T ′ = T +(QH+QID)2 ·poly(λ). If
we additionally assume quantumly secure pseudorandom functions (PRFs),
then we further obtain a tighter reduction, which gives ε′ ≈ ε and T ′ =
T + (QH + QID) · poly(λ). This is the first security proof for GPV-IBE whose
security bound does not degrade with QH or QID even in the classical setting.

256 S. Katsumata et al.

We note that the same security bound can be achieved without assuming
PRFs in the classical ROM.

– We give a slight variant of GPV-IBE scheme whose multi-challenge security
is reduced to the LWE assumption with ε′ = ε/poly(λ) and T ′ ≈ T + (QH +
QID + Qch)2 · poly(λ) where Qch denotes the number of challenge queries. If
we additionally assume quantumly secure PRFs, then we further obtain a
tighter reduction. Namely, ε′ is the same as the above, and T ′ = T + (QH +
QID + Qch) · poly(λ). This is the first variant of the GPV-IBE scheme whose
security bound does not degrade with Qch even in the classical setting. We
note that the same security bound can be achieved without assuming PRFs
in the classical ROM.

Moreover, our security proofs are much simpler than the one by Zhandry
[Zha12b]. In his work, he introduced new techniques regarding indistinguisha-
bility of oracles against quantum adversaries. Though his techniques are general
and also useful in other settings (e.g., [Zha12a]), it involves some arguments on
quantum computation, and they are hard to follow for cryptographers who are
not familiar with quantum computation. On the other hand, our proofs involve
a minimal amount of discussions about quantum computation, and our proofs
are done almost similar to the counterparts in the classical ROM.

1.3 Technical Overview

GPV-IBE. First, we briefly describe the GPV-IBE [GPV08], which is the main
target of this paper. A master public key is a matrix A ∈ Z

n × m
q and a master

secret key is its trapdoor TA ∈ Z
m × m, which enables one to compute a short

vector e ∈ Z
m
q such that Ae = u given an arbitrary vector u ∈ Z

n
q . A private key

skID for an identity ID ∈ ID is a short vector e ∈ Z
m
q such that Ae = uID where

uID = H(ID) for a hash function H : ID → Z
n
q , which is modeled as a random

oracle. A ciphertext for a message M ∈ {0, 1} consists of c0 = u�
IDs+x+M�q/2�

and c1 = A�s + x. Here s is a uniformly random vector over Z
n
q and x,x are

small “noise” terms where each entries are sampled from some specific Gaussian
distribution χ. Decryption can be done by computing w = c0 − c�

1 eID ∈ Zq and
deciding if w is closer to 0 or to �q/2� modulo q.

Security Proof in Classical ROM. The above IBE relies its security on the
LWE assumption, which informally states the following: given a uniformly ran-
dom matrix [A|u] ← Z

n × (m+1)
q and some vector b ∈ Z

m+1
q , there is no PPT

algorithm that can decide with non-negligible probability whether b is of the
form [A|u]�s + x′ for some s ← Z

n
q and x′ ← χm+1, or a uniformly random

vector over Z
m+1
q , i.e., b ← Z

m+1
q . Below, we briefly recall the original security

proof in the classical ROM given by Gentry et al. [GPV08] and see how the
random oracle is used by the reduction algorithm. The proof relies on a key
lemma which states that we can set H(ID) and e in the “reverse order” from
the real scheme. That is, we can first sample e from some distribution and pro-
gram H(ID) := Ae so that their distributions are close to uniformly random as

Tighter Security Proofs for GPV-IBE 257

in the real scheme. In the security proof, a reduction algorithm guesses i ∈ [Q]
such that the adversary’s i-th hash query is the challenge identity ID∗ where Q
denotes the number of hash queries made by the adversary. Then for all but the
i-th hash query, the reduction algorithm programs H(ID) in the above manner,
and for the i-th query, it programs the output of H(ID∗) to be the vector u
contained in the LWE instance that is given as the challenge. Specifically, the
reduction algorithm sets the challenge user’s identity vector uID∗ as the random
vector u contained in the LWE instance. If the guess is correct, then it can embed
the LWE instance into the challenge ciphertexts c∗

0 and c∗
1; in case it is a valid

LWE instance, then (c∗
0, c

∗
1) is properly set to (u�

ID∗s + x + M�q/2�,A�s + x)
as in the real scheme. Therefore, the challenge ciphertext can be switched to
random due to the LWE assumption. After this switch, M is perfectly hidden
and thus the security of GPV-IBE is reduced to the LWE assumption. Since the
reduction algorithm programs the random oracle in the same way except for the
challenge identity, this type of proof methodology is often times referred to as
the “all-but-one programming”.

Security Proof in QROM in [Zha12b]. Unfortunately, the above proof cannot
be simply extended to a proof in the QROM. The reason is that in the QROM,
even a single hash query can be a superposition of all the identities. In such a
case, to proceed with the above all-but-one programming approach, the reduction
algorithm would have to guess a single identity out of all the possible identities
which he hopes that would be used as the challenge identity ID∗ by the adversary.
Obviously, the probability of the reduction algorithm being right is negligible,
since the number of possible identities is exponentially large. This is in sharp
contrast with the ROM setting, where the reduction algorithm was allowed to
guess the single identity out of the polynomially many (classical) random oracle
queries made by the adversary. Therefore, the all-but-one programming as in
the classical case cannot be used in the quantum case. To overcome this barrier,
Zhandry [Zha12b] introduced a useful lemma regarding what he calls the semi-
constant distribution. The semi-constant distribution with parameter 0 < p < 1
is a distribution over functions from X to Y such that a function chosen according
to the distribution gives the same fixed value for random p-fraction of all inputs,
and behaves as a random function for the rest of the inputs. He proved that
a function according to the semi-constant distribution with parameter p and a
random function cannot be distinguished by an adversary that makes Q oracle
queries with advantage greater than 8

3Q4p2. In the security proof, the reduction
algorithm partitions the set of identities into controlled and uncontrolled sets.
The uncontrolled set consists of randomly chosen p-fraction of all identities, and
the controlled set is the complement of it. The reduction algorithm embeds an
LWE instance into the uncontrolled set, and programs the hash values for the
controlled set so that the decryption keys for identities in the controlled set
can be extracted efficiently. Then the reduction algorithm works as long as the
challenge identity falls inside the uncontrolled set and all identities for secret
key queries fall inside the controlled set (otherwise it aborts). By appropriately

258 S. Katsumata et al.

setting p, we can argue that the probability that the reduction algorithm does
not abort is non-negligible, and thus the security proof is completed. Though
this technique is very general and useful, a huge reduction loss is inherent as long
as we take the above strategy because the reduction algorithm has to abort with
high probability. It may be useful to point out for readers who are familiar with
IBE schemes in the standard model that the above technique is conceptually
very similar to the partitioning technique which is often used in the context of
adaptively secure IBE scheme in the standard model [Wat05,ABB10,CHKP10].
The reason why we cannot make the proof tight is exactly the same as that for
the counterparts in the standard model.

Our Tight Security Proof in QROM. As discussed above, we cannot obtain
a tight reduction as long as we use a partitioning-like technique. Therefore we
take a completely different approach, which is rather similar to that used in the
public key encryption scheme of Cramer and Shoup [CS98], which has also been
applied to the pairing-based IBE construction of Gentry [Gen06]. The idea is
that we simulate in a way so that we can create exactly one valid secret key for
every identity. Note that this is opposed to the partitioning technique (and the
all-but-one programming technique) where the simulator cannot create a secret
key for an identity in the uncontrolled set. To create the challenge ciphertext,
we use the one secret key we know for that challenge identity. If the adversary
can not tell which secret key the ciphertext was created from and if there are
potentially many candidates for the secret key, we can take advantage of the
entropy of the secret key to statistically hide the message.

In more detail, the main observation is that the secret key e, i.e. a short
vector e such that Ae = u, retains plenty of entropy even after fixing the public
values A and u. Therefore, by programming the hash value u of an identity,
we can easily create a situation where the simulator knows exactly one secret
key out of the many possible candidates. Furthermore, the simulator knowing a
secret key eID∗ such that AeID∗ = uID∗ , can simulate the challenge ciphertext
by creating c∗

0 = e�
ID∗c∗

1 + M�q/2� and c∗
1 = A�s + x. Here, the key observation

is that we no longer require the LWE instance (uID∗ ,u�
ID∗s + x) to simulate

the challenge ciphertext. Though the distribution of c∗
0 simulated as above is

slightly different from that of the real ciphertext due to the difference in the
noise distributions, we ignore it in this overview. In the real proof, we overcome
this problem by using the noise rerandomization technique by Katsumata and
Yamada [KY16]. Then we use the LWE assumption to switch c∗

1 to random.
Finally, we argue that e�

ID∗c∗
1 is almost uniform if the min-entropy of eID∗ is

high and c∗
1 is uniformly random due to the leftover hash lemma. Therefore, all

information of the message M is hidden and thus the proof is completed.
Finally, we observe that the above proof naturally fits in the QROM setting.

The crucial difference from the partitioning technique is that in our security proof
we program the random oracle in the same way for all identities. Therefore even
if an adversary queries a superposition of all identities, the simulator can simply
quantumly perform the programming procedure for the superposition. Thus the

Tighter Security Proofs for GPV-IBE 259

proof in the classical ROM can be almost automatically converted into the one
in the QROM in this case.

Tight Security in Multi-challenge Setting. Unfortunately, the above idea
does not extend naturally to the tightly-secure multi-challenge setting. One
can always prove security in the multi-challenge setting starting from a scheme
that is single-challenge secure via a hybrid argument, however, as mentioned by
Hofheinz and Jager [HJ12], this type of reduction does not preserve tightness. A
careful reader may think that the above programming technique can be extended
to the multi-challenge setting, hence bypassing the hybrid argument. We briefly
explain why this is not the case. Informally, in the above proof, the reduc-
tion algorithm embeds its given LWE instance (A,A�s + x) into the challenge
ciphertext by creating (c∗

0 = e�
ID∗c∗

1 + M�q/2�, c∗
1 = A�s + x), where eID∗ is the

secret key of the challenge user uID∗ . Therefore, since the c∗
1 component of every

ciphertext is an LWE instance for the same public matrix A, to simulate multi-
ple challenge ciphertexts in the above manner, the reduction algorithm must be
able to prepare a special type of LWE instance (A, {A�s(k) +x(k)}k∈[N]), where
N = poly(λ) is the number of challenge ciphertext queried by the adversary. It
can be easily seen that this construction is tightly-secure in the multi-challenge
setting with the same efficiency as the single-challenge setting, if we assume
that this special type of LWE problem is provided to the reduction algorithm
as the challenge. However, unfortunately, we still end up losing a factor of N in
the reduction when reducing the standard LWE problem to this special LWE
problem. In particular, we only shifted the burden of having to go through the
N hybrid arguments to the assumption rather than to the scheme. As one may
have noticed, there is a way to bypass the problem of going through the N hybrid
arguments by using conventional techniques (See [Reg05,Reg10]) of construct-
ing an unlimited number of fresh LWE instances given a fixed number of LWE
instances. However, this techniques requires the noise of the newly created LWE
instances to grow proportionally to the number of created instances. In partic-
ular, to create the above special LWE instance from a standard LWE instance,
we require the size of the noise x(k) to grow polynomially with N , where recall
that N can be an arbitrary polynomial. Hence, although we can show a tightly
secure reduction in the multi-challenge setting, for the concrete parameters of
the scheme to be independent of N , we need to assume the super-polynomial
LWE assumption to cope with the super-polynomial noise blow up. This is far
more inefficient than in the single-challenge setting where we only require a
polynomial LWE assumption.

To overcome this problem, we use the “lossy mode” of the LWE problem.
It is well known that the secret vector s is uniquely defined given an LWE
instance (A,A�s+x) for large enough samples. A series of works, e.g., [GKPV10,
BKPW12,AKPW13,LSSS17] have observed that if we instead sample A from a
special distribution that is computationally indistinguishable from the uniform
distribution, then (A,A�s + x) leaks almost no information of the secret s,
hence the term “lossy mode”. This idea can be leveraged to prove (almost) tight
security of the above single-challenge construction, where the reduction loss is

260 S. Katsumata et al.

independent of the number of challenge ciphertext. A first attempt of using this
idea is as follows: During the security proof of the GPV-IBE, we first change
the public matrix A to a lossy matrix Ã and generate the secret keys and
program the random oracle in the same way as before. To create the challenge
ciphertexts, the reduction algorithm honestly samples s(k), x(k), x(k) and sets
(c∗

0 = u�
ID∗s(k) + x(k) + M(k)�q/2�, c∗

1 = A�s(k) + x(k)). Now, it may seem that
owing to the lossy mode of LWE, we can rely on the entropy of the secret vector
s(k) to argue that c∗

0 is distributed uniformly random via the leftover hash lemma.
The main difference between the previous single-challenge setting is that we can
rely on the entropy of the secret vector s(k) rather than on the entropy of the
secret key eID∗ . Since each challenge ciphertext is injected with fresh entropy
and we can argue statistically that a single challenge ciphertext is not leaking
any information on the message, the reduction loss will be independent of the
number of challenge ciphertext query N .

Although the above argument may seem correct at first glance, it incurs
a subtle but a fatal flaw, thus bringing us to our proposed construction. The
problem of the above argument is how we use the leftover hash lemma. To use
the lemma correctly, the vector uID∗ viewed as a hash function is required to be
universal. This is true in case uID∗ is set as AeID∗ , where A ← Z

n × m
q and eID∗ is

sampled from some appropriate distribution. However, this is not true anymore
once we change A to a lossy matrix Ã, since Ã now lives in an exponentially
small subset of Z

n × m
q , hence, we can no longer rely on the entropy of s(k) to

statistically hide the message. To overcome this problem, our final idea is to use
the Katz-Wang [KW03] technique. Specifically, we slightly alter the encryption
algorithm of GPV-IBE to output the following instead:

c0 = u�
ID||0s+x0 +M�q/2�, c1 = u�

ID||1s+x1 +M�q/2�, and c2 = A�s+x,

where uID||b = H(ID||b) for b ∈ {0, 1}. During the security proof, the reduction
algorithm sets uID||0 and uID||1 so that one of them is uniformly random over Zn

q

and the other is constructed as AeID. Then, for the ciphertext cb corresponding
to the uniformly random vector uID||b, we can correctly use the leftover hash
lemma to argue that cb statistically hides the message M. By going through one
more hybrid argument, we can change both c0, c1 into random values that are
independent of the message M. Note that instead of naively using the Katz-
Wang technique, by reusing the c2 component, the above GPV-IBE variant only
requires one additional element in Zq compared to the original GPV-IBE. Fur-
thermore, in the actual construction, we do not require the noise terms x0, x1 in
c0, c1 since we no longer rely on the LWE assumption to change c0, c1 into random
values. Our construction and security reduction does not depend on the number
of challenge ciphertext query N and in particular, can be proven under the poly-
nomial LWE assumption, which is only slightly worse than the single-challenge
construction. In addition, due to the same reason as the single-challenge setting,
our classical ROM proof can be naturally converted to a QROM proof.

Tighter Security Proofs for GPV-IBE 261

1.4 Discussion

Similar Techniques in Other Works. The idea to simulate GPV-IBE in a
way so that we can create exactly one valid secret key for every secret key query
is not new. We are aware of few works that are based on this idea. Gentry et al.
[GPV08] mentioned that by using this technique, they can prove the security of
the GPV-IBE in the standard model based on a non-standard interactive variant
of the LWE (I-LWE) assumption which requires a hash function to define. Here
since the hash function is given to the adversary, a quantum adversary may query
quantum states to the hash functions on its own. Therefore, in addition with the
fact that the I-LWE assumption is made in the standard model, the statement
made by [GPV08] would hold in the QROM as well. However, they only gave
a sketch of the proof, and did not give a formal proof. Alwen et al. [ADN+10]
use the idea to construct an identity-based hash proof system (IB-HPS) based
on the mechanism of GPV-IBE. We note that they assume the modulus q to be
super-polynomial. Outside the context of identity-based primitives, Applebaum
et al. [ACPS09] and Bourse et al. [BDPMW16] provide an analysis of rerandom-
izing LWE samples which can be seen as a refinement of the idea mentioned in
[GPV08]. [ACPS09] constructs a KDM-secure cryptosystem based on the LWE
problem and [BDPMW16] shows a simple method for constructing circuit pri-
vate fully homomorphic encryption schemes (FHE) based on the lattice-based
FHE scheme of Gentry et al. [GSW13]. Both of their analysis only requires the
modulus q to be polynomial. In summary, though similar ideas have been used,
all of the previous works are irrelevant to tight security or the security in the
QROM.

On Parameter-Tightness of Our Schemes. In the above overview, we
focused on the tightness of the security proof. Here, we provide some discussions
on how the parameters compare to the original GPV-IBE scheme [GPV08]. For
the single challenge setting, our parameters are only a small factor worse than
the GPV-IBE scheme. This is because the only difference is using the noise reran-
domization technique of [KY16], which only slightly degrades the noise-level.1

For the multi-challenge setting, the situation is more different. In this case, the
parameters are much worse than the original (single-challenge secure) GPV-IBE
scheme. This is because we have to go through the lossy-mode of LWE which
requires for larger parameters. The concrete parameters are provided in Sect. 4.2.

Relation to CCA-Secure PKE. By applying the Canetti-Halevi-Katz trans-
formation [CHK04] to our single-challenge-secure IBE scheme, we obtain a public
key encryption (PKE) scheme secure against chosen ciphertext attacks (CCA)
that is tightly secure in the single-challenge setting under the LWE assumption
in the QROM. We note that Saito et al. [SXY18] already proposed such a PKE

1 Our parameter selection in the main body may seem much worse compared to GPV-
IBE, but this is only because we choose the parameters conservatively. Specifically,
we can set the parameters to be only slightly worse than GPV-IBE by setting them
less conservatively as in [GPV08]. Please, see end of Sect. 3.2 for more details.

262 S. Katsumata et al.

scheme in the single-challenge setting that is more efficient than the scheme
obtained by the above transformation.

On Running Time of Reductions. In the above overview, we ignore the
running time of reductions. Though it seems that the above described reductions
run in nearly the same time as the adversaries, due to a subtle problem of
simulating random oracles against quantum adversaries, there is a significant
blowup by a square factor of the number of queries the adversaries make. In the
classical ROM, when we simulate a random oracle in security proofs, we usually
sample a random function in a lazy manner. That is, whenever an adversary
queries a point that has not been queried before, a reduction algorithm samples
a fresh randomness and assigns it as a hash value for that point. However, this
cannot be done in the QROM because an adversary may query a superposition of
all the inputs in a single query. Therefore a reduction algorithm has to somehow
commit to the hash values of all inputs at the beginning of the simulation.

Zhandry [Zha12b] proved that an adversary that makes Q queries cannot
distinguish a random function and a 2Q-wise independent hash function via
quantum oracle accesses. Therefore we can use a 2Q-wise independent hash to
simulate a random oracle. However, if we take this method, the simulator has to
evaluate a 2Q-wise independent hash function for each hash query, and this is
the reason why the running time blowups by Ω(Q2).

One possible way to avoid this huge blowup is to simulate a random oracle by
a PRF secure against quantum accessible adversaries. Since the time needed to
evaluate a PRF is some fixed polynomial in the security parameter, the blowup
for the running time can be made Q · poly(λ) which is significantly better than
Ω(Q2). However, in order to use this method, we have to additionally assume
the existence of quantumly secure PRFs. Such PRFs can be constructed based
on any quantumly-secure one-way function [Zha12a], and thus they exist if the
LWE assumption holds against quantum adversaries. However, the reduction for
such PRFs are non-tight and thus we cannot rely on them in the context of tight
security. Our suggestion is to use a real hash function to implement PRFs and
to assume that it is a quantumly secure PRF. We believe this to be a natural
assumption if we are willing to idealize a hash function as a random oracle. (See
also the discussion in Sect. 2.2.)

1.5 Related Work

Schemes in QROM. Boneh et al. [BDF+11] introduced the QROM, and gave
security proofs for the GPV-signature [GPV08] and a hybrid variant of the
Bellare-Rogaway encryption [BR93] in the QROM. We note that their security
proof for the GPV-signature is tight. Zhandry [Zha12b] proved that GPV-IBE
and full-domain hash signatures are secure in the QROM. Targhi and Unruh
[TU16] proposed variants of Fujisaki-Okamoto transformation and OAEP that
are secure in the QROM. Some researchers studied the security of the Fiat-
Shamir transform in the QROM [ARU14,Unr15,Unr17]. Unruh [Unr14b] pro-
posed a revocable quantum timed-release encryption scheme in the QROM.

Tighter Security Proofs for GPV-IBE 263

Unruh [Unr14a] proposed a position verification scheme in the QROM. Recently,
some researchers studied tight securities in the QROM. Alkim et al. [ABB+17]
proved that the signature scheme known as TESLA [BG14] is tightly secure
under the LWE assumption. Saito et al. [SXY18] proposed a tightly CCA secure
variant of the Bellare-Rogaway encryption. Kiltz et al. [KLS18] gave a tight
reduction for the Fiat-Shamir transform in the QROM.

Tightly Secure IBEs. The first tightly secure IBE scheme from lattices in
the single challenge setting and in the standard model was proposed by Boyen
and Li [BL16]. While the construction is theoretically interesting and elegant, it
is very inefficient and requires LWE assumption with super-polynomial approx-
imation factors. As for the construction from bilinear maps, the first tightly
secure IBE from standard assumptions in the single challenge setting and in the
random oracle model was proposed by Katz and Wang [KW03]. Coron [Cor09]
gave a tight reduction for a variant of the original Boneh-Franklin IBE [BF01].
Later, the first realization in the standard model was proposed by Chen and Wee
[CW13]. In the subsequent works, it is further extended to the multi-challenge
setting [HKS15,AHY15,GDCC16]. They are efficient but are not secure against
quantum computers.

2 Preliminaries

Notations. For n ∈ N, denote [n] as the set {1, · · · , n}. For a finite set S,
we let U(S) denote the uniform distribution over S. For a distribution D and
integer k > 0, define (D)k as the distribution

∏
i∈[k] D. For a distribution or

random variable X we write x ← X to denote the operation of sampling a
random x according to X. For a set S, we write s ← S as a shorthand for
s ← U(S). Let X and Y be two random variables over some finite set SX , SY ,
respectively. The statistical distance Δ(X,Y) between X and Y is defined as
Δ(X,Y) = 1

2Σs∈SX∪SY
|Pr[X = s] − Pr[Y = s]|. The min-entropy of a random

variable X is defined as H∞(X) = − log(maxx Pr[X = x]), where the base of the
logarithm is taken to be 2 throughout the paper. For a bit b ∈ {0, 1}, b̄ denotes
1−b. For sets X and Y, Func(X ,Y) denotes the set of all functions from X to Y.
For a vector v ∈ R

n, denote ‖v‖ as the standard Euclidean norm. For a matrix
R ∈ R

n × n, denote ‖R‖ as the length of the longest column and ‖R‖GS as the
longest column of the Gram-Schmidt orthogonalization of R.

2.1 Quantum Computation

We briefly give some backgrounds on quantum computation. We refer to [NC00]
for more details. A state |ψ〉 of n qubits is expressed as

∑
x∈{0,1}n αx |x〉 ∈ C

2n

where {αx}x∈{0,1}n is a set of complex numbers such that
∑

x∈{0,1}n |αx|2 = 1
and {|x〉}x∈{0,1}n is an orthonormal basis on C

2n

(which is called a computa-
tional basis). If we measure |ψ〉 in the computational basis, then the outcome is
a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes

264 S. Katsumata et al.

|x〉. An evolution of quantum state can be described by a unitary matrix U ,
which transforms |x〉 to U |x〉. A quantum algorithm is composed of quantum
evolutions described by unitary matrices and measurements. We also consider a
quantum oracle algorithm, which can quantumly access to certain oracles. The
running time Time(A) of a quantum algorithm A is defined to be the number
of universal gates (e.g., Hadamard, phase, CNOT, and π/8 gates) and measure-
ments required for running A. (An oracle query is counted as a unit time if A
is an oracle algorithm.) Any efficient classical computation can be realized by a
quantum computation efficiently. That is, for any function f that is classically
computable, there exists a unitary matrix Uf such that Uf |x, y〉 = |x, f(x) ⊕ y〉,
and the number of universal gates to express Uf is linear in the size of a classical
circuit that computes f .

Quantum Random Oracle Model. Boneh et al. [BDF+11] introduced the
quantum random oracle model (QROM), which is an extension of the usual
random oracle model to the quantum setting. Roughly speaking, the QROM is an
idealized model where a hash function is idealized to be a quantumly accessible
oracle that simulates a random function. More precisely, in security proofs in the
QROM, a random function H : X → Y is uniformly chosen at the beginning of
the experiment, and every entity involved in the system is allowed to access to
an oracle that is given

∑
x,y αx,y |x, y〉 and returns

∑
x,y αx,y |x,H(x) ⊕ y〉. We

denote a quantum algorithm A that accesses to the oracle defined as above by
A|H〉. In the QROM, one query to the random oracle is counted as one unit time.
As in the classical case, we can implement two random oracles H0 and H1 from
one random oracle H by defining H0(x) := H(0||x) and H1(x) := H(1||x). More
generally, we can implement n random oracles from one random oracle by using
�log n�-bit prefix of an input as index of random oracles.

As shown by Zhandry [Zha12b], a quantum random oracle can be simulated
by a family of 2Q-wise independent hash functions against an adversary that
quantumly accesses to the oracle at most Q times. As a result, he obtained the
following lemma.

Lemma 1 ([Zha12b, Theorem 6.1]). Any quantum algorithm A making quan-
tum queries to random oracles can be efficiently simulated by a quantum algo-
rithm B, which has the same output distribution, but makes no queries. Espe-
cially, if A makes at most Q queries to a random oracle H : {0, 1}a → {0, 1}b,
then Time(B) ≈ Time(A) + Q · T 2Q-wise

a,b where T 2Q-wise
a,b denotes the time to eval-

uate a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

The following lemma was shown by Boneh et al. [BDF+11]. Roughly speak-
ing, this lemma states that if an oracle outputs independent and almost uniform
value for all inputs, then it is indistinguishable from a random oracle even with
quantum oracle accesses.

Lemma 2 ([BDF+11, Lemma 3]). Let A be a quantum algorithm that makes at
most Q oracle queries, and X and Y be arrbitrary sets. Let H be a distribution
over Func(X ,Y) such that when we take H

$← H, for each x ∈ X , H(x) is

Tighter Security Proofs for GPV-IBE 265

identically and independently distributed according to a distribution D whose
statistical distance is within ε from uniform. Then for any input z. We have

Δ(A|RF〉(z),A|H〉(z)) ≤ 4Q2
√

ε

where RF ← Func(X ,Y) and H ← H.

2.2 Pseudorandom Function

We review the definition of quantum-accessible pseudorandom functions (PRFs)
[BDF+11].

Definition 1 (Quantum-accessible PRF). We say that a function F : K ×
X → Y is a quantum-accessible pseudorandom function if for all PPT adver-
saries A, its advantage defined below is negligible:

AdvPRFA,F (λ) :=
∣
∣
∣ Pr

[A|RF〉(1λ
)

= 1
] − Pr

[A|F (K,·)〉(1λ
)

= 1
]∣∣
∣

where RF ← Func(X ,Y) and K ← K.

Zhandry [Zha12a] proved that some known constructions of classical PRFs
including the tree-based construction [GGM86] and lattice-based construction
[BPR12] are also quantum-accessible PRFs. However, these reductions are non-
tight, and thus we cannot rely on these results when aiming for tight security.
Fortunately, we can use the following lemma which states that we can use a
quantum random oracle as a PRF similarly to the classical case.

Lemma 3 ([SXY18, Lemma 2.2]). Let � be an integer. Let H : {0, 1}� ×X → Y
and H′ : X → Y be two independent random functions. If an unbounded time
quantum adversary A makes a query to H at most QH times, then we have

∣
∣
∣Pr[A|H〉,|H(K,·)〉(1λ) = 1 | K ← {0, 1}�] − Pr[A|H〉,|H′〉(1λ) = 1]

∣
∣
∣ ≤ QH · 2

−�+1
2 .

2.3 Identity-Based Encryption

Syntax. We use the standard syntax of IBE [BF01]. Let ID be the ID space
of the scheme. If a collision resistant hash function CRH : {0, 1}∗ → ID is
available, one can use an arbitrary string as an identity. An IBE scheme is
defined by the following four algorithms.

Setup(1λ) → (mpk,msk): The setup algorithm takes as input a security param-
eter 1λ and outputs a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID) → skID: The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and an identity ID ∈ ID.
It outputs a private key skID. We assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M) → C: The encryption algorithm takes as input a mas-
ter public key mpk, an identity ID ∈ ID, and a message M. It outputs a
ciphertext C.

266 S. Katsumata et al.

Decrypt(mpk, skID, C) → M or ⊥: The decryption algorithm takes as input the
master public key mpk, a private key skID, and a ciphertext C. It outputs the
message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ ID,
and all M in the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1 − negl(λ)

holds, where the probability is taken over the randomness used in (mpk,msk) ←
Setup(1λ), skID ← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion
is defined by the following game between a challenger and an adversary A. Let
CTSam(·) be a sampling algorithm that takes as input a master public key of
the scheme and outputs an element in the ciphertext space.

- Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk)
and gives mpk to A. The challenger also picks a random coin coin ← {0, 1}
and keeps it secretly. After given mpk, A can adaptively make the following two
types of queries to the challenger. These queries can be made in any order and
arbitrarily many times.

Secret Key Queries. If A submits ID ∈ ID to the challenger, the challenger
returns skID ← KeyGen(mpk,msk, ID).

Challenge Queries. If A submits a message M∗ and an identity ID∗ ∈ ID to the
challenger, the challenger proceeds as follows. If coin = 0, it runs Encrypt(mpk,
ID∗,M∗) → C∗ and gives the challenge ciphertext C∗ to A. If coin = 1, it
chooses the challenge ciphertext C∗ from the distribution CTSam(mpk) as C∗ $←
CTSam(mpk) at random and gives it to A.

We prohibit A from making a challenge query for an identity ID∗ such that
it has already made a secret key query for the same ID = ID∗ and vice versa.

- Guess. Finally, A outputs a guess ĉoin for coin. The advantage of A is defined
as

AdvIBEA,Π(λ) =
∣
∣
∣
∣Pr[ĉoin = coin] − 1

2

∣
∣
∣
∣ .

We say that Π is adaptively-anonymous secure, if there exists efficiently sam-
pleable distribution CTSam(mpk) and the advantage of any PPT A is negligible
in the above game. The term anonymous captures the fact that the ciphertext
does not reveal the identity for which it was sent to. (Observe that CTSam(mpk)
depends on neither of ID∗ nor M∗.)

Single Challenge Security. We can also consider a variant of the above secu-
rity definition where we restrict the adversary to make the challenge query only
once during the game. We call this security notion “single challenge adaptive
anonymity”, and call the notion without the restriction “multi challenge secu-
rity”. By a simple hybrid argument, we can show that these definitions are in

Tighter Security Proofs for GPV-IBE 267

fact equivalent in the sense that one implies another. However, the proof that
the former implies the latter incurs a huge security reduction loss that is linear in
the number of challenge queries. Since the focus of this paper is on tight security
reductions, we typically differentiate these two notions.

Remark 1. We say that an IBE scheme is stateful if the key generation algorithm
has to record all previously issued secret keys, and always outputs the same
secret key for the same identity. By the technique by Goldreich [Gol86], a stateful
scheme can be converted to a stateless one (in which the key generation algorithm
need not remember previous executions) by using PRFs. Since PRFs exist in the
QROM without assuming any computational assumption as shown in Lemma3,
if we make the key size of PRFs sufficiently large, this conversion hardly affects
the tightness. Therefore in this paper, we concentrate on constructing tightly
secure stateful IBE scheme for simplicity.

2.4 Background on Lattices

A (full-rank-integer) m-dimensional lattice Λ in Z
m is a set of the form

{∑
i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent

vectors in Z
m. We call B the basis of the lattice Λ. For any positive inte-

gers n,m and q ≥ 2, a matrix A ∈ Z
n×m
q and a vector u ∈ Z

n
q , we define

Λ⊥(A) = {z ∈ Z
m|Az = 0 mod q}, and Λ⊥

u (A) = {z ∈ Z
m|Az = u mod q}.

Gaussian Measures. For an m-dimensional lattice Λ, the discrete Gaussian
distribution over Λ with center c and parameter σ is defined as DΛ,σ,c(x) =
ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where ρσ,c(x) is a Gaussian function defined as
exp(−π‖x−c‖2/σ2) and ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Further for an m-dimensional

shifted lattice Λ+ t, we define the Gaussian distribution DΛ+t,σ with parameter
σ as the process of adding the vector t to a sample from DΛ,σ,−t. Finally, we
call D a B-bounded distribution, if all the elements in the support of D have
absolute value smaller than B.

Discrete Gaussian Lemmas. The following lemmas are used to manipulate
and obtain meaningful bounds on discrete Gaussian vectors.

Lemma 4 (Adopted from [GPV08], Lemma 5.2). Let n,m, q be positive
integers such that m ≥ 2n log q and q a prime. Let σ be any positive real such
that σ ≥ √

n + log m. Then for all but 2−Ω(n) fraction of A ∈ Z
n×m
q , we have

that the distribution of u = Ae mod q for e ← DZm,σ is 2−Ω(n)-close to uni-
form distribution over Z

n
q . Furthermore, for a fixed u ∈ Z

n
q , the conditional

distribution of e ← DZm,σ, given Ae = u mod q is DΛ⊥
u (A),σ.

The following lemma is obtained by combining Lemma 4.4 in [MR07] and
Lemma 5.3 in [GPV08].

Lemma 5 ([MR07], [GPV08]). Let σ > 16
√

log 2m/π and u be any vector in
Z

n
q . Then, for all but q−n fraction of A ∈ Z

n×m
q , we have that

Pr
x←D

Λ⊥
u ,σ

(A)
[‖x‖ > σ

√
m] < 2−(m−1).

268 S. Katsumata et al.

The following lemma can be obtained by a straightforward combination of
Lemma 2.6, Lemma 2.10 and Lemma 5.3 in [GPV08] (See also [PR06,Pei07]).

Lemma 6 ([PR06,Pei07,GPV08]). Let σ > 16
√

log 2m/π and u be any vector
in Z

n
q . Then, for all but q−n fraction of A ∈ Z

n×m
q , we have

H∞(DΛ⊥
u (A),σ) ≥ m − 1.

The following is a useful lemma used during the security proof. It allows the
simulator to create new LWE samples from a given set of LWE samples (i.e.,
the LWE challenge provided to the simulator) for which it does not know the
associating secret vector.2 We would like to note that the following lemma is
built on top of many previous results [Reg05,Pei10,BLP+13] and is formatted
in a specific way to be useful in the security proof for LWE-based cryptosystems.

Lemma 7 (Noise Rerandomization, [KY16], Lemma 1). Let q, �,m be pos-
itive integers and r a positive real satisfying r > Ω(

√
n). Let b ∈ Z

m
q be arbi-

trary and z chosen from DZm,r. Then there exists a PPT algorithm ReRand
such that for any V ∈ Z

m×� and positive real σ > s1(V), the output of
ReRand(V,b+z, r, σ) is distributed as b′ = V�b+z′ ∈ Z

�
q where the distribution

of z′ is within 2−Ω(n) statistical distance of DZ�,2rσ.

Sampling Algorithms. The following lemma states useful algorithms for sam-
pling short vectors from lattices. In particular, the second preimage sampler is
the exact gaussian sampler of [BLP+13], Lemma 2.3.

Lemma 8. ([GPV08,MP12,BLP+13]) Let n,m, q > 0 be integers with m >
3n�log q�.
– TrapGen(1n, 1m, q) → (A,TA): a randomized algorithm that outputs a matrix

A ∈ Z
n×m
q and a full-rank matrix TA ∈ Z

m×m, where TA is a basis for
Λ⊥(A), the distribution of A is 2−Ω(n)-close to uniform and ‖TA‖GS =
O(

√
n log q).

– SamplePre(A,TA,u, σ) : a randomized algorithm that, given a matrix A ∈
Z

n×m
q , a basis TA ∈ Z

m×m for Λ⊥(A), a vector u ∈ Z
n
q and a Gaussian

parameter σ > ‖TA‖GS · √
log(2m + 4)/π, outputs a vector e ∈ Z

m sampled
from a distribution 2−Ω(n)-close to DΛ⊥

u (A),σ.
– SampleZ(σ) : a randomized algorithm that, given a Gaussian parameter σ >

16(
√

log 2m/π) , outputs a vector e ∈ Z
m sampled from a distribution 2−Ω(n)-

close to DZm,σ.

Hardness Assumptions. We define the Learning with Errors (LWE) problem
introduced by Regev [Reg05].

2 Compared to [KY16] our choice of parameter is more conservative since we consider
2−Ω(n) statistical distance rather than 2−ω(log n).

Tighter Security Proofs for GPV-IBE 269

Definition 2 (Learning with Errors). For integers n = n(λ),m = m(n), a
prime q = q(n) > 2, an error distribution over χ = χ(n) over Z, and a PPT
algorithm A, the advantage for the learning with errors problem LWEn,m,q,χ of
A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣
∣
∣ Pr

[A(
A,A�s + z

)
= 1

] − Pr
[A(

A,w + z
)

= 1
]∣∣
∣

where A ← Z
n×m
q , s ← Z

n
q , w ← Z

m
q , z ← χm. We say that the LWE assumption

holds if AdvLWEn,m,q,χ

A is negligible for all PPT A.

The (decisional) LWEn,m,q,DZ,αq
for αq > 2

√
n has been shown by Regev

[Reg05] to be as hard as approximating the worst-case SIVP and GapSVP
problems to within Õ(n/α) factors in the �2-norm in the worst case. In the
subsequent works, (partial) dequantumization of the reduction were achieved
[Pei09,BLP+13].

We also define the LWE assumption against adversaries that can access to a
quantum random oracle as is done by Boneh et al. [BDF+11].

Definition 3 (Learning with Errors relative to Quantum Random
Oracle). Let n, m, q and χ be the same as in Definition 2, and a, b be some
positive integers. For a PPT algorithm A, the advantage for the learning with
errors problem LWEn,m,q,χ of A relative to a quantum random oracle is defined
as follows:

Adv
LWEn,m,q,χ

A,QROa,b
(λ) =

∣
∣
∣ Pr

[A|H〉(A,A�s + z
)

= 1
] − Pr

[A|H〉(A,w + z
)

= 1
]∣∣
∣

where A ← Z
n×m
q , s ← Z

n
q , w ← Z

m
q , z ← χm, H $← Func({0, 1}a, {0, 1}b). We

say that the LWE assumption relative to an (a, b)-quantum random oracle holds
if AdvLWEn,m,q,χ

A,QROa,b
(λ) is negligible for all PPT A.

It is easy to see that the LWE assumption relative to a quantum random
oracle can be reduced to the LWE assumption with a certain loss of the time
for the reduction by Lemma 1. Alternatively, if we assume the existence of a
quantumly-accessible PRF, then the reduction loss can be made smaller. Namely,
we have the following lemmas.

Lemma 9. For any n, m, q, χ, a, b, and an algorithm A making at most Q
oracle queries, there exists an algorithm B such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) = Adv

LWEn,m,q,χ

B (λ)

and Time(B) ≈ Time(A)+Q·T 2Q-wise
a,b where T 2Q-wise

a,b denotes the time to evaluate
a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

Lemma 10. Let F : K × {0, 1}a → {0, 1}b be a quantumly-accessible PRF. For
any n, m, q, χ, a, b and an algorithm A making at most Q oracle queries, there
exist algorithms B and C such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) ≤ Adv

LWEn,m,q,χ

B (λ) + AdvPRFC,F (λ)

270 S. Katsumata et al.

and Time(B) ≈ Time(A)+Q ·TF and Time(C) ≈ Time(A) where TF denotes the
time to evaluate F .

In this paper, we give reductions from the security of IBE schemes to the
LWE assumption relative to a quantrum random oracle. Given such reductions,
we can also reduce them to the LWE assumption or to the LWE assumption
plus the security of quantumly-accessible PRFs by Lemma 9 or 10, respectively.
The latter is tighter than the former at the cost of assuming the existence of
quantumly-accessible PRFs.

Remark 2. A keen reader may wonder why we have to require the extra assump-
tion on the existence of PRFs when we are working in the QROM, since as we
mentioned earlier in Sect. 2.2, it seems that we can use a QRO as a PRF. The
point here is that during the security reduction, the simulator (which is given the
classical LWE instance) must simulate the QRO query to the adversary against
the LWE problem relative to a quantum random oracle query, hence, the simula-
tor is not in possession of the QRO. Note that the reason why we are able to use
the QRO as a PRF as mentioned in Remark 1 is because the simulator is aiming
to reduce the LWE problem relative to a quantum random oracle query to the
IBE scheme. Specifically, in this case the simulator can use the QRO provided
by its challenge to simulate a PRF.

3 Tightly Secure Single Challenge GPV-IBE

In this section, we show that we can give a tight security proof for the origi-
nal GPV-IBE [GPV08] in the single-challenge setting if we set the parameters
appropriately. Such proofs can be given in both the classical ROM and QROM
settings.

3.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}�ID , where �ID(λ) denotes
the identity-length. Let also H : {0, 1}�ID → Z

n
q be a hash function treated

as a random oracle during security analysis. The IBE scheme GPV is given as
follows. For simplicity, we describe the scheme as a stateful one. As remarked in
Remark 1, we can make the scheme stateless without any additional assumption
in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, and
Gaussian parameters α′, σ, where all these values are implicitly a function
of the security parameter λ. The precise parameter selection is specified in
the following section. It then runs (A,TA) ← TrapGen(1n, 1m, q) to generate
a matrix A ∈ Z

n×m
q with a trapdoor TA ∈ Z

m×m such that ‖TA‖GS ≤
O(n log q). Then it outputs

mpk = A and msk = TA

Tighter Security Proofs for GPV-IBE 271

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns
it. Otherwise it computes uID = H(ID) and samples eID ∈ Z

m such that

AeID = uID mod q

using eID ← SamplePre(A,TA,uID, σ). It returns skID = eID as the secret key.
Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s ← Z

n
q ,

x ← DZm,α′q and x ← DZ,α′q. Then it sets uID = H(ID) and computes

c0 = u�
IDs + x + M�q/2�, c1 = A�s + x.

Finally, it outputs the ciphertext C = (c0, c1) ∈ Zq × Z
m
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1) with a secret key skID,
it computes w = c0 − c�

1 eID ∈ Zq and outputs 0 if w is closer to 0 than to
�q/2� modulo q. Otherwise it outputs 1.

3.2 Correctness and Parameter Selection

The following shows correctness of the above IBE scheme.

Lemma 11 (Correctness). Suppose the parameters q, σ, and α′ are such that

σ > ‖TA‖GS ·
√

log(2m + 4)/π, α′ < 1/8σm.

Let eID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A,
eID, C). If ID = ID′, then with overwhelming probability we have M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = c0 − e�
IDc1 = M�q/2� + x + e�

IDx︸ ︷︷ ︸
error term

.

By Lemma 8 and the condition posed on the choice of σ, we have that the
distribution of eID is 2−Ω(n) close to DΛ⊥

u (A),σ. Therefore, by Lemma 5, we have
x ≤ α′q

√
m, ‖x‖ ≤ α′q

√
m, and ‖eID‖ ≤ σ · √

m except for 2−Ω(n) probability.
Then, the error term is bounded by

|h�x − e�
IDx| ≤ x + |e�

IDx| ≤ 2α′qσm.

Hence, for the error term to have absolute value less than q/4, it suffices to
choose q and α′ as in the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the
security proof work, we need the following restrictions. Note that we will prove
the security of the scheme under the LWE assumption whose noise rate is α,
which is lower than α′ that is used in the encryption algorithm.

– The error term is less than q/4 (i.e., α′ < 1/8mσ by Lemma 11)
– TrapGen operates properly (i.e., m > 3n log q by Lemma 8)

272 S. Katsumata et al.

– Samplable from DΛ⊥
u (A),σ (i.e., σ > ‖TA‖GS · √

log(2m + 4)/π =
O(

√
n log m log q) by Lemma 8),

– σ is sufficiently large so that we can apply Lemmas 4 and 6 (i.e., σ >√
n + log m, 16

√
log 2m/π),

– We can apply Lemma 7 (i.e., α′/2α >
√

n(σ2m + 1)),
– LWEn,m,q,DZ,αq

is hard (i.e., αq > 2
√

n).

To satisfy these requirements, for example, we can set the parameters
m, q, σ, α, α′ as follows:

m = n1+κ, q = 10n3.5+4κ, σ = n0.5+κ,

α′q = n2+2κ, αq = 2
√

n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks
running in time 2λ, we may set n = Ω̃(λ). In the above, we round up m to
the nearest integer and q to the nearest largest prime. We remark that though
the above parameter is worse compared to the original GPV-IBE scheme, this is
due to our conservative choice of making the statistical error terms appearing in
the reduction cost 2−Ω(n) rather than the standard negligible notion 2−ω(log λ).
The latter choice of parameters will lead to better parameters, which may be as
efficient as the original GPV-IBE.

3.3 Security Proof in QROM

The following theorem addresses the security of GPV in the classical ROM set-
ting. Our analysis departs from the original one [GPV08] and as a consequence
much tighter. The proof can be found in the full version.

Theorem 1. The IBE scheme GPV is adaptively-anonymous single-challenge
secure in the random oracle model assuming the hardness of LWEn,m,q,DZ,αq

.
Namely, for any classical adversary A making at most QH random oracle queries
to H and QID secret key queries, there exists an algorithm B such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,D

Z,αq

B (λ) + (QH + QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID) · poly(λ).

As we explained in the introduction, our analysis in the ROM can be easily
be extended to the QROM setting. We can prove the following theorem that
addresses the security of the GPV-IBE scheme in the QROM setting. The anal-
ysis here is different from that by Zhandry [Zha12b], who gave the first security
proof for the GPV-IBE scheme in the QROM setting and our analysis here is
much tighter.

Theorem 2. The IBE scheme GPV is adaptively-anonymous single-challenge
secure assuming the hardness of LWEn,m,q,DZ,αq

in the quantum random oracle

Tighter Security Proofs for GPV-IBE 273

model. Namely, for any quantum adversary A making at most QH queries to |H〉
and QID secret key queries, there exists a quantum algorithm B making QH+QID

quantum random oracle queries such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,D

Z,αq

B,QRO�ID,�r
(λ) + (Q2

H + QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID) · poly(λ)

where �r denotes the length of the randomness for SampleZ.

Proof (Proof of Theorem 2). Let CTSam(mpk) be an algorithm that outputs a
random element from Zq × Z

m
q and A be a quantum adversary that attacks the

adaptively-anonymous security of the IBE scheme. Without loss of generality,
we can assume that A makes secret key queries on the same identity at most
once. We show the security of the scheme via the following games. In each game,
we define Xi as the event that the adversary A wins in Gamei.

Game0: This is the real security game for the adaptively-anonymous security.
At the beginning of the game, the challenger chooses a random function H :
{0, 1}�ID → Z

n
q . Then it generates (A,TA) $← TrapGen(1n, 1m, q) and gives A

to A. Then it samples coin
$← {0, 1} and keeps it secret. During the game, A

may make (quantum) random oracle queries, secret key queries, and a challenge
query. These queries are handled as follows:

– When A makes a random oracle query on a quantum state
∑

ID,y αID,y |ID〉 |y〉,
the challenger returns

∑
ID,y αID,y |ID〉 |H(ID) ⊕ y〉.

– When A makes a secret key query on ID, the challenger samples eID =
SamplePre(A,TA,uID, σ) and returns eID to A.

– When A makes a challenge query for ID∗ and a message M∗, the chal-
lenger returns (c0, c1)

$← Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$←

CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
outputs ĉoin. By definition, we have

∣
∣ Pr[X0] − 1

2

∣
∣ =

∣
∣ Pr[ĉoin − coin] − 1

2

∣
∣ =

AdvIBEA,GPV(λ).

Game1: In this game, we change the way the random oracle H is simulated.
Namely, the challenger first chooses another random function Ĥ

$← Func({0, 1}�ID ,

{0, 1}�r). Then we define H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)), and
use this H throughout the game. For any fixed ID, the distribution of H(ID) is
identical and its statistical distance from the uniform distribution is 2−Ω(n) for
all but 2−Ω(n) fraction of A due to Lemma 4 since we choose σ >

√
n + log m.

Note that in this game, we only change the distribution of uID for each identity,
and the way we create secret keys are unchanged. Then due to Lemma 2, we
have

∣
∣ Pr[X0] − Pr[X1]

∣
∣ = 2−Ω(n) + 4Q2

H

√
2−Ω(n) = Q2

H · 2−Ω(n).

Game2: In this game, we change the way secret key queries are answered. By
the end of this game, the challenger will no longer require the trapdoor TA to

274 S. Katsumata et al.

generate the secret keys. When A queries a secret key for ID, the challenger
returns eID := SampleZ(σ; Ĥ(ID)). For any fixed uID ∈ Z

n
q , let e(1)

ID,uID
and e(2)

ID,uID

be random variables that are distributed according to the distributions of eID
conditioning on H(ID) = uID in Game1 and Game2, respectively. Due to Lemma 8,
we have Δ(e(1)

ID,uID
,DΛ⊥

uID
(A),σ) ≤ 2−Ω(n). On the other hand, due to Lemma 4,

we have Δ(e(2)
ID,uID

,DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret

keys eID, we have
∣
∣ Pr[X1] − Pr[X2]

∣
∣ = QID · 2−Ω(n).

Game3: In this game, we change the way the matrix A is generated. Concretely,
the challenger chooses A ← Z

n×m
q without generating the associated trapdoor

TA. By Lemma 8, the distribution of A differs at most by 2−Ω(n). Since the
challenger can answer all the secret key queries without the trapdoor due to the
change we made in the previous game, the view of A is altered only by 2−Ω(n).
Therefore, we have

∣
∣ Pr[X2] − Pr[X3]

∣
∣ = 2−Ω(n).

Game4: In this game, we change the way the challenge ciphertext is created when
coin = 0. Recall in the previous games when coin = 0, the challenger created
a valid challenge ciphertext as in the real scheme. In this game, to create the
challenge ciphertext for identity ID∗ and message bit M∗, the challenger first
computes eID∗ := SampleZ(σ; Ĥ(ID∗)) and uID∗ := AeID∗ . Then the challenger
picks s ← Z

n
q , x̄ ← DZm,αq and computes v = A�s + x̄ ∈ Z

m
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
) → c′ ∈ Z

m+1
q

from Lemma 7, where Im is the identity matrix with size m. Let c′
0 ∈ Zq denote

the first entry of c′ and c1 ∈ Z
m
q denote the remaining entries of c′. Finally, the

challenger outputs the challenge ciphertext as

C∗ = (c0 = c′
0 + M∗�q/2�, c1). (1)

We now proceed to bound |Pr[X3]−Pr[X4]|. We apply the noise rerandomization
lemma (Lemma 7) with V = [eID∗ |Im], b = A�s and z = x̄ to see that the
following equation holds:

c′ = V�b + x′ =
(
A · [eID∗ |Im]

)�
s + x′ = [uID∗ |A]�s + x′

where x′ is distributed according to a distribution whose statistical distance is at
most 2−Ω(n) from DZm+1,α′q. Here, the last equality follows from AeID∗ = uID∗

and we can appropriately apply the noise rerandomization lemma since we have
the following for our parameter selection:

α′/2α >
√

n(σ2m + 1) ≥
√

n(‖eID∗‖2 + 1) ≥ √
n · s1([eID∗ |Im]),

where the second inequality holds with 1−2−Ω(n) probability. It therefore follows
that the statistical distance between the distributions of the challenge cipher-
text in Game3 and Game4 is at most 2−Ω(n). Therefore, we may conclude that∣
∣ Pr[X3] − Pr[X4]

∣
∣ = 2−Ω(n).

Tighter Security Proofs for GPV-IBE 275

Game5: In this game, we further change the way the challenge ciphertext is cre-
ated when coin = 0. If coin = 0, to create the challenge ciphertext the challenger
first picks b ← Z

m
q , x̄ ← DZm,αq and computes v = b + x̄ ∈ Z

m
q . It then

runs the ReRand algorithm as in Game4. Finally, it sets the challenge cipher-
text as in Eq. (1). We claim that

∣
∣ Pr[X4] − Pr[X5]

∣
∣ is negligible assuming the

hardness of the LWEn,m,q,DZ,αq
problem relative to a quantum random oracle

|Ĥ〉 : {0, 1}�ID → {0, 1}�r . To show this, we use A to construct an adversary B
that breaks the LWE assumption relative to |Ĥ〉.

B is given a problem instance of LWE as (A,v = b + x̄) ∈ Z
n×m
q × Z

m
q

where x̄ ← DZm,αq. The task of B is to distinguish whether b = A�s for some
s ← Z

n
q or b ← Z

m
q . First, we remark that B can simulate the quantum random

oracle |H〉 for A by using its own random oracle |Ĥ〉 because H is programmed
as H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)) by the modification we made
in Game1. B sets the master public key mpk to be the LWE matrix A. Note
that unlike the real IBE scheme, B does not require the master secret key TA

due to the modification we made in Game3. Namely, when A queries ID for the
key oracle, B just returns eID := SampleZ(σ; Ĥ(ID)). To generate the challenge
ciphertext, B first picks coin ← {0, 1}. If coin = 0, it generates the challenge
ciphertext as in Eq. (1) using v, and returns it to A. We emphasize that all B
needs to do to generate the ciphertext is to run the ReRand algorithm, which
it can do without the knowledge of the secret randomness s and x̄. If coin = 1,
B returns a random ciphertext using CTSam(mpk). At the end of the game, A
outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise.

It can be seen that if A,v is a valid LWE sample (i.e., v = A�s), the view of
the adversary corresponds to Game4. Otherwise (i.e., v ← Z

m
q), it corresponds

to Game5. Therefore we have
∣
∣ Pr[X4] − Pr[X5]

∣
∣ = Adv

LWEn,m,q,D
Z,αq

B,QRO�ID,�r
(λ). As for

the running time, we have Time(B) = Time(A)+ (QH +QID) · poly(λ) since all B
has to do is to run A once plus to compute some additional computations that
can be done in a fixed polynomial time whenever A makes a quantum random
oracle or secret key query.

Game6: In this game, we further change the way the challenge ciphertext is
created. If coin = 0, to create the challenge ciphertext the challenger first picks
b ← Z

m
q , x′ ← DZm,α′q and computes

c′ = [eID∗ |Im]�b + x′.

It then parses c′ into c′
0 and c1 (as in Game4) and sets the challenge ciphertext

as Eq. (1). Similarly to the change from Game3 to Game4, we have
∣
∣ Pr[X5] −

Pr[X6]
∣
∣ = 2−Ω(n) by Lemma 7.

It remains to show that no adversary has non-negligible chance in winning
Game6. Notice that when coin = 0, the challenge ciphertext can be written as

c0 = e�
ID∗b + x′

0 + M�q/2�, c1 = b + x′
1,

276 S. Katsumata et al.

where x′
0 is the first entry of x′ and x′

1 is the remaining entries. It suffices to show
that the joint distribution of (b, e�

ID∗b) is statistically close to the uniform distri-
bution over Zm

q ×Zq, conditioned on uID∗ . From the view of A, eID∗ is distributed
as DΛ⊥

u(ID∗)(A),σ because all information of eID∗ revealed to A is H(ID∗) = AeID∗

where eID∗ = SampleZ(σ; Ĥ(ID∗)) and Ĥ(ID∗) is completely random from the
view of A. (Remark that Ĥ(ID∗) is used in the game only when A queries ID∗

to the key generation oracle, which is prohibited in the adaptively-anonymous
security game.) By Lemma 6, we have

H∞(eID∗) ≥ m − 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since
b is distributed uniformly at random over Z

m
q and conclude that (b, e�

ID∗b) is
√

q/2m−1-close to the uniform distribution by the leftover hash lemma. Hence,
we have Pr[X6] ≤ 2−Ω(n) +

√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

4 (Almost) Tightly Secure Multi-challenge IBE

In this section, we propose an IBE scheme that is (almost) tightly secure in
the multi-challenge setting. The security of the scheme is proven both in the
classical ROM and QROM settings. Our construction is obtained by applying
the Katz-Wang [KW03] technique to the original GPV-IBE scheme.

4.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}�ID , where �ID(λ) denotes
the identity-length. Let also H : {0, 1}�ID+1 → Z

n
q be a hash function treated

as a random oracle during the security analysis where �ID denotes the identity-
length. The IBE scheme GPVmult is given as follows. For simplicity, we describe
the scheme as a stateful one. As remarked in Remark 1, we can make the scheme
stateless without any additional assumption in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, γ, and
Gaussian parameters α, σ, where all these values are implicitly a function
of the security parameter λ. The precise parameter selection is specified in
the following section. It then runs (A,TA) ← TrapGen(1n, 1m, q) to generate
a matrix A ∈ Z

n×m
q with a trapdoor TA ∈ Z

m×m such that ‖TA‖GS ≤
O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it.
Otherwise it picks bID

$← {0, 1}, computes uID‖bID = H(ID‖bID), and samples
eID‖bID ∈ Z

m such that

AeID‖bID = uID‖bID mod q

Tighter Security Proofs for GPV-IBE 277

as eID‖bID ← SamplePre(A,TA,uID‖bID , σ). It returns skID = (bID, eID‖bID) as
the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s $←
U([−γ, γ]), x ← DZm,αq. Then it computes uID‖0 = H(ID‖0) and uID‖1 =
H(ID‖1) and sets the ciphertext as

c0 = u�
ID‖0s + M�q/2�, c1 = u�

ID‖1s + M�q/2�, c2 = A�s + x.

Finally, it outputs the ciphertext C = (c0, c1, c2) ∈ Zq × Zq × Z
m
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1, c2) with a secret key skID,
it computes w = cbID − c�

2 eID‖bID ∈ Zq and outputs 0 if w is closer to 0 than
to �q/2� modulo q. Otherwise it outputs 1.

4.2 Correctness and Parameter Selection

The following shows correctness of the above IBE scheme.

Lemma 12 (Correctness). Suppose the parameters q, σ, and α are such that

σ > ‖TA‖GS ·
√

log(2m + 4)/π, α < 1/4σm.

Let eID‖bID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ←
Dec(A, eID‖bID , C). If ID = ID′, then with overwhelming probability we have
M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = cbID − e�
ID‖bID

c2 = M�q/2� + e�
ID‖bID

x
︸ ︷︷ ︸
error term

.

By Lemma 8 and the condition posed on the choice of σ, we have that the
distribution of eID‖bID is 2−Ω(n) close to DΛ⊥

uID‖bID
(A),σ. Therefore, by Lemma 5,

we have ‖x‖ ≤ αq
√

m, and ‖eID‖bID‖ ≤ σ · √
m except for 2−Ω(n) probability.

Then, the error term is bounded by

|h�x − e�
IDx| ≤ |e�

IDx| ≤ αqσm.

Hence, for the error term to have absolute value less than q/4, it suffices to
choose q and α as in the statement of the lemma.

Parameter Selection. For example, we can set the parameters �, n,m, q, σ,
α, β, γ as follows:

n = 25�, m = n1+κ, σ = n0.5+κ, q = 5n5.5+3κ,

αq = n4+κ, βq = n, γ = n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks
running in time 2λ, we may set � = Ω̃(λ). In the above, we round up m to the
nearest integer and q to the nearest largest prime. As the case with the single-
challenge setting, if we make the more aggressive choice of using the negligible
notion 2−ω(log λ), we will be able to obtain better parameter selections. More
detailed discussion on the parameter selection can be found in the full version.

278 S. Katsumata et al.

4.3 Security

We can (almost) tightly prove the security of our IBE scheme GPVmult both in
the classical ROM and QROM settings. The following theorem addresses the
security of GPVmult in the classical ROM setting. The proof of the theorem can
be found in the full version.

Theorem 3. The IBE scheme GPVmult is adaptively-anonymous multi-
challenge secure assuming the hardness of LWE�,m,q,χ in the random oracle
model, where χ = DZ,αq. Namely, for any classical adversary A making at most
QH queries to H, Qch challenge queries, and QID secret key queries, there exists
an algorithm B such that

AdvIBEA,GPVmult
(λ) ≤ 3n · AdvLWE�,m,q,D

Z,αq

B (λ) + (QH + QID + Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID + Qch) · poly(λ).

As we explained in the introduction, our analysis in the ROM can be eas-
ily extended to the QROM setting. We can prove the following theorem that
addresses the security of GPVmult in the QROM. The proof can be found in the
full version.

Theorem 4. The IBE scheme GPVmult is adaptively-anonymous multi-
challenge secure assuming the hardness of LWE�,m,q,χ in the quantum random
oracle model, where χ = DZ,αq. Namely, for any classical adversary A making at
most QH quantum random oracle queries, Qch challenge queries, and QID secret
key queries, there exists an algorithm B making at most 3QH + 2QID + 6Qch

quantum random oracle queries such that

AdvIBEA,GPVmult
(λ) ≤ 3n ·AdvLWE�,m,q,D

Z,αq

B,QRO�ID+2,max{�r,(�log q�+2λ)×n}(λ) + (QH + QID + Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH + QID + Qch) · poly(λ)

where �r denotes the length of the randomness for SampleZ.

These proofs are similar and obtained by combining the idea of using the lossy
mode for LWE with the Katz-Wang technique as we explained in Sect. 1.3. We
need some results on randomness extraction and lossy mode LWE during the
proof. The details can be found in the full version.

Acknowledgement. The first author was partially supported by JST CREST Grant
Number JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603. The second
author was supported by JST CREST Grant No. JPMJCR1688 and JSPS KAKENHI
Grant Number 16K16068.

Tighter Security Proofs for GPV-IBE 279

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the stan-
dard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 28

[ABB+17] Alkim, E., et al.: Revisiting TESLA in the quantum random oracle
model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol.
10346, pp. 143–162. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59879-6 9

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic
primitives and circular-secure encryption based on hard learning prob-
lems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-
8 35

[ADN+10] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.:
Public-key encryption in the bounded-retrieval model. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 6

[AHY15] Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-
based encryption with almost tight security. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 521–549. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 22

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with round-
ing, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 4

[ARU14] Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical
proof systems: The hardness of quantum rewinding. In: FOCS, pp. 474–
483. IEEE (2014)

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 3

[BDPMW16] Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy
almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53008-5 3

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BG14] Bai, S., Galbraith, S.D.: An improved compression technique for signa-
tures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014.
LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04852-9 2

[BKPW12] Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trap-
door functions and applications. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4 15

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-29011-4_15

280 S. Katsumata et al.

[BL16] Boyen, X., Li, Q.: Towards tightly secure lattice short signature and Id-
based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part II. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 14

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC, pp. 575–584 (2013)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 42

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS, pp. 62–73. ACM (1993)

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 13

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[Cor09] Coron, J.-S.: A variant of Boneh-Franklin IBE with a tight reduction in
the random oracle model. Des. Codes Cryptogr. 50(1), 115–133 (2009)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CW13] Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system
groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 25

[GDCC16] Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduc-
tion to standard assumption in the multi-challenge setting. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 624–654. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 21

[Gen06] Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–
464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 27

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GKPV10] Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: ICS, pp. 230–240 (2010)

[Gol86] Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest sig-
nature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.
263, pp. 104–110. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-47721-7 8

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lat-
tices and new cryptographic constructions. In: STOC, pp. 197–206. ACM
(2008)

https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/3-540-47721-7_8
https://doi.org/10.1007/3-540-47721-7_8

Tighter Security Proofs for GPV-IBE 281

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 5

[HJ12] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryp-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 35

[HKS15] Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with
(almost) tight security in the multi-instance, multi-ciphertext setting.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 36

[KLS18] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 18

[KW03] Katz, J., Wang, N.: Efficiency improvements for signature schemes with
tight security reductions. In: Computer and Communications Security,
pp. 155–164. ACM (2003)

[KY16] Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial func-
tions: more compact IBEs from ideal lattices and bilinear maps. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 682–712. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 23

[LSSS17] Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trap-
door functions and selective opening chosen-ciphertext security from
LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS,
vol. 10403, pp. 332–364. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 12

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[NC00] Nielsen, M.A., Isaac, L.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Chuang (2000)

[Pei07] Peikert, C.: Limits on the hardness of lattice problems in ell p norms.
In: Conference on Computational Complexity, pp. 333–346. IEEE (2007)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: STOC, pp. 333–342. ACM (2009)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 5

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006).
https://doi.org/10.1007/11681878 8

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/11681878_8

282 S. Katsumata et al.

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93. ACM Press (2005)

[Reg10] Regev, O.: The learning with errors problem. Invited survey in CCC
(2010)

[Sho94] Shor, P.W.: Algorithms for quantum computation: discrete logarithms
and factoring. In: FOCS, pp. 124–134. IEEE (1994)

[SXY18] Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In: Nielsen, J.B., Rij-
men, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–
551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-
7 17

[TU16] Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part
II. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 8

[Unr14a] Unruh, D.: Quantum position verification in the random oracle model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 1–18. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44381-1 1

[Unr14b] Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–
146. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
55220-5 8

[Unr15] Unruh, D.: Non-interactive zero-knowledge proofs in the quantum ran-
dom oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015, Part II. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 25

[Unr17] Unruh, D.: Post-quantum security of fiat-shamir. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 3

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 7

[Zha12a] Zhandry, M.: How to construct quantum random functions. In: FOCS,
pp. 679–687. IEEE (2012)

[Zha12b] Zhandry, M.: Secure identity-based encryption in the quantum random
oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32009-5 44

https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Side-Channels

New Instantiations of the CRYPTO 2017
Masking Schemes

Pierre Karpman1,2(B) and Daniel S. Roche3(B)

1 Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
pierre.karpman@univ-grenoble-alpes.fr

2 INP, Institute of Engineering Univ. Grenoble Alpes, LJK, 38000 Grenoble, France
3 United States Naval Academy, Annapolis, USA

roche@usna.edu

Abstract. At CRYPTO 2017, Beläıd et al. presented two new private
multiplication algorithms over finite fields, to be used in secure masking
schemes. To date, these algorithms have the lowest known complexity
in terms of bilinear multiplication and random masks respectively, both
being linear in the number of shares d + 1. Yet, a practical drawback of
both algorithms is that their safe instantiation relies on finding matrices
satisfying certain conditions. In their work, Beläıd et al. only address
these up to d = 2 and 3 for the first and second algorithm respectively,
limiting so far the practical usefulness of their constructions.

In this paper, we use in turn an algebraic, heuristic, and experimental
approach to find many more safe instances of Beläıd et al.’s algorithms.
This results in explicit instantiations up to order d = 6 over large fields,
and up to d = 4 over practically relevant fields such as F28 .

Keywords: Masking · Linear algebra · MDS matrices

1 Introduction

It has become a well-accepted fact that the black-box security of a cryptographic
scheme and the security of one of its real-life implementations may be two quite
different matters. In the latter case, numerous side-channels or fault injection
techniques may be used to aid in the cryptanalysis of what could otherwise be
a very sensible design (for instance a provably-secure mode of operation on top
of a block cipher with no known dedicated attacks).

A successful line of side-channel attacks is based on the idea of differen-
tial power analysis (DPA), which was introduced by Kocher, Jaffe and Jun at
CRYPTO’99 [KJJ99]. The practical importance of this threat immediately trig-
gered an effort from cryptographers to find adequate protections. One of the
notable resulting counter-measures is the masking approach from Chari et al.
and Goubin and Patarin [CJRR99,GP99]. The central idea of this counter-
measure is to add a “mask” to sensitive variables whose observation through
a side-channel could otherwise leak secret information; such variables are for
instance intermediate values in a block cipher computation that depend on a
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 285–314, 2018.
https://doi.org/10.1007/978-3-030-03329-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_10&domain=pdf

286 P. Karpman and D. S. Roche

known plaintext and a round key. Masking schemes apply a secret-sharing tech-
nique to several masked instances of every sensitive variable: a legitimate user
knowing all the shares can easily compute the original value, while an adver-
sary is now forced to observe more than one value in order to learn anything
secret. The utility of this overall approach is that it is experimentally the case
that the work required to observe n values accurately through DPA increases
exponentially with n.

The challenge in masking countermeasures is to find efficient ways to compute
with shared masked data while maintaining the property that the observation of
n intermediate values is necessary to learn a secret (for some parameter n). When
computations are specified as arithmetic circuits over a finite field Fq, this task
reduces mostly to the specification of secure shared addition and multiplication in
that field. A simple and commonly used secret sharing scheme used in masking is
the linear mapping x �→

(
r1, . . . , rd, x +

∑d
i=1 ri

)
which makes addition trivial;

the problem then becomes how to multiply shared values. At CRYPTO 2003,
Ishai, Sahai and Wagner introduced exactly such a shared multiplication over
F2, proven secure in a d-probing model that they introduced [ISW03]. Their
scheme requires d(d + 1)/2 random field elements (i.e. bits) and (d + 1)2 field
multiplications to protect against an adversary able to observe d intermediate
values. This relatively high quadratic complexity in the order d of the scheme
lead to an effort to decrease the theoretical and/or practical cost of masking.

At EUROCRYPT 2016, Beläıd et al. presented a masking scheme over F2

with randomness complexity decreased to d + d2/4; implementations at low but
practically relevant orders d ≤ 4 confirmed the gain offered by their new algo-
rithm [BBP+16]. At CRYPTO 2017, the same authors presented two new private
multiplication algorithms over arbitrary finite fields [BBP+17]. The first, Algo-
rithm 4, decreases the number of bilinear multiplications to 2d + 1 at the cost
of additional constant multiplications and increased randomness complexity; the
second, Algorithm 5, decreases the randomness complexity to only d, at the cost
of d(d + 1) constant multiplications. Furthermore, both algorithms are proven
secure w.r.t. the strong, composable notions of d-(strong) non-interference from
Barthe et al. [BBD+16]. Yet a practical drawback of these last two algorithms
is that their safe instantiation depends on finding matrices satisfying a certain
number of conditions. Namely, Algorithm 4 uses two (related) matrices in F

d×d
q

for an instantiation at order d+1 over Fq, while Algorithm 5 uses a single matrix
in F

d+1×d
q for the same setting. In their paper, Beläıd et al. only succeed in pro-

viding “safe matrices” for the small cases d = 2 and d = 2, 3 for Algorithms 4
and 5 respectively, and in giving a non-constructive existence theorem for safe
matrices when q ≥ O(d)d+1 (resp. q ≥ O(d)d+2).

1.1 Our Contribution

In this work, we focus on the problem of safely instantiating the two algorithms of
Beläıd et al. from CRYPTO 2017. We first develop equivalent matrix conditions
which are in some sense simpler and much more efficient to check computation-
ally. We use this reformulation to develop useful preconditions based on MDS

New Instantiations of the CRYPTO 2017 Masking Schemes 287

matrices that increase the likelihood that a given matrix is safe. We show how
to generate matrices that satisfy our preconditions by construction, which then
allows to give an explicit sufficient condition, as well as a construction of safe
matrices for both schemes at order d ≤ 3. Our simplification of the conditions
also naturally transforms into a testing algorithm, an efficient implementation of
which is used to perform an extensive experimental search. We provide explicit
matrices for safe instantiations in all of the following cases:

– For d = 3, fields F2k with k ≥ 3
– For d = 4, fields F2k with 5 ≤ k ≤ 16
– For d = 5, fields F2k with 10 ≤ k ≤ 16, and additionally k = 9 for Algorithm 5.
– For d = 6, fields F2k with 15 ≤ k ≤ 16

These are the first known instantiations for d ≥ 4 or for d = 3 over F23 . We also
gather detailed statistics about the proportion of safe matrices in all of these
cases.

1.2 Roadmap

We recall the two masking schemes of CRYPTO 2017 and the associated matrix
conditions in Sect. 3. We give our simplifications of the latter in Sect. 4 and state
our preconditions in Sect. 5. A formal analysis of the case of order up to 3 is
given in Sect. 6, where explicit conditions and instantiations for these orders are
also developed. We present our algorithms and discuss their implementations in
Sect. 7, and conclude with experimental results in Sect. 8.

2 Preliminaries

2.1 Notation

We use K
m×n to denote the set of matrices with m rows and n columns over

the field K. We write m = rowdim A and n = coldimA. For any vector v , wt(v)
denotes the Hamming weight of v , i.e., the number of non-zero entries.

We use 0m×n (resp. 1m×n) to denote the all-zero (resp. all-one) matrix in
K

m×n for any fixed K (which will always be clear from the context). Similarly,
I d is the identity matrix of dimension d.

We generally use bold upper-case to denote matrices and bold lower-case
to denote vectors. (The exception is some lower-case Greek letters for matrices
that have been already defined in the literature, notably γ.) For a matrix M ,
M i,j is the coefficient at the ith row and jth column, with numbering (usually)
starting from one. (Again, γ will be an exception as its row numbering starts at
0.) Similarly, a matrix may be directly defined from its coefficients as (M i,j).

We use “hexadecimal notation” for binary field elements. This means that
a =

∑n−1
i=0 aiX

i ∈ F2n
∼= F2[X]/〈I(X)〉 (where I(X) is a degree-n irreducible

polynomial) is equated to the integer ã =
∑n−1

i=0 ai2i, which is then written in
base 16. The specific field representations we use throughout are:

288 P. Karpman and D. S. Roche

F22
∼= F2[x]/〈X2 + X + 1〉 F23

∼= F2[x]/〈X3 + X + 1〉
F24

∼= F2[x]/〈X4 + X + 1〉 F25
∼= F2[x]/〈X5 + X2 + 1〉

F26
∼= F2[X]/〈X6 + X + 1〉 F27

∼= F2[X]/〈X7 + X + 1〉
F28

∼= F2[X]/〈X8 + X4 + X3 + X + 1〉 F29
∼= F2[X]/〈X9 + X + 1〉

F210
∼= F2[X]/〈X10 + X3 + 1〉 F211

∼= F2[X]/〈X11 + X2 + 1〉
F212

∼= F2[X]/〈X12 + X3 + 1〉 F213
∼= F2[X]/〈X13 + X4 + X3 + X + 1〉

F214
∼= F2[X]/〈X14 + X5 + 1〉 F215

∼= F2[X]/〈X15 + X + 1〉
F216

∼= F2[X]/〈X16 + X5 + X3 + X + 1〉

Additional notation is introduced on first use.

2.2 MDS and Cauchy Matrices

An [n, k, d]K linear code of length n, dimension k, minimum distance d over the
field K is maximum-distance separable (MDS) if it reaches the Singleton bound,
i.e. if d = n − k + 1. An MDS matrix is the redundancy part A of a systematic
generating matrix G =

(
I k A

)
of a (linear) MDS code of length double its

dimension.
A useful characterization of MDS matrices of particular interest in our case

is stated in the following theorem (see e.g. [MS06, Chap. 11, Theorem 8]):

Theorem 1. A matrix is MDS if and only if all its minors are non-zero, i.e.
all its square sub-matrices are invertible.

Square Cauchy matrices satisfy the above condition by construction, and are
thence MDS. A (non-necessarily square) matrix A ∈ K

n×m is a Cauchy matrix
if Ai,j = (xi − yj)−1, where {x1, . . . , xn, y1, . . . , ym} are n + m distinct elements
of K.

A Cauchy matrix A may be extended to a matrix Ã by adding a row or a
column of ones. It can be shown that all square submatrices of Ã are invertible,
and thus themselves MDS [RS85]. By analogy and by a slight abuse of termi-
nology, we will say of a square matrix A that it is extended MDS (XMDS) if
all square submatrices of A extended by one row or column of ones are MDS.
Further depending on the context, we may only require this property to hold for
row (or column) extension to call a matrix XMDS.

A (possibly extended) Cauchy matrix A may be generalized to a matrix
A

′
by multiplying it with (non-zero) row and column scaling: one has A

′
i,j =

cidj · (xi − yj)−1, cidj
= 0. All square submatrices of generalized (extended)
Cauchy matrices are MDS [RS85], but not necessarily XMDS, as one may already
use the scaling to set any row or column of A

′
to an arbitrary value.

2.3 Security Notions for Masking Schemes

We recall the security notions under which the masking schemes studied in
this paper were analysed. These are namely d-non-interference (d-NI) and
d-strong non-interference (d-SNI), which were both introduced by Barthe

New Instantiations of the CRYPTO 2017 Masking Schemes 289

et al. [BBD+16] as stronger and composable alternatives to the original
d-probing model of Ishai et al. [ISW03].

Note that none of the notions presented below are explicitly used in this
paper, and we only present them for the sake of completeness. Our exposition is
strongly based on the one of Beläıd et al. [BBP+17].

Definition 2 (Gadgets). Let f : K
n → K

m, u, v ∈ N; a (u, v)-gadget for the
function f is a randomized circuit C such that for every tuple (x1, . . . ,xn) ∈
(Ku)n and every set of random coins R, (y1, . . . ,ym) ←� C (x1, . . . ,xn;R)
satisfies:

⎛
⎝

v∑
j=1

y1,j , . . . ,
v∑

j=1

ym,j

⎞
⎠ = f

⎛
⎝

u∑
j=1

x1,j , . . . ,
u∑

j=1

xm,j

⎞
⎠ .

One further defines xi as
∑u

j=1 xi,j, and similarly for yi; xi,j is called the jth
share of xi.

In the above, the randomized circuit C has access to random-scalar gates
that generate elements of K independently and uniformly at random, and the
variable R records the generated values for a given execution. Furthermore, one
calls probes any subset of the wires of C (or equivalently edges of its associated
graph).

Definition 3 (t-Simulability). Let C be a (u, v)-gadget for f : K
n → K

n,
and �, t ∈ N. A set {p1, . . . , p�} of probes of C is said to be t-simulable if
∃ I1, . . . , In ⊆ {1, . . . , u}; #Ii ≤ t and a randomized function π : (Kt)n →
K

� such that for any (x1, . . . ,xn) ∈ (Ku)n, {p1, . . . , p�} ∼ {π({x1,i, i ∈
I1}, . . . , {xn,i, i ∈ In})}.

This notion of simulability leads to the following.

Definition 4 (d-Non-interference). A (u, v)-gadget C for a function over K
n

is d-non-interfering (or d-NI) if and only if any set of at most d probes of C is
t-simulable, t ≤ d.

Definition 5 (d-Strong non-interference). A (u, v)-gadget C for a function
over K

n is d-strong non-interfering (or d-SNI) if and only if for every set P1

of at most d1 internal probes (that do not depend on “output wires” or output
shares yi,j’s) and every set P2 of d2 external probes (on output wires or shares)
such that d1 + d2 ≤ d, then P1 ∪ P2 is d1-simulable.

It is clear that a d-SNI gadget is also d-NI. Barthe et al. also showed that
the two notions were not equivalent, but that the composition of a d-NI and a
d-SNI gadget was d-SNI [BBD+16].

3 The Masking Schemes of CRYPTO 2017

We recall here the main ideas of the two masking schemes of Beläıd et al. intro-
duced at CRYPTO 2017 [BBP+17] and their associated matrix conditions; we
refer to that paper for a full description of the gadgets and algorithms.

290 P. Karpman and D. S. Roche

3.1 Pseudo-Linear Multiplication Complexity [BBP+17, Sect. 4]

This scheme is the composition of two gadgets, only the first of which is of
interest to us. In order to build a d-SNI multiplication gadget with d + 1 input
and output shares, Beläıd et al. first give a d-NI gadget with d + 1 input and
2d + 1 output shares, and then compress its output into d + 1 shares using a
d-SNI gadget from Carlet et al. [CPRR16].

To implement d-NI multiplication over a field K, the first gadget needs a
certain matrix γ ∈ K

d×d; in turn, this defines a related matrix δ ∈ K
d×d as

δ = 1d×d − γ. The multiplication algorithm is then derived from the equality:

a · b =

(
a0 +

d∑
i=1

(ri + ai)

)
·
(

b0 +
d∑

i=1

(si + bi)

)

−
d∑

i=1

ri ·
⎛
⎝b0 +

d∑
j=1

(δi,jsj + bj)

⎞
⎠ −

d∑
i=1

si ·
⎛
⎝a0 +

d∑
j=1

(γi,jrj + aj)

⎞
⎠ ,

where a =
∑d

i=0 ai, b =
∑d

i=0 bi are the shared multiplicands, and the ris and
sis are arbitrary (a priori random) values. This equality leads to defining the
output shares of this first gadget as:

– c0 :=
(
a0 +

∑d
i=1(ri + ai)

)
·
(
b0 +

∑d
i=1(si + bi)

)
;

– ci := − ri ·
(
b0 +

∑d
j=1(δi,jsj + bj)

)
, 1 ≤ i ≤ d;

– ci+d := − si ·
(
a0 +

∑d
j=1(γi,jrj + aj)

)
, 1 ≤ i ≤ d.

By considering a proper scheduling of the operations needed to compute the
above shares and the probes that this makes available to the adversary, Beläıd
et al. show that a necessary and sufficient condition for their resulting scheme
to be d-SNI is that γ and δ both satisfy a certain condition, stated below.

Condition 4.1 ([BBP+17]). Let γ ∈ K
d×d; � = 2d2 + 4d + 1; Dγ ,j ∈ K

d×d be
the diagonal matrix whose non-zero entry at row i is equal to γj,i; Td ∈ K

d×d

be the upper-triangular matrix whose non-zero entries are all one; and Tγ ,j ∈
K

d×d = Dγ ,jTd. Equivalently:

Id =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 0
...

. . .
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ , Dγ ,j =

⎛
⎜⎜⎜⎝

γj,1 0 · · · 0
0 γj,2 0
...

. . .
...

0 · · · 0 γj,d

⎞
⎟⎟⎟⎠ ,

Td =

⎛
⎜⎜⎜⎝

1 1 · · · 1
0 1 · · · 1
...

. . .
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ , Tγ ,j =

⎛
⎜⎜⎜⎝

γj,1 γj,1 · · · γj,1

0 γj,2 · · · γj,2

...
. . .

...
0 · · · 0 γj,d

⎞
⎟⎟⎟⎠ .

New Instantiations of the CRYPTO 2017 Masking Schemes 291

One then defines L ∈ K
(d+1)×� and Mγ ∈ K

d×� as:

L =

(
1 01×d 01×d 01×d 01×d

0d×1 Id 0d×d Id Id
· · · 01×d 11×d 11×d

Id Td Td
· · · 11×d

Td

)
,

Mγ = (0d×1 0d×d Id Id Dγ ,1 · · · Dγ ,d Td Tγ ,1 · · · Tγ ,d).

Finally, γ is said to satisfy Condition 4.1 if for any vector v ∈ K
� of Hamming

weight wt(v) ≤ d such that Lv contains no zero coefficient (i.e. is of maximum
Hamming weight d + 1), then Mγv
= 0d×1.

An equivalent, somewhat more convenient formulation of Condition 4.1 can be
obtained by contraposition; γ satisfies Condition 4.1 if:

v ∈ ker(M γ) ∧ wt(v) ≤ d ⇒ wt(Lv) < d + 1. (1)

Whichever formulation is adopted, the logic behind this condition is that a vio-
lation of the implication means that there exists a linear combination of at most
d probes that depends on all the input shares (as Lv is of full weight) and on no
random mask (as M γv = 0d×1). In that respect, L and M behave as “indicator
matrices” for the shares and masks on which depend individual probes.

3.2 Linear Randomness Complexity [BBP+17, Sect. 5]

The second scheme that we consider is defined by a single d-NI multiplication
gadget over K that has (d+1) input and output shares. An instantiation depends
on a matrix γ ∈ K

(d+1)×d whose rows sum to zero, i.e., such that
∑d

i=0 γi =
01×d.1 This lets us defining the output shares as:

– ci = a0bi +
∑d

j=1(γi,jrj + ajbi), 0 ≤ i ≤ d,

where again a =
∑d

i=0 ai, b =
∑d

i=0 bi are the shared multiplicands and the ris
are arbitrary values.

Beläıd et al. show that a necessary and sufficient condition for their resulting
gadget to be d-NI is that γ satisfies a condition similar to Condition 4.1, stated
below.

Condition 5.1 ([BBP+17]). Let γ ∈ K
(d+1)×d �, Dγ ,j, Td, Tγ ,j be as in

Condition 4.1 and K(ω0, . . . , ωd) be the field of rational fractions over indeter-
minates ω0, . . . , ωd; define L

′ ∈ K(ω0, . . . , ωd)(d+1)×� and M′
γ ∈ K

d×� as:

L′ =

(
1 01×d 01×d 01×d 01×d

0d×1 Id 0d×d ω0Id ω1Id
· · · 01×d ω011×d ω111×d

ωdId ω0Td ω1Td
· · · ωd11×d

ωdTd

)
,

M
′
γ = (0d×1 0d×d Id Dγ ,0 Dγ ,1 · · · Dγ ,d Tγ ,0 Tγ ,1 · · · Tγ ,d).

Then γ is said to satisfy Condition 5.1 if for any vector v ∈ K
� of Hamming

weight wt(v) ≤ d such that L
′
v contains no zero coefficient, then M

′
γv
= 0d×1.

1 Note that for convenience in the subsequent share definitions and consistency with
the notation of [BBP+17], the row index of γ starts from zero and not one.

292 P. Karpman and D. S. Roche

Note that as K is a subfield of K(ω0, . . . , ωd) (viz.the field of its constants),
the product L

′
v is well-defined. Also, again by contraposition, Condition 5.1 can

be expressed as:

v ∈ ker(M
′
γ) ∧ wt(v) ≤ d ⇒ wt(L

′
v) < d + 1. (2)

4 Simplifying and Unifying the Conditions

In this section, we describe a few simplifications and consolidations of the cor-
rectness and safety for the two schemes described in the previous section. These
simplifications are important for our analytical and algorithmic results, and the
consolidations of the two schemes allow for ease in presentation.

Specifically, we develop three related conditions C, C′, and C′′, on the matrices
M γ , Ld, M ′

γ , and L′
d defined in Conditions 4.1 and 5.1, such that the safety

of the masking schemes is guaranteed when these conditions are true. We prove
that the first condition C and the third condition C′′ are both exactly equivalent
to the requirements of Conditions 4.1 and 5.1. The second condition C′ is always
a sufficient condition as it implies the other two, and it is also necessary under
a very mild condition on the cardinality of K.

4.1 Unifying M γ and M ′
γ

Recall the definitions of matrices M γ from Condition 4.1 and M
′
γ from

Condition 5.1. These are both d × � matrices (where � = 2d2 + 4d + 1) con-
sisting of zeros, ones, and entries from γ. Moreover, M γ and M

′
γ are exactly

the same except for in one submatrix of d columns: this submatrix is T d in M γ

and T γ ,0 in M
′
γ .

We can unify these two matrices by considering, in the case of Condition
4.1, augmenting the γ matrix with an additional row of 1’s at index 0. Then
T d = T γ ,0 and we can consider only the second form of the matrix M

′
γ .

Note that the corresponding matrices Lγ and L
′
γ from Conditions 4.1 and

5.1 respectively are still not identical, but the locations of non-zero entries (i.e.,
the support) in Lγ and L

′
γ are the same.

Now for both schemes, there is a single matrix γ ∈ K
(d+1)×d which determines

their correctness (do the output shares always correspond to the multiplication
of the input value) and safety (is it possible for an attacker to learn any secret
with at most d probes).

To succinctly state the unified condition, we first define a simple predicate
Z for when a matrix X ∈ K

m×n (or column vector x ∈ K
m) has at least one

row of zeros:

Z(X) := ∃ i ∈ {1, . . . , m} s.t. ∀ j ∈ {1, . . . , n},X i,j = 0.

New Instantiations of the CRYPTO 2017 Masking Schemes 293

Based on the above discussion, we define the following crucial predicate for
the safety definition for two arbitrary matrices A and B with the same number
of columns:

C(A,B) := ∀ v ∈ ker(A) s.t. wt(v) ≤ rowdim(A), then Z(Bv). (3)

Typically we will have A = M ′
γ and B is either L or L

′
.

Now we can restate the correctness and safety conditions for the two schemes.
The following propositions follow directly from the definitions and discussions
so far.

Proposition 6. For γ ∈ K
(d+1)×d, the scheme of Sect. 3.1 is correct and safe

if and only if the following conditions are met, where δ =
(
21×d

1d×d

)
− γ:2

(1) γ0,j = 1 for all j ∈ {1, . . . , d}
(2) C(M

′
γ ,L)

(3) C(M
′
δ ,L)

Proposition 7. For γ ∈ K
(d+1)×d, the scheme of Sect. 3.2 is correct and safe

if and only if the following conditions are met:

(1)
∑d

i=0 γi = 01×d

(2) C(M
′
γ ,L

′
)

4.2 Equivalent Condition With Kernel Bases

Next we develop a condition similar to the definition of C(A,B) as defined in (3)
above, but in terms of kernel bases rather than individual vectors. This modified
condition is equivalent under a mild requirement on the size of the field K.

The general idea is that rather than considering all matrix-vector products
Bv , where v is a d-sparse vector in the right kernel of A, we consider instead the
kernel basis for a size-d subset of A’s columns, and multiply the corresponding
columns in B times this basis. Specifying this condition requires some additional
notation which will also be useful later on.

Let kerb(X) denote a basis of the right kernel of X . That is, any vector
v ∈ ker(X) is a linear combination of the columns of kerb(X).

Let [c1, . . . , ck] be a list of k distinct column indices, where each 1 ≤ ci ≤ �.
Selecting only these columns from any matrix with � columns is a linear operator
corresponding to a selection matrix P ∈ {0, 1}�×k, where P i,j = 1 iff cj = i.
Define S �

m as the set of all � × m selection matrices. That is, S �
m consists of all

{0, 1}-matrices with � rows and at most m columns, where there is a single 1 in
each column and no two 1s in the same row.

2 In fields of characteristic 2, the matrix 21×d is actually 01×d.

294 P. Karpman and D. S. Roche

Note that the product of a selection matrix and its transpose is an identity
matrix with some rows and columns set to zero. For any matrix (or vector)
X ∈ K

m×n with at most k non-zero rows, there is a selection matrix P ∈ Sk
m

such that PPTX = X .
The equivalent condition to (3) that we consider now is formed by multiplying

some subset of B ’s columns times a kernel basis of the same subset of A’s
columns:

C′(A,B) := ∀P ∈ S �
rowdim(A), Z(BP · kerb(AP)). (4)

One direction of the equivalence is straightforward, and the other depends
on the Schwartz-Zippel lemma and therefore on the size of the field. Even so,
the field size requirement here is very mild; indeed the field is sufficiently large
in all cases where we are aware of any valid constructions of the schemes.

Theorem 8. For any A ∈ K
n×� and B ∈ K

m×�, we have C′(A,B) ⇒ C(A,B).
If K has at least m + 1 distinct elements, then C′(A,B) ⇐ C(A,B) also.

Proof. We begin with the “⇒” direction.
Let v be a vector satisfying the conditions of C(A,B); that is, v ∈ kerA

and wt(v) ≤ rowdim(A). The latter fact means that there exists P ∈ S �
rowdim(A)

such that PPTv = v .
Because Av = 0, we then have (AP)(PTv) = 0, which means that the

vector PTv is a linear combination of the columns of kerb(AP).
The condition C(A,B) concerns the matrix-vector product Bv , which equals

BPPTv . From above, we know that this is a linear combination of the columns
in the matrix BP · kerb(AP). By the assumption that C′(A,B), this matrix
contains a zero row, and therefore any linear combination of its columns also
contains a zero row; hence Z(Bv).

For the “⇐” direction, we prove using the contrapositive. Assume there exists
some selection of columns P ∈ S �

n such that ¬Z(BP · kerb(AP)). We need to
show that ¬C(A,B).

Suppose the column dimension of kerb(AP) (i.e., the nullity of AP) is k,
and let x be a column vector of k indeterminates x1, . . . , xk. Now consider the
matrix-vector product BP · kerb(AP) · x . This is a column vector of dimension
m consisting of degree-1 polynomials in the k indeterminates. Furthermore, none
of these polynomials is zero because of the assumption ¬Z(BP · kerb(AP)).

The product of the m polynomials in BP · kerb(AP) · x is a single non-
zero polynomial in k variables with total degree m. By the Schwartz-Zippel-
DeMillo-Lipton lemma [Sch80, Corollary 1], and because #K > m, there must
exist some assignment of the k variables to values in K such that this product
polynomial is non-zero. That is, there exists some column vector w ∈ K

k such
that wt(BP · kerb(AP) · w) = m.

Because kerb(AP) · w ∈ K
n, there is an n-sparse vector v ∈ K

� such that
PTv = kerb(AP) · w . This vector v shows that C(A,B) is false. Namely, v ∈
ker(A) because Av = (AP)(PTv) = 0; it has low weight wt(v) ≤ n; and
Bv = (BP)(PTv) is of full weight m from the previous paragraph. ��

New Instantiations of the CRYPTO 2017 Masking Schemes 295

4.3 Eliminating Rows and Columns

The third simplification to the correctness and safety conditions of the two mask-
ing schemes that we develop is an equivalent condition to C(A,B) that depends
on less than half of the columns in the original matrices. The intuition is that
most of the columns of these matrices have weight 1, and thus those probes in
the masking scheme do not gain the attacker any real advantage. So we can focus
on only the parts of A and B whose columns have weight greater than 1. We
first develop some new terminology to talk about these submatrices, then prove
a lemma which shows how to eliminate columns from γ corresponding to the
weight-one probes, and finally state and prove the equivalent condition C′′.

So far the schemes are both defined by a matrix γ with d + 1 rows and d

columns. In fact, the definitions of matrices M γ , M
′
γ , L, and L

′
from Conditions

4.1 and 5.1 generalize to any rectangular matrix γ ∈ K
(d+1)×n. If γ has d + 1

rows and n columns, then M γ and M ′
γ both have n rows, while Ln and L′

n

have n + 1 rows, and all four matrices have �n = 2dn + 4n + 1 columns.
We focus on the bottom-right n × (dn + n) submatrix of each M ′

γ , Ln and
L′

n, which we call the “triangular part” of each. Formally, we define a linear
operator Δ such that, for any matrix A with n or n + 1 rows and 2dn + 4n + 1
columns, Δ(A) consists of the bottom-right n × (dn + n) submatrix of A.

In summary, we have:

Notice that the matrices Ln and L′
n have some different entries but the same

support; for convenience we denote by N n any matrix with this same dimension
and support.

Inspecting the definition of M
′
γ , we see that rows of this matrix correspond

to columns of γ, and removing one column of γ corresponds to removing a single
row and 2d + 4 columns from each of M

′
γ and N .

Notice also that the columns of M ′
γ and of Ln which are not in the triangular

parts all have weight at most one. This means, as we show in the following
technical lemma, that the effect of any such column choice (as a probe) can be
eliminated by removing one row each from M ′

γ and Ln. In terms of masking
schemes, this means that a single probe corresponding to these non-triangular
parts allows the adversary to cancel at most one random value and to learn at

296 P. Karpman and D. S. Roche

most one share. Because the number of shares is d + 1 in a scheme allowing d
probes, this results in no advantage for the adversary.

Lemma 9. Let γ ∈ K
(d+1)×n, M′

γ and Nn be as above. Suppose u ∈ K
�n is

a vector with wt(u) = 1 whose single non-zero entry is between index 2 and
dn + 3n + 1 inclusive, and v ∈ K

�n is any other vector. Then there exists a
selection matrix P ∈ Sn

n−1 and another vector w ∈ K
�n−1 with wt(w) ≤ wt(v)

such that

wt(M′
γPw) ≤ wt(M′

γ (u + v)) and wt(Nn−1w) ≥ wt(Nn(u + v)) − 1.

Proof. Write i for the index of the non-zero entry in u . We can see that the
ith column of M ′

γ and N n both have weight at most one. Indeed, for each
i ∈ {2, . . . , dn + 3n + 1}, there is a corresponding index j ∈ {1, . . . , n} such that
the ith columns of M ′

γ and N n are zero everywhere except possibly in row j
(provided that we continue to index the rows of N n starting at 0).

Removing the jth row from M ′
γ and N n results in two new matrices A,B

(respectively) whose ith columns are both zero, and hence Au = 0 and Bu = 0.
This means that

wt(Av) = wt(A(u + v)) ≤ wt(M ′
γ (u + v))

wt(Bv) = wt(B(u + v)) ≥ wt(N n(u + v)) − 1.

Write P ∈ Sn
n−1 as the matrix which selects all n columns of γ except for the

jth column. Now A and B are the same as M ′
γP and N n−1 respectively, except

that they each have 2d + 4 extra columns. The remaining task is to modify v so
that it is zero at all the indices corresponding to these extra columns, without
changing wt(Av) or wt(Bv).

We can see that d+3 of these extra columns come from the first dn+3n+1
columns of M ′

γ and N n and, since the jth row has been removed, they are in
fact now zero columns. So letting v ′ be the same as v with any such entries set
to zero, we do not change the products Av ′ or Bv ′ at all.

The d + 1 remaining extra columns come from the triangular parts Δ(M ′
γ)

and Δ(N n). There are now two cases to consider. First, if j = 1, i.e., we have
removed the second row of N n and the first row of M ′

γ . Then these extra
columns from the triangular part of A are all zero columns, and from B they
have the form (a 0 · · · 0)T for some non-zero entry a in the first row of N n.
Upon inspection, we see that these columns are exactly a times the very first
columns of A and B respectively. Therefore we can modify the vector v ′ to a
new vector v ′′, where any non-zero entries in such positions are divided by a
and added to the first entry, then set to zero. This does not change the value of
Av ′′ or Bv ′′.

The second case is that j ≥ 2, i.e., we have removed a later row. Then the
extra columns in A and B are exactly identical to the columns immediately to
their left in the respective matrices. So we can form v ′′ in this case by adding
any non-zero entry of v ′ in such positions to the adjacent position and then
setting it to zero, without changing Av ′′ or Bv ′′.

New Instantiations of the CRYPTO 2017 Masking Schemes 297

After this, we have a vector v ′′ with wt(v ′′) ≤ wt(v), and with zeros in all of
the “extra column” indices of A and B , such that wt(Av ′′) ≤ wt(M ′

γ (u + v))
and wt(Bv ′′) ≥ wt(N n(u + v)) − 1. Finally, setting w to be the sub-vector of
v ′′ with these extra column entries removed completes the proof. ��

Repeated application of the previous lemma allows us to completely eliminate
all of the columns in M ′

γ and N n other than the triangular parts, at the cost
of having to consider all possible column-subsets of γ itself. This leads to the
following condition:

C′′(M ′
γ ,N n) := ∀ k ∈ {1, . . . , n},∀P ∈ Sn

k , C(Δ(M ′
γP),Δ(N k)). (5)

In other words, we restrict our attention to only square submatrices of the trian-
gular parts of M ′

γ and N n. As it turns out, this condition is exactly equivalent
to the original one.

Theorem 10. For any field K, matrix γ ∈ K
(d+1)×n where n ≥ 1, and matrix

Nn ∈ {Ln,L′
n}, we have C′′(M′

γ ,Nn) ⇔ C(M′
γ ,Nn).

Proof. We prove the equivalent double negation ¬C(M ′
γ ,N n) ⇔ ¬C′′(M ′

γ ,
N n).

First we prove the “⇒” direction by induction on n. Assuming that
¬C(M ′

γ ,N n) means there exists a vector v ∈ K
�n such that wt(v) ≤ n,

M ′
γv = 0, and N nv has full weight n + 1.
For the base case, let n = 1. Because wt(v) = 1 and wt(N nv) = 2, the lone

non-zero entry of v must correspond to a weight-2 column in N n, and the only
such columns are in the triangular part. So considering the vector formed from
the last d + 1 entries of v shows that ¬C(Δ(M ′

γ),Δ(N n)), which is equivalent
to ¬C′′(M ′

γ ,N n) when n = 1.
Now for the induction case, let n ≥ 2 and assume the ⇒ direction is true for

all size-(n − 1) subsets of columns of γ.
Again we start with a vector v which is a counterexample to C(M ′

γ ,N n). If v
has any non-zero entry in indices 2 through dn+3n+1, then we can isolate that
entry in its own vector u and write v = u+v∗, where wt(v∗) = wt(v)−1 ≤ n−1.
Now apply Lemma 9 to obtain a vector w ∈ K

�n−1 and a selection matrix P ∈
Sn

n−1 such that wt(w) ≤ n−1, M ′
γPw = 0, and wt(N n−1w) = n−1. Therefore

¬C(M ′
γP ,N n−1), so we can apply the induction hypothesis to complete this

sub-case.
Otherwise, the non-zero entries of v are in the very first index, or in the last

(d + 1)n indices which correspond to the triangular parts. But the first columns
of N n and M ′

γ are all zeros except for the first row in N n, which is eliminated
in the triangular part Δ(N n). Therefore, if this entry of v is non-zero, we can
change it to zero without affecting M ′

γv , which must equal 0, or the last n rows
of N nv , which must be all non-zero. Hence the vector consisting of the last
(d+1)n entries of v is a counterexample to C(Δ(M ′

γ),Δ(N n)). This completes
the ⇒ direction of the proof.

298 P. Karpman and D. S. Roche

For the ⇐ direction, assume that ¬C′′(M ′
γ ,N n). This means there is some

k ∈ {1, . . . , n}, some selection of columns from γ defined by P ∈ Sn
k , and some

v ∈ K
�k such that wt(v) ≤ k, Δ(M ′

γP)v = 0, and Δ(N k)v has full weight k.
Because the triangular part is a subset of the whole, we can prepend v with

dk + 3k + 1 zeros to obtain a vector v ′ such that M ′
γPv

′ = 0 and N kv
′ is

non-zero everywhere except possibly in the first row. Observe that the row of
N k immediately above the triangular part is exactly identical to the top row of
Δ(N k), so in fact N kv

′ has full weight k + 1.
This shows that there exists at least one k ≥ 1 such that there exists a

selection P ∈ Sn
k and a vector v ′ which is a counterexample to C(M ′

γP ,N k).
Assume now that k is the largest such integer.

If k = n, then M ′
γP = M ′

γ , and v ′ is a counterexample to C(M ′
γ ,N n)

already.
Otherwise, if k < n, we show that we can construct a larger selection matrix

Q and corresponding vector w satisfying the conditions above, which is a con-
tradiction to the assumption that k is the largest such value.

Construct another selection matrix Q ∈ Sn
k+1 consisting of the columns

selected by P plus some additional column i; for convenience write ζ = γQ .
Note that M ′

γP and N k are submatrices of M ′
ζ and N k+1 respectively, the

latter both having exactly one more row and some number of extra columns.
Therefore by extending v ′ to a larger vector v ′′ by inserting zeros in the loca-
tions of these extra columns, we have that M ′

ζv
′′ is zero everywhere except

possibly at index i, and N k+1v
′′ is non-zero everywhere except at index i. Let

a be the ith entry of M ′
ζv

′′ and b be the ith entry of N k+1v
′′.

Finally, we show how to add one more entry to v ′′ to “fix” the exceptions at
index i in the previous sentence, making a = 0 and b
= 0. There are four cases
to consider:

1. If a = 0 and b
= 0, then we are done.
2. If a = 0 and b = 0, then set the (i + 1)th entry of v to 1; this corresponds to

a column of zeros in M ′
ζ and a column of the identity matrix in N k+1. So

adding that column keeps a = 0 but sets b to 1.
3. If a
= 0 and b
= 0, then set the (k + i + 1)th entry of v to −a. This entry

corresponds to a column of the identity matrix in M ′
ζ and a column of zeros

in N k+1, so adding it keeps b
= 0 but cancels the value of a.
4. If a
= 0 and b = 0, then set the (2k + i + 2)th entry of v to −a/ζ0,i. This

entry corresponds to a column of Dζ ,0 in M ′
ζ , and a column of either I k+1

or ω0I k+1 within N k+1, and therefore the change to v cancels out a and sets
b to some non-zero value.

This newly constructed vector has weight at most wt(v ′′) + 1 ≤ k + 1, and
is therefore a counterexample to C(M ′

ζ ,N k+1). This is a contradiction to the
assumption that k was maximal, which completes the ⇐ direction and the entire
proof. ��

New Instantiations of the CRYPTO 2017 Masking Schemes 299

5 A Matrix Precondition

We use the results of the previous two sections to develop a useful precondition
for generating γ matrices which satisfy the safety and correctness conditions of
the two schemes. This precondition guarantees the correctness conditions, and
(as we will see in later sections) seems to increase the probability that a matrix
satisfies the safety condition. We then show how to explicitly generate matrices
which satisfy these preconditions.

5.1 Definitions

As in the previous section, let γ ∈ K
(d+1)×d be a matrix whose entries deter-

mine the correctness and safety of one of the two masking schemes according to
Proposition 6 or Proposition 7. (Either γ must have a row equal to 1, or they
must sum to 0.)

Then Theorems 8 and 10 tell us that a sufficient condition for safety is that for
every square submatrix of Δ(M ′

γ), all vectors in its right kernel have at least one
joint zero entry when multiplied with the corresponding submatrix of Δ(N d).
The general idea of the preconditions developed in this section is to minimize
the rank of this right kernel, effectively limiting the number of possible “unsafe”
vectors. In particular, when a square submatrix of Δ(M ′

γ) is non-singular, then
its nullity is zero and the scheme is safe with respect to that subset of rows and
columns.

This suggests a strategy to increase the likelihood of a matrix leading to a
safe scheme: one may try to choose γ in a way that ensures that Δ(M ′

γP)Q has
a trivial kernel for as many selection matrices P ∈ Sd

k and Q ∈ S �k
k as possible.

That is, square submatrices of the triangular part of M ′
γ should be non-singular

as often as possible.
A good such choice for γ is to take it to be such that all its square submatrices

are MDS. To justify this claim, recall from Sect. 2 that any square submatrix of
an MDS matrix is invertible, i.e., has a trivial kernel. Further, from the definition
of Δ(M ′

γ), its columns consist of (partial) rows of γ; therefore many of its
submatrices are in fact (transposed) submatrices of γ itself.

Example 11. Consider for the case d = 3, the submatrix of Δ(M
′
γ) given by:

X =

⎛
⎝

γ0,1 γ1,1 γ2,1

0 γ1,2 γ2,2

0 γ1,3 γ2,3

⎞
⎠ .

(Note that in the case of Condition 4.1, γ0,1 must equal 1.) If all square sub-
matrices of γ are MDS, the bottom-right 2 × 2 submatrix of X is necessarily
non-singular, and γ0,1
= 0, so therefore this entire submatrix is non-singular.
This would not be the case for an arbitrary matrix γ, even if say, one takes it
to be full-rank.

300 P. Karpman and D. S. Roche

We now state our two preconditions on the matrices used to instantiate either
masking scheme. As will be clear in the remainder of this paper, these precondi-
tions are by no means sufficient, nor necessary. Yet we will also see, both formally
(in Sect. 6) and experimentally (in Sect. 8) how they may be useful.

Precondition 4.1. A matrix γ ∈ K
(d+1)×d satisfies Precondition 4.1 for

Condition 4.1 if it can be written as γ =
(
11×d

A

)
, and both matrices A and

1d×d − A are row XMDS.

Any such matrix γ clearly satisfies the correctness condition, which is item (1)
in Proposition 6. The XMDS property also ensures that all square submatrices
of γ and δ are non-singular, which (we expect) will make the safety conditions
(2) and (3) from Proposition 6 more likely satisfied.

Precondition 5.1. A matrix γ ∈ K
(d+1)×d satisfies Precondition 5.1 for

Condition 5.1 if
∑d

i=0 γi = 01×d and all of its square submatrices are MDS.

Again, this precondition guarantees the correctness of the scheme, corre-
sponding to item (1) of Proposition 7, and the non-singular submatrices make
it (we expect) more likely that the safety condition, item (2), is also true.

5.2 Explicit constructions

It is relatively easy to check if a given matrix satisfies either of the above pre-
conditions. Here we do even better, providing a direct construction for families
of matrices that satisfy each of them.

Theorem 12 (Satisfying Precondition 4.1). Let {x1, . . . , xd, y1, . . . , yd} ∈
K\{0} be 2d distinct non-zero elements of K, and define matrix A ∈ K

d×d by
Ai,j = xi/(xi − yj). Then the corresponding γ ∈ K

(d+1)×d satisfies Precondition
4.1.

Proof. Define the row-extended Cauchy matrix B as B0,j = 1, 1 ≤ j ≤ d;
B i,j = (xi − yj)−1, 1 ≤ i, j ≤ d. The generalized extended matrix obtained
from B by the row scaling c =

(
1 x1 · · · xd

)
is equal to γ, and all its square

submatrices are invertible by construction, hence A is row XMDS.
The matrix C = 1d×d − A is given by

(
(xi − yj − xi) · (xi − yj)−1

)
=(−yj · (xi − yj)−1

)
. It is a generalized Cauchy matrix with column scaling given

by
(−y1 . . . −yd

)T , and is then MDS. Because 0 /∈ {x1, . . . , xd, y1, . . . , yd},
one may extend C by one row on top using x0 = 0, resulting in C

′
s.t.

C
′
0,j = −yj ·(0−yj)−1 = 1, 1 ≤ j ≤ d; C

′
i,j = C i,j , 1 ≤ i, j ≤ d. In other words,

C
′
=

(
11×d

C

)

is a generalized Cauchy matrix, whose square submatrices are all invertible by
construction, hence C = 1d×d − A is row XMDS. ��

New Instantiations of the CRYPTO 2017 Masking Schemes 301

Theorem 13 (Satisfying Precondition 5.1). Let {x1, . . . , xd, xd+1, y1, . . . ,
yd} ∈ K be 2d + 1 distinct elements of K; let A =

(
(xi − yj)−1

)
; and let

c =
(
c1 · · · cd+1

)
be a non-zero vector in the left kernel of A. Then γ =(

ci · (xi − yj)−1
)

satisfies Precondition 5.1.

Proof. By construction, the d + 1 × d Cauchy matrix A has a left kernel of
dimension one. Furthermore, any vector of this kernel that is not the null vector
is of full Hamming weight, as being otherwise would imply the existence of k ≤ d
linearly-dependent rows of A. The row scaling coefficients

(
c1 · · · cd+1

)
are thus

all non-zero, and the generalized Cauchy matrix A′ is such that its rows sum to
the null vector and all its square submatrices are invertible. ��

6 Analytic Construction for Order up to 3

In this section, we develop explicit polynomial conditions on the entries of gen-
eralized Cauchy matrices that are sufficient to ensure both the correctness and
safety of the two masking schemes described in Sect. 3.

The results are explicit constructions for many field sizes. For order d = 1,
Corollary 15 proves that any non-zero γ matrix makes the scheme secure. For
order d = 2, Corollary 16 proves that our MDS preconditions of the previ-
ous section always produce safe constructions without the need for any further
checks. Finally, for order d = 3, Theorems 19 and 21 provide xi and yi values
to use in order to generate safe Cauchy matrices for any field of characteristic 2
with q ≥ 4.

The idea behind our preconditions in Sect. 5 was to ensure that all square
submatrices of γ are non-singular, and therefore many square submatrices of the
matrix Δ(M ′

γ) have nullity zero. For small dimensions, we can go further and
actually require that all submatrices of Δ(M ′

γ) which could possibly violate the
condition C′′ from (5) are non-singular. This will in turn guarantee a safe and
correct construction by Theorem 10 and Propositions 6 and 7.

6.1 Columns Which Must be Selected

Let γ ∈ K
(d+1)×n and recall the definitions of Δ(N n) and Δ(M ′

γ); in the
former case we show only the positions of the non-zero entries, which are the
same whether Nn = Ln or Nn = L′

n.

Δ(Nn) =

⎛
⎜⎜⎜⎝

∗ ∗ · · · ∗
∗ · · · ∗

. . .
...
∗

∗ ∗ · · · ∗
∗ · · · ∗

. . .
...
∗

· · ·
∗ ∗ · · · ∗

∗ · · · ∗
. . .

...
∗

⎞
⎟⎟⎟⎠ ,

Δ(M ′
γ) =

⎛
⎜⎜⎜⎝

γ0,1 γ0,1 · · · γ0,1

γ0,2 · · · γ0,2

. . .
...

γ0,n

γ1,1 γ1,1 · · · γ1,1

γ1,2 · · · γ1,2

. . .
...

γ1,n

· · ·
γd,1 γd,1 · · · γd,1

γd,2 · · · γd,2

. . .
...

γd,n

⎞
⎟⎟⎟⎠ .

302 P. Karpman and D. S. Roche

Notice that all pairs of columns in M ′
γ and N n with the same index (hence

corresponding to the same probe in the masking scheme) have the same weight.
The next lemma shows that any unsafe set of probes from among these columns
must include at least two of the full-weight columns.

Lemma 14. Let γ ∈ K
(d+1)×n,M′

γ ,Ln be as above. If γ has no zero
entries, then any column selection P ∈ S �n

n which is a counterexample to
C′(Δ(M′

γ),Δ(Nn)) must include at least two columns of full weight n from
Δ(M′

γ) and Δ(Nn).

Proof. A counterexample to C′(Δ(M ′
γ),Δ(N n)) is a selection matrix P ∈ S �n

n

such that the matrix product Δ(N n)P · kerb(Δ(M ′
γ)P) has no zero rows.

The only columns of Δ(N n) which are non-zero in the last row are those
columns of full weight, so at least one must be included in P for the product
to have no zero rows. But in order for Δ(M ′

γ)P to have a non-trivial kernel, it
must have a second column with a non-zero in the last row. ��

6.2 Dimensions 1 and 2

Combined with the results of the prior sections, this leads immediately to solu-
tions for orders n = 1 or n = 2.

Corollary 15. For any γ ∈ K
(d+1)×1 that contains no zero entries, we have

C(M′
γ ,N1).

Proof. Clearly there is no way to include two full-weight columns in a selec-
tion P ∈ S �1

1 of a single column. Therefore from Lemma 14, we have
¬C′(Δ(M ′

γ),Δ(N 1)). By Theorems 8 and 10 this implies the statement
above. ��
Corollary 16. For any γ ∈ K

(d+1)×2 such that all square submatrices of γ are
MDS, we have C(M′

γ ,N2).

Proof. Any selection of 2 columns of Δ(M ′
γ) that includes at least 2 full-weight

columns is simply a transposed submatrix of γ of dimension 2. By Theorem
1, any such submatrix is non-singular, and thus has a trivial kernel. Therefore
by Lemma 14 there are no counterexamples to C′(Δ(M ′

γ),Δ(N 2)), and by
Theorems 8 and 10 again the stated result follows. ��

Most notably, these corollaries guarantee that any matrix with column
dimension 1 or 2 which satisfies Precondition 4.1 or Precondition 5.1 is an instan-
tiation of the respective masking scheme that is correct and safe. Because we
have explicit constructions for these preconditions in Theorems 12 and 13 over
any field Fq with q > 2d+1, we also have explicit instantiations for the masking
schemes secure against 1 or 2 probes.

New Instantiations of the CRYPTO 2017 Masking Schemes 303

6.3 Dimension 3

Next we turn to the case of n = 3. It is no longer possible to construct safe
instances of γ based on the MDS preconditions alone, but there is only one
other shape of square submatrices that need be considered.

Lemma 17. Let γ ∈ K
(d+1)×3,M′

γ ,Ln be as above. If every square submatrix
of γ is MDS, and for all distinct triples of indices {i, j, k} ⊆ {0, 1, . . . , d+1} the
matrix ⎛

⎝
γi,1 γj,1 γk,1

γi,2 γj,2 γk,2

γi,3 γj,3 0

⎞
⎠

is non-singular, then we have C(M′
γ ,N3).

Proof. The goal is to ensure that no square submatrix of Δ(M ′
γ) which could

possibly be part of a counterexample to C′(Δ(M ′
γ),Δ(N 3)) has a non-trivial

kernel. Already we know from Lemma 14 that any such submatrix must include
two distinct full-weight columns. Because all square submatrices of γ are MDS,
these two columns have a trivial kernel, meaning a third column must be added
if one hopes to find a counterexample. This leads to three cases, depending on
the weight of this third column.

If the third column has weight 1, the situation is analogous to that of Example
11. The corresponding matrix is non-singular if and only if some 2×2 submatrix
of γ is non-singular, which it must be by the MDS assumption.

Next, if the third column has full weight 3, then we have a 3 × 3 submatrix
of γ, which again must be non-singular.

The remaining case is that the third column has weight 2, as in the statement
of the lemma. All that remains is to prove that this index k must be distinct
from i and j. By way of contradiction, and without loss of generality, suppose
i = k. Then after subtracting the third column from the first, we obtain the
matrix ⎛

⎝
0 γj,1 γi,1

0 γj,2 γi,2

γi,3 γj,3 0

⎞
⎠ ,

which is non-singular if and only if the original matrix is non-singular. And
indeed, this matrix must be non-singular because the upper-right 2 × 2 matrix
is a submatrix of γ.

Therefore the only remaining case of a submatrix which could be a coun-
terexample to C′(Δ(M ′

γ),Δ(N 3)) is one of the form given in the statement of
the lemma. Applying once again Theorems 8 and 10 completes the proof. ��

This finally leads to a way to construct safe instances for the schemes when
d = 3 based only on polynomial conditions, via the following steps:

1. Write down a symbolic 4 × 3 matrix γ satisfying Precondition 4.1 or
Precondition 5.1 according to the constructions of Theorem 12 or Theorem
13, leaving all the xi’s and yi’s as indeterminates.

304 P. Karpman and D. S. Roche

2. Extract all 3 × 3 matrices from γ that match the form of Lemma 17 and
compute their determinants, which are rational functions in the xis and yis.

3. Factor the numerators of all determinants, removing duplicate factors and
factors such as xi − yi which must be non-zero by construction.

4. A common non-root to the resulting list of polynomials corresponds to a γ
matrix which is safe for the given scheme.

Next we show the results of these computations for each of the two schemes.
We used the Sage [Sag16] computer algebra system to compute the lists of poly-
nomials according to the procedure above, which takes about 1 s on a modern
laptop computer.

Proposition 18. If x1, x2, x3, y1, y2, y3 ∈ Fq are distinct non-zero elements so
that the list of polynomials in Fig. 1 all evaluate to non-zero values, then the
matrix γ constructed according to Theorem 12 generates a safe masking scheme
according to Condition 4.1.

From the degrees of these polynomials, and by the Schwartz-Zippel lemma
[Sch80] and applying the union bound, a safe construction for Condition 4.1
exists over any field Fq with q > 54.

In fact, we have an explicit construction for any binary field Fq with q ≥ 16.

Theorem 19. Let (x1, x2, x3) = (1, 3, 5) and (y1, y2, y3) = (6, 4, a). Then for
any k ≥ 4, the matrix γ constructed according to Theorem 12 generates a safe
masking scheme over F2k according to Condition 4.1.

Proof. Small cases with 4 ≤ k ≤ 8 are checked computationally by making the
appropriate substitutions into the polynomials of Fig. 1.

For k ≥ 9, consider the degrees of the xis and yis when treated as polynomials
over F2. The highest degree is deg y3 = 3, and all other elements have degree at
most 2. Inspecting the polynomials in Fig. 1, we see that they are all sums of
products of at most three distinct variables. Therefore, when evaluated at these
xis and yis, the degree of any resulting polynomial is at most 7. Over F2k where
k ≥ 8 there is therefore no reduction, and the polynomials are guaranteed to be
non-zero in all cases because they are non-zero over F28 . ��

Next we do the same for the masking scheme with linear randomness com-
plexity, namely that of Condition 5.1.

Proposition 20. If x1, x2, x3, x4, y1, y2, y3 ∈ Fq are distinct non-zero elements
so that the list of polynomials in Fig. 2 all evaluate to non-zero values, then the
matrix constructed according to Theorem 13 generates a safe masking scheme
according to Condition 5.1.

Applying the Schwartz-Zippel lemma and union bound in this context guar-
antees a safe construction for Condition 5.1 over any field Fq with q > 36. Again,
we have an explicit construction for binary fields of order at least 16.

New Instantiations of the CRYPTO 2017 Masking Schemes 305

x2x3 − y1y2 − x2y3 − x3y3 + y1y3 + y2y3
x2x3 − x3y1 − x3y2 + y1y2 − x2y3 + x3y3
x2x3 − x2y1 − x2y2 + y1y2 + x2y3 − x3y3
x1x3 − y1y2 − x1y3 − x3y3 + y1y3 + y2y3
x1x3 − x3y1 − x3y2 + y1y2 − x1y3 + x3y3
x1x3 − x1y1 − x1y2 + y1y2 + x1y3 − x3y3
x1x2 − y1y2 − x1y3 − x2y3 + y1y3 + y2y3
x1x2 − x2y1 − x2y2 + y1y2 − x1y3 + x2y3
x1x2 − x1y1 − x1y2 + y1y2 + x1y3 − x2y3

x2y1y2 − x3y1y2 − x2x3y3 + x3y1y3 + x3y2y3 − y1y2y3
x2y1y2 − x3y1y2 + x2x3y3 − x2y1y3 − x2y2y3 + y1y2y3
x1y1y2 − x3y1y2 − x1x3y3 + x3y1y3 + x3y2y3 − y1y2y3
x1y1y2 − x3y1y2 + x1x3y3 − x1y1y3 − x1y2y3 + y1y2y3
x1y1y2 − x2y1y2 − x1x2y3 + x2y1y3 + x2y2y3 − y1y2y3
x1y1y2 − x2y1y2 + x1x2y3 − x1y1y3 − x1y2y3 + y1y2y3
x2x3y1 + x2x3y2 − x2y1y2 − x3y1y2 − x2x3y3 + y1y2y3
x1x3y1 + x1x3y2 − x1y1y2 − x3y1y2 − x1x3y3 + y1y2y3
x1x2y1 + x1x2y2 − x1y1y2 − x2y1y2 − x1x2y3 + y1y2y3

x1x2x3 − x2x3y1 − x2x3y2 − x1y1y2 + x2y1y2 + x3y1y2 − x1x2y3 − x1x3y3 + x2x3y3 + x1y1y3 + x1y2y3 − y1y2y3
x1x2x3 − x1x3y1 − x1x3y2 + x1y1y2 − x2y1y2 + x3y1y2 − x1x2y3 + x1x3y3 − x2x3y3 + x2y1y3 + x2y2y3 − y1y2y3
x1x2x3 − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2 − x3y1y2 + x1x2y3 − x1x3y3 − x2x3y3 + x3y1y3 + x3y2y3 − y1y2y3

Fig. 1. Polynomials which should be non-zero to generate a safe construction according
to Condition 4.1. There are 9 degree-2 polynomials with 6 terms, 9 degree-3 polynomials
with 6 terms, and 3 degree-3 polynomials with 12 terms.

Theorem 21. Let (x1, x2, x3, x4) = (1, 2, 5, 6) and (y1, y2, y3) = (4, 7, f). Then
for any k ≥ 4, the matrix γ constructed according to Theorem 13 generates a
safe masking scheme over F2k according to Condition 5.1.

The proof is the same as Theorem 19, consisting of computational checks for
4 ≤ k ≤ 8 and then an argument for all k ≥ 9 based on the degrees of the xi

and yi polynomials.

7 Efficient Algorithms to Test Safeness

We now turn to a computational approach, in order to deal with the schemes at
order d > 3 that were not treated in the previous section.

x2x3x4 − x3x4y1 − x3x4y2 − x2y1y2 + x3y1y2 + x4y1y2 − x2x3y3 − x2x4y3 + x3x4y3 + x2y1y3 + x2y2y3 − y1y2y3
x2x3x4 − x2x4y1 − x2x4y2 + x2y1y2 − x3y1y2 + x4y1y2 − x2x3y3 + x2x4y3 − x3x4y3 + x3y1y3 + x3y2y3 − y1y2y3
x2x3x4 − x2x3y1 − x2x3y2 + x2y1y2 + x3y1y2 − x4y1y2 + x2x3y3 − x2x4y3 − x3x4y3 + x4y1y3 + x4y2y3 − y1y2y3
x1x3x4 − x3x4y1 − x3x4y2 − x1y1y2 + x3y1y2 + x4y1y2 − x1x3y3 − x1x4y3 + x3x4y3 + x1y1y3 + x1y2y3 − y1y2y3
x1x3x4 − x1x4y1 − x1x4y2 + x1y1y2 − x3y1y2 + x4y1y2 − x1x3y3 + x1x4y3 − x3x4y3 + x3y1y3 + x3y2y3 − y1y2y3
x1x3x4 − x1x3y1 − x1x3y2 + x1y1y2 + x3y1y2 − x4y1y2 + x1x3y3 − x1x4y3 − x3x4y3 + x4y1y3 + x4y2y3 − y1y2y3
x1x2x4 − x2x4y1 − x2x4y2 − x1y1y2 + x2y1y2 + x4y1y2 − x1x2y3 − x1x4y3 + x2x4y3 + x1y1y3 + x1y2y3 − y1y2y3
x1x2x4 − x1x4y1 − x1x4y2 + x1y1y2 − x2y1y2 + x4y1y2 − x1x2y3 + x1x4y3 − x2x4y3 + x2y1y3 + x2y2y3 − y1y2y3
x1x2x4 − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2 − x4y1y2 + x1x2y3 − x1x4y3 − x2x4y3 + x4y1y3 + x4y2y3 − y1y2y3
x1x2x3 − x2x3y1 − x2x3y2 − x1y1y2 + x2y1y2 + x3y1y2 − x1x2y3 − x1x3y3 + x2x3y3 + x1y1y3 + x1y2y3 − y1y2y3
x1x2x3 − x1x3y1 − x1x3y2 + x1y1y2 − x2y1y2 + x3y1y2 − x1x2y3 + x1x3y3 − x2x3y3 + x2y1y3 + x2y2y3 − y1y2y3
x1x2x3 − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2 − x3y1y2 + x1x2y3 − x1x3y3 − x2x3y3 + x3y1y3 + x3y2y3 − y1y2y3

Fig. 2. Polynomials which should be non-zero to generate a safe construction according
to Condition 5.1. There are 12 degree-3 polynomials with 12 terms each.

306 P. Karpman and D. S. Roche

To test whether a matrix may be used to safely instantiate either of the
masking schemes of Beläıd et al., we use the condition C′(M ′

γ ,N d) defined in
(4), which according to Theorem 8 is a sufficient condition for the scheme under
consideration to be safe. The definition of this condition immediately indicates an
algorithm, which we have implemented with some optimizations, using M4RIE
[Alb13] for the finite field arithmetic.

7.1 The Algorithm

To test whether a matrix γ ∈ K
(d+1)×d satisfies the conditions of Proposition 6

or Proposition 7, simply construct M ′
γ and N d and for all d-subsets of columns

P ∈ S �
d , check if Z(N dP · kerb(M ′

γP)).
This algorithm is much more efficient than the one directly suggested by

Condition 4.1: instead of testing all
∑d

i=1

(
�
i

)
qi vectors of F

�
q of weight d or less,

it is enough to do
(

�
d

)
easy linear algebra computations. While this remains

exponential in d, it removes the practically insuperable factor qd and gives a
complexity that does not depend on the field size (save for the cost of arithmetic).

(Note that we could have used the condition C′′ as in Theorem 10 instead,
but this turns out to be more complicated in practice due to the need to take
arbitrary subsets of the rows and columns of M ′

γ and N d.)
We now describe two implementation strategies for this algorithm.

7.2 Straightforward Implementation with Optimizations

Two simple optimizations may be used to make a straightforward implementa-
tion of the above algorithm more efficient in practice.

Skipping Bad Column Picks. We can see already from the support of N d that
some subsets of columns P ∈ S �

d never need to be checked because Z(N dP) is
already true, independent of the actual choice of γ. This is the case for example
when the columns selected by P are all of weight 1.

For the specific cases of d = 4, this reduces the number of supports to be
considered from

(
49
4

)
= 211 876 to 103 030, saving roughly a factor 2. A similar

behaviour is observed for d = 5, when one only has to consider 6 448 239 supports
among the

(
71
5

)
= 13 019 909 possible ones. Note that the same optimization

could be applied to the näıve algorithm that exhaustively enumerates low-weight
vectors of F

�
q.

Testing Critical Cases First. Looking again at how M ′
γ is defined, it is easy to

see that for some column selections P , M ′
γP does not in fact depend on γ. For

these, it is enough to check once and for all that Z(N γP · kerb(M ′
γP)) indeed

holds (if it does not, the scheme would be generically broken). Going further,
even some column subsets such that M γP actually depends on γ may always
be “safe” provided that γ satisfies a certain precondition, such as for instance
being MDS, as suggested in Sect. 5.

New Instantiations of the CRYPTO 2017 Masking Schemes 307

Conversely, it may be the case that for some P , Z(N dP ·kerb(M ′
γP)) often

does not hold. It may then be beneficial to test this subset P before others
that are less likely to make the condition fail. We have experimentally observed
that such subsets do exist. For instance, in the case d = 5 for Condition 4.1,
only ≈320 000 column subsets seem to determine whether a matrix satisfies the
condition or not.3 There, checking these supports first and using an early-abort
strategy, verifying that a matrix does not satisfy the condition is at least ≈20
times faster than enumerating all possible column subsets.

7.3 Batch Implementation

Especially when the matrix γ under consideration actually satisfies the required
conditions, checking these using the straightforward strategy entails considerable
redundant computation due to the overlap between subsets of columns.

To avoid this, we also implemented a way to check the condition C′(M ′
γ ,N d)

that operates over the entire matrix simultaneously, effectively considering many
subsets of columns in a single batch.

Recall that the algorithm needs to (1) extract a subset of columns of M ′
γ , (2)

compute a right kernel basis for this subset, (3) multiply N d times this kernel
basis, and (4) check for zero rows in the resulting product.

Steps (2) and (3) would typically be performed via Gaussian elimination: For
each column of M ′

γ that is in the selection, we search for a pivot row, permute
rows if necessary to move the pivot up, then eliminate above and below the pivot
and move on. If there is no pivot in some column, this means a new null vector
has been found; we use the previous pivots to compute the null vector and add
it to the basis. Finally, we multiply this null space basis by the corresponding
columns in N d and check for zero rows.

The key observation for this algorithm is that we can perform these steps
(2) and (3) in parallel to add one more column to an existing column selection.
That is, starting with some subset of columns, we consider the effect on the null
space basis and the following multiplication by N d simultaneously for all other
columns in the matrices. Adding columns with pivots does not change the null
space basis or the product with N d. Columns with no pivots add one additional
column to the null space basis, which results in a new column in the product
with N d. This new column of N dP · kerb(M ′

γP) may be checked for non-zero
entries and then immediately discarded as the search continues; in later steps,
the rows of this product which already have a non-zero entry no longer need to
be considered.

All of this effectively reduces the cost of the check by a factor of � compared
to the prior version, replacing the search over all size-d subsets with a search over
size-(d − 1) subsets and some matrix computations. This strategy is especially
effective when the γ matrix under consideration is (nearly or actually) safe,
meaning that the early termination techniques above will not be very useful.

3 This figure was found experimentally by regrouping the supports in clusters of 10 000,
independently of q. A more careful analysis may lead to a more precise result.

308 P. Karpman and D. S. Roche

8 Experimental Results and Explicit Instantiations

We implemented both algorithms of the previous section in the practically-useful
case of binary fields, using M4RIE for the underlying linear algebra [Alb13],
and searched for matrices fulfilling Conditions 4.1 and 5.1 in various settings,
leading to instantiations of the masking schemes of Beläıd et al. up to d = 6
and F216 .4 We also collected statistics about the fraction of matrices satisfying
the conditions, notably in function of the field over which they are defined, and
experimentally verified the usefulness of Precondition 4.1.

8.1 Statistics

We give detailed statistics about the proportion of preconditioned matrices allow-
ing to instantiate either masking scheme up to order 6; this is presented in
Tables 1 and 2. The data was collected by drawing at random matrices satisfy-
ing Precondition 4.1 or Precondition 5.1 and checking if they satisfied the safety
conditions or not for the respective scheme.

For combinations of field size and order where no safe matrix was found, we
give the result as an upper bound.

Notice that the probability for Condition 5.1 appears to be consistently a
bit higher than that for Condition 4.1. The combinations of field size q and
order d where safe instances are found were almost the same for both schemes,
except for order 5 and q = 29, where a safe preconditioned matrix was found for
Condition 5.1 but not for Condition 4.1. This difference between the schemes may
be explained by the fact that Condition 4.1 places conditions on two matrices γ
and 1d×d − γ, whereas Condition 5.1 depends only on the single matrix γ.

An important remark is that for the smallest field F25 , the statistics do not
include results about the non-preconditioned safe matrices, which were the only
safe ones we found, see the further discussion below.

We indicate the sample sizes used to obtain each result, as they may vary
by several orders of magnitude due to the exponentially-increasing cost of our
algorithm with the order. As an illustration, our batch implementation is able to
check 1 000 000 dimension-4 matrices over F26 in 12 400 seconds on one core of a
2 GHz Sandy Bridge CPU, which increases to 590 000 and 740 000 s for F212 and
F216 respectively because of more expensive field operations; 1 600 000 s allowed
to test ≈145 000 and ≈25 000 dimension-5 matrices for these last two fields, and
≈2 400 dimension-6 matrices for F216 .

Usefulness of the Preconditions. We now address the question of the use-
fulness of the preconditions of Sect. 5. Our goal is to determine with what proba-
bility randomly-generated matrices in fact already satisfy the preconditions, and
whether doing so for a matrix γ has a positive impact on its satisfying Condition
4.1 or Condition 5.1.
4

F216 is the largest field size implemented in M4RIE, and d = 6 the maximum dimen-
sion for which safe instantiations (seem to) exist below this field size limitation.

New Instantiations of the CRYPTO 2017 Masking Schemes 309

Table 1. Instantiations over F25 ∼ F210 . Sample sizes (as indicated by symbols in the
exponents) were as follows: ∗ ≈ 400 000; ‡ = 1 000 000; � ≈ 4 000 000; † ≈ 11 000 000.

q 25 26 27 28 29 210

d Condition 4.1 and Precondition 4.1

4 ≤2−28.8 2−15.25† 0.009† 0.11‡ 0.34‡ 0.59‡

5 – – – – ≤2−27.5 2−18.9�

d Condition 5.1 and Precondition 5.1

4 ≤2−33.5 2−9.10‡ 0.062‡ 0.27‡ 0.53‡ 0.73‡

5 – – – – 2−18.6∗ 2−11.0∗

Table 2. Instantiations over F211 ∼ F216 . Sample sizes (as indicated by symbols in
the exponents) were as follows: ‡ = 1000 000; ∗ ≈ 400 000; � ≈ 145 000; • ≈ 65 000;
� ≈ 40 000; � ≈ 30 000; � ≈ 25 000; � ≈ 560 000; � ≈ 12 700.

q 211 212 213 214 215 216

d Condition 4.1 and Precondition 4.1

4 0.77‡ 0.88‡ 0.94‡ 0.97‡ 0.98‡ 0.99‡

5 0.0015∗ 0.04� 0.2• 0.45� 0.67� 0.82�

6 – – – – 2−16.8� 0.003�

d Condition 5.1 and Precondition 5.1

4 0.86‡ 0.92‡ 0.96‡ 0.98‡ 0.99‡ 1.00‡

5 0.021∗ 0.14∗ 0.39∗ 0.62∗ 0.78∗ 0.89∗

6 – – – – 2−12.7� 0.002�

We did this experimentally in two settings, both for the first scheme corre-
sponding to Condition 4.1: order d = 4 over F28 and order d = 5 over F213 . We
generated enough random matrices γ in order to obtain respectively 20 000 and
2 000 of them satisfying Condition 4.1, and counted how many of the correspond-
ing safe pairs (γ, 1d×d − γ) had at least one or both elements that were MDS
and XMDS. The same statistics were gathered for all the generated matrices,
including the ones that were not safe. The results are respectively summarized
in Tables 3 and 4.

Table 3. Case d = 4 over F28 , for Condition 4.1.

Total One+ MDS Both MDS One+ XMDS Both XMDS

#Random 672 625 634 096 389 504 515 840 315 273

#Safe 20 000 19 981 19 981 19 981 19 981

Ratio 0.030 0.032 0.051 0.039 0.063

310 P. Karpman and D. S. Roche

Table 4. Case d = 5 over F213 , for Condition 4.1.

Total One+ MDS Both MDS One+ XMDS Both XMDS

#Random 15 877 15 867 14 978 15 486 14 623

#Safe 2 000 2 000 2 000 2 000 2 000

Ratio 0.13 0.13 0.13 0.13 0.14

A first comment on the results is that as already remarked in Sect. 5, the
preconditions are not necessary to find safe instantiations. Indeed, for a few of
the smallest cases d = 3, q = 23 and d = 4, q = 25, we were only able to find
safe instantiations that did not meet the preconditions. For example, one can
clearly see that the leading 2 × 2 submatrix of the following matrix is singular,
and hence the matrix is not MDS:

γ =

⎛
⎝
4 2 6
4 2 3
4 2 3

⎞
⎠ .

Yet (surprisingly), γ and 1−γ satisfy all requirements of Condition 4.1 over F23 .
Nonetheless, the precondition is clearly helpful in the vast majority of cases.

From our experiments, in cases where any preconditioned safe matrix exists, then
nearly all safe matrices satisfy the precondition, while a significant fraction of
random matrices do not. Enforcing the precondition by construction or as a first
check is then indeed a way to improve the performance of a random search of
a safe matrix. This is especially true for larger orders; for example, we did not
find any safe matrices for order d = 6 over F215 by random search, but only by
imposing Precondition 4.1.

Lastly, one should notice that specifically considering Cauchy matrices seems
to further increase the odds of a matrix being safe, beyond the fact that it satisfies
Condition 4.1: in the case d = 4, F28 , Table 1 gives a success probability of 0.11,
which is significantly larger than the 0.063 of Table 3, and in the case d = 5,
F213 , Table 2 gives 0.2, also quite higher than the 0.14 of Table 4. As of yet, we
do not have an explanation for this observation.

8.2 Instantiations of [BBP+17, Sect. 4]

We conclude by giving explicit matrices allowing to safely instantiate the scheme
of [BBP+17, Sect. 4] over various binary fields from order 3 up to 6; the case
of order at most 2 is treated in Sect. 6 (Beläıd et al. also provided examples
for d = 2). Our examples include practically-relevant instances with d = 3, 4
over F28 .

We only give one matrix γ for every case we list, but we emphasise that as
is required by the masking scheme, this means that both γ and δ = 1d×d − γ
satisfy Condition 4.1. We list instances only for the smallest field size we know
of, and for F28 (when applicable), but have computed explicit instances for all

New Instantiations of the CRYPTO 2017 Masking Schemes 311

field sizes up to F216 . These are given in the full version of this paper [KR18,
Appendix A].

Instantiations at Order 3. The smallest field for which we could find an
instantiation at order 3 was F23 . Recall that we also have an explicit construction
in Sect. 6 for any 2k with k ≥ 4.

γ(F23) =

⎛
⎝
3 5 4
3 6 7
3 5 4

⎞
⎠ γ(F28) =

⎛
⎝
e3 b7 50
bd e8 8b
53 25 a0

⎞
⎠

Instantiations at Order 4. The smallest field for which we could find an
instantiation at order 4 was F25 . The following matrices γ(Fq) may be used to
instantiate the scheme over Fq.

γ(F25) =

⎛
⎜⎜⎝
1c c 1e b
1c c 1e 12
10 18 17 14
1c c 1e 10

⎞
⎟⎟⎠ γ(F28) =

⎛
⎜⎜⎝
56 5e a1 3d
97 27 71 c7
f5 ae 68 88
1c 3 9c 8e

⎞
⎟⎟⎠

Instantiations at Order 5. The smallest field for which we could find an
instantiation at order 5 was F210 . The following matrix may be used to instantiate
the scheme over F210 .

γ(F210) =

⎛
⎜⎜⎜⎜⎝

276 13e 64 1ab 120
189 181 195 30f 3fe
20a 3a1 199 30 2db
156 1ab 2f8 e5 2a8
303 321 265 d8 3a

⎞
⎟⎟⎟⎟⎠

Instantiations at Order 6. The smallest field for which we could find an
instantiation at order 6 was F215 . The following matrix may be used to instantiate
the scheme over F215 .

γ(F215) =

⎛
⎜⎜⎜⎜⎜⎜⎝

151d 5895 5414 392b 2092 29a6
5c69 2f9e 241d 2ef7 baa 6f40
6e0d 8cf 7ca1 6503 23dc 6b3b
10d7 588e 2c22 1245 6a38 6484
1637 7062 2ae0 d1b 5305 381f
23f6 7d5 21bf 2879 2033 4377

⎞
⎟⎟⎟⎟⎟⎟⎠

8.3 Instantiations of [BBP+17, Sect. 5]

We now give similar instantiation results for the scheme with linear randomness
complexity. This time, only a single matrix of dimension (d + 1)× d is necessary
to obtain a d-NI scheme. As in the previous case, we only focus here on the cases
where 3 ≤ d ≤ 6, and only list the matrices over the smallest binary field we
have as well as F28 (where possible). We refer to [KR18] for all other cases.

312 P. Karpman and D. S. Roche

Instantiations at Order 3. The smallest field for which we could find an
instantiation at order 3 was F23 . Recall that we also have an explicit construction
in Sect. 6 for any 2k with k ≥ 4.

γ(F23) =

⎛
⎜⎜⎝
1 7 4
4 4 4
2 1 4
7 2 4

⎞
⎟⎟⎠ γ(F28) =

⎛
⎜⎜⎝
da d5 e6
e8 1d 44
ad b3 ce
9f 7b 6c

⎞
⎟⎟⎠

Instantiations at Order 4. The smallest field for which we could find an
instantiation at order 4 was F25 . The following matrices γ(Fq) may be used Fq.

γ(F25) =

⎛
⎜⎜⎜⎜⎝

17 f 13 16
b 7 1a 11
1 1e 19 3

1b 10 2 a
6 6 12 e

⎞
⎟⎟⎟⎟⎠

γ(F28) =

⎛
⎜⎜⎜⎜⎝

ac 39 c0 36
79 5f d9 51
9d 16 ca 63
a3 cb 6 81
eb bb d5 85

⎞
⎟⎟⎟⎟⎠

Instantiations at Order 5. The smallest field for which we could find an
instantiation at order 5 was F29 . The following matrix may be used to instantiate
the scheme over F29 .

γ(F29) =

⎛
⎜⎜⎜⎜⎜⎜⎝

7d 12c 18 1a3 da
121 131 109 1a7 3b
4a 131 91 a4 1c4

17c cb 14b 41 57
fd 87 ac 17a 149
97 160 67 19b 3b

⎞
⎟⎟⎟⎟⎟⎟⎠

Instantiations at Order 6. The smallest field for which we could find an
instantiation at order 6 was F215 . The following matrix may be used to instantiate
the scheme over F215 .

γ(F215) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

475c 77e7 64ef 7893 4cd1 6e20
63dd 71f 29da 600e 36be 1db7
5511 d63 3719 4874 664 5014
410e 7cf2 9d9 10a1 7525 6098
7bfe 2998 7e20 1438 35e6 51e
7564 75d3 221a 67c7 56f1 18d5
3e04 5d22 2fcf 33b7 6a39 5ed0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

8.4 Minimum Field Sizes for Safe Instantiations

We conclude by briefly comparing the minimum field sizes for which we could
find safe instantiations of Conditions 4.1 and 5.1 with the ones given by the non-
constructive existence theorems of Beläıd et al. Namely, [BBP+17, Theorem 4.5]

New Instantiations of the CRYPTO 2017 Masking Schemes 313

guarantees the existence of a pair of safe matrices for Condition 4.1 in dimension
d over Fq as long as q > 2d · (12d)d, and [BBP+17, Theorem 5.4] of a safe matrix
for Condition 5.1 as long as q > d ·(d+1) ·(12d)d. We give in Table 5 the explicit
values provided by these two theorems for 2 ≤ d ≤ 6 and q a power of two,
along with the experimental minima that we found. From these, it seems that
the sufficient condition of Beläıd et al. is in fact rather pessimistic.

Table 5. Sufficient field sizes for safe instantiations in characteristic two. Sizes are
given as log(q).

d/min(log(q)) [BBP+17,
Theorem 4.5]

Section 8.2 [BBP+17,
Theorem 5.4]

Section 8.3

2 11 3 12 3

3 19 3 20 3

4 26 5 27 5

5 33 10 35 9

6 41 15 43 15

Acknowledgements. We thank Daniel Augot for the interesting discussions we had
in the early stages of this work.

This work was performed while the second author was graciously hosted by the
Laboratoire Jean Kuntzmann at the Université Grenoble Alpes.

The first author was supported in part by the French National Research Agency
through the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02).

The second author was supported in part by the National Science Foundation under
grants #1319994 and #1618269, and in part by the Office of Naval Research award
#N0001417WX01516.

Some of the computations were performed using the Grace supercomputer hosted
by the U.S. Naval Academy Center for High Performance Computing, with funding
from the DoD HPC Modernization Program.

References

[Alb13] Albrecht, M.: The M4RIE library, The M4RIE Team (2013)
[BBD+16] Barthe, G., et al.: Strong non-interference and type-directed higher-order

masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM (2016)

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multiplica-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 22

[BBP+17] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Private multiplication over finite fields. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 397–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 14

https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14

314 P. Karpman and D. S. Roche

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches
to Counteract Power-Analysis Attacks, in Wiener [Wie99], pp. 398–412

[CPRR16] Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic Decomposition for
Probing Security. IACR Cryptology ePrint Archive 2016, 321 (2016)

[GP99] Goubin, L., Patarin, J.: DES and differential power analysis the “Duplica-
tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48059-5 15

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis, in Wiener
[Wie99], pp. 388–397

[KR18] Karpman, P., Roche, D.S.: New Instantiations of the CRYPTO 2017 Mask-
ing Schemes. IACR Cryptology ePrint Archive 2018, 492 (2018)

[MS06] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes,
12th edn. North-Holland Mathematical Library, North-Holland (2006)

[RS85] Roth, R.M., Seroussi, G.: On generator matrices of MDS codes. IEEE
Trans. Inf. Theor. 31(6), 826–830 (1985)

[Sag16] The Sage Developers: Sagemath, the Sage Mathematics Software System
(Version 7.4) (2016)

[Sch80] Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial
identities. J. ACM 27(4), 701–717 (1980)

[Wie99] Wiener, Michael (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48405-1

https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1

Statistical Ineffective Fault Attacks
on Masked AES with Fault

Countermeasures

Christoph Dobraunig1, Maria Eichlseder1, Hannes Gross1, Stefan Mangard1,
Florian Mendel2, and Robert Primas1(B)

1 Graz University of Technology, Graz, Austria
robert.primas@iaik.tugraz.at

2 Infineon Technologies AG, Neubiberg, Germany

Abstract. Implementation attacks like side-channel and fault attacks
are a threat to deployed devices especially if an attacker has physical
access. As a consequence, devices like smart cards and IoT devices usually
provide countermeasures against implementation attacks, such as mask-
ing against side-channel attacks and detection-based countermeasures
like temporal or spacial redundancy against fault attacks. In this paper,
we show how to attack implementations protected with both masking
and detection-based fault countermeasures by using statistical ineffective
fault attacks using a single fault induction per execution. Our attacks are
largely unaffected by the deployed protection order of masking and the
level of redundancy of the detection-based countermeasure. These obser-
vations show that the combination of masking plus error detection alone
may not provide sufficient protection against implementation attacks.

Keywords: Implementation attack · Fault attack · SFA · SIFA

1 Introduction

Fault attacks and passive side-channel attacks, like power [17] or EM analy-
sis [21], are very powerful attacks on implementations of cryptographic algo-
rithms. Therefore, devices like smart cards and IoT devices implement corre-
sponding countermeasures, especially if they are potentially physically accessi-
ble by an attacker. In the case of symmetric cryptography, the typical approach
to protecting an implementation against these attacks is to use masking and
redundancy mechanisms. Masking is the most prominent and widely deployed
countermeasure against passive side-channel attacks. There exists a wide range
of masking schemes for software and hardware [15,22,23] providing protection
up to a given protection order.

The list of authors is in alphabetical order (https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf).

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 315–342, 2018.
https://doi.org/10.1007/978-3-030-03329-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_11&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

316 C. Dobraunig et al.

For redundancy mechanisms against fault attacks, there has been less
research compared to masking. A standard approach to counteract fault attacks
is to use temporal or spacial redundancy mechanisms to detect errors. The basic
idea is to compute critical operations multiple times and to release the output
only if all redundant computations match. There are also works that directly
combine masking and redundant encoding techniques for error detection [24].
The standard reasoning when combining masking and error-detection mech-
anisms is that their effects add up. For example, assume an implementation
of AES protected by a masking scheme of protection order d and all encryp-
tion/decryption operations are always computed d times, compared, and the
output is only released if the outputs of all d operations match. In this case, the
typical assumption is that this implementation is secured against up to d fault
inductions in one execution/encryption, because this is detected by the redun-
dant computations, as well as secured against side-channel attacks of up to order
d due to the masking scheme.

This reasoning is valid for fault attacks that exploit faulty outputs of a cryp-
tographic algorithm to reveal the key. The most prominent attacks of this type
are Differential Fault Attacks (DFA) [2] and Statistical Fault Attacks (SFA) [13].
However, some variants of fault attacks are based on a different approach. Ineffec-
tive fault attacks (IFA) [5] and Statistical Ineffective Fault Attacks (SIFA) [10]
exploit those outputs of a cipher that are correct although a fault induction
has been performed. While IFA requires exact knowledge about the location
and effect of a fault, SIFA has much more relaxed requirements, thus allowing to
exploit noisy faults whose exact effect is unknown to the attacker. The basic idea
of SIFA is to repeatedly execute a cryptographic operation with a fixed key for
different inputs and to apply a fault induction for each execution. The attacker
then collects those outputs of the cryptographic operation where the fault induc-
tion has not changed any intermediate value. Given that the implementation is
protected by an error-detection scheme, such as a redundant execution of the
cipher, this corresponds exactly to the valid outputs of the system. In fact, the
error detection that is implemented against DFA provides exactly the filtering
of the outputs which is needed to apply SIFA or IFA.

Our Contribution. So far, implementations combing masking and error-
detection schemes were typically thought to be secure against attacks exploiting
single ineffective faults due to masking, as discussed for example by Clavier for
IFA [5]. It was typically assumed that all shares representing an intermediate
value would need to be faulted for exploiting ineffective faults and it was an
open question whether this can be done efficiently in practice.

In this work, we show that SIFA attacks are much more powerful than
expected so far. Our central contribution is to show that SIFA is not only
independent of the degree of redundancy but also essentially independent of
the degree of masking for typical masked implementations and hence a suit-
able choice against implementations with countermeasures against both power
analysis and fault attacks. Additionally, we show that SIFA is not restricted to

Statistical Ineffective Fault Attacks on Masked AES 317

...

Implementation view

Round R − 1

Round R

•

...

