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Preface

ASIACRYPT 2018, the 24th Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held in Brisbane, Australia, during
December 2–6, 2018.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

Asiacrypt 2018 received a total of 234 submissions from all over the world. The
Program Committee selected 65 papers for publication in the proceedings of this
conference. The review process was made by the usual double-blind peer review by the
Program Committee, which consisted of 47 leading experts of the field. Each sub-
mission was reviewed by at least three reviewers and five reviewers were assigned to
submissions co-authored by Program Committee members. This year, the conference
operated a two-round review system with rebuttal phase. In the first-round review the
Program Committee selected the 145 submissions that were considered of value for
proceeding to the second round. In the second-round phase the Program Committee
further reviewed the submissions by taking into account their rebuttal letter from the
authors. The selection process was assisted by a total of 347 external reviewers. These
three-volume proceedings contain the revised versions of the papers that were selected.
The revised versions were not reviewed again and the authors are responsible for their
contents.

The program of Asiacrypt 2018 featured three excellent invited talks by Mitsuru
Matsui, Melissa Chase, and Vanessa Teague. The conference also featured a traditional
rump session that contained short presentations on the latest research results of the
field. The Program Committee selected the work “Block Cipher Invariants as Eigen-
vectors of Correlation Matrices” by Tim Beyne for the Best Paper Award of Asiacrypt
2018. Two more papers, “Learning Strikes Again: the Case of the DRS Signature
Scheme” by Yang Yu and Léo Ducas, and “Tighter Security Proofs for GPV-IBE in the
Quantum Random Oracle Model” by Shuichi Katsumata, Shota Yamada, and Takashi
Yamakawa, were solicited to submit the full versions to the Journal of Cryptology. The
program chairs selected Chris Brzuska and Bart Mennink for the Best PC Member
Award.

Many people contributed to the success of Asiacrypt 2018. We would like to thank
the authors for submitting their research results to the conference. We are very grateful
to all of the PC members as well as the external reviewers for their fruitful comments
and discussions on their areas of expertise. We are greatly indebted to Josef Pieprzyk,
the general chair, for his efforts and overall organization. We would also like to thank
Waleed Alkalabi, Niluka Arasinghe, Mir Ali Rezazadeh Baee, Lynn Batten, Xavier
Boyen, Ed Dawson, Ernest Foo, Mukhtar Hassan, Udyani Herath, Qingyi Li, Georg
Lippold, Matthew McKague, Basker Palaniswamy, Anisur Rahman, Leonie Simpson,
Shriparen Sriskandarajah, Gabrielle Stephens, and Chathurika Don Wickramage, the



local Organizing Committee for their continuous support. We thank Craig Costello,
Léo Ducas, and Pierre Karpman for expertly organizing and chairing the rump session.

Finally we thank Shai Halevi for letting us use his nice software for the paper
submission and review process. We also thank Alfred Hofmann, Anna Kramer, and
their colleagues for handling the editorial process of the proceedings published in
Springer’s LNCS series.

December 2018 Thomas Peyrin
Steven Galbraith
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Abstract. A new approach to invariant subspaces and nonlinear invari-
ants is developed. This results in both theoretical insights and practical
attacks on block ciphers. It is shown that, with minor modifications to
some of the round constants, Midori-64 has a nonlinear invariant with
296 corresponding weak keys. Furthermore, this invariant corresponds to
a linear hull with maximal correlation. By combining the new invariant
with integral cryptanalysis, a practical key-recovery attack on 10 rounds
of unmodified Midori-64 is obtained. The attack works for 296 weak keys
and irrespective of the choice of round constants. The data complexity
is 1.25 · 221 chosen plaintexts and the computational cost is dominated
by 256 block cipher calls. Finally, it is shown that similar techniques lead
to a practical key-recovery attack on MANTIS-4. The full key is recov-
ered using 640 chosen plaintexts and the attack requires about 256 block
cipher calls.

Keywords: Invariant subspace attack · Nonlinear invariant attack
Linear cryptanalysis · Integral cryptanalysis · Correlation matrices
Midori-64 · MANTIS

1 Introduction

Block ciphers are an essential primitive for the construction of many cryptosys-
tems. This leads to a natural desire to optimize them with respect to vari-
ous application-dependent criteria. Examples include low-latency block ciphers
such as PRINCE [6] and MANTIS [4], and the low-power design Midori-64 [2].
Biryukov and Perrin [5] give a broad overview of such lightweight primitives.

One requirement is shared by all applications: the block cipher must be secure
– at the very least it must approximate a pseudorandom permutation. A com-
mon design decision that often helps to reduce latency, energy consumption and
other cost measures is the simplification of the key-schedule. This, along with
other aspects of lightweight designs, has led to the development of new cryptan-
alytic tools such as invariant subspaces [17] and nonlinear invariants [22]. These
attacks are the subject of this paper.
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At CRYPTO 2017, it was shown by Beierle, Canteaut, Leander and Rotella
that invariant attacks can often be averted by a careful choice of the round
constants [3]. Their work, as well as the earlier work by Todo, Leander and
Sasaki on nonlinear invariants [22], invites several questions. This paper will be
concerned with three related problems that arise in this context.

1. In their future work sections, Todo et al. [22] and Beierle et al. [3] both express
the desire to generalize the nonlinear invariant attack. One can argue that a
deeper theoretical understanding of block cipher invariants is helpful, if not
essential, to achieve this goal.

2. One potential generalization is the existence of block cipher invariants which
are not invariants under all of the round transformations. It is important to
investigate this possibility, because such cases are not covered by the tech-
niques introduced by Beierle et al. for choosing the round constants.

3. The previous problem leads to a third question: do such (generalized) invari-
ants only impact the security of the cipher for a specific choice of the round
constants? The results in this paper suggest otherwise.

Contribution. The first of the problems listed above is addressed in Sect. 4,
where the main contribution is Definition 2 and the discussion following it. It
is shown that block cipher invariants have an effective description in terms of
eigenvectors of correlation matrices. These matrices were first introduced by
Daemen, Govaerts and Vandewalle [8] in the context of linear cryptanalysis [20].
As a side result, more insight into the relation between invariants and linear
cryptanalysis is obtained.

Section 5 takes a closer look at the invariants of Midori-64, leading up to
an example of an invariant of the type described in the second problem above.
It will be shown in Sect. 5.3 that, with minor changes to the round constants,
Midori-64 has an invariant which is not invariant under the round function. It
applies to 296 weak keys. Note that this is a significantly larger class of weak
keys compared to previous work, i.e. 232 for the invariant subspace attack of
Guo et al. and 264 for the nonlinear invariant attack of Todo et al. [22]. In fact,
it will be demonstrated that the invariant discussed in Sect. 5.3 corresponds to a
linear hull with maximal correlation. This observation is of independent interest
and will be briefly discussed in Sect. 5.4.

Finally, Sects. 6 and 7 address the third question listed above. That is, two
cryptanalytic results are given to demonstrate that block cipher invariants may
impact the security of a block cipher regardless of the choice of round constants.

In Sect. 6, a practical attack on 10 rounds of Midori-64 – for any choice
of round constants – will be given. The attack applies to 296 weak keys and
requires roughly 1.25·221 chosen plaintexts. The computational cost is dominated
by 256 block cipher calls. Note that the data complexity and especially the
computational cost to determine whether a weak key is used, are significantly
lower. As discussed by Luykx, Mennink and Paterson [19] in ASIACRYPT 2017,
this has a significant impact on the multi-key security of the block cipher.
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Section 7 shows that the full key of MANTIS-4 [4] can be recovered given 640
chosen plaintexts. This attack works for all keys provided that a weak tweak is
used. The number of weak tweaks is 232 (out of 264). The computational cost of
this attack is dominated by 256 block cipher calls.

2 Preliminaries and Related Work

Most of the notation used in this paper is standard, for instance (F2,+, ·) denotes
the field with two elements. Random variables are denoted in boldface.

Many of the results in this work can be compactly described by means of tensor
products of real vector spaces. Let V1, . . . , Vn be vector spaces overR. Their tensor
product is a real vector space V1 ⊗· · ·⊗Vn. Elements of V1 ⊗· · ·⊗Vn will be called
tensors. For V = V1 = · · · = Vn, the tensor product V1 ⊗ · · · ⊗ Vn will be denoted
by V ⊗n. Knowledge of tensor products is not essential to understand this work.

The invariant subspace attack was introduced by Leander, Abdelraheem,
AlKhzaimi and Zenner in the context of PRINTcipher [17]. Let Ek : Fn

2 → F
n
2

be a block cipher. An affine subspace a + V of Fn
2 such that

Ek(a + V ) = a + V, (1)

is called an invariant subspace for Ek. The keys k for which (1) holds, will be
called weak keys. At ASIACRYPT 2016, Todo et al. introduced the nonlinear
invariant attack as an extension of this attack [22]. A Boolean function f : Fn

2 →
F2 is called a nonlinear invariant for Ek iff there exists a constant c ∈ F2 such
that for all x ∈ F

n
2 ,

f(x) + f(Ek(x)) = c.

Importantly, the constant c may depend on the key k, but not on x.
The description of block cipher invariants in this paper is based on correlation

matrices, which were first introduced by Daemen et al. [8]. The definition of these
matrices has been postponed to Sect. 3, as they will be introduced from a novel
point of view.

Finally, a brief description of Midori-64 is given here. This information will
be used extensively in Sects. 5 and 6. Midori-64 is an iterated block cipher with
a block size of 64 bits and a key length of 128 bits [2]. It operates on a 64-bit
state, which can be represented as a 4×4 array of 4-bit cells. The round function
consists of the operations SubCell (S), ShuffleCell (P ), MixColumn (M) and
a key addition layer. This structure is shown in Fig. 1.

The SubCell (S) mapping applies a 4-bit S-box S to each cell of the state.
The fact that the S-box is an involution will be used in Sect. 5. The algebraic
normal form of S(x) = (S1(x), S2(x), S3(x), S4(x)) is provided below. These
expressions will not be used explicitly, but they can be helpful to verify the
calculations in Sects. 6 and 7.

S1(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x1x2 + x1x3 + x3x4 + 1
S2(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x2x3x4 + x1x4 + x1 + x4 + 1
S3(x1, x2, x3, x4) = x1x2 + x1x4 + x2x4 + x2 + x4

S4(x1, x2, x3, x4) = x1x2x3 + x1x3x4 + x2x3x4 + x1x4 + x2x4 + x3.
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Fig. 1. The overall structure and round function of Midori-64.

The permutation ShuffleCell (P ) interchanges the cells of the state. It operates
on the state as follows:

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

s1 s15 s10 s8

s11 s5 s4 s14

s6 s12 s13 s3

s16 s2 s7 s9

P−→

The MixColumn (M) transformation acts on each state column independently by
the following matrix over F24 :

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ .

That is, each cell of a column of the state is replaced by the exclusive or of
the other elements in the same column. Finally, the round key in round i is
alternatingly taken to be K0 + γi or K1 + γi, where γi is a round constant.
Importantly, round constants are only added to the least significant (rightmost)
bit of each cell, i.e. γi ∈ {0, 1}16.

The tweakable block cipher MANTIS [4] is quite similar to Midori-64, having
nearly the same round function. Details will be given in Sect. 7.
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3 Correlation Matrices

The cryptanalysis of symmetric-key primitives is generally based on properties
of the plaintext that are reflected by the corresponding ciphertext. To every
such property, one could associate a set of values satisfying it. A convenient
way to work with sets of plaintexts, or more generally multisets, is to associate
a probability space with the set of block cipher inputs. Let x be a random
variable on F

n
2 with probability mass function px . The Fourier transform p̂x of

px is defined by
p̂x(χu) =

∑
x∈F

n
2

px(x)χu(x),

where χu : x �→ (−1)uT x is a character of Fn
2 . That is, the function px is expressed

in the character basis of the algebra C[Fn
2 ] of functions F

n
2 → C. Since the

character group of Fn
2 is isomorphic to F

n
2 , we may consider p̂x to be a function

on F
n
2 instead. That is,

p̂x(u) = E
[
(−1)uT x

]
,

where E [ · ] denotes the expected value. Additional information regarding the
use of characters and, more generally, representations in the context of proba-
bility theory can be found in the references [7,10].

Example 1. The Fourier transform of the uniform distribution on F
n
2 is zero

everywhere except at u = 0, i.e. it has coordinates (1, 0, . . . , 0)T . Let p(x) = 0
for all x �= c and p(c) = 1, then p̂(u) = (−1)uT c. To stress that p̂ is a vector, we
will regularly use the notation p̂u = p̂(u). �

The following result is essential to the discussion of the invariants of Midori-64
in Sect. 5. Note that here, and further on, the vector spaces F

mn
2 and (Fn

2 )m are
treated as essentially the same. Recall that the symbol “⊗” denotes the tensor
product, which in this case coincides with the Kronecker product.

Theorem 1 (Independence). Let x1, . . . ,xm be independent random vari-
ables on F

n
2 . The Fourier transform of the joint probability mass function of

x1, . . . ,xm is given by

p̂x1,...,xm
=

m⊗
i=1

p̂xi
,

where p̂xi
is the Fourier transform of the probability mass function of xi.

Proof. By the independence of x1, . . . ,xm, we have

p̂x1,...,xm
(u1, . . . , um) = E

[
(−1)

∑m
i=1 uT

i xi

]
=

m∏
i=1

E
[
(−1)uT

i xi

]
.

��
In fact, Theorem 1 generalizes to arbitrary functions f : (Fn

2 )m → C such that
f(x1, . . . xm) =

∏m
i=1 fi(xi) with fi ∈ C[Fn

2 ].
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The reader who is familiar with tensors may find it intuitive to consider
p̂x1,...,xm

in Theorem 1 to be a simple (i.e. rank one) tensor in [R2n

]⊗m. This
fact is not essential to the remainder of the paper.

The discussion so far has been limited to probability distributions. The
remainder of this section deals with transformations of these distributions. The
relation between the probability distribution of x and F (x) is in general given by
a transition matrix. When represented in the basis of characters, such a matrix
may be called a correlation matrix (not to be confused with a matrix of second
moments).

Definition 1 (Correlation matrix over F
n
2 ). Let F : Fn

2 → F
m
2 be a vectorial

Boolean function. The correlation matrix CF ∈ R
2m×2n

of F is the representa-
tion of the transition matrix of F with respect to the character basis of C[Fn

2 ]
and C[Fm

2 ].

Theorem 2. Let F : Fn
2 → F

m
2 be a vectorial Boolean function with correlation

matrix CF . Let x be a random variable on F
n
2 with probability mass function px ,

then
p̂F (x) = CF p̂x .

Proof. This result is essentially a restatement of Definition 1. ��
It is instructive to consider the coordinates of CF . By the Fourier inversion
formula, we have

px(x) =
1
2n

∑
u∈F

n
2

(−1)uT x p̂x(u).

By substituting the above into the definition of p̂F (x), and from Theorem 2, one
obtains

p̂F (x)(u) =
∑
v∈F

n
2

⎡
⎣ 1

2n

∑
x∈F

n
2

(−1)uT F (x)+vT x

⎤
⎦ p̂x(v) =

∑
v∈F

n
2

CF
u,v p̂x(v).

Since this holds for all functions p̂x , the coordinates of CF are

CF
u,v =

1
2n

∑
x∈F

n
2

(−1)uT F (x)+vT x. (2)

This establishes the equivalence of Definition 1 and the definition due to Daemen
et al. [8], which originates in the notion of correlation between Boolean functions.
Note that (2) coincides with the Walsh-Hadamard transformation of F , but since
the result of this transformation is not typically interpreted as a linear operator,
we will avoid this term.

To conclude this section, a few useful properties of correlation matrices will
be listed. These results can also be found (some in a slightly different form)
in [8]. In Theorem 5, δ denotes the Kronecker delta function.
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Theorem 3 (Composition). Let F : F
l
2 → F

m
2 and G : F

m
2 → F

n
2 , then

CG◦F = CGCF .

Theorem 4 (Orthogonality). Let F : Fn
2 → F

n
2 . If F is a bijection, then its

correlation matrix CF is orthogonal.

Theorem 5 (Linear maps). Let L : Fn
2 → F

m
2 be a linear map, then CL

u,v =
δ(v + LT u). Furthermore, if L is bijective, CL is a permutation matrix.

Theorem 6 (Boxed maps). Let F : Fsn
2 → F

sm
2 be a vectorial Boolean func-

tion such that there exist functions Fi : Fn
2 → F

m
2 , i = 1, . . . , s with the property

that F = (F1, . . . , Fs). Then

CF =
s⊗

i=1

CFi .

In light of Theorem 1, the property expressed by Theorem 6 is intuitively
clear: a function satisfying the conditions of Theorem 6 preserves the indepen-
dence of its inputs.

Example 2. Let CK denote the correlation matrix corresponding to the function
x �→ x + K with x,K ∈ F

2
2. Let K = (κ1, κ2). By Theorem 6, CK = Cκ1 ⊗ Cκ2 .

It follows that CK is given by

CK =
(

1 0
0 (−1)κ1

)
⊗

(
1 0
0 (−1)κ2

)
=

⎛
⎜⎜⎝

1 0 0 0
0 (−1)κ1 0 0
0 0 (−1)κ2 0
0 0 0 (−1)κ1+κ2

⎞
⎟⎟⎠ .

The fact that the correlation matrix of a constant addition is diagonal will be
essential to motivate our definition of block cipher invariants in Sect. 4. �

4 Block Cipher Invariants

The invariant subspace attack is based on the existence of an affine space which
is mapped to itself by a block cipher. A nonlinear invariant is a set which is
encrypted to itself or its complement. The purpose of this section is to define
what it means for a “cryptanalytic property” to be invariant under a block
cipher, and then to show that this definition includes the nonlinear invariant
and invariant subspace attacks as special cases.

Let F : Fn
2 → F

n
2 be an arbitrary function – in particular, F need not be

bijective. With invariant subspace attacks in mind, it is reasonable to ask which
probability distributions are invariant under F . This is equivalent to determining
all multisets which are mapped to themselves by F . The solutions to this prob-
lem are precisely the eigenvectors of the transition matrix of F which are also
probability distributions. The main issue with this formulation is that, even for
a simple function such as the addition of a constant, computing the eigenvectors
of the transition matrix is not as trivial as one might hope.
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To simplify matters, we will make a change of basis to the character basis
of C[Fn

2 ], which was introduced in Sect. 3. That is, we consider the eigenvectors
of correlation matrices instead of transition matrices. This has the important
advantage that the correlation matrix of a constant addition is a diagonal matrix.
This is helpful, because the columns of a diagonal matrix also form a basis of
eigenvectors.

One final simplification can be made before stating Definition 2: there is no
good reason to consider only probability distributions – one can simply allow all
eigenvectors. It will be shown in Sect. 4.1 that nonlinear invariants are examples
of eigenvectors that are not Fourier transformations of probability distributions.

Definition 2 (Block cipher invariant). A vector v ∈ C
2n

is an invariant
for a block cipher Ek : Fn

2 → F
n
2 iff it is an eigenvector of the correlation matrix

CEk . If v is a multiple of (1, 0, . . . , 0)T , it will be called a trivial invariant.

This paper is only concerned with eigenvectors which correspond to real
eigenvalues, i.e. ±1 due to Theorem 4. More generally, one could also have
eigenvalues which are complex roots of unity. This will be discussed briefly in
Sect. 8, which covers future work.

Not all vectors satisfying Definition 2 can be used in cryptanalysis. A suf-
ficient condition for an invariant to be useful is that it depends only on part
of the key, and that it comes with an efficient way of testing whether it holds
for a given set of plaintext/ciphertext pairs. Section 4.1 shows that the latter
requirement is usually not a problem.

Finally, note that some work related to Definition 2 can be found in the liter-
ature. Abdelraheem et al. [1] have observed that invariant subspaces correspond
to eigenvectors of a submatrix of CEk . This can be seen to be a special case
of Definition 2. Dravie et al. [12] give several results related to the spectrum of
correlation matrices (not in the context of invariant attacks).

4.1 Nonlinear Invariants

The goal of this section is to establish the relation between Definition 2 and
nonlinear invariants. Theorem 7 provides a general result to this end, but the
simpler Corollary 1 is sufficient to obtain the desired relation. For the following
results, the notation e0 = (1, 0, . . . , 0)T will be used.

Theorem 7 (Nonlinear invariant). Let Ek : Fn
2 → F

n
2 be a block cipher with

correlation matrix CEk and f : F
n
2 → F2 a Boolean function with correlation

matrix (e0 v)T . If v is an eigenvector of CEk with eigenvalue λ = ±1, then for
any random variable x on F

n
2 , it holds that

Pr [f(Ek(x)) = 0] − 1
2

= λ

(
Pr [f(x) = 0] − 1

2

)
. (3)

Conversely, suppose (3) holds for a set of random variables x1, . . . ,xm with prob-
ability distributions px1 , . . . , pxm such that Span {px1 , . . . , pxm} = R

2n

. Then v
is an eigenvector of CEk with eigenvalue λ.
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Proof. By the orthogonality of CEk , it holds that
[
CEkv

]T [
CEkw

]
= vT w.

Since CEkv = λv with λ = ±1, it follows that λvT
[
CEkw

]
= vT w and hence

vT
[
CEkw

]
= λvT w.

For any x, choose w as the Fourier transform of the probability mass func-
tion of x. Since vT

[
CEkw

]
= λvT w, the correlations of f(x) and f(Ek(x)) are

equal if λ = 1 and opposite if λ = −1. To show the converse, extract a basis
{w1, . . . , w2n} for R2n

from the vectors p̂x1 , . . . , p̂xm
. From vT [CEkwi] = λvT wi,

i = 1, . . . , 2n it follows that vT CEk = λvT . The result follows from the orthogo-
nality of CEk . ��
Theorem 7 has the following corollary, which gives the precise relation between
the eigenvectors of CEk and the nonlinear invariants of Ek as defined by Todo,
Leander and Sasaki [22].

Corollary 1. Let Ek : Fn
2 → F

n
2 be a block cipher with correlation matrix CEk

and f : Fn
2 → F2 a Boolean function with correlation matrix (e0 v)T . v is an

eigenvector of CEk with eigenvalue (−1)c, c ∈ F2 if and only if for all x ∈ F
n
2 ,

it holds that
f(x) + f(Ek(x)) = c.

Proof. For any x, apply Theorem 7 to a random variable x with probability
distribution concentrated on x. For the converse, it suffices to note that the
Fourier transforms of these probability distributions form a basis for R

2n

. ��
Finally, the following is a simple result that is useful to obtain the nonlinear

invariant corresponding to an eigenvector v. Note that 1S denotes the indicator
function of a set S.

Theorem 8. Let S be any subset of Fn
2 and let p1, p2 be functions1 defined by

p1(x) = 2−n1S and p2(x) = 2−n1F
n
2 \S respectively. If v ∈ F

n
2 is the difference of

the Fourier transforms of p1 and p2, i.e., v = p̂2 − p̂1 then 1S has correlation
matrix (e0 v)T .

Proof. The (scaled) Walsh-Hadamard transform of 1S is given by

1
2n

∑
x∈F

n
2

(−1)1S(x)+uT x =
1
2n

⎡
⎣∑

x�∈S

(−1)uT x −
∑
x∈S

(−1)uT x

⎤
⎦ = p̂2(u) − p̂1(u).

