
Arya: Nearly Linear-Time
Zero-Knowledge Proofs for Correct

Program Execution

Jonathan Bootle(B), Andrea Cerulli, Jens Groth, Sune Jakobsen,
and Mary Maller

University College London, London, UK
{jonathan.bootle.14,andrea.cerulli.13,j.groth,s.jakobsen,

mary.maller.15}@ucl.ac.uk

Abstract. There have been tremendous advances in reducing interac-
tion, communication and verification time in zero-knowledge proofs but
it remains an important challenge to make the prover efficient. We con-
struct the first zero-knowledge proof of knowledge for the correct execution
of a program on public and private inputs where the prover computation is
nearly linear time. This saves a polylogarithmic factor in asymptotic per-
formance compared to current state of the art proof systems.

We use the TinyRAM model to capture general purpose processor
computation. An instance consists of a TinyRAM program and public
inputs. The witness consists of additional private inputs to the program.
The prover can use our proof system to convince the verifier that the pro-
gram terminates with the intended answer within given time and memory
bounds. Our proof system has perfect completeness, statistical special
honest verifier zero-knowledge, and computational knowledge soundness
assuming linear-time computable collision-resistant hash functions exist.
The main advantage of our new proof system is asymptotically efficient
prover computation. The prover’s running time is only a superconstant
factor larger than the program’s running time in an apples-to-apples
comparison where the prover uses the same TinyRAM model. Our proof
system is also efficient on the other performance parameters; the veri-
fier’s running time and the communication are sublinear in the execution
time of the program and we only use a log-logarithmic number of rounds.

Keywords: Zero-knowledge proofs
Succinct arguments of knowledge · TinyRAM
Ideal linear commitments · Post-quantum security

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement n. 307937.
M. Maller—Supported by a scholarship from Microsoft Research.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 595–626, 2018.
https://doi.org/10.1007/978-3-030-03326-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03326-2_20&domain=pdf

596 J. Bootle et al.

1 Introduction

A zero-knowledge proof system [GMR85] enables a prover to convince a verifier
that a statement is true without revealing anything else. We are interested in
proving statements of the form u ∈ L, where L is a language in NP. A zero-
knowledge proof is an interactive protocol between a prover and a verifier, where
both hold the same instance u, and the prover also holds a witness w to u ∈ L.
The protocol should satisfy three properties:

Completeness: A prover holding a witness to u ∈ L can convince the verifier.
Soundness: A cheating prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction only shows the statement u ∈ L is true. It

reveals nothing else, in particular it does not disclose anything of the witness.

Zero-knowledge proofs have numerous applications and are for instance used
in constructions of public-key encryption schemes secure against chosen cipher-
text attack, digital signatures, voting systems, auction systems, e-cash, secure
multi-party computation, and verifiable outsourced computation. The zero-
knowledge proofs impact the performance of all these applications, and it is
therefore important for them to be as efficient as possible.

There are many zero-knowledge proofs for dealing with arithmetic or boolean
circuit satisfiability. However, in applications usually the type of statements we
want to prove is that a protocol participant is following the protocol honestly;
whatever that protocol may be. This means we want to express statements relat-
ing to program execution such as “running program P specified by the protocol
on public input x and private input y returns the output z.” In principle such a
statement can be reduced to circuit satisfiability but the cost of the NP-reduction
incurs a prohibitive cost. In this paper, we therefore focus on the important ques-
tion of getting zero-knowledge proofs for statements relating directly to program
execution.

Performance can be measured on a number of parameters including the
prover’s running time, the verifier’s running time, the number of transmitted
bits and the number of rounds the prover and verifier interact. Current state of
the art zero-knowledge proofs get very good performance on verification time,
communication and round complexity, which makes the prover’s running time
the crucial bottleneck. Indeed, since the other costs are so low, we would hap-
pily increase them for even modest savings on the proving time since this is
the barrier that make some applications such as verifiable outsourced computa-
tion currently unviable. The research challenge we focus on is therefore to get
prover-efficient zero-knowledge proofs for correct program execution.

1.1 Our Contribution

We use the TinyRAM model [BCG+13,BSCG+13] for computation. TinyRAM
specifies a random access machine with a small instruction set working on W -
bit words and addresses. The specification of TinyRAM considers a Harvard-
architecture processor, which means that the program being executed is stored

Arya: Nearly Linear-Time Zero-Knowledge Proofs 597

separately from the data being processed and does not change during execu-
tion.1 Experimental results [BCG+13] show that programs written in C can
be compiled efficiently into TinyRAM programs and only have a modest con-
stant overhead compared to optimized compilation to machine code on a modern
processor.

In our proof system, an instance consists of a TinyRAM program and public
data given to the program, and a witness is private data given as input to the
program. The statement is the claim that the TinyRAM program P running on
given public and private data will terminate with answer 0 within specific time
and memory bounds. When measuring performance we think of the prover and
verifier as being TinyRAM programs with the same word size2.

Our main contribution is an interactive proof system for correct TinyRAM
computation, which has perfect completeness, statistical zero-knowledge, and
computational knowledge soundness based on collision-resistant hash functions.
Knowledge soundness means that not only do we have soundness and it is infea-
sible to prove a false statement, but it is also a proof of knowledge such that
given access to a successful prover it is possible to extract a witness. For maximal
asymptotic efficiency we may use linear-time computable hash functions, which
yields the performance given in Fig. 1.

Our proof system is highly efficient for computationally intensive programs
where the execution time dominates other parameters (see Sect. 6 for a detailed
discussion of parameter choices). For a statement about the execution of a
TinyRAM program of length L, running with time bound T and memory
bound M , the prover runs in O(αT) steps3 for an arbitrarily small supercon-
stant function α(λ) = ω(1). The proof system is also efficient on other per-
formance parameters: the verifier running time and the communication grows
roughly with the square-root of the execution time4 and we have log-logarithmic
round complexity. Figure 1 gives an efficiency comparison with a state of the art
zk-SNARK [BCTV14b] for verifying correct program execution on TinyRAM.

1 TinyRAM can with minor changes also be adapted to a von Neumann architecture
where program instructions are fetched from memory [BCTV14b]. The performance
of our proof systems adapted to a von Neumann architecture would remain the same
up to a constant factor.

2 We stress the choice of comparing the prover and verifier to program execution on
the same platform. We do this to get an apples-to-apples comparison; there are many
zero-knowledge proofs that are “linear time” because they use different metrics for
statement evaluation and the prover time, for instance that the cost of validating
the statement given the witness is measured in field multiplications and the prover
computation is measured in exponentiations.

3 The big-O notation hides big constants and we do not recommend implementing the
proof system as it is; our contribution is to make significant asymptotic gains com-
pared to state-of-the-art zero-knowledge proofs by demonstrating that the prover’s
computation can be nearly linear.

4 Disregarding the SHVZK property for a moment, this is also the first proof system
for general purpose computation that has both nearly linear computation for the
prover and sublinear communication.

598 J. Bootle et al.

Further discussion of other proof systems that can verify correct TinyRAM or
other types of program execution can be found in Sect. 1.3. The best of these
achieve similar asymptotic prover efficiency as [BCTV14b].

Work Prover Verifier Communication Rounds Assumption
[BCTV14b] Ω(T log2 T) ω(L + |v|) ω(1) 1 KoE
This work O(αT) poly(λ)(

√
T + L + |v|) poly(λ)(

√
T + L) O(log log T) LT-CRHF

Fig. 1. Efficiency comparisons between our arguments and the most efficient zero-
knowledge argument for the correct execution of TinyRAM programs, both at security
level 2−ω(log λ). Computation is measured in TinyRAM steps and communication in
words of length W = Θ(log λ) with λ the security parameter. KoE stands for knowledge
of exponent type assumption in pairing-based groups and LT-CRHF stands for linear-
time collision resistant hash function. It is worth noting KoE assumptions do not resist
quantum computers while a LT-CRHF may be quantum resistant.

Remarks. Our proof system assumes some public parameters to be set up that
include a description of a finite field, an error-correcting code, and a collision-
resistant hash function. The size of the public parameters is just poly(λ)(L +
M +

√
T) bits which can be computed from a small uniformly random string in

poly(λ)(L + M +
√

T) TinyRAM steps. This means the public parameters have
little effect on the overall efficiency of the proof system. Moreover, there are
variants of the parameters where it is efficiently verifiable the public parameters
have the correct structure. This means the prover does not need to trust the
parameters to get special honest verifier zero-knowledge, so they can be chosen
by the verifier making our proof systems work in the plain model without setup.
We let the public parameter be generated by a separate setup though because
they are independent of the instance and can be used over many separate proofs.

We did not optimize communication and verification time to go below
√

T
but if needed it is possible to compose our proof system with a verifier-efficient
proof system and get verification time that grows logarithmically in T . This is
done by letting the prover send linear-time computable hashes of her messages to
the verifier instead of the full messages. Since our proof system is public coin the
prover knows after this interaction exactly how the verifier in our proof system
ought to run if given the messages in our proof system. She can therefore give a
verifier-efficient proof of knowledge that she knows pre-images to the hashes that
would make the verifier in our proof system accept. We outline this procedure
in the full paper [BCG+18].