Analysis view

K

•

Fig. 1. Biased fault attacks on masked, redundant implementations: high-level view.

biased faults. Instead, any type of fault might be suitable to mount this kind
of attack. In order to better explain why, we introduce a change of perspective
by separating the fault location and the logical attack location. To back up our
claims we provide a broad evaluation based on multiple (masked) S-boxes and
two real AES implementations.

More concretely, we demonstrate that faulting a single share during the com-
putation of an S-box is often sufficient to induce a bias in an unshared intermedi-
ate value, which can then be exploited with a statistical analysis based on SIFA.
Unlike classical fault attacks, attackers cannot directly use this fault as a distin-
guisher for the key recovery attack: they cannot recover this intermediate value
from observing the ciphertext and guessing parts of the key, but can only recover
the unshared output of the S-box (Fig. 1). We analyze the impact of the local
fault on the unshared output for several different S-boxes (including the AES
S-box), fault distributions, masking schemes, and protection orders, as well as
other fault countermeasures like dummy rounds. We conclude that in all analyzed
cases, a simple fault setup with a single fault attempt per encryption is sufficient
to recover part of the key, given a suitable number of faulted encryptions. This
number depends on the precision of the fault and the deployed countermeasures;
for example, 1000 encryptions with a cheap clock glitching setup are sufficient
for an 8-bit AES software implementation protected with 10th-order masking
and arbitrary temporal redundancy on block cipher level running on a standard
8-bit microcontroller.

2 Background on Statistical Faults

2.1 Statistical Fault Attacks

Statistical Fault Attacks (SFA), originally proposed by Fuhr et al. [13], present a
way to recover an AES key with quite relaxed assumptions on the fault induction.
In fact, SFA solely requires the attacker to let one AES state byte in round 9
follow any (possibly unknown) non-uniform distribution. This can be achieved
in practice, e.g., by using several types of stuck-at faults or instruction skips.

318 C. Dobraunig et al.

Given a set of faulty ciphertexts, SFA works by partially decrypting every
ciphertext to the faulted state byte S9 in round 9. This requires guessing 32 bits
of the last round key K10, as well as the calculation of the inverse ShiftRows,
SubBytes, and MixColumns operation:

S9 = MC−1 ◦ SB−1 ◦ SR−1(C ⊕ K10).

Note that guessing the penultimate round key (K9) is not needed, since it does
not influence the non-uniformity of S9. For each key guess the distance of the
distribution of S9 to a uniform distribution can now be measured, e.g., by using
the χ2-statistic (CHI) or the closely related Squared Euclidean Imbalance (SEI).
For a sufficient number of evaluated ciphertexts, the key guess corresponding to
the highest CHI or SEI statistic is most likely correct. The necessary number of
ciphertexts depends on the strength of the bias, i.e., the distance of the biased
distribution p from the uniform distribution, which is quantified by the capacity
C(p). If the bias is small, then the necessary number of faulted ciphertexts is
inverse proportional to C(p); we refer to [10] for a more detailed discussion.

One obvious downside of SFA, from a practical perspective, is that it relies
on exploiting faulty ciphertexts. This is problematic, since most cryptographic
implementations that operate with critical data can be expected to have various
countermeasures against implementation attacks in place. A fault countermea-
sure like temporal or spacial redundancy would already prevent SFA using single
fault inductions. While an adoption of SFA to some fault countermeasures is pos-
sible, a significantly more powerful attacker would be required. Hence, the threat
of SFA to such protected implementations is limited.

2.2 Statistical Ineffective Fault Attacks

Statistical Ineffective Fault Attacks (SIFA) [10] allow an attacker to circumvent
many popular fault countermeasures. As the name suggests, and in contrast
to SFA, SIFA solely relies on exploiting faulted encryptions where the induced
faults are ineffective and the obtained (filtered) ciphertexts are hence always
correct. The basic observation of SIFA is that induced faults can lead to a non-
uniform distribution of intermediate values for the cases where the fault has
been ineffective, which in turn can be exploited in a key-recovery attack. The
data complexity of the attack then depends on the strength of the bias in the
targeted intermediate variable and the necessary number of faulted encryptions
to obtain sufficiently many ineffective samples.

SIFA is applicable just as easily for more than two redundant computations,
since only one computation needs to be faulted. In fact, it has been shown in [10]
that SIFA is not only applicable against redundancy countermeasures, but also
against infective countermeasures [27]. Although in the latter case more faulted
encryptions are necessary, the presented attacks are still efficient.

Consider an AES with simple temporal redundancy and an attacker that is
able to fault a certain byte in round 9 such that the faulted value follows some
non-uniform distribution, which is not known to the attacker. If the attacker is

Statistical Ineffective Fault Attacks on Masked AES 319

faulting only one of the redundant computations, the attacker will eventually
observe correct ciphertexts where the induced fault was ineffective. This filtered
set of correct ciphertexts will, when partially decrypted using a correct key guess,
typically also show some non-uniform, biased distribution in the faulted byte,
related to the non-uniform distribution after fault induction. Now, the attacker
can perform the same key recovery attack as in SFA. The basic intuition here
is that certain values of the faulted byte lead to ineffective faults and hence
correct ciphertexts more often than others. As a consequence, when decrypting
this filtered set of correct ciphertexts using a correct key guess, certain values in
the faulted byte will show up more frequently than others. Still, knowledge about
the exact effect of the fault induction (and the resulting non-uniformity) is not
required, since the SEI or CHI metric measures the distance of any distribution
to a uniform distribution.

This fact will be important when SIFA is performed against masked imple-
mentations (cf. Sect. 3). Here it is practically impossible to predict the actual
effect of a fault induction if the attacked implementation is unknown. At the
same time it is still comparably easy to cause a joint non-uniform distribution
over all shares of an intermediate variable as discussed in the upcoming sections.
However, as we will see, it is beneficial to change the usual view that faults
just manipulate values. Instead, to better understand the underlying principles
exploited in our attack, it is more useful to see the faults as changes to the actual
function that is computed.

3 Faults on Masking

In this section, we study the influence of single faults on masked AND gates and
subsequently on masked S-boxes. To do so, we first briefly recapitulate the fun-
damentals of masking. Then, we discuss how faults influence the distribution of
unmasked values by taking masked AND gates as an example. After that, we eval-
uate how single faults influence masked implementations of some S-boxes. Finally,
we take a closer look at the internal activities in a faulted masked S-box that allow
an SFA and SIFA and argue that it is probably always possible to influence the
distribution of input and output values of masked S-boxes, so that an attacker can
exploit this behavior using techniques introduced for SFA and SIFA.

For an easier understanding of why single faults on a single share can cause
a bias in unshared values, we consider very simple fault models such as stuck-at
faults in the following exposition. However, it is important to note that the attack
approach generalizes efficiently to noisy, unpredictable and imprecise faults. For
a discussion of how the attack complexity scales under the influence of noise, we
refer to Sect. 5 and the SIFA analysis in [10].

3.1 Concept of Masking

The goal of masking is to randomize the representation of security-sensitive data
in each execution to counteract side-channel analysis by making the resulting
side-channel leakage, such as power consumption or electromagnetic emanation,

320 C. Dobraunig et al.

independent of the underlying data. The most popular masking approaches are
Boolean masking schemes, which are formed over finite field arithmetic in GF(2n).

In Boolean masking, a sensitive variable x is split into a number of so-called
shares (denoted xi) which, when considered on their own or in conjunction of
up to d shares, are statistically independent of the unshared variable x. This
degree of independence is usually referred to as the protection order d and
requires to split each variable with sensitive information into at least d + 1
shares. The shares are uniformly random in each execution, but at any time, it
is ensured that the sum over all shares again results in the unshared variable x:

x = x0 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xd.

In a similar manner, functions over shared variables are split into component
functions fi(. . .) such that again a correct and secure sharing of the original
function is established:

f(x, y) = f0(. . .) ⊕ f1(. . .) ⊕ f2(. . .) ⊕ · · · ⊕ fd(. . .) .

Throughout the entire implementation, a proper separation of shares and
of the output of the component functions needs to be ensured in order to not
violate the dth-order independence, which is commonly expressed in the probing
model of Ishai et al. [16]. In the probing model, an attacker is modeled with
the ability to probe up to d intermediate results of the masked implementation.
An implementation is said to be secure if the probing attacker cannot gain any
statistical advantage in guessing any secret variable by combining the probed
results in an arbitrary manner. While this share separation can be easily ensured
for functions which are linear over GF(2n) – for example, the masked calculation
of x ⊕ y can be performed share-wise (xi ⊕ yi) –, the secure implementation of
nonlinear functions usually requires the introduction of fresh randomness.

As an example for a shared implementation of a nonlinear function, we con-
sider the generic masked multiplication algorithm by Ishai et al. [16]. In order
to securely calculate q = x · y, each of the d + 1 shares of x is multiplied with
each of the shares of y, resulting in (d + 1)2 multiplication terms. Subsequently,
the multiplication terms are summed up together with fresh random variables
denoted ri,j , and distributed to the output shares qi (Algorithm 1).

A first-order masked GF(2) multiplication, which corresponds to the calcu-
lation of an AND gate, is given in (1):

q0 = x0y0 ⊕ r0,1

q1 = x1y1 ⊕ (r0,1 ⊕ x0y1 ⊕ x1y0).
(1)

A uniform distribution of each of the shares of q is ensured by the random
r shares. In general, the joint distribution of any d shares of q in the masked
multiplication algorithm is uniform, or in other words, any d shares are indepen-
dently and identically (uniformly) distributed. It thus appears as if in order to
insert a bias in the underlying unshared value, an attacker would need to insert
a biased fault in either each share of x or y, or to insert a bias in each of the
component functions in the calculation of q. However, in the following, we show
that this intuition is not true.

Statistical Ineffective Fault Attacks on Masked AES 321

Algorithm 1. Masked GF(2n) multiplication according to Ishai et al. [16] (ISW)
Input: x0, . . . xd, y0, . . . yd ∈ GF(2n)
Output: q0, . . . qd ∈ GF(2n)
1: for i = 0 to d do
2: for j = i + 1 to d do

3: ri,j
?←− GF(2n)

4: ti,j ← ri,j
5: tj,i ← ri,j ⊕ xiyj ⊕ xjyi

6: for i = 0 to d do
7: qi ← xiyi

8: for j = 0 to d do
9: if i �= j then

10: qi ← qi ⊕ ti,j

3.2 Faulting Masked AND Gates

We first note that the calculation of the AND q = x · y itself has a probability of
25% for q to be 1. An attacker therefore successfully biases the masked AND gate
if the probability of q to be 1 is more or less likely than 25%. As an example, we
consider an attacker who can skip any AND calculation in Eq. 1, for instance the
first AND calculating x0y0 in q0. The shared function then effectively calculates
q (= q0 ⊕ q1) to be x1y1 ⊕ x0y1 ⊕ x1y0, which has a probability of 37.5% to
be 1. If the attacker instead introduced a fault that skips the addition of the
uniformly random bit r0,1 in q0, then the distribution of q would again be biased,
since the probability of observing a 1 changes from 25% to 50%.

We observe the same biases when looking at single faults for other masked
AND gates, like the one used in the CMS scheme of Reparaz et al. [22] or in
the Domain-Oriented Masking scheme by Gross et al. [14,15]. This same bias
behavior results from the fact that these masked ANDs calculate the same terms
xiyj . The masked ANDs only differ in the arrangement of xiyj in q0 and q1, and
the amount of used fresh randomness. Since q is equal to q0 ⊕ q1, the arrangement
of the terms has no influence on the bias behavior of q, and a fault of an addition
of a single random r bit has the same impact on all masked ANDs.

Another prominent protection mechanism falling in the category of masking
schemes are threshold implementations [20]. Threshold implementations use an
increased number of shares to achieve first-order side-channel resistance without
requiring fresh randomness. In order to explore the impact on threshold imple-
mentations, we look at a four-share realization of a first-order masked AND gate
by Nikova et al. [20]:

q0 = (x2 ⊕ x3)(y1 ⊕ y2) ⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3

q1 = (x0 ⊕ x2)(y0 ⊕ y3) ⊕ y0 ⊕ y2 ⊕ y3 ⊕ x0 ⊕ x2 ⊕ x3

q2 = (x1 ⊕ x3)(y0 ⊕ y3) ⊕ y1 ⊕ x1

q3 = (x0 ⊕ x1)(y1 ⊕ y2) ⊕ y0 ⊕ x0

(2)

322 C. Dobraunig et al.

For this shared AND gate, we perform two experiments. In the first exper-
iment, we have a look at the distribution of the output q = q0 ⊕ q1 ⊕ q2 ⊕ q3
assuming an instruction skip. In the second, we fix one input share x0 to zero
and look what happens.

For the instruction skip, we assume that in q0 one instruction is skipped and
so q0 = (x2)(y1 ⊕ y2)⊕ y1 ⊕ y2 ⊕ y3 ⊕x1 ⊕x2 ⊕x3 is calculated, the other shares
are processed correctly. In this case, we observe that for all 256 possible values
of the shared input, the unshared output is 160 times (62.5%) 0 and 96 (37.5%)
times 1, a clear deviation of the value an unfaulted AND should have.

Next, we fix x0 to zero and perform the computations according to Eq. 2 for
all 256 possible values the shared input can take. If we now look at q, we see
that 192 times a 0 (75%) appears and 64 times a 1 (25%), which corresponds
to the distribution of a correct AND gate. However, if we only consider correct
computations of q = x · y, we observe that only 192 out of 256 computations are
performed correctly. For those correct computations q is 160 times a 0 (83.3%)
and 32 times a 1 (16.6%). This “filtered” distribution is the one an attacker can
potentially exploit in the case of SIFA [10]. In the next section, we will discuss
the consequences of our observations with respect to S-boxes.

3.3 Faulting Masked S-Boxes

In this section, we discuss how single faults influence the behavior of S-boxes. It
is worth mentioning that our selection of masked S-boxes is arbitrary and does
not imply that those S-boxes are weaker or more susceptible to SFA and SIFA
than others. We have selected those S-boxes, because they have a simple and
compact description. We will start with a compact 4-bit S-box called Sbox13 [28]
shown in Fig. 2. We have implemented a masked implementation of this S-box
in software by using a four-shared threshold implementation of AND (see Eq. 2),
OR and XOR. We target exclusively the AND labeled with q, x, and y in Fig. 2.

For the first experiment, we assume an instruction skip that alters the exe-
cution of the first AND of the S-box, changing the calculation of one share q0
to q0 = (x2)(y1 ⊕ y2) ⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3. In Fig. 3a, we record the

qx

y

Fig. 2. Schematic of the 4 × 4 S-box: Sbox13 [28].

Statistical Ineffective Fault Attacks on Masked AES 323

I
O

SFA

I
O

SIFA

0 1 2 3 4 5 6 7 8 9 a b c d e f

4.6875 %
6.25%
7.8125 %

I
O

SFA

I
O

SIFA

0 1 2 3 4 5 6 7 8 9 a b c d e f

4.167%
6.25%
8.333%

(a) Fault example 1: Skip first XOR instruction in share q0 in (2).

(b) Fault example 2: Set input share x0 of the first AND to zero in (2).

Fig. 3. Distribution of input I and output O for faulted 4 × 4 Sbox13.

distribution of each unshared input value and each unshared output value for
each of the 24·4 = 65536 shared input combinations, which can be exploited by
an SFA [13], as well as the “filtered” distribution for ineffectively faulted S-box
transitions, which can be exploited by SIFA [10]. This “filtered” distribution
stems from the subset of transitions, for which the induction of the fault has no
influence on the output of the S-box.

As we can see in Fig. 3a, in the unfiltered case, we see a clearly non-uniform
distribution, which can be possibly exploited by an SFA. However, we observe
a uniform distribution in the SIFA case. So does this mean this S-box is secure
against SIFA? Let us consider the distributions we obtain when setting one
share x0 at the input of the first AND permanently to 0. The corresponding
distributions we get in this experiment are shown in Figure 3b.

As we can see in Fig. 3b, the situation for this fault changes, so that now,
the ineffective faults can be exploited, whereas the distribution without filtering
cannot be exploited. Until now, we have exploited the sequential sharing of
instructions, especially that we can change the distribution of an AND gate.
So one might wonder what happens if an S-box is directly shared, so that the
output shares are uniformly distributed.

To explore the case of directly shared S-boxes, let us take a closer look at
the uniform 4-share threshold implementation of the Keccak S-box proposed by
Bilgin et al. [3]. Here, A[i], B[i], C[i], and D[i] represent the 4 shares of bit i
with i = 0, . . . , 4. While the bit i = 3 is calculated by:

A′[3] ← B[3] ⊕ B[0] ⊕ C[0] ⊕ D[0] ⊕ ((B[4] ⊕ C[4] ⊕ D[4])(B[0] ⊕ C[0] ⊕ D[0]))
B′[3] ← C[3] ⊕ A[0] ⊕ (A[4](C[0] ⊕ D[0]) ⊕ A[0](C[4] ⊕ D[4]) ⊕ A[0]A[4])

324 C. Dobraunig et al.

C ′[3] ← D[3] ⊕ (A[4]B[0] ⊕ A[0]B[4])
D′[3] ← A[3]

the other bits i = 0, 1, 2, 4 are calculated by:

A′[i] ←B[i] ⊕ B[i+2]

⊕ ((B[i+1] ⊕ C[i+1] ⊕ D[i+1])(B[i+2] ⊕ C[i+2] ⊕ D[i+2]))

B′[i] ←Ci ⊕ C[i+2]

⊕ (A[i+1](C[i+2] ⊕ D[i+2]) ⊕ A[i+2](C[i+1] ⊕ D[i+1]) ⊕ A[i+1]A[i+2])

C′[i] ←D[i] ⊕ D[i+2] ⊕ (A[i+1]B[i+2] ⊕ A[i+2]B[i+1])

D′[i] ←A[i] ⊕ A[i+2]

I
OSI

F
A

0 101 112 123 134 145 156 167 178 189 19a 1ab 1bc 1cd 1de 1ef 1f

2.083 % 4.167 %

Fig. 4. Distribution of I, O for faulted 4-shared Keccak S-box.

Now, in our simple experiment, let us consider that bits 0 to 3 are calculated
correctly and an attacker changes the value of one input share A[0] always to
0 before the calculation of the 4 shares for output bit i = 4. Then an attacker
is able to mount SIFA as indicated by the distributions of Fig. 4. This leads
again to an exploitable bias of the distribution of unmasked values at the output
of the S-box and the attacker can mount SIFA.

The aim of this section was to give reproducible, easy-to-follow examples of
inducing a bias in the unshared variable of masked S-boxes by just faulting one
share of the S-box. We want to mention that the given ways and locations of
introducing the faults are not exhaustive and that there are many more locations
and various types of faults that make an attack successful. In the next section,
we give a closer view on the problem of protecting an S-box against these attacks
and get more insight into the effect allowing statistical attacks with the help of
a 3-bit S-box as an example.

3.4 A Closer Look

In general, fault attacks exploit knowledge about intermediate values of crypto-
graphic primitives, which are gained by disturbing the computation or intermedi-
ate values directly by the means of faults. In the case of DFA [2], this knowledge
is that in certain intermediate bits or bytes a difference is induced, while oth-
ers remain fault-free. In the case of SFA and SIFA, this knowledge is that the
distribution of certain intermediate values is changed from a uniform to a non-
uniform distribution. This allows an attacker to guess parts of the round key

Statistical Ineffective Fault Attacks on Masked AES 325

and calculate backwards to these influenced intermediate values from collected
ciphertexts. If a key guess is wrong, an attacker expects to see a distribution
of intermediate values, which is closer to uniform compared to the guess of the
right key.

Getting such a non-uniform distribution of intermediate values can be
achieved in many ways. For ciphers following the SPN structure, where every
S-box and the linear layer is a bijective function (permutation), non-uniform dis-
tribution of intermediate value can be achieved, for instance, by disturbing the
computation of a single S-box, so that this S-box does not act as a permutation
anymore. While such a behavior can be expected from an unmasked S-box in
the case of a fault induction, this seems quite counterintuitive for masked imple-
mentations at first glance. Thus, we will first discuss the unmasked case to get
more insight in which cases SFA and SIFA will work. Then we will take a closer
look on masked S-box implementations.

Influencing Unmasked S-Boxes. First, we will explore the case of SFA. We
consider a bijective S-box, as illustrated in Fig. 5. For the sake of simplicity, let
us assume that the S-box is implemented in a bit-sliced manner (as a sequence
of instructions), or as a Boolean circuit in hardware. Let us further assume
that an attacker influences the correct computation by the means of faults. By
faulting this computation, it is very likely that the faulted S-box does not behave
as a bijection, but rather becomes a general function, which is non-surjective.
This leads to a non-uniform distribution of intermediate values, which can be
exploited with SFA. In the case of SIFA, transitions where a fault induction
has an effect and causes a change in the output of the S-box are filtered. This
filtering can happen by using the fact that detection-based countermeasures do
not deliver an output in the case the fault has an effect, or by comparing the
obtained output with an output where no fault was injected. So in SIFA, we
observe a function where a reduced set of transitions remains compared to the
unfaulted S-box.

S-boxI O

Fig. 5. An unmasked S-box.

To get more insight into the behavior of a faulted S-box, we will use the 3×3
S-box χ based on Daemen’s χ-layer [7,8] as an illustrative example. Figure 6a
shows the 3-bit S-box χ, where the red cross represents a fault that sets the
input of the subsequent inversion to zero and hence the input of the AND gate
to 1. Please note that this is only one example of many how to fault an S-box
to apply an SFA or SIFA.

326 C. Dobraunig et al.

I[0]

I[1]

I[2]

O[0]

O[1]

O[2]

(a) Circuit with single fault

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

I O

(b) Unfaulted mapping

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

I O

(c) Faulted mapping

Fig. 6. 3-bit S-box χ with a single fault. (Color figure online)

The fault depicted in Fig. 6a changes the behavior of the χ S-box, which
is not bijective anymore. Figure 6c shows the transition graph for the faulted
S-box. The fault just changes the transitions depicted in red.

In our case, the transitions mapping from 3 → 1 and 7 → 7 in the unfaulted
S-box (Fig. 6b), now map from 3 → 5 and 7 → 3 (considering I[0] and O[0] being
the LSB). This means that the output values 1 and 7 never appear, but 3 and
5 appear twice, leading to a non-surjective behavior. In the case of SIFA, the
red edges represent fault inductions that show an effect on the output. When
applying SIFA, those edges are filtered (e.g. by detection-based countermeasure)
and just the black edges remain. Hence, when performing SIFA, the correct
transitions 3 → 1 and 7 → 7 do not appear and an attacker can observe an
exploitable non-uniform distribution of intermediates.

Influencing Masked S-Boxes. Now let us have a look at a shared bijective
S-box. For instance, consider the masked S-box shown in Fig. 7a that takes two
shares as input and returns two output shares. Here, the goal for an attacker is
also to influence the distribution or transitions of the unshared values I = I0⊕I1
and O = O0 ⊕ O1, but does not care about the concrete values of the shares.

S-box
I1 O1

I0 O0

(a) Implementation with 2 shares

S-boxI O

R[0]R[1] R[i]

(b) Functional equivalent view

Fig. 7. A masked S-box.

Statistical Ineffective Fault Attacks on Masked AES 327

For this reason, it is easier to work with the functional equivalent model
shown in Fig. 7b. In this model, we see a masked S-box as a function, which
takes an unshared input I and some randomness R[i] and produces an unshared
output O. Here, some of the random bits symbolize all values a shared input
can take in a real implementation, e.g., I0 = I ⊕ R[0], and I1 = R[0], while
others represent randomness used in the masked implementation. Now, we can
see masking as a very special and complicated function, which takes the inputs
I, R[0], R[1], . . . R[i] and produces an output O, so that the same I always leads
to the same O for all possible choices of R[0], R[1], . . . R[i]. It seems very unlikely
that a shared S-box behaves in the same manner in the presence of faults.

To apply SFA successfully, we need that not all values for O (iterating over
all values of I) appear the exact same number of times when counting for all
possible assignments of R[0], R[1], and R[2]. This prerequisite is very likely to
hold considering an attacker that can tamper with the intermediate calculation
performed, even when restricting the attacker to just manipulate one share used
in an intermediate calculation. Similarly, to apply SIFA successfully, we need a
fault such that among the ineffectively faulted computations, not all values for I
or O appear the exact same number of times over all values of R[0], R[1],. . .R[i].
This condition is similarly very likely to happen in practice when introducing
just single faults, as we will show with our practical experiments in Sect. 4.

As an example, consider again the 3-bit Keccak χ S-box, now with the fol-
lowing masked implementation:

O0[i] ← (I0[i + 1] ⊕ 1)I0[i + 2] ⊕ ((I0[i + 1] ⊕ 1)I1[i + 2] ⊕ I0[i])
O1[i] ← I1[i + 1]I0[i + 2] ⊕ (I1[i + 1]I1[i + 2] ⊕ I1[i])

This masked S-box just serves us as an illustrative example of the effect of faults
on an S-box, hence, we do not care about potential positioning of registers or
additional randomness at the output for re-sharing. Figure 8 shows the equivalent
circuit of the S-box, where again we just set a single value to 0. The result of
this fault is that the value of O0[2] equals I0[2]. Everything else is calculated
correctly.

For our example depicted in Fig. 8, we list all possible assignments of I[0],
I[1], I[2], R[0], R[1], and R[2] in Table 1. The entries marked in red in Table 1 are
entries where the fault depicted in Fig. 8 has an effect. Due to the more complex
calculations that happen for masked S-boxes, we get a more complex relation
between masks and actual values of bits. For instance, the transition 2 → 6 is
only valid if R[0] = 1 and wrong (2 → 2) if R[0] = 0.

Again, we can represent all possible transitions from inputs I, to the outputs
O in a graph shown in Fig. 9 (in a similar way as in Fig. 6c). However, due to
the 23 possible ways of masking our input values, each transition from input
to output will happen 8 times for an unfaulted masked 3-bit S-box χ. In the
faulted case, this condition does not hold anymore as shown in Table 1. Hence,
we have additional transitions shown in red in Fig. 9. These “wrong” transitions
also reduce the number of times the “correct” transition happens.

328 C. Dobraunig et al.

I[0]

I[1]

I[2]

O[2]

R[0] R[1] R[2]

I1[2]

I0[2]

I1[1]

I0[1]

I1[0]

I0[0]

O1[2]

O0[2]

O1[1]

O0[1]

O1[0]

O0[0]

Calculation of
other shares

O[1]

O[0]

Fig. 8. Single fault on masked 3-bit χ S-box.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

I O

8

8

4

4

8

4

4

4

4

4

8

4

Fig. 9. Transition graph of faulted masked 3-bit S-box χ. (Color figure online)

If we now count the number of transitions in Fig. 9 that lead to a certain
value O, we see that 12 transitions lead to values 3 and 5, whereas only 4 lead
to 1 and 7. This means that an attacker faulting a device can apply an SFA,
since the attacker can expect a non-uniform distribution of the value after the
S-box for correct key guesses. If we apply SIFA, the transitions marked in red
in Fig. 9, will be filtered. As an effect, the transitions 2 → 6, 3 → 1, 5 → 2, and

Statistical Ineffective Fault Attacks on Masked AES 329

Table 1. Transitions of faulted masked 3-bit S-box χ.

7 → 7 appear with reduced frequency for uniformly distributed R[0], R[1], and
R[2]. Again, this can be exploited in a key recovery attack.

4 Attack Evaluation

In this section, we demonstrate the applicability of Statistically Ineffective Fault
Analysis (SIFA) for two very different publicly available masked AES implemen-
tations. First, we perform a practical attack evaluation for the provable secure,
higher-order masked AES implementation from Rivain et al. [23] on a stan-
dard 8-bit microcontroller (ATXmega 128D4). We then present a comprehensive
evaluation of simulated faults for the 32-bit, bitsliced, first-order masked AES
implementation of Schwabe and Stoffelen [25]. Since both implementations do
not originally have additional fault countermeasures in place, we added temporal
redundancy, meaning that the block cipher is executed multiple times and the
ciphertexts are compared. The number of redundant computations was set to
two, since more redundancy does not affect the effectiveness of SIFA.

330 C. Dobraunig et al.

Our experiments require multiple faulted encryptions, but only one fault
induction per encryption. The precise location as well as the actual effect of the
induced fault does not need to be known by the attacker. Indeed, inducing a fault
anywhere in the shared S-box in round 9 likely leads to a situation that is similar
as described in Sect. 3.4. The resulting joint non-uniform (biased) distribution
over all shares of an intermediate variable can then be used to distinguish correct
and wrong key candidates (cf. Sect. 2).

4.1 Practical Attack on AES from Rivain et al.

The higher-order masked AES from Rivain et al. [23] consists of a generic dth-
order masked S-box that is combined with a linear layer for the d+1 shares of the
AES state. The target of our fault induction is the shared S-box implementation
in round 9. First, we briefly describe the implementation of the masked S-box.
Then we present the attack setup that was used for fault induction. The results
of this practical evaluation are stated at the end of this section.

Generic Higher-Order Masked S-Box. The algebraic description of the 8-
bit AES S-box consists of determining the multiplicative inverse of a number in
F28 = F2[x]/(x8 + x4 + x3 + x + 1), followed by an affine transformation over
F
8
2. While masking the affine transformation is trivial, since it can be calculated

separately for each share, the calculation of the masked multiplicative inverse
requires more work. In the design of Rivain et al. the inversion is calculated
via the power function x → x254 over F28 which is in return calculated via the
square-and-multiply algorithm. The squaring operation in F28 is a linear function
which leaves the masking of the field multiplication as the only non-trivial task.
The used algorithm for dth-order masked field multiplication is based on the
ISW scheme (cf. Algorithm 1). For a more detailed description we refer to the
original paper [23].

Attack Setup. In the practical evaluation, we perform fault inductions on an
ATXmega 128D4 via clock glitching. More precisely, we insert an additional fast
clock cycle in between two ordinary clock cycles during the execution of one of the
redundant encryptions. The width of the induced clock cycle is chosen such that
it is recognized by the microprocessor but too short to allow a correct execution of
the current instruction. The target of our fault is one of the higher-order masked
field multiplication operations (SecMult) that occur multiple times (1st-order:
64 times, 10th-order: 2880 times) during the computation of the masked S-box
in round 9. We neither require to fault one specific SecMult invocation nor to
fault one specific instruction within any of the SecMult invocations. In fact, any
fault that causes a joint non-uniform distribution over all shares (cf. Sect. 3.3) is
sufficient for our attack. For this reason, finding a suitable fault location might
actually be easier for higher-order masked implementations since the runtime
of masked S-boxes grows faster than the runtime of the masked linear layer for
increasing masking orders.

Statistical Ineffective Fault Attacks on Masked AES 331

The implementation of the higher-order masked AES by Coron et al. [6] has a
configurable masking order d. Our experiments were performed up to 10th-order
masking, with temporal redundancy as an additional fault countermeasure. In
order to attack such a protected implementation we exploit statistically inef-
fective faults. The restriction to ineffective faults is required, since we want to
circumvent the redundancy countermeasure and the subsequent statistical fault
analysis is required, since the effect of a fault is almost impossible to predict, in
particular if masked and/or unknown implementations are attacked.

If the induced fault results in a faulty computation we do not observe any
ciphertext, because of the redundancy countermeasure. However, we do observe
correct ciphertexts stemming from faulted encryptions where the induced fault
was ineffective. This filtered set of correct ciphertexts can then again be used to
perform key recovery. Since our attacks work comparably well for any masking
order d we only state concrete results for d = 10 in this section.

Results. In Fig. 10, we show the distribution of the AES state bytes in round
9 from the 48 collected correct ciphertexts. For a correct partial key guess, we
can observe a strong biased distribution in one of the state bytes in round 9
and thus can perform key recovery (cf. Sect. 2.1). Note that in the attack we
only exploit correct ciphertexts and thus successfully circumvent the redundancy
countermeasure. Already 20 (of the 48) collected correct ciphertexts stemming
from about 1000 faulted encryptions the SEI of the observed distributions is the
highest for the correct partial key guess. The time required for collecting the
correct ciphertexts was about 3 min, and key recovery was performed in about
2 min with negligible memory requirements. Repetitions of the experiment lead
to very similar results.

(a) Correct key guess. (b) An incorrect key guess.

Fig. 10. 10th-order masked AES with temporal redundancy. One clock glitch
was performed during the calculation of the masked Sbox in round 9. Distribution of
AES state bytes after S-box in round 9 after collecting a sufficient amount of correct
ciphertexts. 32 key bits can be recovered.

332 C. Dobraunig et al.

4.2 Simulated Attacks on AES from Schwabe and Stoffelen

In this section, we present a comprehensive analysis of simulated faults for
an assembler-optimized, masked AES implementation for the 32-bit Cortex-M4
platform with high practical relevance of Schwabe and Stoffelen [25]. This imple-
mentation can encrypt two 128-bit inputs per block cipher call in CTR mode and
is fully unrolled. For our purposes, we add temporal redundancy but only encrypt
one 128-bit input per block cipher call in ECB mode to have the same scenario
as in the previous section. We briefly describe the masked S-box implementation
of Schwabe and Stoffelen and then we discuss the results of our evaluation that
is split into three parts:

First, we analyse how many instructions in the masked S-box in round 9 are
“susceptible” to faults considering two common fault models, i.e., would allow
an attacker to mount SIFA. Then we pick one susceptible instruction and discuss
the required effort of mounting SIFA considering 7 common fault models. For
each fault model we give the required amount of faulted encryptions and the
amount of recoverable key bits. Finally, we present a figure that illustrates the
effect of faulting the masked Sbox on the unmasked AES state bytes (that are
observed during key recovery).

Optimized, Bitsliced, 1st-Order Masked S-Box. One shared S-box compu-
tation consists of 688 instructions and is executed in parallel for the entire AES
state. The implementation is based on the efficient bitsliced, S-box implemen-
tation from Boyar et al. [4]. Masking via Trichina gates [26] as well as efficient
platform-specific scheduling was added by Schwabe and Stoffelen [25].

Results – Susceptible Instructions. In this section, we demonstrate that
SIFA is neither restricted to a specific fault model nor requiring precise infor-
mation of the attacked implementation. We have performed experiments using
two common fault models (single bitflip and byte-stuck-at-0) and simulated fault
inductions that cause an erroneous value in the result of the targeted instruction
of an S-box computation in round 9. This simulation is performed separately for
each of the 688 instructions in the masked S-box. For each instruction and both
types of simulated faults we performed 2000 encryptions and collected correct
ciphertexts from unaffected encryptions (if there were any). Then we performed
key recovery, i.e., for each targeted instruction, both types of simulated faults,
and the corresponding set of collected ciphertexts we guessed 32 bits of the last
round key, calculated back to round 9 and checked if some bytes follow a non-
uniform distribution (using the SEI distinguisher). To reduce the runtime of the
evaluation we took one shortcut by always fixing 16-bit of the 32-bit partial key
guess to the correct value. While this significantly reduced the runtime of our
exhaustive analysis, it does not affect the results.

The results of our analysis are presented in Fig. 11. Figure 11a shows for each
of the 688 instructions within the masked S-box whether or not single bitflips
in this specific instruction allow an attacker to mount SIFA, i.e., recover bits

Statistical Ineffective Fault Attacks on Masked AES 333

of the key. Note that black lines represent susceptible instructions while white
lines represent the other instructions. An instruction is not susceptible, e.g., if a
bitflip is never ineffective, always ineffective, or does not lead to a non-uniform
distribution that is distinguishable from uniform after observing 2 000 faulted
encryptions. In total, 359 out of 688 (52%) of the instructions are susceptible
to single bitflips. In Fig. 11b, we show the same analysis using byte-stuck-at-0
faults instead. Here, 483 (70%) of the instructions are susceptible. If we oppose
these results with the fact that the masked linear layer in round 9 only consists
of 290 instructions, it is fairly safe to say that finding a suitable fault location
should be easy in practice.

Instruction 1

Instruction 688

M
as
ke
d
S-
bo
x

Susceptible
Not Susceptible

(a) Bitflips: 359 (52%) of the S-box in-
structions are susceptible.

Instruction 1

Instruction 688

M
as
ke
d
S-
bo
x

Susceptible
Not Susceptible

(b) Byte-stuck-at-0: 483 (70%) of the S-
box instructions are susceptible.

Fig. 11. Instructions in the masked S-box in round 9 that are susceptible to faults and
allow to mount SIFA.

Results – Attack Performance for Various Fault Models. After determin-
ing that large parts of the masked S-box are susceptible to single fault inductions
in the previous section, we now discuss the effort of key recovery when target-
ing one of these susceptible instructions. This time we consider 7 different fault
models and the results are presented in Table 2. For each of the 7 fault models
we give the number of faulted encryptions, the number of resulting ineffective
fault inductions (i.e., correct ciphertexts), and the number of key bits that can
be recovered from those correct ciphertexts. Each experiment was repeated 3
to 5 times, and the averaged values are presented. The relative position of the
affected bytes/bits within the targeted 32-bit register is not important for the
analysis.

From the results we can see that faults with fine granularity (only affecting
single bits) allow an attacker to recover key bits faster (= using less faulted
encryptions). However, only 32 key bits can be recovered in these scenarios since
only a small portion of the AES state is affected by those fault inductions.
On the other side, faults that affect whole bytes/registers require more faulted

334 C. Dobraunig et al.

Table 2. 32-bit Cortex-M4: Attack evaluation when targeting one of the instructions in
the masked S-box in round 9. Each experiment was repeated 3 to 5 times, the resulting
numbers were averaged.

Fault effect # Ineffective
faults

Faulted
encryptions

Recoverable
key bits

Flip one bit 194 386 32

Set one bit to zero 214 428 32

Randomize one bit 574 763 32

Flip one byte 192 2 940 128

Set one byte to zero 192 3 129 128

Randomize one byte 602 1 808 128

Instruction skip 400 45 527 128

encryptions but cause a non-uniformity in bigger portions of the AES state.
Consequently, an attacker can recover more key bits.

Results – Non-uniformity of AES State Bytes. Finally, we present more
arguments why the statistical fault analysis (SFA) portion of SIFA is crucial
to mount such manifold attacks as presented in this work. If we take a look at
Fig. 12, we can see the distribution of AES state bytes in round 9 after inducing
one byte-stuck-at-0 fault during multiple encryptions and performing key recov-
ery using unaffected, correct ciphertexts. Even though our simulated faults are
noise-free, i.e., they have the same effect on each faulted instruction, there is
no meaningful way (other than having precise knowledge of the attacked imple-
mentation and the induced fault) for the attacker to predict the resulting non-
uniformity in the state bytes which would allow for faster key recovery than
in SIFA (or SFA). In fact, the observed distributions have some relations with
the pen-and-paper examples given in Sect. 3.3 and can be expected to vary sig-
nificantly depending on the attacked implementation, the fault location, and
the actual fault effect. This motivates our choice of simply using a metric of
non-uniformity to distinguish the key candidates.

5 Discussion

5.1 On the Nature and Number of Faults

In Sect. 3, we explored the behavior of masked building blocks using deterministic
stuck-at-0 faults or instruction skips. The reason for this is to make the processes
leading to a bias easier to understand. However, it is easy to see that making the
fault probabilistic, e.g., assuming a more realistic setup, where an instruction
skip does not work all the time, or that a bit is only set to 0 with a certain
probability, just affects the bias an attacker observes and hence, the amount of
ciphertext the attacker has to collect, but the attack still works (see [10] for more
details).

Statistical Ineffective Fault Attacks on Masked AES 335

(a) Correct key guess. (b) An incorrect key guess.

Fig. 12. 1st-order masked, bitsliced AES with temporal redundancy. Byte-
stuck-at-0 fault model. Distribution of AES state bytes after S-box in round 9 after
collecting a sufficient amount of correct ciphertexts. The whole 128-bit key can be
recovered.

Furthermore, clock glitches and setting values to zero are not an exhaustive
list of effects that a fault could have in order to make the attack work. For
instance, in Sect. 4.2 we show that attacks are possible even for random faults
and bitflips. All in all, the only requirement we have on the fault is that it leads
to a biased distribution of the real (unmasked) value at a suitable place in the
primitive among the filtered encryptions. In general, a fault can have a more
complex nature than only the cases discussed in Sect. 3 or 4.2. For instance, in
software implementations of masked ciphers, a large number of instructions are
LOAD instructions from memory since all shares might not fit in the registers.
We have observed in experiments that skipping a LOAD can also lead to biased
S-box distributions, but having a quite complex effect depending on previous
calculations. However, the big benefit of SIFA is the fact that an attacker does
not have to know or model the effect of a fault.

This fact also comes into play when dealing with the location of a fault. The
examples for the location (e.g. skipped instruction) of the fault given in Sect. 3
just show one out of many different locations, where a fault targeting the S-box
leads to a biased distribution that can be exploited in SFA or SIFA. In Sect. 4.2,
we evaluated the number of instructions that can be faulted and in turn, can be
exploited in an attack for one particular implementation. However, how many
such locations exist crucially depends on how the S-box is implemented. In a
similar manner as for the effect of a fault, an attacker does not have to know, or
to aim for just one specific instruction or location to fault. The only requirement
for the attack to work in practice is that the faulted location leads to a bias. All
these points make the attack to be executed in practice quite easily, even with
a rather cheap setup using clock glitches as demonstrated in Sect. 4.

The last point, we want to discuss regarding faults is the number of faults per
execution. We have opted for a single fault per execution, since inserting multiple
faults per execution is usually considered to be harder. This is probably related
to the prominence of fault attack techniques where attacks requiring multiple
faults per execution have high requirements of the exact location and effects of

336 C. Dobraunig et al.

the induced faults. However, at least in the case of SFA, we are not interested in
the number of faults, since there are no strong requirements regarding effect and
location. In fact, injecting multiple consecutive faults usually just leads to a lower
number of necessary ciphertexts as the bias increases. For SIFA, the situation is
slightly different; however, multiple faults injected in the computation of a single
S-box might to reduce the required number of faulted encryptions, while being
not necessarily harder to conduct in practice.

5.2 Countermeasures

In the following, we discuss the effectivity and practicability of well-known coun-
termeasures against our attacks. Since most fault countermeasures prevent the
SFA variants of our attack using a single fault per execution, we focus on the
SIFA variants and show that it is not easy to prevent these attacks. In fact,
some countermeasures (e.g. detection) even facilitate certain aspects of SIFA in
practice.

Self-destruct. The most radical approach of destroying the device as soon as
a fault is detected is a valid countermeasure against any fault attack. However,
this technique has a few downsides and limitations, including false positives and
additional effort to reliably destroy a circuit.

A lot of cryptographic devices deployed in the field like smart cards and RFID
tags have to function and operate under rather tough conditions. They typically
have to deal with abrupt loss of power, for instance if a smart card is withdrawn
from the terminal while working. Furthermore, they have to handle power spikes
from electrostatic discharges or electromagnetic fields. Hence, deciding between
an active fault attack and interference due to normal usage is not a trivial task
and would potentially lead to detection of a huge amount of false positives that
render such an approach useless for a wide range of applications.

One way to compensate some false positives is to destruct a device only
once a certain amount of faults was detected. Such a fault counter could be
considered an effective countermeasure, yet is still not used by a large portion
of embedded devices, since it is challenging to implement appropriately tamper-
resistant, especially in hardware.

Correction. A different approach to make use of redundancy is to correct the
effect of a fault, for instance using error-correcting codes or simple majority
voting. However, correction-based countermeasures usually can be reduced to
the detection-based case using additional faults. How hard this is and which
requirements this might have on the precision of the fault crucially depends
on the implementation of the countermeasure. As an example let us assume a
simple majority voting between the result of 3 block cipher calls. To do this,
the 3 block cipher calls take the same inputs and hence, perform redundant
computations. An attacker can now use an additional fault to just ensure that
the computations performed on one redundant block cipher call will always be

Statistical Ineffective Fault Attacks on Masked AES 337

incorrect. This usually does not require a precise fault. This reduces the majority
voting of 3 block cipher calls to a construction which essentially behaves as a
detection-based countermeasure (or infection-like countermeasure if the majority
voting happens at bit-level of the ciphertext). Then, an attacker can proceed with
the same attacks as before, using a second targeted fault.

Infection. In [10], the application of SIFA on an infective countermeasure [27]
has been demonstrated. The employed dummy rounds in this countermeasure
increase the needed number of faulted encryptions until the key can be recovered.
However, when aiming to prevent SIFA, dummy rounds that do not infect the
state in the case of a fault should provide even more protection. Hence, we
explore this countermeasure next.

Hiding. The goal of hiding countermeasures is to reduce the attacker’s knowl-
edge of what is currently computed, and thus effectively decrease his preci-
sion when placing the fault. Examples include adding dummy rounds randomly
between the relevant rounds, or shuffling the order of execution, for example the
order in which the 16 AES S-boxes per round are executed. In the following,
we analyze the case of dummy AES rounds in more detail, and show that the
noise introduced this way quadratically increases the necessary number of faulty
encryptions for the analysis.

Dummy Rounds. We consider a protected AES implementation and make the
following assumptions for our model:

– The attacker needs to fault round 9 out of 10 (identical) AES rounds.
– The protected implementation executes 10 real AES rounds and (k − 1) · 10

ineffective dummy rounds in a uniformly random ordering, labeled 1, . . . , R
with R = 10k.

– The attacker targets round R − t. Three outcomes are possible:
1. Hit: It is the real round 9 with probability σ, resulting in a distribution

with ineffectivity rate πfault and ineffective distribution pfault.
2. Miss: It is a dummy round with ineffectivity rate π1 and uniform ineffec-

tive distribution θ
3. Miss: It is a real round, but not round 9, with ineffectivity rate πfault and

uniform ineffective distribution θ. For simplicity, we assume an ineffectiv-
ity rate of π1, so this case can be merged with item 2.

With these assumptions, the success probability that round R − t of R is a hit
(signal) is

σfault[R, t] = P
[
Hit in round R − t

]
=

t · (
R−t−1

8

)

(
R
10

) =
90 · t

R(R − 1)

9∏

s=2

[
1 − t − 1

R − s

]
.

This parametrized function is plotted in Fig. 13 and attains its maximum near
t = k = R

10 . The resulting function σfault[10k, k] for the optimized success

338 C. Dobraunig et al.

probability is also plotted in Fig. 13 (dashed, with x-axis t = k), and can be
approximated as

σfault[10k, k] = P
[
Hit in round 9k of 10k

]
=

90k

10k · (10k − 1)
·

9∏

s=2

[
1 − k − 1

10k − s

]

=
1
k

·
9∏

s=1

9k − s + 1
10k − s

k→∞−−−−→ 1
k

·
(

9
10

)9

≈ 1
k

· 0.387 for large k .

0 2 4 6 8 10 12
0

0.1

0.2

0.3

Target round parameter t

Su
cc

es
s

pr
ob

.
σ
[R

,
t]

R = 20
R = 30
R = 40
R = 50
R = 10t

Fig. 13. Success probability σ[R, t] when targeting round R − t, for different R = 10k.
For the choice t = k (dashed line), σ[10k, k] ≈ 0.387

k
for k � 2.

A SIFA attacker samples the resulting distribution ptotal among the ineffective
faults, with a total ineffectivity rate of πtotal and a signal of σtotal:

πtotal = σfault · πfault + (1 − σfault) · 1 = 1 − (1 − πfault) · σfault

σtotal =
σfault · πfault

πtotal

ptotal(x) = σtotal · pfault(x) + (1 − σtotal) · θ(x)

The necessary sample size to distinguish ptotal is inverse proportional to the
capacity

C(ptotal) = σ2
total · C(pfault) ,

which corresponds to a data complexity proportional to (πtotal ·σ2
total ·C(pfault))−1.

Thus, for a fixed fault setup with pfault, πfault, increasing the dummy factor k
increases the data complexity of the attack quadratically (Fig. 14):

(πtotal · σ2
total)

−1 =
1 − (1 − πfault) · σfault

σ2
fault · π2

fault

≈ k2 1
(0.387 · πfault)2

− k
1 − πfault

0.387 · π2
fault

.

Statistical Ineffective Fault Attacks on Masked AES 339

Fig. 14. Increasing data complexity with dummy factor k, for different πfault·

Shuffling. Similar to dummy rounds, shuffling operations reduces the attacker’s
precision and success probability in hitting the right S-box and thus induces
noise in the distribution. However, in the case of SIFA, there is an important
difference due to the ineffectivity rate in case of misses, which we assume is
the same as in case of hits. For this reason, the data complexity will also grow
quadratically in the number of shuffled operations in the relevant scope (e.g., 16
S-boxes), but only linearly instead of quadratically in the inverse ineffectivity
rate π−1

fault.

Limiting the Data Complexity. For our attacks to work, we usually need
several faulted encryptions per key to retrieve it. Therefore, methods that restrict
the usage of the key and hence, put a limit on the data complexity can be a
viable strategy for providing protection against this type of attack. Existing re-
keying strategies can be roughly split into two groups, one where the used key
is derived via a re-keying function from a static master key [1,11,12,18] and
the other group being methods where a secret internal state is maintained and
constantly updated. In the first group, the problem of protection against the
attack is basically shifted to the re-keying function and has to be solved there.

5.3 Choice of the Target and Attack Setup

It is important to note that we have not chosen the S-boxes in Sect. 3 or AES in
Sect. 4 as targets of our attacks because we have found them to be weaker than
others. In fact, we chose them, because many masked implementations for them
are publicly available.

Furthermore, we performed the practical experiments using clock glitches
because the equipment is cheap and we do not have easy access to other, more
sophisticated equipment at the moment. Obviously, the attack is not limited to a
specific fault injection method; quite on the contrary, we expect other methods of
inserting faults, such as Lasers, needle probes, etc., to be far superior compared
to our cheap setup using clock glitches [9].

340 C. Dobraunig et al.

5.4 Further Applications

For the sake of simplicity, we have put the main focus of this paper on the appli-
cation of statistical fault attacks for (masked) design strategies using bijective
S-boxes, where we want to distinguish a uniform from a non-uniform distribution.
However, this does not mean that the attack in only applicable on primitives
using bijective S-boxes. As discussed in Sect. 3.4, a fault attack may influence
only some transitions in the transition graph, while leaving others intact. In the
case of SIFA, an attacker can observe and exploit the “filtered” graph, where
most likely only the intact transitions remain. Note that in the masked case,
there is more than one transition from one input to one output value, due to
masks. Hence, an attacker can potentially exploit all cases where this “filtered”
transition graph shows a differently distributed occurrence of input and output
transitions.

As another narrative restriction, we have restricted our focus on block
ciphers. One potential countermeasure one could come up with against our attack
is the use of a PRF like the AES-PRF [19] instead of a block cipher. Such a PRF
prevents an attacker from observing ciphertexts and decrypting backwards under
guessing the key. However, SIFA remains possible by targeting the input of the
AES-PRF since here, a known input like a nonce is usually processed. In general,
the presented attacks are almost always applicable whenever some known input
is mixed with a secret, which covers most stateless symmetric cryptographic
primitives. However, it is an interesting future research topic to evaluate how
well such attacks will work.

6 Conclusion

This paper demonstrates that SIFA is a very powerful attack. We show that
state-of-the-art countermeasures against implementation attacks, redundancy
against faults and masking against side-channels, are not as effective against
SIFA as expected. In particular, SIFA is still possible using just a single fault
per execution, contradicting the common folklore that masking plus a detection-
based countermeasure provides sufficient protection against fault attacks.

We presented a comprehensive analysis of simulated faults for an assembler-
optimized, masked AES implementation for the 32-bit Cortex-M4 platform that
might be of high practical relevance. We showed that most of the instructions
of the masked S-box implementation are “susceptible” to faults and can be
exploited in SIFA using any of the common fault models.

Moreover, the practical feasibility of the attack was shown by attacking a
10th-order masked AES software implementation with arbitrary temporal redun-
dancy on block cipher level on a standard 8-bit microcontroller without specific
security features using a cheap clock glitch setup. Even with such a cheap setup,
we are able to recover 32 bits of the key after collecting 20 ciphertexts where
the fault is ineffective, needing approximately a total of 1000 encryptions where
a single fault induction is performed.

Statistical Ineffective Fault Attacks on Masked AES 341

Acknowledgments. This project has received funding in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 681402) and by the Austrian Research Pro-
motion Agency (FFG) via the project ESPRESSO, which is funded by the province of
Styria and the Business Promotion Agencies of Styria and Carinthia.

References

1. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

3. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5 13

4. Boyar, J., Peralta, R.: A depth-16 circuit for the AES S-box. IACR Cryptology
ePrint Archive, Report 2011/332 (2011). https://eprint.iacr.org/2011/332

5. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 13

6. Coron, J.S.: Higher order countermeasures for AES and DES (2017). https://
github.com/coron/htable#higher-order-countermeasures-for-aes-and-des

7. Daemen, J.: Cipher and hash function design, strategies based on linear and dif-
ferential cryptanalysis. Ph.D. thesis, KU Leuven (1995). http://jda.noekeon.org/

8. Daemen, J., Govaerts, R., Vandewalle, J.: An efficient nonlinear shift-invariant
transformation. In: Macq, B. (ed.) Information Theory in the Benelux. pp. 108–
115. Werkgemeenschap voor Informatie- en Communicatietheorie (1994)

9. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 369–395. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 14

10. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

11. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

12. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.-X.: Towards
fresh and hybrid re-keying schemes with beyond birthday security. In: Homma, N.,
Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 225–241. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31271-2 14

13. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J.M. (eds.) FDTC 2013, pp. 108–118.
IEEE Computer Society, Los Alamitos (2013)

14. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive, Report 2016/486 (2016). https://eprint.iacr.org/2016/486

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-319-08302-5_13
https://eprint.iacr.org/2011/332
https://doi.org/10.1007/978-3-540-74735-2_13
https://github.com/coron/htable#higher-order-countermeasures-for-aes-and-des
https://github.com/coron/htable#higher-order-countermeasures-for-aes-and-des
http://jda.noekeon.org/
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.1007/978-3-319-31271-2_14
https://eprint.iacr.org/2016/486

342 C. Dobraunig et al.

15. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

16. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

18. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 17

19. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017)

20. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

21. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

22. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 37

23. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

24. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 302–332. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 11

25. Schwabe, P., Stoffelen, K.: All the aes you need on Cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 10

26. Trichina, E.: Combinational logic design for AES SubByte transformation on
masked data. IACR Cryptology ePrint Archive, Report 2003/236 (2003). https://
eprint.iacr.org/2003/236

27. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with ran-
domization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
93–111. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 6

28. Ullrich, M., De Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4×4-bit S-boxes. In: ECRYPT Sym-
metric Key Encryption Workshop - SKEW 2011, pp. 16–17 (2011)

https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-319-69453-5_10
https://eprint.iacr.org/2003/236
https://eprint.iacr.org/2003/236
https://doi.org/10.1007/978-3-662-44709-3_6

Tight Private Circuits: Achieving Probing
Security with the Least Refreshing

Sonia Beläıd1(B), Dahmun Goudarzi1,2(B), and Matthieu Rivain1(B)

1 CryptoExperts, Paris, France
2 ENS CNRS INRIA and PSL Research University, Paris, France

{sonia.belaid,dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

Abstract. Masking is a common countermeasure to secure implemen-
tations against side-channel attacks. In 2003, Ishai, Sahai, and Wagner
introduced a formal security model, named t-probing model, which is now
widely used to theoretically reason on the security of masked implementa-
tions. While many works have provided security proofs for small masked
components, called gadgets, within this model, no formal method allowed
to securely compose gadgets with a tight number of shares (namely, t+1)
until recently. In 2016, Barthe et al. filled this gap with maskComp, a tool
checking the security of masking schemes composed of several gadgets.
This tool can achieve provable security with tight number of shares by
inserting mask-refreshing gadgets at carefully selected locations. However
the method is not tight in the sense that there exists some compositions
of gadgets for which it cannot exhibit a flaw nor prove the security. As a
result, it is overconservative and might insert more refresh gadgets than
actually needed to ensure t-probing security. In this paper, we exhibit
the first tool, referred to as tightPROVE, able to clearly state whether
a shared circuit composed of standard gadgets (addition, multiplication,
and refresh) is t-probing secure or not. Given such a composition, our tool
either produces a probing-security proof (valid at any order) or exhibits
a security flaw that directly implies a probing attack at a given order.
Compared to maskComp, tightPROVE can drastically reduce the number
of required refresh gadgets to get a probing security proof, and thus
the randomness requirement for some secure shared circuits. We apply
our method to a recent AES implementation secured with higher-order
masking in bitslice and we show that we can save all the refresh gadgets
involved in the s-box layer, which results in an significant performance
gain.

Keywords: Side-channel · Masking · Composition · Private circuits

1 Introduction

Most cryptographic algorithms are assumed to be secure against the so-called
black-box attacks, where the adversary is restricted to the knowledge of inputs
and outputs to recover the secret key. However, the late nineties revealed a new
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 343–372, 2018.
https://doi.org/10.1007/978-3-030-03329-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_12&domain=pdf

344 S. Beläıd et al.

class of attacks, referred to as side-channel attacks, that exploit the physical
leakages (e.g. temperature, power consumption) of components which execute
implementations of cryptographic algorithms. Many implementations of sym-
metric cryptographic algorithms have been broken so far [7,17], raising the need
for concrete and efficient protection.

A sound and widely deployed approach to counteract side-channel attacks
is the so-called masking countermeasure that was simultaneously introduced in
1999 by Chari et al. [8] and by Goubin and Patarin [13]. The idea is to split
each key-dependent variable x of the implementation into d shares (xi)0≤i≤d−1

such that x = x0 ∗ · · · ∗ xd−1 for some law ∗ and any strict subset of shares is
uniformly distributed. The number of degrees-of-freedom d−1 of such a sharing
is referred to as the masking order. When ∗ is the addition on a finite field of
characteristic two, the approach is referred to as Boolean masking, and when d
is additionally strictly greater than 2, the approach is referred to as higher-order
Boolean masking. Chari et al. showed that recombining d noisy shares to recover
the secret is then exponentially complex in d which makes the masking order a
sound security parameter with respect to side-channel attacks.

In order to design masking schemes and theoretically reason on their secu-
rity, the community has defined several leakage models. In the most realistic one,
the noisy leakage model introduced by Rivain and Prouff [19] as a specialization
of the only computation leaks model [18], the adversary gets a noisy function
of each intermediate variable of the cryptographic computation. Unfortunately,
this model is not very convenient to build security proofs as it requires complex
mutual information computations. A second and widely used leakage model is
the t-probing model introduced by Ishai, Sahai, and Wagner [15] in which the
adversary gets the exact values of t chosen intermediate variables. As it manipu-
lates exact values in a limited quantity, this model is advantageously much more
convenient for security proofs. In order to benefit from the advantages of both
models, Duc, Dziembowski, and Faust demonstrated in [12] a reduction from the
noisy leakage model to the t-probing model. In a nutshell, an implementation
that is secure in the t-probing model is also secure in the more realistic noisy
leakage model for some level of noise.

In their seminal work [15], Ishai et al. proposed a t-probing secure masking
scheme for any circuit based on d = 2t + 1 shares. This scheme was extended
by Rivain and Prouff in [20] with the aim to derive a tight t-probing secure
implementation of AES, where tightness means that the t-probing security is
obtained with the optimal number of d = t + 1 shares. In particular, they show
that the so-called ISW multiplication gadget actually achieves tight probing
security provided that the two input sharings are mutually independent. In order
to obtain tight security for the full AES circuit, Rivain and Prouff suggested to
insert refresh gadgets that renew the randomness of sharings at carefully chosen
locations [20]. But the proposed refresh gadget was shown to introduce a flaw in
the composition [10]. In 2016, Barthe et al. introduced new security notions to
fill this gap, namely the t-non interference and the t-strong non interference [2].
When these notions are met by a set of gadgets, one can easily reason on the

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 345

probing security of their composition. Informally, a gadget is t-non interfering
(or t-NI) if and only if any set of at most t intermediate variables can be perfectly
simulated with at most t shares of each input. Since t input shares are trivially
independent from the input itself as long as t < d, non-interference trivially
implies probing security. While this notion was first defined in [2], it was actually
already met by most existing gadgets. One step further, a gadget is t-strong non
interfering (or t-SNI) if and only if any set of t intermediate variables among
which tout are output variables can be perfectly simulated with tint = t − tout

shares of each input sharing. This property makes it possible to compose any
set of SNI gadgets since it stops the propagation of dependencies. A concrete
tool to build probing secure implementations from unprotected implementations
is provided [2] which was later called maskComp. Following this work, numerous
examples of globally probing secure schemes were proposed with a decomposition
in identified NI and SNI gadgets [3,11,21]. While these schemes achieve their
security goals, each inserted SNI refresh gadget increase the requirement of fresh
randomness which is generally expensive to generate. And up to now, no efficient
method exists to check the probing security of any given composition of gadgets.
As a result, existing tools such as maskComp are overconservative and might
insert more refresh gadgets than necessary.

Nevertheless, some formal tools have been recently developed to evaluate
the probing security of implementations at a given masking order. Among the
most efficient ones, Barthe et al. developed maskVerif [1] and Coron developed
CheckMasks [9]. Both tools take as input a shared circuit and return a formal
security proof when no attack is found. But here again, this evaluation is not
tight and false negatives may occur and hence imply the addition of unnecessary
refresh gadgets. Moreover, while such tools are very convenient to evaluate the
security of concrete implementations, they suffer from an important limitation
which is their exponential complexity in the size of the circuit and consequently
in the masking order. As a result, these tools are impractical beyond a small
number of shares (typically d = 5). In a recent work, Bloem et al. [5] further
developed a new tool to verify the security of masked implementations subject
to glitches, which is an important step towards provable and practical security of
hardware implementations. However this tool still suffers from the same efficiency
limitations as the previous ones.

Motivation and Contributions. The method of Barthe et al. [2] allows
one to safely compose t-NI and t-SNI gadgets and get probing security at
any order. Nevertheless, it is not tight and makes use of more refresh gad-
gets than required. In many contexts, randomness generation is expensive and
might be the bottleneck for masked implementations. For instance, Journault
Standaert describe an AES encryption shared at the order d = 32 for which
up to 92% of the running time is spent on randomness generation [16]. In such
a context, it is fundamental to figure out whether the number of t-SNI refresh
gadgets inserted by Barthe et al.’s tool maskComp is actually minimal to achieve
t-probing security. In this paper, we find out that it is not and we provide a

346 S. Beläıd et al.

new method which exactly identifies the concrete probing attacks in a Boolean
shared circuit.

Let us take a simple example. We consider the small randomized circuit
referred to as Circuit 1 and illustrated in Fig. 1 with [⊕] a t-NI sharewise addition,
[⊗] a t-SNI multiplication, and two Boolean sharings [x1] and [x2]. Applying
Barthe et al.’s tool maskComp on this circuit automatically inserts a t-SNI refresh
gadget in the cycle formed by gates [x1], [⊕], and [⊗] as represented in Fig. 2.
However, it can be verified that for any masking order t, the initial circuit is t-
probing secure without any additional refresh gadget. Therefore, in the following,
this paper aims to refine the state-of-the-art method [2] to only insert refresh
gadgets when absolutely mandatory for the t-probing security.

[x1] [x2]

[⊕]

[⊗]

Fig. 1. Graph representation of Cir-
cuit 1.

[x1] [x2]

[⊕]

R

[⊗]

Fig. 2. Graph representation of Cir-
cuit 1 after maskComp.

More specifically, our contributions can be summarized as follows:

(1) We introduce formal definitions of the probing, non-interfering, and strong-
non-interfering security notions for shared circuits based on concrete secu-
rity games. Although these definitions are no more than a reformulation of
existing security notions, we believe that they provide a simple and precise
framework to reason about probing security.

(2) From the introduced game-based definitions, we provide a reduction of the
probing security of a given standard shared circuit –i.e. a shared circuit
composed of ISW multiplication gadgets, sharewise addition gadgets and SNI
refresh gadgets– to the probing security of a simpler circuit of multiplicative
depth 1 and for which the adversary is restricted to probe the multiplication
inputs (which are linear combinations of the circuit inputs).

(3) We give an algebraic characterization of the final security game, which allows
us to express the probing security of any standard shared circuit in terms of
linear algebra.

(4) We show how to solve the latter problem with a new exact and proven
method. Our method takes the description of any standard shared circuit
and either produces a probing-security proof (valid at any order) or exhibits
a probing attack (i.e. a set of t < d probes that reveal information on
the circuit d-shared input for some d). We provide a concrete tool, named

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 347

tightPROVE (for tight PRObing VErification), implementing our method
in Sage.

(5) We apply tightPROVE to the efficient implementation of the AES s-box devel-
oped by Goudarzi and Rivain in [14]. Based on the previous state of the art,
this s-box was implemented using one SNI refresh gadget per multiplica-
tion gadget (to refresh one of the operands), hence requiring a total of 32
refresh gadgets (which was later on confirmed by the maskComp tool). Our
new method formally demonstrates that the same d-shared implementation
is actually t-probing secure with no refresh gadget for any d = t + 1. We
provide implementation results and a performance analysis: this new imple-
mentation achieves an asymptotic gain up to 43%. The code is provided at
https://github.com/CryptoExperts/tightPROVE.

(6) We extend our results to larger circuits by establishing new compositional
properties on t-probing secure gadgets. In particular, these new composition
properties well apply to the case of SPN-based block ciphers. We also show
that they apply to a wide range of Boolean circuits with common gadgets
and input sets.

Paper Organization. In Sect. 2, useful notions are introduced, security defini-
tions for composition are formalized through concrete security games, and some
useful security results are provided. Section 3 provides our security reduction for
standard shared circuits. Section 4 then details our new method to exactly deter-
mine the probing security of a standard shared circuit. It also gives an upper
bound on the number of required refresh gadgets together with an exhaustive
method to make a standard shared circuit achieve tight probing security. In
Sect. 5, our new method is extended to apply to larger circuits, and in particular
to SPN-based block ciphers, with new compositional properties. Finally, Sect. 6
describes the new tool tightPROVE we implemented to experiment our method
on concrete circuits.

2 Formal Security Notions

2.1 Notations

In this paper, we denote by F2 the finite field with two elements and by �i, j�
the integer interval Z ∩ [i, j] for any two integers i and j. For a finite set X , we
denote by |X | the cardinality of X and by x ← X the action of picking x from X
independently and uniformly at random. For some (probabilistic) algorithm A,
we further denote x ← A(in) the action of running algorithm A on some inputs
in (with fresh uniform random tape) and setting x to the value returned by A.

2.2 Basic Notions

A Boolean circuit is a directed acyclic graph whose vertices are input gates, out-
put gates, constant gates of fan-in 0 that output constant values, and operation

https://github.com/CryptoExperts/tightPROVE

348 S. Beläıd et al.

gates of fan-in at most 2 and fan-out at most 1 and whose edges are wires. In
this paper we consider Boolean circuits with two types of operation gates: addi-
tion gates (computing an addition on F2) and multiplication gates (computing
a multiplication on F2). A randomized circuit is a Boolean circuit augmented
with random-bit gates of fan-in 0 that outputs a uniformly random bit.

A d-Boolean sharing of x ∈ F2 is a random tuple (x0, x1, . . . , xd−1) ∈ F
d
2

satisfying x =
∑d−1

i=0 xi. The sharing is said to be uniform if, for a given x,
it is uniformly distributed over the subspace of tuples satisfying x =

∑d−1
i=0 xi.

A uniform sharing of x is such that any m-tuple of its shares xi is uniformly
distributed over F

m
2 for any m ≤ d − 1. In the following, a d-Boolean sharing of

a given variable x is denoted by [x] when the sharing order d is clear from the
context. We further denote by Enc a probabilistic encoding algorithm that maps
x ∈ F2 to a fresh uniform sharing [x].

A d-shared circuit C is a randomized circuit working on d-shared variables.
More specifically, a d-shared circuit takes a set of n input sharings [x1], . . . , [xn]
and computes a set of m output sharings [y1], . . . , [ym] such that (y1, . . . , ym) =
f(x1, . . . , xn) for some deterministic function f . A probe on C refers to a wire
index (for some given indexing of C’s wires). An evaluation of C on input [x1],
. . . , [xn] under a set of probes P refers to the distribution of the tuple of wires
pointed by the probes in P when the circuit is evaluated on [x1], . . . , [xn], which
is denoted by C([x1], . . . , [xn])P .

We consider a special kind of shared circuits which are composed of gadgets.
A gadget is a simple building block of a shared circuit that performs a given
operation on its input sharing(s). For instance, for some two-input operation
∗, a ∗-gadget takes two input sharings [x1] and [x2] and it outputs a sharing
[y] such that y = x1 ∗ x2. In the paper, we specifically consider three types of
gadgets, namely ISW-multiplication gadgets ([⊗]), ISW-refresh gadgets ([R]) and
sharewise addition gadgets ([⊕]). The ISW-multiplication gadget, introduced
in [15], takes two d-sharings [a] and [b] as inputs and computes the output d-
sharing [c] such that c = a · b as follows:

1. for every 0 ≤ i < j ≤ d − 1, pick uniformly at random a value ri,j over F2;
2. for every 0 ≤ i < j ≤ d − 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d − 1, compute ci ← ai · bi +

∑
j �=i ri,j .

The ISW-refresh gadget is actually the ISW-multiplication gadget in which the
second operand [b] is set to the constant Boolean sharing (1, 0, . . . , 0). The out-
put [c] is thus a fresh independent sharing of a. Finally, a sharewise addition
gadget computes a d-sharing [c] such that c = a + b by letting ci ← ai + bi

for every 0 ≤ i ≤ d − 1. When called with a second operand equal to the con-
stant Boolean sharing (1, 0, . . . , 0), such a sharewise addition gadget computes
the complementary of its first operand c = a.

Definition 1. A standard shared circuit is a shared circuit exclusively composed
of ISW-multiplication gadgets, ISW-refresh gadgets, and sharewise addition gad-
gets as described above.

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 349

2.3 Game-Based Security Definitions

In the following, we recall the probing, non-interfering, and strong non-
interfering security notions introduced in [2,15] and we formalize them through
concrete security games. Each of these games is defined for a given n-input
d-shared circuit C and it opposes an adversary A, which is a deterministic algo-
rithm outputting a set of (plain) inputs x1, . . . , xn and a set of probes P, to a
simulator S, which aims at simulating the distribution C([x1], . . . , [xn])P .

Probing Security. We first recall the definition from [15]. Our game-based def-
inition is then given with a proposition to state the equivalence of both notions.

Definition 2 (from [15]). A circuit is t-probing secure if and only if any set
of at most t intermediate variables is independent from the secret.

Probing Security Game. The t-probing security game is built based on two exper-
iments as described in Fig. 3. In both experiments, an adversary A outputs a
set of probes P (indices of circuit’s wires) such that |P| = t and n input values
x1, . . . , xn ∈ F2.

In the first (real) experiment, referred to as ExpReal, the chosen input values
x1, . . . , xn are mapped into n sharings [x1], . . . , [xn] with encoding algorithm Enc.
The resulting encodings are given as inputs to the shared circuit C. The real
experiment then outputs a random evaluation C([x1], . . . , [xn])P of the chosen
gates through a t-uple (v1, . . . , vt).

ExpReal(A, C):
1. (P, x1, . . . , xn) ← A()
2. [x1] ← Enc(x1), . . . , [xn] ← Enc(xn)
3. (v1, . . . , vt) ← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn) ← A()
2. (v1, . . . , vt) ← S(P)
3. Return (v1, . . . , vt)

Fig. 3. t-probing security game.

In the second experiment, referred to as ExpSim, the probing simulator S
takes the (adversary chosen) set of probes P and outputs a simulation of the
evaluation C([x1], . . . , [xn])P , which is returned by the simulation experiment.
The simulator wins the game if and only if the two experiments return identical
distributions.

Proposition 1. A shared circuit C is t-probing secure if and only if for
every adversary A, there exists a simulator S that wins the t-probing secu-
rity game defined in Fig. 3, i.e. the random experiments ExpReal(A, C) and
ExpSim(A,S, C) output identical distributions.

350 S. Beläıd et al.

Proof. From right to left, if for every adversary A, there exists a simulator S
that wins the t-probing security game defined in Fig. 3, then any set of probes
is independent from the secret as S has no knowledge of the secret inputs.
Thus C is trivially t-probing secure by Definition 2. From left to right, if the
random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output identical
distributions, then there exists a set of at most t intermediate variables which
cannot be perfectly simulated without the knowledge of the input secrets. As a
consequence, the circuit is not t-probing secure from Definition 2. �

A shared circuit C which is t-probing secure is referred to as a t-private
circuit. It is not hard to see that a d-shared circuit can only achieve t-probing
security for d > t. When a d-shared circuit achieves t-probing security with
d = t + 1, we call it a tight private circuit.

Non-Interfering Security. The non-interfering security notion is a little bit
stronger ([2]). Compared to the probing security notion, it additionally benefits
from making the security evaluation of composition of circuits easier. We recall
its original definition from [2] before we give an equivalent formal game-based
definition.

Definition 3 (from [2]). A circuit is t-non-interfering (t-NI) if and only if
any set of at most t intermediate variables can be perfectly simulated from at
most t shares of each input.

Non-Interfering Security Game. The t-non-interfering (t-NI) security game is
built based on two experiments as described in Fig. 4. In both experiments, an
adversary A outputs a set of probes P (indices of circuit’s wires) such that
|P| = t and n input sharings [x1], . . . , [xn] ∈ F

d
2.

The first (real) experiment, referred to as ExpReal, simply returns an evalu-
ation of C on input sharings [x1], . . . , [xn] under the set of probes P.

The second experiment, referred to as ExpSim, is defined for a two-round
simulator S = (S1,S2). In the first round, the simulator S1 takes the (adversary
chosen) set of probes P and outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d}, such
that |I1| = · · · = |In| = t. In the second round, in addition to the set of probes
P, the simulator S2 receives the (adversary chosen) input sharings restricted
to the shares indexed by the sets I1, . . . , In, denoted [x1]I1 , . . . , [xn]In

, and
outputs a simulation of C([x1], . . . , [xn])P , which is returned by the simulation
experiment. The simulator wins the game if and only if the two experiments
return identical distributions.

Proposition 2. A shared circuit C is t-non-interfering secure if and only if for
every adversary A, there exists a simulator S that wins the t-non-interfering
security game defined in Fig. 4, i.e. the random experiments ExpReal(A, C) and
ExpSim(A,S, C) output identical distributions.

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 351

ExpReal(A, C):

1. (P, [x1], . . . , [xn]) ← A()
2. (v1, . . . , vt) ← C([x1], . . . , [xn])P
3. Return (v1, . . . , vt)

ExpSim(A,S, C): ∗

1. (P, [x1], . . . , [xn]) ← A()
2. I1, . . . , In ← S1(P)
3. (v1, . . . , vt) ← S2(P, [x1]I1 , . . . , [xn]In)
4. Return (v1, . . . , vt)

∗ For t-NI: |I1| = · · · = |In| = t.
For t-SNI: |I1| = · · · = |In| = |Pint| ≤ t.

Fig. 4. t-(S)NI security game.

Proof. From right to left, if for every adversary A, there exists a simulator S
that wins the t-non interfering security game defined in Fig. 3, then any set of
probes can be perfectly simulated from sets of at most t shares of each input.
Thus C is trivially t-non-interfering from Definition 3. From left to right, if the
random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output identical
distributions, then there exists a set of at most t intermediate variables which
cannot be perfectly simulated from sets Ij of input shares whose cardinalities
are less than t. As a consequence, the circuit is not t-non interfering secure from
Definition 3. �

Strong Non-Interfering Security. The strong non-interfering security is a
stronger notion than non-interfering security as it additionally guarantees the
independence between input and output sharings. The latter property is very
convenient to securely compose gadgets with related inputs.

Definition 4 (Strong non-interfering security from [2]). A circuit is t-
strong non-interfering (t-SNI) if and only if any set of at most t intermediate
variables whose t1 on the internal variables (i.e. intermediate variables except
the output’s ones) and t2 on output variables can be perfectly simulated from at
most t1 shares of each input.

Strong Non-Interfering Security Game. The t-strong-non-interfering (t-SNI)
security game is similar to the t-NI security game depicted in Fig. 4. The only
difference relies in the fact that the first-round simulator S1 outputs n sets of
indices I1, . . . , In ⊆ {1, . . . , d}, such that |I1| = · · · = |In| = |Pint| ≤ t where
Pint ⊆ P refers to the probes on internal wires, i.e. the probes in P which do
not point to outputs of C.

Proposition 3. A shared circuit C is t-strong-non-interfering secure if and
only if for every adversary A, there exists a simulator S that wins the t-SNI
security game defined in Fig. 4, i.e. the random experiments ExpReal(A, C) and
ExpSim(A,S, C) output identical distributions.

352 S. Beläıd et al.

Proof. From right to left, if for every adversary A, there exists a simulator S
that wins the t-non interfering security game defined in Fig. 3, then any set of
probes can be perfectly simulated from sets of at most |Pint| = t1 shares of each
input. Thus C is trivially t-strong non-interfering from Definition 4. From left
to right, if the random experiments ExpReal(A, C) and ExpSim(A,S, C) do not
output identical distributions, then there exists a set of at most t intermediate
variables which cannot be perfectly simulated from sets Ij of input shares whose
cardinalities are less than t1. As a consequence, the circuit is not t-strong non
interfering secure from Definition 4. �

2.4 Useful Security Results

This section states a few useful security results. From the above definitions, it is
not hard to see that for any shared circuit C we have the following implications:

C is t-SNI ⇒ C is t-NI ⇒ C is t − probing secure

while the converses are not true. While the ISW-multiplication (and refresh)
gadget defined above was originally shown to achieve probing security, it actually
achieves the more general notion of strong non-interfering security as formally
stated in the following theorem:

Theorem 1 ([2]). For any integers d and t such that t < d, the d-shared ISW-
multiplication gadget [⊗] and the d-shared ISW-refresh gadget [R] are both t-SNI.

The next lemma states a simple implication of the t-SNI notion (which up to
our knowledge has never been stated in the literature):

Lemma 1. Let C be a n-input (t + 1)-shared t-SNI circuit. Then for every
(x1, . . . , xn) ∈ F

n
2 , an evaluation of C taking n uniform and independent (t+1)-

Boolean sharings [x1], . . . , [xn] as input produces a sharing [y] (of some value
y ∈ F2 function of x1, . . . , xn) which is uniform and mutually independent of
[x1], . . . , [xn].

Proof of Lemma 1 is available in the full version of this paper [4].

3 A Security Reduction

This section provides a reduction for the t-probing security of a standard (t+1)-
shared circuit C as defined in Sect. 2. Through a sequence of games we obtain a
broad simplification of the problem of verifying whether C is probing secure or
not. At each step of our reduction, a new game is introduced which is shown to
be equivalent to the previous one, implying that for any adversary A, there exists
a simulator S that wins the new game if and only if the circuit C is t-probing
secure. We get a final game (see Game 3 hereafter) in which only the inputs
of the multiplication gadgets can be probed by the adversary and the circuit is
flattened into an (equivalent) circuit of multiplicative depth one. This allows us

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 353

to express the probing security property as a linear algebra problem, which can
then be solved efficiently as we show in Sect. 4.

In a nutshell, our Game 0 exactly fits the game-based definition of t-probing
security given in the previous section. Then, with Game 1, we prove that verifying
the t-probing security of a standard shared circuit C is exactly equivalent to
verifying the t-probing security of the same circuit C where the attacker A is
restricted to probe inputs of refresh gadgets, pairs of inputs of multiplication
gadgets, and inputs and outputs of sharewise additions (i.e., no internal gadgets
variables). Game 2 then shows that verifying the t-probing security of a standard
shared circuit C with a restricted attacker A is equivalent to verifying the t-
probing security of a functionally equivalent circuit C ′ of multiplicative depth
one where all the outputs of multiplication and refresh gadgets in C are replaced
by fresh input sharings of the same values in the rest of the circuit. Finally, with
Game 3, we show that we can even restrict the adversary to probe only pairs
(xi, yj) where xi (resp. yj) is the ith share of x (resp. the jth share of y) and
such that x and y are operands of the same multiplication in C. These three
games are deeply detailed hereafter and proofs of their consecutive equivalence
are provided at each step. An overview is displayed on Fig. 5.

Game 0
t probes on a st.
shared circuit

Game 1 Game 2 Game 3

no probe on
internal variables

equivalent circuit of
multiplicative depth 1

probes only on
multiplications’ inputs

Fig. 5. Overview of the sequence of games.

Game 1. In a nutshell, our first game transition relies on the fact that each
probe in a t-SNI gadget can be replaced by 1 or 2 probes on the input shar-
ing(s) of the gadget. In particular, one probe on a refresh gadget is equivalent
to revealing one input share, one probe on a multiplication gadget is equivalent
to revealing two input shares (one share per input sharings). Formally, in the
random experiments ExpReal(A, C) and ExpSim(A,S, C), the set of probes P
returned by A, noted P ′ in the following, has a different form explicitly defined
below.

Let us associate an index g to each gadget in the standard shared circuit and
denote by G the set of gadget indices. Let us further denote by Gr, Gm and Ga

the index sets of refresh gadgets, multiplication gadgets and addition gadgets,
such that G = Gr ∪ Gm ∪ Ga. Then we can denote by Ig and Jg the indices of
circuit wires which are the shares of the (right and left) input operands of gadget

354 S. Beläıd et al.

g ∈ G (where Jg = ∅ if gadget g is a refresh). Similarly, we denote by Og the
indices of circuit wires which represent the output of gadget g ∈ G. From these
notations, an admissible set of probes P ′ from the adversary in the new game is
of the form

P ′ = P ′
r ∪ P ′

m ∪ P ′
a

where

P ′
r ⊆

⋃

g∈Gr

Ig

P ′
m ⊆

⋃

g∈Gm

Ig × Jg

P ′
a ⊆

⋃

g∈Ga

Ig

⋃

g∈Ga

Jg

⋃

g∈Ga

Og

and |P ′| = t. That is, each of the t elements of P ′ either is a pair of index in
Ig ×Jg for a multiplication gadget g, or a single index in Ig for a refresh gadget
g, or a single index in Ig ∪ Jg ∪ Og for an addition gadget. Note that in the
latter case, the index can correspond to any wire in the addition gadget (which
is simply composed of t + 1 addition gates).

Let tm be the number of probes on multiplication gadgets, i.e. tm = |P ′
m|,

and tar the number of probes on refresh or addition gadgets, i.e. tar = |P ′
a ∪P ′

r|,
so that tm + tar = t. The evaluation C([x1], . . . , [xn])P′ then returns a q-tuple
for q = 2tm + tar, which is composed of the values taken by the wires of index
i ∈ P ′

a ∪ P ′
r, and the values taken by the wires of index i and j with (i, j) ∈ P ′

m.
The new experiments ExpReal1(A, C) and ExpSim1(A,S, C), carefully written in
Fig. 6, each output a q-tuple and, as before, the simulator wins Game 1 if and
only if the associated distributions are identical.

ExpReal1(A, C):

1. (P ′, x1, . . . , xn) ← A()
2. [x1] ← Enc(x1), . . . , [xn] ← Enc(xn)
3. (v1, . . . , vq) ← C([x1], . . . , [xn])P′

4. Return (v1, . . . , vq)

ExpSim1(A,S, C):

1. (P ′, x1, . . . , xn) ← A()
2. (v1, . . . , vq) ← S(P ′)
3. Return (v1, . . . , vq)

Fig. 6. Game 1.

Proposition 4. A standard shared circuit C is t-probing secure if and only
if for every adversary A, there exists a simulator S that wins Game 1 defined
above, i.e. the random experiments ExpReal1(A, C) and ExpSim1(A,S, C) output
identical distributions.

Proof. Basically, the proof is based on the fact that with the SNI property on
the gadgets in our circuit, each probe in a t-SNI gadget can be replaced by 1 or
2 probes on the input sharing(s) of the gadget. The complete proof can be found
in the full version of this paper [4].

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 355

Game 2. Our second game transition consists in replacing the circuit C by
a functionally equivalent circuit C ′ of multiplicative depth one and with an
extended input. In a nutshell, each output of a multiplication or a refresh
gadget in C is replaced by a fresh new input sharing of the same value
in the rest of the circuit. The new circuit hence takes N input sharings
[x1], . . . , [xn], [xn+1], . . . , [xN], with N = n + |Gm| + |Gr|. The two circuits are
functionally equivalent in the sense that for every input (x1, . . . , xn) there exists
an extension (xn+1, . . . , xN) such that C([x1], . . . , [xn]) and C ′([x1], . . . , [xN])
have output sharings encoding the same values. This transformation is further
referred to as Flatten in the following, and is illustrated on Fig. 7.

[x1] [x2] [x3]

[⊕] R

[⊗] [⊗]

[⊗] [⊗]

[v1] [v2]

[v3]
[v4]

[v5] [v6]

Circuit C

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[v2]
�

[v3]
�

[v4]
�

[v5]
�

[v6]
�

[⊕] R

[⊗] [⊗][⊗] [⊗]

[v1]

Circuit C′

Fig. 7. Illustration of the Flatten transformation.

The resulting Game 2 is illustrated on Fig. 8. Although the additional inputs
xn+1, . . . , xN are deterministic functions of the original inputs x1, . . . , xn, we
allow the adversary to select the full extended input x1, . . . , xN for the sake of
simplicity. This slight adversarial power overhead does not affect the equivalence
between the games.

ExpReal2(A, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN) ← A()
3. [x1] ← Enc(x1), . . . , [xN] ← Enc(xN)
4. (v1, . . . , vq) ← C′([x1], . . . , [xN])P′

5. Return (v1, . . . , vq)

ExpSim2(A,S, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN) ← A()
3. (v1, . . . , vq) ← S(P ′)
4. Return (v1, . . . , vq)

Fig. 8. Game 2.

356 S. Beläıd et al.

Proposition 5. A standard shared circuit C is t-probing secure if and only
if for every adversary A, there exists a simulator S that wins Game 2 defined
above, i.e. the random experiments ExpReal2(A, C) and ExpSim2(A,S, C) output
identical distributions.

Proof. Basically, the proof is based on the fact that the output encodings of
a ISW multiplication are completely independent of its inputs encodings. The
complete proof can be found in the full version of this paper [4].

Corollary 1. A standard shared circuit C is t-probing secure if and only if the
standard shared circuit Flatten(C) is t-probing secure.

Translation to Linear Algebra. At this point, the problem of deciding the
t-probing security of a Boolean standard shared circuit C has been equivalently
reduced to the problem of deciding the t-probing security of a circuit C ′ =
Flatten(C) when the attacker is restricted to probes on multiplication and refresh
gadgets’ inputs, and intermediate variables of sharewise additions. In order to
further reduce it, we translate the current problem into a linear algebra problem.
In the following, we denote by xi,j the jth share of the ith input sharing [xi] so
that

[xi] = (xi,0, xi,1, . . . , xi,t),

for every i ∈ �1, N�. Moreover, we denote by −→xj ∈ F
N
2 the vector composed of

the jth share of each input sharing:

−→xj = (x0,j , x1,j , . . . , xN,j).

As a result of the Flatten transformation, each probed variable in the q-tuple
(v1, . . . , vq) = C([x1], . . . , [xN])P′ is a linear combination of the input sharings
[x1], . . . , [xN]. Moreover, since the addition gadgets are sharewise, for every
k ∈ �1, q�, there is a single share index j such that the probed variable vk only
depends of the jth shares of the input sharings, giving:

vk = −→ak · −→xj , (1)

for some constant coefficient vector −→ak ∈ F
N
2 . Without loss of generality, we

assume that the tuple of probed variables is ordered w.r.t. the share index j
corresponding to each vk (i.e. starting from j = 0 up to j = t). Specifically, the
q-tuple (v1, . . . , vq) is the concatenation of t + 1 vectors

−→v0 = M0 · −→x0 , −→v1 = M1 · −→x1 , . . . −→vt = Mt · −→xt , (2)

where the matrix Mj is composed of the row coefficient vectors −→ak for the probed
variable indices k corresponding to the share index j.

Lemma 2. For any (x1, . . . , xN) ∈ F
N
2 , the q-tuple of probed variables

(v1, . . . , vq) = C([x1], . . . , [xN])P′ can be perfectly simulated if and only if the
Mj matrices satisfy

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = ∅.

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 357

Moreover, if the Mj matrices are full-rank (which can be assumed without loss
of generality), then the above equation implies that (v1, . . . , vq) is uniformly dis-
tributed.

Proof. Without loss of generality we can assume that the Mj matrices are full-
rank since otherwise the probed variables v1, . . . , vq would be mutually linearly
dependent and simulating them would be equivalent to simulating any subset
(vk)k∈K⊆�1,q� defining a free basis of (v1, . . . , vq), and which would then induce
full-rank matrices Mj .

Throughout this proof, we denote −→x = (x1, . . . , xN). We first show that a
non-null intersection implies a non-uniform distribution of (v1, . . . , vq) which is
statistically dependent on −→x . Indeed, a non-null intersection implies that there
exist a non-null vector −→w ∈ F

N
2 satisfying

−→w = −→u0 · M0 = −→u1 · M1 = · · · = −→ut · Mt. (3)

for some (constant) vectors −→u0, . . . , −→ut . It follows that

t∑

j=0

−→uj · −→vj =
t∑

j=0

−→w · −→xj = −→w · −→x ,

which implies that the distribution of the q-tuple (v1, . . . , vq) = (−→v0 ‖ · · · ‖ −→vt)
is non-uniform and dependent on −→x .

We now show that a null intersection implies a uniform distribution (which
can then be easily simulated). The uniformity and mutual independence between
the sharings [x1], . . . , [xN] implies that we can see −→x1, . . . , −→xt as t uniform and
independent vectors on F

N
2 , and −→x0 as

−→x0 = −→x + −→x1 + · · · + −→xt .

The joint distribution of −→v1, . . . , −→vt is hence clearly uniform. Then each coor-
dinate of −→v0 is the result of the inner product −→r · −→x0 where −→r is a row of M0.
By assumption, there exists at least one matrix Mj such that −→r /∈ Im(MT

j). It
results that −→r · −→xj is a uniform random variable independent of −→v1, . . . , −→vt and
the other coordinates of −→v0 (since M0 is full-rank). Since the latter holds for all
the coordinates of −→x0 we get overall uniformity of (−→v0 ‖ · · · ‖ −→vt) which concludes
the proof. �

Lemma 2 allows us to reduce the t-probing security of a standard shared cir-
cuit to a linear algebra problem. If an adversary exists that can choose the set of
probes P ′ such that the transposes of induced matrices M1, . . . , Mt have inter-
secting images, then the distribution of (v1, . . . , vq) depends on (x1, . . . , xN) and
a perfect simulation is impossible (which means that the circuit is not probing
secure). Otherwise, the tuple (v1, . . . , vq) can always be simulated by a uniform
distribution and the circuit is probing secure. This statement is the basis of
our verification method depicted in the next section. But before introducing our
verification method, we can still simplify the probing security game as shown
hereafter by using Lemma 2.

358 S. Beläıd et al.

Game 3. In this last game, the adversary is restricted to probe the multiplica-
tion gadgets only. Formally, A returns a set of probes P ′ = P ′

r ∪ P ′
m ∪ P ′

a such
that P ′

r = ∅ and P ′
a = ∅. Such a set, denoted P ′′ is hence composed of t pairs of

inputs from
⋃

g∈Gm
Ig × Jg. The evaluation C([x1], . . . , [xn])P′′ then returns a

q-tuple for q = 2t. The new experiments ExpReal3(A, C) and ExpSim3(A,S, C),
displayed in Fig. 6, each output a q-tuple and, as before, the simulator wins
Game 3 if and only if the associated distributions are identical.

ExpReal3(A, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN) ← A()
3. [x1] ← Enc(x1), . . . , [xN] ← Enc(xN)
4. (v1, . . . , vq) ← C′([x1], . . . , [xN])P′′

5. Return (v1, . . . , vq)

ExpSim3(A,S, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN) ← A()
3. (v1, . . . , vq) ← S(P ′′)
4. Return (v1, . . . , vq)

Fig. 9. Game 3.

Proposition 6. A standard shared circuit C is t-probing secure if and only
if for every adversary A, there exists a simulator S that wins Game 3 defined
above, i.e. the random experiments ExpReal3(A, C) and ExpSim3(A,S, C) output
identical distributions.

Proof. Basically, the proof is based on the fact that probing a cross products
ai · bj allows you to gain informations on the two shares ai and bj . The complete
proof can be found in the full version of this paper [4].

4 Probing-Security Verification for Standard Shared
Circuits

In this section, we describe a formal verification method that checks for any
t ∈ N whether a standard (t + 1)-shared circuit C achieves t-probing security
for every t ∈ N. Specifically, our tool tightPROVE either provides a formal proof
that C is t-probing secure (where C is a standard shared circuit with sharing
order t + 1), or it exhibits a probing attack against C for the given t, namely it
finds a set of probes P (indices of wires) in the (t+1)-shared instance of C, such
that |P| = t, for which the evaluation C([x1], . . . , [xn])P cannot be simulated
without some knowledge on the plain input (x1, . . . , xn).

4.1 Linear Algebra Formulation

As demonstrated in the previous section, the t-probing security game for a stan-
dard (t+1)-shared circuit C can be reduced to a game where an adversary selects
a set of probes P ′′ solely pointing to input shares of the multiplication gadgets
of a flattened circuit C ′. In the following, we will denote by m the number of

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 359

multiplication gadgets in C (or equivalently in C ′) and by g ∈ �1,m� the index
of a multiplication gadget of C. We will further denote by [ag] and [bg] the input
sharings of the g-th multiplication gadget so that we have

[ag] = (−→ag · −→x0, . . . ,
−→ag · −→xt) and [bg] = (

−→
bg · −→x0, . . . ,

−→
bg · −→xt), (4)

for some constant coefficient vectors −→ag,
−→
bg ∈ F

N
2 , recalling that −→xj denotes the

vector with the jth share of each input sharing [x1], . . . , [xN]. In the following,
the vectors {−→ag,

−→
bg}g are called the operand vectors.

In Game 3, the adversary chooses t pairs of probes such that each pair points
to one share of [ag] and one share of [bg] for a multiplication gadget g. Without
loss of generality, the set of pairs output by the adversary can be relabeled as a
set of triplet P = {(g, j1, j2)} where g ∈ �1,m� is the index of a multiplication
gadget, j1 and j2 are share indices. For any triplet (g, j1, j2) ∈ P the two input
shares −→ag · −→xj1 and

−→
bg · −→xj2 are added to the (2t)-tuple of probed variables to be

simulated. This set of triplets exactly defines a sequence of t + 1 matrices M0,
. . . , Mt, defined iteratively by adding −→ag to the rows of Mj1 and

−→
bg to the rows

of Mj2 for each (g, j1, j2) ∈ P. Equivalently, the matrix Mj is defined as

Mj = rows({−→ag ; (g, j, ∗) ∈ P} ∪ {−→bg ; (g, ∗, j) ∈ P}), (5)

for every j ∈ �0, t� where rows maps a set of vectors to the matrix with rows
from this set.

Lemma 2 then implies that a probing attack on C consists of a set of probes
P = {(g, j1, j2)} such that the transposes of the induced Mj have intersecting
images. Moreover, since the total number of rows in these matrices is 2t, at least
one of them has a single row −→w . In particular, the image intersection can only be
the span of this vector (which must match the row of all single-row matrices) and
this vector belongs to the set of operand vectors {−→ag,

−→
bg}g. In other words, there

exists a probing attack on C if and only if a choice of probes P = {(g, j1, j2)}
implies

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = 〈−→w 〉. (6)

for some vector −→w ∈ {−→ag,
−→
bg}g. In that case we further say that there is a probing

attack on the operand vector −→w .
In the remainder of this section, we describe an efficient method that given

a set of vector operands {−→ag,
−→
bg}g (directly defined from a target circuit C)

determines whether there exists a parameter t and a set P = {(g, j1, j2)} (of
cardinality t) for which (6) can be satisfied. We prove that (1) if such sets P
exist, our method returns one of these sets, (2) if no set is returned by our method
then the underlying circuit is t-probing secure for any sharing order (t + 1).

4.2 Method Description

The proposed method loops over all the vector operands −→w ∈ {−→ag,
−→
bg}g and

checks whether there exists a probing attack on −→w (i.e. whether a set P can be
constructed that satisfies (6)).

360 S. Beläıd et al.

For each −→w ∈ {−→ag,
−→
bg}g the verification method is iterative. It starts from a

set G1 ⊆ �1,m� defined as

G1 = {g ; −→ag = −→w } ∪ {g ;
−→
bg = −→w }. (7)

Namely G1 contains the indices of all the multiplication gadgets that have −→w as
vector operand. Then the set of free vector operands O1 is defined as

O1 = {−→
bg ; −→ag = −→w } ∪ {−→ag ;

−→
bg = −→w }. (8)

The terminology of free vector operand comes from the following intuition: if
a probing adversary spends one probe on gadget g ∈ G1 such that −→ag = −→w
to add −→w to a matrix Mj (or equivalently to get the share −→w · −→xj), then she
can also add

−→
bg to another matrix Mj′ (or equivalently get the share

−→
bg · −→xj′)

for free. The adversary can then combine several free vector operands to make−→w ∈ Im(MT
j′) occur without directly adding −→w to Mj′ (or equivalently without

directly probing −→w · −→xj′). This is possible if and only if −→w ∈ 〈O1〉.
The free vector operands can also be combined with the operands of further

multiplications to generate a probing attack on −→w . To capture such higher-degree
combinations, we define the sequences of sets (Gi)i and (Oi)i as follows:

Gi+1 = {g ; −→ag ∈ −→w + 〈Oi〉} ∪ {g ;
−→
bg ∈ −→w + 〈Oi〉}, (9)

and
Oi+1 = {−→

bg ; −→ag ∈ −→w + 〈Oi〉} ∪ {−→ag ;
−→
bg ∈ −→w + 〈Oi〉}. (10)

for every i ≥ 1. The rough idea of this iterative construction is the following: if
at step i+1 a probing adversary spends one probe on gadget g ∈ Gi+1 such that−→ag ∈ −→w + 〈Oi〉, then she can add −→ag together with some free vector operands of
previous steps to Mj in order to get −→w ∈ Im(MT

j). Then she can also add
−→
bg to

another matrix Mj′ , making
−→
bg a new free vector operand of step i + 1.

Based on these definitions, our method iterates the construction of the sets
Gi and Oi. At setp i, two possible stop conditions are tested:

1. if Gi = Gi−1, then there is no probing attack on −→w , the method stops the
iteration on −→w and continues with the next element in the set of vector
operands;

2. if −→w ∈ 〈Oi〉, then there is a probing attack on −→w , the method stops and
returns True (with −→w and the sequence of sets (Gi,Oi)i as proof);

The method returns True if there exists a concrete probing attack on a vector
−→w ∈ {−→ag,

−→
bg}g for a certain sharing order t+1. Otherwise, it will eventually stop

with vector operand −→w since the number of multiplications is finite and since
Gi ⊆ Gi+1 for every i ≥ 1. When all the possible vector operands have been tested
without finding a probing attack, the method returns False. Algorithm 1 here-
after gives a pseudocode of our method where NextSets denotes the procedure
that computes (Gi+1,Oi+1) from (Gi,Oi) and is implemented in Sect. 6.

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 361

Algorithm 1. Search probing attack

Input: A set of vector operands {−→ag,
−→
bg}g

Output: True if there is probing attack on some −→w ∈ {−→ag,
−→
bg}g and False otherwise

1: for all −→w ∈ {−→ag,
−→
bg}g do

2: (G1,O1) ← NextSets(∅, ∅, {−→ag,
−→
bg}g,

−→w)
3: if −→w ∈ 〈O1〉 then return True

4: for i = 1 to m do
5: (Gi+1,Oi+1) ← NextSets(Gi,Oi, {−→ag,

−→
bg}g,

−→w)
6: if Gi+1 = Gi then break
7: if −→w ∈ 〈Oi〉 then return True

8: end for
9: end for

10: return False

In the rest of the section we first give some toy examples to illustrate our
methods and then provides a proof of its correctness.

4.3 Toy Examples

Two examples are provided hereafter to illustrate our iterative method in the
absence then in the presence of a probing attack.

In the very simple example of Fig. 1, two variables are manipulated in multi-
plications in the circuit C: −→w 1 = −→x1 and −→w 2 = −→x1+−→x2. The set of multiplications
G is of cardinality one since it only contains one multiplication (−→w 1,

−→w 2). Fol-
lowing the number of variables, the method proceeds at most in two steps:

1. As depicted in Algorithm 1, the method first determines whether there exists
a probing attack on −→w 1. In this purpose, a first set G1 is built, such that
G1 = (−→w 1,

−→w 2) and O1 = −→w 2. Since G1 �= ∅ and −→w 1 �= −→w 2, then a second set
must be built. However, there is no multiplication left, that is G2 = G1 and
so there is no attack on −→w 1.

2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built,
such that G1 = (−→w 2,

−→w 1) and O1 = −→w 1. Since G1 �= ∅ and −→w 2 �= −→w 1, then
a second set must be built. However, there is no multiplication left, that is
G2 = G1 and so there is no attack on −→w 2 either. Since there is no input variable
left, the method returns False, which means that there is no possible probing
attack on this circuit.

Figure 10 provides a second Boolean circuit. It manipulates five variables −→w i

as operands of multiplication gadgets: −→w 1 = −→x1, −→w 2 = −→x2, −→w 3 = −→x3, −→w 4 =−→x1 + −→x2, and −→w 5 = −→x2 + −→x3. The set of multiplications G is of cardinality three
with (−→w 1,

−→w 2), (−→w 4,
−→w 5), and (−→w 3,

−→w 4). Following the number of variables, the
method proceeds at most in five steps:

362 S. Beläıd et al.

[x1] = −→w 1 [x2] = −→w 2 [x3] = −→w 3

[⊕]
−→w 4

[⊕]

−→w 5

[⊗] [⊗] [⊗]

Fig. 10. Graph representation of a second Boolean circuit.

1. The method first determines whether there exists a probing attack on −→w 1.
In this purpose, a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 =−→w 2. Since G1 �= ∅ and −→w 1 �= −→w 2, then a second set must be built. G2 =
G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since −→w 4 = −→w 1 + −→w 2. However, −→w 1 /∈ O2(=<−→w 2,

−→w 3,
−→w 5 >), so a third set must be built. Since there is no multiplication

left, that is G3 = G2, there is no attack on −→w 1.
2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built,

such that G1 = (−→w 2,
−→w 1) and O1 = −→w 1. Since G1 �= ∅ and −→w 2 �= −→w 1, then a

second set must be built. G2 = G1 ∪ {(−→w 4,
−→w 5), (−→w 4,

−→w 3)} since −→w 4 = −→w 2 +−→w 1. And in that case, −→w 2 ∈ O2(=< −→w 1,
−→w 3,

−→w 5 >) since −→w 2 = −→w 3 + −→w 5.
Thus the method returns True and there exists an attack on −→w 2 = −→x2 for
some masking order t.

4.4 Proof of Correctness

This section provides a proof of correctness of the method. This proof is organized
in two propositions which are based on some invariants in Algorithm 1. The first
proposition shows that if the method returns True for some operand vector −→w
and corresponding sets (Gi,Oi) then there exists a probing attack on −→w (i.e. a
set P can be constructed that satisfies (6)). The second proposition shows that
if the method returns False then there exists no probing attack for any −→w ,
namely the underlying circuit is t-probing secure as soon as masked variables
are masked with t + 1 shares.

Proposition 7. For every i ∈ N, if −→w ∈ 〈Oi〉 then there exists t ∈ N and
P = {(g, j1, j2)} with |P| = t implying

⋂t
j=0 Im(MT

j) = −→w .

Proposition 8. Let i > 1 such that G1 ⊂ · · · ⊂ Gi−1 = Gi and −→w /∈ 〈Oi〉. Then
for any t ∈ N and P = {(g, j1, j2)} with |P| = t we have −→w /∈ ⋂t

j=0 Im(MT
j).

Proofs of Propositions 7 and 8 are available in the full version of this paper [4].

4.5 Towards Efficient Construction of Tight t-Private Circuits

Our formal verification method exactly reveals all the t-probing attacks on stan-
dard shared circuits. A sound countermeasure to counteract these attacks is

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 363

the use of refresh gadgets. We discuss here how to transform a flawed stan-
dard shared circuit into a t-private circuit with exactly the minimum number of
refresh gadgets.

In a first attempt, we easily show that refreshing the left operands of each
multiplication in C is enough to provide t-probing security.

Proposition 9. A standard shared circuit C augmented with t-SNI refresh gad-
gets operating on the left operand of each multiplication gadget is t-probing
secure.

In a second attempt, we need to slightly modify Algorithm 1 so that it conducts
an analysis on all the possible operands in order to return a complete list of the
flawed ones. So far, it stops at the first flaw. With such a list for a standard
shared circuit, we can show that refreshing only the flawed operands is enough
to provide t-probing security.

Proposition 10. A standard shared circuit C augmented with t-SNI refresh
gadgets operating on each flawed operand, as revealed by our method, of its mul-
tiplication gadgets is t-probing secure.

Proofs of these propositions are available in the full version of this paper [4].
Propositions 9 and 10 provide an upper bound of the required number of

refresh gadgets in a standard shared circuit to achieve probing security at any
order t. If we denote by m the number of multiplications in a standard shared
circuit C and by o the number of flawed operands returned by our method,
then C is to be augmented of at most r = min(m, o) refresh gadgets to achieve
probing security at any order t. Given this upper bound, an iterative number
of refresh gadgets from 1 to r can be inserted at each location in C in order to
exhibit a tight private circuit with a minimum number of refresh gadgets.

5 Further Steps

Now that we are able to exactly determine the t-probing security of standard
shared circuits, a natural follow-up consists in studying the t-probing security of
their composition. In a first part, we establish several compositional properties,
and then we show how they apply to the widely deployed SPN-based block
ciphers. We eventually discuss the extension of our results to generic shared
circuits.

5.1 Generic Composition

This section is dedicated to the statement of new compositional properties on
tight private circuits. In a first attempt, we show that the composition of a t-
private circuit whose outputs coincide with the outputs of t-SNI gadgets with
another t-private circuit is still a t-private circuit.

364 S. Beläıd et al.

Proposition 11. Let us consider a standard shared circuit C composed of two
sequential circuits:

– a t-probing secure circuit C1 whose outputs are all outputs of t-SNI gadgets,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. As the outputs of the first circuit C1 are the outputs t-SNI gadgets, we get
from Lemma 1 that the input encodings of C1 and the input encodings of C2 are
independent and uniformly distributed. Then, the proof is straightforward from
Proposition 5. Basically, the analysis of C’s t-probing security can be equivalently
reduced to the analysis of the t-probing security of C ′ = Flatten(C) in which
each output of a t-SNI gadget is replaced by a fresh new input sharing of the
corresponding value in the rest of the circuit, i.e. C2. As a consequence, C is
t-probing secure if and only if both C1 and C2 are t-probing secure, which is
correct by assumption. �

In a second attempt, we establish the secure composition of a standard shared
circuit that implements a (shared) linear surjective transformation through sev-
eral sharewise addition gadgets, that we refer to as a t-linear surjective circuit,
and a standard t-probing circuit.

Proposition 12. Let us consider a standard shared circuit C composed of two
sequential circuits:

– a t-linear surjective circuit C1, exclusively composed of sharewise additions,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. We consider a standard shared circuit C with input −→x = (x1, . . . , xn)
composed of a t-linear surjective circuit C1 as input to a t-probing secure circuit
C2. We denote by −→y = (y1, . . . , yn′) the set of C1’s outputs, or equivalently
the set of C2’s inputs. From Proposition 6, the t-probing security of C can be
reduced to the t-probing security of circuit C ′ = Flatten(C) for probes restricted
to the multiplications’ operands. In our context, C1 is exclusively composed of
sharewise additions, so the probes are restricted to C2. From Lemma 2, any set
of probed variables on C2’s multiplications operands (v1, . . . , vq) can be written
as the concatenation of the t + 1 vectors

−→v0 = M0 · −→y0 , −→v1 = M1 · −→y1 , . . . −→vt = Mt · −→yt ,

where
Im(MT

0) ∩ Im(MT
1) ∩ · · · ∩ Im(MT

t) = ∅. (11)

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 365

To achieve global t-probing security for C, we need to achieve a null intersection
for matrices that apply on C’s inputs instead of C2’s inputs. As C1 implements
a linear surjective transformation f , there exists a matrix Mf of rank n′ such
that

∀ 0 ≤ i ≤ t, −→yi = Mf · −→xi .

As a consequence, any set of probes (v1, . . . , vq) in C ′ as defined in Game 3 can
equivalently be rewritten as the concatenation of the t + 1 vectors

−→v0 = M0 · Mf · −→x0 , −→v1 = M1 · Mf · −→x1 , . . . −→vt = Mt · Mf · −→xt .

By contradiction, let us assume that

Im(MT
f · MT

0) ∩ Im(MT
f · MT

1) ∩ · · · ∩ Im(MT
f · MT

t) �= ∅,

that is, there exists a non-null vector −→w such that

−→w ∈ Im(MT
f · MT

0) ∩ Im(MT
f · MT

1) ∩ · · · ∩ Im(MT
f · MT

t).

Equivalently, there exists −→z0 ,−→z1 , . . . ,−→zt such that

−→w = MT
f · MT

0 · −→z0 = MT
f · MT

1 · −→z1 = . . . = MT
f · MT

1 · −→zt .

From Eq. (11), there exist at least two distinct indices i and j in {0, . . . , t}, such
that

MT
i · −→zi �= MT

j · −→zj .

As −→w = MT
f · MT

i · −→zi = MT
f · MT

j · −→zj , the difference MT
i · −→zi − MT

j · −→zj belongs
to MT

f ’s kernel. But from the surjective property of Mf , MT
f has full column

rank n′, and thus a null kernel:

dim(Ker(MT
f)) = n′ − dim(Im(MT

f)) = 0.

As a consequence, MT
i · −→zi − MT

j · −→zj = 0 and since MT
i · −→zi �= MT

j · −→zj we have
a contradiction which completes the proof. �

Eventually, we claim that two t-private circuits on independent encodings
form a t-private circuit as well.

Proposition 13. Let us consider a standard shared circuit C composed of two
parallel t-probing secure circuits which operate on independent input sharings.
Then, C = C1‖C2 is t-probing secure.

Proof. As the input sharings are independent, the result is straightforward from
Lemma 2. �

366 S. Beläıd et al.

5.2 Application to SPN-Based Block Ciphers

An SPN-based block cipher is a permutation which takes as inputs a key k in
{0, 1}κ and a plaintext p in {0, 1}n and outputs a ciphertext c in {0, 1}n, where
n and κ are integers. It is defined by successive calls to a round function and by
an optional expansion algorithm KS. The round function is a combination of a
non linear permutation S and a linear permutation L.

Proposition 14. Let C be a standard shared circuit implementing an SPN block
cipher. And let CS and CKS be the standard shared (sub-)circuits implementing
S and KS respectively. If both conditions

1. CS’s and CKS’s outputs are t-SNI gadgets’ outputs,
2. CS and CKS are t-probing secure (for any sharing order t + 1),

are fulfilled, then C is also t-probing secure.

Note that if S’s and KS’s outputs are not t-SNI gadgets’ outputs, then the
linear surjective circuit can be extended to the last t-SNI gadgets’ outputs of
these circuits without loss of generality.

Proof. As S and KS are t-probing secure, it follows from Proposition 13, that
when implemented in parallel on independent input encodings, their composition
is t-probing secure as well. Then, as the output of their composition matches the
outputs of t-SNI gadgets, then they can be sequentially composed with a t-
probing secure circuit from Proposition 11. Finally, the composition of linear
surjective circuits with t-probing secure circuits is ensured by Proposition 12,
which completes the proof. �

5.3 Extension to Generic Shared Circuits

We discuss hereafter two straightforward extensions of our work. Namely some
constraints on gadgets that compose the standard shared circuits can be relaxed,
and the considered circuit can easily be extended to work on larger finite fields.

On Standard Shared Circuits. The method presented in this paper through
Sects. 3 and 4 aims to accurately establish the t-probing security of a standard
shared circuit for any sharing order t + 1. Namely, it is restricted to Boolean
shared circuits exclusively composed of ISW-multiplication gadgets, ISW-refresh
gadgets, and sharewise addition gadgets. While the assumption on addition gad-
gets is quite natural, the restrictions made on the multiplication and refresh
gadgets can be relaxed. The reduction demonstrated in Sect. 3 only expects the
refresh gadgets to be t-SNI secure to ensure the equivalence between Game 1 and
the initial t-probing security game. Afterwards, t-probing security is equivalently
evaluated on a corresponding flattened circuit with probes on multiplications’
operands only. Therefore, there is no restriction on the choice of refresh gadgets
but their t-SNI security. While multiplication gadgets are also expected to be t-
SNI secure for the equivalence between Game 1 and the initial t-probing security

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 367

game to hold, this feature is not enough. To prove this equivalence, multiplica-
tion gadgets are also expected to compute intermediate products between every
share of their first operand and every share of their second operand. Otherwise,
our method could still establish the probing security of a circuit, but not in a
tight manner, meaning that security under Game 3 would imply probing secu-
rity but insecurity under Game 3 would not imply insecurity w.r.t. the original
probing insecurity notion. Our method would hence allowed false negatives, as
state-of-the-art methods currently do. Beyond the advantages of providing an
exact method, this restriction is not very constraining since not only the widely
deployed ISW-multiplication gadgets but also the large majority of existing mul-
tiplication gadgets achieve this property.

On Circuits on Larger Fields. Since ISW-multiplication gadgets and ISW-
refresh gadgets can straightforwardly be extended to larger fields our reduction
and verification method could easily be extended to circuits working on larger
fields.

6 Application

Following the results presented in previous sections, we developed a tool in
sage, tightPROVE, that takes as input a standard shared circuit and determines
whether or not it is t-probing secure with Algorithm 1. Specifically, the standard
shared circuit given as input to tightPROVE is expressed as a set of instructions
(XOR, AND, NOT, REFRESH) with operands as indices of either shared input values or
shared outputs of previous instructions. Namely, the XOR instructions are inter-
preted as sharewise addition gadgets of fan-in 2, the NOT instructions as share-
wise addition gadgets of fan-in 1 with the constant shared input (1, 0, . . . , 0),
the AND instructions as ISW-multiplication gadgets of fan-in 2, and the REFRESH
instructions as ISW-refresh gadgets of fan-in 1. As an application, we experi-
mented tightPROVE on several standard shared circuits. First, we analyzed the
t-probing security of the small examples of Sect. 4 as a sanity check. Then, we
investigated the t-probing security of the AES s-box circuit from [6] and com-
pared the result with what the maskComp tool produces. Additionally, we studied
the impact of our tool to practical implementations (for both the randomness
usage and the performance implications).

6.1 Application to Section 4 Examples

In order to have some sanity checks of our new method on simple standard
shared circuits, we applied tightPROVE to the examples given in Sect. 4, namely
the standard shared circuits depicted in Figs. 1 and 10. Specifically, we first
translated the two standard shared circuits into a list of instructions that is
given to our tool. For each circuit, the first instruction gives the number of
shared inputs. Then, each of the following instruction matches one of the four
possible operations among XOR, AND, NOT, and REFRESH together with the indices

368 S. Beläıd et al.

of the corresponding one or two operands. The output of each such operation is
then represented by the first unused index. At the end, from the generated list of
instructions the tool derives a list of pairs of operands, namely the inputs to the
multiplications in the circuit. Finally, Algorithm 1 is evaluated on the obtained
list of operands.

[x1] [x2]

[⊕]

[⊗]

→
;; 2

XOR 1 2

AND 1 3
→

list_comb = [1,3]

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[3], []]

comb = 3

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[1], []]

(’No attack found ’)

Fig. 11. New method applied on example 1.

The first example is based on a standard shared circuit that takes 2 shared
inputs and then performs two operations, namely a sharewise addition (XOR) and
an ISW-multiplication (AND). The AND instruction takes two inputs, namely the
output of the XOR and one of the two inputs of the circuit, which means that
there is only two possible target vectors for an attack to be mounted. They are
displayed in the list list comb. For both these two vectors successively displayed
with variable comb, the tool generates their respective sets G1 and O1, as defined
in Sect. 4. Then since G2 is equal to G1 for both vectors, the tool outputs that
no attack could be found. The circuit is thus t-probing secure. The complete
process is described in Fig. 11.

The second example is based on a standard shared circuit that takes 3 shared
inputs and then performs 5 operations, namely 2 sharewise additions (XOR) and
3 ISW-multiplications (AND). The three AND instructions take five distinct inputs,
which means that there are five possible target vectors for an attack to be
mounted. For the two first target vectors, no attack could be found as the tool
expressed all the multiplications in the circuit with two sets G1 and G2 without
finding any attack. For the third target vector, after the construction of G2 an
attack was found as the target vector belonged to the span of the set O2. The
complete process is described in Fig. 12. Moreover, we verified that by adding
a refresh gadget on the operand for which our tool finds an attack prior to the
multiplication where it is used, the tool is not able any more to find an attack
on the new circuit for this example. The results can be found in the full version
of this paper [4].

6.2 Application to AES s-box

At Eurocrypt 2017, Goudarzi and Rivain [14] proposed an efficient software
implementation of the s-box of the AES for higher-order masking. Based on

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 369

[x1] [x2] [x3]

[⊕] [⊕]

[⊗] [⊗] [⊗]

→

;; 3

XOR 1 2

XOR 2 3

AND 1 2

AND 4 5

AND 4 3

→

list_comb = [1,3,2,4,6]

comb = 1

=> NO ATTACK (G3 = G2)

G: [[(1 ,2)], [(3,6) ,(3,4)], []]

O: [[2], [6, 4], []]

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,2)], []]

O: [[6, 4], [2], []]

comb = 2

=> ATTACK

G: [[(1 ,2)], [(3,6) ,(3,4)]]

O: [[1], [6, 4]]

(’Attack found: 2 in span [1,6,4]’)

Fig. 12. New method applied on example 2.

the Boolean circuit of Boyar et al. [6], their implementation evaluates the s-
box on a state under bitsliced representation with only 32 AND gates. In order
to be t-probing secure without doubling the number of shares in the encoding
of sensitive variables, a conservative choice was made to add a refresh gadget
prior to each multiplication. As explained in Sect. 1, a major drawback of such
a conservative approach is the performance overhead induced by the number of
calls to refresh gadgets due to the randomness usage.

In order to obtain efficient implementations of the AES s-box and to be
tight on the number of randomness requirement, we have applied our tool to the
circuit of the s-box reordered by Goudarzi and Rivain without any refreshing
gadget. Interestingly, we obtained that no attack can be found for any masking
order. More precisely, the tool first identified 36 distinct target vectors out of
the 64 possible operands of multiplication gadgets (it can be easily checked
on the circuit found in Sect. 6 of [14]). For each of the 36 target vectors, the
corresponding set G1 is constructed. Then, for every variable the algorithm stops
as the respective sets G2 are always equal to the respective sets G1. The complete
report of the tool results can be found in the full version of this paper [4].

To prove the security of the AES s-box circuit, our tool took only 427 ms.
This speed is mainly due to the fact that for each possible target variable, only
the set G1 is computed. For comparison, we looked at the time taken by the
maskVerif tool of [1]. For a masking order t = 2, maskVerif found no attack in
35.9 s and for t = 3 in approximately 10 h.

For the sake of comparison, we also applied the maskComp tool on the same
circuit. We obtained that maskComp adds refresh gadgets prior to each multi-
plication in the circuit, transforming it into a new t-NI secure circuit. Since
our tool has shown that the circuit is t-probing secure with no refresh gadgets,
adding those refresh gadgets implies an overhead in the t-probing security that
can lead to less efficient practical implementations. As an illustration, we have
implemented the AES s-box circuit in bitslice for a generic masking order to see
the impact in performances between a full refresh approach (i.e. the conservative

370 S. Beläıd et al.

2 4 6 8 10

0.5

1

1.5

·105

t

cl
oc
k
cy
cl
es

[14] with TRNG-1
[14] withTRNG-2
Our implementation with TRNG-1
Our implementation with TRNG-2

Fig. 13. Timings of a t-probing secure AES s-box implementation.

choice of Goudarzi and Rivain and the result of maskComp) and a no refresh app-
roach (our new tool). Each of this two approaches produces a circuit that is at
least t-probing secure for any masking order t. Both produced circuit are securely
composable with other circuits (for maskComp from the proofs given in [2] and
for our tool from the result of Sect. 5). To be consistent with the state of the art,
the randomness in our implementations can be obtained from a TRNG with two
different settings: a first setting with a free TRNG that outputs 32-bit of fresh
randomness every 10 clock cycles (as in [14]) and a second setting with a con-
strained TRNG that outputs 32-bit of fresh randomness every 80 clock cycles (as
in [16]). The performance results can be found in Table 1. For both approaches,
the number of refresh gadgets used and the number of randomness needed are
displayed. Then, the timing in clock cycles for both settings are shown. We can
see that our tool allows to divide by 2 the number of required randomness and
benefits from an asymptotic gain of up to 43% in speed. The comparison of the
timings for several masking orders are depicted in Fig. 13.

Table 1. Performance results of the implementation AES s-box depending on the
number of refresh gadgets

Nb. of refresh Nb. of random Timing (Set. 1) Timing (Set. 2)

[14] 32 32 t(t− 1) 408 t2 + 928 t+ 1262 1864 t2 − 528 t+ 1262

this paper 0 16 t(t− 1) 295.5 t2 + 905.5 t+ 872 1069 t2 + 132 t+ 872

Tight Private Circuits: Achieving Probing Security with the Least Refreshing 371

Acknowledgments. We would like to thank François-Xavier Standaert and Gaëtan
Cassiers for their in-depth review and helpful comments.

References

1. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

2. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 116–129. ACM Press, New York, October 2016

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

4. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. IACR Cryptol. ePrint Arch. 2018, 439 (2018)

5. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–
353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 11

6. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

9. Coron, J.-S.: Formal verification of side-channel countermeasures via elemen-
tary circuit transformations. Cryptology ePrint Archive, Report 2017/879 (2017).
http://eprint.iacr.org/2017/879

10. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

11. Coron, J.-S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables
with common shares. Cryptology ePrint Archive, Report 2017/271 (2017). http://
eprint.iacr.org/2017/271

12. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

13. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

14. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
http://eprint.iacr.org/2017/879
https://doi.org/10.1007/978-3-662-43933-3_21
http://eprint.iacr.org/2017/271
http://eprint.iacr.org/2017/271
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-56620-7_20

372 S. Beläıd et al.

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

16. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

17. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

18. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

19. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

20. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

21. Zhang, R., Qiu, S., Zhou, Y.: Further improving efficiency of higher order masking
schemes by decreasing randomness complexity. IEEE Trans. Inf. Forensics Secur.
12(11), 2590–2598 (2017)

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28

Attacks and Countermeasures
for White-box Designs

Alex Biryukov1(B) and Aleksei Udovenko2(B)

1 SnT and CSC, University of Luxembourg, Esch-sur-Alzette, Luxembourg
alex.biryukov@uni.lu

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
aleksei.udovenko@uni.lu

Abstract. In traditional symmetric cryptography, the adversary has
access only to the inputs and outputs of a cryptographic primitive. In
the white-box model the adversary is given full access to the implementa-
tion. He can use both static and dynamic analysis as well as fault analysis
in order to break the cryptosystem, e.g. to extract the embedded secret
key. Implementations secure in such model have many applications in
industry. However, creating such implementations turns out to be a very
challenging if not an impossible task.

Recently, Bos et al. [7] proposed a generic attack on white-box prim-
itives called differential computation analysis (DCA). This attack was
applied to many white-box implementations both from academia and
industry. The attack comes from the area of side-channel analysis and
the most common method protecting against such attacks is masking,
which in turn is a form of secret sharing. In this paper we present multi-
ple generic attacks against masked white-box implementations. We use
the term “masking” in a very broad sense. As a result, we deduce new
constraints that any secure white-box implementation must satisfy.

Based on the new constraints, we develop a general method for pro-
tecting white-box implementations. We split the protection into two inde-
pendent components: value hiding and structure hiding. Value hiding
must provide protection against passive DCA-style attacks that rely on
analysis of computation traces. Structure hiding must provide protection
against circuit analysis attacks. In this paper we focus on developing the
value hiding component. It includes protection against the DCA attack
by Bos et al. and protection against a new attack called algebraic attack.

We present a provably secure first-order protection against the new
algebraic attack. The protection is based on small gadgets implementing
secure masked XOR and AND operations. Furthermore, we give a proof
of compositional security allowing to freely combine secure gadgets. We
derive concrete security bounds for circuits built using our construction.

Keywords: White-box · Obfuscation · Cryptanalysis
Provable security · Masking

The work of Aleksei Udovenko is supported by the Fonds National de la Recherche,
Luxembourg (project reference 9037104).

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 373–402, 2018.
https://doi.org/10.1007/978-3-030-03329-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_13&domain=pdf

374 A. Biryukov and A. Udovenko

1 Introduction

White-box cryptography aims to develop cryptographic primitives that can with-
stand attacks of very powerful adversaries. Those adversaries have full access to
the implementations, either in the form of source code or in the form of com-
piled programs. They can perform both static and dynamic analysis, including
debugging, tracing the execution, injecting faults, modifying the program parts,
etc. Cryptographic implementation resistant to such attacks is also called strong
white-box since it is essentially equivalent to a public key scheme achieved by
code-obfuscation means.

In 2002, Chow et al. [14,15] proposed the first white-box implementations of
the AES and DES block ciphers. The main idea was to represent small parts of
a block cipher as look-up tables and compose them with randomized invertible
mappings to hide the secret key information. Each such look-up table by itself
does not give any information about the key. In order to attack such scheme,
multiple tables must be considered. Another approach was proposed by Bringer
et al. [10]. Instead of look-up tables, the cipher is represented as a sequence
of functions over F2n for some n, with some additional computations as noise.
These functions are then composed with random linear mappings to hide the
secret key, similarly to the Chow et al. approach.

Unfortunately, both approaches fell to practical attacks [2,16,28]. Conse-
quent attempts to fix them were not successful [27,33]. Moreover, Michiels et
al. generalized the attack by Billet et al. [2] and showed that the approach of
Chow et al. is not secure for any SPN cipher with MDS matrices. This follows
from the efficient cryptanalysis of any SASAS structure [5]. Recently several
white-box schemes based on the ASASA structure were proposed [3]. However
the strong white-box scheme from that paper was broken [4,21,29] (which also
broadens the white-box attacker’s arsenal even further). Another recent app-
roach consists in obfuscating a block cipher implementation using candidates for
indistinguishability obfuscation (e.g. [20]).

Besides academia, there are commercial white-box solutions which are used
in real products. The design behind those implementations is kept secret, thus
adding security-by-obscurity protection. Nevertheless, Bos et al. [7] proposed a
framework for attacks on white-box implementations which can automatically
break many white-box implementations. The idea is to apply techniques from
grey-box analysis (i.e. side-channel attacks) but using more precise data traces
obtained from the implementation. The attack is called differential computa-
tion analysis (DCA). Sasdrich et al. [30] pointed out that the weakness against
the DCA attack can be explained using the Walsh transform of the encoding
functions. Banik et al. [1] analyzed software countermeasures against the DCA
attack and proposed another automated attack called Zero Difference Enumer-
ation attack.

In light of such powerful automated attack the question arises: how to cre-
ate a whitebox scheme secure against the DCA attack? The most common
countermeasure against side-channel attacks is masking, which is a form of
secret sharing. It is therefore natural to apply masking to protect white-box

Attacks and Countermeasures for White-box Designs 375

implementations. We define masking to be any obfuscation method that encodes
each original bit by a relatively small amount of bits. Such masking-based obfus-
cation may be more practical in contrast to cryptographic obfuscation built from
current indistinguishability obfuscation candidates [13,20].

In this paper we investigate the possibility of using masking schemes in the
white-box setting. We restrict our analysis to implementations in the form of
Boolean circuits. Our contribution splits into three parts:

1. Attacks on Masked White-Box Implementations. In Sect. 3 we develop
a more generic DCA framework and describe multiple generic attacks against
masked implementations. The attacks show that the classic Boolean masking
(XOR-sharing) is inherently weak. Previous and new attacks are summarized
in Table 1. We remark that conditions for different attacks vary significantly
and the attacks should not be compared solely by time complexity. For exam-
ple, the fault-based attacks are quite powerful, but it is relatively easy to
protect an implementation from these attacks. From our attacks we conclude
that more general nonlinear encodings are needed and we deduce constraints
that a secure implementation must satisfy. We believe that our results pro-
vide new insights on the design of white-box implementations. We note that
a basic variant of the (generalized) linear algebra attack was independently
discovered by Goubin et al. [23].

2. Components of Protection. We propose in Sect. 4 a general method for
designing a secure white-box implementation. The idea is to split the pro-
tection into two independent components: value hiding and structure hiding.
The value hiding component must provide protection against passive DCA-
style attacks - attacks that rely solely on analysis of computed values. In
particular, it must provide security against the correlation attack and the
algebraic attack. We suggest that security against these two attacks can be
achieved by applying a classic linear masking scheme on top of a nonlinear
masking scheme protecting against the algebraic attack. The structure hiding
component must secure the implementation against circuit analysis attacks.
The component must protect against circuit minimization, pattern recogni-
tion, pseudorandomness removal, fault injections, etc. Possibly this compo-
nent may be splitted into more sub-components (e.g. an integrity protection).
Development of a structure hiding protection is left as a future work.

3. Provably Secure Construction. Classic t-th order masking schemes pro-
tect against adversaries that are allowed to probe t intermediate values com-
puted by the implementation. The complexity of the attack grows fast when
t increases. In the new algebraic attack the adversary is allowed to probe
all intermediate values but she can combine them only with a function of
low algebraic degree d. Similarly, the attack complexity grows fast when d
increases and also when the circuit size increases. We develop a framework
for securing an implementation against the algebraic attack. We describe a
formal security model and prove composability of first-order secure circuits.
Finally, we propose a first-order secure masking scheme implementing XOR
and AND operations. As a result, our framework provides provable security

376 A. Biryukov and A. Udovenko

Table 1. Attacks on masked white-box implementations.

Attack Ref. Data Time

Correlation [7], Sect. 3.1 O(2t) O(ntk22t)

Time-Memory Tradeoff Sect. 3.1 O(1) O(n�s/2� + n�s/2�k)

Linear Algebra [23], Sect. 3.2 O(n) O(nω + n2k)

Generalized Lin. Alg. [23], Sect. 3.2 O(σ(n, d))) O(σ(n, d)ω + σ(n, d)2k)

LPN-based Gen. Lin. Alg. Sect. 3.2 DLPN (r, σ(n, d)) TLPN (r, σ(n, d))

1-Share Fault Injection Sect. 3.3 O(n) O(n2)

2-Share Fault Injection Sect. 3.3 O(n2) O(n3)

Notations: n denotes size of the obfuscated circuit or its part selected for the attack; s is
the number of shares in the masking scheme; k is the number of key candidates required
to compute a particular intermediate value in the circuit; t denotes the correlation order
(t ≤ s); ω is the matrix multiplication exponent (e.g. ω = 2.8074 for Strassen algorithm);
d is the algebraic degree of the masking decoder (see Sect. 3); σ(n, d) =

∑d
i=0

(n
i

)
is the

number of monomials of n bit variables of degree at most d; r is the noise ratio in the
system of equations, TLPN (r, m), DLPN (r, m) are time and data complexities of solving
an LPN instance with noise ratio r and m variables.

against the first-order algebraic attack. We derive concrete security bounds for
our construction. Finally, we implement the AES-128 block cipher protected
using our new masking scheme.

A code implementing the described attacks, verification of the algebraic
masking schemes and the masked AES-128 implementation is publicly available
at [6]:

https://github.com/cryptolu/whitebox

Outline. We provide the notations in Sect. 2. The general attack setting and
attacks are described in Sect. 3. We discuss a general method for securing a
white-box design in Sect. 4. In Sect. 5 we develop countermeasures against the
algebraic attack. Finally, we conclude and suggest future work in Sect. 6.

2 Notations and Definitions

Throughout the paper, we use the following notations and definitions.

– ∧,∨,⊕ denote Boolean AND, OR and XOR respectively.
– F2 is the finite field of size 2 and F

n
2 is the vector space over F2 of dimension

n.
– Elements in vectors are indexed starting from 1. For a vector v from F

n
2 we

write v = (v1, . . . , vn).
– |X| denotes the size of the vector/set X. If X is a circuit, |X| denotes the

number of nodes in it.
– The Weight of a vector v is the number or nonzero entries in it and is denoted

wt(v). Weight of a Boolean function is the weight of its truth table.

https://github.com/cryptolu/whitebox

Attacks and Countermeasures for White-box Designs 377

– The Bias of a Boolean function f : Fn
2 → F2 is denoted E(f) and is equal to

|1/2 − wt(f)/2n|.
– The Correlation of two n-bit vectors v1 and v2 is defined as

cor(v1, v2) =
n11n00 − n01n10√

(n00 + n01)(n00 + n10)(n11 + n01)(n11 + n10)
,

where nij denotes the number of positions where v1 equals to i and v2 equals
to j. If the denominator is zero then the correlation is set to zero. cor is the
sample Pearson correlation coefficient of two binary variables, also known as
the Phi coefficient. Other correlation coefficients may be used, see e.g. [32].

– 0,1 denote the two constant functions.
– Any Boolean function f with n-bit input has unique representation of the

form f(x) =
⊕

u∈F
n
2

auxu called the algebraic normal form (ANF). Here xu

is a shorthand for xu1
1 . . . xun

n and such products are called monomials.
– The algebraic degree of a Boolean function f is the maximum Hamming weight

of all u such that au = 1. Equivalently, it is the maximum degree of a mono-
mial in the ANF of f . It is denoted deg f .

– σ(n, d) =
∑d

i=0

(
n
i

)
is the number of monomials of n bit variables from F2 of

degree at most d.
– Let V be a set of Boolean functions with the same domain F

n
2 . Define the

d-th order closure of V (denoted V(d)) to be the vector space of all functions
obtained by composing any function of degree at most d with functions from
V:

V(d) = {f ◦ (g1, . . . , g|V|) | ∀f : F|V|
2 → F2,deg f ≤ d, gi ∈ V},

where gi : F
n
2 → F2 and h = f ◦ (g1, . . . , g|V|), h : F

n
2 → F2 is such that

h(x) = f(g1(x), . . . , g|V|(x)). For example,
• V(1) is spanned by {1} ∪ {gi | gi ∈ V},
• V(2) is spanned by {1} ∪ {gigj | gi, gj ∈ V}, etc. (includes V(1) as i = j

is allowed).

3 Attacks On Masked Implementations

We describe the general setting for our attacks. We consider a keyed symmetric
primitive, e.g. a block cipher. A white-box designer takes a naive implementation
with a hardcoded secret key and obfuscates it producing a white-box implemen-
tation. An adversary receives the white-box implementation and her goal is to
recover the secret key or a part of it. We restrict our analysis to implementations
in the form of Boolean circuits.

Definition 1. A Boolean circuit C is a directed acyclic graph where each node
with the indegree k > 0 has an associated k-ary symmetric Boolean function.
Nodes with the indegree equal to zero are called inputs of C and nodes with the
outdegree equal to zero are called outputs of C.

Let x = (x1, . . . , xn) (resp. y = (y1, . . . , ym)) be a vector of input (resp.
output) nodes in some fixed order. For each node v in C we say that it computes
a Boolean function fv : Fn

2 → F2 defined as follows:

378 A. Biryukov and A. Udovenko

– for all 1 ≤ i ≤ n set fxi
(z) = zi,

– for all non-input nodes v in C set fv(z) = g(fc1(z), . . . , fck(z)),
where c1, . . . , ck are nodes having an outgoing edge to v.

The set of fv for all nodes v in C is denoted F(C) and the set of fxi
for

all input nodes xi is denoted X (C). By an abuse of notation we also define the
function C : Fn

2 → F
m
2 as C = (fy1 , . . . , fym

).

Masking. We assume that the white-box designer uses masking in some form,
but we do not restrict him from using other obfuscation techniques. The only
requirement is that there exists a relatively small set of nodes in the obfuscated
circuit (called shares) such that during a legitimate computation the values
computed in these nodes sum to a predictable value. We at least expect this to
happen with overwhelming probability. In a more general case, we allow arbitrary
functions to be used to compute the predictable value from the shares instead
of plain XOR. We call these functions decoders. The classic Boolean masking
technique is based on the XOR decoder. The number of shares is denoted by s.

A predictable value typically is a value computed in the beginning or in the
end of the reference algorithm such that it depends only on a few key bits and
on the plaintexts/ciphertexts. In such case the adversary makes a guess for the
key bits and computes the corresponding candidate for the predictable value.
The total number of candidates is denoted by k.

The obfuscation method may require random bits e.g. for splitting the secret
value into random shares. Even if the circuit may have input nodes for ran-
dom bits in order to achieve non-deterministic encryption, the adversary can
easily manipulate them. Therefore, the obfuscation method has to rely on pseu-
dorandomness computed solely from the input. Locating and manipulating the
pseudorandomness generation is a possible attack direction. However, as we aim
to study the applicability of masking schemes, we assume that the adversary
can not directly locate the pseudorandomness computations and remove the
corresponding nodes. Moreover, the adversary can not predict the generated
pseudorandom values with high probability, i.e. such values are not predictable
values.

Window coverage. In a typical case shares of a predictable value will be relatively
close in the circuit (for example, at the same circuit level or at a short distance in
the circuit graph). This fact can be exploited to improve efficiency of the attacks.
We cover the circuit by sets of closely located nodes. Any such set is called a
window (as in power analysis attack terminology e.g. from [9]). The described
attacks can be applied to each window instead of the full circuit. By varying the
window size the attacks may become more efficient. Here we do not investigate
methods of choosing windows to cover a given circuit. One possible approach is
to assign each level or a sequence of adjacent levels in the circuit to a window.
Choosing the full circuit as a single window is also allowed. In our attacks we
assume that a coverage is already chosen. For simplicity, we describe how each
attack is applied to a single window. In case when multiple windows are chosen,

Attacks and Countermeasures for White-box Designs 379

the attack has to be repeated for each window. The window size is denoted by
n. It is equal to the circuit size in the case of the single window coverage.

General DCA attack. We would like to note that the term “differential compu-
tation analysis” (DCA) is very general. In [7] the authors introduced it mainly
for the correlation-based attack. In fact our new attacks fit the term well and
provide new tools for the “analysis” stage of the attack. The first stage remains
the same except that we adapt the terminology for the case of Boolean circuits
instead of recording the memory access traces. Our view of the procedure of the
DCA attack on a white-box implementation C is given in Algorithm 1.

Algorithm 1. General procedure of DCA attacks on Boolean circuits.
1. Generate a random tuple of plaintexts P = (p1, p2, . . .).
2. For each plaintext pi from P :

(a) Compute the circuit C on input pi: ci = C(pi).
(b) For each node indexed j in the circuit:

i. Record the computed value as vj,i.
(c) For each predictable value indexed j:

i. Record the predictable value computed using plaintext pi (or ciphertext
ci) as ṽj,i.

3. Generate the bit-vector vj = (vj,1, . . . , vj,|P |) of computed bits for each node j in
the circuit. Denote by V the set of all vectors vj : V = {v1, . . . , v|C|}.

4. Generate the bit-vector ṽj = (ṽj,1, . . . , ṽj,|P |) for each predictable value j. Denote

by Ṽ the set of all predictable vectors ṽj : Ṽ = {ṽ1, . . . , ṽk}.
5. Choose a coverage of V by windows of size n.
6. For each window in the coverage:

(a) Perform analysis on the window W ⊆ V using the set of predictable vectors Ṽ .

We remark that the correlation-based DCA attack from [7] can be imple-
mented on-the-fly, without computing the full vectors vj . In contrast, most of
our attacks require full vectors.

In the following two sections we describe two classes of DCA attacks: combi-
natorial and algebraic. They both follow the procedure described above and differ
only in the analysis part (Step 6a). Afterwards, we describe two fault-injection
attacks which allow to find locations of shares efficiently.

3.1 Combinatorial DCA attacks

The most straightforward way to attack a masked implementation is to guess
location of shares inside the current window. For each guess we need to check
if the shares match the predictable value. In the basic case of classic Boolean
masking where the decoder function is simply XOR of the shares the check is
trivial. If an unknown general decoder function has to be considered, the attack
becomes more difficult. One particularly interesting case is a basic XOR decoder
with added noise. The main attack method in such cases is correlation.

380 A. Biryukov and A. Udovenko

Correlation attack. The correlation DCA attack from [7] is based on correlation
between single bits. However, in the case of classic Boolean masking with strong
pseudorandom masks all s shares are required to perform a successful correlation
attack. In the case of a nonlinear decoder less shares may be enough: even a
single share correlation can break many schemes as demonstrated in [7]. Existing
higher-order power analysis attacks are directly applicable to memory or value
traces of white-box implementations. However, the values leaked in the white-
box setting are exact in contrast to side-channel setting and the attack may be
described in a simpler way. We reformulate the higher-order correlation attack
in our DCA framework.

Assume that locations of t shares are guessed and t vectors vj are selected. For
simplicity, we denote them by (v1, . . . , vt). For each t-bit vector m we compute
the t-bit um where

um,i = (v1,i = m1) ∧ . . . ∧ (vt,i = mt).

In other words, um,i is equal to 1 if and only if during encryption of the i-th
plaintext the shares took the value described by m . For each predictable vector ṽ
we compute the correlation cor(um, ṽ). If its absolute value is above a predefined
threshold, we conclude that the attack succeeded and possibly recover part of the
key from the predictable value ṽ. Furthermore, the entire vector of correlations
(cor(u(0,...,0), ṽ), cor(u(0,...,1), ṽ), . . .) may be used in analysis, e.g. the average or
the maximum value of its absolute entries.

We assume that the predictable value is not highly unbalanced. Then for the
attack to succeed we need the correlated shares to hit at least one combination m
a constant number of times (that is obtain wt(um) ≥ const). Therefore the data
complexity is |P | = O(2t). However, with larger number of shares the noise
increases and more data may be required. We estimate the time complexity of
the attack as O(ntk2t|P |) = O(ntk22t). Here nt corresponds to guessing location
of shares inside each window (we assume t � n); k corresponds to iterating over
all predictable values; 22t corresponds to iterating over all t-bit vectors m and
computing the correlations.

The main advantage of this attack is its generality. It works against general
decoder functions even with additional observable noise. In fact, the attack may
work even if we correlate less shares than the actual encoding requires. Indeed,
the attack from [7] relied on single-bit correlations and still was successfully
applied to break multiple whitebox designs. The generality of the attack makes
it inefficient for some special cases, in particular for the classic Boolean masking.
We investigate this special case and describe more efficient attacks.

Time-Memory Trade-off. We now consider the case of XOR decoder and absence
of observable noise. That is, the decoder function must map the shares to the
correct predictable value for all recorded plaintexts. In such case we can use
extra memory to improve the attack. Consider two simple cases by the number
of shares:

1. Assume that the decoder uses a single share (i.e. unprotected implementa-
tion). We precompute all the predictable vectors and put them in a table.

Attacks and Countermeasures for White-box Designs 381

Then we simply sweep through the circuit nodes and for each vector vi check
if it is in the table. For the right predictable vector ṽ we will have a match.

2. Assume that the decoder uses two shares (i.e. first-order protected imple-
mentation). We are looking for indices i, j such that vi ⊕ vj = ṽ for some
predictable vector ṽ. Equivalently, vi = ṽ ⊕ vj . We sweep through the win-
dow’s nodes and put all the node vectors in a table. Then we sweep again
and for each vector vj in the window and for each predictable vector ṽ we
check if vj ⊕ ṽ is in the table. For the right ṽ we will have a match and it will
reveal both shares.

This method easily generalizes for arbitrary number of shares. We put the
larger half of shares on the left side of the equation and put the corresponding
tuples of vectors in the table. Then we compute the tuples of vectors for the
smaller half of shares and look-up them in the table. We remark that this attack’s
complexity still has combinatorial explosion. However the time-memory trade-off
essentially allows to half the exponent in the complexity.

The attack effectively checks nsk sums of vectors to be equal to zero. To
avoid false positives, the data complexity should be set to O(s log2 n + log2 k).
We consider this data complexity negligible, especially because for large number
of shares the attack quickly becomes infeasible. For simplicity, we assume the
data complexity is O(1) and then the time complexity of the attack is O(n�s/2�+
n�s/2�k).

The described attack is very efficient for unprotected or first-order masked
implementations. For small windows it can also be practical for higher-order
protections. In the following section we describe a more powerful attack whose
complexity is independent of the number of shares.

3.2 Algebraic DCA attacks

For the classic Boolean masking the problem of finding shares consists in find-
ing a subset of the window’s vectors which sums to one of predictable vectors.
Clearly, this is a basic linear algebra problem. Let M be the matrix that has
as columns vectors from the current window. For each predictable vector ṽ we
solve the equation M × x = ṽ. A solution vector x reveals shares locations. To
avoid false-positive solutions the number |P | of encryptions should be increased
proportionally to the window size. For the same matrix M we need to check
all predictable vectors. Instead of solving the entire system each time, we pre-
compute the LU decomposition of the matrix and then use it for checking each
predictable vector much faster. We estimate the data complexity |P | = O(n) and
the time complexity O(nω+n2k), where ω is the matrix multiplication exponent.
This attack was independently discovered by the CryptoExperts team in [23] and
among other techniques was successfully applied [22] during the WhibOx 2017
competition [17] in order to break the winning challenge “Adoring Poitras”.

We conclude that classic Boolean masking is insecure regardless of the num-
ber of shares. The attack complexity is polynomial in the circuit size. Even

382 A. Biryukov and A. Udovenko

though it may not be highly practical to apply the attack to entire circuits con-
taining millions of nodes, good window coverage makes the attack much more
efficient. The attack becomes especially dangerous if a window containing all
shares may be located by analyzing the circuit. Indeed, this is how team Cryp-
toExperts attacked the main circuit of the winning challenge of the WhibOx
competition. They obtained a minimized circuit containing around 300000 nodes;
they draw the data dependency graph (DDG) of the top 5% nodes and visually
located several groups of 50 nodes and successfully mounted the described linear
attack on each of the groups.

Generalization through linearization. The described linear attack suggests that a
nonlinear masking scheme has to be used. We show that the attack can be gen-
eralized to nonlinear masking schemes as well. Of course, the complexity grows
faster. Still, the attack can be used to estimate the security of such implemen-
tations.

The generalization is based on the linearization technique. The idea is to com-
pute products of vectors (with bitwise AND) and include them as possible shares
of the predictable vector. Each such product corresponds to a possible monomial
in the algebraic normal form of the decoder function. The correct linear combi-
nation of monomials equals to the decoder function. The corresponding linear
combination of products of vectors equals to the correct predictable vector.

The set of products may be filtered. If a bound on the degree of the decoder
function is known, products with higher degrees are not included. For example,
for a quadratic decoder function only the vectors vi and all pairwise products
vivj should be included.

The data complexity is dependent on the number of possible monomials
in the decoder function. For simplicity, we consider an upper bound d on the
algebraic degree. Then the number of possible monomials is equal to σ(n, d) =∑d

i=0

(
n
i

)
. This generalized attack has the data complexity O(σ(n, d)) and the

time complexity O(σ(n, d)ω + σ(n, d)2k).
We remark that it is enough to consider only nonlinear (e.g. AND, OR) and

input nodes inside the current window. All other nodes are affine combinations
of these and are redundant. We formalize this fact in the following proposition.

Proposition 1. Let C be a Boolean circuit. Let N (C) be the set of all func-
tions computed in the circuit’s nonlinear nodes (i.e. any node except XOR, NOT,
NXOR) together with functions returning input bits. Then for any integer d ≥ 1
the sets F (d)(C) and N (d)(C) are the equal.

Proof. Note that for any set V we have V(d) = (V(1))(d). Therefore, we only
need to prove that F (1)(C) = N (1)(C). It is sufficient to show that any function
from F belongs to N (1)(C). This can be easily proved by induction on circuit
levels. �

We describe an interesting scenario where this generalized attack is highly
relevant. Assume that a white-box designer first applies classic Boolean mask-
ing to the reference circuit. Afterwards, each intermediate bit is encoded by

Attacks and Countermeasures for White-box Designs 383

e.g. 8 bits using a random nonlinear encoding. The masked circuit then is trans-
formed into a network of lookup tables which perform operations on the encoded
bits without explicitly decoding them. The motivation for such scheme is that
there will be no correlation between a single 8-bit encoding and any predictable
vector because of the linear masking applied under the hood. For the generalized
linear attack the degree bound is equal to 8 and normally, the time complexity
would be impractical. However, in this case the lookup tables reveal the locations
of encodings, i.e. the 8-bit groups. Therefore, we include only 28 products from
each group and no products across the groups. The attack works because the
predictable value is a linear combination of XOR-shares which in turn are linear
combinations of products (monomials) from each group.

Value-restriction analysis. The described algebraic attack can be modified to
cover a broader range of masking schemes. Consider a low-degree combination
of vectors from the current window and assume that the function it computes
can be expressed as s ∧ r, where s is the correct predictable value and r is some
uniform pseudorandom (unrelated) value. The basic algebraic attack will not
succeed because s ∧ r is not always equal to the predictable value s. However,
it is possible to extend the attack to exploit the leakage of s ∧ r. The adversary
chooses a set of inputs for which the predictable value s is equal to 0 and adds a
single random input for which the predictable value is equal to 1 (the adversary
may need to guess a part of the key to compute the predictable value). Then with
probability 1/2 he is expected to find a vector with all bits equal to 0 except the
last bit equal to 1. In case the predictable value is wrong, the chance of finding
such vector is exponentially small in the size of the plaintext set. The same
approach works for more complex leaked functions. In particular, the leaked
function may depend on multiple predictable values, e.g. on all output bits of an
S-Box. The only requirement is that the leaked function must be constant for at
least one assignment of the predictable values (except of course the case when
the leaked function is constant on all inputs). Note that the adversary must be
able to find the correct assignment of predictable values. As a conclusion, this
attack variant reveals a stronger constraint that a masking scheme must satisfy
in order to be secure.

Algebraic attack in the presence of noise. In spirit of the value-restriction analy-
sis, we continue to explore classes of exploitable leaking functions. Assume that
a low-degree combination of vectors from the current window corresponds to a
function s ⊕ e, where s is the correct predictable vector and e is a function with
a low Hamming weight. The function e may be unpredictable and we consider it
as noise. The problem of solving a noisy system of linear equations is well known
as Learning Parity with Noise (LPN). It is equivalent to the problem of decod-
ing random linear codes. The best known algorithms have exponential running
time. We refer to a recent result by Both et al. [8] where the authors propose
an algorithm with approximated complexity 21.3nr, where n is the number of
unknown variables and r is the noise ratio. Several algorithms with low memory
consumption were recently proposed by Esser et al. [18]. The best algorithm for
the problem depends on the exact instance parameters. The number of variables

384 A. Biryukov and A. Udovenko

in our case corresponds to the number of monomials considered, i.e. the window
size n in the linear attack and σ(n, d) in the generalized attack. For example, if
a linear combination of vectors from a 100-node window leaks s with noise ratio
1/4 then the LPN-based attack will take time 232.5 using the algorithm from [8].