��
Example 3. Consider the function F : (x1, x2) �→ (x2, x1). It has correlation
matrix

CF =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1.

⎞
⎟⎟⎠ .

The vector 2−1 (1, 1, 1,−1)T = 2−2 [(3, 1, 1,−1)T − (1,−1,−1, 1)T ] is an eigen-
vector of CF . The corresponding nonlinear invariant is f(x1, x2) = x1x2. �

1 Such functions may be called defective probability mass functions [14].
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4.2 Computing Invariants

In general, it is nontrivial to compute the invariants of a block cipher. This is
in part due to large block sizes, and in part due to the key-dependence of the
invariants. To avoid dependencies on the key, one could attempt to find invariants
for parts of the block cipher that do not involve the key. The influence of the key
addition can easily be checked afterwards. In fact, when working in the character
basis, it only depends on the nonzero pattern of the invariant.

The problem is then reduced to computing the invariants of an unkeyed
permutation F : Fn

2 → F
n
2 . With Definition 2 in mind, one might consider using

a standard numerical procedure to compute the eigenvectors of CF . This is not
a particularly efficient approach: the computational cost is O(23n), which is of
the same order as the ANF-based algorithm proposed by Todo et al. [22] to find
nonlinear invariants.

In fact, due to the structure of the matrix CF , its eigendecomposition can be
computed using at most O(n22n) operations. The following algorithm generalizes
the cycle structure approach which is mentioned by Todo et al. [22] as “potentially
applicable”. One computes the cycle-decomposition of F . Then, for each cycle
(x0, . . . , xl−1) and for each 0 ≤ j < l, let v(j) be the Fourier transform of the uni-
form distribution on the singleton {xj}. Let ζ = e2π

√−1/l. For every 0 ≤ k < l, one
obtains an eigenvector2 w =

∑l−1
j=0 ζ−kjv(j) corresponding to the eigenvalue ζk:

CF w =
l−1∑
j=0

ζ−kjCF v(j) =
l−1∑
j=0

ζ−k(j−1)v(j) = ζkw.

This method obtains a complete eigenvector basis, since the sum of all cycle
lengths is 2n.

Unfortunately, even the algorithm above is impractical for n = 64. To obtain
invariants, it is thus necessary to exploit structural properties of the block cipher.
Here, Definition 2 will be of use by facilitating a convenient description of invari-
ants. Theorem 9 in Sect. 5 provides an example in the context of Midori-64.

The main structural property that has been exploited in previous work such
as [15,17,22] is the existence of non-trivial simultaneous invariants for the linear
layer and the nonlinear layer of a block cipher. In the first part of Sect. 5, this
approach is briefly revisited from the point of view of Definition 2. Then, more
general (i.e. not requiring simultaneous eigenvectors) invariants will be discussed.
Note that the discussion in Sect. 5 will be tailored to the block cipher Midori-64.

5 Invariants for Midori-64

In this section, the invariants of Midori-64 are discussed in the correlation matrix
framework. As an example, in Sect. 5.2 we recover the invariant subspace attack
of Guo et al. [15] and the nonlinear invariant from Todo et al. [22]. Then, in

2 It is not hard to see that it will be linearly independent from any previously computed
eigenvectors.
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Sect. 5.3, a more general invariant will be obtained. This invariant will be used
in Sects. 6 and 7 to obtain practical attacks on (round reduced) Midori-64 and
MANTIS.

Before proceeding with the computation of the invariants, it is necessary
to analyze the structure of Midori-64 in more detail. Section 5.1 provides the
necessary preliminaries.

5.1 State Representation and Round Transformations

In its most general form, the Fourier-domain representation of the Midori-64
state is a vector v ∈ C

264
. Recall from Sect. 2 that it is convenient to represent

the Midori-64 state as a 4× 4 array of 4-bit cells. For this reason, we will denote
coordinate u = (u1, . . . , u16) with ui ∈ F

4
2 of v by vu = vu1,...,u16 . This notation

reflects the fact that we can think of v as a tensor of order 16, i.e. v ∈ [C24
]⊗16.

From Fig. 1, and by using Theorem 3, the correlation matrix of the Midori-64
round function is given by

CRi = Cκi+γiCMCP CS,

where κi = K0 when i is odd and K1 when i is even. Recall that Cκi+γi is
a diagonal matrix. It follows from Theorem 6 that CS = [CS ]⊗16 and CM =
[CM ]⊗4. The matrix CS ∈ R

16×16 is a symmetric orthogonal matrix and CM ∈
R

216×216
is a symmetric permutation matrix. Specifically, we have CM

u,v = δ(u +
Mv) by Theorem 5. Finally, CP is a permutation matrix such that CP vu1,...,u16 =
vuπ−1(1),...,uπ−1(16)

with π the ShuffleCell permutation.3

It is convenient to look only for invariants with independent cells in the sense
of Theorem 1 – but the reader should be reminded that the invariants need not
be Fourier transforms of probability distributions. That is, we will assume that
there exist vectors v(1), . . . , v(16) such that

vu1,...,u16 =
16∏

i=1

v(i)
ui

. (4)

Equivalently, v = ⊗16
i=1v

(i). Of course, this assumption imposes a serious restric-
tion. However, assuming (4) greatly simplifies the theory and is sufficiently gen-
eral to recover the invariant attacks of Guo et al. [15] and Todo et al. [22].
Furthermore, more general assumptions are not necessary to obtain the invari-
ant that will be presented in Sect. 5.3.

The invariants considered in Sect. 5.2 will be required to be invariant under
S, M and P . Consider the last requirement, i.e. v is an eigenvector of CP . Recall
that CP is a permutation matrix such that

CP
16⊗

i=1

v(i) =
16⊗

i=1

v(π−1(i)).

3 A transformation such as CP may be called a braiding map.
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If v is symmetric, that is, v(1) = · · · = v(16) = ṽ, then ⊗16
i=1v

(i) = ṽ⊗16 is clearly
invariant under CP . It turns out that for the purpose of this paper, it suffices to
consider only invariants v such that there exists some ṽ ∈ C

16 such that

vu1,...,u16 =
16∏

i=1

ṽui
. (5)

That is, v = ṽ⊗16 and v will be called symmetric, in line with standard termi-
nology for such tensors. Note that assumption (5), is less restrictive than (4).
Indeed, for any realistic choice of round constants, an asymmetric invariant tends
to lead to conflicting requirements on the key after a sufficient number of rounds.
Slightly more general invariants can be obtained by requiring that v(i) is constant
on the cycles of π.

Computing an eigenvector basis for CS is not difficult. In the remainder
of this section, the eigenvectors of CM satisfying (4) and (5) will be listed. In
particular, it is not necessary to compute these eigenvectors numerically. We
begin with the straightforward result in Lemma 1. The main result is stated in
Theorem 9.

Lemma 1. If v⊗4 is a real eigenvector of CM , then there exists a scalar α ∈ R0

such that all coordinates of v in the standard basis are equal to 0 or ±α.

Proof. The condition that v⊗4 is an eigenvector of CM is equivalent to

v⊗4
u1,u2,u3,u4

= λv⊗4
M(u1,u2,u3,u4)T .

Hence, we have for all u1, . . . , u4 ∈ F
4
2 that

4∏
i=1

vui
= λ

4∏
i=1

vΣj �=iuj
. (6)

Note that no vector of the form v⊗4 can correspond to λ = −1, since it follows
from (6) that v4

u = λv4
u. Suppose that at least one coordinate of v is nonzero,

i.e. vu = α for some u. By (6), this implies αv3
u′ = α3vu′ for any u′ ∈ F

4
2.

Consequently, vu′ ∈ {0,±α}. ��
Theorem 9. If v⊗4 is a real eigenvector of CM , then A = {u | vu �= 0} is an
affine subspace of F4

2 and there exists a scalar α ∈ R0 such that vu = ±α for all
u ∈ A. The converse is also true in the following cases:

– For dim A = 0, dim A = 1 and dim A = 2.
– For dim A = 3, provided that the number of negative coordinates of v is even.

The condition for dim A = 3 is also necessary.

Proof. Suppose v⊗4 is a real eigenvector of CM . Let a, u, u′ ∈ F
4
2 such that

va �= 0, va+u �= 0 and va+u′ �= 0. By (6), we have

v2
a+u+u′va+u′va+u = v2

a va+uva+u′ �= 0.
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Hence, va+u+u′ �= 0. It follows that A is an affine space. Lemma 1 completes the
argument.

To show the converse, first consider the case dim A ∈ {0, 1, 2}. It suffices to
demonstrate that if u1, . . . , u4 ∈ A, then

∏4
i=1 vui

=
∏4

i=1 vΣj �=iuj
. Note that

{u1, . . . , u4} and {Σi�=1ui, . . . ,Σi�=4ui} generate the same affine space. Since the
dimension of this space is at most two, it contains at most four elements. Hence,
both products contain the same factors.

For dim A = 3, the previous argument no longer applies when u1, . . . , u4 are
linearly independent. In this case the left and right hand side of

∏4
i=1 vui

=∏4
i=1 vΣj �=iuj

involve different variables. Hence, since A contains eight elements,
the products of these elements must be positive. ��

The only symmetric rank one invariants which are not covered by Theorem 9
are those containing only nonzero entries. It would be possible to extend the
result to cover this case as well, but this would have little practical value since
such eigenvectors can never lead to a significant class of weak keys. This will
become clear in Sect. 5.2.

5.2 Simultaneous Eigenvectors

As discussed in Sect. 4.2, it is not possible to find the eigenvectors of CEk directly
and to subsequently identify those vectors that depend only on a limited portion
of the key. A more realistic approach is to find joint eigenvectors for all of the
transformations in the round function. This corresponds to the strategy that is
commonly used, and it is the strategy that will be applied in this section.

The problem considered in this section is thus to find vectors v ∈ R
264

such
that [CS ]⊗16v = λv and [CM ]⊗4v = μv with λ, μ ∈ {−1, 1}. Furthermore, v
must be an eigenvector of CP , but if v is symmetric, we need not separately
consider this requirement. For each of these vectors v, we additionally require
that they are eigenvectors of CK+γi for i = 1, . . . , 16. In general, this is not
possible without making some assumptions on the key K.

If {v1, . . . , v16} is a basis of eigenvectors of CS , then the set of all vectors
of the form ⊗16

i=1v�i
with �i ∈ {1, . . . , 16} is a basis of eigenvectors of [CS ]⊗16.

Suppose that ES
+1 is the eigenspace of CS corresponding to eigenvalue 1, and

ES
−1 likewise for eigenvalue −1. Any useful invariant must be an eigenvector of

the diagonal matrices Cκi+γi as well. That is, the invariants must be an element
of one of the vector spaces listed in Table 1.

The vectors v⊗4 should additionally be eigenvectors of CM . A necessary
condition to this end is given by Theorem 9 (in fact, Lemma 1 is sufficient
here). Using this result, only four nontrivial invariants of the form v⊗16 remain.
These are listed in Table 2. The first of these invariants satisfies the conditions
of Theorem 8. It corresponds to the nonlinear invariant discovered by Todo,
Leander and Sasaki [22].
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Table 1. Bases for the intersection of the eigenspaces of CS and Cγi .

∩ Span{e1, e3, . . . , e15} Span{e0, e2, . . . , e16}
ES

+1 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

(0, 0, 1, 0, 1, 0, 1, 0, −1, 0, −1, 0, −1, 0, −1, 0)T
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

ES
−1 (0, 1, 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, −1, 0, −2)T

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, 1)T
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

Table 2. Invariants for Midori-64. Note that the last invariant is simply the nonlinear
invariant corresponding to the second invariant (which is an invariant subspace).

Eigenvector (v for v⊗16) Weak-key class Number of weak-keys

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, 1)T κ1 = κ2 = 0 264

(1, 0, 1, 0, 1, 0, 1, 0, −1, 0, −1, 0, −1, 0, −1, 0)T κ1 = κ2 = κ3 = 0 232

(1, 0, −1, 0, −1, 0, −1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T κ1 = κ2 = κ3 = 0 232

(0, 1, 0, 1, 0, 1, 0, 1, 0, −1, 0, −1, 0, −1, 0, −1)T κ1 = κ2 = κ3 = 0 232

Note that the weak-key class corresponding to a given invariant (the second
column in Table 2), is readily determined from the vector v. For instance, consider
the vector Cκv, with κ = (κ1, . . . , κ4)T ∈ F

4
2 a single nibble of the round key:

v = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)T ,

Cκv = (−1)κ3+κ4(0, 0, 0, 1, 0, 0, 0, (−1)κ2 , 0, 0, 0, (−1)1+κ1 , 0, 0, 0, (−1)κ1+κ2)T .

Hence, v is invariant under Cκ provided that κ1 = κ2 = 0. Note that v is also
invariant under the addition of the round constants – which has the same effect
as modifying κ4.

An alternative approach to finding invariants starts from the eigenvectors of
CM . Theorem 9 makes this method efficient. This will be the starting point to
obtain more general invariants in Sect. 5.3.

5.3 Nonlinear Invariant for “Almost Midori-64”

In the previous section, a few eigenvectors of CRi were obtained by intersecting
the eigenspaces of CM, CS and CK+γi . In general the eigenvectors of CRi are
not eigenvectors of CM or CS. Furthermore, the eigenvectors of CEk need not
be eigenvectors of the round functions CRi . In order to find all invariants, then,
it would be necessary to solve the eigenvalue problem of Definition 2 directly. As
discussed before, tackling this problem is out of the scope of this paper, but a
slightly more general type of invariant for Midori-64 is presented in this section.
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Figure 2 shows the general idea: it may be possible to find a vector u⊗16

which is mapped to a vector v⊗16 by CRi , such that CRi+1v⊗16 = u⊗16. Such a
vector u⊗16 would be an eigenvector of CRi+1CRi , but not of CRi .

Fig. 2. If u �= v, this figure depicts an invariant for two rounds which is not invariant
under one round.

To find such an invariant, it suffices to obtain vectors u and v = CSu such
that CMu⊗4 = u⊗4 and CMv⊗4 = v⊗4. Theorem 9 provides a complete list of
possible choices for u and v. This approach is formalized in Algorithm 1. This
algorithm requires a negligible amount of time, as the inner loop is only executed
5216 times – once for each symmetric rank one invariant of CM. Note that it
also returns invariants of the conventional type.

A list of invariants produced by Algorithm 1 is given in Appendix A. The
most interesting pair of vectors u, v is given by

u = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

v = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1/2,−1/2, 0, 0, 1/2,−1/2)T .

Clearly, u is invariant under the addition of any constant. For v, it holds that

Cκv = (−1)κ1+κ3/2 · (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, (−1)1+κ4 , 0, 0, (−1)κ2 , (−1)1+κ2+κ4)T ,

which is a multiple of v provided that κ2 = κ4 = 0. For the usual choice of round
constants of Midori-64, v is not invariant under the addition of the constants.
However, had the round constants been chosen as γi ∈ {0, 2, 8, A}16 rather than
γi ∈ {0, 1}16, the attack would apply. Moreover, such a restriction only applies
to half of the rounds – the round constants of other rounds may be chosen
arbitrarily.

The restriction κ2 = κ4 = 0 (which applies to K0 or K1, but not both)
corresponds to a class of 296 weak keys. By Theorem 8, v corresponds to the
following nonlinear invariant:

f(x1, . . . , x64) =
16∑

i=1

[x4ix4i−2 + x4i + x4i−1 + x4i−3] (7)
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Algorithm 1. Finding symmetric rank-one invariants for two rounds of Midori-
64.
1: for each affine subspace A ⊆ F

4
2 with d := dim A ∈ {0, 1, 2, 3} do

2: S ← {1} × {1, −1}2d−2

3: if d = 3 then
4: S ← {(s1, . . . , s2d−1,

∏
i si) | (s1, . . . , s2d−1) ∈ S}

5: else
6: S ← S × {1, −1}
7: end if
8: for (vu)u∈A ∈ S do
9: w ← CSv

10: A′ ← {u ∈ F
4
2 | wu �= 0}

11: if A′ is affine and (dim A′ �= 3 or |{u ∈ A′ | wu < 0}| is even) then
12: yield v � v⊗16 is invariant for some choice of round constants
13: end if
14: end for
15: end for

That is, there exists a constant c ∈ F2 such that f(Ek(x))+f(x) = c for all x and
for any even number of rounds. By Theorem 8, u corresponds to the following
“nonlinear” invariant:

g(x1, . . . , x64) =
16∑

i=1

[x4i + x4i−2] . (8)

Hence, for an even number of rounds, g(Ek(x)) + g(x) is constant. Note that
if the number of rounds is odd, the value f(Ek(x)) + g(x) is constant instead.
Appendix B provides test code for this property.

5.4 Trail Clustering in Midori-64

It is worthwhile to take a closer look at the invariant g given by (8) in Sect. 5.3.
Since g is a linear function, it corresponds to a linear hull with correlation ±1
(where the sign depends on the key). Considering the fact that Midori-64 has
been designed with resistance to linear cryptanalysis in mind, this is remarkable.

Remark 1. The correlation of any trail in “almost Midori-64” is (much)
smaller than 2−32, yet there is a linear hull with correlation ±1 for 296 keys.

The correlation of a linear hull is equal to the sum of the correlations of all
trails within the hull. It is well-established that, in theory, this sum could become
large even if all terms are small. Such ideas go back to Nyberg [21]. Daemen and
Rijmen [9] refer to this effect as trail clustering.
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Remark 1 demonstrates an extreme case of trail clustering: the absolute cor-
relation of the hull is not just large, it is maximal. This appears to be the first
real-world observation of such behavior.

6 Practical Attack on 10 Rounds of Midori-64

The purpose of this section is to demonstrate that the invariant for “almost
Midori-64” can be used even when the round constants are not modified. In
fact, the attack in this section is valid for any choice of round constants.

Specifically, it will be shown that 10 rounds of Midori-64 are subject to a key-
recovery attack that requires 1.25·221 chosen plaintexts and has a computational
cost of 256 block cipher calls. The downside of this attack is that it is limited
to 296 out of 2128 keys. Note that Midori-64 has been analyzed in several prior
works. Lin and Wu [18] demonstrate meet-in-the-middle attacks on 10, 11 and 12
rounds of Midori-64. Chen and Wang [23] give a 10 round impossible differential
cryptanalysis. The downside of those attacks is that they can not be executed
in practice. Table 3 provides an overview of attacks on Midori-64.

Table 3. Overview of key-recovery attacks on Midori-64. Time is measured by the
number of encryption operations. Memory is expressed in number of bytes.

Attack Rounds Time Memory Data Weak keys Reference

Meet-in-the-middle 10 299.5 295.7 259.5 N/A Lin and Wu [18]

Meet-in-the-middle 11 2122 292.2 253 N/A Lin and Wu [18]

Meet-in-the-middle 12 2125.5 2109 255.5 N/A Lin and Wu [18]

Impossible differential 10 280.81 268.13 262.4 N/A Chen and Wang [23]

Invariant subspace 16 216 – 2 232 Leander et al. [17]

Nonlinear invarianta 16 215h – 33h 264 Todo et al. [22]

Attack in this section 10 256 – 221.32 296 –
aThis is an attack on a mode of operation. It recovers 32h bits of h encrypted blocks.

The attack presented below is based on the observation that integral prop-
erties [16] and invariants can often be combined. However, since we allow arbi-
trary round constants in this section, the invariant can only be used once. In this
regard the nonlinear invariant that was introduced in Sect. 5.3 has an important
advantage: with one assumption on the key, it covers two rounds.

6.1 Nonlinear Property for 6 Rounds of Midori-64

This section shows that the two-round nonlinear invariant for Midori-64 can be
extended to a six round nonlinear property. When a key which does not belong to
the weak key class is added to the state, the vector corresponding to a nonlinear
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invariant will be mapped to another vector which only depends (up to a scale
factor) on key bits that are already “known”, i.e. that had to be fixed to obtain
the invariant in the first place. This holds in both the forward and backward
direction, leading to a 6-round nonlinear property. This is illustrated in Fig. 3.

Fig. 3. Nonlinear property over six rounds of Midori-64. The notation “�” is used to
indicate equality in the second and fourth bits of every nibble of each of its arguments.

The functions h1 and h2 in Fig. 3 depend on the choice of the round constants.
Specifically, h1 depends on P−1(M(γ5 +γ7)) and h2 depends on γ7 +γ9. For the
purposes of this paper, a detailed description of h1 is not necessary. For h2, it
holds that

h2(x1, . . . , x64) =
16∑

i=1

f(S(x4i−3, x4i−2, x4i−1, x4i) + γ7,i + γ9,i).

In general, hj can be written in the form

hj(x1, . . . , x64) =
16∑

i=1

h(βj,2i,βj,2i+1)(x4i, x4i+1, x4i+2, x4i+3), (9)

where βj ∈ F
32
2 is a constant depending on the round constants. In particular, β2

consists of the second and fourth bits of every nibble of γ7 + γ9. For the default
choice of round constants of Midori-64, βj,2i = 0. Hence, only two different
Boolean functions can occur as terms in (9):

h(00)(x1, x2, x3, x4) = x2 + x4

h(01)(x1, x2, x3, x4) = x2x3x4 + x1x3x4 + x1x2x3 + x1x4 + x1 + x2.

Since the functions h1 and h2 are balanced on every cell of the state, it holds
that

∑
x∈S hi(x) = 0 with S a set of state values such that every cell takes all

values exactly once. This makes it possible to combine integral cryptanalysis
with the 6-round nonlinear property described above.
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6.2 Integral Property for 4 Rounds of Midori-64

An integral attack on Midori-64 that is suitable for our purposes will now be
given. The following notation will be used: cells taking all values an equal num-
ber of times are denoted using the label “A”, constant cells will be labeled by
“C”. Subscripts are used to denote groups of values which jointly satisfy the “A”
property. Note that cells can be part of several groups, e.g. a cell marked “Ai,j”
is contained in groups i and j. The Midori-64 designers discuss the existence of
a 3.5 round integral distinguisher. In fact, one can see that a 4-round integral
property4 exists. Note that the property is nearly identical to the Rijndael dis-
tinguisher discussed by Knudsen and Wagner [16], the difference being that the
property works better than expected for Midori-64.

Fig. 4. First two rounds of the integral property for four rounds of Midori-64.

The integral property is based on a set of chosen ciphertexts such that the
diagonal cells take all possible values exactly once and all other cells are constant.
After one round, the same property then holds for the first column whereas all
other cells are constant. This is shown in Fig. 4.

The effect of the remaining rounds is shown in Fig. 5. Figure 5 shows that,
before the last application of M, any four distinct cells in a column jointly satisfy
the “A” property. This implies that all cells can be labeled “A” after four rounds.

The derivation in Fig. 5 starts by forming appropriate groups of cells which
are independent before the third round. Four (sometimes overlapping) groups
of such cells are indicated using “Ai”, i = 0, . . . , 3 in Fig. 5. The maps S and
P preserve the groups. Furthermore, one can see that four new groups can be
obtained after the application of M. These groups can be chosen in such a way
that they are aligned in different columns of the state after P has been applied.
The four round property then follows.