1.2 New Techniques

Ben-Sasson et al. [BCG+13,BCTV14b] offer proof systems for correct TinyRAM
program execution where the prover commits to a time-sorted execution trace
as well as an address-sorted memory trace. They embed words, addresses and

Arya: Nearly Linear-Time Zero-Knowledge Proofs 599

flags that describe the TinyRAM state at a given time into field elements. The
correct transition in the execution trace between the state at time t and the
state at time t + 1 can then be checked by an arithmetic circuit, the correct
writing and reading of memory at a particular address in the memory trace can
be checked by another arithmetic circuit, and finally the consistency of memory
values in the two traces can be checked by a third arithmetic circuit that embeds
a permutation network. Importantly, in these proofs the state transitions can be
proved with the same arithmetic circuits in each step so many of the proofs can
be batched together at low average cost.

Combining their approach with the recent linear-time proofs for arithmetic
circuit satisfiability by Bootle et al. [BCG+17] it would be possible to get a zero-
knowledge proof system with sublinear communication and efficient verification.
The prover time, however, would incur at least a logarithmic overhead compared
to the time to execute the TinyRAM program. First, the use of an arithmetic
circuit that embeds a permutation network to check consistency between exe-
cution and memory traces requires a logarithmic number of linear-size layers to
describe an arbitrary permutation which translates into a logarithmic overhead
when generating the proof. Second, TinyRAM allows both arithmetic operations
such as addition and multiplication of words, and logical operations such as bit-
wise XOR, AND and OR. To verify logical operations they decompose words
into single bits that are handled individually. Bit-decomposition makes it easy
to implement the logical operations, but causes an overhead when embedding
bits into full size field elements. From a technical perspective our main contri-
bution is to overcome these two obstacles.

To reduce the time required to prove the execution trace is consistent with
the memory usage we do not embed a permutation network into an arithmetic
circuit. Instead we relate memory consistency to the existence of a permutation
that maps one memory access in the execution trace to the next access of the
same memory address in the execution trace. Neff [Nef01] proposed permutation
proofs in the context of shuffle proofs used in mix-nets. Follow-up works [Gro10b,
GI08] have improved efficiency of such proofs with Bayer and Groth [BG12]
giving a shuffle argument in the discrete logarithm setting where the prover uses
a linear number of exponentiations and communication is sublinear. These shuffle
proofs are proposed for the discrete logarithm setting and we do not want to
pay the cost of computing exponentiations. The core of the shuffle proofs can be
formulated abstractly using homomorphic commitments to vectors though. Since
the proofs by Bootle et al. [BCG+17] also rely on an idealization of homomorphic
commitments to vectors the ideas are compatible and we get permutation proofs
that cost a linear number of field operations.

To remove the overhead of bit-decomposition we invent a less costly decom-
position. While additions and multiplications are manageable using a natural
embedding of words into field elements, such a representation is not well suited to
logical operations though. However, instead of decomposing words into individ-
ual bits, we decompose them into interleaved odd-position bits and even-position
bits. A nibble (a3, a2, a1, a0) can for instance be decomposed into (a3, 0, a1, 0) +
(0, a2, 0, a0). The key point of this idea is that adding two interleaved even bit

600 J. Bootle et al.

nibbles yields (0, a2, 0, a0) + (0, b2, 0, b0) = (a2 ∧ b2, a2 ⊕ b2, a0 ∧ b0, a0 ⊕ b0).
So using another decomposition into odd-position and even-position bits we can
now extract the XORs and the ANDs. Using this core idea, it is possible to repre-
sent all logical operations using field additions together with decomposition into
odd and even-position bits. This reduces the verification of logical operations to
verifying correct decomposition into odd and even bits. This decomposition and
its use are described in the full paper [BCG+18].

To enable decomposition proofs into odd and even-position bits, we develop
a new lookup proof that makes it possible to check that a field element belongs
to a table of permitted values. By creating a lookup table of all words with even-
position bits, we make it possible to verify such decompositions. Lookup proofs
not only enable decomposition into odd and even-position bits but also turn out
to have many other uses such as demonstrating that a field element represents
a correct program instruction, or that a field element represents a valid word
within the range {0, . . . , 2W − 1}.

Combining arithmetic circuits, permutations and table lookups we get a set
of conditions for a TinyRAM execution being correct. The program execution
of T steps on the TinyRAM machine can in our system be encoded as O(T)
field elements that satisfy the conditions. Using prime order fields of size 2O(W)

would make it possible to represent these field elements as O(1) words each.
However, the soundness of our proof systems depends on the field size and to
get negligible soundness error we choose a larger field to get a superconstant ratio
e = log |F|

W . This factors into the efficiency of our proof system giving a prover
runtime of O(αT) TinyRAM steps for an instance requiring time T , where α is
a superconstant function which specifies how many steps it takes to compute a
field operation, i.e., α = O(e2).

Having the inner core of conditions in place: arithmetic circuits for instruc-
tion executions, permutations for memory consistency, and look-ups for word
decompositions we now deploy the framework of Bootle et al. [BCG+17] to get
a zero-knowledge proof system. They use error-correcting codes and linear-time
collision-resistant hash functions to give proof systems for arithmetic circuit
satisfiability, while we will use their techniques to prove our conditions on the
execution trace are satisfied. Their proof system for arithmetic circuit satisfi-
ability requires the prover to use a linear number of field multiplications and
the verifier to use a linear number of field additions. However, we can actually
get sublinear verification when the program and the input is smaller than the
execution time. Technically, the performance difference stems from the type of
permutation proof that they use for verifying the correct wiring of the circuit
and that we use for memory consistency in the execution trace. In their use, the
permutation needs to be linked to the publicly known wiring of the arithmetic
circuit and in order for the verifier to check the wiring is correct he must read
the entire circuit. We on the other hand do not disclose the memory accesses in
the execution trace to the verifier, indeed to get zero-knowledge it is essential the
memory accesses remain secret. We therefore need a hidden permutation proof
and such proofs can have sublinear verification time.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 601

1.3 Related Work

Interaction. Interaction is measured by the number of rounds the prover and
verifier exchange messages. Feige and Shamir [FS90] showed that constant round
argument systems exist, and Blum, Feldman and Micali [BFM88] showed that if
the prover and verifier have access to an honestly generated common reference
string it is possible to have non-interactive zero-knowledge proofs where the
prover sends a single message to the verifier.

Communication. A series of works [KR08,IKOS09,Gen09,GGI+15] have con-
structed proof systems where the number of transmitted bits is proportional to
the witness size. It is unlikely that sublinear communication is possible in proof
systems with statistical soundness but Kilian [Kil92] constructed an argument
system, a computationally sound proof system, with polylogarithmic communi-
cation complexity. Kilian’s zero-knowledge argument relies on probabilistically
checkable proofs [AS98], which are still complex for practical use, but the inven-
tion of interactive oracle proofs [BCS16] have made this type of proof system
a realistic option. Recent work by Ben-Sasson et al. [BSBTHR18] presents a
new PCP-based argument system, known as STARKs, which also has polylog-
arithmic communication costs, and is optimized for better practicality. Ishai et
al. [IKO07] give laconic arguments where the prover’s communication is mini-
mal. Groth [Gro10a], working in the common reference string model and using
strong assumptions, gave a pairing-based non-interactive zero-knowledge argu-
ment consisting of a constant number of group elements. Follow-up works on
succinct non-interactive arguments of knowledge (SNARKs) have shown that it
is possible to have both a modest size common reference string and proofs as
small as 3 group elements [BCCT12,GGPR13,PHGR16,BCCT13,Gro16].

Verifier Computation. In general the verifier has to read the entire instance
since even a single deviating bit may render the statement u ∈ L false. However,
in many cases an instance can be represented more compactly than the witness
and the instance may be small compared to the computational effort it takes
to verify a witness for the instance. In these cases it is possible to get sublinear
verification time compared to the time it takes to check the relation defining
the language L. This is for instance the case for the SNARKs mentioned above,
where the verification time only depends on the size of the instance but not the
complexity of the relation.

Prover Computation. Given the success in reducing interaction, communi-
cation and verification time, the important remaining challenge is to get good
efficiency for the prover.

Boolean and Arithmetic Circuits. Many classic zero-knowledge proofs rely on
cyclic groups and have applications in digital signatures, encryption schemes,
etc. The techniques first suggested by Schnorr [Sch91] can be generalized

602 J. Bootle et al.

to NP-completel languages such as boolean and arithmetic circuit satisfiabil-
ity [CD,Gro09,BCC+16]. In these proofs and arguments the prover uses O(N)
group exponentiations, where N is the number of gates in the circuit. For the
discrete logarithm assumption to hold, the groups must have superpolynomial
size in the security parameter though, so exponentiations incur a significant over-
head compared to direct evaluation of the witness in the circuit. The SNARKs
mentioned earlier also rely on cyclic groups and likewise require the prover to
do O(N) exponentiations. Recently, Bootle et al. [BCG+17] used the structure
of [Gro09] to give constant overhead zero-knowledge proofs for arithmetic cir-
cuit satisfiability, where the prover uses O(N) field multiplications, relying on
error-correcting codes and efficient collision-resistant hash functions instead of
cyclic groups. STARKs [BSBTHR18] achieve slightly worse, quasilinear prover
computation but have lower asymptotic verification costs.