3.3 Fault Attacks

Initially, we assumed that the adversary knows the obfuscated circuit and can
analyze it in an arbitrary way. Still, the attacks described in previous sections
were passive: they relied on analysis of computed intermediate values during
encryptions of random plaintexts. In this section we show that active attacks
(fault injections) can also be used to attack masked white-box implementations.
We assume that the classic Boolean masking is used. We also allow any form of
integrity protection which protects the values but does not protect the shares.

Two-Share Fault Injection. The main goal of a fault attack against masking is
to locate shares of the masked values. Observe that flipping two XOR-shares of
a value does not change the value. The attack follows:

1. Encrypt a random plaintext p and save the ciphertext E(p).
2. Choose two intermediate nodes ci, cj and flip them during encryption of p.

Denote the ciphertext by E′(p).
3. If E(p) = E′(p), conclude that ci, cj are shares of the same value (possibly

repeat check for other plaintexts). Otherwise try another two intermediate
nodes.

As shares of the same value should be placed closely in the circuit, a window
coverage can be used to improve efficiency of this attack too. The idea is to
choose two shares only inside each window and not across the windows.

The described attack allows to locate all shares of each value, independently
of the sharing degree. The attack performs O(n2) encryptions and has time
complexity O(|C|n2).

One-Share Fault Injection. Recall that we allow an integrity protection on the
values but not on the shares. One possible way an integrity protection may be
implemented is to perform the computations twice and spread the difference
between the two results across the output in some deterministic way. In such
way small errors are amplified into random ciphertext differences. In case of
such protection or absence of any protection we can improve the efficiency of the
fault attack.

The main idea for improvements comes from the following observation: if
we flip any single share of the same value, the masked value will be flipped as
well. This results in a fault injected in the unmasked circuit. We assume that
the circuit output does not depend on which share was faulted. This observation
allows to split the two-share fault attack and perform fault injection only for
each node instead of each pair of nodes, at the cost of additional storage:

1. Encrypt a random plaintext p and save the ciphertext E(p).

Attacks and Countermeasures for White-box Designs 385

2. For each intermediate node ci:
(a) Flip the value of ci during encryption of p. Denote the ciphertext by

E′
i(p).

(b) Store E′
i(p) in a table.

(c) If E′
i(p) was already stored in the table as E′

j(p) we learn that nodes ci

and cj are shares of the same value.

The attack performs O(n) encryptions, which requires O(|C|n) time. It pro-
vides substantial improvement over previous attack, though it requires stronger
assumption about the implementation. The most relevant counter-example is
when the integrity protection does not amplify the error but simply returns
a fixed output for any detected error. In a sense, such protection does not
reveal in the output any information about the fault. On the other hand, it
may be possible to locate the error checking part in the circuit and remove the
protection.

The attacks can be adapted for nonlinear masking as well. In such case the
injected fault may leave the masked value unflipped. When a zero difference is
observed in the output, the fault injection should be repeated for other plain-
texts. As plaintext is the only source of pseudorandomness, changing the plain-
text should result in different values of shares. Flipping a share would result
in flipping the masked value with nonzero probability. The exact probability
depends on the decoder function.

Remark. The two described attacks perform faults on nodes of the circuit. In
some cases, a node value may be used as a share of multiple different values,
for example, if the same pseudorandom value is used to mask several values. A
more general variant of attacks would inject faults on wires. However, multiple
wires may need to be faulted in order to succeed. The goal is to get the same
faulted output by flipping different nodes or wires as such an event uncovers
important structural information about the white-box design (if the space of
faulted outputs is large enough).

4 Countermeasures

The attacks described in the previous section significantly narrow down the space
of masking schemes useful for white-box obfuscation. We deduce the following
main constraints:

1. The number of shares should be high enough to avoid combinatorial attacks.
Moreover, the minimum number of shares that correlate with the reference
circuit values should be high as well.

2. There should be no low-degree decoders in order to prevent the algebraic
attack.

3. The circuit must not admit analysis that allows to locate shares of the same
values.

4. The integrity of pseudorandom shares must be protected.

386 A. Biryukov and A. Udovenko

The aim of this paper is to analyze the possibility of using masking schemes
with relatively small number of shares for white-box cryptography. The com-
plexity of combinatorial attacks splits into two parts: locating the shares and
correlating them. If the number of shares is very high then the correlation part
becomes infeasible. Possibly, in such case it is not even necessary to hide the
location of shares. The downside is that designing such masking schemes is
quite challenging and this direction leads into rather theoretical constructions
like indistinguishability obfuscation [20] from fully homomorphic encryption and
other cryptographic primitives. We aim to find more practical obfuscation tech-
niques. Therefore, we study obfuscation methods relying on hardness of locating
shares inside the obfuscated circuit. Such obfuscation is a challenging problem.
In the light of described attacks, we suggest a modular approach to solve this
problem. We split the problem into two components:

1. (Value Hiding) Protection against generic passive attacks that do not rely on
the analysis of the circuit.

2. (Structure Hiding) Protection against circuit analysis and fault injections.

Value Hiding. The first component basically requires designing a proper mask-
ing scheme. As we have shown, the requirements are much stronger than for the
usual masking in the side-channel setting (e.g. the provably secure masking by
Ishai et al. [26]). To the best of our knowledge, this direction was not studied
in the literature. However, there is a closely related notion: fully homomorphic
encryption (FHE). Indeed, it can be seen as an extreme class of masking schemes.
FHE encryption is a process of creating shares of a secret value and the FHE’s
evaluation functions allow to perform arbitrary computations on the ciphertexts
(shares) without leaking the secret value. In fact, any secure FHE scheme would
solve the “Value Hiding” problem (even though the adversary may learn the key
from the decryption phase, the locations of intermediate shares are unknown
and the scheme may remain secure). However, this direction leads to very inef-
ficient schemes: typical FHE schemes have very large ciphertexts and complex
circuits. This contradicts our goal to investigate schemes with reasonable number
of shares.

We suggest to further split the first component into two parts. The first
part is protection against algebraic attacks. It is a nonlinear masking scheme
without low-degree decoders. However, we allow the scheme to be imperfect: the
computed values may correlate with the secret values. Though one has to be
careful and avoid very strong correlation, otherwise the LPN-based variant of
the algebraic attack may be applicable. The second part is protection against
correlation attacks. It can be implemented using a provably secure linear masking
scheme on top of the nonlinear masking from the first part. The two parts may
be composed in the following way: the algebraically secure nonlinear masking
scheme is applied to the reference circuit and afterwards the linear masking
scheme is applied to the transformed circuit. We investigate possibilities for the
algebraically secure nonlinear masking in the next section.

Attacks and Countermeasures for White-box Designs 387

Structure Hiding. The second component resembles what is usually understood
by software obfuscation. Indeed, the usual software obfuscation aims to obfus-
cate the control flow graph and hide important operations. Often such obfusca-
tion includes integrity protections to avoid patching. The computed values are
not hidden but merely blended among redundant values computed by dummy
instructions. For circuits the problem is less obscure and ad hoc. In particular,
an integrity protection scheme for circuits was proposed by Ishai et al. in [25].
Though, formalizing the “protection against analysis” is not trivial. Applying
structure hiding protection on top of value hiding protection should secure the
implementation from attacks described in Sect. 3. We do not investigate struc-
ture hiding further in this paper and leave it as future work.

We note that it is not possible to formally separate value hiding from struc-
ture hiding. If we give the adversary computed vectors of values even in shuffled
order, she can reconstruct the circuit in reasonable time and then analyze it. One
possible direction is to mix the value vectors linearly by a random linear mapping
before giving to the adversary. It may be a difficult problem for the adversary to
recover the circuit or its parts from such input. However, such model makes the
correlation DCA attack almost inapplicable, since a lot of values are unnaturally
mixed up and the correlations are not predictable, even though it is perfectly
possible that the original unmixed values have strong correlations with secret
variables.

5 Algebraically Secure Masking Schemes

The algebraic attack is very powerful and the classic XOR-sharing masking
schemes can not withstand it. Therefore, it is important to develop new masking
schemes which are secure against the algebraic attack. In this section we formal-
ize security against the algebraic attack and propose a provably first-order secure
construction.

We start by describing the attack model and formalizing security against
the algebraic attack in Sect. 5.1. Ways of proving security in the new model are
developed in Sect. 5.2. Next, we analyze composability in Sect. 5.3. An algorithm
for checking security of gadgets is proposed in Sect. 5.4. Finally, we propose a
concrete secure gadget in Sect. 5.5.

5.1 Security Model

We extract a subproblem from the whitebox design problem. Recall that dur-
ing the algebraic attack, the adversary tries to find a function f of low degree
d such that when applied to values computed in the nodes of the obfuscated
circuit it would produce some predictable value. Typically, predictable value is
a value computed using the reference circuit and it depends on a small frac-
tion of the key. Our aim is to “hide” predictable values among unpredictable
values. The unpredictability of computed functions may only come from the
secret key/randomness used during the obfuscation process. In order to develop

388 A. Biryukov and A. Udovenko

a formal attack model we allow the obfuscated circuit to use random bits. We
underline that randomness here is merely an abstraction required for provable
security arguments.

In the real whitebox implementation the random bits may be implemented
as pseudorandom values computed from the input. Of course the pseudorandom
generation part has to be protected as well. However, the white-box designer is
free to choose arbitrary pseudorandom generator and its protection is an easier
task then obfuscating a general circuit. For example, the designer can choose a
random circuit satisfying some basic properties like computing a balanced func-
tion. The resulting circuit protected against the algebraic attack using pseudo-
randomly generated bits must further be obfuscated and protected from removal
of the pseudorandomness. This is type of protection that we called structure hid-
ing in Sect. 4 and it is out of scope of this paper.

We note a strong similarity between the algebraic attack and the side channel
probing attack. In the t-th order probing attack the adversary may observe t
intermediate values computed in the circuit. In the d-th order algebraic attack
the adversary may observe all intermediate values but she can combine them
only with a function of degree at most d.

The main idea of masking schemes is to hide the values computed in the
reference circuit using (pseudo)random masks. We assume that the adversary
knows the reference circuit. Given the inputs (e.g. a plaintext and a key) she can
compute all intermediate values. The final goal of the adversary is to recover the
key of an obfuscated implementation or, at least, learn some partial information
about it. To formalize this, we adapt classic semantic security and indistinguisha-
bility ideas. The adversary may ask to encrypt two different vectors of inputs.
The challenger chooses randomly one of the vectors and provides an oracle mod-
elling the algebraic attack to the adversary. The goal of the adversary is to decide
which of the vectors was encrypted. If she can not do this, then she can not learn
any information about the hidden inputs (e.g. the plaintext and the key). Note
that in this model the adversary may choose many different keys which is not
possible in the white-box scenario. However, it leads to simpler definitions since
we do not have to distinguish plaintext and key and we just treat them as one
input. It is possible to add a constraint allowing to choose only a single key per
input vector, but this would not lead to any improvement.

The oracle modelling the algebraic attack should not reveal too much infor-
mation about computed values. Otherwise, it may be possible for the adversary
to reconstruct the obfuscated circuit and then we would arrive in the general
white-box scenario. We model the attack as follows: the adversary chooses the
target function among linear (or higher-order) combinations of the intermedi-
ate functions in the circuit and she tries to guess its values during encryptions
of the inputs from one of the two vectors. Note that some functions may have
strong correlation with some function of the input. For a small vector of inputs
the adversary may simply guess the value, ask the oracle a few times until the
guess is correct and then compute the correlations. However, in the real algebraic
attack this is not possible due to presence of “noise” in the circuit. For a small

Attacks and Countermeasures for White-box Designs 389

number of plaintexts there will be a lot of false matches for any “predicted”
value, because there are many different functions computed in the circuit and it
is highly probable that there is a linear combination of them matching an arbi-
trary value. We take this into account and require that only the function chosen
by the adversary has to match the predicted value. As a result, the adversary
can not accurately predict values of any single function in the d-th order closure
of the circuit functions in order to run the linear algebra attack.

The circuit in the model can not take the input as it is, because these values
allow for a simple distinguisher. Since we are developing a masking scheme, we
assume that the inputs are already masked using random shares. This goes in
parallel with the classic Boolean masking scenarios. We would like to stress that
this is necessary in order to formally analyze the security of masked computa-
tions. Therefore, we do not consider the initial masking and the final un-masking
processes. Indeed, these procedures are not relevant for the algebraic attack since
they are not related to the reference circuit.

Taking into account the above discussions, we propose the following game-
based security definition:

Definition 2. (Prediction Security (d-PS)) Let C : FN ′
2 × F

RC
2 → F

M
2 be a

Boolean circuit, E : FN
2 × F

RE
2 → F

N ′
2 an arbitrary function, d ≥ 1 an integer

and A an adversary. Consider the following security game:

Experiment PSC,E,d(A, b):

(f̃ , x[0], x[1], ỹ) ← A(C, E, d), where

f̃ ∈ F (d)(C), x[l] = (x
[l]
1 , . . . , x

[l]
Q), x

[l]
i ∈ F

N
2 , ỹ ∈ F

Q
2

(r1, . . . , rQ)
$←− (FRE

2)Q

(r̃1, . . . , r̃Q)
$←− (FRC

2)Q

For any f ∈ F (d)(C) define

y(f) =
(
f
(
E(x

[b]
1 , r1), r̃1

)
, . . . , f

(
E(x

[b]
Q , rQ), r̃Q

))

F ← {f ∈ F (d)(C) | y(f) = ỹ}
return F = {f̃}

In the above experiment, $←− means sampling uniformly at random. Define
the advantage of an adversary A as

AdvPSC,E,d[A] =
∣
∣∣Pr[PSC,E,d(A, 0) = 1] − Pr[PSC,E,d(A, 1) = 1]

∣
∣∣.

The pair (C,E) is said to be d-th order prediction-secure (d-PS) if for any
adversary A the advantage is negligible.

Example. Consider a white-box AES implementation with a first-order Boolean
masking protection. Assume that there are two nodes in the circuit computing
two masks of an output bit of an S-Box in the first round. Denote the functions
computed by masks as f1, f2. The adversary finds these nodes and chooses f̃ =
f1 ⊕ f2 ∈ F (1)(C). She also chooses sufficiently large Q and random vectors x[0]

and x[1] of Q (plaintext, key) pairs. For example, the same key may be used for

390 A. Biryukov and A. Udovenko

all pairs in x[0] and another key for all pairs in x[1]. The adversary computes ỹ =
(s(x[0]

1), ..., s(x[0]
Q)) (where function s computes the output bit of the attacked S-

Box in the first round from the plaintext and the key). In this case the adversary
succeeds in the game with advantage close to 1 and the implementation is not
prediction-secure (indeed, the adversary easily distinguishes the two keys). Note
that we required the adversary to find the nodes in order to choose the right
function f̃ . Since the adversary is unbounded, this is just a technical requirement.
In the real attack the adversary does not need to guess the function.

The function E in the definition should be referred to as an encoding function.
Though the definition allows the encoding function to be arbitrary, we are mainly
interested in the encodings with useful semantics, i.e. masking. Moreover, we
expect the encoding to be lightweight and universal: main computations should
be performed in the circuit C.

The circuit C can be completely unobfuscated but still prediction-secure,
because the adversary is forced to consider the whole vector space F (d)(C). In a
real white-box implementation this restriction is expected to be enforced by the
structure-hiding protection.

We now discuss possible attacks that are not covered by this definition. The
definition ensures that any single function from F (d)(C) is unpredictable. How-
ever, it may be possible that multiple functions jointly exhibit a behaviour that
leads to an attack. For example, the dimension of F (d)(C) may differ depending
on the input being encoded. The definition also does not cover the LPN-based
attack.

5.2 Security Analysis

In the experiment both the encoding function E and the circuit C use random-
ness. However, the d-th order closure is computed only using functions from
F(C). Still, the inputs of C include the outputs of E and that is how the ran-
domness used in E affects the computations in C. In other words, E generates
some distribution in the inputs of C. Therefore, in order to study functions from
F (d)(C) we need to compose them with E.

It is crucial to study how functions from F (d)(C) composed with E behave
with a fixed input x. Consider a function f ∈ F (d)(C). If the function f(E(x, ·), ·)
is constant for some x and the function f(E(x′, ·), ·) is non-constant for some
x′ �= x (or is constant but f(E(x, ·), ·) �= f(E(x′, ·), ·), then these inputs are
distinguishable and the pair (C,E) is insecure1. More generally, if for some
f ∈ F (d)(C) \ {0,1} and for some x ∈ F

N
2 the function f(E(x, ·), ·) is non-

constant but has a high bias (i.e. it has very low or very high weight), then the
adversary still may have high chances to predict its output. We conclude that
for all functions f ∈ F (d)(C)\{0,1} and for all x ∈ F

N
2 the function f(E(x, ·), ·)

should have a low bias.

1 Unless f(E(x′, ·), ·) has extremely high bias and is indistinguishable from the con-
stant function on practice.

Attacks and Countermeasures for White-box Designs 391

We now show that this requirement is enough to achieve d-th order prediction
security if there are enough random bits used in the main circuit. The following
proposition gives an upper bound on d-PS advantage from the maximum bias
and the number of random bits.

Definition 3. Let C,E be defined as above. For any function f ∈ F (d)(C) \
{0,1} and for any x ∈ F

N
2 define fx : FRE

2 × F
RC
2 → F2 given by fx(re, rc) =

f(E(x, re), rc) and denote the set of all such functions R:

R = {f(E(x, ·), ·) | f ∈ F (d)(C) \ {0,1}, x ∈ F
N
2 }.

Proposition 2. Let ε be the maximum bias among all functions from R:

ε = max
fx∈R

E(fx).

Let e = − log2 (1/2 + ε). Then for any adversary A choosing vectors of size Q

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ). (1)

Proof. First, we prove that AdvPSC,E,d[A] ≤ 2Q−RC . If f̃ chosen by the adversary
is an affine function of random bits r (independent of x), then it is clear that
the advantage is zero. Otherwise, we compute the probability of the event when
the predicted value ỹ matches some linear function of random bits r. There are
RC independent uniformly distributed random vectors r1, . . . , rRC

from F
Q
2 . Let

p be the probability of the event that they span the whole space F
Q
2 . In this case

the experiment returns 0, because any ỹ matches a function different from the
one chosen by the adversary. The following holds (see e.g. [19]):

p =
Q−1∏

i=0

(
1 − 2i−RC

)
, log2 (1 − p) ≤ Q − RC .

We conclude that p ≥ 1−2Q−RC and the advantage is upper bounded by 2Q−RC .
Now we prove that AdvPSC,E,d[A] ≤ 2−eQ. We simply bound the probability

that the adversary submits f̃ , ỹ such that y(f̃) = ỹ in the experiment. Since
elements of y(f̃) are independent, the probability to have y(f̃) = ỹ is maximized
when each bit of ỹ equals to the most probable value of the respective bit of
y(f̃) (the adversary would also need to use the least probable value at least once
to avoid matching with the constant functions). For each bit the probability is
bounded by 1/2 + ε, therefore for Q bits the bound is (1/2 + ε)Q = 2−eQ. �

Note that the bounds are quite loose. The randomness-based term takes into
account only single random bits from rc. The randomness in the inputs of C
(generated from re in the encoding process) as well as all intermediate values
computed in the circuit add much more noise (note that we can not directly
include re since it is used in the encoding process and not in the main circuit).
The bias-based term bounds only the probability of predicting the output for

392 A. Biryukov and A. Udovenko

a single vector of inputs. It does not include the cost of distinguishing the two
vectors. We stick to these bounds as our current goal is to provide a simple and
sound provably secure protection.

Assume that we know the maximum bias ε in R and we want to achieve a
better security bound. We can always add “dummy” random bits to the circuit.
Note that this leads to stronger requirements for the structure-hiding protection.
It follows that given the maximum bias, we can compute how many “dummy”
random bits are needed to achieve any required security level:

Corollary 1. Let k be a positive integer. Then for any adversary A
AdvPSC,E,d[A] ≤ 2−k if

e > 0 and RC ≥ k · (1 +
1
e
).

Proof. Consider each term of the bound from Proposition 2:

Q − RC ≤ −k or − eQ ≤ −k.

The result follows from the second term if Q ≥ k
e . To cover all other Q we need

RC ≥ Q + k ≥ k · (1 + 1
e). �

We remark that the advantage bound is information-theoretic as we do not
constraint the adversary’s powers. This is an effect of the attack formalization
given in Definition 2: the attack requires that the adversary predicts the chosen
function precisely. An unbounded adversary could simply iterate over all func-
tions f ∈ F (d)(C) and e.g. compute the bias. We argue that this kind of attack
is not the linear algebra attack that we consider. Furthermore, the attack model
restricts the adversary to use the full circuit C. Without this restriction it would
be possible to choose a part of the circuit (a window) to reduce the noise. In our
model we expect that a structure-hiding protection is used to prevent this.

5.3 First-order Secure Construction

Given the notion of prediction security we are now interested in developing secure
constructions. A common strategy is to develop small secure circuits (called
gadgets) and compose them in a provably secure way. Our definition does not
immediately lead to composability, because it includes the encoding step which
is not expected to be present in the intermediate gadgets. In order to proceed,
we split up the prediction security into circuit security and encoding security.
The new notions are stronger in order to get proofs of secure composability. Note
that they are limited to the first-order security (d = 1) and it is not obvious how
to extend them to higher orders.

Definition 4. (Circuit Algebraic Security (ε-1-AS)) Let C(x, r) : FN ′
2 ×

F
RC
2 → F

M
2 be a Boolean circuit. Then C is called first-order algebraically ε-

secure (ε-1-AS) if for any f ∈ F (1)(C) \ {0,1} one of the following conditions
holds:

Attacks and Countermeasures for White-box Designs 393

1. f is an affine function of x,
2. for any x ∈ F

N ′
2 E(f(x, ·)) ≤ ε, where f(x, ·) : FRC

2 → F2

Definition 5. (Encoding Algebraic Security (ε-1-AS)) Let E(x, r) : FN
2 ×

F
RE
2 → F

N ′
2 be an arbitrary encoding function. Let Y be the set of the coordinate

functions of E (i.e. functions given by the outputs bits of E). The function E is
called a first-order algebraically ε-secure encoding (ε-1-AS) if for any function
f ∈ Y(1) \ {0,1} and any x ∈ F

N
2 the bias of the function f(x, ·) : FRE

2 → F2 is
not greater than ε:

max
f∈Y(1)\{0,1},x∈F

N
2

E(f(x, ·)) ≤ ε.

The following proposition shows that if both an encoding and a circuit are
algebraically secure, then their combination is prediction-secure:

Proposition 3. Let C : F
N ′
2 × F

RC
2 → F

M
2 be a Boolean circuit and let E :

F
N
2 × F

RE
2 → F

N ′
2 be an arbitrary encoding function.

If C is εC-1-AS circuit and E is εE-1-AS encoding, then

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ),

where e = − log2 (1/2 + max(εC , εE)).

Proof. If the function f̃ chosen by the adversary is an affine combination of the
input x of C, then the encoding security of E applies leading to the bound with
e = − log2 (1/2 + εE). Otherwise, εC-1-AS security of C provides the bound
with e = − log2 (1/2 + εC) (the bias bound applies for any fixed input x of C,
therefore it applies for any distribution of x generated by E as well). �

Finally, we show that ε-1-AS circuits are composable, i.e. are secure gadgets.
We can compose gadgets in arbitrary ways and then join the final circuit with a
secure encoding function to obtain a prediction-secure construction.

Proposition 4. (ε-1-AS Composability) Consider ε-1-AS circuits C1(x1, r1)
and C2(x2, r2). Let C be the circuit obtained by connecting the output of C1 to
the input x2 of C2 and letting the input r2 of C2 be the extra input of C:

C(x1, (r1, r2)) = C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also a ε-1-AS circuit.

Proof. Consider an arbitrary function f̃(x1, r1, r2) ∈ F (1)(C). By linearity, it
can be written as u ⊕ v, where u ∈ F (1)(C1) and v is a function from F (1)(C2)
composed with C1 (by connecting the output of C1 to the input x2 of C2). Since
C2 is ε-1-AS, v is either an affine function of x2 (which belongs to F (1)(C1)) or
has a bias not greater than ε when x2 is fixed (i.e. when x1, r1 are fixed). In the
first case, we get that f̃ belongs to F (1)(C1) and security follows from ε-1-AS
security of C1. In the second case, observe that the bias of v can not exceed ε
for any fixed x2 and, therefore, it can not exceed ε for any distribution of x2.
Moreover, u is independent from r2. Therefore, the bias of f̃ = u ⊕ v is not
greater than the bias of v which is bounded by ε since C2 is a ε-1-AS circuit. �

394 A. Biryukov and A. Udovenko

This result shows that due to frequent use of fresh randomness it is guaran-
teed that the maximum bias does not grow when we build large algebraically
secure circuits from smaller ones. It means that ε-1-AS circuits offer a solid pro-
tection against the LPN-based variant of the algebraic attack as well. The com-
plexity of LPN algorithms grows exponentially with the number of unknowns.
Therefore, increasing the number of random nodes as suggested by the Corol-
lary 1 allows to reach any required level of security against LPN attacks at the
same time. Exact required number of random nodes depends on the maximum
bias ε and chosen LPN algorithm.

5.4 Verifying Algebraic Security

Proposition 4 shows that we can compose algebraically secure circuits. Large
circuits can be constructed from a set of gadgets - small algebraically secure
circuits with some useful semantics. In order to design new gadgets we need
to be able to check their algebraic security. The simplest way to get a bound
on bias is based on looking at the algebraic degree of computed functions: the
minimum weight of a nonzero function of n bits of degree d is equal to 2n−d (see
e.g. [12]). Therefore, we can think about the following algorithm for checking
a circuit C(x, rC): for any fixed input x compute the ANFs of the functions
computed in C(x, ·) (functions of rC) and return the maximum observed degree.
The degree can not grow when functions are combined linearly. Therefore, the
bias bound can not grow as well, except when the resulting function is constant
in which case the bias is maximal and the gadget may be insecure. As a result,
our method for verifying algebraic security splits into two parts:

1. verify that there is no bias equal to 1/2 among restrictions of functions from
F (1)(C) except the constant functions and affine functions of x;

2. compute the maximum degree among all restrictions of the intermediate func-
tions and compute the corresponding bias bound.

The second step is straight-forward. We describe an algorithm that solves
the first step.

Consider a circuit C(x, r) : FN
2 × F

R
2 → F

M
2 . For all c ∈ F

N
2 let Lc be the

linear map that returns the restriction x = c of a function f from F (1)(C) (e.g. if
functions are represented as truth table vectors then Lc returns the truth table
entries corresponding to the case x = c). Note that the domain of Lc is defined
to be the subspace F (1)(C).

We now give an equivalent condition for the first part of the verification. It
serves as a basis for the verification algorithm given in Algorithm 2.

Proposition 5. The circuit C is ε-1-AS for some ε < 1/2 if and only if for all
c the following holds:

dim kerLc = N. (2)

Proof. For any c ∈ F
N
2 let Fc be the subspace of F (1)(C) containing functions

that are constant when x is fixed to c. Also let F =
⋃

c Fc. ε < 1/2 requires that

Attacks and Countermeasures for White-box Designs 395

any f ∈ F (1)(C) either belongs to X (1)(C) or is non-constant for any fixed x. It
is equivalent to require that F is equal to X (1)(C). Note that each Fc includes
X (1)(C) as a subset. Therefore, F =

⋃
c Fc is equal to X (1)(C) if and only if for

all c Fc = X (1)(C). Since these are linear subspaces then we can compare their
dimensions.

X (1)(C) is spanned by all xi and the constant-1 function:

dim X (1)(C) = N + 1; (3)

The constant-1 function always belongs to F (1)(C) and to any of the Fc. The
subspace of functions that are constant on the restriction can be obtained by
adding the constant-1 function to the subspace of functions that are equal to
zero on the restriction:

Fc = ker Lc ⊕ {0,1}, (4)
dim Fc = dim kerLc + 1. (5)

By comparing the dimensions obtained in Eqs. 3 and 5 we prove the propo-
sition. �

The algorithm operates on functions using their truth tables. The truth tables
are obtained by evaluating the circuit on all possible inputs and recording the
values computed in each node. The set of computed truth tables corresponds
to F(C). By removing redundant vectors we can compute a basis B of F (1)(C)
(and also ensure presence of the constant-1 vector). Then, for each c we take the
part of each basis vector that corresponds to the fixed x = c (and r taking all
possible values). These parts form the subspace Im Lc. We compute a basis Bc

of these parts. Finally, we verify that

dim kerLc = dim F (1)(C) − dim Im Lc = |B| − |Bc| = N. (6)

The algorithm is implemented in SageMath [31] and publicly available in [6].

Complexity analysis. The truth tables have size 2N+R bits. Computing the basis
of F (1)(C) takes time O(min(2N+R, |C|)ω). The same holds for Im Lc except
that the vectors have size 2R and for small R this can be done more efficiently.
The total complexity is O(min(2N+R, |C|)ω +2Nmin(2R, |C|)ω). Recall that by
Proposition 1 we should consider only the nonlinear nodes of the circuit.

5.5 Algebraically Secure Gadgets

In this section we develop an algebraically secure masking scheme. First we give
a broad definition of a masking scheme which we will use further. Then we
describe concrete circuits which can be verified to be first-order algebraically
secure gadgets using Algorithm 2.

Definition 6. (Masking Scheme) An N -bit masking scheme is defined by an
encoding function Encode : F2 ×F

R
2 → F

N
2 , a decoding function Decode : FN

2 →
F2 and a set of triplets {(�, Eval	, C), . . .} where each triplet consists of:

396 A. Biryukov and A. Udovenko

Algorithm 2. Verification of Algebraic Security
Input: a Boolean circuit C(x, r) : FN

2 × F
R
2 → F

M
2 ;

Output: Secure if the circuit C is ε-1-AS for some ε < 0.5,
Insecure otherwise.

1: evaluate C on all possible inputs;
2: associate the vector of computed values to each node of C;
3: let V be the set of all associated vectors;
4: let B be a basis of V(1);
5: for all c ∈ F

N
2 do

6: let Vc be the set of all vectors from B restricted to the case of x = c;
7: let Bc be a basis of V(1)

c ;
8: if |B| − |Bc| �= N then
9: return Insecure;

10: return Secure.

1. a Boolean operator � : F2 × F2 → F2,
2. a circuit Eval	 : FN

2 × F
N
2 × F

R′
2 → F

N
2 .

For any r ∈ F
R
2 and any x ∈ F2 it must hold that Decode(Encode(x, r)) = x.

Moreover, the following equation must be satisfied for all operators � and all
values r′ ∈ F

R′
2 , x1 ∈ F

N
2 , x2 ∈ F

N
2 :

Decode(Eval	(x1, x2, r
′)) = Decode(x1)�Decode(x2).

The degree of the masking scheme is the algebraic degree of the Decode
function. The masking scheme is called nonlinear if its degree is greater than 1.

Note that Eval	 takes three arguments in our definition. The first two are
shares of the secret values and the third one is optional randomness that must
not change the secret values.

Minimalist Quadratic Masking. Since the decoding function has to be at
least quadratic, we need at least two bits to encode a single bit. For two bits all
nonlinear decoding functions are linear equivalent to a quadratic monomial being
simply the product of the two input bits. Unfortunately, this decoding function is
vulnerable to the linear algebra attack. Any quadratic function with 2-bit input
is unbalanced. Therefore, one of the reference bit values can be encoded by 3
different values and the other value has only 1 possible encoding. For example,
if the value is equal to 1 and the decoding function is simply AND, the input
has to be equal to (1, 1). In this case there is no randomness involved and the
hidden value is leaked. The conclusion is that any value of the original bit should
include randomness in its encoding. In particular, the decoding function can not
be a point function.

We move on to 3-bit encodings. The simplest quadratic function using all 3
input bits a, b, c is ab ⊕ c. Note the similarity with the broken 2-bit scheme: the

Attacks and Countermeasures for White-box Designs 397

Encode(x, ra, rb) = (ra, rb, rarb ⊕ x), (7)

Decode(a, b, c) = ab ⊕ c, (8)

EvalXOR((a, b, c), (d, e, f)) = (a ⊕ d, b ⊕ e, ae ⊕ bd ⊕ c ⊕ f), (9)

EvalAND((a, b, c), (d, e, f)) = (ae, bd, (cd)e ⊕ a(bf) ⊕ cf), (10)

Refresh((a, b, c), (ra, rb)) = (a ⊕ ra, b ⊕ rb, c ⊕ rab ⊕ rba ⊕ rarb). (11)

Fig. 1. An insecure quadratic masking scheme.

quadratic monomial ab is simply linearly masked by c. However, this linear mask
is enough to prevent the attack: in this case Decode(a, b, c) = 1 does not imply
a = 1 or b = 1. In fact, such Decode is balanced: both 0 and 1 have exactly 4
preimages. We first describe an insecure yet simple masking scheme based on
this decoding function in Fig. 1. It is easy to verify that EvalXOR and EvalAND

satisfy the requirements from Definition 6. In addition, Refresh(a, r) returns
fresh random encoding of a, meaning that Decode(a) = Decode(Refresh(a, r))
for any r and new encoding reveals no information about the old encoding.

Encode(x, ra, rb) = (ra, rb, rarb ⊕ x), (7)
Decode(a, b, c) = ab ⊕ c, (8)

EvalXOR((a, b, c), (d, e, f)) = (a ⊕ d, b ⊕ e, ae ⊕ bd ⊕ c ⊕ f), (9)
EvalAND((a, b, c), (d, e, f)) = (ae, bd, (cd)e ⊕ a(bf) ⊕ cf), (10)
Refresh((a, b, c), (ra, rb)) = (a ⊕ ra, b ⊕ rb, c ⊕ rab ⊕ rba ⊕ rarb). (11)

We now observe that Refresh is not ε-1-AS for any ε < 1/2: the computed
term rab is constant when b is fixed to 0 and equals to ra otherwise (leading to
ε = 1/2). This can be fixed by using an extra random bit rc to mask a, b through
the computations:

Refresh((a, b, c), (ra, rb, rc)) =
(
a ⊕ ra, b ⊕ rb, c ⊕ ra(b ⊕ rc) ⊕ rb(a ⊕ rc) ⊕ (ra ⊕ rc)(rb ⊕ rc) ⊕ rc

)
.

The new Refresh function can be verified to be secure using the algorithm
from Sect. 5.4. Moreover, the circuit computing EvalXOR applied to refreshed
inputs is secure as well. However, EvalAND is not secure even if composed with
the fixed Refresh gadget. Consider the linear combination of computed terms
a(bf) ⊕ cf = (ab ⊕ c)f . Here the variables are refreshed masks and can not be
fixed by the adversary. However, the refreshing function does not change the
hidden value. Therefore, ab ⊕ c would be equal to the value hidden by initial
non-refreshed shares which can be fixed. Fixing the hidden value to 0 makes the
combination f(ab ⊕ c) equal to 0 and be equal to the random share f when the
hidden value is fixed to 1. We observe that it is possible to use a trick similar
to the one used to fix the Refresh function. In fact, the extra random shares
added to fix the Refresh function may be reused to fix the EvalAND function.

398 A. Biryukov and A. Udovenko

As a result, we obtain a fully secure masking scheme. The complete description
is given in Algorithm 3.

Algorithm 3. Minimalist Quadratic Masking Scheme.
1: function Encode(x, ra, rb)
2: return (ra, rb, rarb ⊕ x)

3: function Decode(a, b, c)
4: return ab ⊕ c

5: function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf))
6: (a, b, c) ← Refresh((a, b, c), (ra, rb, rc))
7: (d, e, f) ← Refresh((d, e, f), (rd, re, rf))
8: x ← a ⊕ d
9: y ← b ⊕ e

10: z ← c ⊕ f ⊕ ae ⊕ bd
11: return (x, y, z)

12: function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf))
13: (a, b, c) ← Refresh((a, b, c), (ra, rb, rc))
14: (d, e, f) ← Refresh((d, e, f), (rd, re, rf))
15: ma ← bf ⊕ rce
16: md ← ce ⊕ rfb
17: x ← ae ⊕ rf

18: y ← bd ⊕ rc

19: z ← ama ⊕ dmd ⊕ rcrf ⊕ cf
20: return (x, y, z)

21: function Refresh((a, b, c), (ra, rb, rc))
22: ma ← ra · (b ⊕ rc)
23: mb ← rb · (a ⊕ rc)
24: rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc) ⊕ rc

25: a ← a ⊕ ra

26: b ← b ⊕ rb

27: c ← c ⊕ rc

28: return (a, b, c)

Security. First, we verify EvalXOR and EvalAND gadgets using Algorithm 2.
We obtain that they are ε-1-AS circuits for some ε < 1/2. Then we construct
the ANFs of intermediate functions. The maximum degree is equal to 4. It is
achieved for example in the term cf in the gadget EvalAND: its ANF contains
the term rarbrdre. Therefore, EvalAND is ε-1-AS with ε ≤ 1/2 − 2−4 = 7/16.
The gadget EvalXOR has degree 2 and is 1/4-1-AS. Unfortunately, we do not
have a pen-and-paper proof for security of the gadgets and rely solely on the
verification algorithm (which is able to spot the described weaknesses in the
insecure versions of the gadgets).

Attacks and Countermeasures for White-box Designs 399

Verifying security of the encoding function Encode can be done in the same
way. Clearly, no linear combination of ra, rb, rarb ⊕x is constant for any fixed x.
The coordinate rarb ⊕ x has degree 2 and its weight and bias are equal to 1/4.
Therefore, Encode is an ε-1-AS encoding with ε = 1/4.

By applying Proposition 3, we obtain that for any adversary A, for any circuit
C build from the gadgets EvalXOR, EvalAND and for the described Encode
encoding we have:

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ), (12)

where e = − log2 (1/2 + 7/16) ≈ 0.093. According to Corollary 1, in order
to achieve provable 80-bit security we need to have RC ≥ 80(1 + 1/e) ≈ 940
random bits in the circuit. Note that it does not depend on the actual size of the
circuit, i.e. 940 random bits are enough for an arbitrary-sized circuit. However,
the adversary should not be able to shrink the window so that it contains less
than 940 random bits. This is expected to be guaranteed by a structure hiding
protection. Finally, we remark that the bounds are rather loose and more fine-
grained analysis should improve the bound significantly.

5.6 Implementation

We applied our masking scheme to an AES-128 implementation to estimate
the overhead. Our reference AES circuit contains 31,783 gates. It is based on
Canright’s S-Box implementation [11] and naive implementation of MixColumns.
After applying our nonlinear masking scheme and a first-order linear masking
scheme on top the circuit expands to 2,588,743 gates of which 409,664 gates
are special gates modeling external random bits. The circuit can be encoded in
16.5 MB. Extra RAM needed for computations is less than 1 KB. On a common
laptop it takes 0.05 s to encrypt 1 block. Since the implementation is bitwise,
64 blocks can be done in parallel at the same time on 64-bit platforms. There
is still a large room for optimizations. We used the Daredevil CPA tool [24] to
test our implementation. Due to the first-order linear masking on top we did
not detect any leakage. Pure nonlinear masking scheme does leak the key so the
combination of both is needed as we suggested in Sect. 4. The implementation
code is publicly available [6]. We remark that it is a proof-of-concept and not a
secure white-box implementation; it can be broken in various ways.

6 Conclusions

In this paper we investigated the possibility of using masking techniques for
white-box implementations. We presented several attacks applicable in differ-
ent scenarios. As a result we obtained requirements for a masking scheme to
be useful. We divided the requirements into value hiding and structure hiding
protections. Furthermore, we suggested that value hiding may be achieved using

400 A. Biryukov and A. Udovenko

an algebraically secure nonlinear masking scheme and a classic linear mask-
ing scheme. We developed a framework for provable security against the alge-
braic attack and proposed a concrete provably secure first-order masking scheme.
Therefore, a value hiding protection can be implemented.

We believe that our work opens new promising directions in obfuscation
and white-box design. In this paper we focused on value hiding protection and
developed a first-order protection against the algebraic attack. The natural open
question is developing higher-order countermeasures for the algebraic attack.
Another direction is to study structure hiding countermeasures. Finally, it seems
that pseudorandom generators play an important role in white-box obfuscation
and are useful at all layers of protection. Randomness helps to develop formal
security models and pseudorandom generators bridge the gap between theoretical
constructions and real world implementations. Therefore, designing an easy-to-
obfuscate pseudorandom generators is another important open problem.

References

1. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for Whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017). Mar

2. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White Box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

3. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: Black-Box, White-Box, and public-key (Extended Abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 4

4. Biryukov, A., Khovratovich, D., Perrin, L.: Multiset-algebraic cryptanalysis of
reduced Kuznyechik, Khazad, and secret SPNs. IACR Trans. Symmetric Cryp-
tol. 2016(2), 226–247 (2017)

5. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 24

6. Biryukov, A., Udovenko, A.: White-box Tools (2018). https://github.com/
cryptolu/whitebox

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your White-Box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

8. Both, Leif, May, Alexander: Decoding linear codes with high error rate and its
impact for LPN security. In: Lange, Tanja, Steinwandt, Rainer (eds.) PQCrypto
2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79063-3 2

9. Bottinelli, P., Bos, J.W.: Computational aspects of correlation power analysis. J.
Cryptogr. Eng. 7(3), 167–181 (2017). Sep

10. Bringer, J., Chabanne, H., Dottax, E.: White Box Cryptography: Another
Attempt. Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.
org/2006/468

https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-45611-8_4
https://doi.org/10.1007/3-540-44987-6_24
https://github.com/cryptolu/whitebox
https://github.com/cryptolu/whitebox
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468

Attacks and Countermeasures for White-box Designs 401

11. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

12. Carlet, C.: Boolean functions for cryptography and error-correcting codes, Ency-
clopedia of Mathematics and its Applications. pp. 257–397. Cambridge University
Press, Cambridge (2010)

13. Carmer, B., Malozemoff, A.J., Raykova, M.: 5Gen-C: Multi-input Functional
Encryption and Program Obfuscation for Arithmetic Circuits. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pp. 747–764. ACM, New York (2017)

14. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A White-Box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

15. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-Box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

16. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated White-Box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

17. ECRYPT-CSA Consortium: CHES 2017 Capture The Flag Challenge. The Whi-
bOx Contest (2017). http://whibox.cr.yp.to/

18. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

19. Ferreira, P.J.S.G., Jesus, B., Vieira, J., Pinho, A.J.: The rank of random binary
matrices and distributed storage applications. IEEE Commun. Lett. 17(1), 151–
154 (2013). January

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 40–49,
October 2013

21. Gilbert, H., Plût, J., Treger, J.: Key-Recovery attack on the ASASA cryptosystem
with expanding S-Boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 475–490. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 23

22. L. Goubin, P. Paillier, M. Rivain, and J. Wang. Reveal Secrets in Ador-
ing Poitras. A victory of reverse engineering and cryptanalysis over challenge
777, CHES 2017 Rump Session, slides (2017). https://ches.2017.rump.cr.yp.to/
a905c99d1845f2cf373aad564ac7b5e4.pdf

23. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive, Report 2018/098
(2018). https://eprint.iacr.org/2018/098

24. Hubain, C., et al.: Side-Channel Marvels (2016). https://github.com/
SideChannelMarvels

25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
http://whibox.cr.yp.to/
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-47989-6_23
https://doi.org/10.1007/978-3-662-47989-6_23
https://ches.2017.rump.cr.yp.to/a905c99d1845f2cf373aad564ac7b5e4.pdf
https://ches.2017.rump.cr.yp.to/a905c99d1845f2cf373aad564ac7b5e4.pdf
https://eprint.iacr.org/2018/098
https://github.com/SideChannelMarvels
https://github.com/SideChannelMarvels
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19

402 A. Biryukov and A. Udovenko

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

27. Karroumi, M.: Protecting White-Box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24209-0 19

28. Lepoint, T., Rivain, M.: Another Nail in the Coffin of White-Box AES Implemen-
tations. Cryptology ePrint Archive, Report 2013/455 (2013). http://eprint.iacr.
org/2013/455

29. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-Recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 1

30. Sasdrich, P., Moradi, A., Güneysu, T.: White-Box cryptography in the gray box.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 185–203. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 10

31. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
7.3) (2016). http://www.sagemath.org

32. Warrens, M.J., et al.: Similarity coefficients for binary data: properties of coeffi-
cients, coefficient matrices, multi-way metrics and multivariate coefficients. Psy-
chometrics and Research Methodology Group, Leiden University Institute for Psy-
chological Research, Faculty of Social Sciences, Leiden University (2008)

33. Xiao, Y., Lai, X.: A secure implementation of White-Box AES. In: 2009 2nd Inter-
national Conference on Computer Science and its Applications, pp. 1–6, December
2009

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-24209-0_19
http://eprint.iacr.org/2013/455
http://eprint.iacr.org/2013/455
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/978-3-662-52993-5_10
http://www.sagemath.org

Signatures

Signatures with Flexible Public Key:
Introducing Equivalence Classes

for Public Keys

Michael Backes1,3, Lucjan Hanzlik2,3, Kamil Kluczniak1,3,4,
and Jonas Schneider2,3(B)

1 CISPA Helmholtz Center (i.G.) GmbH, Saarbrücken, Germany
{backes,kamil.kluczniak}@cispa.saarland

2 CISPA, Saarland University, Saarbrücken, Germany
{hanzlik,jonas.schneider}@cispa.saarland

3 Saarland Informatics Campus, Saarbrücken, Germany
4 Department of Computing, The Hong Kong Polytechnic University,

Kowloon, Hong Kong

Abstract. We introduce a new cryptographic primitive called signa-
tures with flexible public key (SFPK). We divide the key space into equiv-
alence classes induced by a relation R. A signer can efficiently change
his or her key pair to a different representatives of the same class, but
without a trapdoor it is hard to distinguish if two public keys are related.
Our primitive is motivated by structure-preserving signatures on equiv-
alence classes (SPS-EQ), where the partitioning is done on the message
space. Therefore, both definitions are complementary and their combi-
nation has various applications.

We first show how to efficiently construct static group signatures and
self-blindable certificates by combining the two primitives. When prop-
erly instantiated, the result is a group signature scheme that has a shorter
signature size than the current state-of-the-art scheme by Libert, Peters,
and Yung from Crypto’15, but is secure in the same setting.

In its own right, our primitive has stand-alone applications in the
cryptocurrency domain, where it can be seen as a straightforward for-
malization of so-called stealth addresses. Finally, it can be used to build
the first efficient ring signature scheme in the plain model without trusted
setup, where signature size depends only sub-linearly on the number of
ring members. Thus, we solve an open problem stated by Malavolta and
Schröder at ASIACRYPT’2017.

Keywords: Flexible Public Key · Equivalence classes
Stealth addresses · Ring signatures · Group signatures

1 Introduction

Digital signatures aim to achieve two security goals: integrity of the signed mes-
sage and authenticity of the signature. A great number of proposals relax these
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 405–434, 2018.
https://doi.org/10.1007/978-3-030-03329-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_14&domain=pdf

406 M. Backes et al.

goals or introduce new ones to accommodate the requirements of specific appli-
cations. As one example, consider sanitizable signatures [1] where the goal of
preserving the integrity of the message is relaxed to allow for authorized modi-
fication and redactions of the signed message.

The primitive we introduce in this work allows for a relaxed characteriza-
tion of authenticity instead. The goal is not complete relaxation, such that an
impostor could sign messages on behalf of a legitimate signer, but rather that
authenticity holds with respect to some established legitimate signer, but who it
is exactly remains hidden.

The new primitive, called signatures with flexible public key (SFPK) formal-
izes a signature scheme, where verification and signing keys live in a system of
equivalence classes induced by a relation R. Given a signing or verification key it
is possible to transform the key into a different representative of the same equiv-
alence class, i.e., the pair of old key and new key are related via R. Thus, we
extend the requirement of unforgeability of signatures to the whole equivalence
class of the given key under attack.

Additionally, it should be infeasible, without a trapdoor, to check whether
two keys are in the same class. This property, which we call computational
class-hiding, ensures that given an old verification key, a signature under a fresh
representative is indistinguishable from a signature under a different newly gen-
erated key, which lives in a different class altogether with overwhelming proba-
bility. Intuitively this means that signers can produce signatures for their whole
class of keys, but they cannot sign for a different class (because of unforgeabil-
ity) and they are able to hide class to which the signature belongs to, i.e., to
hide their own identity in the signature (because of class-hiding). This primi-
tive is motivated by (structure-preserving) signatures on equivalence classes [29]
(SPS-EQ), where relations are defined for the message space, instead of the key
space. Both notions are complementary, in the sense that we can use SPS-EQ to
certify the public key of an SFPK scheme if the respective equivalence relations
are compatible, which immediately gives so called signatures with self-blindable
certificates [40].

Signatures with flexible public key are especially useful in applications where
there is a (possibly pre-defined) set of known verification keys and a verifier
only needs to know that the originator of a given signature was part of that
set. Indeed, upon reading the first description of the scheme’s properties, what
should come to mind immediately is the setting of group signatures [18] and to
some extent ring signatures [36] where the group is chosen at signing time and
considered a part of the signature. Our primitive yields highly efficient, cleanly
constructed group and ring signature schemes, but it should be noted, that SFPK
on its own is neither of the two.

The basic idea to build a group signature scheme from signatures with flexi-
ble public key is to combine them with an equally re-randomizable certificate on
the signing key. Such a certificate is easily created through structure-preserving
signatures on equivalence classes by the group manager on the members’ veri-
fication key. A group signature is then produced by signing the message under

Signatures with Flexible Public Key 407

a fresh representative of the flexible public key and tying that signature to the
group by also providing a blinded certificate corresponding to the fresh flexi-
ble key. This fresh certificate can be generated from the one provided by the
group manager. Opening of group signatures is done using the trapdoor that
can be used to distinguish if public keys belong to the same equivalence class.
In the case of ring signatures with n signers, the certification of keys becomes
slightly more complex, since we cannot make any assumption on the presence
of a trusted group manager. Therefore, the membership certificate is realized
through a perfectly sound proof of membership, which has a size of O(

√
n) if

we use general proofs and the square matrix idea for membership proofs due to
Chandran et al. [15].

Our Contributions. This paper develops a new cryptographic building block
from the ground up, presenting security definitions, concrete instantiations and
applications. The main contributions are as follows:

Signatures with flexible public key and their applications. Our new
primitive is a natural counterpart of structure-preserving signatures on equiv-
alence classes, but for the public key space. We demonstrate how SFPK
can be used to build group and ring signatures in a modularized fashion.
For each construction, we give an efficient standard model SFPK instantia-
tion which takes into account the differences in setting between group and
ring signatures. The resulting group and ring signature schemes have smaller
(asymptotic and concrete) signature sizes than the previous state of the art
schemes also secure in the strongest attacker model, including schemes with
non-standard assumptions.
For instance, the static group signature scheme due to Libert, Peters, and
Yung achieves fully anonymous signatures secure under standard non-interac-
tive assumptions at a size of 8448 bits per signature. Our scheme, based on
comparable assumptions, achieves the same security using 7680 bits per signa-
ture. Another variant of our scheme under an interactive assumption achieves
signature sizes of only 3072 bits per signature, thus more than halving the
size achieved in [32] and not exceeding by more than factor 3 the size of
signatures in the scheme due to Bichsel et al. [7] which produces signatures
of size 1280 bits but only offers a weaker form of anonymity under an inter-
active assumption in the random oracle model. A comprehensive comparison
between our scheme and known group signature constructions can be found in
Sect. 5.3. Our ring signature construction is the first to achieve signature sizes
in O(

√
N) without trusted setup and with security under standard assump-

tions in the strongest security model by Bender et al. [6]. We also show how
to efficiently instantiate the scheme using Groth-Sahai proofs and thereby we
solve an open problem stated in the ASIACRYPT’2017 presentation of [34],
namely: Are there efficient ring signature schemes without trusted setup prov-
ably secure under falsifiable assumptions?

Applications of independent interest. We also show that signatures with
flexible public key which also implement a key recovery property contribute

408 M. Backes et al.

to the field of cryptocurrencies. In particular, our definitions can be seen as
a formalization of the informal requirements for a technique called stealth
addresses [35,37,39], which allows a party to transfer currency to an anony-
mous address that the sender has generated from the receivers long-term pub-
lic key. No interaction with the receiver is necessary for this transaction and
the receiver can recover and subsequently spend the funds without linking
them to their long-term identity. Moreover, existing schemes implementing
stealth addresses are based on a variant of the Diffie-Hellman protocol and
inherently bound to cryptography based on the discrete logarithm problem.
On the other hand, our definition is generic and SFPK can potentially be
instantiated from e.g. lattice assumptions.

1.1 Related Work

At first glance, signatures with flexible public keys are syntactically reminiscent
of structure-preserving signatures on equivalence classes [29]. While both prim-
itives are similar in spirit, the former considers equivalence classes of key pairs
while the latter only considers equivalence classes on messages.

There exist many primitives that allow for a limited malleability of the signed
message. Homomorphic signatures [10] allow to sign any subspace of a vector
space. In particular, given a number of signatures σi for vectors v i, everyone can
compute a signature of

∑
i βi · v i for scalars βi.

Chase et al. [16] discussed malleable signatures, which allow any party know-
ing a signature of message m to construct a signature of message m′ = T (m)
for some defined transformation T . One can consider malleable signatures as a
generalization of quotable [2] and redactable signatures [31].

Signatures on randomized ciphertexts by Blazy et al. [8] allow any party that
is given a signature on a ciphertext to randomize the ciphertext and adapt the
signature to maintain public verifiability.

Verheul [40] introduces so-called self-blindable certificates. The idea is to use
the same scalar to randomize the signature and corresponding message. Verheul
proposed that one can view the message as a public key, which allows to pre-
serve the validity of this “certificate” under randomization/blinding. However,
the construction does not yield a secure signature scheme. We will show that
combining our primitive with signatures on equivalence classes [29] can be used
to instantiate self-blindable certificates.

As noted above, all the mentioned works consider malleability of the mes-
sage space. In our case we consider malleability of the key space. A related
primitive are signatures with re-randomizable keys introduced by Fleischhacker
et al. [22]. It allows a re-randomization of signing and verification keys such that
re-randomized keys share the same distribution as freshly generated keys and a
signature created under a randomized key can be verified using an analogously
randomized verification key.

They also define a notion of unforgeability under re-randomized keys, which
allows an adversary to learn signatures under the adversaries’ choice of random-
ization of the signing key under attack. The goal of the adversary is to output

Signatures with Flexible Public Key 409

a forgery under the original key or under one of its randomizations. Regular
existential unforgeability for signature schemes is a special case of this notion,
where the attacker does not make use of the re-randomization oracle.

The difference to signatures with flexible public keys is that re-randomization
in [22] is akin to sampling a fresh key from the space of all public keys, while
changing the representative in our case is restricted to the particular key’s equiv-
alence class. Note that one might intuitively think that signatures under re-
randomizable keys are just signatures with flexible keys where there is only one
class of keys since re-randomizing is indistinguishable from fresh sampling. In
this case class-hiding would be perfect. However, such a scheme cannot achieve
unforgeability under flexible keys, since it would be enough for an attacker to
sample a fresh key pair and use a signature under that key as the forgery.

2 Preliminaries

We denote by y ← A(x, ω) the execution of algorithm A outputting y, on input x
with randomness ω, writing just y ←$ A(x) if the specific randomness used is not
important. We will sometimes omit the use of random coins in the description of
algorithms if it is obvious from the context (e.g. sampling group elements). The
superscript O in AO means that algorithm A has access to oracle O. Moreover,
we say that A is probabilistic polynomial-time (PPT) if A uses internal random
coins and the computation for any input x ∈ {0, 1}∗ terminates in polynomial
time. By r ←$ S we mean that r is chosen uniformly at random from the set
S. We will use 1G to denote the identity element in group G, [n] to denote the
set {1, . . . , n}, u to denote a vector and

(
x0 . . . x|x|

)
bin

to denote the binary
representation of x.

Remark 1. Due to space limitations, we omit full formal definitions of the syntax
and security properties of ring and group signatures as well as some proofs. These
omitted materials may be found in the full version of this work [3].

Definition 1 (Bilinear map). Let us consider cyclic groups G1, G2, GT of
prime order p. Let g1, g2 be generators of respectively G1 and G2. We call e :
G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and the
following conditions hold:

Bilinearity: ∀(S, T) ∈ G1 × G2, ∀a, b ∈ Zp, we have e(Sa, T b) = e(S, T)a·b,
Non-degeneracy: e(g1, g2) �= 1 is a generator of group GT ,

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
deterministic polynomial-time algorithm BGGen that on input a security parame-
ter λ returns a bilinear group BG = (p,G1,G2,GT , e, g1, g2) such that G1 = 〈g1〉,
G2 = 〈g2〉 and GT are groups of order p and e : G1 × G2 → GT is a bilinear
map.

Bilinear map groups with an efficient bilinear-group generator are known
to be instantiable with ordinary elliptic curves introduced by Barreto and
Naehrig [4] (in short BN-curves).

410 M. Backes et al.

Invertible Sampling. We use a technique due to Damg̊ard and Nielsen [21]:

– A standard sampler returns a group element X on input coins ω.
– A “trapdoor” sampler returns coins ω′ on input a group element X.

Invertible sampling requires that (X,ω) and (X,ω′) are indistinguishably dis-
tributed.

This technique was also used by Bender et al. [6] to prove full anonymity
(where the adversary receives the random coins used by honest users to generate
their keys) of their ring signature scheme.

2.1 Number Theoretical Assumptions

In this section we recall assumptions relevant to our schemes. They are stated rel-
ative to bilinear group parameters BG := (p,G1,G2,GT , e, g1, g2) ←$BGGen(λ).

Definition 3 (Decisional Diffie-Hellman Assumption in Gi). Given BG
and elements ga

i , gb
i , g

z
i ∈ Gi it is hard for all PPT adversaries A to decide

whether z = a ·b mod p or z ←$Z
∗
p. We will use AdvddhA (λ) to denote the advan-

tage of the adversary in solving this problem.

We now state the bilateral variant of the well known decisional linear assump-
tion, where the problem instance is given in both G1 and G2. This definition was
also used by Ghadafi et al. [26].

Definition 4 (Symmetric Decisional Linear Assumption). Given BG, ele-
ments f1 = gf

1 , h1 = gh
1 , fa

1 , hb
1, g

z
1 ∈ G1 and elements f2 = gf

2 , h2 = gh
2 , fa

2 , hb
2,

gz
2 ∈ G2 for uniformly random f, h, a, b ∈ Z

∗
p it is hard for all PPT adversaries

A to decide whether z = a + b mod p or z ←$Z
∗
p. We will use AdvlinearA (λ) to

denote the advantage of the adversary in solving this problem.

In this paper we use a variant of the 1-Flexible Diffie-Hellman assump-
tion [33]. We show that this new assumption, which we call the co-Flexible
Diffie-Hellman (co-Flex) assumption, holds if the decisional linear assumption
holds.

Definition 5 (co-Flexible Diffie-Hellman Assumption). Given BG, ele-
ments ga

1 , gb
1, g

c
1, g

d
1 ∈ G1 and ga

2 , gb
2, g

c
2, g

d
2 ∈ G2 for uniformly random a, b, c, d ∈

Z
∗
p, it is hard for all PPT adversaries A to output (gc

1)
r
, (gd

1)r
, gr·a·b

1 . We will use
Advco-flexdhA (λ) to denote the advantage of the adversary in solving this problem.

Lemma 1. The co-Flexible Diffie-Hellman assumption holds for BG if the deci-
sional linear assumption holds for BG.

Proof. Suppose we have an efficient algorithm A that solves the co-Flexible
Diffie-Hellman problem with non-negligible probability. We will show how to
build algorithm R that solves the decision linear problem. Let (BG, f1, f2, h1, h2,
fa
1 , fa

2 , hb
1, h

b
2, g

z
1 , g

z
2) be an instance of the decision linear problem. The algorithm

Signatures with Flexible Public Key 411

R first runs algorithm A on input (BG, f1, f2, g
z
1 , g

z
2 , f

a
1 , fa

2 , hb
1, h

b
2). With non-

negligible probability A outputs a solution to the co-Flexible Diffie-Hellman
problem, i.e. it outputs the tuple ((fa

1)r
, (hb

1)
r
, (fz

1)r). Then R computes

T1 =e((fz
1)r

, h2) = e(f1, hr
2)

z
,

T2 =e((fa
1)r

, h2) = e(f1, hr
2)

a
,

T3 =e((hb
1)

r
, f2) = e(h1, f

r
2)b = e(fr

1 , h2)
b
,

and outputs 1 if T1 = T2 · T3 and 0 otherwise.

2.2 Programmable Hash Functions

Programmable hash functions presented at Crypto’08 by Hofheinz and Kiltz [30]
introduce a way to create hash functions with limited programmability. In par-
ticular, they show that the function introduced by Waters [41] is a programmable
hash function. To formally define such function we first define so called group
hash functions for a group G, which consists of two polynomial time algorithms
PHF.Gen, PHF.Eval and has an output length of � = �(λ). For a security param-
eter λ the generation algorithm PHF.Gen(λ) outputs a key KPHF, which can be
used in the deterministic algorithm PHF.Eval to evaluate the hash function via
y ←$ PHF.Eval(KPHF,X) ∈ G. We will use HKPHF

(X) to denote the evaluation of
the function PHF.Eval(KPHF,X) on X ∈ {0, 1}�. We can now recall the definition
of programmable has functions.

Definition 6. A group hash function is an (m,n, γ, δ)-programmable hash func-
tion if there are polynomial time algorithms PHF.TrapGen and PHF.TrapEval such
that:

– For any g, h ∈ G the trapdoor algorithm (K ′
PHF, t) ←$ PHF.TrapGen(λ, g, h)

outputs a key K ′ and trapdoor t. Moreover, for every X ∈ {0, 1}� we have
(aX , bX) ←$ PHF.TrapEval(t,X), where PHF.Eval(K ′

PHF,X) = gaX hbX .
– For all g, h ∈ G and for (K ′

PHF, t) ←$ PHF.TrapGen(λ, g, h) and KPHF ←$

PHF.Gen(λ), the keys KPHF and K ′
PHF are statistically γ-close.

– For all g, h ∈ G and all possible keys K ′
PHF from the range of

PHF.TrapGen(λ, g, h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}� such that Xi �=
Zj for any i, j and for the corresponding (aXi

, bXi
) ←$ PHF.TrapEval(t,Xi)

and (aZi
, bZi

) ←$ PHF.TrapEval(t, Zi) we have

Pr[aX1 = · · · = aXm
= 0 ∧ aZ1 = · · · = aZn

�= 0] ≥ δ,

where the probability is over trapdoor t that was generated with key K ′
PHF.

Note that using this definition we can define the Waters hash function, with
key KPHF = (h0, . . . , h�) ∈ G

�+1 and message X = (x1, . . . , x�) ∈ {0, 1}� as
h0 · ∏�

i=1 hxi
i . Hofheinz and Kiltz prove that for any fixed q = q(λ) this is a

(1, q, 0, 1/8 ·(�+1) ·q)-programmable hash function. Unless mentioned otherwise,
we will always instantiate the programmable hash function using the Waters
function and use � = λ.

412 M. Backes et al.

2.3 Non-Interactive Proof Systems

In this paper we make use of non-interactive proof systems. Although we define
the proof system for arbitrarily languages, in our schemes we use the efficient
Groth-Sahai (GS) proof system for pairing product equations [28]. Let R be
an efficiently computable binary relation, where for (x,w) ∈ R we call x a
statement and w a witness. Moreover, we denote by LR the language consisting
of statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 7 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π consists of the following three algorithms (Setup,Prove,Verify):

Setup(λ): on input security parameter λ, this algorithm outputs a common ref-
erence string ρ.

Prove(ρ, x, w): on input common reference string ρ, statement x and witness w,
this algorithm outputs a proof π.

Verify(ρ, x, π): on input common reference string ρ, statement x and proof π,
this algorithm outputs either accept(1) or reject(0).

Some proof systems do not need a common reference string. In such case, we
omit the first argument to Prove and Verify.

Definition 8 (Soundness). A proof system Π is called sound, if for all PPT
algorithms A the following probability, denoted by AdvsoundΠ,A (λ), is negligible in
the security parameter λ:

Pr[ρ ← Setup(λ); (x, π) ← A(ρ) : Verify(ρ, x, π) = accept ∧ x �∈ LR].

We say that the proof system is perfectly sound if AdvsoundΠ,A (λ) = 0.

Definition 9 (Witness Indistinguishability (WI)). A proof system Π is
witness indistinguishable, if for all PPT algorithms A we have that the advantage
AdvwiΠ,A(λ) computed as:

| Pr[ρ ← Setup(λ); (x,w0, w1) ← A(λ, ρ);π ← Prove(ρ, x, w0) : A(π) = 1]−
Pr[ρ ← Setup(λ); (x,w0, w1) ← A(λ, ρ);π ← Prove(ρ, x, w1) : A(π) = 1]|,

where (x,w0), (x,w1) ∈ R, is at most negligible in λ. We say that the proof
system if perfectly witness indistinguishable if AdvwiΠ,A(λ) = 0.

Perfectly Sound Proof System for Pairing Product Equations. We
briefly recall the framework of pairing product equations that is used for the
languages of the Groth-Sahai proof system [28]. For constants Ai ∈ G1, Bi ∈ G2,
tT ∈ GT , γij ∈ Zp which are either publicly known or part of the statement, and
witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we can prove that:

n∏

i=1

e(Ai, Yi) ·
m∏

i=1

e(Xi, Bi) ·
m∏

j=1

n∏

i=1

e(Xi, Yi)
γij = tT .

Signatures with Flexible Public Key 413

Scheme 1. Perfectly Sound Proof System for Pairing Product Equations

The system (SetupPPE,ProvePPE,VerifyPPE) has several instantiations based on
different assumptions. In this paper we only consider the instantiation based on
the symmetric linear assumption given by Ghadafi et al. [26].

For soundness it must be ensured, that SetupPPE outputs a valid DLIN tuple.
This can be enforced by requiring a trusted party perform the setup. However,
our schemes require a proof system which is perfectly sound, even if a malicious
prover executes the SetupPPE algorithm.

To achieve this we use the ideas by Groth et al. [27]. They pro-
pose a perfectly sound and perfectly witness indistinguishable proof system
(ProveLinear,VerifyLinear) which does not require a trusted setup. Using it one
can show that given tuples T1, T2 as a statement, at least one of T1 and T2 is
a DLIN tuple. The results were shown for type 1 pairing but the proof itself is
only given as elements in G2. Moreover, our variant of the DLIN assumption
gives the elements in both groups. Thus, we can apply the same steps as in [27].
The size of such a proof is 6 elements in G2.

Next is the observation that the tuples T1 and T2 can each be used as common
reference strings for the pairing product equation proof system. Since at least
one of the tuples is a valid DLIN tuple, at least one of the resulting proofs will be
perfectly sound. Witness-indistinguishability will be only computational, since
we have to provide T1 and T2 to the verifier but that is sufficient in our case.
The full scheme is presented in Scheme 1.

Theorem 1. Scheme 1 is a perfectly sound proof system for pairing product
equations if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly sound in the
common reference string model.

Theorem 2. Scheme 1 is a computational witness-indistinguishable proof
system if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly witness-
indistinguishable in the common reference string model.

2.4 Structure-Preserving Signatures on Equivalence Classes

Hanser and Slamanig introduced a cryptographic primitive called
structure-preserving signatures on equivalence classes [29]. Their work was fur-
ther extended by Fuchsbauer et al. in [24,25]. The idea is simple but provides a
powerful functionality. The signing SignSPS(M, skSPS) algorithm defines an equiv-
alence relation R that induces a partition on the message space. By signing one

414 M. Backes et al.

representative of a partition, the signer in fact provides a signature for all ele-
ments in it. Moreover, there exists a procedure ChgRepSPS(M,σSPS, r, pkSPS) that
can be used to change the signature to a different representative without knowl-
edge of the secret key. Existing instantiations allow to sign messages from the
space (G∗

i)
�, for � > 1, and for the following relation Rexp: given two messages

M = (M1, . . . ,M�) and M ′ = (M ′
1, . . . ,M

′
�), we say that M and M ′ are from

the same equivalence class (denoted by [M]R) if there exists a scalar r ∈ Z
∗
p,

such that ∀i∈[�](Mi)
r = M ′

i .
The original paper defines two properties of SPS-EQ namely unforgeability

under chosen-message attacks and class-hiding. Fuchsbauer and Gay [23] recently
introduced a weaker version of unforgeability called unforgeability under chosen-
open-message attacks, which restricts the adversary’s signing queries to messages
where it knows all exponents.

Definition 10 (Signing Oracles). A signing oracle is an oracle OSPS(skSPS, ·)
(resp. Oop(skSPS, ·)), which accepts messages (M1, . . . ,M�) ∈ (G∗

i)
� (resp. vectors

(e1, . . . , e�) ∈ (Z∗
p)

�) and returns a signature under skSPS on those messages
(resp. on messages (ge1

1 , . . . , ge�
1) ∈ (G∗

i)
�).

Definition 11 (EUF-CMA (resp. EUF-CoMA)). A SPS-EQ scheme
(BGGenSPS,KGenSPS,SignSPS,ChgRepSPS,VerifySPS,VKeySPS) on (G∗

i)
� is called

existentially unforgeable under chosen message attacks (resp. adaptive chosen-
open-message attacks), if for all PPT algorithms A with access to an open signing
oracle OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) the following advantage (with templates
T1, T2 defined below) is negligible in the security parameter λ:

Adv�,T1
SPS-EQ,A(λ) = Pr

[
BG←BGGenSPS(λ);

(skSPS,pkSPS)←$ KGenSPS(BG,�);

(M∗,σ∗
SPS)←$ AOT2

(skSPS,·)
(pkSPS)

: ∀M∈Q. [M∗]R �=[M]R ∧
VerifySPS(M

∗,σ∗
SPS,pkSPS)=1

]

,

where Q is the set of messages signed by the signing oracle OT2 and for T1 =
euf-cma we have T2 = SPS, and for T1 = euf-coma we have T2 = op.

A stronger notion of class hiding, called perfect adaptation of signatures,
was proposed by Fuchsbauer et al. in [25]. Informally, this definition states that
signatures received by changing the representative of the class and new signatures
for the representative are identically distributed. In our schemes we will only use
this stronger notion.

Definition 12 (Perfect Adaptation of Signatures). A SPS-EQ scheme
on (G∗

i)
� perfectly adapts signatures if for all (skSPS, pkSPS,M, σ, r), where

VKeySPS(skSPS, pkSPS) = 1, M ∈ (G∗
1)

�, r ∈ Z
∗
p and VerifySPS(M,σ, pkSPS) = 1,

the distribution of

((M)r
,SignSPS(M

r, skSPS)) and ChgRepSPS(M,σ, r, pkSPS)

are identical.

Signatures with Flexible Public Key 415

3 Signatures with Flexible Public Key

We begin by motivating the idea behind our primitive. In the notion of existen-
tial unforgeability of digital signatures, the adversary must return a signature
valid under the public key given to him by the challenger. Imagine now that
we allow a more flexible forgery. The adversary can return a signature that is
valid under a public key that is in some relation R to the public key chosen by
the challenger. Similar to the message space of SPS-EQ signatures, this relation
induces a system of equivalence classes on the set of possible public keys. A given
public key, along with the corresponding secret key can be transformed to a dif-
ferent representative in the same class using an efficient, randomized algorithm.
Since there may be other ways of obtaining a new representative, the forgery on
the challenge equivalence class is valid as long as the relation holds, even without
knowledge of the explicit randomness that leads to the given transformation.

Note, that because of this the challenger needs a way to efficiently ascertain
whether the forgery is valid, even if no transformation randomness is given.
Indeed, for the full definition of our schemes’ security we will require that it
should not be feasible, in absence of the concrete transformation randomness,
to determine whether a given public key belongs to one class or another. This
property —called class-hiding in the style of a similar property for SPS-EQ
signatures— should hold even for an adversary who has access to the randomness
used to create the key pairs in question.

The apparent conflict is resolved by introducing a trapdoor key generation
algorithm TKeyGen which outputs a key pair (sk, pk) and a class trapdoor τ
for the class the key pair is in. The trapdoor allows the challenger to reveal
whether a given key is in the same class as pk, even if doing so efficiently is
otherwise assumed difficult. Since we require that the keys generated using the
trapdoor key generation and the regular key generation are distributed identi-
cally, unforgeability results with respect to the former also hold with respect to
the latter.

Definition 13 (Signature with Flexible Public Key). A signature scheme
with flexible public key (SFPK) is a tuple of PPT algorithms (KeyGen,TKeyGen,
Sign,ChkRep,ChgPK,ChgSK,Verify) such that:

KeyGen(λ, ω): takes as input a security parameter λ, random coins ω ∈ coin and
outputs a pair (sk, pk) of secret and public keys,

TKeyGen(λ, ω): a trapdoor key generation that takes as input a security param-
eter λ, random coins ω ∈ coin and outputs a pair (sk, pk) of secret and public
keys, and a trapdoor τ .

Sign(sk,m): takes as input a message m ∈ {0, 1}λ and a signing key sk, and
outputs a signature σ,

ChkRep(τ, pk): takes as input a trapdoor τ for some equivalence class [pk′]R and
public key pk, the algorithm outputs 1 if pk ∈ [pk′]R and 0 otherwise,

ChgPK(pk, r): on input a representative public key pk of an equivalence class
[pk]R and random coins r, this algorithm returns a different representative
pk′, where pk′ ∈ [pk]R.

416 M. Backes et al.

ChgSK(sk, r): on input a secret key sk and random coins r, this algorithm returns
an updated secret key sk′.

Verify(pk,m, σ): takes as input a message m, signature σ, public verification key
pk and outputs 1 if the signature is valid and 0 otherwise.

A signature scheme with flexible public key is correct if for all λ ∈ N, all
random coins ω, r ∈ coin the following conditions hold:

1. The distribution of key pairs produced by KeyGen and TKeyGen is identical.
2. For all key pairs (sk, pk) ←$ KeyGen(λ, ω) and all messages m we have

Verify(pk,m,Sign(sk,m)) = 1 and Verify(pk′,m,Sign(sk′,m)) = 1, where
ChgPK(pk, r) = pk′ and ChgSK(sk, r) = sk′.

3. For all (sk, pk, τ) ←$ TKeyGen(λ, ω) and all pk′ we have ChkRep(τ, pk′) = 1 if
and only if pk′ ∈ [pk]R.

Definition 14 (Class-hiding). For scheme SFPK with relation R and adver-
sary A we define the following experiment:

A SFPK is class-hiding if for all PPT adversaries A, its advantage in the
above experiment is negligible:

Advc-hA,SFPK(λ) =
∣
∣
∣
∣Pr

[
C-HA

SFPK,R(λ) = 1
]

− 1
2

∣
∣
∣
∣ = negl(λ) .

Definition 15 (Existential Unforgeability under Flexible Public Key).
For scheme SFPK with relation R and adversary A we define the following exper-
iment:

Signatures with Flexible Public Key 417

A SFPK is existentially unforgeable with flexible public key under chosen mes-
sage attack if for all PPT adversaries A the advantage in the above experiment
is negligible:

Adveuf−cma
A,SFPK (λ) = Pr

[
EUF − CMAA

SFPK(λ) = 1
]

= negl(λ) .

Definition 16 (Strong Existential Unforgeability under Flexible Pub-
lic Key). A SFPK is strongly existentially unforgeable with flexible public
key under chosen message attack if for all PPT adversaries A the advantage
Advseuf−cma

A,SFPK (λ) in the above experiment, where we replace the line (m∗, ·) �∈ Q
with (m∗, σ∗) �∈ Q, is negligible.

In a standard application, the public key and secret key are jointly random-
ized by the signer using the same randomness in ChgPK and ChgSK. However,
the ChgPK algorithm alone can be executed by a third party given only the pub-
lic key and random coins r. Revealing r to the signer allows them to compute
the corresponding secret key. For some applications we want to avoid interaction
during this recovery of the secret key. Allowing the user to extract the new secret
key only using their old secret key would break class-hiding, since the attacker
in this case has access to the pre-transformed secret keys. Fortunately, we can
instead use the additional trapdoor returned by the TKeyGen algorithm. More
formally, we define this optional property as follows.

Definition 17 (Key Recovery). A SFPK has recoverable signing keys if there
exists an efficient algorithm Recover such that for all security parameters λ ∈ N,
random coins ω, r and all (sk, pk, τ) ←$ TKeyGen(λ, ω) and pk′ ←$ ChgPK(pk, r)
we have ChgSK(sk, r) = Recover(sk, τ, pk′).

3.1 Flexible Public Key in the Multi-user Setting

In this subsection, we address applications where part of each user’s public key is
shared with all the other public keys and is precomputed by a trusted third party
in a setup phase, e.g. the key used in a programmable hash function. We therefore

418 M. Backes et al.

define an additional algorithm CRSGen that, given a security parameter, outputs
a common reference string ρ. We assume that this string is an implicit input to
all algorithms. If the KeyGen is independent from ρ, we say that such a scheme
supports key generation without setup.

We will now discuss the implication of this new algorithm on the security
definitions. Usually, we require that the common reference string is generated
by an honest and trusted party (i.e. by the challenger in Definitions 14 and 15).
We additionally define those notions under maliciously generated ρ. We call a
scheme class-hiding under malicious reference string if the class-hiding definition
holds even if in Definition 14 the adversary is allowed to generate the string ρ.
Similarly, we call a SFPK scheme unforgeable under malicious reference string if
the unforgeability Definition 15 holds if ρ is generated by the adversary.

4 Applications

In this section we present natural applications of signatures with flexible public
key. First we show how to implement cryptocurrency stealth addresses from
schemes which have the additional key recovery property.

Then follow generic constructions of group and ring signature schemes. As
we will see in Sect. 5, each of the schemes presented in this section can be instan-
tiated with an SFPK scheme such that it improves on the respective state-of-
the-art in terms of concrete efficiency, necessary assumptions or both.

4.1 Cryptocurrency Stealth Addresses

In cryptocurrency systems transactions are confirmed through digital signatures
from the spending party on, among other things, the public key of the receiving
party. Using a technique called stealth addresses [37,39], it is possible for the
sender to create a fresh public key (address) for the receiving party from their
known public key such that these two keys cannot be linked. The receiving party
can recognize the fresh key as its own and generate a corresponding private
key, subsequently enabling it to spend any funds send to the fresh unlinkable
key. Crucially, there is no interaction necessary between sender and receiver to
establish the fresh key and only the receiver can recover the right secret key.

Informally, a sender can take a recipient’s public address and transform it to
a one-time address such that:

– The new one is unlinkable to the original one and other one-time addresses,
– only the recipient (or a party given the view key) can link all payments,
– only the recipient can derive the spending key for the one-time address.

In existing schemes, stealth addresses are implemented using a variant of
the Diffie-Hellman protocol [20,37]. Let ga be the public key of the sender and
gb the recipient’s public address. The sender computes the secret s = H(ga·b)
and to finish the transaction sends the funds to the address gs. Note that this
requires the recipient to immediately spend the coins, because the sender also

Signatures with Flexible Public Key 419

knows s. To protect against this type of misuse, an asymmetric Diffie-Hellman
was introduced, i.e. the funds are sent to the address gs+b = (g)s · gb. Note that
since only the recipient knows both s and b, only he can spend the money.

In practice, the sender’s public key ga is ephemeral and unique for each
transaction. Moreover, to increase efficiency a 2-key stealth address scheme was
introduced. The recipient still holds the key for spending the coin, but gives
a view key gv to a third party for checking incoming transactions. Therefore,
the recipient is not required to download all transactions and check if they cor-
respond to their identity. However, the party holding the view key can break
the anonymity of the recipient. To enable this feature, the sender also publishes
(gv)a, as part of this transaction.

It is worth noting that the technique was introduced without a formal model
and as an add-on for existing cryptocurrencies. In particular, as shown in [20]
there exist many security pitfalls, which are exhibited by some of the schemes.
Moreover, all existing schemes inherently rely on the Diffie-Hellman protocol,
which is defined for groups in which the discrete logarithm is hard.

We will now show that signatures with flexible public keys that additionally
implement the Recover algorithm can be seen as a formalization of 2-key stealth
addresses. Let us consider the following scenario. A sender wants to send funds
to a recipient identified by an address pk, where (sk, pk, τ) ←$ TKeyGen(λ, ω).
In order to send the coins, the sender first chooses randomness r and computes
the one-time address pk′ ←$ ChgPK(pk, r). The trapdoor τ can be used as the
view key to identify an incoming transaction using ChkRep(τ, pk′). Finally, the
recipient can use Recover(sk, τ, pk′) to compute the secret key sk′ that can be
used to spend funds sent to address pk′.

The main advantage of instantiating 2-key stealth addresses using SFPK is
that we can use the security arguments of the latter. In particular, unforgeability
of SFPK means that there cannot exist an efficient adversary that can spend the
recipient’s coins. Note that this holds even if the adversary knows the view key
τ . Privacy of the recipient is protected by class-hiding. Since the distributions of
TKeyGen and KeyGen are identical, it follows that any adversary breaking privacy
would break class-hiding. The party holding the view key τ can distinguish
transactions by definition, hence class-hiding does not hold for this party.

It is worth noting, that all previous descriptions of stealth addresses did not
consider any formal model and rigorous proofs. As we have argued above, our
definition of SFPK with key recovery seems to directly address the requirements
set before stealth addresses. Thus, our schemes are provable secure realizations
of a stealth address scheme. Moreover, since we do not use a particular group
structure, our construction could be instantiated using e.g. lattice-based cryp-
tography. We leave an instantiation of SFPK from lattices as an open problem.

Finally, note that Scheme 4 is an instance of signatures with flexible public
key which has the required recovery algorithm. We also show how to extend
Schemes 5 and 6 to support it.

420 M. Backes et al.

Scheme 2. Generic Group Signature Scheme

4.2 Group Signatures/Self-Blindable Certificates

We now present an efficient generic construction of static group signatures that
uses SFPK as a building block and which is secure in the model by Bellare
et al. [5]. The idea is to generate a SFPK secret/public key pair and “certify” the
public part with a SPS-EQ signature. To sign a message, the signer changes the
representation of their SFPK key, and changes the representation of the SPS-EQ
certificate. The resulting signature is the SFPK signature, the randomized public
key and the SPS-EQ certificate.

To enable subsequent opening, the group manager generates the SFPK keys
using TKeyGen and stores their trapdoors. Opening is then performed using
the stored trapdoors with the ChkRep algorithm. The group manager can also
generate ρ ←$ CRSGen for the SFPK signatures and use it as part of the group
public key. This allows us to use schemes which are secure in the multi-user
setting, e.g. Scheme 5. If the KeyGen algorithm is used instead of TKeyGen
to compute the SFPK key pairs, there is no efficient opening procedure and
the combination of SFPK and SPS-EQ signature scheme yields a self-blindable
certificate scheme [40].

Due to space limitations, we only present the setup and signing algorithm for
Scheme 2. Verification and opening procedures should be clear from the context.

Theorem 3. Scheme 2 is fully traceable if the SPS-EQ and the SFPK signature
schemes are existentially unforgeable under chosen-message attack.

Proof (Sketch). The proof relies on the fact that the only way for an adversary
to win the full traceability game is by either creating a new group member (thus
directly breaking the unforgeability of the SPS-EQ scheme) or by creating a
forged signature for an existing group member (thus breaking the unforgeability
of the SFPK scheme).

Theorem 4. Scheme 2 is fully anonymous if the SPS-EQ signature scheme per-
fectly adapts signatures and is existentially unforgeable under chosen-message
attacks, the SFPK scheme is class-hiding and strongly existentially unforgeable.

Proof (Sketch). We first use the perfect adaptation of SPS-EQ signatures to
re-sign the public key pk′ used in the challenge signature. Then we exclude

Signatures with Flexible Public Key 421

the case that the adversary issues an open query that cannot be opened. This
means that the adversary created a new group member and can be used to
break the unforgeability of the SPS-EQ scheme. In the next step we choose one
of the users (and abort if he is not part of the query issued by the adversary
to the challenge oracle) for which we change the way we generate the secret
key. Instead of using TKeyGen, we use the standard key generation algorithm
KeyGen. Note that in such a case, the open oracle cannot identify signatures
created by this user. However, since signatures cannot be opened by the oracle
for this user we can identify such a case and return his identifier. Finally, we
replace the SFPK public key and signature in the challenged group signature
by a random one (which is indistinguishable by class-hiding). In the end the
challenged signature is independent from the bit b̂. However, the adversary still
has non-zero advantage. This follows from the fact that it can randomize the
challenged signature and our oracle will output ib̂ (because the SFPK public
key is random in the signature, the oracle will fail to open and return the user’s
identifier). However, if the adversary is able to submit such a query we can break
the strong existential unforgeability of the SFPK scheme.

4.3 Ring Signatures

In ring signatures there is no trusted entity such as a group manager and groups
are chosen ad hoc by the signers themselves. Thus, to certify ring members we
use a membership proof instead of a SPS-EQ signature. This proof is perfectly
sound even if the common reference string is generated by the signer. In other
words, the actual ring signature is a SFPK signature (pk′, σ) and a proof Π that
there exists a public key pk ∈ Ring that is in relation to the public key pk′, i.e.
the signer proves knowledge of the random coins used to get pk′. The signature’s
anonymity relies on the class-hiding property of SFPK. Unfortunately, in the
proof, the reduction does not know a valid witness for proof Π, since it does
not choose the random coins for the challenged signature. Thus, we extend the
signer’s public keys by a tuple of three group elements (A,B,C) and prove
an OR statement which allows the reduction to compute a valid proof Π if
(A,B,C) is a non-DDH tuple (cf. Scheme 3). We can instantiate this scheme
with a membership proof based on the O(

√
n) size ring signatures by Chandran

et al. [15] and the perfectly sound proof system for NP languages by Groth
et al. [27]. The resulting membership proof is perfectly sound and of sub-linear
size in the size of the set. It follows, that our ring signature construction yields
the first sub-linear ring signature from standard assumptions without a trusted
setup.

Theorem 5. The generic construction of ring signatures presented in Scheme 3
is unforgeable w.r.t. insider corruption assuming the SFPK scheme is existen-
tially unforgeable, the proof system used is perfectly sound and the decisional
Diffie-Hellman assumption holds.

Proof (Sketch). We first fix all public keys of honest users to contain only DDH
tuples. This ensures that the forgery Σ∗ = (pk∗, σ∗,Π∗, ρ∗

Π) includes a perfectly

422 M. Backes et al.

Scheme 3. Generic Ring Signature Scheme

sound proof for the first clause of the statement, i.e. there exists a public key
pk ∈ Ring, which is in relation to pk∗ (all users in Ring must be honest). This
enables us to break existential unforgeability of the SFPK scheme. Note that we
have to guess the correct user to execute a successful reduction.

Theorem 6. The generic construction of ring signatures presented in Scheme 3
is anonymous against full key exposure assuming the SFPK scheme is class-hiding
and the used proof system is computationally witness-indistinguishable.

Proof (Sketch). We first fix all public keys of honest users to contain only non-
DDH tuples I. In the next step we randomly choose a fresh bit b̂ ←$ {0, 1} and
use the witness for the tuple Iib̂

in the challenged signature. Note that the proof
is valid for both values of b̂ but now the proof part is independent from the bit
b. Next we change the SFPK scheme public key pk′ and signature σ returned as
part of the challenged signature Σ = (pk′, σ′,Π). Again we choose a fresh bit
b̂ ←$ {0, 1} and compute them using pk′ ←$ ChgPK(pkib̂

, r), sk′ ←$ ChgSK(skib̂
, r)

and σ ←$ Sign(sk′,m||Ring). Any adversary distinguishing this change can be
used to break the class-hiding property of the SFPK scheme. Finally, all elements
of Σ are independent from b and the adversary’s advantage is zero.

5 Efficient Instantiation from Standard Assumptions

In this section we present two efficient instantiations of signatures with flexible
public key. All schemes support the same exponentiation relation Rexp. We say
that public keys pk1 = (pk1,1, . . . , pk1,k) and pk2 = (pk2,1, . . . , pk2,k) are in this
relation, denoted (pk1, pk2) ∈ Rexp, if and only if there exists a value r ∈ Z

∗
p

such that ∀i∈[k](pk1,i)r = pk2,i. We assume that in the plain model scheme (i.e.

Signatures with Flexible Public Key 423

Scheme 4. Warm-up Scheme for Waters Signatures

without a common reference string) the public key contains the implicit security
parameter λ and parameters BG. Since the bilinear-group generation algorithm
BGGen(λ) is deterministic, it follows that this does not influence the class-hiding
property or the unforgeability property. Therefore, for readability we omit those
parameters.

The first instantiation is based on a modified version of Waters signatures [41]
for type-2 and type-3 pairings due to Chatterjee and Menezes [17]. The scheme
has the key recovery property and can hence be used to implement stealth
addresses and instantiate our ring signature construction.

The second scheme works in the multi-user setting and features small pub-
lic key size, independent of the security parameter λ. It is also based on the
modified version of Waters signatures. A strongly unforgeable variant of this
scheme is ideal for instantiating the group signature scheme presented in Sect. 4.
In combination with the SPS-EQ from [23] it results in the shortest static group
signature scheme under standard assumptions. Further, using type-2 pairing and
the random oracle model allows to use this scheme without a trusted party.

5.1 Warm-Up Scheme

Theorem 7. Scheme 4 is existentially unforgeable under flexible public key,
assuming the decisional linear assumption holds and that PHF is (1, poly(λ))

Proof. In this particular proof we assume that we can re-run PHF.TrapGen using
the same random coins on a different group, i.e. that we can generate key KPHF =
(gμ0

1 , . . . , gμλ

1) ∈ G
λ+1
1 and a corresponding key K ′

PHF = (gμ0
2 , . . . , gμλ

2) ∈ G
λ+1
2 .

Note that this means that we make non-blackbox use of the underlying pro-
grammable hash function, but this re-running is possible for the hash function
we use, i.e. the Waters hash function.

424 M. Backes et al.

Let (f1, f2, h1, h2, f
α
1 , fα

2 , hβ
1 , hβ

2 , gγ
1 , gγ

2) be an instance of the decisional lin-
ear problem and let A be an PPT adversary that has non-negligible advantage
Adveuf−cma

A,SFPK (λ). We will show an algorithm R that uses A to break the above
problem instance.

In the first step, the reduction R prepares the public key pkFW =
(A,B,C,D, t,KPHF) as follows. It sets:

X = gγ
1 A = fα

1 B = hβ
1

C = h1 t = e(X, f2) = e(Xφ, g2) D = Xd

and (KPHF, τPHF) ←$ PHF.TrapGen(λ, gγ
1 , g1). The reduction also prepares the

trapdoor τ = (d, f2, f
α
2 , hβ

2 , h2,K
′
PHF), where to generate K ′

PHF we re-run the
algorithm PHF.TrapGen(λ, gγ

2 , g2).
Let (m, l) be one of A′s signing queries. To answer it, R

– chooses random values t ←$
Z

∗
p,

– it computes (am, bm) ←$ PHF.TrapEval(τPHF,m) and aborts if am = 0,
– it computes pkFW

′ ←$ ChgPKSFPK(pkSFPK, l),
– it computes:

σ1
FW = (gγ

1)t·l·am · ((f1)(−a−1
m) · gt

1))
l·bm ,

σ2
FW = (f1)−a−1

m · gt
1, σ3

FW = (f1)−a−1
m · gt

2,

– it returns the signature σFW = (σ1
FW, σ2

FW, σ3
FW).

Let f1 = gφ
1 . We will now show that this is a valid signature. Note that the

a valid signature is of the form (fγ·l
1 · ((gγ

1)am · gbm
1)l·r, gr

1, g
r
2). In this case, the

reduction has set r = −a−1
m · φ + t and this means that the fγ·l

1 cancels out and
the reduction does not need to compute fγ

1 .
Finally, A will output a valid signature under message m∗: ˆσFW =

(ˆσFW
1, ˆσFW

2, ˆσFW
3) = ((gγ·φ

1 HKPHF
(m∗)r∗

)l∗ , gr∗
1 , gr∗

2), for which we hope
that am∗ = 0, where (am∗ , bm∗) ←$ PHF.TrapEval(τPHF,m∗). Moreover,
since this should be a valid forgery then we have that this signature is
under a public key ˆpkFW for which (pkFW, ˆpkFW) ∈ R. Thus, we have
ˆσFW = ((fγ

1 (gr∗
1)bm∗)l∗ , gr∗

1 , gr∗
2), for some unknown r∗ but known bm∗ . Since

(pkFW, ˆpkFW) ∈ R. This means that ˆpkFW = (Al∗ , Bl∗ , Cl∗ ,Dl∗ , tl
∗
,Kl∗

PHF) =
((fα

1)l∗ , (hβ
1)l∗ , (h1)l∗ , (gγ·d

1)l∗ , tl
∗
,Kl∗

PHF). We now compute

T1 = e(ˆσFW
1, h2) = e(fγ

1 (gr∗
1)bm∗ , hl∗

2) T2 = e(hl∗
1 , gr∗

2)bm∗ = e(gr∗·bm∗
1 , hl∗

2)

T3 = e((fα
1)l∗ , h2) = e(fα

1 , hl∗
2) T4 = e((hβ

1)l∗ , f2) = e(fβ
1 , hl∗

2)

Finally, the reduction R returns 1 if T1 ·T−1
2 = T3 ·T4 and 0, otherwise. Note

that T1 · T−1
2 = e(fγ

1 , hl∗
2) and the above equation is correct only if γ = α + β.

The success probability of the reduction R depends on whether it can answer
all signing queries of A and on the returned forgery (i.e. for which we must have

Signatures with Flexible Public Key 425

am∗ = 0). However, since we assume that the used hash function is a (1, poly(λ))-
programmable hash function, it follows that R has a non-negligible advantage
in solving the decisional linear problem.

Theorem 8. Scheme 4 is class-hiding, assuming the decisional Diffie-Hellman
assumption in G1 holds.

Proof. In this proof we will use the game based approach. We start with
GAME0 which is the original class-hiding experiment and let S0 be an event
that the experiment evaluates to 1, i.e. the adversary wins. We then make
small changes and show in the end that the adversary’s advantage is zero.
We will use Si to denote the event that the adversary wins the class-hiding
experiment in GAMEi. We will also use the vector u to denote the key for
the programmable hash function KPHF. Let pkFW

′ = (A′, B′, C ′,D′, t′,u’) be
the public key given to the adversary as part of the challenge. Moreover, let
pkFW0 = (A0, B0, C0,D0, t0,u0) and pkFW1 = (A1, B1, C1,D1, t1,u1) be the
public keys that are returned by the KeyGen algorithm on input of random coins
ω0 and ω1 given to the adversary and b̂ be the bit chosen by the challenger.

GAME1: In this game we change the way we sample pkFW0 and pkFW1. Instead
of sampling directly from G1, we sample a, b, c, d, x, ν1, . . . , νλ ←$

Z
∗
p and

set A = ga
1 , B = gb

1, C = gc
1, D = gd

1 , X = gx
1 and u = (gν0

1 , . . . , gνλ
1).

Moreover, we change the way skFW
′ and pkFW

′ are computed from skFW b̂
pkFW b̂, i.e. pkFW′ = (Qa, Qb, Qc, Qd, e(Qx, gy

2), (Qν0 , . . . , Qνλ)), and skFW
′ =

(y,Qx, pkFW
′). In other words, instead of using the value r to randomize the

public key and secret key, we use a group element Q to do it.
Because we can use the invertible sampling algorithm to retrieve the random
coins ω0 and ω1 and since the distribution of the keys does not change, it
follows that Pr[S1] = Pr[S0]. Note that since the secret key skFW

′ is known,
the signing oracle Sign(skFW′, ·) can be properly simulated for any adversary.

GAME2: In this game instead of computing pkFW
′ = (Qa, Qb, Qc, Qd,

e(Qxb̂ , g
yb̂
2), (Qν0 , . . . , Qνλ)) as in GAME1, we sample A′ ←$

G1 set pkFW
′ =

(A′, Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2), (Qν0 , . . . , Qνλ)).

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses
an adversary A that can distinguish between those two games to break the
decisional Diffie-Hellman assumption in G1. Let (gα

1 , gβ
1 , gγ

1) be a instance
of this problem in G1. R samples r0,A, r1,A ←$

Z
∗
p and sets A0 = (gα

1)r0,A ,
A1 = (gα

1)r1,A .

Additionally, the reduction uses Q = gβ
1 and the public key

pkFW
′ = ((gγ

1)rb̂,A , Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2), (Qν0 , . . . , Qνλ)).

Note that since R knows the secret key skFW
′ it can answer signing queries.

426 M. Backes et al.

Scheme 5. Multi-user Flexible Public Key

Finally notice, that if γ = α·β then (pkFW′, σFW) have the same distribution as
in GAME1 and otherwise as in GAME2. Thus, we have |Pr[S2]−Pr[S1]| ≤
AdvddhA (λ).

GAME3 (series of sub-games): In this game instead of computing pkFW
′ = (A′,

Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2), (Qν1 , . . . , Qνλ)) as in GAME2, we sample B′, C ′,D′,

u′
0, . . . , u

′
λ ←$

G1 and set pkFW
′ = (A′, B′, C ′,D′, e(Qxb̂ , g

yb̂
2), (u′

0, . . . , u
′
λ)).

This transition is composed of a number of sub-games, in which we change
each element of the public key pkFW

′ separately. Obviously, we can use the same
reduction as above and show that each change lowers the adversary’s advantage
by at most AdvddhA (λ). It is worth noting, that the reduction can always create
a valid signature, since the secret key skFW

′ = (yb̂, Q
xb̂ , pkFW

′) can be computed
by R. Thus, we have |Pr[S3] − Pr[S2]| ≤ (4 + λ) · AdvddhA (λ).

Let us now take a look at the randomized public key and signature
given to the adversary. Because of all the changes, we have: pkFW

′ =
(A′, B′, C ′e(Qxb̂·yb̂ , g2),u’) and signatures from the oracle are of the form
(Qxb̂·yb̂(HKPHF

(m))r, gr
1, g

r
2) for some r ∈ Z

∗
p and A′, B′, C ′,u’ (= KPHF), Q,

which are independent from the bit b̂ and the original public keys. Since the
value Q is random and only appears as part of the term Qxb̂·yb̂ , we can always
restate this term to Q′x1−b̂·y1−b̂ where Q′ = Q(x1−b̂·y1−b̂)·(xb̂·yb̂)

−1
and Q′ is a ran-

dom value. It follows that the adversaries advantage is zero, i.e. Pr[S3] = 0.
Finally, we have Advc-hA,SFPK(λ) = Pr[S0] ≤ (5 + λ) · AdvddhA (λ).

Signatures with Flexible Public Key 427

5.2 Flexible Public Key Scheme in the Multi-user Setting

Theorem 9. Scheme 5 is existentially unforgeable under flexible public key in
the common reference string model, assuming the co-Flexible Diffie-Hellman
assumption holds and that PHF is a (1, poly(λ))-programmable hash function.

Proof (Sketch). The proof follows the same idea as the proof of Theorem 7.
The only difference is that in this case we will use a reduction directly to the
co-Flexible Diffie-Hellman assumption. Let (gα

1 , gα
2 , gβ

1 , gβ
2 , gγ

1 , gγ
2 , gθ

1 , g
θ
2) be an

instance of this problem. The reduction R prepares the common reference string
ρ = (BG, Y1, Y2,KPHF) and the public key pkFW = (A,B,X) as follows. It sets
X = gβ

1 , Y1 = gα
1 , Y2 = gα

2 , A = gγ
1 , B = gθ

1 and (KPHF, τPHF) ←$ PHF.TrapGen(λ,

gβ
1 , g1). Moreover, R sets τ = (gγ

2 , gθ
2 , g

β
2). Finally, the adversary A will output

a public key ˆpkFW = (Al∗ , Bl∗ ,X l∗) and a valid signature under message m∗:
ˆσFW = ((gα·β

1)l∗(gr∗
1)bm∗ , gr∗

1 , gr∗
2), for some unknown r∗ but known bm∗ . The

reduction can compute S = (gα·β
1)l∗ and return (Al∗ , Bl∗ , S) as a solution to the

co-Flexible Diffie-Hellman problem.

Theorem 10. Scheme 5 is class-hiding under the DDH assumption in G1.

Proof (Sketch). The proof is analogous to the proof of Theorem 8.

Remark 2 (Key Recovery). To support key recovery, the public key must be
extended to the form (A,B,C,X) for C = Y c

1 . The value c is then part of τ and
can be used to restore the value Y r

1 , where r is the randomness used to change
the public key. Given Y r

1 we need to compute Zr = Y xr
1 , therefore we also have

to include x as part of the original secret key skFW = (x, Y x
1) = (x,Z).

Transformation to Strong Existential Unforgeability. Scheme 5 is only
existentially unforgeable under flexible public key and this directly follows
from the fact that given a signature (gx·y·l

1 HKPHF
(m)r, gr

1, g
r
2) on message m,

we can compute a randomized signature (σ1
FW, σ2

FW, σ3
FW) = (gx·y·l

1 HKPHF
(m)r ·

HKPHF
(m)r′

, gr
1g

r′
1 , gr

2g
r′
2) for a fresh value r′ ←$

Z
∗
p.

A generic transformation from existentially unforgeable to strongly unforge-
able signatures was proposed by Boneh et al. [11]. In particular, they use Waters
signatures as a case study. It works for all schemes for which there exist two
algorithms F1 and F2 with the following properties: (1) the output signature is
(σ1, σ2), where σ1 ←$ F1(m, r, sk) and σ2 ←$ F2(r, sk), (2) given m and σ2 there
exists at most one σ1 so that (σ1, σ2) is a valid signature under pk. It is easy to
see that these properties hold for standard Waters signatures and for Scheme 5,
since we can compute σ2

FW, σ3
FW in algorithm F2 and σ1

FW in F1. What is more,
once the random value r is set, there exists exactly one value σ1

FW, for which
(σ1

FW, σ2
FW, σ3

FW) is valid under a given public key.
The high level idea of the solution is to bind the part computed by F2 using

a hash function, i.e. the output of F2 is hashed together with the actual message
m and the output is signed. In a scenario where we consider a given public key,

428 M. Backes et al.

Scheme 6. Strong Existential Unforgeable Variant of Scheme 5

this means that the signature cannot be randomized. Any manipulation of the
values (σ2

FW, σ3
FW) would result in a different signed message, which would lead

to an attack against existential unforgeability of the underlying scheme. Fixing
(σ2

FW, σ3
FW) fixes σ1

FW, as required by the properties above. Unfortunately, the
second argument does not hold for strong unforgeability under flexible public key.
Note that the adversary can still change σ1

FW by randomizing the public key. We
can overcome this by simply including the public key in the hash computation.

This idea prevents the randomization of the signature but breaks the security
proof of the underlying scheme. To allow the security reduction to bypass this
protection Boneh, Shen and Waters propose to sign a Pedersen commitment to
this hash value, instead of the value itself. The reduction can use a trapdoor to
bypass this protection using equivocation of the commitment. At the same time
the binding property still makes it impossible for the adversary to randomize the
signature. To apply this idea in our case, we first extend the common reference
string ρ by an element h ←$

G1. This element is part of the commitment key for
the Pedersen scheme. More details are given in Scheme 6.

Theorem 11. Scheme 6 is strongly existentially unforgeable under flexible pub-
lic key in the CRS model, assuming the co-Flexible Diffie-Hellman assumption
holds and the hash function H is collision-resistant.

Proof (Sketch). The proof follows directly from the proof given in [11].

Theorem 12. Scheme 6 is class-hiding under the DDH assumption in G1.

Proof (Sketch). We can apply the same reasoning as in the proof of Theorem 10.

5.3 Discussion

In this we instantiate the generic group signature Scheme 2 and the generic ring
signature Scheme 3 with our SFPK instantiations.

Note that in the case of group signatures we can use a SFPK scheme that
is strongly existentially unforgeable in the multi-user setting, since the group
manager can be trusted to perform a proper setup of public parameters. Thus, a
natural candidate is Scheme 6. We also require a SPS-EQ signature scheme, which

Signatures with Flexible Public Key 429

Fig. 1. Comparison of presented instantiations

we instantiate using the scheme presented in [23]. A caveat to this scheme is that
it only supports a one-time adaptation of signatures to a different representative.
This does not impact our use of the scheme since in our application the group
member performs the adaptation only once per signing. Further, the scheme is
only unforgeable under adaptive chosen-open-message attacks, hence we require
the following lemma.

Lemma 2. Let the public key of the SFPK scheme consist only of elements
sampled directly from G1 or computed as gx

1 , where x ←$
Z

∗
p. Theorems 3 and 4

still hold if the SPS-EQ scheme is only existential unforgeable under adaptive
chosen-open-message attacks.

Proof (Sketch). In the proof of Theorem 3, instead of excluding the case where
the adversary creates a new user, we can toss a coin and chose the adversary’s
strategy (forging the SPS-EQ or SFPK signature). In case we end up choosing
the SPS-EQ, we can freely choose the SFPK public keys and issue signing oracles
to get all σi

SPS. In the proof of Theorem 4 we use the unforgeability of SPS-EQ
to exclude the case that the adversary issues an open query for a new user.
Because this is the first change, we can again freely choose the SFPK public keys
and issue signing oracles to get all σi

SPS. Finally, we note that in such proofs we
make a non-blackbox use of the SFPK scheme.

For message space (G∗
1)

� the size of the SPS-EQ signature is (4 · � + 2) ele-
ments in G1 and 4 elements in G2. The security of the SPS-EQ scheme relies on
the decisional linear assumption and the decisional Diffie-Hellman assumption
in G2, while the security of our SFPK relies on the co-Flexible Diffie-Hellman
assumption. All in all, the proposed instantiation yields a static group signature
scheme that is secure under standard assumptions and has a signature size of
20 elements in G1 (counting elements in Z

∗
q as G1) and 5 elements in G2. It

therefore has shorter signatures than the current state-of-the-art scheme in [32].
Even shorter signatures can be achieved at the expense of introducing

stronger assumptions without relying on Lemma 2, by using the scheme found
in [24], which is unforgeable in the generic group model and has signatures of
size 2 elements in G1 and 1 element in G2. More details are given in Fig. 2.

We now focus on instantiating our ring signatures construction. Combining
any scheme from Sect. 5 with a generic perfectly sound proof system would result

430 M. Backes et al.

Fig. 2. Comparison of static group signature schemes

in a ring signature scheme that is unlikely to be of interest, as there are already
more efficient schemes with/without a trusted setup (see Fig. 3 for a comprehen-
sive comparison). However, using the results presented by Chandran et al. [15]
we can make the membership proof efficient. They propose a perfectly sound
proof of size O(

√
n) that a public key pk ∈ G1 (or pk ∈ G2), is in a Ring of

size n. This idea can be applied to arbitrary public keys (i.e. consisting of group
elements in different groups) in combination with a perfectly sound proof system
for NP languages. Thus, we must use a compatible SFPK instantiation, leaving
as the only scheme without a trusted party assumption Scheme 4. A public key of
Scheme 4 contains an element in GT and therefore cannot be used with the proof
system from Subsect. 2.3, which is based on the efficient Groth-Sahai proofs for
pairing product equations. We solve this problem in the following way:

Lemma 3. Scheme 4 is unforgeable and class-hiding even if X = gx
1 , Y = gy

2

are publicly known, where t = e(Xy, g2) = e(X,Y) is part of the signer’s public
key. Moreover, knowing the secret key one can compute such values.

Proof. Class-hiding still holds, because the adversary is given the secret keys ski

for i ∈ {0, 1}, which contain Xi and yi so it can compute Xi and Yi by itself
already. To show that unforgeability still holds, we first have to note that Y is
part of the trapdoor τ and does not provide new information for the adversary.
Finally, in the proof of unforgeability of Scheme 4 X is set to be gγ

1 , where gγ
1 is

part of the decisional linear problem instance. This element is not given to the
adversary directly but the same proof works if this value would be given to the
adversary.

The idea is that instead of putting the public key pkFW = (A,B,C,D, t,
KPHF) into the ring, we put (A,B,C,D,X, Y,KPHF). Finally, we modify the
first part of the statement proven during signing, i.e. we use

Signatures with Flexible Public Key 431

Fig. 3. Comparison of ring signature schemes without random oracles and secure in
the strongest model from [6]

∃A,B,C,D,X,X′,Y,KPHF,r (i, (A,B,C,D,X, Y,KPHF), ·) ∈ Ring ∧ e(X, gr2) = e(X ′, g2) ∧
e(X ′, Y) = t′ ∧ e(A, gr2) = e(A′, g2) ∧
e(B, gr2) = e(B′, g2) ∧ e(C, gr2) = e(C′, g2) ∧
e(D, gr2) = e(D′, g2) ∧ e(KPHF, g

r
2) = e(K′

PHF, g2),

instead of ∃pk,r

(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′) , where pkFW

′ = (A′, B′,
C ′,D′, t′,K ′

PHF) is the randomized SFPK public key used as part of the ring
signature. Since all elements in the ring are now elements in G1 or G2, we can
use the proof system from Subsect. 2.3 to efficiently instantiate the proof used
in our ring signature construction. What is more, we can also apply the trick
from [15] and create a membership proof of length only O(

√
n). The resulting

ring signature scheme is the first efficient scheme that is secure under falsifiable
assumptions, without a trusted party and with signature size that does not
depend linearly on the number of ring members. This solves the open problem
stated by Malavolta and Schröder [34].

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for CISPA and the CISPA-Stanford
Center for Cybersecurity (FKZ: 16KIS0762).

432 M. Backes et al.

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures.
In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

2. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 24

3. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with Flexible
Public Key: Introducing Equivalence Classes for Public Keys. Cryptology ePrint
Archive, Report 2018/191 (2018)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

7. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

8. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

10. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

11. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). https://
doi.org/10.1007/11745853 15

12. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 12

13. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 1

https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-71677-8_1

Signatures with Flexible Public Key 433

14. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 9

15. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
new Definitions and delegatable anonymous credentials. In: CSF 2014. IEEE Com-
puter Society (2014)

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

18. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

19. Chow, S.S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: Lin, F.-C., Lee, D.-T., Paul, B.-S.P., Lin, Shieh, S., Jajodia, S.
(eds.) ASIACCS 2006. ACM (2006)

20. Courtois, N.T., Mercer, R.: Stealth address and key management techniques in
blockchain systems. In: Mori, P., Furnell, S., Camp, O. (eds.) ICISSP 2017.
SciTePress (2017)

21. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27

22. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

23. Fuchsbauer, G., Gay, R.: Weakly Secure Equivalence-Class Signatures from Stan-
dard Assumptions. Cryptology ePrint Archive, Report 2018/037 (2018)

24. Fuchsbauer, G., Hanser, C., Slamanig, D.: EUF-CMA- Secure Structure-Preserving
Signatures on Equivalence Classes. Cryptology ePrint Archive, Report 2014/944
(2014)

25. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

26. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 11

27. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-540-78967-3_24

434 M. Backes et al.

29. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

30. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 2

31. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

32. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

33. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy resignatures. In: Ning, P.,
Syverson, P.F., Jha, S.: CCS 2008. ACM (2008)

34. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 5

35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf

36. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

37. van Saberhagen, N.: CryptoNote v 2.0., October 2013. https://cryptonote.org/
whitepaper.pdf

38. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 12

39. Todd, P.: Stealth Addresses. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2014-January/004020.html

40. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 31

41. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-319-70697-9_5
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-45682-1_32
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1007/978-3-540-71677-8_12
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/11426639_7

Compact Multi-signatures for Smaller
Blockchains

Dan Boneh1(B), Manu Drijvers2,3(B), and Gregory Neven2(B)

1 Stanford University, Stanford, USA
dabo@cs.stanford.edu

2 DFINITY, Zurich, Switzerland
{manu,gregory}@dfinity.org

3 ETH Zurich, Zurich, Switzerland

Abstract. We construct new multi-signature schemes that provide new
functionality. Our schemes are designed to reduce the size of the Bitcoin
blockchain, but are useful in many other settings where multi-signatures
are needed. All our constructions support both signature compression
and public-key aggregation. Hence, to verify that a number of parties
signed a common message m, the verifier only needs a short multi-
signature, a short aggregation of their public keys, and the message m.
We give new constructions that are derived from Schnorr signatures and
from BLS signatures. Our constructions are in the plain public key model,
meaning that users do not need to prove knowledge or possession of their
secret key.

In addition, we construct the first short accountable-subgroup multi-
signature (ASM) scheme. An ASM scheme enables any subset S of a set
of n parties to sign a message m so that a valid signature discloses which
subset generated the signature (hence the subset S is accountable for
signing m). We construct the first ASM scheme where signature size is
only O(κ) bits over the description of S , where κ is the security param-
eter. Similarly, the aggregate public key is only O(κ) bits, independent
of n. The signing process is non-interactive. Our ASM scheme is very
practical and well suited for compressing the data needed to spend funds
from a t-of-n Multisig Bitcoin address, for any (polynomial size) t and n.

1 Introduction

Consider n parties where each party independently generates a key pair for a sig-
nature scheme. Some time later all n parties want to sign the same message m. A
multi-signature scheme [29,39] is a protocol that enables the n signers to jointly
generate a short signature σ on m so that σ convinces a verifier that all n parties
signed m. Specifically, the verification algorithm is given as input the n public
keys, the message m, and the multi-signature σ. The algorithm either accepts
or rejects σ. The multi-signature σ should be short – its length should be inde-
pendent of the number of signers n. We define this concept more precisely in

M. Drijvers and G. Neven—Work partially done at IBM Research – Zurich.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 435–464, 2018.
https://doi.org/10.1007/978-3-030-03329-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_15&domain=pdf

436 D. Boneh et al.

the next section, where we also present the standard security model for such
schemes [39]. Secure multi-signatures have been constructed from Schnorr sig-
natures (e.g. [9]), from BLS signatures (e.g. [10]), and from many other schemes
as discussed in Sect. 1.4.

A more general concept called an aggregate signature scheme [13] lets each of
the n parties sign a different message, but all these signatures can be aggregated
into a single short signature σ. As before, this short signature should convince
the verifier that all signers signed their designated message.

Applications to Bitcoin. Multi-signatures and aggregate signatures can be
used to shrink the size of the Bitcoin blockchain [41]. In recent work, Maxwell,
Poelstra, Seurin, and Wuille [36] suggest using multi-signatures to shrink the
transaction data associated with Bitcoin Multisig addresses. Conceptually, a
Multisig address is the hash of n public keys pk1, . . . , pkn along with some num-
ber t ∈ {1, . . . , n} called a threshold (see [2,36] for details). To spend funds
associated with this address, one creates a transaction containing all n public
keys pk1, . . . , pkn followed by t valid signatures from t of the n public keys, and
writes this transaction to the blockchain. The message being signed is the same
in all t signatures, namely the transaction data.

In practice, Multisig addresses often use t = n, so that signatures from all n
public keys are needed to spend funds from this address. In this case, all n sig-
natures can be compressed using a multi-signature scheme into a single short
signature. This shrinks the overall transaction size and reduces the amount of
data written to the blockchain. This approach can also be made to work for
t < n, when

(
n
t

)
is small, by enumerating all t-size subsets [36, Sect. 5.2]. Multi-

signatures can also be used to compress multi-input transactions, but for sim-
plicity we will focus on Multisig addresses.

Notice that we still need to write all n public keys to the blockchain, so com-
pressing the signatures does not save too much. Fortunately, there is a solution
to this as well. Maxwell et al. [36], building on the work on Bellare and Neven [9],
construct a Schnorr-based multi-signature scheme that also supports public key
aggregation; the verifier only needs a short aggregate public key instead of an
explicit list of all n public keys. With this approach, an n-of-n Multisig address
is simply the hash of the short aggregate public key, and the data written to
the blockchain in a spending transaction is this single short aggregated public
key, a single short compressed signature, and the message. This data is sufficient
to convince the verifier that all n signers signed the transaction. It shrinks the
amount of data written to the blockchain by a factor of n.

Maxwell et al. call this primitive a multi-signature scheme with public key
aggregation. Their signing protocol requires two rounds of communication among
the signing parties, and they prove security of their scheme assuming the one-
more discrete-log assumption (as assumption introduced in [8]). However, recent
work [22] has shown that there is a gap in the security proof, and that security
cannot be proven under this assumption. Whether their scheme can be proved
secure under a different assumption or in a generic group model is currently an
open problem.

Compact Multi-signatures for Smaller Blockchains 437

In Sect. 5, we present a modification of the scheme by Maxwell et al. that
we prove secure under the standard discrete-log assumption. Our MSDL scheme
retains all the benefits of the original scheme, and in particular uses the same
key aggregation technique, but we add one round to the signing protocol. Inde-
pendently from our work, Maxwell et al. [37] revised their work to use the same
protocol we present here.

1.1 Better Constructions Using Pairings

Our main results show that we can do much better by replacing the Schnorr
signature scheme in [36] by BLS signatures [14]. The resulting schemes are an
extremely good fit for Bitcoin, but are also very useful wherever multi-signatures
are needed.

To describe our new constructions, we first briefly review the BLS signa-
ture scheme and its aggregation mechanism. Recall that the scheme needs: (1)
An efficiently computable non-degenerate pairing e : G1 × G2 → Gt in groups
G1,G2,Gt of prime order q. We let g1 and g2 be generators of G1 and G2 respec-
tively. (2) A hash function H0 : M → G1. Now the BLS signature scheme works
as follows:

– Key generation: choose a random sk ←$
Zq and output (pk , sk) where pk ←

gsk2 ∈ G2.
– Sign(sk ,m): output σ ← H0(m)sk ∈ G1.
– Verify(pk ,m, σ): if e(σ, g2)

?= e
(
H0(m), pk

)
output “accept”, otherwise output

“reject”.

This signature scheme supports a simple signature aggregation procedure. Given
triples (pk i, mi, σi) for i = 1, . . . , n, anyone can aggregate the signatures
σ1, . . . , σn ∈ G1 into a short convincing aggregate signature σ by computing

σ ← σ1 · · · σn ∈ G1. (1)

To verify this aggregate signature σ ∈ G1 one checks that:

e(σ, g2) = e
(
H0(m1), pk1

) · · · e(H0(mn), pkn

)
. (2)

Note that verification requires all (pk i, mi) for i = 1, . . . , n. When all the mes-
sages being signed are the same (i.e., m1 = . . . = mn) the verification relation
(2) reduces to a simpler test that requires only two pairings:

e(σ, g2)
?= e

(
H0(m1), pk1 · · · pkn

)
. (3)

Observe that the verifier only needs to be given a short aggregate public-key
apk := pk1 · · · pkn ∈ G2.

The Rogue Public-Key Attack. The simple signature aggregation method
in (1) is insecure on its own, and needs to be enhanced. To see why, consider
the following rogue public-key attack: an attacker registers a rogue public key

438 D. Boneh et al.

pk2 := gα
2 · (pk1)−1 ∈ G2, where pk1 ∈ G2 is a public key of some unsuspecting

user Bob, and α ←$
Zq is chosen by the attacker. The attacker can then claim

that both it and Bob signed some message m ∈ M by presenting the aggregate
signature σ := H0(m)α. This signature verifies as an aggregate of two signatures,
one from pk1 and one from pk2, because

e(σ, g2) = e
(
H0(m)α, g2

)
= e

(
H0(m), gα

2

)
= e

(
H0(m), pk1 · pk2

)
.

Hence, this σ satisfies (3). In effect, the attacker committed Bob to the message
m, without Bob ever signing m.

Defenses. There are two standard defenses against the rogue public-key attack:

– Require every user to prove knowledge or possession of the corresponding
secret key [10,33,47]. However, this is difficult to enforce in practice, as argued
in [7,47], and does not fit well with applications to crypto currencies, as
explained in [36].

– Require that the messages being aggregated are distinct [7,13], namely the
verifier rejects an aggregate signature on non-distinct messages. This is suffi-
cient to prevent the rogue key attack. Moreover, message distinctness can be
enforced by always prepending the public key to every message prior to sign-
ing. However, because now all messages are distinct, we cannot take advan-
tage of fast verification and public-key aggregation as in (3) when aggregating
signatures on a common message m.

1.2 Our Pairing-Based Results

In Sect. 3 we propose a different defense against the rogue public-key attack
that retains all the benefits of both defenses above without the drawbacks. Our
multi-signature scheme, called MSP , supports public key aggregation and fast
verification as in (3). Moreover, the scheme is secure in the plain public-key
model, which means that users do not need to prove knowledge or possession of
their secret key. The scheme has two additional useful properties:

– The scheme supports batch verification where a set of multi-signatures can
be verified as a batch faster than verifying them one by one.

– We show in Sect. 3.3 that given several multi-signatures on different messages,
it is possible to aggregate all them using (1) into a single short signature. This
can be used to aggregate signatures across many transactions and further
shrink the data on the blockchain.

Our construction is based on the approach developed in [9] and [36] for securing
Schnorr multi-signatures against the rogue public key attack.

Our BLS-based multi-signature scheme MSP is much easier to use than
Schnorr multi-signatures. Recall that aggregation in Schnorr can only take place
at the time of signing and requires a multi-round protocol between the signers.
In our new scheme, aggregation can take place publicly by a simple multiplica-
tion, even long after all the signatures have been generated and the signers are

Compact Multi-signatures for Smaller Blockchains 439

no longer available. Concretely, in the context of Bitcoin this means that all the
signers behind a Multisig address can simply send their signatures to one party
who aggregates all of them into a single signature. No interaction is needed, and
the parties do not all need to be online at the same time.

Accountable-Subgroup Multi-signatures. Consider again n parties where
each party generates an independent signing key pair. An ASM enables any
subset S of the n parties to jointly sign a message m, so that a valid signature
implicates the subset S that generated the signature; hence S is accountable for
signing m. The verifier in an ASM is given as input the (aggregate) ASM public
key representing all n parties, the set S ⊆ {1, . . . , n}, the signature generated
by the set S , and the message m. It accepts or rejects the signature. Security
should ensure that a set of signers S ′ �⊇ S cannot issue a signature that will
be accepted as if it were generated by S . We define ASMs and their security
properties precisely in Sect. 4. This concept was previously studied by Micali
et al. [39].

Any secure signature scheme gives a trivial ASM: every party generates an
independent signing key pair. A signature by a set S on message m is simply the
concatenation of all the signatures by the members of S . For a security parameter
κ, the public key size in this trivial ASM is O(n × κ) bits. The signature size is
O(|S | × κ) bits.

Our new ASM scheme, called ASM , is presented in Sect. 4.2. It is the first
ASM where signature size is only O(κ) bits beyond the description of the set S ,
independent of n. The public key is only O(κ) bits. Concretely, the signature
is only two group elements, along with the description of S , and the public key
is a single group element. The signing process is non-interactive, but initial key
generation requires a simple one-round protocol between the all n signers. We
also present an aggregate ASM, called AASM , that partially aggregates w ASM
signatures into a single signature that is considerably smaller than w separate
ASM signatures.

To see how all this can be used, consider again a Bitcoin n-of-n Multi-
sig address. We already saw that multi-signatures with public key aggregation
reduce the amount of data written to the blockchain to only O(κ) bits when
spending funds from this address (as opposed to O(κ×n) bits as currently done
in Bitcoin). The challenge is to do the same for a t-of-n Multisig address where
t < n. Our ASM gives a complete solution; the only information that is written
to the blockchain is a description of S plus three additional group elements:
one for the public key and two for the signature, even when

(
n
t

)
is exponential.

When a block contains w such transactions, our aggregate ASM in Sect. 4.4 can
reduce this further to two (amortized) group elements per transaction. This is
significantly better than the trivial linear size ASM scheme currently employed
by Bitcoin.

Proofs of Possession. We further observe that all our schemes, both BLS-based
and Schnorr-based, can be adapted to a setting where all users are required to
provide a proof of possession (PoP) of their secret key. Proofs of possession
increase the size of individual public keys, but there are applications where

440 D. Boneh et al.

Table 1. Comparison of the space required to authorize a block in the Bitcoin
blockchain containing tx transactions, each containing inp inputs, all from n-out-of-n
multisig wallets. Here, |G| denotes the space required to represent an element of a
group. The fourth column shows the concrete number of bytes taken in a bitcoin block
by choosing some sample parameters (tx = 1500, inp = 3, n = 3), using secp256k1 [19]
for Bitcoin, MuSig, and MSDL schemes (|G| = 32B, |Zq| = 32B), and BLS381 [6] for
the pairing-based MSP ,AMSP ,ASM , and AASM schemes (|G1| = 96B, |G2| = 48B,
|Zq| = 32B). In the right-most column, “linear” denotes that t-of-n thresholds are sup-
ported with key and signature sizes linear in n and t,“small” denotes that support is
limited to

(
n
t

)
being small, and “any” denotes support for arbitrary (polynomial size)

t and n.

the size of individual keys is less relevant. For example, Multisig addresses in
Bitcoin only need to store the aggregate public key on the blockchain, whereas
the individual public keys are only relevant to the signers and can be kept off-
chain, or verified once and then discarded. Other applications may involve a
more or less static set of signing nodes whose keys can be verified once and used
in arbitrary combinations thereafter.

The PoP variants offer some advantages over our main schemes, such as
simply using the product or hash of the public keys as the aggregate public key
(as opposed to a multi-exponentiation), and having tighter security proofs to the
underlying security assumption. Due to space constraints, the PoP variants are
only presented in the full version of this work [12].

1.3 Efficiency Comparison

Table 1 shows to what extent our constructions reduce the size of the Bitcoin
blockchain. Our pairing-based scheme and AMSP and our discrete logarithm-
based scheme MSDL both require less than 20% of the space to authenticate
all transactions in a Bitcoin block compared to the currently deployed solution,
assuming realistic parameters. While not immediately visible from the table,
accountable-subgroup multi-signature schemes AASM is most useful for t-of-n
signatures when

(
n
t

)
is very large. For instance, for a 50-out-of-100 multisig wal-

lets, the currently deployed bitcoin solution would require almost 60 times more
space than our ASM scheme. The other schemes support threshold signatures
using Merkle trees [38] as outlined in [36, Sect. 5.2], but only when

(
n
t

)
is small

Compact Multi-signatures for Smaller Blockchains 441

enough to generate the tree. This method would for example be infeasible for a
50-of-100 threshold scheme.

1.4 Related Work

Multi-signatures have been studied extensively based on RSA [29,30,43,45], dis-
crete logarithms [3,4,9,17,18,20,22,26–28,32,35,36,39,44], pairings [10,11,31,
33,47], and lattices [5]. Defending against rogue public-key attacks has always
been a primary concern in the context of multi-signature schemes based on
discrete-log and pairings [7,9,13,28,39,40,47], and is the main reason for the
added complexity in discrete-log-based multi-signature systems. Aggregate sig-
natures [1,13,25] are a closely related concept where signatures by different sign-
ers on different messages can be compressed together. Sequential aggregate sig-
natures [15,24,33,34,42] are a variant where signers take turns adding their own
signature onto the aggregate. The concept of public-key aggregation in addition
to signature compression has not been explicitly discussed in the plain public
key model until [36] and this work. This concept greatly reduces the combined
length of the data needed to verify a multi-signature.

2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator that takes as an input a security parameter
κ and outputs the descriptions of multiplicative groups (q,G1,G2,Gt, e, g1, g2)
where G1, G2, and Gt are groups of prime order q, e is an efficient, non-
degenerating bilinear map e : G1 × G2 → Gt, and g1 and g2 are generators
of the groups G1 and G2, respectively.

2.2 Computational Problems

Definition 1 (Discrete Log Problem). For a group G = 〈g〉 of prime order
q, we define Advdl

G
of an adversary A as

Pr
[
y = gx : y ←$

G, x ←$ A(y)
]
,

where the probability is taken over the random choices of A and the random
selection of y. A (τ, ε)-breaks the discrete log problem if it runs in time at most
τ and has Advdl

G
≥ ε. Discrete log is (τ, ε)-hard if no such adversary exists.

Definition 2 (Computational co-Diffie-Hellman Problem). For a groups
G1 = 〈g1〉,G2 = 〈g2〉 of prime order q, define Advco-CDH

G1,G2
of an adversary A as

Pr
[
y = gαβ

1 : (α, β) ←$
Z
2
q, y ← A(gα

1 , gβ
1 , gβ

2)
]
,

where the probability is taken over the random choices of A and the random
selection of (α, β). A (τ, ε)-breaks the co-CDH problem if it runs in time at most
τ and has Advco-CDH

G1,G2
≥ ε. co-CDH is (τ, ε)-hard if no such adversary exists.

442 D. Boneh et al.

Definition 3 (Computational ψ-co-Diffie-Hellman Problem). For
groups G1 = 〈g1〉,G2 = 〈g2〉 of prime order q, let Oψ(·) be an oracle that on
input gx

2 ∈ G2 returns gx
1 ∈ G1. Define Advψ-co-CDH

G1,G2
of an adversary A as

Pr
[
y = gαβ

1 : (α, β) ←$
Z
2
q, y ← AOψ(·)(gα

1 , gβ
1 , gβ

2)
]
,

where the probability is taken over the random choices of A and the random
selection of (α, β). A (τ, ε)-breaks the ψ-co-CDH problem if it runs in time at
most τ and has Advψ-co-CDH

G1,G2
≥ ε. ψ-co-CDH is (τ, ε)-hard if no such adversary

exists.

2.3 Generalized Forking Lemma

The forking lemma of Pointcheval and Stern [46] is commonly used to prove the
security of schemes based on Schnorr signatures [48] in the random-oracle model.
Their lemma was later generalized to apply to a wider class of schemes [3,9]. We
recall the version due to Bagherzandi, Cheon, and Jarecki [3] here.

Let A be an algorithm that on input in interacts with a random oracle
H : {0, 1}∗ → Zq. Let f = (ρ, h1, . . . , hqH) be the randomness involved in an
execution of A, where ρ is A’s random tape, hi is the response to A’s i-th
query to H, and qH is its maximal number of random-oracle queries. Let Ω be
the space of all such vectors f and let f |i = (ρ, h1, . . . , hi−1). We consider an
execution of A on input in and randomness f , denoted A(in, f), as successful
if it outputs a pair (J, {outj}j∈J), where J is a multi-set that is a non-empty
subset of {1, . . . , qH} and {outj}j∈J is a multi-set of side outputs. We say that
A failed if it outputs J = ∅. Let ε be the probability that A(in, f) is successful
for fresh randomness f ←$ Ω and for an input in ←$ IG generated by an input
generator IG.

For a given input in, the generalized forking algorithm GFA is defined as
follows:

GFA(in):
f = (ρ, h1, . . . , hqH) ←$ Ω
(J, {outj}j∈J) ← A(in, f)
If J = ∅ then output fail
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn

For i = 1, . . . , n do
succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′|ji
= f |ji

Let f ′′ = (ρ, h1, . . . , hji−1, h
′′
ji

, . . . , h′′
qH)

(J ′′, {out ′′
j }j∈J ′′) ← A(in, f ′′)

If h′′
ji

�= hji
and J ′′ �= ∅ and ji ∈ J ′′ then

out ′
ji

← out ′′
ji

; succi ← 1
If succi = 1 for all i = 1, . . . , n
Then output (J, {outj}j∈J , {out ′

j}j∈J) else output fail

Compact Multi-signatures for Smaller Blockchains 443

We say that GFA succeeds if it doesn’t output fail. Bagherzandi et al. proved
the following lemma for this forking algorithm.

Lemma 1 (Generalized Forking Lemma [3]). Let IG be a randomized algo-
rithm and A be a randomized algorithm running in time τ making at most
qH random-oracle queries that succeeds with probability ε. If q > 8nqH/ε, then
GFA(in) runs in time at most τ ·8n2qH/ε · ln(8n/ε) and succeeds with probability
at least ε/8, where the probability is over the choice of in ←$ IG and over the
coins of GFA.

2.4 Multi-signatures and Aggregate Multi-signatures

We follow the definition of Bellare and Neven [9] and define a multisigna-
ture scheme as algorithms Pg, Kg, Sign, KAg, and Vf. A trusted party gen-
erates the system parameters par ← Pg. Every signer generates a key pair
(pk , sk) ←$ Kg(par), and signers can collectively sign a message m by each calling
the interactive algorithm Sign(par ,PK, sk ,m), where PK is the set of the public
keys of the signers, and sk is the signer’s individual secret key. At the end of the
protocol, every signer outputs a signature σ. Algorithm KAg on input a set of
public keys PK outputs a single aggregate public key apk . A verifier can check
the validity of a signature σ on message m under an aggregate public key apk by
running Vf(par , apk ,m, σ) which outputs 0 or 1 indicating that the signatures
is invalid or valid, respectively.

A multisignature scheme should satisfy completeness, meaning that for any
n, if we have (pk i, sk i) ← Kg(par) for i = 1, . . . , n, and for any message m, if
all signers input Sign(par , {pk1, . . . , pkn}sk i,m), then every signer will output a
signature σ such that Vf(par ,KAg(par , {pk i}n

i=1),m, σ) = 1. Second, a multisig-
nature scheme should satisfy unforgeability. Unforgeability of a multisignature
scheme MS = (Pg,Kg,Sign,KAg,Vf) is defined by a three-stage game.

Setup. The challenger generates the parameters par ← Pg and a challenge key
pair (pk∗, sk∗) ←$ Kg(par). It runs the adversary on the public key A(par , pk∗).

Signature queries. A is allowed to make signature queries on any message m for
any set of signer public keys PK with pk∗ ∈ PK, meaning that it has access
to oracle OSign(par ,·,sk∗,·) that will simulate the honest signer interacting in a
signing protocol with the other signers of PK to sign message m. Note that A
may make any number of such queries concurrently.

Output. Finally, the adversary outputs a multisignature forgery σ, a message
m, and a set of public keys PK. The adversary wins if pk∗ ∈ PK, A made no
signing queries on m∗, and Vf(par ,KAg(par ,PK),m)}, σ) = 1.

Definition 4. We say A is a (τ, qS, qH, ε)-forger for multisignature scheme
MS = (Pg,Kg,Sign,KAg,Vf) if it runs in time τ , makes qS signing queries,
makes qH random oracle queries, and wins the above game with probability at
least ε. MS is (τ, qS, qH, ε)-unforgeable if no (τ, qS, qH, ε)-forger exists.

444 D. Boneh et al.

2.5 Aggregate Multi-signatures

We now introduce aggregate multi-signatures, combining the concepts of aggre-
gate signatures and multisignatures, allowing for multiple multisignatures to be
aggregated into one. More precisely, we extend the definition of multisignatures
with two algorithms. SAg takes input a set of tuples, each tuple containing an
aggregate public key apk , a message m, and a multisignature σ, and outputs a
single aggregate multisignature Σ. AVf takes input a set of tuples, each tuple
containing an aggregate public key apk and a message m, and an aggregate
multisignature Σ, and outputs 0 or 1 indicating that the aggregate multisigna-
tures is invalid or valid, respectively. Observe that any multisignature scheme
can be transformed into an aggregate multisignature scheme in a trivial man-
ner, by implementing SAg(par , {apk i,mi, σi}) to output Σ ← (σ1, . . . , σn), and
AVf

(
par , {apk i,mi}, (σ1, . . . , σn)

)
to output 1 if all individual multisignatures

are valid. The goal however is to have Σ much smaller than the concatenation
of the individual multisignatures, and ideally of constant size.

The security of aggregate multisignatures is very similar to the security of
multisignatures. First, an aggregate multisignature scheme should satisfy com-
pleteness, meaning that 1) for any n, if we have (pk i, sk i) ← Kg(par) for i =
1, . . . , n, and for any message m, if all signers input Sign(par , {pk1, . . . , pkn}sk i,
m), then every signer will output a signature σ such that Vf(par ,KAg(par ,
{pk i}n

i=1),m, σ) = 1, and 2) for any set of valid multisignatures {(apk i,mi, σi)}
(with Vf(par , apk i,mi, σi) = 1), the aggregated multisignature is also valid:
AVf(par , {apk i,mi},SAg(par , {(apk i,mi, σi)})) = 1. Second, an aggregate mul-
tisignature scheme should satisfy unforgeability. Unforgeability of an aggregate
multisignature scheme AMS = (Pg,Kg,Sign,KAg,Vf,SAg,AVf) is defined by a
three-stage game, where the setup stage and the signature queries stage are the
same as in the multisignature unforgeability game. The output stage is changed
as follows:

Output. Finally, the adversary halts by outputting an aggregate multisignature
forgery Σ, set of aggregate public keys a message pairs {apk i,mi}, a set of public
keys PK, and a message m∗. The adversary wins if pk∗ ∈ PK, A made no signing
queries on m∗, and AVf(par , {(apk i,mi)} ∪ {(KAg(par ,PK),m∗)}, Σ) = 1.

Definition 5. We say A is a (τ, qS, qH, ε)-forger for aggregate multisignature
scheme AMS = (Pg,Kg,Sign,KAg,Vf,SAg,AVf) if it runs in time τ , makes qS
signing queries, makes qH random oracle queries, and wins the above game with
probability at least ε. AMS is (τ, qS, qH, ε)-unforgeable if no (τ, qS, qH, ε)-forger
exists.

3 Multi-signatures with Key Aggregation from Pairings

We begin by presenting our new pairing-based multi-signature scheme that
supports public-key aggregation. Bilinear groups are typically asymmetric, in
the sense that one of the two groups has a more compact representation.

Compact Multi-signatures for Smaller Blockchains 445

The pairing-based schemes below require public keys and signatures to live in
different groups. For standard signatures, a single public key is used to sign many
messages, so it would make sense to use the more compact group for signatures.
Because our schemes below enable aggregation of both signatures and public
keys, however, this may no longer be true, and the best choice of groups may
depend strongly on the concrete application. We describe our schemes below
placing signatures in G1 and public keys in G2, but leave it open which of those
two groups has the more compact representation. Note that efficient hash func-
tions exist mapping into either of the groups [16,23,49].

3.1 Description of Our Pairing-Based Scheme

Our pairing-based multi-signature with public-key aggregation MSP is built from
the BLS signature scheme [14]. The scheme is secure in the plain public key
model, and assumes hash functions H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq.

Parameters Generation. Pg(κ) sets up bilinear group (q,G1,G2,Gt, e, g1,
g2) ← G(κ) and outputs par ← (q,G1,G2,Gt, e, g1, g2).

Key Generation. The key generation algorithm Kg(par) chooses sk ←$
Zq,

computes pk ← gsk2 , and outputs (pk , sk).

Key Aggregation. KAg({pk1, . . . , pkn}) outputs

apk ←
n∏

i=1

pkH1(pki,{pk1,...,pkn})
i .

Signing. Signing is a single round protocol. Sign(par , {pk1, . . . , pkn}, sk i,m)
computes si ← H0(m)ai·ski , where ai ← H1(pk i, {pk1, . . . , pkn}). Send si to a
designated combiner who computes the final signature as σ ← ∏n

j=1 sj . This
designated combiner can be one of the signers or it can be an external party.

Multi-signature Verification. Vf(par , apk ,m, σ) outputs 1 iff

e(σ, g−1
2) · e(H0(m), apk) ?= 1Gt .

Batch Verification. We note that a set of b multi-signatures can be verified as
a batch faster than verifying them one by one. To see how, suppose we are given
triples (mi, σi, apk i) for i = 1, . . . , b, where apk i is the aggregated public-key
used to verify the multi-signature σi on mi. If all the messages m1, . . . ,mb are
distinct then we can use signature aggregation as in (1) to verify all these triples
as a batch:

446 D. Boneh et al.

– Compute an aggregate signature σ̃ = σ1 · · · σb ∈ G1,
– Accept all b multi-signature tuples as valid iff

e(σ̃, g2)
?= e

(
H0(m1), apk1

) · · · e(H0(mb), apk b

)
.

This way, verifying the b multi-signatures requires only b + 1 pairings instead of
2b pairings to verify them one by one. This simple batching procedure can only
be used when all the messages m1, . . . ,mb are distinct. If some messages are
repeated then batch verification can be done by first choosing random expo-
nents ρ1, . . . , ρb ←$ {1, . . . , 2κ}, where κ is a security parameter, computing
σ̃ = σρ1

1 · · · σρb

b ∈ G2, and checking that

e(σ̃, g2)
?= e

(
H0(m1), apk

ρ1
1

) · · · e(H0(mb), apk
ρb

b

)
.

Of course the pairings on the right hand side can be coalesced for repeated
messages.

3.2 Security Proof

Theorem 1. MSP is an unforgeable multisignature scheme under the compu-
tational co-Diffie-Hellman problem in the random-oracle model. More precisely,
MSP is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε and if
co-CDH is ((τ + qHτexp1 + qS(τexpl

2
+ τexp1) + τexpl

2
) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-

hard, where l is the maximum number of signers involved in a single multisig-
nature, τexp1 and τexp2 denote the time required to compute exponentiations in
G1 and G2 respectively, and τexpi

1
and τexpi

2
denote the time required to compute

i-multiexponentiations in G1 and G2 respectively.

Proof. Suppose we have a (τ, qS, qH, ε) forger F against the MSP multisigna-
ture scheme. Then consider an input generator IG that generates random tuples
(A,B1, B2) = (gα

1 , gβ
1 , gβ

2) where α, β ←$
Zq, and an algorithm A that on input

(A,B1, B2) and randomness f = (ρ, h1, . . . , hqS) proceeds as follows.
Algorithm A picks an index k ←$ {1, . . . , qH} and runs the forger F on input

pk∗ ← B2 with random tape ρ. It responds to F ’s i-th H0 query by choosing
ri ←$

Zq and returning gri
1 if i �= k. The k-th H0 query is answered by returning

A. We assume w.l.o.g. that F makes no repeated H0 queries. A responds to F ’s
H1 queries as follows. We distinguish three types of H1 queries:

1. A query on (pk ,PK) with pk ∈ PK and pk∗ ∈ PK, and this is the first such
query with PK.

2. A query on (pk ,PK) with pk ∈ PK and pk∗ ∈ PK, and and a prior query of
this form with PK has been made.

3. Queries of any other form.

A handles the i-th query of type (1) by choosing a random value for H1(pk i,PK)
for every pk i �= pk∗ ∈ PK. It fixes H1(pk∗,PK) to hi, and returns the

Compact Multi-signatures for Smaller Blockchains 447

H1(pk ,PK). A handles a type (2) query by returning the values chosen ear-
lier when the type (1) query for PK was made. A handles a type (3) query by
simply returning a random value in Zq.

When F makes a signing query on message m, with signers PK, A computes
apk ← KAg(par ,PK) and looks up H0(m). If this is A, then A aborts with
output (0,⊥). Else, it must be of form gr

1, and A can simulate the honest signer
by computing si ← Br

1 . When F fails to output a successful forgery, then A
outputs (0,⊥). If F successfully outputs a forgery for a message m so that
H0(m) �= A), then A also outputs (0,⊥). Otherwise, F has output a forgery
(σ,PK,m) such that

e(σ, g2) = e(A,KAg(par ,PK)).

Let jf be the index such that H1(pk∗,PK) = hjf , let apk ← KAg(par ,PK),
and let aj ← H1(pk j ,PK) for PK = {pk1, . . . , pkn}. Then A outputs (J =
{jf}, {(σ,PK, apk , a1, . . . , an)}).

The running time of A is that of F plus the additional computation A makes.
Let qH denote the total hash queries F makes, i.e., the queries to H0 and H1

combined. A needs one exponentiation in G1 to answer H0 queries, so it spends
at most qH · τexp1 to answer the hash queries. For signing queries with a PK of
size at most l, A computes one multi-exponentiation costing time τexpl

2
, and one

exponentiation in G1 costing τexp1 , giving a total of qS ·(τexpl
2
+τexp1). Finally, A

computes the output values, which costs an additional τexpl
2

to compute apk . A’s
runtime is therefore τ +qHτexp1 +qS(τexpl

2
+τexp1)+τexpl

2
. The success probability

of A is the probability that F succeeds and that it guessed the hash index of
F ’s forgery correctly, which happens with probability at least 1/qH, making A’s
overall success probability εA = ε/qH.

We prove the theorem by constructing an algorithm B that, on input a
co-CDH instance (A,B1, B2) ∈ G1 ×G1 ×G2 and a forger F , solves the co-CDH
problem in (G1,G2). Namely, B runs the generalized forking algorithm GFA from
Lemma 1 on input (A,B1, B2) with the algorithm A described above. Observe
that the co-CDH-instance is distributed indentically to the output of IG. If
GFA outputs (0,⊥), then B outputs fail. If GFA outputs ({jf}, {out}, {out ′}),
then B proceeds as follows. B parses out as (σ,PK, apk , a1, . . . , an) and out ′

as (σ′,PK′, apk ′, a′
1, . . . , a

′
n′). From the construction of GFA, we know that out

and out ′ were obtained from two executions of A with randomness f and f ′

such that f |jf = f ′|jf , meaning that these executions are identical up to the
jf -th H1 query of type (1). In particular, this means that the arguments of this
query are identical, i.e., PK = PK′ and n = n′. If i is the index of pk∗ in PK,
then again by construction of GFA, we have ai = hjf and a′

i = h′
jf

, and by
the forking lemma it holds that ai �= a′

i. By construction of A, we know that

apk =
∏n

j=1 pkaj

j and apk ′ =
∏n

j=1 pk
a′

j

j . Since A assigned H1(pk j ,PK) ← aj for
all j �= i before the forking point, we have that aj = a′

j for j �= i, and therefore

that apk/apk ′ = pk∗ai−a′
i . We know that A’s output satisfies e(σ, g2) = e(A, apk)

and e(σ′, g2) = e(A, apk ′), so that e(σ/σ′, g2) = e(A,B2
ai−a′

i), showing that
(σ/σ′)1/(ai−a′

i) is a solution to the co-CDH instance.

448 D. Boneh et al.

Using Lemma 1, we know that if q > 8qH/ε, then B runs in time at most
(τ + qHτexp1 + qS(τexpl

2
+ τexp1) + τexpl

2
) · 8q2H/ε · ln(8qH/ε) and succeeds with

probability ε′ ≥ ε/(8qH).

3.3 Aggregating Multi-signatures

It is possible to further aggregate the multi-signatures of the MSP scheme by
multiplying them together, as long as the messages of the aggregated multi-
signatures are different. The easiest way to guarantee that messages are different
is by including the aggregate public key in the message to be signed, which is how
we define the aggregate multisignature scheme AMSP here. That is, AMSP and
MSP share the Pg, Kg, and KAg, algorithms, but AMSP has slightly modified
Sign and Vf algorithms that include apk in the signed message, and has additional
algorithms SAg and AVf to aggregate signatures and verify aggregate signatures,
respectively.

Signing. Sign(par ,PK, sk i,m) computes si ← H0(apk ,m)ai·ski , where apk ←
KAg(par ,PK) and ai ← H1(pk i, {pk1, . . . , pkn}). The designated combiner col-
lect all signatures si and computes the final signature σ ← ∏n

j=1 sj .

Multi-signature Verification. Vf(par , apk ,m, σ) outputs 1 if and only if
e(σ, g−1

2) · e(H0(apk ,m), apk) ?= 1Gt .

Signature Aggregation. SAg(par , {(apk i,mi, σi)}n
i=1) outputs Σ ← ∏n

i=1 σi.

Aggregate Signature Verification. AVf({(apk i,mi)}n
i=1, Σ) outputs 1 if and

only if e(Σ, g−1
2) · ∏n

i=1 e(H0(apk i,mi), apk i)
?= 1Gt .

The security proof is almost identical to that of MSP , but now requires
an isomorphism ψ between G1 and G2. We therefore prove security under the
stronger ψ-co-CDH assumption, which is equivalent to co-CDH but offers this
isomorphism as an oracle to the adversary.

Theorem 2. AMSP is a secure aggregate multisignature scheme under the com-
putational ψ-co-Diffie-Hellman problem in the random-oracle model. More pre-
cisely, AMSP is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε
and if the computational ψ-co-Diffie-Hellman problem is ((τ+qHτexp1+qS(τexpl

2
+

τexp1) + τexpl
2
+ τexpn

1
) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-hard, where l is the maximum

number of signers involved in a single multisignature, n is the amount of mul-
tisignatures aggregated into the forgery, τexp1 and τexp2 denote the time required
to compute exponentiations in G1 and G2 respectively, and τexpi

1
and τexpi

2
denote

the time required to compute i-multiexponentiations in G1 and G2 respectively.

Proof. Suppose we have a (τ, qS, qH, ε) forger F against the AMSP multisignature
scheme. We construct A exactly as in the proof of Theorem 1, except that F
now outputs an aggregate multisignature signature forgery instead of a plain
multisignature forgery. That is, F outputs an aggregate multisignature Σ, a set
of aggregate public keys and message pairs {(apk1,m1), . . . , (apkn,mn)}, a set

Compact Multi-signatures for Smaller Blockchains 449

of public keys PK, and a message m∗. Let apk∗ ← KAg(par ,PK). If A correctly
guessed that the k-th H0 query is H0(apk∗,m∗), then we have that

e(Σ, g−1
2) · e(A, apk∗) ·

n∏

i=1

e(H0(apk i,mi), apk i) = 1Gt .

A looks up ri for every (apk i,mi) such that H0(apk i,mi) = gri
1 . It computes

σ ← Σ · ∏n
i=1 Oψ(apk−ri

i), so that

e(σ, g2) = e(y, apk∗).

Note that A has now extracted a MSP forgery, meaning that the rest of the
reduction is exactly as in the proof of Theorem 1. The success probability of the
reduction is therefore the same, and the runtime is only increased by the extra
steps required to compute σ, which costs τexpn

1
.

4 Accountable-Subgroup Multisignatures

Micali, Ohta, and Reyzin [39] defined an accountable-subgroup multisignature
scheme as a multisignature scheme where any subset S of a group of signers PK
can create a valid multisignature that can be verified against the public keys of
signers in the subset. An ASM scheme can be combined with an arbitrary access
structure over PK to determine whether the subset S is authorized to sign on
behalf of PK. For example, requiring that |S| ≥ t turns the ASM scheme into a
type of threshold signature scheme whereby the signature also authenticates the
set of signers that participated.

Verification of an ASM scheme obviously requires a description of the set
S of signers which can be described by their indices in the group PK using
min(|PK|, |S |×�log2 |PK|�) bits. We describe the first ASM scheme that, apart
from the description of S , requires no data items with sizes depending on |S |
or |PK|. Verification is performed based on a compact aggregate public key and
signature. The aggregate public key is publicly computable from the individual
signers’ public keys, but we do require all members of PK to engage in a one-
time group setup after which each signer obtains a group-specific membership
key that it needs to sign messages for the group PK.

4.1 Definition of ASM Schemes

We adapt the original syntax and security definition of ASM schemes [39] to
support public-key aggregation and an interactive group setup procedure.

