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Abstract. We propose a new construction of tweakable block ciphers
from standard block ciphers. Our construction, dubbed XHX2, is the cas-
cade of two independent XHX block ciphers, so it makes two calls to the
underlying block cipher using tweak-dependent keys. We prove the secu-
rity of XHX2 up to min{22(n+m)/3, 2n+m/2} queries (ignoring logarithmic
factors) in the ideal cipher model, when the block cipher operates on n-
bit blocks using m-bit keys. The XHX2 tweakable block cipher is the first
construction that achieves beyond-birthday-bound security with respect
to the input size of the underlying block cipher in the ideal cipher model.
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1 Introduction

Tweakable block ciphers, first introduced in [9], are a generalization of stan-
dard block ciphers that accept extra inputs called tweaks. The tweak, providing
inherent variability to the block cipher, makes it easy to design various higher
level cryptographic schemes such as message authentication codes and modes of
operation.

Tweakable block ciphers can either be designed from scratch [4,5,17], or
be built upon off-the-shelf cryptographic primitives such as block ciphers and
(public) permutations [3,8,11,14]. In this work, we will specifically focus on
block cipher-based constructions; one of the advantages of such constructions
is that the trust in extensively-studied block ciphers can be transferred to the
tweakable block ciphers via security reductions. In this line of research, it has
been suggested that changing tweaks should be cheaper than changing keys.
Following this principle, early proposals including LRW1 and LRW2 [8,9], and
their cascades used their underlying block ciphers with fixed keys, namely tweak
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independent keys. So changing tweaks does not require rekeying the underlying
block cipher. The security of tweakable block ciphers without tweak-rekeying
has typically been analyzed in the standard model, where the block cipher with
a secret random key is replaced by a secret random permutation.

Recently, a unified vision for the tweak and key inputs has been proposed
within the TWEAKEY framework [6]. From this point of view, tweakable block
ciphers using tweak dependent keys have been studied [10,18]. By using tweak
dependent keys, one might expect a higher level of security (than using fixed
keys), whereas the security of such constructions is typically analyzed in the
ideal cipher model.

Our Results. Suppose that a κ-bit key tweakable block cipher TBC has been
built on an m-bit key n-bit block cipher E (modeled as an ideal cipher). Typi-
cally, each evaluation of TBC would need a fixed number of calls to the under-
lying block cipher E, and hence O(2κ) block cipher queries will be sufficient to
mount an exhaustive key search on TBC. However, if n+m < κ, then one would
be able to find its secret key (in an information theoretic sense) by making all
possible 2n+m block cipher queries. Therefore, TBC will not be provably secure
beyond 2min{κ,n+m} queries in the ideal cipher model. In this line of research,
recent work has been aimed at achieving security beyond 2n/2 (precisely, 2n)
assuming κ = m = n [10,18]. This level of security is optimal, but still it is only
the birthday bound with respect to the input size of the ideal cipher, namely
n + m. If a tweakable block cipher accepts sufficiently large keys (for example,
if κ > n = m), then one might expect security beyond 2n. The problem that we
tackle in this paper is to construct a tweakable block cipher secure beyond the
birthday bound with respect to the input size of the underlying block cipher in
the ideal cipher model (as the counterpart of LRW2[2] in the standard model),
assuming κ > n + m.1

We begin with XHX proposed by Jha et al. [7]. Let E : {0, 1}m × {0, 1}n →
{0, 1}n be an m-bit key n-bit block cipher, let T be a tweak space, and let G and
H be families of functions g : T → {0, 1}n and h : T → {0, 1}m, respectively.
Then the XHX tweakable block cipher accepts a key (g, h) ∈ G × H and a tweak
t ∈ T , and encrypts a plaintext x ∈ {0, 1}n by computing

Eh(t)(x ⊕ g(t)) ⊕ g(t).

If G is δ-almost uniform and δ-almost XOR-universal, and if H is δ′-almost
uniform and δ′-almost universal with δ ≈ 1/2n and δ′ ≈ 1/2m, then XHX is
proved to be secure up to 2(n+m)/2 queries in the ideal cipher model.

Our main contribution is to prove the security of the cascade of two inde-
pendent XHX constructions (see Fig. 1), dubbed XHX2, up to

min{2
2(n+m)

3 , 2n+m
2 −log2 n}

1 This assumption is similar to the study of key length extension, where the key size
of the entire scheme is sometimes larger than the input size of the underlying block
cipher.
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queries. To the best of our knowledge, this is the first construction of a tweakable
block cipher that achieves beyond-birthday-bound security with respect to the
input size of the underlying block cipher.

For simplicity, we will prove the security of XHX2 under the assumption that
the first and the second block cipher calls are made to independent block ciphers.
However, in the ideal cipher model, a single key bit will be sufficient to separate
a single block cipher into two independent ones with negligible security loss.

We believe that our results are not only of theoretical interest, but also prac-
tically relevant in certain environments, in particular where stronger security is
required with block ciphers operating on (relatively) small blocks (e.g., CAST-
128 [1], KATAN, KTANTAN [2], Simeck [19]). For example, CAST-128 (used in
GPG and PGP) operates on 64-bit blocks using 128-bit keys. Based on this
block cipher, the resulting XHX2 provides 128-bit security (ignoring log fac-
tors and constants), while this level of security would not be achieved with any
other existing construction. On the other hand, the key schedule of the under-
lying block cipher should not be too simple (being secure against related-key
and known-/chosen-key distinguishing attacks) since every block cipher key is
supposed to define an independent permutation in our security model.

Comparison. A comparison of XHX2 with the existing tweakable block ciphers
is given in Table 1. In this table, security is evaluated by the threshold number of
queries in log2. In Min, |t| denotes the fixed tweak length. All the constructions
with tweak-rekeying are analyzed in the ideal cipher model, while the construc-
tions without tweak-rekeying are in the standard model. Efficiency is evaluated
by the number of block cipher calls, the number of multiplications or universal
hashes, and the use of tweak dependent keys (represented by TDK).

Table 1. Comparison of XHX2 with existing tweakable block ciphers.

Discussion. It is notable that our result for XHX2 implies beyond-birthday-
bound security for the cascade of two independent XTX [13] constructions (for
the first time).
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Fig. 1. Tweakable block cipher XHX2.

In typical TBC-based modes of operation (such as TBC, TAE [9] and
SCT [15]), nonces and counters are placed into the tweak; when the tweak size is
limited to the key size of the underlying block cipher, the hash computation can
be defined as a single multiplication, namely t · k for a hash key k and a tweak
t. In this case, different tweaks map to different block cipher keys, removing the
possibility of (C-14), and hence the term 2n+m/2 from the security bound.

Overview of the Proof. Our security proof is based on the standard H-
coefficient technique. We begin by defining a set of bad transcripts. The badness
will be determined solely by the choice of hash keys g1, g2, h1 and h2. Once
the hash keys are fixed, we can associate each construction query (t, x, y) with
a 5-tuple (h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t)), which will be called a
“reduced query”. As long as the hash keys are not bad, the reduced queries
will be all distinct. Let k = h1(t), l = h2(t), u = x ⊕ g1(t), v = y ⊕ g2(t) and
Δ = g1(t) ⊕ g2(t). The relation between a reduced query (k, l, u, v,Δ) and its
original query (t, x, y) can be pictorially represented as follows.

x u

t

k

Δ

t

l yv

The core of the proof is to show that the probabilities to obtain any good
transcript are close in the real and in the ideal world, or particularly, to tightly
lower bound the probability of obtaining a good transcript in the real world.
In the real world, randomness comes only from the underlying ideal ciphers E1

and E2. For example, suppose that E1(k, u) has been determined by a block
cipher query (i.e., query history QE). Then the probability that E1 and E2

complete the reduced query (k, l, u, v,Δ) becomes the probability that E2 maps
E1(k, u) ⊕ Δ to v with key l, where we can assume that E2(l, E1(k, u) ⊕ Δ)
and E−1

2 (l, v) have not been fixed excluding bad keys (of (C-9) and (C-10)).
Fixing E2(l, E1(k, u) ⊕ Δ) = v might affect the freedom of other construction
queries, making the analysis complicated. The notion of a reduced query helps
systematically dealing with this problem; we will carefully classify the reduced
queries into five classes, and compute the (conditional) probability of completing
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each class of queries one by one. This classification will be defined in detail at
Sect. 3.3.