An alternative to these techniques is to use the “MPC in the head” paradigm
by Ishai et al. [IKOS09]. Relying on efficient MPC techniques, Damg̊ard, Ishai
and Krøigaard gave zero-knowledge arguments with little communication and
a prover complexity of polylog(λ)N . Instead of focusing on theoretical perfor-
mance, ZKBoo [GMO16] and its subsequent optimisation ZKB++ [CDG+17]
are practical implementations of a “3PC in the head” style zero-knowledge proof
for boolean circuit satisfiability. Communication grows linearly in the circuit
size in both proofs, and a superlogarithmic number of repetitions is required
to make the soundness error negligible, but the speed of the symmetric key
primitives makes practical performance good. Ligero [AHIV17] provides another
implementation using techniques related to [BCG+17]. It has excellent practical
performance but asymptotically it is not as efficient as [BCG+17] due to the use
of more expensive error-correcting codes. Another alternative also inspired by
the MPC world is to use garbled circuits to construct zero-knowledge arguments
for boolean circuits [BP12,JKO13,FNO15]. The proofs grow linearly in the size
of the circuit and there is a polylogarithmic overhead for the prover and verifier
due to the cryptographic operations but implementations are practical [JKO13].

There are several proof systems for efficient verification of outsourced com-
putation [GKR08,CMT12,Tha13,WHG+16]. While this line of works mostly
focus on verifying deterministic computation and does not require zero-
knowledge, recent works add in cryptographic techniques to obtain zero-
knowledge [ZGK+17,WJB+17,WTas+17]. Hyrax [WTas+17] offers an imple-
mentation with good concrete performance. It has sublinear communication and
verification, while the prover computation is dominated by O(dN +S log S) field
operations for a depth d and width S circuit when the witness is small compared
to the circuit size. If in addition the circuit can be parallelized into many iden-
tical sub-computations the prover cost can be further reduced to O(dN) field
operations. The system vSQL [ZGK+17] is tailored towards verifying database
queries and as in this work it avoids the use of permutation networks using per-
mutation proofs based on invariance of roots in polynomials as first suggested
by Neff [Nef01].

Arya: Nearly Linear-Time Zero-Knowledge Proofs 603

Correct Program Execution. In practice, most computation does not resem-
ble circuit evaluation but is instead done by computer programs processing
one instruction at a time. There has been a sustained effort to construct effi-
cient zero-knowledge proofs that support real-life computation, i.e., proving
statements of the form “when executing program P on public input x and
private input y we get the output z.” In the context of SNARKs there are
already several systems for proving correct execution of programs written in
C [PHGR16,BFR+13,BCG+13,WSR+15]. These system generally involve a
front-end which compiles the program into an arithmetic circuit which is then fed
into a cryptographic back-end. Much work has been dedicated to improving both
sides and achieving different trade-offs between efficiency and expressiveness of
the computation.

When we want to reason theoretically about zero-knowledge proofs for correct
program execution, it is useful to abstract program execution as a random-access
machine that in each instruction can address an arbitrary location in memory
and do integer operations on it. For closer resemblance to real-life computation,
we can bound the integers to a specific word size and specify a more general set
of operations the random-access machine can execute. TinyRAM [BSCG+13,
BCG+13] is a prominent example of a computational model bridging the gap
between theory and real-word computation. It comes with a compiler from C
to TinyRAM code and underpins several implementations of zero-knowledge
proofs for correct program execution [BCG+13,BCTV14b,BCTV14a,CTV15,
BBC+17] where the prover time is Ω(T log2 λ) for a program execution that
takes time T . Similar efficiency is also achieved, asymptotically, by other proof
systems that can compile (restricted) C programs and prove correct execution
such as Pinocchio [PHGR16], Pantry [BFR+13] and Buffet [WSR+15]. Our work
reduces the prover’s overhead from Ω(log2 λ) to an arbitrary superconstant α =
ω(1) and is therefore an important step towards optimal prover complexity.

Concurrent Work. Zhang et al. [ZGK+18] have concurrently with our work devel-
oped and implemented a scheme for verifying RAM computations. Like us and
[ZGK+17], they avoid the use of permutation networks by using permutation
proofs based on polynomial invariance by Neff [Nef01]. The idea underlying
their technique for proving the correct fetch of an operation is related to the
idea underpinning our look-up proofs. There are significant differences between
the techniques used in our works; e.g. they rely on techniques from [CMT12]
for instantiating proofs where we use techniques based on ideal linear commit-
ments [BCG+17]. The proofs in [ZGK+18] are not zero-knowledge since they
leak the number of times each type of instruction is executed, while our proofs
are zero-knowledge. In terms of prover efficiency, [ZGK+18] focuses on concrete
efficiency and yields impressive concrete performance. Asymptotically speaking,
however, we are a polylogarithmic factor more efficient. This may require some
explanation because they claim linear complexity for the prover. The reason is
that they treat the prover as a TinyRAM machine with logarithmic word size in
their performance measurement. Looking under the hood, we see that they use
bit-decomposition to handle logical operations, which is constant overhead when

604 J. Bootle et al.

you fix a particular word size (e.g. 32 bits) but asymptotically the cost of this is
logarithmic since it is linear in the word size. Also, they base commitments on
cyclic groups and the use of exponentiations incurs a superlogarithmic overhead
for the prover when implemented in TinyRAM.

Setup and Assumptions. Many proof systems, such as SNARKs, require a
large and complex common reference string in order to run. The common ref-
erence string must be generated correctly, or the security of the proof system
is at stake. This leads to concerns over parameter subversion, and efficiency,
since the more complex the common reference string, the more costly it is to
ensure that it was generated correctly. Recently, alternatives have been inves-
tigated. Hyrax [WTas+17] relies on the discrete logarithm assumption, and
Ligero [AHIV17] and STARKs [BSBTHR18] rely on collision-resistant hash func-
tions. Our scheme relies only on collision-resistant hash functions for soundness,
and pseudorandom generators in order to achieve full zero-knowledge, which
means that the setup information required is comparable to existing works, like
STARKs, which focus on transparency.

Our proof system benefits from simple setup ingredients, nearly linear prover
costs, and sublinear, hence, scalable communication and verification costs, and
therefore enjoys many of the same desirable properties as STARKs [BSBTHR18].

In addition, although we do not know how to prove that our scheme is secure
in any quantum security model, it is based on post-quantum assumptions and
may offer some security against quantum adversaries, since it is not known how
to efficiently attack collision-resistant hash functions and pseudorandom gen-
erators using quantum algorithms. Note that there are general proof systems,
such as ZKB++ [CDG+17], which do have quantum proofs of security, but are
asymptotically less efficient as previously discussed.

2 Preliminaries

2.1 Notation

We write y ← A(x) for an algorithm returning y on input x. When the algorithm
is randomized, we write y ← A(x; r) to explicitly refer to the random coins r
picked by the algorithm. We use a security parameter λ to indicate the desired
level of security. The higher the security parameter, the smaller the risk of an
adversary compromising security should be. For functions f, g : N → [0, 1], we
write f(λ) ≈ g(λ) if |f(λ) − g(λ)| = 1

λω(1) . We say a function f is overwhelming
if f(λ) ≈ 1 and that it is negligible if f(λ) ≈ 0. In general we want the adver-
sary’s chance of breaking our proof systems to be negligible in λ. As a minimum
requirement for an algorithm or adversary to be efficient it has to run in polyno-
mial time in the security parameter. We abbreviate probabilistic (deterministic)
polynomial time in the security parameter PPT (DPT). For a positive integer
n, [n] denotes the set {1, . . . , n}. We use bold letters such as v for row vectors
over a finite field F.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 605

2.2 Proofs of Knowledge

We follow [BCG+17] in defining proofs of knowledge over a communication chan-
nel and their specification of the ideal linear commitment channel and the stan-
dard channel. A proof system is defined by stateful PPT algorithms (K,P,V).
The setup generator K is only run once to provide public parameters pp that will
be used by the prover P and verifier V. We will in our security definitions just
assume K is honest, which is reasonable since in our constructions the public
parameters are publicly verifiable and could even be generated by the verifier.

The prover and verifier communicate with each other through a commu-
nication channel chan←→. When P and V interact on inputs s and t through a
channel chan←→ we let viewV ← 〈P(s) chan←→ V(t)〉 be the view of the verifier
in the execution, i.e., all inputs he gets including random coins, and we let
transP ← 〈P(s) chan←→ V(t)〉 denote the transcript of the communication between
prover and channel. The protocol ends with the verifier accepting or rejecting the
proof. We write 〈P(s) chan←→ V(t)〉 = b depending on whether he accepts (b = 1)
or rejects (b = 0).

In the standard channel ←→, all messages are forwarded between prover and
verifier. As in [BCG+17], we also consider an ideal linear commitment channel,
ILC←→, described in Fig. 2. When using the ILC channel, the prover can submit a
commit command to commit to vectors of field elements of some fixed length
k, specified in the public parameters. The vectors remain secretly stored in the
channel, and will not be forwarded to the verifier. Instead, the verifier only learns
how many vectors the prover has committed to. The verifier can submit a send
command to the ILC channel to send a message to the prover. In addition, the
verifier can also submit open queries to the ILC channel to obtain openings of
linear combinations of the vectors sent by the prover. We stress that the verifier
can request several linear combinations of stored vectors within a single open
query, as depicted in Fig. 2 using matrix notation.