An ASM scheme consists of algorithms Pg, Kg, GSetup, Sign, KAg, and
Vf. The common system parameters are generated as par ←$ Pg. Each signer
generates a key pair (pk , sk) ←$ Kg(par). To paricipate in a group of sign-
ers PK = {pk1, . . . , pkn}, each signer in PK runs the interactive algorithm
GSetup(sk ,PK) to obtain a membership key mk . We assume that each signer in

450 D. Boneh et al.

PK is assigned a publicly computable index i ∈ {1, . . . , |PK|}, e.g., the index
of pk in a sorted list of PK. Any subgroup of signers S ⊆ {1, . . . , |PK|} of PK
can then collectively sign a message m by each calling the interactive algorithm
Sign(par ,PK,S , sk ,mk ,m), where mk is the signer’s membership key for this
group of signers, to obtain a signature σ. The key aggregation algorithm, on
input the public keys of a group of signers PK, outputs an aggregate public key
apk . A signature σ is verified by running Vf(par , apk ,S ,m, σ) which outputs
0 or 1.

Correctness requires that for all n > 0, for all S ⊆ {1, . . . , n}, and for all
m ∈ {0, 1}∗ it holds that Vf(par , apk ,S ,m, σ) = 1 with probability one when
par ←$ Pg, (pk i, sk i) ←$ Kg(par), mk i ←$ GSetup(sk i, {pk1, . . . , pkn}), and σ ←$

Sign(par , {pk1, . . . , pkn},S , sk i,mk i,m), where GSetup is executed by all signers
1, . . . , n while Sign is only executed by the members of S .

Security. Unforgeability is described by the following game.

Setup. The challenger generates par ← Pg and (pk∗, sk∗) ←$ Kg(par), and runs
the adversary A(par , pk∗).

Group Setup. The adversary can perform the group setup protocol GSetup(sk∗,
PK) for any set of public keys PK so that pk∗ ∈ PK, where the challenger plays
the role of the target signer pk∗. The challenger stores the resulting membership
key mk∗

PK, but doesn’t hand it to A.

Signature queries. The adversary can also engage in arbitrarily many concurrent
signing protocols for any message m, for any group of signers PK for which pk∗ ∈
PK and mk∗

PK is defined, and for any S ⊆ {1, . . . , |PK|} so that i ∈ S , where i
is the index of pk∗ in PK. The challenger runs Sign(par ,PK,S , sk∗,mk∗,m) to
play the role of the i-th signer and hands the resulting signature σ to A.

Output. The adversary outputs a set of public keys PK, a set S ⊆ {1, . . . , |PK|},
a message m and an ASM signature σ. It wins the game if Vf(par , apk ,S ,m, σ) =
1, where apk ← KAg(PK), pk∗ ∈ PK and i is the index of pk∗ in PK, i ∈ S ,
and A never submitted m as part of a signature query.

Definition 6. We say that A is a (τ, qG, qS, qH, ε)-forger for accountable-
subgroup multisignature scheme ASM if it runs in time τ , makes qG group
setup queries, qS signing queries, qH random-oracle queries, and wins the above
game with probability at least ε. ASM is (τ, qG, qS, qH, ε)-unforgeable if no
(τ, qG, qS, qH, ε)-forger exists.

4.2 Our ASM Scheme

Key generation and key aggregation in our ASM scheme are the same as for
our aggregatable multi-signature scheme in the previous section. We construct
an ASM scheme by letting all signers, during group setup, contribute to multi-
signatures on the aggregate public key and the index of every signer, such that

Compact Multi-signatures for Smaller Blockchains 451

the i-th signer in PK has a “membership key” which is a multi-signature on
(apk , i). On a high level, an accountable-subgroup multi-siganture now consists
of the aggregation of the individual signers’ signatures and their membership
keys and the aggregate public key of the subroup S . To verify whether a subgroup
S signed a message, one checks that the signature is a valid aggregate signature
where the aggregate public key of the subgroup signed the message and the
membership keys corresponding to S .

The scheme uses hash functions H0 : {0, 1}∗ → G1, H1 : {0, 1}∗ → Zq, and
H2 : {0, 1}∗ → G1. Parameter generation, key generation, and key aggregation
are the same as for the aggregate multi-signature scheme in Sect. 3.

Group Setup. GSetup(sk i,PK = {pk1, . . . , pkn}) checks that pk i ∈ PK
and that i is the index of pk i in PK. Signer i computes the aggregate pub-
lic key apk ← KAg(PK) as well as ai ← H1(pk i,PK). It then sends μj,i =
H2(apk , j)ai·ski to signer j for j �= i, or simply publishes these values. After hav-
ing received μi,j from all other signers j �= i, it computes μi,i ← H2(apk , i)ai·ski

and returns the membership key mk i ← ∏n
j=1 μi,j . Note that if all signers behave

honestly, we have that

e(mk i, g2) = e(H2(apk , i), apk).

In other words, this mk i is a valid multi-signature on the message (apk , i) by all
n parties, as defined in the scheme in Sect. 3.1.

Signing. Sign(par ,PK,S , sk i,mk i,m) computes apk ← KAg(PK) and

si ← H0(apk ,m)ski · mk i,

and sends (pk i, si) to a designated combiner (either one of the members of S or
an external party). The combiner computes

PK ←
∏

j∈S

pk j , s ←
∏

j∈S

sj ,

and outputs the multisignature σ := (PK , s). Note that the set S does not have
to be fixed at the beginning of the protocol, but can be determined as partial
signatures are collected.

Verification. Vf(par , apk ,S ,m, σ) parses σ as (PK , s) and outputs 1 iff

e(H0(apk ,m),PK) · e(
∏

j∈S

H2(apk , j), apk) ?= e(s, g2)

and S is a set authorized to sign.
The presented ASM scheme satisfies correctness. If parties honestly execute

the group setup and and signing protocols, we have PK = g
∑

i∈S ski

2 , apk =

g
∑

i=1,...,n ai·pki

2 , and s = H0(apk ,m)
∑

i∈S ski · ∏
i∈S H2(apk , i)

∑
j∈1,...,n aj ·skj ,

which passes verification:

452 D. Boneh et al.

e(s, g2) = e
(
H0(apk ,m)

∑
i∈S ski ·

∏

i∈S

H2(apk , i)
∑

j∈1,...,n aj ·skj , g2
)

= e
(
H0(apk ,m), pk

) · e
(∏

i∈S

H2(apk , i), g
∑

j∈1,...,n aj ·skj

2

)

= e
(
H0(apk ,m), pk

) · e
(∏

i∈S

H2(apk , i), apk
)

4.3 Security of Our ASM Scheme

Theorem 3. Our ASM scheme is unforgeable under the hardness of the com-
putational ψ-co-Diffie-Hellman problem in the random-oracle model. More pre-
cisely, it is (τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8qH/ε and
if ψ-co-CDH is (τ ′, ε′)-hard for

τ ′ = (τ + τ ′′) · 8q2Hq

(q − qS − qH) · ε
· ln

8qHq

(q − qS − qH) · ε
,

τ ′′ = qH · max (τexpl
2
, τexp2

1
) + (lqG + qS) · τexp1 + qS · τexpl

2
+ 2 · τpair + τexp3

1
,

ε′ =
ε

8qH
− qS + qH

8qqH
,

where l is the maximum number of signers involved in any group setup, τexp1

and τexp2 denote the time required to compute exponentiations in G1 and G2

respectively, and τexpi
1

and τexpi
2

denote the time required to compute i-multi-
exponentiations in G1 and G2 respectively, and τpair denotes the time required
to compute a pairing operation.

Proof. Given a forger F against the ASM scheme, we construct a wrapper algo-
rithm A that can be used by the generalized forking algorithm GFA. We then
give an adversary B that can solve the ψ-co-CDH problem by running GFA. The
proof essentially combines techniques related to the non-extractability of BGLS
aggregate signatures [13,21] with Maxwell et al.’s key aggregation technique [36].

Given a forger F , consider the following algorithm A. On input in = (q,G1,

G2,Gt, e, g1, g2, A = gα
1 , B1 = gβ

1 , B2 = gβ
2) and randomness f = (ρ, h1, . . . , hqH),

and given access to a homomorphism oracle Oψ(·), A proceeds as follows. It
guesses a random index k ←$ {1, . . . , qH} and runs F on input par ← (q,G1,G2,
Gt, e, g1, g2) and pk∗ ← B2, answering its oracle queries using initially empty
lists L0, L2 as follows:

– H1(x): If x can be parsed as (pk ,PK) and pk∗ ∈ PK and F did not make any
previous query H1(pk ′,PK), then it sets H1(pk∗,PK) to the next unused value
hi and, for all pk ∈ PK \{pk∗}, assigns a random value in Zq to H1(pk ,PK).
Let apk ← ∏

pk∈PK pkH1(pk ,PK) and let i be the index of pk∗ in PK. If F
previously made any random-oracle or signing queries involving apk , then we
say that event bad happened and A gives up by outputting (0,⊥). If H1(x)
did not yet get assigned a value, then A assigns a random value H1(x) ←$

Zq.

Compact Multi-signatures for Smaller Blockchains 453

– H2(x): If x can be parsed as (apk , i) such that there exist defined entries for
H1 such that apk =

∏
pk∈PK pkH1(pk ,PK), pk∗ ∈ PK, and i is the index of

pk∗ in PK, then A chooses r ←$
Zq, adds ((apk , i), r, 1) to L2 and assigns

H2(x) ← gr
1A

−1/ai where ai = H1(pk∗,PK). If not, then A chooses r ←$
Zq,

adds (x, r, 0) to L2 and assigns H2(x) ← gr
1.

– H0(x): If this is F ’s k-th random-oracle query, then A sets m∗ ← x, hoping
that F will forge on message m∗. It then chooses r ←$

Zq, adds (m∗, r, 1) to
L0 and assigns H0(m∗) ← gr

1. If this is not F ’s k-th random-oracle query,
then A chooses r ←$

Zq, adds (x, r, 0) to L0 and assigns H0(x) ← gr
1A.

– GSetup(PK): If pk∗ �∈ PK, then A ignores this query. Otherwise, it computes
apk ← ∏

pk∈PK pkH1(pk ,PK), internally simulating the random-oracle queries
H1(pk ,PK) if needed. It also internally simulates queries H2(apk , j) for j =
1, . . . , |PK|, j �= i, to create entries ((apk , j), rj , 0) ∈ L2, as well as ai ←
H1(pk∗,PK), where i is the index of pk∗ in PK. Since H2(apk , j) = g

rj

1 , A
can simulate the values μj,i = H2(apk , j)ai·sk∗

= H2(apk , j)ai·β for j �= i as
μj,i ← B

ai·rj

1 .
After having received μi,j from all other signers j �= i, A internally stores
μapk ← ∏

j �=i μi,j .
– Sign(PK,S ,m): If F did not perform group setup for PK, then A ignores

this query. If m = m∗, then A gives up by outputting (0,⊥). Otherwise,
it recomputes apk ← KAg(PK) and looks up ((apk ,m), r0, 0) ∈ L0 and
((apk , i), r2, 1) ∈ L2, internally simulating queries H0(apk ,m) and H2(apk , i)
to create them if needed, where i is the index of pk∗ in PK. Now A must simu-
late the partial signature si = H0(apk ,m)sk

∗ ·μapk ·H2(apk , i)ai·sk∗
, where ai =

H1(pk∗,PK). From the way A responded to random-oracle queries, we know
that H0(apk ,m) = gr0

1 A = gr0+α
1 and H2(apk , i) = gr2

1 A−1/ai = g
r2−α/ai

1 , so
that A has to simulate si = g

β(r0+α)
1 · μapk · g

β(air2−α)
1 = μapk · g

β(r0+air2)
1 ,

which it can easily compute as si ← μapk · Br0+air2
1 .

When F eventually outputs its forgery (PK,S ,m, σ), A recomputes apk∗ ←
KAg(PK) =

∏|PK|
j=1 pkaj

j , where pk j is the j-th public key in PK and aj =
H1(apk , j), and checks that the forgery is valid, i.e., Vf(par , apk ,S ,m, σ) = 1,
pk∗ ∈ PK, i ∈ S where i is the index of pk∗ ∈ PK, and F never made a signing
query for m. If any of these checks fails, A outputs (0,⊥). If m �= m∗, then A
also outputs (0,⊥). Else, observe that σ = (PK , s) such that

s = H0(apk ,m∗)logPK ·
∏

j∈S

H2(apk , j)log apk∗
.

Because of how A simulated F ’s random-oracle queries, it can look up
((apk∗,m∗), r0, 1) ∈ L0, ((apk∗, j), r2,j , 0) ∈ L2 for j ∈ S \ {i}, and
((apk∗, i), r2,i, 1) ∈ L2, where i is the index of pk∗ in PK, such that

H0(apk ,m∗) = gr0
1

H2(apk , j) = g
r2,j

1 for j ∈ S \ {i}
H2(apk , i) = g

r2,i

1 A−1/ai

454 D. Boneh et al.

so that we have that

s = glogPK ·r0
1 · g

log apk∗·∑j∈S r2,j

1 · A− log apk∗/ai

If we let
t ← (Oψ(PK)r0 · Oψ(apk∗)

∑
j∈S r2,j · s−1

)ai

then we have that
t = Alog apk∗

= A
∑|PK|

j=1 aj log pkj .

If I is the index such that H(pk∗,PK) = hI , then algorithm A outputs (I, (t,PK,
a1, . . . , an)).

A’s runtime is F ’s runtime plus the additional computation A performs. Let
qH denote the total hash queries F makes, i.e., the queries to H0, H1, and H2

combined. To answer a H1 query, A computes apk which costs at most τexpl
2

for
groups consisting of up to l signers. To answer H0 and H2 queries, A performs
at most τexp2

1
. A therefore spends at most qH · max (τexpl

2
, τexp2

1
) answering hash

queries. For every group-setup query with l signers, A computes apk costing
τexpl

2
, and A computes μj,i costing (l−1)τexp1 , meaning A spends qG ·(l−1)τexp1

answering group setup queries. For signing queries with a PK of size at most l,
A computes apk costing time τexpl

2
, and one exponentiation in G1 costing τexp1 ,

giving a total of qS ·(τexpl
2
+τexp1). Finally, A computes the output values, which

involves verifying the forgery (costing 2τpair) and computing t (costing τexp3
1
),

giving A a total runtime of τ + qH · max (τexpl
2
, τexp2

1
) + qG · (l − 1)τexp1 + qS ·

(τexpl
2
+ τexp1) + 2τpair + τexp3

1
.

A is successful if the bad event does not happen, if it guesses the index of the
forgery correctly, and if F successfully forges. Event bad happens with proba-
bility at most (qS + qH)/q for every hash query, so it happens with probability
qH(qS + qH)/q. A guesses the forgery index correctly with probability 1/qH, and
F forges with probability ε, giving A success probability (1− (qS + qH)/q) · ε/qH.

Using the generalized forking lemma from Lemma 1, we can build an algo-
rithm B that solves the ψ-co-CDH problem by, on input (A = gα

1 , B1 = gβ
1 , B2 =

gβ
2), running GFA(q,G1,G2,Gt, e, g1, g2, A,B1, B2) to obtain two outputs (I, (t,

PK, a1, . . . , an)) and (I, (t′,PK′, a′
1, . . . , a

′
n)), giving GFA access to the homo-

morphism oracle Oψ(·) offered by ψ-co-CDH. Since the two executions of A are
identical up to the first query H1(pk ,PK) involving the forged set of signers PK,
we have that PK = PK′. Also, from the way A assigns values to outputs of H1,
one can see that aj = a′

j for j �= i and ai �= a′
i, where i is the index of pk∗ in

PK. We therefore have that

t/t′ = A(ai−a′
i) log pk∗

= g
αβ(ai−a′

i)
1 ,

so that B can output its solution gα·β
1 = (t/t′)1/(ai−a′

i).
Using Lemma 1, we know that if q > 8qH/ε, then B runs in time at most

(τ + qH ·max (τexpl
2
, τexp2

1
)+ qG · (l −1)τexp1 + qS · (τexpl

2
+ τexp1)+2τpair + τexp3

1
) ·

8q2H/((1 − (qS + qH)/q) · ε) · ln(8qH/((1 − (qS + qH)/q) · ε)) and succeeds with
probability (1 − (qS + qH)/q) · ε/(8qH), proving the bounds in the theorem.

Compact Multi-signatures for Smaller Blockchains 455

4.4 Partial Aggregation of ASM Signatures

Looking at the description of the ASM scheme above, one would expect that
one can further aggregate the second components when given several such ASM
signatures. The first components are needed separately for verification, though,
so even though we don’t obtain full aggregation to constant-size signatures, we
would shave a factor two off of the total signature length.

The straightforward way to partially aggregate ASM signatures is insecure,
however, because the link between membership keys and signed messages is lost.
For example, an aggregate ASM signature (PK 1,PK 2, s) for a set of tuples
{(apk ,S1,m1), (apk ,S2,m2)} would also be a valid signature for {(apk ,S1,m2),
(apk ,S2,m1)}, leading to easy forgery attacks.

We show that a variation on Maxwell et al.’s key aggregation technique [36]
can be used to create a provably secure scheme. We define an aggregate ac-
countable-subgroup multi-signature (AASM) scheme as an ASM scheme with
two additional algorithms SAg and AVf, where SAg takes as input a set of tuples
{(apk i,Si,mi, σi)n

i=1} where apk i is an aggregate public key, Si is a set of signers,
mi is a message, and σi is an accountable-subgroup multi-signature, and outputs
an aggregate multi-signature Σ, while AVf takes a set of tuples (apk ,S ,m) and
an AASM signature Σ, and outputs 0 or 1 indicating that the signature is invalid
or valid, respectively.

Apart from satisfying the natural correctness definition, AASM schemes must
satisfy an unforgeability notion that is similar to that of ASM schemes, but
where the adversary outputs a signature Σ, a set of tuples {(apk i,Si,mi)}, a set
of public keys PK∗, a set of signers S∗, and a message m∗. The adversary wins
if pk∗ ∈ PK∗, A made no signing queries on m∗, and AVf(par , {(apk i,Si,mi)} ∪
{(KAg(par ,PK∗),S∗,m∗)}, Σ) = 1.

Our AASM scheme uses the Pg, Kg, GSetup, Sign, KAg, and Vf algorithms
of ASM , and adds the following two algorithms as well as a hash function H3 :
{0, 1} → Zq.

Signature Aggregation. SAg(par , {(apk i,Si,mi, σi)n
i=1}) parses σi as

(PK i, si) and for i = 1, . . . , n computes

bi ← H3((apk i,Si,mi,PK i), {(apk j ,Sj ,mj ,PK j)n
j=1}).

It aggregates the signatures by computing s ← ∏n
i=1 sbi

i , and outputs Σ ←
(PK 1, . . . ,PKn, s).

Aggregate Signature Verification. AVf({(apk i,Si,mi)n
i=1}, Σ) parses Σ as

(PK 1, . . . ,PKn, s), computes

bi ← H3((apk i,Si,mi,PK i), {(apk j ,Sj ,mj ,PK j)n
j=1})

for i = 1, . . . , n, and outputs 1 if and only if

n∏

i=1

(
e(H0(apk i,mi),PK bi

i) · e(
∏

j∈Si

H2(apk i, j), apk
bi
i)

)
?= e(s, g2).

456 D. Boneh et al.

Theorem 4. Our AASM scheme is unforgeable in the random-oracle model
if ASM is unforgeable in the random-oracle model. More precisely, it is
(τ, qS, qH, ε)-unforgeable in the random-oracle model if q > 8lqH/ε and ASM
is ((τ + τexp1 +O(lqH)) ·8lqH/ε · ln(8l/ε), qS, qH, ε/8l)-unforgeable in the random-
oracle model, where l is the maximum number of multi-signatures that can be
aggregated and τexp1 denotes the time required to compute an exponentiation
in G1.

Proof. Given a forger F for AASM , we construct a forger G for ASM as follows.
We first build a wrapper algorithm A to be used in the forking lemma, and then
construct G based on GFA. We actually use a slight variation on the forking
lemma (Lemma 1) by giving A access to oracles. To ensure that the executions of
A are identical up to the forking points ji, the forking algorithm GFA remembers
the oracle responses during A’s first run, and returns the same responses in all
subsequent runs up to the respective forking points ji. One can see that the
same bounds hold as in Lemma 1.

Algorithm A, on input a target public key pk∗ and f = (ρ, h1, . . . , hqH) and
given access to oracles H0, H1, H2, GSetup, and Sign, runs the forger F on input
pk∗ by relaying queries and responses for the mentioned oracles, and responding
to H3 queries as:

– H3(x): If x can be parsed as (y,APK) with APK = {(apk i,Si,mi,PK i)n
i=1}

and F did not make any previous query H1(y′,APK), then A guesses an
index i∗ ←$ {1, . . . , n} and sets H3((apk i∗ ,Si∗ ,mi∗ ,PK i∗),APK) to the next
unused value from h1, . . . , hqH . For all other indices j ∈ {1, . . . , n} \ {i∗}, it
assigns H3((apk j ,Sj ,mj ,PK j),APK) ←$

Zq. If H3(x) did not yet get assigned
a value, then A assigns a random value H3(x) ←$

Zq. Finally, A makes queries
H0(apk i,mi) and H2(apk i, j) for all i = 1, . . . , n and j ∈ Si, just to fix their
values at this point.

When F outputs a valid forgery Σ, {(apk i,Si,mi)n
i=1}, PK∗, S∗, and m∗, A looks

up in its records for H3 to check whether H3((apk∗,S∗,m∗,PK∗),APK∗) was
the random-oracle query for which A returned a value from h1, . . . , hqH , where
APK∗ = {(apk i,Si,mi)n

i=1, (apk
∗,S∗,m∗)} and apk∗ ← KAg(PK∗). If so, then

let jf be the index of that query and let b∗ be the response to that query, and
let A return ({jf}, {(PK∗,S∗,m∗,PK ∗, s, b∗)}). Otherwise, A returns (∅, ∅). The
success probability of A is εA ≥ ε/l, while its running time is τA = τ + O(lqH).

For the forgery to be valid, it must hold that

s = H0(apk∗,m∗)b∗ logPK∗ ·
∏

j∈S∗
H2(apk∗, j)b∗ log apk∗

·
n∏

i=1

(
H0(apk i,mi)logPK i ·

∏

j∈Si

H2(apk i, j)
log apki

)bi

, (4)

where bi = H3((apk i,Si,mi,PK i),APK∗).
Now consider the forger G against ASM that runs GFA to obtain two out-

puts (PK∗,S∗,m∗,PK ∗, s, b∗) and (PK∗,S∗,m∗,PK ∗, s′, b∗′). From the way A

Compact Multi-signatures for Smaller Blockchains 457

simulated F ’s oracle queries, one can see that all variables and random-oracle
responses in Eq. (4) are the same in both executions of A, except that s �= s′

and b∗ �= b∗′. By dividing both equations, we have that

s/s′ = H0(apk∗,m∗)(b
∗−b∗′) logPK∗ ·

∏

j∈S∗
H2(apk∗, j)(b

∗−b∗′) log apk∗
,

so that G can output PK∗,S∗,m∗, σ = (PK ∗, (s/s′)1/(b∗−b∗′)) as its forgery
against the ASM scheme. The bounds stated by the theorem follow from
Lemma 1.

5 A Scheme from Discrete Logarithms

The basic key aggregation technique of our pairing-based schemes is due to
Maxwell et al. [36], who presented a Schnorr-based multi-signature scheme that
uses the same key aggregation technique and that also saves one round of inter-
action in the signing protocol with respect to Bellare-Neven’s scheme [9]. Unfor-
tunately, their security proof was found to be flawed due to a problem in the
simulation of the signing protocol [22]. In the following, we recover Maxwell et
al.’s key aggregation technique for ordinary (i.e., non-pairing-friendly) curves
by combining it with Bellare-Neven’s preliminary round of hashes. The result-
ing scheme achieves the same space savings as Maxwell et al.’s original scheme,
but is provably secure under the hardness of the discrete-logarithm assumption.
Independently from our work, Maxwell et al. [37] revised their work to use the
same protocol we present here.

5.1 Description of Our Discrete-Logarithm Scheme

Our discrete-logarithm based multi-signature scheme MSDL uses hash functions
H0,H1,H2 : {0, 1}∗ → Zq, which can be instantiated from a single hash function
using domain separation.

Parameters Generation. Pg(κ) sets up a group G of order q with generator
g, where q is a κ-bit prime, and output par ← (G, g, q).

Key Generation. The key generation algorithm Kg(par) chooses sk ←$
Zq and

computes pk ← gsk . Output (pk , sk).

Key Aggregation. KAg({pk1, . . . , pkn}) outputs

apk ←
n∏

i=1

pkH1(pki,{pk1,...,pkn})
i .

458 D. Boneh et al.

Signing. Signing is an interactive three-round protocol. On input Sign(par , {pk1,
. . . , pkn}, sk ,m), signer i behaves as follows:

Round 1. Choose ri ←$
Zq and compute Ri ← gri . Let ti ← H2(Ri). Send ti

to all other signers corresponding to pk1, . . . , pkn and wait to receive tj from all
other signers j �= i.

Round 2. Send Ri to all other signers corresponding to pk1, . . . , pkn and
wait to receive Rj from all other signers j �= i. Check that tj = H2(Rj) for all
j = 1, . . . , n.

Round 3. Compute apk ← KAg({pk1, . . . , pkn}) and let ai ← H1(pk i, {pk1,
. . . , pkn}). Note that when multiple messages are signed with the same set of
signers, apk and ai can be stored rather than recomputed.

Compute R̄ ← ∏n
j=1 Rj and c ← H0(R̄, apk ,m). Compute si ← ri + c · sk i ·

ai mod q. Send si to all other signers and wait to receive sj from all other signers
j �= i. Compute s ← ∑n

j=1 sj and output σ ← (R̄, s) as the final signature.

Verification. Vf(par , apk ,m, σ) parses σ as (R̄, s) ∈ G × Zq, computes c ←
H0(R̄, apk ,m) and outputs 1 iff gs · apk−c ?= R̄.

The scheme allows for more efficient batch verification, which allows a verifier
to check the validity of n signatures with one 3n-multi-exponentiation instead of
n 2-multi-exponentiations. To verify that every signature in a list of n signatures
{(apk i,mi, (R̄i, si))}n

i=1 is valid, compute ci ← H1(R̄, apk i,mi), pick αi ←$
Zq

for i = 1, . . . , n, and accept iff

n∏

i=1

gαisiapk−αici
i R̄−αi

i
?= 1G.

5.2 Security Proof

The security proof follows that of [36] by applying the forking lemma twice: once
by forking on a random-oracle query H0(R̄, apk ,m) to obtain two forgeries from
which the discrete logarithm w of apk can be extracted, and then once again
by forking on a query H1(pk i, {pk1, . . . , pkn} to obtain two such pairs (apk , w)
and (apk ′, w′) from which the discrete logarithm of the target public key can be
extracted.

Theorem 5. MSDL is an unforgeable multisignature scheme (as defined in
Definition 4) in the random-oracle model if the discrete log problem is hard.
More precisely, MSDL is (τ, qS, qH, ε)-unforgeable in the random-oracle model if
q > 8qH/ε and if discrete log is ((τ+4lqT ·τexp+O(lqT))·512q2T/(ε−δ)·ln2(64/(ε−
δ)), (ε − δ)/64)-hard, where l is the maximum number of signers involved in a
single multisignature, qT = qH +qS +1, δ = 4lq2T/q, and τexp is the time required
to compute an exponentiation in G.

Proof. We first wrap the forger F into an algorithm A that can be used in the
forking lemma. We then describe an algorithm B that runs GFA to obtain an
aggregated public key apk and its discrete logarithm w. We finally describe a

Compact Multi-signatures for Smaller Blockchains 459

discrete-logarithm algorithm D that applies the forking lemma again to B by
running GFB and using its output to compute the wanted discrete logarithm.

Algorithm A, on input in = (y, h1,1, . . . , h1,qH) and randomness f = (ρ,
h0,1, . . . , h0,qH) runs F on input pk∗ = y and random tape ρ, responding to its
queries as follows:

– H0(R̄, apk ,m): Algorithm A returns the next unused value h0,i from its ran-
domness f .

– H1(pk i,PK): If pk∗ ∈ PK and F did not make any previous query
H1(pk ′,PK), then A sets H1(pk∗,PK) to the next unused value h1,i from
its input and assigns H1(pk ,PK) ←$

Zq for all pk ∈ PK \ {pk∗}. Let
apk ← ∏

pk∈PK pkH1(pk ,PK). If F already made any random-oracle or signing
queries involving apk , then we say that event bad1 happened and A gives up
by outputting (0,⊥).

– H2(R): A simply chooses a random value t ←$
Zq and assigns H2(R) ← t. If

there exists another R′ �= R such that H2(R′) = t, or if t has already been
used (either by F or in A’s simulation) in the first round of a signing query,
then we say that event bad2 happened and A gives up by outputting (0,⊥).

– Sign(PK,m): Algorithm A first computes apk ← KAg(PK), simulating inter-
nal queries to H1 as needed. In the first round of the protocol, A returns a
random value ti ←$

Zq.
After receiving values tj from all other signers, it looks up the corresponding
values Rj such that H2(Rj) = tj . If not all such values can be found, then A
sends Ri ←$

G to all signers; unless bad2 happens, the signing protocol fin-
ishes in the next round. If all values Rj are found, then A chooses si, c ←$

Zq,
simulates an internal query ai ← H1(pk∗,PK), computes Ri ← gsipk∗−ai·c

and R̄ ← ∏n
j=1 Rj , assigns H2(Ri) ← ti and H0(R̄, apk ,m) ← c, and sends

Ri to all signers. If the latter assignment failed because the entry was taken,
we say that event bad3 happened and A gives up by outputting (0,⊥). (Note
that the first assignment always succeeds, unless bad2 occurs.)
After it received the values Rj from all other signers, A sends si.

When F outputs a valid forgery (R̄, s) on message m for a set of signers PK =
{pk1, . . . , pkn}, A computes apk ← KAg(PK), c ← H0(R̄, apk ,m), and ai ←
H1(pk i,PK) for i = 1, . . . , n. If j is the index such that c = h0,j , then A returns
(j, (R̄, c, s, apk ,PK, a1, . . . , an)).

Note that apk =
∏n

i=1 pkai
i and, because the forgery is valid, gs = R̄ · apk c.

If F is a (τ, qS, qH, ε)-forger, then A succeeds with probability

εA = Pr[F succeeds ∧ bad1 ∧ bad2 ∧ bad3]
≥ Pr[F succeeds] − Pr[bad1] − Pr[bad2] − Pr[bad3]

≥ ε − qH(qH + qS + 1)
q

−
(

(qH + qS)2

2q
+

lqHqS
q

)
− qH(qH + qS + 1)

q

≥ ε − 4lq2T
q

= ε − δ

460 D. Boneh et al.

where qT = qH + qS + 1 and δ = 4l(qH + qS + 1)2/q. The running time of A is
τA = τ + 4lqT · τexp + O(lqT).

We now construct algorithm B that runs the forking algorithm GFA on
algorithm A, but that itself is a wrapper algorithm around GFA that can be
used in the forking lemma. Algorithm B, on input in = y and randomness
f = (ρ, h1,1, . . . , h1,qH), runs GFA on input in ′ = (y, h1,1, . . . , h1,qH) to obtain
output

(
j, (R̄, c, s, apk ,PK, a1, . . . , an), (R̄′, c′, s′, apk ′,PK′, a′

1, . . . , a
′
n)

)
.

In its two executions by GFA, F ’s view is identical up to the j-th H0 query
H0(R̄, apk ,m), meaning that also the arguments of that query are identical in
both executions, and hence R̄ = R̄′ and apk = apk . From the way A answers
F ’s H1 queries by aborting when bad1 happens, the fact that apk = apk ′ also
means that PK = PK′ and that ai = a′

i for i = 1, . . . , n. The forking algorithm
moreover guarantees that c �= c′.

By dividing the two verification equations gs = R̄ · apkc and gs′
= R̄′ ·

apk ′c′
= R̄ · apk c′

, one can see that w ← (s − s′)/(c − c′) mod q is the discrete
logarithm of apk . If i is the index such that H1(pk∗,PK) = h1,i, then B outputs
(i, (w,PK, a1, . . . , an)). It does so whenever GFA is successful, which according
to Lemma 1 occurs with probability εB and running time τB:

εB ≥ εA
8

≥ ε − δ

8
τB = τA · 8qH/εA · ln(8/εA)

≤ (τ + 4lqT · τexp + O(lqT)) · 8qT
ε − δ

· ln
8

ε − δ
.

Now consider the discrete-logarithm algorithm D that, on input y, runs GFB
on input y to obtain output (i, (w,PK, a1, . . . , an), (w,PK′, a′

1, . . . , a
′
n)). Both

executions of B in GFB are identical up to the i-th H1 query H1(pk ,PK), so
we have that PK = PK′. Because A immediately assigns outputs of H1 for all
public keys in PK as soon as the first query for PK is made, and because it
uses h1,i to answer H1(pk∗,PK), we also have that ai = a′

i for pk i �= pk∗ and
ai �= a′

i for pk i = pk∗. By dividing the equations apk =
∏n

i=1 pkai
i = gw and

apk ′ =
∏n

i=1 pka′
i

i = gw′
, one can see that D can compute the discrete logarithm

of pk∗ = y as x ← (w − w′)/(ai − a′
i) mod q, where i is the index such that

pk i = pk∗. By Lemma 1, it can do so with the following success probability εD
and running time τD:

εD ≥ εB
8

≥ ε − δ

64
τD = τB · 8qH/εB · ln(8/εB)

≤ (τ + 4lqT · τexp + O(lqT)) · 512q2T
ε − δ

· ln2 64
ε − δ

.

Compact Multi-signatures for Smaller Blockchains 461

Acknowledgments. Boneh was supported by NSF, DARPA, a grant from ONR,
the Simons Foundation, and a Google faculty fellowship. Drijvers and Neven were
supported by the ERC under Grant PERCY #321310.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 10: 17th Conference on Computer and Commu-
nications Security, Chicago, Illinois, USA, 4–8 Oct 2010, pp. 473–484. ACM Press
(2010)

2. Andresen, G.: m-of-n standard transactions. Bitcoin improvement proposal (BIP)
0011 (2011)

3. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 08: 15th Conference on Computer and Communi-
cations Security, Alexandria, Virginia, USA, 27–31 Oct 2008, pp. 449–458. ACM
Press (2008)

4. Bagherzandi, A., Jarecki, S.: Multisignatures using proofs of secret key possession,
as secure as the Diffie-Hellman problem. In: Ostrovsky, R., De Prisco, R., Visconti,
I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 218–235. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85855-3 15

5. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-1 2

7. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

8. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06:
13th Conference on Computer and Communications Security, Alexandria, Virginia,
USA, Oct 30–Nov 3 2006, pp. 390–399. ACM Press (2006)

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

11. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 07: 14th Con-
ference on Computer and Communications Security, Alexandria, Virginia, USA,
28–31 Oct 2007, pp. 276–285. ACM Press (2007)

https://doi.org/10.1007/978-3-540-85855-3_15
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3

462 D. Boneh et al.

12. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Report 2018/483 (2018). https://eprint.
iacr.org/2018/483

13. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

15. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy ver-
ification from trapdoor permutations. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 39

16. Budroni, A., Pintore, F.: Efficient hash maps to G2 on BLS curves. Cryptology
ePrint Archive, Report 2017/419 (2017). http://eprint.iacr.org/2017/419

17. Burmester, M., et al.: A Structured ElGamal-type multisignature scheme. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 466–483. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-46588-1 31

18. Castelluccia, C., Jarecki, S., Kim, J., Tsudik, G.: A robust multisignature scheme
with applications to acknowledgement aggregation. In: Blundo, C., Cimato, S.
(eds.) SCN 2004. LNCS, vol. 3352, pp. 193–207. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30598-9 14

19. Certicom Research: Sec 2: Recommended elliptic curve domain parameters. Tech-
nical report, Certicom Research (2010)

20. Chang, C.-C., Leu, J.-J., Huang, P.-C., Lee, W.-B.: A scheme for obtaining a
message from the digital multisignature. In: Imai, H., Zheng, Y. (eds.) PKC 1998.
LNCS, vol. 1431, pp. 154–163. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054022

21. Coron, J.-S., Naccache, D.: Boneh et al.’s k -element aggregate extraction assump-
tion is equivalent to the Diffie-Hellman assumption. In: Laih, C.-S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 25

22. Drijvers, M., Edalatnejad, K., Ford, B., Neven, G.: On the provable security of
two-round multi-signatures. Cryptology ePrint Archive, Report 2018/417 (2018).
https://eprint.iacr.org/2018/417

23. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0 25

24. Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 34–57. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76581-5 2

25. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 17

26. Hardjono, T., Zheng, Y.: A practical digital multisignature scheme based on dis-
crete logarithms (extended abstract). In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT
1992. LNCS, vol. 718, pp. 122–132. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-57220-1 56

https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
http://eprint.iacr.org/2017/419
https://doi.org/10.1007/978-3-540-46588-1_31
https://doi.org/10.1007/978-3-540-30598-9_14
https://doi.org/10.1007/BFb0054022
https://doi.org/10.1007/BFb0054022
https://doi.org/10.1007/978-3-540-40061-5_25
https://eprint.iacr.org/2018/417
https://doi.org/10.1007/978-3-642-28496-0_25
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/11745853_17
https://doi.org/10.1007/3-540-57220-1_56
https://doi.org/10.1007/3-540-57220-1_56

Compact Multi-signatures for Smaller Blockchains 463

27. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proc.-Comput. Digit. Tech. 141(5), 307–313 (1994)

28. Horster, P., Michels, M., Petersen, H.: Meta-multisignature schemes based on the
discrete logarithm problem. Information Security — the Next Decade. IFIP AICT,
pp. 128–142. Springer, Boston (1995). https://doi.org/10.1007/978-0-387-34873-
5 11

29. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. Technical report, NEC Research and Development (1983)

30. Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.: Formal security model of
multisignatures. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 146–160. Springer, Heidelberg (2006).
https://doi.org/10.1007/11836810 11

31. Le, D.-P., Bonnecaze, A., Gabillon, A.: Multisignatures as secure as the Diffie-
hellman problem in the plain public-key model. In: Shacham, H., Waters, B. (eds.)
Pairing 2009. LNCS, vol. 5671, pp. 35–51. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03298-1 3

32. Li, C.-M., Hwang, T., Lee, N.-Y.: Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 194–204. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0053435

33. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

34. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

35. Ma, C., Weng, J., Li, Y., Deng, R.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Des. Codes Cryptogr. 54(2), 121–
133 (2010)

36. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018).
https://eprint.iacr.org/2018/068/20180118:124757

37. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018).
https://eprint.iacr.org/2018/068/20180520:191909

38. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

39. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: ACM CCS 01: 8th Conference on Computer and Communications
Security, Philadelphia, PA, USA, 5–8 Nov 2001, pp. 245–254. ACM Press (2001)

40. Michels, M., Horster, P.: On the risk of disruption in several multiparty signature
schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 334–345. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034859

41. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

42. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 4

https://doi.org/10.1007/978-0-387-34873-5_11
https://doi.org/10.1007/978-0-387-34873-5_11
https://doi.org/10.1007/11836810_11
https://doi.org/10.1007/978-3-642-03298-1_3
https://doi.org/10.1007/978-3-642-03298-1_3
https://doi.org/10.1007/BFb0053435
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180520:191909
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/BFb0034859
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4

464 D. Boneh et al.

43. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57332-1 11

44. Ohta, K., Okamoto, T.: Multi-signature schemes secure against active insider
attacks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82(1), 21–31
(1999)

45. Park, S., Park, S., Kim, K., Won, D.: Two efficient RSA multisignature schemes. In:
Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 217–222.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028477

46. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

47. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

48. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

49. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
Fast hashing to g2 on pairing-friendly curves. In: Shacham, H., Waters, B. (eds.)
Pairing 2009. LNCS, vol. 5671, pp. 102–113. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03298-1 8

https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/BFb0028477
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-642-03298-1_8
https://doi.org/10.1007/978-3-642-03298-1_8

Multi-key Homomorphic Signatures
Unforgeable Under Insider Corruption

Russell W. F. Lai1,2, Raymond K. H. Tai1, Harry W. H. Wong1,
and Sherman S. M. Chow1(B)

1 Chinese University of Hong Kong, Sha Tin, Hong Kong
{raymondtai,whwong,sherman}@ie.cuhk.edu.hk

2 Friedrich-Alexander-Uiversität Erlangen-Nürnberg, Erlangen, Germany
russell.lai@cs.fau.de

Abstract. Homomorphic signatures (HS) allows the derivation of the
signature of the message-function pair (m, g), where m = g(m1, . . . , mK),
given the signatures of each of the input messages mk signed under
the same key. Multi-key HS (M-HS) introduced by Fiore et al. (ASI-
ACRYPT’16) further enhances the utility by allowing evaluation of
signatures under different keys. The unforgeability of existing M-HS
notions assumes that all signers are honest. We consider a setting where
an arbitrary number of signers can be corrupted, called unforgeability
under corruption, which is typical for natural applications (e.g., veri-
fiable multi-party computation) of M-HS. Surprisingly, there is a huge
gap between M-HS (for arbitrary circuits) with and without unforge-
ability under corruption: While the latter can be constructed from stan-
dard lattice assumptions (ASIACRYPT’16), we show that the former
likely relies on non-falsifiable assumptions. Specifically, we propose a
generic construction of M-HS with unforgeability under corruption from
zero-knowledge succinct non-interactive argument of knowledge (ZK-
SNARK) (and other standard assumptions), and then show that such
M-HS implies zero-knowledge succinct non-interactive arguments (ZK-
SNARG). Our results leave open the pressing question of what level of
authenticity and utility can be achieved in the presence of corrupt signers
under standard assumptions.

Keywords: Homomorphic Signatures · Multi-key · Insider
ZK-SNARK

1 Introduction

In a basic signature scheme, a signer can use a secret key to sign messages which
are verifiable using the corresponding public key. The signatures are required to
be unforgeable, meaning that no efficient adversaries can forge a valid signature

A previous version of this paper is known as “A Zoo of Homomorphic Signatures:
Multi-Key and Key-Homomorphism.”

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 465–492, 2018.
https://doi.org/10.1007/978-3-030-03329-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_16&domain=pdf

466 R. W. F. Lai et al.

on any message without the secret key. This requirement, however, limits the
utility of the signed messages. For example, without the secret key, one cannot
derive a signature of the result of a computation over the signed messages.

Homomorphic signature (HS) schemes [39] allow a third-party evaluator to
compute any functions from a class of admissible functions over signed mes-
sages (from a single signer), and derive signatures of the computation results,
without knowing the secret signing keys. HS is a handy tool for applications
which require computation on authenticated data. For example, it is useful when
computationally inferior data producers (e.g., sensors in Internet-of-Things [23])
need to outsource expensive computations to a third-party (e.g., the cloud) while
assuring the authenticity of the computation result.

Since homomorphic evaluation of messages and signatures is allowed, the
standard unforgeability notion can no longer be satisfied. There are two com-
mon meaningful relaxations. The first one is considered for linear homomorphic
signatures [11], where only linear functions are admissible. Unforgeability of lin-
ear HS requires that no adversary can derive a signature of a vector which is
not a linear combination of any honestly signed vectors. This relaxation is not
suitable for fully homomorphic signatures [15,37] where all polynomials/circuits
are admissible, as signatures for a wide range of messages can often be derived
from just a single signed message. Thus, the second approach is to have the
signature not only certify the message, but also the function that is used to
compute the message. Unforgeability here means that no adversary can derive a
signature of a message-function pair (m, g), such that m is not a function value
of g evaluated over any honestly signed messages. This work considers HS for
general functionality, hence we adopt the second approach.

1.1 Multi-key Homomorphic Signatures

To further extend the utility of HS, multi-key HS (M-HS) has recently received
attention [28,29]. This extension of HS allows homomorphic evaluation of sig-
natures signed under different keys. An evaluated signature is verifiable using
a combined public key, e.g., the ordered tuple consisting of all public keys of
the signatures being evaluated. M-HS allows multiple data producers, who do
not or should not share the same key, to contribute signed data for verifiable
computation. Unfortunately, existing work [28,29] only considers weaker secu-
rity models (see further discussion in Sect. 2.2), which do not capture insider
attacks from malicious contributors. In fact, a malicious signer in the scheme of
Fiore et al. [29] is able to create a signature on any message-function pairs (m, g)
regardless of the honest signer inputs (see AppendixA). This problem seems to
be inherent in all existing lattice-based signatures with trapdoors.

For certain classes of computation such as the majority vote, if the M-HS
scheme is not secure against insider attacks, it might be possible that a com-
promised signer can manipulate the voting result. This limits the usefulness of
existing M-HS solutions since it is often unrealistic to assume that all contribu-
tors to a multi-party computation are honest. We thus see a need for a stronger
notion which provides unforgeability even in the presence of corrupt signers.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 467

1.2 Our Results

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption. In
Sect. 4, we revisit the notion of multi-key homomorphic signatures (M-HS).
M-HS is a generalization of homomorphic signatures which allows a public
evaluator to apply a function g to transform signatures of different messages
(m1, . . . ,mK) each signed under possibly different public keys to a signature of
(g(m1, . . . ,mK), g) signed under a combined public key. Existing work [28,29]
assumes all signers are honest when defining and analyzing unforgeability. In
contrast, we define a strong security notion of M-HS called existential unforge-
ability under corruption and chosen message attack (cEUF-CMA), where the
adversary controls a set of malicious signers. A signature of (m, g) is a valid
forgery if the resulting message m is not in the range of g restricted by the input
of the honest signer. Interestingly, cEUF-CMA-security also makes sense in the
single-key setting, where we require that even the (possibly malicious) signer
itself cannot produce a signature on (m, g) where m is not in the range of g.

Relations to Existing Notions. We study how cEUF-CMA-secure M-HS is
related to other notions. First, we show in Sect. 5 that such M-HS can be con-
structed from zero-knowledge succinct non-interactive arguments of knowledge
(ZK-SNARK) together with digital signatures. There are some impossibility
results regarding the security of SNARKs in the presence of (signing) oracles
(O-SNARK) [30]. In particular, there exists a secure signature scheme Σ such
that no candidate construction of O-SNARK satisfies proof of knowledge with
respect to the signing oracle of Σ. Fortunately, there are at least two ways to
circumvent this impossibility result. The first approach is to use a ZK-SNARK
with a “strong” proof of knowledge property [16,30], where the extractor takes
as input an additional trapdoor and does not make use of the random tape of the
adversary. In other words, the extractor does not need to simulate the signing
oracle. The second approach is to use an underlying signature scheme for which
there exists a secure O-SNARK [30, Sect. 5]. Either way, by a recursive witness
extraction technique, we show that strong ZK-SNARKs implies a “poly-depth”
M-HS, and O-SNARKs yields a “constant-depth” M-HS.

Then, in Sect. 6.1, we show that succinct functional signatures (FS) [16] can
be constructed from a cEUF-CMA-secure two-key M-HS (2-HS). Since the exis-
tence of succinct functional signatures implies the existence of succinct non-
interactive arguments (SNARG), we obtain as a corollary that the existence of
cEUF-CMA-secure 2-HS implies the existence of SNARG.

The above implication is a bit unsatisfactory as it requires a 2-HS. We thus
further show in Sect. 6.2 that the existence of cEUF-CMA-secure single-key HS
is sufficient to imply that of SNARG. This makes cEUF-CMA-secure (M-)HS
sits nicely between SNARK and SNARG, which only differ by the existence of
the knowledge extractor.

Since it is known that the security of SNARGs cannot be based on falsifi-
able assumptions via black-box reductions [36], it follows that the cEUF-CMA-
security of M-HS must also be based on non-falsifiable assumptions or proven via

468 R. W. F. Lai et al.

non-black-box techniques. This impossibility result puts us into an unfortunate
situation where, either we rely on strong assumptions for our authenticity guar-
antee or we settle for some weaker authenticity guarantee. It would be interesting
to construct M-HS schemes which can withstand a lower but still reasonable level
of corruption from standard assumptions.

Note that the above implications concern about argument systems and HS
schemes for the complexity class NP. Another direction of circumventing the
impossibility would be to consider restricted classes of admissible functions.

Applications. Being such a powerful primitive, cEUF-CMA-secure M-HS implies
most if not all other notions of signatures [23]. This paper describes two exten-
sions in particular, namely, (multi-key) delegatable homomorphic signatures
and (multi-key) attribute-message-homomorphic signatures. As these extensions
mainly introduce more complicated syntax/functionalities without too much
technicality, we only briefly describe them below but omit the details.

1.3 Extensions

We introduce two extensions, multi-key delegatable homomorphic signatures
(M-DHS) and multi-key attribute-message-homomorphic signatures (M-AMHS),
which are immediate applications of cEUF-CMA-secure M-HS but seem not to
be realizable from non-corruption-resistant M-HS. M-DHS allows a group of sign-
ers to jointly fill in data according to a template. If it is not corruption-resistant,
a signer may overwrite the template entries filled out by other signers. M-AMHS
allows evaluation not only on data but also on attributes, e.g., the trustworthi-
ness of the data provider. If it is not corruption-resistant, a signer may fake its
attributes. Here we consider M-HS schemes which support homomorphic evalua-
tion of labeled-data [35] (to be explained in Sect. 4.1). In a nutshell, such schemes
ensure that data with “incompatible” labels cannot be used for computation.

Delegation. M-DHS can be viewed as an extension to append-only signatures
(AOS) [8,40]. It is motivated by the following scenario. Suppose that multiple
data producers engage in a verifiable multi-party computation. Instead of con-
tributing independently, these data producers are organized to form groups called
delegation chains. Similar to AOS, in each of these chains, the first data producer
contributes a template which is passed to each of the data producers along the
chain, who fills out some of the entries in the template. The last data producer
in each chain then passes the completed template to a third party evaluator,
who performs computation over the collection of completed templates. M-DHS
is easily realizable using cEUF-CMA-secure M-HS. To delegate, the delegator
simply signs the (partially-filled) template labeled by the public key of the del-
egatee. By the corruption resistance of the M-HS, a delegatee cannot overwrite
the template entries filled out by the delegators up the delegation chain.

Attribute-Homomorphism. M-AMHS allows “attribute-homomorphism” on top
of the message-homomorphism of (M-)HS. Consider our running example of ver-
ifiable multi-party computation again. M-AMHS is useful when the computation

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 469

not only depends on the data contributed by the data producers, but also their
attributes such as trustworthiness, accuracy, and ranks [23]. For such a scenario,
it is natural to have the authorities issue certificates to the data producers. A
certificate is a signature on the attribute of the data producer labeled by its pub-
lic key. The data producer signs its data as in M-HS, except that the evaluator
now evaluates functions over both signatures produced by the data producers
and the certificates. By the corruption resistance of the M-HS, it is infeasible for
a data producer to fake its attributes.

2 Related Work

2.1 Existing Homomorphic Signatures

Homomorphic signatures have undergone great development, notably from sup-
porting only addition or multiplication [9,11,19,32,34,44] to bounded-degree
polynomials [10,20], and to (leveled) fully homomorphic operations which allow
evaluation of general circuits of apriori bounded depth [15,37]. Beyond unforge-
ability, some works also consider privacy notions such as context hiding [1,3,4].

2.2 Existing Multi-key Homomorphic Signatures

The study of HS was restricted to the single-key setting until the recent works
of Fiore et al. [29] and Derler and Slamanig [28], who defined multi-key homo-
morphic signatures with varying level of security. Independent of their work, we
initiate the study of multi-key HS with unforgeability under corruption.

Fiore et al. [29] proposed the notion of multi-key homomorphic authen-
ticators, which generalizes the multi-key homomorphic version of signatures
and message authentication codes (MAC). They extended the HS by Gor-
bunov et al. [37] to an M-HS based on standard lattice assumptions, and intro-
duce multi-key homomorphic MAC based on pseudorandom functions.

While the model of Fiore et al. allows the adversary to corrupt signers, a
forgery is valid only if it passes verification under non-corrupt keys. In practice,
it means that if any signer involved in the computation is corrupted, the authen-
ticity of the derived result is no longer guaranteed. Indeed, as acknowledged [29],
their construction is vulnerable to insider attacks. They claimed that preventing
insider attacks is impossible, by arguing that, for general functions, controlling a
few inputs implies controlling the function output. We find the claim inaccurate
as there is a large class of functions which may not exhibit this property, e.g.,
functions with majority gates and threshold gates. Our work, in contrast, con-
structs M-HS which prevent insider attacks, at the cost of stronger assumptions,
i.e., the existence of SNARKs.

Another independent work by Derler and Slamanig [28] also defined M-HS,
with a stronger security model than that of Fiore et al. [29] but weaker than
ours. Specifically, it allows corruption of all but one signer, and the forgery must
pass verification under a set of public keys including the non-corrupted one.

470 R. W. F. Lai et al.

In contrast, our model allows corruption of all signers, whose public keys are
involved in the verification of the forgery.

Derler et al. [27] introduced homomorphic proxy re-authenticators, in which
a proxy can evaluate functions over signed data and derive a corresponding MAC
under a key of the receiver. To do so, the proxy needs to use some keys derived
from the secrets of the signers and the MAC key. In contrast, homomorphic eval-
uation and verification of M-HS can be performed publicly without any secret.

2.3 Key-Homomorphism

Key-homomorphism has been studied in the context of threshold fully homo-
morphic encryption [2] and pseudorandom functions [13]. The main inspiration
for considering attribute-homomorphism in M-AMHS comes from the study of
key-homomorphic encryption (KHE) by Boneh et al. [12], who formulated KHE
and constructed it based on lattice assumptions. Furthermore, they used KHE to
construct attribute-based encryption for general circuits with short secret keys.

Although KHE is named with the term “key-homomorphic”, the “public
keys” in KHE are actually attributes possibly with semantic meaning. Unlike
homomorphic encryption (HE) which allows homomorphic operations on the
ciphertexts with respect to the plaintexts, KHE allows homomorphic operations
on the ciphertexts with respect to the attributes. As the plaintexts are private
while the attributes are public, KHE and HE are inherently different. For M-
AMHS, both messages and attributes are public. We thus treat attributes as
messages and have the authorities sign them using M-HS.

Derler and Slamanig [28] investigate key-homomorphic signatures in the more
literal setting, i.e., the homomorphism is over the randomly sampled keys. Their
goal is to use a milder assumption to generalize more basic primitives such as
ring signatures [17,25] and universal designated-verifier signatures [24,50].

Key-homomorphism in signatures is also considered in different extents in del-
egatable functional signatures (DFS) [6] and the operational signature scheme
(OSS) [5]. In the former, the evaluator must use its secret key to derive signa-
tures. The verification algorithm then takes as input both the public key of the
original signature as well as the public key of the evaluator. In the latter, the
evaluation algorithm takes as input tuples consisting of an identity, a message,
and a signature. It outputs another tuple to a targeted identity. DFS is con-
structed generically from trapdoor permutations, while OSS is constructed from
indistinguishability obfuscation and one-way functions. They thus serve as proof-
of-concept without giving much intuition of how to achieve key-homomorphism
in signatures. Other related notions include policy-based signatures [7], in which
a policy-dependent signing key can only sign messages satisfying the policy, and
functional signatures [16], in which a functional signing key can only sign mes-
sages in the range of the specified function.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 471

3 Preliminaries

Let λ ∈ N be the security parameter. Let negl(λ) be functions which are negli-
gible in λ. [n] = {1, . . . , n} denotes the set of positive integers at most n where
n ∈ N. For an algorithm A, x ∈ A(·) denotes that x is in the output range of A.
x ← A(·) denotes assigning the output from the execution of algorithm A to
the variable x. For a set S, x ← S denotes sampling uniformly at random an
element from S and naming it x. We use := to denote the assignment operation.
The empty string and the empty set are denoted by ε and ∅ respectively.

3.1 Succinct Non-Interactive Arguments

Definition 1 (SNARG). A tuple of PPT algorithms Π = (Gen,Prove,Vf) is
a succinct non-interactive argument (SNARG) for a language L ∈ NP with the
witness relation R if it satisfies the following:

– Completeness: For all x,w such that R(x,w) = 1, and for all common
reference strings crs ∈ Gen(1λ), we have Vf(crs, x,Prove(crs, x, w)) = 1.

– Soundness: For all PPT adversaries A,

Pr[Vf(crs, x, π) = 1 ∧ x /∈ L : crs ← Gen(1λ); (x, π) ← A(crs)] ≤ negl(λ) .

– Succinctness: For all x,w such that R(x,w) = 1, crs ∈ Gen(1λ) and π ∈
Prove(crs, x, w), there exists a universal polynomial p(·) that does not depend
on the relation R, such that |π| ≤ O(p(λ)).

Definition 2 (ZK-SNARG). A SNARG Π = (Gen,Prove,Vf) is zero-
knowledge (ZK) if there exists a PPT algorithm S = (Scrs,SProve) such that,
for all PPT adversaries A, we have

| Pr[AProve(crs,·,·)(crs) = 1 : crs ← Gen(1λ)]−
Pr[AS′(crs,td,·,·)(crs) = 1 : (crs, td) ← Scrs(1λ)]| ≤ negl(λ)

where S ′(crs, td, x, w) = SProve(crs, td, x).

Definition 3 (Strong SNARK [16,30]). A SNARG Π = (Gen,Prove,Vf)
is a strong succinct non-interactive argument of knowledge (SNARK) if there
exists a PPT algorithm E = (E1,E2) such that for all PPT provers A, and for
every distinguisher D,

| Pr[D(crs) = 1 : crs ← Gen(1λ)]−
Pr[D(crs) = 1 : (crs, td) ← E1(1λ)]| ≤ negl(λ) .

Furthermore,

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : (crs, td) ← E1(1λ),

(x, π) ← A(crs), w∗ ← E2(crs, td, x, π)]| ≤ negl(λ)

where the probabilities are taken over the random coins of E. Here, the extractor
is not required to take the random tape of the adversary as part of its input.

472 R. W. F. Lai et al.

Definition 4 (O-SNARK [30]). A SNARG Π = (Gen,Prove,Vf) is a suc-
cinct non-interactive argument of knowledge in the presence of oracles for O

(O-SNARK) for the oracle family O if for all PPT provers A, there exists a
PPT algorithm EA such that

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : crs ← Gen(1λ),

O ← O; (x, π) ← AO(crs), w∗ ← EA(crs, qt)]| ≤ negl(λ)

where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made
and received by A during its execution.

3.2 Signatures

Definition 5 (Digital Signatures). A signature scheme for a message space
M is a tuple of PPT algorithms DS.(KGen,Sig,Vf) defined as follows:

– (pk, sk) ← KGen(1λ): The key generation algorithm takes as input the security
parameter λ and generates a key pair (pk, sk).

– σ ← Sig(sk,m): The signing algorithm takes as input a secret key sk and a
message m ∈ M. It outputs a signature σ.

– b ← Vf(pk,m, σ): The verification algorithm takes as input a public key pk, a
message m, and a signature σ. It outputs a bit b.

Correctness. The scheme is correct if, for all λ ∈ N, all key pairs (pk, sk) ∈
KGen(1λ), all messages m ∈ M, and all signatures σ ∈ Sig(sk,m), it holds that
Vf(pk,m, σ) = 1.

Definition 6 (Existential Unforgeability). A signature scheme DS is exis-
tentially unforgeable under chosen message attacks (EUF-CMA-secure) if,

Pr[EUF-CMADS,A(1λ) = 1] ≤ negl(λ)

for all PPTadversaries A, where the experiment EUF-CMADS,A is as follows:

– The challenger C generates (pk, sk) ← KGen(1λ) and gives pk to A.
– The adversary A is given access to a signing oracle OSig(sk, ·).
– Eventually, A outputs a forgery (m∗, σ∗).
– If the signing oracle was not queried on m∗, the experiment outputs

Vf(pk,m∗, σ∗). Otherwise, the experiment outputs 0.

3.3 Functional Signatures

Definition 7 (Functional Signatures [16]). A functional signature (FS)
scheme for a message space M and a function family F = {f : Df → M}
consists of algorithms FS.(Setup,KGen,Sig,Vf).

– (mpk,msk) ← FS.Setup(1λ): This algorithm takes in the security parame-
ter λ. It outputs the master public key mpk and the master secret key msk.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 473

– skf ← FS.KGen(msk, f): This algorithm takes as input the master secret key
msk and a function f ∈ F . It outputs a secret key skf for f .

– (f(m), σ) ← FS.Sig(f, skf ,m): This algorithm takes as input a function f ∈
F , the secret key skf for the function f , and a message m ∈ Df . It outputs
f(m) and a signature of f(m).

– b ← FS.Vf(mpk,m, σ): This algorithm takes as input the master public key
mpk, a message m, and a signature σ. It outputs 1 for a valid signature.

Correctness. We require that a signature signed under an honestly generated
secret key to be valid. Formally, for any λ ∈ N, any (mpk,msk) ∈ FS.Setup(1λ),
any f ∈ F , any skf ∈ FS.KGen(msk, f), any m ∈ Df , if (m∗, σ) ←
FS.Sig(f, skf ,m), then FS.Vf(mpk,m∗, σ) = 1.

With a secret key of a function, one can only produce new signatures on the
range of that function.

Definition 8 (Unforgeability). An FS scheme FS is unforgeable if for any
PPT adversary A the probability that it wins in the following game is negligible:

– The challenger generates (mpk,msk) ← FS.Setup(1λ), and gives mpk to A.
– A is allowed to query a key generation oracle Okey and a signing oracle

Osign defined as follows. These oracles share a dictionary indexed by tuples
(f, i) ∈ F ×N, whose entries are signing keys: skf ← FS.KGen(msk, f). This
dictionary keeps track of the keys that have been previously generated.

• Okey(f, i)
∗ If there exists an entry for the key (f, i) in the dictionary, output the
corresponding value ski

f .
∗ Otherwise, sample a fresh key ski

f ← FS.KGen(msk, f), then add an
entry (f, i) → ski

f to the dictionary and output ski
f .

• Osign(f, i,m)
∗ If there exists an entry for the key (f, i) in the dictionary, output

σ ← FS.Sig(f, ski
f ,m).

∗ Otherwise, sample a fresh key ski
f ← FS.KGen(msk, f), then add it to

the entry (f, i) of the dictionary, and output σ ← FS.Sig(f, ski
f ,m).

– A wins if it can produce (m∗, σ) such that:
• FS.Vf(mpk,m∗, σ) = 1;
• There does not exist m such that m∗ = f(m) for any f which was sent

as a query to the Okey oracle;
• There does not exist a query (f,m) to Osign where m∗ = f(m).

We require the signatures on a message generated by different secret keys to
be indistinguishable even if the master signing key and the secret keys are given.

474 R. W. F. Lai et al.

Definition 9 (Function-Privacy). An FS scheme FS is function-private if
for any PPT adversary A the probability that it wins in the following game is
negligible:

– The challenger honestly generates (mpk,msk) ← FS.Setup(1λ), and gives
mpk and msk (w.l.o.g. this includes the randomness used in Setup) to A.

– A chooses a function f0 and receives an honestly generated secret key skf0 ←
FS.KGen(msk, f0).

– A chooses a second function f1 for which |f0| = |f1| (where padding can be
useful if there is a known upper bound) and receives an honestly generated
secret key skf1 ← FS.KGen(msk, f1).

– A chooses a pair of values m0, m1 s.t. |m0| = |m1| and f0(m0) = f1(m1).
– The challenger selects a random bit b ← {0, 1} and generates a signature on

the image message m′ = f0(m0) = f1(m1) using secret key skfb
, and gives

the resulting signature σ ← FS.Sig(f, skfb
,mb) to A.

– A outputs a bit b′, and wins the game if b′ = b.

We require the signature size to be independent of the size |m| of the input
to the function, and the description size |f | of the function f .

Definition 10 (Succinctness). An FS scheme FS is succinct, if there exists
a polynomial s(·) such that for every λ ∈ N, f ∈ F , m ∈ Df , (mpk,msk) ∈
FS.Setup(1λ), skf ∈ FS.KGen(msk, f), (f(m), σ) ∈ FS.Sig(f, skf ,m), it holds
that the signature σ on f(m) has size |σ| ≤ O(s(λ)).

4 Insider-Secure Multi-key Homomorphic Signatures

Our aim is to define and construct multi-key homomorphic signatures (M-HS)
which is unforgeable under insider corruption and study its relation to existing
notions. M-HS allows an arbitrary number of signers to generate keys and sign
messages independently. In a simplified setting where messages are not labeled,
suppose that each signer k signs a message mk using its secret key skk, resulting
in a set of signatures {σk}. An evaluator can then publicly evaluate a function g
over the message-signature pairs (mk, σk) to derive a signature of (m, g) where
m = g(m1, . . . ,mK). Syntactically, M-HS generalizes the normal homomorphic
signatures (HS) since it reduces to HS when all the signatures are generated by
the same secret key.

In the multi-signer setting, we must carefully analyze unforgeability when
the adversary can corrupt some signers or even maliciously generate some key
pairs. Such an insider attack is unnatural in HS since there is only one signer and
hence one signing key involved with a signature. We formulate the unforgeability
against insider corruption, which requires that such group of corrupt signers
cannot produce signatures of (m, g), where the message m is outside the range
of the function g restricted by the inputs of the non-corrupt signers. Security
against insider attack is especially useful when the output of the function cannot
be fully controlled by a few inputs, e.g., functions with majority and threshold

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 475

gates. To illustrate the meaning of a forgery, consider the following configuration:
Let g(m1, . . . ,mK) =

∏K
k=1 mk be the product function and mk ∈ R for some

ring R. As long as mk = 0 for some non-corrupt signer k, the adversary should
not be able to produce a signature of (m, g) where m �= 0.

Interestingly, this requirement actually still makes sense even when there is
only one signer who is also the adversary. In this case, unforgeability against
insider corruption implies that even the only signer cannot produce a signature
of (m, g) if there does not exist m′ such that m = g(m′). Furthermore, if the
signature scheme is context hiding, meaning that the signature of (m, g) reveals
nothing more than the tuple (m, g) itself, then it can be regarded as an adap-
tive zero-knowledge succinct non-interactive argument (ZK-SNARG) of the NP
language {(m, g) : ∃m′ s.t. m = g(m′)} as long as g is efficiently computable.

4.1 Notation

Labeled programs are (implicitly) used in various homomorphic signature
schemes in which each message is signed under a label �. A labeled program
P consists of a function f and the input labels of the input to f . Formally, for
a message space M, a labeled program P = (f, �1, . . . , �k) consists of a function
f : Mk → M for some k ∈ N, and a set of input labels �1, . . . , �k, where �i is
a label for the i-th input of f . An identity program I� = (fid, �) is defined as a
labeled program with an identity function fid : M → M and an input label �.

Let Pi = (fi, �i,1, . . . , �i,ki
) be some programs for i ∈ [n] for some n ∈ N.

A composed program P∗ = g(P1, . . . ,Pn) = (g(f1, . . . , fn), �1, . . . , �k∗) can be
constructed by evaluating a function g : Mn → M on the outputs of a set of
labeled programs P1, . . . ,Pn. For such a composed program P∗, we consider its
labeled inputs (�1, . . . , �k∗) only consist of all distinct labeled inputs of P1, . . . ,Pn,
where inputs with the same label are converted to a single input. In particular,
a labeled program P = (f, �1, . . . , �k) can be expressed as the composition of k
identity programs P = f(I�1 , . . . , I�k).

Following [29], we assume every user has an identity id ∈ ID for some identity
space ID, and their keys are associated to id. To identify users in the multi-key
setting using labeled programs, we associate a message to a label � = (id, τ),
where τ ∈ T is a tag in some tag space T .

For a labeled program P = (f, �1, . . . , �n) with labels �i = (idi, τi), we use
id ∈ P as a compact notation for id ∈ {id1, . . . , idn}.

4.2 Definitions

Syntax. A multi-key homomorphic signature scheme (M-HS) with N -hop evalua-
tion consists of the PPT algorithms (Setup,KGen,Sig,Vf,Eval) defined as follows:

– pp ← Setup(1λ) inputs the security parameter λ. It outputs the public param-
eter pp which is an implicit input to all other M-HS algorithms. The public
parameter defines the maximum “hop” of evaluations N , meaning it is not
possible to apply Eval on signatures that have been evaluated for N times.

476 R. W. F. Lai et al.

It also defines the message space M, the class G of admissible functions, the
identity space ID, and the tag space T . The label space L := ID × T is
defined as the Cartesian product of ID and T .

– (pk, sk) ← KGen(pp) inputs the public parameter. It outputs the public key
pk and the secret key sk. When an algorithm takes sk as input, we assume its
corresponding pk is also taken as input implicitly.

– σ ← Sig(sk, �,m) inputs the secret key sk, a label � = (id, τ) ∈ L, and a
message m ∈ M. It outputs a signature σ. Without loss of generality, we
assume σ is of the form σ = (0, σ′), where 0 indicates it is a fresh signature.

– σ ← Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K]) inputs a function g ∈ G and,

from each contributor, a labeled program1 Pk, the corresponding public keys
{pkid}id∈Pk

, a message mk, and a signature σk, where k ∈ [K].
It outputs a signature σ, certifying that message m is the output of P =
g(P1, . . . ,PK) over some signed labeled messages. Without loss of generality,
we assume the signature takes the form σ = (n, σ′), where n indicates that
the signature has undergone n hops of evaluation.

– b ← Vf(P, {pkid}id∈P ,m, σ) inputs a labeled program P, the corresponding
public keys {pkid}id∈P , a message m ∈ M, and a signature σ.
It outputs a bit b ∈ {0, 1}, indicating if message m is the output of evaluating
P over some signed labeled messages.

Correctness. Roughly, we require that an honestly generated signature σ ←
Sig(sk, �,m) verifies for m as the output of the identity program I�.

In addition, we require that, if for all i ∈ [K], σi verifies for
mi as the output of a labeled program Pi, then the signature σ ←
Eval(g, (Pk, {pkid}id∈P ,mk, σk)k∈[K]) verifies for g(m1, . . . ,mk) as the output of
the composed program g(P1, · · · ,Pk).

Formally, the correctness of an M-HS scheme is defined as follows:

– Signing Correctness: For any pp ∈ Setup(1λ), (pk, sk) ∈ KGen(pp), � =
(id, τ) ∈ L, m ∈ M, and σ ∈ Sig(sk, �,m), it holds that Vf(I�, pkid,m, σ) = 1.

– Evaluation Correctness: Furthermore, for any K ∈ poly (λ), any Pk,
{pkid}id∈Pk

, mk, and σk = (nk, σ′
k) such that Vf(Pk, {pkid}id∈Pk

,mk, σk) = 1
where k ∈ [K], nk ≤ N − 1, σ ∈ Eval(g, (Pk, {pkid}id∈Pk

,mk, σk)k∈[K]), and
g ∈ G, it holds that Vf(P, {pkid}id∈P ,m, σ) = 1, where P = g(P1, . . . ,Pk).

1 Our definition differs from [29] in that Eval takes previous labeled programs as input.
The “recursive-proof”-style construction seems to make this unavoidable, as the
evaluator needs to produce a proof for “I know some other proofs which satisfy
some other statements”. These other statements (containing the previous programs)
are part of the new statement to be proven. We are not aware of any SNARK
in which the prover does not need to take the statement to be proven as input.
Another plausible approach to avoid proving the possession of other proofs is that
the evaluator “updates” the input proofs. However, “updatable” SNARK is not
known to exist. In practice, an evaluator would naturally verify the input signatures
before proceeding with evaluations. Since an evaluator is also a verifier, it would need
to know the “history” (the previous labeled programs) of the input messages anyway.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 477

Unforgeability. For unforgeability against insider corruption, we require that if
some signers are corrupted, they cannot produce a signature disrespecting the
inputs of honest signers. For example, for a product function g(m1, . . . ,mK) =
∏K

k=1 mk and mk ∈ R for some ring R, as long as mk = 0 for some honest
signer k, no adversary can forge a signature of (1, g)2. Even if all signers are
corrupted, they cannot produce a signature on (m, g) such that m is outside the
output range of the function g. For instance, if g(m) = 0 for all message m, then
no adversary can produce a signature of (1, g).

Formally, we consider the following security game cEUF-CMA (existential
unforgeability under corruption and chosen message attack) between an adver-
sary A and a challenger C.

– The challenger C runs pp ← Setup(1λ) and gives pp to A. C initializes a
signing dictionary DSig = ∅ and an honest user dictionary DHonest = ∅.

– The adversary A is given adaptive access to the signing oracle:
• A queries (�,m) where � = (id, τ) ∈ L is a label and m ∈ M is a message.

If it is the first query with identity id, C generates keys (pkid, skid) ←
KGen(pp), updates DHonest := DHonest ∪ {id}, and gives pkid to A.
If (�,m) /∈ DSig, C computes σ� ← Sig(skid, �,m), returns σ� to A and
updates DSig ← DSig ∪ (�,m), else C just ignores the query.

– The adversary A outputs a labeled program P∗ = (g∗, �∗
1, . . . , �

∗
K), a set of

public keys {pk∗
id}id∈P∗ , a message m∗, and a signature σ∗.

– To describe the winning conditions, we establish the following notations:
• Let S = {i : id∗

i ∈ P∗ ∩ DHonest} ⊆ [K] denote the set collecting the
indexes of inputs contributed from honest signers involved in P∗.

• Let Mi = {m : (�∗
i ,m) ∈ DSig} denote the set collecting the messages

which were queries to the signing oracle with label �∗
i . Note that {�∗

i }i∈S

are the labels of the inputs from the honest signers in the program P∗.
• Let g∗({Mi}i∈S) denote the set of all possible outputs of g∗ when all the

inputs of g∗ with index i ∈ S are restricted to the set Mi:
When S = ∅, meaning there is no honest signer involved in P∗, we define
g∗({Mi}i∈S) = g∗(·).
When Mi = ∅ for some i ∈ S, meaning that there exists i ∈ S such that
no query to the signing oracle was of the form (�∗

i , ·),
we define g∗({Mi}i∈S) = ∅.

– The experiment outputs 1 if all the following conditions are satisfied:
• Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1.
• pk∗

id∗
i

= pkid∗
i

for all i ∈ S: The public keys for honest signers are consistent
with those returned by the oracle.

• m∗ /∈ g∗({Mi}i∈S): When there are honest signers involved in P∗, it
requires that m∗ is not the correct output of P∗ when executed over
messages previously authenticated. When the signers involved in P∗ are
all corrupt, it requires that it is impossible to obtain m∗ from P∗.

2 Formally, a forgery would be certifying (1,P = (g, τ1, . . . , τK)) instead of (1, g).

478 R. W. F. Lai et al.

An M-HS scheme is unforgeable under corruption (cEUF-CMA-secure) if, for
all PPT adversaries A, we have Pr[cEUF-CMAHS,A = 1] ≤ negl(λ).

We say that the scheme is unforgeable (EUF-CMA-secure) if A is not allowed
to include maliciously generated public keys in the forgery, i.e., for all id ∈ P∗,
it holds that id ∈ DHonest. Note that this recovers the definition of previous
work [29] in the single dataset setting3.

Context Hiding. We require an M-HS scheme to be weakly context hiding, such
that the signature on an evaluated message does not reveal information about
the function inputs. The property is “weak” since the functionality is not hidden.
This is inherent to our notion as the symbolic labeled program is required for ver-
ification, as well as to existing homomorphic signatures supporting functionali-
ties beyond linear functions. In the context of verifiable multi-party computation,
function inputs should be hidden while the function itself should remain public.
Therefore, in this context, weak context hiding is a more suitable property when
compared to a variant which requires the fresh signature to be indistinguishable
from the evaluated one, although the latter provides stronger privacy.

Formally, an M-HS scheme HS is said to be weakly context hiding, if there
exists a simulator S = (SSetup,SSig) such that for any PPT adversaries A, we have
∣
∣Pr[ContextHiding0HS,S,A(1λ) = 1] − Pr[ContextHiding1HS,S,A(1λ) = 1]

∣
∣ ≤ negl(λ)

Fig. 1. Context hiding experiments of M-HS

3 To recover their definition in the multiple datasets setting, we need to add dataset
identifiers to our definition. Since one can always include the dataset identifier in
the label, and restrict a labeled program to be computed on inputs with the same
dataset identifier, we just omit the dataset identifier in this paper.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 479

where for b ∈ {0, 1} ContextHidingb
HS,S,A are experiments defined in Fig. 1.

Succinctness. We require the signature size to be independent of the sizes of the
inputs to, the descriptions of, and the output of the labeled program.

Formally, an M-HS scheme is succinct if there exists a polynomial s(·), s.t.
for any λ ∈ N, pp ∈ Setup(1λ), positive integer K ∈ poly(λ), {Pk, {pkid}id∈Pk

,
mk, σk}k∈[K], g ∈ G, and σ ∈ Eval(g, (Pk, {pkid}id∈P ,mk, σk)K

k=1), |σ| ≤ O(s(λ)).

5 Construction

We construct M-HS with unforgeability under corruption generically from ordi-
nary signatures and ZK-SNARKs, which can be seen as a multi-key generaliza-
tion of the folklore construction of HS. We formalize the following idea. Signa-
tures are produced freshly using an ordinary signature scheme. For evaluation,
the evaluator proves that it possesses a set of signatures on messages, and the
evaluation of a function on these messages produces the resulting message.

We use a family of argument systems recursively by using the proofs (the
evaluated signatures) as witnesses to compute other proofs for further homo-
morphic evaluation.4 The family of argument systems corresponds to a family
of languages, which in turn is parameterized by the number of hops n the sig-
nature has been evaluated. A statement (P, {pkid}id∈P ,m) is contained in the
n-th language denoted by Ln, if P is of hop n, and for some K such that, (1) for
each k ∈ [K], (Pk, {pkid}id∈Pk

,mk) in the language Lnk
for some nk < n, (2)

P = g(P1, . . . ,PK) for some function g, (3) m is the output of g with inputs
m1, . . . ,mK . If each proof is succinct, the recursively generated proofs, and hence
the signatures, are also succinct.

Concretely, we define the family of argument systems and languages as fol-
lows. Let DS be a signature scheme for some message space L × M, where
L = ID × T is a product of some identity space ID and tag space T . Let
G ⊆ {g : M∗ → M} be some set of admissible functions which are computable
in polynomial time. For each n ∈ [N], let Πn be an argument system5 for the
following NP language Ln with witness relation Rn:

Ln =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(P, {pkid}id∈P ,m) :
∃ (g, (Pk,mk, σk)k∈[K]) s.t.
P = g(P1, . . . ,PK) ∧ m = g(m1, . . . ,mK) ∧

∀k ∈ [K],
σk = (nk, σ′

k) ∧ nk ∈ {0, . . . , n − 1} ∧
Rnk

((Pk, {pkid}id∈Pk
,mk), σ′

k) = 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

4 Homomorphic encryption with targeted malleability [14] also used similar techniques.
5 Defined in this way, our scheme produces N crs’s. We see two plausible approaches

for just using one crs: (1) Define a single “über language” which captures all N lan-
guages, so we only have statements in one language to be proven. (2) If an “updat-
able” SNARK is available, the evaluator does not need to produce new proofs.

480 R. W. F. Lai et al.

except that Ln is defined by the following instead when n = 1:

L1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P, {pkid}id∈P ,m) :
∃ (g, (I�k=(idk,τk),mk, σk)k∈[K]) s.t.
P = g(I�1 , . . . , I�K) ∧ m = g(m1, . . . ,mK) ∧
∀k ∈ [K], σk = (0, σ′

k) ∧ DS.Vf(pkidk , (�k,mk), σ′
k) = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Figure 2 formally shows our generic construction of multi-key homomorphic
signature scheme HS from DS and Π1, . . . , ΠN . Its correctness follows directly
from the correctness of DS and Π1, . . . , ΠN .

Fig. 2. Construction of M-HS from ZK-SNARK

Next, we prove that HS is unforgeable against insider corruption. If the
adversary outputs a signature (a proof) of a tuple (P∗,m∗) such that m∗ is
outside the range of the evaluation of P∗ restricted by the inputs of the honest
signer, either a proof can be extracted for a statement outside Ln for some n,
which breaks the soundness of Πn, or a forgery of DS verifiable under the public
key of the honest signer can be extracted, which breaks the unforgeability of DS.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 481

Theorem 1. If one-way functions exist, and Πn is a strong SNARK (Definition
3) for all n ∈ [N], HS is unforgeable under corruption.

Proof. EUF-CMA-secure signatures can be constructed from one-way func-
tions [43,49]. Thus, we suppose that DS is EUF-CMA-secure.

Suppose there exists an adversary AHS that produces a forgery in HS with
non-negligible probability. We show how to construct an adversary A that uses
AHS to break the soundness of Πn for some n or produce a forgery of DS.
Without loss of generality, assume that AHS queries the signing oracle on at
most Q = poly(λ) distinct identities.

A first guesses a number n′ ∈ {0, . . . , N} denoting whether the forgery can
be used to produce a forgery of DS (case n′ = 0) or break the soundness of Πn

for some n (case n′ ∈ [N]).

Case 1: Breaking the Unforgrability of DS. Suppose A guesses n′ = 0, i.e., it
attempts to use AHS to produce a forgery of DS, we write A as ADS . ADS acts
as a challenger in the cEUF-CMA game of HS. ADS obtains from its challenger
the public key pkDS . It generates, for each n ∈ [N], (crsn, tdn) ← Πn.E1(1λ),
a simulated crsn for Πn, together with a trapdoor tdn, and forwards pp =
(1λ, crs1, . . . , crsN) to AHS . Then ADS initializes an empty signing dictionary
DSig = ∅ and an empty honest user dictionary DHonest = ∅. ADS also randomly
picks a value q ∈ [Q].

Let îd be the q-th distinct identity on which AHS queries the signing oracle.
ADS answers signing oracle queries as follows:

– AHS queries on (�,m) where � = (id, τ) ∈ L and m ∈ M.
If this is the first query with identity id, ADS configures pkid as followings.
If îd = id, ADS sets pkîd := pkDS and gives it to AHS , else ADS generates
keys (pkid, skid) ← KGen(pp) and gives pkid to A.
When (�,m) /∈ DSig, if � = (îd, ·), ADS forwards (�,m) to its signing oracle to
get σ′

�, else ADS computes σ′
� ← Sig(skid, (�,m)). In either case, ADS returns

σ� = (0, σ′
�) to AHS and updates DSig ← DSig ∪ (�,m).

If (�,m) ∈ DSig, ADS just ignores the query.

AHS will output, as an alleged forgery of HS, a labeled program P∗ =
(g∗, �∗

1, . . . , �
∗
K), a set of public keys {pk∗

id}id∈P∗ , a message m∗, and a signature
σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1, pk∗
id∗

i
= pkid∗

i
for all

i ∈ S, and m∗ /∈ g∗({Mi}i∈S), where S is the set of indexes of inputs contributed
by honest signers.

If S = ∅, meaning that all signers involved in P∗ are corrupt, then ADS
aborts (since the guess n′ = 0 is wrong). Otherwise, there exists i ∈ S and with
probability at least 1/Q we have id∗

i = îd.
ADS greedily runs Πn.E2, the extractor of ZK-SNARK for Ln, recursively

from n = n∗ to n = 1, attempting to recover a set of label-message-signature
tuples {((�∗

k,m∗
k), σ∗

k)} such that all of which pass the verification of DS. The
only case when ADS is unable to do so is when there exists n ∈ [N] such that

482 R. W. F. Lai et al.

a statement for which ADS possesses a valid proof is actually false. In this case,
the guess n′ = 0 is wrong, and ADS aborts.

Suppose ADS indeed successfully extracts such label-message-
signature tuples. Since all statements for which proofs are extracted are true,
i.e., all evaluations are done faithfully, and m∗ /∈ g∗({Mi}i∈S), there must exists
a tuple ((�′ = (îd, τ ′),m′), σ′) ∈ {((�∗

k,m∗
k), σ∗

k)}k such that (�′,m′) /∈ DSig. Since
pk∗

id∗
i

= pkid∗
i

for all i ∈ S, and in particular pk∗
îd

= pkDS , ((�′,m′), σ′) is a valid
forgery to DS.

Note that by Definition 3, each extractor Πn.E2 works for all provers and does
not take as input the random tape of the prover, which is Πn+1.E

2 in our case.
So, the extraction of each layer contributes an additive, instead of multiplicative,
overhead to the runtime of the overall extraction. We can, therefore, afford the
number of hops N to be polynomially large.
Case 2: Breaking the Soundness of Πn. Suppose A guesses n′ ∈ [N], meaning
that it attempts to use the forgery to break the soundness of Πn′ . We write A
as AΠn′ , who acts as a challenger in the cEUF-CMA game of HS.

AΠn′ obtains from its challenger the common reference string crs. It sets
crsn′ = crs. It generates for each n ∈ [N]\{n′}, (crsn, tdn) ← Πn.E1(1λ), i.e.,
a simulated crsn for Πn, together with a trapdoor tdn. It forwards the public
parameters pp = (1λ, crs1, . . . , crsN) to AHS . Then ADS initializes an empty
signing dictionary DSig = ∅ and an empty honest user dictionary DHonest = ∅.

AΠn′ answers signing oracle queries as follows:

– AHS queries (�,m) where � = (id, τ) ∈ L and m ∈ M.
If (�,m) is the first query with identity id, AΠi

generates keys (pkid, skid) ←
KGen(pp) and gives pkid to AHS .
If (�,m) /∈ DSig, AΠi

computes σ� ← Sig(skid, �,m), returns σ� to AHS and
updates DSig ← DSig ∪ (�,m), else the query is ignored.

AHS will output, as an alleged forgery of HS, a labeled program P∗ =
(g∗, �∗

1, . . . , �
∗
K), a set of public keys {pk∗

id}id∈P∗ , a message m∗, and a signature
σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1, and m∗ /∈ g∗({Mi}i∈S).
AΠn′ greedily runs Πn.E2, the extractor of ZK-SNARK for Ln, recursively

from n = n∗ to n′, attempting to recover all tuples {(P∗
k , {pk∗

id}id∈P∗
k
,m∗

k, σ∗
k)}

such that all of which passes the verification of Πn′ . The only case when AΠn′ is
unable to do so is when there exists n ∈ {n∗, . . . , n′ + 1} such that a statement
in Ln induced by the forgery is false. In this case, the guess n′ is wrong, and
AΠn′ aborts.

Suppose the above greedy extraction is successful, AΠn′ checks if there exists
an extracted tuple which does not satisfy the relation for Ln′ . If so, then AΠn′
successfully obtains a Πn′ proof for a false statement and hence breaks the
soundness of Πn′ . If not, then the guess n′ is wrong and AΠn′ aborts.

Summary. Overall, since the abort conditions of A for different choices of n′ are
disjoint, and n′ is chosen randomly from {0, . . . , N}, the probability that A does
not abort is non-negligible. Therefore, we conclude that A can either break the
unforgeability of DS, or the soundness of Πn for some n ∈ [N].

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 483

Theorem 2. Assume one-way function exists. If Πn is an O-SNARK with
respect to the signing oracle of DS (Definition 4) for all n ∈ [N] where N
is a constant, then HS is unforgeable under corruption. Note that in this case
HS only supports constant-hop (N) evaluation.

Proof. The proof is exactly the same as the proof of unforgeability from strong
SNARK (Theorem 1), except that extractors with dependence on the provers are
used. Specifically, A := An∗ acts as the prover for the extractor Πn∗ .E2

A, and an
extractor Πn.E2

An
:= An−1 in the upper layer acts as the prover for the extractor

Πn−1.E
2
An−1

in the lower layer. Note that for all n ∈ [N], the same signing oracle
for DS is required. Therefore, with the transcript of signing oracle queries, the set
of extractors Πn.E2

An
for the recursive language is able to extract the witnesses.

Note that the runtime of Πn.E2
An

may depend on the runtime of An. In general,
Πn.E2

An
may run An as a black box polynomially-many times. In the worst

case, suppose n∗ = N . In this case, even if N is as small as logarithmic, the
total runtime of recursively running the set of extractors Πn.E2

An
might become

exponential, as the extractors need to take the provers (the extractor in the layer
above) as input, each of which contributes a multiplicative polynomial overhead
to the extraction time. We thus restrict N to be a constant.

Candidate Constructions of Strong SNARKs and O-SNARKs. As shown by
Fiore et al. [30], there are a few candidates of O-SNARK. Computationally-sound
proofs of Micali [47] can be used as O-SNARK without putting any restrictions
on the underlying signature scheme in our construction. If we require the under-
lying signatures to be hash-and-sign signatures and model the hash as a random
oracle, then all SNARKs can be used as O-SNARKs. In the standard model, if
we require the message space of the signature scheme to be properly bounded
and require the adversary to query almost the entire message space, or we require
the adversary to issue oracle queries before seeing the common reference string,
then all SNARKs can be used as O-SNARKs.

Yet, as far as we know, no strong SNARK candidate is known, although the
notion has been used in the literature [16]. For example, in recent SNARK con-
structions [26,33,38,46] based on knowledge of exponents or certain extractabil-
ity assumptions, the extractor needs to run the prover as a black box. This does
not affect our overall results in the sense that, constant-hop M-HS constructed
from O-SNARKs is sufficient to imply functional signatures and ZK-SNARGs.

Theorem 3. If Πn is zero knowledge for n ∈ [N], HS is weakly context hiding.

Proof. Πn is zero-knowledge, so there exists a simulator SΠn
= (Scrs

Πn
,SProve

Πn
)

which simulates a proof πn for any instance in Ln. To construct a simulator SHS
for HS, we define SSetup

HS which simulates the common reference strings crsn using
Scrs

Πn
, and SSig

HS which simulates the signatures using SProve
Πn

. The proofs simulated
from SΠn

are indistinguishable from the real proofs, so the simulated signatures
from SHS are indistinguishable from the real signatures.

Theorem 4. Let N = poly(λ) be a positive integer. If Πn is succinct for all
n ∈ [N], then HS is succinct.

484 R. W. F. Lai et al.

Proof. The size of a signature produced by Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K])

is the proof length of Πn for some n plus the length of the binary representa-
tion of n. By the succinctness of Πn, the proof length of Πn is bounded by
O(p(λ)) for some fixed polynomial p. Since N ∈ poly(λ) and n ∈ [N], the binary
representation of n is of size O(log λ). Therefore, HS is succinct.

6 Relation with Existing Notions

6.1 Functional Signatures from cEUF-CMA-Secure M-HS

To understand the relation of M-HS with existing notions, we begin by construct-
ing functional signatures [16] (FS) using a 2-key HS. FS (Definition 7) allows an
authority with a master secret key to derive function-specific signing keys. Given
a signing key for function f , one can only sign messages in the range of f .

We construct FS using an M-HS supporting 1-hop evaluation of signatures
signed under two different keys. For the setup, we generate two sets of M-HS
keys, include both public keys and one secret key sk1 in the master public key,
and keep the other secret key sk0 as the master secret key. The FS signing key
consists of a signature σf of the function f signed under the master secret key.
To sign a function output f(m), the signer simply signs the input message m
using sk1, and evaluates the signatures σf and σm of the function and the message
respectively using the universal circuit U , which is defined as U(f,m) = f(m)
for any function f and message m. The unforgeability under corruption of the
M-HS scheme is crucial, for otherwise, the signer might be able to produce a
signature (under the combined key (pk0, pk1)) on any message (possibly outside
the range of f) using sk1.

Formally, let U be the universal circuit which takes as input a circuit f and
its input m, and computes U(f,m) = f(m). We assume that the description size
of f , the length of the input m, and the length of the output f(m) are all bounded
by some integer n = poly(λ). Let F = {f : {0, 1}� → {0, 1}k s.t. |f |, �, k ≤ n}
denote the function family. Let HS.(KGen,Sig,Vf,Eval) be a 1-hop 2-HS scheme,
with label space L = {0, 1} × {0, 1}∗ and message space M = {0, 1}n, for a
labeled program family G such that U ∈ G. We construct a functional signature
scheme FS.(Setup,KGen,Sig,Vf) for the function family F as shown in Fig. 3.
The correctness follows straightforwardly from that of HS.

Theorem 5. If HS is cEUF-CMA-secure, FS is unforgeable.

Proof. With an adversary AFS that produces a forgery of FS with non-negligible
probability, we construct an adversary AHS that uses AFS to produce a forgery
of HS. AHS acts as a challenger in the unforgeability game of FS.

AHS receives pp and pkHS from the EUF-CMA game of HS. It sets pk0 :=
pkHS and generates (pk1, sk1) ← HS.KGen(pp). It sets the master public key
mpk = (pk0, pk1, sk1) and forwards mpk to AFS . AHS simulates the two types of
queries made by AFS , namely, key generation oracle queries and signing oracle
queries, as follows:

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 485

Fig. 3. Construction of FS from M-HS

– Okey(f, i)
• If there exists an entry for (f, i) in the dictionary, output the correspond-

ing value ski
f .

• Otherwise, query the signing oracle of HS to get

σi
f ← HS.Sig(skHS , (0, pk1), f).

Then add ski
f = σi

f to the dictionary entry (f, i) and output ski
f .

– Osign(f, i,m)
• If there exists an entry for (f, i) in the dictionary, retrieve ski

f = σi
f .

• Otherwise, query the signing oracle of HS to get σi
f as above. Then add

ski
f = σi

f to the dictionary entry (f, i).
• Finally, sample τ ← {0, 1}λ and compute σm ← HS.Sig(sk1, (1, τ),m).

Let P := (U, (0, pk1), (1, τ)), ηf := (I0,pk1 , pk0, f, σi
f) and ηm :=

(I1,τ , pk1,m, σm). Compute σ′ ← HS.Eval(P, (ηf , ηm)) and output
(U(f,m), (τ, σ′)).

After querying the oracles, AFS responds with forgery (m∗, σ∗), where σ∗ =
(τ∗, σ′∗). AHS returns (P = (U, (0, pk1), (1, τ∗)), {pk0, pk1},m∗, σ′∗). It is a valid
forgery of HS, since, by the definition of the unforgeability game of functional
signatures, m∗ is not in the range of any f queried to the Okey oracle, and
m∗ �= f(m) for any (f,m) queried to the Osign oracle.

486 R. W. F. Lai et al.

Theorem 6. If HS is weakly context hiding, FS is function-private.

Proof. Let AFS be an adversary of the function-privacy game. As HS is weakly
context hiding, there exists a simulator SHS which, on input (P = (U, (0, pk1),
(1, τ)), {pk0, pk1}, f(m)) for a random tag τ , outputs a signature of f(m) which is
indistinguishable from that produced by FS.Sig(f, skf ,m). We can thus replace
the challenger with the simulator SHS , which is indistinguishable in the view
of AFS except with negligible probability. The simulated signatures contain no
information about the function f and input message m except for f(m). The
probability that AFS guesses correctly in the simulated game is 1

2 .

Theorem 7. If HS is succinct, FS is succinct.

Proof. The size of a signature produced by FS.Sig(f, skf ,m) is the signature
length of HS. The succinctness of FS follows directly from that of HS.

Since the existence of secure functional signatures implies that of
SNARGs [16], for which security cannot be proven via a black-box reduction
from falsifiable assumptions [36], we have the following corollary.

Corollary 1. If cEUF-CMA-secure, weakly context hiding, and succinct 1-hop
2-HS for NP exists, then SNARG for NP exists. Moreover, the succinctness of M-
HS must rely on either non-falsifiable assumptions or non-black-box techniques.

6.2 ZK-SNARG from cEUF-CMA-Secure M-HS

We have shown that the existence of 2-HS implies that of FS, which in turn
implies the existence of SNARGs. This implication is somewhat unsatisfactory
since it relies on the existence of 2-HS, which might be more difficult to construct
than (1-)HS (with unforgeability under corruption). Thus, in this section, we
construct SNARGs directly from HS, making (M-)HS with unforgeability under
corruption a notion sitting tightly and nicely in between SNARKs and SNARGs.
This transformation also gives us zero-knowledge for free6.

The direct construction is as follows. Let the public parameters of M-HS be
the common reference string. The prover generates a fresh M-HS key and signs
both the statement x and the witness w. Let �x = (id, τx) and �w = (id, τw) be
labels for arbitrary identity id and tags τx and τw. It then evaluates the signatures
using a labeled program P = (g, �x, �w) which, on input (x,w), outputs x if and
only if w is a valid witness of x. It finally outputs the evaluated signature as the
proof. Note that behavior of the program P with respect to the labels �x and
�w is rather arbitrarily. We remark that Libert et al. [45] also use homomorphic
signatures to construct proof systems, while the construction is quite different.

Formally, let HS = (Setup,KGen,Sig,Vf,Eval) be a 1-depth (1-)HS scheme
for any label space L = ID×T where log |ID| = poly(λ) and log |T | = poly(λ).
6 Function privacy of FS is very similar to zero-knowledge, except that the former

is defined in “indistinguishability-style” while the latter is defined in “simulation-
style”.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 487

Let g be a function such that g(x,w) = x if R(x,w) = 1, ⊥ otherwise. Figure 4
shows our SNARG construction Π for NP language L with relation R. The
completeness follows straightforwardly from the correctness of HS.

Fig. 4. Construction of SNARG from M-HS

Theorem 8. If HS is cEUF-CMA-secure, then Π is sound.

Proof. If there exists an adversary AΠ that breaks the soundness of Π with
non-negligible probability, we can construct an adversary AHS that uses AΠ to
produce a forgery of HS. AHS acts as a challenger in the soundness game of Π.

AHS receives pp from the challenger of the cEUF-CMA game of HS, and
forwards the common reference string crs := pp to AΠ . Eventually, AΠ responds
with (x∗, π∗) such that Vf(crs, x∗, π∗) = 1 but x∗ �∈ L. AHS then parses π∗ =
(pk∗, id∗, τ∗

x , τ∗
w, σ∗), and answers (P∗ = (g, (id∗, τ∗

x), (id∗, τ∗
w)), pk∗, x∗, σ∗) to its

cEUF-CMA game. Since x∗ �∈ L, we have x∗ �= g(x,w) for all (x,w) ∈ M2.

Theorem 9. If HS is weakly context hiding, then Π is zero-knowledge.

Proof. Since HS is weakly context hiding, there exists a simulator SHS =
(SSetup

HS ,SSig
HS) such that, SSetup

HS simulates the public parameter, and SSig
HS sim-

ulates on input (P = (g, (id, τx), (id, τw)), {pkid}id∈P , x), for some arbitrary id,
τx, and τw, a signature on x which is statistically close to the real signatures.
We can thus construct Scrs

Π using SSetup
HS and SProve

Π using SSig
HS , and conclude that

Π is zero-knowledge.

Theorem 10. If HS is succinct then Π is succinct.

Proof. The proof produced by π ← Prove(crs, x, w) consists of an HS public key,
an identity, two tags, all of which has polynomial length, and a signature of HS.
By the succinctness of HS, the signature size is also bounded by a polynomial.

488 R. W. F. Lai et al.

If the underlying M-HS scheme is secure in the standard model (without a
common reference string), i.e., pp = λ, the above construction would yield a
ZK-SNARG in the standard model, which is impossible. Therefore, we can also
rule out the possibility of constructing M-HS schemes which are unforgeable
under corruption in the standard model. Interestingly, the only existing M-HS
scheme [29] is unforgeable but without corruption in the standard model.

7 Conclusion and Open Problem

We study multi-key homomorphic signatures (M-HS) which are unforgeable
under corruption and chosen message attacks (cEUF-CMA). We have con-
structed cEUF-CMA-secure M-HS from zero-knowledge succinct non-interactive
argument of knowledge (ZK-SNARK), and shown that the existence of the for-
mer implies the existence of zero-knowledge succinct non-interactive argument
(ZK-SNARG). Due to the known impossibility of SNARG from non-falsifiable
assumptions, we pose it as an open problem to identify a weaker (but still reason-
able) security model of M-HS, with constructions from standard assumptions.

Acknowledgments. Sherman S. M. Chow is supported by the General Research Fund
(CUHK 14210217) of the Research Grants Council, University Grant Committee of
Hong Kong.

We thank the anonymous reviewers for their detailed and helpful comments. We
also thank Yvo Desmedt and Daniel Wichs for inspiring discussions.

A Insecurity of Existing Work against Insider Attack

We briefly explain why the existing construction of M-HS by Fiore et al. [29]
suffers from insider attacks. Since their construction is a multi-key generalization
of the (single-key) HS by Gorbunov et al. [37], we first demonstrate how the
attack works in the single-key setting, then generalize it to the multi-key setting.

The HS construction by Gorbunov et al. [37] is based on the notion of homo-
morphic trapdoor functions. To recall, a homomorphic trapdoor function f maps
a public key pk, an index x, and a preimage u to an image v. The function is
homomorphic in the following sense: Given a function g and some preimages vi

for i ∈ [N], one can efficiently compute an image vg. If ui where vi = f(pk, xi, ui)
for i ∈ [N] are additionally given, then one can compute a preimage ug(x1,...,xN).
The tuple (vg, ug(x1,...,xN)) “encodes” the computation g(x1, . . . , xN) in the sense
that vg = f(pk, g(x1, . . . , xN), ug(x1,...,xN)). Note that these computations can be
performed without the knowledge of the secret key. Furthermore, given the secret
key sk corresponding to pk, any image v, and any index x, one can “invert” the
function by sampling u such that v = f(pk, x, u). Given such homomorphic trap-
door functions, the construction of HS is almost apparent. Roughly speaking,
the secret key corresponds to the signing key of the HS scheme, the public key
and a set of images corresponds to the verification key, the indexes correspond
to messages, and the preimages correspond to the signatures.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 489

Note that the inversion capability of the trapdoor function is more than suf-
ficient for signing. In particular, the signer who holds the secret trapdoor can
choose to invert the function on an image-index tuple (v, x) which is other-
wise impossible to obtain through homomorphic evaluations. While in a typ-
ical setting the signer is assumed to be honest and not to generate preim-
ages for “invalid” image-index pairs, a malicious signer can sample a preim-
age/signature u∗ such that vg = f(pk, x, u∗) yet x is not in the range of g.

Generalizing, a multi-key homomorphic trapdoor function f (constructed
implicitly in [29]) maps a set of public keys {pki}i∈[M], an index x, and a preim-
age u to an image v. The knowledge of a secret key sk corresponding to any pk in
{pki}i∈[M] suffices to invert f on the tuple (v, x) with respect to {pki}i∈[M]. As
a result, if any of the M signers is corrupt, an adversary can generate signatures
that disrespect the messages signed by the other honest signers.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 1

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa and Hanaoka [42],
pp. 386–404

5. Backes, M., Dagdelen, Ö., Fischlin, M., Gajek, S., Meiser, S., Schröder, D.: Oper-
ational signature schemes. Cryptology ePrint Archive, Report 2014/820 (2014)

6. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng
et al. [21], pp. 357–386

7. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk [41], pp. 520–
537

8. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: ISOC Network and Distributed System Security Sympo-
sium - NDSS 2007. The Internet Society, February/March 2007

9. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

10. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10

490 R. W. F. Lai et al.

11. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano et al. [18], pp. 1–16

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen and Oswald [48], pp. 533–556

13. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

14. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in
Theoretical Computer Science, pp. 350–366. Association for Computing Machinery,
January 2012

15. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based
on lattices. Cryptology ePrint Archive, Report 2014/916 (2014)

16. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk [41], pp. 501–519

17. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Report 2010/086 (2010)

18. Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.): PKC 2011. LNCS, vol.
6571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8

19. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin et al. [31], pp. 680–696

20. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

21. Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.): PKC 2016. LNCS,
vol. 9614. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7

22. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10032. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6

23. Chow, S.S.M.: Functional credentials for internet of things. In: Chow, R., Saldamli,
G. (eds.) Proceedings of the 2nd ACM International Workshop on IoT Privacy,
Trust, and Security, IoTPTS@AsiaCCS, Xi’an, China, 30 May 2016, p. 1. ACM
(2016)

24. Chow, S.S.M., Haralambiev, K.: Non-interactive confirmer signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 49–64. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 4

25. Chow, S.S.M., Wei, V.K.W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: Lin, F.C., Lee, D.T., Lin, B.S., Shieh, S., Jajodia, S. (eds.) ASI-
ACCS 06: 1st ACM Symposium on Information, Computer and Communications
Security, pp. 297–302. ACM Press, March 2006

26. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

27. Derler, D., Ramacher, S., Slamanig, D.: Homomorphic proxy re-authenticators and
applications to verifiable multi-user data aggregation. In: Kiayias, A. (ed.) FC 2017.
LNCS, vol. 10322, pp. 124–142. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70972-7 7

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-19379-8
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-49384-7
https://doi.org/10.1007/978-3-662-53890-6
https://doi.org/10.1007/978-3-642-19074-2_4
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-70972-7_7
https://doi.org/10.1007/978-3-319-70972-7_7

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 491

28. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multi-
party signatures and non-interactive zero-knowledge. Cryptology ePrint Archive,
Report 2016/792 (2016)

29. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon and Takagi [22], pp. 499–530

30. Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 5

31. Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8

32. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin et al. [31], pp. 697–714

33. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

34. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the inte-
gers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–
160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 9

35. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 16

36. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Sym-
posium on Theory of Computing, pp. 99–108. ACM Press, June 2011

37. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual
ACM Symposium on Theory of Computing, pp. 469–477. ACM Press, June 2015

38. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

39. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

40. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 36

41. Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0

42. Kurosawa, K., Hanaoka, G. (eds.): PKC 2013. LNCS, vol. 7778. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7

43. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

44. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

45. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen and Oswald [48], pp. 514–532

https://doi.org/10.1007/978-3-662-53641-4_5
https://doi.org/10.1007/978-3-642-30057-8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/11523468_36
https://doi.org/10.1007/11523468_36
https://doi.org/10.1007/978-3-642-54631-0
https://doi.org/10.1007/978-3-642-36362-7
https://doi.org/10.1007/978-3-642-40084-1_17

492 R. W. F. Lai et al.

46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7 3

47. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

48. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5

49. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM
Press, May 1990

50. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 33

https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-55220-5
https://doi.org/10.1007/978-3-540-40061-5_33

Attribute-Based Signatures
for Unbounded Languages from Standard

Assumptions

Yusuke Sakai1(B), Shuichi Katsumata1,2, Nuttapong Attrapadung1,
and Goichiro Hanaoka1

1 AIST, Tokyo, Japan
2 The University of Tokyo, Tokyo, Japan

yusuke.sakai@aist.go.jp

Abstract. Attribute-based signature (ABS) schemes are advanced sig-
nature schemes that simultaneously provide fine-grained authentication
while protecting privacy of the signer. Previously known expressive ABS
schemes support either the class of deterministic finite automata and cir-
cuits from standard assumptions or Turing machines from the existence
of indistinguishability obfuscations.

In this paper, we propose the first ABS scheme for a very general
policy class, all deterministic Turing machines, from a standard assump-
tion, namely, the Symmetric External Diffie-Hellman (SXDH) assump-
tion. We also propose the first ABS scheme that allows nondeterministic
finite automata (NFA) to be used as policies. Although the expressive-
ness of NFAs are more restricted than Turing machines, this is the first
scheme that supports nondeterministic computations as policies.

Our main idea lies in abstracting ABS constructions and presenting
the concept of history of computations; this allows a signer to prove pos-
session of a policy that accepts the string associated to a message in
zero-knowledge while also hiding the policy, regardless of the computa-
tional model being used. With this abstraction in hand, we are able to
construct ABS for Turing machines and NFAs using a surprisingly weak
NIZK proof system. Essentially we only require a NIZK proof system for
proving that a (normal) signature is valid. Such a NIZK proof system
together with a base signature scheme are, in turn, possible from bilinear
groups under the SXDH assumption, and hence so are our ABS schemes.

Keywords: Attribute-based signatures · Groth-Sahai proofs
Structure-preserving signatures · Turing machines
Nondeterministic Finite Automata

1 Introduction

Attribute-based signature (ABS), initiated by Maji, Prabhakaran, and
Rosulek [MPR11], is a cryptographic primitive that simultaneously allows fine-
grained access control on user authentication and protection of users’ privacy.
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 493–522, 2018.
https://doi.org/10.1007/978-3-030-03329-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_17&domain=pdf

494 Y. Sakai et al.

In the so-called key-policy ABS1, which is the focus of this work, each signer
is associated with his/her own policy and obtains a signing key for this policy
from an authority, who possesses the master key. Using the signing key, a signer
can sign any message associated with any attribute subjected to the condition
that the policy is satisfied by this attribute. ABS provides privacy in the sense
that a signature hides the policy that is used to sign the message. That is,
no information on the policy beyond the fact that it is satisfied by the associ-
ated attribute will be leaked to the verifier. ABS has many natural applications
such as anonymous credential [SSN09], attribute-based messaging [MPR11], and
secret leaking [MPR11].

One of the central research themes on ABS is to expand the expressiveness of
policies that can be supported by the scheme. Results in this direction include the
scheme by Okamoto and Takashima [OT11], which supports non-monotone span
programs as policies. Tang, Li, and Liang [TLL14] proposed a scheme that sup-
ports bounded-depth circuits (albeit their scheme relies on strong tools, namely,
multilinear maps). Nandi and Pandit [NP15] proposed several schemes includ-
ing one that supports deterministic finite automata (DFA). One of the most
expressive scheme to date is the ABS scheme proposed by Sakai, Attrapadung,
and Hanaoka [SAH16]; their scheme supports unbounded-depth unbounded-size
circuits and is based on bilinear maps under standard assumptions. On the other
hand, recently, ABS schemes that support policies on the opposite end of the
spectrum from circuits, namely Turing machines, were constructed by Datta,
Dutta, and Mukhopadhyay [DDM17]. However, their scheme requires the strong
assumption of the existence of indistinguishability obfuscations. Therefore, we
still do not know of any ABS schemes achieving the ultimate goal of supporting
Turing machines with unbounded-length inputs that rely on a well-established
assumption such as a static assumption over bilinear groups. Considering the
current situation that all the known encryption scheme counterparts of ABS
(i.e., attribute-based encryption (ABE)) seem to require the power of indistin-
guishability obfuscation, one may think that it is simply out of our reach to
construct ABS for Turing machines from standard assumptions.

Besides its theoretical interests, ABS for Turing machines, which naturally
support unbounded languages, has a practical benefit. Here, by unbounded lan-
guages, we mean an ABS scheme where different signatures have attribute strings
of different lengths. Policies are associated with signing keys, and thus the pol-
icy needs to accept variable-length attribute strings. To see the benefit of this
primitive, let us suppose a company where the manager wants each employee to
send an email on behalf of the company to the customers that are assigned to
this employee. An ABS for unbounded languages provide a natural solution for
this setting. In this solution, a manager of the company possesses a master secret
key of an ABS scheme. Then the manager assigns to each employee a signing
key with a policy. This policy describes what addresses the employee is allowed
to submit an email. Then the employee signs an email using the destination

1 The other type is called signature-policy, where the roles of policies and attributes
are swapped.

Attribute-Based Signatures for Unbounded Languages 495

address of a customer as an attribute string. The flexibility of ABS for Turing
machines (or finite automata) is helpful in this scenario. The manager can spec-
ify the policy using a regular expression such as *@division.example.com, to
restrict the employee to send an email to some division of a customer company.
In this application, Turing machines or finite automata provide an expressive
way to describe a policy. Moreover, unbounded attribute strings quite meet to
this scenario, since attribute strings are set to be an email address, which has a
variable length.

1.1 Our Contribution

In this paper, we present an attribute-based signature scheme over bilinear maps
that allows us to use an arbitrary deterministic Turing machine as the policy from
standard assumptions. In particular, unlike ABS schemes for policies such as non-
uniform circuits, our scheme allows one to associate an unbounded -length string
as an attribute to the message. Due to the uniform nature of Turing machines,
we depart from the conventional ABS constructions and incorporate new ideas
and techniques to cope with the unboundedness of the policies. Notably, we
abstract ABS constructions, and use the concept of history of computations
to prove that the signer is in possession of a Turing machine (or in general,
some computational model) that accepts the string associated to the message.
Furthermore, we build on the idea which we call the locality of rewriting to prove
the above statement in zero-knowledge. These abstraction and ideas allow us to
circumvent the standard intuition that we would require a strong NIZK proof
system for proving a valid computation of a Turing machine to construct ABS
schemes. Our scheme is reasonably efficient compared to other cryptographic
schemes that support Turing machine type computations (e.g., ABE for Turing
machines).

Our scheme satisfies perfect privacy and unforgeability. The scheme is proven
secure under the symmetric external Diffie-Hellman (SXDH) assumption over
bilinear groups. More precisely, our scheme is based on the Groth-Sahai proof
system and a structure-preserving signature, both of which can be proven secure
under the SXDH assumption. The signature size is O(T 2) where T is an upper
bound for the running time of a Turing machine, which is specified by the signer.
The size of a signing key is O(|Q| · |Γ |4) where |Q| is the number of the states
of the Turing machine and |Γ | is the size of the tape alphabet. We emphasize
that in spite of its expressiveness, our scheme only requires a standard static
assumption (SXDH) over bilinear groups. This could be a striking contrast to the
case of attribute-based encryption (ABE) for Turing machines, where available
schemes [GKP+13,AS16] require much stronger tools, such as indistinguishabil-
ity obfuscation.

In addition to the above main contribution, we also present another ABS
scheme whose policy class is restricted to nondeterministic finite automata

496 Y. Sakai et al.

(NFA).2 This scheme is the first scheme that supports nondeterministic compu-
tation as a policy. The policy classes of all the previously known ABS schemes
are only deterministic: (non-)monotone span programs, Boolean circuits, deter-
ministic finite automata, and deterministic Turing machines. In addition, this
scheme gains efficiency compared with the main scheme. Namely, it has the sig-
nature of size O(|w|) where |w| is the length of the input of the finite automaton.
The size of a signing key is O(|Q|2 · |Σ|) where |Q| is the number of the states of
the automaton, and |Σ| is the size of the alphabet. In particular, the dependency
on the alphabet size is down to |Σ| from |Γ |4.

1.2 Paper Organization

We dedicate the next section (Sect. 2) for describing the intuition of our schemes.
We then begin with some preliminaries and formal definitions in Sect. 3 including
the formal definition of Turing machines and related notions. Our main ABS
scheme for Turing machines is then presented in Sect. 4, while its security proof
is given in Sect. 5. The scheme for nondeterministic finite automata is given in
Sect. 6.

2 Difficulties and Our Approach

2.1 Naive Ideas and Their Limitations

As a warm up, we provide some of the obstacles when trying to construct ABS
schemes for Turing machines from previously known tools and techniques. One
of the most naive approaches may be to base the construction on ABS schemes
supporting circuits [SAH16], since theoretically, circuits are already quite pow-
erful. However, this idea would not work because of the differences between
the models of computations; circuits are non-uniform but Turing machines are
uniform. Specifically, there is simply no easy way to embed a uniform com-
putational model (i.e., Turing machine) into the signing key starting from an
ABS scheme that only supports non-uniform computational models (i.e. circuits)
as the key-policy. Another approach may be to base the scheme on expressive
attribute-based encryption (ABE) schemes, however, the problem of this app-
roach is that, at least in general, ABE schemes do not provide the anonymity
property, which is an essential requirement for ABS schemes. Furthermore, no
ABE schemes for Turing machines based on standard assumptions are known.
One may also consider starting from policy-based signatures [BF14] or functional
signatures [BGI14]. However, this does not provide a successful solution as well,
since all the known policy-based signature schemes only support pairing-product
equations for describing a policy, or if we want to support any NP relations, we

2 In terms of languages that machines accept, NFA is equivalent to a subclass of Turing
machines called read-only right-moving Turing machines. Both accept the class of
regular languages.

Attribute-Based Signatures for Unbounded Languages 497

need to employ general zero-knowledge. The same holds for functional signatures,
namely, it supports any NP relations, at the cost of general zero-knowledge.

In a high level, all of the above obstacles seem to boil down to the problem
of not having any efficient NIZK proof for proving correct computation of a
Turing machine. As an example, ABS for circuits were achievable [SAH16], since
Groth-Sahai proof systems can be used to prove correct circuit computation in
zero-knowledge. Indeed, if we had an efficient NIZK proof for such an unbounded
language, we could have taken another route and convert an ABE scheme for
Turing machines into its ABS scheme counterpart by proving that the secret key
associated with the Turing machine satisfies.

2.2 Our Approach

We now explain the technical overview of our ABS scheme for Turing machines
and show how we circumvent the above problem. In particular, our construction
does not rely on any strong NIZK proof system; essentially it only requires a
NIZK proof system for proving that a signature is valid. In the following, we
assume some familiarity on the standard notion of Turing machines and finite
automata, which will be explained in Sects. 3 and 6.1, respectively. We first
provide a high level approach to constructing ABS schemes using the concept of
history of computations. Then, for simplicity, we explain how to use our idea for
the case where the policies are “deterministic” finite automata, and provide an
overview on how to further extend it to Turing machines via an idea we call the
locality of rewriting.

Abstract Approach: Using a History of Computations. We first step
back and give a high level background on how previous ABS schemes were con-
structed. One of the most standard ways of constructing an ABS scheme is
the “certificate” method [MPR11,SAH16]. In this method, the authority issues
each signer a digital signature signed on the user’s policy, which will serve as
a certificate for the user’s signing privilege. When the signer decides to sign a
message with some attribute, the signer proves in zero-knowledge that he pos-
sesses a valid signature on some policy in addition that the attribute satisfies
that certain policy. Therefore, in theory, we can always use general NIZKs for
NP languages to construct ABS schemes at the cost of a very inefficient scheme.
In light of this, much of the efforts for constructing ABS schemes are centered
around constructing an efficient NIZK proof system for proving that a policy
embedded in the signature satisfies the attribute while also hiding the policy. In
the following, we explain the abstract approach we take for constructing such
NIZK proof systems.

As we have mentioned above, the central difficulty in constructing an ABS
scheme for complex (unbounded) computational models, such as finite automata
or Turing machines stems from the fact that we do not have sufficiently expressive
and efficient NIZK proof systems. Toward this end, we take the approach of
expressing a computation in a set of sufficiently simple formulae that can be
handled by a simple and efficient NIZK proof system. In particular, our key idea

498 Y. Sakai et al.

is to use a history of computations to prove that the hidden policy satisfies the
attribute. Here, by a history of computations, we mean a sequence sinit, s1, . . . ,
sn of “snapshots” of a machine3, which expresses how the computation proceeded
in a step-by-step manner. For simplicity, for the time being, let us assume that
the policy, i.e., the machine, is public. Then, the main advantage of the above
approach is that even though it may be hard to express the actual computation
of the policy into a simple formulae, once given a history of computations sinit,
s1, . . . , sn and the policy, it may be much easier to express an algorithm that
validates this sequence into a simple formulae. Note that this abstract idea can
be used for any type of computational models (bounded or unbounded) as long
as one can appropriately define the history of computations while being able
to express them into simple formulae. For example, as we show later, it may
be much easier to prove that, (si−1, si) for all i follow the (public) transition
function of a machine, rather than writing out the automaton as a very large
and complex formulae.

Now, taking into consideration that the policies must also be hidden, the
following depicts our key idea on the whole.

sinit −→ s1 −→ s2 −→ · · · −→ sn ∈ F

Here, consider the input w to the machine M to be implicitly included in the
public state sinit. The gray box indicates that the snapshots si must be hidden
and F indicates the set of accepting states of the machine M , which in some
cases must be hidden since they may leak information on M . If the above can
be proven in zero-knowledge, then a verifier would be convinced that the signer
is in possession of a machine M which accepts the input w associated to the
message. Now, we can break the problem of proving possession of a valid history
of computations into three sub-problems: (i) prove that each hidden snapshots
si are valid snapshots, (ii) prove that each transition of the snapshots si to si+1

is consistent with the signer’s policy and (iii) prove that the final snapshot sn is
in the accepting states F . Finally, to use this idea of a history of computations
to construct an ABS scheme, we must make sure that the above policy and
accepting states F showing up in the sub-problems (ii) and (iii), respectively,
are certified by the authority. As one may think, the most difficult part of the
sub-problems will turn out to be item (ii). In the following, we first provide a
detailed explanation on how to use the above idea to construct an ABS scheme
for deterministic automata. We then build on that idea to provide an explanation
for the more complex Turing machine.

History of Computations for Finite Automata. Before getting into details,
we define a finite automaton. Informally, a finite automaton M is defined by a
set of states Q, a transition function δ : Q×Σ → Q and a set of accepting states

3 Here, one can think of the “snapshot” as the state the algorithm is in. For example,
a snapshot of a Turing machine is whatever written in the working tape, the state
it is in, and the position of the head. Furthermore, we use the term machine loosely
to express some computational model such as Turing machines or automata.

Attribute-Based Signatures for Unbounded Languages 499

F ⊆ Q, where Σ denotes the input alphabet. Next, we define what a history of
computations is for the case of finite automata. Since a history of computations is
simply a sequence of snapshots of the finite automaton given an attribute string
w = w1 · · · wn, we can express this simply as a sequence of states qinit, q1, . . . ,
qn; the computation starts with the automaton being at the initial state qinit,
then moving to state q1 after reading w1 (i.e., q1 ← δ(qinit, w1)), then moving to
state q2 after reading w2, . . . , and finally reading wn and moving to qn, which is
an accepting state. Here, note that the states Q and the accepting states F are
different for each automaton, and hence must be hidden. In particular, we use
the following as the history of computations for finite automata:

〈qinit, w1, q1 〉 −→ 〈 q1 , w2, q2 〉 −→ · · · −→ 〈 qn−1 , wn, qn 〉, qn ∈ F , (1)

where once again the gray box indicates that they are to be hidden. Informally,
the previous snapshot si now corresponds to 〈qi, wi+1, qi+1〉.

Now that we have defined what the history of computations is, we must show
how to solve the aforementioned problems: Below we look at first how to prove
that each snapshot 〈qi, wi+1, qi+1〉 are valid while hiding the automaton being
used and how the authority certifies the automaton M = (Q, δ, F) to a signer.
A naive approach would be to encode the transition function δ to a single large
input-output table of size |Q| × |Σ| where the entries of the table is of the form
〈q, w, q′〉, sign this large table, and use this signature as a certificate for the signer.
Then, the signer can prove sequentially in zero-knowledge that each snapshot is
included in the table by using a NIZK proof system that supports simple vector-
matrix multiplications.4 However, this table-based approach cannot be secure
because the table is variable-length. Namely, since each automaton may have
different numbers of states |Q|, the size of the tables varies with the automata.
Therefore if we use this variable-length table as a witness for the NIZK proof
system, the length of the proof may also vary. Hence the signature (i.e., the
zero-knowledge proof) leaks information on the automaton. We emphasize that
the anonymity notion for ABS schemes requires that even when two automata
have different numbers of the states, signatures produced by the two different
automata as policies should be indistinguishable from each other, provided that
these two automata accept the same string.

Instead, we let the authority issue the signer a signing key as the set of
signatures on each entry of the table as follows:

{
θq,w = Sign(sk, 〈q, w, δ(q, w)〉)}

(q,w)∈Q×Σ
,

{
θ̄q̄ = Sign(sk, q̄)

}
q̄∈F

.

Here the number of signatures is roughly |Q| × |Σ|. In particular, since Q and Γ
are polynomial sizes in the security parameter, the total number of signatures
is polynomial. Now, proving knowledge of a history of computations becomes
4 In particular, it proves that the table includes an entry of the form 〈q, w, q′〉 while

hiding which entry it is. This can be accomplished by viewing the table as a matrix
and using unit vectors to indicate the row to pick up.

500 Y. Sakai et al.

much simpler; the signer picks the respective signatures θqi,wi+1 from the set of
signatures {θq,w} and proves that they are valid signatures in zero-knowledge
and proves that the final state qn opens to some signature in {θ̄q̄}. The signer
also shows that each transition of the snapshots are consistent with the signer’s
automaton by using the same commitments for each state q ∈ Q and proving
in zero knowledge that the committed signatures are valid. Since the number of
steps it takes for an automaton to terminate is the same as the length of the
input string, the aforementioned problem concerning the variable proof length
is resolved. Finally, a subtle technical detail is that in the actual construction,
the authority includes some nonce in the signatures θq,w and θ̄q̄ so that they are
tied to a unique automaton to prevent collusion attacks.

An informal intuition on the security is as follows: let us consider for a
moment a situation where a malicious signer wants to generate an attribute-
based signature even though the automaton assigned to him does not accept
the attribute string w = w1 · · · wn. In this case, since the automaton does not
accept the attribute string, we have that any sequence qinit, q1, . . . , qn leading
to an accepting state must deviate from δ. Specifically, at least one adjacent
pair (qi, qi+1) must satisfy δ(qi, wi+1) �= qi+1. Since the signer is never issued a
signature on this triple 〈qi, wi+1, qi+1〉, he will not be able to execute the proof
of knowledge.

Extending the Idea to Turing Machines. We now explain our history app-
roach for the case of Turing machines. Again, the goal is to let the authority
certify a signer’s transition function in such a way that the signer can efficiently
prove knowledge of a history of computations.

Firstly we briefly recapitulate the notion of Turing machines. A Turing
machine is specified by a set of state Q, a transition function δ : Q × Γ →
Q × Γ × {left, stay, right}, an initial state qinit ∈ Q, and an accepting state
qacc, where Γ is the tape alphabet. In the following, we assume the initial state
qinit and the accepting state qacc are set to be special symbols that are common
to all Turing machines. Specifically, the set of accepting states F can be made
public. A Turing machine starts its computation with an input w on its working
tape, the head at the leftmost cell. Then the machine moves the head left and
right while rewriting the cells of the working tape one by one. We say the Turing
machine accepts input w if the Turing machine reaches the accept state qacc.

A snapshot of a Turing machine can be identified by specifying (1) the state,
(2) the contents of the working tape, and (3) the position of the head. We encode
this information by a string uqv ∈ Γ ∗ ×Q×Γ ∗ where u, v ∈ Γ ∗ and q ∈ Q. This
encoding specifies that the state is q, the contents of the working tape are uv,
and the head is pointing at the leftmost symbol of v. For example, we encode
a snapshot in which (1) the machine takes the state q ∈ Q, (2) the head is on
the fourth symbol, and (3) the tape contents are w1w2w3w4w5w6 ∈ Γ ∗ by the
encoding

s = w1w2w3 q w4w5w6.

Attribute-Based Signatures for Unbounded Languages 501

Using this encoding, one way to define the history of computations of a Turing
machine is as follows:

qinit w1w2w3w4w5w6 −→ w′
1 q1 w2w3w4w5w6

−→ w′
1w

′
2 q2 w3w4w5w6 −→ · · · −→ qacc w′′

1w′′
2w′′

3w′′
4w′′

5w′′
6 ∈ F.

With this history of computations in hand, we now must resolve the aforemen-
tioned three sub-problems (i), (ii), and (iii), of which the most difficult part is
problem (ii), where we have to prove that adjacent snapshots si−1 −→ si are
valid transitions. In the case of finite automata, the solution was to sign on all
possible pairs of the form 〈q, w, δ(q, w)〉, which specifies that the transition from
q to δ(q, w) is valid. Unfortunately, the simple approach of signing on all pos-
sible valid pairs of snapshots 〈s, t〉 will not work for Turing machines. Due to
the unboundedness of the model of computation, the length of a working tape
is unbounded, and hence there are an unbounded, or even infinite, number of
possible valid pairs of snapshots which the authority must sign.

“Locality of rewriting” is our key insight to overcome this difficulty. To
explain this, let us consider a snapshot s = abcdeqxfg, i.e., the current state
being q, the content written on the tape being abcdexfg, and the head point-
ing to x. For simplicity, in the following argument, we always use a, b, c, d, e, f, g
to denote arbitrary symbols in Γ and use x to denote the symbol which the
Turing machine reads next. Then, if the transition function satisfies δ(q, x) =
(q′, x′, left), the next snapshot would be t = abcdq′ex′fg, where q′ is the next
state and x′ is the symbol written in place of x. Observe that the symbol x′

and its position in t is determined by the two neighbors of the corresponding
positions in s, namely, q and x, as the transition function directs the machine
to rewrite x with x′ and moves the head left. Similarly, the symbol b and its
position in state t is determined by the three neighbors a, c, d in s. Namely,
since none of its three neighbors are pointed by the head in s, the symbol b is
unchanged. In general, any symbol in a succeeding snapshot is determined by
the four neighbors in the current snapshot: the symbol in the same position, its
left symbol, and the two symbols on its right. Figure 1 illustrates all the cases
of the four neighbors determining the symbols in the succeeding snapshot, in
the case that the head moves to left.5 In this figure, the upper tapes denote the
preceding snapshot, while the lower tapes denote its succeeding snapshot. The
grayed boxes in the upper tapes denote the neighbors that determine the grayed
box in the lower line. Although we included both cases 1 and 2 for complete-
ness, the grayed boxes hold the same meaning since all the four neighbors in
the preceding snapshot are constituted only from tape symbols. In particular,
there are 5 cases depending on the position of the state q is in the four preceding
neighbors.

Using this locality of rewriting, the authority signs all the possible occurring
patterns of the above grey boxes, which consists of the four neighbors in the
5 Similar illustrations can be obtained for the case that the head stays and moves to

the right with the same idea.

502 Y. Sakai et al.

a b c d e q x f g

a b c d q′ e x′ f g

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Snapshot s

Snapshot t

a b c d

Case 1

a b c d

b c d e

Case 2

b c d q′

c d e q

Case 3

c d q′ e

d e q x

Case 4

d q′ e x′

e q x f

Case 5

q′ e x′ f

q x f g

Case 6

e x′ f g

Fig. 1. All the patterns of “local” changes when a snapshot s becomes a snapshot t
via a transition δ(q, x) = (q′, x′, left).

preceding snapshot and the one symbol in the succeeding snapshot. In more
detail, in the case that δ(q, x) = (q′, x′, left), the authority signs on the following
five types of tuples:

(a, b, c, d, b),
(c, d, e, q, d),
(d, e, q, x, q′),
(e, q, x, f, e),
(q, x, f, g, x′)

(2)

for all possible choices of a, b, c, d, e, f , and g ∈ Γ .6 Finally, the authority
creates signatures for all possible choices of (q, x) ∈ Q × Γ and provides the set

6 The other two cases right and stay are done similarly.

Attribute-Based Signatures for Unbounded Languages 503

of these signatures to the signer as the signing key. Here, we did not need to
consider the tuple (b, c, d, e, c), since this is captured by the first tuple of Eq. (2).

With this set of signatures, the signer can prove knowledge of a history of
computations

sinit −→ s1 −→ s2 −→ · · · −→ sn

in the following way. For each adjacent snapshots si−1 = u1u2 · · · un and si =
v1v2 · · · vn such that

u1u2 · · · un −→ v1v2 · · · vn ,

the signer proves knowledge of the possession of signatures for the following
tuples:

〈 , u1 , u2 , u3 , v1 〉,
〈 u1 , u2 , u3 , u4 , v2 〉,
〈 u2 , u3 , u4 , u5 , v3 〉,

... ,

〈 un−3 , un−2 , un−1 , un , vn−2 〉,
〈 un−2 , un−1 , un , , vn−1 〉,
〈 un−1 , un , , , vn , 〉.

where denotes the blank symbol included in Γ . This can be done if the tran-
sition si−1 −→ si follows the transition function, since the signer can pick the
signature on each tuple from the signatures signed on the tuples in Eq. (2). This
way, the signer can prove the consistency of transitions, namely, both the fact
that the cells pointed at by the head are rewrote following the transition function
and the fact that the cells not pointed at by the head are untouched. The blank
symbols on the left and right sides of u1u2 · · · un are included in order to also
treat the corner cased where the header points to the leftmost or two rightmost
cells. For a more formal discussion, we refer the readers to the AttrSign algorithm
in Sect. 4.

An intuition on the security is similar to the case of finite automata. Let
us suppose that a malicious signer whose Turing machine does not accept an
attribute string tries to produce the above zero-knowledge proof. In this case, for
any choice of a history of computations, at least one adjacent snapshots si−1 =
u1 · · · un and si = v1 · · · vn deviate from the transition function. Informally, this
would imply that, at least for some vi, the tuple 〈ui−1, ui, ui+1, ui+2, vi〉 does not
match any of the tuples in Eq. (2). Therefore, the malicious signer is not issued
a signature on such a tuple, hence he would not be able to execute the zero-
knowledge proof. The actual proof will be more contrived since we add nonces
in multiple places to prevent mix-and-match attacks.

504 Y. Sakai et al.

Applying the Idea to Nondeterministic Finite Automata. Our approach
can be extended to support nondeterministic finite automata (NFA). Before
we explain how to do so, we first state some difficulty of obtaining ABS for
NFA. A naive idea of converting an NFA into a deterministic finite automaton
(DFA) and then using ABS for DFA (e.g., [NP15]) would not work since the
equivalent DFA would suffer an exponential blowup in the number of states (see,
for example, [Sip96]). Again we cannot rely on expressive zero-knowledge proofs
that can express nondeterministic computation, because such proofs would be
quite expensive, if possible at all.

Instead, we proceed with our idea of a history of computations. In our history
approach, the authority issues a signature for each transition q −→ δ(q, w).
Recall that in a nondeterministic finite automaton, there are multiple choices
of transitions and the actual choice will be chosen nondeterministically. Let us
consider a signer whose automaton has two choices of transition q′ and q′′ when
the automaton is in state q and reading w. Nondeterminism means that if at
least one choice of q′ or q′′ leads to an accepting state, the automaton accepts
the input. Then, if the signer has two signatures on both 〈q, w, q′〉 and 〈q, w, q′′〉,
then the signer can build a history of computations, together with a signature as
in Eq. (1), by choosing either a signature on 〈q, w, q′〉 or a signature on 〈q, w, q′′〉
depending on which choice of the transition leads to an accepting state. Based
on this idea, our scheme for nondeterministic finite automata lets the authority
issue signatures on 〈q, w, q′〉 and 〈q, w, q′′〉 for both q′ or q′′. This way, to sign
with a nondeterministic finite automata, the signer firstly computes a history of
computations nondeterministically, then picks the signatures that correspond to
the nondeterministic transition, and proves the knowledge of such signatures.

The size of signing key is O(|Q|2 ·|Σ|), where |Q| is the number of the states of
the automaton, and |Σ| is the size of the alphabet. The factor |Q|·|Σ| corresponds
to the fact that there are |Q|·|Σ| entries for the transition function, and the other
factor |Q| corresponds to the fact that there are at most |Q| nondeterministic
choices for each entry.

3 Preliminaries

We say that a function f : N → R is negligible if for any c ∈ N there exists x0

satisfying that for any x ≤ x0 it holds that f(x) ≤ 1/xc. We denote by ε the
empty string. For a string u we denote by |u| the length of u. For two strings u
and v we denote by uv the concatenation of u and v. For a set S, we denote by
P(S) the powerset of S.

Turing Machines. We give the definition of Turing machines. We consider
deterministic Turing machines in this paper, but will often omit the word ‘deter-
ministic’.

Definition 1. A Turing machine over the input alphabet {0, 1} is a tuple
(Q,Γ, δ, qinit, qacc, qrej) where

Attribute-Based Signatures for Unbounded Languages 505

– Q is a finite set of the states,
– Γ is a finite set of the tape alphabet which contains symbols 0 and 1, a left

endmarker $, and a blank symbol .
– δ : Q × Γ → Q × Γ × {left, stay, right} is a transition function,
– qinit ∈ Q is the initial state,
– qacc ∈ Q is the accept state, and
– qrej ∈ Q is the reject state, qrej �= qacc.

We require that the states and the tape alphabet do not intersect, namely,
Q∩Γ = ∅. We also require that all Turing machines do not rewrite the left end-
marker $ with another symbol and do not move the head beyond the endmarker.
Formally, we require that the transition function satisfies δ(q, $) = (q′, $, right)
or δ(q, $) = (q′, $, stay) for any q and some q′. Furthermore, we require that
once the machine reaches to either the accept state qacc or the reject state qrej,
the machine never moves to another state, namely, δ(qacc, x) = (qacc, x, stay)
and δ(qrej, x) = (qrej, x, stay) for any x ∈ Γ .

We define the notion of a configuration. A configuration describes the entire
snapshot of the machine and the tape, including the state q ∈ Q, the contents
of the tape, and the position of the head. Formally, we say that a string t ∈
Γ ∗ × Q × Γ ∗ is a configuration of a Turing machine. In a configuration t, the
string obtained by removing the unique q ∈ Q describes the contents of the tape.
The occurrence of q simultaneously describes the state of the machine and the
position of the head. The occurrence q specifies q as the current state of the
machine, and also specifies the symbol at the right of q as the position of the
head.

We then formally define the notion of transition.

Definition 2. Let M = (Q,Γ, δ, qinit, qacc, qrej) be a Turing machine and s =
uzqxv be a configuration for it, where u, v ∈ Γ ∗, z ∈ Γ ∪ {ε}, and q ∈ Q. We
denote s −→

M
t if one of the followings holds.

1. δ(q, x) = (q′, x′, left) and t = uq′zx′v,
2. δ(q, x) = (q′, x′, stay) and t = uzq′x′v,
3. δ(q, x) = (q′, x′, right), and t = uzx′q′v.

We denote by −→
M

∗ the reflexive transitive closure of −→
M

. We say that a Turing

machine M = (Q,Γ, δ, qinit, qacc, qrej) accepts w ∈ {0, 1}∗ if

qinit$w · · · −→
M

∗ qaccv

for some v ∈ Γ ∗ and sufficiently long · · · .7 Here we assume that all Turing
machines halt after moving its head to the leftmost symbol.

During the computation of a Turing machine M , if the current configuration
t is uqxv where u, v ∈ Γ ∗, x ∈ Γ , and q ∈ Q, we say that the machine reads
7 Since our definition of transition does not automatically expand the tape with blank

symbols, we need to explicitly pad with blank symbols. The length can be bounded
by the number of the steps until the machine halts.

506 Y. Sakai et al.

the symbol x, or the symbol x is being read. Furthermore, if the machine makes
a transition uqv −→

M
u′q′v′, where u, v, u′, v′ ∈ Γ ∗ and q, q′ ∈ Q, then we say

that the machine moves from the state q to the state q′.

Attribute-Based Signatures. We then define the syntax of attribute-based
signatures for Turing machines. A formal treatment on Turing machines can
be found in Sect. 3. An attribute-based signature scheme for Turing machines
consists of the following four algorithms.

AttrSetup(1k) → (pp,msk). The setup algorithm takes as an input a security
parameter 1k and outputs a public parameter pp and a master secret key
msk.

AttrGen(pp,msk,M) → sk. The key generation algorithm takes as inputs a public
parameter pp, a master secret key msk, and a description of a Turing machine
M and outputs a signing key sk.

AttrSign(pp, sk, T, w,m) → σ. The signing algorithm takes as inputs a public
parameter pp, a signing key sk, an upper bound T for the running time of the
Turing machine, a string w ∈ {0, 1}∗, and a message m ∈ {0, 1}∗ and outputs
a signature σ.

AttrVerify(pp, T, w,m, σ) → 1/0. The verification algorithm takes as inputs a
public parameter pp, an upper bound T for the running time, a string w, and
a message m and outputs a bit 1 or 0.

As the correctness condition, we require that for any k ∈ N, any (pp,msk) ←
AttrSetup(1k), any Turing machine M , any sk ← AttrGen(pp,msk,M), any
T ∈ N, any string w ∈ {0, 1}∗ which is accepted by M within T steps,
any message m ∈ {0, 1}∗, and any σ ← AttrSign(pp, sk, T, w,m) it holds that
AttrVerify(pp, T, w,m, σ) = 1.

We then define two security requirements for attribute-based signature
schemes. The first requirement is anonymity, which requires that no informa-
tion on the Turing machine used to generate a signature does leak. The other
requirement is unforgeability. It requires that no collusion can generate a signa-
ture under attributes, if their policies do not accept the attributes.

Definition 3. An attribute-based signature scheme is perfectly anonymous, if
for any k ∈ N, any (pp,msk) ← AttrSetup(1k), any Turing machines M0 and M1,
any sk0 ← AttrGen(pp,msk,M0) and sk1 ← AttrGen(pp,msk,M1), any T ∈ N,
any string w ∈ {0, 1}∗ which is accepted within T steps by both M0 and M1,
and any message m ∈ {0, 1}∗, the distributions AttrSign(pp, sk0, T, w,m) and
AttrSign(pp, sk1, T, w,m) are identical, where the probability is taken over the
randomness of the AttrSign algorithm.

Definition 4. An attribute-based signature scheme is unforgeable if for any
probabilistic polynomial-time adversary A the probability that the adversary A
wins in the following game against a challenger is negligible in k.

Attribute-Based Signatures for Unbounded Languages 507

1. The challenger generates a public parameter pp and a master secret key msk
by running (pp,msk) ← AttrSetup(1k). The challenger maintains a set of
pairs of the form (M, sk) where M is a Turing machine and sk is a signing
key. It is initially set to ∅. The challenger sends pp to the adversary A.

2. Then the adversary A is allowed to issue key generation queries and signing
queries.
– For a key generation query M , the challenger searches for a tuple (M, sk)

in the set. If it is not found, the challenger generates a signing key sk
by running sk ← AttrGen(pp,msk,M) and stores (M, sk) in the set. The
challenger returns sk to the adversary A.

– For a signing query (M,T,w,m), the challenger verifies that M termi-
nates within T steps on input w. If not, it returns ⊥. Then the chal-
lenger searches for a tuple (M, sk) in the set. If it is not found, the chal-
lenger generates a signing key sk by running sk ← AttrGen(pp,msk,M)
and stores (M, sk) in the set. The challenger generates a signature by
running σ ← AttrSign(pp, sk, T, w,m) and returns σ to the adversary A.

3. The adversary A outputs (T ∗, w∗,m∗, σ∗) and halts.
4. The adversary A wins the game if the following conditions hold: (i)

AttrVerify(pp, T ∗, w∗,m∗, σ∗) = 1; (ii) the adversary A did not issue any key
generation M which accepts w∗ within time T ∗; (iii) the adversary A did not
issue a signing query (M,T ∗, w∗,m∗) for any M .

Bilinear Groups. A bilinear group parameter generation algorithm G takes
a security parameter 1k as an input and outputs a bilinear group parameter
gk = (p,G1,G2,GT , e, g, g̃) where p is a prime, G1, G2, and GT are order-p
multiplicative groups, e : G1 ×G2 → GT is a non-degenerate bilinear map, and g
and g̃ is generators of G1 and G2. Our concrete scheme is based on the symmetric
external Diffie-Hellman (SXDH) assumption. We omit the formal definitions of
this assumption due to the page limitation.

Groth-Sahai Proofs. The Groth-Sahai proof system [GS12] is a non-
interactive proof system which can prove the satisfiability of algebraic equations
over bilinear groups called pairing product equations. A pairing product equation
has a form of

n∏

i=1

e(Ai,Yi)
m∏

i=1

e(Xj ,Bj)
n∏

i=1

m∏

j=1

e(Xi,Yj)γi,j = T,

where Ai ∈ G1, Bj ∈ G2, γi,j ∈ Zp, and T ∈ GT are public constants, and
Xj ∈ G1 and Yi ∈ G2 are secret assignments.

The Groth-Sahai proof system consists of the five algorithms WISetup,
WIProve, WIVerify, ExtSetup, and Extract. The common reference string gen-
eration algorithm WISetup takes as an input a bilinear group parameter gk and
outputs a common reference string crs. The proof algorithm WIProve takes as
inputs a common reference string crs, a statement (public constants) x, and a

508 Y. Sakai et al.

witness (secret assignments) w, and outputs a proof π. The verification algo-
rithm WIVerify takes as inputs a common reference string crs, a statement x,
and a proof π and outputs a bit 1 or 0. The extractable common reference string
generation algorithm takes as an input a bilinear group parameter gk and out-
puts an extractable common reference string crs and an extraction key ek. The
extraction algorithm Extract takes as inputs an extractable common reference
string crs, an extraction key ek, a statement x, and a proof π and outputs a
witness w. As the correctness condition, we require that for any k ∈ N, any
gk ← G(1k), any crs ← WISetup(gk) any statement x and its witness w, it
holds that WIVerify(crs, x,WIProve(crs, x, w)) = 1. The formal definitions of the
security of proof systems are postponed to the full version.

The Groth-Sahai proof system proves the satisfiability of the pairing product
equations in the following way. Firstly, the proof algorithm generates commit-
ments to each element of the satisfying assignment. Secondly, it generates proof
components which prove the satisfying assignments behind the commitments
surely satisfies the statement in question. We call these commitments generated
in the proving process Groth-Sahai commitments. The Groth-Sahai proof sys-
tem can be instantiated from the SXDH assumption. In this case, a Groth-Sahai
commitment is constituted by two source group elements for each witness ele-
ment, and a proof component is constituted by eight group elements for each
pairing product equation. See [GS12] for further details.

Structure-Preserving Signatures. A structure-preserving signature scheme
consists of the three algorithms Kg, Sign, and Verify. The key generation algo-
rithm takes as an input a bilinear group parameter gk and a message-length 1n

and outputs a verification key vk and a signing key sk. The signing algorithm Sign
takes as inputs a signing key sk and a message m ∈ G1

n and outputs a signature
θ. The verification algorithm Verify takes as inputs a verification key vk, a mes-
sage m, and a signature θ and outputs a bit 1 or 0. As the correctness condition,
we require that for any k ∈ N, any n ∈ N, any gk ← G(1k), any (vk, sk) ← Kg(gk),
and any m ∈ G1

n, it holds that Verify(vk,m,Sign(sk,m)) = 1. In addition, we
require that the verification algorithm consist of the set of pairing-product equa-
tions, which enables us to prove the knowledge of signatures on either public or
secret messages. Such a structure-preserving signature scheme can be instanti-
ated from the SXDH assumption [KPW15]. The formal definition of unforge-
ability and an instantiation of a structure-preserving signature scheme from the
SXDH assumption is postponed to the full version.

Collision-Resistant Hash Functions. A hash function family consists of the
two algorithms H and Hash. The hashing key generation algorithm H takes as an
input a security parameter 1k and outputs a hashing key hk. The deterministic
hashing algorithm Hash takes as inputs a hashing key hk and a message m ∈
{0, 1}∗ and outputs a hash value h. We say that a hash function family is collision
resistant if for any probabilistic polynomial-time algorithm A the probability
Pr[hk ← H(1k); (m,m′) ← A(hk) : Hash(hk,m) = Hash(hk,m′)] is negligible

Attribute-Based Signatures for Unbounded Languages 509

in k. We assume that the length of a hash value h is determined only from a
security parameter k. We denote by
 this length of a hash value.

4 Attribute-Based Signatures for Turing Machines

Notations. In our scheme, given a Turing machine that describes a policy, we
need to modify this Turing machine slightly in order to resist chosen-message
attacks. The input of the modified Turing machine consists of two parts. The first
is the hash value of the message to be signed, while the other is an actual input to
the original (unmodified) Turing machine. The modified Turing machine ignores
the first part and accepts the input if and only if the original Turing machine
accepts the latter part of the input.

The formal definition is as follows. For a Turing machine M , we denote by
M another Turing machine obtained by the following modifications to M . Let
h = h1 · · · h� ∈ {0, 1}� be a string (a hash value) of length
. Let w be the original
input to M .

– M begins with the configuration qinit$hw.
– It skips the input h. More precisely, in the notation of configurations, it runs

the computations in the following sequence:

qinit$h1 · · · h�w −→
M

$q1h1 · · · h�w −→
M

· · · −→
M

$h1h2 · · · h�−1q�h�w.

– It rewrites h� with $. More formally,

$h1h2 · · · h�−1q�h�w −→
M

$h1h2 · · · h�−1q�+1$w

where q�+1 serves as a simulated M ’s initial state.
– It starts the simulation of M using the new $ as M ’s endmarker and w as

M ’s input.
– If the simulated M accepts w, M moves the head to its endmarker $ as

qacc$h1 · · · h�−1$u.

for some u and accepts hw. Otherwise M rejects hw.

Construction. In the construction of our scheme, we assume that the tape
alphabet is a subset of {0, 1, . . . , (p − 1)/2}, and the set of states is a subset of
{−1,−2, . . . ,−(p−1)/2}, where p is the order of the underlying bilinear groups.
Furthermore, we assume that the initial state qinit, the accept state qacc, and the
reject state qrej is respectively equal to −1, −2, and −3. For brevity, we denote
a group element [a]1 ∈ G1 as [a]. The description of our scheme is as follows.

AttrSetup(1k). Given the security parameter 1k, generate a bilinear group param-
eter gk ← G(1k), a witness-indistinguishable common reference string for
Groth-Sahai proofs crs ← WISetup(gk), two key pairs of the structure-
preserving signature scheme (vk, sk) ← Kg(gk, 16), and a hashing key hk ←
H(1k). Set pp ← (gk, crs, vk, hk) and msk ← sk, and output (pp,msk).

510 Y. Sakai et al.

AttrGen(pp,msk,M). Given a public parameter pp, a master secret key msk, and
a description M of a Turing machine, let M = (Q,Γ, δ, qinit, qacc, qrej) be the
modified Turing machine as defined above. Choose a random integer τ ← Zp.8

Then generate the following set of signatures.9

– For all a, b, c, and d ∈ Γ , generate

θ�a, b, c, d� ← Sign(sk, ([τ], [a], [b], [c], [d], [b])). (3)

– For all c, d, e ∈ Γ , and q ∈ Q, generate

θ�c, d, e, q� ← Sign(sk, ([τ], [c], [d], [e], [q], [d])). (4)

– For all q ∈ Q and x, d, e, f , and g ∈ Γ , generate the following signatures.
• If δ(q, x) = (q′, x′, left), generate

θ�d, e, q, x� ← Sign(sk, ([τ], [d], [e], [q], [x], [q′])), (5)
θ�e, q, x, f� ← Sign(sk, ([τ], [e], [q], [x], [f], [e])), (6)
θ�q, x, f, g� ← Sign(sk, ([τ], [q], [x], [f], [g], [x′])). (7)

• If δ(q, x) = (q′, x′, stay), generate

θ�d, e, q, x� ← Sign(sk, ([τ], [d], [e], [q], [x], [e])),
θ�e, q, x, f� ← Sign(sk, ([τ], [e], [q], [x], [f], [q′]),
θ�q, x, f, g� ← Sign(sk, ([τ], [q], [x], [f], [g], [x′]).

• If δ(q, x) = (q′, x′, right), generate

θ�d, e, q, x� ← Sign(sk, ([τ], [d], [e], [q], [x], [e]),
θ�e, q, x, f� ← Sign(sk, ([τ], [e], [q], [x], [f], [x′]),
θ�q, x, f, g� ← Sign(sk, ([τ], [q], [x], [f], [g], [q′]).

Output the signing key sk as

sk = (M, τ, (θ�a, b, c, d�)(a,b,c,d)∈Γ×Γ×Γ×Γ ,

(θ�c, d, e, q�)(c,d,e,q)∈Γ×Γ×Γ×Q,

(θ�d, e, q, x�)(d,e,q,x)∈Γ×Γ×Q×Γ ,

(θ�e, q, x, f�)(e,q,x,f)∈Γ×Q×Γ×Γ ,

(θ�q, x, f, g�)(q,x,f,g)∈Q×Γ×Γ×Γ).