4 If the zero-sum property can be used, this actually yields a 5-round property.
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Fig. 5. Last two rounds of the integral property for four rounds of Midori-64.
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6.3 Combination of the Nonlinear and Integral Properties

The final attack can now be described. Figure 6 provides an overview. Let I
denote a set of plaintext/ciphertext pairs with the structure required by the
integral property from Fig. 4. Then, due to the nonlinear property from Fig. 3,
the following holds:

∑
(P,C)∈I

h2(C + K0 + K1) =
∑

(P,C)∈I
h1((R4 ◦ · · · ◦ R1)(P + K0 + K1)) = 0.

Hence, every set I defines a low-degree nonlinear polynomial equation in (part
of) K0 + K1. Given enough such equations, one observes that a Gröbner basis
for the ideal generated by these polynomials can be efficiently (within a second
on a regular computer) computed. Although computing Gröbner bases is hard
in general, it is easy in this case due to the fact that key bits from different cells
are never multiplied together.

Note that only those key bits which are involved in h2 in a nonlinear way
can be recovered by solving the system of polynomial equations. That is, the
number of key bits recovered is four times the number of nonlinear terms in (9).
For the default Midori-64 round constants, 40 key bits can be recovered. This
requires 40 · 216 = 1.25 · 221 chosen plaintexts.

The remaining 24 bits of K0+K1 can be guessed, along with the 32 unknown
bits in K0. This requires 256 block cipher calls. Note that this additional work is
only necessary after it has been established that a weak key is used. Hence, an
attacker in the multi-key setting has a very efficient method to identify potential
targets.

Fig. 6. Overview of the attack on 10 rounds of Midori-64.

7 Practical Attack on MANTIS-4

This section presents an attack on the block cipher MANTIS [4], which is closely
related to Midori-64. Dobraunig, Eichlseder, Kales and Mendel give a practical
attack against MANTIS-5 in the chosen tweak setting [11]. This attack has been
extended to six rounds by Eichlseder and Kales [13]. The attack presented in
this section is limited to MANTIS-4, but the assumptions about the capabilities
of the attacker are different. The attacker is not allowed to choose the tweak,
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but it is assumed that a weak tweak is used. It will be shown that for every
choice of the key, there are 232 (out of 264) weak tweaks. When a weak tweak is
used, the full key can be recovered from (on average) 640 chosen plaintexts and
with a computational cost of approximately 256 block cipher calls.

Figure 7 illustrates the overall structure of MANTIS-4. Unlike in Midori-64,
the round key K1 is the same in all rounds. Additional whitening keys K0 and
K ′

0 = (K0 ≫ 1) + (K0 � 63) are added before the first round and after the
last round. The round function is nearly identical to the Midori-64 round func-
tion, the difference being that the round keys and constants are added before
rather than after the application of M. Hence, the 2-round nonlinear invariant for
Midori-64 also applies to MANTIS-4. Note that the values of the round constants
RC1, . . . ,RC4 are not essential to the attack described here.

Structurally, MANTIS differs from Midori-64 in two major aspects: it takes
an additional tweak as an input, and it is a reflection cipher. In every round, the
tweak is permuted cellwise by a permutation σ. In all other aspects, the tweak is
treated in the same way as the round key K1. The reflection property will make
it be possible to extend the 6-round nonlinear property of Midori-64 to eight
rounds. The presence of a tweak allows mounting a weak tweak rather than a
weak key attack, which corresponds to a significantly weaker adversarial model.

Fig. 7. Overview of MANTIS-4.

An overview of the attack is shown in Fig. 8. As in the attack on Midori-64 from
Sect. 6, a few initial rounds are covered by an integral property. Since the nonlinear
property extends over eight rounds for MANTIS, it suffices to use a weaker inte-
gral property. Figure 9 shows the property that will be used. It requires 16 chosen
plaintexts.
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Fig. 8. Nonlinear property over eight rounds of MANTIS-4. The notation “�” is used to
indicate equality in the second and fourth bits of every nibble of each of its arguments.

The nonlinear property is similar to the property that was discussed in Sect. 6,
but slightly more complicated. Specifically, due to the tweak-key schedule, the
functions h1 and h2 can depend on the tweak. As for Midori-64, h1 and h2 can
be written in the form

hj(x1, . . . , x64) =
16∑

i=1

h(βj,2i,βj,2i+1)(x4i, x4i+1, x4i+2, x4i+3), (10)

where βj = (βj,1, . . . , βj,32) ∈ F
32
2 is a constant that possibly depends on the

tweak and the functions h(βj,2i,βj,2i+1) are given by

h(00)(x1, x2, x3, x4) = x1 + x2

h(11)(x1, x2, x3, x4) = x1x3 + x2 + x3 + x4

h(01)(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x2x3x4 + x1x4 + x3 + x4

h(10)(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x2x3x4 + x1x4 + x1x3 + x1 + x2 + x3.

Fig. 9. Integral property for two rounds of MANTIS.
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Note that all of these functions are balanced. The constant β1 consists of the
second and fourth bits of every nibble of α. For convenience, this will be denoted
by β1 � α. For β2, we have β2 � RC1 + α + K1 + σ(T ). This implies that

β2 � RC1 + RC3 + σ(T ) + σ3(T ).

Let I denote a set of plaintext/ciphertext pairs such that the plaintexts have
the structure required by the integral property, then

∑
(P,C)∈I

h2(C + K ′
0 + K1 + T + α) =

∑
(P,C)∈I

h1(R1(R2(P + K0 + K1 + T ))) = 0.

Hence, each set I corresponds to a low-degree polynomial equation in (part
of) the key. As in Sect. 6, a Gröbner basis for the ideal generated by these
polynomials can be efficiently computed.

As in the attack on Midori-64, only those key bits which are involved in h2 in
a nonlinear way can be recovered by solving the system of polynomial equations.
For simplicity, assume that the functions h(00), h(01), h(10) and h(11) all occur
as terms in (10) in the same proportion. Then the expected number of key bits
that can be recovered by solving the system of polynomial equations is equal to
40.5 For obtaining 40 key bits, it was observed that 40 equations are sufficient.
This requires 24 · 40 = 640 chosen plaintexts.

The remaining bits of the whitening key K ′
0 + K1 (24 bits on average) can

then be guessed, along with the 32 unknown bits of K1. For each such guess,
it is possible to compute K ′

0 (since K ′
0 + K1 is already known) and hence K0.

No additional plaintext/ciphertext pairs are necessary to carry out this process.
Hence, the work required for the entire key-recovery attack is then roughly 256

block cipher calls.

8 Future Work

Returning to Definition 2, one potentially interesting direction for future work
is the use of complex eigenvalues. The corresponding eigenvectors are related to
real invariants of [CEk ]l with l the order of the corresponding eigenvalue. If l is
not too large, then such invariants might lead to additional attacks.

Another topic that deserves more attention is the development of practical
methods to compute an eigenvector basis for the correlation matrix of the entire
round function. Even if this does not lead to new attacks, it could be a tool for
designers to demonstrate security with respect to attacks based on invariants.

Yet another direction for future work is to improve and extend the attack on
10 rounds of Midori-64 from Sect. 6 and the attack on MANTIS-4 from Sect. 7.
5 For some tweaks, many more key bits can be recovered, and for others only a small

number of key bits can be recovered. For instance, one finds that (for the default
round constants) for 10% of the weak tweaks less than 32 bits can be recovered.
Although this is a small fraction of tweaks, in such cases it may be worthwhile to
obtain more key bits by performing the attack in the reverse direction (i.e. as a
chosen ciphertext attack).
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9 Conclusion

The three problems mentioned in the introduction have been addressed. In
Sect. 4, a new theory of block cipher invariants was developed. Beside provid-
ing the foundation for the remainder of the paper, Definition 2 provides insight
and uncovers several directions for future research. Section 5 provides a detailed
analysis of invariants in Midori-64, leading to a new class of 296 weak keys when
minor modifications to the round constants are made. It was shown that this
invariant is equivalent to a linear hull with maximal correlation. Finally, Sects. 6
and 7 illustrate the importance of invariants, even when round constants ini-
tially seem to limit their applicability. Two practical attacks were described: (1)
a key-recovery attack on 10-round Midori-64 for 296 weak keys, requiring 1.25·221

chosen plaintexts (2) a key-recovery attack on MANTIS-4 with an average data
complexity of 640 chosen plaintexts.

Acknowledgments. I acknowledge the anonymous referees for their comments and
corrections. In addition, I thank Tomer Ashur and Yunwen Liu for discussions related
to this work. Finally, I am especially grateful to Vincent Rijmen for his comments on
a draft version of this paper, and for his support.

A List of Invariants Produced by Algorithm 1

See Table 4.

Table 4. Invariants for two rounds of (modified) Midori-64, as obtained using Algo-
rithm 1. Only invariants with at least 264 weak keys are listed. Note that these invari-
ants are not valid for all choices of the round constants. The label “type I” refers to
invariants with u = v, whereas “type II” indicates that u �= v. Note that not all of
these invariants are linearly independent.

Correlation vector (v for v⊗16) Amount of weak-keys Type

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T 2128 Trivial

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, −1, 1)T 296 Type II

(0, 1, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, 0, 1, 0, 0)T 280 Type II

(0, 0, 0, 1, 0, 0, −1, 0, 0, 0, 0, −1, 0, 0, −1, 0)T 280 Type II

(1, −1, 0, 0, 0, 0, 0, 0, −1, −1, 0, 0, 0, 0, 0, 0)T 264 Type II

(1, 0, 0, 0, −1, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0)T 264 Type II

(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0)T 264 Type II

(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)T 264 Type II

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, −1, 0, 0, 1, 1)T 264 Type I

(0, 0, 0, 0, 0, 0, 1, −1, 0, 0, 0, 0, 0, 0, 1, 1)T 264 Type I

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, −1, 0, 0, 0, 1)T 264 Type I
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B Test Code for Nonlinear Invariant from Sect. 5.3

The following code was tested using Sage 8.1.

1 import random

2 from operator import xor

3 from sage.crypto.sboxes import Midori_Sb0 as Sb0

4 from sage.crypto.boolean_function import BooleanFunction

5
6 def xor3(a, b, c):

7 return xor(a, xor(b, c))

8
9 def mixColumn(nibbles):

10 return [

11 xor3(nibbles[1], nibbles[2], nibbles[3]),

12 xor3(nibbles[0], nibbles[2], nibbles[3]),

13 xor3(nibbles[0], nibbles[1], nibbles[3]),

14 xor3(nibbles[0], nibbles[1], nibbles[2])

15 ]

16
17 def subCell(nibbles):

18 for i in range(16):

19 nibbles[i] = Sb0(nibbles[i])

20
21 def addKey(nibbles, key):

22 for i in range(16):

23 nibbles[i] = xor(nibbles[i], key[i])

24
25 RC = [

26 [0,0,0,1,0,1,0,1,1,0,1,1,0,0,1,1], [0,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0],

27 [1,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1], [0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,1],

28 [0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1], [1,1,0,1,0,0,0,1,0,1,1,1,0,0,0,0],

29 [0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0], [0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,0],

30 [1,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1], [0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0],

31 [0,1,1,1,0,0,0,1,1,0,0,1,0,1,1,1], [0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,0],

32 [0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,0], [1,1,1,1,1,0,0,0,1,1,0,0,1,0,1,0],

33 [1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0]

34 ]

35
36 def addRoundConstants(nibbles, r, b):

37 for i in range(16):

38 nibbles[i] = xor(nibbles[i], RC[r][i] << b)

39
40 ShuffleCell = [0, 10, 5, 15, 14, 4, 11, 1, 9, 3, 12, 6, 7, 13, 2, 8]

41 def shuffleCells(nibbles):

42 result = [0] * 16

43 for i in range(16):

44 result[i] = nibbles[ShuffleCell[i]]

45 return result

46
47 def midori64(nibbles, rounds, key, b = 0):

48 whitening_key = [xor(key[0][i], key[1][i]) for i in range(16)]

49 addKey(nibbles, whitening_key)

50 for i in range(rounds - 1):
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51 subCell(nibbles)

52 nibbles = shuffleCells(nibbles)

53 for j in range(4):

54 result = mixColumn(nibbles[4*j:4*j+4])

55 for k in range(4):

56 nibbles[4*j + k] = result[k]

57 addRoundConstants(nibbles, i, b)

58 addKey(nibbles, key[i % 2])

59 subCell(nibbles)

60 addKey(nibbles, whitening_key)

61 return nibbles

62
63
64 R.<x0, x1, x2, x3> = BooleanPolynomialRing(4)

65 f = BooleanFunction(x0*x2 + x0 + x1 + x3)

66 g = BooleanFunction(x0 + x2)

67
68 key = [[0] * 16, [0] * 16]

69
70 # Test vector

71 assert midori64([0] * 16, 16, key) == \

72 [3, 12, 9, 12, 12, 14, 13, 10, 2, 11, 11, 13, 4, 4, 9, 10]

73
74 nb_tests = 100

75 b = 1 # Add RC to bit b

76
77 counts = [0, 0]

78 for i in range(nb_tests):

79 input_value = [random.randint(0, 15) for i in range(16)]

80 input_projection = reduce(xor, map(g, input_value))

81 output_value = midori64(input_value, 16, key, b)

82 output_projection = reduce(xor, map(g, output_value))

83 counts[xor(input_projection, output_projection)] += 1

84
85 print ‘‘Correlation: ", 2 * counts[1] / sum(counts) - 1



30 T. Beyne

References
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Abstract. Recently, NIST started the process of standardizing
quantum-resistant public-key cryptographic algorithms. WalnutDSA, the
subject of this paper, is one of the 20 proposed signature schemes that are
being considered for standardization. Walnut relies on a one-way func-
tion called E-Multiplication, which has a rich algebraic structure. This
paper shows that this structure can be exploited to launch several prac-
tical attacks against the Walnut cryptosystem. The attacks work very
well in practice; it is possible to forge signatures and compute equivalent
secret keys for the 128-bit and 256-bit security parameters submitted to
NIST in less than a second and in less than a minute respectively.

Keywords: WalnutDSA · NIST PQC
Post-quantum digital signatures · Cryptanalysis
Group based cryptography

1 Introduction

As more and more progress is being made towards building large scale quan-
tum computers, the need for cryptography that can withstand cryptanalysis
from these machines has become increasingly urgent. In recognition of this fact,
NIST has started the Post-Quantum Cryptography standardization project [20]
and made a call for quantum-resistant public-key cryptographic algorithms for
standardization. The community has answered this call by submitting 20 pro-
posals for signature schemes and 49 proposals for encryption schemes. One of
the submitted signature schemes is the Walnut digital signature algorithm [5,8],
submitted by D. Atkins and owned by SecureRF. SecureRF is a corporation
founded in 2004 that develops and licenses public-key security tools for the low-
resource processors powering the Internet of Things (IoT) [1]. SecureRF received
the ARM Techcon 2017 “Best contribution to IoT security” award for the Wal-
nut signature scheme and their “Key Agreement Protocol”. SecureRF wants to
achieve widespread usage of the Walnut signature scheme in the booming IoT
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 35–61, 2018.
https://doi.org/10.1007/978-3-030-03326-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03326-2_2&domain=pdf


36 W. Beullens and S. R. Blackburn

market through standardization, partnerships with manufactures like Intel and
STMicroelectronics and by providing free toolkits for popular low end platforms.
Because of this potential for widespread use, it is crucial to analyze the Walnut
scheme for potential weaknesses.

Related Work. For its security, Walnut relies on problems taken from the
theory of infinite non-commutative groups (more precisely, problems based on an
action of a braid group on a finite set via the coloured Burau representation). The
idea of using infinite groups in cryptography goes back at least as far as Wagner
and Magyarik [26] in 1985; see González Vasco and Steinwandt [25] for an attack
on this proposal. Problems in braid groups have been proposed as hard problems
for cryptographic primitives for about 20 years now: key agreement protocols due
to Ko et al. [18] and Anshel, Anshel and Goldfeld [3] (which is in a more general
setting) are the best known examples. The Algebraic Eraser [4] is a more recent
proposal, also promoted by SecureRF, which uses many of the same algebraic
techniques as Walnut. Early cryptanalyses of these schemes used length-based
attacks [15,16], but the most convincing attacks [10–12,17,23] have generally
been based on representation theory (where ‘linearisation’ techniques reduce the
underlying security to a problem in linear algebra). Walnut is interesting because
these linearisation techniques do not seem to apply.

The first attack on (an earlier version of) Walnut [6] is due to Hart et al. [14].
The attack forges signatures in minutes for the suggested parameters, but the
resulting signatures are significantly longer than legitimately produced signa-
tures. So the Hart et al. attack can be blocked by imposing a length limit on
valid signatures. In their submission to NIST, the designers of Walnut impose
such a length limit in order to block the Hart et al. attack, but also modify the
scheme in a significant way (in particular changing the form of the public and
private keys) in an attempt to block the attack altogether.

Contributions. In this paper we present three independent practical attacks
on the Walnut signature scheme. The first attack is a modification of the attack
of [14] that applies to the adapted version of Walnut that was supposed to resist
this attack. This first attack is practical, but has the same limitation as the
original attack by Hart et al.: the forged signatures are very long. This attack
demonstrates that the modifications intended to completely block the Hart et al.
attack are not effective, but the attack can be blocked (as before) by imposing a
length limit on signatures. The other two attacks presented in this paper produce
forgeries whose lengths are the same or even shorter than those of legitimate
signatures. The second attack in this paper constructs pairs of messages with
the same signature; the attacker can choose a large amount of the structure of
these messages. Our third attack directly constructs equivalent secret keys. We
are able to forge signatures and compute equivalent secret keys in under one
second for 128-bit security parameters, and in less than a minute for 256-bit
security parameters. This shows that the parameter sets submitted to the NIST
PQC standardization project are totally insecure, and that the corresponding



Practical Attacks Against the Walnut Digital Signature Scheme 37

implementation (which was freely available on the SecureRF website before we
notified them of our attacks) should not be used. Our attacks exploit various
algebraic properties of the one-way function called E-Multiplication, which is
fundamental for the Walnut scheme (and other SecureRF methods). In fact,
we give a practical algorithm to break the one-wayness of this function for the
parameters submitted to NIST. In order to avoid the attacks given here, the
parameters of Walnut need to be increased significantly (see the conclusion at
the end of the paper for details). However, with these increased parameter sizes,
it seems that Walnut loses its performance advantage over other post-quantum
signature schemes such as lattice-based, code-based, multivariate and hash-based
signatures.

Outline. In Sect. 2 we explain some necessary preliminaries such as distin-
guished point collision finding, a very short introduction to braid groups, and
an explanation of E-Multiplication and the workings of the Walnut signature
scheme. The following Sects. 3, 4 and 5, each introduce a practical attack against
the Walnut scheme and discusses the feasibility of countermeasures. Section 3
contains an adaptation of the factorization attack of [14] that applies to the
updated version of Walnut that was submitted to NIST. Section 4 describes an
attack where we use a generic distinguished point collision finding method to find
two documents d1 and d2 such that a signature that is valid for d1 is automati-
cally valid for d2 and vice versa. In Sect. 5 we give an algorithm that breaks the
one-wayness of the E-Multiplication map. This algorithm can be used to forge
signatures and compute equivalent secret keys, even for the 256 bits of security
parameters. The last section presents the conclusions of the paper.

2 Preliminaries

2.1 Distinguished Point Collision Finding

The attacks introduced in this paper rely on a collision finding algorithm that
is able to find a collision in any function f : D → D which maps a domain
D to itself. Our algorithm of choice is the distinguished point method of van
Oorschot and Wiener [24]. Finding a single collision with this method has the
same O(

√|D|) time complexity as Pollard’s rho method with cycle finding [21,
22], but it can be parallelized more efficiently. Moreover, the method of van
Oorschot and Wiener is much more efficient for finding multiple collisions; the
number of collisions found grows quadratically with the time spent.

The algorithm repeatedly chooses a random starting point x1 ∈ D and iter-
atively applies the function f to obtain a chain of values x1, x2, · · · , where
xi = f(xi−1) for all i > 1. This process continues until a distinguished value
xk is reached. This is a value which satisfies some easily verified property, such
as having a fixed number of leading zero bits. This property is chosen such that
it is satisfied by a fraction ϑ of the elements of D. When the distinguished point
is reached the starting point x1, the distinguished point xk and the length k of
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the chain is stored in a table. Assuming f behaves like a random function, after
an expected number of O(

√|D|) function calls the current chain will collide
with one of the previously computed chains. From this point on we will follow
the same chain and we will end up at the same distinguished point. We read the
starting poins x1, x

′
1 and the corresponding chain lengths k, k′ from the table.

Without loss of generality, we assume that k ≥ k′. We then know that for some
i < k′

xk−k′+i �= x′
i and f(xk−k′+i) = f(x′

i) ,

unless the starting point x′
0 appears in the chain starting at x0 (which only

happens with a very small probability). This collision can be extracted with
k − k′ + 2i function calls. If we require more than one collision we can continue
the process, maintaining the contents of the table. Since over time the table will
contain more and more chains, the rate at which collisions are found will also
increase.

2.2 Braid Groups

Informally, the braid group on N strands is a group whose elements are rep-
resented by a configuration of N non-intersecting vertical strands in three
dimensional space, where 2 configurations are considered equal if one can be
transformed continuously into the other configuration without intersecting the
strands. The group multiplication is defined as the concatenation of the strands.
Artin [9] showed that there is an equivalent definition of braid groups, given by
the presentation

〈
b1, · · · , bN−1

∣∣
∣∣

bibj = bjbi for 1 ≤ i < j < N and j − i ≥ 2
bibi+1bi = bi+1bibi+1 for 1 ≤ i < N − 1

〉
.

Here, the Artin generator bi represents the braid where the i-th strand crosses
over the (i + 1)-th strand. The relations bibj = bjbi for |i − j| ≥ 2 correspond to
the fact that crossings that involve different strands are free to move past each
other. The relations bibi+1bi = bi+1bibi+1 correspond to moving one strand over
the crossing of two other strands. The Artin generators and their relations are
graphically represented in Figs. 1, 2 and 3.

There is a natural homomorphism σ : BN → SN from the braid group on N
strands to the symmetric group of order N that maps each braid to the permu-
tation obtained by following the strands. This map sends an Artin generator bi

to the transposition σ(bi) = (i i + 1). Elements in the kernel of this homomor-
phism are called pure braids, the kernel itself is called the pure braid group on
N strands and is denoted by PN .

The braid group B2 on two strands is the infinite cyclic group, so this group
is its own center. For N > 2 the center of the braid group on N strands is
generated by the full-twist braid which is obtained by grabbing the ends of
the strands of the identity braid and rotating them by 360◦ [13]. This braid is
commonly denoted by Δ2 and is depicted in Fig. 4.



Practical Attacks Against the Walnut Digital Signature Scheme 39

Fig. 1. The three Artin generators b1, b2 and b3 that generate B4.

Fig. 2. Crossings that do not share strands commute, i.e. b1b3 = b3b1

Fig. 3. The first strand moves over the crossing of strand 2 and 3, i.e. b1b2b1 = b2b1b2.
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Fig. 4. The full-twist braid Δ2 in the braid group on 4 strands.