PILC VILC

Fig. 2. Description of the ILC channel.

606 J. Bootle et al.

We say a proof system is public coin if the verifier’s messages to the com-
munication channel are chosen uniformly at random and independently of the
actions of the prover, i.e., the verifier’s messages to the prover correspond to
the verifier’s randomness ρ. All our proof systems will be public coin. In a proof
system over the ILC channel, sequences of commit, send and open queries can
alternate arbitrarily. However, since our proof systems are public coin we can
without loss of generality assume the verifier will only make one big open query
at the end of the protocol and then decide whether to accept or reject.

Let R be an efficiently decidable relation of tuples (pp, u, w). We can define
a matching language L = {(pp, u)|∃w : (pp, u, w) ∈ R}. We refer to u as the
instance and w as the witness to (pp, u) ∈ L. The public parameter pp will
specify the security parameter λ, perhaps implicitly through its length, and may
also contain other parameters used for specifying the relation. Typically, pp will
also contain parameters that do not influence membership of R but may aid the
prover and verifier, for instance the field and vector size in the ILC channel.

The protocol (K,P,V) is called a proof of knowledge over a communication
channel chan←→ for a relation R if it has perfect completeness and computational
knowledge soundness as defined below.

Definition 1 (Perfect Completeness). A proof system is perfectly complete
if for all PPT adversaries A

Pr

[
pp ← K(1λ); (u,w) ← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w) chan←→ V(pp, u)〉 = 1

]
= 1.

Definition 2 (Knowledge soundness). A public-coin proof system has com-
putational (strong black-box) knowledge soundness if for all DPT P∗ there exists
an expected PPT extractor E such that for all PPT adversaries A

Pr

[
pp ← K(1λ); (u, s) ← A(pp);w ← E〈P∗(s)

chan←→V(pp,u)〉(pp, u) :
b = 1 ∧ (pp, u, w) /∈ R

]
≈ 0.

Here the oracle 〈P∗(s) chan←→ V(pp, u)〉 runs a full protocol execution and if the
proof is successful it returns the transcript transP of the prover’s communication
with the channel. The extractor E can ask the oracle to rewind the proof to any
point in a previous transcript and execute the proof again from this point on with
fresh public-coin challenges from the verifier. We let b ∈ {0, 1} be the verifier’s
output in the first oracle execution, i.e., whether it accepts or not, and we think
of s as the state of the prover. The definition can then be paraphrased as saying
that if the prover in state s makes a convincing proof, then E can extract a
witness.

If the definition holds also for unbounded P∗ and A we say the proof has
statistical knowledge soundness.

If the definition holds for a non-rewinding extractor, i.e., E only requires a
single transcript of the prover’s communication with the channel, we say the
proof system has knowledge soundness with straight-line extraction.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 607

We will construct public-coin proofs of knowledge that have special honest-
verifier zero-knowledge. This means that if the verifier’s challenges are known
in advance then it is possible to simulate the verifier’s view without knowing a
witness. In our definition, the simulator works even for verifiers who may use
adversarial biased coins in choosing their challenges as long as they honestly
follow the specification of the protocol.

Definition 3 (Special Honest-Verifier Zero-Knowledge). A public-coin
proof of knowledge is computationally special honest-verifier zero-knowledge
(SHVZK) if there exists a PPT simulator S such that for all stateful interactive
PPT adversaries A that output randomness ρ for the verifier, and (u,w) such
that (pp, u, w) ∈ R,

Pr

[
pp ← K(1λ); (u,w, ρ) ← A(pp);

viewV ← 〈P(pp, u, w) chan←→ V(pp, u; ρ)〉 : A(viewV) = 1

]

≈ Pr
[
pp ← K(1λ); (u,w, ρ) ← A(pp); viewV ← S(pp, u, ρ) : A(viewV) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against
unbounded adversaries, and we say the proof is perfectly SHVZK if the proba-
bilities are exactly equal.

2.3 TinyRAM

TinyRAM is a random-access machine model operating on W -bit words and
using K registers. We now describe the key features of TinyRAM but refer the
reader to the specification [BSCG+13] for full details. A state of the TinyRAM
machine consists of a program P (list of L instructions), a program counter pc
(word), K registers reg0, . . . , regK−1 (words), a condition flag flag (bit), and M
words of memory with addresses 0, . . . , M − 1.

The TinyRAM specification includes two read-only tapes to retrieve its inputs
but with little loss of efficiency we may assume the program starts by reading
the tapes into memory5 We will therefore skip the reading phase and assume
the memory is initialized with the inputs (and 0 for the remaining words). Also,
we will assume on initialization that pc, the registers and flag are all set to 0.

The program consists of a sequence of L instructions that include bit-wise
logical operations, arithmetic operations, shifts, comparisons, jumps, and stor-
ing and loading data in memory. The program terminates by using a special
command answer that returns a word. A description of the allowed operations
is given in Table 1. We consider the program to have succeeded if it answers 0,
otherwise we consider the answer to be a failure code.

We write regi and ri when referring to register i and to its content, respec-
tively. We write A to refer to either a register or an immediate value specified in
a program instruction and write A for the value stored therein. Depending on the

5 The specification [BSCG+13] calls a program proper if it first reads all inputs into
memory and provides a 7-line TinyRAM program that does this in ∼5M steps.

608 J. Bootle et al.

instruction a word a may be interpreted as an unsigned value in {0, . . . , 2W − 1}
or as a signed value in {−2W−1, . . . , 2W−1 − 1}. Signed values are in two’s com-
plement, so given a word a = (aw−1, . . . , a0) ∈ {0, 1}W the bit aW−1 is the sign
and the signed value is −2W + a if aW−1 = 1 and a if aW−1 = 0. We distinguish
operations over signed values by using subscript s, e.g. a ×s b and a ≥s b are
used to denote product and comparison over the signed values.

Correct Program Execution. It is often important to check that a proto-
col participant supposedly running program P on public input x and private
input w provides the correct output z. Without loss of generality, we can formu-
late the verification as an extended program that takes public input v = (x, z)
and answers 0 if and only if z is the output of the computation. We therefore
formulate correct program execution as the program just answering 0.

We now give a relation that captures correct TinyRAM program execution.
An instance is of the form u = (P, v, T,M), where P is a TinyRAM program, v
is a list of words given as input to the program, T is a time bound, and M is
the size of the memory. A witness w is another list of words. We assume without
loss of generality that the witness is appended by 0’s, such that |v| + |w| = M
and the program starts with the memory being initialized to these words.

The statement we want to prove is that the program P terminates in T steps
using M words of memory on the public input v and private input w with the
instruction answer 0. We therefore define

RTinyRAM =

⎧⎪⎪⎨
⎪⎪⎩

(pp, u, w) = ((W,K, ∗), (P, v, T,M), w)
∣∣

P is a TinyRAM program with W -bit words, K registers,
and M words of addressable memory, which on inputs v and w
terminates in T steps with the instruction answer 0.

⎫⎪⎪⎬
⎪⎪⎭

Our main interest is to prove correct execution of programs that require heavy
computation so we will throughout the article assume the number of steps out-
weigh the other parameters, i.e., T > L + M , where L is the number of instruc-
tions in the program.

3 Arithmetization of Correct Program Execution

As a first step towards the realization of proofs for the correct execution of
TinyRAM programs we translate RTinyRAM into a more amenable relation involv-
ing elements in a finite field. Given a TinyRAM machine with word-size W and
a finite field F, we can in a natural way embed words into field elements by
encoding a word a ∈ {0, . . . , 2W − 1} as the field element a · 1F = 1F + · · · + 1F
(a times). We will use fields of characteristic p > 22W − 2W−1 because then
sums and products of words are less than p and we avoid overflow in the field
operations we apply to the embedded words.

We will encode the program, memory and states of a TinyRAM program as
tuples of field elements. We then introduce a new relation Rfield

TinyRAM consisting
of a set of arithmetic constraints these encodings should satisfy to guarantee

Arya: Nearly Linear-Time Zero-Knowledge Proofs 609

the correct program execution. The relation will take instances u = (P, v, T,M),
and witnesses w consisting of the encodings as well as a set of auxiliary field
elements.

In this section we specify instructions supported by TinyRAM machines and
the structure of the witness w and how the relation of correct program execution
decomposes into simpler sub-relations. It will be the case that the encoding of
the witness can be done alongside an execution of the program in O(L+M +T)
field operations.

Table 1 described the supported operations in TinyRAM. Each line in the
program consists of one of these instructions in and up to three operands, e.g.
add regi regj A. The first operand, regi, usually points to the register storing
the result of the operation, add, computed on the words specified by the next
two operands, regj , A. The last operand A indicates an immediate value that
could be either used directly in the operation or to point to the content of
another register. We refer to the value to be used in the operation generically as
A, stressing that the selection between either the immediate value or a register
value can be handled by using the appropriate selection vector.