8 This extra component of the messages is for resisting collusion attacks. Without this
component, colluding signers may produce a forgery of the attribute-based signature
scheme by mixing their certificates and forming a history of transitions that is not
allowed to each of the signers.

9 See Fig. 1 and Eq. (2) for intuition. The five tuples in Eq. (2) are implemented in
Eqs. (3)–(7) for the case that the head moves to left. The other two cases are imple-
mented similarly.

Attribute-Based Signatures for Unbounded Languages 511

AttrSign(pp, sk, T, w,m). Let T̃ be the upper bound of M ’s required steps for
simulating M ’s computation up to T steps.
1. Compute h ← Hash(hk, 〈T,w,m〉).
2. Let t0 = qinit$hw()T̃−|h|−|w|. Compute the sequence of configurations of

M as
t0 −→

M
t1 −→

M
· · · −→

M
tT̃

that reaches to the accept state qacc, where tT̃ = qaccu for some u. Let
ti = ti,0 · · · ti,T̃+1. Let ti,−1 = ti,T̃+2 = ti,T̃+3 = for each i ∈ {0, . . . , T̃}.

3. Let

θi,j ← θ�ti,j−1, ti,j , ti,j+1, ti,j+2�

for each i ∈ {0, . . . , T̃ − 1} and each j ∈ {0, . . . , T̃ + 1}.
4. Compute

– a Groth-Sahai commitment ψ(τ) to [τ],
– Groth-Sahai commitments ψ

(t)
i,j to [ti,j] for all10 i ∈ {1, . . . , T̃} and

j ∈ {0, . . . , T̃ + 1} except for tT̃ ,0, which is equal to qacc and thus
treated as a public constant, and

– Groth-Sahai commitments ψ
(θ)
i,j to θi,j for all11 i ∈ {0, . . . , T̃ − 1} and

j ∈ {0, . . . , T̃ + 1}.
5. Generate a Groth-Sahai proof πi,j for the equation

Verify(vk, ([τ], [ti,j−1], [ti,j], [ti,j+1], [ti,j+2], [ti+1,j]), θi,j) = 1

for each i ∈ {0, . . . , T̃ − 1} and j ∈ {0, . . . , T̃ + 1}.
6. Output the signature σ as

σ =
(

ψ(τ), (ψ(t)
i,j)(i,j)∈{1,...,T̃}×{0,...,T̃+1}\{(T̃ ,0)},

(ψ(θ)
i,j)(i,j)∈{0,...,T̃−1}×{0,...,T̃+1},

(πi,j)(i,j)∈{0,...,T̃−1}×{0,...,T̃+1}

)
.

AttrVerify(pp, T, w,m, σ). Compute h ← Hash(hk, 〈T,w,m〉) and verify all the
proofs in σ under this T , w, m, and h. Here to verify that the initial con-
figuration is valid and that the last state is qacc, the initial configuration
t0 = qinit$hw()T̃−|h|−|w| and the state qacc of the last configuration are
treated as public constants in the proofs. If all the proofs are verified as
valid, output 1. Otherwise output 0.

10 We do not need ψ
(t)
i,j for i = 0, since these cases correspond to the initial configura-

tion, which is public.
11 We do not need ψ

(θ)
i,j for i = T̃ , since these commitments are used to bind a config-

uration ti and the next configuration ti+1, but tT̃ is the last configuration.

512 Y. Sakai et al.

5 Security of Our Scheme

In this section, we provide the security proof of our main scheme.
Before the proof of the main theorem, we introduce a notion of an authorized

pair of configurations and present a lemma related to authorized pairs.

Definition 5. Let M = (Q,Γ, δ, qinit, qacc, qrej) be a Turing machine. Let s =
s0 · · · sT̃+1 and t = t0 · · · tT̃+1 be strings of alphabets Q ∪ Γ such that s ∈ Γ ∗ ×
Q × Γ ∗. Let s−1 = sT̃+2 = sT̃+3 = t−1 = tT̃+2 = tT̃+3 = . Let q be the state
of s and let x be the symbols that the head is reading in s. We say that the pair
(s, t) is authorized at position j with respect to M if

– It holds that δ(q, x) = (q′, x′, left) and (sj−1, sj , sj+1, sj+2, tj) is equal to
either of the following:

(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, q′), (e, q, x, f, e) or (q, x, f, g, x′)

for some a, b, c, d, e, f , and g ∈ Γ .
– It holds that δ(q, x) = (q′, x′, stay) and (sj−1, sj , sj+1, sj+2, tj) is equal to

either of the following:

(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, e), (e, q, x, f, q′), or (q, x, f, g, x′)

for some a, b, c, d, e, f , and g ∈ Γ .
– It holds that δ(q, x) = (q′, x′, right) and (sj−1, sj , sj+1, sj+2, tj) is equal to

either of the following:

(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, e), (e, q, x, f, x′), or (q, x, f, g, q′)

for some a, b, c, d, e, f , and g ∈ Γ .

When (s, t) is authorized at position j with respect to M due to one of the tuples
of the above forms, we also say that the symbol tj is authorized by that tuple.

The following lemma plays an important role during the security proof. At a high
level, it allows us to argue about valid transitions by only considering authorized
configuration pairs.

Lemma 1. Let M be a Turing machine and let s = s0 · · · sT̃+1 and t =
t0 · · · tT̃+1 be strings in (Q ∪ Γ)∗. If s �−→

M
t and s ∈ Γ ∗ × Q × Γ ∗, then there is

a position j such that (s, t) is not authorized at position j with respect to M .

Proof. We prove the contraposition. Namely, assuming (s, t) is authorized at all
positions j ∈ {0, . . . , T̃ + 1} with respect to M , we will prove that either s �−→

M
t

or s �∈ Γ ∗ × Q × Γ ∗ holds. Toward this end we assume that (s, t) is authorized
at all positions j ∈ {0, . . . , T̃ + 1} with respect to M and that s ∈ Γ ∗ × Q × Γ ∗

and will prove that s −→
M

t.

Let us set
s = uzqxv

Attribute-Based Signatures for Unbounded Languages 513

where u ∈ Γ ∗, z ∈ Γ ∪{ε}, q ∈ Q, x ∈ Γ , and v ∈ Γ ∗. Without loss of generality
we assume that if u = ε, then z = ε. Since (s, t) is authorized by M , we have
that |s| = |t|. Thus we can set

t = u′ζηχv′

where |u′| = |u|, |ζ| = |z|, |η| = 1, |χ| = 1, |v′| = |v|. Similarly, we assume that
if ζ = ε, then u′ = ε.

– Suppose δ(q, x) = (q′, x′, left). Firstly it does not occur that (u, z) = (ε, ε),
since in this case the head does not move left. Hence we have that z �= ε.

• All the symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d),
and hence u′ = u.

• The symbol ζ is authorized by (d, e, q, x, q′), and hence ζ = q′.
• The symbol η is authorized by (e, q, x, f, e), and hence η = z.
• The symbol χ is authorized by (q, x, f, g, x′), and hence χ = x′.
• All the symbols in v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uq′zx′v, and thus s −→
M

t.

– Suppose δ(q, x) = (q′, x′, stay).
• All symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d), and

hence u′ = u.
• The symbol ζ is authorized by (d, e, q, x, e), and hence ζ = z.
• The symbol η is authorized by (e, q, x, f, q′), and hence η = q′.
• The symbol χ is authorized by (q, x, f, g, x′), and hence χ = x′.
• All the symbols in v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uzq′x′v, and thus s −→
M

t.

– Suppose δ(q, x) = (q′, x′, right).
• All symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d), and

hence u′ = u.
• The symbol ζ is authorized by (d, e, q, x, e), and hence ζ = z.
• The symbol η is authorized by (e, q, x, f, x′), and hence η = x′.
• The symbol χ is authorized by (q, x′, f, g, q′), and hence χ = q′.
• All the symbols v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uzx′q′v, and thus s −→
M

t.

Hence, since we have s −→
M

t for all cases, the lemma holds. ��

The main theorem is as follows.

Theorem 1. Assuming the Groth-Sahai proof system is perfectly witness indis-
tinguishable and computationally extractable, the structure-preserving signa-
ture scheme is existentially unforgeable, and the hash function family is colli-
sion resistant, the attribute-based signature scheme is perfectly anonymous and
unforgeable.

Instantiating all the primitives from the SXDH assumption, we have the following
as a corollary.

514 Y. Sakai et al.

Corollary 1. If the SXDH assumption holds for G, our instantiation is perfectly
anonymous and unforgeable.

We then prove the main theorem.

Theorem 2. Assuming the Groth-Sahai proof system is perfectly witness indis-
tinguishable, the attribute-based signature scheme is perfectly anonymous.

Proof. The theorem immediately follows from the witness indistinguishability
of the proof system. Fix two Turing machines M0 and M1 that accept a string
w ∈ {0, 1}∗ within T steps. Since both machines accept the same string, and both
M0 and M1 halt with the same time T̃ , we have two sequences of configurations

t0 −→
M0

t1 −→
M0

· · · −→
M0

tT̃

for M0 and
s0 −→

M1

s1 −→
M1

· · · −→
M1

sT̃

for M1, in which t0 = s0. Since the public constants in the proofs, in particular
the initial configuration and the accept state qacc, are determined by t0 for M0

and s0 for M1, the two proofs share the same public constants. Therefore, thanks
to the witness indistinguishability of the proof system, both proofs are equally
distributed. ��
Theorem 3. Assuming the Groth-Sahai proof system is perfectly witness indis-
tinguishable and computationally extractable, the structure-preserving signature
scheme is existentially unforgeable, and the hash function family is collision resis-
tant, the attribute-based signature scheme is unforgeable.

Proof. For a given hash value h ∈ {0, 1}�, we define a Turing machine M [h] as
follows: It compares the first
 symbols of the input with the hardwired hash
value h; if they are identical, it moves its head to the endmarker and accepts the
input, otherwise rejects the input.

Let us consider the following sequence of games.

Game 0. This is identical to the game in the definition of unforgeability.
Game 1. In the response to each signing query (M,T,w,m), the challenger

uses the Turing machine M [h] where h ← Hash(hk, 〈T,w,m〉) instead of M .
Namely, every time (M,T,w,m) is queried, the challenger generates a signing
key for M [h] and use this signing key to generate a signature to be returned
to the adversary. The signing key for M [h] will be generated every time a
query is issued, and will not be reused.

Game 2. In this game, we add the following additional clause to the winning
condition: (iv) the adversary A did not issue any signing query (M,T,w,m)
that satisfies Hash(hk, 〈T,w,m〉) = Hash(hk, 〈T ∗, w∗,m∗〉).

Game 3. In the response to either key generation queries or signing queries,
the random integer τ ← Zp is equal to any of the responses to the previous
queries, the challenger returns ⊥.

Attribute-Based Signatures for Unbounded Languages 515

Game 4. In this game the challenger replaces the common reference string crs
in the public parameter pp with the extractable one crs ← ExtSetup(gk).

Let us denote by Wi the event that the winning conditions are satisfied in
Game i. From the triangle inequality, we have that

Pr[W0] =
4∑

i=1

(Pr[Wi−1] − Pr[Wi]) + Pr[W4] ≤
4∑

i=1

|Pr[Wi−1] − Pr[Wi]| + Pr[W4].

(8)
To complete the proof, we then need to bound each term in this inequality.

Lemma 2. Assuming the witness indistinguishability of the Groth-Sahai proof
system, |Pr[W0] − Pr[W1]| = 0.

Proof (of Lemma 2). Observe that in both games the challenger proves the same
set of equalities regardless of which Turing machine is used to generate a signing
key. Therefore, due to the perfect witness indistinguishability of the proof system,
the challenger’s responses are equally distributed. Thus the lemma holds. ��
Lemma 3. Assuming the collision resistance of the hash function family, we
have that |Pr[W1] − Pr[W2]| is negligible.

Proof (of Lemma 3). Let F2 be the event that the winning conditions (i), (ii),
and (iii) are satisfied but the condition (iv) is not satisfied. From the difference
lemma we have that |Pr[W1] − Pr[W2]| ≤ Pr[F2]. To bound this probability,
we construct an algorithm which attacks the collision resistance of the hash
function family. The construction is as follows: The algorithm takes as input a
hashing key hk; using this hashing key, the algorithm sets up the rest of the
components of pp and sends it to A; the algorithm keeps the signing key of
the structure-preserving signature scheme; key generation queries and signing
queries are dealt with as in the description of the games using the signing key
of the structure-preserving signature scheme; when the adversary halts with an
output (T ∗, w∗,m∗, σ∗), the algorithm searches for a signing query (T,w,m)
that satisfies Hash(hk, 〈T,w,m〉) = Hash(hk, 〈T ∗, w∗,m∗〉); if a query is found,
the algorithms outputs (〈T,w,m〉, 〈T ∗, w∗,m∗〉) as a collision. Let us argue that
whenever F2 occurs the algorithm breaks the collision resistance of the hash
function family. Since we have that the winning condition (iv) is not met, the
algorithm successfully finds a query (T,w,m) that satisfies Hash(hk, 〈T,w,m〉) =
Hash(hk, 〈T ∗, w∗,m∗〉). Since we also have that the winning condition (iii) is
met, we have that 〈T,w,m〉 �= 〈T ∗, w∗,m∗〉. Therefore, we have that whenever
F2 occurs, the algorithm successfully breaks the collision resistance of the hash
function family. This implies that the probability Pr[F2] is negligible. ��
Lemma 4. The quantity |Pr[W2] − Pr[W3]| is negligible.

Proof (of Lemma 4). Let F3 be the event that any of the integers τ gen-
erated in either key generation queries or signing queries is equal to any of

516 Y. Sakai et al.

the integers generated in the previous queries. From the difference lemma we
have that |Pr[W2] − Pr[W3]| ≤ Pr[F3]. Let F3,i be the event that the inte-
ger in the i-th (key generation or signing) query is equal to any of the inte-
gers in the previous queries. Hence F3 = F3,1 ∨ · · · ∨ F3,q where q is the total
of the numbers of the key generation and signing queries. Then we have that
Pr[F3] ≤ ∑q

i=1 Pr[F3,i] =
∑p

i=1
i−1
p = q(q−1)

2p , which is negligible. ��
Lemma 5. Assuming the computational extractability of the Groth-Sahai proof
system, we have that |Pr[W3] − Pr[W4]| is negligible.

Proof (of Lemma 5). Given an adversary A that plays either Game 3 or Game 4,
we can construct an algorithm B that distinguishes a witness-indistinguishable
common reference string from an extractable one. The construction of B is as
follows: B is given a common reference string crs, and then it sets up all the other
components of the public parameter pp; B runs the adversary A with its input
pp; when A issues a key generation or a signing query, it responds as described
in the games using the signing key of the structure-preserving signature, which
was generated by B itself; when A halts, B outputs a bit 1 if the winning con-
ditions are satisfied, otherwise outputs 0. Since the simulation of Game 3 and
Game 4 is perfect, and then by the extractability of the Groth-Sahai proof sys-
tem, |Pr[W3] − Pr[W4]| is negligible. ��

Finally, we bound the probability Pr[W4].

Lemma 6. Assuming the unforgeability of the structure-preserving signature
scheme, we have that Pr[W4] is negligible.

Proof (of Lemma 6). In Game 4, let us consider having the challenger extract
the witness behind the forgery (T ∗, w∗,m∗, σ∗). Let us denote this witness as

[τ∗], ([t∗
i,j])(i,j)∈{1,...,T̃ ∗}×{0,...,T̃ ∗+1}\{(T̃ ∗,0)},

([θ∗
i,j])(i,j)∈{0,...,T̃ ∗−1}×{0,...,T̃ ∗+1}, (9)

where T̃ ∗ is the upper bound for the running time determined by T ∗.
Given this notion, let us consider the following algorithm B which internally

simulates Game 4 and attacks the existential unforgeability of the structure-
preserving signature scheme: Given a verification key vk of the signature scheme
as an input, B sets up the rest of the public parameter pp of the attribute-based
signature scheme as in Game 4; then B runs A providing pp as A’s input; when
A issues a key generation query or a signing query, B issues signing queries to
its own challenger, and using the challenger’s responses to answer A’s query as
described in Game 4; once A halts with a forgery (T ∗, w∗,m∗, σ∗), B extracts
an entire witness from this forgery; finally, B searches the set of the witness for
a forgery of the structure-preserving signature scheme; if a forgery is found, B
outputs this forgery, otherwise outputs ⊥.

Notice that in this construction of B, due to the computational extractability
of the Groth-Sahai proof system, whenever A satisfies the winning condition,

Attribute-Based Signatures for Unbounded Languages 517

B successfully obtains a witness that satisfies the proved equations. Therefore,
to complete the proof, we argue that whenever B successfully obtains a witness, B
successfully outputs a forgery against the structure-preserving signature scheme.
This implies that Pr[W4] is negligible, which concludes the proof.

The argument proceeds with a case analysis. Let us consider the following
conditions.

1. The extracted τ∗ is equal to one of the random integer τ generated in a
response to a key generation query.

2. The extracted τ∗ is equal to one of the random integer τ generated in a
response to a signing query.

3. The extracted τ∗ is equal to none of the above two types of τ ’s.

These three cases are clearly comprehensive. In the last case, any of the witness
θ∗

i,j , that is a part of the extracted witness as above, serves as a valid forgery
against the underlying signature scheme, since B only issues signing queries
which do not include τ∗ in the messages.

Next, we argue that in the first two cases B successfully outputs a forgery.
Let us set h∗ = Hash(hk, 〈T ∗, w∗,m∗〉). Suppose the first case has occurred.

Let M be the Turing machine that is used in the response to the key generation
query whose random integer τ is equal to τ∗. Due to the change introduced in
Game 3, there is a unique key generation query that satisfies this. Because of the
winning condition (ii), we have that M does not accept w∗ in time T ∗, hence M
does not accepts h∗w∗ in time T̃ ∗ where T̃ ∗ is the upper bound of the running
time of M constructed from M . In this case, B issues a set of signing queries that
corresponds to the transition function of M , which B then provides as the signing
key to A. Suppose the second case has occurred. Let (M,T,w,m) be the signing
query where B uses τ∗ as the random integer to create the signature. By the
change we made in Game 3, there exists at most one signing query that satisfies
this. In this case, owing to the change we made in Game 1, to respond to this
signing query, B uses the Turing machine M [h] where h = Hash(hk, 〈T,w,m〉).
Due to the winning conditions (iii) and (iv), the Turing machine M [h] does not
accept h∗w∗, since M [h] accepts h∗w∗ only when h∗ = h, but h∗ �= h. Note that
similarly to the first case, B issues a set of signing queries that corresponds to
the transition function of M [h] to its own challenger.

In any case, B only issues a set of signing queries which correspond to some
Turing machine M∗ (which is either M or M [h] mentioned above) that does not
accept h∗w∗. From now on we will argue that in these cases there is a signature
θ∗ in the extracted θ∗

i,j ’s whose message is not issued by B as a signing query to
its own challenger.

Let t∗i = t∗i,0 · · · t∗
i,T̃ ∗+1

for all i ∈ {0, . . . , T̃}. Notice that t∗0 is the valid
initial configuration of M∗ with input h∗w∗, and t∗

T̃ ∗ is the configuration whose
state is qacc. Then since M∗ does not accept h∗w∗, there exists i that satisfies
t∗i �−→

M∗
t∗i+1. Let i∗ be the smallest index satisfying t∗i∗ �−→

M∗
t∗i∗+1. Observe that

t∗0 ∈ Γ ∗ × Q × Γ ∗ and that t∗0 −→
M∗

t∗1 −→
M∗

· · · −→
M∗

t∗i∗ . It is trivial to check that, if

s −→
M∗

t, and s ∈ Γ ∗ × Q × Γ ∗, then t ∈ Γ ∗ × Q × Γ ∗, since a state cannot split

518 Y. Sakai et al.

into two states as long as s −→
M∗

t. Therefore, we have that t∗i∗ ∈ Γ ∗ ×Q×Γ ∗ and

that t∗i∗ �−→
M∗

t∗i∗+1, and hence we can apply Lemma 1. Lemma 1 ensures that the

pair (t∗i∗ , t∗i∗+1) is not authorized at some position j∗ with respect to M∗. Since
B only issues signing queries of the forms that appear in Definition 5, the tuple
(τ∗, t∗i∗,j∗−1, t

∗
i∗,j∗ , t∗i∗,j∗+1, t

∗
i∗,j∗+2, t

∗
i∗+1,j∗) is never issued as a signing query by

B. Thus θ∗
i∗,j∗ is a valid forgery for the structure-preserving signature scheme.

To sum up, in any case, that A satisfies the winning conditions, B success-
fully finds a forgery. Therefore, the probability Pr[W4] is negligible due to the
unforgeability of the structure-preserving signature scheme. ��

Finally, we have that all the terms in Eq. (8) are negligible, which implies
that Pr[W0] is negligible. ��

6 Attribute-Based Signature Scheme
for Nondeterministic Finite Automata

In this section, we present an attribute-based signature scheme for nondetermin-
istic finite automata. As mentioned in the introduction, this is the first scheme
supporting nondeterministic computation as the policy. The syntax and security
definitions are similar to those of Turing machines, thus we defer those definitions
to the full version.

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

Fig. 2. An example of NFA: it accepts all strings over {0, 1} containing a 1 in the third
position from the last.

6.1 Nondeterministic Finite Automata

We give a syntactic definition of finite automata. Let Σ be a finite set of alphabet.

Definition 6. A nondeterministic finite automaton (NFA) over Σ is defined by
the tuple M = (Q, δ, q0, F) where: (1) Q is a finite set of states, (2) δ : Q×Σ →
P(Q) is a transition function, (3) q0 ∈ Q is the initial state, and (4) F ⊆ Q
is a set of accepting states. We say that a nondeterministic finite automaton
M = (Q, δ, q0, F) accepts a string w = w1 · · · wn if there exists a sequence
(r0, r1, . . . , rn) of states satisfying (1) r0 = q0, (2) δ(ri−1, wi) � ri for all
i ∈ {1, . . . , n}, and (3) rn ∈ F .

Attribute-Based Signatures for Unbounded Languages 519

q000 q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 3. The smallest DFA that is equivalent to the NFA of Fig. 2.

We remark that the above definition does not allow an automaton to have
ε-transitions, i.e., a transition which moves to a new state without reading a
symbol. However, it is well known that we can convert any nondeterministic
finite automata having ε-transitions into a nondeterministic finite automaton
which falls into the above definition, without increasing the number of the states.

For self-containment and ease of understanding, we provide an example of
NFA in Fig. 2. This NFA accepts all strings over {0, 1} containing a 1 in the third
position from the last. It is well known that any NFA can be converted into an
equivalent DFA but with an exponential blowup in the number of states (see,
for example, [Sip96]). We provide in Fig. 3 such an equivalent DFA to the NFA
of Fig. 2. These examples are copied almost verbatim from Sipser’s book [Sip96].

6.2 Notations

We define some notations. For an alphabet Σ, let Σ̂ be Σ∪{−1,−2}. We assume
that the hash function Hash has as its range {−1,−2}� instead of {0, 1}� to
separate the alphabet for hash values from the alphabet for attribute strings.
For an NFA M = (Q, δ, q0, F), we define an NFA M̂ = (Q, δ̂, q0, F) over Σ̂ as
follows:

δ̂(q, w) =

{
δ(q, w) (w ∈ Σ),
{q} (w ∈ {−1,−2}).

6.3 The Scheme

The construction of our scheme is as follows.

AttrSetup(1k, 1N). Given a security parameter 1k and the size 1N of an alphabet,
generate a bilinear group parameter gk = (p,G1,G2,GT , e, g, g̃) ← G(1k),
a common reference string crs ← WISetup(gk), two key pairs (vkδ, skδ) ←
Kg(gk, 14) and (vkF , skF) ← Kg(gk, 12) of the structure-preserving signature,
and a hashing key hk ← H(1k). Let pp ← (N, gk, crs, vkδ, vkF , hk) and msk ←
(skδ, skF) and output (pp,msk).

520 Y. Sakai et al.

AttrGen(pp,msk,M). Let M̂ be (Q, δ̂, q0, F). Choose a random integer t ← Zp.
For all q ∈ Q, all w ∈ Σ̂, and all q′ ∈ δ̂(q, w) generate a structure-preserving
signature θ�q, w, q′� on the message

([t], [q], [w], [q′])

by running θ�q, w, q′� ← Sign(vkδ, skδ, ([t], [q], [w], [q′])). For all q ∈ F generate
a structure-preserving signature ρ�q� on the message

([t], [q])

by running ρ�q� ← Sign(vkρ, skρ, ([t], [q])). Let sk be

(M, t, (θ�q, w, q′�)q∈Q,w∈Σ̂,q′∈δ̂(q,w), (ρ�q�)q∈F)

and output sk.
AttrSign(pp, sk, w,m). Let w1 · · · wn be w.

1. Compute h ← Hash(hk, 〈w,m〉). Let ŵ = ŵ1 · · · ŵn+� be wh.
2. Let (q̂0, q̂1, . . . , q̂n+�) be one of the sequence of the states that M̂ takes

when M̂ accepts ŵ.
3. Let θ̂i be θ�q̂i−1, ŵi, q̂i� for each i ∈ {1, . . . , n +
}.
4. Let ρ̂ be ρ̂�q̂n+��.
5. Compute

– a Groth-Sahai commitment ψ(t) to [t],
– a Groth-Sahai commitment ψ

(q)
i to [q̂i] for each i ∈ {1, . . . , n +
},

– a Groth-Sahai commitment ψ
(θ)
i to θ̂i for each i ∈ {1, . . . , n +
}, and

– a Groth-Sahai commitment ψ(ρ) to ρ̂.
6. Compute a proof π

(θ)
i of the equation

Verify(vkδ, ([t], [q̂i−1], [ŵi], [q̂i]), θ̂i) = 1

for each i ∈ {1, . . . , n +
}.
7. Compute a proof π(ρ) of the equation

Verify(vkF , ([t], [q̂n+�]), ρ̂) = 1.

8. Let σ be

(ψ(t), ψ
(q)
1 , . . . , ψ

(q)
n+�, ψ

(θ)
1 , . . . , ψ

(θ)
n+�, ψ

(ρ), π
(θ)
1 , . . . , π

(θ)
n+�, π

(ρ))

and output σ.
AttrVerify(pp, w,m, σ). Compute h ← Hash(hk, 〈w,m〉) and let ŵ be wh. Under

this ŵ verify all the proofs included in σ where the initial state q0 is treated
as a public constant in the non-interactive proofs. If all the proofs are verified
as valid, output 1. Otherwise output 0.

The security of the scheme is postponed to the full version.

Attribute-Based Signatures for Unbounded Languages 521

7 Conclusion

In this paper, we formalize a new cryptographic primitive, attribute-based sig-
natures for Turing machines. We also present an efficient instantiation of this
primitive using the Groth-Sahai proof system, a structure-preserving signature
scheme, and a collision-resistant hash function family. In addition, we present an
attribute-based signature scheme for NFA, which is more efficient than our first
scheme, while less expressive. These two schemes provide a trade-off between
efficiency and expressiveness.

Acknowledgment. The first author is supported by JSPS KAKENHI Grant Number
18K18055. The second author was partially supported by JST CREST Grant Number
JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603. The first, third, and
fourth authors are partially supported by JST CREST Grant Number JPMJCR1688.

References

[AS16] Ananth, P., Sahai, A.: Functional encryption for turing machines. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 6

[BF14] Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 30

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 29

[DDM17] Datta, P., Dutta, R., Mukhopadhyay, S.: Attribute-based signatures for
Turing machines. Cryptology ePrint Archive, Report 2017/801 (2017).
http://eprint.iacr.org/2017/801

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 30

[GS12] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[KPW15] Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard
assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 14

[MPR11] Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 24

[NP15] Nandi, M., Pandit, T.: On the power of pair encodings: Frameworks for
predicate cryptographic primitives. Cryptology ePrint Archive, Report
2015/955 (2015). http://eprint.iacr.org/

[OT11] Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-
monotone predicates in the standard model. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8 3

https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
http://eprint.iacr.org/2017/801
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-642-19074-2_24
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-19379-8_3

522 Y. Sakai et al.

[SAH16] Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for
circuits from bilinear map. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 283–300. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7 11

[Sip96] Sipser, M.: Introduction to the Theory of Computation, 1st edn. Interna-
tional Thomson Publishing, Stamford (1996)

[SSN09] Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures
and their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2 13

[TLL14] Tang, F., Li, H., Liang, B.: Attribute-Based Signatures for Circuits from
Multilinear Maps. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu,
S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 54–71. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13257-0 4

https://doi.org/10.1007/978-3-662-49384-7_11
https://doi.org/10.1007/978-3-642-02384-2_13
https://doi.org/10.1007/978-3-319-13257-0_4

Asiacrypt 2018 Award Paper II

Learning Strikes Again: The Case
of the DRS Signature Scheme

Yang Yu1(B) and Léo Ducas2

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

yang.yu0986@gmail.com
2 Cryptology Group, CWI, Amsterdam, The Netherlands

ducas@cwi.nl

Abstract. Lattice signature schemes generally require particular care
when it comes to preventing secret information from leaking through sig-
nature transcript. For example, the Goldreich-Goldwasser-Halevi (GGH)
signature scheme and the NTRUSign scheme were completely broken
by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt
2006). Several heuristic countermeasures were also shown vulnerable to
similar statistical attacks.

At PKC 2008, Plantard, Susilo and Win proposed a new variant of
GGH, informally arguing resistance to such attacks. Based on this vari-
ant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete
signature scheme, called DRS, that has been accepted in the round 1 of
the NIST post-quantum cryptography project.

In this work, we propose yet another statistical attack and demon-
strate a weakness of the DRS scheme: one can recover some partial infor-
mation of the secret key from sufficiently many signatures. One difficulty
is that, due to the DRS reduction algorithm, the relation between the
statistical leak and the secret seems more intricate. We work around this
difficulty by training a statistical model, using a few features that we
designed according to a simple heuristic analysis.

While we only recover partial information on the secret key, this infor-
mation is easily exploited by lattice attacks, significantly decreasing their
complexity. Concretely, we claim that, provided that 100 000 signatures
are available, the secret key may be recovered using BKZ-138 for the
first set of DRS parameters submitted to the NIST. This puts the secu-
rity level of this parameter set below 80-bits (maybe even 70-bits), to be
compared to an original claim of 128-bits.

Keywords: Cryptanalysis · Lattice based signature
Statistical attack · Learning · BDD

1 Introduction

At Crypto’97, Goldreich, Goldwasser and Halevi proposed the encryption and
signature schemes [16] whose security relies on the hardness of lattice problems.
Concurrently, a practical scheme, NTRUEncrypt was proposed, and adapted
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 525–543, 2018.
https://doi.org/10.1007/978-3-030-03329-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_18&domain=pdf

526 Y. Yu and L. Ducas

for signatures a few years later (NTRUSign [18]). In 2006, Nguyen and Regev
presented a celebrated statistical attack [23] and completely broke GGH and
NTRUSign in practice. The starting point of NR attack is a basic observation
that any difference between signature and message always lies in the paral-
lelepiped spanned by secret key. Thus each signature leaks partial information
about the secret key, which allows to fully recover the secret key from sufficiently
many signatures. In 2012, Ducas and Nguyen revisited NR attack [13] and showed
that it could be generalized to defeat several heuristic countermeasures [18,19].

Designing secure and efficient lattice based signatures remains a challenging
problem. To get rid of information leaks, the now standard method is to use
a delicate sampling algorithm for trapdoor inversion [15,25].1 Following such
setting, it can be proved that signatures are independent of the secret key. Yet
this provable guarantee doesn’t come cheap in terms of efficiency and simplicity:
it remains very tempting to make more aggressive design choices.

Such a design was proposed by Plantard, Susilo and Win [27]. It is very
close to the original GGH scheme, with a modified reduction algorithm that
produces signatures falling in a known hypercube, independent of the secret key.
According to the authors, such property should prevent the NR attack. The
main idea of [27] is to reduce vectors under �∞-norm instead of Euclidean norm.
Recently, Plantard, Sipasseuth, Dumondelle and Susilo updated this scheme, and
submitted it to the NIST post-quantum cryptography project, under the name of
DRS [26], standing for Diagonal-dominant Reduction Signature. Currently DRS
is in the list of round 1 submissions to the NIST post-quantum cryptography
project.

Our results. In this work, we present a statistical attack against the DRS
scheme [26,27]. We first notice that while the support of the transcript dis-
tribution is indeed fixed and known, the distribution itself is not, and is related
to the secret key. More concretely, in the DRS signature, the reduction algorithm
will introduce some correlations among coordinates wi’s of the signature, and
these correlations are strongly related to certain coefficients of the secret key S.

In more details, we assume that the coefficient Si,j can be well approximated
by some function of the distribution of (wi, wj) and proceed to profile such a
function according to known instances (the training phase). Once we have the
function, we can measure over sufficient signatures and obtain the guess for an
unknown secret S.

With a few extra amplification tricks, we show this attack to be rather effec-
tive: for the first set of parameters, 100 000 signatures suffice to locate all the
large coefficients of the secret matrix S and to determine most of their signs as
well. Finally, we can feed this leaked information back into lattice attacks (BDD-
uSVP attack), significantly decreasing their cost. Concretely, we claim that the
first set of parameters offers at most 80-bits of security, significantly less than
the original claim of 128-bits.

1 Alternatively, one may resort to the (trapdoorless) Fiat-Shamir with aborts approach
such as done in [12,21], yet for simplicity, we focus our discussion on the Hash-then-
Sign approach.

Learning Strikes Again: The Case of the DRS Signature Scheme 527

As a by-product, we formalize how to accelerate BDD attack when given some
known coefficients of the solution. More specifically, we are able to construct a
lattice of the same volume but smaller dimension for this kind of BDD instances.

Our scripts are open source for checking, reproduction or extension purposes,
available at https://github.com/yuyang-Tsinghua/DRS Cryptanalysis.

Related work. Very recently, Li, Liu, Nitaj and Pan proposed a chosen message
attack [17] against the randomized version of Plantard-Susilo-Win GGH signa-
ture variant [27]. Their starting observation is that the difference between two
signatures of a same message is a relatively short lattice vector in the randomized
Plantard-Susilo-Win scheme, then from enough such short lattice vectors one
may recover some short vectors of the secret matrix by lattice reduction. The
randomized modification is a crucial weakness of Plantard-Susilo-Win scheme
exploited by the attack in [17]. To fix such weakness, the authors mentioned two
strategies: storing previous messages and padding a random nonce in the hash
function. In comparison, our targeted scheme and technical idea are different
from those in [17]. More importantly, the weakness of the DRS scheme that we
demonstrate does not seem to be easily fixed.

Roadmap. In Sect. 2, we introduce notations and background on lattices. In
Sect. 3, we provide a brief description of DRS signature scheme. Then we explain
how to learn large coefficients of the secret matrix in Sect. 4, and how to com-
bine partial information and lattice techniques to recover the full key in Sect. 5.
Finally, we conclude and discuss potential countermeasure in Sect. 6.

2 Preliminaries

We use bold lowercase letters for vectors and denote by vi the i-th entry of the
vector v. We denote by ‖v‖ (resp. ‖v‖∞) the Euclidean norm (resp. �∞-norm)
of v. For simplicity and matching programming, we assume the script of each
entry of v ∈ R

n is an element of Zn = {0, · · · , n − 1}.
Let roti(v) = (v−i, · · · , v−i+n−1) be a rotation of v ∈ R

n. We denote by
sroti(v) the vector generated by roti(v) with each entry changing the sign
independently with probability 1/2. We define the set

T (n, b,Nb, N1) =

⎧
⎪⎨

⎪⎩
v ∈ Z

n
∣
∣
∣

Nb entries equal b;

v is a vector with exactly N1 entries equal 1;

and the rest of entries equal 0.

⎫
⎪⎬

⎪⎭
.

We use bold capital letters for matrices and denote by vi the i-th row of the
matrix V, i.e. V = (v0, · · · ,vn−1). We use Vi,j to represent the entry in the
i-th row and j-th column of V. Let In be the n-dimensional identity matrix.
We denote by ROT(v) (resp. SROT(v)) the matrix (rot0(v), · · · , rotn−1(v))
(resp. (srot0(v), · · · , srotn−1(v))). Note that all sroti(v)’s in SROT(v) are
generated independently. A matrix V is diagonal dominant if Vi,i >

∑
j �=i |Vi,j |

for all i.

https://github.com/yuyang-Tsinghua/DRS_Cryptanalysis

528 Y. Yu and L. Ducas

For a distribution D, we write X ← D when the random variable X is
sampled from D. Given a finite set S, let U(S) be the uniform distribution over
S. We denote by E(X) the expectation of random variable X.

A (full-rank) n-dimensional lattice L is the set of all integer combinations of
linearly independent vectors b0, · · · ,bn−1 ∈ R

n, i.e. L = {
∑n−1

i=0 xibi | xi ∈ Z}.
We call B = (b0, · · · ,bn−1) a basis of L and write L = L(B). For a unimodular
matrix U ∈ Z

n×n, we have UB is also a basis of L(B), i.e. L(B) = L(UB). Let
(b∗

0, · · · ,b∗
n−1) be the Gram-Schmidt vectors of B. The volume of the lattice

L(B) is vol(L(B)) =
∏

i ‖b∗
i ‖ that is an invariant of the lattice. Given L ⊆ R

n

and t ∈ R
n, the distance between t and L is dist(t,L) = minv∈L ‖t − v‖.

Lattice reduction is an important tool for solving lattice problems and esti-
mating the security of lattice-based cryptosystems. The goal of lattice reduction
is to find a basis of high quality. The quality of a basis B is related to its root

Hermite factor rhf(B) =
(

‖b0‖
vol(L(B))1/n

)1/n

. Currently, the most practical lattice
reduction algorithms are BKZ [28] and BKZ 2.0 [10]. We denote by BKZ-β the
BKZ/BKZ 2.0 with blocksize β. In general, we assume the root Hermite factor
of a BKZ-β basis is bounded by

δβ ≈
(

(πβ)
1
β β

2πe

) 1
2(β−1)

when n � β > 50.

3 The DRS Signature Scheme

In this section, we are to make a brief description of the DRS scheme. We may
omit some details that are unnecessary for understanding our attack. For more
details on the algorithms and implementations we refer to [26].

To start with, we introduce several public parameters of DRS:

– n : the dimension
– D : the diagonal coefficient of the secret key
– b : the magnitude of the large coefficients (i.e. {±b}) in the secret key
– Nb : the number of large coefficients per vector in the secret key
– N1 : the number of small coefficients (i.e. {±1}) per vector in the secret key

Following the setting provided in [26], the parameter D is chosen to be n and
satisfies that D > b · Nb + N1.

The secret key of DRS is a matrix

S = D · In − M

where M = SROT(v) with v ← U (T (n, b,Nb, N1)
⋂

{v ∈ Z
n | v0 = 0}) is the

noise matrix. It is easily verified that S is diagonal dominant. The public key is
a matrix P such that L(P) = L(S) and the vectors in P are much longer than
those in S.

Learning Strikes Again: The Case of the DRS Signature Scheme 529

Hash space. The specification submitted to the NIST [26] is rather unclear
about the message space. Namely, only a bound of 228 is mentioned, which
suggests a hash space M = (−228, 228)n, following the original scheme [27].
Yet, we noted that the implementation seems to instead use the message space
M = (0, 228)n: the sign randomization is present, but commented out. Discus-
sion with the designers2 led us to consider this as an implementation bug, and
we therefore focus on the analysis with M = (−228, 228)n, following both the
original scheme [27] and the intention of [26].

We strongly suspect that taking M = (0, 228)n would not be an effective
countermeasure against the kind attack analyzed in this paper. Preliminaries
experiments on this variant suggested that leak was stronger, but its relation to
the secret key seemed more intricate.

For our experiments, we generated directly uniform points in that space
rather than hashing messages to this space; according to the Random Oracle
Model, this should make no difference.

Signature. The signature algorithm of DRS follows the one in [27] and its main
component is a message reduction procedure in �∞-norm. It is summarized below
as Algorithm 1.

Algorithm 1. Message reduction in DRS signature algorithm
Input: a message m ∈ Z

n, the secret matrix S
Output: a reduced message w ∈ Z

n such that w − m ∈ L(S)
1: w ← m, i ← 0, k ← 0
2: repeat
3: q ← �wi/D�→0, (Rounding toward 0)
4: if q �= 0 then
5: w ← w − qsi

6: k = 0
7: end if
8: k ← k + 1, i ← (i + 1) mod n
9: until k = n

10: return w

In brief, the message reduction is reducing successively each large coefficient
mi of the message m by qD such that |mi − qD| < D but adding ±q,±qb to
mj with j �= i according to the entries of M, until all coefficients of the reduced
message are within (−D,D). Since S is diagonal dominant, the message can be
reduced within bounded steps as proved in [26,27].

Besides the reduced message w, an auxiliary vector k is also included in the
signature and used to accelerate the verification. To verify the signature, one
would first check whether ‖w‖∞ < D and then check whether m − w = kP.
In later discussions, we shall ignore the auxiliary vector, because it can be cal-
culated in polynomial time from w,m and the public key P.
2 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/official-comments/DRS-official-comment.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DRS-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DRS-official-comment.pdf

530 Y. Yu and L. Ducas

4 Learning Coefficients of the Secret Matrix

All DRS signatures w lie in and fill the region (−D,D)n. Unlike the GGH
scheme, the signature region is a known hypercube and independent of the secret
matrix, thus the DRS scheme was deemed to resist statistical attacks. However,
the distribution of random signature in (−D,D)n may be still related to the
secret key, which would leak some key information.

In later discussion, we aim at a concrete parameter set

(n,D, b,Nb, N1) = (912, 912, 28, 16, 432)

that is submitted to the NIST and claimed to provide at least 128-bits of security
in [26].

4.1 Intuition on a Potential Leak

Our approach is to try to recover Si,j by studying the distribution Wi,j of
(wi, wj). Indeed, when a reduction happens at index i: w ← w − qsi, and when
Si,j �= 0 some correlation is introduced between wi and wj . Symmetrically,
correlation is also introduced when Sj,i �= 0. Another source of correlations is
created by other reductions at index k �∈ {i, j} when both Sk,i and Sk,j are non-
zero; these events create much less correlations since the diagonal coefficients are
much larger, but those correlations accumulate over many k’s. One is tempted to
model the accumulated correlations as those of some bi-variate Gaussians with
a certain covariance.

Of course, there are complicated “cascading” phenomena: by modifying a
coefficient, a reduction may trigger another reduction at an other index. But let
us ignore such phenomena, and just assume that several reductions at indices
k �= i, j occur, followed by one reduction at index i with q = ±1, before the
algorithm terminates. We depict our intuition as Fig. 1.

In this simple model, we note that there are 4 degrees of liberty, 3 for the
shape of the ellipsoid, and 1 for Si,j = −b, 0, b.3 Therefore, one may expect to be
able to recover all the parameters using 4 statistical measures. One natural choice
is the following. First, measure the covariance matrix of the whole distribution,
which gives 3 parameters. Assuming the clipped caps have small weights, this
would roughly give the shape of the ellipsoid. For the last measure, one would
select only sample for which |wi| is small, so as to focus on the superimposed
displaced caps. With a bit of effort one would find an appropriate measurement.

Unfortunately, it seems rather hard to determine mathematically what will
precisely happen in the full reduction algorithm, and to construct by hand a
measurement on the distribution of (wi, wj) directly giving Si,j , i.e. a function
f such that f(Wi,j) = Si,j .

3 In fact, two of those degrees are fixed by the shape of the secret matrix: each rows
of S has fixed Euclidean length, fixing the variance of wi and wj .

Learning Strikes Again: The Case of the DRS Signature Scheme 531

Fig. 1. Figures in the second row show the regions to which (wi, wj) in two cap regions
will be moved by reduction at index i when Si,j = −b, 0, b respectively from left to
right.

4.2 Training

While constructing such a function f by a mathematical analysis may be hard,
our hope is that such function may be easy to learn using standard techniques,
ranging from least-square method to convolutional neural networks. Indeed,
going back to Fig. 1, recovering Si,j from Wi,j can essentially be viewed as a
grey-scale image classification problem (the lightness of the pixel (x, y) corre-
sponding to the density of Wi,j at (x, y)).

Features. We therefore proceed to design a few features, according to the intu-
ition built above. The average of each wi is supposed to be 0, thus we do not
treat it as a feature. Certainly, the covariance information is helpful, but we
also introduce extra similar statistics to allow the learning algorithm to han-
dle extra perturbations not captured by our simple intuition. We restrict our
features to being symmetric: a sample (x, y) should have the same impact as
(−x,−y). Indeed, while quite involved, the whole reduction process preserves
this symmetry.

More specifically, by scaling a factor of D, consider the distribution W
to have support (−1, 1)2. For a function f over (−1, 1)2, we write f(W) =
E(x,y)←W (f(x)). The features mentioned before are listed below4:

– f1(W) = D · E(x,y)←W (x · y);
– f2(W) = D · E(x,y)←W (x · |x|1/2 · y);
– f3(W) = D · E(x,y)←W (x · |x| · y);

4 We introduced a re-normalization factor D in our experiments. We keep it in this
paper for consistency.

532 Y. Yu and L. Ducas

We could go on with higher degrees, but this would cause some trouble.
First, higher degree moments converge much slower. Secondly, taking too many
features would lead to over-fitting.

Then, following our intuition, we want to also consider features that focus
on the central region. Still, we do not want to give too much weight to samples
with x very close to 0. Indeed, there will be some extra perturbation after the
reduction at index i, which could flip the sign of x. A natural function to take
this into account is the following.

– f4(W) = D · E(x,y)←W (x(x − 1)(x + 1) · y). 5

The most contributing sample will be the one for which x = ±1/
√

3, and it is not
clear that this is the optimal range to select. We therefore offer to the learning
algorithm a few variants of the above that select samples with smaller values of
x, hoping that it can find a good selection by combining all of them:

– f5(W) = D · E(x,y)←W (2x(2x − 1)(2x + 1) · y | |2x| ≤ 1);
– f6(W) = D · E(x,y)←W (4x(4x − 1)(4x + 1) · y | |4x| ≤ 1);
– f7(W) = D · E(x,y)←W (8x(8x − 1)(8x + 1) · y | |8x| ≤ 1);

For any function f over R2, we call f t : (x, y) �→ f(y, x) the transpose of f . So
far, we have introduced 13 different features, i.e. f1, · · · , f7 and their transposes
f8 = f t

2, · · · , f13 = f t
7.

6 We plot these functions in Fig. 2.

Fig. 2. The color matrices for f1, · · · , f7. For any pixel at (x, y), its color is red (full-line
contour), blue (dashed-line contour) when fi(x, y) > 0, ≤ 0 respectively. The deeper
the color is, the larger |fi(x, y)| is. (Color figure online)

5 As we are only going to consider linear models in our features, we could equivalently
replace this feature by E(x,y)←W (x3 · y) because of the presence of f1.

6 Since f1 is a symmetric function of (wi, wj), we did not count its transpose.

Learning Strikes Again: The Case of the DRS Signature Scheme 533

Generating data. Then, we proceed to measure each Wi,j for known values of
Si,j , say, using 400 000 samples for each key S, and using 30 different keys S. This
is implemented by our script gen training.py. This took about 38 core-hours.

Training. We naturally considered using advanced machine learning techniques
(support vector regression [7], random forest regression [20] and artificial neural
networks) to construct a model, with the precious support of Han Zhao. Despite
some effort, he was unable to find a method that outperforms what we achieved
with a linear model f =

∑13
�=1 x�f� trained using the least-square fit method.

Yet his exploration was certainly far from exhaustive, and we do not conclude
that least-square fit is the best method.

Evaluating and refining our model. After preliminary experiments, we noted that,
depending on their position i− j, some coefficients Si,j seem easier to learn than
others. In this light, it is not clear that one should use the same function f for all
indices i, j. Instead, we constructed two functions f+ =

∑
x+

� f�, f− =
∑

x−
� f�

respectively for indices such that i− j mod n ≥ n/2 and i− j mod n < n/2. The
model obtained by the least-square fit method is provided in Table 1 and plotted
in Fig. 3. Moreover, the distributions of f+(Wi,j), f−(Wi,j) for Si,j = ±b,±1, 0
are illustrated in Figs. 4 and 5.

Table 1. The model trained from 30 keys and 400 000 signatures per key. This is
implemented by our script gen model.py.

i 1 2 3 4 5 6 7

x−
i −48.3640 354.9788 −289.1598 58.7149 −3.7709 −2.9138 2.3777

i 8 9 10 11 12 13

x−
i −21.2574 6.6581 3.5598 1.0255 0.4835 −0.3637

i 1 2 3 4 5 6 7

x+
i −67.9781 324.8442 −248.7882 44.6268 −4.1116 −2.6163 2.8288

i 8 9 10 11 12 13

x+
i −9.0923 3.1639 −0.8145 0.5204 0.3486 0.4920

Fig. 3. The left graph is the color matrix for f−, and the right one is for f+. (Color
figure online)

534 Y. Yu and L. Ducas

Fig. 4. The distributions of f−(Wi,j), f+(Wi,j) for Si,j = ±b, ±1, 0. The upper one
corresponds to f− and the lower one corresponds to f+. Experimental values measure
over 20 instances and 400 000 samples per instance.

Learning Strikes Again: The Case of the DRS Signature Scheme 535

Fig. 5. The impact from sample sizes on the measured distributions of f−(Wi,j),
f+(Wi,j). The left graphs correspond to f− and the right graphs correspond to f+.
The upper graphs measure over 20 instances and 400 000 samples per instance, and the
lower graphs measure over 20 instances and 50 000 samples per instance.

Remark 1. For other set of parameters, or even to refine our attack and recover
more secret information, it is of course possible to cut our modeling in more than
2 pieces, but this requires more training data, and therefore more computational
resources.

Remark 2. As shown in Figs. 4 and 5, predicted values f(Wi,j) for large coef-
ficients are usually of larger size than those for −1, 0, 1. Compared with large
coefficients far from the main diagonal, those near the main diagonal tend to
be predicted as a number of larger size. Furthermore, the variances of f(Wi,j)
decrease with sample size growing, which provides a sanity check for our models.

4.3 Learning

Following the previous method, we obtain a matrix S′ consisting of all guesses
of Si,j ’s.7 While clear correlations between the guess S′ and S were observed,
the guess was not good enough by itself for the limited number of samples that

7 We ignore diagonal elements because they are public.

536 Y. Yu and L. Ducas

we used. In the following, we exploit the “absolute-circulant” structure of the
secret key to improve our guess. The experimental results described below are
based on our script attack.py.

Determining the locations. Notice that all Si,j ’s in a same diagonal are of the
same absolute value, hence we used a simple trick to enhance the contrast
between large and small coefficients. It consists in calculating

Wk =
n−1∑

i=0

S′2
i,(i+k) mod n

as the weight of the k-th diagonal. Since we used two different features for
coefficients near/far from the main diagonal, for better comparison, the first
n/2−1 weights were scaled by their maximum and so were the last n/2 weights.
We denote by W−

k the first n/2−1 scaled weights and by W+
k the last n/2 ones.

As illustrated in Fig. 6, the scaled weights of those diagonals consisting of
large coefficients are significantly larger than others. A straightforward method
to locate large coefficients is to pick the Nb largest scaled weights.

Fig. 6. Large coefficients and scaled weights. Experimental values measure over 400 000
samples.

Verified by experimental results, we were able to perfectly locate all large
coefficients, provided we collected sufficient signatures. For different sample size,
i.e. the number of signatures, we respectively tested 20 instances and checked the
accuracy of locations for large coefficients. All experimental data is illustrated
in Table 2.

Determining the signs. We straightforward assumed the sign of measured feature
f(Wi,j) is the same as that of Si,j , when Si,j = ±b. Unlike guessing locations,
we could not recover all signs of large coefficients exactly, but as the sample
size grows, we were still able to get a high accuracy, denoted by p. Then, we

Learning Strikes Again: The Case of the DRS Signature Scheme 537

Table 2. Experimental measure of location accuracy. The column, labeled by K/16,
shows the number of tested instances in which the largest Nb scaled weights corre-
sponded to exactly K large coefficient diagonals.

#signs 13/16 14/16 15/16 16/16

50 000 5 3 6 6

100 000 - - - 20

200 000 - - - 20

400 000 - - - 20

Table 3. Experimental measures for pl, pu, p and prow. All values measure over 20
instances.

#signs pl pu p prow

400 000 0.9975 0.9939 0.9956 0.9323

200 000 0.9920 0.9731 0.9826 0.7546

100 000 0.9722 0.9330 0.9536 0.4675

50 000 0.9273 0.8589 0.8921 0.1608

may expect to recover all signs of large coefficients in each row exactly with a
probability prow = pNb (in our case Nb = 16).

Moreover, we noticed that the accuracy of guessing signs for large coefficients
in the lower triangle, i.e. Si,j with i > j, is higher than that for large coefficients
in the upper triangle, thus we denote by pl and pu the accuracy corresponding
to the lower and upper triangle. That may suggest us to guess the signs of large
coefficients from the last row to the first row. Table 3 exhibits the experimental
data for pl, pu, p and prow.

Comparing guessing locations, guessing signs is much more sensitive to the
number of signatures. That is because the sign information of Si,j only comes
from f(Wi,j) rather than all features in the same diagonal so that it requires a
more precise measurement. Furthermore, we tried a modified model for guessing
signs: in training phase, we mapped Si,j to �Si,j/b� and then find x�’s determin-
ing the global feature. Intuitively, the modified model further emphasizes large
coefficients, but it performed almost the same as the current model in practice.

5 Exploiting Partial Secret Key Knowledge in Lattice
Attacks

Using the technique described in last section, we are able to recover exactly all
off-diagonal large coefficients in a row, with high probability (in addition to the
diagonal coefficient D). First, we show how to adapt the BDD-uSVP attack, by
exploiting the known coefficients of a row sk to decrease the distance of the BDD
target to the lattice, making the problem easier. Then, we show a more involved

538 Y. Yu and L. Ducas

version, where we also decrease the dimension of the lattice while maintaining its
volume. While not much is gained to recover a first secret row sk, this technique
makes guessing the rest of the key much faster.

In later discussion, assume that we have already successfully determined all
−b, b and D coefficients in sk. Let M = {m0, · · · ,mNb

} be the set of all m’s such
that Sk,m ∈ {−b, b,D} where m0 < · · · < mNb

. We still focus on the concrete
parameter set (n,D, b,Nb, N1) = (912, 912, 28, 16, 432).

5.1 Direct BDD-uSVP Attack

Let t ∈ Z
n such that, if |Sk,i| > 1, ti = Sk,i, otherwise ti = 0, then dist(t,L) =√

N1. We construct a new lattice L′ with a basis

P′ =
(

t 1
P 0

)

∈ Z
(n+1)×(n+1),

we have vol(L′) = vol(L) ≈ Dn and L′ contains a vector of Euclidean norm√
N1 + 1 � D. Thus, to recover sk, it suffices to solve uSVP on L′.

New estimations of the blocksize required by BKZ to solve uSVP were given
in [4] and have been confirmed by theoretical analysis and experiments in [2].
Following these results, we claim that sk could be recovered by BKZ-β when β
satisfies: √

β

n + 1
·
√

N1 + 1 ≤ δ2β−n−1
β · D

n
n+1 .

We conclude that running BKZ-β with β = 146 should be sufficient to break
the scheme. Typically [1,8], it is estimated that BKZ-β converges after about 16
tours, therefore making 16(n + 1) calls to SVP-β:

CBKZ-β = 16(n + 1) · CSVP-β .

Though the factor 16 may shrink by increasing the blocksize β′ progressively
from 2 to β. Estimation of the cost of CSVP-β varies a bit in the literature,
also depending on the algorithm used. The standard reference for estimating the
cost enumeration is [10], which gives a cost of 20.270β lnβ−1.019β+16.10 [3,9] clock-
cycles. Alternatively, the Gauss-Sieve algorithm [22] with dimension for free and
other tricks showed a running time of 20.396β+8.4 clock cycles [11].

Those two methods lead respectively to estimates of 278 and 280 clock-cycles
to recover one secret row. One could of course repeat the attack over each row,
but below, we present a strategy that slightly reduces the cost of guessing a first
row, and greatly reduces the cost of guessing all the other rows.

Remark 3. These numbers are likely to be over-estimates. Indeed, while cost
predictions have not been provided, the enumeration algorithms have been sped
up in practice recently with the discrete-pruning technique [5,14,29]. Unfortu-
nately, the record timing on SVP challenges up to SVP-150 are difficult to use, as
they only solve SVP up to an approximation factor of 1.05, which is significantly

Learning Strikes Again: The Case of the DRS Signature Scheme 539

easier than the exact SVP typically used in BKZ. Similarly, avenues for improve-
ments are discussed in [11], such as using a faster sieve, or amortizing certain
costs inside the BKZ loop. Moreover, a long-standing question remains open:
could it be more efficient to use an approx-SVP oracle with a larger blocksize in
BKZ to achieve similar reduction faster.

5.2 BDD-uSVP Attack with Dimension Reduction

Next we detail how to also reduce the dimension of L′ but maintain its volume,
when exploiting known coefficients of a BDD solution.

Let H = (hi,j)i,j be the HNF (Hermite Normal Form) of P satisfying:

– hi,i > 0;
– hj,i ∈ Zhi,i

for any j > i.
– hj,i = 0 for any j < i.

Let I = {i | hi,i > 1}. In general, |I| is very small (say ≤ 5), for example |I| = 1
if det(H) is square-free. Thus we have, with a high probability, that I ∩ M = ∅,
i.e. hm,m = 1 for any m ∈ M . If not so, we choose another row sk′ of S. Let
{l0, · · · , ln−2−Nb

} = Zn \ M where l0 < · · · < ln−2−Nb
.

Let H′ = (h′
i,j)i,j be a matrix of size (n − Nb − 1) × (n − Nb − 1), in which

h′
i,j = hli,lj . Let a = (a0, · · · , an−Nb−2) where ai =

∑
m∈M Sk,mhm,li . Let L′ be

the lattice generated by

B =
(
H′

a 1

)

∈ Z
(n−Nb)×(n−Nb).

We first have that

vol(L′) = det(H′) =
det(H)

∏
m∈M hm,m

= det(H) = vol(L).

Secondly, we can prove that L′ has an unusually short vector corresponding to
all small coefficients of sk. Indeed, let c ∈ Z

n such that cH = sk, then cm = Sk,m

for any m ∈ M thanks to hm,m = 1. Let c′ = (cl0 , · · · , cln−2−Nb
), then

(c′, 1)B = (c′H′ + a, 1) = (sl0 , · · · , sln−2−Nb
, 1) := v′.

Notice that ‖v′‖ =
√

N1 + 1 � vol(L′)
1

n−Nb ≈ D
n

n−Nb , we may use uSVP oracle
to find v′.

Using the same argument as in the previous subsection, we could recover v′,
namely sk, by BKZ-β when β satisfies:

√
β

n − Nb
·
√

N1 + 1 ≤ δ2β−n+Nb

β · D
n

n−Nb .

This condition is satisfied for β = 138. Based respectively on [10] and [11],
this gives attack in 273 and 277 clock-cycles. Again, these numbers should be
taken with a grain of salt (see Remark 3).

540 Y. Yu and L. Ducas

5.3 Cheaply Recovering All the Other Rows

Once a vector sk has been fully recovered, we have much more information on
all the other secret rows. In particular, we know all the positions of the 0, and
this allows to decrease the dimension from n to Nb + N1 + 1.

As in previous section we are able to construct a (Nb + N1 + 1)-dimensional
lattice L′ of the same volume as L and containing a vector of length√

Nb · b2 + N1 + 1. Then, using BKZ-50 is enough8 to recover the target vec-
tor and the cost is negligible compared to the cost of the first step.

6 Conclusion

We have shown that the DRS scheme is in principle susceptible to a statistical
attack: signatures do leak information about the secret key. More concretely,
for the first set of parameters submitted to the NIST [26], we have shown its
security should be considered below 80-bits after 100 000 ≈ 217 signatures have
been released, contradicting the original claim of 128-bits of security. While
such a large number of signatures may not be released in many applications, it
remains much lower than the bound of 264 signatures given by the NIST call for
proposal [24, Sect. 4.A.4].

We also warn the reader that for demonstrating the principle of our attack,
we have only focused on the easiest secret coefficients. But from Fig. 4, it seems
also possible to deduce more information on the key. We strongly suspect that,
focusing on the very near-diagonal coefficients, it could be possible to get the
locations of a few 0’s and ±1’s as well, using more signatures, a more focused
statistical model, and the diagonal amplification trick. This may lead to a full
break in practice of this parameter set. Moreover, our estimates do not take
account of the recent discrete pruning technique for enumeration [5,14,29], that
has unfortunately not yet been the object of easily usable predictions.

While we view it likely that the attack can be pushed further, it is not clear
how much effort this question deserves. In our view, our current attack suffices
to demonstrate the need to fix the leak of the DRS scheme [26], and maybe to
re-parametrize it.

In addition, we would like to clarify our views on lattice-based crypto security
estimates. While we did stick to the best known attack methodology in this
paper so as to not overclaim our cryptanalytic result, we do not recommend this
approach for design and security claims, considering that the state of the art in
lattice reduction is still making significant progress [5,11,14,29].

6.1 Viability of the DRS Design, and Potential Countermeasure

We note nevertheless that this statistical attack seems much less powerful than
the statistical attacks presented in [13,23] against the original schemes GGH [16]

8 The required blocksize can be much smaller, but we should use a different estimation
for δβ for small β [10,30].

Learning Strikes Again: The Case of the DRS Signature Scheme 541

and NTRUSign [18]. Indeed, our attack requires much more signatures, and still
only recovers partial secret key information. In this light, we do not conclude that
the approach of [26] is to be discarded at once, at least if it shows competitive
performances. We therefore suggest several directions to improve the security of
the scheme.
Disclaimer. These suggestions should however not be understood as a pledge
for the DRS scheme [26]. We believe a much more thorough analysis of the
statistical properties of the scheme should be provided to sustain its security.
We think that a statistical argument would be much more reassuring than the
experimental failure of the type of attack described in this paper.

Randomization. In [26,27], it is suggested that the orders of the indices j for
the reductions w ← w − qsj could be randomized. As claimed in [17], this
modification should not be applied directly. For our attack, such randomization
does not affect the intuition developed in Sect. 4.1. We suspect it might make
the attack somewhat simpler. Indeed, in the current deterministic version, the
coefficients far from the diagonal seemed harder to learn, forcing us to use two
different models f− and f+. We believe that this complication could be removed
against the randomized variant.

Set of secret coefficients. Rather than a sparse yet wide set {0,±1,±b} for the
coefficients of S, we recommend an interval of integers {−u, . . . , u}, where u is
chosen such that the Euclidean length of the rows is maintained (say, on average).
As we saw (Fig. 4), larger coefficients are easier to detect, and the gap between
1 and b allows one to make a guess with much more confidence. Note that this
could only mitigate the attack, but would not fully seal the leak.

Structure of the secret matrix. Secondly, the “absolute-circulant” structure could
be removed without affecting the size of the secret key; indeed, the whole matrix,
could be streamed by a PRG, only keeping the seed as the new secret key.9 Again,
this may only mitigate the attack, but would not fully seal the leak.

Perturbation/drowning. Depending on the situation, adding well-designed per-
turbation may [25] or may not [13,18] be an effective countermeasure against
statistical attacks. Given the track record of heuristic countermeasures, we find
the formal approach preferable. Drowning is a similar idea in spirit, but the
added noise has a fixed distribution, typically much larger than what is to be
hidden.

We note that the problem of directly trying to forge a signature seems harder
than recovering the secret key with the current parameters of DRS [26]. This
means that allowing larger vectors for signatures (up to a certain cross-over
point) should not affect security. This gives a lot of room for perturbation or
drowning, for which ad-hoc concrete statistical statements could plausibly be
made, maybe exploiting Rényi divergence as in [4,6].

Acknowledgements. We thank Thomas Plantard, Arnaud Sipasseuth, and Han Zhao
for helpful discussions and comments. We are also grateful to Yanbin Pan for sharing

9 Variants can be designed so that each row can be generated on demand.

542 Y. Yu and L. Ducas

their work. Yang Yu is supported by the National Key Research and Development
Program of China (No. 2017YFA0303903) and Zhejiang Province Key R & D Project
(No. 2017C01062). Léo Ducas is supported by a Veni Innovational Research Grant from
NWO under project number 639.021.645.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: USENIX Security 2016, pp. 327–343 (2016)

5. Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration with
discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 3

6. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: Using the rényi divergence rather than the statistical
distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452,
pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 1

7. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Inf. Process.
Lett. Rev. 11(10), 203–224 (2007)

8. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD thesis (2013)

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates (full version).
http://www.di.ens.fr/∼ychen/research/Full BKZ.pdf

10. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

11. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

12. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

13. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

14. Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving SVP based on
statistical analysis. J. Inf. Process. 23(1), 67–80 (2015)

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27

Learning Strikes Again: The Case of the DRS Signature Scheme 543

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

16. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

17. Li, H., Liu, R., Nitaj, A., Pan, Y.: Cryptanalysis of the randomized version of a
lattice-based signature scheme from PKC’08. In: Susilo, W., Yang, G. (eds.) ACISP
2018. LNCS, vol. 10946, pp. 455–466. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93638-3 26

18. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

19. Hu, Y., Wang, B., He, W.: NTRUSign with a new perturbation. IEEE Trans. Inf.
Theor. 54(7), 3216–3221 (2008)

20. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News
2(3), 18–22 (2002)

21. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

22. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: SODA 2010, pp. 1468–1480 (2010)

23. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

24. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process, December 2016. https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf

25. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

26. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS : diagonal
dominant reduction for lattice-based signature. Submitted to the NIST Post-
Quantum Cryptography Project. https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

27. Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on CVP∞.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 288–307. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 17

28. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994)

29. Teruya, T., Kashiwabara, K., Hanaoka, G.: Fast lattice basis reduction suitable
for massive parallelization and its application to the shortest vector problem. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 437–460. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 15

30. Yu, Y., Ducas, L.: Second order statistical behavior of LLL and BKZ. In: Adams,
C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 3–22. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72565-9 1

https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-319-93638-3_26
https://doi.org/10.1007/978-3-319-93638-3_26
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/11761679_17
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-642-14623-7_5
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-540-78440-1_17
https://doi.org/10.1007/978-3-319-76578-5_15
https://doi.org/10.1007/978-3-319-72565-9_1

Leakage-Resilient Cryptography

How to Securely Compute with Noisy
Leakage in Quasilinear Complexity

Dahmun Goudarzi1,2(B), Antoine Joux3, and Matthieu Rivain1

1 CryptoExperts, Paris, France
{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

2 ENS, CNRS, Inria and PSL Research University, Paris, France
3 Sorbonne Université, Institut de Mathématiques de Jussieu–Paris Rive Gauche,

CNRS, Inria, Univ Paris Diderot, Paris, France
antoine.joux@m4x.org

Abstract. Since their introduction in the late 90’s, side-channel attacks
have been considered as a major threat against cryptographic imple-
mentations. This threat has raised the need for formal leakage models in
which the security of implementations can be proved. At Eurocrypt 2013,
Prouff and Rivain introduced the noisy leakage model which has been
argued to soundly capture the physical reality of power and electromag-
netic leakages. In their work, they also provide the first formal security
proof for a masking scheme in the noisy leakage model. However their
work has two important limitations: (i) the security proof relies on the
existence of a leak-free component, (ii) the tolerated amount of informa-
tion in the leakage (aka leakage rate) is of O(1/n) where n is the security
parameter (i.e. the number of shares in the underlying masking scheme).
The first limitation was nicely tackled by Duc, Dziembowski and Faust
one year later (Eurocrypt 2014). Their main contribution was to show
a security reduction from the noisy leakage model to the conceptually
simpler random-probing model. They were then able to prove the secu-
rity of the well-known Ishai-Sahai-Wagner scheme (Crypto 2003) in the
noisy leakage model. The second limitation was addressed in a paper by
Andrychowicz, Dziembowski and Faust (Eurocrypt 2016) which makes
use of a construction due to Ajtai (STOC 2011) to achieve security in
the strong adaptive probing model with a leakage rate of O(1/ log n).
The authors argue that their result can be translated into the noisy
leakage model with a leakage rate of O(1) by using secret sharing based
on algebraic geometric codes. In terms of complexity, the protected pro-
gram scales from |P | arithmetic instructions to Õ(|P | n2). According to
the authors, this Õ(n2) blow-up could be reduced to Õ(n) using packed
secret sharing but no details are provided. Moreover, such an improve-
ment would only be possible for a program of width at least linear in
n. The issue of designing an explicit scheme achieving Õ(n) complexity
blow-up for any arithmetic program is hence left open.

In this paper, we tackle the above issue: we show how to securely
compute in the presence of noisy leakage with a leakage rate Õ(1) and
complexity blow-up Õ(n). Namely, we introduce a transform that turns
any program P composed of arithmetic instructions on some filed F into

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 547–574, 2018.
https://doi.org/10.1007/978-3-030-03329-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_19&domain=pdf

548 D. Goudarzi et al.

a (functionally equivalent) program Π composed of |Π| = O(|P |n log n)
arithmetic instructions which can tolerate some (quasi-constant) amount
of noisy leakage on its internal variables (while revealing negligible infor-
mation). We use a polynomial encoding allowing quasilinear multipli-
cation based on the fast Number Theoretic Transform (NTT). We first
show that our scheme is secure in the random-probing model with leak-
age rate O(1/ log n). Using the reduction by Duc et al. this result can
be translated in the noisy leakage model with a O(1/|F|2 log n) leakage
rate. However, a straight application of this reduction is not satisfactory
since our construction requires |F| = O(n). In order to bypass this issue
(which is shared with the construction of Andrychowicz et al.), we pro-
vide a generic security reduction from the noisy leakage model at the
logical-instruction level to the random-probing model at the arithmetic
level. This reduction allows us to prove the security of our construction
in the noisy leakage model with leakage rate Õ(1).

1 Introduction

Side-channel attacks have been considered as a major threat against crypto-
graphic implementations since their apparition in the late 90’s. It was indeed
shown that even a tiny dependence between the data processed by a device and
its side-channel leakage (e.g. running time, power consumption, electromagnetic
emanation) could allow devastating key-recovery attacks against the implemen-
tation of any cryptosystem secure in the black-box model (i.e. the model in
which the adversary only sees the input-output behaviour of the cryptosys-
tem) [15,18,19]. The so-called physical security of cryptographic implementa-
tions has then become a very active research area and many efficient counter-
measures have been proposed to mitigate these side-channel attacks. However,
most of these countermeasures are only empirically validated or they are proven
secure in a weak adversarial model where, for instance, an attacker only exploits
a small part of the available leakage.

An important step towards a more formal treatment of side-channel security
was made by Micali and Reyzin in 2004 in their physically observable cryptog-
raphy framework [20]. In particular, they formalized the assumptions that a
cryptographic device can at least keep some secrets and that only computation
leaks information. This framework was then specialized into the leakage resilient
cryptography model introduced by Dziembowski and Pietrzak in [14] which gave
rise to a huge amount of subsequent works. In this model, a leaking computation
is divided into elementary operations that are assumed to leak some informa-
tion about their inputs through a leakage function whose range is bounded (i.e.
taking values in {0, 1}λ for some parameter λ). Many new leakage-resilient cryp-
tographic primitives were proposed as well as so-called compilers that can make
any computation secure in this model [16].

While the leakage resilient literature has achieved considerable theoretical
advances, the considered model does not fully capture the physical reality of
power or electromagnetic leakages (see for instance [24]). In particular for a

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 549

leakage function f : {0, 1}m → {0, 1}λ, the parameter λ must be (significantly)
smaller than m. This means, for instance, that the leakage of an AES computa-
tion should be smaller than 128 bits, whereas in practice a power trace resulting
from an AES computation can take several kilobytes (or even megabytes). On
the other hand, it is fair to assume that the side-channel leakage is noisy in
such a way that the information f(x) leaked by an elementary operation on a
variable x is not enough to fully recover x. This intuition was formalized in the
noisy leakage model introduced by Prouff and Rivain in 2013 [21]. In a nutshell,
this model considers that an elementary operation with some input x leaks a
noisy leakage function f(x) (with a random tape parameter which is omitted
from the presentation). The noisy feature is then captured by assuming that an
observation of f(x) only implies a bounded bias in the probability distribution
of x. Namely the statistical distance between the distribution of x and the dis-
tribution of x given the observation f(x) is bounded by some parameter δ which
shall be called the leakage rate in the following. The function f is then said to be
a δ-noisy leakage function. Notably, this model does not imply any restriction
on the leakage size (i.e. on the range of f) but only on the amount of useful
information it contains.

1.1 Related Works

Probing-Secure Circuits. In a seminal paper of 2003, Ishai, Sahai and Wag-
ner considered the problem of building Boolean circuits secure against probing
attacks [17]. In the so-called probing model, an adversary is allowed to adaptively
probe up to t wires of the circuit. They show how to transform any circuit C
with q logic gates into a circuit C ′ with O(qt2) logic gates that is secure against
a t-probing adversary. Their scheme consists in encoding each Boolean variable
x as a random sharing (x1, x2, . . . , xn) satisfying x1 + x2 + . . . + xn = x over
F2, where n = 2t + 1. They show how to transform each logic gate into a gadget
that work on encoded variables. Their construction is actually secure against an
adversary that can adaptively place up to t probes per such gadget. The so-called
ISW construction has since then served as a building block in many practical
side-channel countermeasures known as higher-order masking schemes (see for
instance [10,11,22]). Its efficiency has also been improved in recent works [5,6]
which respectively show how to optimize the randomness consumption and the
number of multiplications (while conserving similar asymptotic complexity).

Towards Noisy-Leakage Security. In [21], Prouff and Rivain proposed the
first formal security proof for an ISW-like masking scheme in the noisy leakage
model. In particular they generalize the previous work of Chari et al. [7] and
show that in the presence of noisy leakage on the shares x1, x2, . . . , xn the
information on x becomes negligible as n grows. Specifically, they show that for
any δ-noisy leakage function f , the mutual information between x and the leakage
(f(x1), f(x2), . . . , f(xn)) is of order O(δn). They also provide a security proof
for full masked computation in the noisy leakage model, however their result

550 D. Goudarzi et al.

has two important limitations. First they assume the existence of a leak-free
component that can refresh a sharing without leaking any information. Second,
their proof can only tolerate an δ-noisy leakage with δ = O(1/n). Namely, the
leakage rate must decrease linearly with the number of shares. Note that this
second limitation is inherent to masking schemes based on the ISW construction
since it implies that each share leaks O(n) times. Some practical attacks have
been exhibited that exploit this issue [4].

Avoiding Leak-Free Components. In [13], Duc, Dziembowski and Faust
tackled the first of these two limitations. Namely they show how to avoid the
requirement for a leak-free component with a nice and conceptually simpler
security proof. Applying the Chernoff bound, they show that the ISW scheme
is secure in the δ-random probing model in which each operation leaks its full
input with a given probability δ = O(1/n) (and leaks nothing with probability
1 − δ). Their main contribution is then to show that any δ′-noisy leakage f(x)
can be simulated from a δ-random probing leakage φ(x) with δ′ ≤ δ · |X |, where
X denotes the definition space of x. In other words, if the δ-random probing
leakage of a computation contains no significant information, then neither does
any δ′-noisy leakage of this computation as long as δ ≤ δ′ · |X |. The ISW scheme
is therefore secure against δ′-noisy leakage for δ′ = O(1/n|X |). Note that for an
arithmetic program working over some field F, each elementary operation takes
up to two inputs on F, meaning X = F

2 and δ′ = O(1/n|F|2). This way, the work
of Duc et al. avoid the strong requirement of leak-free components. However, it
still requires a leakage rate of O(1/n).

Towards a Constant Leakage Rate. This second limitation was addressed
by Andrychowicz, Dziembowski, and Faust [3]. They propose a scheme –that we
call ADF scheme hereafter– which is based on Shamir’s secret sharing [23] and
a refreshing algorithm from expander graphs due to Ajtai [1]. The number of
instructions in the protected program is multiplied by a factor O(n3) which can
be reduced to O(n2 log n) using an FFT-based multiplication. They show that
this construction achieves security in the strong probing model where an adver-
sary can adaptively place up to O(1/ log n) probes per elementary operation. In
the random probing model, the result is improved to a constant ratio. Applying
the reduction from [13] they obtain the security in the noisy model for a leakage
rate δ = O(1/|F|2).1 For the standard version of their scheme based on Shamir’s
secret sharing, the base field F must be of size O(n) which implies a leakage
rate δ = O(1/n2) in the noisy leakage model. Fortunately, their scheme can be
improved by using secret sharing based on algebraic geometric codes [8] (at the
cost of weaker parameters). As argued in [3], these codes operate over fields of

1 Note that they obtain a leakage rate O(1/|F|) in the restrictive model where input
variables leak independently. In the present paper, we make the more realistic
assumption that the leakage function applies to the full input of each elementary
operation.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 551

constant size and hence there basic operations can be implemented by constant
size Boolean circuits, which gives a δ = O(1) noisy leakage rate with the reduc-
tion from [13]. We show in this paper that a simple reduction actually exists to
achieve δ = Õ(1) noisy leakage security from a random-probing secure scheme
on a field F = O(n). This reduction could also be used to get tight noisy-leakage
security for the ADF scheme without algebraic geometric codes (i.e. with simple
Shamir’s secret sharing).

Towards a Quasilinear Complexity. The leakage-secure schemes in the cur-
rent state-of-the-art imply a (quasi)quadratic blow-up of the complexity: the pro-
tected program (or circuit) scales from |P | arithmetic instructions to Õ(|P | n2).
Another challenging issue is hence to bridge the gap between this Õ(n2) blow-
up and the theoretically achievable Õ(n) blow-up. In [3], the authors claim that
the complexity of their scheme can be improved by using packed secret shar-
ing [2,12]. As explained in [2], the use of packed secret sharing allows to securely
compute (in the presence of leakage) an addition or a multiplication on several
encoded values in parallel at the same asymptotic cost as a single operation
with a standard secret sharing. Using the transform of [12], one can improve the
complexity of the ADF scheme on an arithmetic program P from O(|P |n2 log n)
to O(|P | log |P | n2 log n/w) where w denotes the width of P . Roughly speaking,
the width of P is the number of operations that can be computed in parallel
throughout an execution of P which satisfies w = O(|P |/d) where d is the depth
of P (considered as a circuit). For a circuit of width w = Θ(n), this approach
hence results in a complexity blow-up quasilinear in n. For a constant-size circuit
(as the AES cipher) on the other hand, only a constant factor can be saved and
the complexity blow-up remains (quasi)quadratic.

1.2 Our Contribution

In this paper we show how to securely compute any arithmetic program (or
circuit) in the noisy leakage model with a leakage rate Õ(1) and with complex-
ity blow-up Õ(n). Our scheme is conceptually very simple and also practically
efficient provided that the computation relies on a base field F with appropriate
structure.

We consider an arithmetic program P that executes basic arithmetic instruc-
tions over some prime field F (additions, subtractions, and multiplications) sat-
isfying |F| = α · n + 1 for n being a power of 2 (in particular |F| = O(n) as
in [3]). Note that we prefer the terminology of (arithmetic) program composed
of instructions to the terminology of (arithmetic) circuit composed of gates but
the two notions are strictly equivalent.

Each internal variable a ∈ F of the computation is encoded into a random
tuple (a0, a1, . . . , an−1) that satisfies the relation a =

∑n−1
i=0 aiω

i for some ran-
dom element ω ∈ F. In other words, a is encoded as the coefficient of a random
n-degree polynomial Q satisfying Q(ω) = a. It is worth noting that the security
of our scheme does not rely on the secrecy of ω but on its random distribu-
tion. We then show how to transform each arithmetic instruction of P into a

552 D. Goudarzi et al.

corresponding secure gadget that works on encoded variables. Using a fast Num-
ber Theoretic Transform (NTT), we then achieve a multiplication gadget with
O(n log n) instructions.

We first show that our scheme is secure in the δ-random-probing model for
a parameter δ = O(1/ log n). Specifically, we show that for any program P with
a constant number of instructions |P |, the advantage of a δ-random-probing
adversary can be upper bounded by negl(λ) + negl′(n) where negl and negl′ are
some negligible functions and where λ denotes some security parameter that
impact the size of F (specifically we have λ = log α where |F| = α · n + 1). This
is shown at the level of a single NTT-based secure multiplication in a first place.
Then we show how to achieve compositional security, by interleaving each gadget
by a refreshing procedure that has some input-output separability property. Using
the Chernoff bound as in [13] we can then statistically bound the number of
leaking intermediate variables in each gadget. Specifically, we show that the
leakage in each gadget can be expressed as linear or quadratic combinations of the
input shares that do not reveal any information with overwhelming probability
(over the random choice of ω).

From our result in the random probing model, the security reduction of Duc
et al. [13] directly implies that our construction is secure in the δ′-noisy leakage
model for δ′ = O(1/|F|2 log n). However, since we require |F| = O(n) (as in the
standard ADF scheme) this reduction is not satisfactory. We then refine the
granularity of our computation by considering the noisy leakage model on logical
instructions working on constant-size machine words. In this model, we provide
a generic reduction from the random-probing model over F to the noisy leakage
model on logical instructions. Namely we show that any arithmetic program Π
secure under a δ-random-probing leakage gives rise to a functionally equivalent
program Π ′ that is secure under a δ′-noisy leakage at the logical instruction
level where δ′ = δ/O(log |F| log log |F|). Applying this reduction, our construction
achieves security in the δ′-noisy leakage model with δ′ = O

(
1/((log n)2 log log n)

)

for a complexity blow-up of O(n log n).
Table 1 hereafter gives a asymptotic comparison of our scheme and the previ-

ous schemes in the literature (with noisy leakage security): the ISW scheme [17]
with the reduction from [13], the ADF scheme with algebraic geometric codes [3],
the ADF scheme improved with packed secret sharing [2,3] (ADF-PSS). We
emphasize that for the latter case no detailed description and analysis have been
provided.

Table 1. Asymptotic comparison of secure schemes in the noisy leakage model.

ISW ADF ADF-PSS∗ Our result

Leakage rate O(1/n) O(1) O(1) Õ(1)

Complexity blow-up O(n2) Õ(n2) Õ(n2/w) Õ(n)
∗w stands for the width of the protected program.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 553

The paper is organized as follows. Section 2 provides background notions on
the noisy leakage model and the considered adversary. In Sect. 3 we describe
our secure quasilinear multiplication scheme and we prove its security in the
random probing model. Section 4 then presents the refreshing procedure used
to get compositional security and provides a security proof for a full arithmetic
program. In Sect. 5 we give our generic reduction from the random-probing model
over F to the noisy leakage model on logical instructions and we apply this
reduction to our scheme to get our final result. We finally discuss practical
aspects of our scheme and related open problems in Sect. 6.

2 Leakage and Adversary

In the rest of the paper, we shall denote by x ← X the action of picking x
uniformly at random over some set X . Similarly, for a probabilistic algorithm A,
we denote by y ← A(x) the action of running A on input x with a fresh random
tape and setting y to the obtained result.

2.1 Noisy Leakage Model

The noisy leakage model introduced by Prouff and Rivain in [21] follows the only
computation leaks paradigm [20]. In this paradigm, the computation is divided
into subcomputations; each works on a subpart x of the current computation
state and leaks some information f(x), where f is called the leakage function. In
practice, f is a so-called randomized function that takes two arguments, the input
variable x and a random tape ρ that is large enough to model the leakage noise.
A subcomputation with input variable x hence leaks f(x, ρ) for a fresh random
tape ρ. For the sake of simplicity, in the sequel we shall omit the parameter ρ
and see f(x) as a random realization of f(x, ρ). Moreover, the definition space
of the input x shall be called the domain of f , and we shall write f : X → Y for
a randomized function with domain X and image space Y.

In the noisy leakage model [21], a noisy leakage function f is defined as a
randomized function such that an observation f(x) only implies a bounded bias
in the probability distribution of x. Namely, the statistical distance between the
distributions of x and (x | f(x)) is assumed to be bounded by some bias δ. Let
X and X ′ be two random variables defined over some set X . We recall that the
statistical distance between X and X ′ is defined as:

Δ(X;X ′) =
1
2

∑

x∈X
|Pr(X = x) − Pr(X ′ = x)|. (1)

The notion of noisy leakage function is then formalized as follows:

Definition 1 ([21]). A δ-noisy leakage function is a randomized function f :
X → Y satisfying

∑

y∈Y
Pr(f(X) = y) · Δ(X; (X | f(X) = y)) ≤ δ, (2)

where X is a uniform random variable over X .

554 D. Goudarzi et al.

In practice, the leaking input x might not be uniformly distributed but one
must specify a distribution to have a consistent definition, and as argued in
[21], the uniform distribution is a natural choice. Also note that in the original
paper [21], the L2 norm was used for the definition of the statistical distance
while, as argued in [13], the L1 norm is a more standard choice (that we also
adopt in this paper).

A conceptually simpler model, known as the random probing model, was first
used in [17] and formalized in the work of Duc, Dziembowski, and Faust [13].
Informally speaking, this model restricts the noisy leakage model to leakage
functions that leak their entire input with a given probability. These random-
probing leakage functions are formalized in the following definition.2

Definition 2. A δ-random-probing leakage function is a randomized function
φ : X → X ∪ {⊥} satisfying

φ(x) =

{
⊥ with probability 1 − δ

x with probability δ
(3)

It can be checked that such a function is a special case of δ-noisy leakage func-
tion.3 Moreover, it has been shown by Duc, Dziembowski, and Faust [13] that
every noisy leakage function f can be expressed as a composition f = f ′ ◦ φ
where φ is a random-probing leakage function. This important result enables to
reduce noisy-leakage security to random-probing security. It is recalled hereafter:

Lemma 1 ([13]). Let f : X → Y be a δ-noisy leakage function with δ < 1
|X | .

There exists a δ′-random-probing leakage function φ : X → X ∪ {⊥} and a
randomized function f ′ : X ∪ {⊥} → Y such that for every x ∈ X we have

f(x) = f ′(φ(x)) and δ′ ≤ δ · |X |. (4)

In the random-probing model, the total number of leaking operations can be
statistically bounded using the Chernoff bound as suggested in [13,17]. We shall
follow this approach in the present paper by using the following corollary.

Corollary 1 (Chernoff bound [9]). The δ-random probing leakage of a com-
putation composed of N elementary operations reveals the input of � > δN of
these elementary operations with probability lower than

ψ(�,N) = exp
(

− (� − δ N)2

� + δ N

)
. (5)

If � ≤ αn and N = βn, for some α, β and n with α/β > δ, the above gives

ψ(αn, βn) = exp
(

− (α − δβ)2

α + δβ
n
)
. (6)

2 Note that we use a different terminology from [13] where these are called δ-identity
functions.

3 To be tighter, a δ-random-probing leakage function is a δ (1 − 1
|X|)-noisy function.

This can be simply checked by evaluating (2).

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 555

2.2 Leakage Adversary

We consider computation schemes that encode the data of a program in order to
make the leakage on the encoded data useless. An encoding Enc is a randomized
function that maps an element x ∈ F to a n-tuple Enc(x) ∈ F

n, where n is
called the encoding length, and for which a deterministic function Dec : F

n → F

exists that satisfies Pr(Dec(Enc(x)) = x) = 1 for every x ∈ F (where the latter
probability is taken over the encoding randomness).

Consider an arithmetic program P taking a string x ∈ F
s as input and exe-

cuting a sequence of instructions of the form μi ← μj ∗ μk, where ∗ denotes
some operations over F (addition, subtraction, or multiplication) and where
[μ0, μ1, . . . , μT] denotes the memory of the program which is initialized with
x (and some constants). To achieve leakage security, the program P is trans-
formed into a functionally equivalent arithmetic program Π taking as input an
encoded string Enc(x) (where the encoding simply applies to each coordinate
of x). According to the defined leakage model, each executed instruction of Π
is then assumed to leak some noisy function f(μj , μk) of its pair of inputs. It
is further assumed that Π includes random sampling instructions μi ← F that
each leaks a noisy function of the generated random element f(μi). We denote
the overall leakage by L(Π,x). The compiler is then said to be leakage secure
if an observation of L(Π,x) does not reveal significant information about x.
More specifically, the leakage L(Π,x) must be indistinguishable from the leak-
age L(Π,x′) for every x′ ∈ F

s. This security notion is formalized as follows:

Definition 3 (Leakage Security). The program Π is ε-leakage secure (w.r.t.
leakage functions L) if every adversary A has advantage at most ε of distin-
guishing L(Π,x0) from L(Π,x1) for chosen x0 and x1, i.e. we have:

Adv Π, L
A :=

∣
∣
∣Succ Π, L

A − 1
2

∣
∣
∣ ≤ ε (7)

where

Succ Π, L
A = Pr

⎛

⎝
(x0,x1, μ) ← A(⊥)

b ← {0, 1} : A(x0,x1, μ, �) = b
� ← L(Π,xb)

⎞

⎠. (8)

In the above definition, μ ∈ {0, 1}∗ denotes any auxiliary information com-
puted by the adversary during the first round when she chooses the inputs x0

and x1. Note that for the definition to be sound, we only consider adversaries
A such that A(⊥) takes values over F

s × F
s × {0, 1}∗ and A(x0,x1, μ, �) takes

values over {0, 1} for every input (x0,x1, μ, �) ∈ F
s × F

s × {0, 1}∗ × span(L).
Lemma 1 provides a security reduction from the noisy leakage model to the

random probing model. This is formalized in the following corollary:

Corollary 2. Let Π be an arithmetic program that is ε-leakage secure w.r.t
δ-random-probing leakage functions. Then Π is ε-leakage secure w.r.t δ′-noisy
leakage functions, where δ′ = δ |F|2.

556 D. Goudarzi et al.

Note that in the original version of Lemma 1 (see [13]), the authors need the
additional requirement that f ′ is efficiently decidable so that f ′(φ(x)) is com-
putable in polynomial time in |X |. We ignore this property in the present paper
since our security statements consider adversaries with unlimited computational
power.

3 Secure Multiplication in Quasilinear Complexity

In this section, we describe our encoding scheme and the associated secure mul-
tiplication. An important requirement of our construction is that the size n of
the underlying encoding must divide p−1

2 where p is the characteristic of F, that
is F must contain the 2n-th roots of unity. This implies that the size of the ele-
ments of F is in Ω(log n). Without loss of generality, we further assume that n
is a power of 2.

3.1 Our Encoding

Let ξ denote a primitive 2nth root of unity in F. Our encoding is based on a
random element ω ∈ F

∗ and is defined as follows:

Definition 4. Let ω ∈ F
∗ and a ∈ F. An ω-encoding of a is a tuple (ai)n−1

i=0 ∈ F
n

satisfying
∑n−1

i=0 aiω
i = a.

Our encoding function Enc maps an element a ∈ F to a random element
ω ∈ F

∗ and a random uniform ω-encoding of a:

Enc(a) = 〈ω, (a0, a1, . . . , an−1)〉. (9)

The corresponding decoding function Dec is defined as:

Dec
(〈ω, (a0, a1, . . . , an−1)〉

)
:= Decω(a0, a1, . . . , an−1) :=

n−1∑

i=0

aiω
i (10)

It is easy to check that we have Pr(Dec(Enc(a)) = a) = 1 for every a ∈ F. It is
worth noting that the security of our scheme does not rely on the secrecy of ω
but on its uniformity. Besides, we will consider that ω is systematically leaked
to the adversary.

3.2 Multiplication of Encoded Variables

Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an ω-encoding of b. To compute
an ω-encoding (ci)n−1

i=0 of c = a · b we use the NTT-based polynomial multiplica-
tion.

Specifically, we first apply the NTT on (ai)i and (bi)i to obtain the polyno-
mial evaluations uj =

∑n−1
i=0 ai(ξj)i and vj =

∑n−1
i=0 bi(ξj)i for j ∈ [[0, 2n − 1]].

These evaluations are then pairwisely multiplied to get evaluations of the

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 557

product sj = (2n)−1uj · vj for j ∈ [[0, 2n − 1]] (with a multiplicative factor
(2n)−1). Afterwards, we apply the inverse NTT to get coefficients ti that satisfy
∑2n−1

i=0 tiω
i = (

∑n−1
i=0 aiω

i) · (
∑n−1

i=0 biω
i). Eventually, we apply a compression

procedure to recover an n-size ω-encoding from the 2n-size ω-encoding (ti)i.
Due to the particular form of roots of unity, an NTT can be evaluated with
a divide and conquer strategy in 3 n log n arithmetic instructions (a detailed
description is given in Appendix A).

The overall process is summarized as follows:

(u0, u1, . . . , u2n−1) ← NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)
(r0, r1, . . . , r2n−1) ← NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

(s0, s1, . . . , s2n−1) ← (2n)−1(u0 · r0, u1 · r1, . . . , u2n−1 · r2n−1)
)

(t0, t1, . . . , t2n−1) ← NTTξ−1(s0, s1, . . . , s2n−1)
(c0, c1, . . . , cn−1) ← compress(t0, t1, . . . , t2n−1)

Compression Procedure. After computing the inverse NTT, we get a double-size
encoding (ti)2n−1

i=0 satisfying
∑2n−1

i=0 ti ωi = a · b. In order to obtain a standard
encoding with n shares, we simply set ci = ti + tn+iω

n for i ∈ [[0, n − 1]]. It is
not hard to see that the result is consistent.

3.3 Security in the Random Probing Model

We first focus on the NTT leakage security as it is the most complex part of our
scheme, and then provide a security proof for the whole multiplication.

Security of the NTT. We have the following result:

Theorem 1. Let ω be a uniform random element of F
∗, let (ai)n−1

i=0 be a uniform
ω-encoding of some variable a and let δ < 1/(6 log n). The NTTξ procedure on
input (ai)n−1

i=0 is ε-leakage secure in the δ-random-probing leakage model, where

ε =
n

|F| + exp
(

− (1 − 6δ log n)2

4
n
)
. (11)

The rest of the section gives a proof of Theorem 1. During the computation
of the NTT on an ω-encoding (ai)n−1

i=0 of a, all the leaking intermediate variables
(i.e. the inputs of arithmetic instructions) are linear combinations of the ai’s.
Specifically, every intermediate variable v occurring in the NTT computation
can be expressed as

v =
n−1∑

i=0

αiai (12)

where the αi’s are constant coefficients over F. In the following, we shall use the
notation

[v] = (α0, α1, . . . , αn−1)t (13)

558 D. Goudarzi et al.

for the column vector of coefficients of such an intermediate variable. Similarly,
we shall denote [a] = (1, ω, ω2, . . . , ωn−1)t since we have a =

∑n−1
i=0 ωiai by defini-

tion. Moreover, we will denote by [v0, v1, . . . , v�] the matrix with column vectors
[v0], [v1], . . . , [v�]. In particular, we have [a0, a1, . . . , an−1] = In (where In stands
for the identity matrix of dimension n over F) and for ui =

∑n−1
j=0 aj(ξi)j (the

output elements of the NTT), the matrix [u0, u1, . . . , un−1] is a Vandermonde
matrix.

First consider an adversary that recovers � < n intermediate variables in the
computation of the NTT, denoted v1, v2, . . . , v�. Without loss of generality, we
assume that these intermediate variables are linearly independent (otherwise the
adversary equivalently gets less than � intermediate variables), which means that
the matrix [v1, v2, . . . , v�] has full rank. The following lemma gives a necessary
and sufficient condition for such a leakage to be statistically independent of a.

Lemma 2. Let v1, v2, . . . , v� be a set of � < n intermediate variables of the
NTT on input a uniform ω-encoding of a variable a. The distribution of the
tuple (v1, v2, . . . , v�) is statistically independent of a iff

[a] /∈ span([v1, . . . , v�]) , (14)

where span(·) refers to the linear span of the input matrix.

Proof. If [a] ∈ span([v1, . . . , v�]) then there exists constants γ1, γ2, . . . , γ� such
that [a] =

∑
i γi[vi] implying a =

∑
i γivi, and the distribution (v1, v2, . . . , v�) is

hence statistically dependent on a. On the other hand, if [a] /∈ span([v1, . . . , v�]),
then the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a =
∑n−1

j=0 ωjaj = γ0

v1 =
∑n−1

j=0 α1,jaj = γ1

v2 =
∑n−1

j=0 α2,jaj = γ2
...
v� =

∑n−1
j=0 αt,jaj = γ�

has |F|n−(�+1) solutions (a0, a1, . . . , an−1) for every (γ0, γ1, . . . , γ�) ∈ F
�+1. This

implies the statistical independence between a and (v1, v2, . . . , v�). �

The following lemma gives an upper bound on the probability that the above
condition is not fulfilled.

Lemma 3. Let ω be a uniform random element in F
∗ and let v1, v2, . . . , v� be a

set of � < n linearly independent intermediate variables of the NTT on input an
ω-encoding of a variable a. We have:

Pr
(
[a] ∈ span([v1, . . . , v�])

) ≤ �

|F| − 1
<

n

|F| , (15)

where the above probability is taken over a uniform random choice of ω.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 559

Proof. Let us denote A(x) =
∑n−1

i=0 aix
i so that [A(α)] = (1, α, α2, . . . , αn−1)t

for every α ∈ F, and in particular [a] = [A(ω)]. For any distinct � + 1 elements
α1, α2, · · · α�+1 ∈ F

∗, the matrix [A(α1), A(α2), . . . , A(α�+1)] has full rank since
it is a Vandermonde matrix with distinct input entries. This directly implies:

span([A(α1), A(α2), . . . , A(α�+1)])
︸ ︷︷ ︸

dim �+1

� span([v1, . . . , v�])
︸ ︷︷ ︸

dim �

, (16)

hence the set Ω = {α | [A(α)] ∈ span([v0, v1, . . . , v�])} has cardinality at most �.
By the uniform distribution of ω, we then have a probability at most �/(|F|−1) ≤
n/|F| to have ω ∈ Ω that is to have [a] ∈ span([v1, . . . , v�]). �

We now have all the ingredients to prove Theorem 1.

Proof. (Theorem 1) We will show that for any adversary A, the advantage
AdvNTT, L

A in distinguishing L(NTT,Enc(a(0))) from L(NTT,Enc(a(1))) for any
chosen elements a(0), a(1) ∈ F is lower than ε, where L(NTT,Enc(a)) denotes the
δ-random-probing leakage of the procedure NTTξ on input Enc(a) = 〈ω, (ai)n−1

i=0 〉.
Note that this leakage is a tuple in which each coordinate corresponds to an
arithmetic instruction in the computation of NTTξ that either equals ⊥ (with
probability 1 − δ) or the input of the instruction. We recall that the advantage
is defined as AdvNTT, L

A =
∣
∣SuccNTT, L

A − 1
2

∣
∣ where

SuccNTT, L
A = Pr

⎛

⎝
(a(0), a(1), μ) ← A(⊥)

b ← {0, 1} : A(a(0), a(1), μ, �) = b
� ← L(NTT, a(b))

⎞

⎠ (17)

Without loss of generality, we assume SuccNTT, L
A ≥ 1

2 . Indeed, for any adversary
with success probability 1

2 −AdvNTT, L
A , there exists an adversary A′ with success

probability 1
2 + AdvNTT, L

A (defined as A′(a(0), a(1), �) = 1 − A(a(0), a(1), μ, �)).
The procedure NTTξ is composed of N = 3n log n arithmetic instructions. In

the δ-random-probing model, each of these instructions leaks its input(s) with
probability δ. The number of instructions that leak hence follows a binomial
distribution with parameters N and δ. Let us denote by max� the event that � or
less instructions leak in the random-probing leakage L(NTT,Enc(a)). Since each
instruction takes at most two inputs over F, the adversary gets the values of at
most 2� intermediate variables whenever max� occurs. By the Chernoff bound
(see Corollary 1), the probability that more than � > Nδ arithmetic instructions
leak, namely the probability that ¬max� occurs, satisfies:

Pr(¬max�) ≤ ψ(�,N). (18)

From N = 3n log n and � < n
2 , we get that:

Pr(¬max�) ≤ exp
(

− (1 − 6δ log n)2

2 + 12δ log n
n
)

≤ exp
(

− (1 − 6δ log n)2

4
n
)
. (19)

560 D. Goudarzi et al.

Now let assume that max� occurs for some � < n
2 and let denote v1, v2, . . . ,

v2� the recovered intermediate variables. Without loss of generality, we assume
that the recovered intermediate variables are linearly independent. Let us then
denote by free the event that [a] /∈ span([v1, . . . , v�]). By Lemma 3, we have

Pr(¬free) <
n

|F| . (20)

And let finally denote by succ the event that A outputs the right bit b on input
(a(0), a(1), μ, �) so that SuccNTT, L

A = Pr(succ). We can then write:

SuccNTT, L
A = Pr(max�) Pr(succ | max�) + Pr(¬max�) Pr(succ | ¬max�)

≤ Pr(succ | max�) + Pr(¬max�). (21)

In the same way, we have

Pr(succ | max�) ≤ Pr(succ | max� ∩ free) + Pr(¬free). (22)

By Lemma 2, we have that the leakage � is statistically independent of a(b) in (17)
whenever max� ∩ free occurs. This directly implies Pr(succ | max� ∩ free) = 1

2 ,
which gives

SuccNTT, L
A <

1
2

+ Pr(¬max�) + Pr(¬free). (23)

Hence, we finally get

AdvNTT, L
A < Pr(¬max�) + Pr(¬free) =

n

|F| + exp
(

− (1 − 6δ log n)2

4
n
)
, (24)

which concludes the proof. �

Security of the Full Multiplication. We now prove the security of the full
multiplication. We have the following result:

Theorem 2. Let ω be a uniform random element of F
∗, let (ai)n−1

i=0 and (bi)n−1
i=0

be uniform ω-encodings of some variables a and b, and let δ < 1/(21 log n).
The above NTT-based multiplication procedure on input (ai)n−1

i=0 and (bi)n−1
i=0 is

ε-leakage secure in the δ-random-probing leakage model, where

ε =
2n

|F| + 5 exp
(

− (1 − 21δ log n)2

14
n
)
. (25)

Proof. The full multiplication is composed of five successive steps:

1. the NTT on input (ai)i,
2. the NTT on input (bi)i,
3. the pairwise multiplications (2n)−1 · ui · ri,
4. the NTT on input (si)i,
5. the final compression on input (ti)i.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 561

Let us denote by �1, �2, . . . , �5 the number of operations that leak at each of
these steps. Since each operation takes up to 2 input variables, the adversary
then gets:

– up to 2�1 variables from the first NTT, each variable providing a linear equa-
tion in the ai’s;

– up to 2�2 variables from the second NTT, each variable providing a linear
equation in the bi’s;

– up to �3 pairs (ui, ri);4 each pair providing a linear equation in the ai’s and
a linear equation in the bi’s;

– up to 2�4 variables in the third NTT (the inverse NTT), each variable pro-
viding a linear equation in the sj ’s;

– up to �5 pairs (ti, ti+n),5 each pair providing two linear equations in the sj ’s.

To sum up, the adversary gets a system composed of

– up to �∗
1 = 2�1 + �3 linear equations of the form

n∑

i=1

αk,i · ai = ηk for k = 1, . . . , �∗
1 (26)

– up to �∗
2 = 2�2 + �3 linear equations of the form

n∑

i=1

βk,i · bi = νk for k = 1, . . . , �∗
2 (27)

– up to �∗
3 = 2�4 + 2�5 linear equations of the form

2n∑

j=1

γk,j · sj = χk for k = 1, . . . , �∗
3 (28)

we have sj = (2n)−1ujrj for every j, and since uj and rj can be expressed
as linear combinations of (ai)i and of (bi)i respectively, for every j, the last �∗

3

equations can be rewritten as:

n∑

i=1

γ′
k,i · bi = χk for k = 1, . . . , �∗

3 (29)

where the γ′
k,i’s are coefficients that depend on the ai’s.

From these equations, the attacker gains the knowledge that:

4 Either a multiplication of the form (2n)−1·ui or a multiplication of the form (2n)−1ui·
ri leaks. In both cases we consider that the pair (ui, ri) is revealed to the adversary.

5 Either a multiplication ωn · ti+n or an addition ti + ωnti+n leaks. In both cases we
consider that the pair (ti, ti+n) is revealed to the adversary.

562 D. Goudarzi et al.

1. the encoding (ai)n−1
i=0 belongs to some vectorial space

S1 = {x ∈ F
n ; M1 · x = η} (30)

of dimension at least n − �∗
1 where M1 is the matrix with coefficients αk,i’s,

and η is the vector with coordinates ηk,
2. the encoding (bi)n−1

i=0 then belongs to some vectorial space

S2 = {x ∈ F
n ; M2 · x = (ν,χ)} (31)

of dimension at least n − �∗
2 − �∗

3 where M2 is the matrix with coefficients
βk,i’s and γ′

k,i’s and (ν,χ) is the vector with coordinates νk and χk.

Following the demonstration of Lemma 2, it can be checked that if

(1, ω, . . . , ωn−1) /∈ span(M1) and (1, ω, . . . , ωn−1) /∈ span(M2),

then the full leakage of the multiplication is statistically independent of a and b,
namely the leakage security holds. These two events are denoted free1 and free2
hereafter.

Then, following the demonstration of Lemma 3, free1 occurs with probability
at least 1− n

|F| over a random choice of ω, provided that we have rank(M1) < n.
Then, since the vectorial space S1 is independent of ω, any possible choice of
(ai)n−1

i=0 ∈ S1 gives rise to some coefficients γ′
k,i’s independent of ω and we have

that free2 occurs with probability at least 1 − n
|F| over a random choice of ω as

long as we have rank(M2) < n. The two conditions on the ranks of M1 and M2

are then fulfilled whenever we have

�∗
1 = 2�1 + �3 < n, (32)

and

�∗
2 + �∗

3 = 2�2 + �3 + 2�4 + 2�5 < n. (33)

Let us denote maxi the event that the number of leaking operations �i at step
i is lower than n/7, for every i. If maxi occurs for every i ∈ {1, 2, 3, 4, 5}, then
two above inequalities are well satisfied.

By applying the Chernoff bound, we hence get:

Pr(¬maxi) ≤ ψ
(n

7
, Ni

)
, (34)

where Ni is the number of operations at step i, which satisfies Ni ≤ 3n log n,
which gives

Pr(¬maxi) ≤ ψ
(n

7
, 3n log n

) ≤ exp
(

− (1 − 21δ log n)2

14
n
)
. (35)

We finally get that the multiplication is ε-leakage secure with

ε < Pr(¬max1) + Pr(¬max2) + · · · + Pr(¬max5)
+ Pr(¬free1 | max1 ∧ . . . ∧ max5)

︸ ︷︷ ︸
<n/|F|

+ Pr(¬free2 | max1 ∧ . . . ∧ max5)
︸ ︷︷ ︸

<n/|F|

. (36)

�

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 563

4 Compositional Security for Arithmetic Programs

In this section we show how to obtain leakage security for a full arithmetic
program, composed of several multiplications, additions and subtractions. Since
computing addition and subtraction on encoded variables is quite simple, our
main contribution is to describe a refreshing procedure which allows us to achieve
compositional security.

We first describe our refreshing procedure before explaining how to trans-
form an arithmetic program into a leakage-secure equivalent arithmetic program.
Then we provide our compositional security proof.

4.1 Refreshing Procedure

Our refreshing procedure is based on the common approach of adding an encod-
ing of 0. Let (ai)n−1

i=0 be an ω-encoding of a variable a. We refresh it into an
ω-encoding (a′

i)
n−1
i=0 of a as follows:

1. sample a random ω-encoding (r0, r1, . . . , rn−1) ← Encω(0)
2. set a′

i = ai + ri for i = 0 to n − 1

The main issue with such an approach is the design of a scheme to sample
an encoding of 0 which has the right features for the compositional security. As
detailed later, we can prove the compositional security as long as our construction
satisfies the two following properties:

– Uniformity: it outputs a uniform ω-encoding of 0;
– Output linearity: its intermediate variables (i.e. the input of elementary

operations in the sampler) can each be expressed as a linear combination of
the output shares (ri)i.

We now describe an Encω(0) sampler which satisfies these two properties.

Sampling Encodings of 0. At the beginning of the computation of Π, a
random ω-encoding of 0 is generated. This is simply done by randomly picking
n − 1 of the n shares and computing the last one accordingly. We will denote by
(ei)n−1

i=0 this encoding. Note that just as for ω, this encoding can be fully leaked
to the adversary. Our sampler then works as follows:

1. pick n − 1 random values u0, u1, . . . , un−2 over F,
2. output (ri)n−1

i=0 = NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1))

where NTTMult is the NTT-based multiplication described in Sect. 3.
It is not hard to see that the result is indeed an encoding of 0: since the (ei)i

encode a 0, then the encoded product is also a 0. The uniformity is slightly more
tricky to see. We claim that with overwhelming probability (over the random
choice of (ei)i), the function:

(u0, u1, . . . , un−2) �→ NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1)), (37)

564 D. Goudarzi et al.

is invertible. This function is indeed linear and it can be seen as a multiplication
by an (n−1)×n matrix. We empirically validated that this matrix is of rank n−1
with overwhelming probability.6 By discarding one column we can get a full-rank
square matrix of dimension n−1, allowing the recovery of the (u0, u1, . . . , un−2)
from output encoding. Therefore, we have a one-to-one mapping between the
vectors (u0, u1, . . . , un−2) ∈ F

n−1 and the ω-encodings of 0, (ri)n−1
i=0 ∈ F

n with
Decω((ri)n−1

i=0) = 0.
The output linearity is a direct consequence of the above. Since the ui’s can

be expressed as linear combinations of the ri’s, then all the intermediate variables
of the sampling procedure can be expressed as such linear combinations as well.

4.2 Arithmetic Program Compiler

We consider an arithmetic program P processing variables defined over a prime
field F. We show how to transform such a program into a leakage-secure arith-
metic program Π. Each arithmetic instruction of P gives rise to a corresponding
gadget in Π that works on encodings. We describe these different gadgets here-
after.

Copy Gadget. The copy gadget simply consists in applying a refreshing pro-
cedure to copy an encoded variable into the same freshly encoded variable. Let
(ai)n−1

i=0 be an ω-encoding of a. The copy gadget compute an ω-encoding (a′
i)

n−1
i=0

of a as:

(a′
0, a

′
1, . . . , a

′
n−1) ← refresh(a0, a1, . . . , an−1)

The copy gadget is used whenever an output ω-encoding (ai)n−1
i=0 from some

previous gadget is used as an input of several following gadgets. If (ai)n−1
i=0 is to

be used in input of N following gadgets, one makes N − 1 extra copies (in such
a way that each new copy enters the next copy gadget):

(ai)n−1
i=0 → (a(2)

i)n−1
i=0 → · · · → (a(N)

i)n−1
i=0

This way, each fresh encoding (a(j)
i)n−1

i=0 enters at most two different gadgets: the
copy gadget and one of the N computation gadgets.

Addition Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an ω-
encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a + b, we simply com-
pute:

(c0, c1, . . . , cn−1) ← refresh(a0 + b0, a1 + b1, . . . , an−1 + bn−1)

6 To avoid to rely on an empirical assumption, one could easily check whether the
generated encoding (ei)i gives rise to a full-rank linear transformation.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 565

Subtraction Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an
ω-encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a + b, we simply
compute:

(c0, c1, . . . , cn−1) ← refresh(a0 − b0, a1 − b1, . . . , an−1 − bn−1)

Multiplication Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be
an ω-encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a · b, we simply
compute:

(c0, c1, . . . , cn−1) ← refresh
(
NTTMult((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1))

)

where NTTMult denotes the NTT-based multiplication described in Sect. 3.

4.3 Compositional Security

The compositional security of our construction is based on the two following
properties of the refreshing procedure:

– Uniformity: for a given ω ∈ F
∗ and a given value a ∈ F, the ω-encoding

(a′
i)

n−1
i=0 in output of the refreshing procedure is uniformly distributed and

independent of the input ω-encoding (ai)n−1
i=0 ;

– I/O linear separability: the intermediate variables of the refreshing proce-
dure can each be expressed as a deterministic function of a linear combination
of the (ai)i and a linear combination of the (a′

i)i.

The uniformity property is a direct consequence of the uniformity of the
Encω(0) sampler. The I/O linear separability holds from the output linearity of
the Encω(0) sampler since the shares (ri)i output by the sampler satisfy ri =
a′

i −ai for every i, implying that any linear combination
∑

iγiri equals
∑

iγia
′
i −∑

iγiai and is hence a deterministic function of a linear combination
∑

iγia
′
i and

a linear combination
∑

iγiai.
The I/O linear separability of the refreshing procedure implies that its leakage

can be split into some leakage depending only on its input encoding, which is the
output (before refreshing) from a previous gadget, and some leakage depending
only on its output encoding, which is the input of a next gadget. This way, the full
leakage can be split into subleakages each depending on the input/output of one
gadget. Moreover, the uniformity property implies that all these subleakages are
mutually independent. They can hence be analyzed separately: if none of them
reveal information, then the full leakage does not reveal information either.

The compositional security of our construction is formalized in the following
theorem.

Theorem 3. Let P be an arithmetic program taking some input x ∈ F
s and let

Π denotes the corresponding program protected with n-size encodings as described

566 D. Goudarzi et al.

above. For every δ < 1/(33 log n), Π is ε-leakage secure in the δ-random-probing
model where

ε = 3|P | ·
(

2 exp
(

− (1 − 33δ log n)2

22
n
)

+
2n

|F|
)

, (38)

where |P | denotes the size of P i.e. its number of arithmetic instructions.

Proof. Let |Π| denotes the number of gadgets in Π. Since the output of each
gadget is refreshed (and nothing more), the number of call to the refreshing pro-
cedure is also |Π|. Each arithmetic instruction in P gives rise to one associated
gadget, plus up to 2 copy gadgets if necessary. We hence deduce |Π| ≤ 3|P |.

Let us denote by rmax the event that at most n
11 operations leak in each

refreshing. By applying the Chernoff bound (see Corollary 1), we have

Pr(¬rmax) ≤ |Π| · ψ
(n

11
, Nref

)
, (39)

where Nref denotes the number of elementary operations in the refreshing pro-
cedure. Let us further denote by gmax the event that at most n

11 operations leak
in each gadget (without refreshing). In the same way as above, we have

Pr(¬gmax) ≤
|Π|∑

i=1

ψ
(n

11
, N (i)

) ≤ |Π| · ψ
(n

11
, Ngad

)
, (40)

where N (i) denotes the number of elementary operations in the ith gadget and
where Ngad denotes the max (which is reached by the multiplication gadget).

In the following, we shall denote by (a(i)
j)j and (b(i)j)j the input encodings of

the ith gadget of Π and by (c(i)j)j the output encoding (before refreshing) of the
ith gadget of Π. Let us further denote by L the full δ-random-probing leakage
of Π, so that we have:

L =
|Π|⋃

i=1

G(i) ∪
|Π|⋃

i=1

R(i) (41)

where G(i) denotes the leakage from the ith gadget (without refreshing) and
where R(i) denotes the leakage of the ith refresh. Specifically, G(i) and R(i)

are families of intermediate variables (inputs of elementary operations) that are
revealed by the δ-random-probing leakage. If rmax and gmax occurs, we have
|G(i)| ≤ 2n

11 and |R(i)| ≤ 2n
11 .

According the the I/O linear separability property of the refreshing proce-
dure, we can define a separated leakage L′ as

L′ =
|Π|⋃

i=1

(G(i) ∪ A(i) ∪ B(i) ∪ C(i)
)

(42)

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 567

where A(i) is a set of linear combinations of (a(i)
j)j , B(i) is a set of linear com-

binations of (b(i)j)j , C(i) is a set of linear combinations of (c(i)j)j , such that L is
a deterministic function of L′. This implies that if L′ is statistically indepen-
dent of the program input x, then so is L. The remaining of the proof consists
in showing that the former occurs with overwhelming probability (for a sound
choice of the parameters).

We shall bound the probability (over the distribution of ω) that the family
L′ is statistically dependent on x, hereafter denoted x � L′. We have

x � L′ =
|Π|∨

i=1

(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (43)

By the uniformity property of the refreshing, we have that, given
the program input x, the different families of input/output shares
{
(a(i)

j)n−1
j=0 , (b(i)j)n−1

j=0 , (c(i)j)n−1
j=0

}
are mutually independent. We hence get

Pr(x � L′) ≤
|Π|∑

i=1

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (44)

We can then upper bound the probability Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
when

the ith gadget is a secure multiplication by following the proof of Theorem 2.
The only difference is that the attacker gets additional linear combinations of
the input/output shares from the refreshing procedures. Specifically, we would
have

– up to �∗
1 = 2�1 + �3 + 2�′

1 linear combinations of the form
∑

i αk,iai, for
1 ≤ k ≤ �∗

1;
– up to �∗

2 = 2�2 + �3 + 2�′
2 linear combinations of the form

∑
i βk,ibi, for

1 ≤ k ≤ �∗
2;

– up to �∗
3 = 2�4 + 2�5 + 2�′

3 linear combinations of the form
∑

i,j γk,jsj , for
1 ≤ k ≤ �∗

3;

where �′
1, �′

2 and �′
3, are the number of leaking operations in the input/output

refreshing procedures. Taking the constraint �i < n
11 and �′

i < n
11 for every i, we

still get �∗
1 + �∗

3 < n and �∗
2 + �∗

3 < n. That is, if rmax and gmax occurs, we get

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

) ≤ 2n

|F| . (45)

For copy, addition and subtraction gadgets, the proof is quite simple. When an
operation leaks in such a gadget, it reveals one shares from each input encoding.
We hence get less that n

11 linear combinations on each input encoding (from the
gadget leakage), plus 2n

11 linear combinations on each input encoding (from their
respective refreshing), plus 2n

11 linear combinations on the output encoding, which
can be split into independent linear combinations on the two input encodings.
We clearly get less than n linear combinations on each encoding, which allows
us to apply Lemma 3 and to obtain (45) for every kind of gadget.

568 D. Goudarzi et al.

We finally get

Pr(x � L′) ≤ Pr(¬rmax) + Pr(¬gmax)

+
|Π|∑

i=1

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

)

≤ |Π| ·
(
ψ

(n

11
, Nref

)
+ ψ

(n

11
, Ngad

)
+

2n

|F|
)
,

which together with Nref , Ngad < 3n log n concludes the proof. �

5 From Arithmetic Random Probing to Noisy Leakage

5.1 Logical Programs

The definition of a logical program is analogous to the definition of an arithmetic
program but it is composed of logical instructions over {0, 1}w such as the bitwise
AND, OR, XOR, logical shifts and rotations, as well as the addition, subtraction,
and multiplication modulo 2w (namely typical instructions of a w-bit processor).
In the ε-noisy leakage model, a logical program leaks an ε-noisy leakage function
f(μj , μk) of the pair of inputs of each logical instruction μi ← μj ∗ μk.

The security reduction of Duc et al. (Lemma 1) then implies that a logical
program Π that is secure against δ-random-probing leakage is also secure against
δ′-noisy leakage with δ′ = δ/22w.

5.2 A Generic Reduction

We then have the following reduction of random-probing model for a logical
programs, to the random-probing model for an arithmetic programs:

Lemma 4. Let Π be a ε-leakage secure arithmetic program in the δ-random-
probing model, then there exists a functionally equivalent logical program Π ′

that is ε-leakage secure in the δ′-random-probing model for some δ′ satisfying

δ′ = 1 − (1 − δ)1/N ≥ δ

N
with N = O

(1
w

log |F| log
(1
w

log |F|)
)
. (46)

Proof. The logical program Π ′ is simply the program Π where arithmetic
instructions are built from several w-bit logical instructions. It is well known
that the addition and subtraction on F can be computed in N = O

(
1
w log |F|)

elementary (w-bit) operations, and that the multiplication on F can be computed
from N = O

(
1
w log |F| log

(
1
w log |F|)) elementary (w-bit) operations.

Assume that there exists an adversary A′ with advantage ε that makes use of
a δ′-random-probing leakage on Π ′, then we show that there exists an adversary
A with advantage ε that makes use of a δ-random-probing leakage on Π. Since
by assumption no such adversary A exists, then by contraposition neither does

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 569

such adversary A′, meaning that Π ′ is indeed ε-leakage secure in the δ′-random-
probing model.

We construct an adversary A that is given the full input to an arithmetic
instruction of Π whenever at least one of the corresponding logical instruction
leaks in Π ′. Informally, it is clear that this can only increase the success proba-
bility. To make this reasoning formal, we need to construct an adversary A that
receives the strengthened leakage, resamples it to make its distribution iden-
tical to that of the δ′-random-probing leakage on Π ′ and then call A′. When
A receives ⊥ as leakage for an arithmetic instruction, it simply sends ⊥ to A′

for all the corresponding logical instructions. When it receives the full input
of the arithmetic instruction (meaning that at least one corresponding logical
instruction of Π ′ must leak), it can compute all the inputs of the corresponding
logical instructions in Π ′, and reveal each of them to A′ with some (biased)
given probability. Since we do not consider the computational complexity of the
adversaries, the easiest way to achieve a perfect simulation is to use rejection
sampling. Namely, for every logical instruction in the group, the input is revealed
with probability δ′. If at the end of the group, no input was revealed, simply
restart the revealing process for the same group. This way, we have constructed
an adversary A using a δ-random-probing leakage on Π where

δ = 1 − (1 − δ′)N ,

for N = O
(
log |F| log log |F|). Since by assumption no such adversary exists,

this means that no adversary A′ exists with advantage ε that makes use of a
δ′-random-probing leakage on Π ′. �

Combining the above lemma with Lemma 1, and considering a constant word-
size w, we get a tight reduction of the security in the noisy leakage model for
logical program to the security in the random-probing model for arithmetic pro-
gram:

Lemma 5. Let Π be a ε-leakage secure arithmetic program in the δ-random-
probing model, then there exists a functionally equivalent logical program Π ′

that is ε-leakage secure in the δ′-noisy leakage model for some δ′ satisfying

δ′ =
δ

O(log |F| log log |F|) . (47)

5.3 Application to Our Scheme

In the previous section we have shown that for δ = O(1/ log n) our construction
is ε-leakage secure in the δ-random-probing model with

ε = negl(λ) + negl′(n) (48)

where negl and negl′ are some negligible functions and where λ is some security
parameter such that log |F| = λ + log n.

By applying the above reduction to our construction (and recalling that we
have |F| = O(n)), we obtain the following corollary of Theorem 3:

570 D. Goudarzi et al.

Corollary 3. Let Π ′ denotes the secure logical program corresponding to our
construction (see Sect. 4). Π ′ is ε-leakage secure in the δ-noisy leakage model
where ε = negl(λ) + negl′(n) and δ′ = O

(
1/((log n)2 log log n)

)
.

6 Practical Aspects and Open Problems

Securing Arbitrary Computation. Although our scheme is described to
work on a finite field F with specific structure, it can be used to secure any
arbitrary computation represented as a Boolean circuit. Indeed, it is possible to
embed a Boolean circuit into an arithmetic program over F. Each bit is sim-
ply represented by an element a ∈ {0, 1} ⊆ F. The binary multiplication then
matches with the F-multiplication over this subset. Regarding the binary addi-
tion ⊕, it can be implemented with operations over F as:

a ⊕ b = a + b − 2ab, (49)

for every a, b ∈ {0, 1} ⊆ F. Of course such an embedding comes at a high
cost in practice and our scheme would not be efficient to protect e.g. an AES
computation. However, our scheme is asymptotically more efficient than previous
ISW-based schemes meaning that there exists some masking order n for which an
implementation of our scheme would be more efficient than an implementation
of a previous scheme. Moreover and as discussed hereafter, we think that our
scheme could be practically improved in many ways.

Practical Efficiency. For any cryptographic computation on a base field F

with appropriate structure, our scheme should be very efficient in practice. We
recall that the field should be such that |F| = α · n + 1, for n being a power of
2 and α being large enough so that n/α is negligible. A 256-bit prime field such
as those used in Elliptic Curve Cryptography could for instance satisfy these
criteria. An interesting open issue would be to extend our scheme to work on
other algebraic structures and in particular on binary fields (e.g. to efficiently
secure the AES) or on rings used in lattice-based cryptography.

On the Size of the Field. We note that we need a ‘big’ field (typically of
size 128+2 log n) in order to have enough randomness when picking ω. However
this might be a proof artefact and the scheme could be secure for some constant
ω and/or using smaller fields. Another direction of improvement would be to
mitigate or remove this constraint with an improved construction and/or proof
technique.

Packing Encodings. Finally our scheme could also probably be improved
by using the principle of packed secret sharing as suggested in [2,3] since our
encoding is a kind of randomized Shamir’s secret sharing.

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 571

A Number Theoretic Transform

The Number Theoretic Transform (NTT) is essentially a (Fast) Fourier Trans-
form defined in a finite field (or ring) where inaccurate floating point or complex
arithmetic can be avoided. The NTT can be used to multiply two polynomials
over a finite field in quasilinear complexity. Let Fp be a prime finite field such that
d | p−1 for some integer d (Fp contains d-th roots of unity) and let A be a (d−1)-
degree polynomial over Fp[x] such that A(x) = a0 +a1x+a2x

2 + · · ·+ad−1x
d−1.

For a given primitive d-th root of unity ξ, the NTT maps the coefficients of A
to the evaluations A(ξi) with 1 ≤ i ≤ d:

NTTξ : (a0, a1, . . . , ad−1) �→ (A(ξ1), A(ξ2), . . . , A(ξd)). (50)

For d being a power of two, the NTT can be computed in time complexity
O(d log d). To show this, let us define A0 and A1, the two (d

2 − 1)-degree poly-
nomials

A0(x) = a0 + a2x + a4x
2 + · · · + ad−2x

d
2 −1

A1(x) = a1 + a3x + a5x
2 + · · · + ad−1x

d
2 −1

which satisfy

A(x) = A0(x2) + xA1(x2).

The problem of evaluating A(x) at each d-th root of unity ξi, for 1 ≤ i ≤ d,
is reduced to the problem of evaluating A0(x) and A1(x) at the points ξ2i, for
1 ≤ i ≤ d

2 , and we can combine the results with A(ξ) = A0(ξ2) + ξA1(ξ2). The
polynomials A0(x) and A1(x) can also be evaluated at the points ξ2i with the
same divide and conquer strategy, using the polynomials A00, A01, A10, A11

satisfying

A0(x) = A00(x2) + xA01(x2) and A1(x) = A01(x2) + xA11(x2).

This divide and conquer strategy can be iterated log2(d) times. At the t-th step
we have 2t polynomials Au of degree d

2t for u ∈ {0, 1}t that must be evaluated
in ξj for j = 2t, 2 · 2t, . . . , d

2t · 2t, which makes a total of 2t · d
2t = d evaluations.

Moreover, from ξj+ d
2 = −ξj we have

Au (ξj)= Au |0(ξ2j)+ ξjAu |1(ξ2j) and Au (ξj+ d
2)= Au |0(ξ2j) − ξjAu |1(ξ2j) (51)

implying that the number of evaluations can be merely divided by two.
In practice, we start with t = log2(d), where we have 2t = d constant poly-

nomials Au = aϕ(u) with ϕ(u) denoting the integer corresponding to the binary
expansion u ∈ {0, 1}log2(d). Then we iterate (51) for t from log2(d) down to 1
where we have our d evaluations of A. The overall process is summarized here-
after:

572 D. Goudarzi et al.

1. (c0, c1, . . . , cd−1) ← (a0, a1, . . . , ad−1)
2. for t = log2(d) − 1 down to 1:
3. j = 2t; k = 2d−t−1

4. for i ∈ ⋃k−1
�=0 Uj,�

5. (ci, ci+j) ← (ci + ξjci+j , ci − ξjci+j)

where Uj,� = {(2�j, . . . , (2� + 1)j − 1)} and where the index shiftings of c are
done modulo d, i.e. ci+j = ci+j mod d. It can be checked that the above evalu-
ation of NTTξ takes a total of d log d

2 multiplications, d log d
2 additions and d log d

2
subtractions.

Using the NTT with a dth root of unity, we can efficiently compute the
product C(x) = A(x) · B(x) for any two polynomials A,B ∈ Fp[x] of degree
up to n − 1 with d = 2n. We first apply the NTT to get d evaluations of both
polynomials:

(A(ξ1), A(ξ2), . . . , A(ξd)) = NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)

(B(ξ1), B(ξ2), . . . , B(ξd)) = NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

from which we get d evaluations of C by C(ξi) = A(ξi) · B(ξi) for 1 ≤ i ≤ d.
Finally, we can recover the coefficients of the output polynomial C by computing
the inverse NTT on (C(ξ), C(ξ1), . . . , C(ξd)), which satisfies

(c0, c1, . . . , cd) = NTT−1
ξ (C(ξ1), C(ξ2), . . . , C(ξd))

= NTTξ−1

(1
d
C(ξ1),

1
d
C(ξ2), . . . ,

1
d
C(ξd)

)
.

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 715–724. ACM Press, June
2011

2. Andrychowicz, M., Damg̊ard, I., Dziembowski, S., Faust, S., Polychroniadou, A.:
Efficient leakage resilient circuit compilers. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 311–329. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 17

3. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/ log(n))
leakage rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 586–615. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 21

4. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

5. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 616–648.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

https://doi.org/10.1007/978-3-319-16715-2_17
https://doi.org/10.1007/978-3-319-16715-2_17
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-49896-5_22

How to Securely Compute with Noisy Leakage in Quasilinear Complexity 573

6. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part III. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63697-9 14

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

8. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 31

9. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

10. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

11. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 10

12. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

16. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
53rd FOCS, pp. 31–40. IEEE Computer Society Press, October 2012

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24638-1 16

https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-44709-3_10
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-24638-1_16

574 D. Goudarzi et al.

21. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

22. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

23. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

24. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009). http://eprint.iacr.org/2009/341

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28
http://eprint.iacr.org/2009/341

Leakage-Resilient Cryptography
from Puncturable Primitives

and Obfuscation

Yu Chen1,2,3, Yuyu Wang4,5,6(B) , and Hong-Sheng Zhou7

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
chenyu@iie.ac.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
4 Tokyo Institute of Technology, Tokyo, Japan

wang.y.ar@m.titech.ac.jp
5 IOHK, Hong Kong, China

6 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
7 Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Abstract. In this work, we develop a framework for building leakage-
resilient cryptosystems in the bounded leakage model from puncturable
primitives and indistinguishability obfuscation (iO). The major insight
of our work is that various types of puncturable pseudorandom functions
(PRFs) can achieve leakage resilience on an obfuscated street.

First, we build leakage-resilient weak PRFs from weak puncturable
PRFs and iO, which readily imply leakage-resilient secret-key encryp-
tion. Then, we build leakage-resilient publicly evaluable PRFs (PEPRFs)
from puncturable PEPRFs and iO, which readily imply leakage-resilient
key encapsulation mechanism and thus public-key encryption. As a build-
ing block of independent interest, we realize puncturable PEPRFs from
either newly introduced puncturable objects such as puncturable trap-
door functions and puncturable extractable hash proof systems or exist-
ing puncturable PRFs with iO. Finally, we construct the first leakage-
resilient public-coin signature from selective puncturable PRFs, leakage-
resilient one-way functions and iO. This settles the open problem posed
by Boyle, Segev, and Wichs (Eurocrypt 2011).

By further assuming the existence of lossy functions, all the above
constructions achieve optimal leakage rate of 1 − o(1). Such a leakage
rate is not known to be achievable for weak PRFs, PEPRFs and public-
coin signatures before. This also resolves the open problem posed by
Dachman-Soled, Gordon, Liu, O’Neill, and Zhou (PKC 2016, JOC 2018).

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 575–606, 2018.
https://doi.org/10.1007/978-3-030-03329-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_20&domain=pdf
http://orcid.org/0000-0002-1198-1903

576 Y. Chen et al.

1 Introduction

A main line in cryptography is to design cryptosystems in security models that
capture a wide range of possible attacks. Based on the idealized assumption that
software/hardware implementations of cryptosystems perfectly hide the internal
secrets, traditional security models (following the seminal work of Goldwasser
and Micali [GM84]) only give an adversary “black-box” access to cryptosystems.
However, advancements of cryptanalysis indicate that such an idealized assump-
tion is false in real world: an adversary can launch a variety of key leakage attacks
(such as [Koc96,BDL97,BS97,KJJ99,HSH+08]) to get some partial information
about secret keys.

To thwart key leakage attacks in a systematic manner, the research commu-
nity has paid extensive efforts on the design of provably secure leakage-resilient
cryptosystems in the last decade, spreading from basic primitives (including
one-way functions, pseudorandom functions, message authentication codes,
encryptions, and signatures) to advanced protocols (including identifications,
authenticated key agreements, and zero-knowledge proof systems).

Leakage Models. Briefly speaking, leakage models are defined by strengthening
standard models with a leakage oracle Oleak(·), from which an adversary can
(adaptively) specify a series of leakage functions fi : {0, 1}∗ → {0, 1}�i and learn
the result of fi applied to the internal secret state. Over the years, several leakage
models have been proposed in the literature, differing in the specifications of fi.
In this work we focus on a simple yet general model called bounded leakage model,
introduced by Akavia et al. [AGV09]. In the bounded leakage model, all secrets
in memory are subject to leakage, i.e., the input of fi could be entire secret key
sk, while fi could be arbitrary subjected to the natural restriction that

∑
i �i

is bounded by some parameter �, called the leakage bound. The leakage rate is
defined as the ratio of � to the secret key size |sk|, i.e., �/|sk|. Obviously, the
optimal leakage rate is 1 − o(1) since otherwise the adversary can trivially learn
the entire secret via querying Oleak(·).

To date, the bounded leakage model has been widely adopted in
many works [NS09,KV09,CDRW10,BG10,GKPV10,HL11,BK12,BCH12]. The
results from the bounded leakage model are usually used as building blocks for
leakage-resilient schemes in more complex leakage models.

Approach Towards Leakage Resilience. From the perspective of provable
security, the main technical hurdle to achieve leakage-resilience is that the reduc-
tion must be able to handle leakage queries w.r.t. arbitrary functions chosen
from L, where L is the ensemble of admissible leakage functions. This seemingly
stipulates that the reduction should know the secret key while typically this is
not the case because the underlying intractable problems is usually embedded
in the secret key. This intuition has been formalized as “useless attacker para-
dox” in [Wic13]. Prior works overcome this paradox by taking the following two
approaches.

Leakage-Resilient Cryptography from Puncturable Primitives 577

One approach is directly resorting to leakage-resilient assumptions (which
might be well packed as advanced assumptions). Following this approach, the
reduction can easily handle leakage queries by simply forwarding them to its
own challenger. Goldwasser et al. [GKPV10] proved that the LWE assumption
itself is leakage-resilient and then built a leakage-resilient secret-key encryption
from it. Akavia et al. [AGV09] proved that meaningful and meaningless pub-
lic keys are computationally indistinguishable even in the presence of secret
key leakage based on the LWE assumption, and then utilized this leakage-
resilient “assumption” to show that Regev’s PKE [Reg05] is actually leakage-
resilient. Katz and Vaikuntanathan [KV09] built a leakage-resilient signature
from universal one-way hash functions (UOWHFs)1 together with PKE and
simulation-sound non-interactive zero knowledge (NIZK) proof system, where
the UOWHFs are actually used as leakage-resilient one-way functions. Simi-
lar strategy is also adopted for constructing other leakage-resilient signature
schemes [DHLW10,BSW11,MTVY11].

Another approach is combining key detached strategy and leakage-resilient
facts/assumptions, which is mainly used in the constructions of leakage-resilient
PKE. Informally, the key detached strategy means the underlying intractable
problems are not embedded to the secret keys, but to the ciphertexts. Fol-
lowing this approach, the reduction can easily handle key leakage queries by
either owning the secret key or relying on leakage-resilient assumptions. Naor
and Segev [NS09] utilized hash proof system (HPS) as a powerful tool to con-
struct leakage-resilient PKE. In the security proof, valid ciphertexts are first
switched to invalid ones (such switching is computationally indistinguishable
even given the whole secret key because the underlying subset membership prob-
lem and secret keys are detached) to ensure that the hash proof π has high
min-entropy, then the leftover hash lemma is used to prove the session key of
the form ext(π, s) is random even in the presence of bounded key leakage.2 Sub-
sequently, Alwen et al. [ADN+10] and Hazay et al. [HLWW13] extended HPS
to the identity-based and symmetric-key setting respectively, and used them to
construct leakage-resilient identity-based encryption and secret-key encryption.
Dodis et al. [DGK+10] constructed leakage-resilient PKE in the auxiliary input
model via a similar method. In the security proof, valid ciphertexts are also first
switched to invalid ones, then the generalized Goldreich-Levin theorem is used
to argue that the session key of the form hc(sk) is pseudorandom even given
auxiliary-input of the secret key sk.3

1 This is sometimes called second pre-image resistant functions.
2 Leftover hash lemma could be interpreted as a leakage-resilient fact, which stipulates
ext(x, s) is close to uniform even given a correlated value z, as long as s is a random
seed chosen independently and x still has high min-entropy given leakage z.

3 Goldreich-Levin theorem can be interpreted as a leakage-resilient assumption, which
states that if h is one-way then hc(x) is pseudorandom even in the presence of h(x).
Here hc serves as a computational randomness extractor and h(x) could be viewed
as leakage on x.

578 Y. Chen et al.

1.1 Motivation

So far, a broad range of leakage-resilient cryptographic schemes under various
leakage models have been proposed in the literature. Nevertheless, several inter-
esting problems are still left open around lower-level, “workhorse” primitives like
SKE, PKE, and signature under the basic bounded leakage model.

For leakage-resilient SKE, the task can be reduced to constructing leakage-
resilient weak PRFs (wPRFs) in the bounded leakage model. However, the
literature on this topic is sparse. [Pie09,DY13] showed that any wPRF is
already leakage-resilient for a logarithmic leakage bound � = O(log λ). Hazay
et al. [HLWW13] built leakage-resilient wPRF from any one-way functions.
Their construction only requires minimal assumption, but its leakage rate is
O(log(λ)/|sk|), which is rather poor. To date, essentially nothing better was
known for generic construction of leakage-resilient SKE with optimal leakage
rate, beyond simply using leakage-resilient PKE in the symmetric-key setting.

For leakage-resilient PKE, existing constructions [AGV09,BG10,DGK+10,
NS09,ADN+10] are based on either specific assumptions such as LWE, DDH,
DCR, QR, or somewhat more generally the hash proof systems4. It is intrigu-
ing to know if there is a generic construction. In particular, whether the
generic constructions of PKE based on trapdoor functions/relations [PW08,
RS09,KMO10,Wee10] can be made leakage-resilient is still unclear. On the
other hand, semantic security against chosen-ciphertext attacks (CCA) is the
strongest notion for PKE in the traditional security model [GM84]. Several pre-
vious works [NS09,LWZ13,QL13,QL14,CQX18] studied how to achieve leakage-
resilience and CCA security simultaneously via dedicated composition of sepa-
rate techniques. Nevertheless, no prior work considered the orthogonal problem:
whether we can acquire leakage-resilience from CCA security. We observe that
in the CCA security experiment, responses to decryption queries can be viewed
as a certain form of key leakage (the leakage function f is tied to decryption
algorithm but with unbounded output length). It is interesting to know whether
there is a general connection between the two important security notions for
PKE.

For leakage-resilient signature, achieving fully leakage-resilience is of partic-
ular interest since it better captures real attacks [KV09]. This notion requires
a signature to remain existentially unforgeable under chosen-message attacks
even when an adversary obtains bounded leakage information on all intermediate
states, including the secret keys and internal random coins. Clearly, if the signing
procedure is deterministic or public-coin5, standard leakage resilience automati-
cally implies fully leakage resilience. To date, all the known fully leakage-resilient

4 Following current conventions, we do not regard hash proof systems [CS02] as a
general assumption.

5 A signature is secret-coin if its security breaks down when the randomness used in
the signing procedure is revealed. On the contrary, a signature is public-coin if it
stays secure even when the random coins used in the signing procedure are revealed
(i.e., provided in-the-clear by the signature). In other words, public-coin signature
is secure even when the entire random coins used for signing are leaked.

Leakage-Resilient Cryptography from Puncturable Primitives 579

signature schemes [BSW11,MTVY11,LLW11,GJS11] in the standard model are
randomized and secret-coin. The existence of leakage-resilient deterministic or
public-coin signature is unclear and was left as an open problem by Boyle et al.
[BSW11]. Earlier, the leakage-resilient signature scheme by Katz and Vaikun-
tanathan [KV09] is deterministic but only “one-time” secure. Recently, Wang
et al. [WMHT16] proposed a leakage-resilient public-coin signature scheme.
However, their construction is only secure against selective leakage attacks, i.e.,
an adversary has to declare the leakage function before seeing the verification
key. Besides, their construction requires differing-input obfuscation [BGI+12],
whose existence is seriously cast in doubt [GGHW14,BSW16]. From this
perspective, the problem posed by Boyle et al. [BSW11] is still largely open.

1.2 Our Contributions

With the preceding discussion in mind, in this work we focus on generic con-
structions of leakage-resilient encryption and signature in the bounded leakage
model. The major insight of our work is that various kinds of puncturable PRFs
can achieve leakage-resilience on an obfuscated street. We summarize our main
results (depicted in Fig. 1) as below.

Leakage-Resilient SKE. As shown in [HLWW13], the classic construction of
CPA-secure SKE from wPRF is leakage-resilience-preserving. So, we restrict our
attention to constructing leakage-resilient wPRFs. Towards this goal, in Sect. 3.2
we first put forward a new notion called weak puncturable PRFs (wPPRFs),
which could be thought of as the puncturable version of wPRFs. We then show
wPPRFs and selective puncturable PRFs (sPPRFs) [SW14] imply each other,
while the latter is implied by the GGM-tree based PRFs [GGM86]. Finally, in
Sect. 3.3 we build leakage-resilient wPRFs from wPPRFs and iO.

Leakage-Resilient KEM. The KEM-DEM paradigm (here KEM stands for
key encapsulation mechanism, DEM stands for data encapsulation mechanism)
is a modular and efficient approach for building PKE. In the leakage setting, one
can build a leakage-resilient PKE by combining a leakage-resilient KEM with a
standard DEM. In the rest of this work, we only focus on the construction of
leakage-resilient KEM. Chen and Zhang [CZ14] put forward the notion of pub-
licly evaluable PRFs (PEPRFs), which encompasses almost all the known con-
structions of KEM. We observe that leakage-resilient PEPRFs naturally imply
leakage-resilient KEM. So, the task is reduced to acquiring leakage resilience for
PEPRFs.

To this end, in Sect. 4.2 we first put forward the notion of puncturable
PEPRFs, then build leakage-resilient PEPRFs from puncturable PEPRFs and
iO in Sect. 4.3. Moreover, we instantiate puncturable PEPRFs from either newly
introduced primitives such as puncturable trapdoor functions and puncturable
extractable hash proof systems, or existing puncturable PRFs with iO.

This result provides a unified framework for constructing leakage-resilient
KEM, which not only clarifies and encompasses the construction by Dachman-
Soled et al. [DGL+16, Sect. 5.1], but also indicates that the PKE constructions

580 Y. Chen et al.

based on “puncturable” trapdoor functions/relations (which in turn implied
by correlated-product trapdoor functions [RS09] or extractable hash proof sys-
tems [Wee10] with puncturable property) can be made leakage resilient! Recently,
Matsuda and Hanaoka [MH15] introduced a new primitive called puncturable
KEM (PKEM), which captures a common pattern towards CCA security under-
lying many constructions of CCA-secure PKE. We remark that PPEPRFs imply
PKEM with perfect strong punctured decapsulation soundness. This result
establishes a somewhat surprising connection between CCA security and leak-
age resilience, that is, CCA security obtained along the puncturable road can be
converted to leakage-resilience in a non-black-box manner via obfuscation.

Leakage-Resilient Signature. In Sect. 5, we show how to build leakage-
resilient signature from selective puncturable PRFs, iO, and leakage-resilient
one-way functions. Our basic scheme is deterministic but only achieves selec-
tive security6. To attain adaptive security, several bootstrapping techniques can
be used without compromising leakage resilience. More precisely, one can either
use the magic method enabled by extremely lossy function [Zha16], obtaining
the first deterministic leakage-resilient signature scheme, or apply the “prefix-
guessing technique” [HW09,RW14], yielding the first public-coin leakage-resilient
signature scheme. We postpone the details to the full version [CWZ18].

We highlight that in our construction the signature size is exactly the output
size of a puncturable PRF7, which is very close to the leakage bound. Clearly, sig-
nature size cannot be shorter than leakage bound, since otherwise an adversary
can directly obtain a forged signature from leakage. In this sense, our construc-
tions also enjoy the almost optimal signature size.

All the basic constructions described above can tolerate L bits of leakage for
any polynomial L of security parameter λ. However, the leakage rate is low due
to the fact that secret keys are obfuscated programs, which could be very huge.
By further assuming the existence of lossy functions [PW08], we can remarkably
shrink the size of secret keys and achieve optimal leakage rate 1 − o(1). Such
a leakage rate is not known to be achievable for weak PRFs, PEPRFs and
deterministic/public-coin signatures before.

1.3 Overview of Our Techniques

As we summarized before, a common theme of the two main approaches towards
leakage resilience in the literature is that the reduction always try to simulate
leakage oracle perfectly, i.e., answering leakage queries with real leakage. To do
so, we have to either rely on leakage-resilient assumptions or resort to sophisti-
cated design with specific structure. It is interesting to investigate the possibility
of simulating leakage oracle computationally, namely answering leakage queries

6 In selective security model, the adversary must declare the message m∗ on which it
will make a forgery before seeing the verification key, but then can adaptively make
signing queries on messages distinct from m∗.

7 In the case of our adaptively secure construction, a signature additionally contains
a public coin of size λc for any constant c < 1.

Leakage-Resilient Cryptography from Puncturable Primitives 581

wPPRF

LR-wPRF

LR-SKE

Sec.3.3 iO
sPPRF+LR-OWF

LR-SIG

Sec.5 iO

Sec.3.2

PPEPRF

LR-PEPRF

LR-PKE

Sec.4.3 iO

PTDF

CP-TDF

PEHPS

DEHPS

wPPRF+PRG+iO

Fig. 1. The bold lines and rectangles denote our contributions (the thin lines denote
those that are straightforward or follow readily from previous work).

with simulated leakage, as long as it is computationally indistinguishable from
real leakage. This would possibly lend new techniques to address the unsolved
problems in leakage-resilient cryptography.

Very recently, Dachman-Soled et al. [DGL+16] discovered powerful applica-
tions of iO to leakage-resilient cryptography. In the continual leakage model,
they presented an iO-based compiler that transforms any public-key encryption
or signature scheme with consecutive continual leakage-resilience to continual
leakage resilience allowing leakage on key updates. In the bounded leakage model,
they showed how to modify the Sahai-Waters PKE to be leakage-resilient. We
observe that their work essentially embodies the idea of simulating leakage oracle
computationally.

Simulate Leakage via Obfuscation. At the heart of our leakage-resilient
encryptions and signatures is a general approach of simulating leakages
enabled by puncturable primitives and obfuscation, which is largely inspired
by the leakage-resilient variant of Sahai-Waters PKE due to Dachman-Soled
et al. [DGL+16]. Next, we first distill and extend the idea underlying the work
of [DGL+16], then carry out a systematic study of its applicability to leakage-
resilient cryptography.

Recall that the common technical hurdle towards leakage resilience is to
handle leakage queries. As opposed to the naive strategy of answering leakage
queries with real secret keys, another promising strategy is simulating leakage
with “faked” secret keys. By the composition lemma, as long as the faked secret
keys are indistinguishable from the real ones, the simulated leakages are also
indistinguishable from the real leakages because all leakage functions are effi-
ciently computable.

Our approach adopts the second strategy. First, a secret key sk of any crypto-
graphic scheme can always be expressed as a program Eval with sk hardwired.

582 Y. Chen et al.

If a cryptographic scheme is puncturable (e.g., puncturable PRFs), then the
reduction may build a functional-equivalent program Eval′ with skx∗ and y∗

hardwired, where skx∗ is the punctured secret key at input x∗ and y∗ = Eval(x∗).
Secondly, note that indistinguishability obfuscation preserves functionality and
guarantees that the obfuscations of any two functional-equivalent programs are
computationally indistinguishable. Therefore, by setting the new secret key as
iO(Eval), the reduction is able to simulate leakage queries with iO(Eval′). This
approach abstracts the high-level idea of how to acquire leakage-resilience when
puncturable primitives meet iO.

Obfuscate Key and Extract Randomness. Our leakage-resilient encryp-
tions exactly follow this approach. In a nutshell, we use iO to compile weak
(resp. publicly evaluable) puncturable PRFs into leakage-resilient weak (resp.
publicly evaluable) PRFs, which immediately yield leakage-resilient secret-key
(resp. public-key) encryption.

To best illustrate our approach, we focus here on the secret-key setting, as
it already emphasizes the main ideas underlying our approach. Starting from a
weak puncturable PRF F : K × X → {0, 1}n, we use iO to compile it into a
leakage-resilient weak PRF with a randomness extractor ext : {0, 1}n × S → Z.
The construction is instructive: (1) generate a secret key k for F , then create a
program Eval with k hardwired, which on input x and s outputs ext(Fk(x), s);
(2) set the secret key as iO(Eval). This defines a weak PRF F̂ : {0, 1}n ×S → Z.
To establish security, the hybrid argument starts with the real game for leakage-
resilient wPRF, where leakage and evaluation queries are handled with real secret
key iO(Eval). In the next game, the challenger picks the challenge input x∗ and
s∗ at the very beginning, create a program Eval′ with the same input-output
behavior as Eval, where kx∗ is the punctured key for k w.r.t. x∗ and y∗ =
Fk(x∗). The leakage and evaluation queries are thus handled with iO(Eval′).
Such modifications are undetectable by the security of iO. In the final game,
the challenger switches y∗ from Fk(x∗) to a random value. This transition is
undetectable by the weak pseudorandomness of the starting puncturable PRF.
An important fact is that the responses to evaluation queries are determined
by kx∗ , and thus do not leak any information about y∗. Now, we can argue the
desired security in purely information-theoretic way. By appropriate parameter
choice, y∗ still retains high min-entropy in the presence of leakage, and thus the
value ext(y∗, s∗) is statistically close to uniform distribution.

In the public-key setting, our construction essentially follows the same app-
roach. We use iO to compile puncturable PEPRF into leakage-resilient PEPRF,
which readily yield leakage-resilient CPA-secure KEM. The main technical
novelty lies in realizing puncturable PEPRFs from a variety of puncturable
primitives. More precisely, we build puncturable PEPRFs from: (1) newly intro-
duced notion of puncturable TDFs, which is in turn implied by correlated-
product TDFs [RS09]; (2) newly introduced notion of puncturable EHPS, which
is implied by EHPS [Wee10] satisfying derivable property; (3) selective punc-
turable PRFs, pseudorandom generator, and iO (adapted from the Sahai-Waters
PKE [SW14]). This provides us a unified method to build leakage-resilient KEM
from various puncturable primitives and iO.