2 Preliminaries

Basic Notation. In all the following, we fix positive integers m and n, and
denote N = 2n. Given a non-empty set X , x ←$ X denotes that x is chosen
uniformly at random from X . For a set X and an integer b ≥ 1, we write
x1, . . . , xb ∈�= X to mean that x1, . . . , xb are pairwise distinct elements of X .
The set of all sequences that consist of b pairwise distinct elements of X is
denoted X ∗b. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1)
and (a)0 = 1 by convention. If |X | = a, then (a)b becomes the size of |X ∗b|.
When two sets X and Y are disjoint, we denote X 	 Y their (disjoint) union.

Useful Lemma. The following lemma, viewed as a generalization of Lemma 5
in [3], will be used in the security proof of XHX2.

Lemma 1. Let N , a, b, c, d be positive integers such that a + b ≤ N/2, a + c ≤
N/2, d ≤ b and d ≤ c. Then

(N − d)a(N − b − c + d)a

(N − b)a(N − c)a
≥ 1 − 4a(b − d)(c − d)

N2
.

Due to the space limit, the proof of this lemma will be given in the full
version.

Uniform, Universal and XOR-Universal Hash Functions. We will need
the following definitions of almost uniform, almost universal (AU) and almost
XOR-universal (AXU) hash functions.

Definition 1. Let δ > 0, and let H be a family of functions h : T → Y for
non-empty sets T and Y.

1. H is said to be δ-almost uniform if for any x ∈ T and any y ∈ Y,

Pr [h ←$ H : h(x) = y] ≤ δ.

2. H is said to be δ-almost universal (δ-AU) if for any distinct x and x′ ∈ T ,

Pr [h ←$ H : h(x) = h(x′)] ≤ δ.

3. When Y = {0, 1}n, H is said to be δ-almost XOR-universal (δ-AXU) if for
any distinct x, x′ ∈ T and any y ∈ Y,

Pr [h ←$ H : h(x) ⊕ h(x′) = y] ≤ δ.

Remark 1. Hash functions in H are typically indexed by keys in a certain key
space, written as H : K × T → Y for a key space K. For example, let K = Y =
{0, 1}n and let T = {0, 1}dn \ {(0, . . . , 0)} for a positive integer d. Identifying
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{0, 1}n with a finite field GF(2n) with 2n elements and representing an element
t ∈ T as a concatenation of n-bit elements td, . . . , t1, define

H : K × T −→ {0, 1}n

(k, td|| . . . ||t1) 
−→ td · kd + · · · + t1 · k.

Then it is not hard to show that H is d
2n -almost uniform and d

2n -almost XOR-
universal. As seen in this example, for any n, one can define a δ-almost uniform
and δ-almost XOR-universal family of functions with n-bit key, n-bit output,
and δ ≈ 1/2n (ignoring d).

The Ideal Cipher Model. A block cipher with key space K and message
space X is a mapping E : K×X → X such that, for any key k ∈ K, x 
→ E(k, x)
is a permutation of X . Throughout this paper, we will fix K = {0, 1}m and
X = {0, 1}n, and write BC(m,n) to mean the set of all such block ciphers.

In the ideal cipher model, a block cipher E is chosen from BC(m,n) uniformly
at random. It allows for two types of oracle queries E(k, x) and E−1(k, y) for
x, y ∈ {0, 1}n and k ∈ {0, 1}m. The response to an inverse query E−1(k, y) is
x ∈ {0, 1}n such that E(k, x) = y.

Tweakable Block Ciphers. A tweakable permutation with tweak space T
and message space X is a mapping ˜P : T × X → X such that, for any tweak
t ∈ T , x 
→ ˜P (t, x) is a permutation of X . Throughout the paper, we will fix
X = {0, 1}n, and write Perm(T , n) to mean the set of all tweakable permutations
with tweak space T and message space {0, 1}n.

A tweakable block cipher TBC with key space K, tweak space T and message
space X is a mapping TBC : K × T × X → X such that for any key k ∈ K,
(t, x) 
→ TBC(k, t, x) is a tweakable permutation with tweak space T and message
space X .

Indistinguishability. For s ≥ 1, we will consider a tweakable block cipher
TBC based on a set of block ciphers

E = (E1, . . . , Es) ∈ BC(m,n)s.

So each key k ∈ K and a set of block ciphers E = (E1, . . . , Es) ∈ BC(m,n)s define
a tweakable permutation, denoted TBCk[E ], with tweak space T and message
space X . Specifically, we have s = 1 for XHX and s = 2 for XHX2, and X =
{0, 1}n for both constructions.

In the real world, a secret key k ∈ K is chosen uniformly at random. A
set of s block ciphers E1, . . . , Es are also chosen independently at random from
BC(m,n). A distinguisher D is given oracle access to TBCk[E ] as well as E =
(E1, . . . , Es). In the ideal world, D is given a random tweakable permutation
˜P ∈ Perm(T , n) instead of TBCk[E ]. However, oracle access to E = (E1, . . . , Es)
is still allowed in this world.
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The adversarial goal is to tell apart the two worlds (TBCk[E ], E) and ( ˜P , E)
by adaptively making forward and backward queries to the construction and
each of the block ciphers. Formally, D’s distinguishing advantage is defined by

AdvTBC(D) = Pr
[

˜P ←$ Perm(T , n), E ←$ BC(m,n)s : 1 ← DE, ˜P
]

− Pr
[

k ←$ K, E ←$ BC(m,n)s : 1 ← DE,TBCk[E]
]

.

For p, q > 0, we define

AdvTBC(p, q) = max
D

AdvTBC(D)

where the maximum is taken over all adversaries D making at most p queries to
each of the block ciphers and at most q queries to the outer tweakable permuta-
tion.

H-coefficient Technique. Suppose that a distinguisher D makes p queries to
each of the block ciphers, and q queries to the construction oracle. The queries
made to the construction oracle are recorded in a query history

QC = (ti, xi, yi)1≤i≤q.

So according to the instantiation, it would imply either TBCk[E ](ti, xi) = yi or
˜P (ti, xi) = yi. For j = 1, . . . , s, the queries made to Ej are recorded in a query
history

QEj
= (j, kj,i, uj,i, vj,i)1≤i≤p,

where (j, uj,i, vj,i) represents the evaluation Ej(kj,i, uj,i) = vj,i obtained by the
i-th query to Ej . We will often omit the index j when it is clear from context.
Let

QE = QE1 ∪ · · · ∪ QEs
.

Then the pair of query histories τ = (QC ,QE) will be called the transcript of
the attack: it contains all the information that D has obtained at the end of the
attack. In this work, we will only consider information theoretic distinguishers.
Therefore we can assume that a distinguisher is deterministic without making
any redundant query, and hence the output of D can be regarded as a function
of τ , denoted D(τ) or D(QC ,QE).

Fix a transcript τ = (QC ,QE), a key k ∈ K, a tweakable permutation
˜P ∈ Perm(T , n), a tuple of block ciphers E = (E1, . . . , Es) ∈ BC(m,n)s and
j ∈ {1, . . . , s}: if TBCk[E ](ti, xi) = yi (resp. ˜P (ti, xi) = yi) for every i = 1, . . . , q,
then we will write TBCk[E ] � QC (resp. ˜P � QC). Similarly, if Ej(kj,i, uj,i) = vj,i

for every i = 1, . . . , p, then we will write Ej � QEj
. We will write E � QE if

Ej � QEj
for every j = 1, . . . , s.

If there exist ˜P ∈ Perm(T , n) and E ∈ BC(m,n)s that outputs τ at the
end of the interaction with D, then we will call the transcript τ attainable. So
for any attainable transcript τ = (QC ,QE), there exist ˜P ∈ Perm(T , n) and
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E ∈ BC(m,n)s such that ˜P � QC and E � QE . For an attainable transcript
τ = (QC ,QE) and a key k ∈ K, let

pid(QC |QE) = Pr
[

˜P ←$ Perm(T , n), E ←$ BC(m,n)s : ˜P � QC

∣

∣

∣

∣

E � QE

]

,

pre(QC |QE) = Pr
[

k ←$ K, E ←$ BC(m,n)s : TBCk[E ] � QC

∣

∣

∣

∣

E � QE

]

,

pkre(QC |QE) = Pr
[

E ←$ BC(m,n)s : TBCk[E ] � QC

∣

∣

∣

∣

E � QE

]

.