2.3 The Colored Burau Representation and E-Multiplication

The Walnut digital signature algorithm relies heavily on a group action called
E-Multiplication. To define this group action we need the colored Burau Repre-
sentation (see, for example, Anshel et al. [2]) which is a homomorphism from the
braid group BN to the colored Burau group GLN (Z[t±1

1 , · · · , t±1
N ]) � SN . This

group is defined as a semidirect product, by letting the symmetric group SN

act on GLN (Z[t±1
1 , · · · , t±1

N ]) by permuting the variables ti. More concretely, the
elements of the colored Burau group are pairs (A(t1, · · · , tN ), π) where π ∈ SN

is a permutation and where A(t1, · · · , tN ) is an invertible N × N matrix whose
entries lie in Z[t±1

1 , · · · , t±1
N ]. Multiplication in the colored Burau group is defined

by

(A(t1, · · · , tN ), π) · (B(t1, · · · , tN ), τ) ..= (A(t1, · · · , tN ) · π(B(t1, · · · , tN )), πτ)
= (A(t1, · · · , tN ) · B(tπ(1), · · · , tπ(N)), πτ).

The colored Burau representation CB : BN → GLN (Z[t±1
1 , · · · , t±1

N ]) � SN is
defined at each Artin generator as CB(bi) = (CBM(i), σ(bi)), where CBM(i)
is a matrix and σ(bi) is a permutation, defined as follows. The permutation σ(bi)
is the transposition (i i + 1). We define CBM(b1), the colored Burau matrix of
b1, as

CBM(b1) =

⎛

⎝
−t1 1 0
0 1 0
0 0 1N−2

⎞

⎠ ,

where 1N−2 is the (N −2)×(N −2) identity matrix. For i > 1 the colored Burau
matrix of bi is defined as

CBM(bi) =

⎛

⎜⎜⎜⎜
⎝

1i−2 0 0 0 0
0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0
0 0 0 0 1N−i−1

⎞

⎟⎟⎟⎟
⎠

.

This definition of CB(bi) is compatible with the relations of the braid group,
so it can be extended to define a homomorphism on the entire group BN . For
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a braid b, the matrix component of CB(b) is called the colored Burau matrix
of b and is denoted by CBM(b), the permutation component of CB(b) is sim-
ply equal to σ(b). This implies that pure braids are mapped into the subgroup
GLN (Z[t±1

1 , · · · , t±1
N ]) ⊂ GLN (Z[t±1

1 , · · · , t±1
N ]) � SN .

Now we fix a finite field Fq, and for any integer k with 1 < k ≤ N we define
Ak to be the group of invertible N -by-N matrices of the form

Ak =

⎧
⎨

⎩

⎛

⎝
X Y 0
0 1 0
0 0 1N−k

⎞

⎠ |X ∈ GLk−1(Fq), Y ∈ F
k−1
q

⎫
⎬

⎭
.

Let T = [τ1, · · · , τN ] be a list of N non-zero values in a finite field Fq. The
evaluation M ↓T of a matrix M(t1, · · · , tn) at T is computed by replacing each
occurence of variable ti by τ :

M ↓T
..= M(τ1, · · · , τN ) .

This map is a well-defined homomorphism on the image im(CB) of CB. For
a list T containing N non-zero finite field elements, we can now define a right
group action, called E-Multiplication and denoted by �, of the braid group BN

on the set AN × SN . A braid b acts on the first component of the pair (M,π)
by multiplying from the right with a matrix obtained from the colored Burau
matrix of b by permuting the variables ti using π and then evaluating at T . The
second component of the action is obtained by multiplying on the right by σ(b).
Written out symbolically, this is

(M,π) � b ..= (M · π(CBM(b)) ↓T , πσ(b)) .

The fact that this defines a group action follows from the fact that the colored
Burau representation is a homomorphism of groups. In practice, when calculating
(M,π) � b, the action is calculated one Artin generator at a time (see Algorithm
1). Given the sparsity of the colored Burau matrices CBM(bi), acting with an
Artin generator requires only a few column operations on M and one swap on
π, so this is very efficient. This action was first introduced in [4], where it was
used to build a key agreement protocol. More recently, E-Multiplication has been
used as the basic building block for a cryptographic hash function [7] and the
Walnut digital signature scheme [5].

By letting BN act on (1N , e) ∈ AN × SN we define a map P
P : BN → AN × SN : s 	→ (1N , e) � s .

When restricted to the subgroup of pure braids PN , the second component of P
always maps to the identity permutation, so we can think of it as a map P|PN

:
PN → AN . The map P|PN

is actually a homomorphism because it is the com-
position of the colored Burau representation CB : PN → GLN (Z[t±1

1 , · · · , t±1
N ])

and the evaluation homomorphism |T : im(CB) → AN . Moreover, if we fur-
ther restrict P to the subgroup Pk of pure braids where only the first k strands
cross over each other, i.e. the intersection of PN with the subgroup generated by
b1, · · · , bk−1, the homomorphism P|Pk

: Pk → Ak maps into the subgroup Ak.
This fact will be exploited in the attack of Sect. 5.
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Algorithm E-Multiplication

input: (M, π) — a pair in AN × SN to act on
s — a braid to act with
T = {τ1, · · · , τN} — a list of T-values

output: (M, π) — the resulting pair

1: while |s| > 0 do
2: b±1

i ||s ← s � split the first generator b±1
i from the rest of s

3: N ← CBM(bi)
±1 � The CB Matrix of bi, inverted if necessary.

4: N ← N(τπ(i)) � Evaluate in τπ(i)

5: M ← M · N
6: π ← π ◦ σ(bi)
7: end while
8: return (M, π)

Algorithm 1. The algorithm for computing the E-Multiplication action.

2.4 The Walnut Signature Scheme

We now introduce the Walnut signature scheme, which is the subject of our
cryptanalysis. Before we describe the key generation, signing and verification
algorithms (Algorithms 2, 4 and 5) in detail we will summarize the scheme
very briefly: the secret key consists of two braids s1, s2 and the public key is
(M1, π1) = P(s1) and M2 = mat(P(s2)), the matrix component of P(s2). To
sign or verify a document d it is hashed and encoded as a pure braid E(d) with
an encoding mechanism E. The Walnut design [5] defines a braid sig to be a
valid signature for the document d if and only if the verification equation

mat(P(s1) � sig) = mat(P(E(d))) · M2 (1)

is satisfied. However, this equation is equal to the matrix component of

P(s1) � sig = P(E(d)) � s2 , (2)

and the permutation component of Eq. (2) is also satisfied by all the legit-
imately produced signatures. In this document we define a valid signature
as a braid sig that satisfies the stronger verification Eq. (2). It is clear that
sig = s−1

1 E(d)s2 would be a valid signature. In order to prevent length-
based attacks [16,19] cloaking elements, namely braids that do not affect
E-Multiplication, are inserted into the signature and the braids are put through
a rewriting algorithm so that (it is hoped) s1 and s2 cannot easily be extracted
from the signature (Table 1).

Parameters. The scheme is parametrized by:

– The number N of strands of the braid group that is being used (which is
equal to the dimension of the associated square matrices).
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– The size q of a finite field Fq.
– A rewriting algorithm R : BN → BN .
– L and l, the length of certain random braid words.
– A hash function H.

Table 1. The Walnut parameter sets submitted to the NIST Post Quantum Cryptog-
raphy project, and the corresponding public key and signature sizes.

Claimed security level 128-bit 256-bit

N 8 8

q 25 28

L 15 30

l 132 287

H SHA2-256 SHA2-512

Public key length 83 Bytes 128 Bytes

Signature lengtha ≈646 Bytes ≈ 1248 Bytes
aSignatures have variable length. The reported signature
size is an average, using the BKL + Dehornoy rewriting
method.

Key Generation. The private key consists of two randomly chosen braids
s1, s2 ∈ BN of length l. The braids are chosen such that their underlying permu-
tations σ(s1) and σ(s2) are distinct and not equal to the identity permutation e.
The public key contains a list T = {τ1 = 1, τ2 = 1, τ3, · · · , τn} ∈ F

N
q of N ele-

ments of the finite field Fq such that the first two elements are equal to 1, and
such that the remaining values are non-zero and different from 1. The public key
also contains P(s1) and the matrix component of P(s2).

Encoding a Document. In order to sign a document d or verify a signature
the document is converted to a pure braid E(d) ∈ PN . This conversion consists
of two stages. First, a hash digest of d is computed with a standard hash function
(SHA2-256 or SHA2-512), then this hash is converted to a braid. To make the
second conversion 4 pure braids g1, g2, g3, g4 are fixed such that they generate a
free subgroup of PN . The Walnut specification document [8] defines

g1 = bNbN−1 · · · b2 · b21 · b−1
2 · · · b−1

N−1b
−1
N

g2 = bNbN−1 · · · b4 · b23 · b−1
4 · · · b−1

N−1b
−1
N

g3 = bNbN−1 · · · b6 · b25 · b−1
6 · · · b−1

N−1b
−1
N

g4 = bNbN−1 · · · b8 · b27 · b−1
8 · · · b−1

N−1b
−1
N .
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Algorithm GenerateKeys

input: random bits to generate s1, s2 and τi

output: pk — a public key
sk — a corresponding secret key

1: s1, s2 ← a randomly chosen braid words of length l.
2: τ1, τ2 ← 1
3: for i from 3 to N do
4: τi ← a randomly chosen field element, not equal to 0 or 1
5: end for
6: T ← {τ1, · · · , τN}
7: (M1, π1) ← P(s1)
8: (M2, π2) ← P(s2)
9: return pk = (T, M1, M2, π1) and sk = (s1, s2)

Algorithm 2. The Walnut key pair generation algorithm

The encoding process starts from the trivial braid. Two bits are taken from the
hash digest to choose one gi of the 4 generators, and the next two bits of the
digest define an exponent e ∈ {1, 2, 3, 4}. Then ge

i is appended to the braid, and
four bits are removed from the digest. This is repeated until the entire hash
output is consumed.

Algorithm EncodeDocument

input: A document d
output: b — a pure braid

1: h ← H(d)
2: b ← e
3: for a from 0 to |h|/4 − 1 do
4: i ← h[4a : 4a + 1] � Select index
5: e ← h[4a + 2 : 4a + 3]+1 � Select exponent
6: b ← b · ge

i

7: end for
8: return b

Algorithm 3. The document encoding mechanism.

Signing Algorithm. The signing algorithm produces a signature which is a
braid word of the form

sig′ = v1 · s−1
1 · v · E(d) · s2 · v2 ,
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where v1, v and v2 are so called cloaking elements, which are braids in the sta-
bilizer of P(s1), (1N , e) and P(E(d)s2) respectively. Therefore we have

(1N , e) � s1 · sig′ = P(s1) � s−1
1 · v · E(d) · s2 · v2

= (1N , e) � v · E(d) · s2 · v2

= P(E(d)s2) · v2

= (1N , e) � E(d) · s2 ,

so sig′ is a valid signature. To hide the secret key s1 and s2 which are substrings
of sig′ one of three proposed rewriting algorithms (BKL + Dehornoy, Stochastic
+ Dehornoy or Stochastic) is used to produce a different braid word sig which
represents the same braid as sig′. The various rewriting algorithms differ in
performance and in the length of the signatures that are produced.

The cloaking elements are generated using the following lemma.

Lemma 1. Suppose that τ1 = τ2 = 1. Take any pair (M,π) ∈ AN × SN , an
Artin generator bi, and any braid w such that

π ◦ σ(w)(i) = 1 and π ◦ σ(w)(i + 1) = 2 .

Then the braid v = w · b2i · w−1 is in the stabilizer of (M,π).

To produce a cloaking element for P(s1), (1N , e) or P(E(d)s2) we first pick a
random integer i such that 1 < i < N , then we choose a random braid w
satisfying the conditions of Lemma 1 and we set v = wb2i w

−1. For the details
of how w is chosen (which depends on the parameter L) and the details on
how the various rewriting algorithms work we refer to the WalnutDSA NIST
submission [8].

Algorithm Sign

input: d — a document to sign
sk = (s1, s2) — a secret key

output: sig — a signature for document d

1: v1 ← GetCloakingElement(σ(s1))
2: v ← GetCloakingElement(e)
3: v2 ← GetCloakingElement(σ(s2))
4: Ed ← EncodeDocument(d)
5: sig′ ← v1 · s−1

1 · v · Ed · s2 · v2
6: sig ← R(sig′)
7: return sig

Algorithm 4. The Walnut signature generation algorithm
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Verification Algorithm. Given a document d, a public key pk =
(T,M1,M2, π1) and a signature sig. The verification algorithm simply calculates
the encoding of the message E(d) and the matrix components of (M1, π1) � sig
and P(E(d)). It then accepts the signature if the computed matrices satisfy the
equation

mat((M1, π1) � sig) = mat(P(E(d))) · M2 .

Algorithm Verify

input: d — a document
pk = (T, M1, M2, π1) — a secret key
sig — a signature

output: True if sig is a valid signature for d, False otherwise

1: Ed ←EncodeDocument(d)
2: LHS ← mat( E-Multiplication((M1, π1), sig, T ))
3: RHS ← mat( E-Multiplication((1N , e), Ed, T )) · M2

4: if LHS equals RHS then
5: return True
6: end if
7: return False

Algorithm 5. The Walnut signature verification algorithm

3 A Factorization Attack

This section describes an adaptation of the factorization attack of Hart et al. [14]
on an earlier version of Walnut [6]. This earlier version is a special case of the
newer construction where the two secret braids s1 and s2 are equal. This means
that the secret key essentially consists of only a single braid s, and that the public
key is a single matrix-permutation pair (M,π) = P(s). The signing and verifi-
cation algorithms of the earlier version are the same as the algorithms described
in the previous section after substituting s for s1 and s2, and substituting M
for M1 and M2. The attack of Hart et al. exploits the following malleability
property:

Theorem 1 (for the earlier version of Walnut with s1 = s2).Suppose
d, d1, d2 are three documents. Let h, h1, h2 be the matrix part of P(E(d)),
P(E(d1)) and P(E(d2)) respectively. Then we have

1. If h = h−1
1 and sig1 is a valid signature for d1, then sig−1

1 is a valid signature
for d.

2. If h = h1 · h2 and sig1, sig2 are valid signatures for d1 and d2 respectively,
then sig1sig2 is a valid signature for d.
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This opens up the following strategy to attack the signature scheme. First
we collect a set of valid document-signature pairs (di, sigi) and we let hi =
mat(P(E(di))). Then, if we want to forge a signature for a document d with
h = mat(P(E(d))) it suffices to write h as a product

∏k
j=1 h

ej

ij
of the hi. Once

we have this, a valid signature for d is given by
∏k

j=1 sig
ej

ij
. This reduces breaking

the signature scheme to breaking the factorization problem in AN :

Factorization Problem in a Group G. Given a list of elements g1, · · · , gk

that generate the group G and a target element g, write the target g as a (prefer-
ably short) product of the gi and their inverses.

The paper of Hart et al. [14] proposes an algorithm to solve the factorization
problem in AN , exploiting a chain of subgroups. This allows them to forge sig-
natures in minutes, but the factorizations that are found by the algorithm are
very long, so this results in very long signatures. The forged signatures are many
orders of magnitude longer than legitimate signatures, so the Walnut scheme
can be saved by imposing an upper limit to the length of the signatures.

The Walnut signature scheme was adapted to destroy the malleability prop-
erty of Theorem 1. In the remainder of this section we prove that an adapted
version of the maleability property still holds for the new WalnutDSA scheme
and we show how the property can be used to reduce breaking Walnut to solving
the factorization problem in AN , which can be solved with the techniques of [14].

3.1 Signature Malleability of Walnut

Walnut has the following malleability property, which is a generalization of the
property discovered by Hart et al. (Theorem 1).

Theorem 2. Suppose d, d1, d2 are three documents. Let h, h1, h2 be the matrix
part of P(E(d)),P(E(d1)) and P(E(d2)) respectively. Let s1, s2, s3 ∈ BN be three
braids. Then

1. If h = h−1
1 and sig1 is a valid signature for d1 under the public key

(P(s1),P(s2)), then sig−1
1 is a valid signature for d under the public key

(P(s2),P(s1)).
2. If h = h1 ·h2 and sig1, sig2 are valid signatures for d1 and d2 under the public

keys (P(s1),P(s2)) and (P(s2),P(s3)) respectively, then sig1 · sig2 is a valid
signature for d under the public key (P(s1),P(s3)).

Proof. We start by proving 1. Since sig1 is a valid signature for d1 we have

P(s1) � sig1 = P(E(d1)) � s2.

Acting on this by sig−1
1 and using the definition of P we get

(1N , e) � s1 = (h1, e) � s2 · sig−1
1 ,
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where we have used the fact that E(d1) is a pure braid. Multiplying the matrix
part of this equality by h−1

1 from the left (multiplying on the left by a matrix
commutes with �), we get

(h−1
1 , e) � s1 = (1N , e) � s2 · sig−1

1 ,

or equivalently

P(E(d)) � s1 = P(s2) � sig−1
1 ,

which shows that sig−1
1 is a valid signature for d for the public key (P(s2),P(s1)).

To prove 2 we start by acting with sig2 on the verification equation for sig1
to get

P(s1) � sig1 · sig2 = P(E(d1)) � s2 · sig2
= (h1 · CBM(s2)↓T ·σ(s2) (CBM(sig2))↓T , σ(s2) ◦ σ(sig2)) .

Using the fact that sig2 is a valid signature for d2 under the public key
(P(s2),P(s3)), we see that

P(s1) � sig1 · sig2 = (h1 · h2 · CBM(s3)↓T , σ(s3))
= (h1 · h2, e) � s3

= P(E(d)) � s3 ,

which shows that sig1 · sig2 is a valid signature for d under the public key
(P(s1),P(s3)).

3.2 The Factorization Attack

Given an oracle Of (which can be instantiated by the algorithm of [14]) that
solves the factorization for the group AN , we can now break Walnut as follows.
Suppose we want to forge a signature for a document d under the public key
(P(s1),P(s2)). Let h be the matrix part of P(E(d)). We start by collecting a
number of document-signature pairs (d1, sig1), · · · , (dk, sigk) that are valid under
the same public key, and we compute the matrix part hi of each pair P(E(di)).
Now it suffices to find a factorization h = hi1 ·h−1

i2
·hi3 · · · h−1

im−1
·him whose factors

have powers that alternate between 1 and −1. Indeed, combining properties
of Theorem 2 we see that sigi1 · sig−1

i2
is a valid signature for any document

d′ such that mat(P(E(d′))) = hi1 · h−1
i2

under the public key (P(s1),P(s1)).
Adding an extra factor, we get that sigi1 · sig−1

i2
· sigi3 is a valid signature for

an appropriate document under the public key (P(s1),P(s2)). Continuing the
same argument for the odd number m of factors of the product we get that
sigi1 · sig−1

i2
· sigi3 · · · sig−1

im−1
· sigim is a valid document for d under the desired

public key (P(s1),P(s2)).
We can use the oracle Of to find the factorization h = hi1 ·h−1

i2
·hi3 · · · h−1

im−1
·

him . We construct the list of generators

gens = {hi · h−1
j | i �= j ∈ {1, · · · , k}}
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and call the oracle Of to obtain a factorization for h · h−1
1 with factors in this

set of generators. Appending the factor h1 to the resulting factorization we then
get a factorization of h of the desired form.

3.3 Implications and Countermeasures

The factorization algorithm of [14] has a time complexity of O
(
q

N−1
2

)
and for

the 128 bit security parameters of Walnut (i.e. N = 8, q = 25) the algorithm finds
a factorization in minutes. However, these factorizations contain roughly 225

factors, so the forged signatures are the concatenation of roughly 225 legitimate
signatures. This implies that the forged signatures are many orders of magnitude
longer than legitimate signatures and so they can be detected easily by the
verifier. To protect against this attack it suffices to impose a limit on the length of
signatures. Interestingly, when the WalnutDSA scheme was updated to counter
the attack of [14], no such upper limit was included in the design. Our adaptation
of the attack shows that this limit is necessary for the security of the scheme,
because long forgeries can be produced in a matter of minutes.

The implementation submitted to the NIST PQC standardization project
implicitly imposes such an upper limit by specifying that the length of the sig-
nature (measured by the number of Artin generators) be encoded by two bytes.
This effectively limits the signature braids to be at most 216 Artin generators
long. Therefore the attack cannot be used to break the NIST implementation of
WalnutDSA.

4 A Collision Search Attack

From the verification equation

P(s1) � sig = P(E(d)) � s2

it is clear that the only dependence on the document d is through the encod-
ing mechanism E and the mapping P. This implies that if d1 and d2 are two
documents such that P(E(d1) = P(E(d2)), then any signature that is valid for
d1 is automatically valid for d2 and vice versa. Therefore breaking EUF-CMA
security reduces to finding such a pair of documents. Once an attacker has found
two such documents he can ask the signing oracle to produce a signature sig for
d1, and return (sig, d2) to win the EUF-CMA game. Since the first step of the
encoding function E is the application of a cryptographically secure hash func-
tion to the document d we cannot reasonably expect to have a more efficient
way of finding collisions than with a generic collision search. A generic collision
search requires roughly |P(E({0, 1}∗))|1/2 evaluations of P ◦ E. In the rest of
this section we give an upper bound for this quantity and we demonstrate with
computer experiments that a collision attack is practical.
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4.1 Sizes of Orbits of E-Multiplication

To estimate the time complexity of the collision search attack we need to find
the size of P(E({0, 1}∗)). Without much motivation the designers of WalnutDSA
claim that qN(N−3)N ! is a conservative lower bound on the number values that P
can take [5]. For 128-bit and 256-bit security parameters this number is roughly
2216 and 2336 respectively, which means that finding a collision should require
roughly 2108 and 2168 evaluations of P ◦E. Note that this is already significantly
less than the claimed security levels. Moreover, an elementary analysis will reveal
that this “conservative lower bound” is actually much larger than the true value
of |P(BN )|. Even worse, when P is restricted to the set of braids that can
be produced by the encoding mechanism E, the number of values that can be
reached is much smaller still.

We know that P, when restricted to the subgroup of pure braids, is a homo-
morphism from PN to AN . This implies that the full twist braid Δ2 (see Sect. 2.2)
which generates the center of PN is mapped to a matrix in the center of P(PN ).
It can be verified that the only matrix in the center of AN is the identity matrix,
but for a randomly chosen set of T-values P(Δ2) is typically not the identity
matrix. This means that P(AN ) sits inside the centralizer of P(Δ2), which is typ-
ically a proper subspace of 〈AN 〉. This begs the question of what the dimension
of 〈P(PN )〉 is. From computer experiments we can conclude that for randomly
chosen T-values this is equal to the dimension of the centralizer of P(Δ2), which
is equal to (N − 1)2 + 1 (since P(Δ2) has one eigenspace of dimension N − 1
and one of dimension 1). However, if we impose the extra condition that the
first two T-values are equal to one, P(PN ) is contained in an affine subspace
of dimension (N − 2)2 + 1, so |P(PN )| is at most q(N−2)2+1. Our computer
experiments suggest that this upper bound is reasonably tight, and so we esti-
mate |P(PN )| ≈ q(N−2)2+1. Since PN is a subgroup of BN of index N ! we have
|P(BN )| < q(N−2)2+1N ! Note that this upper bound is strictly lower than the
lower bound which was claimed by the designers of Walnut.