Formatting the Witness. Given a correct program execution we encode pro-
gram, memory and states of the TinyRAM machine as field elements and arrange
them in a number of tables as pictured in Table 2. The execution table Exe, con-
tains the field elements encoding of the states of the TinyRAM machine. It
consists of T rows, where row t describes the state at the beginning of step t.
A row includes field elements that encode the time t, the program counter pct,
the instruction instpct

corresponding to pct, an immediate value At, the values
r0,t, . . . , rK−1,t contained in the registers reg0, . . . , regK−1 at time t, and the flag
flagt. The next row contains the resulting state of the TinyRAM machine at time
t+1. Each row also includes a memory address addrt, and the value vaddrt stored
at this address after the execution of the step, as well as a constant number of
auxiliary field elements to be specified later that will be used to check correctness
of program execution.

The next table is the program table Prog, which contains the field elements
encoding of the TinyRAM program P . Each row contains the description of one
line of the program, consisting of one instruction, at most three operands, and
possibly an immediate value. Furthermore, we introduce a constant number of
auxiliary field elements in each row. These entries can be efficiently computed
given the program line stored in the same row and will help verifying its execu-
tion, e.g. we encode the position of input and output registers as auxiliary field
elements.

The memory table Mem has rows that list the possible memory addresses,
their initial values, and an auxiliary field element usd ∈ {0, 1}. For every pair of
address and corresponding initial value, the memory table Mem contains a row
in which usd = 0 and another row in which usd = 1. Recall that the memory is
initialized with input words listed in v, w, i.e., the input words contributing to
the instance and witness of the relation RTinyRAM.

610 J. Bootle et al.

Table 1. TinyRAM instruction set, excluding the read command. The flag is set equal
to 1 if the condition is met and 0 otherwise. If the pc exceeds the program length, i.e.,
pc ≥ L, or we address a non-existing part of memory, i.e., in a store or load instruction
A ≥ M , the TinyRAM machine halts with answer 1.

Instruction Operands Effect Flag

and regi regj A Compute ri as bitwise

AND of rj and A

Result is 0W

or regi regj A Compute ri as bitwise

OR of rj and A

Result is 0W

xor regi regj A Compute ri as bitwise

XOR of rj and A

Result is 0W

not regi A Compute ri as bitwise

NOT of A

Result is 0W

add regi regj A Compute

ri = rj + A mod 2W
Overflow: rj + A ≥ 2W

sub regi regj A Compute

ri = rj − A mod 2W
Borrow: rj < A

mull regi regj A Compute

ri = rj × A mod 2W
¬ overflow: rj × A < 2W

umulh regi regj A Compute ri as upper W

bits of rj × A

¬ overflow: ri = 0

smulh regi regj A Compute ri as upper W

bits of the signed

2W -bit rj ×s A (mull

gives lower word)

¬ over/underflow: ri = 0

udiv regi regj A Compute ri as quotient

of rj/A

Division by zero: A = 0

umod regi regj A Compute ri as

remainder of rj/A

Division by zero: A = 0

shl regi regj A Compute ri as ri shifted

left by A bits

MSB of rj

shr regi regj A Compute ri as ri shifted

right by A bits

LSB of rj

cmpe regi A Compare if equal Equal: ri = A

cmpa regi A Compare if above Above: ri > A

cmpae regi A Compare if above or

equal

Above/equal: ri ≥ A

cmpg regi A Signed compare if

greater

Greater: ri >s A

cmpge regi A Signed compare if

greater or equal

Greater/equal: ri ≥s A

mov regi A Set ri = A Flag unchanged

cmov regi A if flag = 1 set ri = A Flag unchanged

jmp A Set pc = A Flag unchanged

cjmp A If flag = 1 set pc = A Flag unchanged

cnjmp A If flag = 0 set pc = A Flag unchanged

store A regi Store in memory

address A the word ri

Flag unchanged

load regi A Set ri to the word

stored at address A

Flag unchanged

answer A Stall or halt returning

the word A

Flag unchanged

Arya: Nearly Linear-Time Zero-Knowledge Proofs 611

Table 2. The execution table Exe, the program table Prog, the memory table Mem
and the table EvenBits.

In addition to these, we also consider an auxiliary lookup table EvenBits
containing the encoding of words of length W whose binary expansion has 0 in
all odd positions. The table contains 2

W
2 field elements and will be used as part

of a check that certain field elements encode a word of length W .

3.1 Decomposition of TinyRAM

Let (Exe,Prog,Mem,EvenBits) be the tables of field elements encoding the pro-
gram execution and the auxiliary values. We can now reformulate the correct
execution of a TinyRAM program defined by RTinyRAM as a relation that imposes
a number of constraints the field elements included in tables should satisfy:

Rfield
TinyRAM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗)
(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the relations Rcheck, Rmem,Rstep jointly guarantee the witness w consists
of field elements encoding a correct TinyRAM execution that answers 0 in T
steps using M words of memory, public input v, and additional private inputs.

Specifically, the relation Rcheck checks the initial values of the memory are
correctly included into Mem, the program is correctly encoded in Prog, EvenBits

612 J. Bootle et al.

contains the correct encodings of the auxiliary lookup table, the initial state of
the TinyRAM machine is correct and that it terminates with answer 0 in step
T . The role of Rmem is to check that memory usage is consistent throughout
the execution of the program. That is, if a memory value is loaded at time t
then it should match the last stored value at the same address. Finally, Rstep

checks that each step of the execution has been performed correctly. In the rest
of the section we describe Rcheck, Rmem and Rstep, gradually decomposing them
into smaller and simpler relations. Ultimately, we specify each of these subrela-
tions in terms of some building block: equality, lookup, permutation, and range
relations. Figure 3 illustrates the decomposition of Rfield

TinyRAM into progressively
smaller relations.

Fig. 3. Diagram of the decomposition of TinyRAM into equality, lookup, permutation,
and range relations.

Building Blocks. We give a brief description of the building block relations
used in the decomposition of Rfield

TinyRAM.

– An equality relation Req checks that rows Tabi of a table Tab in the witness
encode tuples v1, . . . , vm of given W -bit words

– A lookup relation checks the membership of a tuple of field elements w in the
set of rows of a table Tab. This differs from the previous relation as both w
and Tab are both in the witness. We extend this relation in the natural way
for checking the membership of multiple tuples w1,w2, . . . in a table.

– A range relation to check that a field element a can be written as a W -bit
word, i.e., a is in the range {0, . . . , 2W − 1}.

– A permutation relation can be used to check that two ordered sets of a given
size are permutations of each other. The permutation is in the witness i.e. it
is unknown to the verifier.

3.2 Checking the Correctness of Values

The role of Rcheck is to check that w consists of the correct number of field
elements that can be partitioned into the appropriate tables and also to check
that specific entries in these tables are correct.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 613

Rcheck =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗),
Exe = {Exet}T

t=1, Prog = {Progi}L−1
i=0

Prog0 = (0, inst0,A0, . . .)
(pp, (1, 0, inst0, A0, 0, . . . , 0, . . .) ,Exe1) ∈ Req

(pp, (T,answer, 0, . . .),ExeT) ∈ Req(
pp,

(
0, 1, 4, 5, . . . ,

∑W
2 −1

i=0 22i
)

,EvenBits
)

∈ Req

(pp, P,Prog) ∈ Req (pp, v,Mem) ∈ Req

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The relation Rcheck checks that: the first and last row of the execution table
contains the correct initial values; the auxiliary lookup table EvenBits contains
the embeddings of all W -bit words with 0 in all odd positions; the program
table Prog contains the correct field element embedding of the program P as
well as the correct auxiliary entries; the memory table Mem contains the correct
embedding of the input words listed in v.

3.3 Checking Memory Consistency

The relation Rmem checks that the memory is used consistently across different
steps in the execution. For instance, if at step t a value is loaded from memory,
then it should be equal to the last value stored in the same address. If it is
the first time a memory address is accessed, we need to ensure consistency with
the initial values. If two consecutive memory accesses to the same address were
placed into two adjacent rows of Exe it would be easy to check their consistency.
However, this is generally not the case since the Exe table is sorted by execution
time rather than memory access. Therefore, we need to devise a way to check
consistency of memory accesses that could be located in any position of Exe.
Overall the memory consistency relation Rmem decomposes as follows

Rmem =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, π, ∗),
Exe = {Exet}T

t=1 Mem = {Memj}2M−2
j=0

(pp, T, (Exe, π)) ∈ Rcycle, (pp, T,Exe) ∈ Rtime

(pp, (T,M), (Exe,Mem)) ∈ Rblookup, (pp, T,Exe) ∈ Rload

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

To help with checking the memory consistency, we include in each row of the
execution table the following auxiliary entries

auxExe = τlink vlink vinit usd S L · · ·
where τlink contains the previous time-step at which the current address was
accessed, unless this is the first time a location is accessed in which case it is
set equal to the last time-step this location is accessed. Similarly, vlink stores the
value contained in the address after time τlink, unless this is the first time that

614 J. Bootle et al.

location is accessed, in which case it stores the last value stored in that location.
The value vinit is a copy of the initial value assigned to that memory location,
which is also stored in the memory table Mem. The value usd is a flag which is
set equal to 0 if this is the first time we access the current memory address, and 1
otherwise. The values S, L are flags set equal to 1 in case the current instruction
is a store or load operation, respectively, and 0 otherwise. The values S, L are
also stored in the auxiliary entries of the program table auxProg = S L · · · .
Memory Accesses Form Cycles. We check memory consistency by specifying
cycles of memory accesses, so that consecutive terms in a cycle correspond to two
consecutive accesses to the same memory location. By using the above auxiliary
entries, we use the relation Rcycle for the memory access pattern in the rows of
Exe being in correspondence with a permutation π defined by such cycles. The
relation Rcycle checks that all memory accesses (i.e. with S + L = 1) relative to
the same address are connected into cycles and that rows not involving memory
operations (S + L = 0) are not included in these cycles. The relation does not
include any explicit checks on whether S+ L is equal to 0 or 1. It is sufficient to
check that St + Lt = St′ + Lt′ , t = τlinkt′ , vaddrt = vlinkt′ and addrt = addrt′ for
some t′ = π(t), which ensures that operations which are not memory operations
are not part of cycles including memory operations.