With respect to an attainable transcript τ = (QC ,QE), we will define a set of
“bad” keys, denoted Kbad, such that the probability of a uniform random key
being bad is small, while the ratio pkre(QC |QE)/pid(QC |QE) is close to 1 for any
“good” key k ∈ K \ Kbad. With these definitions, the following lemma, the core
of the H-coefficients technique, will be also used in our security proof.

Lemma 2. Let ε1, ε2 > 0. Suppose that for any attainable transcript τ =
(QC ,QE), there exists Kbad ⊂ K such that |Kbad|/|K| ≤ ε1 and for any
k ∈ K \ Kbad

pkre(QC |QE) ≥ (1 − ε2)pid(QC |QE).

Then one has
AdvTBC(D) ≤ ε1 + ε2.

3 Security Proof for XHX2

Let E1, E2 : {0, 1}m × {0, 1}n → {0, 1}n be m-bit key n-bit block ciphers, let T
be a tweak space, and let G and H be families of hash functions g : T → {0, 1}n

and h : T → {0, 1}m, respectively. The XHX2 tweakable block cipher accepts a
key k = (g1, h1, g2, h2) ∈ K =def G ×H×G ×H and a tweak t ∈ T , and encrypts
a plaintext x ∈ {0, 1}n by computing

E2 (h2(t), E1(h1(t), x ⊕ g1(t)) ⊕ g1(t) ⊕ g2(t)) ⊕ g2(t).

Theorem 1. Let δ, δ′ > 0, let G be a δ-almost uniform and universal family of
hash functions from T to {0, 1}n and let H be a δ′-almost uniform and XOR-
universal family of hash functions from T to {0, 1}m. Then for any integers p
and q, one has

AdvXHX2(p, q) ≤ 64p
2
3 q

2
3 δδ′ +

256(8q3 + 2pq2)
1
2 δ

1
2 δ′

N
1
2

+
160(16q3 + 8pq2 + p2q)

1
2 δ′

N

+ 256(16q3 + 8pq2 + 2q2 + 3p2q)δ2(δ′)2 +
131072n2q2δ′

N2
.
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3.1 Giving Free Queries to the Distinguisher

For the security proof of XHX2, we will make an additional assumption on the
attack model; a distinguisher D will be given free queries at the end of the attack
by the following rule.

1. If D has made N/4 or more block cipher queries to E1 (resp. E2) for a fixed key
k ∈ {0, 1}m, then D will be given E1(k, u) (resp. E2(k, u)) for all unqueried
u (if any).

2. If D has made N/16 or more queries to the construction oracle C for a fixed
tweak t ∈ T , then D will be given C(t, x) for all unqueried x (if any).

This modification would not degrade the adversarial distinguishing advantage
since D is free to ignore the additional information. Suppose that D makes at
most p queries to each of the block ciphers and at most q queries to the outer
tweakable permutation. Then the number of free queries given to D is upper
bounded by 3p for each block cipher, and by 15q for the tweakable permutation.
So this assumption can be viewed as transforming D into a new distinguisher D′

that

(i) makes at most 4p queries to each of the block ciphers and at most 16q
queries to the outer tweakable permutation;

(ii) makes either all N queries or less than N/4 queries for each key and each
of the block ciphers;

(iii) makes either all N queries or less than N/16 construction queries for each
tweak.

Let
Adv∗

TBC(p, q) = max
D′

AdvTBC(D′)

where the maximum is taken over all adversaries D′ that make at most p queries
to each of the block ciphers and at most q queries to the outer tweakable per-
mutation satisfying conditions (ii) and (iii). Then we have

AdvXHX2(p, q) ≤ Adv∗
XHX2(4p, 16q). (1)

Henceforth, we will assume that a modified adversary D′ makes p primitive
queries to each of the block ciphers and q construction queries.

For an attainable transcript τ = (QC ,QE), we will use the following nota-
tions: for r, s ∈ {0, 1}m, and w ∈ T ,

QE1(r) = {(k, u, v) ∈ QE1 : k = r},

QE2(s) = {(l, u, v) ∈ QE2 : l = s},

QC(w) = {(t, x, y) ∈ QC : t = w}.

Note that either |QEi
(r)| < N/4 or |QEi

(r)| = N for any r ∈ {0, 1}m and
i = 1, 2. Similarly, we have either |QC(w)| < N/16 or |QC(w)| = N for any
w ∈ T . In particular, we will write

T ∗ = {t ∈ T : |QC(t)| = N}, Q∗
C =

⊔

t∈T ∗

QC(t).
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3.2 Bad Keys

Fix an attainable transcript τ = (QC ,QE), and positive integers M1,M2,M3

(that will be optimized later). Let

A1 = {((t, x, y), (k, u, v)) ∈ QC × QE1 : (h1(t), x ⊕ g1(t)) = (k, u)},

A2 = {((t, x, y), (k, u, v)) ∈ QC × QE2 : (h2(t), y ⊕ g2(t)) = (k, v)},

B1 = {((t, x, y), (t′, x′, y′)) ∈ Q∗2
C : ∃(t′′, x′′, y′′) �= (t, x, y), (t′, x′, y′) such that

x ⊕ g1(t) = x′′ ⊕ g1(t
′′), h1(t) = h1(t

′′), h2(t) = h2(t
′)},

B2 = {((t, x, y), (t′, x′, y′)) ∈ Q∗2
C : ∃(t′′, x′′, y′′) �= (t, x, y), (t′, x′, y′) such that

y ⊕ g2(t) = y′′ ⊕ g2(t
′′), h2(t) = h2(t

′′), h1(t) = h1(t
′)},

B3 = {((t, x, y), (k, u, v)) ∈ QC × QE1 : ∃(t′, x′, y′) �= (t, x, y) such that

y ⊕ g2(t) = y′ ⊕ g2(t
′), h2(t) = h2(t

′), h1(t) = k},

B4 = {((t, x, y), (k, u, v)) ∈ QC × QE2 : ∃(t′, x′, y′) �= (t, x, y) such that

x ⊕ g1(t) = x′ ⊕ g1(t
′), h1(t) = h1(t

′), h2(t) = k},

C1 = {((t, x, y), (t′, x′, y′), (t′′, x′′, y′′)) ∈ Q3
C :

t �= t′, t �= t′′, h1(t) = h1(t
′), h2(t) = h2(t

′′)},

C2 = {((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE1 :

t �= t′, h2(t) = h2(t
′), h1(t) = k},

C3 = {((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE2 :

t �= t′, h1(t) = h1(t
′), h2(t) = k},

C4 = {((t, x, y), (k, u, v), (k′, u′, v′)) ∈ QC × QE1 × QE2 : h1(t) = k, h2(t) = k′}.

A key k = (g1, h1, g2, h2) ∈ K is defined to be bad if one of the following
conditions is fulfilled:

(C-1) |Ai| ≥ M1 for some i = 1, 2;
(C-2) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v), (k′, u′, v′) ∈ QE1 such

that

(h1(t), x ⊕ g1(t)) = (k, u),
(h1(t′), x′ ⊕ g1(t′)) = (k′, u′),

(h2(t), v ⊕ g1(t) ⊕ g2(t)) = (h2(t′), v′ ⊕ g1(t′) ⊕ g2(t′));

(C-3) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v), (k′, u′, v′) ∈ QE2 such
that

(h2(t), y ⊕ g2(t)) = (k, v),
(h2(t′), y′ ⊕ g2(t′)) = (k′, v′),

(h1(t), u ⊕ g1(t) ⊕ g2(t)) = (h1(t′), u′ ⊕ g1(t′) ⊕ g2(t′));

(C-4) |Bi| ≥ M2 for some i = 1, 2, 3, 4;
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(C-5) |Ci| ≥ M3 for some i = 1, 2, 3, 4;
(C-6) there exist (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC such that (t, x, y) �=

(t′, x′, y′), (t, x, y) �= (t′′, x′′, y′′) and

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), y ⊕ g2(t)) = (h2(t′′), y′′ ⊕ g2(t′′));

(C-7) there exist (t, x, y), (t′, x′, y′) ∈�= QC such that

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), g1(t) ⊕ g2(t)) = (h2(t′), g1(t′) ⊕ g2(t′));

(C-8) there exist (t, x, y), (t′, x′, y′) ∈�= QC such that

(h1(t), g1(t) ⊕ g2(t)) = (h1(t′), g1(t′) ⊕ g2(t′)),
(h2(t), y ⊕ g2(t)) = (h2(t′), y′ ⊕ g2(t′));

(C-9) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), y ⊕ g2(t)) = (k′, v′);

(C-10) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), v ⊕ g1(t) ⊕ g2(t)) = (k′, u′);

(C-11) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), u′ ⊕ g1(t) ⊕ g2(t)) = (k, v),
(h2(t), y ⊕ g2(t)) = (k′, v′);

(C-12) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v) ∈ QE1 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), y ⊕ g2(t)) = (h2(t′), y′ ⊕ g2(t′));

(C-13) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), y ⊕ g2(t)) = (k, v);

(C-14) there exist k ∈ {0, 1}m and h ∈ {h1, h2} such that

N

4
≤ |{(t, x, y) ∈ QC \ Q∗

C : h(t) = k}|.
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Fig. 2. Reduced queries that make bad conditions (C-2), (C-3) and (C-6) to
(C-13). Black dots (resp. white dots) represent values fixed by QE1 and QE2 (resp.
free values).
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Figure 2 pictorially represents bad conditions (C-2), (C-3) and (C-6) to (C-13)
in terms of reduced queries (as defined in Sect. 3.3). The probability of having
bad keys in the ideal world is upper bounded as follows.