Any braid output by the encoding mechanism E is a product of the genera-
tors g1, g2, g3, g4. From computer experiments we conclude that when applying
P to braids of this form we end up with matrices in an affine subspace of sur-
prisingly low dimension. We found that they live in a subspace of dimension 13,
independent of the values of q or N (provided that N2 > 13). This means that
|P(E({0, 1}∗))| is at most q13, and that finding a collision cannot take much more
than q13/2 evaluations of P ◦ E. For 128-bit security parameters this number is
as low as 232.5, and for 256-bit security parameters this is 252.

4.2 Implementation

We implemented the generic collision finding algorithm of van Oorschot and
Wiener [24] (briefly explained in Sect. 2.1) and used it to find collisions for the
function g ◦ P ◦ E, where g is a function that takes the ouput of P, and con-
verts it to some plausible document d. Even though the method is completely
generic, it is still efficient enough to find colliding documents in practice. It took
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approximately 232.2 evaluations of f (which agrees very well with the expected
value of 232.5) or one hour on a standard desktop PC to find the following pair
of colliding documents.

d1 =“I would like to receive 9156659270109667494 free samples

of chocolate chip cookies.”
d2 =“I would like to receive 10213941738370235726 free samples

of gluten − free raisin cookies.”

The documents can be cunningly crafted such that a victim would be eager
to sign the first document with his/her secret key. However, by producing a
signature for this document, the victim would unknowingly also sign the second
document, which might lead to unsavory consequences.

4.3 Implications and Countermeasures

This practical attack shows that the Walnut signature scheme should not be
used with the parameters that are submitted to the NIST PQC project.

Increasing q to raise q13/2 to the required security level would lead to q = 220

and q = 240 for 128-bit and 256-bit security parameters respectively. For 256-bit
security parameters this would increase the size of the public key by a factor of 5
and we estimate that this would slow down the verification algorithm by a factor
of 25. A better approach would be to change the encoding algorithm to output
pure braids that are not restricted to the subgroup generated by g1, g2, g3, g4 (or
any other proper subgroup). Since P(PN ) is contained in an affine subspace of
dimension (N − 2)2 + 1, this would lead to an upper bound on the complexity
of the attack of

√
q(N−2)2+1 evaluations of P ◦ E. We would then only need a

slight increase in the parameters. For example, 256 bits of security would be
achieved (against this attack) by the parameters q = 28 and N = 10, leading
to an increase of the key size of roughly 50% and the signature size by at least
25%.

5 Reversing E-Multiplication

A fundamental hard problem underlying the Walnut signature scheme is the
“Reversing E-Multiplication” (REM) problem. This problem asks, given a pair
(M,σ) ∈ AN ×SN , such that (M,σ) = (1N , e)�s for some braid s ∈ BN , to find
a braid s′ ∈ BN such that (1N , e) � s′ = (M,σ). In other words, the problem is
to break the one-wayness of the function

P : BN → AN × SN : s 	→ (1N , e) � s.

The secret key in Walnut consists of two braids s1, s2 ∈ BN . The corresponding
public key is P(s1) and the matrix part of P(s2). The fact that the permutation
part of P(s2) is not available to the attacker is not a problem, because given a
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single signature sig which is valid for any message (which might be unknown to
the attacker), the attacker can deduce the permutation of s2 from the permuta-
tion component of the verification Eq. (2)

σ(s1) ◦ σ(sig) = σ(s2).

After solving the REM problem to get s′
1, s

′
2 such that P(s1) = P(s′

1) and
P(s2) = P(s′

2), an attacker can use the pair (s′
1, s

′
2) as a secret key to sign any

message. Alternatively, instead of solving two instances of the REM problem to
obtain an equivalent secret key, it is also possible to solve a single instance of the
REM problem to obtain a signature for a document which can be chosen freely.

In this section we give an algorithm that solves the REM problem in practice
for the parameters that are proposed for Walnut. First, we describe a generic
birthday attack that can reverse any group action. Then, we introduce an algo-
rithm that exploits the subgroup structure of BN and is much more efficient.

5.1 Birthday Attack

A brute force attack would repeatedly pick a random s ∈ BN , compute (1N , e)�s
and check if this is equal to the target (M,σ). This attack would take O(|P(BN )|)
attempts, where |P(BN )| is the size of the orbit of (1N , e). A more efficient
approach is to look for s1, s2 ∈ BN such that

(M,σ) � s1 = (1N , e) � s2 .

If such s1 and s2 are found, the solution to the REM problem is given by s2s
−1
1 . A

naive way of finding s1 and s2 is to compute a large table containing
√|P(BN )|

values of s1 and the corresponding values of (M,σ)�s1 and check for random val-
ues of s2 whether (1N , e)�s2 lies in this table. This method takes O(

√|P(BN )|)
E-Multiplications, but requires a lot of memory. The problem can be reduced to
collision finding for a function f : P(BN ) → P(BN ). Then, distinguished point
methods (see Sect. 2.1) can solve the REM problem with the same time com-
plexity as the naive approach but with constant memory complexity. Concretely,
suppose b : P(BN ) → {0, 1} and s : P(BN ) → BN are hash functions that take
a matrix and a permutation from the orbit of (1N , e) as input, and output a bit
or a braid respectively. Then we can define

f(x) =

{
(1N , e) � s(x) if b(x) = 0,
(M,σ) � s(x) if b(x) = 1.

If s outputs sufficiently long braids such that P(s(x)) is distributed uniformly
in the orbit of (1N , e), then the distinguished point method will yield colli-
sions f(x1) = f(x2) such that b(x1) �= b(x2) with probability 1/2. Once such
a collision is found, a solution to the REM problem is given by s(x1)s(x2)−1

or s(x2)s(x1)−1 when b(x1) is 0 or 1 respectively. For the security parameters
aiming for 128 bits of security, the size of the orbit P(BN ) is bounded by 2200
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(see Sect. 4.1), so the number of E-multiplications required to solve REM is not
much more than 2100, considerably less than 2128 but still far from practical.
For the 256 bit security parameters the number of E-multiplications is not much
more than 2157.

5.2 Subgroup Chain Attack

We next propose a practical method for solving the REM problem that improves
the attack above by exploiting the following chain of subgroups of BN :

{e} = P1 ⊂ P2 ⊂ · · · ⊂ PN ⊂ BN .

The map P sends a braid to an element of AN × SN and, when restricted to
Pi it is a homomorphism to Ai (see Sect. 2.3). Therefore we have the following
commuting diagram:

{e} P2 · · · PN BN

{(1N , e)} A2 · · · AN AN × SN

P P P P

The meet-in-the-middle attacks in the previous subsection attempt to find a
braid s such that (M,σ)�s = (1N , e) in one step. Given this subgroup structure,
it is more efficient to solve REM in several steps. The first step is to find a braid
s′ ∈ BN such that (M,σ) � s′ = (M ′, e) ∈ AN . This is trivial because any
s′ ∈ BN whose underlying permutation is σ−1 will do the job. The next step
is to find a pure braid sN ∈ PN such that (M ′, e) � sN ∈ AN−1. Then, one
continues iteratively to find si ∈ Pi such that (M,σ) � s′sN · · · si ∈ Ai−1. After
the last step we have found s′sN · · · s2 such that (M,σ) � s′sN · · · s2 = (1N , e),
so (s′sn · · · s2)−1 is a solution to the REM problem.

One caveat when using this method is that, a priori, it is possible to get
stuck. After each step, we get a new target (M,σ) � s′sN · · · si which is sampled
randomly from P(Pi) ∩ Ai−1. However, from that point on, we will only act on
this target with pure braids from Pi−1. This means that if the new target is not
in P(Pi−1) we will not be able to complete the attack. If we assume for each i
that

P(Pi) ∩ Ai−1 = P(Pi−1) ,

then the attack is guaranteed to work. In practice, this assumption seems to
hold with large probability for the parameter sets that are proposed, because
the algorithm works without having to backtrack. We encounter this problem
when instantiating the Walnut scheme with a smaller finite field such as F5.
Then, it occurs for a small but noticeable fraction of the choices of T-values
that for some small i all the generators of P(Pi−1) have determinant 1 or −1,
while the subgroup P(Pi) ∩ Ai−1 contains matrices with any determinant. This
problem is unlikely to occur in large finite fields and with large i, because then
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there are many generators of P(Pi−1) that all have to map to a matrix with
determinant ±1.

Each step can be solved with a collision search in the space Ai−1P(Pi)\Ai−1

of cosets of Ai−1 in Ai−1P(Pi). Let b : Ai−1P(Pi)\Ai−1 → {0, 1} and s :
Ai−1P(Pi)\Ai−1 → Pi be hash functions that take a right coset and output
a bit or a pure braid respectively. Then we can define f : Ai−1P(Pi)\Ai−1 →
Ai−1P(Pi)\Ai−1 as

f(x) =

{
Ai−1P(s(x)) if b(x) = 0,
Ai−1M

′P(sN · · · si+1s(x)) if b(x) = 1.

The distinguished point method can find collisions f(x1) = f(x2) at a cost
of roughly

√|Ai−1P(Pi)\Ai−1| E-Multiplications. Under the assumption we
made earlier that P(Pi) ∩ Ai−1 = P(Pi−1) this is equal to

√|P(Pi)|/|P(Pi−1)|
E-Multiplications.

If we plug the estimate of |P(Pi)| ≈ q(i−2)2+1 from Sect. 4.1 into this formula,

we get an estimate of
√

q(i−2)2+1

q(i−3)2+1 = qi−5/2 E-Multiplications to find si. The

runtime of the algorithm is dominated by the step that searches for sN , which is
estimated to require qN−5/2 E-Multiplications. For 128-bit security parameters
this number is 227.5 and this agrees very well with our computer experiments.
For 256-bit security parameters, the required number of E-Multiplications is
estimated to be 244.

5.3 Representing and Manipulating Cosets of Ak

In order to implement the hash functions b and s we need to be able to uniquely
represent right cosets with respect to Ak. We give a method to do this efficiently
in this subsection. Suppose, X,Y are two matrices in AN , that are in the same
right coset of AN−1. That is, there exists a matrix A ∈ AN−1 such that AX = Y.
If we split up the matrices to make their structure visible we get:

⎛

⎝
A1 A2 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
X1 X2

X3 X4

0 1

⎞

⎠ =

⎛

⎝
Y1 Y2

Y3 Y4

0 1

⎞

⎠ .

From this it is obvious that the (N − 1)-th row of X and Y are identical,
and that the first (N − 1) rows of X and Y span the same (N − 1)-dimensional
subspace. It is easily checked that the converse also holds, which implies that the
right coset of AN−1 that contains a matrix X ∈ AN is completely determined
by the (N − 1)-th row of X and the subspace spanned by the first N − 1 rows
of X. In turn, this subspace is uniquely represented by the row reduced echelon
form of the upper (N − 1)-by-N submatrix of X, which will be of the form

(
IN−1 v

)

for some v ∈ F
N−1. Therefore, the coset containing X is completely determined

by the (N −1)-th row of X, and the last column of the first N −1 rows of X after
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putting it in row reduced echelon form. More generally, we have the following
lemma.

Lemma 2. A right coset of Ak\Ak−1 with representative X ∈ Ak is completely
determined by the pair of vectors (v1,v2) ∈ F

N
q ×F

k−1
q , where v1 is the (k−1)-th

row of X and v2 is the k-th column of the matrix X′, which is obtained from X
by taking the first k − 1 rows and putting them in row reduced echelon form.

This lemma gives a method for deciding whether two matrices X and Y are
in the same coset. One simply computes the pair of vectors for both matrices X
and Y and checks whether they are equal. To run the algorithm we also need
a way to act on cosets by multiplying on the right by matrices. One way to
do this is to work with a representative from the coset and carry out a matrix
multiplication to get a representative from the next coset. It is more efficient to
compute directly with the two-vector representation of the coset. The following
lemma gives a way to do this.

Lemma 3. Suppose M is a matrix in Ak for some k with 1 < k ≤ N . Let
A ∈ GLk−1(Fq) and b ∈ F

k−1
q be submatrices of M such that

M =

⎛

⎝
A b 0
0 1 0
0 0 1N−k

⎞

⎠ .

If (v1,v2) is the representation of a coset S as in Lemma 2, then the represen-
tation of the coset SM is given by (v1M,A−1(b + v2)).

Proof. It is clear that if v1 is the (k − 1)-th row of a representative of S, then
v1M is the (k−1)-th row of a representative SM. For the second vector, suppose
that the subspace spanned by the first k − 1 rows of a representative of S is the
row subspace of (

1 v2 0
)

.

Then there is a representative of SM whose first k − 1 rows span the rowspace
of

(
1 v2 0

)
M =

(
A b + v2 0

)
.

Putting this in row reduced echelon form we get
(
1 A−1(b + v2) 0

)
,

which shows that the second vector in the representation of SM is equal to
A−1(b + v2).
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5.4 Permuting T-Values to Improve the Attack

From Sect. 4.1 we know that the size of P(PN ) is influenced by the fact that the
first two T-values are chosen to be equal to 1. This also impacts the performance
of the subgroup chain attack, since at each step we carry out a search in the
space of cosets P(Pk)\P(Pk + 1). In the first column of Table 2 we see that if
the T-Values would have been chosen randomly, the most expensive step would
have been the first step, where we would have to perform a collision search in a
set of at most q13 elements. However, Walnut fixes the two first T-values to be 1,
so the most expensive step consists of a collision search in a space of at most q11

elements. In the last column of Table 2 we see that if the designers had chosen
to fix the last two T-values to one instead, the complexity of the subgroup chain
attack would be reduced: the most expensive step would have been a collision
search in a space with only at most q9 elements. It turns out that we can first
apply a transformation to the REM instance to reduce it to an instance of the
REM problem where the final two T-values are set to one. Solving this REM
instance then only takes

√
q9 E-Multiplications, so this approach reduces the

amount of work by a factor of q. For general values of N , the new method
requires approximately qN−7/2 E-Multiplications. The reduction relies on the
following lemma.

Lemma 4. Let s1, s2 be braids, let (M,π) be a matrix-permutation pair and let
T be a set of T-values. Then s1s2 is a solution for the REM problem for the
pair (M,π) with respect to the list of T-values T if and only if s2 is a solution
for the REM problem for the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) with respect
to the permuted list of T-values σ(s1)(T ).

Proof. By applying the definition of E-Multiplication we find that

(1N , e) �T s1s2 = (CBM(s1) ↓T ·σ(s1)(CBM(s2) ↓T ), σ(s1s2)) .

By multiplying from the left by CBM(s1) ↓−1
T and σ(s1)−1 we see that the value

above is equal to (M,π) if and only if

(σ(s1)(CBM(s2) ↓T ), σ(b2)) = ((CBM(s1) ↓T )−1M,σ(s1)−1π) .

The main insight is that permuting the variables ti 	→ tσ(b1)(i) and then eval-
uating at the values of T leads to the same result as evaluating at the set of
permuted values σ(s1)(T ). Therefore the left hand side is equal to

(CBM(s2) ↓σ(b1)(T ), σ(s2)) = (1N , e) �σ(s1)(T ) s2 .

Given this lemma, the reduction is straightforward. In order to solve the REM
problem for (M,π) we fix a “transport braid” s1 = b2b3 · · · bN−1b1b2 · · · bN−2

whose underlying permutation transports the first two entries to the back of
the list. Then we calculate the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) and use our
REM solving algorithm with respect to the permuted T-values σ(s1)(T ) on this
pair to find s2. This is now faster by a factor q because the last two T-values are
equal to one. Then s1s2 is a solution to the original REM problem.
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Table 2. The dimension of the subspaces containing various subgroups, depending on
the T-Values

Generic T-values First two T-values are equal to 1 Last two T-valuesare equal to 1

dim Δ dim Δ dim Δ

P(P2) 1 1 0 0 1 1

P(P3) 4 3 2 2 4 3

P(P4) 9 5 5 3 9 5

P(P5) 16 7 10 5 16 7

P(P6) 25 9 17 7 25 9

P(P7) 36 11 26 9 31 6

P(P8) 49 13 37 11 37 6

5.5 Using a Finer Chain of Subgroups

With a complexity of O(qN/2), the factorization algorithm of Hart et al. is
more efficient (asymptotically) than the REM solving algorithm that we have
described so far. This is due to the fact that Hart et al. use a finer chain of
subgroups, which leads to smaller spaces of cosets to search in. In the next para-
graph we describe a faster variant of our REM solving algorithm that uses a
finer chain of subgroups, similar to the chain used by Hart et al. This variant is
much faster than the previous REM solver, but yields solution braids that are
longer.

In each step of our REM solving algorithm we have a matrix M ∈ Ai and
we are looking for a braid si ∈ Pi such that mat((M, e) � si) lies in Ai−1. To
speed this process up, we can split each step in two substeps. Let Ci−1 be the
subgroup of invertible N -by-N matrices that only differ from the identity matrix
in the upper left (i − 1)-by-(i − 1) submatrix. This is a proper subgroup of Ai,
which itself contains Ai−1 as a proper subgroup. To solve the step of the REM
solving algorithm we can first search for an s′

i ∈ Pi such that mat((M, e) � s′
i)

lies in the intermediate group Ci−1, then we search for a braid s′′
i such that

mat((M, e) � s′
is

′′
i ) lies in Ai−1. The first substep of finding s′

i can be carried
out with a meet in the middle search. In order to be able to complete the
second substep we start by searching for a list of braids c1, c2, · · · , ck such that
mat(P(ci)) ∈ C1. Then, to solve the second substep, we search for a braid s′′

i in
the subgroup generated by the braids ci such that mat((M, e)�s′

is
′′
i ) lies in Ai−1.

5.6 Implications and Countermeasures

With this method we split each step into two much easier substeps, which greatly
improves the efficiency of the algorithm. The downside is that the solutions to
the REM problem that are produced are longer than those produced by the
original algorithm. This is because the solution now contains braids s′′

i which
are themselves a concatenation of several slightly longer braids ci. To avoid
inflating the size of the output signature needlessly, it is best to only use this
technique for solving the most expensive steps. For 128-bit security parameters
the signatures output are longer than legitimately produced signatures, but still
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small enough to be accepted by the NIST implementation. For 256-bit security
parameters, the forged signatures are smaller than some legitimately produced
signatures, depending on which variant of the signing algorithm is used. Hence,
we cannot defend Walnut against this attack by imposing an upper limit on the
length of the signatures. Note that it is trivial to convert a short signature into
a longer signature, so imposing a lower bound does not help either.

With this method the most expensive step of the algorithm requires only
qN/2−1 E-Multiplications. The attack is very efficient in practice. We can produce
a forgery for 128-bit security parameters in less than one second. Even for 256-
bit security parameters we can forge signatures for any document in less than a
minute.

The attack benefits from the fact that two of the T-values are equal to one
(see Sect. 5.4), so the attack would be slightly less efficient if the Walnut scheme
can be adapted to avoid this. If all T-values are chosen randomly the complexity
of the attack becomes dominated by the first step, which requires now roughly√

kq(N−1)/2 E-multiplications (k, the number of braids produced in the first step
is chosen to be 60 in our implementation). Other than this there does not seem to
be a better way to block the attack other than just increasing the parameters to
ensure that qN/2−1 is higher than the desired security level. One way to do this
is to take N = 10, q = 232 to achieve 128 bits of security, and N = 10, q = 264

for 256 bits of security.

6 Conclusion

In this paper we presented three different practical methods to break the Wal-
nut digital signature scheme (See Table 3). All three attacks are made possible
because of the rich algebraic structure of the E-Multiplication map, which is cen-
tral to the Walnut scheme (and other protocols developped by SecureRF). The
first method exploits a signature malleability property of Walnut, and expands
on the work of [14] which attacks an earlier version of the Walnut scheme.
The second attack is purely generic. It is much more efficient that expected
because E-Multiplication maps a certain subgroup of PN into a subspace of very
low dimension. The last attack exploits the fact that E-Multiplication, when
restricted to pure braids, is a homomorphism of groups and that this homomor-
phism maps the chain of subgroups P2 ⊂ P3 ⊂ · · · ⊂ PN to a nice chain of
subgroups of GLN (Fq). Some poor design choices such as adopting an encoding
mechanism that produces matrices in a low dimensional subspace and a failed
attempt to block the attack of Hart et al. [14] seem to be symptomatic of a
lack of understanding of the algebraic structure of E-Multiplication. It is the
opinion of the authors that E-Multiplication can not be credibly used as a basis
for cryptography until this structure and its implications for cryptography are
better understood.

The security of the parameter sets submitted to the NIST PQC project is
completely broken by the attacks (see Table 3). It is possible to forge signatures or
compute equivalent secret keys in under a second for 128-bit security parameters.
Even for 256-bit security parameters this takes less than a minute.
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Table 3. An overview of the attacks introduced in this paper, compared with the
legitimate signing algorithms.

Complexity

(in number of

E-Mults or

Mat mults)

128 bits of security 256 bits of security

Time Length of

signature

(Artin

generators)

Time Length of

signature

(Artin

generators)

Legitimate signing:

BKL <1 s ≈1480 <1 s ≈2661

Stoch. w/o Dehornoy <1 s ≈2788 <1 s ≈5260

Attacks:

Factorization q(N−1)/2 5min >232 — —

Collision a q13/2 68min ≈1480 — —

Subgroup chain qN−7/2 4 s 899 58 h 1374

Fine subgroup chain qN/2−1 <1 s 4534 39 s 4525
aHas exactly the same length distribution as legitimately produced signatures

In response to the various attacks, the designers have announced a number
of changes to Walnut and increased the parameters (see Table 4) to resist all
known attacks. An upper bound of 214 on the number of Artin generators of
a signature is imposed, the encoding mechanism is changed so that it outputs
braids that map into a larger subspace and the method of producing cloaking
elements is changed such that two of the T-values are no longer required to be
equal to 1.

Table 4. Comparison of the original parameter choices with the new parameter that
resist the attacks introduced in this paper. Our timing experiments use the implemen-
tations that were submitted to NIST, and were run on a Dell OptiPlex 3050 Micro
desktop machine.

Original parameters New parameters Increase

128-bit N 8 10

q 25 231 − 1

Public key length 83 Bytes 780 Bytes ×9.4

Signature lengtha 713 Bytes 1308 Bytes +83%

Signing time 39.5 ms 59.2 ms +50%

Verification time 0.05 ms 0.09 ms +80%

256-bit N 8 10

q 28 261 − 1

Public key length 128 Bytes 1552 Bytes ×12.1

Signature lengtha 1296 Bytes 2409 Bytes +86%

Signing time 155.2 ms 223.1 ms +44%

Verification time 0.07 ms 0.20 ms ×2.7
aAverage signature length, computed over 1000 signatures generated with the BKL
signing method.