Rcycle =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), T, (Exe, π))
∣∣

Exet = (t, . . . , addrt, vlinkt, τlinkt, . . . , St, Lt, . . .) for t ∈ [T]
a t = (t, addrt, vaddrt ,St + Lt) for t ∈ [T]

bt = (τlinkt, addrt, vlinkt,St + Lt) for t ∈ [T]
((W,K,F, ∗), T, ({a i, bi}T

i=1, π)) ∈ Rperm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Memory Accesses are in the Correct Order. Consecutive terms in a cycle
should correspond to the consecutive time-steps in which the memory is accessed.
To check that the memory cycles are time-ordered we can simply verify that t >
τlinkt for any given time-step t ∈ [T]6. Since memory accesses are connected into
cycles, the first time we access a new memory location the τlink entry stores the
last point in time that location is accessed by the program. In this case (usd = 0),
we verify that t ≤ τlinkt. The relation Rtime incorporates these conditions

Rtime =

⎧⎨
⎩

(pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , τlinkt, . . . , usdt, . . .) for t ∈ [T]
∀ t ∈ [T] : (usd = 0 ∧ t ≤ τlinkt) ∨ (usd = 1 ∧ t > τlinkt)

⎫⎬
⎭

Memory Locations are in no more than one Cycle. To ensure that the
cycles correspond to sequences of memory addresses we also require that all the

6 For this to be sufficient we also need the time-steps in the execution table to be
correct but this is ensured by the Rcheck and Rconsistent (appears later) relations.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 615

rows touching the same memory address are included in the same cycle. Since
the cycles are time-ordered, they require one time-step for which usd = 0 in order
to close a cycle. Thus, we can ensure each memory location to be part of at most
on cycle by letting usd to be set equal to 0 at most once for each memory address.
We introduce a bounded lookup relation Rblookup to address this requirement. The
relation checks that for any row in Exe, the tuple (addrt, vinitt, usd) is contained
in one row of the table Mem and that each row (j, vj , 0) of Mem is accessed at
most once by the program.

Rblookup =

⎧⎪⎪⎨
⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (T,M), (Exe,Mem))
∣∣

Exet = (t, . . . , addrt, . . . , vinitt, usdt, . . .) for t ∈ [T]
∀ t ∈ [T] (pp,⊥, ((addrt, vinitt, usdt) ,Mem)) ∈ Rlookup ∧

∀ (j, vj , 0) ∈ Mem : (. . . , j, . . . , vj , 0, . . .) occurs at most once in Exe

⎫⎪⎪⎬
⎪⎪⎭

Load Instructions are Consistent. Finally, we are only left to check that if
the program executes a load instruction the value vaddrt loaded from memory
is consistent with the value stored at the same address at the previous access.
Similarly, if load is executed on a new memory location, then the value loaded
should match with the initial value vinitt. No additional checks are required for
store instructions. These checks are incorporated in the relation Rload.

Rload =

⎧⎨
⎩

(pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , addrt, vaddrt , τlinkt, vlinkt, vinitt, usdt, . . .) for t ∈ [T]
∀ t ∈ [T] : Lt(vaddrt − vinitt + usdt(vinitt − vlinkt)) = 0

⎫⎬
⎭

3.4 Checking Correct Execution of Instructions

We use the relation Rstep to guarantee that each step of the execution has been
performed correctly. This involves checking for each row Exet of the execution
table that the stored words are in the range {0, . . . , 2W − 1}, the flagt is a bit,
the program counter pct matches the instruction and the immediate value At

in the program, and that instt is correctly executed. An instruction takes some
inputs, e.g., values indicated by the operands regj , A or the flag and as a result
may change the program counter, a register value, a value stored at a memory
address, or the flag. Since we have already checked memory correctness, if the
operation is a load or store we may assume the memory value is correct.

Rstep =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗),⊥,w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗) ∧ Exe = {Exet}T
t=1

∀t ∈ {1, . . . , T − 1} :
(pp,⊥, (Exet,Exet+1)) ∈ Rmux

(pp,⊥, (Exei,Exei+1,Prog)) ∈ Rconsistent

(pp,⊥, (Exei,Exei+1,EvenBits, ∗)) ∈ Rins

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

616 J. Bootle et al.

To help checking the consistency of the operations the rows of the execution and
program tables include some auxiliary entries. These consist of some temporary
variables, an output vector, and some selection vectors which are also listed in
the program table. The temporary variables are used to store a copy of the
inputs and outputs of an instruction. The advantage of the temporary variables
is that for each addition operation we check, we will always have the inputs and
outputs stored, instead of having to handle multiple registers holding inputs and
output in arbitrary order.

Ensuring Temporary Values are Correct. A multiplexing relation Rmux is
used to check that the temporary variables are consistent with operands con-
tained in instt. Checking operations on temporary values require us to multiplex
the corresponding register, immediate, and memory values in and out of the
temporary values. We do this using selection vectors that are bit-vectors encod-
ing the operands of an instruction. Each row of the execution table includes
multiple variables that may be selected as an operand. A selection vector will
have a bit for each of these variables indicating whether it is picked or not. More
details about the multiplexing relation are provided in the full version of the
paper [BCG+18].

The Execution Table and the Program Table are Consistent. The con-
sistency relation Rconsistent checks that the time is correctly incremented and
that the program counter is in the correct range, i.e. pct+1 ∈ {0, . . . , L − 1}
and is incremented unless a jump-instruction is executed. It also checks that the
instruction, the immediate value and the selection vectors stored in the execu-
tion table are consistent with the program the line indexed pc. Furthermore,
it checks that the entries in the output vector relevant to instt are all equal to
zero and that the contents of the registers do not change, unless specified by the
instruction, e.g. the register storing the result of the computation. Verifying that
rows of the execution table match with states of a TinyRAM machine involves
checking that entries that are not affected by an instruction remain the same in
the next state. For this we use another selector vector with entries equal to 0,
positioned in correspondence of entries that are changed during the execution,
and 1 for entries that do not change in the execution.

Instructions are Executed Correctly. An instruction checker relation Rins

checking that the temporary values are in the range {0, . . . , 2W − 1} and are
consistent with the output vector. We divide the entries of the output vector
into 4 groups: logical (AND,XOR,OR), arithmetic (SUM,PROD,SSUM,SPROD,
MOD), shift (SHIFT), and flag (FLAG1,FLAG2,FLAG3,FLAG4). By specifying
constraints to all these entries, we can directly verify all the logical, arithmetic,
and shifts operations after which the variables are named.

The Rins can be decomposed into 3 sub-relations: Rlogic, Rarith, and Rshift. In
the full paper [BCG+18] we show choices of selection vectors which reduce the
verification of any other operation to the ones contained in these 3 categories.
We also describe the decomposition of Rlogic, Rarith, Rshift into our elementary
building blocks.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 617

4 Efficient Bit Decomposition for Logical Relations

In this section we summarise a new decomposition technique which will enable
verification of bitwise AND and XOR operations. This allows us to check all
boolean operations more efficiently. Let a, b be the inputs of the bit-wise AND
or bit-wise XOR operation, and let c be the output. To verify the correctness of
the operation, e.g. a∧b = c, consider the decompositions of the inputs into their
odd and even-position bits, namely a = 2ao + ae and b = 2bo + be. Observe that
taking the sum of the integers storing the even-positions of a and b gives

ae + be = (0, aW−2, . . . , 0, a0) + (0, bW−2, . . . , 0, b0)
= (aW−2 ∧ bW−2, aW−2 ⊕ bW−2, . . . , a0 ∧ b0, a0 ⊕ b0)

The above contains the bit-wise AND of the even bits of a and b placed in odd
position and the bit-wise XOR of the even bits of a and b in even position.
Therefore we can consider taking again the decomposition of ae +be into its odd
and even-position bits, i.e. ae + be = 2eo + ee so that half of the bits of a∧ b are
stored in eo and half of the bits of a⊕b are stored in ee. We can repeat the above
procedure starting from the odd-position bits of a and b getting the following

ao + bo = (0, aW−1, . . . , 0, a1) + (0, bW−1, . . . , 0, b1)
= (aW−1 ∧ bW−1, aW−1 ⊕ bW−1, . . . , a1 ∧ b1, a1 ⊕ b1) = 2oo + oe

where oo stores half of the bits of a ∧ b and oe stores and half of the bits of a ⊕
b. Putting everything together, given the decompositions ao, ae, bo, be, oo, oe, eo,
ee ∈ EvenBits such that the following hold

a = 2ao + aegg b = 2bo + begg ao + bo = 2oo + oegg ae + be = 2eo + ee

then the bit-wise AND and XOR of a and b is given by the following

a ∧ b = 2oo + eo a ⊕ b = 2oe + ee

it is then sufficient to check c = 2oo + eo for checking a ∧ b = c.