Lemma 3. For an attainable transcript τ = (QC ,QE), let Kbad be the set of
bad keys defined as above. Then we have

|Kbad|
|K| ≤ 2pqδδ′

M1
+ 2M2

1 δδ′ +
(2q3 + 2pq2)δ(δ′)2

M2
+

(q3 + 2pq2 + p2q)(δ′)2

M3

+ (q3 + 2pq2 + 2q2 + 3p2q)δ2(δ′)2 +
512n2q2δ′

N2
.

For i = 1, . . . , 14, let Ei denote the event that a uniform random key k ∈ K
satisfies condition (C-i). Then we have

|Kbad|
|K| ≤ Pr [E1 ∨ E2 ∨ E3] +

14
∑

i=4

Pr [Ei] . (2)

Here we only upper bound Pr [E14]; the analysis of the other events are rather
straightforward. Due to the space limit, the complete proof will be given in the
full version.

Upper Bounding. Pr [E14]. Let

T i = {w ∈ T : 2i−1 ≤ |QC(w)| < 2i},

Qi
C = {(t, x, y) ∈ QC(w) : w ∈ T i},

for i = 1, . . . , n − 4. Then we have

T \ T ∗ =
n−4
⊔

i=1

T i, QC \ Q∗
C =

n−4
⊔

i=1

Qi
C .

For each h ∈ {h1, h2} and i ∈ {1, . . . , n − 4}, we define two random variables

Xi = |{(t, t′) ∈ (T i)∗2 : h(t) = h(t′)}|,
Yi = max

∃t1,...,t�∈ �=T i s.t.
h(t1)=···=h(t�)

�.

Since |T i| ≤ q
2i−1 and by the δ′-almost uniformity of H, we have

E[Xi] ≤ |T i|(|T i| − 1)δ′ ≤
( q

2i−1

)2

δ′

for i = 1, . . . , n − 4. Since Yi(Yi − 1) ≤ Xi and by Markov’s inequality, we have

Pr

[

Yi ≥ q
√

Cδ′

2i−1
+ 1

]

≤ Pr

⎡

⎣Yi(Yi − 1) ≥
(

q
√

Cδ′

2i−1

)2
⎤

⎦

≤ Pr
[

Xi ≥ C
( q

2i−1

)2

δ′
]

≤ 1
C
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for any C > 0. Therefore, for each k ∈ {0, 1}m and h ∈ {h1, h2}, we have

|{(t, x, y) ∈ QC \ Q∗
C : h(t) = k}| <

n−4
∑

i=1

Yi2i <

n−4
∑

i=1

(

q
√

Cδ′

2i−1
+ 1

)

2i

< 2nq
√

Cδ′ +
N

8

except with probability at most n/C. By letting C =
(

N
16nq

)2
1
δ′ (satisfying

2nq
√

Cδ′ = N/8), we have

Pr [E14] ≤ 512n2q2δ′

N2
. (3)

3.3 Lower Bounding pkre(QC |QE )/pid(QC |QE ) For a Good Key

This section will be devoted to the proof of the following lemma.

Lemma 4. For an attainable transcript τ = (QC ,QE) and a good key k =
(g1, h1, g2, h2) ∈ K, one has

pkre(QC |QE)
pid(QC |QE)

≥ 1 −
(

16M2

N
+

16M3

N2

)

.

3.3.1 Useful Definitions and Properties
Let

QC = {(h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t)) : (t, x, y) ∈ QC}.

The elements of QC will be called reduced queries (or simply queries). The
reduced queries of QC are all distinct, namely, if (t, x, y) �= (t′, x′, y′), then

(h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t))
�= (h1(t′), h2(t′), x ⊕ g1(t′), y ⊕ g2(t′), g1(t′) ⊕ g2(t′))

since k does not satisfy condition (C-6). Let

Q(1) = {(k, l, u, v,Δ) ∈ QC : (k, u, ∗) ∈ QE1 for some ∗ ∈ {0, 1}n},

Q(2) = {(k, l, u, v,Δ) ∈ QC : (l, ∗, v) ∈ QE2 for some ∗ ∈ {0, 1}n},

Q(3) = {(k, l, u, v,Δ) ∈ QC : ∃(k′, l′, u′, v′,Δ′) ∈ QC such that

(k′, l′, u′, v′,Δ′) �= (k, l, u, v,Δ), (k′, u′) = (k, u)} \ Q(1),

Q(4) = {(k, l, u, v,Δ) ∈ QC : ∃(k′, l′, u′, v′,Δ′) ∈ QC such that

(k′, l′, u′, v′,Δ′) �= (k, l, u, v,Δ), (l′, v′) = (l, v)} \ Q(2),

Q(5) = QC \
(

4
⋃

i=1

Q(i)

)

.

Each class of queries are pictorially represented in Fig. 3.
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Fig. 3. Reduced queries in Q(i), i = 1, 2, 3, 4, 5. Black dots represent values fixed by
QE1 and QE2 , while white dots are “free”. Two distinct dots on each side do not
necessarily correspond to distinct values.

Property 1. Sets Q(i), i = 1, 2, 3, 4, 5, partition QC , namely,

QC =
5
⊔

i=1

Q(i).

Proof. The union of Q(i), i = 1, 2, 3, 4, 5, is QC by the definition of Q(5). Fur-
thermore, they are pairwise disjoint; in particular,

1. Q(1) ∩ Q(2) = ∅ by excluding bad keys satisfying (C-9);
2. Q(1) ∩ Q(4) = ∅ by excluding bad keys satisfying (C-12);
3. Q(2) ∩ Q(3) = ∅ by excluding bad keys satisfying (C-13);
4. Q(3) ∩ Q(4) = ∅ by excluding bad keys satisfying (C-6).

�	

We will further classify the queries and count each class using the following
notations.

1. For r, s ∈ {0, 1}m, d ∈ {0, 1}n and i ∈ {1, 2, 3, 4, 5}, let

Q(i)
r,s,d = {(k, l, u, v,Δ) ∈ Q(i) : (k, l,Δ) = (r, s, d)},
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and let

Q(i)
r,s =

⊔

d∈{0,1}n

Q(i)
r,s,d, Q(i)

r,∗ =
⊔

l∈{0,1}m

Q(i)
r,l , Q(i)

∗,s =
⊔

k∈{0,1}m

Q(i)
k,s.

2. For w ∈ T , r, s ∈ {0, 1}m, d ∈ {0, 1}n and i ∈ {1, 2, 3, 4, 5}, let

qw = |QC(w)|, pr,∗ = |QE1(r)|, p∗,s = |QE2(s)|,
q
(i)
r,s,d = |Q(i)

r,s,d|, q(i)r,s = |Q(i)
r,s|,

q
(i)
r,∗ = |Q(i)

r,∗|, q
(i)
∗,s = |Q(i)

∗,s|.

Given the partition of the queries, we can also define the following sets.

1. For r, s ∈ {0, 1}m, let

U1(r) = {u ∈ {0, 1}n : ∃v ∈ {0, 1}n such that (u, v) ∈ QE1(r)},

V1(r) = {v ∈ {0, 1}n : ∃u ∈ {0, 1}n such that (u, v) ∈ QE1(r)},

U2(s) = {u ∈ {0, 1}n : ∃v ∈ {0, 1}n such that (u, v) ∈ QE2(s)},

V2(s) = {v ∈ {0, 1}n : ∃u ∈ {0, 1}n such that (u, v) ∈ QE2(s)}.