Leakage-Resilient Cryptography from Puncturable Primitives 583

Obfuscate Key and Translate Leakage. Along our approach towards leak-
age resilience, we investigate the possibility of building leakage-resilient signature
from puncturable primitives and iO. We choose the short “hash-and-sign” selec-
tively secure signature by Sahai and Waters [SW14] as our starting point, since
it inherits the puncturable property from its underlying selective puncturable
PRFs. To best illustrate the idea of our adaption, we first briefly review the
Sahai-Waters signature scheme.

The Sahai-Waters signature is essentially a PRF-based MAC with public ver-
ifiability. The signing key sk is simply a secret key of selective puncturable PRF
(sPPRF), and the signature on m is σ ← Fk(m). The verification key vk is set
as iO(Vefy) where Vefy is a program that can check the MAC publicly. To excise
out the information about Fk(m∗) (here m∗ denotes the target message), Vefy
computes g(Fk(m)) and compares the result for equality to g(σ), where g is a
one-way function and σ is the claimed signature on m. To establish security, the
hybrid argument starts with the real game for selective signature. The interme-
diate hybrid game builds an equivalent verification program using a punctured
key km∗ and y∗ ← g(σ∗) where σ∗ = Fk(m∗). The final hybrid game replaces σ∗

with a random value. The first transition is undetectable by the security of iO,
while the second transition is undetectable by the pseudorandomness of sPPRF.
In the final game, no PPT adversary is able to output a valid forgery (find the
preimage σ∗) with non-negligible advantage by the one-wayness of g.

Following the new approach of simulating leakage, a tempting idea to
make the Sahai-Waters signature leakage-resilient is setting the signing key as
iO(Sign), where Sign is a program that on input m outputs Fk(m). Among the
transitions of hybrid games, Sign is replaced by Sign′ (with km∗ and σ∗ hard-
wired). In this way, leakage and signing queries can be handled with “faked”
signing key. However, we are unable to reduce the leakage-resilient unforgeabil-
ity to the one-wayness of g. This is because in addition to y∗ = g(σ∗) revealed
in vk, the information of σ∗ may also be leaked via leakage queries on signing
key iO(Sign′). Therefore, the security proof breaks down in the final game, i.e.,
the reduction has to build Sign′ while σ∗ is unknown.8 We overcome this obsta-
cle by using leakage-resilient OWF to replace standard OWF. Briefly, OWF is
leakage-resilient if one-wayness remains in the presence of certain leakage on
the preimage. Also observe that a leakage function f about the signing key
iO(Sign′) can be efficiently translated to leakage about σ∗, since both f and
iO are efficiently computable. With such enhancement, in the final game the
reduction can handle signing queries using km∗ and handle leakage queries on
signing key iO(Sign′) by translating them to leakage queries on preimage σ∗ to
the underlying leakage-resilient OWF. See Sect. 5 for technical details.

Improving Leakage Rate via Lossy Functions. Applying the above app-
roach in a straightforward manner will incur poor leakage rate, because the secret
keys are obfuscated programs, which could be very large.

8 Note that this dilemma does not occur in the case of encryption, since the argument
in the final game is information-theoretic.

584 Y. Chen et al.

In [DGL+16], the authors showed how to modify their basic leakage-resilient
PKE construction to achieve optimal leakage rate. Next, we briefly revisit their
technique in the context of our construction of leakage-resilient wPRF. Now,
the key generation algorithm works as follows: (1) pick a random key ke for a
SKE scheme and generate a dummy ciphertext ct ← Enc(ke, 0n) as the secret
key sk; (2) pick a collision-resistant hash h and compute η∗ ← h(ct); (3) pick
a random key k for the underlying weak PRF, obfuscate a program Eval and
store the obfuscated result Ceval into public parameters. Here, the program Eval
is hardwired with k and t∗, which on input sk and (x, s) outputs ext(Fk(x), s) if
and only if h(sk) = η∗. Intuitively, ct acts as a trigger of Ceval, which only works
when h(ct) matches η∗. In this way, the size of secret key is greatly reduced.

In the security proof, the first game is the real game. In the next game, ct is
switched to an encryption of the PRF value y∗ ← Fk(x∗). This modification is
undetectable by the semantic security of SKE. Then, Ceval is switched to C ′

eval,
which is an obfuscation of program Eval′. With ke and a punctured PRF key
kx∗ hardwired, Eval′ works if and only if the hash value of its input ct matches
η∗. When h(ct) = t∗, it evaluates with kx∗ if x �= x∗, otherwise it evaluates after
decrypting ct to y∗. In the final game, y∗ is switched to a uniformly random value.
The rest security analysis is routine. A subtle problem arised is that now Eval
and Eval′ have differing inputs, because h is compressing and thus a collision
ct′ (i.e., h(ct′) = η∗ = h(ct)) that encrypts a value y′ �= y∗ is likely to exist.
Therefore, they have to rely on public-coin differing-input obfuscation [IPS15],
which is stronger than indistinguishability obfuscation.

As analyzed above, the usage of CRHF leads to the reliance on differing-
input obfuscation, while the choice of CRHF seems necessary to ensure that η∗

only leaks partial information about y∗ (encrypted in ct), which is crucial to
achieve high leakage rate. Can we achieve higher leakage rate without resorting
to differing-input obfuscation? The answer is affirmative. Our idea is to replace
CRHFs with lossy functions [PW08]. In the real construction, h is generated as
an injective function. By this choice, η∗ uniquely fixes its preimage ct and thus
the value y∗. With this setting, Eval and Eval′ agree on all inputs, and iO suffices
to guarantee the switching from Eval to Eval′ is undetectable. To argue the high
leakage rate we can attain, in the last game we switches h to a lossy function that
significantly lose the information about y∗. By the security of lossy functions, this
change is undetectable. Clearly, in the last game y∗ still maintains sufficiently
large min-entropy even in the presence of η∗ and leakage. By appropriate choice
of parameter, optimal leakage rate is achievable. The above technique carries
over to the constructions of leakage-resilient PEPRF and signature as well.

We believe that the our technique of improving leakage rate by interplaying
iO with lossy functions will also be instructive for avoiding using differing-input
obfuscation in other places.

1.4 Related Work

Leakage Models. Several leakage models have been proposed in the literature.
In the seminal work, Micali and Reyzin [MR04] initiated the formal study of

Leakage-Resilient Cryptography from Puncturable Primitives 585

side-channel attacks by introducing the “only computation leaks information”
model. Unfortunately, it fails to capture many practical leakage attacks, such as
the cold-boot attack of [HSH+08].

To capture more general side-channel attacks known as memory attacks,
Akavia et al. [AGV09] introduced the bounded leakage model, in which the adver-
sary can obtain arbitrary length-bounded leakage. The follow-up works consid-
ered various strengthenings to accommodate more complex and general leakage
scenarios. Naor and Segev [NS09] generalized the bounded leakage model to noisy
leakage model (also known as entropy leakage model), where length-bounded
leakage is relaxed to entropy-bounded leakage. Alwen et al. [ADW09,ADN+10]
suggested the bounded-retrieval model, which imposes an additional requirement
that the tolerated leakage amount can grow by proportionally expanding the
secret key without increasing the size of public key, or computation/bandwidth
efficiency. Dodis et al. [DHLAW10] and Brakerski et al. [BKKV10] introduced
the continual leakage model for public-key schemes, where the secret key can
be periodically self-refreshed while the public key remains the same. This model
allows bounded leakage between any two successive refreshes without a-priori
bound on the overall amount of leakage throughout the lifetime of the system.

The bottomline of the bounded leakage model and its variants interpret the
following restriction on the leakage: it is information-theoretically impossible to
recover the secret key from the leakage. Dodis et al. [DKL09,DGK+10] intro-
duced the auxiliary input model (AIM), in which the total amount of leakage
could be unbounded, as long as the secret key remains hard-to-invert given the
leakage (but even if the secret key is fully determined in an information-theoretic
sense). As noted in [KV09], a drawback of this model is that given some collec-
tion of leakage functions {fi} there is no way to tell, in general, whether they
satisfy the stated requirement or not. Furthermore, existing constructions in this
model require super-polynomial hardness assumptions.

Leakage-Resilient Cryptosystems. There is a large body of constructions of
leakage-resilient cryptosystems in various models. In the bounded leakage model,
there are OWF [KV09,Kom16], MAC and SKE [HLWW13], PKE [AGV09,
NS09,LWZ13,QL13,QL14,CQX18], IBE [AGV09,ADN+10,CDRW10], signa-
ture [KV09,ADW09], AKE [ADW09], and zero-knowledge proofs [GJS11]. In the
continual leakage model, there are PKE [DHLAW10,BKKV10], IBE [LRW11,
YCZY12,YXZ+15], and signature [BSW11,MTVY11,LLW11]. In the auxiliary
input model, there are SKE [DKL09], PKE [DGK+10], and signature
[WMHT16].

2 Preliminaries

Notation. For a distribution or random variable X, we write x
R←− X to denote

the operation of sampling a random x according to X. For a set X, we use
x

R←− X to denote the operation of sampling x uniformly at random from X,
and use |X| to denote its size. We use UX to denote the uniform distribution
over X. For a positive integer n, we use [n] to denote the set {1, . . . , n}. Unless

586 Y. Chen et al.

described otherwise, all quantities are implicitly functions of a security parameter
denoted λ. We say that a quantity is negligible, written negl(λ), if it vanishes
faster than the inverse of any polynomial in λ. A probabilistic polynomial time
(PPT) algorithm is a randomized algorithm that runs in time poly(λ). If A is a
randomized algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A outputs
z on inputs (x1, . . . , xn) and random coins r. For notational clarity we usually
omit r and write z ← A(x1, . . . , xn).

Due to space limitations, we postpone the background of randomness extrac-
tion, definitions of lossy functions, leakage-resilient one-way functions/symmetric
encryption/key encapsulation mechanism/signature to the full version [CWZ18].

2.1 Puncturable Pseudorandom Functions

Puncturable PRFs (PPRFs) is the simplest type of constrained PRFs [KPTZ13,
BW13,BGI14]. In a PPRF, the constrained key is associated with an element
x∗ ∈ X, which allows evaluation on all elements x �= x∗. Next, we recall the
definition and security notion of PPRFs from [SW14] as below.

Definition 1 (PPRFs). A PPRF F : K × X → Y consists of four polynomial
time algorithms:

– Gen(λ): on input λ, output public parameter pp and a secret key k
R←− K. pp

will be used as an implicit input of PrivEval, Puncture and PuncEval.
– PrivEval(k, x): on input a secret key k and x ∈ X, output F (k, x).
– Puncture(k, x∗): on input a secret key k and x∗ ∈ X, output a punctured key

k({x∗}).9

– PuncEval(kx∗ , x): on input a punctured key kx∗ and an element x ∈ X, output
F (k, x) if x �= x∗ and a special reject symbol ⊥ otherwise.

For ease of notation, we write kx∗ to represent k({x∗}), write Fk(x) and F (k, x)
interchangeably and write Fkx∗ (x) or F (kx∗ , x) to represent PuncEval(kx∗ , x).

Sahai and Waters [SW14] defined selective pseudorandomness for PPRFs,
which is weaker than full pseudorandomness in that the adversary must commit
to the target input x∗ even before seeing the public parameter.

Selective Pseudorandomness. Let A = (A1,A2) be an adversary against
PPRFs and define its advantage in the following experiment:

AdvA(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β = β′ :

(state, x∗) ← A1(λ);
(pp, k) ← Gen(λ);
kx∗ ← Puncture(k, x∗);
y∗
0 ← Fk(x∗), y∗

1
R←− Y ;

β
R←− {0, 1};

β′ ← A2(state, pp, kx∗ , y∗
β);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
.

9 Without loss of generality, we assume that k({x∗}) includes the information of x∗

in plain.

Leakage-Resilient Cryptography from Puncturable Primitives 587

A PPRF is said to be selectively pseudorandom if for any PPT adversary A its
advantage defined as above is negligible in λ. For simplicity, we refer to selectively
pseudorandom PPRFs as sPPRFs. sPPRFs with fixed-length domain are easily
obtained from the GGM tree-based PRFs [GGM86], as observed in [BW13,
BGI14,KPTZ13]. Ramchen and Waters [RW14] also showed the existence of
sPPRFs with variable-length domain.

2.2 Indistinguishability Obfuscation for Circuits

We recall the definition and security notion of indistinguishability obfuscator
from [GGH+13] as below.

Definition 2 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ,
and for all inputs x ∈ {0, 1}∗, we have:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– (Indistinguishability of Obfuscation) For any PPT adversaries (S,D), there
exists a negligible function α such that the following holds: if Pr[∀x,C0(x) =
C1(x) : (C0, C1, aux) ← S(λ)] ≥ 1 − α(λ), then we have:

|Pr[D(aux, iO(λ,C0)) = 1] − Pr[D(aux, iO(λ,C1)) = 1]| ≤ α(λ)

3 Leakage-Resilient SKE

We begin this section by recalling the notion of leakage-resilient wPRFs and
their application in building leakage-resilient CPA-secure SKE from [HLWW13].
We then introduce a new notion called weak puncturable PRFs (weak PPRFs),
and show how to compile weak PPRFs to leakage-resilient wPRFs via iO.

3.1 Leakage-Resilient Weak PRFs

Standard PRFs require full pseudorandomness: given polynomially many arbi-
trarily inputs x1, . . . , xq, the outputs Fk(x1), . . . , Fk(xq) look pseudorandom.
Sometimes, the full power of PRFs is not needed and it is sufficient to have weak
PRFs which only claim weak pseudorandomness, where pseudorandomness holds
for uniformly random choice of inputs {xi}. The corresponding leakage-resilient
notion requires that weak pseudorandomness holds even if the adversary can
learn some leakage about the secret key k. Now, we recall the formal definition
of leakage-resilient weak pseudorandomness from [HLWW13].

588 Y. Chen et al.

Leakage-Resilient Weak Pseudorandomness. Let A = (A1,A2) be a PPT
adversary against PRFs and define its advantage in the following experiment.

AdvA(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β = β′ :

(pp, k) ← Gen(λ);
state ← AOleak(·),Oeval($)

1 (pp);
x∗ R←− X;
y∗
0 ← Fk(x∗), y∗

1
R←− Y ;

β
R←− {0, 1};

β′ ← AOeval($)
2 (state, x∗, y∗

β);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
.

Here Oleak(·) is a leakage oracle that on input leakage function f : K →
{0, 1}∗ returns f(k), subjected to the restriction that the sum of its output
lengths is at most �. Oeval($) is an evaluation oracle that does not take any input
and on each invocation, chooses a freshly random x ∈ X and outputs (x, Fk(x)).
A PRF is �-leakage-resilient weakly pseudorandom if no PPT adversary has
non-negligible advantage in the above experiment.

Remark 1. As pointed out in [HLWW13], since the adversary can always learn
a few bits of Fk(x) for some x of its choice (via leakage query), we cannot hope
to achieve full pseudorandomness in the presence of leakage, and hence setting
for weak pseudorandomness is a natural choice.

Leakage-Resilient SKE. The construction of LR CPA-secure SKE from LR
wPRF is obvious. We sketch the construction from [HLWW13] for completeness.
Assume F : K × X → Y is a leakage-resilient wPRF, whose range Y is an addi-
tive group (e.g., bit-strings under XOR). The secret key is exactly the key of
the underlying wPRF. To encrypt a message m ∈ Y , one samples x

R←− X and
outputs the ciphertext (x, Fk(x) + m). The decryption process is obvious. The
desired LR CPA security of SKE follows readily from the LR weak pseudoran-
domness of the wPRF.

3.2 Weak Puncturable PRFs

Towards the construction of leakage-resilient wPRFs, we put forward a new
notion called weak PPRFs by introducing weak pseudorandomness for PPRFs.
We show that weak PPRFs and selective PPRFs imply each other, while the
latter is directly implied by the GGM-tree based PRFs [GGM86].

Next, we formally introduce weak pseudorandomness for PPRFs, which dif-
fers from selective pseudorandomness (cf. definition in Sect. 2.1) in that the tar-
get input x∗ is uniformly chosen by the challenger, rather than being arbitrarily
chosen by the adversary before seeing the public parameter.

Leakage-Resilient Cryptography from Puncturable Primitives 589

Weak Pseudorandomness. Let A = (A1,A2) be an adversary against PPRFs
and define its advantage in the following experiment:

AdvA(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β = β′ :

(pp, k) ← Gen(λ);
x∗ R←− X;
kx∗ ← Puncture(k, x∗);
y∗
0 ← Fk(x∗), y∗

1
R←− Y ;

β
R←− {0, 1};

β′ ← A(pp, x∗, kx∗ , y∗
β);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
.

A PPRF is weakly pseudorandom if no PPT adversary has non-negligible
advantage in the above experiment. For simplicity, we refer to weakly pseudo-
random PPRFs as wPPRFs.

Interestingly, we show that wPPRFs and sPPRFs imply each other.

Theorem 1. wPPRFs and sPPRFs imply each other.

Proof. We first show that “wPPRFs imply sPPRFs” by building sPPRFs from
wPPRFs. Let F : K ×X → Y be a wPPRF, we build a sPPRF F̂ : K ×X → Y
from F as below.

– Gen(λ): run (pp, k) ← F.Gen(λ), pick r∗ R←− X, set p̂p = (pp, r∗) and k as the
secret key.

– PrivEval(k, x): on input k and x, output ŷ ← Fk(x + r∗) via computing
F.PrivEval(k, x + r∗). This algorithm defines F̂k(x) := Fk(x + r∗).

– Puncture(k, x∗): compute kx∗+r∗ ← F.Puncture(k, x∗ + r∗), output k̂x∗ =
kx∗+r∗ .

– PuncEval(k̂x∗ , x): parse k̂x∗ as kx∗+r∗ , if x �= x∗ output y ← Fkx∗+r∗ (x + r∗)
via computing F.PuncEval(kx∗+r∗ , x + r∗), else output ⊥.

We now reduce the selective pseudorandomness of the above construction to
the weak pseudorandomness of the underlying wPPRF. Let A be an adversary
against sPPRF with advantage AdvA(λ), we build an adversary B that breaks
wPPRF with the same advantage. B interacts with A in the selective pseudo-
randomness experiment of sPPRF as below:

1. Commit: A submits its target input x̂∗.
2. Setup and Challenge: B invokes its wPPRF challenger and receives back the

wPPRF challenge instance (pp, kx∗ , x∗, y∗
β) where x∗ is randomly chosen from

X, y∗
β is either Fk(x∗) if β = 0 or randomly chosen from Y if β = 1. B then

sets r∗ = x∗ − x̂∗, p̂p = (pp, r∗), k̂x̂∗ = kx∗ , sends (p̂p, k̂x̂∗ , y∗
β) to A as the

sPPRF challenge.
3. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly at random over X, thereby so is r∗.
According to the construction, the punctured key k̂x̂∗ at point x̂∗ in sPPRF F̂
equals the punctured key kx̂∗+r∗ = kx∗ at point x∗ in wPPRF F . Therefore, B’s

590 Y. Chen et al.

simulation is perfect and has the same advantage as A. This proves the forward
implication.

The reverse direction that “sPPRFs imply wPPRFs” follows by a simple
reduction of weak pseudorandomness to selective pseudorandomness. Let A be
an adversary against wPPRF with advantage AdvA(λ), we build an adversary
B that breaks sPPRF with the same advantage. B interacts with A in the weak
pseudorandomness experiment of wPPRF as below:

1. Setup and Challenge: B picks x∗ R←− X and submits x∗ to its own sPPRF
challenger. Upon receiving back (pp, kx∗ , y∗

β) where yβ is either Fk(x∗) if β = 0
or randomly chosen from Y if β = 1, B sends (pp, x∗, kx∗ , y∗

β) to A as the
wPPRF challenge.

2. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly over X. Therefore, B’s simulation is
perfect and has the same advantage as A. This proves the inverse implication.

The theorem immediately follows.

3.3 Leakage-Resilient wPRFs from wPPRFs and iO
Now, we show how to construct leakage-resilient wPRFs from wPPRFs and iO.
Let F : K ×X → Y be a wPPRF, iO be an indistinguishability obfuscator, and
ext : Y × S → Z be an average-case (n, ε)-strong extractor. In what follows, we
build a LR wPRF F̂ : K̂ × X̂ → Z, where X̂ = X × S.

– Gen(λ): run (pp, k) ← F.Gen(λ), output pp and k̂ ← iO(PrivEval), where
PrivEval is the program defined in Fig. 2.

PrivEval
Constants: wPPRF key k
Input: x̂ = (x, s)

1. Output z ← ext(Fk(x), s).

Fig. 2. Program PrivEval. This program is appropriately padded to the maximum of
the size of itself and program PrivEval∗ defined in Fig. 3.

PrivEval∗

Constants: wPPRF punctured key kx∗ , x∗, y∗

Input: x̂ = (x, s)

1. If x = x∗, output z ← ext(y∗, s).
2. Else, output z ← ext(Fkx∗ (x), s).

Fig. 3. Program PrivEval∗

Leakage-Resilient Cryptography from Puncturable Primitives 591

– PrivEval(k̂, x̂): on input k̂ and x̂ = (x, s) ∈ X × S, output y ← k̂(x, s). This
algorithm implicitly defines F̂k̂(x̂) := ext(Fk(x), s).

Theorem 2. If F is a secure wPPRF, iO is indistinguishably secure, ext is an
average-case (n, ε)-strong extractor, the above construction is an �-LR wPRF as
long as � ≤ log |Y | − n.

Proof. We proceed via a sequence of games. Let Si be the event that A wins in
Game i.

Game 0. This game is the standard leakage-resilient weak pseudorandomness
game for wPRFs. CH interacts with A as below:

Setup: CH runs (pp, k) ← F.Gen(λ), creates k̂ ← iO(PrivEval), where the
program PrivEval is defined in Fig. 2. CH then sends pp to A.
Phase 1: A can make evaluation queries and leakage queries. For each eval-
uation query, CH chooses x

R←− X and s
R←− S and returns (x, s, k̂(x, s)). For

each leakage query 〈f〉, CH responds with f(k̂).
Challenge: CH chooses x∗ R←− X, s∗ R←− S and computes y∗ ← Fk(x∗), then
computes z∗

0 ← ext(y∗, s∗), picks z∗
1

R←− Z and β
R←− {0, 1}, sends z∗

β to A.
Phase 2: A continues to make evaluation queries. CH responds the same way
as in Phase 1.
Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0] − 1/2|

Game 1. Same as Game 0 except that CH chooses x∗ R←− X, s∗ R←− S and
computes y∗ ← Fk(x∗) in the Setup stage. This change is only conceptual and
thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH directly aborts when handling eval-
uation queries for x = x∗.

Let E be the event that there exists one random sample x that equals x∗

when CH emulates evaluation oracle. Clearly, if E never happens, then Game
1 and Game 2 are identical. Suppose A makes at most qe evaluation queries.
Since A is a PPT adversary, qe is bounded by a polynomial in λ. Therefore,
Pr[E] ≤ qe/|X| ≤ negl(λ), we have:

|Pr[S2] − Pr[S1]| ≤ Pr[E] ≤ negl(λ)

Game 3. Same as Game 2 except that CH computes kx∗ ← F.Puncture(k, x∗),
y∗ ← Fk(x∗), and creates k̂ ← iO(PrivEval∗) in the Setup stage. Here, the pro-
gram PrivEval∗ (defined in Fig. 3) is built from constants kx∗ , x∗, y∗.

592 Y. Chen et al.

By the correctness of wPPRFs, the two programs PrivEval and PrivEval∗

agree on all inputs. By the security of iO, we have:

|Pr[S3] − Pr[S2]| ≤ AdviO
A

Game 4. Same as Game 3 except that CH picks y∗ R←− Y rather than setting
y∗ ← Fk(x∗) in the Setup stage.

By a simple reduction to the weak pseudorandomness of wPPRFs, this mod-
ification is undetectable for all PPT adversaries. Thus, we have:

|Pr[S4] − Pr[S3]| ≤ AdvwPPRF
A

Game 5. Same as Game 4 except that CH picks z∗
0

R←− Z rather than setting
z∗
0 ← ext(y∗, s∗) in the Challenge stage.

We denote by V the set of public parameter pp, (x∗, s∗), the responses to all
evaluation queries (determined by kx∗), z∗

1 and β. In both Game 4 and Game
5, y∗ is uniformly chosen from Y (independent of V), thus H∞(y∗|V) = log |Y |.
Observe that A also obtains at most � bits leakage on k̂ (denoted by leak)
which is correlated to y∗, it follows by the chain rule that H̃∞(y∗|(V, leak)) ≥
H∞(y∗|V) − � = log |Y | − �. Since ext is an average-case (n, ε)-strong extractor,
we conclude that ext(y∗, s∗) is ε-close to a uniformly random z∗

0
R←− Z, even given

V and leakage. Note that A’s view in Game 4 and Game 5 is fully determined
by z∗

0 , V and leak, while V and leak are distributed identically in Game 4 and
Game 5. Thereby, A’s view in Game 4 and Game 5 are ε/2-close. Thus, we have:

|Pr[S5] − Pr[S4]| ≤ ε/2 ≤ negl(λ)

In Game 5, both z∗
0 and z∗

1 are randomly chosen from Z. Therefore, we have:

Pr[S5] = 1/2

Putting all the above together, the theorem immediately follows. �

We have sketched how to achieve optimal leakage rate in Sect. 1.3. To avoid
repetition, we omit the details here.

Comparison with Prior Constructions. [Pie09,DY13] showed that any
wPRF is already leakage-resilient for a logarithmic leakage bound � = O(log λ).
Hazay et al. [HLWW13] showed a black-box construction of LR wPRF from
any wPRF F : K × X → Y . Their construction takes two steps: (1) construct
symmetric-key weak HPS from wPRF; (2) build LR wPRF by parallel repeti-
tion of symmetric-key weak HPS. The consequence is that it is not flexible and
efficient. To make the output size larger than n log |Y |, they have to invoke n
independent copies of the basic wPRF, and the domain size must be larger than
n(|X| + log |Y |). Besides, its leakage rate is rather poor, say, O(log(λ)/|k|). In
contrast, our construction enjoys flexible parameter choice and optimal leak-
age rate, which is benefited from the non-black-box use of underlying wPPRF
via iO.

Leakage-Resilient Cryptography from Puncturable Primitives 593

4 Leakage-Resilient KEM

We begin this section by formally defining leakage-resilient PEPRFs. We then
show that leakage-resilient PEPRFs naturally yield leakage-resilient KEM.
Towards achieving leakage-resilience for PEPRFs, we first introduce a new notion
called puncturable PEPRFs, and construct them from various puncturable prim-
itives, which we believe is of independent interest. Finally, we show how to com-
pile puncturable PEPRFs to leakage-resilient PEPRFs via iO.

4.1 Leakage-Resilient PEPRFs

Chen and Zhang [CZ14] put forwarded the notion of PEPRFs, which is best
viewed as a counterpart of weak PRFs in the public-key setting. In PEPRFs,
each secret key is associated with a public key, and there is a collection of NP
languages (indexed by public key) defined over domain. For any element in the
language, in addition to evaluating its PRF value using secret key, one can also
evaluate it publicly with public key and the associated witness.

PEPRFs neatly capture the essence of KEM, and they can be instanti-
ated from either specific assumptions or more general assumptions such as
(extractable) hash proof systems and trapdoor functions. In what follows, we
recall the standard definition of PEPRFs from [CZ14] and proceed to introduce
leakage resilience for them.

Definition 3 (PEPRFs). Let L = {Lpk}pk∈PK be a collection of NP lan-
guages defined over X. A PEPRF F : SK ×X → Y ∪⊥10 for L consists of three
polynomial time algorithms as below:

– Gen(λ): on input λ, output a public key pk and a secret key sk.
– PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
– PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output

y ← Fsk(x) ∈ Y .

To be applicable, L is required to be efficiently samplable, i.e., for each pk ∈ PK,
there exists an efficient sampling algorithm SampRel that on input pk outputs a
random element x ∈ Lpk together with a witness w.

Leakage-Resilient Weak Pseudorandomness. Let A be an adversary
against PEPRFs and define its advantage as below:

AdvA(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β′ = β :

(pk, sk) ← Gen(λ);
state ← AOleak(·)(pk);
(x∗, w∗) ← SampRel(pk);
y∗
0 ← Fsk(x∗), y∗

1
R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, x∗, y∗
β);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
.

10 In a PEPRF, when the input x is not in Lpk, its PRF value Fsk(x) may not be well
defined and will be denoted by a distinguished symbol ⊥.

594 Y. Chen et al.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns
f(sk), subjected to the restriction that the sum of its output lengths is at most
�. A PEPRF is �-leakage-resilient weakly pseudorandom if no PPT adversary
has non-negligible advantage in the above experiment. As pointed out in [CZ14],
full pseudorandomness is impossible due to the publicly evaluable property.

Leakage-Resilient KEM. [CZ14] showed that weakly pseudorandom PEPRF
naturally implies CPA-secure KEM. We observe that this implication applies in
the leakage setting as well. We sketch the construction here for completeness.
Assume F : SK × X → Y is a leakage-resilient PEPRF for L = {Lpk}pk∈PK ,
where the range Y is an additive group. The key pair is exactly the key pair of
the underlying PEPRF. To encrypt a message m ∈ Y , one picks x

R←− Lpk with
a witness w, computes k ← PubEval(pk, x, w) and outputs ciphertext (x, k +m).
The decryption process re-computes k via PrivEval(k, x). The LR CPA security
of KEM readily follows from the LR weak pseudorandomness of the underlying
PEPRF. The resulting LR CPA-secure KEM can be boosted to LR CPA-secure
PKE by combining data encapsulation mechanism (DEM) with appropriate secu-
rity properties [CS02].

4.2 Puncturable PEPRFs

To construct leakage-resilient PEPRFs, we first introduce the puncturable ver-
sion of PEPRFs, called puncturable PEPRFs (PPEPRFs), which could also be
viewed as an extension of PPRFs in the public-key setting. We formally define
PPEPRFs as below and postpone their realizations to the full version [CWZ18].

Definition 4 (PPEPRFs). Let L = {Lpk} be a collection of NP languages
defined over X. A PPEPRF F : SK ×X → Y ∪⊥ for L consists of the following
polynomial time algorithms:

– Gen(λ): on input λ, output a public key pk and a secret key sk.
– PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
– Puncture(sk, x∗): on input sk and x∗ ∈ Lpk, output a punctured key skx∗ .
– PuncEval(skx∗ , x): on input a punctured key skx∗ and x �= x∗, output y ←

Fsk(x) ∈ Y ∪ ⊥.
– PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output

y ← Fsk(x) ∈ Y .

For security, we require that weak pseudorandomness remains even when the
adversary is given a punctured secret key.

Weak Pseudorandomness. Let A be an adversary against PPEPRFs and
define its advantage as below:

AdvA(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β′ = β :

(pk, sk) ← Gen(λ);
(x∗, w∗) ← SampRel(pk);
skx∗ ← Puncture(sk, x∗);
y∗
0 ← Fsk(x∗), y∗

1
R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, skx∗ , x∗, y∗
β);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
.

Leakage-Resilient Cryptography from Puncturable Primitives 595

A PPEPRF is weakly pseudorandom if for any PPT adversary A its advan-
tage in the above experiment is negligible in λ.

4.3 Leakage-Resilient PEPRFs from PPEPRFs and iO
Let F : SK × X → Y ∪ ⊥ be a PPEPRF for L = {Lpk}pk∈PK , iO be an
indistinguishability obfuscation, and ext : Y × S → Z be an average-case (n, ε)-
strong extractor. Without loss of generality, we assume that Y = {0, 1}ρ. In
what follows, we build a leakage-resilient PEPRF F̂ : ˆSK × X̂ → Z ∪ ⊥ for
L̂ = {L̂pk}pk∈PK , where X̂ = X × S and L̂pk = {x̂ = (x, s) : x ∈ Lpk ∧ s ∈ S}.
According to the definition of L̂, a witness w for x ∈ Lpk is also a witness for
x̂ = (x, s) ∈ L̂pk, where s could be any seed from S.

– Gen(λ): run F.Gen(λ) to obtain (pk, sk), create ŝk ← iO(PrivEval), where
the program PrivEval is defined in Fig. 4; output (pk, ŝk).

– PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← ŝk(x̂). This
actually defines F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

– PubEval(pk, x̂, w): on input pk, x̂ = (x, s) ∈ L̂pk and a witness w for x̂,
compute y ← Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

PrivEval
Constants: PPEPRF secret key sk
Input: x̂ = (x, s)

1. Output ext(Fsk(x), s).

Fig. 4. Program PrivEval. The program is appropriately padded to the maximum of
the size of itself and program PrivEval∗ described in Fig. 5.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , x∗ and y∗

Input: x̂ = (x, s)

1. If x = x∗, output ext(y∗, s).
2. Else, output ext(Fskx∗ (x), s).

Fig. 5. Program PrivEval∗

Theorem 3. If F is a secure PPEPRF, iO is indistinguishably secure, and ext
is an average-case (n, ε)-strong extractor, the above PEPRF construction is �-
leakage-resilient weakly pseudorandom as long as � ≤ ρ − n.

The security proof is somewhat similar to that in Sect. 3. We postpone the details
to the full version [CWZ18].

596 Y. Chen et al.

4.4 Construction with Improved Leakage Rate

The leakage rate of the above basic construction is low. Next, we show how to
modify it to achieve optimal leakage rate. We need two extra primitives: (1) an
IND-CPA secure SKE with message space {0, 1}ρ and ciphertext space {0, 1}v;
(2) a family of (v, τ)-lossy functions. The construction is as below.

– Gen(λ): run (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), ke ← SKE.Gen(λ),
generate a dummy ciphertext ct ← SKE.Enc(ke, 0ρ) as ŝk, compute η∗ ←
h(ct), create Ceval ← iO(PrivEval) (here the program PrivEval is defined in
Fig. 6 and η∗ acts as its trigger), set p̂k = (pk,Ceval), output (p̂k, ŝk).

– PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← Ceval(ŝk, x̂).
This actually defines F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

– PubEval(p̂k, x̂, w): on input p̂k = (pk,Ceval, t), x̂ = (x, s) ∈ L̂pk and a witness
w for x̂, compute y ← Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

PrivEval
Constants: PPEPRF secret key sk, η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) �= η∗, output ⊥.
2. Else, output ext(Fsk(x), s).

Fig. 6. Program PrivEval. This program is appropriately padded to the maximum of
the size of itself and the program PrivEval∗ described in Fig. 7.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , ke, x∗ and η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) �= η∗, output ⊥.
2. If x = x∗, set y∗ ← SKE.Dec(ke, ŝk), output ext(y∗, s).
3. Else, output ext(Fskx∗ (x), s).

Fig. 7. Program PuncEval

Theorem 4. If F is a secure PPEPRF, iO is indistinguishably secure, SKE is
an IND-CPA secure secret-key encryption, LF is a family of (v, τ)-lossy func-
tions, ext is an average-case (n, ε)-strong extractor. the above PEPRF construc-
tion is �-leakage-resilient weakly pseudorandom as long as � ≤ ρ − n − τ .

Leakage-Resilient Cryptography from Puncturable Primitives 597

Proof. By appropriate parameter choice (e.g. setting v = ρ + o(ρ), n = o(ρ),
τ = o(v)), we have |ŝk| = v = ρ + o(ρ) and � = ρ − o(ρ) and thus the leakage
rate is optimal.

We proceed via a sequence of games. Let Si be the event that A succeeds in
Game i.

Game 0. This is the standard leakage-resilient weak pseudorandomness game
for PEPRFs. CH interacts with A as below.

1. Setup: CH runs (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), samples ke ←
SKE.Gen(λ), generates a dummy ciphertext ct ← SKE.Enc(ke, 0ρ) as ŝk, com-
putes η∗ ← h(ct), creates Ceval ← iO(PrivEval). CH sets p̂k = (pk,Ceval) and
sends it to A.

2. Leakage Query: Upon receiving leakage query 〈f〉, CH responds with f(ŝk)
as long as the total leakage is less than �.

3. Challenge: CH samples (x∗, w∗) ← SampRel(pk), picks s∗ R←− S, computes
y∗ ← Fsk(x∗) via F.PubEval(pk, x∗, w∗), z∗

0 ← ext(y∗, s∗), samples z∗
1

R←− Z,
β

R←− {0, 1}. Finally, CH sends x̂∗ = (x∗, s∗) and z∗
β to A.

4. Guess: A outputs a guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0] − 1/2|

Game 1. Same as Game 0 except that CH samples x∗, w∗ and computes
y∗ ← Fsk(x∗) in the Setup stage. This change is purely conceptual and thus
we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH computes ct ← SKE.Enc(ke, y
∗)

rather than ct ← SKE.Enc(ke, 0ρ) in the Setup stage. By a direct reduction
to the IND-CPA security of SKE, we have:

|Pr[S2] − Pr[S1]| ≤ AdvSKE
A

Game 3. Same as Game 2 except that CH computes skx∗ ← F.Puncture(sk, x∗)
and creates Ceval ← iO(PrivEval) in the Setup stage. Here, the program
PrivEval∗ (defined in Fig. 7) is built from constants (skx∗ , x∗, y∗).

By the injectivity of h and the correctness of SKE and PPEPRF, the two
programs PrivEval and PuncPriv agree on all inputs. By a direct reduction to
the security of iO, we conclude that:

|Pr[S3] − Pr[S2]| ≤ AdviO
A

Game 4. Same as Game 3 except that in the Setup stage CH picks y∗ R←− Y
rather than setting y∗ ← Fsk(x∗).

598 Y. Chen et al.

Assuming the weak pseudorandomness of the underlying PPEPRF, this mod-
ification is undetectable by all PPT adversaries. Thus, we have:

|Pr[S4] − Pr[S3]| ≤ AdvPPEPRF
A

Game 5. Same as Game 4 except that CH samples a lossy function
h via LF.GenLossy(λ) rather than sampling an injective function in the Setup
stage. By a direct reduction to the security of lossy functions, we conclude that:

|Pr[S5] − Pr[S4]| ≤ AdvLFA

Game 6. Same as Game 5 except that CH picks z∗
0

R←− Z rather than setting
z∗
0 ← ext(y∗, s∗) in the Challenge stage.

We denote by V the set of public key p̂k = (pk,Ceval), x∗ and s∗. In both
Game 5 and Game 6, y∗ is uniformly chosen from Y (independent of skx∗ , x∗ and
s∗) but is correlated to η∗ which has at most 2τ values, we have H∞(y∗|V) ≥ ρ−τ

by the chain rule. Observe that A also obtains at most � bits leakage on ŝk
(denote by leak) which is correlated to y∗, it follows by the chain rule that
H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V) − � = ρ − τ − �, which is greater than n by
the parameter choice. Since ext is an average-case (n, ε)-strong extractor, we
conclude that ext(y∗, s∗) is ε-close to a uniformly random z∗

0 ∈ Z, even given V
and leakage. Observe that A’s view in Game 5 and Game 6 are fully determined
by z∗

0 , z∗
1 , β∗, V and leak, while z∗

1 , β∗, V and leak are distributed identically in
Game 5 and Game 6. Thereby, A’s view in Game 5 and Game 6 are ε/2-close.
Thus, we have:

|Pr[S6] − Pr[S5]| ≤ ε/2 ≤ negl(λ)

In Game 6, both z∗
0 and z∗

1 are randomly chosen from Z. Therefore, we have:

Pr[S6] = 1/2

Putting all the above together, the theorem immediately follows. �

5 Leakage-Resilient Signature

To best illustrate our idea, in the section we only present the construction with
selective security. We postpone the constructions with adaptive security and
optimal leakage rate to the full version [CWZ18].

5.1 Selective Construction from sPPRFs, Leakage-Resilient OWFs
and iO

Let F : K ×M → {0, 1}n be a sPPRF, iO be an indistinguishability obfuscator,
g : {0, 1}n → {0, 1}μ be a leakage-resilient OWF. We build a leakage-resilient
signature as below.

– Gen(λ): run (pp, k) ← F.Gen(λ), create sk ← iO(Sign) and vk ← iO(Verify).
The programs Sign and Verify are defined in Figs. 8 and 10 respectively.

Leakage-Resilient Cryptography from Puncturable Primitives 599

– Sign(sk,m): output σ ← sk(m).
– Verify(vk,m, σ): output vk(m,σ).

Theorem 5. If F is a secure sPPRF, iO is indistinguishably secure, g is �-
leakage-resilient one-way, the above construction is �-leakage-resilient EUF-CMA
in the selective sense.

Proof. We proceed via a sequence of games. Let Si be the probability that A
wins in Game i.

Sign
Constants: sPPRF key k
Input: message m

1. Compute σ ← F (k, m).

Fig. 8. Program Sign. This program is appropriately padded to the maximum of the
size of itself and program Sign∗ defined in Fig. 9.

Sign∗

Constants: sPPRF punctured key km∗ , m∗, σ∗

Input: message m

1. If m = m∗, output σ∗.
2. Else, output σ ← F (km∗ , m).

Fig. 9. Program Sign∗

Verify
Constants: sPPRF key k
Input: message m and signature σ

1. Test if g(σ) = g(F (k, m)), output 1 if true and 0 if false.

Fig. 10. Program Verify. This program is appropriately padded to the maximum of
the size of itself and the program Verify∗ defined in Fig. 11.

Verify∗

Constants: sPPRF punctured key km∗ , m∗ and y∗

Input: message m and signature σ

1. If m = m∗, test whether g(σ) = y∗. Output 1 if true and 0 if false.
2. Else, test if g(σ) = g(F (km∗ , m)). Output 1 if true and 0 if false.

Fig. 11. Program Verify∗

600 Y. Chen et al.

Game 0. This is the standard leakage-resilient selective EUF-CMA game for
signature. CH interacts with A as follows:

1. Commit: A submits the target message m∗ to CH.
2. Setup: CH runs (pp, k) ← F.Gen(λ), creates sk ← iO(Sign), vk ← iO(Verify).

CH sends vk to A.
3. Signing Query: Upon receiving signing query 〈m〉 �= 〈m∗〉, CH responds with

σ ← sk(m).
4. Leakage Query: Upon receiving leakage query 〈f〉, CH responds with f(sk).
5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

Game 1. Same as Game 0 except that in the Setup stage CH computes σ∗ ←
F (k,m∗), y∗ ← g(σ∗), and km∗ ← F.Puncture(k,m∗), creates vk ← iO(Verify∗),
where the program Verify∗ is defined in Fig. 11.

It is easy to check that the programs Verify and Verify∗ agree on all inputs.
By the security of iO, we have:

|Pr[S1] − Pr[S0]| ≤ AdviO
A

Game 2. Same as Game 1 except that CH uses km∗ to handle signing queries,
i.e., returning σ ← F (km∗ ,m) for m �= m∗.

By the correctness of sPPRF, Game 1 and Game 2 are identical in A’s view.
Thus, we have:

Pr[S2] = Pr[S1]

Game 3. Same as Game 2 except that CH creates sk ← iO(Sign∗) in the Setup
stage. Here the program Sign∗ (defined in Fig. 9) is built from constants km∗ ,
m∗ and σ∗.

It is easy to check that the two programs Sign and Sign∗ agree on all inputs.
By the security of iO, we have:

|Pr[S3] − Pr[S2]| ≤ AdviO
A

Game 4. Same as Game 3 except that in Setup stage CH picks σ∗ R←− {0, 1}n

rather than setting σ∗ ← F (k,m∗).
By the selective pseudorandomness of sPPRF, we have:

|Pr[S4] − Pr[S3]| ≤ AdvsPPRF
A (1)

It remains to analyze Pr[S4]. We have the following claim.

Claim. If g is an �-leakage-resilient OWF, then the advantage of any PPT adver-
sary in Game 4 is negligible in λ.

Leakage-Resilient Cryptography from Puncturable Primitives 601

Proof. Let A be a PPT adversary wins Game 4 with advantage AdvA(λ). We
construct an adversary B that breaks the assumed leakage-resilient one-wayness
of g with the same advantage, implying that Pr[S4] must be negligible.

Given (g, y∗) where y∗ ← g(σ∗) for some σ∗ R←− {0, 1}n, B interacts with A
in Game 4 with the aim to output σ′ such that g(σ′) = y∗.

1. Commit: A submits the target message m∗ to CH.
2. Setup: B runs (pp, k) ← F.Gen(λ), computes km∗ ← F.Puncture(k,m∗), cre-

ates vk ← iO(Verify∗), and sends vk to A. B also picks random coins r used
for obfuscating the program Sign∗ (with constants km∗ ,m∗, σ∗ hardwired) for
later simulation. Note that the constant σ∗ is unknown to B.

3. Signing Query: Upon receiving signing query 〈m〉 �= 〈m∗〉, B responds with
σ ← F (km∗ ,m) using km∗ .

4. Leakage Query: Note that the signing key sk ← iO(Sign∗
km∗ ,m∗,σ∗ ; r) could

be viewed as the value of some function ψ(·) at point σ∗, where ψ(·) on
input σ outputs iO(Sign∗

km∗ ,m∗,σ; r). Since iO is efficiently computable, so is
ψ(·). Based on this observation, B can transform any leakage queries on sk
to leakage queries on σ∗. Upon receiving leakage query 〈f〉, B makes leakage
query 〈f ◦ ψ〉 to its own challenger and forwards the reply to A.

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

Finally, B forwards σ′ to its challenger. It is straightforward to verify that
B’s simulation for Game 4 is perfect. If A succeeds, according to the definition
of algorithm Verify in Game 4, σ′ is indeed a preimage of y∗ under g, thus B also
succeeds. This proves the claim.

Putting all the above together, the theorem immediately follows. �

Acknowledgments. We thank the anonymous reviewers of Asiacrypt 2018 for their
helpful comments. The first author is supported by National Natural Science Founda-
tion of China (Grant No. 61772522), Youth Innovation Promotion Association CAS,
Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SYS035).
The second author is partially supported by Nomura Research Institute, JST CREST
JPMJCR14D6, JST OPERA. The third author is partially supported by NSF grant
1801470.

References

[ADN+10] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-
key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 6

[ADW09] Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptogra-
phy in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 3

[AGV09] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore
bits and cryptography against memory attacks. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 28

https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-642-00457-5_28

602 Y. Chen et al.

[BCH12] Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive pro-
tocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 15

[BDL97] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of check-
ing cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 4

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key
encryption under subgroup indistinguishability - (or: quadratic residuos-
ity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6 (2012)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudo-
random functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 29

[BK12] Brakerski, Z., Kalai, Y.T.: A parallel repetition theorem for leakage
resilience. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 248–265.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 14

[BKKV10] Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the
hole in the bucket: public-key cryptography resilient to continual memory
leakage. In: FOCS, pp. 501–510 (2010)

[BS97] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosys-
tems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–
525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

[BSW11] Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-
4 7

[BSW16] Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-
inputs obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 792–821. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 28

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

[CDRW10] Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-
resilient identity-based encryption from simple assumptions. In: ACM
CCS, pp. 152–161 (2010)

[CQX18] Chen, Y., Qin, B., Xue, H.: Regularly lossy functions and applications.
In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 491–511.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 26

https://doi.org/10.1007/978-3-642-28914-9_15
https://doi.org/10.1007/978-3-642-28914-9_15
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-28914-9_14
https://doi.org/10.1007/978-3-642-28914-9_14
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-319-76953-0_26

Leakage-Resilient Cryptography from Puncturable Primitives 603

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[CWZ18] Chen, Y., Wang, Y., Zhou, H.-S.: Leakage-resilient cryptography from
puncturable primitives and obfuscation (2018). http://eprint.iacr.org/
2018/781

[CZ14] Chen, Y., Zhang, Z.: Publicly evaluable pseudorandom functions and
their applications. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 115–134. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10879-7 8

[DGK+10] Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D.
(ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 22

[DGL+16] Dachman-Soled, D., Dov Gordon, S., Liu, F.-H., O’Neill, A., Zhou, H.-S.:
Leakage-resilient public-key encryption from obfuscation. In: Cheng, C.-
M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II.
LNCS, vol. 9615, pp. 101–128. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49387-8 5

[DHLAW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography
against continuous memory attacks. In: FOCS, pp. 511–520 (2010)

[DHLW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 35

[DKL09] Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input.
In: STOC, pp. 621–630 (2009)

[DY13] Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 1

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS, pp. 40–49 (2013)

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 29

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GJS11] Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 17

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: ICS, pp. 230–240 (2010)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

https://doi.org/10.1007/3-540-46035-7_4
http://eprint.iacr.org/2018/781
http://eprint.iacr.org/2018/781
https://doi.org/10.1007/978-3-319-10879-7_8
https://doi.org/10.1007/978-3-319-10879-7_8
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-662-49387-8_5
https://doi.org/10.1007/978-3-662-49387-8_5
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-642-22792-9_17

604 Y. Chen et al.

[HL11] Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 8

[HLWW13] Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptog-
raphy from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 10

[HSH+08] Alex Halderman, J., et al.: Lest we remember: cold boot attacks on
encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

[HW09] Hohenberger, S., Waters, B.: Short and stateless signatures from the
RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 654–670. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 38

[IPS15] Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation
and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 26

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[KMO10] Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and
chosen-ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13190-5 34

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68697-5 9

[Kom16] Komargodski, I.: Leakage resilient one-way functions: the auxiliary-input
setting. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985,
pp. 139–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53641-4 6

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Dele-
gatable pseudorandom functions and applications. In: ACM CCS, pp.
669–684 (2013)

[KV09] Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage
resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 703–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10366-7 41

[LLW11] Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In:
STOC, pp. 725–734 (2011)

[LRW11] Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience
through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19571-6 6

[LWZ13] Liu, S., Weng, J., Zhao, Y.: Efficient public key cryptosystem resilient
to key leakage chosen ciphertext attacks. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 84–100. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36095-4 6

https://doi.org/10.1007/978-3-642-19571-6_8
https://doi.org/10.1007/978-3-642-38348-9_10
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-662-53641-4_6
https://doi.org/10.1007/978-3-662-53641-4_6
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-642-19571-6_6
https://doi.org/10.1007/978-3-642-19571-6_6
https://doi.org/10.1007/978-3-642-36095-4_6
https://doi.org/10.1007/978-3-642-36095-4_6

Leakage-Resilient Cryptography from Puncturable Primitives 605

[MH15] Matsuda, T., Hanaoka, G.: Constructing and understanding chosen
ciphertext security via puncturable key encapsulation mechanisms. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 561–590. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46494-6 23

[MR04] Micali, S., Reyzin, L.: Physically observable cryptography (extended
abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-
1 16

[MTVY11] Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to
continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC
2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19571-6 7

[NS09] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 2

[Pie09] Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 27

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: STOC, pp. 187–196 (2008)

[QL13] Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key
encryption from hash proof system and one-time lossy filter. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 381–400. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42045-0 20

[QL14] Qin, B., Liu, S.: Leakage-flexible cca-secure public-key encryption: sim-
ple construction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 19–36. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 2

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

[RS09] Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 25

[RW14] Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation.
In: ACM CCS, pp. 659–673 (2014)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC, pp. 475–484 (2014)

[Wee10] Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 17

[Wic13] Wichs, D.: Barriers in cryptography with weak, correlated and leaky
sources. In: Innovations in Theoretical Computer Science, ITCS, pp. 111–
126 (2013)

[WMHT16] Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Signatures resilient to
uninvertible leakage. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS,
vol. 9841, pp. 372–390. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 20

https://doi.org/10.1007/978-3-662-46494-6_23
https://doi.org/10.1007/978-3-662-46494-6_23
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-42045-0_20
https://doi.org/10.1007/978-3-642-42045-0_20
https://doi.org/10.1007/978-3-642-54631-0_2
https://doi.org/10.1007/978-3-642-54631-0_2
https://doi.org/10.1007/978-3-642-00457-5_25
https://doi.org/10.1007/978-3-642-14623-7_17
https://doi.org/10.1007/978-3-642-14623-7_17
https://doi.org/10.1007/978-3-319-44618-9_20
https://doi.org/10.1007/978-3-319-44618-9_20

606 Y. Chen et al.

[YCZY12] Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based
encryption resilient to continual auxiliary leakage. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 9

[YXZ+15] Yang, R., Xu, Q., Zhou, Y., Zhang, R., Hu, C., Yu, Z.: Updatable hash
proof system and its applications. In: Pernul, G., Ryan, P.Y.A., Weippl,
E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 266–285. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 14

[Zha16] Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 479–508. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 18

https://doi.org/10.1007/978-3-642-29011-4_9
https://doi.org/10.1007/978-3-642-29011-4_9
https://doi.org/10.1007/978-3-319-24174-6_14
https://doi.org/10.1007/978-3-662-53018-4_18

Functional/Inner Product/Predicate
Encryption

Unbounded Inner Product Functional
Encryption from Bilinear Maps

Junichi Tomida1(B) and Katsuyuki Takashima2(B)

1 NTT, Tokyo, Japan
tomida.junichi@lab.ntt.co.jp

2 Mitubishi Electric, Kanagawa, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. Inner product functional encryption (IPFE), introduced by
Abdalla et al. (PKC2015), is a kind of functional encryption supporting
only inner product functionality. All previous IPFE schemes are bounded
schemes, meaning that the vector length that can be handled in the
scheme is fixed in the setup phase. In this paper, we propose the first
unbounded IPFE schemes, in which we do not have to fix the lengths of
vectors in the setup phase and can handle (a priori) unbounded polyno-
mial lengths of vectors. Our first scheme is private-key based and fully
function hiding. That is, secret keys hide the information of the asso-
ciated function. Our second scheme is public-key based and provides
adaptive security in the indistinguishability based security definition.
Both our schemes are based on SXDH, which is a well-studied standard
assumption, and secure in the standard model. Furthermore, our schemes
are quite efficient, incurring an efficiency loss by only a small constant
factor from previous bounded function hiding schemes.

Keywords: Functional encryption · Inner product · Function hiding
Unbounded · Bilinear maps

1 Introduction

Functional encryption (FE) [9,27] is an advanced cryptographic paradigm that
is expected to drastically enhance the availability of encrypted data. Traditional
encryption schemes can provide only “all-or-nothing” decryption capability over
encrypted data, i.e., an owner of a legitimate decryption key can learn the entire
data from a ciphertext and the others can learn nothing. In contrast, FE allows
a legitimate user to learn some computed results from encrypted data without
revealing any other information. More precisely, FE supporting a function class
F allows an owner of a master secret key msk to issue a secret key skf for any
function f ∈ F , and decrypting a ciphertext ctm of a message m with skf reveals
only f(m) and nothing else.

Although there are several constructions of FE for all circuits [17,18,30],
all are based on currently impractical cryptographic primitives such as indistin-
guishability obfuscation [17] or multi-linear maps [16]. As a result, such general
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 609–639, 2018.
https://doi.org/10.1007/978-3-030-03329-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_21&domain=pdf

610 J. Tomida and K. Takashima

purpose FEs are far from practical, and this is why Abdalla et al. [1] initiated the
study of a more specific and practical FE, i.e., inner product functional encryp-
tion (IPFE). In IPFE, an owner of a master secret key msk can issue a secret key
sky for a vector y and decrypting a ciphertext ctx of a vector x with sky reveals
only the inner product 〈x,y〉. The inner product is a simple but interesting func-
tion, because it is sufficient to directly compute weighted means over numerical
data and useful for statistical computations. Furthermore, we can evaluate any
polynomial over the data by encrypting all monomials appearing in the desired
family of polynomials beforehand.

Following the work of Abdalla et al., there arose two main streams of works
on IPFE. The first stream is for public-key based IPFE [2,5], aiming to obtain
the adaptive security, and the second stream is for private-key based IPFE [8,13,
21,22,24,28], aiming to obtain function privacy and better efficiency. Function
privacy is an important property of FE when it is used to delegate computation to
another party. Recently, a multi-input version of IPFE has also been considered
in [3,4,14].

Although most above (single-input) IPFE schemes are efficient and based
on standard assumptions, all have one inconvenient property: they are bounded.
That is, we need to fix the maximum length of vectors to be handled in the
scheme at the beginning. After fixing the maximum length, we cannot handle
vectors whose lengths exceed it. This is very inconvenient because it is almost
impossible in the setup phase to predict which data will be encrypted. One
may think that we can solve the problem by setting the maximum length to a
quite large value. However, the size of a public parameter of bounded schemes
expands at least linearly with the fixed maximum length, and such a solution
incurs an unnecessary efficiency loss. Hence, it is desirable that we do not need
to declare the maximum length of vectors to be handled in the scheme at the
beginning and can make encryption or key generation for vectors with unbounded
lengths. In the context of inner product predicate encryption (IPPE) [20] and
attribute-based encryption [19], there exist unbounded schemes [10,11,23,26],
whose public parameters do not impose a limit on the maximum length of vectors
or number of attributes used in the scheme. Thus, we naturally have the following
question:

Can we construct IPFE schemes that can handle vectors with unbounded
lengths?

Our Contributions. We answer the question affirmatively. More precisely, we
construct two concrete unbounded IPFE (UIPFE) schemes on the basis of the
standard SXDH assumption that are both secure in the standard model.

1. The first scheme is private-key IPFE with fully function hiding, which is the
strongest indistinguishability based security notion when considering function
privacy [13].

2. The second scheme is public-key IPFE with adaptive security, which is a
standard and desirable indistinguishability based security notion [5].

Unbounded Inner Product Functional Encryption from Bilinear Maps 611

Table 1. Comparison among private-key schemes that are fully function hiding and
public-key schemes with adaptive security in the standard model. Although Lin also
presented a construction of function hiding scheme [24], her scheme is the selective
secure one and we do not adopt it here. A natural number m ∈ N denotes a length of
a vector associated with the ciphertext or secret key. In our schemes, α denotes a bit
length that is necessary to specify an index set associated with a vector. In the ALS16
scheme, β denotes a bit length that is necessary to specify a vector to be embed into
a secret key. In this table, we omit a group description in a public key.

Private-key scheme

Scheme |msk| |ct| |sk| Pairing Assumption

DDM16 [13] (8m2 + 12m + 28)|Zp| (4m + 8)|G1| (4m + 8)|G2| Yes SXDH

TAO16 [28] (4m2 + 18m + 20)|Zp| (2m + 5)|G1| (2m + 5)|G2| Yes XDLIN

KKS17 [22] (6m + 8)|Zp| (2m + 8)|G1| (2m + 8)|G2| Yes SXDH

Ours 1 |PRF key| 4m|G1| 4m|G2|+ α Yes SXDH

Public-key scheme

Scheme |pk| |msk| |ct| |sk| Pairing Assumption

ALS16 [5] (m + 1)|G| 2m|Zp| (m + 2)|G| 2|Zp|+ β No DDH

Ours 2 28|G1| 28|Zp| 7m|G1| 7m|G2|+ α Yes SXDH

Table 1 compares efficiency among private-key schemes that are fully function
hiding and public-key schemes with adaptive security in the standard model.
Both our schemes achieve almost the same efficiency as the previous bounded
fully function hiding IPFE schemes except the small constant factor. Note that
previous public-key based schemes do not need pairing when instantiated from
a cyclic group [1,5]. However, we do not know how to construct unbounded
public-key based IPFE schemes without pairing.

In UIPFE schemes, we can consider various conditions about encryption, key
generation, and decryption. It is another important merit of UIPFE. For encryp-
tion and key generation, we can consider two cases, consecutive and separate. In
the consecutive setting, each element of a vector is automatically indexed to its
position when the vector is input to an encryption or key generation algorithm,
i.e., for a vector (a, b, c), a’s index is set to 1, b’s index to 2, and c’s index to
3. On the other hand, in the separate setting, an index set is attached to a
vector and encryption and key generation are executed correspondingly to its
index set. In other words, a vector (a, b, c) is indexed by some set, e.g., {1, 5, 6},
and the indices of a, b and c are set to 1, 5, and 6, respectively. A separate
scheme obviously suggests a consecutive scheme with respect to encryption or
key generation. Next, we focus on the conditions of decryption. Similar to [26],
we can classify the decryptable condition of IPFE schemes into three types: ct-
dominant, sk-dominant, and equal. Let Sct be an index set of a ciphertext ct and
Ssk be an index set of a secret key sk. Then ct is decryptable with sk iff Sct ⊇ Ssk

in ct-dominant schemes, Sct ⊆ Ssk in sk-dominant schemes, and Sct = Ssk in
equal schemes. We denote the type of the schemes described above as (E:xx,
K:yy, D:zz) where xx, yy ∈ {con, sep}, and zz ∈ {ct-dom, sk-dom, eq}, which

612 J. Tomida and K. Takashima

means that encryption is xx setting, key generation is yy setting, and decryption
is zz setting. It is not difficult to observe that the setting (E:sep, K:con, D:ct-
dom) is meaningless because only the consecutive part of separate ciphertexts
can be decrypted with any consecutive secret key. For example, for a ciphertext
with an index set {1, 2, 4}, the element indexed as 4 is never used for decryp-
tion in the K:con setting. Hence, it is the same as the (E:con, K:con, D:ct-dom)
setting. Similarly, (E:con, K:sep, D:sk-dom), (E:con, K:sep, D:eq), and (E:sep,
K:con, D:eq) are also meaningless. Thus, we can consider eight types of UIPFE
schemes.

In this paper, we focus on the D:ct-dom setting because we believe it is
the most convenient for real applications. Consider the situation where Alice
holds a huge encrypted database in an untrusted server. When she wants the
server to make some computation over the database, she can obtain the result
by sending a corresponding secret key to the server. If the necessary part of the
database for the computation is very small, the D:ct-dom setting allows Alice
to issue a compact secret key. This is because the size of a secret key of IPFE
schemes typically grows linearly to the length of the corresponding vector. In the
other settings, Alice needs to issue a secret key that is at least larger than some
constant multiple of the size of the database, and this incurs a big efficiency loss.

Both our schemes are the (E:con, K:sep, D:ct-dom) setting, which suggests
(E:con, K:con, D:ct-dom). Some readers may wonder why we do not consider
the most general setting of D:ct-dom, (E:sep, K:sep, D:ct-dom), which suggests
all D:ct-dom schemes. The reason is we can prove the security of our schemes
against adaptive adversaries only in the (E:con, K:sep, D:ct-dom) setting. The
intuitive reason for this limitation is that, in security proofs, reduction algorithms
need to guess the contents of an index set with which an adversary queries an
encryption oracle. This is possible in the E:con setting because the length of
vectors queried by an adversary is a polynomial and a reduction algorithm can
correctly guess the length with a non-negligible probability. In the E:sep setting,
however, the possibility of index sets is exponential and is unpredictable for
reduction algorithms. For this reason, our schemes are secure against selective
adversaries in the (E:sep, K:sep, D:ct-dom) setting. In particular, our public-key
scheme is semi-adaptively secure in the (E:sep, K:sep, D:ct-dom) setting, which
means that the adversary declares a challenge message right after obtaining a
public key in a security game [12]. Note that the fully function hiding private-key
IPFE scheme in the (E:sep, K:con, D:sk-dom) setting is trivial with our scheme
because the roles of ciphertexts and secret keys are the same in fully function
hiding private-key IPFE. In addition, the fully function hiding private-key IPFE
in the (E:con, K:con, D:eq) setting is easily constructible and we describe it in
full version. We summarize our result in Table 2.

1.1 Our Techniques

We use bracket notation to denote elements on the exponent of a group element,
i.e., for ι ∈ {1, 2, T}, [x]ι denotes gx

ι where gι is a generator of a cyclic group Gι.

Unbounded Inner Product Functional Encryption from Bilinear Maps 613

Table 2. Summary of our result. A symbol ⊥ indicates that the scheme is meaningless.

Private-key scheme

E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom full ⊥ full selective

D:sk-dom full full ⊥ selective

D:eq full ⊥ ⊥ open

Public-key scheme

E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom adaptive ⊥ adaptive semi-adaptive

D:sk-dom open open ⊥ open

D:eq open ⊥ ⊥ open

Private-Key UIPFE. Our starting point is the fully function hiding
unbounded multi-input IPFE (MIPFE) scheme proposed by Datta et al. [14].
In an unbounded MIPFE scheme, an index space for slots are not determined
in the setup phase. Then, roughly speaking, an encryption algorithm can gen-
erate a ciphertext that corresponds to a vector x and an arbitrary index
i ∈ N. Also, a key generation algorithm can issue a secret key that is asso-
ciated with indexed vectors (S, {yi}i∈S) for an arbitrary set S ⊂ N. Only if
a decryptor has all ciphertexts corresponding to elements of the set S, i.e.,
{cti := MIPFE.Enc(pp,msk, i,xi)}i∈S , the secret key for S can be used for legit-
imate decryption and reveals

∑
i∈S〈xi,yi〉. Their scheme is based on the dual

pairing vector spaces (DPVS) framework introduced by Okamoto and Takashima
[25] and utilizes a pseudorandom function (PRF) to handle an unbounded index
space. Consider the unbounded MIPFE scheme in which the vector length is set
to 1 and observe that such a scheme already serves the function of UIPFE in the
D:ct-dom setting. More precisely, to encrypt x := (x1, . . . , xm) ∈ Z

m, the encryp-
tion algorithm computes cti := MIPFE.Enc(pp,msk, i, xi) for all i ∈ [m] and set
ct := (ct1, . . . , ctm). In key generation for an indexed vector (S,y := (yi)i∈S ∈
Z

S), the key generation algorithm computes sk := MIPFE.KeyGen(pp,msk, S,y).
Then MIPFE.Dec(pp, ct, sk) outputs

∑
i∈S xiyi. However, this construction allows

recomposition of ciphertexts due to the property of MIPFE. That is, for
ct1 := (ct1,1, . . . , ct1,m) and ct2 := (ct2,1, . . . , ct2,m), we can decrypt a cipher-
text like (ct1,1, ct2,2, . . . , ct2,m) correctly whereas UIPFE should not allow such
recomposition of ciphertexts.

To prevent such recomposition, each ciphertext of our scheme has a unique
randomness that all elements in a ciphertext share. Decryption is possible only
if an input ciphertext has a consistent randomness, so this unique randomness
prevents recomposed ciphertexts from being decrypted correctly. Essentially, a
ciphertext for index i of the MIPFE scheme by Datta et al. has a form like
[ci]1 := [(xi, 1)Bi]1 and each element of a secret key has a form like [ki]2 :=
[(yi, ri)B∗

i]2, where Bi is a 2×2 regular matrix, B∗
i := (B−1

i)�, and ri are random

614 J. Tomida and K. Takashima

elements in Zp s.t.
∑

i∈S ri = 0. Bases Bi are generated unboundedly with a
PRF. A decryption algorithm computes [

∑
i∈S〈ci,ki〉]T and it reveals the inner

product
∑

i∈S(xiyi + ri) =
∑

i∈S xiyi. In this construction, switching elements
of one ciphertext that have the same indices as others does not affect the correct
decryption. On the other hand, an element of one ciphertext corresponding to
index i of our scheme has a form like [ci]1 := [(xi, z)Bi]1 where z is a unique
randomness for each ciphertext, whereas each element of a secret key is the same
as in the MIPFE scheme. Then it is easy to confirm that unless all ci for i ∈ S
have the same randomness, [

∑
i∈S〈ci,ki〉]T does not reveal the inner product∑

i∈S xiyi and this construction prevents recomposition of ciphertexts.
Although the concept of the construction is simple, the security proof of

the scheme is rather complicated. The basic proof strategy of our scheme is
the same as that by Tomida et al. [28], who proposed a fully function hiding
bounded IPFE scheme, and this strategy is also employed in [14]. In the case
of unbounded MIPFE and UIPFE, however, we encounter a new challenging
problem that does not appear in bounded IPFE: how to prove collusion resistance
against illegitimate secret keys queried by an adversary. More precisely, in the
D:ct-dom setting, secret keys whose index sets are not included in the index set
of a ciphertext must be useless to decrypt the ciphertext even if their owners
collude. For example, an owner of a ciphertext ct1 for a index set {1, 2, 3} and
two secret keys sk1 and sk2 for index sets {1, 2, 4} and {3, 4} respectively must
not learn any information about underlying vectors in the ciphertext and secret
keys.

In the context of unbounded MIPFE, the problem was solved by cleverly
utilizing symmetric key encryption (SKE). Briefly, ciphertexts for index i contain
a secret key of SKE that is unique to the index i. On the other hand, a secret key
of unbounded MIPFE for an index set S is iteratively encrypted by SKE with
all secret keys of SKE in the set S. Then, unless an owner of the secret key for
a set S has all ciphertexts in the set S, he or she cannot decrypt the secret key
of unbounded MIPFE encrypted by SKE and the secret key is useless to derive
information from ciphertexts corresponding to any proper subset of S. Due to
UIPFE not allowing the recomposition of ciphertexts, however, we cannot apply
a similar technique to UIPFE schemes.

To solve this problem, we introduce a new proof strategy. In fully function
hiding scheme, we consider an adversary that can query many ciphertexts and
secret keys. First, we generate a situation where it is sufficient to consider only
one ciphertext and all secret keys by using hidden spaces of DPVS framework.
We can consider that this is a kind of dual system methodology by Waters [29],
which allows us to reduce the problem of a security for many keys to that for one
key [31]. Then what we need to do next is to ensure that illegitimate keys are
useless to decrypt the ciphertext. For the purpose, we randomize all elements in
illegitimate secret keys whose indices are out of the index set of the ciphertext by
computational argument. That is, the randomization is indistinguishable for all
probabilistic polynomial time (PPT) adversaries under the SXDH assumption. In
the above simple example, it means that the elements for index 4 in both secret

Unbounded Inner Product Functional Encryption from Bilinear Maps 615

keys are randomized. The intuitive reason to take this step is to ensure that
partial decryption does not leak any information on underlying vectors. That is,
in the above example, one can correctly compute the term xiyi for indices 1 and 2
with sk1 and 3 with sk2, which is masked by the term zri. What we want to prove
here is that the all zri terms are indistinguishable from independently random
elements in Zp and they completely hide the terms xiyi. Recall that elements in
each secret key contain the random numbers ri such that

∑
i∈S ri = 0. Then, if

at least one of ris in each secret key is randomized, entire ris become completely
random elements in Zp. At this point, partial decryption with illegitimate secret
keys reveals no meaningful information and we can complete the proof.

Public-Key UIPFE. Our public-key UIPFE scheme is technically more intri-
cate than our private-key one. Because we do not need to publish any information
for encryption in the private-key UIPFE scheme, we can utilize PRFs to generate
dual orthonormal bases unboundedly, which is necessary for encryption. More
precisely, an encryption algorithm generates a basis for index i as FK(i) where
FK is a PRF, and encode the i-th element of the vector using the basis. In the
public-key setting, however, a setup algorithm needs to publish information that
is needed to encrypt vectors. Thus an encryptor cannot utilize PRFs to generate
bases because if a key of a PRF is public, the output is no longer pseudorandom.

Our approach to overcome this problem is an indexing technique [26],
which is introduced to construct unbounded inner product predicate encryp-
tion (IPPE) and attribute based encryption (ABE) schemes. Briefly, we add a
two-dimensional prefix that specifies an index to a vector to be encoded, and
only if the indices of a ciphertext and a secret key are equal, the correct inner
product value is computable. In a ciphertext side, an encoding of the i-th element
of a vector x := (x1, . . . , xm) is the form like [ci]1 := [(πi(1, i), xi, z)B]1 and in a
secret key side, the index j of an indexed vector (S,y := (yj)j∈S) is encoded as
[kj]2 := [(ρj(−j, 1), yj , rj)B∗]2. Then, although all indices share the same dual
orthonormal bases, [〈ci,kj〉]T reveals the meaningful value only if i = j. By this
construction, each element in ciphertexts and secret keys is encoded as if dual
orthonormal bases that are unique to each index were used.

The basic concept of the security proof of our public-key scheme is also similar
to that in [26]. That is, we prove lemmas that say that normal ciphertexts and
secret keys are indistinguishable from ones encoded on “somewhat” random
dual orthonormal bases for each index by amplifying the entropy of the two-
dimensional prefix. More concretely, we use a kind of the following relation in
the security proof. Note that it is just a toy example for an intuitive explanation
and an informal one. That is, for any polynomial m := m(λ), we have the
computational indistinguishability:

{
[(πi(1, i), xi, z, . . .)B]1
[(ρi(−i, 1), yi, ri, . . .)B∗]2

}

i∈[m]

≈c

{
[(πi(1, i), xi, z, . . .)Di]1
[(ρi(−i, 1), yi, ri, . . .)D∗

i]2

}

i∈[m]

,

where {πi}i∈[m], {ρi}i∈[m]
U←− Zp and Di := WiB. LHS represents normal ele-

ments of a ciphertext and secret key, and RHS represents elements of ones

616 J. Tomida and K. Takashima

encoded on “somewhat” random dual orthonormal bases for each index. Here,
each Wi need not be a completely random matrix, and it is sufficient if Wi is
chosen from some specific distribution for our security proof. This is why we call
Di “somewhat” random. At this point, we can use the proof strategy similar to
that of the private-key IPFE scheme because dual orthonormal bases are gener-
ated somewhat randomly for each index and we have a similar situation to the
private-key IPFE scheme. Although the top-level concept of the techniques are
similar to [26], i.e., indexing and entropy amplification, we cannot directly use
their techniques because the security proof of our scheme is completely different
from that of their scheme. Therefore, we managed to tailor lemmas of entropy
amplification suitable for our scheme.

1.2 Discussion

In this work, we cannot achieve the schemes that have the following two features.
We quickly discuss the difficulty about them.

Public-Key UIPFE Scheme Without Pairing. We briefly explain the rea-
son why constructing unbounded public-key IPFE without pairing is difficult.
First, we recall the bounded scheme without pairing by Abdalla et al. in [1] (and
the scheme in [5] essentially follows the construction of Abdalla et al.). In their
scheme, a master secret key is a randomly chosen vector s ∈ Z

n
p and a public

key is a vector of group elements gs ∈ Gn. To encrypt a vector x ∈ Z
n, an

encryption algorithm choose a random number r ∈ Zp and compute the cipher-
text as ct := (gr, grs+x) ∈ Gn+1. On the other hand, a secret key for a vector
y ∈ Z

n is set as sk := (〈y, s〉,y) ∈ Z
n+1
p , and a decryption algorithm computes

g〈rs+x,y〉/gr〈y,s〉 = g〈x,y〉. To handle vectors with unbounded lengths, an encryp-
tion algorithm or a key generation algorithm needs to generate an element s.t.
grs+x or 〈y, s〉 respectively for a vector s with an arbitrary length from a fixed
public key or master secret key.

As we explained in the technical section, we obtain such a situation by
entropy amplification and it requires computational arguments. However, if
secret keys consist of elements in Zp likely to the scheme by Abdalla et al.,
we cannot apply computational arguments to secret keys. Therefore, it seems
inevitable to encode elements in secret keys on the exponent of group elements
to leverage computational arguments, and it incurs the necessity of pairing in
decryption.

Adaptively Secure (E:sep, K:sep) UIPFE Schemes. As we mentioned,
our proof strategy needs to guess an index set of a ciphertext and inherently we
cannot apply it to (E:sep, K:sep) schemes with adaptive security. We consider
that this difficulty is similar to that to prove adaptive security of multi-use
KP-ABE from static assumptions (this problem is solved in the semi-adaptive
setting [12]). That is, the reduction algorithm needs to embed the instance of an
underlying problem into secret keys depending on the instance that the adversary
outputs in the challenge phase. Hence, the difficulty disappears in the semi-
adaptive setting because the reduction knows the challenge instance before it

Unbounded Inner Product Functional Encryption from Bilinear Maps 617

simulates secret keys. We know that we can obtain adaptively secure multi-
use KP-ABE from so-called q-type assumptions [6,7], then we might be able
to obtain adaptively secure (E:sep, K:sep) schemes from q-type assumptions
similarly.

1.3 Concurrent Work

Concurrently and independently, Dufour Sans and Pointcheval also presented
UIPFE schemes [15]. In our term, they proposed public-key (E:sep, K:sep, D:eq)
and (E:sep, K:sep, D:ct-dom) schemes in their paper. Their schemes have short
secret keys, meaning that they contain one group element and a corresponding
vector. However, their schemes rely on the random oracle model and achieve only
the selective security, and their (E:sep, K:sep, D:ct-dom) scheme also relies on a
new interactive assumption. More precisely, they assume that a kind of problem
is hard for all PPT adversaries even if they are allowed to access some oracles.
In addition, their (E:sep, K:sep, D:ct-dom) scheme does not have collusion resis-
tance of illegitimate secret keys, which means that a combination of illegitimate
keys can become a legitimate key.

2 Preliminary

2.1 Notations

For a prime p, Zp denotes a field Z/pZ. For natural numbers n,m ∈ N, [n] denotes
a set {1, . . . , n}, and [m,n] denotes a set {m, . . . , n} (if m > n, [m,n] := φ). For
a set S, s

U←− S denotes that s is uniformly chosen from S. We treat vectors
as row vectors. For a vector x, ||x||∞ denotes its infinity norm. For a field K,
Mn(K) and GLn(K) denote a set of all n × n matrices and all n × n regular
matrices whose elements are in K, respectively. We use a bold upper-case letter
to denote a matrix, e.g., A, and a bold lower-case version of the same letter
with subscript i to denote the i-th row of the matrix, e.g., ai. For example, ai

denotes the i-th row of A. For a regular matrix A, A∗ denotes (A−1)�. For
a generator gι of a cyclic group Gι, a matrix A, and vector a, [A]ι and [a]ι
denote the corresponding matrix and vector on the exponent of gι, respectively.
For vectors x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Z

n
p , let e([x]1, [y]2) :=

e(g1, g2)〈x,y〉 be a function that computes the inner product on the exponent by∏
i∈[n] e([xi]1, [yi]2). A function f : N → R is called negligible if f(λ) = λ−ω(1)

and denotes f(λ) ≤ negl(λ).

2.2 Basic Notions

Definition 2.1 (Pseudorandom Functions). A pseudorandom function
(PRF) family F := {FK}K∈Kλ

with a key space Kλ, a domain Xλ, and a range
Yλ is a function family that consists of functions FK : Xλ → Yλ. Let Rλ be a

618 J. Tomida and K. Takashima

set of functions consisting of all functions whose domain and range are Xλ and
Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) :=
∣
∣
∣Pr[1 ← AFK(·)] − Pr[1 ← AR(·)]

∣
∣
∣ ≤ negl(λ),

where K
U←− Kλ and R

U←− Rλ.

Definition 2.2 (Bilinear Groups). Bilinear groups G:=(p,G1, G2, GT , g1,
g2, e) consist of a prime p, cyclic groups G1, G2, GT of order p, generators g1
and g2 of G1 and G2 respectively, and a bilinear map e : G1 × G2 → GT , which
has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For generators g1 and g2, e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes security parameter 1λ and outputs
bilinear groups G with a λ-bit prime p.

Definition 2.3 (SXDH Assumption). For ι ∈ {1, 2}, we define the following
distribution,

G ← GBG(1λ), a, e, f
U←− Zp, D := (G, [a]ι, [e]ι)

[tβ]ι := [ae + βf]ι for β ∈ {0, 1}.

We say the SXDH assumption holds if for any PPT adversary A and both
ι ∈ {1, 2},

AdvSXDH
A (λ) := |Pr[1 ← A(D, [t0]ι)] − Pr[1 ← A(D, [t1]ι)]| ≤ negl(λ).

2.3 Unbounded Inner Product Functional Encryption for (E:con,
K:sep, D:ct-dom)

In this paper, we propose two unbounded inner product functional encryption
schemes. The first scheme is private-key unbounded IPFE that is fully function
hiding and the second one is public-key unbounded IPFE with adaptive security.
Both our schemes can handle (a-priori) unbounded polynomial lengths of vectors
for encryption and key generation, and support a function that we call limited-
norm inner product. As explained in the introduction, our schemes support inner
product in the (E:con, K:sep, D:ct-dom) setting. Informally, for a ciphertext of
a vector whose length is m and a secret key with a set S, only if S ⊆ [m], we
can decrypt the ciphertext with the secret key and learn the inner product value
over the set S. Note that in previous works [3,4], the term bounded-norm is used,
but in this paper, bounded generally refers to vector length. Therefore, we use
limited-norm for the functionality in this paper.

Definition 2.4 (Limited-Norm Inner Product). This function family F
consists of functions fX,Y

S,y : Zm → Z where X,Y ∈ N, S ⊂ N, y := (yi)i∈S ∈ Z
S

Unbounded Inner Product Functional Encryption from Bilinear Maps 619

s.t. ||y||∞ ≤ Y , and m ∈ N s.t. S ⊆ [m]. We define the function for every
x := (x1, . . . , xm) ∈ Z

m s.t. ||x||∞ ≤ X as

fX,Y
S,y (x) :=

∑

i∈S

xiyi.

Definition 2.5 (Private-Key Unbounded Inner Product Functional
Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-limit.
Private-key unbounded inner product functional encryption (Priv-UIPFE) con-
sists of four algorithms.

Setup(1λ): This algorithm takes a security parameter 1λ, and outputs a public
parameter pp and a master secret key msk.

Enc(pp,msk,x): This algorithm takes pp,msk, and a vector x := (x1, . . . , xm) ∈
Z

m where m := m(λ) is any polynomial. It outputs a ciphertext ctm.
KeyGen(pp,msk, S,y): This algorithm takes pp,msk, a non-empty index set S ⊆

[s] where s := s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈
Z

S . It outputs a secret key skS .
Dec(pp, ctm, skS): This algorithm takes pp, ctm and skS and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. Priv-UIPFE is correct if it satisfies the following condition. For
any λ ∈ N, x ∈ Z

m s.t. m := m(λ) is any polynomial and ||x||∞ ≤ Xλ, index
set S ⊆ [s] s.t. s := s(λ) is any polynomial and S ⊆ [m], and y ∈ Z

S s.t.
||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈S

xiyi

(pp,msk) ← Setup(1λ)
ctm ← Enc(pp,msk,x)
skS ← KeyGen(pp,msk, S,y)
d := Dec(pp, ctm, skS)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ).

Security. Priv-UIPFE is fully function hiding if it satisfies the following con-
dition. That is, the advantage of A against Priv-UIPFE defined as follows is
negligible in λ for any PPT adversary A,

AdvPriv-UIPFEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣

Pr

[
1 ← AOEnc,0(pp,msk,·),OKG,0(pp,msk,·,·)(pp) :
(pp,msk) ← Setup(1λ)

]

−Pr

[
1 ← AOEnc,1(pp,msk,·),OKG,1(pp,msk,·,·)(pp) :
(pp,msk) ← Setup(1λ)

]

∣
∣
∣
∣
∣
∣
∣
∣

.

Here, OEnc,β(pp,msk, ·) with β ∈ {0, 1} is an encryption oracle that takes
a pair of vectors (x0,x1) ∈ (Zm)2 with the same polynomial length m, and
outputs Enc(pp,msk,xβ). OKG,β(pp,msk, ·, ·) with β ∈ {0, 1} is a key gener-
ation oracle that takes a set S including polynomial indices and a pair of
indexed vectors (y0,y1) ∈ (ZS)2 associated with the index set S, and outputs

620 J. Tomida and K. Takashima

KeyGen(pp,msk, S,yβ). To avoid a trivial attack of A, we have the following con-
dition on A’s queries. Let qct (resp. qsk) be a total number of ciphertext query
(resp. secret key query) of A. For all j ∈ [qct] and � ∈ [qsk], if S� ⊆ [mj], then

∑

i∈S�

x0
j,iy

0
�,i =

∑

i∈S�

x1
j,iy

1
�,i. (1)

Consider the modified game where the adversary queries all vectors in one-
shot, i.e., {(x0

j ,x
1
j)}j∈[qct] and {(y0

� ,y
1
�)}�∈[qsk], right after obtaining a public

parameter, and then the adversary receive all ciphertexts and secret keys for
queried vectors for β-side. If the advantage of all PPT adversary against the
modified game is negligible, we say that Priv-UIPFE is selectively function
hiding.

Definition 2.6 (Public-key Unbounded Inner Product Functional
Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-limit.
Public-key unbounded inner product functional encryption (Pub-UIPFE) con-
sists of four algorithms.

Setup(1λ): This algorithm takes a security parameter 1λ, and outputs a public
key pk and a master secret key msk.

Enc(pk,x): This algorithm takes pk and a vector x := (x1, . . . , xm) ∈ Z
m where

m := m(λ) is any polynomial. It outputs a ciphertext ctm.
KeyGen(pk,msk, S,y): This algorithm takes pk,msk, a non-empty index set S ⊆

[s] where s := s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈
Z

S . It outputs a secret key skS .
Dec(pk, ctm, skS): This algorithm takes pk, ctm and skS and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. Pub-UIPFE is correct if it satisfies the following condition. For
any λ ∈ N, x ∈ Z

m s.t. m := m(λ) is any polynomial and ||x||∞ ≤ Xλ, index
set S ⊆ [s] s.t. s := s(λ) is any polynomial and S ⊆ [m], and y ∈ Z

S s.t.
||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈S

xiyi

(pk,msk) ← Setup(1λ)
ctm ← Enc(pk,x)
skS ← KeyGen(pk,msk, S,y)
d := Dec(pk, ctm, skS)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ).

Security. Pub-UIPFE is adaptively secure if it satisfies the following condition.
That is, the advantage of A against Pub-UIPFE defined as follows is negligible
in λ for any stateful PPT adversary A,

Unbounded Inner Product Functional Encryption from Bilinear Maps 621

AdvPub-UIPFEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣β = 1

(pk,msk) ← Setup(1λ)
(x0,x1) ← AKeyGen(pk,msk,·,·)(pk)
ctm∗ ← Enc(pk,x0)
β ← AKeyGen(pk,msk,·,·)(pk, ctm∗)

⎤

⎥
⎥
⎦

−Pr

⎡

⎢
⎢
⎣β = 1

(pk,msk) ← Setup(1λ)
(x0,x1) ← AKeyGen(pk,msk,·,·)(pk)
ctm∗ ← Enc(pk,x1)
β ← AKeyGen(pk,msk,·,·)(pk, ctm∗)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Here, the challenge vectors x0 and x1 that A outputs must have the same length
m∗. To avoid a trivial attack of A, we have the following condition on A’s queries.
Let qsk be a total number of secret key query of A. For all � ∈ [qsk], if S� ⊆ [m∗],
then

∑

i∈S�

x0
i y�,i =

∑

i∈S�

x1
i y�,i. (2)

Consider the modified game where the adversary is prohibited to make a
secret-key query before outputting challenge vectors (x0,x1). If the advantage
of all PPT adversary against the modified game is negligible, we say that Pub-
UIPFE is semi-adaptively secure.

3 Private-Key Unbounded Inner Product Functional
Encryption

Our schemes are based on the DPVS framework introduced by Okamoto and
Takashima [25]. We use the following lemma in our Priv-IPFE scheme, which is
implicitly shown in [14].

Lemma 3.1. Let p be a λ-bit prime. For any polynomial m := m(λ) and n :=
n(λ), we have

Pr[∃i,detBi = 0|B1, . . . ,Bm
U←− Mn(Zp)] = 2−Ω(λ).

3.1 Construction

In the following scheme, norm limits Xλ, Yλ are some polynomials in λ. Let
F := {FK}K∈Kλ

be a PRF family with a key space Kλ consisting of functions
FK : {0, 1}λ → M4(Zp).

Setup(1λ): Takes a security parameter 1λ and chooses bilinear groups G ←
GBG(1λ) and a PRF key K

U←− Kλ. Outputs

pp := G, msk := K.

622 J. Tomida and K. Takashima

Enc(pp,msk,x): Takes pp,msk and x := (x1, . . . , xm) ∈ Z
m where m := m(λ)

is any polynomial. Sets Bi := FK(i) and ci := (xi, 0, z, 0)Bi ∈ Z
4
p for all

i ∈ [m], where z
U←− Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

If there exists i ∈ [m] such that Bi is a singular matrix, outputs ⊥.
KeyGen(pp,msk, S,y): Takes pp, msk, a non-empty index set S ⊆ [s] where s :=

s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈ Z
S . Chooses

{ri}i∈S
U←− Zp s.t.

∑
i∈S ri = 0. Sets Bi := FK(i) and ki := (yi, 0, ri, 0)B∗

i ∈
Z
4
p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

If there exists i ∈ S such that Bi is a singular matrix, outputs ⊥.
Dec(pp, ctm, skS): Takes pp, a ciphertext ctm for m dimensional vector, and a

secret key skS for a index set S. If S ⊆ [m], then computes

h :=
∏

i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)d = h exhaustively in the range of −|S|XλYλ

to |S|XλYλ. If such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Our Priv-UIPFE scheme is correct if F is a PRF family. We
consider the case where for a natural number m ∈ N, Bi := FK(i) for all i ∈ [m]
is invertible. Then, we observe that if S ⊆ [m],

h =
∏

i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and
||y||∞ ≤ Yλ, |∑i∈S xiyi| ≤ |S|XλYλ and Dec outputs

∑
i∈S xiyi. Hence, if Bi

for all i ∈ [m] is invertible without a negligible probability, our scheme is correct.
Let m := m(λ) be any polynomial. For i ∈ [m], we have Pr[∃i,detBi = 0|Bi

U←−
M4(Zp)] = 2−Ω(λ) from Lemma 3.1 and |Pr[∃i,detBi = 0|Bi

U←− M4(Zp)] −
Pr[∃i,detBi = 0|K U←− Kλ,Bi := FK(i)]| ≤ negl(λ) from the definition of PRF.
Consequently, Pr[∃i,detBi = 0|K U←− Kλ,Bi := FK(i)] ≤ negl(λ).

Remark 3.1. Similarly to all previous IPFE schemes based on a cyclic group or
bilinear groups, the decryption algorithm of our schemes need to solve the small
discrete logarithm problem. As pointed out in [21], however, this step does not
affect efficiency so much in many practical applications.

Unbounded Inner Product Functional Encryption from Bilinear Maps 623

3.2 Security

Theorem 3.1. Assume that the SXDH assumption holds and F is a PRF fam-
ily, then our Priv-UIPFE is fully function hiding. More formally, let mmax be
the maximum length of vectors with which A makes a query to the encryption
oracle, then for any PPT adversary A and security parameter λ, there exists a
PPT adversary B1 for the SXDH and B2 for the PRF family, we have

AdvPriv-UIPFEA (λ)≤ {4qsk + 2(mmax + 1)qct + 2}AdvSXDH
B1

(λ) + 2AdvPRFB2
(λ) + 2−Ω(λ).

Proof Outline. The top-level strategy of the proof is similar to that of the proof
by Tomida et al. [28], although the order of changing the forms of ciphertexts
and secret keys is the opposite. In the security proof, we employ a usual hybrid
argument and gradually change the forms of ciphertexts and secret keys queried
by an adversary from the case of β = 0 to β = 1 defined in Definition 2.5.
We use the spaces not used in the actual function, i.e., the second and fourth
spaces, for the security proof. Intuitively, the second space is a kind of a working
space to handle intermediate states between β = 0 and β = 1, and the fourth
space is utilized to make a situation where we can focus on only one query
even if an adversary makes multiple queries. In other words, we can see the
fourth space as a semi-functional space of dual system methodology proposed
by Waters [29]. First, the form of secret keys is changed from [(y0

�,i, 0, r�,i, 0)B∗
i]2

to [(y0
�,i, y

1
�,i, r�,i, 0)B∗

i]2 in the Game 1 sequence. Next, we change the form of
ciphertexts from [(x0

j,i, 0, zj , 0)Bi]1 to [(0, x1
j,i, zj , 0)Bi]1 in the Game 3 sequence,

and here we leverage the game condition Eq. (1). Then we switch the first space
with the second space as [(x1

j,i, 0, zj , 0)Bi]1 and [(y1
�,i, y

0
�,i, r�,i, 0)B∗

i]2. Finally, the
form of secret keys is changed from [(y1

�,i, y
0
�,i, r�,i, 0)B∗

i]2 to [(y1
�,i, 0, r�,i, 0)B∗

i]2
as the reverse of the Game 1 sequence. The most complicated and important
part is the Game 3 sequence, in which we need to deal with the ciphertexts and
secret keys that do not satisfy the condition Eq. (1). In Game 3 sequence, we
change the ciphertexts from 0-side to 1-side one by one, and in the ν-th iteration
of Game 3 sequence, we change the ν-th ciphertexts from 0-side to 1-side. For
the ν-th ciphertext, we can classify secret keys queried by an adversary into
three types. Let mν be the length of the ciphertext.

1. The index set S of the secret key is included in [mν], i.e., max S ≤ mν .
2. A part of the index set S is included in [mν], i.e., (max S > mν) ∧ (min S ≤

mν).
3. The index set S and [mν] are disjoint, i.e., minS > mν .

The cumbersome secret keys are type 2 keys because they can correctly decrypt
a part of the ciphertext even though they may not satisfy the condition Eq.
(1). We want to change the form of the ν-th ciphertext from 0-side to 1-side by
information-theoretical change in Game 3-ν-1-4, but it does not work without
any treatment due to the above property of type 2 keys. Therefore, we manage
to randomize or “sanitize” type 2 keys from Game 3-ν-1-1 to Game 3-ν-1-3.

624 J. Tomida and K. Takashima

Proof. We prove Theorem 3.1 by a series of games. For each game transition,
we prove that the difference between probabilities that the adversary A outputs
1 in both games is negligible.

Game 0: This game is the same as the real security game when β = 0 in
Definition 2.5. That is, the j-th ciphertext query with a pair of vectors
(x0

j ,x
1
j) ∈ (Zmj)2 is replied as

cj,i := (x0
j,i, 0, zj , 0)Bi for all i ∈ [mj]

ctj,mj
:= ([cj,1]1, . . . , [cj,mj

]1).

The �-th secret key query with an index set S� and a pair of vectors (y0
� ,y

1
�) ∈

(ZS�)2 is replied as

k�,i := (y0
�,i, 0, r�,i, 0)B∗

i for all i ∈ S�

sk�,S�
:= (S�, {[k�,i]2}i∈S�

).

Game 0’: This game is the same as Game 0 except for the way of making
dual orthonormal bases. In Game 0, the dual orthonormal bases for the i-th
element are made as (Bi,B∗

i) where Bi := FK(i), but in Game 0’, they are
made as Bi

U←− GL4(Zp). More precisely, the cipertext oracle and secret key
oracle have the same list L for bases. When the oracle needs a basis for the
i-th element, it searches for (i,Bi) from L. If the oracle find it, the oracle
uses the bases, and if not, it generates Bi

U←− GL4(Zp) and records them as
(i,Bi) into L.

Game 1-μ-1 (μ ∈ [qsk]) : We define Game 1-0-3 as equivalent to Game 0’. This
game is the same as Game 1-(μ−1)-3 except that in the μ-th secret key query,
kμ,i is set as

w
U←− Zp, kμ,i := (y0

μ,i, 0, rμ,i, wrμ,i)B∗
i for all i ∈ Sμ.

Game 1-μ-2 (μ ∈ [qsk]): This game is the same as Game 1-μ-1 except that in
the μ-th secret key query, kμ,i is set as

w
U←− Zp, kμ,i := (y0

μ,i, y1
μ,i , rμ,i, wrμ,i)B∗

i for all i ∈ Sμ.

Game 1-μ-3 (μ ∈ [qsk]): This game is the same as Game 1-μ-2 except that in
the μ-th secret key query, kμ,i is set as

kμ,i := (y0
μ,i, y

1
μ,i, rμ,i, 0)B∗

i for all i ∈ Sμ.

Game 2: This game is the same as Game 1-qsk-3 except that in all secret key
queries, k�,i for all � ∈ [qsk] is set as

k�,i := (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i for all i ∈ S�,

where r̃�,i
U←− Zp s.t.

∑
i∈S�

r̃�,i = 0.

Unbounded Inner Product Functional Encryption from Bilinear Maps 625

Game 3-ν-1 (ν ∈ [qct]): Game 2 is equivalent to Game 3-0-3. This game is the
same as Game 3-(ν − 1)-3 except that in the ν-th ciphertext query, cν,i is set
as

z̃ν
U←− Zp, cν,i := (x0

ν,i, 0, zν , z̃ν)Bi for all i ∈ [mν].

Game 3-ν-2 (ν ∈ [qct]) : This game is the same as Game 3-ν-1 except that in
the ν-th ciphertext query, cν,i is set as

z̃ν
U←− Zp, cν,i := (0, x1

ν,i , zν , z̃ν)Bi for all i ∈ [mν].

Game 3-ν-3 (ν ∈ [qct]) : This game is the same as Game 3-ν-2 except that in
the ν-th ciphertext query, cν,i is set as

cν,i := (0, x1
ν,i, zν , 0)Bi for all i ∈ [mν].

Game 4: This game is the same as Game 3-qct-5 except that in all ciphertext
and secret key queries, cj,i and k�,i are set as

cj,i := (x1
j,i, 0 , zj , 0)Bi for all i ∈ [mj],

k�,i := (y1
�,i, y

0
�,i , r�,i, r̃�,i)B∗

i , for all i ∈ S�.

Game 5: This game is the same as the real security game when β = 1 in
Definition 2.5. That is, the j-th ciphertext query with a pair of vectors
(x0

j ,x
1
j) ∈ (Zmj)2 is replied as

cj,i := (x1
j,i, 0, zj , 0) Bi for all i ∈ [mj]

ctj,mj
:= ([cj,1]1, . . . , [cj,mj

]1).

The �-th secret key query with an index set S� and a pair of vectors (y0
� ,y

1
�) ∈

(ZS�)2 is replied as

k�,i := (y1
�,i, 0 , r�,i, 0) B∗

i for all i ∈ S�

sk�,S�
:= (S�, {[k�,i]2}i∈S�

).

Note that Bi is generated as Bi := FK(i) in Game 5.

Thanks to Lemma 3.2 to Lemma 3.11, we can conclude the proof of Theorem
3.1. ��

In the following, we denote the event that A outputs 1 in Game ι by Eι.

Lemma 3.2. For any PPT adversary A, there exists a PPT adversary B for
PRFs s.t.

|Pr[E0] − Pr[E0′]| ≤ AdvPRFB (λ) + 2−Ω(λ).

626 J. Tomida and K. Takashima

Proof. First, we consider Game 0M, which is the same as Game 0 except that
Bi is generated as Bi

U←− M4(Zp) for each i. The following inequality directly
follows from the property of PRF s.t. |Pr[E0] − Pr[E0M]| ≤ AdvPRFB (λ). Next, we
have |Pr[E0M] − Pr[E0′]| ≤ 2−Ω(λ) from Lemma 3.1. Then Lemma 3.2 holds. ��
Lemma 3.3. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-(μ − 1)-3] − Pr[E1-μ-1]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ]2), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries except the μ-th
one as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj],

[k�,i]2 :=

{
[(y0

�,i, y
1
�,i, r�,i, 0)B∗

i]2 for all i ∈ S� (� < μ)
[(y0

�,i, 0, r�,i, 0)B∗
i]2 for all i ∈ S� (� > μ).

Note that B cannot compute [bi,4]1 because it does not know [a]1, but the
above instances are computable without [bi,4]1. For the μ-th secret key query,
B replies to A for all i ∈ Sμ as

r′
i

U←− Zp s.t.
∑

i∈Sμ

r′
i = 0,

[kμ,i]2 := [(y0
μ,i, 0, 0, 0)B∗

i + r′
i(0, 0, tβ , e)W∗

i]2 = [(y0
μ,i, 0, er′

i, βfr′
i)B

∗
i]2.

Observe that we can implicitly set rμ,i := er′
i and w := f/e unless e = 0, then

A’s view is the same as in Game 1-(μ − 1)-3 (resp. Game 1-μ-1) if β = 0 (resp.
β = 1). ��
Lemma 3.4. For any PPT adversary A, we have

|Pr[E1-μ-1] − Pr[E1-μ-2]| ≤ 2−Ω(λ).

Proof. We define (Di,D∗
i) as

Di :=

⎛

⎜
⎜
⎜
⎝

1 0

1 y1
μ,i

wrμ,i

1 0
1

⎞

⎟
⎟
⎟
⎠

Bi, D∗
i :=

⎛

⎜
⎜
⎜
⎝

1
1

1

0 − y1
μ,i

wrμ,i
0 1

⎞

⎟
⎟
⎟
⎠

B∗
i ∈ GL4(Zp).

Unbounded Inner Product Functional Encryption from Bilinear Maps 627

Observe that (Di,D∗
i) are random dual orthonormal bases. Then, for all j ∈ [qct]

and � ∈ [qsk], we have

cj,i = (x0
j,i, 0, zj,i, 0)Bi = (x0

j,i, 0, zj,i, 0)

⎛

⎜
⎜
⎜
⎝

1 0

1 − y1
μ,i

wrμ,i

1 0
1

⎞

⎟
⎟
⎟
⎠

Di = (x0
j,i, 0, zj,i, 0)Di,

k�,i = (y0
�,i, β�y

1
�,i, r�,i, β̂�wrμ,i)B∗

i = (y0
�,i, β�y

1
�,i, r�,i, β̂�wrμ,i)

⎛

⎜
⎜
⎜
⎝

1
1

1

0 y1
μ,i

wrμ,i
0 1

⎞

⎟
⎟
⎟
⎠

D∗
i

= (y0
�,i, (β� + β̂�)y1

�,i, r�,i, β̂�wrμ,i)D∗
i ,

where β� = 0 if � ≥ μ and β� = 1 if � < μ, and β̂� = 0 if � �= μ and β̂� = 1 if
� = μ. Then if w �= 0 and rμ,i �= 0, A’s view is identically distributed in Game
1-μ-2 and Game 1-μ-3. ��
Lemma 3.5. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-μ-2] − Pr[E1-μ-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

This lemma can be proven almost the same as Lemma 3.3, so we omit the
proof.

Lemma 3.6. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E1-qsk-3] − Pr[E2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ)

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ]2), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj],

r′
�,i, r

′′
�,i

U←− Zp s.t.
∑

i∈S�

r′
�,i =

∑

i∈S�

r′′
�,i = 0,

[k�,i]2 := [(y0
�,i, y

1
�,i, r

′
�,i, 0)B∗

i + r′′
�,i(0, 0, tβ , e)W∗

i]2
= [(y0

�,i, y
1
�,i, r

′
�,i + er′′

�,i, βfr′′
�,i)B

∗
i]2 for all i ∈ S�.

628 J. Tomida and K. Takashima

Note that B cannot compute [bi,4]1 because it does not know [a]1, but the
above instances are computable without [bi,4]1. Observe that we can implicitly
set r�,i := r′

�,i + er′′
�,i and r̃�,i := fr′′

�,i unless f = 0, then A’s view is the same as
in Game 1-qsk-3 (resp. Game 2) if β = 0 (resp. β = 1). ��
Lemma 3.7. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E3-(ν − 1)-3] − Pr[E3-ν-1]| ≤ AdvSXDH
B (λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. B obtains an instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ]1), and sets
pp := G. B defines random dual orthonormal bases Bi,B∗

i as follows,

Wi
U←− GL4(Zp), Bi :=

⎛

⎜
⎜
⎝

1
1

a 1
1 0

⎞

⎟
⎟
⎠Wi, B∗

i :=

⎛

⎜
⎜
⎝

1
1

0 1
1 −a

⎞

⎟
⎟
⎠W∗

i ∈ GL4(Zp).

Then B simulates all ciphertext queries except the ν-th one and all secret key
queries as follows,

[cj,i]1 :=

{
[(0, x1

j,i, zj,i, 0)Bi]1 for all i ∈ [mj] (j < ν)
[(x0

j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj] (j > ν),

r′
�,i, r

′′
�,i

U←− Zp s.t.
∑

i∈S�

r′
�,i =

∑

i∈S�

r′′
�,i = 0,

[k�,i]2 := [(y0
�,i, y

1
�,i, r

′
�,i, 0)B∗

i + (0, 0, r′′
�,i, 0)W∗

i]2
= [(y0

�,i, y
1
�,i, r

′
�,i + ar′′

�,i, r
′′
�,i)B

∗
i]2 for all i ∈ S�.

Note that B cannot compute [b∗
i,4]2 because it does not know [a]2, but the

above instances are computable without [b∗
i,4]2. Observe that we can implicitly

set r�,i := r′
�,i + ar′′

�,i and r̃�,i := r′′
�,i, so B correctly simulates the answer for

queries. For the ν-th ciphertext query, B replies to A for all i ∈ [mν] as

[cν,i]1 := [(x0
ν,i, 0, 0, 0)Bi + (0, 0, tβ , e)Wi]1 = [(x0

ν,i, 0, e, βf)Bi]1.

Observe that we can implicitly set zν := e and z̃ν := f , then A’s view is the
same as in Game 3-(ν − 1)-3 (resp. Game 3-ν-1) if β = 0 (resp. β = 1). ��
Lemma 3.8. Let mmax be the maximum length of vectors with which A makes
a query to the encryption oracle. For any PPT adversary A, there exists a PPT
adversary B for the SXDH s.t.

|Pr[E3-ν-1] − Pr[E3-ν-2]| ≤ 2mmaxAdv
SXDH
B (λ) + 2−Ω(λ).

Proof. To prove Lemma 3.8, we consider the following intermediate games
between Game 3-ν-1 and 3-ν-2. In each intermediate game, the challenger
chooses a random element m′

ν
U←− [mmax] as a guess of mν at the beginning

of the games.

Unbounded Inner Product Functional Encryption from Bilinear Maps 629

Game 3-ν-1-1 (ν ∈ [qct]): This game is the same as Game 3-ν-1 except that
the challenger aborts the game immediately if the vector length of the ν-th
ciphertext query is not m′

ν i.e., m′
ν �= mν . We define that A’s output is ⊥

when the game is aborted.
Game 3-ν-1-2 (ν ∈ [qct]): This game is the same as Game 3-ν-1-1 except the

following. In the �-th secret key query for all � s.t. whose index set S� con-
tains both elements that are greater than m′

ν and not greater than m′
ν , i.e.,

(max S� > m′
ν) ∧ (min S� ≤ m′

ν), k�,i is set as

k�,i :=

{
(y0

�,i, y
1
�,i, r�,i, r̃�,i)B∗

i (i ∈ S�, i ≤ m′
ν)

(y0
�,i, y

1
�,i, r�,i, ar̃�,i)B∗

i (i ∈ S�, i > m′
ν)

where a
U←− Zp, r̃�,i

U←− Zp s.t.
∑

i∈S�
r̃�,i = 0.

Game 3-ν-1-3 (ν ∈ [qct]): This game is the same as Game 3-ν-1-2 except that
in the �-th secret key query for all � s.t. (max S� > m′

ν) ∧ (min S� ≤ m′
ν), k�,i

is set as

r̄�,i
U←− Zp, k�,i := (y0

�,i, y
1
�,i, r�,i, r̄�,i)B∗

i for all i ∈ S�.

Game 3-ν-1-4 (ν ∈ [qct]): This game is the same as Game 3-ν-1-3 except that
in the ν-th ciphertext query, cν,i is set as

z̃ν
U←− Zp, cν,i := (0, x1

ν,i , zν , z̃ν)Bi for all i ∈ [m′
ν].

Game 3-ν-1-5 (ν ∈ [qct]): This game is the same as Game 3-ν-1-4 except that
in all secret key queries, k�,i are set as

k�,i := (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i for all i ∈ S�,

where r̃�,i
U←− Zp s.t.

∑
i∈S�

r̃�,i = 0.

Next we consider the probability that A outputs 1 in each game. Thanks to
Claim 1 to Claim 6, we have

|Pr[E3-ν-1] − Pr[E3-ν-2]| = mmax|Pr[E3-ν-1-1] − Pr[E3-ν-1-5]|
≤ 2mmaxAdv

SXDH
B (λ) + 2−Ω(λ)

This concludes the proof of Lemma 3.8. ��
Claim 1. For any PPT adversary A, we have

Pr[E3-ν-1-1] =
1

mmax
Pr[E3-ν-1]

630 J. Tomida and K. Takashima

Proof. First, we consider the game (denoted by Game X) that is the same as
Game 3-ν-1 except that A’s output is defined as ⊥ when m′

ν �= mν . Note that
the challenger does not abort the game in Game X in contrast to Game 3-ν-1-1.
It is obvious that the probabilities that A outputs 1 are equal in Game X and
Game 3-ν-1-1 respectively. Then, we have

Pr[E3-ν-1-1] = Pr[EX] =
∑

i∈[mmax]

Pr[m′
ν = i]Pr[mν = i ∧ E3-ν-1|m′

ν = i]

=
1

mmax

∑

i∈[mmax]

Pr[mν = i ∧ E3-ν-1]

=
1

mmax
Pr[E3-ν-1].

The second line follows from the fact that m′
ν is chosen independently from A’s

view in Game X and its value does not affect A’s behavior. ��
Claim 2. For any PPT adversary A, we have

|Pr[E3-ν-1-1] − Pr[E3-ν-1-2]| ≤ 2−Ω(λ).

Proof. For i > m′
ν , we define (Di,D∗

i) as

Di :=

⎛

⎜
⎜
⎝

1
1

1
a

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎝

1
1

1
1/a

⎞

⎟
⎟
⎠B∗

i ∈ GL4(Zp).

Ciphertexts except the ν-th one and secret keys that have indices greater than
m′

ν are changed as

cj,i = (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)Bi = (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)

⎛

⎜
⎜
⎝

1
1

1
1/a

⎞

⎟
⎟
⎠Di

= (βjx
0
j,i, (1 − βj)x1

j,i, zj , 0)Di for all i > m′
ν ,

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)

⎛

⎜
⎜
⎝

1
1

1
a

⎞

⎟
⎟
⎠D∗

i

= (y0
�,i, y

1
�,i, r�,i, ar̃�,i)D∗

i for all i > m′
ν ,

where βj = 0 if j < ν and βj = 1 if j ≥ ν. Note that secret keys whose all indices
are greater than m′

ν are not affected by the basis change because {r̃�,i}i∈S�
s.t.∑

i∈S�
r̃�,i = 0 and {ar̃�,i}i∈S�

s.t.
∑

i∈S�
r̃�,i = 0 are identically distributed.

Finally, when m′
ν = mν , this basis change does not affect ctν,mν

because it is
applied only for the bases with indices i > mν . Hence, in Game 3-ν-1-1 and
Game 3-ν-1-2, A’s view is identically distributed unless a = 0. ��

Unbounded Inner Product Functional Encryption from Bilinear Maps 631

Claim 3. For any PPT adversary A, there exists a PPT adversary B for the
SXDH s.t.

|Pr[E3-ν-1-2] − Pr[E3-ν-1-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using
A. In the beginning of the simulation, B chooses a m′

ν
U←− [mmax] as a guess of

mν . If the guess is incorrect, B aborts and outputs 0. Otherwise, B outputs A’s
output as it is. B obtains an SXDH instance with ι := 2, i.e., (G, [a]2, [e]2, [tβ]2)

and gives pp := G to A. B defines dual orthonormal bases as Bi
U←− GL4(Zp)

for each index i. Then, all ciphertexts and the �-th secret key s.t. (max S� ≤
m′

ν) ∨ (min S� > m′
ν) can be generated by using Bi and B∗

i . For the �-th secret
key s.t. (max S� > m′

ν) ∧ (min S� ≤ m′
ν), B computes secret keys as follows.

u�,i, u
′
�,i

U←− Zp s.t.
∑

i∈S�

u�,i =
∑

i∈S�

u′
�,i = 0,

[k�,i]2 :=

⎧
⎪⎨

⎪⎩

[(y0
�,i, y

1
�,i, r�,i, eu�,i + u′

�,i)B
∗]2 (i ∈ S�, i ≤ m′

ν)
[(y0

�,i, y
1
�,i, r�,i, tβu�,i + au′

�,i)B
∗]2

= [(y0
�,i, y

1
�,i, r�,i, a(eu�,i + u′

�,i) + βfu�,i)B∗]2
(i ∈ S�, i > m′

ν)

Then, we can define r̃�,i := eu�,i + u′
�,i. In the case of β = 0, [k�,i]2 is dis-

tributed identically to Game 3-ν-1-2. Next, we consider the case β = 1. First,
{r̃�,i}i∈S�

and {u�,i}i∈S�
are independently distributed because the information

of {u�,i}i∈S�
in {r̃�,i}i∈S�

is completely hidden by {u′
�,i}i∈S�

. Therefore, we can

set r̄�,i :=

{
r̃�,i (i ∈ S�, i ≤ m′

ν)
ar̃�,i + fu�,i (i ∈ S�, i > m′

ν)
, unless f = 0. Hence, [k�,i]2 is dis-

tributed identically to Game 3-ν-1-3 if β = 1. ��
Claim 4. For any PPT adversary A, we have

|Pr[E3-ν-1-3] − Pr[E3-ν-1-4]| ≤ 2−Ω(λ).

Proof. Here, we denote the event such that m′
ν = mν in Game ι by Xι. By the

game definition, we have

|Pr[E3-ν-1-3] − Pr[E3-ν-1-4]|
=|Pr[X3-ν-1-3]Pr[E3-ν-1-3|X3-ν-1-3] − Pr[X3-ν-1-4]Pr[E3-ν-1-4|X3-ν-1-4]|
=|Pr[X3-ν-1-3](Pr[E3-ν-1-3|X3-ν-1-3] − Pr[E3-ν-1-4|X3-ν-1-4])|.

In the third line, we use the fact that A’s view is identical before the ν-th
ciphertext query and then we have Pr[X3-ν-1-3] = Pr[X3-ν-1-4]. Therefore, it is
sufficient to prove that |Pr[E3-ν-1-3|X3-ν-1-3]−Pr[E3-ν-1-4|X3-ν-1-4])| ≤ 2−Ω(λ). For
the purpose, we analyze A’s view under the condition such that m′

ν = mν .

632 J. Tomida and K. Takashima

We define (Di,D∗
i) for all i ∈ [mν] as

Di :=

⎛

⎜
⎜
⎝

1
1

1
x0

ν,i

z̃ν
−x1

ν,i

z̃ν
0 1

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎜
⎝

1 −x0
ν,i

z̃ν

1 x1
ν,i

z̃ν

1 0
1

⎞

⎟
⎟
⎟
⎠

B∗
i ∈ GL4(Zp).

Observe that (Di,D∗
i) are random dual orthonormal bases. Then, for all j ∈ [qct],

we have

cj,i = (βjx
0
j,i, (1 − βj)x1

j,i, zj , β̂j z̃ν)Bi

= (βjx
0
j,i, (1 − βj)x1

j,i, zj , β̂j z̃ν)

⎛

⎜
⎜
⎝

1
1

1

−x0
ν,i

z̃ν

x1
ν,i

z̃ν
0 1

⎞

⎟
⎟
⎠Di

= ((βj − β̂j)x0
j,i, (1 − βj + β̂j)x1

j,i, zj , β̂j z̃ν)Di,

where βj = 0 if j < ν and βj = 1 if j ≥ ν, and β̂j = 0 if j �= ν and β̂j = 1 if
j = ν. On the other hand, for all � s.t. max S� ≤ mν , we have

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)

⎛

⎜
⎜
⎜
⎝

1 x0
ν,i

z̃ν

1 −x1
ν,i

z̃ν

1 0
1

⎞

⎟
⎟
⎟
⎠

D∗
i

= (y0
�,i, y

1
�,i, r�,i, r̃�,i +

1
z̃ν

(x0
ν,iy

0
�,i − x1

ν,iy
1
�,i))D

∗
i .

Here, we have the condition Eq. (1) s.t.
∑

i∈S�
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i) = 0, because

S� ⊆ [mν]. Hence, we can set r̃′
�,i := r̃�,i + 1

z̃ν
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i). Observe that

r̃′
�,i is randomly distributed s.t.

∑
i∈S�

r̃′
�,i = 0. In the same way, for all � s.t.

(max S� > mν) ∧ (min S� ≤ mν), we have

k�,i =

{
(y0

�,i, y
1
�,i, r�,i, r̄�,i + 1

z̃ν
(x0

ν,iy
0
�,i − x1

ν,iy
1
�,i))D

∗
i (i ≤ mν)

(y0
�,i, y

1
�,i, r�,i, r̄�,i)B∗

i (i > mν)

In this case, there is no condition on (x0
ν,iy

0
�,i−x1

ν,iy
1
�,i). However, because r̄�,i are

chosen randomly from Zp, then r̄′
�,i := r̄�,i+ 1

z̃ν
(x0

ν,iy
0
�,i−x1

ν,iy
1
�,i) are also random

elements in Zp. Note that for all � s.t. min S� > mν , this basis change does not
affect sk�,S�

because we only change the bases for i ≤ mν . Then, in Game 3-ν-1-3
and Game 3-ν-1-4, A’s view is identically distributed unless z̃ν = 0 under the
condition such that m′

ν = mν . ��
Claim 5. For any PPT adversary A, there exists a PPT adversary B for the
SXDH s.t.

|Pr[E3-ν-1-4] − Pr[E3-ν-1-5]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Unbounded Inner Product Functional Encryption from Bilinear Maps 633

Claim 5 can be proven by just the reverse of Game 3-(ν − 1)-1-1 to Game
3-ν-1-3, so we omit the proof.

Claim 6. For any PPT adversary A, we have

Pr[E3-ν-1-5] =
1

mmax
Pr[E3-ν-2]

The difference between Game 3-ν-1-5 and 3-ν-2 is just the existence of the
abort condition introduced in Game 3-ν-1-1. Then, we can prove Claim 6 simi-
larly to Claim 1.

Lemma 3.9. For any PPT adversary A, there exists a PPT adversary B for
the SXDH s.t.

|Pr[E3-ν-2] − Pr[E3-ν-3]| ≤ AdvSXDH
B (λ).

This lemma can be proven by just the reverse of Game 3-(ν − 1)-3 to Game
3-ν-1, so we omit the proof.

Lemma 3.10. For any PPT adversary A, we have

Pr[E3-qct-3] = Pr[E4].

Proof. We define (Di,D∗
i) as

Di :=

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠Bi, D∗

i :=

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠B∗

i ∈ GL4(Zp).

Observe that (Di,D∗
i) are random dual orthonormal bases. Then, for all j ∈ [qct]

and � ∈ [qsk], we have

cj,i = (0, x1
j,i, zj , 0)Bi = (x1

j,i, 0, zj , 0)Di for all i ∈ [mj],

k�,i = (y0
�,i, y

1
�,i, r�,i, r̃�,i)B∗

i = (y1
�,i, y

0
�,i, r�,i, r̃�,i)D∗

i for all i ∈ S�.

Then, in Game 3-qct-3 and Game 4, A’s view is identically distributed. ��
Lemma 3.11. For any PPT adversary A, there exists a PPT adversary B1 for
the SXDH and B2 for PRF s.t.

|Pr[E4] − Pr[E5]| ≤ (2qsk + 1)AdvSXDH
B1

(λ) + AdvPRFB2
(λ) + 2−Ω(λ).

This lemma can be proven by just the reverse of Games 0 to 2, so we omit the
proof.

4 Public-Key Unbounded Inner Product Functional
Encryption

In the following scheme, norm limits Xλ, Yλ are some polynomials in λ.

634 J. Tomida and K. Takashima

4.1 Construction

Setup(1λ): Takes a security parameter 1λ and generates G ← GBG(1λ) and B U←−
GL7(Zp). Outputs

pk := (G, [b1]1, . . . , [b4]1), msk := (b∗
1, . . . ,b

∗
4),

where bi (resp. b∗
j) denotes the i-th row of B (resp. j-th row of B∗).

Enc(pk,x): Takes pk and x := (x1, . . . , xm) ∈ Z
m where m = m(λ) is any

polynomial. Defines ci := (πi(1, i), xi, z, 0, 0, 0)B ∈ Z
7
p for all i ∈ [m], where

πi, z
U←− Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

KeyGen(pk,msk, S,y): Takes pk, msk, a non-empty index set S ⊆ [s] where
s = s(λ) is any polynomial, and an indexed vector y := (yi)i∈S ∈ Z

S .
Chooses {ri}i∈S

U←− Zp s.t.
∑

i∈S ri = 0 and ρi
U←− Zp, and defines ki :=

(ρi(−i, 1), yi, ri, 0, 0, 0)B∗ ∈ Z
7
p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

Dec(pk, ctm, skS): Takes pk, a ciphertext ctm for m dimensional vector, and a
secret key skS for a index set S. If S ⊆ [m], then computes

h :=
∏

i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)d = h exhaustively in the range of −|S|XλYλ

to |S|XλYλ. If such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Observe that if S ⊆ [m],

h =
∏

i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and
||y||∞ ≤ Yλ, then |∑i∈S xiyi| ≤ |S|XλYλ and Dec outputs

∑
i∈S xiyi.

4.2 Security

Theorem 4.1. Assume that the SXDH assumption holds, then our Pub-UIPFE
is adaptively secure. More formally, let mmax be the maximum length of the
challenge vector that A outputs and smax be the maximum index with which A
queries the key generation oracle, then for any PPT adversary A and security
parameter λ, there exists a PPT adversary B for the SXDH s.t.

AdvPub-UIPFEA (λ) ≤ {16m2
max + 8mmax(smax − 1) + 4}AdvSXDH

B (λ) + 2−Ω(λ).

Unbounded Inner Product Functional Encryption from Bilinear Maps 635

Proof Outline. The top-level strategy of the security proof is simple. Consider
a world where an encryption algorithm could magically generate unbounded
random dual orthonormal bases for each index. Then we observe that only one
loop of the Game 3 sequence in the Priv-UIPFE scheme suffices for the Pub-
UIPFE scheme because there is one challenge ciphertext query and no challenge
secret key query. To generate such a situation, we utilize an entropy-amplification
technique like [26] and show that PPT adversaries cannot distinguish the real
world from the “magical” world under the SXDH assumption. In the following,
we provide a more concrete overview of the proof. Similarly to the Game 3
sequence in the Priv-UIPFE scheme, we first change the challenge ciphertext
and all secret keys into the following form,

z̃, {r̃�,i}i∈S�

U←− Zp s.t.
∑

i∈S�

r̃�,i = 0,

ci := (πi(1, i), x0
i , z, z̃ , 0, 0)B, k�,i := (ρ�,i(−i, 1), y�,i, r�,i, r̃�,i , 0, 0)B∗.

Next, we change k�,i for all � s.t. (max S� > m′) ∧ (min S� ≤ m′), where m′ is
the guess of the vector length for the challenge ciphertext, as

{r̄�,i}i∈S�

U←− Zp, k�,i := (ρ�,i(−i, 1), y�,i, r�,i, r̄�,i , 0, 0)B∗. (3)

Then, we change ci as

ci := (πi(1, i), x1
i , z, z̃, 0, 0)B, (4)

similar to Priv-UIPFE. The remaining sequence is just the reverse. In the case of
the Priv-UIPFE scheme, recall that we perform distinct basis changes for each
index in the steps of Eqs. (3) and (4). However, we cannot perform such basis
changes in Pub-UIPFE, because all indices share the same dual orthonormal
bases. To overcome this difficulty, we conduct this step by computational change
on the basis of the SXDH assumption. Specifically, we introduce the following
two lemmas and use them in the proof as a kind of basis change in Priv-UIPFE.
Especially, it is relatively easy to see that Lemma 4.2 can be used for showing
that PPT adversaries cannot distinguish the real world, i.e., β = 0, from the
“magical” world, i.e., β = 1, where dual orthonormal bases for each index are
“somewhat” random. In other words, in the case of β = 1, dual orthonormal
bases for index i is generated as

Di :=

⎛

⎜
⎜
⎜
⎜
⎝

I2
1

1
wi 1

I2

⎞

⎟
⎟
⎟
⎟
⎠

B, D∗
i :=

⎛

⎜
⎜
⎜
⎜
⎝

I2
1 −wi

1
1

I2

⎞

⎟
⎟
⎟
⎟
⎠

B∗. (5)

Lemma 4.1 is used for the step of Eq. (3), which corresponds to Games 3-ν-2
and 3-ν-3 in the proof of Priv-UIPFE, and Lemma 4.2 is used for the step of

636 J. Tomida and K. Takashima

Eq. (4), which corresponds to Game 3-ν-4 in the proof of Priv-UIPFE. In our
Pub-UIPFE scheme, there are three-dimensional subspaces that are not used
in the actual function: the 5-7th spaces. The fifth space is a kind of a semi-
functional space that is similar to the fourth space of our Priv-UIPFE scheme.
The sixth and seventh spaces are necessary to amplify the entropy of the two
dimensional prefix for the proof of the lemmas. Similar to here, adding extra
spaces other than the semi-functional space and amplifying the entropy in the
space are also done in [11,23,26].

Lemma 4.1. For any polynomial m := m(λ) and n := n(λ), we define the
following distribution,

G ← GBG(1λ), B U←− GL7(Zp), {πi}i∈[m], z̃
U←− Zp,

ui := (πi(1, i), 0, 0, z̃, 0, 0)B for all i ∈ [m],
D := (G, [b1]1, . . . , [b4]1, [b∗

1]2, . . . , [b
∗
5]2, [u1]1, . . . , [um]1),

{ρ′
i}i∈[m+1,n], {r′

i}i∈[m+1,n]
U←− Zp,

u∗
i,β := (ρ′

i(−i, 1), 0, 0, βr′
i, 0, 0)B∗ for all i ∈ [m + 1, n],

Uβ := {[u∗
i,β]2}i∈[m+1,n].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP1A (λ) :=|Pr[1 ← A(D,U0)] − Pr[1 ← A(D,U1)]|
≤4(n − m)AdvSXDH

B (λ) + 2−Ω(λ).

Lemma 4.2. For any polynomial m := m(λ) and n := n(λ), we define the
following distribution,

G ← GBG(1λ), B U←− GL7(Zp), {ρ′
i}i∈[m+1,n]

U←− Zp,

u∗
i := (ρ′

i(−i, 1), 1, 0, 0, 0, 0)B∗ for all i ∈ [m + 1, n],
D := (G, [b1]1, . . . , [b4]1, [b∗

1]2, [b
∗
2]2, [b

∗
4]2, [b

∗
5]2, {[u∗

i]2}i∈[m+1,n]),

{π′
i}i∈[m], {ρ′

i}i∈[m], {wi}i∈[m]
U←− Zp,

ui,β := (π′
i(1, i), βwi, 0, 1, 0, 0)B for all i ∈ [m],

u∗
i,β := (ρ′

i(−i, 1), 1, 0,−βwi, 0, 0)B∗ for all i ∈ [m],

Uβ := {[ui,β]1, [u∗
i,β]2}i∈[m].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP2A (λ) := |Pr[1 ← A(D,U0)] − Pr[1 ← A(D,U1)]| ≤ 8mAdvSXDH
B (λ) + 2−Ω(λ).

The formal proofs of Theorem 4.1, Lemmas 4.1, and 4.2 are presented in the
full version of this paper.

Acknowledgments. We are very grateful to Pratish Datta and Tatsuaki Okamoto
for giving us a chance to start this work. We also would like to thank anonymous
reviewers for their helpful comments.

Unbounded Inner Product Functional Encryption from Bilinear Maps 637

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for func-
tional encryption for inner product evaluations. Cryptology ePrint Archive, Report
2016/011 (2016). http://eprint.iacr.org/2016/011

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. Cryptology ePrint Archive, Report 2017/972 (2017). http://eprint.
iacr.org/2017/972

4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

6. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

7. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 20

8. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 20

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
III. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 13

11. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

12. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

13. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

https://doi.org/10.1007/978-3-662-46447-2_33
http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2017/972
http://eprint.iacr.org/2017/972
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-662-49384-7_7

638 J. Tomida and K. Takashima

14. Datta, P., Okamoto, T., Tomida, J.: Full-Hiding (Unbounded) Multi-input Inner
Product Functional Encryption from the k -Linear Assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

15. Dufour Sans, E., Pointcheval, D.: Unbounded inner product functional encryption,
with succinct keys. Cryptology ePrint Archive, Report 2018/487 (2018). https://
eprint.iacr.org/2018/487

16. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

18. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol.
9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 18

19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S.
(eds.) ACM CCS 2006, pp. 89–98. ACM Press, October–November 2006. Available
as Cryptology ePrint Archive Report 2006/309

20. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

21. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. Cryptology ePrint Archive, Report
2016/440 (2016). http://eprint.iacr.org/2016/440

22. Kim, S., Kim, J., Seo, J.H.: A new approach for practical function-private inner
product encryption. Cryptology ePrint Archive, Report 2017/004 (2017). http://
eprint.iacr.org/2017/004

23. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

24. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

26. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

27. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

https://doi.org/10.1007/978-3-319-76581-5_9
https://eprint.iacr.org/2018/487
https://eprint.iacr.org/2018/487
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
http://eprint.iacr.org/2016/440
http://eprint.iacr.org/2017/004
http://eprint.iacr.org/2017/004
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
http://eprint.iacr.org/2010/556

Unbounded Inner Product Functional Encryption from Bilinear Maps 639

28. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

29. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

30. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 33

31. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

Adaptively Simulation-Secure
Attribute-Hiding Predicate Encryption

Pratish Datta1(B), Tatsuaki Okamoto1, and Katsuyuki Takashima2

1 NTT Secure Platform Laboratories,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

pratish.datta.yg@hco.ntt.co.jp, tatsuaki.okamoto@gmail.com
2 Mitsubishi Electric, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. This paper demonstrates how to achieve simulation-based
strong attribute hiding against adaptive adversaries for predicate encryp-
tion (PE) schemes supporting expressive predicate families under stan-
dard computational assumptions in bilinear groups. Our main result is a
simulation-based adaptively strongly partially-hiding PE (PHPE) scheme
for predicates computing arithmetic branching programs (ABP) on public
attributes, followed by an inner-product predicate on private attributes.
This simultaneously generalizes attribute-based encryption (ABE) for
boolean formulas and ABP’s as well as strongly attribute-hiding PE
schemes for inner products. The proposed scheme is proven secure for any
a priori bounded number of ciphertexts and an unbounded (polynomial)
number of decryption keys, which is the best possible in the simulation-
based adaptive security framework. This directly implies that our con-
struction also achieves indistinguishability-based strongly partially-hiding
security against adversaries requesting an unbounded (polynomial) num-
ber of ciphertexts and decryption keys. The security of the proposed
scheme is derived under (asymmetric version of) the well-studied deci-
sional linear (DLIN) assumption. Our work resolves an open problem
posed by Wee in TCC 2017, where his result was limited to the semi-
adaptive setting. Moreover, our result advances the current state of the
art in both the fields of simulation-based and indistinguishability-based
strongly attribute-hiding PE schemes. Our main technical contribution
lies in extending the strong attribute hiding methodology of Okamoto
and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the frame-
work of simulation-based security and beyond inner products.

Keywords: Predicate encryption · Partially-hiding
Simulation-based adaptive security · Arithmetic branching programs
Inner products

1 Introduction

Functional encryption (FE) is a new vision of modern cryptography that aims to
overcome the potential limitation of the traditional encryption schemes, namely,
the all or nothing control over decryption capabilities. FE supports restricted
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 640–672, 2018.
https://doi.org/10.1007/978-3-030-03329-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_22&domain=pdf

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 641

decryption keys which enable decrypters to learn specific functions of encrypted
messages, and nothing else. More precisely, a (public-key) FE scheme for a func-
tion family F involves a setup authority which holds a master secret key and
publishes public system parameters. An encrypter uses the public parameters to
encrypt its message M belonging to some supported message space M, creating
a ciphertext ct. A decrypter may obtain a private decryption key sk(F) for
some function F ∈ F from the setup authority, provided the authority deems
that the decrypter is entitled for that key. Such a decryption key sk(F) can be
used to decrypt ct to recover F (M), but nothing more about M .

The most intuitive security requirement for an FE scheme is collusion resis-
tance, i.e., a group of decrypters cannot jointly retrieve any more information
about an encrypted message beyond the union of what each of them is allowed
to learn individually. This intuitive notion has been formalized by Boneh et al.
[12] and O’Neill [37] in two distinct frameworks, namely, (a) indistinguishability-
based security and (b) simulation-based security. The former stipulates that dis-
tinguishing encryptions of any two messages is infeasible for a group of colluders
which do not have a decryption key that decrypts the ciphertext to distinct val-
ues. The latter, on the other hand, stipulates the existence of a polynomial-time
simulator that given F1(M), . . . , Fqkey(M) for any message M ∈ M and functions
F1, . . . , Fqkey ∈ F , outputs the view of the colluders which are given an encryption
of M together with decryption keys for F1, . . . , Fqkey . Both of the above notions
can be further refined, depending on how the queries of the adversary to the
decryption key generation and encryption oracles depend on one another as well
as on the public parameters of the system, as adaptive vs semi-adaptive vs selec-
tive. Boneh et al. [12] and O’Neill [37] showed that in general, simulation-based
security provides a stronger guarantee than indistinguishability-based security,
i.e., simulation-based security of some kind, e.g., adaptive, semi-adaptive, or
selective, implies indistinguishability-based security of the same kind; but the
converse does not hold in general. In fact, Boneh et al. pointed out that
indistinguishability-based security is vacuous for certain circuit families, which
indicates that we should opt for simulation-based security whenever possible. On
the other hand, it is known that while security for single and multiple ciphertexts
are equivalent in the indistinguishability-based setting [12], this is not the case in
the simulation-based setting [3,9,12,16]. In particular, it has been demonstrated
by Boneh et al. [12] that in the adaptive or semi-adaptive simulation-based set-
ting, where the adversary is allowed to make decryption key queries even after
receiving the queried ciphertexts, achieving security for an unbounded number
of ciphertexts is impossible.

An important subclass of FE is predicate encryption (PE). In recent years,
with the rapid advancement of Internet communication and cloud technology,
there has been an emerging trend among individuals and organizations to out-
source potentially sensitive private data to external untrusted servers, and to
perform selective computations on the outsourced data by remotely querying
the server at some later point in time, or to share specific portions of the out-
sourced data to other parties of choice. PE is an indispensable tool for performing

642 P. Datta et al.

such operations on outsourced sensitive data without compromising the confi-
dentiality of the data.

Consider a predicate family R = {R(Y, ·) : X → {0, 1} | Y ∈ Y}, where
X and Y are two collections of indices or attributes. In a PE scheme for some
predicate family R, the associated message space M is of the form X × M,
where M contains the actual payloads. The functionality FRY

associated with
a predicate R(Y, ·) ∈ R is defined as FRY

(X,msg) = msg if R(Y,X) = 1, or
in other words, Y is authorized for X, and FRY

(X,msg) = ⊥ (a special empty
string) if R(Y,X) = 0, or in other words, Y is not authorized for X for all
(X,msg) ∈ M = X × M.

The standard security notion for FE described above, when adopted in the
context of PE, stipulates that recovering the payload from a ciphertext gener-
ated with respect to some attribute X ∈ X should be infeasible for a group of
colluders none of which possesses a decryption key corresponding to an attribute
authorized for X, also referred to as an authorized decryption key; and more-
over, the ciphertext should conceal X from any group of colluders, even those
in possession of authorized decryption keys. In the context of PE, this security
notion is referred to as strongly attribute-hiding security. A weakening of the
above notion, called weakly attribute-hiding security requires that X should only
remain hidden to colluders in possession of unauthorized keys. An even weaker
notion, which only demands the payload to remain hidden to colluders with
unauthorized keys, is known as payload-hiding security, and a payload-hiding
PE scheme is often referred to as an attribute-based encryption (ABE) scheme in
the literature.

Over the last decade, a long sequence of works have developed extremely
powerful techniques for realizing indistinguishability-based ABE and weakly
attribute-hiding PE schemes supporting more and more expressive predicate
families under well-studied computational assumptions in bilinear groups and
lattices, culminating into schemes that can now support general polynomial-size
circuits [7,11,14,19,20,22,26,30,31,33,34,41]. However, very little is known for
strongly attribute-hiding PE schemes, even in the indistinguishability-based set-
ting. The situation is even worse when security against an unbounded (poly-
nomial) number of authorized-key-possessing colluders under standard com-
putational assumption is considered. In fact, until very recently, the known
candidates were restricted to only inner products or even simpler predicates
[13,16,29,32,34,36], out of which the schemes designed in the more efficient
and secure prime order bilinear groups being only the works of Okamoto and
Takashima [32,34,36]. One big reason for this state of the art is that unlike
payload-hiding or weakly attribute-hiding, for proving strongly attribute-hiding
security, one must argue about an adversary that gets hold of authorized decryp-
tion keys, something cryptographers do not have a good understanding of so
far. Moreover, there are indeed reasons to believe that constructing strongly
attribute-hiding PE schemes for sufficiently expressive predicate classes such
as NC1 under standard computational assumptions could be very difficult. In
fact, it is known that a strongly attribute-hiding PE scheme for NC1 predicates,
even in the weakest selective setting, can lead all the way to indistinguishability

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 643

obfuscation (IO) for general circuits, the new holy grail of modern cryptogra-
phy [5,6,10]. In view of this state of affairs, it is natural to ask the following
important question:
Can we realize “the best of both worlds”, i.e., can we design PE scheme for
some sufficiently expressive predicate family (e.g., NC1) that is secure against
an unbounded (polynomial) number of colluders under standard computational
assumptions (without IO), such that the strongly attribute-hiding guarantee holds
for a limited segment (e.g., one belonging to some subclass of NC1) of each
predicate in the predicate family?

Towards answering this question, in TCC 2017, Wee [40] put forward a new
PE scheme for an NC1 predicate family in bilinear groups of prime order that is
secure against an unbounded (polynomial) number of colluders under the well-
studied k-linear (k-LIN) assumption, where the strongly attribute-hiding prop-
erty is achieved only for an inner product evaluating segment of each predicate
of the predicate class. More precisely, in his proposed PE system, the ciphertext
attribute set X is given by F

n′
q × F

n
q for some finite field Fq and n′, n ∈ N, while

the decryption key attribute set Y is given by the function family F (q,n′,n)
abp◦ip . Any

function f ∈ F (q,n′,n)
abp◦ip operates on a pair (�x, �z) ∈ F

n′
q × F

n
q by first computing

n arithmetic branching programs (ABP) f1, . . . , fn : F
n′
q → Fq on �x to obtain a

vector (f1(�x), . . . , fn(�x)) ∈ F
n
q , and then evaluating the inner product of the com-

puted vector and �z. The predicate family Rabp◦ip associated with the PE scheme is
defined as Rabp◦ip = {Rabp◦ip(f, (·, ·)) : F

n′
q × F

n
q → {0, 1} | f ∈ F (q,n′,n)

abp◦ip }, where

Rabp◦ip(f, (�x, �z)) = 1 if f(�x, �z) = 0, and 0 if f(�x, �z) �= 0 for any f ∈ F (q,n′,n)
abp◦ip

and (�x, �z) ∈ F
n′
q × F

n
q . The security property of Wee’s PE scheme guarantees

that other than hiding the payload, a ciphertext generated for some attribute
pair (�x, �z) ∈ F

n′
q × F

n
q also conceals the attribute �z (but not the attribute �x).

Moreover, the concealment of the attribute �z is strong, i.e., even against col-
luders possessing authorized keys. Wee termed this security notion as strongly
partially-hiding security, while the attributes �x ∈ F

n′
q and �z ∈ F

n
q as the public

and private attributes respectively.
This PE scheme simultaneously generalizes ABE for boolean formulas and

ABP’s, as well as strongly attribute-hiding inner-product PE (IPE). For instance,
unlike standard IPE schemes, where an inner-product predicate is evaluated
between the (private) attribute vector �z associated with a ciphertext and the
attribute vector �y hardwired within a decryption key, this PE scheme evaluates
inner-product predicate between �z and �y obtained as the result of complicated
ABP computations on a public attribute string �x, which is now associated in
addition to the private attribute vector �z with the ciphertext. This in turn
means that this PE scheme can be deployed in richer variants of the applica-
tions captured by IPE schemes. For example, it is well-known that inner-product
predicates can be used to evaluate conjunctive comparison predicates of the
form Rcomp((c1, . . . , cn), (z1, . . . , zn)) =

∧
j∈[n][zj ≥ cj], where cj ’s and zj ’s lie

in polynomial-size domains [13]. In case of standard IPE schemes, c1, . . . , cn are
fixed constants which are specified within the decryption key. On the contrary,

644 P. Datta et al.

in case of a PE scheme for Rabp◦ip, we can carry out more complex computation,
where instead of being fixed constants, c1, . . . , cn can be derived as the outputs of
ABP evaluations on public ciphertext attributes. Of course, fixed c1, . . . , cn is a
special case of this more expressive computation, since one can have ABP’s that
ignore the public ciphertext attributes, and simply output hardwired constants.
Similarly, standard IPE schemes can be employed for evaluating polynomials with
constant coefficients, where the coefficients are specified within the decryption
keys [29]. In contrast, in case of a PE scheme for Rabp◦ip, the polynomial coef-
ficients can be generated as outputs of ABP computations on public ciphertext
attributes.

Partially-hiding PE (PHPE) schemes for similar type of predicate families
were considered in [2,19] in the lattice setting, and those PHPE schemes are
in fact capable of evaluating general polynomial-size circuits, as opposed to
ABP’s in Wee’s construction, over public ciphertext attributes prior to eval-
uating inner-product predicates over private ciphertext attributes. However,
those constructions are either only weakly partially-hiding, i.e., the security of
the private attributes of the ciphertexts are only guaranteed against unautho-
rized colluders [19], or strongly partially-hiding against a priori bounded num-
ber of authorized colluders [2]. In contrast, Wee’s PHPE scheme is strongly
partially-hiding against an unbounded (polynomial) number of authorized col-
luders. Another strong aspect of the PHPE construction of Wee is that its secu-
rity is proven in the (unbounded) simulation-based framework [3], while except
[16], all prior PE constructions with strongly attribute-hiding security against
an unbounded (polynomial) number of authorized colluders were proven in the
weaker indistinguishability-based framework.

However, the PHPE scheme proposed by Wee [40] only achieves semi-adaptive
security [15], i.e., against an adversary that is restricted to submit its ciphertext
queries immediately after viewing the public parameters, and can make decryp-
tion key queries only after that. While semi-adaptive security seems somewhat
stronger, it has recently been shown by Goyal et al. [21] that it is essentially
equivalent to the selective security, the weakest notion of security in which the
adversary is bound to declare its ciphertext queries even before the system is
setup. Their result also indicates that the gap between semi-adaptive and adap-
tive security, the strongest and most reasonable notion in which the adversary is
allowed to make ciphertext and decryption key queries at any point during the
security experiment, is in fact much wider than was previously thought. While
Ananth et al. [4] have demonstrated how to generically transform an FE scheme
that supports arbitrary polynomial-size circuits from selective security to one
that achieves adaptive security, their conversion does not work for ABE or PE
schemes which fall below this threshold in functionality. In view of this state of
affairs, it is interesting to explore whether it is possible to construct an efficient
adaptively simulation-secure strongly partially-hiding PE scheme for the predi-
cate family Rabp◦ip that is secure against an unbounded (polynomial) number of
colluders under well-studied computational assumption. Note that while several
impossibility results exist against the achievability of simulation-based security

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 645

in certain settings [3,9,12,16], those results do not overrule the existence of such
a construction, provided of course we bound the number of allowed ciphertext
queries by the adversary. In fact, Wee has posed the realization of such a PHPE
construction as an open problem in his paper [40].

Our Contributions. In this paper, we resolve the above open problem. Specifi-
cally, our main result is a PE scheme for the predicate family Rabp◦ip that achieves
simulation-based adaptively strongly partially hiding security against adversaries
making any a priori bounded number of ciphertext queries while requesting an
unbounded (polynomial) number of decryption keys both before and after the
ciphertext queries, which is the best one could hope for in the simulation-based
framework when the adversary is allowed to make decryption key queries even
after making the ciphertext queries [12]. From the relation between simulation-
based and indistinguishability-based security as well as that between single and
multiple ciphertext security in the indistinguishability-based setting as men-
tioned above, it is immediate that the proposed scheme is also adaptively strongly
partially-hiding in the indistinguishability-based framework against adversaries
making an unbounded number of queries to both the encryption and the decryp-
tion key generation oracles. Thus, our work advances the state of the art in both
the fields of simulation-based and indistinguishability-based strongly attribute-
hiding PE schemes. Our construction is built in asymmetric bilinear groups of
prime order. The security of our PHPE scheme is derived under the simultane-
ous external decisional linear (SXDLIN) assumption [1,38], which is a natural
extension of the well-studied decisional linear (DLIN) assumption in asymmet-
ric bilinear group setting, and as noted in [1], the two assumptions are in fact
equivalent in the generic bilinear group model. Nevertheless, our scheme can be
readily generalized to one that is secure under the k-LIN assumption.

Similar to [40], we only consider security against a single ciphertext query
for the construction presented in this paper to keep the exposition simple. How-
ever, we explain in Remark 3.1 how our techniques can be readily extended
to design a PHPE scheme that is secure for any a priori bounded number of
ciphertexts. Following [16], here we present our construction in the attribute-
only mode (i.e., without any actual payload). However, in the full version of this
paper we also provide a key-encapsulation mechanism (KEM) version (i.e., one
that uses a symmetric session key as the payload) of our scheme similar to [40].
For the attribute-only version, we design a simulator that runs in polynomial
time, and thus this version of our scheme is secure in the standard simulation-
based security framework. On the other hand, for the KEM version, similar to
Wee [40], our simulator needs to perform a brute force discrete log computation,
and thus requires super-polynomial (e.g., sub-exponential) computational power.
Nonetheless, this is still stronger than the indistinguishability-based framework
[3,40].

In terms of efficiency, our PHPE scheme is fairly practical. The length of
ciphertexts and decryption keys of our scheme grow linearly with the total length
of the associated attribute strings and the ABP-size of the associated functions

646 P. Datta et al.

respectively. This is the same as that of [40] except for a constant blow-up, which
is common in the literature for semi-adaptive vs adaptive security. Moreover,
asymmetric bilinear groups of prime order, which are used for implementing our
scheme, are now considered to be both faster and more secure in the crypto-
graphic community following the recent progress in analysing bilinear groups of
composite order [17,23] and symmetric bilinear groups instantiated with elliptic
curves of small characteristics [8,18,27,28].

As a byproduct of our main result, we also obtain the first simulation-based
adaptively strongly attribute-hiding IPE scheme in asymmetric bilinear groups
of prime order under the SXDLIN assumption. The only prior simulation-based
strongly attribute-hiding IPE scheme, also due to Wee [40], only achieves semi-
adaptive security.

On the technical side, our approach is completely different from that of Wee
[40]. More precisely, Wee’s technique consists of two steps, namely, first building
a private-key scheme, and then bootstrapping it to a public-key one by apply-
ing a private-key to public-key compiler similar to [14,41], built on Water’s
dual system encryption methodology [39]. In contrast, we directly construct
our scheme in the public-key setting by extending the technique of Okamoto
and Takashima [32,34,36], a more sophisticated methodology than the dual sys-
tem encryption originally developed for designing adaptively strongly attribute-
hiding IPE schemes in the indistinguishability-based setting, to the scenario of
simulation-based adaptively strongly attribute-hiding security for a much expres-
sive predicate class. Also, in order to incorporate the information of the session
keys within the ciphertexts in the KEM version of our scheme, which is presented
in the full version of this paper, we adopt an idea along the lines of the works
of Okamoto and Takashima [32,34,36], that deviates from that of Wee [40].
Thus, our work further demonstrates the power of the technique introduced by
Okamoto and Takashima [32,34,36] in achieving very strong security for highly
expressive predicate families. We also believe that our work will shed further
light on one of the longstanding questions of modern cryptography:
What is the most expressive function or predicate family for which it is possible
to construct FE or strongly attribute-hiding PE schemes with adaptive security
against adversaries making an unbounded (polynomial) number of decryption
key queries under standard computational assumptions?

Overview of Our Techniques. We now proceed to explain the key technical
ideas underlying our construction. For simplicity, here we will only deal with
the IPE scheme, which is a special case of our PHPE construction for Rabp◦ip.
The proposed PHPE scheme for Rabp◦ip is obtained via a more sophisticated
application of the techniques described in this section, and is formally presented
in full details in the sequel.

In this overview, we will consider IPE in the attribute-only mode. For IPE,
the ciphertext attribute set X = F

n
q , the decryption key attribute set Y = F

n
q

for some finite field Fq and n ∈ N, and the predicate family is given by Rip =
{Rip(�y, ·) : F

n
q → {0, 1} | �y ∈ F

n
q }, where Rip(�y, �z) = 1 if �z · �y = 0, and 0, if

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 647

�z · �y �= 0 for any �z, �y ∈ F
n
q . Observe that the predicate family Rip is subclass

of the predicate family Rabp◦ip, where we set n′ = 0, and the component ABP’s
f1, . . . , fn of a function f ∈ F (q,n′,n)

abp◦ip to simply output hardwired constants. In
the attribute-only mode, a ciphertext is associated with only a vector �z ∈ F

n
q

but no payload, and decryption with a key for some vector �y ∈ F
n
q only reveals

the predicate, i.e., whether �z · �y = 0 or not, but not the exact value of �z · �y.
Just like [32,34,36], we make use of the machinery of the dual pairing vector

spaces (DPVS) [33,35]. A highly powerful feature of DPVS is that one can com-
pletely or partially hide a linear subspace of the whole vector space by concealing
the basis of that subspace or the basis of its dual from the public parameters
respectively. In DPVS-based constructions, a pair of mutually dual vector spaces
V1 and V2, along with a bilinear pairing e : V1 × V2 → GT constructed from a
standard bilinear group (q, G1, G2, GT , g1, g2, e) of prime order q is used. Typi-
cally a pair of dual orthonormal bases (B, B∗) of the vector spaces (V1, V2) are
generated during setup, using random linear transformations, and a portion of
B, say B̂, is used as the public parameters. Thus, the corresponding segment of
B

∗, say B̂
∗ remains partially hidden (its dual subspace is disclosed), while the

part B\B̂ of the basis B and the corresponding portion B
∗\B̂

∗ of the basis B
∗

remain completely hidden to an adversary that is given the public parameters,
ciphertexts, and decryption keys. This provides a strong framework for vari-
ous kinds of information-theoretic tricks in the public-key setting by exploiting
various nice properties of linear transformations.