5 Proofs for the Correct Program Execution over the ILC
Channel

In this section we give an overview of our proof system for correct TinyRAM
program execution over the ILC channel by giving a breakdown of it into simpler
proofs, which are detailed in the full paper [BCG+18]. Recall that in the ide-
alised linear commitment channel ILC the prover can submit commit commands
to commit vectors of field elements of length k. The vectors remain secretly
stored in the channel. The verifier can do two things: it can use a send com-
mand to send a message to the prover; and it can submit open queries to the ILC
channel for obtaining the openings of linear combinations of vectors committed

618 J. Bootle et al.

by the prover. The field F and the vector length k are specified by the public
parameter ppILC. It will later emerge that the best communication and compu-
tation complexity for a TinyRAM program terminating in T is achieved when k
is approximately

√
T .

In Sect. 3 we broke the relation of correct program execution down to a
number of sub-relations defined over a finite field F. Our strategy for proving
that they are all satisfied is to commit the extended witness to the ILC channel
and then give an sub-proofs for each sub-relation. To begin we describe how we
commit to the execution trace to the ILC model and discuss a relation Rformat

for checking that the commitments are well formed. We then take a top down
approach in order to describe how to check in the ILC model that the program
has been executed correctly. In the first layer we describe a proof for correct
TinyRAM execution in the ILC model. This proof decomposes into proofs check-
ing that Rcheck, Rmem, Rstep, and Rformat all hold. In the second layer we then
decompose proofs for Rformat, Rcheck, Rmem, and Rstep in terms of generic proofs
for checking relations Rconst, Rperm, Rrange, Req, Rblookup and Rlookup. In the
third layer we detail how these proofs decompose into proofs in ILC for elemen-
tal relations, such as sums, products, shifts, entry-products and grand-sums of
committed vectors. Our fourth and final layer will provide proofs in the ILC for
these elemental relations.

5.1 Commitments to the Tables

In our proof system, the prover first commits to the extended witness w. The
extended witness includes the field elements in the execution table Exe, the
memory table Mem, the program table Prog, the range table EvenBits and the
exponent table Pow. The prover arranges these tables in multiple matrices and
to their rows.

The prover commits to each column of the execution table (such as the T
entries containing the time t, the T entries containing the programt counter pct,
etc.) by arranging it into an 	 by k matrix, and making a commitment to each
row of the resulting matrix. Entries of Exe relative to the same TinyRAM state
will be inserted in the same position across the different matrices. Furthermore,
in all these matrices the last entry of each column is duplicated in the first entry
of the next column. As an example, let consider the first column of Exe which
contains field elements representing the time-steps of the execution. Without
loss of generality let T = (− 1)k + 1, where T is the number of steps executed
by the program and k is the vector length of the ILC. The prover organizes the
field elements representing time in a matrix Et ∈ F

�×k

Et =

⎛
⎜⎜⎜⎜⎜⎝

1 	 2	 − 1 . . .
2 	 + 1 2	 . . .
...

. . .
	 − 1 2	 − 2 3	 − 3 . . . (− 1)k

	 2	 − 1 3	 − 2 . . . T

⎞
⎟⎟⎟⎟⎟⎠

Arya: Nearly Linear-Time Zero-Knowledge Proofs 619

Similarly, the prover organizes the rest of the Exe table into matrices
Epc,Einst,EA, . . . one for each column. Let E be the matrix obtained by stacking
all matrices on top of each other and let E = {ei}, for e i ∈ F

k. The prover
commits to Exe by sending the command (commit, {e i}i) to the ILC.

Each column of the program table is also committed to the ILC separately.
In case L ≤ k we can store each column of Prog in one vector, i.e.

P =

⎛
⎜⎜⎝

Ppc

Pinst

PA

. . .

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 . . . L − 1
inst0 inst1 . . . instL−1

A0 A1 . . . AL−1

.

⎞
⎟⎟⎠

otherwise, multiple rows can be used. The prover sends (commit, {Ppc,Pinst, . . .})
to the ILC channel to commit to P.

The memory table Mem, the auxiliary lookup table EvenBits and the expo-
nent table Pow can be committed in a similar way using matrices M, R and S

M =
(
M0

M1

)
R =

⎛
⎜⎜⎝

0 1 4 5 . . .
∑W

2 −1
i=0 ki22i

. . . ∑W
2 −1

i=0 22i

⎞
⎟⎟⎠ S =

(
0 1 2 3 . . . W − 1 W

1 2 4 8
. . . 2W−1 0

)

where

M0 =

⎛
⎝
Maddr,0

Mv,0

Musd,0

⎞
⎠ =

⎛
⎝

0 1 . . . M − 1
v0 v1 . . . vM−1

0 0 . . . 0

⎞
⎠ M1 =

⎛
⎝
Maddr,1

Mv,1

Musd,1

⎞
⎠ =

⎛
⎝

0 1 . . . M − 1
v0 v1 . . . vM−1

1 1 . . . 1

⎞
⎠

and (kW
2 −1, . . . , k0) is the binary expansion of k.

In order to show that the tables are committed to in the above manner the
prover will show that the first row each of the matrices describing [Exe] is a shift
the last row.

Rformat =
{

(pp, u, w) = ((W,K,F, ∗), [E],⊥)
∣∣

for 1 ≤ j ≤ k − 1 : [E]�,j = [E]1,j+1

}

5.2 Proof for Correct TinyRAM Execution in the ILC Model

Given the witness for the correct execution of a TinyRAM program, we now
describe how a prover can use the ILC channel to convince a verifier that the trace
satisfies the relation Rfield

TinyRAM corresponding to the correct program execution.
The prover and verifier are given in Fig. 4.

Theorem 1. (KILC,PTinyRAM,VTinyRAM) is a proof system for Rfield
TinyRAM over

the ILC channel with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest-verifier zero-knowledge.

620 J. Bootle et al.

Fig. 4. Proof of correct TinyRAM execution in the ILC model

Proof. Perfect completeness follows from the perfect completeness of the sub-
proofs. Perfect SHVZK follows from the perfect SHVZK of the sub-proofs.
A simulated transcript is obtained by combining the outputs of the simulators of
all the sub-proofs. Statistical knowledge soundness follows from the knowledge
soundness of the sub-proofs. Since all sub-proofs have knowledge soundness with
straight-line extraction, so does the main proof. ��

The efficiency of our TinyRAM proof in the ILC model is given in Fig. 5. The
asymptotic results displayed below are obtained when the parameter k specified
by ppILC is approximately

√
T . The query complexity qc is the number of linear

combinations the verifier queries from the ILC channel in the opening query. The
verifier communication CILC is the number of messages sent from the verifier to
the prover via the ILC channel and in our proof system it is proportional to the
number of rounds. Let μ be the number of rounds in the ILC proof and t1, . . . , tμ
be the numbers of vectors that the prover sends to the ILC channel in each round,
and let t =

∑μ
i=1 ti.

Fig. 5. Efficiency of our TinyRAM proof in the ILC model for (pp, u, w) ∈ RTinyRAM.
Here we are assuming that the number of instructions and words of memory L, M <√

T , and that the number of registers K is constant.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 621

6 Proofs for the Correct Program Execution
over the Standard Channel

In the previous section we gave an efficient SHVZK proof of knowledge over
the ILC channel for correct TinyRAM program execution. We now want to give
a SHVZK proof of knowledge for correct TinyRAM program execution in the
standard communication model where messages are exchanged directly between
prover and verifier. To do this, we use the compiler from Bootle et al. [BCG+17]
who use an error-correcting code and a collision-resistant hash function to com-
pile a zero-knowledge proof over the ILC channel to a zero-knowledge proof over
the standard communication channel. We refer to the full paper [BCG+18] for
a transformation to turn SHVZK proofs into ones achieving full-zero knowledge,
and for a recursive approach for reducing the verification time of our proofs.

From ILC to the Standard Channel. The compiler from Bootle et
al. [BCG+17] uses an hash function to instantiate a non-interactive commitment
scheme which realizes the commitment functionality of the ILC in the standard
model. The compilation relies on a common reference string that specifies an
error-correcting code and the hash function. However, the common reference
string is instance-independent and can be reused for several proofs. Moreover, it
can be generated from uniformly random bits in poly(λ)(L+M +

√
T) TinyRAM

steps and has similar size, so it has little effect on the overall performance of the
system. The following theorem follows directly from their work.

Theorem 2 (Bootle et al. [BCG+17]). Using a linear-distance linear error-
correcting code and a statistically-hiding commitment scheme, we can compile a
public-coin straight-line extractable proof (KILC,PILC,VILC) for a relation R over
the ILC channel to a proof (K,P,V) for R over the standard channel. The com-
pilation is computationally knowledge sound, statistically SHVZK, and preserves
perfect completeness of the ILC proof.