2. For r, s ∈ {0, 1}m and i ∈ {1, 2, 3, 4, 5}, let

U
(i)
1 (r) = {u ∈ {0, 1}n : ∃s, v,Δ such that (r, s, u, v,Δ) ∈ Q(i)},

V
(i)
2 (s) = {v ∈ {0, 1}n : ∃r, u,Δ such that (r, s, u, v,Δ) ∈ Q(i)}.

Sets U
(i)
1 (r) and V

(i)
2 (s), i = 1, 2, 3, 4, 5, are pictorially represented in Fig. 4. We

have the following properties on these sets.

Property 2. For r, s ∈ {0, 1}m, one has

1. U
(1)
1 (r) ⊂ U1(r);

2. U1(r) and U
(i)
1 (r), i = 2, 3, 4, 5, are pairwise disjoint;

3. V
(1)
2 (s) ⊂ V2(s);

4. V2(s) and V
(i)
2 (s), i = 1, 3, 4, 5, are pairwise disjoint.

Proof. By definition, U
(1)
1 (r) ⊂ U1(r). U1(r) and U

(2)
1 (r) are disjoint by exclud-

ing bad keys of (C-9); U1(r) and U
(3)
1 (r) are disjoint since Q(1) and Q(3) are

disjoint; U1(r) and U
(4)
1 (r) are disjoint by excluding bad keys of (C-12); U

(2)
1 (r)

and U
(3)
1 (r) are disjoint by excluding bad keys of (C-13); U

(2)
1 (r) and U

(4)
1 (r)

are disjoint by excluding bad keys of (C-13) and since Q(2) and Q(4) are dis-
joint; U

(3)
1 (r) and U

(4)
1 (r) are disjoint by excluding bad keys of (C-6). Since

Q(1)∪Q(2)∪Q(3)∪Q(4) and Q(5) are disjoint, U
(1)
1 (r)∪U

(2)
1 (r)∪U

(3)
1 (r)∪U

(4)
1 (r)

and U
(5)
1 (r) are also disjoint. The remaining properties are proved similarly. �	
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Fig. 4. Sets U
(i)
1 (r) and V

(i)
2 (s), i = 1, 2, 3, 4, 5. As in Fig. 3, black dots (resp. white

dots) represent values fixed by QE1 and QE2 (resp. free values). Distinct dots on each
side do not necessarily correspond to distinct values.
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Property 3. For r, s ∈ {0, 1}m, one has

1. |U1(r)| = |V1(r)| = pr,∗;
2. |U2(s)| = |V2(s)| = p∗,s;
3. |U (i)

1 (r)| = q
(i)
r,∗ for i = 2, 4, 5;

4. |V (i)
2 (s)| = q

(i)
∗,s for i = 1, 3, 5.

Proof. It is straightforward to prove the first two properties. Every
(k, l, u, v,Δ) ∈ Q(2)

r,∗ (resp. Q(4)
r,∗) contains a distinct u since otherwise we would

find queries satisfying (C-13) (resp. (C-6)), which implies |U (2)
1 (r)| = q

(2)
r,∗ (resp.

|U (4)
1 (r)| = q

(4)
r,∗). We also have |U (5)

1 (r)| = q
(5)
r,∗ since Q(5) and Q(3) are disjoint.

The last property is proved similarly. �	

We define a
(3)
r,∗ = |U (3)

1 (r)| and a
(4)
∗,s = |V (4)

2 (s)|.

Property 4. For r, s ∈ {0, 1}m and d ∈ {0, 1}n, one has

1. pr,∗ ≥ q
(1)
r,s,d;

2. p∗,s ≥ q
(2)
r,s,d;

3. a
(3)
r,∗ ≥ q

(3)
r,s,d;

4. a
(4)
∗,s ≥ q

(4)
r,s,d.

Proof. Every (k, l, u, v,Δ) ∈ Q(1)
r,s,d contains a distinct u since otherwise we would

find queries satisfying (C-7). Therefore we have pr,∗ = |U1(r)| ≥ q
(1)
r,s,d. The other

properties are proved similarly. �	

For a subset Q ⊂ QC , we will write (E1, E2) � Q if

E2(l, E1(k, u) ⊕ Δ) = v

for every (k, l, u, v,Δ) ∈ Q. With this notation, let

p1 = Pr
[
(E1, E2) � Q(1) ∪ Q(2)

∣∣∣E1 � QE1 ∧ E2 � QE2

]
,

p2 = Pr
[
(E1, E2) � Q(3) ∪ Q(4)

∣∣∣E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) � Q(1) ∪ Q(2)
]
,

p3 = Pr

[
(E1, E2) � Q(5)

∣∣∣E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) �
4⋃

i=1

Q(i)

]
.

Then we have

pkre(QC |QE) = Pr
[

(E1, E2) � QC |E1 � QE1 ∧ E2 � QE2

]

= p1 · p2 · p3. (4)

3.3.2 Computing p1
Suppose that (k, l, u, v,Δ) ∈ Q(1). It means that E1(k, u) has been already
determined by QE1 . In order for (E1, E2) to complete this query, E2 should
map E1(k, u) ⊕ Δ to v with key l. In this situation, the following properties are
noteworthy.
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1. Not either E−1
2 (l, v) or E2(l, E1(k, u)⊕Δ) has been determined by QE2 since

k does not satisfy either (C-9) or (C-10).
2. There is no collision on the input to E2 by the queries of Q(1); precisely,

for any (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(1) such that l = l′, we have
E1(k, u) ⊕ Δ �= E1(k′, u′) ⊕ Δ′ since k does not satisfy (C-2).

3. There is no collision on the output from E2 by any other query of QC ; pre-
cisely, for any distinct queries (k, l, u, v,Δ) ∈ Q(1) and (k′, l′, u′, v′,Δ′) ∈ QC

such that l = l′, we have v �= v′ since k does not satisfy (C-12).

For a fixed s ∈ {0, 1}m, QE2 determines p∗,s evaluations of E2(s, ·). On the
other hand, the number of queries (k, l, u, v,Δ) ∈ Q(1) such that l = s is q

(1)
∗,s (by

definition). Such queries determine all different inputs and outputs of E2(s, ·), so
E2(s, ·) would complete the queries with probability 1/(N − p∗,s)q

(1)
∗,s

. Therefore
we have

Pr
[

(E1, E2) � Q(1)
∣

∣

∣E1 � QE1 ∧ E2 � QE2

]

=
∏

s∈{0,1}m

1
(N − p∗,s)q

(1)
∗,s

.

Applying a similar argument to Q(2) (excluding bad key satisfying (C-3), (C-9),
(C-11) or (C-13)), we have

p1 =
∏

r∈{0,1}m

1
(N − pr,∗)q

(2)
r,∗

·
∏

s∈{0,1}m

1
(N − p∗,s)q

(1)
∗,s

. (5)

3.3.3 Computing p2
Subject to

E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) � Q(1) ∪ Q(2),

we will lower bound the probability of completing the reduced queries of Q(3) ∪
Q(4) when extending the evaluations of E1 and E2. For r, s ∈ {0, 1}m, we can
fix

V
(2)
1 (r)

def= {E1(r, u) : u ∈ U
(2)
1 (r)},

U
(1)
2 (s)

def= {E−1
2 (s, v) : v ∈ V

(1)
2 (s)}.

Property 5. For any r ∈ {0, 1}m such that U
(3)
1 (r) �= ∅, |V1(r) ∪ V

(2)
1 (r)| < N/2.

Proof. We distinguish two cases.

Case (1) There exists no tweak w ∈ T ∗ such that h1(w) = r. In this case,
(i) |V1(r)| < N/4 since we have modified the adversary so that the number of

block cipher queries is either N or less than N/4 (for any fixed key), and
U

(3)
1 (r) being nonempty implies that the number of block cipher queries

cannot be N , and
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(ii) |V (2)
1 (r)| < N/4 since we are excluding bad keys of (C-14) (with no tweak

w in T ∗ such that h1(w) = r).
Therefore we have

|V1(r) ∪ V
(2)
1 (r)| ≤ |V1(r)| + |V (2)

1 (r)| <
N

4
+

N

4
=

N

2
.

Case (2) There exists w ∈ T ∗ such that h1(w) = r; we again distinguish three
cases. Let s = h2(w).