60 W. Beullens and S. R. Blackburn

Increasing the parameters to resist the attacks introduced in this paper
increases the public key by a factor of 10 and the signature sizes by roughly
80%. The updated scheme uses arithmetic in much larger finite fields (e.g. F261−1

instead of F28). This has a relatively small impact on the efficiency of the imple-
mentation for high-end processors submitted to NIST (roughly 50% slower sign-
ing and 80% slower verification). However, the large finite fields make the scheme
more difficult to implement on the low-resource processors that SecureRF is tar-
geting. With the new parameter choices Walnut no longer stands out for its
small key and signature sizes relative to other post-quantum signature schemes
such as lattice-based, hash-based and multivariate signature schemes. For exam-
ple, Walnut used to be the signature scheme with the smallest combined size of
a public key and a signature out of all the 19 signature schemes submitted to
NIST, but this is no longer the case with the new parameters.
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Abstract. RankSign [30] is a code-based signature scheme proposed
to the NIST competition for quantum-safe cryptography [5] and, more-
over, is a fundamental building block of a new Identity-Based-Encryption
(IBE) [26]. This signature scheme is based on the rank metric and enjoys
remarkably small key sizes, about 10KBytes for an intended level of
security of 128 bits. Unfortunately we will show that all the parameters
proposed for this scheme in [5] can be broken by an algebraic attack that
exploits the fact that the augmented LRPC codes used in this scheme
have very low weight codewords. Therefore, without RankSign the IBE
cannot be instantiated at this time. As a second contribution we will
show that the problem is deeper than finding a new signature in rank-
based cryptography, we also found an attack on the generic problem upon
which its security reduction relies. However, contrarily to the RankSign
scheme, it seems that the parameters of the IBE scheme could be cho-
sen in order to avoid our attack. Finally, we have also shown that if one
replaces the rank metric in the [26] IBE scheme by the Hamming metric,
then a devastating attack can be found.

Keywords: Code-based cryptography · Cryptanalysis · Rank metric
Signature scheme · Identity based encryption

1 Introduction

1.1 An Efficient Code-Based Signature Scheme: RankSign and a
Code-Based Identity-Based-Encryption Scheme

Code-Based Signature Schemes. It is a long standing open problem to build
an efficient and secure signature scheme based on the hardness of decoding a
linear code which could compete in all respects with DSA or RSA. Such schemes
could indeed give a quantum resistant signature for replacing in practice the
aforementioned signature schemes that are well known to be broken by quantum
computers. A first partial answer to this question was given in [13]. It consisted
in adapting the Niederreiter scheme [39] for this purpose. This requires a linear
code for which there exists an efficient decoding algorithm for a non-negligible
set of inputs. This means that if H is an r × n parity-check matrix of the code,
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 62–92, 2018.
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there exists for a non-negligible set of elements s in {0, 1}r an efficient way to
find a word e in {0, 1}n of smallest Hamming weight such that Heᵀ = sᵀ.

The authors of [13] noticed that very high rate Goppa codes are able to fulfill
this task, and their scheme can indeed be considered as the first step towards
a solution of the aforementioned problem. However, the poor scaling of the key
size when security has to be increased prevents this scheme to be a completely
satisfying answer to this issue.

The Rank Metric. There has been some exciting progress in this area for
another metric, namely the rank metric [31]. A code-based signature scheme
whose security relies on decoding codes with respect to the rank metric has
been proposed there. It is called RankSign. Strictly speaking, the rank metric
consists in viewing an element in F

N
q (when N is a product N = m × n) as an

m × n matrix over Fq and the rank distance between two elements x and y is
defined as the rank of the matrix x − y. This depends of course on how N is
viewed as a product of two elements. Decoding in this metric is known to be
an NP hard problem [11,12]. In the particular case of [31], the codes which are
considered are not Fq-linear but, as is customary in the setting of rank metric
based cryptography, Fqm-linear: the codes are here subspaces of Fn

qm . Here the
elements x = (x1, . . . , xn) of Fn

qm are viewed as m × n matrices by expressing
each coordinate xi in a certain fixed Fq-basis of Fqm . This yields a column vector
xi in F

m
q and the concatenation of these column vectors yields an m × n matrix

Mat(x) =
(
x1 . . . xn

)
that allows to put a rank metric over Fn

qm . This allows to
reduce the key size by a factor of m when compared to the Fq-linear setting (for
more details see the paragraph at the end of Sect. 2).

Decoding such codes for the rank metric is not known to be NP-hard any-
more. There is however a randomized reduction of this problem to decode an
Fq-linear code for the Hamming metric [32] when the degree m of the extension
field is sufficiently big. This situation is in some sense reminiscent to the cur-
rent thread in cryptography based on codes or on lattices where structured codes
(for instance quasi-cyclic codes) or structured lattices (corresponding to an addi-
tional ring structure) are taken. However the Fqm -linear case has an advantage
over the other structured proposals, in the sense that it has a randomized reduc-
tion to an NP-complete problem. This is not the case for the other structured
proposals. Relying on Fqm -linear codes is one of the main reason why RankSign
enjoys noticeably small public key sizes: it is about 10KBytes for 128 bits of
security for the parameters proposed in the NIST submission [5]. Furthermore,
RankSign comes with a security proof showing that there is no leakage coming
from signing many times. It also proved to be a fundamental building block in
the Identity-Based-Encryption (IBE) scheme based on the rank metric suggested
in [26].

A New IBE Scheme Based on Codes. The concept of IBE was introduced
by Shamir in 1984 [42]. It gives an alternative to the standard notion of public-
key encryption. In an IBE scheme, the public key associated with a user can
be an arbitrary identity string, such as his e-mail address, and others can send
encrypted messages to a user using his identity without having to rely on a
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public-key infrastructure, given short public parameters. The main technical
difference between a Public Key Encryption (PKE) and IBE is the way the
public and private keys are bound and the way of verifying those keys. In a PKE
scheme, verification is achieved through the use of a certificate which relies on a
public-key infrastructure. In an IBE, there is no need of verification of the public
key but the private key is managed by a Trusted Authority (TA).

There are two issues that makes the design of IBE extremely hard: the
requirement that public keys are arbitrary strings and the ability to extract
decryption keys from the public keys. In fact, it took nearly twenty years for the
problem of designing an efficient method to implement an IBE to be solved. The
known methods of designing IBE are based on different tools: from elliptic curve
pairings [9,41]; from the quadratic residue problem [12]; from the Learning-With-
Error (LWE) problem [33]; from the computational Diffie-Hellman assumption
[17] and finally from the Rank Support Learning (RSL) problem [26]. The last
scheme based on codes is an adaptation of the [33] technique, but instead of rely-
ing on the Hamming metric it relies on the rank metric. It has to be noted that
there has been some recent and exciting progress in the design of IBE. In [16] it
has been shown how to generalize the work of [17] by introducing a new primi-
tive, One-Time Signatures with Encryption (OTSE), that enables to construct
fully secure IBE schemes. Furthermore it was shown in [18] how to instantiate
OTSE primitives from LWE and the Low Parity Noise problems (LPN). This
gave after the IBE’s [26,33] the third scheme which may hope to resist to a
quantum computer.

1.2 Our Contribution

An Efficient Attack on RankSign. Our first contribution is that despite the
fact that the security of RankSign might very well be founded on a hard problem
(namely distinguishing an augmented LRPC code from a random linear code),
we show here that all the parameters proposed for RankSign in [5] can be broken
by a suitable algebraic attack. The problem is actually deeper than that, because
the attack is actually polynomial in nature and can not really be thwarted by
changing the parameters. The attack builds upon the following observations

– The RankSign scheme is based on augmented LRPC codes;
– To have an efficient signature scheme, the parameters of the augmented LRPC

codes have to be chosen very carefully;
– For the whole range of admissible parameters, it turns out rather unexpect-

edly that these augmented LRPC codes have very low-weight codewords. This
can be proved by subspace product considerations;

– These low-weight codewords can be recovered by algebraic techniques and
reveal enough of the secret trapdoor used in the scheme to be able to sign
like a legitimate user.

This attack has also a significant impact on the IBE proposal [26] whose
security is based on the security of RankSign. Right now, there is no backup
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solution for instantiating this IBE scheme, since RankSign was the only rank-
metric code based signature scheme following the hash and sign paradigm that
is needed in the IBE scheme.

An Efficient Attack on the IBE [26]. Our second contribution is to show
that the problem is deeper than finding a new hash and sign signature scheme in
rank-based cryptography to instantiate the IBE proposed in [26]. Actually the
security of this IBE scheme does not solely rely on the rank metric code-based
signature scheme and the rank syndrome decoding, it also relies on the Rank
Support Learning (RSL) problem. We show here that the RSL problem is much
easier for the parameters proposed in the IBE scheme [26] and can be broken by
a suitable algebraic attack. Interestingly enough, the approach for breaking the
RSL problem is similar to what we did for RankSign:

– we exhibit a matrix code that can be deduced from the public data that
contains many low-weight codewords and whose support reveals the secret
support of the RSL problem;

– we find such low weight codewords efficiently by solving a largely overdeter-
mined bilinear system.

However in this case, contrarily to the RankSign scheme, even if the set of param-
eters that could defeat our attack is small, it is non empty and our attack could
be thwarted by choosing the parameters appropriately and if an appropriate
signature scheme were found.

We have also explored whether it is possible to change in the IBE scheme
of [26] the rank metric by the Hamming metric. It turns out that the problem
is much worse for the Hamming case. Indeed by adapting the IBE [26] to the
Hamming metric, based on the remark that signatures must have a small weight,
we show that even the simplest generic attack, namely the Prange algorithm [40],
breaks the IBE in the Hamming setting in polynomial time, and this irrespective
of the way the parameters are chosen.

2 Generalities on Rank Metric and Fqm -linear Codes

2.1 Definitions and Notation

We provide here notation and definitions that are used throughout the paper.

Big O Notation. We will use the family of Bachmann-Landau notations,
f(n) = o(g(n)), f(n) = O(g(n)), f(n) = Ω(g(n)), f(n) = Θ(g(n)), f(n) =
ω(g(n)) meaning respectively that limn→∞

f(n)
g(n) = 0, lim supn→∞

|f(n)|
g(n) < ∞,

lim infn→∞
f(n)
g(n) > 0, f(n) = O(g(n)) and f(n) = Ω(g(n)), limn→∞

|f(n)|
|g(n)| = ∞.

Vector Notation. Vectors will be written using bold lower-case letters, e.g. x.
The ith component of x is denoted by xi. Vectors are in row notation. Matrices
will be written as bold capital letters, e.g. X, and the i-th column of a matrix
X is denoted Xi. The rank of a matrix X will be simply denoted by |X|.
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Field Notation. We will denote by Fq the finite field of cardinality q.

Coding Theory Notation. A linear code C over a finite field Fq of length n
and dimension k is a subspace of the vector space F

n
q of dimension k. We say

that it has parameters [n, k] or that it is an [n, k]-code. A generator matrix G
for it is a full rank k × n matrix over Fq which is such that

C = {uG : u ∈ F
k
q}.

In other words, the rows of G form a basis of C. A parity-check matrix H for it
is a full-rank (n − k) × n matrix over Fq such that

C = {c ∈ F
n
q : Hcᵀ = 0}.

In other words, C is the null space of H.
Rank metric codes basically consist in viewing codewords as matrices. More

precisely, when N is the product of two numbers m and n, N = mn we will equip
the vector space F

N
q with the rank metric by viewing its elements as matrices

over F
m×n
q , i.e.

d(X,Y) = |X − Y|.
An [m × n,K] matrix code of dimension K over F

m×n
q is a subspace of Fm×n

q of
dimension K. Such a code is equipped in a natural way with the rank metric.
There is a particular subclass of matrix codes that has the nice property to be
specified much more compactly than a generic matrix code. It consists in taking
a linear code over an extension field Fqm of Fq of length n. Such a code can
be viewed as a matrix code consisting of matrices in F

m×n
q by expressing each

coordinate ci of a codeword c = (ci)1≤i≤n in a fixed Fq basis of Fqm . When the
Fqm-linear code is of dimension k the dimension of the matrix code viewed as
an Fq-subspace of Fm×n

q is K = k.m. More precisely we bring in the following
definition.

Definition 1 (Matrix code associated to an Fqm linear code). Let C be
an [n, k]-linear code over Fqm , that is a subspace of Fn

qm of dimension k over Fqm ,
and let (β1 . . . βm) be a basis of Fqm over Fq. Each word c ∈ C can be represented
by an m × n matrix Mat(c) = (Mij)1≤i≤m

1≤j≤n
over Fq, with cj =

∑m
i=1 Mijβi. The

set {Mat(c), c ∈ C} is the [m × n, k.m] matrix code over Fq associated to the
Fqm linear code C. The (rank) weight of c is defined as the rank of the associated

matrix, that is |c| �
= |Mat(c)|.

This definition depends of course on the basis chosen for Fqm . However chang-
ing the basis does not change the distance between codewords. The point of
defining matrix codes in this way is that they have a more compact description.
It is readily seen that an [m×n, k.m] matrix code over Fq can be specified from a
systematic generator matrix (i.e. a matrix of the form

[
1k.m|P]

with 1k.m being
the identity matrix of size k.m) by k(n − k)m2 log2 q bits whereas an Fqm-linear
code uses only k(n − k) log2 qm = k(n − k)m log2 q bits. This is particularly
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interesting for cryptographic applications where this notion is directly related
to the public key size. This is basically what explains why in general McEliece
cryptosystems based on rank metric matrix codes have a smaller keysize than
McEliece cryptosystems based on the Hamming metric. All of these proposals
(see for instance [1,4,23–25,27,31]) are actually built from matrix codes over Fq

obtained from Fqm -linear codes. In a sense, they can be viewed as structured
matrix codes, much in the same way as quasi-cyclic linear codes can be viewed
as structured versions of linear codes. In the latter case, the code is globally
invariant by a linear isometric transform on the codewords corresponding to
shifts of a certain length. In the Fqm -linear case the code is globally invariant by
an isometric linear transformation that corresponds to multiplication in Fqm .

2.2 Rank Code-Based Cryptography

Rank-based cryptography relies on the hardness of decoding for the rank metric.
This problem is the rank metric analogue of the well known decoding problem
in the Hamming metric [7]. We give it here its syndrome formulation:

Problem 1 (Rank (Metric) Syndrome Decoding Problem)

Instance: A full-rank (n − k) × n matrix H over Fqm with k ≤ n, a syndrome
s ∈ F

n−k
qm and w an integer.

Output: An error e ∈ F
n
qm such that |e| = w and Heᵀ = sᵀ.

This problem has recently been proven hard in [32] by a probabilistic reduction
to the decoding problem in the Hamming metric which is known to be NP-
complete [7]. This problem has typically a unique solution when w is below the
Varshamov-Gilbert distance wrVG(q,m, n, k) for the rank metric which is defined
as

Definition 2 (Varshamov-Gilbert distance for the rank metric). The
Varshamov-Gilbert distance wrVG(q,m, n, k) for Fqm-linear codes of dimension
k in the rank metric is defined as the smallest t for which qm(n−k) ≤ Bt where
Bt is the size of the ball of radius t in the rank metric.

Remark 1. 1. qm(n−k) can be viewed as the number of different syndromes s ∈
F

n−k
qm .

2. From [36] we have when either m or n tends to infinity

wrVG(q,m, n, k) =
m + n − √

(m − n)2 + 4km

2
(1 + o(1)). (1)

The best algorithms for solving the decoding problem in the rank metric are
exponential in n2 as long as m = Θ(n), w = Θ(n) but w stays below the
Singleton bound which is defined by

Definition 3 (Singleton distance in the rank metric). The rank Single-
ton distance wrS(q,m, n, k) for Fqm-linear codes of dimension k is defined as

wrS(q,m, n, k)
�
=

⌊
(n−k)m
max(m,n)

⌋
+ 1.
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The usual notion of the support of a vector is generally relevant to decoding
in the Hamming metric and corresponds for a vector x = (xi)1≤i≤n to the set of
positions i in {1, . . . , n} such that xi �= 0. Various decoding algorithms for the
Hamming metric [6,8,10,14,19,22,35,37,38,40,44] use this notion in a rather
fundamental way. The definition of the support of a vector has to be changed a
little bit to be relevant to the rank metric. This notion was first put forward in
[28,29] to obtain an analogue of the Prange decoder [40] for the rank metric.

Definition 4 (Support). Let x = (xi)1≤i≤n ∈ F
n
qm , its support is defined as:

Supp(x)
�
=〈x1, · · · , xn〉Fq

.

This notion of support is among other things relied to the rank metric as it is
easily verified that for any vector x of Fn

qm we have |x| = dim(Supp(x)).

3 The RankSign Scheme

We recall in this section basic facts about RankSign [31]. It is based on aug-
mented LRPC codes. Roughly speaking it is a hash and sign signature scheme:
the message m that has to be signed is hashed by a hash function H and the sig-
nature is equal to f−1(H(m)) where f is a trapdoor one-way function. In this way
the pair (m, f−1(H(m))) forms a valid signature. Recall now that code-based
cryptography relies on Problem 1 (rank syndrome decoding) which amounts to
consider here the following one way-function to build a signature primitive:

fH : e ∈ Sw −→ eHᵀ ∈ F
n−k
qm

where Sw denotes the words of Fn
qm of rank weight w, H a parity-check matrix

of size (n−k)×n. To introduce a trapdoor in fH authors of [27] proposed to use
parity-check matrices of the family of augmented LRPC codes. Indeed, when the
underlying LRPC structure is known (roughly speaking, this is the trapdoor),
there is a decoding algorithm based on the LRPC structure that computes for
any (or for a good fraction) s ∈ F

n−k
qm an e ∈ F

n
qm of weight w such that Heᵀ = sᵀ.

This decoding algorithm is probabilistic and the parameters of the code have to
be chosen in a very specific fashion in order to have a probability of success very
close to 1 (see Fact 1 at the end of this section).

The following definition will be useful for our discussion.

Definition 5 (Homogeneous Matrix). A matrix H = (Hij)1≤i≤n−k
1≤j≤n

over

Fqm is homogeneous of weight d if all its coefficients generate an Fq-vector space
of dimension d:

dim
(〈Hij : 1 ≤ i ≤ n − k, 1 ≤ j ≤ n〉Fq

)
= d

LRPC (Low Rank Parity Check) codes of weight d and augmented LRPC codes
of type (d, t) are defined from homogeneous matrices of weight d as
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Definition 6 (LRPC and augmented LRPC code). An LRPC code over
Fqm of weight d is a code that admits a parity-check matrix H with entries in
Fqm that is homogeneous of weight d whereas an augmented LRPC code of type
(d, t) over Fqm is a code that admits a parity-check matrix H′ =

[
H|R]

P where
H is a homogeneous matrix of rank d over Fqm , R is a matrix with t columns
that has its entries in Fqm and P is a square and invertible matrix with entries
in Fq that has the same number of columns as H′.

Remark 2. Note that any invertible P ∈ F
n×n
q is an isometry for the rank metric,

since for any x ∈ F
n
qm we have Supp(x) = Supp(xP) and therefore |x| = |xP|.

The public key and the secret key for RankSign are given by:

Public Key: Hpub which is a random (n − k) × n parity-check matrix of an
augmented LRPC code of type (d, t). It is of the form

Hpub = QH′

with H′ =
[
H|R]

P where Q is an invertible (n − k) × (n − k) matrix over Fqm ,
H is a homogeneous matrix of rank d over Fqm , R is a matrix with t columns
that has its entries in Fqm and P is a square and invertible matrix with entries
in Fq that has the same number of columns as H′.

Secret Key: The matrix Hsec
�
=

[
H|R]

.
From the knowledge of this last matrix a signature is computed by using

a decoding algorithm devised for LRPC codes. Recall that LRPC codes can be
viewed as analogues of LDPC codes for the rank metric. In particular, they enjoy
an efficient decoding algorithm based on their low rank parity-check matrix.
Roughly speaking, Algorithm 1 of [27] decodes up to w errors when dw ≤ n − k
in polynomial time (see [27, Theorem 1]). It uses in a crucial way the notion of
the linear span of a product of subspaces of Fqm :

Definition 7. Let U and V be two subspaces of Fqm , then

U · V
�
=〈uv : u ∈ U, v ∈ V 〉Fq

.

Roughly speaking, Algorithm 1 of [27] works as follows when we have to recover
an error e of weight w from the knowledge of its syndrome s with respect to a
parity-check matrix H = (Hij)1≤i≤n−k

1≤j≤n
over Fqm that is homogeneous of weight

d, that is
sᵀ = Heᵀ. (2)

1. Let U
�
=〈Hij : 1 ≤ i ≤ n − k, 1 ≤ j ≤ n〉Fq

, V
�
= Supp(e) and W

�
= Supp(s).

U and W are known, whereas V is unknown to the decoder. By definition U
is of dimension d and it is convenient to bring in a basis {f1, . . . , fd} for it.

2. It turns out that we typically have W = U · V . Moreover it is clear that in
such a case V ⊂ f−1

1 W ∩ f−1
2 W · · · f−1

d W . It also turns out that we typically
have

V = f−1
1 W ∩ f−1

2 W · · · f−1
d W.

V is therefore computed by taking the intersection of all the f−1
i W ’s.
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3. Once we have the support of e (V = Supp(e)), the error e = (e1, . . . , en) can
be recovered by solving the linear equation Heᵀ = sᵀ with the additional
constraints ei ∈ Supp(e) for i ∈ {1, . . . , n}. There are in this case enough
linear constraints to recover a unique e.

The last algorithm seems to apply when there is a unique solution to (2).
It can also be used with a slight modification (by adding “erasures” [31]) for
weights for which there are many solutions to it (this is typically the regime
which is used for the RankSign scheme). It namely turns out, see [31], that
this decoder can for a certain range of parameters be used for a large fraction of
possible syndromes s ∈ F

n−k
qm to produce an error e of weight w that satisfies (2).

It can even be required that Supp(e) contains a subspace T of some dimension
t. Furthermore this procedure can also be generalized to a parity-check matrix
of an augmented LRPC code. More precisely to summarize the discussion that
can be found in [5,31]

Fact 1. Let H be a random homogeneous matrix of weight d in F
(n−k)×n
qm , H′ =[

H|R]
P where R is a matrix with t columns that has its entries in Fqm and P

is a square and invertible matrix with entries in Fq that has the same number of
columns as H′. There is a probabilistic polynomial time algorithm that outputs
for a large fraction of syndromes s ∈ F

n−k
qm , subspaces T of Fqm of Fq–dimension

t′, an error e of weight w whose support contains the subspace T that satisfies
H′eᵀ = sᵀ as soon as the parameters n, k, t, t′, d, w satisfy

m = (w − t′)(d + 1) (3)
n − k = d(w − t − t′) (4)

n = (n − k)d. (5)

4 Identity-Based-Encryption in Code-Based
Cryptography

We recall in this section the [26] approach for obtaining an IBE scheme whose
security relies on code-based assumptions. In some sense, this scheme can be
viewed as an adaptation of the first quantum-safe IBE which was introduced by
[33] in the paradigm of lattice-based cryptography. The adaptation relies on two
building blocks: (i) a signature scheme, RankSign whose security relies on code-
based assumptions for the rank metric, (ii) a new encryption scheme, namely
RankPKE [26], based on the Rank Support Leaning (RSL) problem. [26] gives
a security proof of the IBE scheme that relies on two assumptions: (i) the key
security of RankSign and (ii) the difficulty of RSL. Furthermore, the work of
[26] can be easily generalized to the more common Hamming metric. It is why
we present in what follows the [26] IBE scheme with codes independently of the
metric.