In the proposed IPE scheme, we consider a (4n+1)-dimensional DPVS. During
setup, we generate a random pair of dual orthonormal bases (B, B∗), and use
as the public parameters the subset B̂ consisting of the first n and the last
n + 1 vectors of the basis B, while as the master secret key the corresponding
portion of the dual basis B

∗. Thus, the linear subspaces spanned by the remaining
2n vectors of the bases B and B

∗ are kept completely hidden. Intuitively, we
will use the first n-dimensional subspaces of these 2n-dimensional subspaces
for simulating the post-ciphertext decryption key queries, while the latter n-
dimensional subspaces for simulating the pre-ciphertext decryption key queries
in the ideal experiment. A ciphertext for some vector �z ∈ F

n
q in the proposed

scheme has the form ct = c such that

c = (ω�z,�0n,�0n,�0n, ϕ)B,

where ω, ϕ
U←− Fq, and (�v)W represents the linear combination of the elements

of W with the entries of �v as coefficients for any �v ∈ F
n
q and any basis W of

DPVS. Similarly, a decryption key corresponding to some vector �y ∈ F
n
q is given

by sk(�y) = (�y,k) such that

k = (ζ�y,�0n,�0n, �κ, 0)B∗ ,

where ζ
U←− Fq and �κ

U←− F
n
q . Decryption computes e(c,k) to obtain g

ωζ(�z·�y)
T ∈

GT , which equals to the identity element of the group GT if �z · �y = 0, and a uni-
formly random element of GT if �z · �y �= 0. Observe that this IPE construction is

648 P. Datta et al.

essentially the same as that presented by Okamoto and Takashima in [32]. How-
ever, they only proved the strongly attribute-hiding security of this construction
in the indistinguishability-based framework, while we prove this construction to
be strongly attribute-hiding in the simulation-based framework, by extending
their techniques. Let us start with describing our simulation strategy.

In the semi-adaptive case, as considered in [40], the simulation strategy is
relatively simple. In fact, for designing an IPE in the semi-adaptive setting, only
a (3n+1)-dimensional DPVS with n-dimensional hidden subspace would suffice.
Note that in the semi-adaptive setting, the adversary is restricted to make the
ciphertext query immediately after seeing the public parameters, and there is
no pre-ciphertext decryption key query. So, in the semi-adaptive setting, when
the adversary makes a ciphertext query, the simulator has no constraint arising
from the pre-ciphertext queries of the adversary, and can simply simulate the
ciphertext as ct = c such that

c = (�0n, (�0n−1, τ),�0n, ϕ)B,

where τ, ϕ
U←− Fq, i.e., the simulator puts nothing in the subspace spanned by

the public segment of the basis B, and merely puts a random value in a one-
dimensional subspace spanned by the hidden segment of the basis. Later, when
the adversary queries a decryption key for some vector �y ∈ F

n
q , the simulator

gets �y along with the inner product relation of �y with �z, and the simulator can
simply hardwire this information in the corresponding hidden subspace of the
decryption key. More precisely, it can simply generate the decryption key as
sk(�y) = (�y,k) such that

k = (ζ�y, (�η, ν), �κ, 0)B∗ ,

where ζ
U←− Fq, �η

U←− F
n−1
q , �κ U←− F

n
q , and ν = 0 if �z ·�y = 0, and ν

U←− Fq if �z ·�y �= 0.
Observe that when the simulated ciphertext is decrypted using this simulated
decryption key, one obtains the identity element of GT , or a random element of
GT according as the inner product relation is satisfied or not, i.e., decryption
correctness clearly holds. At this point, please note that the simulator cannot put
anything in the subspace of the ciphertext corresponding to the public segment
of B, since it must put the actual attribute vectors in the corresponding dual
subspace of the decryption keys to ensure correct decryption with other honestly
generated ciphertexts.

In the adaptive setting, the situation is much more complex, and we need a
(4n+1)-dimensional DPVS with 2n-dimensional hidden subspace. Now, the sim-
ulator should also correctly simulate the pre-ciphertext decryption key queries
of the adversary. The difference between the pre-ciphertext and post-ciphertext
decryption key queries is that unlike the post-ciphertext ones, the information
about whether the inner product relation between the associated attribute vector
and the attribute vector �z corresponding to the ciphertext query of the adversary
is not supplied when the decryption key is queried. In fact, �z is not even declared
at that time. On the contrary, the information about predicate satisfaction for

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 649

all the pre-ciphertext decryption key vectors become available to the simulator
when the ciphertext query is made by the adversary. The main hurdle for the
simulator is to compactly embed this huge amount of information (note that we
are considering an unbounded number of pre-ciphertext decryption key queries)
in the simulated ciphertext, so that when the simulated ciphertext is decrypted
using any pre-ciphertext decryption key, one should get the proper information
about predicate satisfaction.

Towards overcoming this difficulty, we observe that it has already been
demonstrated by O’Neill [37] that the inner-product predicate family is pre-
image samplable, i.e., given a set of vectors and their inner-product relation
with another fixed vector (but not the vector itself), one can efficiently sample
a vector that satisfies all those inner-product relations with high probability.
To simulate the ciphertext queried by the adversary, our simulator does exactly
this, i.e., it samples a vector �s ∈ F

n
q that has the same inner-product relations

as the original queried ciphertext attribute vector �z with all the attribute vec-
tors corresponding to the pre-ciphertext decryption key queries of the adversary.
However, �s may not have the same inner-product relation as �z with the attribute
vectors corresponding to the post-ciphertext decryption key queries. Therefore,
it cannot be embedded in the hidden subspace of the ciphertext devoted for han-
dling the post-ciphertext decryption key queries. Therefore, the simulator needs
another n-dimensional subspace to embed �s. Thus, the simulator simulates the
queried ciphertext as ct = c such that

c = (�0n, (�0n−1, τ), θ�s,�0n, ϕ)B,

where θ
U←− Fq. On the other hand, it simulates a decryption key corresponding

to some vector �y ∈ F
n
q as sk(�y) = (�y,k) such that

k =
{

(ζ�y,�0n, ζ̂�y,�κ, 0)B∗ (pre-ciphertext),
(ζ�y, (�η, ν),�0n, �κ, 0)B∗ (post-ciphertext),

where ζ, ζ̂
U←− Fq.

Here, we would like to emphasize that while we make use of the pre-image
samplability property introduced by O’Neill [37] to design our simulator, our
result is not a mere special case of the result that O’Neill obtained using
that property. Specifically, O’Neill showed that indistinguishability-based and
simulation-based security notions are equivalent in case of FE schemes for func-
tion families which are pre-image samplable, provided the adversary is con-
strained from making any decryption key query after making a ciphertext query.
His result does not apply if the adversary is allowed to make decryption key
queries even after making ciphertext queries, as is the case in this paper. More-
over, note that there is no known PE scheme for the predicate family Rabp◦ip,
the actual focus of this paper, even with indistinguishability-based strongly
partially-hiding security against adversaries that are allowed to make decryp-
tion key queries prior to making ciphertext queries.

Let us continue with the technical overview. It remains to argue that the
above simulated forms of ciphertexts and decryption keys are indistinguishable

650 P. Datta et al.

from their real forms. In order to accomplish these changes, we design elabo-
rate hybrid transitions over different forms of ciphertext and decryption keys. In
fact, the 2n-dimensional hidden subspace not only allows us to simulate the pre-
ciphertext and post-ciphertext queries differently, but are also crucially leveraged
to realize the various forms of ciphertext and decryption keys throughout our
hybrid transitions. The hybrid transitions are alternatively computational and
information-theoretic. Also, note that not only our simulation strategy for pre-
ciphertext and post-ciphertext decryption key queries are different, rather in our
hybrid transitions, we handle the pre-ciphertext and post-ciphertext decryption
key queries differently, and thereby achieve a security loss that is only propor-
tional to the number of pre-ciphertext decryption key queries.

We start by changing the pre-ciphertext decryption keys to their simulated
form. For making these changes, we use the first n-dimensional subspace of
the 2n-dimensional hidden subspace as the working space, where we generate
the simulated components, and the next n-dimensional subspace as the storing
space, where we transfer and store the simulated components once they are gen-
erated. Note that in the simulated pre-ciphertext decryption keys, the additional
simulated components are placed in the second n-dimensions subspace of the 2n-
dimensional hidden subspace. For the hybrid transitions of this part, we make
use of the first two of the three types of information-theoretic tricks, namely,
Type I, Type II, and Type III introduced in [32,34,36], in conjunction with the
three types of computational tricks based on the SXDLIN assumption also used
in those works. The Type I trick is to apply a linear transformation inside a
hidden subspace on the ciphertext side, while the more complex Type II trick
is to apply a linear transformation inside a hidden subspace on the ciphertext
side preserving the predicate relation with the entries in the corresponding dual
subspace of a specific decryption key.

After the transformation of the pre-ciphertext queries is completed, we turn
our attention to vanish the component of the ciphertext in the subspace spanned
by the public portion of the basis B. For doing this, we apply one of the three
computational tricks followed by a Type III information-theoretic trick, which
amounts to applying a linear transformation across a hidden and a partially
public subspace on both the ciphertext and decryption key sides. While, this
enables us to achieve our target for the ciphertext, the forms of the pre-ciphertext
decryption keys get distorted. To bring the pre-ciphertext decryption keys to
their correct simulated form, we then apply an extension of one of the compu-
tational tricks mentioned above.

Once the component in the public subspace of the ciphertext is vanished
and pre-ciphertext decryption keys are brought back to their correct simulated
form, we turn our attention to the post-cipertext decryption keys. Note that
the Type III trick applied for the ciphertext, has already altered the forms of the
post-ciphertext queries to something else. Starting with these modified forms, we
apply a more carefully crafted variant of the Type II information-theoretic trick,
followed by another computational trick based on the SXDLIN assumption to
alter the post-ciphertext decryption keys to their simulated forms. This step is

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 651

reminiscent of the one-dimensional localization of the inner-product values used
in [36]. This step also alters the ciphertext to its simulated form. At this point
we arrive at the simulated experiment, and our security analysis gets complete.

2 Preliminaries

In this section we present the backgrounds required for the rest of this paper.

2.1 Notations

Let λ ∈ N denotes the security parameter and 1λ be its unary encoding. Let Fq

for any prime q ∈ N, denotes the finite field of integers modulo q. For d ∈ N

and c ∈ N ∪ {0} (with c < d), we let [d] = {1, . . . , d} and [c, d] = {c, . . . , d}. For
any set Z, z

U←− Z represents the process of uniformly sampling an element z
from the set Z, and �Z signifies the size or cardinality of Z. For a probabilistic
algorithm U , we denote by Π = U(Θ;Φ) the output of U on input Θ with
the content of the random tape being Φ, while by Π

R←− U(Θ) the process of
sampling Π from the output distribution of U with a uniform random tape on
input Θ. Similarly, for any deterministic algorithm V, we write Π = V(Θ) to
denote the output of V on input Θ. We use the abbreviation PPT to mean
probabilistic polynomial-time. We assume that all the algorithms are given the
unary representation 1λ of the security parameter λ as input and will not write
1λ explicitly as input of the algorithms when it is clear from the context. For any
finite field Fq and d ∈ N, let �v denotes the (row) vector (v1, . . . , vd) ∈ F

d
q , where

vi ∈ Fq for all i ∈ [d]. The all zero vectors in F
d
q will be denoted by �0d. For any two

vectors �v, �w ∈ F
d
q , �v · �w stands for the inner product of the vectors �v and �w, i.e.,

�v · �w =
∑

i∈[d]

viwi ∈ Fq. For any multiplicative cyclic group G of order q and any

generator g ∈ G, let v represents a d-dimensional (row) vector of group elements,
i.e., v = (gv1 , . . . , gvd) ∈ G

d for some d ∈ N, where �v = (v1, . . . , vd) ∈ F
d
q . We use

M = (mi,k) to represent a matrix with entries mi,k ∈ Fq. By Mᵀ we will signify
the transpose of the matrix M . The determinant of a matrix M is denoted by
det(M). Let GL(d, Fq) denotes the set of all d × d invertible matrices over Fq.
A function negl : N → R

+ is said to be negligible if for every c ∈ N, there exists
T ∈ N such that for all λ ∈ N with λ > T , |negl(λ)| < 1/λc.

2.2 Arithmetic Branching Programs

A branching program (BP) Γ is defined by a 5-tuple Γ = (V,E, v0, v1, φ), where
(V,E) is a directed acyclic graph, v0, v1 ∈ V are two special vertices called the
source and the sink respectively, and φ is a labeling function for the edges in
E. An arithmetic branching program (ABP) Γ over a finite field Fq computes
a function f : F

d
q → Fq for some d ∈ N. In this case, the labeling function φ

assigns to each edge in E either a degree one polynomial function in one of the

652 P. Datta et al.

input variables with coefficients in Fq or a constant in Fq. Let ℘ be the set of
all v0-v1 paths in Γ . The output of the function f computed by the ABP Γ on

some input �w = (w1, . . . , wd) ∈ F
d
q is defined as f(�w) =

∑

P∈℘

[
∏

e∈P

φ(e)|�w

]

, where

for any e ∈ E, φ(e)|�w represents the evaluation of the function φ(e) at �w. We
refer to �V + �E as the size of the ABP Γ . Ishai and Kushilevitz [24,25] showed
how to relate the computation performed by an ABP to the computation of the
determinant of a matrix.

Lemma 2.1 ([24]): Given an ABP Γ = (V,E, v0, v1, φ) computing a function
f : F

d
q → Fq, we can efficiently and deterministically compute a function L

mapping an input �w ∈ F
d
q to a (�V − 1) × (�V − 1) matrix L(�w) over Fq such

that the following holds:

– det(L(�w)) = f(�w).
– Each entry of L(�w) is either a degree one polynomial in a single input variable

wi (i ∈ [d]) with coefficients in Fq or a constant in Fq.
– L(�w) contains only −1’s in the second diagonal, i.e., the diagonal just below

the main diagonal, and 0’s below the second diagonal.

Specifically, L is obtained by removing the column corresponding to v0 and the
row corresponding to v1 in the matrix AΓ −I, where AΓ is the adjacency matrix
for Γ and I is the identity matrix.

Note that there is a linear-time algorithm that converts any Boolean formula,
Boolean branching program, or arithmetic formula to an ABP with a constant
blow-up in the representation size. Thus, ABP’s can be viewed as a stronger
computational model than all the others mentioned above.

2.3 The Function Family F(q,n ′,n)
ABP◦IP and the Algorithm PGB

Here, we formally describe the function family F (q,n′,n)
abp◦ip which our PHPE scheme

supports, and an algorithm PGB for this function class that will be used as a
sub-routine in our PHPE construction. Parts of this section is taken verbatim
from [26,40].

� The Function Family F(q,n ′,n)
ABP◦IP

The function class F (q,n′,n)
abp◦ip , parameterized by a prime q and n′, n ∈ N, contains

functions of the form f : F
n′
q × F

n
q → Fq defined by f(�x, �z) =

∑

j∈[n]

fj(�x)zj for all

�x = (x1, . . . , xn′) ∈ F
n′
q and �z = (z1, . . . , zn) ∈ F

n
q , where f1, . . . , fn : F

n′
q → Fq

are functions computed by some ABP’s Γ1, . . . , Γn respectively. We will view the
input �x = (x1, . . . , xn′) as the public attribute string, while �z = (z1, . . . , zn) as
the private attribute string. Please refer to [40] for some illustrative examples.
A simple but crucial property of the function f is that for any ζ ∈ Fq and any
(�x, �z) ∈ F

n′
q × F

n
q , we have f(�x, ζ�z) = ζf(�x, �z).

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 653

Observe that the function f can itself be realized by an ABP Γ constructed
as follows: First, marge the source vertices of all the component ABP’s {Γj}j∈[n]

together to form a single vertex, and designate it as the source vertex of the
ABP Γ . Next, generate a new sink vertex for Γ , and for each j ∈ [n], connect
the sink vertex of the component ABP Γj to that newly formed sink vertex with
a directed edge labeled with zj . For ease of notations, we will denote the size of
the ABP Γ computing the function f as m + n + 1, where 1 corresponds to the
sink vertex of Γ , n accounts for the number of edges directed to that sink vertex,
and m accounts for the number of other vertices and edges in Γ . Also, note that
the ABP Γ can be further modified to another ABP Γ ′ in which each vertex has
at most one outgoing edge having a label of degree one, by replacing each edge e
in Γ with a pair of edges labeled 1 and φ(e) respectively, where φ is the labeling
function of the ABP Γ . It is clear that the number of vertices in this modified
ABP Γ ′ is m+n+ 1, since Γ ′ is obtained by adding a fresh vertex for each edge
in Γ as a result of replacing each edge in Γ with a pair of edges. Throughout
this paper, whenever we will talk about the ABP computing the function f , we
will refer to the ABP Γ ′ just described, unless otherwise specified.

� The Algorithm PGB

� Syntax and Properties:

PGB(f ;�r): PGB is a PPT algorithm takes as input a function f ∈ F (q,n′,n)
abp◦ip , uses

randomness �r ∈ F
m+n−1
q , and outputs a collection of constants ({σj}j∈[n],

{αj′ , γj′}j′∈[m]) ∈ F
n
q × (F2

q)
m along with a function ρ : [m] → [n′]. Together

with some �x ∈ F
n′
q and �z ∈ F

n
q , this specifies a collection of n + m shares

({zj + σj}j∈[n], {αj′xρ(j′) + γj′}j′∈[m]). (2.1)

Here, m + n + 1 is the number of vertices in the ABP computing f and ρ is
deterministically derived from f .

The algorithm PGB satisfies the following properties:

• Linearity: For a fixed f ∈ F (q,n′,n)
abp◦ip , PGB(f ; ·) computes a linear function of

its randomness over Fq.
• Reconstruction: There exists a deterministic polynomial-time algorithm
REC that on input any f ∈ F (q,n′,n)

abp◦ip and any �x ∈ F
n′
q , outputs a collec-

tion of coefficients ({Ωj}j∈[n], {Ω′
j′}j′∈[m]) ∈ F

n
q × F

n′
q . These coefficients can

be used in combination with any set of shares of the form as in Eq. (2.1),
computed by combining the output of PGB(f) with �x and any �z ∈ F

n
q , to

recover f(�x, �z). Moreover, the recovery procedure is linear in the shares used.
• Privacy: There exists a PPT simulator SIM such that for all f ∈ F (q,n′,n)

abp◦ip , �x ∈
F

n′
q , �z ∈ F

n
q , the output of SIM on input f , �x, and f(�x, �z) is identically dis-

tributed to the shares obtained by combining the output of PGB(f ;�r) for
uniformly random �r, with �x and �z as in Eq. (2.1).

654 P. Datta et al.

� Instantiation of the Algorithm: We now sketch an instantiation of the
algorithm PGB following [26,40]. This instantiation will be utilized in our PHPE
construction.

PGB(f): The algorithm takes as input a function f ∈ F (q,n′,n)
abp◦ip , and proceeds as

follows:
1. Let Γ ′ denotes the ABP computing f as described above. Recall that in

the ABP Γ ′, there are m + n + 1 vertices, the variables zj ’s only appear
on edges leading into the sink vertex, and any vertex has at most one
outgoing edge with a label of degree one. It first computes the matrix
representation L ∈ F

(m+n)×(m+n)
q of the ABP Γ ′ using the efficient algo-

rithm of Lemma 2.1. Then as per Lemma 2.1, the matrix L satisfies the
following properties:

– det(L(�x, �z)) = f(�x, �z) for all (�x, �z) ∈ F
n′
q × F

n
q .

– For j′ ∈ [m], each entry in the j′th row of L is either a degree one
polynomial function in one (and the same) input variable xι′ (ι′ ∈
[n′]), with coefficients in Fq or a constant in Fq.

– L contains only −1’s in the second diagonal, and 0’s below the second
diagonal.

– The last column of L is (0, . . . , 0, z1, . . . , zn)ᵀ.
– L has 0’s everywhere else in the last n rows.

It defines the function ρ : [m] → [n′] as ρ(j′) = ι′ if the entries of the j′th

row of L involves the variable xι′ for j′ ∈ [m].
2. Next, it chooses �r

U←− F
m+n−1
q , and computes

L

(
�rᵀ

1

)

= (α1xρ(1) + γ1, . . . , αmxρ(m) + γm, z1 + σ1, . . . , zn + σn)ᵀ.

3. It outputs
(
({σj}j∈[n], {αj′ , γj′}j′∈[m]), ρ : [m] → [n′]

)
.

It is straightforward to verify that each of {σj}j∈[n], {αj′ , γj′}j′∈[m] are indeed
linear functions of the randomness �r.

REC(f, �x): This algorithm takes as input a function f ∈ F (q,n′,n)
abp◦ip and a vector

�x ∈ F
n′
q . It proceeds as follows:

1. It first executes Step 1 of the algorithm PGB described above to generate
the matrix representation L of f .

2. Next, it computes the cofactors of each entry in the last column of L.
Let ({Ω′

j′}j′∈[m], {Ωj}j∈[n]) ∈ F
m+n
q be the collection of all the cofactors

in the order of the entries. Note that the first m + n − 1 columns of
L involve only the variables {xι′}ι′∈[n′]. Hence, it can compute all the
cofactors using the input �x.

3. It outputs ({Ωj}j∈[n], {Ω′
j′}j′∈[m]).

The output of REC(f, �x) can be used in conjunction with a collection of shares
({zj + σj}j∈[n], {αj′xρ(j′) + γj′}j′∈[m]) for any �z ∈ F

n
q , to compute f(�x, �z) as

f(�x, �z) =
∑

j′∈[m]

Ω′
j′(αj′xρ(j′) + γj′) +

∑

j∈[n]

Ωj(zj + σj). (2.2)

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 655

Observe that the RHS of Eq. (2.2) corresponds to computing det(L′(�x, �z)),
where the matrix L′ is obtained by replacing the last column of the matrix
L with the column (α1xρ(1) + γ1, . . . , αmxρ(m) + γm, z1 + σ1, . . . , zn + σn)ᵀ,
where L is the matrix representation of the ABP Γ ′ computing the function
f ∈ F (q,n′,n)

abp◦ip , obtained by applying the algorithm of Lemma 2.1. Hence, the
correctness of Eq. (2.2) follows from the fact that

det(L′(�x, �z)) = det(L(�x, �z))

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 r1
. . .

...
1 rm+n−1

1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= det(L(�x, �z)) · 1 = f(�x, �z).

Here, �r = (r1, . . . , rm+n−1) ∈ F
m+n−1
q is the randomness used by PGB while

generating the constants ({σj}j∈[n], {αj′ , γj′}j′∈[m]). In fact, an augmented
version of Eq. (2.2) also holds. More precisely, for any Υ, Υ̃ ∈ Fq, we have

Υf(�x, �z) =
∑

j′∈[m]

Ω′
j′ Υ̃ (αj′xρ(j′) + γj′) +

∑

j∈[n]

Ωj(Υzj + Υ̃ σj). (2.3)

This follows by observing that

det(L(�x, �z)) =
∑

j∈[n]

Ωjzj , (since the first m entries in the last column is 0)

and hence, the RHS of Eq. (2.3) can be written as

Υ̃
[∑

j′∈[m]

Ω′
j′(αj′xρ(j′) + γj′) +

∑

j∈[n]

Ωj(zj + σj)
]

+ (Υ − Υ̃)
∑

j∈[n]

Ωjzj

= Υ̃ det(L′(�x, �z)) + (Υ − Υ̃) det(L(�x, �z)) = Υ det(L(�x, �z)),

as det(L′(�x, �z)) = det(L(�x, �z)). This fact will be used to justify the correctness
of our PHPE construction.

SIM(f, �x, ε): The simulator takes as input a function f ∈ F (q,n′,n)
abp◦ip , a vector

�x ∈ F
n′
q , and a value ε ∈ Fq. It proceeds as follows:

1. At first, it executes Step 1 of the algorithm PGB described above to obtain
the matrix representation L of f together with the function ρ : [m] → [n′].

2. Next, it constructs a matrix L̂ from the matrix L by replacing its last
column with (ε, 0, . . . , 0)ᵀ.

3. Next, it samples �r
U←− F

m+n−1
q , and computes

L̂

(
�rᵀ

1

)

= (μ1, . . . , μm, ν1, . . . , νn)ᵀ.

4. It outputs
(
({νj}j∈[n], {μj′}j′∈[m]), ρ : [m] → [n′]

)
.

656 P. Datta et al.

It readily follows from Theorem 3, Corollary 1 of [26] that for all f ∈ F (q,n′,n)
abp◦ip ,

�x ∈ F
n′
q , and �z ∈ F

n
q , the output of SIM(f, �x, f(�x, �z)) is identically distributed

to the shares obtained by combining with (�x, �z) the output of PGB(f) with
uniform randomness, thereby establishing the privacy property of the algo-
rithm PGB described above. We omit the details here. Clearly the determi-
nant value of the matrix L̂(�x, �z) generated by SIM on input any f ∈ F (q,n′,n)

abp◦ip ,
�x ∈ F

n′
q , and f(�x, �z) for any �z ∈ F

n
q is f(�x, �z).

2.4 Bilinear Groups and Dual Pairing Vector Spaces

In this section, we will provide the necessary backgrounds on bilinear groups and
dual pairing vector spaces, which are the primary building blocks of our PHPE
construction.

Definition 2.1 (Bilinear Group): A bilinear group params
G

= (q, G1, G2,
GT , g1, g2, e) is a tuple of a prime integer q ∈ N; cyclic multiplicative groups
G1, G2, GT of order q each with polynomial-time computable group operations;
generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time computable non-degenerate
bilinear map e : G1 × G2 → GT , i.e., e satisfies the following two properties:

– Bilinearity : e(gδ
1, g

δ̂
2) = e(g1, g2)δδ̂ for all δ, δ̂ ∈ Fq.

– Non-degeneracy : e(g1, g2) �= 1GT
, where 1GT

denotes the identity element of
the group GT .

A bilinear group is said to be asymmetric if no efficiently computable isomor-
phism exists between G1 and G2. Let Gbpg be an algorithm that on input
the unary encoding 1λ of the security parameter λ, outputs a description
params

G
= (q, G1, G2, GT , g1, g2, e) of a bilinear group.

Definition 2.2 (Dual Pairing Vector Spaces: DPVS [33,35]): A dual pair-
ing vector space (DPVS) params

V
= (q, V1, V2, GT , A1, A2, e) formed by the

direct product of a bilinear group params
G

= (q, G1, G2, GT , g1, g2, e) is a tuple
of a prime integer q; d-dimensional vector spaces Vt = G

d
t over Fq for t ∈ [2]

under vector addition and scalar multiplication defined componentwise in the

usual manner; canonical bases At = {a(t,�) = (

�−1
︷ ︸︸ ︷
1Gt

, . . . , 1Gt
, gt,

d−�
︷ ︸︸ ︷
1Gt

, . . . , 1Gt
)}�∈[d]

of Vt for t ∈ [2], where 1Gt
is the identity element of the group Gt for t ∈ [2];

and a pairing e : V1 × V2 → GT defined by e(v,w) =
∏

�∈[d]

e(gv�
1 , gw�

2) ∈ GT for

all v = (gv1
1 , . . . , gvd

1) ∈ V1, w = (gw1
2 , . . . , gwd

2) ∈ V2. Observe that the newly
defined map e is also non-degenerate bilinear, i.e., e also satisfies the following
two properties:

– Bilinearity : e(δv, δ̂w) = e(v,w)δδ̂ for all δ, δ̂ ∈ Fq, v ∈ V1, and w ∈ V2.

– Non-degeneracy : If e(v,w) = 1GT
for all w ∈ V2, then v = (

d
︷ ︸︸ ︷
1G1 , . . . , 1G1).

Similar statement also holds with the vectors v and w interchanged.

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 657

For any ordered basis W = {w(1), . . . ,w(d)} of Vt for t ∈ [2], and any vector
�v ∈ F

d
q , let (�v)W represents the vector in Vt formed by the linear combination

of the members of W with the components of �v as the coefficients, i.e., (�v)W =∑

�∈[d]

v�w
(�) ∈ Vt. The DPVS generation algorithm Gdpvs takes as input the unary

encoded security parameter 1λ, a dimension value d ∈ N, along with a bilinear
group params

G
= (q, G1, G2, GT , g1, g2, e)

R←− Gbpg(), and outputs a description
params

V
= (q, V1, V2, GT , A1, A2, e) of DPVS with d-dimensional V1 and V2.

We now describe random dual orthonormal basis generator Gob [33,35] in Fig. 1.
This algorithm will be utilized as a sub-routine in our PHPE construction.

Fig. 1. Dual orthonormal basis generator Gob

2.5 Complexity Assumption

For realizing our PHPE construction in asymmetric bilinear groups, we rely on
the natural extension of the well-studied decisional linear (DLIN) assumption
to the asymmetric bilinear group setting, called the external decisional linear
(XDLIN) assumption.

658 P. Datta et al.

Assumption (External Decisional Linear: XDLIN [1,38]): For t ∈ [2], the
XDLINt problem is to guess the bit β̂

U←− {0, 1} given �xdlint

̂β
= (params

G
, g

1 ,

gξ
1, g

κ
1 , gςξ

1 , g
2 , gξ

2, g
κ
2 , gςξ

2 ,	t,̂β), where

params
G

= (q, G1, G2, GT , g1, g2, e)
R←− Gbpg();

�, ξ,κ, ς, ε
U←− Fq;

	t,0 = g
(κ+ς)
t ,	t,1 = g

(κ+ς)+ε
t .

The XDLINt assumption states that for any PPT algorithm E , for any security
parameter λ, the advantage of E in deciding the XDLINt problem, defined as

Advxdlint

E (λ) = |Pr[1 R←− E(�xdlint
0) − Pr[1 R←− E(�xdlint

1)]|,

is negligible in λ, i.e., Advxdlint

E (λ) ≤ negl(λ), where negl is some negligible func-
tion. The simultaneous XDLIN (SXDLIN) assumption states that both XDLIN1

and XDLIN2 assumptions hold at the same time. For any security parameter λ,
we denote the advantage of any probabilistic algorithm E against SXDLIN as
AdvsxdlinE (λ).

2.6 The Notion of Partially-Hiding Predicate Encryption

Here, we formally present the syntax and simulation-based security notion of
a partially-hiding predicate encryption (PHPE) scheme for the function family
F (q,n′,n)

abp◦ip for some prime q and n′, n ∈ N. Following [40], we define the ABP◦IP
predicate family Rabp◦ip as Rabp◦ip = {Rabp◦ip(f, (·, ·)) : F

n′
q × F

n
q → {0, 1} | f ∈

F (q,n′,n)
abp◦ip }, where Rabp◦ip(f, (�x, �z)) = 1 if f(�x, �z) = 0, and Rabp◦ip(f, (�x, �z)) = 0 if

f(�x, �z) �= 0 for all f ∈ F (q,n′,n)
abp◦ip and (�x, �z) ∈ F

n′
q × F

n
q .

� Syntax: An attribute-only/key-encapsulation mechanism (KEM) partially-
hiding predicate encryption (PHPE) scheme for the function family F (q,n′,n)

abp◦ip
consists of the following polynomial-time algorithms:

PHPE.Setup(1n′
, 1n): The setup algorithm takes as input the security parameter

λ along with the public and private attribute lengths n′ and n respectively
(all encoded in unary). It outputs the public parameters mpk and the master
secret key msk.

PHPE.Encrypt(mpk, (�x, �z)): The encryption algorithm takes as input the public
parameters mpk, a pair of public-private attribute strings (�x, �z) ∈ F

n′
q ×F

n
q . It

outputs a ciphertext ct. In the KEM mode, it additionally outputs a session
key kem.

PHPE.KeyGen(mpk,msk, f): On input the public parameters mpk, the master
secret key msk, along with a function f ∈ F (q,n′,n)

abp◦ip , the key generation algo-
rithm outputs a decryption key sk(f).

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 659

PHPE.Decrypt(mpk, (f, sk(f)), (�x,ct)): The decryption algorithm takes as input
the public parameters mpk, a pair of a function f ∈ F (q,n′,n)

abp◦ip and a decryp-
tion key sk(f) for f , along with a pair of a public attribute �x ∈ F

n′
q and

a ciphertext ct associated with �x and some private attribute string. In the
attribute-only mode, it outputs either 1 or 0, while in the KEM mode, it out-
puts a session key k̃em. For notational convenience, we will think of f and �x
as parts of sk(f) and ct respectively, and will not write them explicitly in
the argument of PHPE.Decrypt.

The algorithm PHPE.Decrypt is deterministic, while all the others are
probabilistic.

� Correctness: A PHPE scheme for the function family F (q,n′,n)
abp◦ip is said to be

correct if for any security parameter λ, any (�x, �z) ∈ F
n′
q × F

n
q , any f ∈ F (q,n′,n)

abp◦ip ,

any (mpk,msk) R←− PHPE.Setup(1n′
, 1n), and any sk(f) R←− PHPE.KeyGen(mpk,

msk, f), the following holds:

– (Authorized) If Rabp◦ip(f, (�x, �z)) = 1, then

Pr[PHPE.Decrypt(mpk, sk(f),ct) = 1 :

ct
R←− PHPE.Encrypt(mpk, (�x, �z))] ≥ 1 − negl(λ) (attribute-only mode),

Pr[PHPE.Decrypt(mpk, sk(f),ct) = kem :

(ct,kem) R←− PHPE.Encrypt(mpk, (�x, �z))] ≥ 1 − negl(λ) (KEM mode).

– (Unauthorized) If Rabp◦ip(f, (�x, �z)) = 0, then

Pr[PHPE.Decrypt(mpk, sk(f),ct) = 0 :

ct
R←− PHPE.Encrypt(mpk, (�x, �z))] ≥ 1 − negl(λ) (attribute-only mode),

Pr[PHPE.Decrypt(mpk, sk(f),ct) �= kem :

(ct,kem) R←− PHPE.Encrypt(mpk, (�x, �z))] ≥ 1 − negl(λ) (KEM mode).

Here, negl is some negligible function, and the probabilities are taken over the
random coins of PHPE.Encrypt.

� Simulation-Based Security: The simulation-based adaptively strongly
partially-hiding security notion for a PHPE scheme is formulated by considering
the following two experiments involving a stateful probabilistic adversary A and
a stateful probabilistic simulator S:

Expphpe,realA (λ):

1. (mpk,msk) R←− PHPE.Setup(1n′
, 1n).

2. {(�x(i), �z(i))}i∈[qct]
R←− APHPE.KeyGen(msk,·)(mpk).

3. (a) (attribute-only case) ct(i) R←− PHPE.Encrypt(mpk, (�x(i), �z(i))) for i ∈
[qct].

660 P. Datta et al.

(b) (KEM case) (ct(i),kem(i)) R←− PHPE.Encrypt(mpk, (�x(i), �z(i))) for i ∈
[qct].

4. (a) (attribute-only case) � R←− APHPE.KeyGen(msk,·)(mpk, {ct(i)}i∈[qct]).

(b) (KEM case) � R←− APHPE.KeyGen(msk,·)(mpk, {(ct(i),kem(i))}i∈[qct]).
5. Output �phpe,realA =

(
mpk, {(�x(i), �z(i))}i∈[qct],�

)
.

Expphpe,idealA,S (λ):

1. mpk
R←− S(1n′

, 1n).
2. {(�x(i), �z(i))}i∈[qct]

R←− AS(·)(mpk).

3. (a) (attribute-only case) {ct(i)}i∈[qct]
R←− S(qct, {(�x(i), Rabp◦ip(fh, (�x(i),

�z(i))))}i∈[qct],h∈[qkey-pre]).

(b) (KEM case) {kem(i)}i∈[qct]
U←− K, where K = session key space

{ct(i)}i∈[qct]
R←− S(qct, {(�x(i),kem(i,h))}i∈[qct],h∈[qkey-pre]), where for all

i ∈ [qct], h ∈ [qkey-pre], kem
(i,h) = kem(i) if Rabp◦ip(fh, (�x(i), �z(i))) =

1, and ⊥ if Rabp◦ip(fh, (�x(i), �z(i))) = 0.

4. (a) (attribute-only case) � R←− ASORabp◦ip ({(�x(i),�z(i))}i∈[qct],·)(·)(mpk,
{ct(i)}i∈[qct]).

(b) (KEM case) � R←− ASORabp◦ip ({((�x(i),�z(i)),kem(i))}i∈[qct],·)(·)(mpk,
{(ct(i),kem(i))}i∈[qct]).

5. Output �phpe,idealA,S =
(
mpk, {(�x(i), �z(i))}i∈[qct],�

)
.

Here, the simulator S accepts as input a function f ∈ F (q,n′,n)
abp◦ip when it acts

as an oracle to A. Also, qct and qkey-pre respectively denotes the number of
ciphertext queries made by A and number of decryption key queries made
by A prior to submitting the ciphertext queries. Further, in the attribute-
only case, the oracle ORabp◦ip receives as its second argument a function
f ∈ F (q,n′,n)

abp◦ip , and outputs {Rabp◦ip(f, (�x(i), �z(i)))}i∈[qct]. On the other hand,
in the KEM case, the oracle ORabp◦ip takes as its second argument a func-
tion f ∈ F (q,n′,n)

abp◦ip , and outputs kem(i) if Rabp◦ip(f, (�x(i), �z(i))) = 1, and ⊥ if
Rabp◦ip(f, (�x(i), �z(i))) = 0 for i ∈ [qct]. A simulator S is said to be admissible
if on each decryption key query f ∈ F (q,n′,n)

abp◦ip of A in the post-ciphertext
query phase, S makes just a single query to the oracle ORabp◦ip on f itself. Let
the number of decryption key queries made by A after receiving the queried
ciphertexts be qkey-post.

For any security parameter λ, for any probabilistic distinguisher D, the advan-
tage of D in distinguishing the above two experiments is defined as

Advphpe,sim-ahD (λ) = |Pr[1 R←− D(�phpe,realA)] − Pr[1 R←− D(�phpe,idealA,S)]|.

Definition 2.3: A PHPE scheme is called (qkey-pre, qct, qkey-post)-simulation-
based adaptively strongly partially hiding if there exists an admissible stateful
PPT simulator S such that for any stateful PPT adversary A making at most

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 661

qct ciphertext queries, qkey-pre decryption key queries in the pre-ciphertext query
phase, while qkey-post decryption key queries in the post-ciphertext query phase,
any PPT distinguisher D, and any security parameter λ, Advphpe,sim-ahD (λ) ≤
negl(λ), where negl is some negligible function. Further, a PHPE scheme is said
to be (poly, qct, poly)-simulation-based adaptively strongly partially hiding if it
is (qkey-pre, qct, qkey-post)-simulation-based adaptively strongly partially hiding
as well as qkey-pre and qkey-post are unbounded polynomials in the security
parameter λ.

Remark 2.1: Consider an adversary H that first invokes A and then invokes D
once the transcript (�phpe,realA or �phpe,idealA,S) of the experiment is obtained. Con-
sider the experiments Expphpe,realH (λ) and Expphpe,idealH,S (λ) which are obtained
from the experiments Expphpe,realA (λ) and Expphpe,idealA,S (λ) respectively by apply-
ing the corresponding augmentations. Let us define the outputs of the augmented
experiments as the output of H in those experiments, and the advantage of
H as

Advphpe,sim-ahH (λ) = |Pr[1 R←− Expphpe,realH (λ)] − Pr[1 R←− Expphpe,idealH,S (λ)]|.

Then, clearly Advphpe,sim-ahH (λ) = Advphpe,sim-ahD (λ). We make use of this combined
adversary H as well as the associated augmented experiments Expphpe,realH (λ)
and Expphpe,idealH,S (λ) in the security proof of our PHPE construction, both the
attribute-only and KEM versions.

3 The Proposed PHPE Scheme

3.1 Construction

In this section, we will present our PHPE scheme for the function family F (q,n′,n)
abp◦ip .

This construction is presented in the attribute-only mode, i.e., without any
actual payload. A key-encapsulation mechanism (KEM) version of this construc-
tion is presented in the full version of this paper. In the proposed scheme, we
assume that the function ρ outputted by PGB(f) for any f ∈ F (q,n′,n)

abp◦ip is injec-
tive. This restriction can be readily overcome using standard techniques along
the lines of [30,34].

PHPE.Setup(1n′
, 1n): The setup algorithm takes as input the security parameter

λ together with the lengths n′ and n of the public and private attribute strings
respectively. It proceeds as follows:

1. It first generates (params, {Bı, B
∗
ı }ı∈[n′+n])

R←− Gob(n′ + n, (0,

n′+n
︷ ︸︸ ︷
9, . . . , 9)).

2. For ı ∈ [n′ + n], it sets B̂ı = {b(ı,1), b(ı,2), b(ı,9)}, B̂∗
ı =

{b∗(ı,1), b∗(ı,2), b∗(ı,7), b∗(ı,8)}.
3. It outputs the public parameters mpk = (params, {B̂ı}ı∈[n′+n]) and the

master secret key msk = {B̂
∗
ı }ı∈[n′+n].

662 P. Datta et al.

PHPE.Encrypt(mpk, (�x, �z)): The encryption algorithm takes as input the public
parameters mpk and a pair of public-private attribute strings (�x, �z) ∈ F

n′
q ×

F
n
q . It executes the following:
1. First, it samples ω

U←− Fq.
2. Next, for ι′ ∈ [n′], it samples ϕ′

ι′
U←− Fq, and computes

c′(ι′) = (ω(1, xι′),�04,�02, ϕ′
ι′)Bι′ .

3. Then, for ι ∈ [n], it samples ϕι
U←− Fq, and computes

c(ι) = (ω(1, zι),�04,�02, ϕι)Bn′+ι
.

4. It outputs the ciphertext ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]).

PHPE.KeyGen(mpk,msk, f): The key generation algorithm takes as input the
public parameters mpk, the master secret key msk, along with a function
f ∈ F (q,n′,n)

abp◦ip . It operates as follows:
1. It first generates

(
({σj}j∈[n], {αj′ , γj′}j′∈[m]), ρ : [m] → [n′]

) R←− PGB(f).

2. Next, it samples ζ
U←− Fq.

3. Then, for j′ ∈ [m], it samples �κ′(j′) U←− F
2
q, and computes

k′(j′) = ((γj′ , αj′),�04, �κ′(j′), 0)B
∗
ρ(j′)

.

4. Then, for j ∈ [n], it samples �κ(j) U←− F
2
q, and computes

k(j) = ((σj , ζ),�04, �κ(j), 0)B
∗
n′+j

.

5. It outputs the decryption key sk(f) = (f, {k′(j′)}j′∈[m], {k(j)}j∈[n]).

PHPE.Decrypt(mpk, sk(f),ct): The decryption algorithm takes in the public
parameters mpk, a decryption key sk(f) = (f, {k′(j′)}j′∈[m], {k(j)}j∈[n]), and
a ciphertext ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]). It proceeds as follows:
1. It first computes Λ′

j′ = e(c′(ρ(j′)),k′(j′)) for j′ ∈ [m], and Λj = e(c(j),k(j))
for j ∈ [n].

2. Next, it determines the coefficients ({Ωj}j∈[n], {Ω′
j′}j′∈[m]) = REC(f, �x).

3. Then, it computes Λ =

(
∏

j′∈[m]

Λ
′Ω′

j′
j′

) (
∏

j∈[n]

Λ
Ωj

j

)

.

4. It outputs 1 if Λ = 1GT
, and 0 otherwise, where 1GT

is the identity element
in GT .

� Correctness: For any decryption key sk(f) = (f, {k′(j′)}j′∈[m], {k(j)}j∈[n])

for a function f ∈ F (q,n′,n)
abp◦ip , and any ciphertext ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n])

encrypting a pair of public-private attribute strings (�x, �z) ∈ F
n′
q × F

n
q , we have

Λ′
j′ = g

ω(αj′xρ(j′)+γj′)
T for j′ ∈ [m],

Λj = g
ω(ζzj+σj)
T for j ∈ [n].

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 663

The above follows from the expressions of {k′(j′)}j′∈[m], {k(j)}j∈[n], {c′(ι′)}ι′∈[n′],

{c(ι)}ι∈[n], and the dual orthonormality property of {Bı, B
∗
ı }ı∈[n′+n]. Hence, from

Eq. (2.3) it follows that
Λ = g

ωζf(�x,�z)
T .

Therefore, if Rabp◦ip(f, (�x, �z)) = 1, i.e., f(�x, �z) = 0, then Λ = 1GT
, while if

Rabp◦ip(f, (�x, �z)) = 0, i.e., f(�x, �z) �= 0, then Λ �= 1GT
with all but negligible

probability 2/q, i.e., except when ω = 0 or ζ = 0.

Remark 3.1 (On Multi-Ciphertext Scheme): The PHPE scheme described
above is only secure against adversaries that are allowed to make a single cipher-
text query. However, we can readily extend the above scheme to one that is
secure for any a priori bounded number of ciphertext queries of the adversary.
The extension is as follows: Suppose we want to design a scheme that is secure for
qct number of ciphertext queries. Then, we would introduce a 4qct-dimensional
hidden subspace on each of the ciphertext and the decryption key sides, where
each 4-dimensional hidden subspace on the ciphertext side and its corresponding
4-dimensional dual subspace on the decryption key side will be used to handle
each ciphertext query in the security reduction. Clearly the size of ciphertexts,
decryption keys, and public parameters would scale linearly with qct.

3.2 Security

We now present our main theorem:

Theorem 3.1: The proposed PHPE scheme is (poly, 1, poly)-simulation-based
adaptively strongly partially hiding (as per the security model described in
Sect. 2.6) under the SXDLIN assumption.

Following corollary is immediate from the relation between indistinguishability-
based and simulation-based security for FE, as mentioned in the Introduction
as well as the equivalence of the single- and multi-ciphertext security in the
indistinguishability-based setting for FE:

Corollary 3.1: The proposed PHPE scheme is (poly, poly, poly)-indistinguish-
ability-based adaptively strongly partially hiding (as per the security model
described in [12] and the full version of this paper) under the SXDLIN assump-
tion.

In order to prove Theorem 3.1, we consider a sequence of hybrid experiments
which differ from one another in the construction of the ciphertext and/or the
decryption keys queried by the augmented adversary H (described in Remark
2.1). The first hybrid corresponds to the experiment Expphpe,realH (λ) (described
in Sect. 2.6), while the last one corresponds to the experiment Expphpe,idealH,S (λ)
(also described in Sect. 2.6) with the simulator S described below. We argue
that H’s probability of outputting 1 changes only by a negligible amount in
each successive hybrid experiment, thereby establishing Theorem 3.1. Note that
we are considering only one ciphertext query made by the adversary H. Let,

664 P. Datta et al.

qkey-pre, qkey-post be respectively the number of decryption key queries made by
H before and after making the ciphertext query, and qkey = qkey-pre + qkey-post.
Note that we consider qkey-pre and qkey-post to be arbitrary polynomials in the
security parameter λ.

� Description of the Simulator
The simulator S is described below.

• In order to generate the public parameters, S proceeds as follows:

1. It first generates (params, {Bı, B
∗
ı }ı∈[n′+n])

R←− Gob(n′ + n, (0,

n′+n
︷ ︸︸ ︷
9, . . . , 9)).

2. For ı ∈ [n′ + n], it sets B̂ı = {b(ı,1), b(ı,2), b(ı,9)}.
3. It outputs the public parameters mpk = (params, {B̂ı}ı∈[n′+n]).

• For h ∈ [qkey-pre], S simulates the hth decryption key queried by H corre-
sponding to some function fh ∈ F (q,n′,n)

abp◦ip as follows:
1. At first, it generates

(
({σh,j}j∈[n], {αh,j′ , γh,j′}j′∈[mh]), ρh : [mh] → [n′]

)
,

(
({σ̂h,j}j∈[n], {α̂h,j′ , γ̂h,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←− PGB(fh).

2. Next, it samples ζh, ζ̂h
U←− Fq.

3. Then, for j′ ∈ [mh], it samples �κ′(h,j′) U←− F
2
q, and computes

k′(h,j′) = ((γh,j′ , αh,j′),�02, (γ̂h,j′ , α̂h,j′), �κ′(h,j′), 0)B
∗
ρh(j′)

.

4. Then, for j ∈ [n], it samples �κ(h,j) U←− F
2
q, and computes

k(h,j) = ((σh,j , ζh),�02, (σ̂h,j , ζ̂h), �κ(h,j), 0)B
∗
n′+j

.

5. It outputs sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]).

• When H queries a ciphertext for some pair of public-private attribute strings
(�x, �z) ∈ F

n′
q × F

n
q , S receives �x and {Rabp◦ip(fh, (�x, �z))}h∈[qkey-pre]. It simulates

the ciphertext as follows:
1. At first, it samples �s

U←− S = {�s ∈ F
n
q | Rabp◦ip(fh, (�x,�s)) =

Rabp◦ip(fh, (�x, �z))∀h ∈ [qkey-pre]}. Observe that the set S is exactly
identical to the set S̃ = {�s ∈ F

n
q | Rip((fh,1(�x), . . . , fh,n(�x)), �s) =

Rip((fh,1(�x), . . . , fh,n(�x)), �z)∀h ∈ [qkey-pre]}, where Rip represents the
inner-product predicate family defined as Rip = {Rip(�w, ·) : F

n
q →

{0, 1} | �w ∈ F
n
q } such that Rip(�w,�v) = 1 if �v · �w = 0, and 0 if

�v · �w �= 0 for �v, �w ∈ F
n
q , and fh,j is the jth component ABP of fh for

h ∈ [qkey-pre], j ∈ [n]. It has already been demonstrated by O’Neill [37]
that the inner-product predicate family Rip is pre-image-samplable, which
essentially means that we can efficiently sample from the set S̃. In fact, he
provided an explicit algorithm for doing this. Thus, given {fh}h∈[qkey-pre]

and �x, S can efficiently sample from S by first determining the vectors
{(fh,1(�x), . . . , fh,n(�x))}h∈[qkey-pre] and then sampling from the set S̃ using
the algorithm described in [37].

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 665

2. Then, it samples τ, θ,
U←− Fq.

3. Next, for ι′ ∈ [n′], it samples ϕ′
ι′

U←− Fq, and computes

c′(ι′) = (�03, τ, θ(1, xι′),�02, ϕ′
ι′)Bι′ .

4. Then, for ι ∈ [n], it samples ϕι
U←− Fq, and computes

c(ι) = (�03, τ, θ(1, sι),�02, ϕι)Bn′+ι
.

5. It outputs the ciphertext ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]).
• For h ∈ [qkey-pre + 1, qkey], in response to the hth decryption key query of H

corresponding to some function fh ∈ F (q,n′,n)
abp◦ip , S executes the following steps:

1. It first generates
(
({σh,j}j∈[n], {αh,j′ , γh,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←−
PGB(fh).

2. Next, it samples ζh
U←− Fq.

3. After that, it queries its oracle ORabp◦ip((�x, �z), ·) with the function fh, and
receives back Rabp◦ip(fh, (�x, �z)). If Rabp◦ip(fh(�x, �z)) = 1, i.e., fh(�x, �z) = 0,
it forms

(
({νh,j}j∈[n], {μh,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←− SIM(fh, �x, 0).
Otherwise, if Rabp◦ip(fh, (�x, �z)) = 0, i.e., fh(�x, �z) �= 0, then it samples
ζ̌h

U←− Fq, and generates
(
({νh,j}j∈[n], {μh,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←−
SIM(fh, �x, ζ̌h).

4. Then, for j′ ∈ [mh], it samples η′
h,j′

U←− Fq, �κ
′(h,j′) U←− F

2
q, and computes

k′(h,j′) = ((γh,j′ , αh,j′), (η′
h,j′ , μh,j′),�02, �κ′(h,j′), 0)B

∗
ρh(j′)

.

5. Then, for j ∈ [n], it samples ηh,j
U←− Fq, �κ

(h,j) U←− F
2
q, and computes

k(h,j) = ((σh,j , ζh), (ηh,j , νh,j),�02, �κ(h,j), 0)B
∗
n′+j

.

6. It outputs sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]).

� Sequence of Hybrid Experiments
The hybrid experiments are described below. In the description of these hybrids,
a part framed by a box indicates coefficients that are altered in a transition from
its previous hybrid.

Hyb0: This experiment corresponds to the experiment Expphpe,realH (λ) defined in
Sect. 2.6. Thus, in this experiment, the ciphertext queried by H corresponding
to a pair of public-private attribute strings (�x, �z) ∈ F

n′
q × F

n
q is generated as

ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]) such that

c′(ι′) = (ω(1, xι′),�02,�02,�02, ϕ′
ι′)Bι′ for ι′ ∈ [n′],

c(ι) = (ω(1, zι),�02,�02,�02, ϕι)Bn′+ι
for ι ∈ [n],

(3.1)

666 P. Datta et al.

where ω, {ϕ′
ι′}ι′∈[n′], {ϕι}ι∈[n]

U←− Fq, while for h ∈ [qkey], the hth decryption

key queried by H corresponding to the function fh ∈ F (q,n′,n)
abp◦ip is generated as

sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]) such that

k′(h,j′) = ((γh,j′ , αh,j′),�02,�02, �κ′(h,j′), 0)B
∗
ρh(j′)

for j′ ∈ [mh],

k(h,j) = ((σh,j , ζh),�02,�02, �κ(h,j), 0)B
∗
n′+j

for j ∈ [n],
(3.2)

where ζh
U←− Fq, {�κ′(h,j′)}j′∈[mh], {�κ(h,j)}j∈[n]

U←− F
2
q, mh +n+1 is the number of

vertices in the ABP Γ ′
h computing the function fh as described in Sect. 2.3,

and
(
({σh,j}j∈[n], {αh,j′ , γh,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←− PGB(fh). Here,
{Bı, B

∗
ı }ı∈[n′+n] is the collection of dual orthonormal bases generated by exe-

cuting Gob(n′ + n, (0,

n′+n
︷ ︸︸ ︷
9, . . . , 9)) during setup.

Hyb1 : This experiment is analogous to Hyb0 except that in this experiment, the
ciphertext queried by H corresponding to the pair of public-private attribute
strings (�x, �z) ∈ F

n′
q × F

n
q is generated as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]) such

that
c′(ι′) = (ω(1, xι′), (ϑ , 0),�02,�02, ϕ′

ι′)Bι′ for ι′ ∈ [n′],

c(ι) = (ω(1, zι), (ϑ , 0),�02,�02, ϕι)Bn′+ι
for ι ∈ [n],

(3.3)

where ϑ
U←− Fq, and all the other variables are generated as in Hyb0.

Hyb2-χ-1 (χ ∈ [qkey-pre]) : The experiment Hyb2-0-4 coincides with Hyb1. This
experiment is analogous to Hyb2-(χ−1)-4 except that in this experiment, the
ciphertext queried by H corresponding to the pair of public-private attribute
strings (�x, �z) ∈ F

n′
q × F

n
q is generated as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]) such

that
c′(ι′) = (ω(1, xι′), τ(1, xι′), θ(1, xι′) ,�02, ϕ′

ι′)Bι′ for ι′ ∈ [n′],

c(ι) = (ω(1, zι), τ(1, zι), θ(1, sι) ,�02, ϕι)Bn′+ι
for ι ∈ [n],

(3.4)

where τ, θ
U←− Fq, �s

U←− S = {�s ∈ F
n
q | Rabp◦ip(fh, (�x,�s)) = Rabp◦ip(fh, (�x, �z))∀h ∈

[qkey-pre]}, and all the other variables are generated as in Hyb2-(χ−1)-4.

Hyb2-χ-2 (χ ∈ [qkey-pre]) : This experiment is the same as Hyb2-χ-1 with the
only exception that the χth decryption key queried by H corresponding to the
function fχ ∈ F (q,n′,n)

abp◦ip is formed as sk(fχ) = (fχ, {k′(χ,j′)}j′∈[mχ], {k(χ,j)}j∈[n])
such that

k′(χ,j′) = ((γχ,j′ , αχ,j′), (γ̃χ,j′ , α̃χ,j′) ,�02, �κ′(χ,j′), 0)B
∗
ρχ(j′)

for j′ ∈ [mχ],

k(χ,j) = ((σχ,j , ζχ), (σ̃χ,j , ζ̃χ) ,�02, �κ(χ,j), 0)B
∗
n′+j

for j ∈ [n],
(3.5)

where ζ̃χ
U←− Fq,

(
({σ̃χ,j}j∈[n], {α̃χ,j′ , γ̃χ,j′}j′∈[mχ]), ρχ : [mχ] → [n′]

) R←−
PGB(fχ), and all the other variables are generated as in Hyb2-χ-1.

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 667

Hyb2-χ-3 (χ ∈ [qkey-pre]) : This experiment is analogous to Hyb2-χ-2 except that
in this experiment, the ciphertext queried by H for the pair of public-private
attribute strings (�x, �z) ∈ F

n′
q ×F

n
q is formed as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n])

such that {c′(ι′)}ι′∈[n′] are given by Eq. (3.4) and

c(ι) = (ω(1, zι), τ(1, sι), θ(1, sι),�02, ϕι)Bn′+ι
for ι ∈ [n], (3.6)

where all the variables are generated as in Hyb2-χ-2.

Hyb2-χ-4 (χ ∈ [qkey-pre]) : This experiment is identical to Hyb2-χ-3 except that

the χth decryption key queried by H corresponding to the function fχ ∈ F (q,n′,n)
abp◦ip

is generated as sk(fχ) = (fχ, {k′(χ,j′)}j′∈[mχ], {k(χ,j)}j∈[n]) such that

k′(χ,j′) = ((γχ,j′ , αχ,j′), �02, (γ̂χ,j′ , α̂χ,j′) , �κ′(χ,j′), 0)B
∗
ρχ(j′)

for j′ ∈ [mχ],

k(χ,j) = ((σχ,j , ζχ), �02, (σ̂χ,j , ζ̂χ) , �κ(χ,j), 0)B
∗
n′+j

for j ∈ [n],
(3.7)

where ζ̂χ
U←− Fq,

(
({σ̂χ,j}j∈[n], {α̂χ,j′ , γ̂χ,j′}j′∈[mχ]), ρχ : [mχ] → [n′]

) R←−
PGB(fχ), and all the other variables are generated in the same manner as that
in Hyb2-χ-3.

Hyb3: This experiment is analogous to Hyb2-qkey-pre-4 except that in this exper-
iment, the ciphertext queried by H for the pair of public-private attribute
strings (�x, �z) ∈ F

n′
q × F

n
q is formed as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]), where

{c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n] are given by Eq. (3.4), while for h ∈ [qkey], the hth

decryption key queried by H for fh ∈ F (q,n′,n)
abp◦ip is generated as sk(fh) = (fh,

{k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]) such that

k′(h,j′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((γh,j′ , αh,j′), (γ̃h,j′ , α̃h,j′) , (γ̂h,j′ , α̂h,j′), �κ′(h,j′), 0)B
∗
ρh(j′)

for j′ ∈ [mh] if h ∈ [qkey-pre],
((γh,j′ , αh,j′), (γ̃h,j′ , α̃h,j′) ,�02, �κ′(h,j′), 0)B

∗
ρh(j′)

for j′ ∈ [mh] if h ∈ [qkey-pre + 1, qkey],

k(h,j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((σh,j , ζh), (σ̃h,j , ζ̃h) , (σ̂h,j , ζ̂h), �κ(h,j), 0)B
∗
n′+j

for j ∈ [n] if h ∈ [qkey-pre],

((σh,j , ζh), (σ̃h,j , ζ̃h) ,�02, �κ(h,j), 0)B
∗
n′+j

for j ∈ [n] if h ∈ [qkey-pre + 1, qkey],

(3.8)

where {ζ̃h}h∈[qkey]
U←− Fq,

(
({σ̃h,j}j∈[n], {α̃h,j′ , γ̃h,j′}j′∈[mh]), ρh : [mh] → [n′]

) R←−
PGB(fh) for h ∈ [qkey], and all the other variables are formed as in Hyb2-qkey-pre-4.

668 P. Datta et al.

Hyb4: This experiment is analogous to Hyb3 except that in this experiment, the
ciphertext queried by H for the pair of public-private attribute strings (�x, �z) ∈
F

n′
q × F

n
q is generated as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]) such that

c′(ι′) = (�02 , τ(1, xι′), θ(1, xι′),�02, ϕ′
ι′)Bι′ for ι′ ∈ [n′],

c(ι) = (�02 , τ(1, zι), θ(1, sι),�02, ϕι)Bn′+ι
for ι ∈ [n],

(3.9)

where all the variables are generated as in Hyb3.

Hyb5: This experiment is identical to Hyb4 except that in this experiment, for
h ∈ [qkey-pre], the hth decryption key queried by H corresponding to the function
fh ∈ F (q,n′,n)

abp◦ip is generated as sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]) such
that {k′(h,j′)}j′∈[mh] and {k(h,j)}j∈[n] are given by Eq. (3.7).

Hyb6: This experiment is the same as Hyb5 except that in this experiment, the
ciphertext queried by H for the pair of public-private attribute strings (�x, �z) ∈
F

n′
q × F

n
q is generated as ct = (�x, {c′(ι′)}ι′∈[n′], {c(ι)}ι∈[n]) such that

c′(ι′) = (�02, (0, τ) , θ(1, xι′),�02, ϕ′
ι′)Bι′ for ι′ ∈ [n′],

c(ι) = (�02, (0, τ) , θ(1, sι),�02, ϕι)Bn′+ι
for ι ∈ [n],

(3.10)

while for h ∈ [qkey-pre + 1, qkey], the hth decryption key queried by H for fh ∈
F (q,n′,n)

abp◦ip is generated as sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n]) such that

k′(h,j′) = ((γh,j′ , αh,j′), (γ̃h,j′ , α̃h,j′)U ′(ρh(j
′)) ,�02, �κ′(h,j′), 0)B

∗
ρh(j′)

for j′ ∈ [mh],

k(h,j) = ((σh,j , ζh), (σ̃h,j , ζ̃h)U (j) ,�02, �κ(h,j), 0)B
∗
n′+j

for j ∈ [n],
(3.11)

where Z′(ι′) U←− {Z ∈ GL(2, Fq) | (1, xι′)Z = �e(2) = (0, 1)}, U ′(ι′) = ((Z′(ι′))−1)ᵀ

for ι′ ∈ [n′], Z(ι) U←− {Z ∈ GL(2, Fq | (1, zι)Z = �e(2) = (0, 1)}, U (ι) = ((Z(ι))−1)ᵀ

for ι ∈ [n], and all the other variables are generated as in Hyb5.

Hyb7: This experiment is identical to Hyb6 with the only exception that for h ∈
[qkey-pre+1, qkey], the hth decryption key queried by H corresponding to the func-
tion fh ∈ F (q,n′,n)

abp◦ip is generated as sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n])
such that

k′(h,j′) = ((γh,j′ , αh,j′), (η′
h,j′ , α̃h,j′xρh(j′) + γ̃h,j′) ,�02, �κ′(h,j′), 0)B

∗
ρh(j′)

for j′ ∈ [mh],

k(h,j) = ((σh,j , ζh), (ηh,j , ζ̃hzj + σ̃h,j) ,�02, �κ(h,j), 0)B
∗
n′+j

for j ∈ [n],

(3.12)

where {η′
h,j′}h∈[qkey-pre+1,qkey],j′∈[mh], {ηh,j}h∈[qkey-pre+1,qkey],j∈[n]

U←− Fq, and all the
other variables are generated as in Hyb6.

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 669

Hyb8: This experiment is analogous to Hyb7 with the only exception that for
h ∈ [qkey-pre+1, qkey], the hth decryption key queried by H corresponding to the
function fh ∈ F (q,n′,n)

abp◦ip is formed as sk(fh) = (fh, {k′(h,j′)}j′∈[mh], {k(h,j)}j∈[n])
such that

k′(h,j′) = ((γh,j′ , αh,j′), (η′
h,j′ , μh,j′),�02, �κ′(h,j′), 0)B

∗
ρh(j′)

for j′ ∈ [mh],

k(h,j) = ((σh,j , ζh), (ηh,j , νh,j),�02, �κ(h,j), 0)B
∗
n′+j

for j ∈ [n],
(3.13)

where {ζ̃h}h∈[qkey-pre+1,qkey]
U←− Fq,

(
({νh,j}j∈[n], {μh,j′}j′∈[mh]), ρh : [mh] → [n′]

)

R←− SIM(fh, �x, fh(�x, ζ̃h�z)) for h ∈ [qkey-pre + 1, qkey], and all the other vari-
ables are generated as in Hyb7. Observe that for any h ∈ [qkey-pre] + 1, qkey] if
Rabp◦ip(fh, (�x, �z)) = 1, i.e., fh(�x, �z) = 0, then fh(�x, ζ̃h�z) = ζ̃hfh(�x, �z) = 0, while
if Rabp◦ip(fh(�x, �z)) = 0, i.e., fh(�x, �z) �= 0, then due to the uniform and indepen-
dent (of the other variables) choice of ζ̃h, it follows that fh(�x, ζ̃h�z) = ζ̃hfh(�x, �z) is
uniformly and independently (of the other variables) distributed in Fq. Thus, this
experiment coincides with the experiment Expphpe,idealH,S (λ) with the simulator S
as described above.

� Analysis
Let us now denote by Adv

(j)
H (λ) the probability that H outputs 1 in Hybj for

j ∈ {0, 1, {2-χ-k}χ∈[qkey-pre],k∈[4], 3, . . . , 8}. By definition of the hybrids, we clearly
have Advphpe-sim-ahH (λ) = |Adv(0)H (λ) − Adv

(8)
H (λ)|. Hence, we have

Advphpe,sim-ahH (λ) ≤ |Adv(0)H (λ) − Adv
(1)
H (λ)|+

∑

χ∈[qkey-pre]

[
|Adv(2-(χ−1)-4)

H (λ) − Adv
(2-χ-1)
H (λ)|+

∑

k∈[3]

|Adv(2-χ-k)
H (λ) − Adv

(2-χ-(k+1))
H (λ)|

]
+

|Adv(2-qkey-pre-4)H (λ) − Adv
(3)
H (λ)| +

∑

j∈[3,7]

|Adv(j)H (λ) − Adv
(j+1)
H (λ)|.

It can be shown that each term on the RHS of the above equation is negligible in
λ, and hence Theorem 3.1 follows. The details are provided in the full version.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

2. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-319-63688-7_1

670 P. Datta et al.

3. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 28

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

5. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

6. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730

7. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

8. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 1

9. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 12

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS 2015, pp. 171–190. IEEE (2015)

11. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

13. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

14. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

15. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

16. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 29

https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_1
https://doi.org/10.1007/978-3-319-02937-5_12
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-642-40084-1_29

Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 671

17. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

18. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field
sieve and the impact of higher splitting probabilities. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 7

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. J. ACM (JACM) 62(6), 45 (2015)

21. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

23. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 22

24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

25. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems, pp. 174–184. IEEE (1997)

26. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

27. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 11

28. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 355–379. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43414-7 18

29. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

30. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-40084-1_7
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-642-38348-9_11
https://doi.org/10.1007/978-3-642-38348-9_11
https://doi.org/10.1007/978-3-662-43414-7_18
https://doi.org/10.1007/978-3-662-43414-7_18
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4

672 P. Datta et al.

31. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

32. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

33. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

34. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

35. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 13

36. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 96(1), 42–52 (2013)

37. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556

38. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

39. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

40. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

41. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

Improved Inner-Product Encryption
with Adaptive Security and Full

Attribute-Hiding

Jie Chen1, Junqing Gong2(B), and Hoeteck Wee3

1 East China Normal University, Shanghai, China
s080001@e.ntu.edu.sg

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

junqing.gong@ens-lyon.fr
3 CNRS and ENS, PSL, Paris, France

wee@di.ens.fr

Abstract. In this work, we propose two IPE schemes achieving both
adaptive security and full attribute-hiding in the prime-order bilinear
group, which improve upon the unique existing result satisfying both
features from Okamoto and Takashima [Eurocrypt ’12] in terms of
efficiency.

– Our first IPE scheme is based on the standard k-lin assumption and
has shorter master public key and shorter secret keys than Okamoto
and Takashima’s IPE under weaker dlin = 2-lin assumption.

– Our second IPE scheme is adapted from the first one; the security is
based on the xdlin assumption (as Okamoto and Takashima’s IPE)
but now it also enjoys shorter ciphertexts.

Technically, instead of starting from composite-order IPE and apply-
ing existing transformation, we start from an IPE scheme in a very
restricted setting but already in the prime-order group, and then grad-
ually upgrade it to our full-fledged IPE scheme. This method allows us
to integrate Chen et al.’s framework [Eurocrypt ’15] with recent new
techniques [TCC ’17, Eurocrypt ’18] in an optimized way.

1 Introduction

Attribute-based encryption (ABE) is an advanced public-key encryption system
supporting fine-grained access control [20,31]. In an ABE system, an authority

J. Chen—School of Computer Science and Software Engineering. Supported by the
National Natural Science Foundation of China (Nos. 61472142, 61632012, U1705264)
and the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). Home-
page: http://www.jchen.top.
J. Gong—Supported in part by the French ANR ALAMBIC Project (ANR-16-CE39-
0006).
H. Wee—Supported in part by the European Union’s Horizon 2020 Research and Inno-
vation Programme under grant agreement 780108 (FENTEC).
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 673–702, 2018.
https://doi.org/10.1007/978-3-030-03329-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_23&domain=pdf
http://www.jchen.top

674 J. Chen et al.

publishes a master public key mpk for encryption and issues secret keys to users
for decryption; a ciphertext for message m is associated with an attribute x while
a secret key is associated with a policy f , a boolean function over the set of all
attributes; when f(x) = 1, the secret key can be used to recover message m.
The basic security requirement for ABE is message-hiding : an adversary holding
a secret key with f(x) = 0 cannot infer any information about m from the
ciphertext; furthermore, this should be ensured when the adversary has more
than one such secret key, which is called collusion resistance.

In some applications, an additional security notion attribute-hiding [10,22]
is desirable, which concerns the privacy of attribute x instead of message m.
In the literature, there are two levels of attribute-hiding: (1) weak attribute-
hiding is against an adversary who holds multiple secret keys with f(x) = 0;
(2) full attribute-hiding is against an adversary holding any kind of secret keys
including those with f(x) = 1. Nowadays we have seen many concrete ABE
schemes [7,9,18–21,24–26,30,33]. Based on the seminal dual system method [32],
we even reached generic frameworks for constructing and analyzing ABE [2–
6,11,12,35] in bilinear groups. Many of them, including both concrete ABE
schemes and generic frameworks, have already achieved weak attribute-hiding
[9,11,12,18,19,21].

However it is much harder to obtain ABE with the full attribute-hiding fea-
ture. In fact, all known schemes only support so-called inner-product encryption
(IPE), in which both ciphertexts and secret keys are associated with vectors and
the decryption procedure succeeds when the two vectors has zero inner-product.
Furthermore, almost all of them are selectively or semi-adaptively secure which
means the adversary has to choose the vectors associated with the challenge
ciphertext (called challenge vector/attribute) before seeing mpk or before seeing
any secret keys [10,22,29,36]. Both of them are much weaker than the standard
adaptive security (i.e., the one we have mentioned in the prior paragraph) where
the choice can be made at any time. (Note that Wee achieved simulation-based
security in [36].) What’s worse, some schemes [10,22] are built on the composite-
order group, on which group operations are slower and more memory space is
required to store group elements. The best result so far comes from Okamoto and
Takashima [27]: the IPE scheme is adaptively secure and fully attribute-hiding
based on external decisional linear assumption1 (xdlin) in efficient prime-order
bilinear groups.

1.1 Our Results

In this work, we propose two IPE schemes in prime-order bilinear groups
achieving both adaptive security and full attribute-hiding, which improve upon
Okamoto and Takashima’s IPE scheme [27] in terms of space efficiency:
1 The construction is originally based on the decisional linear assumption in sym-
metric prime-order bilinear group. In this paper, we will work with asymmetric
bilinear group where their proof will be translated into a proof based on the exter-
nal decisional linear assumption. Note that xdlin assumption is stronger than dlin
assumption.

Improved IPE with Adaptive Security and Full Attribute-Hiding 675

– Our first construction is proven secure under standard k-Linear (k-lin)
assumption. When instantiating with k = 2 (i.e., dlin assumption), it enjoys
shorter master public key and secret keys under weaker assumption than
Okamoto and Takashima’s IPE, but we have slightly larger ciphertexts. With
parameter k = 1 (i.e., sxdh assumption), we can also achieve shorter cipher-
texts but at the cost of basing the security on a stronger assumption.

– Our second construction is proven secure under the xdlin assumption, which
is stronger than dlin assumption. This gives another balance point between
(space) efficiency and assumption. Now we can get better efficiency than
Okamoto and Takashima’s IPE in terms of master public key, ciphertext
and secret keys without sacrificing anything — Okamoto and Takashima also
worked with xdlin.

A detailed comparison is provided in Table 1.

Table 1. Comparison among our two IPE schemes and Okamoto and Takashima’s
IPE [27]. All schemes are built on an asymmetric prime-order bilinear group
(p, G1, G2, GT , e : G1 × G2 → GT). In the table, |G1|, |G2|, |GT | denote the sizes of
group elements in G1, G2, GT .

Scheme |mpk| |ct| |sk| Assumption

OT12 [27] (12n + 16)|G1| + |GT | (5n + 1)|G1| + |GT | 11|G2| xdlin

Section 3.4 (10n + 16)|G1| + 2|GT | (5n + 3)|G1| + |GT | 8|G2| dlin

(3n + 5)|G1| + |GT | (3n + 2)|G1| + |GT | 5|G2| sxdh

Section 4.4 (8n + 14)|G1| + 2|GT | (4n + 3)|G1| + |GT | 7|G2| xdlin

1.2 Our Technique in Composite-Order Groups

As a warm-up, we present a scheme in asymmetric composite-order bilinear
groups. Here, we will rely on composite-order groups whose order is the prod-
uct of four primes; this is different from the settings of adaptively secure ABE
schemes and selectively secure full attribute-hiding inner product encryption
where it suffices to use two primes.

The Scheme. Assume an asymmetric composite-order bilinear group G =
(N,GN , HN , GT , e : GN × HN → GT) where N = p1p2p3p4. Let g1, h14 be
respective random generators of subgroups Gp1 ,Hp1p4 . Pick α, u,w1, . . . , wn ←
ZN . We describe an IPE scheme for n dimensional space over ZN as follows.

mpk : g1, gu
1 , gw1

1 , . . . , gwn
1 , e(g1, h14)α

sky : h
α+(y1w1+···+ynwn)r
14 , hr

14

ctx : gs
1, g

s(u·x1+w1)
1 , . . . , g

s(u·xn+wn)
1 , H(e(g1, h14)αs) · m

(1)

676 J. Chen et al.

where x = (x1, . . . , xn) ∈ Z
n
N and y = (y1, . . . , yn) ∈ Z

n
N . The construction is

adapted from Chen et al. IPE [11] (without attribute-hiding feature) by embed-
ding it into groups with four subgroups. This allows us to carry out the proof
strategy introduced by Okamoto and Takashima [27], which involves a non-trivial
extension of the standard dual system method [32]. We only give a high-level
sketch for the proof below but show the complete game sequence in Fig. 1 for
reference.

As is the case for adaptively secure ABE [32,35], we will rely on the following
private-key one-ciphertext one-key fully attribute-hiding inner product encryp-
tion scheme in the proof of security. Here, g3, h3 denote the respective generators
for the subgroups of order p3.

sky : hα+y1w1+···+ynwn

3

ctx : gu·x1+w1
3 , . . . , gu·xn+wn

3 , gα
3 · m

(2)

Note that the scheme satisfies (simulation-based) information-theoretic security
in the selective setting, which immediately yields (indistinguishability-based)
adaptive security via complexity leveraging.

In the proof of security (outlined in Fig. 1), we will first switch the ciphertext
to having just a p2p3p4-component via the subgroup decision assumption. At the
beginning of the proof, all the secret keys will have a p4-component, and at the
end, all the secret keys will have a p2-component; throughout, the secret keys
will also always have a p1-component but no p3-components at the beginning or
the end. To carry out the change in the secret keys from p4-components to p2-
components, we will switch the keys one by one. For the switch, we will introduce
a p3-component into one secret key and then invoke security of the above private-
key one-ciphertext one-key scheme in the p3-subgroup. It is important here that
throughout the hybrids, at most one secret key has a p3-component.

1.3 Our Technique in Prime-Order Groups

Assume a prime-order bilinear group G = (p,G1, G2, GT , e : G1×G2 → GT) and
let [·]1, [·]2, [·]T denote the entry-wise exponentiation on G1, G2, GT , respectively.
Naively, we simulate a composite-order group whose order is the product of four
primes using vectors of dimension 4k “in the exponent” under k-lin assumption.
That is, we replace

g1, h14 �→ [A1]1, [B14]2
where A1 ← Z

4k×k
p ,B14 ← Z

4k×2k
p . However, the resulting IPE scheme is less

efficient than Okamoto and Takashima’s scheme [27]. Instead, we will show that
it suffices to use

A1 ← Z
(k+1)×k
p , B14 ← Z

(2k+1)×k
p (3)

Then, with the correspondence by Chen et al. [11,13,16]:

α �→ k ∈ Z
k+1
p u,wi �→ U,Wi ∈ Z

(k+1)×(2k+1)
p ∀i ∈ [n]

s �→ s ∈ Z
k
p, r �→ r ∈ Z

k
p

gs
1 �→ [s�A�

1]1, hr
14 �→ [B14r]2

gsw
1 �→ [s�A�

1 W]1, hwr
14 �→ [WB14r]2

(4)

Improved IPE with Adaptive Security and Full Attribute-Hiding 677

Fig. 1. Game sequence for composite-order IPE. In the table, x0 = (x1,0, . . . , xn,0)
and x1 = (x1,1, . . . , xn,1) are the challenge vectors; b ∈ {0, 1} is the secret bit we hope
to hide against the adversary. The gray background highlights the difference between
adjacent games. The column “ct” shows the structure of the challenge ciphertext on four
subgroups whose generators are g1, g2, g3, g4, while the next column gives the subgroup
where every secret keys lie in. In the last column, the notation “p1 �→ p2p3p4 in G” is
indicating the subgroup decision assumption stating that Gp1 ≈c Gp2p3p4 .

we have the following prime-order IPE scheme:

mpk : [A�]1, [A
�U]1, [A

�W1]1, . . . , [A
�Wn]1, [A

�k]T
sky : [k+ (y1 · W1 + · · · + yn · Wn)B14r]2, [B14r]2
ctx : [s�A�

1]1, [s
�A�

1 (x1 · U+W1)]1, . . . , [s
�A�

1 (xn · U+Wn)]1, [c
�k]T · m

(5)

Note that, with matrices A1 ∈ Z
(k+1)×k
p and B ∈ Z

(2k+1)×k
p , we only simulate

two and three subgroups, respectively, rather than four subgroups; meanwhile
some of them are simulated as low-dimension subspaces. Although it has become
a common optimization technique to adjust dimensions of subspaces, it is not
direct to justify that we can work with less subspaces. In fact, these optimizations
are based on elaborate investigations of the proof strategy sketched in Sect. 1.2.
In the rest of this section, we explain our method leading to the optimized
parameter shown in (3).

Our Translation. We start from an IPE scheme in a very restricted setting
and then gradually upgrade it to our full-fledged IPE scheme in the prime-order
group. In particular, we follow the roadmap

private-key one-key IPE Step 1−−−−→
[11,13]

private-key IPE Step 2−−−−→
[11,36]

public-key IPE

The private key one-key IPE corresponds to scheme (2) over p3-subgroup (cf.
Game2.j−1.2 in Fig. 1). In Step 1, we move from one-key to multi-key model using
the technique from [13], which is related to the argument just after we change
ciphertext in proof of scheme (1) (cf. Game2.0 to Game2.q and Game3 in Fig. 1).
In Step 2, we move from private-key to public-key setting with the compiler

678 J. Chen et al.

in [36], which is related to the change of ciphertext at the beginning of the proof
(cf. Game1 in Fig. 1). By handling these proof techniques underlying the proof
sketched in Sect. 1.2 (cf. Fig. 1) one by one as above, we are able to integrate
Chen et al.’s framework [11] with recent new techniques [13,36] in an optimized
way.

Private-key IPE in One-key Setting. We start from a private-key IPE where
the ciphertext is created from msk rather than mpk. We also consider a
weaker one-key model where the adversary can get only one secret key. Pick
α, u,w1, . . . , wn ←r Zp and let message m ∈ Zp. We give the following private-
key IPE over Zp:

msk : α, u,w1, . . . , wn

sky : α + (y1 · w1 + · · · + yn · wn)
ctx : x1 · u + w1, . . . , xn · u + wn, α · m

(6)

Analogous to scheme (2), the scheme satisfies (simulation-based) information-
theoretic security in the selective setting (cf. [36]). By the implication from
simulation-based security to indistinguishability-based security and standard
complexity leveraging technique, we have the following statement: For adap-
tively chosen x0 = (x1,0, . . . , xn,0) ∈ Z

n
p , x1 = (x1,1, . . . , xn,1) ∈ Z

n
p and

y = (y1, . . . , yn) ∈ Z
n
p satisfying either 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0 or 〈x0,y〉 =

〈x1,y〉 = 0 and all b ∈ {0, 1}, we have

{ x1,b · u + w1, . . . , xn,b · u + wn, y1 · w1 + · · · + yn · wn }
≡ { x1,1−b · u + w1, . . . , xn,1−b · u + wn, y1 · w1 + · · · + yn · wn } (7)

Note that the statement here is different from that used in Fig. 1 (where xi,0 is
in the place of xi,1−b). Looking ahead, this choice is made to employ the “change
of basis” technique when moving from one-key to multi-key model (see the next
paragraph).

Private-key IPE in Multi-key Setting. To handle multiple keys revealed to the
adversary, we employ Chen et al.’s prime-order generic framework2 [11] based on
the dual system method [32] to scheme (6). The framework works with prime-
order finite cyclic group G on which the k-lin assumption holds. Let [·] denote
the entry-wise exponentiation on G. In order to avoid collusion of multiple
secret keys, we will re-randomize each secret key [8,31,34] using fresh vector
d ← span(B1) where B1 ← Z

(k+1)×k
p , which supports standard dual system

method [32] with a hidden subspace B2 ← Z
k+1
p . For this purpose, we need to

do the following “scalar to vector” substitutions:

u ∈ Zp �→ u ∈ Z
1×(k+1)
p and wi ∈ Zp �→ wi ∈ Z

1×(k+1)
p ∀i ∈ [n].

2 Note that, with their framework, we can work out a public key IPE directly, but we
focus on the technique handling multiple secret keys at the moment.

Improved IPE with Adaptive Security and Full Attribute-Hiding 679

Then the re-randomization is done by multiplying u and each wi in secret keys
by d and moving them from Zp to G. This yields the following private-key IPE:

msk : α,u,w1, . . . ,wn

sky : [α + (y1 · w1 + · · · + yn · wn)d], [d] where d ← span(B1)
ctx : x1 · u+w1, . . . , xn · u+wn, [α] · m

(8)

To carry out the non-trivial extension by Okamoto and Takashima [27] which
involves three subgroups of HN (cf. game sequence from Game2.0 to Game2.q),
we increase the dimension of vectors u,w1, . . . ,wn, d in secret keys by k (i.e.,
from k + 1 to 2k + 1) as in [13] such that the support of d can accommodate
three subspaces defined by

(B1,B2,B3) ← Z
(2k+1)×k
p × Z

2k+1
p × Z

(2k+1)×k
p

where B1,B2,B3 play the roles similar to p4, p2, p3-subgroup respectively. Fol-
lowing the proof strategy in [13] and statement (7) for the one-key scheme (6),
we can change secret keys and the challenge ciphertext revealed to the adversary
into the form:

sky : [α + (y1 · w1 + · · · + yn · wn)d], [d] where d ← span(B1, B2)

ct∗ : {xi,b · u(1) + xi,1−b · u(2) + xi,b · u(3) +wi}i∈[n], [α] · m

where u(1) (resp. u(2), u(3)) is a random vector orthogonal to span(B2,B3)
(resp. span(B1,B3), span(B1,B2)). Finally, by the “change of basis” commonly
appeared in the proof with dual pairing vector space [23,27] (and a simple sta-
tistical argument), we claim that ct∗ has the same distribution as

x1,0 · u0 + x1,1 · u1 +w1, . . . , xn,0 · u0 + xn,1 · u1 +wn, [α] · m

where u0,u1 ← Z
1×(2k+1)
p . This means that ct∗ hides b and scheme (8) is fully

attribute-hiding.
Note that the support of randomness d (after the change) is span(B1,B2)

rather than span(B2), which simulates p2-subgroup in the composite-order
scheme (1). This is crucial to derive more efficient IPE scheme but slightly com-
plicates the final argument above where “change of basis” technique has to be
used to deal with xi,b · u(1) interplaying with B1-component in sky.

(Public-key) IPE scheme. To upgrade our private-key IPE to public-key IPE,
we will employ the “private-key to public-key” compiler in [36]. The compiler
relies on bilinear groups (p,G1, G2, GT , e : G1 × G2 → GT) in which the k-lin
assumption holds. In detail, we do the following “vector to matrix”/“scalar to
vector” substitution for entries in msk and secret keys:

u,w1, . . . ,wn ∈ Z
1×(2k+1)
p �→ U,W1, . . . ,Wn ∈ Z

(k+1)×(2k+1)
p

α ∈ Zp �→ k ∈ Z
k+1
p

680 J. Chen et al.

and publish them as parts of mpk in the form of

[A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T where A ← Z
(k+1)×k
p .

In the ciphertext, we translate u,w1, . . . ,wn into [c�U]1, [c�W1]1, . . . , [c�Wn]1
where c ← span(A) and translate [α]2 into [c�k]T . Finally, secret keys are now
moved to group G2. This results in the following IPE scheme:

mpk : [A]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T
sky : [k+ (y1 · W1 + · · · + yn · Wn)d]2, [d]2 where d ← span(B1)
ctx : [c�]1, [x1 · c�U+ c�W1]1, . . . , [xn · c�U+ c�Wn]1, [c�k]T · m

where c ← span(A)

(9)

Note that the translation does not involve (B1,B2,B3) we just introduced.
To prove the security of the resulting public-key IPE scheme, we first show

that we can change the support of c from span(A) to Z
k+1
p by the following

statement implied by the k-lin assumption:

([A]1, [c ← span(A)]1) ≈c ([A]1, [c ← Z
k+1
p]1).

Since (A | c) is full-rank with overwhelming probability, we can see that

˜msk = (A�U,A�W1, . . . ,A�Wn,A�k)
and msk∗ = (c�U, c�W1, . . . , c�Wn, c�k)

are distributed independently. Then the security of scheme (9) can be reduced to
that of private-key scheme (8) by observations: (i) ˜msk is necessary for generating
mpk in scheme (9); (ii) we can view a ciphertext in scheme (9) as a ciphertext
of our private-key IPE scheme under master secret key msk∗; (iii) a secret key
in scheme (9) can be produced from a secret key of private-key IPE scheme (8)
under master secret key msk∗ with the help of ˜msk.

How to Shorten the Ciphertext. The ciphertext size of our IPE scheme (9) mainly
depends on the width of matrix U and Wi, which is further determined by the
dimensions of subspaces defined by B1,B2,B3. Therefore, in order to reduce
the ciphertext size, we employ the “dimension compress” technique used in [16].
The basic idea is to let B1 and B3 “share some dimensions” and finally decrease
the width of U and Wi, the cost is that we have to use the xdlin assumption.
Compared with our first scheme, a qualitative difference is that the private-key
variant now works with bilinear maps. This is not needed when we work with
the k-lin assumption in the first scheme.

Organization. The paper is organized as follows. In Sect. 2, we review some
basic notions. The next two sections, Sects. 3 and 4, will be devoted to our two
IPE schemes, respectively. In both sections, we will first develop a private-key
scheme and then transform it to the public-key version as [36].

Improved IPE with Adaptive Security and Full Attribute-Hiding 681

2 Preliminaries

Notation. Let A be a matrix over Zp. We use span(A) to denote the column
span of A, use basis(A) to denote a basis of span(A), and use (A1|A2) to denote
the concatenation of matrices A1,A2. By span(A�), we are indicating the row
span of A�. We let In be the n-by-n identity matrix and 0 be a zero matrix of
proper size. Given an invertible matrix B, we use B∗ to denote its dual satisfying
B�B∗ = I.

2.1 Inner-Product Encryption

Algorithms. An inner-product encryption (IPE) scheme consists of four algo-
rithms (Setup,KeyGen,Enc,Dec):

Setup(1λ, n) → (mpk,msk). The setup algorithm gets as input the security param-
eter λ and the dimension n of the vector space. It outputs the master public
key mpk and the master key msk.

KeyGen(msk,y) → sky. The key generation algorithm gets as input msk and a
vector y. It outputs a secret key sky for vector y.

Enc(mpk,x,m) → ctx. The encryption algorithm gets as input mpk, a vector x
and a message m. It outputs a ciphertext ctx for vector x.

Dec(ctx, sky) → m. The decryption algorithm gets as a ciphertext ctx for x and
a secret key sky for vector y satisfying 〈x,y〉 = 0. It outputs message m.

Correctness. For all vectors x,y satisfying 〈x,y〉 = 0 and all m, it holds that

Pr[Dec(ctx, sky) = m] = 1,

where (mpk,msk) ← Setup(1λ, n), ctx ← Enc(mpk,x,m), sky ← KeyGen(msk,y).

Security. For a stateful adversary A, we define the advantage function

AdvipeA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b = b′ :

(mpk,msk) ← Setup(1λ, n);
(x0,x1,m0,m1) ← AKeyGen(msk,·)(mpk);
b ←r {0, 1}; ct∗ ← Enc(mpk,xb,mb);
b′ ← AKeyGen(msk,·)(ct∗)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

with the following restrictions on all queries y that A submitted to
KeyGen(msk, ·):
– if m0 	= m1, we require that 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0;
– if m0 = m1, we require that either 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0 or 〈x0,y〉 =

〈x1,y〉 = 0.

An IPE scheme is adaptively secure and fully attribute-hiding if for all PPT
adversaries A, the advantage AdvipeA (λ) is a negligible function in λ.

Private-key IPE. In a private-key IPE, the Setup algorithm does not output
mpk; and the Enc algorithm takes msk instead of mpk as input. The adaptive
security and full attribute-hiding can be defined analogously except that A only
gets ct∗ and has access to KeyGen(msk, ·). The advantage function is denoted by
Advipe*A (λ). Accordingly, we may call the standard IPE public-key IPE.

682 J. Chen et al.

2.2 Prime-Order Groups and Matrix Diffie-Hellman Assumptions

A group generator G takes as input security parameter λ and outputs group
description G = (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and
GT are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate
bilinear map. We require that group operations in G1, G2 and GT as well the
bilinear map e are computable in deterministic polynomial time with respect to
λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators.
We employ the implicit representation of group elements: for a matrix M over
Zp, we define [M]1 = gM1 , [M]2 = gM2 , [M]T = gMT , where exponentiations are
carried out component-wise. Given A and [B]2, we let A [B]2 = [AB]2; for
[A]1 and [B]2, we let e([A]1, [B]2) = [AB]T .

We review the matrix Diffie-Hellman (MDDH) assumption on G1 [14]. The
mddhk,� assumption on G2 can be defined analogously and it is known that
k-lin ⇒ mddhk,� [14].

Assumption 1 (MDDHk,� Assumption). Let � > k ≥ 1. We say that the
mddhk,� assumption holds with respect to G if for all PPT adversaries A, the
following advantage function is negligible in λ.

Adv
mddhk,�

A (λ) :=
∣

∣Pr[A(G, [M]1, [Ms]1) = 1] − Pr[A(G, [M]1, [u]1) = 1]
∣

∣

where G ← G(1λ), M ← Z
�×k
p , s ← Z

k
p and u ← Z

�
p.

We also use the external decisional linear (xdlin) assumption on G2 [1]:

Assumption 2 (XDLIN Assumption). We say that the xdlin assumption
holds with respect to G if for all PPT adversaries A, the following advantage
function is negligible in λ.

AdvxdlinA (λ) :=
∣
∣Pr[A(G, D, T0 = [a3(s1 + s2)]2) = 1] − Pr[A(G, D, T1 ← G2) = 1]

∣
∣

where G ← G(1λ) and D = ([a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2) with
a1, a2, a3, s1, s2 ← Zp.

3 Construction from k-lin Assumption

3.1 Preparation

Fix parameters �1, �2, �3 ≥ 1 and let � := �1 + �2 + �3. We use basis

B1 ← Z
�×�1
p , B2 ← Z

�×�2
p , B3 ← Z

�×�3
p ,

and its dual basis (B‖
1,B

‖
2,B

‖
3) such that B�

i B
‖
i = I (known as non-degeneracy)

and B�
i Bj = 0 if i 	= j (known as orthogonality), as depicted in Fig. 2.

Assumption. We review the sdG2
B1 �→B1,B2

assumption [13,15,17] as follows. By
symmetry, one may permute the indices for subspaces.

Improved IPE with Adaptive Security and Full Attribute-Hiding 683

B1 B2 B3

B‖
1 B‖

2 B‖
3

Fig. 2. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy.

Lemma 1 (mddh�1,�1+�2 ⇒ sdG2
B1 �→B1,B2

). Under the mddh�1,�1+�2 assumption
in G2, there exists an efficient sampler outputting random ([B1]2, [B2]2, [B3]2)
(as described above) along with base basis(B‖

3) and basis(B‖
1,B

‖
2) (of arbitrary

choice) such that the following advantage function is negligible in λ.

Adv
sdG2

B1 �→B1,B2
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ([B1]2, [B2]2, [B3]2, basis(B
‖
1,B

‖
2), basis(B

‖
3))

t0 ← span(B1), t1 ← span(B1,B2).

Facts. With basis (B1,B2,B3), we can uniquely decompose w ∈ Z
1×�
p as

w =
∑

β∈[3] w
(β) where w(β) ∈ span(B‖

β

�
).

In the paper, we use notation w(β) to denote the projection of w onto span(B‖
β

�
)

and define w(β1β2) = w(β1) + w(β2) for β1, β2 ∈ [3]. Furthermore, we highlight
two facts: (1) For β ∈ [3], it holds that wBβ = w(β)Bβ ; (2) For all β∗ ∈ [3], it
holds that

{

w(β∗) , {w(β)}β
=β∗
} ≡ { w∗ , {w(β)}β
=β∗

}

when w ← Z
1×�
p and w∗ ← span(B‖

β∗
�
).

3.2 Step One: A Private-Key IPE in Prime-Order Groups

Our first prime-order private-key IPE is described as follows. We use the basis
described in Sect. 3.1 with (�1, �2, �3) = (k, 1, k). As mentioned in Sect. 1.2, we
do not need bilinear map for this private-key IPE. However, for our future use
in Sect. 3.4, we describe the IPE in bilinear groups and note that only one of
source groups is used.

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample B1 ← Z
(2k+1)×k
p

and pick u,w1, . . . ,wn ← Z
1×(2k+1)
p , α ← Zp. Output

msk = (G, α,u,w1, . . . ,wn,B1).

684 J. Chen et al.

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

k
p and output

sky = (K0 = [α + (y1 · w1 + · · · + yn · wn)B1r]2, K1 = [B1r]2)

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ G2. Output

ctx = (C1 = x1 · u+w1, . . . , Cn = xn · u+wn, C = [α]2 · m)

– Dec(ctx, sky): Parse ctx = (C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn) ∈ Z

n
p . Output

m′ = C · ((y1 · C1 + · · · + yn · Cn) K1) · K−1
0 .

The correctness is straightforward.

3.3 Security of Private-Key IPE

We will prove the following theorem.

Theorem 1. Under the k-lin assumption, the private-key IPE scheme
described in Sect. 3.2 is adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

Following [11,35], we can reduce the case m0 	= m1 to the case m0 = m1 by
arguing that an encryption for mb is indistinguishable with an encryption for
m0. Therefore it is sufficient to prove the following lemma for m0 = m1.

Lemma 2. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B1,B2,B3 such that

Advipe*A (λ) ≤ Q · Advsd
G2
B1 �→B1,B3

B1
(λ) + Q · Advsd

G2
B3 �→B3,B2

B2
(λ) + Q · Advsd

G2
B1 �→B1,B3

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

Game sequence. We prove Lemma2 via the following game sequence, which
is summarized in Fig. 3.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

x1,b · u+w1, . . . , xn,b · u+wn, [α]2 · m0.

Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

x1,b · u(13) + x1,1−b · u(2) +w1, . . . , xn,b · u(13) + xn,1−b · u(2) +wn, [α]2 · m0.

We claim that Game1 ≡ Game0. This follows from facts that (1) secret keys

will not reveal w(2)
1 , . . . ,w(2)

n ; (2) for all x0,x1 ∈ Z
n
p and u(2) ∈ span(B‖

2

�
),

it holds

{ xi,b · u(2) +w(2)
i }i∈[n] ≡ { xi,1−b · u(2) +w(2)

i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B‖
2

�
). See Lemma 4 for more details.

Improved IPE with Adaptive Security and Full Attribute-Hiding 685

Fig. 3. Game sequence for private-key IPE based on k-lin assumption. The gray back-
ground highlights the difference between adjacent games. Here, B1,B2,B3 play a role
similar to the p4, p2, p3-subgroups in Fig. 1.

– Game2.j for j ∈ [0, q] is identical to Game1 except that the first j secret keys
are

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2.j−1 ≈c Game2.j for j ∈ [q] and give a proof sketch later.
– Game3 is identical to Game2.q except that the challenge ciphertext is

{ xi,0 · u(12)
0 + xi,1 · u(12)

1 + xi,b · u(3) +wi }i∈[n], [α]2 · m0.

where u0,u1 ← Z
1×(2k+1)
p . We claim that Game2.q ≡ Game3. This follows from

the “change of basis” technique used in dual pairing vector spaces [23,28]. In
particular, we argue that

(

xi,b

︷︸︸︷

u(1) ,

xi,1−b

︷︸︸︷

u(2)) ≡ (u(12)
0 ,u(12)

1)

when u,u0,u1 and basis B1,B2 are chosen at random. Here we use the fact
that randomness d in secret keys reveals no information about the basis of
span(B1,B2). See Lemma 5 for more details.

– Game4 is identical to Game3 except that the challenge ciphertext is

x1,0 · u0 + x1,1 · u1 +w1, . . . , xn,0 · u0 + xn,1 · u1 +wn, [α]2 · m0

686 J. Chen et al.

in which the adversary has no advantage in guessing b. We claim that Game3 ≡
Game4. The proof is similar to that for Game1 ≡ Game0. See Lemma 6 for
details.

Proving Game2.j−1 ≈c Game2.j . We now prove Game2.j−1 ≈c Game2.j and thus
complete the proof for Lemma 2. For all j ∈ [q], we employ the following game
sequence, which has been included in Fig. 3.

– Game2.j−1.1 is identical to Game2.j−1 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B3) .

We claim that Game2.j−1.1 ≈c Game2.j−1. This follows from the sdG2
B1 �→B1,B3

assumption: given [B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3), it holds that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2.

In the reduction, we sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p and pick

u(13) ← span((B‖
1|B‖

3)
�) and u(2) ← span(B‖

2

�
)

using basis(B‖
1,B

‖
3) and basis(B‖

2), respectively. The challenge ciphertext is
generated using

{xi,b · u(13) + xi,1−b · u(2) +wi }i∈[n];

the jth secret key is created from w1, . . . ,wn and [t]2 while the remaining
keys can be generated using [B1]2 and [B2]2 along with α,w1, . . . ,wn. See
Lemma 7 for more details.

– Game2.j−1.2 is identical to Game2.j−1.1 except that the challenge ciphertext
is

{xi,b · u(1) + xi,1−b · u(2) + xi,1−b · u(3) +wi }i∈[n], [α]2 · m0.

We claim that Game2.j−1.2 ≡ Game2.j−1.1. This follows from facts that: (1)
u(3) and w(3)

i are only revealed from the challenge ciphertext and the jth
secret key; (2) for all x0, x1 and y with the restriction that (a) 〈x0,y〉 =
〈x1,y〉 = 0; or (b) 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0, it holds that

(

ct
︷ ︸︸ ︷

x1,b · u(3) +w(3)
1 , . . . , xn,b · u(3) +w(3)

n ,

sk
︷ ︸︸ ︷

y1 · w(3)
1 + · · · + yn · w(3)

n)

≡ (x1,1−b · u(3) +w(3)
1 , . . . , xn,1−b · u(3) +w(3)

n , y1 · w(3)
1 + · · · + yn · w(3)

n).

See Lemma 8 for more details.

Improved IPE with Adaptive Security and Full Attribute-Hiding 687

– Game2.j−1.3 is identical to Game2.j−1.2 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B3) .

We claim that Game2.j−1.3 ≈c Game2.j−1.2. This follows from the sdG2
B3 �→B3,B2

assumption: given [B1]2, [B2]2, [B3]2, basis(B
‖
1), basis(B

‖
2,B

‖
3), it holds that

[t ← span(B3)]2 ≈c [t ← span(B2,B3)]2.

In the reduction, we sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p and pick

u(1) ← span(B‖
1

�
) and u(23) ← span((B‖

2|B‖
3)

�)

using basis(B‖
1) and basis(B‖

2,B
‖
3), respectively. The challenge ciphertext is

generated using

{xi,b · u(1) + xi,1−b · u(23) +wi }i∈[n]

the jth secret key is created from α,w1, . . . ,wn and [B1], [t]2 while the
remaining keys can be generated using [B1,B2]2 along with α,w1, . . . ,wn.
See Lemma 9 for more details.

– Game2.j−1.4 is identical to Game2.j−1.3 except that the challenge ciphertext
is

{xi,b · u(1) + xi,1−b · u(2) + xi,b · u(3) +wi }i∈[n], [α]2 · m0.

We claim that Game2.j−1.4 ≡ Game2.j−1.3. The proof is identical to that for
Game2.j−1.2 ≡ Game2.j−1.1. See Lemma 10 for more details.

– Game2.j−1.5 is identical to Game2.j−1.4 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2.j−1.5 ≈c Game2.j−1.4. The proof is identical to that
for Game2.j−1 ≈c Game2.j−1.1. See Lemma 11 for more details. Note that
Game2.j−1.5 = Game2.j .

3.4 Step Two: From Private-Key to Public-Key

We describe our prime-order full-fledged IPE, which is derived from our private-
key IPE in Sect. 3.2 via the “private-key to public-key” compiler [36].

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample A ← Z
(k+1)×k
p ,

B1 ← Z
(2k+1)×k
p and pick

U,W1, . . . ,Wn ← Z
(k+1)×(2k+1)
p and k ← Z

k+1
p .

Output

mpk = (G, [A�]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T)
msk = (k,W1, . . . ,Wn,B1).

688 J. Chen et al.

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

k
p and output

sky = (K0 = [k+ (y1 · W1 + · · · + yn · Wn)B1r]2,K1 = [B1r]2)

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Sample s ← Z

k
p and

output
ctx = (C0 = [s�A�]1, { Ci = [s�A�(xi · U+Wi)]1 }i∈[n], C = [s�A�k]T · m)

– Dec(ctx, sky): Parse ctx = (C0, C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn). Output

m′ = C · e(y1 C1 · · · yn Cn,K1) · e(C0,K0)−1.

The correctness is straightforward.

Security. We will prove the following theorem.

Theorem 2. Under the k-lin assumption, the IPE scheme described above is
adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

For the same reason as in Sect. 3.3, we prove the lemma for the m0 = m1, which
shows that the security of the IPE described above is implied by that of our
private-key IPE in Sect. 3.2 and the mddhk assumption.

Lemma 3. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B0,B such that

AdvipeA (λ) ≤ Advmddhk

B0
(λ) + Advipe*B (λ)

and Time(B0),Time(B) ≈ Time(A).

We prove Lemma 3 via the following game sequence.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[c�]1, [c�(x1,b · U+W1)]1, . . . , [c�(xn,b · U+Wn)]1, e([c�]1, [k]2) · m0

where c ← span(A). Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that we pick c ← Z

k+1
p when generating

the challenge ciphertext. We claim that Game1 ≈c Game0. This follows from
the mddhk assumption:

[c ← span(A)]1 ≈c [c ← Z
k+1
p] given [A]1.

In the reduction, we sample k,U,W1, . . . ,Wn and B1. The master public
key mpk and the challenge ciphertext are simulated using k,U,W1, . . . ,Wn

along with [A]1, [c]1; all secret keys can be created honestly. See Lemma 12
for details.

Improved IPE with Adaptive Security and Full Attribute-Hiding 689

It remains to show that the advantage in guessing b ∈ {0, 1} in Game1 is negli-
gible. This follows from the security of our private-key IPE in Sect. 3.2. For A
and c, define

A�U = ˜U ∈ Z
k×(2k+1)
p A�Wi = ˜Wi ∈ Z

k×(2k+1)
p A�k = ˜k ∈ Z

k
p

c�U = u ∈ Z
1×(2k+1)
p c�Wi = wi ∈ Z

1×(2k+1)
p c�k = α ∈ Zp

We can then rewrite mpk as

[A�]1, [˜U]1, [˜W1]1, . . . , [˜Wn]1, [˜k]T ;

the challenge ciphertext (in Game1) becomes

[c�]1, [x1,b · u+w1]1, . . . , [xn,b · u+wn]1, e([1]1, [α]2) · m0.

Assume that (A|c) is full-rank which occurs with high probability and define

T =
(

A�

c�

)−1

, we have Wi = T
(

˜Wi
wi

)

and k = T
(

˜k
α

)

, a secret key can be
rewritten as

T
(

[˜k+ (y1 · ˜W1 + · · · + yn · ˜Wn)d]2
[α + (y1 · w1 + · · · + yn · wn)d]2

)

, [d]2.

Observe that the underlined parts are exactly the ciphertext and secret keys
of our private-key IPE in Sect. 3.2; and (˜U,˜Wi, ˜k), (u,wi, α) are distributed
uniformly and independently. This means we can simulate mpk honestly and
transform a ciphertext/secret key from our private-key IPE to its public-key
counterpart using A, c, ˜U, ˜Wi, ˜k. This is sufficient for the reduction from the
public-key IPE to private-key IPE. See Lemma 13 for more details.

3.5 Lemmas for Private-Key IPE

Let Advx be the advantage function with respect to A in Gamex. We prove the
following lemma for the game sequence in Sect. 3.3.

Lemma 4 (Game0 ≡ Game1). Adv0(λ) = Adv1(λ).

Proof. It is sufficient to prove that, for all u ← Z
1×(2k+1)
p , it holds that

(

sk
︷ ︸︸ ︷

w1B1, . . . ,wnB1,

ct
︷ ︸︸ ︷

{xi,b · u(13) + xi,b · u(2) +wi }i∈[n])
≡ (w1B1, . . . ,wnB1, {xi,b · u(13) + xi,1−b · u(2) +wi }i∈[n])

when w1, . . . ,wn ← Z
1×(2k+1)
p . By the facts shown in Sect. 3.1, it is implied by

the statement that, for all u(2) ∈ span(B‖
2

�
), it holds that

{xi,b · u(2) +w(2)
i }i∈[n] ≡ {w(2)

i }i∈[n] ≡ {xi,1−b · u(2) +w(2)
i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B‖
2

�
). This completes the proof. ��

690 J. Chen et al.

Lemma 5 (Game2.q ≡ Game3). Adv2.q(λ) = Adv3(λ).

Proof. We simulate Game2.q as follows:

Setup. We alternatively prepare basis (B1,B2,B3) as follows: Sample ˜B1,B3 ←
Z
(2k+1)×k
p , ˜B2 ← Z

2k+1
p and compute dual basis ˜B‖

1,
˜B‖
2,B

‖
3 as usual. Pick

R ← GLk+1(Zp) and define

(B1|B2) = (˜B1|˜B2)R and (B‖
1|B‖

2) = (˜B‖
1|˜B‖

2)R
∗.

This does not change the distribution of basis. We then sample
α,u,w1, . . . ,wn honestly.

Key queries. On input y = (y1, . . . , yn), output

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(˜B1, ˜B2).

Although we sample d using ˜B1, ˜B2, the vector is uniformly distributed over
span(B1,B2) as required and our simulation is perfect.

Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, we create the challenge
ciphertext honestly using (B‖

1,B
‖
2,B

‖
3). That is, we pick b ← {0, 1} and out-

put

{xi,b · v0 + xi,1−b · v1 + xi,b · u(3) +wi }i∈[n], [α]2 · m0

where u(3) ← span(B‖
3

�
) and

v0 = u(1) ← span(B‖
1

�
) and v1 = u(2) ← span(B‖

2

�
).

Observe that, we have a 2-by-(k + 1) matrix V of rank 2 such that
(

—v0—
—v1—

)

= V(B‖
1|B‖

2)
� = VR−1

︸ ︷︷ ︸

uniformly over Z
2×(k+1)
p

(˜B‖
1|˜B‖

2)
�.

Since R is independent of other part of simulation, VR−1 are uniformly
distributed over Z

2×(k+1)
p and thus it is equivalent to sample v0,v1 ←

span((˜B‖
1|˜B‖

2)
�) when creating the challenge ciphertext. This leads to the simu-

lation of Game3 (with respect to ˜B1, ˜B2,B3). ��
Lemma 6 (Game3 ≡ Game4). Adv3(λ) = Adv4(λ).

Proof The proof is similar to that for Lemma 4, except that we work with u(3),
u(3)
0 , u(3)

1 , w(3)
i instead. ��

Lemma 7 (Game2.j−1 ≈c Game2.j−1.1). There exists adversary B1 with
Time(B1) ≈ Time(A) such that

|Adv2.j−1.1(λ) − Adv2.j−1(λ) | ≤ Adv
sdG2

B1 �→B1,B3
B1

(λ).

Improved IPE with Adaptive Security and Full Attribute-Hiding 691

Proof. This follows from the sdG2
B1 �→B1,B3

assumption stating that, given

[B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3), it holds that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2.

On input [B1]2, [B2]2, [B3]2, basis(B
‖
2), basis(B

‖
1,B

‖
3) and [t]2, the adversary B1

works as follows:

Setup. Sample α ← Zp, w1, . . . ,wn ← Z
1×(2k+1)
p . Implicitly sample u by pick-

ing

u(13) ← span((B‖
1|B‖

3)
�) and u(2) ← span(B‖

2

�
)

using basis(B‖
1,B

‖
3) and basis(B‖

2), respectively.
Key Queries. On the κth query y = (y1, . . . , yn), output

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ←
⎧

⎨

⎩

span(B1,B2) κ < j;
t κ = j;
span(B1) κ > j;

using [B1]2, [B2]2 and [t]2
Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, pick b ← {0, 1} and

output

x1,b · u(13) + x1,1−b · u(2) +w1, . . . , xn,b · u(13) + xn,1−b · u(2) +wn, [α]2 · m0.

Observe that, when t is uniformly distributed over span(B1), the simula-
tion is identical to Game2.j−1; otherwise, when t is uniformly distributed
over span(B1,B3), the simulation is identical to Game2.j−1.1. This proves the
lemma. ��
Lemma 8 (Game2.j−1.1 ≡ Game2.j−1.2). Adv2.j−1.1 = Adv2.j−1.2.

Proof. By complexity leveraging and the facts shown in Sect. 3.1, it is sufficient to
prove the following statement: for all x0, x1 and y (corresponding to the jth key
query) satisfying that (a) 〈x0,y〉 = 〈x1,y〉 = 0; or (b) 〈x0,y〉 	= 0 ∧ 〈x1,y〉 	= 0,
it holds that

(

ct
︷ ︸︸ ︷

x1,b · u(3) +w(3)
1 , . . . , xn,b · u(3) +w(3)

n ,

sk
︷ ︸︸ ︷

y1 · w(3)
1 + · · · + yn · w(3)

n)
≡ (x1,1−b · u(3) +w(3)

1 , . . . , xn,1−b · u(3) +w(3)
n , y1 · w(3)

1 + · · · + yn · w(3)
n)

when u(3),w(3)
1 , . . . ,w(3)

n ← span(B‖
3

�
). By the linearity, it in turn follows from

the following statement

{x1,b · u + w1, . . . , xn,b · u + wn, y1 · w1 + · · · + yn · wn }
≡ { x1,1−b · u + w1, . . . , xn,1−b · u + wn, y1 · w1 + · · · + yn · wn }

692 J. Chen et al.

where u,w1, . . . , wn ← Zp. This follows from the statistical argument for all
x = (x1, . . . , xn) which is implicitly used in the proof of Wee’s simulation-based
selectively secure IPE [36]: by programming w̃i = xi · u + wi for all i ∈ [n], we
have

{x1 · u + w1, . . . , xn · u + wn, y1 · w1 + · · · + yn · wn }
≡ { w̃1, . . . , w̃n, (y1 · w̃1 + · · · + yn · w̃n) − u · (x1y1 + · · · + xnyn) }

which means that the left-hand side distributions for all vector x not orthogonal
to y are identical (since u hides the information about the inner-product) and
so do all vector x orthogonal to y. This proves the above statement and thus
proves the lemma. ��
Lemma 9 (Game2.j−1.2 ≈c Game2.j−1.3). There exists adversary B2 with
Time(B2) ≈ Time(A) such that

|Adv2.j−1.3(λ) − Adv2.j−1.2(λ) | ≤ Adv
sdG2

B3 �→B3,B2
B2

(λ).

Proof. The proof is analogous to that for Lemma 7 (Game2.j−1 ≈c

Game2.j−1.1). ��
Lemma 10 (Game2.j−1.3 ≡ Game2.j−1.4). Adv2.j−1.3 = Adv2.j−1.4.

Proof. The proof is identical to that for Lemma 8 (Game2.j−1.1 ≈c

Game2.j−1.2). ��
Lemma 11 (Game2.j−1.4 ≈c Game2.j−1.5). There exists adversary B3 with
Time(B3) ≈ Time(A) such that

|Adv2.j−1.5(λ) − Adv2.j−1.4(λ) | ≤ Adv
sdG2

B1 �→B1,B3
B3

(λ).

Proof. The proof is analogous to that for Lemma 7 (Game2.j−1 ≈c

Game2.j−1.1). ��

3.6 Lemmas for Public-Key IPE

Let Advx be the advantage function with respect to A in Gamex. We prove the
following lemma for the game sequence in Sect. 3.4.

Lemma 12 (Game0 ≡ Game1). There exists adversary B0 with Time(B0) ≈
Time(A) such that

|Adv1(λ) − Adv0(λ) | ≤ Advmddhk

B0
(λ).

Proof. The proof is direct, we omit it here and refer the reader to the full paper. ��
Lemma 13 (Advantage in Game1). There exists adversary B with Time(B) ≈
Time(A) such that

Adv1(λ) ≤ Advipe*B (λ).

Improved IPE with Adaptive Security and Full Attribute-Hiding 693

Proof. We construct the adversary B as below:

Setup. Sample (A, c) ← Z
(k+1)×k
p × Z

k+1
p and compute T =

(

A�

c�

)−1

. Since
(A|c) is full-rank which occurs with high probability, T is well-defined. Pick

˜U,˜W1, . . . ,˜Wn ← Z
k×(2k+1)
p and ˜k ← Z

k
p

and output

mpk = ([A�]1, [˜U]1, [˜W1]1, . . . , [˜Wn]1, [˜k]T).

Key Queries. On input y, adversary B forwards the query to its environment
and receives (K0,K1). Compute

˜K0 = [˜k]2 · ((y1 · ˜W1 + · · · + yn · ˜Wn) K0)

and output

sky =
(

T
(

˜K0
K0

)

, K1

)

.

Ciphertext. On input (x0,x1,m0,m1), adversary B sends query (x0,x1, 1, 1) to
its environment and receives (C1, . . . , Cn, C). Create the challenge ciphertext
as

[c�]1, [C1]1, . . . , [Cn]1, e([1]1, C) · m0.

The adversary B outputs A’s guess bit. By the observation in Sect. 3.4, mpk
is simulated perfectly; if (K0,K1) is a private-key IPE secret key, secret keys
we computed is for our public-key IPE; if (C1, . . . , Cn, C) is a private-key IPE
ciphertext for b = 0, the ciphertext we created is a public-key IPE ciphertext for
b = 0; this also holds for b = 1. This readily proves the lemma. ��

4 Construction from xdlin Assumption

In this section, we improve the IPE scheme presented in Sect. 3 by the optimiza-
tion technique in [16]. As in Sect. 3, we will first develop a private-key IPE from
that in Sect. 3.2 and then compile it into the public-key setting.

4.1 Correspondence

Applying the technique in [16] to our private-key IPE in Sect. 3.2, we basically
overlap span(B1) and span(B3) so that the total dimension decreases. Techni-
cally, we work with basis

B1 ← Z
�×�1
p , B2 ← Z

�×�2
p , B3 ← Z

�×�3
p , B4 ← Z

�×�4
p

694 J. Chen et al.

where �1, �2, �3, �4 ≥ 1 and � := �1 + �2 + �3 + �4, and follow the correspondence:

Sec 3.1 this section
B1 �→ (B1 | B4)
B2 �→ B2

B3 �→ (B3 | B4)

(10)

saying that B1 and B3 used in Sect. 3 are replaced by (B1|B4) and (B3|B4),
respectively, whose spans interact at span(B4). Analogous to Sect. 3.1, we can
define its dual basis (B‖

1,B
‖
2,B

‖
3,B

‖
4) and decompose w ∈ Z

1×�
p as w(1)+w(2)+

w(3) +w(4).
Assumptions. With the correspondence (10), the assumption sdG2

B1 �→B1,B3
used

in Sect. 3.3 will be replaced by sdG2
B1,B4 �→B1,B3,B4

defined as follows.

Lemma 14 (mddh�1+�4,�1+�3+�4 ⇒ sdG2
B1,B4 �→B1,B3,B4

). Under mddh�1+�4,�1+�3+�4

assumption in G2, there exists an efficient sampler outputting random
([B1]2, [B2]2, [B3]2, [B4]2) along with base basis(B‖

2) and basis(B‖
1,B

‖
3,B

‖
4) (of

arbitrary choice) such that the following advantage function is negligible in λ.

Adv
sdG2

B1,B4 �→B1,B3,B4
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ([B1]2, [B2]2, [B3]2, [B4]2, basis(B
‖
2), basis(B

‖
1,B

‖
3,B

‖
4)),

t0 ← span(B1,B4), t1 ← span(B1,B3,B4).

The proof is analogous to that for Lemma 1 (cf. [13]).
Also, we replace sdG2

B3 �→B2,B3
assumption in Sect. 3.3 with external subspace

decision assumption xsdG2
B3,B4 �→B2,B3,B4

defined as below.

Assumption 3 (xsdG2
B3,B4 �→B2,B3,B4

). We say that xsdG2
B3,B4 �→B2,B3,B4

assumption holds if there exists an efficient sampler outputting random ([B1]2,
[B2]2, [B3]2, [B4]2) along with base basis(B‖

1), basis(B
‖
4) and [basis(B‖

2,B
‖
3)]1 (of

arbitrary choice) such that the following advantage function is negligible in λ.

Adv
xsdG2

B3,B4 �→B2,B3,B4
A (λ) :=

∣

∣Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]
∣

∣

where

D := ([B1]2, [B2]2, [B3]2, [B4]2, basis(B
‖
1), [basis(B

‖
2,B

‖
3)]1, basis(B

‖
4)),

t0 ← span(B3,B4), t1 ← span(B2,B3,B4).

We note that we do not give out basis(B‖
2,B

‖
3,B

‖
4) as usual; instead, basis(B‖

4)
on Zp and [basis(B‖

2,B
‖
3)]1 on G1 are provided. We then prove the following

lemma saying that, for a specific set of parameters, the assumption is implied
by xdlin assumption.

Improved IPE with Adaptive Security and Full Attribute-Hiding 695

Lemma 15 (xdlin ⇒ xsdG2
B3,B4 �→B2,B3,B4

). Under the external decisional lin-
ear assumption (xdlin) [1] (cf. Sect. 2.2), the xsdG2

B3,B4 �→B2,B3,B4
assumption

holds for parameter �2 = �3 = �4 = 1.

Proof. For any PPT adversary A, we construct an algorithm B with Time(B) ≈
Time(A) such that

Adv
xsdG2

B3,B4 �→B2,B3,B4
A (λ) ≤ AdvxdlinB (λ).

On input ([a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2, T) where a1, a2, a3,
s1, s2 ← Zp and T is either [a3(s1 + s2)]2 or uniformly distributed over G2,
algorithm B works as follows:

Programming B1,B2,B3,B4 and B‖
1,B

‖
2,B

‖
3,B

‖
4. Sample ˜B ← GL3+�1(Zp)

and define

(B1,B2,B3,B4) = ˜B
(I�1

1 a3 a3
a2

a1

)

and (B‖
1,B

‖
2,B

‖
3,B

‖
4) = ˜B∗

⎛

⎝

I�1
1

−a3a−1
2 a−1

2

−a3a−1
1 a−1

1

⎞

⎠

Algorithm B can simulate [B1,B2,B3,B4]2 using [a1, a2, a3]2.
Simulating basis(B‖

1), basis(B
‖
4). We define

basis(B‖
1) = ˜B∗

(

I�1
0

)

and basis(B‖
4) = ˜B∗(a−1

1 e3+�1)a1 = ˜B∗e3+�1 ,

both of which can be simulated using ˜B∗.
Simulating [basis(B‖

2,B
‖
3)]1. We define

basis(B‖
2,B

‖
3) = ˜B∗

(

0
1

−a3a−1
2 a−1

2

−a3a−1
1

)

(a1
a1a3 a2) = ˜B∗

(

0
a1

1−a3

)

such that [basis(B‖
2,B

‖
3)]1 (over G1) can be simulated using ˜B∗ and [a1, a3]1.

Simulating the challenge. Output the challenge
(

[0]2
T

[a2s2]2
[a1s1]2

)

.

Observe that if T = [a3(s1 + s2)]2, the output challenge is uniformly distributed
over [span(B3,B4)]2; if T is uniformly distributed over G2, the output challenge
is then uniformly distributed over [span(B2,B3,B4)]2. This readily proves the
lemma. ��

696 J. Chen et al.

4.2 Step One: A Private-Key IPE from XDLIN Assumption

Our second private-key IPE is described as follows, which is translated from the
private-key IPE in Sect. 3.2 with the correspondence (10). Here we employ the
basis defined in Sect. 4.1 with parameter (�1, �2, �3, �4) = (1, 1, 1, 1).

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample B14 = (B1|B4) ←
Z
4×2
p and pick u,w1, . . . ,wn ← Z

1×4
p , α ← Zp. Output

msk = (G, α,u,w1, . . . ,wn,B14).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

2
p and output

sky = (K0 = [α + (y1 · w1 + · · · + yn · wn)B14r]2, K1 = [B14r]2)

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Output

ctx = (C1 = [x1 · u+w1]1, . . . , Cn = [xn · u+wn]1, C = [α]T · m)

– Dec(ctx, sky): Parse ctx = (C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn) ∈ Z

n
p . Output

m′ = C · e(y1 C1 · · · yn Cn,K1) · e([1]1,K0)−1.

The correctness is straightforward. Compared with the construction in Sect. 3.2,
we now have ciphertexts over G1 instead of Zp and the bilinear map is required
for decryption procedure. However the total dimension � = 4 is smaller than that
in Sect. 3.1 when k = 2 (corresponding to dlin assumption), which is � = 5.

4.3 Security

We will prove the following theorem.

Theorem 3. Under the xdlin assumption, the private-key IPE scheme
described in Sect. 4.2 is adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

As before, we only need to prove the following lemma for m0 = m1.

Lemma 16. For any adversary A that makes at most Q key queries and outputs
m0 = m1, there exists adversaries B1,B2,B3 such that

Advipe*A (λ) ≤ Q · Advsd
G2
B1,B4 �→B1,B3,B4

B1
(λ) + Q · Advxsd

G2
B3,B4 �→B2,B3,B4

B2
(λ)

+Q · Advsd
G2
B1,B4 �→B1,B3,B4

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

Game sequence. With the correspondence in Sect. 4.1, the proof for Lemma 16
is almost the same as that for Lemma 2 presented in Sect. 3. Here we only give
the game sequence, summarized in Fig. 4.

Improved IPE with Adaptive Security and Full Attribute-Hiding 697

Fig. 4. Game sequence for Private-key IPE based on xdlin. The gray background
highlights the difference between adjacent games.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[x1,b · u+w1]1, . . . , [xn,b · u+wn]1, [α]T · m0.

Here b ← {0, 1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

{ [xi,b · u(134) + xi,1−b · u(2) +wi]1 }i∈[n], [α]T · m0.

We claim that Game1 ≡ Game0. The proof is analogous to that for Game1 ≡
Game0 in Sect. 3.3.

– Game2.j for j ∈ [0, q] is identical to Game1 except that the first j secret keys
are

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2.j−1 ≈c Game2.j for j ∈ [q] and give a proof sketch later.
– Game3 is identical to Game2.q except that the challenge ciphertext is

{ [xi,0 · u(124)
0 + xi,1 · u(124)

1 + xi,b · u(3) +wi]1 }i∈[n], [α]T · m0.

where u0,u1 ← Z
1×(k+1)
p . We claim that Game2.q ≡ Game3. The proof is

analogous to that for Game2.q ≡ Game3 in Sect. 3.3 using “change of basis”
technique [23,28], except that we now work with subspace span(B1,B2,B4)
corresponding to span(B1,B2) there (cf. Section 4.1).

– Game4 is identical to Game3 except that the challenge ciphertext is

[x1,0 · u0 + x1,1 · u1 +w1]1, . . . , [xn,0 · u0 + xn,1 · u1 +wn]1, [α]T · m0

698 J. Chen et al.

We claim that Game3 ≡ Game4 and the adversary has no advantage in
guessing b in Game4. The proof for the former claim is similar to that for
Game1 ≡ Game0.

Proving Game2.j−1 ≈c Game2.j . We now proves Game2.j−1 ≈c Game2.j which
completes the proof for Lemma 16. For all j ∈ [q], we employ the following game
sequence, which has been included in Fig. 4.

– Game2.j−1.1 is identical to Game2.j−1 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B3,B4) .

We claim that Game2.j−1.1 ≈c Game2.j−1. This follows from the
sdG2

B1,B4 �→B1,B3,B4
assumption with a reduction analogous to that for

Game2.j−1.1 ≈c Game2.j−1 in Sect. 3.3.
– Game2.j−1.2 is identical to Game2.j−1.1 except that the challenge ciphertext is

{ [xi,b · u(14) + xi,1−b · u(2) + xi,1−b · u(3) +wi]1 }i∈[n], [α]T · m0.

We claim that Game2.j−1.2 ≡ Game2.j−1.1. The proof is analogous to that for
Game2.j−1.2 ≡ Game2.j−1.1 in Sect. 3.3.

– Game2.j−1.3 is identical to Game2.j−1.2 except that the j-th secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B3,B4) .

We claim that Game2.j−1.3 ≈c Game2.j−1.2. This follows from
xsdG2

B3,B4 �→B2,B3,B4
assumption. The proof is analogous to that for

Game2.j−1.3 ≡ Game2.j−1.2 in Sect. 3.3. Note that, in the reduction, we simu-
late the challenge ciphertext over G1 using [basis(B‖

2,B
‖
3)]1.

– Game2.j−1.4 is identical to Game2.j−1.3 except that the challenge ciphertext is

{ [xi,b · u(14) + xi,1−b · u(2) + xi,b · u(3) +wi]1}i∈[n], [α]T · m0.

We claim that Game2.j−1.4 ≡ Game2.j−1.3. The proof is identical to that for
Game2.j−1.2 ≡ Game2.j−1.1.

– Game2.j−1.5 is identical to Game2.j−1.4 except that the jth secret key is

[α + (y1 · w1 + · · · + yn · wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2.j−1.5 ≈c Game2.j−1.4. The proof is identical to that for
Game2.j−1 ≈c Game2.j−1.1. Note that Game2.j−1.5 = Game2.j .

4.4 Step Two: From Private-Key to Public-Key

Following the “private-key to public-key” compiler [36], we transform the private-
key IPE in Sect. 4.2 to the following public-key IPE:

Improved IPE with Adaptive Security and Full Attribute-Hiding 699

– Setup(1λ, n): Run G = (p,G1, G2, GT , e) ← G(1λ). Sample A ← Z
3×2
p ,B14 ←

Z
4×2
p and pick

U,W1, . . . ,Wn ← Z
3×4
p and k ← Z

3
p.

Output

mpk = (G, [A�]1, [A�U]1, [A�W1]1, . . . , [A�Wn]1, [A�k]T)
msk = (k,W1, . . . ,Wn,B14).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈ Z
n
p . Sample r ← Z

2
p and output

sky = (K0 = [k+ (y1 · W1 + · · · + yn · Wn)B14r]2,K1 = [B14r]2)

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ Z
n
p and m ∈ GT . Sample s ← Z

2
p and

output

ctx = (C0 = [s�A�]1, {Ci = [s�A�(xi · U+Wi)]1}i∈[n], C = [s�A�k]T · m)

– Dec(ctx, sky): Parse ctx = (C0, C1, . . . , Cn, C) and sky = (K0,K1) for y =
(y1, . . . , yn). Output

m′ = C · e(y1 C1 · · · yn Cn,K1) · e(C0,K0)−1.

The correctness is straightforward.
Security. We will prove the following theorem.

Theorem 4. Under the xdlin assumption, the IPE scheme described above is
adaptively secure and fully attribute-hiding (cf. Sect. 2.1).

Concretely, we prove the following lemma, showing that the security of the
above IPE is implied by that of our private-key IPE in Sect. 4.2 and the mddh2

assumption.

Lemma 17. For any adversary A that makes at most Q key queries, there exists
adversaries B0,B such that

AdvipeA (λ) ≤ Advmddh2
B0

(λ) + Advipe*B (λ)

and Time(B0),Time(B) ≈ Time(A).

We prove Lemma 17 via the following game sequence, as in Sect. 3.4.

– Game0 is the real game in which the challenge ciphertext for xb =
(x1,b, . . . , xn,b) is of the form

[c�]1, [c�(x1,b · U+W1)]1, . . . , [c�(xn,b · U+Wn)]1, e([c�]1, [k]2) · mb

where c ← span(A). Here b ← {0, 1} is a secret bit.

700 J. Chen et al.

– Game1 is identical to Game0 except that we sample c ← Z
k+1
p when generating

the challenge ciphertext. We claim that Game1 ≈c Game0. This follows from
mddh2 assumption and the proof is analogous to that for Game1 ≈c Game0
in Sect. 3.4.

Analogous to Sect. 3.4 and Sect. 3.6, we can prove that adversary’s advantage in
Game1 is bounded by that against our private-key IPE in Sect. 4.2.

Acknowledgement. We thank the reviewers for their detailed and constructive
feedback.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4_3

2. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0_10

3. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7_22

4. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6_20

6. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2_5

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press, May 2007

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3_14

9. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_30

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

Improved IPE with Adaptive Security and Full Attribute-Hiding 701

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

11. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6_20

12. Chen, J., Gong, J.: ABE with tag made easy. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10625, pp. 35–65. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70697-9_2

13. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_19

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_8

15. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3_1

16. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7_6

17. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-
dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6_21

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7_25

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S.
(eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Cryptol-
ogy ePrint Archive Report 2006/309

21. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7_54

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3_9

https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9

702 J. Chen et al.

23. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_20

24. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

25. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_12

26. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7_11

27. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner prod-
uct encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_35

28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4_22

29. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. 96–A(1),
42–52 (2013)

30. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM CCS 07, pp. 195–203. ACM Press, October 2007

31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

32. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

33. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8_4

34. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639_7

35. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8_26

36. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8

Decentralized Multi-Client Functional
Encryption for Inner Product

Jérémy Chotard1,2,3, Edouard Dufour Sans2,3, Romain Gay2,3,
Duong Hieu Phan1, and David Pointcheval2,3(B)

1 XLIM, University of Limoges, CNRS, Limoges, France
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

{jeremy.chotard,edufoursans,romain.gay,phan,david.pointcheval}@ens.fr
3 Inria, Paris, France

Abstract. We consider a situation where multiple parties, owning data
that have to be frequently updated, agree to share weighted sums of
these data with some aggregator, but where they do not wish to reveal
their individual data, and do not trust each other. We combine tech-
niques from Private Stream Aggregation (PSA) and Functional Encryp-
tion (FE), to introduce a primitive we call Decentralized Multi-Client
Functional Encryption (DMCFE), for which we give a practical instan-
tiation for Inner Product functionalities. This primitive allows various
senders to non-interactively generate ciphertexts which support inner-
product evaluation, with functional decryption keys that can also be
generated non-interactively, in a distributed way, among the senders.
Interactions are required during the setup phase only. We prove adaptive
security of our constructions, while allowing corruptions of the clients,
in the random oracle model.

Keywords: Decentralized · Multi-Client · Functional encryption
Inner product

1 Introduction

Functional Encryption (FE) [9,15,18,28] is a new paradigm for encryption which
extends the traditional “all-or-nothing” requirement of Public-Key Encryption
in a much more flexible way. FE allows users to learn specific functions of the
encrypted data: for any function f from a class F , a functional decryption key
dkf can be computed such that, given any ciphertext c with underlying plain-
text x, using dkf , a user can efficiently compute f(x), but does not get any
additional information about x. This is the most general form of encryption as
it encompasses identity-based encryption, attribute-based encryption, broadcast
encryption.

However, whereas the input can be large, like a high-dimensional vector, the
basic definition of FE implies that the input data comes from only one party: all
the coordinates of the vector are provided by one party, and all are encrypted
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 703–732, 2018.
https://doi.org/10.1007/978-3-030-03329-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_24&domain=pdf

704 J. Chotard et al.

at the same time. In many practical applications, the data are an aggregation of
information that comes from different parties that may not trust each other.

A naive way to distribute the ciphertext generation would be to take an FE
scheme and to have a trusted party handling the setup and the key generation
phases, while the encryption procedure would be left to many clients to exe-
cute by Multi-Party Computation (MPC). This straw man construction has two
obvious weaknesses:

1. Generating any ciphertext requires potentially heavy interactions, with every-
body simultaneously on line, and the full ciphertext has to be generated at
once, with all the components being known at the same time;

2. Some authority (the trusted third party) reserves the power to recover every
client’s private data.

Multi-Client Functional Encryption [16,20] addresses the former issue of
independent generation of the ciphertext, and we introduce Decentralized Multi-
Client Functional Encryption to address the latter, without any central authority
nor master secret key.
Multi-Client Functional Encryption. In Multi-Client Functional Encryption
(MCFE), as defined in [16,20], the single input x to the encryption procedure is
broken down into an input vector (x1, . . . , xn) where the components are inde-
pendent. An index i for each client and a (typically time-based) label � are used
for every encryption: (c1 = Encrypt(1, x1, �), . . . , cn = Encrypt(n, xn, �)). Anyone
owning a functional decryption key dkf , for an n-ary function f and multiple
ciphertexts for the same label �, c1 = Encrypt(1, x1, �), . . . , cn = Encrypt(n, xn, �),
can compute f(x1, . . . , xn) but nothing else about the individual xi’s. The com-
bination of ciphertexts generated for different labels does not give a valid global
ciphertext and the adversary learns nothing from it. MCFE is similar to the
naive construction described above with MPC, except that ciphertext genera-
tion now simply takes one round, and each ciphertext ci can also be generated
independently for the others.

Decentralized Multi-Client Functional Encryption. Still, MCFE requires a trusted
party to generate a master key msk and to distribute the encryption keys eki to
the clients and the functional decryption keys dkf to the decryptors. In our sce-
nario, however, the clients do not want to rely on any authority. We would thus
be interested in a decentralized version of MCFE, where no authority is involved,
but the generation of functional decryption keys remains an efficient process
under the control of the clients themselves. We introduce the notion of Decen-
tralized Multi-Client Functional Encryption (DMCFE), in which the authority
is removed and the clients work together to generate appropriate functional
decryption keys. We stress that the authority is not simply distributed to a
larger number of parties, but that the resulting protocol is indeed decentralized :
each client has complete control over their individual data and the functional
keys they authorize the generation of.

Decentralized Multi-Client Functional Encryption for Inner Product 705

1.1 A Use Case

Consider a financial firm that wants to compute aggregates of several companies’
private data (profits, number of sales) so that it can better understand the
dynamics of a sector. The companies may be willing to help the financial firm
understand the sector as whole, or may be offered compensation for their help,
but they don’t trust the financial firm or each other with their individual data.
After setting up a DMCFE, each company encrypts its private data with a time-
stamp label under its private key. Together, they can give the financial firm a
decryption aggregation key that only reveals a sum on the companies’ private
data weighted by public information (employee count, market value) for a given
time-stamp. New keys can retroactively decrypt aggregates on old data.

1.2 Related Work

In their more general form, FE and MCFE schemes have been introduced in [5,6,
10,16–19,27,30] but unfortunately, they all rely on non standard cryptographic
assumptions (indistinguishability obfuscation, single-input FE for circuits, or
multilinear maps). It is more important in practice, and it is an interesting
challenge, to build FE for restricted (but concrete) classes of functions, satisfying
standard security definitions, under well-understood assumptions.

Inner-Product Functional Encryption. In 2015, Abdalla, Bourse, De Caro, and
Pointcheval [1] considered the question of building FE for inner-product func-
tions. In their paper, they show that inner-product functional encryption (IP-
FE) can be efficiently realized under standard assumptions like the Decisional
Diffie-Hellman (DDH) and Learning-with-Errors (LWE) assumptions [26], but
in a weak security model, named selective security. Later on, Agrawal, Libert
and Stehlé [4] considered adaptive security for IP-FE and proposed construc-
tions whose security is based on DDH, LWE or Paillier’s Decisional Composite
Residuosity (DCR) [25] assumptions.

Private Stream Aggregation (PSA). This notion, also referred to as Privacy-
Preserving Aggregation of Time-Series Data, is an older primitive introduced
by Shi et al. [29]. It is quite similar to our target DMCFE scheme, however
PSA does not consider the possibility of adaptively generating different keys for
different inner-product evaluations, but only enables the aggregator to compute
the sum of the clients’ data for each time period. PSA also typically involves a
Differential Privacy component, which has yet to be studied in the larger setting
of DMCFE. Further research on PSA has focused on achieving new properties or
better efficiency [8,11,13,21,23,24] but not on enabling new functionalities.

Multi-Input Functional Encryption. Goldwasser et al. [16] introduced the notion
of Multi-Input Functional Encryption (MIFE) which breaks down a single input
x into an input vector (x1, . . . , xn) where the components are independent (as
does MCFE), but for which there is no notion of ciphertext index or label: user
i can enter xi and encrypt it as ci = Encrypt(xi). Anyone owning a func-
tional decryption key dkf , for an n-ary function f and multiple ciphertexts

706 J. Chotard et al.

c1 = Encrypt(x1), . . . , cn = Encrypt(xn), can compute f(x1, . . . , xn) but noth-
ing else about the individual xi’s. Numerous applications of MIFE have been
given in detail in [16].

As with MCFE, general purpose MIFE schemes rely on indistinguishability
obfuscation or multilinear maps, which we currently do not know how to instan-
tiate under standard cryptographic assumptions. Extending IP-FE to the multi-
input setting has proved technically challenging. [3] builds the first Multi-Input
IP-FE, that is, each input slot encrypts a vector xi ∈ Z

m
p for some dimension

m, each functional decryption key is associated with a vector y, and decryp-
tion recovers 〈x,y〉 where x := (xi‖ · · · ‖xn), y ∈ Z

n·m
p , and n denotes the

number of slots, which can be set up arbitrarily. They prove their construction
secure under standard assumptions (SXDH, and in fact, k-Lin for any k ≥ 1) in
bilinear groups. Concurrently, [22] build a two-input (i.e. n = 2) FE using sim-
ilar assumptions in bilinear groups. Very recently, [2,12] gave a function-hiding
multi-input FE for inner products, where the functional decryption keys do not
reveal their underlying functions. [2] also gives a generic transformation from
single to multi-input for IP-FE, which gives the first multi-input constructions
whose security rely on DDH, LWE, or DCR.

In multi-input FE, every ciphertext for every slot can be combined with any
other ciphertext for any other slot, and used with functional decryption keys
to decrypt an exponential number of values, as soon as there are more than
one ciphertext per slot. This “mix-and-match” feature is crucial for some of
the applications of MIFE, such as building Indistinguishability Obfuscation [16].
However, it also means the information leaked about the underlying plaintext
is enormous, and in many applications, the security guarantees simply become
void, especially when many functional decryption keys are queried. In the case of
inner product, as soon as m well-chosen functional decryption keys are queried
(i.e. for linearly independent vectors), the plaintexts are completely revealed. In
the multi-client setting however, since only ciphertexts with the same label (think
of it as a time-stamp, for instance) can be combined for decryption, information
leakage of the plaintext is much reduced.

The fact that clients have more control over how much information is leaked
about their data, and that we remove the need for a central authority in the
case of DMCFE, makes our schemes better suited for real-world use.

1.3 Multi-Client Functional Encryption

We remark that, as for MIFE, private-key MCFE is more relevant than its public-
key counterpart (this is explained in [16], or [3] in the context of IP-FE).

Essentially, in a public-key MCFE, an encryption of unknown plaintext xi (for
some label �) can be used together with encryptions of arbitrarily chosen values
x′

j for each slot j ∈ [n] (for the same label �) and a functional decryption key
for some function f , to obtain the value f(x′

1, · · · , x′
i1

, xi, x
′
i+1, · · · , x′

n). Since
the values x′

j for j �= i are arbitrarily chosen, this reveals typically too much
information on xi for practical uses. In the case of inner product, that means
that, from Enc(i, xi, �), dky , and the public key, one can efficiently extract the

Decentralized Multi-Client Functional Encryption for Inner Product 707

values xiyi +
∑

j �=i x′
jyj for chosen x′

j , which exactly reveals the partial inner
product xiyi (see [3] for more details on the limitations of public-key IP-FE in
the multi-input setting).

Security is defined with an indistinguishability game, where the adversary has
to distinguish between encryptions of chosen plaintexts (x0

i)i∈[n] and (x1
i)i∈[n].

The inherent leakage of information about the plaintext given by functional
decryption keys dkf is captured by a Finalize procedure in the security game,
where the advantage is set to zero if the adversary performed a trivial attack,
in the sense that correctness allows the adversary to distinguish encryptions
of (x0

i)i∈[n] from (x1
i)i∈[n], simply because the underlying functions f of the

decryption keys tell apart these plaintexts, i.e. f(x0
1, · · · , x0

n) �= f(x1
1, · · · , x1

n).
In the public-key setting, in order to prevent the adversary from a triv-

ial win, one should make the restriction that the adversary is only allowed to
ask functional decryption keys dkf for functions f that satisfy f(x0

1, ·, . . . , ·) =
f(x1

1, ·, . . . , ·), f(·, x0
2, . . . , ·) = f(·, x1

2, . . . , ·), . . . , f(·, ·, . . . , x0
n) = f(·, ·, . . . , x1

n).
Again, this would essentially exclude any function. A private-key encryption
solves this issue, and is still well-suited for practical applications.

In this paper, we will thus consider this private-key setting which naturally
fits the MCFE (and DMCFE) model as each component in the plaintext is sepa-
rately provided by a different client. In such a case, the corruption of some clients
is an important issue, since several of them could collude to learn information
about other clients’ inputs. More precisely, we propose such an MCFE for Inner-
Product functions in Sect. 4, that is secure even against adaptive corruptions of
the senders.

1.4 Decentralized Multi-Client Functional Encryption

While it allows independent generation of the ciphertexts, MCFE (like MIFE)
still assumes the existence of a trusted third-party who runs the SetUp algorithm
and distributes the functional decryption keys. This third-party, if malicious or
corrupted, can easily undermine any client’s privacy. We are thus interested
in building a scheme in which such a third-party is entirely taken out of the
equation.

We thus introduce the notion of Decentralized Multi-Client Functional
Encryption (DMCFE), in which the setup phase and the generation of func-
tional decryption keys are decentralized among the same clients as the ones that
generate the ciphertexts. We are interested in minimizing interactions during
those operations. While one can do it, in a generic way, using MPC, our target
is at least a non-interactive generation of the functional decryption keys, that we
achieve in Sect. 5, again for Inner-Product functions. The one-time setup phase
might remain interactive, but this has to be done once only.

1.5 Technical Overview

We briefly showcase the techniques that allow us to build efficient MCFE
and DMCFE schemes. The schemes we introduce later enjoy adaptive security

708 J. Chotard et al.

(aka full security), where encryption queries are made adaptively by the adver-
sary against the security game, but for the sake of clarity, we will here give an
informal description of a selectively-secure scheme from the DDH assumption,
where queries are made beforehand. Namely, the standard security notion for FE
is indistinguishability-based, where the adversary has access to a Left-or-Right
oracle, that on input (m0,m1) either always encrypts m0 or always encrypts m1.
While for the adaptive security, the adversary can query this oracle adaptively,
in the selective setting, all queries are made at the beginning, before seeing the
public parameters.

We first design a secret-key MCFE scheme building up from the public-key
FE scheme introduced by Abdalla et al. [1] (itself a selectively-secure scheme)
where we replace the global randomness with a hash function (modeled as a
random oracle for the security analysis), in order to make the generation of
the ciphertexts independent for each client. The comparison is illustrated in
Fig. 1. Note that for the final decryption to be possible, one needs the function
evaluation γ to be small enough, within this discrete logarithm setting. This
is one limitation, which is still reasonable for real-world applications that use
concrete numbers, that are not of cryptographic size.

Fig. 1. Comparison of the Inner-Product FE scheme from Abdalla et al. [1] and a
similar MCFE obtained by introducing a hash function H.

If we write c0 = gr in the single input case and c0 = H(�) in the Multi-Client
case, we have ci = gxic0

si for i ∈ [n] in both cases. In the public-key scheme
from [1], si was private, and only vi = gsi was known to the encryptor. Since we
are now dealing with private encryption, the encryptor can use si. Correctness
then follows from

gγ =
∏

i cyi

i

c0dky
=

∏
i (gxic0

si)yi

c0dky
=

g
∑

i xiyic0
∑

i yisi

c0dky
=

g
∑

i xiyic0
dky

c0dky
= g〈x,y〉.

We further define this MCFE scheme and prove it selectively secure under the
DDH assumption in Appendix B.

Decentralized Multi-Client Functional Encryption for Inner Product 709

We can easily decentralize the above protocol using standard MPC tech-
niques, but as we mentioned, our main goal is to minimize interactions during
the DKeyGen protocol. This simple protocol can illustrate our main insight: we
need to provide the aggregator with the decryption key 〈s,y〉. Since the si’s are
owned individually by the clients, we are interested in a protocol that would let
them send shares from which the decryptor would recover an agreed upon Inner
Product on their individual inputs. This sounds like a job for MCFE.

More precisely, sending Ẽncrypt(si) under some other key ti would not solve
our problem, because we would still need to provide 〈t,y〉 to enable decryption,
so we send Ẽncrypt(yisi) under ti. Now we only need to compute one decryption
key: the key for the inner product with vector 1 = (1, . . . , 1), namely

∑
i ti.

There is one final caveat. The result of the inner product evaluation requires
a final discrete logarithm computation, and we are no longer operating on real-
world data, but on random elements from Zp. Any attempt to recover the discrete
logarithm is hopeless, and we are stuck with g〈s,y〉. We work around this issue
by using pairings, which effectively enable us to decrypt using only g〈s,y〉. The
standard SXDH assumption on pairing groups states that the DDH assumption
holds in both groups, so introducing pairings doesn’t compromise the security
of our scheme. Our fully-secure DMCFE from pairings, that inherits from this
approach, is described in Sect. 5.

1.6 Contributions

Practical constructions of functional encryption for specific classes of functions is
of high interest. In this paper, we focus on MCFE and DMCFE for Inner Product.

We present the first solutions for Inner-Product Functional Encryption in the
Multi-Client and Decentralized Multi-Client settings:

1. Efficiency: the proposed schemes are highly practical as their efficiency is
comparable to that of the DDH-based IP-FE scheme from [4]. A value xi is
encrypted as a unique group element Ci. The setup phase, key generation and
decryption all take time linear in the number of participants, and encryption
takes time linear in its input.

2. Security under a standard assumption: our schemes are all adaptively
secure under either the classical DDH assumption or the standard SXDH
assumption.

3. Security against adaptive corruptions: In addition, we successfully
address corruptions of clients, even adaptive ones in the MCFE setting, explor-
ing what Goldwasser et al. [16] highlighted as an “interesting direction”.

4. Non interactivity: The DMCFE scheme we present in Sect. 5 has a key
generation protocol that does not require interactions.

Refer to Fig. 2 for a comparison of the different schemes mentioned here. We leave
open the problems of considering LWE-based or Paillier-based constructions and
of extending this work beyond inner-product functions.

710 J. Chotard et al.

Fig. 2. Comparison of different cryptographic solutions to the problem of linearly
aggregating Private Multi-Client data.

2 Definitions and Security Models

This section is devoted to defining MCFE and DMCFE and the security models
that are appropriate for those primitives, in the indistinguishability setting.

2.1 Multi-Client Functional Encryption

An MCFE scheme encrypts vectors of data from several senders and allows the
controlled computation of functions on these heterogeneous data. We now define
a private-key MCFE as in [16,20]:

Definition 1 (Multi-Client Functional Encryption). A multi-client func-
tional encryption on M over a set of n senders is defined by four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public
parameters mpk, the master secret key msk and the n encryption keys eki;

– Encrypt(eki, xi, �): Takes as input a user encryption key eki, a value xi to
encrypt, and a label �, and outputs the ciphertext C�,i;

– DKeyGen(msk, f): Takes as input the master secret key msk and a function
f : Mn → R, and outputs a functional decryption key dkf ;

– Decrypt(dkf , �,C): Takes as input a functional decryption key dkf , a label �,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈ Mn for the label �, or ⊥ otherwise.

We make the assumption that mpk is included in msk and in all the encryption
keys eki as well as the functional decryption keys dkf . The correctness property
states that, given (mpk,msk, (eki)i) ← SetUp(λ), for any label �, any function
f : Mn → R, and any vector x = (xi)i ∈ Mn, if C�,i ← Encrypt(eki, xi, �), for
i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then Decrypt(dkf , �,C� = (C�,i)i) =
f(x = (xi)i).

The security model is quite similar to the one defined for FE, but as noted
in [16,20], one has to consider corruptions, since the senders do not trust each
other, and they can collude and give their secret keys to the adversary who will
play on their behalf.

Decentralized Multi-Client Functional Encryption for Inner Product 711

Definition 2 (IND-Security Game for MCFE). Let us consider an MCFE
scheme over a set of n senders. No adversary A should be able to win the fol-
lowing security game against a challenger C:

– Initialization: the challenger C runs the setup algo-
rithm (mpk,msk, (eki)i) ← SetUp(λ) and chooses a random bit b

$← {0, 1}.
It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x0, x1, �): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C�,i generated
by Encrypt(eki, x

b, �). We note that any further query for the same pair (�, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(f): A has unlimited and adap-
tive access to the DKeyGen(msk, f) algorithm for any input function f of its
choice. It is given back the functional decryption key dkf ;

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β

$← {0, 1}:
1. some QEncrypt(i, x0

i , x
1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label � and for some function f asked to QDKeyGen, there exists a

pair of vectors (x0 = (x0
i)i,x

1 = (x1
i)i) such that f(x0) �= f(x1), when

– x0
i = x1

i , for all i ∈ CS;
– QEncrypt(i, x0

i , x
1
i , �)-queries have been asked for all i ∈ HS.

We say this MCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1] − P [β = 1|b = 0]| is negligible.