(i) |QE1(r)| = N ; we have U1(r) = {0, 1}n, and hence U
(3)
1 (r) = ∅.

(ii) |QE2(s)| = N ; since w ∈ T ∗, all possible N construction queries are made
with tweak w, and they are all contained in Q(2) since |QE2(s)| = N for
s = h2(w). This means that U

(2)
1 (r) = {0, 1}n. Since U

(2)
1 (r) and U

(3)
1 (r)

are disjoint by Property 2, we have U
(3)
1 (r) = ∅.

(iii) |QE1(r)|, |QE2(s)| < N/4; there is no query (k, l, u, v,Δ) ∈ Q(2) such
that k = r and l �= s since otherwise we will see queries satisfying (C-
13). Therefore |V (2)

1 (r)| counts the number of queries (k, l, u, v,Δ) ∈ Q(2)

such that k = r and l = s. Such queries correspond to queries in QE2(s),
where |QE2(s)| < N/4. Since |V1(r)| ≤ |QE1(r)| < N/4, we have |V1(r) ∪
V

(2)
1 (r)| < N/2. �	

Similarly, we can prove the following property.

Property 6. For any s ∈ {0, 1}m such that V
(4)
2 (s) �= ∅, |U2(s) ∪ U

(1)
2 (s)| < N/2.

In order to estimate the probability that E1 and E2 complete Q(3) ∪ Q(4),
we will choose an (ordered) set of a

(3)
r,∗( = |U (3)

1 (r)|) elements, denoted V
(3)
1 (r),

from {0, 1}n \ (V1(r) ∪ V
(2)
1 (r)) for each r ∈ {0, 1}m. Once V

(3)
1 (r) is chosen, we

will compute the probability that the queries of Q(3) are completed satisfying
E1(r, U

(3)
1 (r)) = V

(3)
1 (r).2 Similarly, for each s ∈ {0, 1}m, we will choose a set of

a
(4)
∗,s elements, denoted U

(4)
2 (s), from {0, 1}n \ (U2(s)∪U

(1)
2 (s)), and compute the

probability that the queries of Q(4) are completed via the elements of U
(4)
2 (s) (as

E−1
2 (l, v)).

Without any restriction, the number of ways of choosing V
(3)
1 (r) and U

(4)
2 (s)

(over all the keys r, s ∈ {0, 1}m) would be
∏

r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗

·
∏

s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a

(4)
∗,s

.

However, in order to make the analysis simpler, we will avoid certain bad con-
ditions when choosing V

(3)
1 (r) and U

(4)
2 (s); suppose that y has been chosen as

E1(r, u) from {0, 1}n \ (V1(r)∪V
(2)
1 (r)) for a query (r, s, u, v,Δ) ∈ Q(3). In order

2 U
(3)
1 (r) and V

(3)
1 (r) are viewed as ordered sets, and E1(r, U

(3)
1 (r)) = V

(3)
1 (r) means

that each element of U
(3)
1 (r) is mapped to the corresponding element of V

(3)
1 (r) (with

respect to the ordering) under E1(r, ·).
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for E2 complete this query, one should have E2(s, y⊕Δ) = v. Here we would like
the element y ⊕ Δ to be “free”, namely to lie outside U2(s) ∪ U

(1)
2 (s) ∪ U

(4)
2 (s).

We would also like the elements y ⊕ Δ to be all distinct for each key of E2.
Similarly, for each element x that has been chosen as E−1

2 (s, v) for a query
(r, s, u, v,Δ) ∈ Q(4), we would like x⊕Δ to be outside V1(r)∪V

(2)
1 (r)∪V

(3)
1 (r).

For each key of E1, there should be no collision between x ⊕ Δ. More precisely,
the undesirable “colliding” events can be classified as follows.3

Col1 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (l′, u′, v′) ∈ QE2 such that
l = l′ and E1(k, u) ⊕ Δ = u′.

Col2 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (k′, l′, u′, v′,Δ′) ∈ Q(1) such that

l = l′ and E1(k, u) ⊕ Δ = E−1
2 (l′, v′).

Col3 ⇔ there exist (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(3) such that
l = l′ and E1(k, u) ⊕ Δ = E1(k′, u′) ⊕ Δ′.

Col4 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (k′, l′, u′, v′,Δ′) ∈ Q(4) such that

l = l′ and E1(k, u) ⊕ Δ = E−1
2 (l′, v′).

Col5 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, u′, v′) ∈ QE1 such that

k = k′ and E−1
2 (l, v) ⊕ Δ = v′.

Col6 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, l′, u′, v′,Δ′) ∈ Q(2) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E1(k′, u′).

Col7 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, l′, u′, v′,Δ′) ∈ Q(3) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E1(k′, u′).

Col8 ⇔ there exist (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(4) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E−1

2 (l′, v′) ⊕ Δ′.

Property 7. The probabilities of Coli, i = 1, . . . , 8, (over random choices of
V

(3)
1 (r) and U

(4)
2 (s)) are all upper bounded by 2M2/N .

Proof. To estimate the probability of Col3, consider pairs of distinct queries
(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈ Q(3) such that l = l′. The set of such pairs can
be partitioned into the following two types;

1. there exists a query (k′′, l′′, u′′, v′′,Δ′′) such that (k′′, u′′) = (k, u) and

(k′′, l′′, u′′, v′′,Δ′′) /∈ {(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′)};

2. there exists no query (k′′, l′′, u′′, v′′,Δ′′) such that (k′′, u′′) = (k, u) and

(k′′, l′′, u′′, v′′,Δ′′) /∈ {(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′)}.

3 For (k, l, u, v, Δ) ∈ Q(3) ∪ Q(4), we will write E1(k, u) and E−1
2 (l, v) to denote the

elements determined by the choice of V
(3)
1 (k) and U

(4)
2 (l), respectively.
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Since (k, l, u, v,Δ) ∈ Q(3), one always has a query (k∗, l∗, u∗, v∗,Δ∗) such that
(k∗, u∗) = (k, u) and (k∗, l∗, u∗, v∗,Δ∗) �= (k, l, u, v,Δ), so if a pair of queries falls
into the second type, then it means that (k∗, l∗, u∗, v∗,Δ∗) = (k′, l′, u′, v′,Δ′),
and hence (k, l, u) = (k′, l′, u′). Then by excluding bad keys of (C-7), we have
Δ �= Δ′. So for any pair of queries of the second type, it cannot be the case that
E1(k, u)⊕Δ = E1(k′, u′)⊕Δ′. On the other hand, the number of the pairs of the
first type is upper bounded by |B1|, which is smaller than M2 by excluding bad
keys of (C-4). For each pair, the probability that E1(k, u)⊕Δ = E1(k′, u′)⊕Δ′ is
upper bounded by 2/N (since |{0, 1}n \ (V1(r)∪V

(2)
1 (r))| > N/2 by Property 5).

Therefore, we have

Pr [Col3] ≤ 2M2

N
.

The other bounds are proved similarly. �	

The number of ways of choosing V
(3)
1 (r) and U

(4)
2 (s) over all r, s ∈ {0, 1}m,

without fulfilling any of the bad conditions Coli, i = 1, . . . , 8, is lower bounded
by

∏

r∈{0,1}m

(N−pr,∗−q
(2)
r,∗)

a
(3)
r,∗

·
∏

s∈{0,1}m

(N−p∗,s−q
(1)
∗,s)a

(4)
∗,s

·
(

1 −
8
∑

i=1

Pr [Coli]

)

. (6)

For each of “good” choices for V
(3)
1 (r) and U

(4)
2 (s), (E1, E2) complete the queries

of Q(3) and Q(4) (via V
(3)
1 (r) and U

(4)
2 (s), respectively) with probability

1
∏

r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗+q

(4)
r,∗

·
∏

s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a

(4)
∗,s+q

(3)
∗,s

. (7)

By (6), (7) and Property 7, we have

p2 ≥

∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a(4)

∗,s
·
(

1 −
8∑

i=1

Pr [Coli]

)

∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗+q

(4)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a(4)

∗,s+q
(3)
∗,s

≥ 1∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗ − a

(3)
r,∗)

q
(4)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s − a

(4)
∗,s)q(3)∗,s

×
(

1 − 16M2

N

)
. (8)
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3.3.4 Computing p3
Subject to

E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) �
4
⋃

i=1

Q(i), (9)

we can fix
br

def= pr,∗ + q
(2)
r,∗ + a

(3)
r,∗ + q

(4)
r,∗ (10)

evaluations of E1(r, ·) and

cs
def= p∗,s + q

(1)
∗,s + q

(3)
∗,s + a

(4)
∗,s (11)

evaluations of E2(s, ·) for each (r, s) ∈ {0, 1}m × {0, 1}m. Let

Q(5)
1 = {(r, s, u, v,Δ) ∈ Q(5) : r = h1(t) and s = h2(t) for some t ∈ T ∗},

Q(5)
2 = {(r, s, u, v,Δ) ∈ Q(5) : r �= h1(t) and s �= h2(t) for every t ∈ T ∗}.