Roughly speaking, an IBE is a specific public-key encryption scheme that
allows senders to encrypt messages thanks to the receiver’s identity (such as its
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Fig. 1. IBE in the GPV context

email address). To permit this protocol there is a third party, say a Key Deriva-
tion Center, which owns a master secret-key MSK and an associated public-key
MPK that allows to compute from any identity id a related secret quantity
skid that will be used in a public-key encryption scheme involving an arbi-
trary sender and the receiver of identity id, with the pair of public/secret key
((id,MPK), skid). In this paradigm any identity id needs to be matched with a
secret key skid and to achieve this goal it was proposed in [33] to use a hash and
sign primitive. Roughly speaking, for a trapdoor function f and a hash function
H the Key Derivation Center will compute from id the quantity f−1(H(id))
which will be used as skid. We summarize in Fig. 1 how this IBE works.

IBE in Code-Based Cryptography. We give now the general framework of
[26] for obtaining a code-based IBE scheme. It is only given in the rank metric
case in [26], but the approach is really more general than this and can be given
for the Hamming metric too. We will detail what happens for both metrics here.
We will denote by F the finite field F2 or Fqm depending on the Hamming or rank
metric. As explained above, this scheme builds upon a hash and sign primitive
and the authors of [26] proposed RankSign there but in our description the
signature scheme is just a black-box.

Let Csgn be a code of length nsgn and dimension ksgn for which there is a
trapdoor that enables to compute for any y ∈ F a codeword cy ∈ Csgn at distance
wsgn. Let wdec be an integer, Cdec be a code of length ndec and dimension kdec
such that it exists a polynomial algorithm to decode a linear (in the length) error
weight. Let GCsgn and GCdec be generator matrices of the codes Csgn and Cdec

respectively. Then it is proposed in [26] to set master secret and public keys as:

– MSK be the trapdoor which enables to decode at distance wsgn in Csgn;

– MPK
�
= (Csgn, Cdec).
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Let id be an identity and H be a hash function whose range is F
nsgn . The key

derivation center computes with MSK and id a vector uid such that:

|uidGCsgn − H(id)| = wsgn where | · | denotes the Hamming or rank metric (6)

This is used as the secret key associated to the identity id:

– skid
�
=uid.

We are now ready to present the encryption scheme whose public/secret key is
((GCsgn ,GCdec , id),uid) and which in the particular case of the rank metric is
the RankPKE scheme introduced in [26]. This primitive is related to the work
of Alekhnovich [2].

– Encryption. Let m be the message that will be encrypted. The authors of
[26] introduced the trapdoor function:

gGCsgn ,GCdec ,id : Fkdec −→ F
(ksgn+1)×ndec

m �−→
[

GCsgnE
H(id)E + mGCdec

]

where E has a size nsgn × ndec. In the case of the rank metric E is a matrix
uniformly picked at random among the homogeneous matrices of weight wdec

and in the case of the Hamming metric, E is picked uniformly at random
among the matrices whose columns have all weight wdec.

– Decryption. The secret key uid is used as

(uid,−1)gGCsgn ,GCdec ,id(m) = (uid,−1)
[

GCsgnE
H(id)E + mGCdec

]

=
(
uidGCsgn − H(id)

)
E − mGCdec

It can be verified that under certain restrictions on wsgn and wdec, the weight
of the vector

(
uidGCsgn − H(id)

)
E is low enough, so that a decoding algorithm

for Cdec will recover m. The following proposition gives a constraint on these
parameters so that decoding is possible in principle.

Proposition 1. In order to be able to decode asymptotically at constant rate R,
there should exist an ε(R) > 0 such that all the parameters nsgn, wsgn and wdec

have to verify

– in the rank metric case

wsgnwdec = (1 − ε(R))min(m,ndec) (7)

– in the Hamming metric case

wsgnwdec = O(nsgn). (8)
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The proof of this proposition can be found in the long version of the
paper [15].

The constraint set on the parameters by this proposition is crucial to instan-
tiate the IBE in code-based cryptography. Unfortunately, this constraint implies
a fatal weakness for the Hamming based scheme and a hard to meet condition for
the rank metric in order to have a secure scheme as we will see in what follows.

The RSL Problem. We recall here the assumption upon which the security
of RankPKE relies (the previous encryption scheme in rank metric), namely the
Rank Support Leaning (RSL) problem introduced in [26]. This problem is a rank
syndrome decoding problem with syndromes that are associated to errors that
all share the same support which is the secret.

Problem 2 (RSL - Rank Support Learning)

Parameters: n, k,N,w
Instance: (A,AE) where A is a full rank matrix of size (n − k) × n, E a
matrix of size n×N where all its coefficients belong to a same subspace F of
Fqm of dimension w
Output: the subspace F .

Remark 3. Let (A,AE) be an instance of RSL. The matrix A is of full-rank of
size (n − k) × n and we can perform Gaussian elimination on its rows to get a
matrix S such that SA = [1n−k|A′]. The pair (SA,SAE) is still an instance of
RSL with the same parameters and secret subspace F , it is why we can always
assume that for any instance of RSL the matrix A is in systematic form.

5 Attack on RankSign

5.1 The Problem with RankSign: Low Rank Codewords in the
Augmented LRPC Code

A natural way to attack RankSign is to find low weight codewords in the dual
of the augmented LRPC code. Recall that the public parity-check matrix used
in the scheme is a matrix Hpub where

Hpub = QH′

with H′ =
[
H|R]

P where H is a homogeneous matrix of rank d over Fqm , R is
a matrix with t columns that has its entries in Fqm , P is a square and invertible
matrix with entries in Fq that has the same number of columns as H′ and Q
is a square and invertible matrix over Fqm which has the same number of rows
as H′. If we call Cpub the “public code” with parity-check matrix Hpub, then
the dual code C⊥

pub that has for generator matrix Hpub has codewords of weight
≤ d+t since rows of H′P belong to this code, and all of its rows have rank weight
≤ d+t since the rows of H′ have weight at most d+t and P is an isometry for the
rank metric. The authors have chosen the parameters of the RankSign scheme
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so that finding codewords of weight t+d in C⊥
pub is above the security level of the

scheme. However, it turns out that due to the peculiar parameters chosen in the
RankSign scheme (see Fact 1), Cpub has many very low weight codewords. This
is the main problem in RankSign. Before we give a precise statement together
with its proof, we will give a general result showing that LRPC codes may have
under certain circumstances low weight codewords.

Lemma 1. Let C be an LRPC code of length n and dimension k over Fqm that
is associated to an homogeneous matrix H that has all its entries in a subspace
F of Fqm . Furthermore we suppose there exists a subspace F ′ of Fqm such that

(n − k) dim(F · F ′) < ndim F ′.

Then there exist non-zero codewords in the LRPC code whose support is included
in F ′. They are therefore of rank weight at most dim F ′. Furthermore this set of
codewords, that is

C′ �
= {c ∈ C : ci ∈ F ′, ∀i ∈ �1, n�}

forms an Fq subspace of Fn
qm that is of dimension ≥ n dim F ′−(n−k) dim(F ·F ′).

Proof. Denote the entry in row i and column j of H by Hi,j . A codeword c of
the LRPC code satisfies

∀i ∈ �1, n − k�,

n∑

j=1

Hi,jcj = 0. (9)

Looking in addition for a codeword c that has all its entries in F ′ and expressing
these n − k linear equations over Fqm in a basis of F · F ′ (since

∑n
j=1 Hi,jcj

belongs by definition to F ·F ′) and expressing each cj in a Fq basis {f ′
1, . . . , f

′
d′}

of F ′ as cj =
∑d′

�=1 cj,�f
′
� we obtain (n − k) dim(F · F ′) linear equations over Fq

involving n dim F ′ unknowns (the cj,�’s) in Fq. The solution space is therefore of
dimension greater ≥ n dim F ′ − (n − k) dim(F · F ′).

Remark 4. This theorem proves the existence of low rank codewords in an
LRPC-code under some conditions but it does not give any efficient way to
find them.

By using this lemma, we will prove the following corollary that explains that
the augmented LRPC codes that are used in the RankSign signature necessarily
contain many rank weight 2 codewords. This is in a sense a consequence of the
constraint (5) on the parameters of RankSign.

Corollary 1. Let Cpub be an [n+t, k+t] public code of RankSign over Fqm which
has been obtained from an [n, k] LRPC-code that is associated to a homogeneous
matrix H that has all its entries in an Fq subspace F of Fqm . Consider a subspace
F ′ of F of dimension 2 and let

C′
pub

�
= {c ∈ Cpub : ci ∈ F ′, ∀i ∈ �1, n + t�} .
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C′
pub is an Fq subspace of Fn+t

qm . If (5) holds, that is n = (n − k)d, then

dimFq
C′
pub ≥ n/d.

Proof. Let Hpub ∈ F
(n−k)×(n+t)
qm be the public parity-check matrix for the

RankSign public code Cpub. Recall that Hpub has been obtained as Hpub =
Q

[
H|R]

P where:
– P is a non-singular matrix with entries in Fq of size (n + t) × (n + t),
– Q is an invertible matrix of Fqm of size (n − k) × (n − k),
– R is a random matrix of Fqm of size (n − k) × t,
– H is a homogeneous (n − k) × n matrix of weight d with all its entries in F .

Choose a basis {x1, x2, . . . , xd} of F such that {x1, x2} is a basis of F ′. We
observe now that

F · F ′ = 〈xixj : i ∈ �1, d�, j ∈ �1, 2�〉Fq
.

The cardinality of the set {xixj : i ∈ �1, d�, j ∈ �1, 2�} is actually 2d−1 because
x1x2 = x2x1. This implies that dim(F ·F ′) ≤ 2d−1. Which leads to the following
inequalities,

ndim(F ′) − (n − k) dim(F · F ′) ≥ 2n − (n − k)(2d − 1)

= 2d(n − k) − (n − k)(2d − 1) (since n = (n − k)d)

=
n

d
(since n = (n − k)d).

Let CLRPC be the LRPC code of weight d associated to the parity-check
matrix H and let C′

LRPC be an Fq subspace of it that is defined by

C′
LRPC

�
= {c ∈ CLRPC : ci ∈ F ′, ∀i ∈ �1, n�} .

By applying Lemma 1 we know that

dimFq
C′
LRPC ≥ n

d
. (10)

Consider now

C′
pub

�
={(cLRPC,0t)(P−1)

ᵀ
: cLRPC ∈ C′

LRPC},

where 0t denotes the vector with t zeros. From (10) we deduce that dimFq
C′
pub ≥

n
d . Moreover the entries of any element c′ in C′

pub belong to F ′ because the entries
of P are in Fq. Let us now prove that C′

pub is contained in Cpub. To verify this,
consider c′ = (cLRPC,0t)(P−1)ᵀ ∈ C′

pub. We observe now that

Hpubc′ᵀ = HpubP−1(cLRPC,0t)
ᵀ

= Q
[
H|R]

PP−1(cLRPC,0t)
ᵀ

= Q
[
H|R]

(cLRPC,0t)
ᵀ

= QHcLRPC
ᵀ ( R ∈ F

(n−k)×t
qm )

= 0 (cLRPC belongs to the code of parity-check matrix H)

This proves that C′
pub ⊂ Cpub which concludes the proof.
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5.2 Weight 1 Codewords in a Projected Code

Corollary 1 shows that there are many weight 2 codewords in Cpub. We can even
restrict our search further by noticing that without loss of generality we may
assume that the space F in which the entries of the secret parity-check matrix
H of the LRPC code are taken contains 1. Indeed, for any α in F

×
qm , αH is also

a parity-check matrix of the LRPC code and has its entries in αF . By choosing
α such that αF contains 1 we get our claim.

Consider now a supplementary space V of 〈1〉Fq
= Fq with respect to Fqm ,

that is an Fq-space of dimension m − 1 such that Fqm = V ⊕ Fq. The previous
discussion implies that there is a matrix-code in F

(m−1)×(n+t)
q , deduced from

Cpub by projecting the entries onto V , that contains codewords of weight 1.
More specifically, consider an Fq basis {β1, β2, · · · , βm} of Fqm such that βm = 1
and for c = (ci)1≤i≤n+t ∈ F

n+t
qm consider

Matproj(c) = (Mij)1≤i≤m−1
1≤j≤n+t

∈ F
(m−1)×(n+t)
q

where cj =
∑m

i=1 Mijβi. Now let Cproj
pub be the matrix-code in F

(m−1)×(n+t)
q

defined by
Cproj
pub

�
=

{
Matproj(c) : c ∈ Cpub

}
.

It is clear that

Fact 2. Cproj
pub contains codewords of rank weight 1.

These are just the codewords c′ which are of the form Matproj(c) where c ∈ C′
pub

with C′
pub being defined from a subspace F ′ of F that contains 1 (we can make

this assumption since we can assume that F contains 1).
Cproj
pub has the structure of an Fq-subspace of F(m−1)×(n+t)

q . It is typically of
dimension (k + t)m (i.e. the same as the Fq dimension of Cpub). Moreover once
we have these rank weight 1 codewords in Cproj

pub we can lift them to obtain rank
weight ≤ 2 codewords in Cpub because for any c ∈ Cpub the last row of Mat(c)
can be uniquely recovered from Matproj(c) by performing linear combinations
of the entries of Matproj(c). We call this operation deducing c from Matproj(c)
lifting from Cproj

pub to Cpub.

5.3 Outline of the Attack

Finding codewords of rank 1 in Cproj
pub obviously reveals much of the secret LRPC

structure. Lifting elements in Cproj
pub that are of rank 1 to Cpub as explained at

the end of Subsect. 5.2 yields codewords of Cpub that have typically rank weight
2. This can be used to reveal F ′ and actually the whole subspace F by finding
enough rank 1 codewords in Cproj

pub . Once F is recovered a suitable form for a
parity-check matrix of Cpub can be found that allows signing like a legitimate
user. For the case of the parameters of RankSign proposed in [5,31] for which we
always have d = 2 we will proceed slightly differently here. Roughly speaking,
our attack can be decomposed as follows
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1. We find a particular element M in Cproj
pub of rank weight 1 by solving a certain

bilinear system with Gröbner bases techniques.
2. We lift M ∈ Cproj

pub to c ∈ Cpub and compute F ′ �
= Supp(c).

3. We compute from F ′ the Fq-subspace

C′
pub

�
= {c = (ci)1≤i≤n+t ∈ Cpub : ci ∈ F ′ ∀i ∈ �1, n + t�} .

When d = 2 this set has typically dimension k.
4. We use this subspace of Cpub to find a suitable parity-check matrix for Cpub

which allows us to sign like a legitimate user.

Steps 2 and 3 are straightforward. We just give details for Steps 1 and 4 in what
follows.

5.4 Finding Rank 1 Matrices in Cproj
pub by Solving a Bilinear System

The Basic Bilinear System. Finding rank 1 matrices in Cproj
pub can be formu-

lated as an instance of the MinRank problem [11,12]. We could use standard
techniques for solving this problem [20,21,34,43] but we found that it is bet-
ter here to use the algebraic modelling suggested in [5]. It basically consists in
setting up an algebraic system with unknowns x = (x1, . . . , xm−1) ∈ F

m−1
q and

y ∈ F
n+t
q where the unknown matrix M in Cproj

pub that should be of rank 1 has
the form

M =

⎛

⎜
⎜
⎜
⎝

x1y1 x1y2 . . . x1yn+t

x2y1 x2y2 . . . x2yn+t

...
...

...
...

xm−1y1 xm−1y2 . . . xm−1yn+t

⎞

⎟
⎟
⎟
⎠

.

Recall that Cproj
pub has the structure of an Fq subspace of F(m−1)×(n+t)

q of dimen-

sion (k + t)m. By viewing the elements of Cproj
pub as vectors of F

(m−1)(n+t)
q , i.e.

the matrix M = (Mij)1≤i≤m−1
1≤j≤n+t

is viewed as the vector m = (m�)1≤�≤(m−1)(n+t)

where m(i−1)(n+t)+j = Mi,j , we can compute a parity-check matrix Hproj
pub for it.

It is an ((m − 1)(n + t) − (k + t)m) × (m − 1)(n + t) matrix that we denote by
Hproj

pub = (Hproj
ij )1≤i≤(m−1)(n+t)−(k+t)m

1≤j≤(m−1)(n+t)

. This matrix gives (m−1)(n+t)−(k+t)m

bilinear equations that have to be satisfied by the xi’s and the yj ’s:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n+t∑

j=1

m−1∑

i=1

Hproj
1,(i−1)(n+t)+jxiyj = 0

...
n+t∑

j=1

m−1∑

i=1

Hproj
(n+t)(m−1)−(k+t)m,(i−1)(n+t)+jxiyj = 0

(11)

Restricting the Number of Solutions. We have solved the bilinear system
(11) with standard Gröbner bases techniques that are implemented in Magma.
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To speed-up the resolution of the bilinear system with Gröbner bases techniques
(especially the change of order that is performed after a first computation of a
Gröbner basis for a suitable order to deduce a basis for the lexicographic order
which is more suited for outputting a solution) it is helpful to use additional
equations that restrict the solution space which is otherwise really huge in this
case. The purpose of the following discussion is to show where these solutions
come from and how to restrict them. By bilinearity of System (11) we may fix

x1 = 1 (12)

when there is a solution x such that x1 �= 0). Furthermore, the fact that C′
pub is

an Fq vector space of dimension n/d induces that for a given x solution to (11)
the set of corresponding y’s also forms a vector space of dimension n/d. We may
therefore rather safely assume that we can choose

∀i ∈ �1,
n

d
− 1�, yi = 0 and yn/d = 1. (13)

There is an additional degree of freedom on x coming from the fact that even if
d = 2 there are several spaces αF for which 1 ∈ αF . To verify this, let us study
in more detail the case when F is of dimension 2, say F = 〈a, b〉Fq

. We wish
to understand what are the possible values for z ∈ Fqm such that there exists
c �= 0 for which 〈a, b〉Fq

= c〈1, z〉Fq
. The possible values for x will then be the

projection of those z to the Fq space 〈β1, . . . , βm−1〉Fq
. The possible values for z

are then obtained from studying the possible values for c. There are two cases
to consider:

– Case 1: c = a+bν
μ for μ ∈ F

×
q and ν ∈ Fq. In such a case z = βb

a+bν + δ for
β ∈ F

×
q , δ ∈ Fq.

– Case 2: c = b
μ for μ ∈ F

×
q . Here z = αa

b + δ for α ∈ F
×
q , δ ∈ Fq.

Since the δ term vanishes after projecting x onto 〈β1, . . . , βm−1〉Fq
we have essen-

tially two degrees of freedom over Fq for x. One has already been taken into
account when setting x1 = 1. We can add a second one x2 = α where α is
arbitrary in Fq. We have actually chosen in our experiments that

(x2 − α)(x2 − β) = 0 (14)

for some random α and β in Fq. This has resulted in some gain in the computation
of the solution space. Finally the following proposition summarizes the system
we have solved.

Proposition 2. By eliminating variables using Eqs. (12), (13) and (14) in (11)
we have

– nm − k(m + 1) − t + 2 equations;
– m − 1 + n + t unknowns.

In the “typical regime” where m ≈ n, k ≈ n
2 and t � n we have a number of

equations of order n2 and a number of unknowns of order n, therefore typically
the regime where we expect that the Gröbner basis techniques take polynomial
time.
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5.5 Numerical Results

We give in Table 1 our numerical results to find a codeword of rank 2 in any
public code of the RankSign scheme for parameters chosen according to [5].
These results have been obtained with an Intel Core i5 processor, clocked at 1.6
GHz using a single core, with 8 Go of RAM.

Table 1. Attack on NIST’s parameters of RankSign with 100 random public keys.

Intended security [5] (n, k,m, d, t, q) Average time Maximum memory usage

128 bits (20, 10, 21, 2, 2, 232) 23.66 s 49 MB

128 bits (24, 12, 24, 2, 2, 224) 36.92 s 65 MB

192 bits (24, 12, 27, 2, 3, 232) 150.02 s 97 MB

256 bits (28, 14, 30, 2, 3, 232) 289.62 s 137 MB

5.6 Finishing the Attack

We present in this subsection the end of our attack which consists in being able
to sign with only the knowledge of the public key. The proofs of the lemmas can
be found in the long version of the paper [15]. It holds for the parameters chosen
for the NIST competition [5] for which d = 2. Observe that (5) implies that we
have k = n − k = n/2.

We have at that point obtained the code C′
pub (see Sect. 5.3, Point 3.) that

has dimension (over Fq) ≥ n/d = n/2 = k. This code is just Fq-linear, but it
will be convenient to extend it by considering its Fqm-linear extension, that we
denote Fqm ⊗ C′

pub that is defined by the Fqm-linear subspace of Fn+t
qm obtained

from linear combinations over Fqm of codewords in C′
pub. In other words if we

denote by {c′
1, . . . , c

′
k′} an Fq-basis of C′

pub, then Fqm ⊗ C′
pub

�
=〈c′

1, . . . , c
′
k′〉Fqm

.
To simplify the discussion we make now the following assumption (which was

corroborated by our experiments).

Assumption 1
dimFqm ⊗ C′

pub = k.

The rationale behind this assumption is that (i) the dimension of C′
pub is very

likely to be n/d which is equal to k and (ii) an Fq basis of C′
pub is very likely to

be an Fqm basis too.

Lemma 2. Under Assumption 1 the code
(
Fqm ⊗ C′

pub

)⊥
has length n + t,

dimension n + t − k and is an LRPC-code that is associated to a homogeneous
matrix that has all its entries in an Fq subspace F of Fqm of dimension 2 which
contains 1. Furthermore, the sets

D �
={c ∈ (

Fqm ⊗ C′
pub

)⊥
: Supp(c) ⊆ Fq} and D′ �

={c ∈ (
Fqm ⊗ C′

pub

)⊥
: Supp(c) ⊆ F}

are Fq-subspaces of dimension ≥ t and ≥ n − k + 2t respectively.
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To end our attack we make now the following assumption that was again cor-
roborated in our experiments.

Assumption 2. We can extract from sets D and D′ a basis of
(
Fqm ⊗ C′

pub

)⊥

with

1. t codewords of support Fq,
2. n − k codewords of a same support of rank 2 which contains 1.

Lemma 3. Under Assumptions 1 and 2 there exists a parity-check matrix H′ ∈
F
(n+t−k)×(n+t)
qm of Fqm ⊗ C′

pub, an invertible matrix P of size n + t with entries
in the small field Fq and an invertible matrix S of size n + t − k with entries in
Fqm such that

SH′P =
(

It 0
0 R

)

where R is homogeneous of degree 2 and of size (n − k) × n.