Informally, this is the usual Left-or-Right indistinguishability [7], but where the
adversary should not be able to get ciphertexts or functional decryption keys
that trivially help distinguish the encrypted vectors:

1. since the encryption might be deterministic, if we allow Left-or-Right encryp-
tion queries even for corrupted encryption keys, these queries should be on
identical messages: with the encryption key, the adversary could simply re-
encrypt and compare in case of deterministic encryption;

2. intuitively, if some input is missing, no function evaluation can be done by
the adversary, so we enforce the adversary to ask QEncrypt-queries for all the
non-corrupted keys (since the adversary can generate any ciphertext itself for
the corrupted components) as soon as one label is used;

712 J. Chotard et al.

3. for any functional decryption key, all the possible evaluations should not
trivially allow the adversary to distinguish the ciphertexts generated through
QEncrypt-queries (on honest components).

In all these cases, the guess of the adversary is not considered (a random bit
β is output). Otherwise, this is a legitimate attack, and the guess b′ of the
adversary is output. We stress that we bar the adversary from querying several
ciphertexts under the same pair (�, i). In real life, it is of course the responsibility
of the senders not to encrypt under the same label twice (as explained in the
introduction, the labels are typically time-stamps, only used once).

Remark 3. While the third constraint aims at preventing the adversary from
trivially winning by guessing the bit b from the evaluation of a functional decryp-
tion, the two first might look artificial, but they are required for our proof to go
through with our constructions:

– with a probabilistic encryption scheme, one could hope to remove the first
one, but up to now, we only have deterministic constructions, which is quite
classical in the private-key setting (such as symmetric encryption);

– depending on the scheme, an encryption on an “inactive” component (a com-
ponent that has no impact on the value of a function f , for instance the ith
ciphertext in the case of fy : x → 〈x,y〉 when yi = 0) might not be needed
for a complete evaluation, as is the case in our schemes (see Sect. 4). More-
over, our keys are homomorphic: from dkfy

and dkfy ′ , one can easily obtain
dkfy +y ′ . Rather than defining the inactivity of components of functions in
the span of those queried, we simply require that ciphertexts be obtained
for every component for a given label (either through an explicit query to
QEncrypt or thanks to the encryption key obtained from QCorrupt), which is
consistent with the use-case we outlined in Sect. 1.1. One could also enforce,
by construction, all the queries to be asked and otherwise guarantee that
no information is leaked about the plaintexts, which is not the case of our
schemes.

Weaker Notions. One may define weaker variants of indistinguishability, where
some queries can only be sent before the initialization phase:

– Selective Security (sel-IND): the encryption queries (QEncrypt) are sent
before the initialization;

– Static Security (sta-IND): the corruption queries (QCorrupt) are sent before
the initialization.

2.2 Decentralized Multi-Client Functional Encryption

In MCFE, an authority owns a master secret key msk to generate the functional
decryption keys. We would like to avoid such a powerful authority, and make
the scheme totally decentralized among the owners of the data (the senders).
We thus define DMCFE, for Decentralized Multi-Client Functional Encryption.

Decentralized Multi-Client Functional Encryption for Inner Product 713

In this context, there are n senders (Si)i, for i = 1, . . . , n, who will play the role
of both the encrypting players and the functional decryption key generators,
for a functional decryptor FD. Of course, the senders do not trust each other
and they want to control the functional decryption keys that will be generated.
There may be several functional decryptors, but since they could collude and
combine all the functional decryption keys, in the description below, and in the
security model, we will consider only one functional decryptor FD. As already
noticed, we could simply use the definition of MCFE [16,20], where the setup and
the functional decryption key algorithms are replaced by MPC protocols among
the clients. But this could lead to a quite interactive process. We thus focus
on efficient one-round key generation protocols DKeyGen that can be split in a
first step DKeyGenShare that generates partial keys and the combining algorithm
DKeyComb that combines partial keys into the functional decryption key.

Definition 4 (Decentralized Multi-Client Functional Encryption). A
decentralized multi-client functional encryption on M between a set of n senders
(Si)i, for i = 1, . . . , n, and a functional decrypter FD is defined by the setup
protocol and four algorithms:

– SetUp(λ): This is a protocol between the senders (Si)i that eventually gener-
ate their own secret keys ski and encryption keys eki, as well as the public
parameters mpk;

– Encrypt(eki, xi, �): Takes as input a user encryption key eki, a value xi to
encrypt, and a label �, and outputs the ciphertext C�,i;

– DKeyGenShare(ski, �f): Takes as input a user secret key ski and a label �f , and
outputs the partial functional decryption key dkf,i for a function f : Mn → R
that is described in �f ;

– DKeyComb((dkf,i)i, �f): Takes as input the partial functional decryption keys
and eventually outputs the functional decryption key dkf ;

– Decrypt(dkf , �,C): Takes as input a functional decryption key dkf , a label �,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈ Mn for the label �, or ⊥ otherwise;

We make the assumption that mpk is included in all the secret and encryp-
tion keys, as well as the (partial) functional decryption keys. Similarly, the
function f might be included in the (partial) functional decryption keys.
The correctness property states that, given (mpk, (ski)i, (eki)i) ← SetUp(λ), for
any label �, any function f : Mn → R, and any vector x = (xi)i ∈
Mn, if C�,i ← Encrypt(eki, xi, �), for i ∈ {1, . . . , n}, and dkf ← DKeyComb
((DKeyGenShare(ski, �f))i, �f), then we have Decrypt(dkf , �,C� = (C�,i)i) =
f(x = (xi)i).

The security model is quite similar to the one defined above for MCFE, except
that for the DKeyGen protocol, the adversary has access to transcripts of the
communications and can make some senders play maliciously. Corrupt-queries
additionally reveal the secret keys ski.

Definition 5 (IND-Security Game for DMCFE). Let us consider a DMCFE
scheme between a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

714 J. Chotard et al.

– Initialization: the challenger C runs the setup pro-
tocol (mpk, (ski)i, (eki)i) ← SetUp(λ) and chooses a random bit b

$← {0, 1}.
It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x0, x1, �): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C�,i generated
by Encrypt(eki, x

b, �). We note that any further query for the same pair (�, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(i, f): A has unlimited and adap-
tive access to the (non-corrupted) senders running the DKeyGenShare(ski, f)
algorithm for any input function f of its choice. It is given back the partial
functional decryption key dkf,i;

– Corruptions queries QCorrupt(i): A can make an unlimited number of adap-
tive corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β

$← {0, 1}:
1. some QEncrypt(i, x0

i , x
1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label � and for some function f asked to QDKeyGen for all i ∈ HS,

there exists a pair of vectors (x0 = (x0
i)i,x

1 = (x1
i)i) such that f(x0) �=

f(x1), when
– x0

i = x1
i , for all i ∈ CS;

– QEncrypt(i, x0
i , x

1
i , �)-queries have been asked for all i ∈ HS.

We say this DMCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1] − P [β = 1|b = 0]| is negligible.

We define sel-IND (selective) and sta-IND (static) security for DMCFE as we
did for MCFE.

3 Notations and Assumptions

3.1 Groups

Prime Order Group. We use a prime-order group generator GGen, a proba-
bilistic polynomial time (PPT) algorithm that on input the security parameter
1λ returns a description G = (G, p, P) of an additive cyclic group G of order p
for a 2λ-bit prime p, whose generator is P .

Decentralized Multi-Client Functional Encryption for Inner Product 715

We use implicit representation of group elements as introduced in [14]. For
a ∈ Zp, define [a] = aP ∈ G as the implicit representation of a in G. More gener-
ally, for a matrix A = (aij) ∈ Z

n×m
p we define [A] as the implicit representation

of A in G:

[A] :=

⎛

⎝
a11P ... a1mP

an1P ... anmP

⎞

⎠ ∈ G
n×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G

be an element in G. Note that from a random [a] ∈ G it is generally hard
to compute the value a (discrete logarithm problem in G). Obviously, given
[a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a + b] = [a] + [b] ∈ G.

Pairing Group. We also use a pairing group generator PGGen, a PPT algo-
rithm that on input 1λ returns a description PG = (G1, G2, p, P1, P2, e) of asym-
metric pairing groups where G1, G2, GT are additive cyclic groups of order p
for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Define PT := e(P1, P2), which is a generator of GT . We again use implicit repre-
sentation of group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs

as the implicit representation of a in Gs. Given [a]1, [a]2, one can efficiently com-
pute [ab]T using the pairing e. For two matrices A, B with matching dimensions
define e([A]1, [B]2) := [AB]T ∈ GT .

Compatibility. Our construction from Sect. 4 uses a prime-order group, while
the one from Sect. 5 uses pairing groups. Since the latter use the former as a build-
ing block, we must use groups that are compatible with each other. Notice that
one can generate a prime-order group either with G := (G, p, P) $← GGen(1λ),
but also using PG := (G1, G2, p, P1, P2, e)

$← PGGen(1λ), and setting G := G1.
This is possible here because we use asymmetric pairings and rely on the SXDH
assumption in the pairing group, which is DDH in G1 and G2. More details on
computational assumptions follow.

3.2 Computational Assumptions

Definition 6 (Decisional Diffie-Hellman Assumption). The Decisional
Diffie-Hellman Assumption states that, in a prime-order group G $← GGen(1λ),
no PPT adversary can distinguish between the two following distributions with
non-negligible advantage:

{([a], [r], [ar]) | a, r
$← Zp} and {([a], [r], [s]) | a, r, s

$← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a
random element from the span of [a] for a = (1

a
), from a random element in G

2:
[a] · r = [ar] = ([r]

[ar]
) ≈ ([r]

[s]
) .

716 J. Chotard et al.

Definition 7 (Symmetric eXternal Diffie-Hellman Assumption). The
Symmetric eXternal Diffie-Hellman (SXDH) Assumption states that, in a pairing
group PG $← PGGen(1λ), the DDH assumption holds in both G1 and G2.

4 A Fully-Secure MCFE for Inner Product

After the first construction drafted in the introduction, from the Abdalla et
al. [1] selectively-secure FE, we propose another construction of MCFE for inner
product adapted from the Agrawal et al. [4] scheme. We also provide the full
security analysis under the DDH assumption, since the security proof of our
DMCFE construction will rely on it.

Overview of the Construction. This construction is an extension of the previous
one proposed in the introduction: we first extended the scheme from Abdalla et
al. [1] in the multi-client setting with a hash function. Because of the selective
security of the underlying scheme, our first proposal was just selectively secure
too. We now adapt the Agrawal et al. [4] scheme, in the same manner. This
construction and its proof of adaptive security are for the sake of clarity, since
the proof of our next DMCFE will be made clearer when reducing to this one.

4.1 Description

We use a prime-order group, and the bracket notation, as defined in Sect. 3.1.

– SetUp(λ): Takes as input the security parameter, and generates prime-order
group G := (G, p, P) $← GGen(1λ), and H a full-domain hash function onto
G

2. It also generates the encryption keys si
$← Z

2
p, for i = 1, . . . , n. The public

parameters mpk consist of (G, p, g,H), while the encryption keys are eki = si

for i = 1, . . . , n, and the master secret key is msk = ((eki)i), (in addition to
mpk, which is omitted);

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�] := H(�) ∈ G

2, and outputs the
ciphertext [ci] = [u�

� si + xi] ∈ G;
– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function

defined by y as fy (x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i si · yi) ∈ Z

n
p × Z

2
p;

– Decrypt(dky , �, ([ci])i∈[n]): Takes as input a functional decryption key dky =
(y,d), a label �, and ciphertexts. It computes [u�] := H(�), [α] =

∑
i[ci] · yi −

[u�
�] ·d, and eventually solves the discrete logarithm to extract and return α.

Note that, as for [4], the result α must be polynomially bounded to efficiently
compute the discrete logarithm in the last decryption step: let x,y ∈ Z

n
p , we

have:

[α] =
∑

i

[ci] · yi − [u�
�] · d =

∑

i

[u�
� si + xi] · yi − [u�

�] ·
∑

i

yisi

=
∑

i

[u�
�] · siyi +

∑

i

[xi] · yi − [u�
�] ·

∑

i

yisi = [
∑

i

xiyi].

Decentralized Multi-Client Functional Encryption for Inner Product 717

4.2 Security Analysis

Theorem 8 (IND-Security). The above MCFE protocol (see Sect. 4.1) is IND-
secure under the DDH assumption, in the random oracle model. More precisely,
we have

AdvIND(A) ≤ 2Q · Advddh
G

(t) + Advddh
G

(t + 4Q × tG) +
2Q

p
,

for any adversary A, running within time t, where Q is the number of (direct
and indirect—asked by QEncrypt-queries—) queries to H (modeled as a random
oracle), and tG is the time for an exponentiation in G.

We stress that this Theorem supports both adaptive encryption queries and
adaptive corruptions.

Proof Technique. To obtain adaptive security, we use a technique that consists
of first proving perfect security in the selective variant of the involved games,
then, using a guessing (a.k.a. complexity leveraging) argument, which incurs an
exponential security loss, we obtain the same security guarantees in the adaptive
games. Since the security in the selective game is perfect (the advantage of any
adversary is exactly zero), the exponential security loss is multiplied by a zero
term, and the overall adaptive security is preserved. This technique has been used
before in [31] in the context of Attribute-Based Encryption, or more recently,
in [2,3] in the context of multi-input IP-FE. We defer to [31, Remark 1] and [3,
Remark 5] for more details on this proof technique.

Proof. We proceed using hybrid games, described in Fig. 3. Let A be a PPT
adversary. For any game Gindex, we denote by Advindex := |Pr[Gindex(A)|b =
1]−Pr[Gindex(A)|b = 0]|, where the probability is taken over the random coins of
Gindex and A. Also, by event Gindex(A), or just Gindex when there is no ambiguity,
we mean that the Finalize procedure in game Gindex (defined as in Definition 2)
returns β = 1 from the adversary’s answer b′ when interacting with A.

Game G0: This is the IND-security game as given in Definition 2. Note that the
hash function H is modeled as a random oracle RO onto G

2. This is essentially
used to generate [u�] = H(�).

Game G1: We simulate the answers to any new RO-query by a truly random
pair in G

2, on the fly. The simulation remains perfect, and so Adv0 = Adv1.
Game G2: We simulate the answers to any new RO-query by a truly random

pair in the span of [a] for a := (1
a
), with a

$← Zp. This uses the Multi-
DDH assumption, which tightly reduces to the DDH assumption using the
random-self reducibility (see Lemma 10, in Appendix A): Adv1 − Adv2 ≤
Advddh

G
(t + 4Q × tG), where Q is the number of RO-queries and tG the time

for an exponentiation.
Game G3: We simulate any QEncrypt query as the encryption of x0

i instead of
xb

i and go back for the answers to any new RO query by a truly random pair
in G

2.

718 J. Chotard et al.

Fig. 3. Games for the proof of Theorem 8. Here, RF, RF′, RF′′ are random functions
onto G

2, Zp, and Z
∗
p, respectively, that are computed on the fly. In each procedure, the

components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 2.

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G2 and G3 will be proven
using a hybrid technique on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since
a second similar query is answered as the first one. We detail this proof because
the technique is important.

G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 � G3.q.2: We first change the distribution of the output of the q-th RO-

query, from uniformly random in the span of [a] to uniformly random over
G

2, using the DDH assumption. Then, we use the basis ((1
a
), (−a

1
)) of Z

2
p, to

write a uniformly random vector over Z
2
p as u1 ·a+u2 ·a⊥, where u1, u2

$← Zp.
Finally, we switch to u1 · a + u2 · a⊥ where u1

$← Zp, and u2
$← Z

∗
p, which

only changes the adversary view by a statistical distance of 1/p: Adv3.q.1 −
Adv3.q.2 ≤ Advddh

G
(t) + 1/p. The last step with u2 ∈ Z

∗
p will be important to

guarantee that u�
� a

⊥ �= 0.

Decentralized Multi-Client Functional Encryption for Inner Product 719

Fig. 4. Games G�
3.q.2 and G�

3.q.3, with q ∈ [Q], for the proof of Theorem 8. Here, RF,
RF′ are random functions onto G

2, and Zp, respectively, that are computed on the fly.
In each procedure, the components inside a solid (gray) frame are only present in the
games marked by a solid (gray) frame.

G3.q.2 � G3.q.3: We now change the generation of the ciphertext [ci] := [u�
�] ·

si+[xb
i] by [ci] := [u�

�]·si+[x0
i], where [u�] corresponds to the q-th RO-query.

We then prove this does not change the adversary’s view.
Note that if the output of the q-th RO-query is not used by QEncrypt-queries,
then the games G3.q.2 and G3.q.3 are identical. But we can show this is true
too when there are RO-queries that are really involved in QEncrypt-queries,
and show that Adv3.q.2 = Adv3.q.3 in that case too, in two steps. In Step 1,
we show that there exists a PPT adversary B� such that Adv3.q.t = (p2 +
1)n ·Adv�

3.q.t(B�), for t = 2, 3, where the games G�
3.q.2 and G�

3.q.3 are selective
variants of games G3.q.2 and G3.q.3 respectively (see Fig. 4), where QCorrupt
queries are asked before the initialization phase. In Step 2, we show that
for all PPT adversaries B�, we have Adv�

3.q.2(B�) = Adv�
3.q.3(B�). This will

conclude the two steps.
Step 1. We build a PPT adversary B� playing against G�

3.q.t for t = 2, 3, such
that Adv3.q.t = (p2 + 1)n · Adv�

3.q.t(B�).

720 J. Chotard et al.

Adversary B� first guesses for all i ∈ [n], zi
$← Z

2
p ∪ {⊥}, which it sends

to its selective game G�
3.q.t. That is, each guess zi is either a pair of values

(x0
i , x

1
i) queried to QEncrypt, or ⊥, which means no query to QEncrypt. Then,

it simulates A’s view using its own oracles. When B� guesses successfully (call
E that event), it simulates A’s view exactly as in G3.q.t. If the guess was not
successful, then B� stops the simulation and outputs a random bit β. Since
event E happens with probability (p2 + 1)−n and is independent of the view
of adversary A: Adv�

3.q.t(B�) is equal to

∣
∣
∣ Pr[G�

3.q.t|b = 0, E] · Pr[E] +
Pr[¬E]

2
− Pr[G�

3.q.t|b = 1, E] · Pr[E] − Pr[¬E]
2

∣
∣
∣

= Pr[E] · |Pr[G�
3.q.t|b = 0, E] − Pr[G�

3.q.t|b = 1, E]| = (p2 + 1)−n · Adv3.q.t.

Step 2. We assume the values (zi)i∈[n] sent by B� are consistent, that is, they
don’t make the game end and return a random bit, and Finalize on b′ does
not return a random bit independent of b′ (call E′ this event).
We show that games G�

3.q.2 and G�
3.q.3 are identically distributed, conditioned

on E′. To prove it, we use the fact that the two following distributions are
identical, for any choice of γ:

(si)i∈[n],zi=(x0
i ,x1

i)
and

(
si + a⊥ · γ(xb

i − x0
i)

)
i∈[n],zi=(x0

i ,x1
i)

,

where a⊥ := (−a
1

) ∈ Z
2
p and si

$← Z
2
p, for all i = 1, . . . , n. This is true since

the si are independent of the zi (note that this is true because we are in
a selective setting, while this would not necessarily be true with adaptive
QEncrypt-queries). Thus, we can re-write si into si +a⊥ · γ(xb

i − x0
i) without

changing the distribution of the game.
We now take a look at where the extra terms a⊥ · γ(xb

i − x0
i) actually appear

in the adversary’s view:

– They do not appear in the output of QCorrupt, because we assume event E′

holds, which implies that if zi �= ⊥, then i is not queried to QCorrupt or
x1

i = x0
i .

– They might appear in QDKeyGen(y) as

dky =
∑

i∈[n]

si · yi + a⊥ · γ
∑

i:zi=(x0
i ,x1

i)
yi(xb

i − x0
i) .

But the gray term equals 0 by the constraints for E′ in Definition 2: for all
i ∈ HS, zi �= ⊥; if i ∈ CS and zi �= ⊥, x1

i = x0
i ; and f(x0) = f(x1), hence∑

i:zi=(x0
i ,x1

i)
yi(xb

i − x0
i) = 0.

– Eventually, they appear in the output of the QEncrypt-queries which use [u�]
computed on the q-th RO-query, since for all others, the vector [u�] lies in
the span of [a], and a�a⊥ = 0. We thus have [ci] := [u�

�] · si + (xb
i −

x0
i)γ[u�

�]a⊥ + [xb
i]. Since u�

� a
⊥ �= 0, we can choose γ = −1/u�

� a
⊥ mod p,

and then [ci] = [u�
�] · si + [x0

i], which is the encryption of x0
i . We stress that

Decentralized Multi-Client Functional Encryption for Inner Product 721

γ is independent of the index i, and so this simultaneously converts all the
encryptions of xb

i into encryptions of x0
i . Finally, reverting these statistically

perfect changes, we obtain that [ci] is identically distributed to [u�
�] ·si +[x0

i],
as in game G�

3.q.3.

Thus, when event E′ happens, the games are identically distributed. When ¬E
happens, the games both return β

$← {0, 1}: Adv�
3.q.2(B�) = Adv�

3.q.3(B�). As a
conclusion, we get Adv3.q.2 = Adv3.q.3.

G3.q.3 � G3.q+1.1: This transition is the reverse of G3.q.1 � G3.q.2, namely, we
use the DDH assumption to switch back the distribution of [u�] computed
on the q-th RO-query from uniformly random over G

2 (conditioned on the
fact that u�

� a
⊥ �= 0) to uniformly random in the span of [a]: Adv3.q.3 −

Adv3.q+1.1 ≤ Advddh
G

(t) + 1/p.

As a conclusion, since G3.Q+1.1 = G3, we have Adv2 − Adv3 ≤ 2Q(Advddh
G

(t) +
1/p). In addition, Adv3 = 0, which concludes the proof.

5 A Statically-Secure DMCFE for Inner Product

Overview of the Scheme. Our construction of MCFE for inner product uses func-
tional decryption keys dky = (y, 〈s,y〉) = (y,d), where d = 〈s,y〉 =

∑
i siyi =

〈t,1〉, with ti = siyi, for i = 1, . . . , n, and 1 = (1, . . . , 1). Hence, one can
split msk = s into mski = si, define T (mski,y) = ti = siyi and F (t) = 〈t,1〉.
We could thus wish to use the above generic construction from the introduction
with our MCFE for inner product, that is self-enabling, to describe a DMCFE
for inner product. However, this is not straightforward as our MCFE only allows
small results for the function evaluations, since a discrete logarithm has to be
computed. While, for real-life applications, it might be reasonable to assume
the plaintexts and any evaluations on them are small enough, it is impossible
to recover such a large scalar as d = 〈s,y〉, which comes up when we use our
scheme to encrypt encryption keys.

Nevertheless, following this idea we can overcome the concern above with
pairings: One can only recover [d], but using a pairing e : G1 × G2 → GT , one
can use our MCFE in both G1 and G2. This allows us to compute the functional
decryption in GT , to get [〈x,y〉]T , which is decryptable as 〈x,y〉 is small enough.

5.1 Construction

Let us describe the new construction, using an asymmetric pairing group, as in
Sect. 3.1.

– SetUp(λ): Generates PG := (G1, G2, p, P1, P2, e)
$← PGGen(1λ). Samples two

full-domain hash functions H1 and H2 onto G
2
1 and G

2
2 respectively. Each

sender Si generates si
$← Z

2
p for all i ∈ [n], and interactively generates Ti

$←
Z
2×2
p such that

∑
i∈[n] Ti = 0. One then sets mpk ← (PG,H1,H2), and for

i = 1, . . . , n, eki = si, ski = (si,Ti);

722 J. Chotard et al.

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�]1 := H1(�) ∈ G

2
1, and outputs

the ciphertext [ci]1 = [u�
� si + xi]1 ∈ G1;

– DKeyGenShare(ski,y): on input y ∈ Z
n
p that defines the function fy (x) =

〈x,y〉, and the secret key ski = (si,Ti), it computes [vy]2 := H2(y) ∈ G
2
2,

[di]2 := [yi · si + Tivy]2, and returns the partial decryption key as dky ,i :=
([di]2).

– DKeyComb((dky ,i)i∈[n],y): the partial decryption keys (dky ,i = ([di]2))i∈[n],
lead to dky := (y, [d]2), where [d]2 =

∑
i∈[n][di]2;

– Decrypt(dky , �, ([ci]1)i∈[n]): on input the decryption key dky = [d]2, the label
�, and ciphertexts ([ci]1)i∈[n], it computes [α]T :=

∑
i∈[n] e([ci]1, [yi]2) −

e([u�]�1 , [d]2), and eventually solve the discrete logarithm in basis [1]T to
extract and return α.

Correctness: Let x,y ∈ Z
n
p , we have:

[d]2 =
∑

i∈[n]

[di]2 =
∑

i∈[n]

[yi · si + Tivy]2

= [
∑

i∈[n]

yi · si]2 + [vy]2 ·
∑

i∈[n]

Ti = [
∑

i∈[n]

yi · si]2.

Thus:

[α]T :=
∑

i∈[n]

e([ci]1, [yi]2) − e([u�]�1 , [d]2)

=
∑

i

[(u�
� si + xi)yi]T − [

∑

i∈[n]

yiu
�
� si]T = [

∑

i

xiyi]T .

5.2 Security Analysis

Theorem 9 (sta-IND-Security). The above DMCFE protocol (see Sect. 5.1)
is sta-IND secure under the SXDH assumption, in the random oracle model.
Namely, for any PTT adversary A, there exist PPT adversaries B1 and B2 such
that:

AdvIND(A) ≤ 2Q1 · Advddh
G1

(t) + 2Q2 · Advddh
G2

(t) +
2Q1 + 2Q2

p

+ Advddh
G1

(t + 4Q1 × tG1) + 2 · Advddh
G2

(t + 4Q2 × tG2),

where Q1 and Q2 are the number of (direct and indirect) queries to H1 and H2

respectively (modeled as random oracles). The former being asked by QEncrypt-
queries and the latter being asked by QDKeyGen-queries.

We stress that this Theorem supports adaptive encryption queries, but static
corruptions only.

Decentralized Multi-Client Functional Encryption for Inner Product 723

Proof. We proceed using hybrid games, described in Fig. 5, with similar nota-
tions as in the previous proof.

Game G0: This is the sta-IND-security game as given in Definition 5, but with
the set CS of corrupted senders known from the beginning. Note that the hash
functions H1 and H2 are modeled as random oracles. The former is used to
generate [u�]1 := H1(�) ∈ G

2
1 and the latter [vy]2 := H2(y) ∈ G

2
2.

Game G1: We replace the hash function H2 by a random oracle RO2 that
generates random pairs from G

2
2 on the fly. In addition, for any QDKeyGen-

query on a corrupted index i ∈ CS, one generates the partial functional
decryption key by itself, without explicitly querying QDKeyGen. Hence, we
can assume that A does not query QCorrupt and QDKeyGen on the same
indices i ∈ [n]. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: Now, the outputs of RO2 are uniformly random in the span of [b]2
for b := (1

a′), with a′ $← Zp. As in the previous proof, we have Adv1 −Adv2 ≤
Advddh

G2
(t + 4Q2 × tG2), where Q2 is the number of RO2-queries and tG2 the

time for an exponentiation.
Game G3: We replace all the partial key decryption answers by dky ,i := [yi ·

si +wi · (b⊥)�vy +Tivy]2, for new wi
$← Z

2
p, such that

∑
i wi = 0, for each

y. We show below that Adv2 = Adv3.
Game G4: We switch back the distribution of all the vectors [vy]2 output by

RO2, from uniformly random in the span of [b]2, to uniformly random over
G

2
2, thus back to H2(y). This transition is reverse to the two first transitions

of this proof: Adv3 − Adv4 ≤ Advddh
G2

(t + 4Q2 × tG2).

In order to prove the gap between G2 and G3, we do a new hybrid proof:

Game G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 � G3.q.2: As in the previous proof, we first change the distribution of

the output of the q-th RO2-query, from uniformly random in the span of
[b] to uniformly random over G

2, using the DDH assumption. Then, we use
the basis ((1

a′), (−a′

1
)) of Z

2
p, to write a uniformly random vector over Z

2
p

as v1 · b + v2 · b⊥, where v1, v2
$← Zp. Finally, we switch to v1 · b + v2 · b⊥

where v1
$← Zp, and v2

$← Z
∗
p, which only changes the adversary view by a

statistical distance of 1/p: Adv3.q.1 −Adv3.q.2 ≤ Advddh
G

(t)+1/p. The last step
with v2 ∈ Z

∗
p will be important to guarantee that v�

y b
⊥ �= 0.

G3.q.2 � G3.q.3: We now change the simulation of dky ,i from dky ,i = [yi · si +
Tivy]2 to dky ,i = [yi ·si +RFi(y)+Tivy]2, with some RFi functions onto Z

2
p

such that
∑

i RFi(y) = 0 for any input y. We prove Adv3.q.2 = Adv3.q.3.
To this aim, we use the fact that the two following distributions are identical,
for any choice of wi

$← Z
2
p, such that

∑
i wi = 0:

(Ti)i∈HS and (Ti + wi(b⊥)�)i∈HS ,

where for all i ∈ [n], Ti
$← Z

2×2
p such that

∑
i Ti = 0, and b⊥ := (−a′

1
).

The extra terms (wi(b⊥)�)i∈HS only appear in the output of the queries to
QDKeyGen which use the vector [vy]2 computed on the q-th RO2-query (if

724 J. Chotard et al.

Fig. 5. Games for the proof of Theorem 9. Here, RF, RF′ are random functions onto
G

2
2 and Zp, respectively, that are computed on the fly. The RFi are random functions

conditioned on the fact that
∑

i∈[n] RFi is the zero function. In each procedure, the

components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 5

there are such queries), because for all other queries, [vy]2 lies in the span of
[b]2, and b�b⊥ = 0. We thus have dky ,i := [yi · si + wi · (b⊥)�vy + Tivy]2.
Since vy is such that v�

y b
⊥ �= 0, (b⊥)�vy �= 0. In that case, the vectors

Decentralized Multi-Client Functional Encryption for Inner Product 725

wi · (b⊥)�vy are uniformly random over Z
2
p such that

∑
i wi · (b⊥)�vy = 0,

which is as in G3.q.3, by setting RFi(y) := wi · (b⊥)�vy .
G3.q.3 � G3.q+1.1: This transition is the reverse of G3.q.1 � G3.q.2, namely, we

use the DDH assumption to switch back the distribution of [vy]2 to uniformly
random in the span of [b]2: Adv3.q.3 − Adv3.q+1.1 ≤ Advddh

G2
(t) + 1/p.

Then one can note that G3.Q2+1.1 = G3, but also that in Game G4, all the
dky ,i output by QDKeyGen can be computed only knowing

∑
i∈[n] si · yi, which

is exactly the functional decryption key dky from our MCFE in Sect. 4.1. This
follows from the fact that the values RFi(y) perfectly mask the vectors si · yi,
up to revealing

∑
i∈[n] si · yi (as the RFi must sum up to the zero function).

Thus, we can reduce to the IND-security of the MCFE from Sect. 4.1 (or even
sta-IND-security) by designing an adversary B against the MCFE from Sect. 4.1:
Adversary B first samples Ti

$← Z
2×2
p for all i ∈ [n], such that

∑
i∈[n] Ti = 0.

It sends CS given by A (set of static corruptions), then it receives mpk from the
MCFE security game, as well as the secret keys si for i ∈ CS. It forwards mpk
as well as (si,Ti) for i ∈ CS to A. Then

– B answers oracle calls to RO1, RO2 and QEncrypt from A using its own oracles.
– To answer QDKeyGen(i,y): if i is the last non-corrupted index for y, B queries

its own QDKeyGen oracle on y, to get dky :=
∑

i si · yi ∈ Z
2
p, computes

[vy]2 := H2(y), and returns dky ,i := [dky +RFi(y)+Tivy]2 to A. Otherwise,
it computes [vy]2 := H2(y), and returns dky ,i := [RFi(y)+Tivy]2 to A. The
random functions RFi are computed on the fly, such that their sum is the
zero function.

We stress that this last simulation requires to know CS and HS, hence static
corruptions only. From this reduction, one gets

Adv4 ≤ 2Q1 · Advddh
G1

(t) + Advddh
G1

(t + 4Q1 × tG1) +
2Q1

p
,

where Q1 denotes the number of calls to RO1, tG1 denotes the time to compute
an exponentiation in G1. This concludes the proof.

6 Conclusion

Multi-Client Functional Encryption and Decentralized Cryptosystems are invalu-
able tools for many emerging applications such as cloud services or big data.
These applications often involve many parties who contribute their data to
enable the extraction of knowledge, while protecting their individual privacy
with minimal trust in the other parties, including any central authority. We make
an important step towards combining the desired functionalities and properties
by introducing the notion of Decentralized Multi-Client Functional Encryption.
It opens some interesting directions:

726 J. Chotard et al.

– For inner-product, in the DDH-based setting with ElGamal-like encryption,
we have a strong restriction on the plaintexts, since the inner-product has to
be small, in order to allow complete decryption of the scalar evaluation. It is
an interesting problem to consider whether the LWE-based and DCR-based
schemes can address this issue.

– Getting all the desired properties, namely efficiency, new functionalities and
the strongest security level, is a challenging problem. One of the main chal-
lenges is to construct an efficient, non-interactive DMCFE which is fully secure
(adaptive encryptions and adaptive corruptions), for a larger class of func-
tions than that of inner-product functions. The security analyses of our con-
crete constructions heavily rely on the linear properties of inner-product func-
tions, however, the global methodology of the constructions themselves is not
restricted to the inner-product setting. Therefore, new constructions could
follow it.

Acknowledgments. This work was supported in part by the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Cryp-
toCloud), the European Community’s Horizon 2020 Project FENTEC (Grant Agree-
ment no. 780108), the Google PhD fellowship, the ANR ALAMBIC (ANR16-CE39-
0006) and the French FUI ANBLIC Project.

A Multi DDH Assumption

Theorem 10. For any distinguisher A running within time t, the best advan-
tage A can get in distinguishing

Dm = {(X, (Yj , Zj = CDH(X,Yj))j) | X,Yj
$← G, j = 1, . . . , m}

D′
m = {(X, (Yj , Zj)j) | X,Yj , Zj

$← G, j = 1, . . . , m}.

is bounded by Advddh(t + 4m × tG), where tG is the time for an exponentiation
in G.

Proof. One can first note that the best advantage one can get, within time t,
between

D = {(X,Y,Z = CDH(X,Y)) | X,Y
$← G}

D′ = {(X,Y,Z) | X,Y,Z
$← G}.

is bounded by Advddh(t). This is actually the DDH assumption. One can note
that Dm and D′

m can be rewritten as

Dm = {(X, (Yj = gujY vj , Zj = Xuj · CDH(X,Y)vj)j) | X,Y
$← G, uj , vj

$← Zp}
D′

m = {(X, (Yj = gujY vj , Zj = Xuj · Zvj)j) | X,Y,Z
$← G, uj , vj

$← Zp},

Since, from (X,Y,Z), the m tuples require 4 additional exponentiations per
index j, one get the expected bound.

Decentralized Multi-Client Functional Encryption for Inner Product 727

B A Selectively-Secure MCFE

B.1 Description

In this section, we formally present the selectively secure MCFE scheme for inner
product we described in Sect. 1. It is inspired by Abdalla et al.’s scheme [1]:

– SetUp(λ): Takes as input the security parameter, and generates a group G of
prime order p ≈ 2λ, g ∈ G a generator, and H a full-domain hash function
onto G. It also generates the encryption keys si

$← Zp, for i = 1, . . . , n,
and sets s = (si)i. The public parameters mpk consist of (G, p, g,H), while
the master secret key is msk = s and the encryption keys are eki = si for
i = 1, . . . , n (in addition to mpk, which is omitted);

– Encrypt(eki, xi, �): Takes as input the value xi to encrypt, under the key
eki = si and the label �. It computes [u�] := H(�) ∈ G, and outputs the
ciphertext [ci] = [u�si + xi] ∈ G;

– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function
defined by y as fy (x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i siyi) ∈ Z

n
p × Zp;

– Decrypt(dky , �, ([ci])i∈[n]): Takes as input a decryption key dky = (y, d), a
label �. It computes [u�] := H(�), [α] =

∑
i yi · [ci] − d · [u�], and eventually

solves the discrete logarithm to extract and return α.

As for Abdalla et al.’s scheme [1], the result α should not be too large to allow
the final discrete logarithm computation.

Correctness: if the scalar dk in the decryption functional key dky = (y, dk) is
indeed dk = 〈s,y〉, then

[α] =
∑

i

yi · [ci] − d · [u�] =
∑

i

yi · [u�si + xi] − [u�] ·
∑

i

siyi

= [u�] ·
∑

i

siyi + [
∑

i

xiyi] − [u�] ·
∑

i

siyi = [
∑

i

xiyi].

B.2 Selective Security

Like Abdalla et al.’s original scheme [1], our protocol can only be proven secure in
the weaker security model, where the adversary has to commit in advance to all of
the pairs of messages for the Left-or-Right encryption oracle (QEncrypt-queries).
However, it can adaptively ask for functional decryption keys (QDKeyGen-
queries) and encryption keys (QCorrupt-queries). Concretely, the challenger is
provided (plaintext,label) pairs: (xb

j,i, �j)b∈{0,1},i∈[n],j∈[Q], where Q is the num-
ber of query to QEncrypt(i, ·, ·), each one for a different label �j (note that in the
security model, we assume each slots are queried the same number of time, on
different labels). The challenge ciphertexts Ci,j = Encrypt(eki, x

b
j,i, �j), for the

random bit b, are returned to the adversary.
Note that the adversary committing to challenge ciphertexts also limits its

ability to corrupt users during the game: it must corrupt clients for which it
didn’t ask a ciphertext and cannot corrupt any client from which it asked a
ciphertext for x0

j,i �= x1
j,i.

728 J. Chotard et al.

B.3 Security Analysis

Theorem 11 (sel-IND Security). The MCFE protocol described above (see
Appendix B.1) is sel-IND secure under the DDH assumption, in the random
oracle model. More precisely, we have

AdvIND(A) ≤ 2Q · Advddh
G

(t),

for any adversary A, running within time t, where Q is the number of encryption
queries per slot.

Fig. 6. Games G0, G1, (G2.)q∈[Q+1], for the proof of Theorem 11. Here, RF is a random
function onto G, that is computed on the fly. Note that QEncrypt is only used as a
subroutine of the initialization of the game and is not accessible to the adversary. In
each procedure, the components inside a solid frame are only present in the games
marked by a solid frame.

Proof. We proceed using hybrid games, described in Fig. 6, with the same nota-
tions as in the previous proofs.

Game G0: This is the sel-IND security game as given in Definition 2 (see the
paragraph about weaker models), with all the encryption queries being sent

Decentralized Multi-Client Functional Encryption for Inner Product 729

first: they are stored in zj,i = (x0
j,i, x

1
j,i), for j ∈ [Q] and i ∈ [n], where j is for

the j-th H-query that specifies the label �j and i is for the index of the sender.
If the query is not asked, we have zj,i = ⊥. Note that the hash function H is
modeled as a random oracle RO onto G. This is used to generate [u�] = H(�).

Game G1: We simulate the answers to any new RO query by computing a
truly random element of G, on the fly. The simulation remains perfect, so
Adv0 = Adv1.

Game G2: We simulate every encryption as the encryption of x0
i instead of xb

i .

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G1 and G2 will be proven
using an hybrid argument on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since
a second similar query is answered as the first one.

G2.1: This is exactly game G1. Thus, Adv1 = Adv2.1.
G2.q � G2.q+1: We change the generation of the ciphertexts from [cq,i] :=

[u�qsi + xb
q,i] to [cq,i] := [u�qsi + x0

q,i]. We proceed in three steps:
Step 1. We use the fact that the two following distributions are identical, for
any choice of γ:

(si)i∈[n],zq,i=(x0
q,i,x

b
q,i)

and
(
si + γ(x0

q,i − xb
q,i)

)
i∈[n],zq,i=(x0

q,i,x
1
q,i)

,

where si
$← Zp, for all i ∈ [n]. This is true since the si are independent of

the zq,i (we are in a selective setting, so the si’s are generated after the zq,i’s
have been chosen). Thus, we can re-write si into si + γ(x0

q,i − xb
q,i) without

changing the distribution of the game.
Note that when Finalize does not output a random bit β

$← {0, 1} independent
of the guess b′, γ does not appear in the outputs of QCorrupt(i), since it
must be that x0

i = x1
i or zq,i = ⊥, and it does not appear in the output of

QDKeyGen(y) either, since
∑

i si · yi +
∑

i γ(x0
q,i − xb

q,i)yi , where the gray
term equals zero by Definition 1. The fact that γ does not appear in the
outputs of these oracles will be crucial for step 2, which applies DDH on [γ].
Step 2. We use the DDH assumption to replace the [u�qγ] that appear in the
output of the q-th query to QEncrypt queries with [r�q + 1] with r�q

$← Zp.
This is possible since the rest of the adversary view can be generated only
from [γ] and [r�q + 1]. This increases the adversary’s advantage by no more
than Advddh

G
(t). We now have:

[cq,i] :=[u�qsi + (x0
q,i − xb

q,i)(r�q + 1) + xb
q,i]

=[u�qsi + r�q (x
0
q,i − xb

q,i) + x0
q,i − xb

q,i + xb
q,i]

=[u�qsi + r�q (x
0
q,i − xb

q,i) + x0
q,i].

Step 3. We switch [r�q] in the output of the q-query to QEncrypt back to [u�qγ],
using the DDH assumption again. This is possible since the adversary’s view
is simulatable solely from [γ], [u�q], and [r�q]. We finally undo the distribution
change on the si, which brings us to G2.q+1.

730 J. Chotard et al.

As a conclusion, since G2.Q+1 = G2, we have Adv1 − Adv2 ≤ 2Q · Advddh
G

(t). In
addition, Adv2 = 0, which concludes the proof.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 21

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

5. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

6. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, part II. LNCS, vol. 10032, pp.
557–587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-
6 19

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

8. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21
(2016)

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

11. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

12. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-319-76581-5_9

Decentralized Multi-Client Functional Encryption for Inner Product 731

13. Emura, K.: Privacy-preserving aggregation of time-series data with public verifi-
ability from simple assumptions. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017.
LNCS, vol. 10343, pp. 193–213. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59870-3 11

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

16. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

20. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013). http://eprint.
iacr.org/2013/774

21. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 10

22. Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilin-
ear maps. IACR Cryptology ePrint Archive 2016, 432 (2016). http://eprint.iacr.
org/2016/432

23. Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing.
In: ICNP 2012, pp. 1–10. IEEE Computer Society (2012)

24. Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39077-7 4

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

27. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
463–472. ACM Press, October 2010

https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-32009-5_11
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
https://doi.org/10.1007/978-3-642-39884-1_10
http://eprint.iacr.org/2016/432
http://eprint.iacr.org/2016/432
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/3-540-48910-X_16

732 J. Chotard et al.

28. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 27

29. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011. The Internet Society, February 2011

30. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 33

31. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

Practical Fully Secure Unrestricted Inner
Product Functional Encryption Modulo p

Guilhem Castagnos1(B), Fabien Laguillaumie2, and Ida Tucker2

1 Université de Bordeaux, Inria, CNRS, IMB UMR 5251, 33405 Talence, France
guilhem.castagnos@math.u-bordeaux.fr

2 Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Inria,
LIP UMR 5668, 69007 Lyon Cedex 07, France

{fabien.laguillaumie,ida.tucker}@ens-lyon.fr

Abstract. Functional encryption (FE) is a modern public-key crypto-
graphic primitive allowing an encryptor to finely control the information
revealed to recipients from a given ciphertext. Abdalla, Bourse, De Caro,
and Pointcheval (PKC 2015) were the first to consider FE restricted to
the class of linear functions, i.e. inner products. Though their schemes are
only secure in the selective model, Agrawal, Libert, and Stehlé (CRYPTO
16) soon provided adaptively secure schemes for the same functionality.
These constructions, which rely on standard assumptions such as the
Decision Diffie-Hellman (DDH), the Learning-with-Errors (LWE), and
Paillier’s Decision Composite Residuosity (DCR) problems, do however
suffer of various practical drawbacks. Namely, the DCR based scheme
only computes inner products modulo an RSA integer which is oversized
for many practical applications, while the computation of inner products
modulo a prime p either requires, for their DDH based scheme, that the
inner product be contained in a sufficiently small interval for decryption
to be efficient, or, as in the LWE based scheme, suffers of poor efficiency
due to impractical parameters.

In this paper, we provide adaptively secure FE schemes for the inner
product functionality which are both efficient and allow for the evalua-
tion of unbounded inner products modulo a prime p. Our constructions
rely on new natural cryptographic assumptions in a cyclic group contain-
ing a subgroup where the discrete logarithm (DL) problem is easy which
extend Castagnos and Laguillaumie’s assumption (RSA 2015) of a DDH
group with an easy DL subgroup. Instantiating our generic constructions
using class groups of imaginary quadratic fields gives rise to the most
efficient FE for inner products modulo an arbitrary large prime p. One
of our schemes outperforms the DCR variant of Agrawal et al.’s protocols
in terms of size of keys and ciphertexts by factors varying between 2 and
20 for a 112-bit security.

Keywords: Inner product functional encryption · Adaptive security
Diffie-Hellman assumptions

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 733–764, 2018.
https://doi.org/10.1007/978-3-030-03329-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_25&domain=pdf

734 G. Castagnos et al.

1 Introduction

Traditional public key encryption (PKE) provides an all-or-nothing approach
to data access. This somewhat restricting property implies that a receiver can
either recover the entire message with the appropriate secret key, or learns noth-
ing about the encrypted message. In many real life applications however, the
encryptor may wish for a more subtle encryption primitive, allowing him to dis-
close distinct and restricted information on the encrypted data according to the
receivers privileges. For instance, in a cloud-based email service, users may want
the cloud to perform spam filtering on their encrypted emails but learn nothing
more about the contents of these emails. Here the cloud should only learn one
bit indicating whether or not the message is spam, but nothing more.

Functional encryption (FE) [BSW11,O’N10] emerged from a series of refine-
ments of PKE, starting with identity based encryption [Sha84], which was later
extended to fuzzy identity-based encryption by Sahai and Waters [SW05]. This
work also introduced attribute-based encryption, where a message is encrypted
for all users that have a certain set of attributes. FE encompasses all three of
these primitives, and goes further still, as it allows not only to devise policies
regulating which users can decrypt, but also provides control over which piece or
function of the data each user can recover. Specifically, FE allows for a receiver
to recover a function f(y) of the encrypted message y, without learning any-
thing else about y. The primitive requires a trusted authority, which possesses a
master secret key msk, to deliver secret keys skfi

– associated to specific func-
tionalities fi – to the appropriate recipients. The encryptor computes a single
ciphertext associated to the plaintext c = Encrypt(y), from which any user, given
a decryption key skfi

, can recover fi(y) = Decrypt(ski, c).
There exist two main security definitions for FE, indistinguishability-based

and a stronger simulation-based security. The former – which is the model we
adopt throughout this paper – requires that no efficient adversary, having cho-
sen plaintext messages y0 and y1, can guess, given the encryption of one of
these, which is the underlying message with probability significantly greater
than 1/2. The adversary can query a key derivation oracle for functionalities f ,
with the restriction that f(y0) = f(y1), otherwise one could trivially tell apart
both ciphertexts. Though constructions for general FE have been put forth,
these schemes are far from practical, and only allow the adversary to request
an a priori bounded number of secret keys [GKP+13b,SS10], or rely on non-
standard and ill-understood cryptographic assumptions such as indistinguisha-
bility obfuscation or multilinear maps [ABSV15,BGJS16,GKP+13a,GVW12,
Wat15,GGHZ16].

The problem thus arose of building efficient FE schemes for restricted classes
of functions; such constructions could be of great use for many practical appli-
cations, while developing our understanding of FE.

Inner Product Functional Encryption (IPFE). The restriction of FE to linear
functions, i.e. the inner product functionality yields many interesting applica-
tions. Among other uses, linear functions allow for the computation of weighted

Practical Fully Secure Unrestricted Inner Product Functional Encryption 735

averages and sums, useful for statistical analysis on encrypted data, where the
statistical analysis itself has sensitive information. As mentioned by Katz, Sahai
and Waters [KSW08], another application is the evaluation of polynomials over
encrypted data. Agrawal, Libert and Stehlé [ALS16, Sect. 6] motivate FE for
computing linear functions modulo a prime p by demonstrating that such a
scheme can be turned into a bounded collusion FE scheme for all circuits1. And
as a final example, Agrawal, Bhattacherjee, Phan, Stehlé and Yamada provide
a generic transformation from FE for linear functions to trace-and-revoke sys-
tems in [ABP+17]. As they are performing linear algebra, their transformation
requires the modulus to be prime and preferably quite large (∼128 or 256 bits).

The primitive can succinctly be defined as follows: plaintexts are vectors y ∈
R�, where R is a ring. Function specific secret keys skx are derived from vectors
x ∈ R� and allow to recover 〈y ,x 〉 ∈ R but reveal no further information about
y . It is worth noting that due to the linearity of inner products, if the adversary
requests decryption keys derived from independent vectors x i for i ∈ {1, . . . , �},
it can recover y by resolving a simple system of linear equations resulting from
〈y ,x i〉 for i ∈ {1, . . . , �}.

This specific line of research was initiated by Abdalla, Bourse, De Caro and
Pointcheval in 2015 [ABDP15]. They provided the first IPFE schemes which
rely on standard assumptions such as learning with errors (LWE) and decision
Diffie Hellman (DDH). However their schemes are only selectively secure, i.e.
the adversary must commit to challenge messages before having access to the
schemes’ public parameters. Though of great theoretical interest, such schemes
are not sufficiently secure for practical applications, indeed selective security is
often considered a first step towards proving full adaptive security. The first
fully secure schemes were put forth by Agrawal et al. [ALS16] under the LWE,
DDH and Paillier’s Decision Composite Residuosity (DCR, cf. [Pai99]) assump-
tions. Abdalla et al. in [ABCP16] also put forth an adaptively secure generic
construction and provide instantiations from the DDH, DCR and LWE assump-
tions. However, their instantiation from Elgamal gives the same construction as
the DDH based scheme of [ALS16], and their obtained schemes from LWE are
restricted to the computation of inner products over the integers Z, and are less
efficient than those of [ALS16]. Finally Benhamouda et al. [BBL17,Bou17] pro-
vided generic constructions from hash proof systems to both chosen plaintext
and chosen ciphertext secure IPFE schemes. The resulting schemes are again
restricted to the computation of inner products over the integers Z and the sizes
of secret keys are larger than those of [ALS16] (see details at the end of this
introduction).

These brilliant developments do however still suffer of practical drawbacks.
Namely the computation of inner products modulo a prime p are restricted, in
that they require that the inner product 〈y ,x 〉 be small for decryption to be
efficient (as is the case for the schemes of [ABDP15], [ABCP16], and the DDH

1 We note however that this application of linear FE modulo a prime p can not be
instantiated with our schemes, as we require p to be at least a 112-bit prime, whereas
this application typically calls for small values of p (e.g. p = 2).

736 G. Castagnos et al.

based scheme of [ALS16]). To our knowledge, the only scheme that allows for
decryption of inner products of any size modulo a prime p is the LWE based
scheme of [ALS16], which suffers of poor efficiency since the modulus should
be exponentially large in the dimension of encrypted vectors while the size of
ciphertexts is cubic in this dimension.

Our Contributions. In this paper we put forth IPFE schemes which resolve
the aforementioned issue. Our constructions compute inner products over the
integers and modulo a prime p, and rely on novel cryptographic assumptions
defined in Sect. 3.1. These are variants of the [CL15] assumption, which supposes
the existence of a DDH group with an easy DL subgroup: a cyclic group G = 〈g〉
where the DDH assumption holds together with a subgroup F = 〈f〉 of G where
the discrete logarithm (DL) problem is easy.

The first assumption we introduce relies on a hard subgroup membership
(HSM) problem (according to Gjøsteen’s terminology [Gjø05]), and somewhat
generalises Paillier’s DCR assumption, which follows a long line of assumptions
of distinguishing powers in Z/NZ. Known attacks for these require computing
the groups’ order which reduces to factoring N . In the [CL15] framework, the
group G is cyclic of order ps where s is unknown and gcd(p, s) = 1. We denote
Gp = 〈gp〉 the subgroup of p−th powers in G. In this setting one has G = F ×Gp.
The assumption is that it is hard to distinguish the elements of Gp in G.

We then define the DDH-f assumption, which is weaker than both
the DDH assumption of [CL15], and the aforementioned HSM assump-
tion. Denoting D a distribution statistically close to the uniform distribu-
tion modulo ps, this assumption states that it is hard to distinguish dis-
tributions {(gx, gy, gxy), x, y ←↩ D} (i.e. Diffie-Hellman triplets in G) and
{(gx, gy, gxyfu), x, y ←↩ D, u ←↩ Z/pZ}. We prove this assumption is equiva-
lent to the semantic security of the generic CL homomorphic encryption scheme
of [CL15], an Elgamal variant in G where messages are encoded in the expo-
nent in the subgroup F . In fact, the DDH-f assumption is better suited to mask
elements of F , thus providing clearer proofs.

These new assumptions allow us to construct generic, linearly homomorphic
encryption schemes over Z/pZ which are semantically secure under chosen plain-
text attacks (ind-cpa), which we call HSM-CL and Modified CL (cf. Sect. 3.2).
The reductions between their semantic security and the underlying assumptions
are given in Fig. 1, where A → B indicates that assumption B holds if assump-
tion A holds, i.e. A is a stronger assumption than B.

We then use the homomorphic properties of the above schemes to construct
generic IPFE schemes over the integers and over Z/pZ, both from the weaker
DDH-f assumption in Sect. 4, and from the HSM assumption in Sect. 5, somewhat
generalising the scheme based on DCR of [ALS16]. Since the inner product is
encoded in the exponent in the subgroup F , it can efficiently be recovered,
whatever its size. We thereby present the first IPFE schemes which are both
efficient and recover 〈y ,x 〉 mod p whatever its size.

Practical Fully Secure Unrestricted Inner Product Functional Encryption 737

DDH DDH f HSM

HSM

Fig. 1. Reductions between assumptions and ind-cpa security of CL variants

Our security proofs for the HSM based schemes follow a similar logic to those
of [ALS16], analysing the entropy loss that occurs via queried keys, and demon-
strating that there is enough residual entropy left for the challenge ciphertext
to appear uniform to the adversary. However, significant difficulties occur for
the schemes arising from the weaker DDH-f assumption. As in the DDH based
scheme of [ALS16], we use a variant of Elgamal à la Cramer-Shoup. But unlike
previous uses of this approach, the order of our group is unknown and may have
small factors, so with constant probability an element may not be a generator.
This calls for various subtleties: any element of the group can not be masked,
however, if p is large enough, elements of the subgroup F of order p can be.

Moreover, in order to handle the information given by private key queries,
instead of computing the global distribution of the master secret keys, we care-
fully simplify the description of the adversary’s view, since merely restricting the
adversary’s view modulo p could potentially result in a loss of information.

We note that for our schemes over Z/pZ, vectors x i from which keys are
derived are in Z/pZ, whereas decryption keys are computed in Z, so a lift of the
x i in Z must be done. Since lifting does not preserve linear dependencies, it is
essential (as in [ALS16]) the key generation algorithm be stateful to lift vectors
while maintaining linear dependencies. Without this restriction an adversary
could learn a combination of the master key components which is singular mod-
ulo p but invertible over Z, thus revealing the whole master key.

To instantiate our generic constructions we use class groups of imaginary
quadratic fields. Although the devastating attack from [CL09] eliminates a whole
family of protocols built from such groups, this attack applies to schemes whose
security is based on factoring a discriminant while here this factorisation is pub-
lic. Moreover [CL15] showed that designing with care DL based cryptosystems
within such groups is still possible and allows for efficient and versatile proto-
cols (Encryption switching protocols for instance, cf. [CIL17]). The problem of
computing a DL in class groups of imaginary quadratic fields has been exten-
sively studied since the 80’s, and the complexity of best known subexponential
algorithms is2 O(L1/2) (cf. [BJS10]) as opposed to O(L1/3) (cf. [Adl94]) for the
DL problem in finite field or factoring. In particular this implies that our keys
can be chosen shorter and corroborates the above claim that the assumptions
on which we rely are indeed weak.

2 Lα is a shortcut to denote Lα,c(x) = exp(c log(x)α log(log(x))1−α).

738 G. Castagnos et al.

In terms of efficiency, we show in Sect. 6 that for a security parameter of
λ = 112 we outperform Paillier’s variant of [ALS16] on all possible sizes by
factors varying between 2 and 20.

Relation to Hash Proof Systems. Hash proof systems (HPS) were introduced in
[CS02] as a generalisation of the techniques used in [CS98]. Consider a set of
words X , an NP language L ⊂ X such that L = {x ∈ X | w : (x,w) ∈ R} where
R is the relation defining the language, L is the language of true statements in
X , and for (x,w) ∈ R, w is a witness for x ∈ L. A HPS defines a key generation
algorithm which outputs a secret hashing key hk and a public projection key
hp such that hk defines a hash function Hhk : X 	→ Π, and hp allows for the
(public) evaluation of the hash function on words x ∈ L, i.e. Hhp(x,w) = Hhk(x)
for (x,w) ∈ R. The smoothness property requires that for any x /∈ L, the value
Hhk(x) be uniformly distributed knowing hp.

The DDH and DCR assumptions yield smooth HPSs where the languages
L ⊂ X define hard subset membership problems. Such HPSs, endowed with
homomorphic properties over the key space, underly the IPFE schemes of
[ALS16]. In fact Benhamouda, Bourse, and Lipmaa in [BBL17,Bou17], present
a generic construction from a key homomorphic HPS (satisfying various prop-
erties) to an IPFE scheme in Z which is secure under chosen plaintext attacks.
They instantiate it from DDH and from DCR but leave out LWE due to the com-
plexity of the resulting scheme, as simpler constructions can be attained without
using HPSs.

We note that though our constructions resemble the above – one can deduce
new subset membership problems from the assumptions in Sect. 3.1 and associ-
ated HPSs – our proof techniques are very different to those of [Bou17], to achieve
adaptive security, their game challenger must guess the difference between chal-
lenge ciphertexts prior to generating the public/private key pair. If the hash
key is not sampled uniformly at random from the key space (as in our con-
structions), then in order to maintain a level of security equivalent to that of
the HPS the size of the secret keys increases substantially. Indeed, to encrypt �-
dimensional vectors whose coordinates are bounded by Y , their proof techniques
cause an additional � log(Y)-bit term to appear in each coordinate of the secret
key, whereas in our constructions over Z, the bit length of the coordinates is
independent of �. Consequently, this approach leads to less efficient schemes.

Our goal has been to build practical IPFE schemes, therefore we avoid this
genericity and the key blow up it entails, carefully evaluating the information
leaked to the adversary by the public key, the secret key queries and the challenge
ciphertext, thus ensuring that the challenge bit remains statistically hidden. This
style of proof is closer to those of [ALS16], it allows us to obtain constructions for
IPFE over Z that are substantially more efficient than those of [BBL17,Bou17],
and constructions for IPFE modulo a prime p that do not restrict the size of the
resulting inner product, which are the most efficient such schemes to date.

Practical Fully Secure Unrestricted Inner Product Functional Encryption 739

2 Background

Notations. We denote sets by uppercase letters, vectors by bold lowercase letters,
and 〈x ,y〉 denotes the inner product of vectors x and y . For a distribution D,
we write d ←↩ D to refer to d being sampled from D. We overload the notation
as b ←↩ B to say that b is sampled uniformaly at random in the set B. For an
integer x, we denote its size by |x|, and by [x] the set of integers {1, . . . , x}. For
any c ∈ R�, real σ > 0, and �-dimensional lattice Λ, DΛ,σ,c will denote the usual
discrete Gaussian distribution over Λ.

Definition of Inner Product Functional Encryption. This is a special case of func-
tional encryption, as first formalised by Boneh, Sahai and Waters in [BSW11].
To start with, we provide the definition of a functionality.

Definition 1 (Functionality). A functionality F defined over (K,Y) is a func-
tion F : K × Y → Σ ∪ {⊥}, where K is a key space, Y is a message space and Σ
is an output space, which does not contain the special symbol ⊥.

In this article, we consider the inner product functionality, s.t. decrypting the
encryption of a vector y with a key associated to a vector x only reveals 〈x,y〉.
So we consider the function F : (Z/pZ)� ×(Z/pZ)� → Z/pZ∪{⊥} s.t. F (x,y) =
〈x,y〉. The syntax of a functional encryption scheme is described below.

Definition 2 (Functional encryption scheme). Let λ be a positive integer.
A functional encryption (FE) scheme for a functionality F over (K,Y) is a tuple
(Setup,KeyDer,Encrypt,Decrypt) of algorithms with the following specifications:

– Setup on input a security parameter 1λ, outputs a master key pair
(mpk,msk);

– KeyDer on input the master key msk and a key K ∈ K, outputs a key skK ;
– Encrypt on input the master public key mpk and a message Y ∈ Y, outputs a

ciphertext C;
– Decrypt takes as input the master public key mpk, a key skK and a ciphertext

C and outputs v ∈ Σ ∪ {⊥}.

Correctness requires that for all (mpk,msk) ← Setup(1λ), all keys K ∈ K and
all messages Y ∈ Y, if skK ← KeyDer(msk,K) and C ← Encrypt(mpk, Y),
with overwhelming probability it holds that, if v ← Decrypt(mpk, skK , C) then
v = F (K,Y) whenever F (K,Y) �=⊥.

Security. We define below the security notion for FE, which states that given
the ciphertext of a message Y , the only information obtained from the secret key
skK is the evaluation of the function f(K,Y). More precisely, no adversary can
distinguish an encryption of Y0 from an encryption of Y1 even with the knowledge
of secret keys skK chosen adaptatively but satisfying F (K,Y0) = F (K,Y1). The
following definition is that of adaptive security, meaning that the adversary has
access to the systems’ public parameters, and can perform a series of secret key

740 G. Castagnos et al.

requests before choosing Y0 and Y1. We consider an indistinguishability-based
definition instead of the simulation-based security definition of [BSW11]. This
adaptive indistinguishability notion is easier to handle, and it is also the strongest
adaptive notion of security that can be achieved for numerous interesting func-
tionalities. In particular, it has been demonstrated in [BSW11,AGVW13,BO13]
that the strong simulation-based definition cannot be met in the standard model,
while O’Neill showed in [O’N10] that indistinguishability-based security is equiv-
alent to non-adaptive simulation-based security for a class of functions that
includes the inner product. Moreover, De Caro et al. [DIJ+13] describe a method
to transform an FE achieving an indistinguishability-based security notion into
an FE attaining a certain simulation-based security.

Definition 3 (Indistinguishability-based security). A functional encryp-
tion scheme FE = (Setup,KeyDer,Encrypt,Decrypt) provides semantic security
under chosen-plaintext attacks (ind-fe-cpa) if no PPT adversary A has non-
negligible advantage AdvA(λ), under the constraints that A’s secret-key queries
before and after its choice of challenge messages Y0 and Y1 satisfy F (K,Y0) =
F (K,Y1) for all K in the set of key queries. A’s advantage is defined as:

AdvA(λ) =
∣
∣
∣ Pr

[

β = β′ : mpk,msk ← Setup(1λ), Y0, Y1 ← AKeyDer(msk,·)(mpk),

β
$←− {0, 1}, C� ← Encrypt(mpk, Yβ), β′ ← AKeyDer(msk,·)(C�)

] − 1
2

∣
∣
∣.

Backgound on Lattices. We recall some definitions and basic results on Gaussian
distributions. These are useful for our security proofs, in which we evaluate the
distribution of an inner product when one of the two vectors follows a Gaussian
distribution. We also recall a result from [GPV08] giving the conditions for a
Gaussian distribution over a lattice, which is reduced modulo a sublattice, to be
close to a uniform distribution, another crucial point of our proofs.

Definition 4 (Gaussian Function). For any σ > 0 define the Gaussian func-
tion on R� centred at c with parameter σ: ∀x ∈ R�, ρσ,c(x) = exp(−π||x −
c||2/σ2). If σ = 1 (resp. c = 0), then the subscript σ (resp. c) is omitted.

Definition 5 (Discrete Gaussian). For any c ∈ R�, real σ > 0, and �-
dimensional lattice Λ, define the discrete Gaussian distribution over Λ as:
∀x ∈ Λ, DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ), where ρσ,c(Λ) =

∑

x∈Λ ρσ,c(x).

Lemma 1. Let x ∈ R� \ {0}, c ∈ R�, σ ∈ R with σ > 0 and σ′ = σ/||x||2,
c′ = 〈c,x〉

〈x,x〉 . A random variable K is distributed according to DZ,σ′,c′ if and only
if V := Kx is distributed according to DxZ,σ,c.

In dimension 1, Lemma 1 implies that if x ∈ R, then Kx is distributed according
to DxZ,σ,c iff. K is distributed according to DZ,σ/|x|,c/x. Lemma 2 gives the
distribution of the inner product resulting from a constant vector x , and a
vector with coordinates sampled from a Gaussian distribution over the lattice
x · Z. Please refer to the full version [CLT18, Aux. Material I] for proofs of
Lemmas 1 and 2.

Practical Fully Secure Unrestricted Inner Product Functional Encryption 741

Lemma 2. Let x ∈ R� with x �= 0, c ∈ R�, σ ∈ R with σ > 0. Let V be a
random variable distributed according to Dx·Z,σ,c. Then the random variable S
defined as S = 〈x, V 〉 is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉.

Lemma 3 ([GPV08]). Let Λ′
0 ⊂ Λ0 ⊂ R� be two lattices with the same dimen-

sion. Let ε ∈ (0, 1/2) and ηε(Λ′
0) be the smoothing parameter of Λ′

0 (cf. [MR04]).
Then for any c ∈ R� and any σ ≥ ηε(Λ′

0), the distribution DΛ0,σ,c mod Λ′
0 is

within statistical distance 2ε from the uniform distribution over Λ0/Λ′
0.

3 Variants of CL: Assumptions and ind-cpa Schemes

In [CL15], Castagnos and Laguillaumie introduced the framework of a DDH
group with an easy DL subgroup: a cyclic group G where the DDH assumption
holds along with a subgroup F of G where the DL problem is easy. Within this
framework, they designed a linearly homomorphic variant of Elgamal [CL15],
denoted CL. Moreover, they gave an instantiation using class groups of quadratic
fields allowing for the computation of linear operations modulo a prime p.

Their protocol is similar to the one of Bresson et. al. [BCP03] whose ind-cpa
security relies on the DDH assumption in (Z/N2Z)×, where N = pq, using
the arithmetic ideas of Paillier’s encryption [Pai99]. Another encryption scheme
based on Elgamal over (Z/N2Z)× was proposed by Camenisch and Shoup in
[CS03]. Its ind-cpa security relies on the Decision Composite Residuosity assump-
tion (DCR), which consists in distinguishing the N−th powers in (Z/N2Z)×.

In the following subsection, we recall the framework of [CL15] and then gen-
eralise the DCR assumption to fit this framework of a DDH group with an easy
DL subgroup with a hard subgroup membership problem (following [Gjø05]’s
terminology). We also introduce a new DDH-like assumption which is weaker
than the original DDH in G. Then, in Subsect. 3.2, we give generic encryption
schemes whose ind-cpa security are based on these assumptions. In particular we
give a generalisation of the scheme of [CS03] in a DDH group with an easy DL
subgroup, and a modification of CL à la Cramer-Shoup. Finally, in Subsect. 3.3,
we discuss the relations between these assumptions.

3.1 Algorithmic Assumptions

We first define the generator GenGroup used in the framework of a DDH group
with an easy DL subgroup [CL15], with a few modifications as discussed below.

Definition 6 (Generator for a DDH group with an easy DL subgroup).
Let GenGroup be a pair of algorithms (Gen,Solve). The Gen algorithm is a group
generator which takes as inputs two parameters λ and μ and outputs a tuple
(p, s̃, g, f, gp, G, F,Gp). The set (G, ·) is a cyclic group of order ps where s is an
integer, p is a μ-bit prime, and gcd(p, s) = 1. The algorithm Gen only outputs
an upper bound s̃ of s. The set Gp = {xp, x ∈ G} is the subgroup of order s of
G, and F is the subgroup of order p of G, so that G = F × Gp. The algorithm

742 G. Castagnos et al.

Gen outputs f, gp and g = f ·gp which are respective generators of F , Gp and G.
Moreover, the DL problem is easy in F , which means that the Solve algorithm is
a deterministic polynomial time algorithm that solves the DL problem in F :

Pr
[

x = x� : (p, s̃, g, f, gp, G, F,Gp) ← Gen(1λ, 1μ), x ←↩ Zp,X = fx,

x� ← Solve(p, s̃, g, f, gp, G, F,Gp,X)
]

= 1.

Remark 1. In practice the size of s is chosen so that computing discrete loga-
rithms in Gp takes time O(2λ).

We note that this definition differs slightly from the original definition of
[CL15]. Here F is of prime order p as our agenda is to use the instantiation with
class groups of quadratic fields so as to have Z/pZ as the message space. This
means that our generic constructions do not encompass the schemes built from
Paillier where the message space is Z/NZ, with N = pq. If using N = pq as the
order of F , the proofs must rely on factoring assumptions to deal with the non-
zero non-invertible elements of Z/NZ. Consequently, this restriction simplifies
the proofs, since an element of Z/pZ is invertible if and only if it is non-zero.

Another modification is outputting the element gp that generates Gp to define
the HSM assumption below, and setting g = f · gp. In practice, the instantiation
of [CL15] with class groups of quadratic fields already computes an element gp

and thus defines the generator g of G. Note that this explicit definition of g is
only needed in proof of Theorem 4, for the relation between the HSM, DDH-f
(defined below) and DDH [CL15, Definition 1] assumptions. A last modification
is that Gen only outputs an upper bound s̃ of s and not n. This is more accurate
than the original definition as n is not used in the applications and actually,
the instantiation does not compute n as it is a class number that requires sub-
exponential time (with an O(L1/2) complexity) to be computed. This implies
that in the following assumptions, exponents are sampled from distributions
statistically close to uniform distributions. We discuss this in Remark 2.

We now define a hard subgroup membership (HSM) problem, which somewhat
generalises Paillier’s DCR assumption. In Definition 6, one has G = F × Gp, the
assumption is that it is hard to distinguish the elements of Gp in G.

Definition 7 (HSM assumption). Let GenGroup = (Gen,Solve) be a generator
for DDH groups with an easy DL subgroup. Using the notations introduced in
Definition 6, the HSM assumption requires that the HSM problem is hard in G
even with access to the Solve algorithm. Let D (resp. Dp) be a distribution over
the integers such that the distribution {gx, x ←↩ D} (resp. {gx

p , x ←↩ Dp}) is at
distance less than 2−λ from the uniform distribution in G (resp. in Gp). Let A
be an adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ, μ) =
∣
∣
∣
∣
2 · Pr

[

b = b� : (p, s̃, g, f, gp, G, F,Gp) ← Gen(1λ, 1μ),

x ←↩ D, x′ ←↩ Dp, b ←↩ {0, 1}, Z0 = gx, Z1 = gx′
p ,

b� ← A(p, s̃, g, f, gp, G, F,Gp, Zb,Solve(.))
] − 1

∣
∣
∣
∣

Practical Fully Secure Unrestricted Inner Product Functional Encryption 743

The HSM problem is said to be hard in G if for all probabilistic polynomial
time attacker A, AdvHSMA (λ, μ) is negligible.

Remark 2. In contrast to the traditional formulation of DDH or DCR, we can
not sample uniformly elements in Gp or G as the order s (resp. ps) of Gp (resp.
of G) is unknown. As a result we use the upper bound s̃ of s to instantiate
the distributions Dp and D of Definition 7. Choosing D and Dp statistically
close to the uniform distributions in G and Gp allows for more flexibility in our
upcoming proofs, which is of interest, since it is easy to see that the DDH and
HSM assumptions do not depend on the choice of the distribution.

In practice, we will instantiate Dp and D thanks to Lemma 4 (proved in the full
version [CLT18, Aux. Material III.]). We use folded gaussians as they provide
better efficiency than folded uniforms, and allow us to apply Lemma 3 in our
security proofs.

Lemma 4. Distributions Dp and D can be implemented from the output of Gen:

1. One can choose D to be the uniform distribution over {0, . . . , 2λ−2 · s̃ · p}.
2. Alternatively, choosing D = DZ,σ with σ = s̃ · p · √λ allows for more efficient

constructions as the sampled elements will tend to be smaller.
3. Likewise, one can choose Dp = DZ,σ′ with σ′ = s̃ · √λ
4. One can also, less efficiently, define Dp = D.
5. Conversely, one can also define D from Dp and the uniform distribution mod-

ulo p: the distribution {gx
p · fa, x ←↩ Dp, a ←↩ Zp} is statistically close to the

uniform distribution in G.

Finally, we introduce a new assumption called DDH-f. Roughly speaking, it
means that it is hard to distinguish the distributions:

{(gx, gy, gxy), x, y ←↩ D} and {(gx, gy, gxyfu), x, y ←↩ D, u ←↩ Z/pZ}.

In other words, we have on the left, a Diffie-Hellman (DH) triplet in G, and
on the right, a triplet whose components in Gp form a DH triplet, and whose
components in F form a random triplet: (fx, fy, fxy+u) since g = gp ·f (as noted
in Remark 2, D induces distributions statistically close to the uniform in Gp

and F).
We will see in the next subsection that the security of the CL encryption

scheme is actually equivalent to this assumption and that this assumption is
weaker than the DDH assumption and the HSM assumption (see Theorem 4).
As a side effect, using this assumption will simplify the forthcoming proofs as it
is tightly related to the ind-cpa security of the underlying encryption scheme.

We note that DDH-f can be seen as an instance of the Extended-DDH
(EDDH) problem defined by Hemenway and Ostrovsky [HO12]. They show that
QR and DCR imply two different instantiations of EDDH, our implication from
HSM to DDH-f somewhat generalises their proof as DDH-f is more generic than
either of the hardness assumptions obtained from their reductions.

744 G. Castagnos et al.

Definition 8 (DDH-f assumption). Let GenGroup = (Gen,Solve) be a gener-
ator for DDH groups with an easy DL subgroup. Using the notations of Defini-
tion 6, the DDH-f assumption requires that the DDH-f problem is hard in G even
with access to the Solve algorithm. Let D be a distribution over the integers such
that {gx, x ←↩ D} is at distance less than 2−λ of the uniform distribution in G.
Let A be an adversary for the DDH-f problem, its advantage is defined as:

AdvDDH-f
A (λ, μ) =

∣
∣
∣
∣
2 · Pr

[

b = b� : (p, s̃, g, f, gp, G, F,Gp) ← Gen(1λ, 1μ),

x, y ←↩ D, u ←↩ Z/pZ,X = gx, Y = gy, b ←↩ {0, 1}, Z0 = gxy, Z1 = gxyfu,

b� ← A(p, s̃, g, f, gp, G, F,Gp,X, Y, Zb,Solve(.))
] − 1

∣
∣
∣
∣
.

The DDH-f problem is said to be hard in G if for all probabilistic polynomial
time attacker A, AdvDDH-f

A (λ, μ) is negligible.

3.2 Some Variants of the CL Generic Encryption Scheme

The Original Castagnos-Laguillaumie Encryption Scheme. Castagnos
and Laguillaumie put forth in [CL15, Sect. 2.3] a generic construction for a lin-
early homomorphic encryption scheme over Z/pZ based on a cyclic group with
a subgroup of order p where the DL problem is easy, as given by the GenGroup
generator of Definition 6. They prove this scheme is ind-cpa under the DDH
assumption [CL15, Definition 1]. We demonstrate below that we can be more
precise and prove that the security of this scheme is equivalent to the DDH-f
assumption of Definition 8: the key idea is to perform a one-time pad in F ,
instead of in the whole group G.

Theorem 1. The CL encryption scheme is semantically secure under chosen
plaintext attacks (ind-cpa) if and only if the DDH-f assumption holds.

Proof (sketch). Suppose that the DDH-f assumption holds. Let us consider the
ind-cpa game, with a public key, h = gx, x ←↩ D, and a challenge ciphertext
(c1, c2) = (gr, fmβ hr) with r ←↩ D and β ←↩ {0, 1}, m0,m1 ∈ Z/pZ. We can
replace (h, c1, h

r) = (gx, gr, gxr) by (gx, gr, gxrfu) = (gx, gr, hrfu) with u ←↩
Z/pZ. As a result c2 = hrfu+mβ . For the adversary, the value of r modulo n
is fixed by c1 = gr as g is a generator, so the value of hr is fixed. As a result
from c2 an unbounded adversary can infer u+mβ ∈ Z/pZ but as u is uniformly
distributed in Z/pZ, he will have no information on β.

Conversely, we construct an ind-cpa adversary from a distinguisher for the
DDH-f problem. Choose m0 ∈ Zp and m1 := m0 + u with u ←↩ Z/pZ. From the
public key and the challenge ciphertext, construct the triplet

(h, c1, c2/fm0) = (gx, gr, gxrfmβ−m0).

This gives a DH triplet if and only β = 0 and the exponent of f is uniformly
distributed in Z/pZ if and only β = 1. As a result, one can use the output of a
distinguisher for the DDH-f problem to win the ind-cpa game. ��

Practical Fully Secure Unrestricted Inner Product Functional Encryption 745

A linearly homomorphic encryption scheme from HSM. As noted in this
section’s introduction, the CL scheme was inspired by the scheme of [BCP03]. We
here slightly modify the CL scheme so that it relies on the HSM assumption of
Definition 7 and somewhat generalises the approach of Camenisch and Shoup’s
scheme in [CS03]. This ind-cpa scheme will be the basis of the IPFE scheme of
Sect. 5.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,Gp) of the Gen-
Group generator of Definition 6, ignoring the generator g which is useless here.
Following Lemma 4, Item 3, we require σ′ > s̃

√
λ so that {gr

p, r ←↩ DZ,σ′} is at
distance less than 2−λ from the uniform distribution in Gp. The plaintext space
is Z/pZ, where p is a μ bit prime, with μ ≥ λ. The scheme is depicted in Fig. 2a.

Theorem 2 The scheme described in Fig. 2a is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the HSM assumption.

Please see the full version [CLT18, Aux. Material IV] for the proof.

Fig. 2. Description of our variants of the CL encryption

Enhanced variant of the CL encryption scheme. We here modify the orig-
inal CL scheme by adding a key à la Cramer-Shoup (cf. [CS98]). The security
of this scheme also relies on the DDH-f assumption. This ind-cpa scheme will be
the basis of the IPFE scheme of Sect. 4.

746 G. Castagnos et al.

This modification incurs some challenges: consider the vanilla Elgamal
encryption scheme defined over a cyclic group of prime order q, generated by
g. The modification leading to the [CS03] encryption scheme uses a second gen-
erator h to create a key η = gxhy where x, y ←↩ Z/qZ. Then ηr, with r ←↩ Z/qZ is
used to mask the message. In the proof under the DDH assumption, one replaces
the DH triplet (h, gr , hr) built from the public key and the ciphertext by a
random triplet and proves that the mask ηr is then uniformly distributed and
acts as a one-time pad for the plaintext, even knowing η. The triplet (h, gr, hr)
is indeed a DH triplet, because if h is a generator, h = gα with α ∈ (Z/qZ)∗.
As a result, α is almost uniformly distributed in Z/qZ (α ←↩ Z/qZ is s.t. α �= 0
with overwhelming probability if q is large). The same happens in a composite
group of order N ′ where N ′ is an RSA integer as in [Luc02], under the factoring
assumption.

In our case, we use the GenGroup generator of Definition 6, i.e. a cyclic
group G of order n = p · s generated by g, where s is unknown and may have
small factors. As a result, a random element h = gα, with α ←↩ DZ,σ may not
be a generator with constant probability. Consequently, the padding ηr where
r ←↩ DZ,σ and η = gxhy, with x, y ←↩ DZ,σ may not be uniformly distributed in
G knowing η. However, we only need ηr to act as a one-time pad in the subgroup
F = 〈f〉 of G of order p, since the message m ∈ Z/pZ is encoded as fm ∈ F .
Supposing that p is a μ-bit prime, with μ ≥ λ is sufficient to prove this. As the
exponents are taken close to uniform modulo n and n = p · s with gcd(p, s) = 1,
they behave independently and close to uniform mod p and mod s. As we are
interested only in what happens mod p, we can ignore the behaviour mod s
and get ind-cpa security under the DDH-f assumption. Note that the use of this
assumption instead of the stronger DDH assumption greatly simplifies the proof.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,Gp) of the genera-
tor GenGroup of Definition 6, ignoring the group Gp and its generator. Following
Lemma 4, Item 2 we require σ > ps̃

√
λ to ensure that {gr, r ←↩ DZ,σ} is at

distance less than 2−λ from the uniform distribution in G. The plaintext space
is Z/pZ, where p is a μ bit prime, with μ ≥ λ. The scheme is depicted in Fig. 2b.

Theorem 3. The scheme described in Fig. 2b is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the DDH-f assumption.

Please see the full version [CLT18, Aux. Material V] for the proof.

3.3 Relations Between the Assumptions

Although one can establish direct reductions from the problems underlying the
DDH, DDH-f and HSM assumptions, it is easier to use intermediate results on the
ind-cpa security of the schemes defined in Subsect. 3.2 to see these reductions.

Theorem 1 states that the original CL cryptosystem is ind-cpa iff. the DDH-f
assumption holds. In [CL15], it was proven that this scheme is ind-cpa under the
DDH assumption. As a result, DDH-f is a weaker assumption than DDH. Further-
more, if the HSM scheme of Fig. 2a is ind-cpa then the original CL cryptosystem

Practical Fully Secure Unrestricted Inner Product Functional Encryption 747

is ind-cpa: from a public key h = gx
p , x ←↩ DZ,σ′ and a ciphertext c = (c1, c2) =

(gr
p, fm · hr), r ←↩ DZ,σ′ for the HSM scheme, one can chose a, b ←↩ Z/pZ and

construct h′ = h · fa, and the ciphertext c′ = (c′
1, c

′
2) = (c1 · f b, c2 · fab). Accord-

ing to Lemma 4, Item 5 h′ and c′
1 are statistically indistinguishable from the

uniform distribution in G. Furthermore, h′ = gx
pfa = gα where α is defined mod

n from the Chinese remainder theorem, such that α ≡ x (mod s) and α ≡ a
(mod p). Likewise, c′

1 = gr
pf b = gβ for some β defined equivalently. Finally, one

has c′
2/fm = gxr

p fab = gαβ mod s
p fαβ mod p = gαβ . As a result, (h′, c′

1, c
′
2/fm)

is a DH triplet in G, so h′, c′ are a public key and a ciphertext for m for the
CL cryptosystem. Consequently, an ind-cpa attacker against the cryptosystem
based on HSM can be built from an ind-cpa attacker against CL. Now, if the
HSM assumption holds, from Theorem 2, the HSM scheme is ind-cpa, so the CL
scheme is also ind-cpa and the DDH-f assumption holds. We sum up these results
in Theorem 4 (see also Fig. 1).

Theorem 4. The DDH assumption implies the DDH-f assumption. Further-
more, the HSM assumption implies the DDH-f assumption.

4 Inner Product FE Relying on the DDH-f Assumption

In this section, we build an IPFE scheme from the DDH-f assumption (Defini-
tion 8). As proven in Theorem 4, this assumption is weaker than both the DDH
and the HSM assumptions and yields simple proofs as it is suited to deal with
the encoding of the message into a subgroup of prime order p. We use the formal-
ism of a cyclic group with an easy DL subgroup. Our approach is based on the
enhanced variant of the CL scheme, described in Fig. 2b. The resulting scheme
over Z/pZ can be viewed as an adaptation of the DDH scheme of [ALS16] to
this setting, thereby removing the restriction on the size of the inner product.

The proof technique somewhat differs from the general approach of [ALS16].
We start from the ind-cpa proof of the enhanced variant of CL and then deal
with the information leaked by key queries. Instead of computing the global dis-
tribution of the keys given this information, so as to make the proof go through,
we carefully simplify the description of the adversary’s view. A technical point is
that even if we are only interested in what happens mod p, as the plaintexts are
defined in (Z/pZ)�, we cannot restrict the adversary’s view mod p: this could
potentially result in a loss of information, as the key queries are defined in Z.

We first present an FE scheme for inner products over Z (Sect. 4.1) and then
consider a scheme for inner products over Z/pZ (Sect. 4.2).

4.1 DDH-f-Based FE for Inner Product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2b, we use the output
(p, s̃, g, f, gp, G, F,Gp) of the GenGroup generator of Definition 6, ignoring the
group Gp and its generator gp. We require that p is a μ-bit prime, with μ ≥ λ.

748 G. Castagnos et al.

From Lemma 4, Item 2 choosing σ > s̃ · p · √
λ suffices to ensure that the

distribution {gx, x ←↩ DZ,σ} is at distance less than 2−λ from the uniform dis-
tribution in G, however for security we must take a larger σ > s̃ · p3/2 · √

2λ
(cf. proof of Theorem 5). The Encrypt algorithm operates on plaintext messages
y ∈ Z� and the key derivation algorithm derives keys from vectors x ∈ Z�.
Norm bounds X and Y are chosen s.t. X,Y < (p/2�)1/2 to ensure decryption
correctness. Indeed key vectors x and message vectors y are assumed to be of
bounded norm ||x||∞ ≤ X and ||y||∞ ≤ Y . The decryption algorithm recov-
ers 〈x,y〉 mod p (using a centered modulus), which is exactly 〈x,y〉 over the
integers, thanks to the Cauchy–Schwarz inequality and the norm bounds, since
X · Y < p/2�.

Construction. Figure 3 depicts the FE scheme for inner products in Z secure
under the DDH-f assumption (cf. Definition 8).

Fig. 3. FE scheme for inner product over Z under the DDH-f assumption.

Correctness. We have
∏

i∈[�]

Exi
i /(Csx · Dtx) =

∏

i∈[�]

(fyi(gsi · hti)r)xi/((gr)〈x,s〉 · (hr)〈x,t〉)

= (f
∑�

i=1 yixi)(gr
∑�

i=1 sixi)(hr
∑�

i=1 tixi)/(gr〈x,s〉 · hr〈x,t〉)

= f 〈x,y〉.

Applying the Solve algorithm to Cx yields 〈x ,y〉 mod p, which, thanks to the
norm bounds, is either 〈x,y〉 or 〈x,y〉 + p. Since the absolute value of 〈x,y〉 is
lower than p/2, if sol < p/2 then 〈x,y〉 = sol in Z, otherwise 〈x,y〉 = (sol − p).

Practical Fully Secure Unrestricted Inner Product Functional Encryption 749

Theorem 5. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z of Fig. 3 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting in Game 0 with
the real ind-fe-cpa game and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary A’s point of
view. The beginning of the proof is similar to the proof of Theorem 3 on ind-cpa
security. Then we take into account the fact that A has access to a key derivation
oracle. For each Game i, we denote Si the event β = β′.

Game 1

1. mpk, msk ← Setup(1λ, 1μ, 1�)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ

5. Compute C = gr, D = hr

6. For 1 ≤ i ≤ �:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C, D, {Ei}i∈[�])

9. β′ ← AKeyDer(msk,·)(Cy)
10. Return (β = β′)

Game 2

1. mpk, msk ← Setup(1λ, 1μ, 1�)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ and u ←↩ Z/pZ
5. Compute C = gr, D = hrfu

6. For 1 ≤ i ≤ �:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C, D, {Ei}i∈[�])

9. β′ ← AKeyDer(msk,·)(Cy)
10. Return (β = β′)

Game 0 ⇒ Game 1: In Game 1 the challenger, who has access to the master
secret key msk, computes the ciphertext using msk instead of mpk. The resulting
ciphertext has exactly the same distribution therefore Pr[S0] = Pr[S1].
Game 1 ⇒ Game 2: In Game 1, the tuple (h = gα, C = gr,D = hr = gαr),
with α, r ←↩ DZ,σ, is a DH triplet as σ > p3/2 · s̃ · √2λ ensures that the induced
distribution is at distance less than 2−λ of the uniform distribution in G. In Game
2, the challenger samples a random u ←↩ Z/pZ and computes D = hrfu. Both
games are indistinguishable under the DDH-f assumption: |Pr[S2] − Pr[S1]| =
AdvDDH-f

B (λ, μ). Now in Game 2 the challenge ciphertext is:

(C = gr, D = hrfu, {Ei = fyβ,i · Csi · Dti = fyβ,i+utihr
i }i∈[�]).

Lemma 5. In Game 2 the ciphertext (C,D,E1, . . . , E�) ∈ G�+2 statistically
hides β such that |Pr[S2] − 1/2| ≤ 2−λ.

Intuition. Following the proof methodology of [ALS16], we first delimit the
information that is leaked in the challenge ciphertext by only considering the
dimension in which both potential challenge ciphertexts differ. Indeed, denoting
zβ = yβ +u·t mod p, then projecting zβ onto the subspace generated by y0−y1

encapsulates all the information revealed by the challenge ciphertext.
Next, we consider the distribution of the projection of the secret key component
t on the subspace generated by y0 − y1, conditionally on A’s view (i.e. on the
information leaked by private key queries and the public key). This amounts to a

750 G. Castagnos et al.

distribution over a one dimensional lattice Λ0. We then reduce this distribution
modulo a sub-lattice Λ′

0 such that Λ0/Λ′
0 � Z/nZ, and using Lemma 3 we

demonstrate that for an appropriate choice of the standard deviation σ (which
defines DZ�,σ, from which t is sampled), the projection of t on the subspace
generated by y0 −y1 is statistically close to the uniform distribution over Z/nZ.
As a result, 〈y, t〉 modulo p is also close to the uniform distribution over Z/pZ,
and thus yβ (and therefore β) is statistically hidden in zβ .

Proof (Lemma 5). The ciphertext component C = gr information theoretically
reveals r mod n. Furthermore, ∀i ∈ [�], Ei information theoretically reveals
yβ,i +uti mod p as the value of hr

i is fixed from C and the public key. Therefore
the challenge ciphertext information theoretically reveals z β = yβ +u ·t mod p.

Throughout the rest of this proof we demonstrate that yβ is statistically
hidden mod p, thanks to the distribution of t conditioned on A’s view.

We denote x i A’s ith query to the key derivation oracle. It must hold that,
for all i, 〈x i,y0〉 = 〈x i,y1〉. Let d �= 0 be the gcd of the coefficients of y1 − y0

and define y = (y1, . . . , y�) = 1/d · (y1 − y0) ∈ Z�. It holds that 〈x i,y〉 = 0
over Z for all i. Therefore if we consider the lattice y⊥ = {x ∈ Z� : 〈x ,y〉 = 0},
all the queries x i must belong to that lattice. W.l.o.g., we assume the n0 first
coordinates of y are zero (for some n0), and all remaining entries are non-zero.
Further, the rows of the following matrix form a basis of y⊥:

Xtop =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

In0

−yn0+2 yn0+1

−yn0+3 yn0+2

.
−y� y�−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Z(�−1)×�.

We define the matrix:

X =
[
Xtop

yT

]

∈ Z�×�, (1)

and claim that X is invertible mod p (proof provided in the full version [CLT18,
Aux. Material VI]). Now since X does not depend on β ∈ {0, 1}, it suffices
to show that X · zβ ∈ (Z/pZ)� is statistically independent of β. Moreover by
construction Xtop · y0 = Xtop · y1 (over the integers), so Xtop · zβ is clearly
independent of β and we only need to worry about the last row of X · zβ mod p,
i.e. the information about β leaked by the challenge ciphertext is contained in:

〈y , z β〉 = 〈y ,yβ〉 + u · 〈y , t〉 mod p. (2)

We hereafter prove that, from A’s perspective, 〈y , t〉 follows a distribution statis-
tically close to the uniform distribution mod p, thus proving that β is statistically
hidden: since u is sampled uniformly at random from Z/pZ, u �= 0 mod p with
all but negligible probability as p is a μ-bit prime, with μ ≥ λ. To this end, we

Practical Fully Secure Unrestricted Inner Product Functional Encryption 751

analyse the information that A gains on t mod n. From this, we will prove that
the distribution of 〈y , t〉 is close to uniform mod n, and thus, mod p.

As in the proof of Theorem 3, A learns z = s + αt mod n from the public
key as ∀i ∈ [�], hi = gsihti . Knowing z , the joint distribution of (s, t) mod n is
(z − αt mod n, t mod n) where t ←↩ DZ�,σ. As a result, knowing z does not
give more information on t modulo n to A.

One may assume that through its secret key queries, the information learned
by A is completely determined by Xtop ·s and Xtop ·t ∈ Z(�−1), as all the queried
vectors x i can be obtained as linear combinations of the rows of Xtop.

The value of Xtop ·s does not give A more information on t mod n than what
he obtains from Xtop ·t . Indeed the remainder of the Euclidean division of Xtop ·s
by n can be deduced from z and Xtop · t ; while the quotient is independent of
t mod n and Xtop · t , as s and t are sampled independently and z only brings
a relation mod n. It is thus sufficient to analyse the distribution of t mod n
knowing Xtop · t .

Let t0 ∈ Z� be an arbitrary vector s.t. Xtop · t0 = Xtop · t . Knowing Xtop · t ,
the distribution of t is t0 + DΛ,σ,−t0 where Λ = {t ∈ Z� : Xtop · t = 0}. This
lattice has dimension 1 and contains y · Z. In fact, as gcd(y1, . . . , y�) = 1, one
has y · Z = Λ (there exits y ′ ∈ Z� s.t. Λ = y ′ · Z and y = αy ′ so α must divide
gcd(y1, . . . , y�) = 1). Therefore, applying Lemma 2, we see that conditioned on
Xtop · t , 〈y , t〉 is distributed according to 〈y , t0〉 + D||y ||22Z,||y ||2σ,−〈t0,y〉.

Now consider the distribution obtained by reducing D||y ||22Z,||y ||2σ,−〈t0,y〉 over
Λ0 = ||y ||22 ·Z modulo the sublattice Λ′

0 = n·||y ||22 ·Z. In order to apply Lemma 3
we need ||y ||2·σ > ηε(Λ′

0), which – applying a bound on the smoothing parameter
from [MR07] for ε = 2−λ−1 – is guaranteed by choosing ||y ||2 · σ > λ1(Λ′

0) · √λ.
Moreover since λ1(Λ′

0) = n · ||y ||22, we require ||y ||2 · σ > p · s̃ · ||y ||22 · √
λ,

thus σ > p · s̃ · ||y ||2 · √
λ. Now from the norm bounds on y0 and y1 it holds

that ||y ||2 <
√

2p, so choosing σ > p3/2 · s̃ · √
2λ suffices to ensure that from

A′s view, 〈y , t〉 modulo n is within distance 2−λ from the uniform distribution
over Λ0/Λ′

0 � Z/nZ. As a result, 〈y , t〉 modulo p is also close to the uniform
distribution over Z/pZ.

We have therefore demonstrated that with overwhelming probability the term
〈y ,yβ〉 in Eq. (2) is statistically hidden modulo p and |Pr[S2] − 1/2| ≤ 2−λ. ��

Combining the different transition probabilities provides a bound for A’s
advantage, thus concluding the proof: Advind-fe-cpaA (λ, μ) ≤ AdvDDH-f

B (λ, μ)
+ 2−λ. ��

4.2 DDH-f-Based FE for Inner Product over Z/pZ

As in the LWE and Paillier-based IPFE modulo p of [ALS16], the main problem
here is that private key queries are performed over Z. An adversary may therefore
query keys for vectors that are linearly dependent over (Z/pZ)� but indepen-
dent over Z�. To solve this issue we require, as in [ALS16], that the authority
distributing private keys keeps track of previously revealed private keys.

752 G. Castagnos et al.

Setting the parameters. We use the output (p, s̃, f, gp, G, F,Gp) of the GenGroup
generator of Definition 6, with p a μ bit prime, and with μ ≥ λ. We sample
the coordinates of the secret key from DZ�,σ. Choosing σ > s̃ · p� · √

λ · (
√

�)�−1

suffices for security to hold (cf. proof of Theorem 6), and ensures the distribution
{gx, x ← DZ,σ} is at distance less than 2−λ from the uniform distribution in G
(cf. Lemma 4, Item 2. The Encrypt algorithm encrypts plaintexts y ∈ (Z/pZ)�

and the key derivation algorithm derives keys from vectors x ∈ (Z/pZ)�.

Construction. Algorithms Setup and Encrypt proceed exactly as in the construc-
tion for inner products over Z under DDH-f (cf. Fig. 3). Algorithms KeyDer and
Decrypt, which differ from those of the previous construction, are defined in
Fig. 4. Again, correctness follows from the linearity of the inner product.

Theorem 6. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z/pZ of Fig. 4 provides full security (ind-fe-cpa).

Proof. The proof proceeds similarly to that of Theorem 5, only we must define
the matrix Xtop differently, as we can no longer guarantee that it is invertible
modulo p. So we here follow the same steps as in the previous proof up until the
definition of Game 2. The only difference being that the adversary A queries the
stateful key derivation algorithm. We denote Game i′ the variant of Game i in
which the key derivation algorithm is stateful. From the proof of Theorem 5, it
holds that |Pr[S′

2] − Pr[S′
0]| = AdvDDH-f

B (λ, μ).
As in the original Game 2, here in Game 2′ the challenge ciphertext infor-

mation theoretically reveals z β = yβ + u · t mod p.

Fig. 4. Stateful FE scheme for inner products over Z/pZ from DDH-f.

Practical Fully Secure Unrestricted Inner Product Functional Encryption 753

We define y = (y1, . . . , y�) = y1 − y0 ∈ (Z/pZ)�; and, assuming A has
performed j private key queries, for 1 ≤ i ≤ j, we denote x i ∈ (Z/pZ)� the
vectors for which keys have been derived.

We want to demonstrate that from A’s view, the bit β is statistically hidden
in Game 2′. However we cannot use the same matrix Xtop as in the proof of
Theorem 5; indeed, if we define X as in Eq. (1) we cannot guarantee that X is
invertible modulo p, since det(XX T) could be a multiple of p. Therefore, so as
to ensure that the queried vectors x i do not in some way depend on β, we prove
via induction that after the j first private key queries (where j ∈ {0, . . . , �− 1}),
A’s view remains statistically independent of β, thus proving that the challenge
ciphertext in Game 2′ statistically hides β such that |Pr[S′

2] − 1/2| ≤ 2−λ. The
induction proceeds on the value of j.

Recall that Game 2 and Game 2′ are identical but for the key derivation
algorithm. Therefore if A can make no calls to its key derivation oracle, the
indistinguishability of ciphertexts in Game 2′ follows immediately from that in
Game 2, demonstrated in proof of Theorem 5, thus the induction hypothesis
holds for j = 0. Now consider j ∈ {0, . . . , � − 1}. From the induction hypothesis
one may assume that at this point the state st = {(x i,xi, zxi)}i∈[j] is indepen-
dent of β. Indeed if A’s view after j − 1 requests is independent of β then the
jth request performed by A must be so.

W.l.o.g. we assume that the key requests x i performed by A are linearly
independent. This implies that the xi’s are linearly independent mod p and
generate a subspace of y⊥p = {x ∈ (Z/pZ)� : 〈x ,y〉 = 0 mod p}. The set
{xi}i∈[j] can be extended to a basis {xi}i∈[�−1] of y⊥p. We define Xtop ∈ Z(�−1)×�

to be the matrix whose rows are the vectors xi for i ∈ [�−1]. Let x ′ ∈ (Z/pZ)� be
a vector chosen deterministically, x ′ /∈ y⊥p, such that A can also easily compute
x ′. We define xbot to be the canonical lift of x ′ over Z, and X as:

X =
[
Xtop

xT
bot

]

∈ Z�×�.

The matrix X is invertible mod p, statistically independent of β by induction
and by construction, and computable by A, thus we need only prove that X · z β

is statistically independent of β. And since Xtop · (y1 −y0) = 0 mod p, we need
only consider 〈xbot, z β〉 = 〈xbot,yβ〉 + u · 〈xbot, t〉 mod p.

We hereafter prove that, from A’s view, 〈xbot, t〉 follows a distribution statis-
tically close to the uniform distribution mod p, thus proving that β is statistically
hidden (since u is sampled uniformly at random from Z/pZ, u �= 0 mod p with
all but negligible probability as p is a μ bit prime, with μ ≥ λ). To this end, we
analyse the information A gets on t mod n, so as to prove that t mod p follows
a distribution statistically close to the uniform distribution over y · Z/pZ, thus
proving that 〈xbot, t〉 follows a distribution statistically close to uniform mod p.

As in the proof of Theorem 3, A learns z := s + αt mod n from the public
key as ∀i ∈ [�], hi = gsihti . Knowing z , the joint distribution of (s, t) mod n is
(z − αt mod n, t mod n) where t ←↩ DZ�,σ. As a result, knowing z does not
give A more information on t mod n. Then, as in the proof of Theorem 5, private

754 G. Castagnos et al.

key queries give A the knowledge of Xtop · s and Xtop · t in Z�−1. The value of
Xtop ·s does not give A more information on t mod n than what he obtains from
Xtop · t . It thus suffices to analyse the distribution of t mod n knowing Xtop · t .

We define Λ = {x ∈ Z�|Xtop · x = 0 ∈ Z�}. This one dimensional lattice
can equivalently be defined as Λ = y ′ · Z where y ′ = γ · y mod p for some
γ ∈ (Z/pZ)∗. One should note that all the coefficients of y ′ are co-prime since
y ′/ gcd(y′

1, . . . , y
′
�) ∈ Λ.

Let t0 ∈ Z� be an arbitrary vector such that Xtop · t0 = Xtop · t . Knowing
Xtop · t , the distribution of t is t0 + DΛ,σ,−t0 . Now consider the distribution
obtained by reducing the distribution DΛ,σ,−t0 over Λ modulo the sublattice
Λ′ := n · Λ. We first bound ||y ′||2 so as to bound λ1(Λ′). We can then apply
Lemma 3 by imposing a lower bound for σ.

Since Λ = y ′ · Z, it holds that ||y ′||2 = det(Λ). We define Λtop as the lattice
generated by the rows of Xtop, then applying results from [Mar03] and [Ngu91],
one gets ||y ′||2 = det(Λ) ≤ det(Λtop). We now apply Hadamard’s bound, which
tells us that, since the coordinates of each xi are smaller than p and since we
assumed all requested xi’s are linearly independent, det(Λtop) ≤ ∏�−1

i=1 ||xi||2 ≤
(
√

�p)�−1. Therefore ||y ′||2 ≤ (
√

�p)�−1, this implies λ1(Λ′) ≤ n · (
√

�p)�−1 <
s̃ · p� · (

√
�)�−1. From [MR07] we know that the smoothing parameter verifies

ηε(Λ′) ≤
√

ln(2(1+1/ε))
π · λ1(Λ′). Thus for ε = 2−λ−1, we have ηε(Λ′) ≤ s̃ · p� ·√

λ · (√�)�−1. Therefore setting σ > s̃ · p� · √λ · (√�)�−1 and applying Lemma 3
ensures that the distribution DΛ,σ,−t0 mod Λ′, and therefore that of t mod n is
within distance 2−λ from the uniform distribution over Λ/Λ′ � y ′ · Z/nZ. This
entails that t mod p is within distance 2−λ from the uniform distribution over
y ′ · Z/pZ � y · Z/pZ since y ′ = γ · y mod p for some γ ∈ (Z/pZ)∗.

Since by construction 〈xbot,y〉 �= 0 mod p, we get that 〈xbot, t〉 mod p is
statistically close to the uniform distribution over Z/pZ. Moreover, with over-
whelming probability u �= 0 mod p, so u · 〈xbot, t〉 statistically hides 〈xbot,yβ〉
which implies that 〈xbot, z β〉 does not carry significant information about β, thus
concluding the proof. ��

5 Inner Product FE Relying on the HSM Assumption

We here build IPFE schemes from the HSM assumption and the ind-cpa scheme
described in Fig. 2a, using the formalism of a cyclic group with an easy DL
subgroup. Our approach is inspired by, and somewhat generalises, the approach
of [ALS16] with Paillier’s DCR assumption (an RSA integer N plays the role of
p in this scheme so one should invoke the factoring assumption in our proof in
order to encompass this construction). We first present an FE scheme for inner
products over Z and then consider a scheme for inner products over Z/pZ.

5.1 HSM-Based FE for Inner Product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2a, we use the output
(p, s̃, g, f, gp, G, F,Gp) of the GenGroup generator of Definition 6, ignoring the

Practical Fully Secure Unrestricted Inner Product Functional Encryption 755

generator g. We require that p is a μ bit prime, with μ ≥ λ. The message space
and decryption key space is Z�. As in Subsect. 4.1 norm bounds X,Y < (p/2�)1/2

are chosen to ensure decryption correctness. Key vectors x and message vectors
y are of bounded norm ||x||∞ ≤ X and ||y||∞ ≤ Y . The decryption algorithm
uses a centered modulus to recover 〈x,y〉 over Z. To guarantee the scheme’s
security we sample the coordinates of the secret key s = (s1, . . . , s�)T ←↩ DZ�,σ

with discrete Gaussian entries of standard deviation σ >
√

2λ · p3/2 · s̃. Setting
σ′ > s̃

√
λ ensures that {gr

p, r ←↩ DZ�,σ′} is at distance less than 2−λ from the
uniform distribution in Gp.

Construction. Figure 5 depicts our IPFE construction over Z relying on the HSM
assumption. The proof of correctness is similar to that of the DDH-f construction.

Theorem 7. Under the HSM assumption, the functional encryption scheme for
inner products over Z depicted in Fig. 5 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting with the real ind-
fe-cpa game (Game 0) and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary A’s point of
view. The beginning of the proof is similar to the proof of Theorem 2 on ind-cpa
security. Then we take into account the fact that A has access to a key derivation
oracle. For each Game i, we denote Si the event β = β′.

Game 0 ⇒ Game 1: In Game 1 the challenger uses the secret key s =
(s1, . . . , s�) to compute ciphertext elements Ci = fyβ,i · (gr

p)si = fyβ,i · Csi
0 .

This does not impact the distribution of the obtained ciphertext, therefore A’s
success probability in both games is identical: Pr[S0] = Pr[S1].

Fig. 5. FE scheme for inner product over Z from the HSM assumption.

756 G. Castagnos et al.

Game 1 ⇒ Game 2: In Game 1, the distribution of C0 is at distance less
than 2−λ of the uniform distribution in the subgroup Gp. Thus under the HSM
assumption, we can, in Game 2, substitute C0 by gr

p ·fa ∈ G, with r ←↩ Dp, a ←↩

Z/pZ, which, as stated in Lemma 4, Item 5 is also at distance less than 2−λ of
the uniform distribution in G. Therefore, |Pr[S2] − Pr[S1]| ≤ AdvHSMB (λ, μ).
Now in Game 2 we have, for a ←↩ Z/pZ and r ←↩ DZ,σ′ :

{

C0 = fa · gr
p

Ci = fyβ,i+a·si · hr
i

. (3)

Game 1

1. mpk, msk ← Setup(1λ, 1μ, 1�, X, Y)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ′

5. Compute C0 = gr
p ∈ Gp

6. For 1 ≤ i ≤ � :
7. Compute Ci = fyβ,i · Csi

0

8. Cy = (C0, C1, . . . , C�)
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

Game 2

1. mpk, msk ← Setup(1λ, 1μ, 1�, X, Y)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ′ and a ←↩ Z/pZ
5. Compute C0 = fa · gr

p ∈ G
6. For 1 ≤ i ≤ � :
7. Compute Ci = fyβ,i · Csi

0

8. Cy = (C0, C1, . . . , C�)
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

Lemma 6. In Game 2 the ciphertext Cy = (C0, C1, . . . , C�) ∈ G�+1 statistically
hides β such that |Pr[S2] − 1/2| ≤ 2−λ.

Proof (sketch). We here give an overview of the proof, details are deferred to the
full version [CLT18]. As in proof of Lemma 5, we first delimit the information
leaked via the challenge ciphertext by considering the dimension in which both
potential challenge ciphertexts differ. Indeed, denoting zβ = yβ + as mod p,
then projecting zβ onto the subspace generated by y0 − y1 encapsulates all the
information revealed by the challenge ciphertext.

Next, we consider the distribution of the projection of the secret key s on the
subspace generated by y0 −y1, conditionally on A’s view (given the information
leaked by private key queries and the public key). This amounts to a distribution
over a one dimensional lattice Λ0. We then reduce this distribution modulo a
sub-lattice Λ′

0 s.t. Λ0/Λ′
0 � Z/pZ, and Lemma 3 tells us that choosing σ >√

2λ · s̃ · p3/2 suffices to ensure the distribution of the projection of s on the
subspace generated by y0−y1 is within distance 2−λ of the uniform distribution
over Z/pZ, and thus yβ (and therefore β) is statistically hidden in zβ . ��

Over all game transitions, after adding up the different probabilities, we
find that A’s advantage in the real game can be bounded as |Pr[S0] − 1/2| ≤
AdvHSMB (λ, μ) + 2−λ which is negligible if the HSM assumption holds in G. ��

Practical Fully Secure Unrestricted Inner Product Functional Encryption 757

5.2 HSM-Based FE for Inner Product over Z/pZ

As in the DDH-f based scheme for inner products over Z/pZ of Sect. 4.2, the key
generation algorithm is stateful to ensure the adversary cannot query keys for
vectors that are linearly dependant over (Z/pZ)� but independent over Z�.

Setting the parameters. As in the previous construction, we use the output
(p, s̃, f, gp, G, F,Gp) of the GenGroup generator of Definition 6, with p a μ-bit
prime, and μ ≥ λ. The message space and vector space from which decryp-
tion keys are derived are now (Z/pZ)�. Given an encryption of y ∈ (Z/pZ)�

and a decryption key for x ∈ (Z/pZ)�, the decryption algorithm recovers
〈x,y〉 ∈ Z/pZ. To guarantee the scheme’s security we sample the coordinates of
the secret key s from DZ�,σ with discrete Gaussian entries of standard deviation
σ >

√
λ · p · s̃ · (

√
�p)�−1. We require σ′ > s̃

√
λ to ensure that {gr

p, r ←↩ DZ�,σ′}
is at distance less than 2−λ from the uniform distribution in Gp.

Construction. The Setup and Encrypt algorithms proceed exactly as in Fig. 5,
only Encrypt operates on message vectors y ∈ (Z/pZ)� instead of y ∈ Z�. In
Fig. 6 we only define algorithms KeyDer and Decrypt, since they differ from those
of the previous construction.

Fig. 6. Functional encryption scheme for inner products over Z/pZ from HSM.

Theorem 8. Under the HSM assumption the above stateful functional encryp-
tion scheme for inner products over Z/pZ provides full security (ind-fe-cpa).

The proof resembles that of Theorem 7 and is adapted from the proofs of
[ALS16], so we defer it to the full version [CLT18]. The main issue is that we can
no longer guarantee X is invertible modulo p. We need to compute on-the-fly a

758 G. Castagnos et al.

basis for {x ∈ (Z/pZ)� : 〈x ,y〉 = 0 mod p} to apply the same techniques as in
Theorem 7. The analysis gives significantly larger standard deviations as men-
tioned above due a bad approximation of the determinant of a related matrix.

6 Instantiation and Efficiency Considerations

Both generic constructions we put forth of IPFE are based on variants of Elga-
mal in the same group and both sample their master secret keys from Gaussian
distributions with the same standard deviation. As a result their asymptotic
complexities are the same. The second scheme’s security relies on a hard sub-
group membership assumption (HSM) and this scheme appears to be the most
efficient FE evaluating inner products modulo a prime p. At the (small) expense
of a single additional element in the keys and in the ciphertext, the first scheme’s
security relies on a weaker DDH-like assumption, which is also weaker than the
DDH assumption in the group. We compare, in Table 1, an implementation of
our HSM-based IPFE mod p of Subsect. 5.2 within the class group of an imagi-
nary quadratic field and Paillier’s variant of [ALS16]. This is the most relevant
comparison since their DDH variant does not allow a full recovery of large inner
products over Z/pZ, and, as detailed in the following paragraph, the LWE variant
is far from being efficient, as ciphertexts are computed using arithmetic modulo
q = 2� where � is the dimension of the plaintext vectors.

Comparison with the LWE based scheme of [ALS16]. Parameter choices for lattice-
based cryptography are complex, indeed [ALS16] do not provide a concrete set
of parameters. This being said, using [ALS16, Theorem 3], and setting log p = λ
as in Table 1, we give rough bit sizes for their LWE based scheme over Z/pZ.
Basic elements are integers mod q of size � since q ≈ 2� for security to hold.
The largest component in the public key mpk consists of λ2�3 elements, so mpk
is of size greater than λ2�4. The component zx in secret keys is the product of
a vector of (Z/pZ)� with a matrix, resulting in a vector made up of λ�2 inner
products, where each inner product is of size �λ. Thus these keys are of size λ2�3.
Finally ciphertexts consist of λ�2 elements, and are thus of size λ�3. As a result,
although it is hard to compare the complexities in λ, for a fixed security level,
the complexity in � for all the parameters of the LWE based scheme is in �3 or
�4 whereas we are linear in � (see Table 1). For example, for λ = 128, � = 100,
their skx is of approximately 234 bits vs. 13852 bits in our instantiation.

Instantiation. To instantiate the protocol of Sect. 5.2, we must first define the
algorithm GenGroup of Definition 6. We follow the lines of [CL15], starting from
a fundamental discriminant ΔK = −p · q with its class group Cl(ΔK), where q
is a prime such that p · q ≡ −1 (mod 4) and (p/q) = −1. Then, we consider a
non-maximal order of discriminant Δp = p2 · ΔK and its class group Cl(Δp).
The order of Cl(Δp) is h(Δp) = p · h(ΔK). It is known [Coh00, p. 295], that
h(ΔK) < 1

π log |ΔK |√|ΔK | which is the bound we take for s̃ (a slightly better
bound can be computed from the analytic class number formula, cf. [McC89]).

Practical Fully Secure Unrestricted Inner Product Functional Encryption 759

In [CL15, Fig. 2] the authors show how to build a generator of a cyclic group of
order ps of the class group of discriminant Δp and a generator for the subgroup of
order p (in which the DL problem is easy). We need to modify their generator s.t.
it outputs a generator gp of the subgroup of p−th powers. The computation of
such an element is actually implicit in their generator: this is done by computing
an ideal r in the maximal order with norm a small prime r such that

(
ΔK

r

)

= 1.
Then the ideal r2 is lifted into a class of Cl(Δp) which is then raised to the
power p to define gp. A second modification is to output s̃ instead of their larger
bound B (since they sampled elements using a folded uniform distribution). We
refer to [CL15] for a full description of the implementation. The manipulated
objects are reduced ideals represented by two integers smaller than

√

p3q, and
the arithmetic operations in class groups are very efficient, since the reduction
and composition of quadratic forms have a quasi linear time complexity using
fast arithmetic (see for instance [Coh00]).

The sole restriction on the size of the prime p is that it must have at least λ
bits, where λ is the security parameter. The size of ΔK , and thus of q, is chosen to
thwart the best practical attack, which consists in computing discrete logarithms
in Cl(ΔK) (or equivalently the class number h(ΔK)). An index-calculus method
to solve the DL problem in a class group of imaginary quadratic field of discrimi-
nant ΔK was proposed in [Jac00]. It is conjectured in [BJS10] that a state of the
art implementation of this algorithm has complexity O(L|ΔK |[1/2, o(1)]). They
estimate that the DL problem with a discriminant ΔK of 1348 (resp. 1828 bits)
is as hard as factoring a 2048 (resp. 3072 bits) RSA integer. This is our reference
to estimate the bit size of the different elements in Table 1.

Table 1. Comparing our IPFE from HSM and the [ALS16] IPFE from DCR

size λ = 112 λ = 128

this work [ALS16] this work [ALS16]

(p, s̃) (112, 684) (1024, 2046) (128, 924) (1536, 3070)

group element 1572 4096 2084 6144

secret key∗ (zx) 112(� + 1) + 684 2048(� + 2) 128(� + 1) + 924 3072(� + 2)

ciphertext 1572(� + 1) 4096(� + 1) 2084(� + 1) 6144(� + 1)

enc. expo. 687 2046 928 3070

dec. expo. 112(� + 1) + 684 2048(� + 2) 128(� + 1) + 924 3072(� + 2)
∗ignoring an additive term (� ± 1) log(

√
�)

Note that in this case, the size of our group elements (reduced ideals in the class
group of discriminant p3q), are significantly smaller than those of the Paillier
variant of [ALS16] (elements of Z/N2Z). This is also the case for ciphertexts
(which consist in both protocols of � + 1 group elements). We have the same
situation with secret keys: to simplify the comparison we consider linearly inde-
pendent queries (thus ignoring the vectors in Z�). As a result, we have, for our

760 G. Castagnos et al.

scheme, the inner product of a vector from (Z/pZ)� with a vector sampled from
a discrete Gaussian with standard deviation greater than

√
λps̃(

√
�p)�−1 over

Z� vs. the inner product of a vector of (Z/NZ)� with a vector sampled from a
discrete Gaussian with standard deviation greater than

√
λ(

√
�N)�+1 over Z�.

We note however that our underlying message space Z/pZ is much smaller
than their message space Z/NZ. Using larger message spaces would be more
favorable to their Paillier based scheme. But in practice, a 128 bits message
space is large enough, if for instance, one needs to perform computations with
double or quadruple precision. Our protocols are the most suited for such inter-
mediate computations, since Paillier’s construction from [ALS16] would add a
large overhead cost, while their DDH construction could not decrypt the result.

In terms of timings, a fair comparison is difficult since to our knowledge,
no library for the arithmetic of quadratic forms is as optimized as a standard
library for the arithmetic of modular integers. Nevertheless, we note that the
exponents involved in the (multi-)exponentiations for encryption and decryp-
tion are significantly smaller than those in [ALS16], as is the group size. Indeed,
the encryption of Paillier’s variant involves (� + 1) exponentiations to the power
a (|N | − 2)-bit integer modulo N2, whereas our protocol involves one expo-
nentiation to the power a |σ′|-bit integer in Cl(p3q), where σ′ > s̃

√
λ and �

(multi-)exponentiations whose maximum exponent size is also |σ′|. Decryptions
involve respectively a multi-exponentiation whose maximum exponent size is
lower than �σN = �

√
λ(

√
�N)�+1N for [ALS16] and �pσ = �p

√
λps̃(

√
�p)�−1 for

our protocol. We performed timings with Sage 8.1 on a standard laptop with
a straight-forward implementation. Using the settings of [CL15], the exponen-
tiation in class groups uses a PARI/GP function (qfbnupow), which is far less
optimised than the exponentiation in Z/NZ, implying a huge bias in favour of
Paillier. Despite this bias, the efficiency improvement we expected from our pro-
tocols is reflected in practice, as showed in Table 2. We gain firstly from the fact
that we can use smaller parameters for the same security level and secondly,
because our security reductions allow to replace N � with p� in the derived keys.
Thus the gain is not only in the constants and our scheme becomes more and
more interesting as the security level and the dimension � increase.

Table 2. Timings: our IPFE from HSM vs. [ALS16]’s IPFE from DCR

λ = 112, � = 10∗ λ = 128, � = 10∗

this work [ALS16] this work [ALS16]

secret key bitsize 1920 24592 2340 36876

encryption time 40 ms 27 ms 78 ms 85 ms

decryption time 110 ms 301 ms 193 ms 964 ms
∗ For all parameters our dependency in � is linear which
allows to extrapolate timings for � > 10.

Practical Fully Secure Unrestricted Inner Product Functional Encryption 761

Acknowledgements. The authors would like to thank both Benôıt Libert and
Damien Stehlé for fruitful discussions. This work was supported by the French ANR
ALAMBIC project (ANR-16-CE39-0006), and by ERC Starting Grant ERC-2013-StG-
335086-LATTAC.

References

[ABCP16] Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for
functional encryption for inner product evaluations. Cryptology ePrint
Archive, Report 2016/011 (2016). http://eprint.iacr.org/2016/011

[ABDP15] Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional
encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46447-2 33

[ABP+17] Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.:
Efficient public trace and revoke from standard assumptions: extended
abstract. In: ACM CCS 17, pp. 2277–2293. ACM Press (2017)

[ABSV15] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective
to adaptive security in functional encryption. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 32

[Adl94] Adleman, L.M.: The function field sieve. In: Adleman, L.M., Huang, M.-
D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58691-1 48

[AGVW13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 28

[ALS16] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for
inner products, from standard assumptions. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 12

[BBL17] Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product func-
tional encryption from projective hash functions. In: Fehr, S. (ed.) PKC
2017, Part II. LNCS, vol. 10175, pp. 36–66. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54388-7 2

[BCP03] Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosys-
tem with a double trapdoor decryption mechanism and its applications. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 3

[BGJS16] Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II.
LNCS, vol. 10032, pp. 557–587. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 19

[BJS10] Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for
quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14081-5 15

http://eprint.iacr.org/2016/011
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/3-540-58691-1_48
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-642-14081-5_15

762 G. Castagnos et al.

[BO13] Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possi-
bility results, impossibility results and the quest for a general definition.
In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 218–234. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02937-5 12

[Bou17] Bourse, F.: Functional encryption for inner-product evaluations. Ph.D.
thesis, PSL Research University, France (2017)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-
6 16

[CIL17] Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching pro-
tocols revisited: switching modulo p. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 255–287. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 9

[CL09] Castagnos, G., Laguillaumie, F.: On the security of cryptosystems with
quadratic decryption: the nicest cryptanalysis. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 260–277. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01001-9 15

[CL15] Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from
DDH. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 26

[CLT18] Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unre-
stricted inner product functional encryption modulo p. Cryptology ePrint
Archive, Report 2018/791 (2018). https://eprint.iacr.org/2018/791

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Heidelberg (2000)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[CS03] Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption
of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45146-4 8

[DIJ+13] De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On
the achievability of simulation-based security for functional encryption. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 519–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 29

[GGHZ16] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption with-
out obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II.
LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 18

[Gjø05] Gjøsteen, K.: Symmetric subgroup membership problems. In: Vaudenay,
S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 104–119. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30580-4 8

https://doi.org/10.1007/978-3-319-02937-5_12
https://doi.org/10.1007/978-3-319-02937-5_12
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-642-01001-9_15
https://doi.org/10.1007/978-3-319-16715-2_26
https://eprint.iacr.org/2018/791
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-540-30580-4_8

Practical Fully Secure Unrestricted Inner Product Functional Encryption 763

[GKP+13a] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 30

[GKP+13b] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: 45th
ACM STOC, pp. 555–564. ACM Press (2013)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: 40th ACM STOC, pp. 197–206.
ACM Press (2008)

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

[HO12] Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor func-
tions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 627–643. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30057-8 37

[Jac00] Jacobson Jr., M.J.: Computing discrete logarithms in quadratic orders. J.
Cryptol. 13(4), 473–492 (2000)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 9

[Luc02] Lucks, S.: A variant of the Cramer-Shoup cryptosystem for groups of
unknown order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 27–45. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 2

[Mar03] Martinet, J.: Perfect Lattices in Euclidean Spaces. Grundlehren der math-
ematischen Wissenschaften, vol. 327, 1st edn. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-662-05167-2

[McC89] McCurley, K.S.: Cryptographic key distribution and computation in class
groups. In: Number Theory and Applications (Proc. NATO Advanced
Study Inst. on Number Theory and Applications, Banff, 1988). Kluwer
(1989)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society
Press (2004)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[Ngu91] Nguyen, P.Q.: La Géométrie des Nombres en Cryptologie. Ph.D. thesis,
École Normale Supérieure (1991)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-30057-8_37
https://doi.org/10.1007/978-3-642-30057-8_37
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/3-540-36178-2_2
https://doi.org/10.1007/3-540-36178-2_2
https://doi.org/10.1007/978-3-662-05167-2
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16

764 G. Castagnos et al.

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–
53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 5

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption
with public keys. In: ACM CCS 10, pp. 463–472. ACM Press (2010)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[Wat15] Waters, B.: A punctured programming approach to adaptively secure
functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015, Part II. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 33

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-48000-7_33

Correction to: Cryptanalysis of MORUS

Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen,
Gaëtan Leurent, Brice Minaud, Yann Rotella, Yu Sasaki,

and Benoît Viguier

Correction to:
Chapter “Cryptanalysis of MORUS”
in: T. Peyrin and S. Galbraith (Eds.): Advances in Cryptology –
ASIACRYPT 2018, LNCS 11273,
https://doi.org/10.1007/978-3-030-03329-3_2

The original version of the chapter “Cryptanalysis of MORUS”, starting on p.35 was
inadvertently published with errors. The email address, city and country of the author
Martin M. Lauridsen were incorrect. The original chapter has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-03329-3_2

© International Association for Cryptologic Research 2019
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, p. C1, 2018.
https://doi.org/10.1007/978-3-030-03329-3_26

https://doi.org/10.1007/978-3-030-03329-3_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-03329-3_2

Author Index

Abe, Masayuki I-627
Aono, Yoshinori I-405
Ashur, Tomer II-35
Attrapadung, Nuttapong II-493

Backes, Michael II-405
Badrinarayanan, Saikrishna III-118
Bai, Shi I-369
Barelli, Élise I-93
Beimel, Amos III-332
Belaïd, Sonia II-343
Ben-Efraim, Aner III-3
Beullens, Ward I-35
Beyne, Tim I-3
Bhaumik, Ritam I-336
Biryukov, Alex II-373
Blackburn, Simon R. I-35
Boneh, Dan II-435
Bonnetain, Xavier I-560
Bootle, Jonathan I-494, I-595
Brzuska, Chris III-222

Cash, David I-181
Castagnos, Guilhem II-733
Castryck, Wouter III-395
Cerulli, Andrea I-595
Chaidos, Pyrros III-191
Chan, T.-H. Hubert III-158
Chen, Jie II-673
Chen, Long I-435
Chen, Yu Long I-244
Chen, Yu II-575
Chotard, Jérémy II-703
Chow, Sherman S. M. II-465
Costello, Craig III-428
Couteau, Geoffroy II-96
Couvreur, Alain I-93

Datta, Pratish II-640
De Feo, Luca III-365
Debris-Alazard, Thomas I-62
Degabriele, Jean Paul III-519
Delaplace, Claire I-494
Delignat-Lavaud, Antoine III-222

Derbez, Patrick II-3
Desmoulins, Nicolas I-121
Dobraunig, Christoph II-315
Drijvers, Manu II-435
Ducas, Léo I-465, II-525
Dufour Sans, Edouard II-703
Dupin, Aurélien II-96

Eichlseder, Maria II-35, II-315
Espitau, Thomas I-494

Fischlin, Marc III-519
Fouque, Pierre-Alain I-121, I-494
Fournet, Cédric III-222
Fourtounelli, Olga III-191

Gay, Romain II-703
Gong, Junqing II-673
Gordon, S. Dov III-59, III-141
Goudarzi, Dahmun II-343, II-547
Grassi, Lorenzo I-527
Gross, Hannes II-315
Groth, Jens I-595
Guo, Chun I-213
Guo, Jian II-65

Hanaoka, Goichiro II-493
Hanzlik, Lucjan II-405
Hazay, Carmit III-86
He, Jingnan II-158
Hofheinz, Dennis II-190
Hosoyamada, Akinori I-275
Hu, Lei II-3
Huang, Wenchao III-310

Jager, Tibor II-221, III-490
Jain, Abhishek III-118
Jakobsen, Sune I-595
Jia, Dingding II-190
Joux, Antoine II-547
Jutla, Charanjit S. I-627

Kamara, Seny I-149
Karpman, Pierre II-285

Katsumata, Shuichi II-253, II-493
Katz, Jonathan III-141, III-158
Kiayias, Aggelos III-191
Kieffer, Jean III-365
Kitagawa, Fuyuki II-127
Kluczniak, Kamil II-405
Kohbrok, Konrad III-222
Kohlweiss, Markulf III-222
Kolesnikov, Vladimir III-34
Kurek, Rafael II-221, III-490

Laguillaumie, Fabien II-733
Lai, Russell W. F. II-465, III-279
Lange, Tanja III-395
Lauridsen, Martin M. II-35
Lee, ByeongHak I-305
Lee, Jooyoung I-305
Leurent, Gaëtan II-35
Li, Bao II-158
Liang, Bei II-158
Ling, San II-65
List, Eik I-336
Liu, Feng-Hao I-181
Liu, Shengli III-459
Lu, Xianhui II-158

Malavolta, Giulio III-279
Maller, Mary I-595
Mangard, Stefan II-315
Martindale, Chloe III-395
Méaux, Pierrick II-96
Mendel, Florian II-315
Meng, Keju III-310
Mennink, Bart I-244
Miao, Fuyou III-310
Minaud, Brice II-35
Moataz, Tarik I-149

Nandi, Mridul I-244, I-336
Nayak, Kartik III-158
Naya-Plasencia, María I-527, I-560
Neven, Gregory II-435
Nguyen, Phong Q. I-405
Ning, Yu III-310

O’Neill, Adam I-181
Ohkubo, Miyako I-627

Okamoto, Tatsuaki II-640
Onete, Cristina I-121
Orsini, Emmanuela III-86
Ostrovsky, Rafail III-118

Pan, Jiaxin II-190, III-490
Panny, Lorenz III-395
Pellet-Mary, Alice I-465
Peter, Naty III-332
Phan, Duong Hieu II-703
Pointcheval, David II-703
Polychroniadou, Antigoni III-158
Primas, Robert II-315

Ranellucci, Samuel III-59
Renes, Joost III-395
Rivain, Matthieu II-343, II-547
Roche, Daniel S. II-285
Rossi, Mélissa II-96
Rotella, Yann II-35, II-96
Roy, Arnab I-627

Sakai, Yusuke II-493
Sanders, Olivier I-121
Sasaki, Yu II-35
Schneider, Jonas II-405
Scholl, Peter III-86
Schröder, Dominique III-279
Schrottenloher, André I-527
Shen, Yixin I-405
Shi, Danping II-3, II-65
Shi, Elaine III-158
Smith, Benjamin III-365
Song, Ling II-65
Soria-Vazquez, Eduardo III-86
Stehlé, Damien I-369
Sun, Bing II-3
Sun, Siwei II-3

Tai, Raymond K. H. II-465
Takashima, Katsuyuki II-609, II-640
Tanaka, Keisuke II-127
Tibouchi, Mehdi I-494
Tillich, Jean-Pierre I-62
Todo, Yosuke II-3
Tomida, Junichi II-609
Tucker, Ida II-733

766 Author Index

Udovenko, Aleksei II-373

Viguier, Benoît II-35
Visconti, Ivan III-118

Wang, Lei I-213
Wang, Xiao III-59, III-141
Wang, Xingfu III-310
Wang, Yuyu II-575
Wee, Hoeteck II-673
Wei, Puwen III-250
Wen, Weiqiang I-369
Wen, Yunhua III-459
Wong, Harry W. H. II-465

Xiong, Yan III-310
Xue, Haiyang II-158

Yamada, Shota II-253
Yamakawa, Takashi II-253
Yasuda, Kan I-275
Yu, Yang II-525
Yuan, Quan III-250

Zacharias, Thomas III-191
Zhandry, Mark I-181
Zhang, Cong I-181
Zhang, Zhenfei I-435
Zhang, Zhenfeng I-435
Zheng, Yuliang III-250
Zhou, Hong-Sheng II-575

Author Index 767

	Preface
	ASIACRYPT 2018
	Contents – Part II
	Symmetric-Key Cryptanalysis
	Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints
	1 Introduction
	2 Notations
	3 The Demirci-Selçuk Meet-in-the-Middle Attack
	3.1 The DS-MITM Distinguisher
	3.2 Key Recovery Attack Based on DS-MITM Distinguisher
	3.3 Complexity Analysis

	4 Modelling the DS-MITM Attack with Constraints: A High Level Overview
	4.1 Forward Differential and Backward Differential
	4.2 Forward Determination and Backward Determination

	5 Modelling the DS-MITM Attack with Constraints: The Technical Details
	5.1 CP Model for E1: The Distinguisher Part
	5.2 CP Model for the Outer Rounds E0 and E2

	6 How to Use the Modelling Technique in Practice?
	6.1 Enumeration of DS-MITM Distinguishers
	6.2 Fast Prototyping for DS-MITM Attacks

	7 Applications
	7.1 Application to SKINNY
	7.2 Application to LBlock
	7.3 Application to TWINE-80
	7.4 Applications to AES, ARIA, and SIMON

	8 Applications in the Process of Block Cipher Design
	9 Conclusion and Discussion
	References

	Cryptanalysis of
	1 Introduction
	2 Preliminaries
	2.1 Specification of MORUS
	2.2 Notation

	3 Rotational Invariance and MiniMORUS
	3.1 Rotationally Invariant Linear Combinations
	3.2 MiniMORUS

	4 Linear Trail for MiniMORUS
	4.1 Overview of the Trail
	4.2 Trail Equation
	4.3 Correlation of the Trail
	4.4 Experimental Verification

	5 Trail for Full MORUS
	5.1 Making the Trail Rotationally Invariant
	5.2 Correlation of the Full Trail
	5.3 Taking Variable Plaintext into Account

	6 Discussion
	7 Analysis on Initialization and Finalization of Reduced MORUS
	7.1 Forgery with Reduced Finalization
	7.2 Extending State Recovery to Key Recovery

	8 Conclusion
	A Trail Equations
	A.1 Trail Equation for Full MORUS-1280

	References

	New MILP Modeling: Improved Conditional Cube Attacks on Keccak-Based Constructions
	1 Introduction
	2 Description of KMAC, Keyak and Ketje
	2.1 Keccak-p
	2.2 The Sponge Construction and KMAC
	2.3 The Duplex Construction and Keyak, Ketje
	2.4 Notations

	3 Related Works and Motivations
	3.1 Cube Attacks
	3.2 Conditional Cube Attacks
	3.3 Linear Structures
	3.4 Motivations

	4 Modeling Each Step with MILP
	4.1 A 1-Round Linear Structure of KMAC
	4.2 Modeling the Non-linear Layer
	4.3 Modeling the Linear Layer

	5 Modeling the Search for Conditional Cubes
	5.1 Model for Searching Conditional Cubes of Type I
	5.2 Model for Searching Conditional Cubes of Type II
	5.3 Discussion and Comparison

	6 Applications
	6.1 Conditional Cube Attacks on KMAC
	6.2 Conditional Cube Attacks on Keyak and Ketje
	6.3 Conditional Cube Attacks on Full-State Keyed Duplex
	6.4 Experimental Verification and Codes

	7 Conclusions
	A Experimental Details
	B Inequalities
	References

	On the Concrete Security of Goldreich's Pseudorandom Generator
	1 Introduction
	1.1 Implications of Polynomial-Stretch Local Pseudorandom Generators
	1.2 On the Security of Goldreich's PRG
	1.3 Our Goals and Results
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Hypergraphs
	2.2 Predicates
	2.3 Pseudorandom Generators

	3 Guess and Determine Cryptanalysis of Goldreich's PRG with P5
	3.1 Overview of the Attack
	3.2 Complexity Analysis and Details
	3.3 Experiment
	3.4 Other Algebraic Cryptanalysis
	3.5 Conclusion

	4 Generic Attacks Against Goldreich's PRG
	4.1 A Subexponential-Time Algorithm
	4.2 Open Questions

	References

	Public Key and Identity-Based Encryption
	A Framework for Achieving KDM-CCA Secure Public-Key Encryption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Technical Overview

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Projective Hash Function

	3 KDM(1)-CCA Secure PKE Based on Homomorphic Projective Hash Function
	4 Instantiation Based on the DCR Assumption
	4.1 Construction of H
	4.2 Construction of
	4.3 Associated Function Class

	5 KDM-CCA Secure PKE from the DDH Assumption
	References

	Understanding and Constructing AKE via Double-Key Key Encapsulation Mechanism
	1 Introduction
	1.1 Our Contributions
	1.2 Strong Point of the AKE via 2-Key KEM

	2 Preliminary
	2.1 CK+ Security Model

	3 2-Key Key Encapsulation Mechanism and Basic Results
	3.1 2-Key Key Encapsulation Mechanism
	3.2 Differences Between [CCA,] Security and Previous Definitions
	3.3 Basic Definitions and Results Related to 2-Key KEM

	4 Authenticated Key Exchange from 2-Key KEM
	4.1 AKE from 2-Key KEM in Random Oracle Model
	4.2 AKE from 2-Key KEM in Standard Model

	5 Unification of Prior Works
	5.1 HMQV-AKE
	5.2 NAXOS-AKE
	5.3 Okamoto-AKE
	5.4 FSXY12-AKE and FSXY13-AKE

	6 More General Constructions for 2-Key KEM
	6.1 Improved Combiner of Two KEMs
	6.2 Modified FO Transformation

	7 Efficient Post-quantum AKE from Module-LWE
	References

	Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks
	1 Introduction
	1.1 Technical Overview
	1.2 More on Related Work

	2 Basic Preliminaries
	2.1 Notations
	2.2 Collision Resistant Hash Functions
	2.3 Pairing Groups and Matrix Diffie-Hellman Assumptions

	3 Affine MACs in the Multi-Challenge Setting
	3.1 Definition
	3.2 Instantiation

	4 Quasi-adaptive Zero-Knowledge Arguments for Linear Subspaces
	4.1 Definition
	4.2 Construction: QANIZK with Unbounded Simulation Soundness

	5 Identity-Based Key Encapsulation Mechanism
	5.1 Definition
	5.2 Two Transformations

	References

	Short Digital Signatures and ID-KEMs via Truncation Collision Resistance
	1 Introduction
	2 Truncation Collision-Resistant Hashing
	3 Identity-Based Key Encapsulation
	3.1 Definitions and Security Notions
	3.2 From Weak Security to Adaptive Security
	3.3 Adaptively Secure ID-KEM with Short Ciphertexts

	4 Digital Signatures
	4.1 Definitions and Security Notions
	4.2 From Weak Security to Adaptive Security
	4.3 Very Short Signatures with Adaptive Security

	5 Conclusion
	References

	Asiacrypt 2018 Award Paper I
	Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 Discussion
	1.5 Related Work

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Pseudorandom Function
	2.3 Identity-Based Encryption
	2.4 Background on Lattices

	3 Tightly Secure Single Challenge GPV-IBE
	3.1 Construction
	3.2 Correctness and Parameter Selection
	3.3 Security Proof in QROM

	4 (Almost) Tightly Secure Multi-challenge IBE
	4.1 Construction
	4.2 Correctness and Parameter Selection
	4.3 Security

	References

	Side-Channels
	New Instantiations of the CRYPTO 2017 Masking Schemes
	1 Introduction
	1.1 Our Contribution
	1.2 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 MDS and Cauchy Matrices
	2.3 Security Notions for Masking Schemes

	3 The Masking Schemes of CRYPTO 2017
	3.1 Pseudo-Linear Multiplication Complexity [Sect.4]DBLP:confspscryptospsBelaidBPPTV17
	3.2 Linear Randomness Complexity [Sect.5]DBLP:confspscryptospsBelaidBPPTV17

	4 Simplifying and Unifying the Conditions
	4.1 Unifying M and M
	4.2 Equivalent Condition With Kernel Bases
	4.3 Eliminating Rows and Columns

	5 A Matrix Precondition
	5.1 Definitions
	5.2 Explicit constructions

	6 Analytic Construction for Order up to 3
	6.1 Columns Which Must be Selected
	6.2 Dimensions 1 and 2
	6.3 Dimension 3

	7 Efficient Algorithms to Test Safeness
	7.1 The Algorithm
	7.2 Straightforward Implementation with Optimizations
	7.3 Batch Implementation

	8 Experimental Results and Explicit Instantiations
	8.1 Statistics
	8.2 Instantiations of [Sect.4]DBLP:confspscryptospsBelaidBPPTV17
	8.3 Instantiations of [Sect.5]DBLP:confspscryptospsBelaidBPPTV17
	8.4 Minimum Field Sizes for Safe Instantiations

	References

	Statistical Ineffective Fault Attacks on Masked AES with Fault Countermeasures
	1 Introduction
	2 Background on Statistical Faults
	2.1 Statistical Fault Attacks
	2.2 Statistical Ineffective Fault Attacks

	3 Faults on Masking
	3.1 Concept of Masking
	3.2 Faulting Masked AND Gates
	3.3 Faulting Masked S-Boxes
	3.4 A Closer Look

	4 Attack Evaluation
	4.1 Practical Attack on AES from Rivain et al.
	4.2 Simulated Attacks on AES from Schwabe and Stoffelen

	5 Discussion
	5.1 On the Nature and Number of Faults
	5.2 Countermeasures
	5.3 Choice of the Target and Attack Setup
	5.4 Further Applications

	6 Conclusion
	References

	Tight Private Circuits: Achieving Probing Security with the Least Refreshing
	1 Introduction
	2 Formal Security Notions
	2.1 Notations
	2.2 Basic Notions
	2.3 Game-Based Security Definitions
	2.4 Useful Security Results

	3 A Security Reduction
	4 Probing-Security Verification for Standard Shared Circuits
	4.1 Linear Algebra Formulation
	4.2 Method Description
	4.3 Toy Examples
	4.4 Proof of Correctness
	4.5 Towards Efficient Construction of Tight t-Private Circuits

	5 Further Steps
	5.1 Generic Composition
	5.2 Application to SPN-Based Block Ciphers
	5.3 Extension to Generic Shared Circuits

	6 Application
	6.1 Application to Section4 Examples
	6.2 Application to AES s-box

	References

	Attacks and Countermeasures for White-box Designs
	1 Introduction
	2 Notations and Definitions
	3 Attacks On Masked Implementations
	3.1 Combinatorial DCA attacks
	3.2 Algebraic DCA attacks
	3.3 Fault Attacks

	4 Countermeasures
	5 Algebraically Secure Masking Schemes
	5.1 Security Model
	5.2 Security Analysis
	5.3 First-order Secure Construction
	5.4 Verifying Algebraic Security
	5.5 Algebraically Secure Gadgets
	5.6 Implementation

	6 Conclusions
	References

	Signatures
	Signatures with Flexible Public Key: Introducing Equivalence Classes for Public Keys
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Number Theoretical Assumptions
	2.2 Programmable Hash Functions
	2.3 Non-Interactive Proof Systems
	2.4 Structure-Preserving Signatures on Equivalence Classes

	3 Signatures with Flexible Public Key
	3.1 Flexible Public Key in the Multi-user Setting

	4 Applications
	4.1 Cryptocurrency Stealth Addresses
	4.2 Group Signatures/Self-Blindable Certificates
	4.3 Ring Signatures

	5 Efficient Instantiation from Standard Assumptions
	5.1 Warm-Up Scheme
	5.2 Flexible Public Key Scheme in the Multi-user Setting
	5.3 Discussion

	References

	Compact Multi-signatures for Smaller Blockchains
	1 Introduction
	1.1 Better Constructions Using Pairings
	1.2 Our Pairing-Based Results
	1.3 Efficiency Comparison
	1.4 Related Work

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Computational Problems
	2.3 Generalized Forking Lemma
	2.4 Multi-signatures and Aggregate Multi-signatures
	2.5 Aggregate Multi-signatures

	3 Multi-signatures with Key Aggregation from Pairings
	3.1 Description of Our Pairing-Based Scheme
	3.2 Security Proof
	3.3 Aggregating Multi-signatures

	4 Accountable-Subgroup Multisignatures
	4.1 Definition of ASM Schemes
	4.2 Our ASM Scheme
	4.3 Security of Our ASM Scheme
	4.4 Partial Aggregation of ASM Signatures

	5 A Scheme from Discrete Logarithms
	5.1 Description of Our Discrete-Logarithm Scheme
	5.2 Security Proof

	References

	Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption
	1 Introduction
	1.1 Multi-key Homomorphic Signatures
	1.2 Our Results
	1.3 Extensions

	2 Related Work
	2.1 Existing Homomorphic Signatures
	2.2 Existing Multi-key Homomorphic Signatures
	2.3 Key-Homomorphism

	3 Preliminaries
	3.1 Succinct Non-Interactive Arguments
	3.2 Signatures
	3.3 Functional Signatures

	4 Insider-Secure Multi-key Homomorphic Signatures
	4.1 Notation
	4.2 Definitions

	5 Construction
	6 Relation with Existing Notions
	6.1 Functional Signatures from cEUF-CMA-Secure M-HS
	6.2 ZK-SNARG from cEUF-CMA-Secure M-HS

	7 Conclusion and Open Problem
	A Insecurity of Existing Work against Insider Attack
	References

	Attribute-Based Signatures for Unbounded Languages from Standard Assumptions
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 Difficulties and Our Approach
	2.1 Naive Ideas and Their Limitations
	2.2 Our Approach

	3 Preliminaries
	4 Attribute-Based Signatures for Turing Machines
	5 Security of Our Scheme
	6 Attribute-Based Signature Scheme for Nondeterministic Finite Automata
	6.1 Nondeterministic Finite Automata
	6.2 Notations
	6.3 The Scheme

	7 Conclusion
	References

	Asiacrypt 2018 Award Paper II
	Learning Strikes Again: The Case of the DRS Signature Scheme
	1 Introduction
	2 Preliminaries
	3 The DRS Signature Scheme
	4 Learning Coefficients of the Secret Matrix
	4.1 Intuition on a Potential Leak
	4.2 Training
	4.3 Learning

	5 Exploiting Partial Secret Key Knowledge in Lattice Attacks
	5.1 Direct BDD-uSVP Attack
	5.2 BDD-uSVP Attack with Dimension Reduction
	5.3 Cheaply Recovering All the Other Rows

	6 Conclusion
	6.1 Viability of the DRS Design, and Potential Countermeasure

	References

	Leakage-Resilient Cryptography
	How to Securely Compute with Noisy Leakage in Quasilinear Complexity
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Leakage and Adversary
	2.1 Noisy Leakage Model
	2.2 Leakage Adversary

	3 Secure Multiplication in Quasilinear Complexity
	3.1 Our Encoding
	3.2 Multiplication of Encoded Variables
	3.3 Security in the Random Probing Model

	4 Compositional Security for Arithmetic Programs
	4.1 Refreshing Procedure
	4.2 Arithmetic Program Compiler
	4.3 Compositional Security

	5 From Arithmetic Random Probing to Noisy Leakage
	5.1 Logical Programs
	5.2 A Generic Reduction
	5.3 Application to Our Scheme

	6 Practical Aspects and Open Problems
	A Number Theoretic Transform
	References

	Leakage-Resilient Cryptography from Puncturable Primitives and Obfuscation
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Overview of Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Puncturable Pseudorandom Functions
	2.2 Indistinguishability Obfuscation for Circuits

	3 Leakage-Resilient SKE
	3.1 Leakage-Resilient Weak PRFs
	3.2 Weak Puncturable PRFs
	3.3 Leakage-Resilient wPRFs from wPPRFs and iO

	4 Leakage-Resilient KEM
	4.1 Leakage-Resilient PEPRFs
	4.2 Puncturable PEPRFs
	4.3 Leakage-Resilient PEPRFs from PPEPRFs and iO
	4.4 Construction with Improved Leakage Rate

	5 Leakage-Resilient Signature
	5.1 Selective Construction from sPPRFs, Leakage-Resilient OWFs and iO

	References

	Functional/Inner Product/Predicate Encryption
	Unbounded Inner Product Functional Encryption from Bilinear Maps
	1 Introduction
	1.1 Our Techniques
	1.2 Discussion
	1.3 Concurrent Work

	2 Preliminary
	2.1 Notations
	2.2 Basic Notions
	2.3 Unbounded Inner Product Functional Encryption for (E:con, K:sep, D:ct-dom)

	3 Private-Key Unbounded Inner Product Functional Encryption
	3.1 Construction
	3.2 Security

	4 Public-Key Unbounded Inner Product Functional Encryption
	4.1 Construction
	4.2 Security

	References

	Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Arithmetic Branching Programs
	2.3 The Function Family FABP IP(q,n',n) and the Algorithm PGB
	2.4 Bilinear Groups and Dual Pairing Vector Spaces
	2.5 Complexity Assumption
	2.6 The Notion of Partially-Hiding Predicate Encryption

	3 The Proposed PHPE Scheme
	3.1 Construction
	3.2 Security

	References

	Improved Inner-Product Encryption with Adaptive Security and Full Attribute-Hiding
	1 Introduction
	1.1 Our Results
	1.2 Our Technique in Composite-Order Groups
	1.3 Our Technique in Prime-Order Groups

	2 Preliminaries
	2.1 Inner-Product Encryption
	2.2 Prime-Order Groups and Matrix Diffie-Hellman Assumptions

	3 Construction from k-lin Assumption
	3.1 Preparation
	3.2 Step One: A Private-Key IPE in Prime-Order Groups
	3.3 Security of Private-Key IPE
	3.4 Step Two: From Private-Key to Public-Key
	3.5 Lemmas for Private-Key IPE
	3.6 Lemmas for Public-Key IPE

	4 Construction from xdlin Assumption
	4.1 Correspondence
	4.2 Step One: A Private-Key IPE from XDLIN Assumption
	4.3 Security
	4.4 Step Two: From Private-Key to Public-Key

	References

	Decentralized Multi-Client Functional Encryption for Inner Product
	1 Introduction
	1.1 A Use Case
	1.2 Related Work
	1.3 Multi-Client Functional Encryption
	1.4 Decentralized Multi-Client Functional Encryption
	1.5 Technical Overview
	1.6 Contributions

	2 Definitions and Security Models
	2.1 Multi-Client Functional Encryption
	2.2 Decentralized Multi-Client Functional Encryption

	3 Notations and Assumptions
	3.1 Groups
	3.2 Computational Assumptions

	4 A Fully-Secure MCFE for Inner Product
	4.1 Description
	4.2 Security Analysis

	5 A Statically-Secure DMCFE for Inner Product
	5.1 Construction
	5.2 Security Analysis

	6 Conclusion
	A Multi DDH Assumption
	B A Selectively-Secure MCFE
	B.1 Description
	B.2 Selective Security
	B.3 Security Analysis

	References

	Practical Fully Secure Unrestricted Inner Product Functional Encryption Modulo p
	1 Introduction
	2 Background
	3 Variants of CL: Assumptions and ind-cpa Schemes
	3.1 Algorithmic Assumptions
	3.2 Some Variants of the CL Generic Encryption Scheme
	3.3 Relations Between the Assumptions

	4 Inner Product FE Relying on the DDH-f Assumption
	4.1 DDH-f-Based FE for Inner Product over Z
	4.2 DDH-f-Based FE for Inner Product over Z/pZ

	5 Inner Product FE Relying on the HSM Assumption
	5.1 HSM-Based FE for Inner Product over Z
	5.2 HSM-Based FE for Inner Product over Z/pZ

	6 Instantiation and Efficiency Considerations
	References

	Correction to: Cryptanalysis of MORUS
	Correction to: Chapter “Cryptanalysis of MORUS” in: T. Peyrin and S. Galbraith (Eds.): Advances in Cryptology – ASIACRYPT 2018, LNCS 11273, https://doi.org/10.1007/978-3-030-03329-3_2

	Author Index