Let

R = {r ∈ {0, 1}m : r = h1(t) for some t ∈ T ∗},

S = {s ∈ {0, 1}m : s = h2(t) for some t ∈ T ∗},

and let R′ = {0, 1}m \ R and S ′ = {0, 1}m \ S.

Property 8. With the above definitions, the following hold:

1. Q(5) is partitioned into Q(5)
1 and Q(5)

2 , namely, Q(5) = Q(5)
1 	 Q(5)

2 ;

2. Q(5)
1 =

⊔

(r,s)∈R×S
Q(5)

r,s ;

3. Q(5)
2 =

⊔

(r,s)∈R′×S′
Q(5)

r,s ;

4. Q(5)
r,s = ∅ for (r, s) /∈ (R × S) ∪ (R′ × S ′).

Proof. By definition, we have

Q(5)
1 ⊂

⊔

(r,s)∈R×S
Q(5)

r,s , Q(5)
2 ⊂

⊔

(r,s)∈R′×S′

Q(5)
r,s ,

Q(5)
1 ∪ Q(5)

2 ⊂ Q(5) =
⊔

(r,s)∈(R∪R′)×(S∪S′)

Q(5)
r,s . (12)

Therefore it is obvious that Q(5)
1 and Q(5)

2 are disjoint. If (r, s, u, v,Δ) ∈ Q(5) \
Q(5)

2 , then it should be the case that either r = h1(t) or s = h2(t) for some t ∈ T ∗;
if r = h1(t) for some t ∈ T ∗, then we would have a query (r′, s′, u′, v′,Δ′) ∈ QC

such that u′ = u, r′ = h1(t) = r and s′ = h2(t). Since Q(5) is disjoint from Q(3),
it must be the case that (r′, s′, u′, v′,Δ′) = (r, s, u, v,Δ). Since r = r′ = h1(t)
and s = s′ = h2(t), we have (r, s, u, v,Δ) ∈ Q(5)

1 . With a similar argument
for the case that s = h2(t) for some t ∈ T ∗, we have Q(5) = Q(5)

1 	 Q(5)
2 .

The remaining properties are immediate from the first one (combined with the
observation (12)). �	
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Let

p′
3 = Pr

[

(E1(r, ·), E2(s, ·)) � Q(5)
r,s for every (r, s) ∈ R × S

]

,

p′′
3 = Pr

[

(E1(r, ·), E2(s, ·)) � Q(5)
r,s for every (r, s) ∈ R′ × S ′

]

, (13)

where both probabilities are conditioned on (9). Then by Property 8, we have

p3 = p′
3 · p′′

3 . (14)

Computing. p′
3. We begin with the following property.

Property 9. For (r, s) ∈ R × S, one has

1. q
(1)
r,∗ = q

(1)
∗,s = q

(1)
r,s = pr,∗;

2. q
(2)
r,∗ = q

(2)
∗,s = q

(2)
r,s = p∗,s;

3. q
(3)
∗,s = a

(3)
r,∗ = q

(3)
r,s ;

4. q
(4)
r,∗ = a

(4)
∗,s = q

(4)
r,s ;

5. q
(1)
r,s + q

(2)
r,s + q

(3)
r,s + q

(4)
r,s + q

(5)
r,s = N ;

6. br = cs = N − q
(5)
r,s .

Proof. Define a function

φ : Q(1)
r,s −→ U1(r)

(k, l, u, v,Δ) 
−→ u.

Since r = h1(t) for some t ∈ T ∗, φ is surjective. Suppose that (k, l, u, v,Δ) �=
(k′, l′, u′, v′,Δ′) ∈ Q(1)

r,s with (k, l) = (k′, l′) = (r, s) and u = u′. If their original
queries contain an identical tweak in T , then we have Δ = Δ′, which is a
contradiction since we are excluding bad keys of (C-7). If their original queries
contain different tweaks in T , then we would be able to find queries satisfying
(C-6). So φ is injective. This implies that q

(1)
r,s = pr,∗. Since U

(1)
1 (r) = U1(r), we

also have q
(1)
r,∗ = pr,∗. Furthermore, for any r′ ∈ {0, 1}m such that r′ �= r, we

have q
(1)
r′,s = 0 since otherwise we could find queries satisfying (C-12). So we have

q
(1)
∗,s = q

(1)
r,s . The second property is proved similarly.

Define a function

ψ : Q(3)
r,s −→ U

(3)
1 (r)

(k, l, u, v,Δ) 
−→ u.

Since s = h2(t) for some t ∈ T ∗, ψ is surjective. Suppose that (k, l, u, v,Δ) �=
(k′, l′, u′, v′,Δ′) ∈ Q(3)

r,s with (k, l) = (k′, l′) = (r, s) and u = u′. If their original
queries contain an identical tweak in T , then we have Δ = Δ′, which is a
contradiction since we are excluding bad keys of (C-7). If their original queries
contain different tweaks in T , then we would be able to find queries satisfying
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(C-6). So φ is injective. This implies that q
(3)
∗,s = a

(3)
r,∗. Furthermore, for any

r′ ∈ {0, 1}m such that r′ �= r, we have q
(3)
r′,s = 0 since otherwise we could find

queries satisfying (C-12). So we have q
(3)
∗,s = q

(3)
r,s . The remaining properties are

proved similarly. �	

Fix (r, s) ∈ R × S. If q
(5)
r,s = 0, then we have N − br = 0. If q

(5)
r,s > 0, then there

would exist w ∈ T ∗ such that r = h1(w) and s = h2(w), and E1(r, ·) and E2(s, ·)
might complete the queries in Q(5)

r,s that contain w (in their original forms). In
this case, it cannot be the case that either r �= h1(w′) or s �= h2(w′) for any
w′ ∈ T ∗ such that w′ �= w since the existence of such a tweak would imply
Q(5)

r,s = ∅. Note that

V2(s) ∪
⋃

i=1,3,4

V
(i)
2 (s) =

⎧

⎨

⎩

E2(s,E1(r, u) ⊕ Δ) : u ∈ U1(r) ∪
⋃

i=2,3,4

U
(i)
1 (r)

⎫

⎬

⎭

,

where Δ = g1(w) ⊕ g2(w), and q
(5)
r,s = N − br = N − cs. So the probability that

E1(r, ·) and E2(s, ·) complete all the queries of Q(5)
r,s is 1/(N − br)!, and hence

p′
3 =

∏

(r,s)∈R×S

1
(N − br)!

. (15)

Computing. p′′
3 . We first fix a lexicographical order on R′ × S ′ × {0, 1}n;

(r, s, d) < (r′, s′, d′) if and only if r < r′ or (r = r′ and s < s′) or (r = r′,
s = s′ and d < d′).

Next, we fix (r, s, d) ∈ R′ × S ′ × {0, 1}n, and suppose that E1 and E2 have
completed all the queries of Q(5)

r′,s′,d′ for (r′, s′, d′) < (r, s, d). Subject to this
event, let

Br,s,d =V1(r) ∪

⎧
⎪⎪⎨
⎪⎪⎩

E1(k, u) : (k, l, u, v, Δ) ∈
⋃

i=2,3,4

Q(i)
r,∗ ∪

⋃

(r′,s′,d′)<(r,s,d)

r′=r

Q(5)

r′,s′,d′

⎫
⎪⎪⎬
⎪⎪⎭

,

Cr,s,d = {x ⊕ d : x ∈ U2(s)}

∪

⎧
⎪⎪⎨
⎪⎪⎩

E−1
2 (l, v) ⊕ d : (k, l, u, v, Δ) ∈

⋃
i=1,3,4

Q(i)
∗,s ∪

⋃

(r′,s′,d′)<(r,s,d)

s′=s

Q(5)

r′,s′,d′

⎫
⎪⎪⎬
⎪⎪⎭

,

be the set of all elements y for which E−1
1 (r, y) have been determined, and the set

of all elements y for which E2(s, y⊕d) have been determined, respectively. We will
choose an (ordered) set of q

(5)
r,s,d elements, denoted Y , from {0, 1}n\(Br,s,d∪Cr,s,d)

and consider the probability that each (r, s, u, v, d) ∈ Q(5)
r,s,d is completed with

E1(r, u) = y and E2(s, y ⊕ d) = v for a distinct y ∈ Y .
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Let br,s,d = |Br,s,d| and cr,s,d = |Cr,s,d|. Then we have

br,s,d = br +
∑

i<s

q
(5)
r,i +

∑

j<d

q
(5)
r,s,j ,

cr,s,d = cs +
∑

i<r

q
(5)
i,s +

∑

j<d

q
(5)
r,s,j .