Combining the above with Theorem 1 we get our main theorem.

Theorem 3 (Main Theorem). Compiling the ILC proof system (KILC,
PTinyRAM,VTinyRAM) of Fig. 4, we get a proof system over the standard chan-
nel for the relation Rfield

TinyRAM with perfect completeness, statistical SHVZK, and
computational knowledge soundness assuming the existence of collision-resistant
hash functions.

In the following section we detail the efficiency of the proof system obtained by
compiling the proof system of Fig. 4.

Efficiency of the compiled TinyRAM Proof System. Computation is fea-
sible only when it is polynomial in the security parameter, i.e., T = poly(λ)
and M = poly(λ). Assuming T,M ≥ λ, this means log T = Θ(log λ) and
log M = Θ(log λ). To address all memory we therefore need W = Ω(log λ).
To keep the circuit size of a processor modest, it is reasonable to keep the word
size low, so we will assume W = Θ(log λ). Our proof system also works for larger

622 J. Bootle et al.

word size but it is less efficient when the word size is superlogarithmic. Note that
we can at the cost of a constant factor overhead store register values in memory
and therefore without loss of generality assume K = O(1).

To get negligible knowledge error we need the field to have superpolynomial
size |F| = λω(1). This means we need a superconstant ratio e = log |F|

W = ω(1). On
a TinyRAM machine, field elements require e words to store and using school
book arithmetic field operations can be implemented in α = O(e2) steps7.

Our proof system is designed for a setting where the running time is large,
so we will assume T � L + M . In the ILC proof for correct program execution
the prover commits to O(T) field elements and uses O(T) field operations. The
verifier on the other hand, only uses O(L + |v| +

√
T) field operations.

To compile the ILC proof into a proof over the standard channel, Bootle et
al. use a linear-time collision-resistant hash function and linear error-correcting
codes. The collision-resistant hash function by Applebaum et al. [AHI+17] based
on the bSVP assumption for sparse matrices is computable in linear time and can
be used to instantiate the statistically hiding commitment scheme used in the
compilation. As the hash function operates over bit-strings we need to ensure
that the efficiency is preserved once implemented in a TinyRAM program. If
we stored each bit in a separate word of size W = Θ(log λ) we would incur
a logarithmic overhead. However, the hash function is computable by a linear-
size boolean circuit and we can therefore apply a bit-slicing technique. We view
the hash of an n-word string as W parallel hashes of n-bit strings. Each of the
bit-strings is processed with the same boolean circuit, which means they can
computed in parallel in one go by a TinyRAM program using a linear number
of steps.

The error-correcting codes by Druk and Ishai [DI14] have constant rate and
can be computed with a linear number of field additions. Applying the error-
correcting codes therefore only changes the prover and verifier complexities by
constant factors during the compilation. This means the compilation preserves
the efficiency of the ILC proof up to constant factors. Taking into account the
overhead of doing field operations, we summarize the efficiency of our proof
system in Fig. 6.

Fig. 6. Efficiency of our proof system for RTinyRAM under the assumption W = Θ(log λ),
K = O(1), L + M < T ≈ 2W , k ≈ √

T , and log |F| = Θ(
√

α) log λ for an arbitrarily
small α = ω(1).

7 More sophisticated techniques such as FFT may reduce the cost of field multiplica-
tions to O(e log e) steps, but if e is only slightly superconstant it will take a long
time before the asymptotics kick in.

Arya: Nearly Linear-Time Zero-Knowledge Proofs 623

References

[AHI+17] Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikun-
tanathan, V.: Low-complexity cryptographic hash functions. Electron.
Colloq. Comput. Complex. (ECCC) 24, 8 (2017)

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: CCS 2017
(2017)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characteri-
zation of NP. J. ACM 45(1), 70–122 (1998)

[BBC+17] Ben-Sasson, E., et al.: Computational integrity with a public random
string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 19

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log set-
ting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 12

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Innovations in Theoretical Computer Science (ITCS), pp.
326–349 (2012)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composi-
tion and bootstrapping for SNARKS and proof-carrying data. In: STOC
2013, pp. 111–120 (2013)

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 6

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfia-
bility. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70700-6 12

[BCG+18] Bootle, J., Cerulli, A., Groth, J., Jakobsen, S.K., Maller, M.: Nearly
linear-time zero-knowledge proofs for correct program execution. IACR
Cryptology ePrint Archive (2018)

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 2

[BCTV14a] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowl-
edge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 16

[BCTV14b] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-
interactive zero knowledge for a von neumann architecture. In: USENIX
Security Symposium, pp. 781–796 (2014)

https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16

624 J. Bootle et al.

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and
its applications (extended abstract). In: ACM Symposium on Theory of
Computing, STOC 1998, pp. 103–112 (1988)

[BFR+13] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Wal-
fish, M.: Verifying computations with state. In: ACM SOSP, pp. 341–357
(2013)

[BG12] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of
a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 17

[BP12] Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 11

[BSBTHR18] Ben-Sasson, E., Ben-Tov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity (2018). https://
eprint.iacr.org/2018/046.pdf

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Tinyram
architecture specification, v0. 991 (2013)

[CD] Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arith-
metic, or: can zero-knowledge be for free? In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055745

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM Conference on Computer and Com-
munications Security, CCS 2017, pp. 1825–1842 (2017)

[CMT12] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified compu-
tation with streaming interactive proofs. In: Innovations in Theoretical
Computer Science, ITCS 2012, pp. 90–112 (2012)

[CTV15] Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 371–403. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 13

[DI14] Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-
Varshamov bound and their cryptographic applications. In: Innovations
in Theoretical Computer Science, ITCS 2014, pp. 169–182 (2014)

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled cir-
cuits with applications to efficient zero-knowledge. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 7

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: ACM Symposium on Theory of Computing, STOC 1990, pp.
416–426 (1990)

[Gen09] Gentry, C.: Computing on encrypted data. In: Garay, J.A., Miyaji, A.,
Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 477–477. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6 32

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.:
Using fully homomorphic hybrid encryption to minimize non-interative
zero-knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-28914-9_11
https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-642-10433-6_32

Arya: Nearly Linear-Time Zero-Knowledge Proofs 625

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GI08] Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness
of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3 22

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, 17–20 May 2008, pp. 113–122 (2008)

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for
boolean circuits. In: 25th USENIX Security Symposium, pp. 1069–1083
(2016)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof-systems (extended abstract). In: ACM Symposium on
Theory of Computing, STOC 1985, pp. 291–304 (1985)

[Gro09] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 12

[Gro10a] Groth, J.: Short pairing-based non-interactive zero-knowledge argu-
ments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 19

[Gro10b] Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J.
Cryptol. 23(4), 546–579 (2010)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 11

[IKO07] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without
short PCPs. In: IEEE Conference on Computational Complexity, CCC
2007, pp. 278–291 (2007)

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput. 39(3),
1121–1152 (2009)

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In: ACM
Conference on Computer and Communications Security, CCS 2013, pp.
955–966 (2013)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: ACM Symposium on Theory of Computing,
STOC 1992, pp. 723–732 (1992)

[KR08] Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70583-3 44

[Nef01] Neff, C.A.: A verifiable secret shuffle and its application to e-voting.
In: ACM Conference on Computer and Communications Security, CCS
2001, pp. 116–125 (2001)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-70583-3_44

626 J. Bootle et al.

[PHGR16] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

[Tha13] Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
71–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 5

[WHG+16] Wahby, R.S., Howald, M., Garg, S., Shelat, A., Walfish, M.: Verifiable
ASICs. In: IEEE Symposium on Security and Privacy, SP 2016, pp. 759–
778 (2016)

[WJB+17] Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: ACM
Conference on Computer and Communications Security, CCS 2017, pp.
2071–2086 (2017)

[WSR+15] Wahby, R.S., Setty, S.T.V., Ren, Z, Blumberg, A.J., Walfish, M.: Effi-
cient RAM and control flow in verifiable outsourced computation. In:
Network and Distributed System Security Symposium, NDSS 2015
(2015)

[WTas+17] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. Cryptology ePrint Archive,
Report 2017/1132 (2017). https://eprint.iacr.org/

[ZGK+17] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou,
C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced
databases. In: IEEE Symposium on Security and Privacy, SP 2017, pp.
863–880 (2017)

[ZGK+18] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
vRAM: faster verifiable ram with program-independent preprocessing
(2018)

https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-642-40084-1_5
https://eprint.iacr.org/

	Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution
	1 Introduction
	1.1 Our Contribution
	1.2 New Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Proofs of Knowledge
	2.3 TinyRAM

	3 Arithmetization of Correct Program Execution
	3.1 Decomposition of TinyRAM
	3.2 Checking the Correctness of Values
	3.3 Checking Memory Consistency
	3.4 Checking Correct Execution of Instructions

	4 Efficient Bit Decomposition for Logical Relations
	5 Proofs for the Correct Program Execution over the ILC Channel
	5.1 Commitments to the Tables
	5.2 Proof for Correct TinyRAM Execution in the ILC Model

	6 Proofs for the Correct Program Execution over the Standard Channel
	References