Define a function

φ :
4
⊔

i=1

Q(i)
r,s,d −→ Br,s,d ∩ Cr,s,d

(k, l, u, v,Δ) 
−→ E1(k, u),

where E1(k, u) has already been determined. Suppose that (k, l, u, v,Δ) and
(k′, l′, u′, v′,Δ′) are mapped to the same E1(k, u) = E1(k′, u′). Since both queries
are contained in

⊔4
i=1 Q(i)

r,s,d, we have (k, l,Δ) = (k′, l′,Δ′) = (r, s, d). It implies
that u = u′ and v = E2(l, E1(k, u)⊕Δ) = E2(l′, E1(k′, u′)⊕Δ′) = v′, and hence
(k, l, u, v,Δ) = (k′, l′, u′, v′,Δ′). So we see that φ is injective. Therefore we have

|Br,s,d ∪ Cr,s,d| = |Br,s,d| + |Cr,s,d| − |Br,s,d ∩ Cr,s,d|
≤ br,s,d + cr,s,d − er,s,d,

where

er,s,d
def=

∣

∣

∣

∣

∣

4
⊔

i=1

Q(i)
r,s,d

∣

∣

∣

∣

∣

= q
(1)
r,s,d + q

(2)
r,s,d + q

(3)
r,s,d + q

(4)
r,s,d.

Overall, the number of ways of choosing Y so that E−1
1 (r, y) and E2(s, y ⊕ d)

have not been determined for any y ∈ Y is at least

(N − br,s,d − cr,s,d + er,s,d)q
(5)
r,s,d

.

Property 10. For (r, s, d) ∈ R′ × S ′ × {0, 1}n such that Q(5)
r,s,d �= ∅, one has

1. q
(5)
r,s,d + br,s,d < N/2;

2. q
(5)
r,s,d + cr,s,d < N/2.

Proof. Note that

q
(5)
r,s,d + br,s,d = q

(5)
r,s,d + pr,∗ + q

(2)
r,∗ + a

(3)
r,∗ + q

(4)
r,∗ +

∑

i<s

q
(5)
r,i +

∑

j<d

q
(5)
r,s,j ,

where pr,∗ < N/4 (since Q(5)
r,s,d �= ∅), and the sum of the remaining summands

is upper bounded by the number of queries (k, l, u, v,Δ) such that k = r, which
is smaller than N/4 since there is no tweak t ∈ T ∗ such that r = h1(t) and by
excluding bad keys of (C-14). Therefore we have q

(5)
r,s,d+br,s,d < N/2. The second

property is proved similarly. �	
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Thanks to Property 10, we can apply Lemma 1 to lower bound the probability
that E1 and E2 complete the queries of Q(5)

r,s,d by

(N − br,s,d − cr,s,d + er,s,d)q
(5)
r,s,d

(N − br,s,d)q
(5)
r,s,d

(N − cr,s,d)q
(5)
r,s,d

≥ 1
(N − er,s,d)q

(5)
r,s,d

(

1 −
4q

(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

)

.

Therefore we have

p′′
3 ≥

∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

(

1 −
4q

(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

)

≥
∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −

∑

(r,s)∈R′×S′

d∈{0,1}n

4q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(16)

By replacing (br,s,d − er,s,d) and (cr,s,d − er,s,d) by (pr,∗ + (br,s,d − pr,∗ − er,s,d))
and (p∗,s + (cr,s,d − p∗,s − er,s,d)), respectively, we have

∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

=
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,dpr,∗p∗,s +

∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)p∗,s

+
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗

+
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)(cr,s,d − p∗,s − er,s,d). (17)

Each term of (17) is upper bounded as follows.

Property 11. One has the following upper bounds:

1.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,dpr,∗p∗,s ≤ M3;
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2.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)p∗,s ≤ M3;

3.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗ ≤ M3;

4.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)(cr,s,d − p∗,s − er,s,d) ≤ M3.

Proof. We will prove the third upper bound; the other bounds are proved simi-
larly.

Consider

⊔

(r,s)∈R′×S′

d∈{0,1}n

⎛
⎝Q(5)

r,s,d ×
⎛
⎝ ⊔

i=1,3,4

Q(i)
∗,s ∪

⊔
i<r

Q(5)
i,s ∪

⊔
j<d

Q(5)
r,s,j \

⊔
i=1,3,4

Q(i)
r,s,d

⎞
⎠ × QE1(r)

⎞
⎠ .

A triple of queries from this set corresponds to a triple

((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE1

(in their original forms) such that t �= t′, h2(t) = h2(t′) and h1(t) = k. (Note
that if two queries (r, s, u, v, d) and (r′, s′, u′, v′, d′) share a common tweak, then
we would have (r, s, d) = (r′, s′, d′).) Since such a triple is contained in C2 and
|C2| ≤ M3 by excluding bad keys of (C-5), the size of this set is also upper
bounded by M3.

For (r, s) ∈ R′ × S ′ and d ∈ {0, 1}n, we have
∣

∣

∣

∣

∣

∣

⊔

i=1,3,4

Q(i)
∗,s ∪

⊔

i<r

Q(5)
i,s ∪

⊔

j<d

Q(5)
r,s,j \

⊔

i=1,3,4

Q(i)
r,s,d

∣

∣

∣

∣

∣

∣

= (q(1)∗,s − q
(1)
r,s,d) + (q(3)∗,s − q

(3)
r,s,d) + (a(4)

∗,s − q
(4)
r,s,d) +

∑

i<r

q
(5)
i,s +

∑

j<d

q
(5)
r,s,j

≥ cr,s,d − p∗,s − er,s,d.

Therefore we have
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗ ≤ |C2| ≤ M3.

�	

By (17) and Property 11, we have
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d) ≤ 4M3,
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and by plugging it into (16), we obtain

p′′
3 ≥

(

1 − 16M3

N2

)

·
∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

. (18)

3.3.5 Lower Bounding the Ratio
For each (r, s, d) ∈ {0, 1}m × {0, 1}m × {0, 1}n, let

T (r, s, d) = {w ∈ T : (h1(w), h2(w), g1(w) ⊕ g2(w)) = (r, s, d)}.

Then we have a partition of T , namely,

T =
⊔

r,s∈{0,1}m

d∈{0,1}n

T (r, s, d).

Since
∑

w∈T (r,s,d) qw = q
(1)
r,s,d + q

(2)
r,s,d + q

(3)
r,s,d + q

(4)
r,s,d + q

(5)
r,s,d, we have

pid(QC |QE) =
∏

w∈T

1
(N)qw

≤
∏

r,s∈{0,1}m

d∈{0,1}n

1
(N) ∑

w∈T (r,s,d)
qw

=
∏

r,s∈{0,1}m

d∈{0,1}n

1
(N)

q
(1)
r,s,d+q

(2)
r,s,d+q

(3)
r,s,d+q

(4)
r,s,d+q

(5)
r,s,d

. (19)

By (4), (5), (8), (13), (14), (15), (18), (19), we can prove

pkre(QC |QE)
pid(QC |QE)

≥ 1 −
(

16M2

N
+

16M3

N2

)

, (20)

which completes the proof of Lemma 4. The detailed computation will be given
in the full version of this paper.

3.4 Putting the Pieces Together

Theorem 1 follows from (1), Lemma 2, Lemma 3 and Lemma 4 with

M1 = p
1
3 q

1
3 ,

M2 =
1
4
(2q3 + 2pq2)

1
2 N

1
2 δ

1
2 δ′,

M3 =
1
2
(q3 + 2pq2 + p2q)

1
2 Nδ′.
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