The idea now to sign as a legitimate user will be to use the matrix R and the
decoder of Fact 1 (see Sect. 3). Recall that to make a signature for the matrix
Hpub (which defines the public code Cpub) and a message m, we look for an error
e of rank w satisfying n − k = d(w − t − t′) (see Eq. (4) of Fact 1), such that
Hpubeᵀ = sᵀ with s = H(m) (the hash of the message). The algorithm that
follows performs this task:

1. We compute y ∈ F
n+t
qm such that Hpubyᵀ = sᵀ.

2. Let y′ = y(P−1)ᵀ and we compute s′ = (SH′P)y′ᵀ.
1. Let s′

1 be the first t coordinates of s′, s′
2 its last n− k ones. We apply

the decoder of Sect. 3 with:
- The subspace T

�
= Supp(s′

1)+T ′ where T ′ is a random subspace
of Fqm of dimension t′.

- The parity-check matrix R and the syndrome s′
2.

Then we get a vector e′ such that T ⊆ Supp(e′) and Re′ᵀ = s′
2
ᵀ.

4. We compute e = (s′
1, e

′)Pᵀ.

The correctness of this algorithm is proved in the long version of the paper [15].

6 Attack on the IBE in the Rank Metric

In the previous section we showed that RankSign is not a secure signature
scheme. This also shows the insecurity of the IBE proposal made in [26] since it
is partly based on it. It could be thought that it just suffices to replace in the
IBE scheme [26] RankSign by another signature scheme in the rank metric. This
is already problematic, since RankSign was the only known rank metric code-
based signature scheme up to now. We will actually show here that the problem
is deeper than this. We namely show that the parameters proposed in [26] can
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be broken by an algebraic attack that attacks the RSL problem directly and not
the underlying signature scheme. We will however show that the constraints on
the parameters of the scheme coming from Proposition 1 together with the new
constraint for avoiding the algebraic attack exposed here can in theory be met.
In the IBE [26] we are given a matrix GCsgn of size ksgn × nsgn whose coeffi-
cients live in Fqm and the matrix GCsgnE where E has size nsgn × ndec with all
its coefficients which live in a same secret subspace F of dimension wdec and
an attacker wants to recover F . We show in Sect. 6.1 that under the condition
ndec > wdec(nsgn − ksgn) (which is verified in [26]) the code C defined by

C = {e(GsgnE)ᵀ : e ∈ F
ndec
q } ⊆ F

ksgn
qm . (15)

is an Fq-subspace which contains words of weight ≤ wdec which reveal F . It

turns out that the subspace C′ �
= C ∩ F ksgn of words of C whose coordinates all

live in F is of dimension ≥ ndec − wdec(nsgn − ksgn). We then apply standard
algebraic techniques in Subsect. 6.2 to recover C′ and therefore F from it. This
breaks all the parameters proposed in [26]. We conclude this section by showing
that there is in principle a way to choose the parameters of the IBE scheme to
possibly avoid this attack.

6.1 Low Rank Codewords from Instances of the RSL Problem

We prove here that a certain Fq-linear code that contains many low-weight code-
words can be computed by the attacker. This is explained by

Theorem 1. Let (A,AE) be an instance of RSL for parameters n, k,N,w with
A ∈ F

(n−k)×n
qm in systematic form and E ∈ F

n×N
qm where all its coefficients belong

to a same subspace F of dimension w. Furthermore, we suppose that

N > wk. (16)

Let
C �

={e(AE)ᵀ : e ∈ F
N
q } ; C′ �

= C ∩ Fn−k.

C′ is an Fq-subspace of C of dimension ≥ N − wk.

Proof. Let us first decompose E in two parts
[
E1
E2

]
where E1 is formed by the

first n − k rows of E and E2 by the last k ones. The matrix A is in systematic
form, namely (In−k|A′) where A′ ∈ F

(n−k)×k
qm , which gives: AE = E1 + A′E2

Therefore, to prove our theorem we just need to show that

S �
={e ∈ F

N
q : E2eᵀ = 0}

is an Fq-subspace of dimension greater than N − wk. Indeed, for each error e of
S we have (AE)eᵀ = E1eᵀ which belongs to Fn−k as coefficients of E1 are in
the Fq-subspace F and those of e are in Fq.
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Denote the entry in row i and column j of E2 by Ei,j . A word of S satisfies

∀i ∈ �1, k�,

N∑

j=1

Ei,jej = 0.

Looking in addition for e that has all its entries in Fq and expressing these k

linear equations over Fqm in a basis of F (since
∑N

j=1 Ei,jej belongs by definition
to F · Fq = F ) we obtain k dim(F ) = kw linear equations over Fq involving N
unknowns (the ej ’s) in Fq. The solution space is therefore of dimension greater
than N − wk which concludes the proof of the theorem.

6.2 How to Find Low Rank Codewords in Instances of the RSL
Problem

Theorem 1 showed that there are many codewords of weight ≤ wdec in the code
C defined in (15). Let us show now how these codewords can be recovered by an
algebraic attack. The sufficient condition ndec > wdec(nsgn − ksgn) ensuring the
existence of such codewords is met for the parameters proposed in [26].

To explain our algebraic modeling of the problem, let us first recall that for a
fixed basis (β1, · · · , βm) of Fqm over Fq we can view elements of Fksgn

qm as matrices
of size m × ksgn:

∀x ∈ F
ksgn
qm , Mat(x) = (Xi,j) ∈ F

m×ksgn
q where xj =

m∑

i=1

βiXi,j .

The associated matrix code CMat is defined as:

CMat �
={Mat(c) : c ∈ C} ⊆ F

m×ksgn
q .

It is easily verified that this matrix-code has dimension ndec. It is clear now by
applying Theorem 1 that:

Fact 3. CMat contains codewords of rank ≤ dim(F ) which form a Fq-subspace
of dimension ≥ ndec − wdec(nsgn − ksgn).

These are just the codewords c′ which are of the form Mat(c) where c ∈ C
with Supp(c) ⊆ F . We do not expect other codewords of this rank in CMat

since wdec is much smaller than the Varshamov-Gilbert bound in the case of the
parameters proposed in [26].

The Basic Bilinear System. Finding codewords of rank wdec in CMat can be
expressed as an instance of the MinRank problem [11,12]. Once again we propose
the algebraic modeling which was suggested in [5]. It consists here in setting up
the algebraic system with unknowns xi = (xi

1, · · · , xi
m) ∈ F

m
q and yi

j ∈ F
ksgn
q for

1 ≤ i ≤ wdec and 1 ≤ j ≤ ksgn where the xi’s can be thought as a basis of the
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unknown subspace F and the yi
j ’s as coordinates of the codeword in this basis.

In that case the codeword M of CMat of rank wdec has the following form:

M =

⎛

⎜
⎜
⎜
⎝

∑wdec
i=1 xi

1y
i
1

∑wdec
i=1 xi

1y
i
2 . . .

∑wdec
i=1 xi

1y
i
ksgn∑wdec

i=1 xi
2y

i
1

∑wdec
i=1 xi

2y
i
2 . . .

∑wdec
i=1 xi

2y
i
ksgn

...
...

...
...∑wdec

i=1 xi
myi

1

∑wdec
i=1 xi

myi
2 . . .

∑wdec
i=1 xi

myi
ksgn

⎞

⎟
⎟
⎟
⎠

.

Recall now that CMat has the structure of an Fq-subspace of Fm×ksgn
q of dimension

ndec. By viewing the elements of CMat as vectors of Fmksgn
q , i.e. the matrix M =

(Mij) 1≤i≤m
1≤j≤ksgn

is viewed as the vector m = (m�)1≤�≤mksgn where m(i−1)ksgn+j =

Mi,j , we can compute a parity-check matrix HMat for it. It is an (mksgn −
ndec) × mksgn matrix that we denote by HMat = (HMat

ij )1≤i≤mksgn−ndec
1≤j≤mksgn

. This

matrix gives mksgn −ndec bilinear equations that have to be satisfied by the xl
i’s

and the yl
j ’s:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wdec∑

l=1

ksgn∑

j=1

m∑

i=1

HMat
1,(i−1)ksgn+jx

l
iy

l
j = 0

...
wdec∑

l=1

ksgn∑

j=1

m∑

i=1

HMat
mksgn−ndec,(i−1)ksgn+jx

l
iy

l
j = 0

(17)

Restricting the Number of Solutions. We have solved the bilinear system
(17) with Gröbner basis techniques that are implemented in Magma. To speed-
up the resolution, as in the case of the attack on RankSign, we add new equations
to (17) which come from the vectorial structure of F and the set of solutions.

With our notation we can view F as an Fq subspace of Fm
q of dimension wdec

generated by the rows of the matrix:
⎛

⎜
⎜
⎜
⎝

x1
1 · · · x1

m

x2
1 · · · x2

m
...

...
xwdec
1 · · · xwdec

m

⎞

⎟
⎟
⎟
⎠

In this way, we can put this matrix into systematic form, it will generate the
same subspace. Therefore we can add equations

∀(i, j) ∈ �1, wdec�
2, j �= i, xj

i = 0 and xi
i = 1 (18)

without modifying the set of codewords of rank wdec. Furthermore, this set is
an Fq-subspace of dimension greater than ndec − (nsgn − ksgn)wdec and as in
the case of the attack on RankSign we may assume that for a random subset
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I ⊆ �1, ksgn�× �1, wdec� of size ndec − (nsgn −ksgn)−1 there is an element in this
set for which:

∀(j, i) ∈ I, yi
j = 0 and yi0

j0
= 1 for (i0, j0) /∈ I. (19)

Equations (18) and (19) enable us to reduce the number of variables of the
previous bilinear system. The following proposition summarizes the number of
equations and variables that we finally get.

Proposition 3. By eliminating variables using Eqs. (18) and (19) in (17) we
obtain

– mksgn + w2
dec + (nsgn − ksgn) equations;

– mwdec + ksgnwdec unknowns.

In the “typical regime” where m ≈ nsgn ≈ ksgn and wdec ≈ nε
sgn for some ε in

(0, 1) we have a number of equations of order n2
sgn and a number of unknowns

of order n1+ε
sgn , therefore typically the regime where we expect that the Gröbner

basis techniques take subexponential time.

6.3 Numerical Results

We give in Table 2 our numerical results to find codewords of rank wdec in
instances of the RSL problem for the parameters chosen according to [26]. These
results have been obtained with an Intel Core i5 processor, clocked at 1.6 GHz
using a single core, with 8 Go of RAM. In our implementation, we verified that
when we generated an instance whose associated secret is the subspace F we only
got codewords whose coordinates live in this subspace and therefore revealed it.

Table 2. Attack on parameters of the rank-based IBE [26] for 10 random instances of
RSL.

Intended security (nsgn, ksgn, m, wdec, ndec, kdec, q) Average time Max. memory usage

128 bits (100, 80, 96, 4, 96, 9, 2192) 603 s 1.7 GB

6.4 Avoiding the Attack

Although our attack breaks the parameters proposed in [26], there might in
principle be a way to instantiate the IBE with a new signature scheme. Recall
that the constraints that have to be satisfied are given by

wrVG(q,m, nsgn, ksgn) ≤ wsgn ≤ m(nsgn − ksgn)
max(m,nsgn)

(signature constraint) (20)

wsgnwdec ≤ wrVG(q,m, ndec, kdec) (decoding works) (21)
wdec(nsgn − ksgn) ≥ ndec (for avoiding our attack). (22)
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The lower-bound in (20) ensures that we can find a signature whereas the role
of the upper-bound is to ensure that the problem of finding a signature does not
become easy. The constraint (21) is here to ensure that the decoding procedure
used for recovering the plaintext works and the last constraint is here to avoid our
attack. This set of parameters is non-empty under the condition to find an effi-
cient hash and sign signature scheme. For instance, if we have a signature scheme
which achieves the lower bound (20), namely wsgn = wrVG(q,m, nsgn, ksgn) we
can choose:

nsgn = 100 ; ksgn = 75 ; ndec = 96 ; kdec = 4 ; wdec = 4.

More generally, if one wants to set parameters of the IBE [26] we propose
to proceed in the following way. We first propose to choose m = nsgn and a
signature code for which the ratio wrVG(q,m,nsgn,ksgn)

nsgn−ksgn
is sufficiently small (it can

even approach 1
2 ) and we choose

wsgn = (1 − ε)(nsgn − ksgn) (23)

for some appropriate ε. We then choose an Fqm -linear code of parameters
[ndec, kdec] of sufficiently small dimension such that

wrVG(q,m, ndec, kdec) ≥ (1 − ε)ndec.

This is possible in principle. Therefore we can choose wdec such that wsgnwdec ≥
(1 − ε)ndec and for which (21) holds. By satisfying the two first constraints (20)
and (21) in this way, we also satisfy the last one, namely Eq. (22). This can be
verified by arguing that

wdec(nsgn − ksgn) =
wsgnwdec

1 − ε
(we use 23)

≥ ndec(1 − ε)
1 − ε

(we use the particular choice of wdec)
= ndec

6.5 Comparison with Previous Attacks Against RSL

Recall here that the Rank Support Learning (RSL) problem for parameters
n, k,N,w can also be expressed as follows: we have access to a matrix of full
rank A ∈ F

(n−k)×n
qm and to N syndromes Aeᵀ for e chosen uniformly at random

in Fn where F is some fixed subspace of Fqm of dimension w. The problem is
then to recover F . When N = 1 this is just the Rank Syndrome Decoding (RSD)
problem (see Problem 1 in Subsect. 2.2). It is readily verified that the difficulty of
RSL decreases when N grows, however the question for cryptographic purposes
is: “how large N can be while RSL remains hard?” In [26, Sect. 4, p. 14] a first
answer was given by showing that N has to verify

N < wn (24)
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otherwise a polynomial attack can easily be mounted. Here, we strengthen this
condition on N , we require namely that in order to avoid our new attack we
should have

N ≤ wk (k < n). (25)

where k is the dimension of the code of parity-check matrix A ∈ F
(n−k)×n
qm used

in the instance of RSL. This condition is clearly stronger since we always have
k < n at the cost of trading a polynomial attack in the case where (24) is met
with a subexponential attack when (25) is not met.

In the context of the IBE it is actually significantly stronger. This comes from
the fact that in this context we really expect that under reasonable assumptions
that k � n. This can be explained as follows. In this case (25) translates into
ndec ≤ wdec(nsgn −ksgn). The point is that in the typical regime which is needed
for the IBE, we have nsgn − ksgn � nsgn. By typical regime we mean here that
we can assume that for the IBE [26] we have

Assumption 3
ksgn
nsgn

= Ω(1); (26)

m = Θ(nsgn); (27)

wdec = ω(1) (28)

This assumption is minimal in the special case of the IBE [26] as we are going
to explain.

Equations (26) and (27) ensure that we are in the regime where the Gilbert-
Varshamov and the Singleton bounds do not collapse which is essential as
explained in the previous subsection to obtain parameters avoiding our attack
on RSL.

Equation (28) permits to avoid a polynomial attack against the RSL problem.
Indeed, suppose that wdec is bounded, which is wdec = O(1). Recall that in the
IBE, instances of RSL have the following form (GCsgn ,GsgnE) where GCsgn ∈
F

ksgn×nsgn
qm and E is homogeneous with underlying subspace F of dimension wdec.

Solving here the Rank Syndrome Decoding for GCsgn , a weight wdec and the first
column of E as syndrome will give with high probability F as wdec is smaller
than the Varshamov-Gilbert bound. By using Gröbner basis techniques for this
and writing equations in the small field Fq this gives:

1. nsgnwdec unknowns;
2. mksgn bilinear equations.

Under Assumptions (26), (27) and the fact that ksgn ≤ nsgn, we have mksgn =
Θ(nsgnksgn) = Θ(n2

sgn). On the other hand, the number of unknowns is O(nsgn)
as wdec = O(1). This is the regime where we expect to solve the corresponding
bilinear system in polynomial time. Therefore we can safely assume that wdec

tends to infinity to avoid such a polynomial attack.
Assumption 3 leads in this case to the following proposition.



Two Attacks on Rank Metric Code-Based Schemes: RankSign and an IBE 87

Proposition 4. Under Assumption 3, we have when nsgn tends to infinity:

nsgn − ksgn = o(nsgn).

Proof. From Proposition 1 we have: wsgnwdec ≤ min(ndec,m) and thus from

Assumption 3 wsgnwdec = O(nsgn) which gives wsgn
nsgn

= O
(

1
wdec

)
. Under Assump-

tion 3 we have that wdec tends to infinity. Therefore we get

wsgn = o(nsgn). (29)

Now under the signature constraint (see (20)) we have that wsgn ≥
wrVG(q,m, nsgn, ksgn). From Eq. (1) and Assumption 3, particularly (27), it is
easily verified that the last inequality and (29) imply nsgn − ksgn = o(nsgn)
which concludes the proof of the proposition.

7 Attack on the IBE in the Hamming Metric

The purpose of this section is to show that there is an even more fundamental
problem with the general IBE scheme given in Sect. 4 in the Hamming metric.
We will namely prove here that due to the constraint on the parameters coming
from Proposition 1, we can not find a set of parameters which would avoid an
attack based on using generic decoding techniques. Even the simplest of those
techniques, namely the Prange algorithm [40], breaks the IBE in the Hamming
metric in polynomial time. We refer the reader to Sect. 4 where we introduced
all the notations that we are going to use.

To show that the IBE can be attacked in the Hamming metric we proceed
as follows. The attacker knows GCsgnE and that the columns of E have weight
wdec. We will show that we can solve efficiently for the range of parameters
admissible for the IBE the following syndrome decoding problem: given a matrix
GCsgn ∈ F

ksgn×nsgn
2 and s ∈ F

ksgn
2 such that there exists e ∈ F

nsgn
2 of weight

wdec for which GCsgne
ᵀ = sᵀ, we want to recover e. This allows to recover the

columns of E and therefore E. The scheme is broken with this knowledge, since
the attacker also knows H(id)E + mGCdec , H(id) and GCdec . This is used to
derive mGCdec and finally m.

To solve this decoding problem, we use the Prange algorithm (see [40]) whose

complexity is, up to a polynomial factor in nsgn, equal to
(nsgn
wdec

)
(ksgn
wdec

) . In the special

case of the IBE we proved in Proposition 1 that the parameters have to verify
the following constraint:

wsgnwdec = O(nsgn).

Now the parameter wsgn can not be too small either, since for fixed wsgn the
algorithms for decoding linear codes also solve the signature forgery in poly-
nomial time. This problem amounts in the case of the IBE to find a uid such
that

|uidGCsgn − H(id)| = wsgn.
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We will therefore make a minimal assumption that ensures that the decoding
algorithms for solving this problem have at least some (small) subexponential
complexity. We also make the same assumption for the aforementioned recovery
of e. This is obtained by assuming that

Assumption 4. For some ε, ε′ > 0,

wdec = Ω(nε) ; wsgn = Ω(nε′
)

The proof of this proposition is given in the long version of the paper [15].

Proposition 5. Under Assumption 4, the Prange algorithm breaks the IBE
scheme in Hamming metric in polynomial time in nsgn.

8 Concluding Remarks

We have presented here our attacks against the rank-based signature scheme
RankSign and the IBE scheme proposed in [26]. Several comments can be made.

Attack on RankSign. We actually showed that in the case of RankSign, the
complexity is polynomial for all possible strategies for choosing the parameters.
Repairing the RankSign scheme seems to require to modify the scheme itself,
not just adjust the parameters. It might be tempting to conjecture that the
approach against RankSign could also be used to mount an attack on the NIST
submissions based on LRPC codes such as [3,4]. Roughly speaking our approach
consists in looking for low weight codewords in the LRPC code instead of looking
for low weight codewords in the usual suspect, that is the dual of the LRPC code,
that has in this case low weight codewords by definition of the LRPC code. This
approach does not seem to carry over to the LRPC codes considered in those
submissions. The point is that our approach was successful for RankSign because
of the way the parameters of the LRPC code had to be chosen. In particular the
length n, the dimension k and the weight of the LRPC code have to satisfy

n = (n − k)d.

It is precisely this equality that is responsible for the weight 2 codewords in the
LRPC code. If d is not too small (say > 3) and (n − k)d is sufficiently above n,
then the whole approach considered here fails at the very beginning.

Attack on the IBE [26]. The attack on RankSign also breaks the IBE proposal
of [26] since it is based partly on the RankSign primitive. We have shown here
that the problem is actually deeper than this by showing that even if a secure
signature scheme replaces in the IBE, RankSign, then an attack that breaks
directly the RSL problem which is the other problem on which the IBE is based,
can be mounted for the parameters proposed in [26]. Again, as in the case of
RankSign, the reason why this attack was successful comes from the fact that
the constraints on the parameters that are necessary for the scheme to work
properly work in favor of ensuring that a certain code that can be computed
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from the public data has low weight codewords. These low codewords are then
found by an algebraic attack. However, contrarily to the RankSign case, where
the conditions on the parameters force a certain code to have codewords of
low weight, this phenomenon can be avoided by a very careful choice of the
parameters in the IBE. This opens the way for repairing the scheme of [26] if a
secure signature scheme is found for the rank metric.

We have also studied whether the [26] approach for obtaining an IBE scheme
based on coding assumptions could work in the Hamming metric. However in
this case, and contrarily to what happens in the rank metric, we have given a
devastating polynomial attack in the Hamming metric relying on using the sim-
plest generic decoding algorithm [40] that can not be avoided by any reasonable
choice of parameters. It seems that following the GPV [33]/[26] approach for
obtaining an IBE scheme is a dead end in the case of the Hamming metric.

To conclude this discussion on [26], we would like to stress that our result in
the Hamming case does not imply the impossibility of designing an IBE based on
coding theory. It only suggests to investigate other paradigms rather than trying
to adapt the GPV strategy. For instance, the recent progress of [16–18] made on
the design of IBE’s, particularly with the concept of one-time signatures with
encryption, might be applied to cryptography based on decoding assumptions.

Acknowledgments. This work was supported by the ANR CBCRYPT project, grant
ANR-17-CE39-0007 of the French Agence Nationale de la Recherche.
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Abstract. We present an efficient key recovery attack on code based
encryption schemes using some quasi-dyadic alternant codes with exten-
sion degree 2. This attack permits to break the proposal DAGS recently
submitted to NIST.
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1 Introduction

In 1978, in the seminal article [21], McEliece designed a public key encryption
scheme relying on the hardness of the bounded decoding problem [7], i.e. on
the hardness of decoding an arbitrary code. For a long time, this scheme was
considered as unpractical because of the huge size of the public keys compared
to public key encryption schemes relying on algorithmic number theoretic prob-
lems. The trend changed in the last decade because of the progress of quantum
computing and the increasing threat of the existence in a near future of a quan-
tum computer able to break usual cryptography primitives based on number
theoretic problems. An evidence for this change of trend is the recent call of
the National Institute for Standards and Technology (NIST) for post quantum
cryptography. The majority of the submissions to this call are based either on
codes or on lattices.

After forty years of research on code based cryptography, one can identify
two general trends for instantiating McEliece’s scheme. The first one consists in
using codes from probabilistic constructions such as MDPC codes [1,23]. The
other one consists in using algebraic codes such as Goppa codes or more generally
alternant codes. A major difference between these two families of proposals is
that the first one, based on MDPC codes benefits in some cases from clean
security reductions to the decoding problem.

Concerning McEliece instantiations based on algebraic codes, which include
McEliece’s original proposal based on binary Goppa codes, two approaches have
been considered in order to address the drawback of the large of pubic key sizes.
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On the one hand, some proposals suggested to replace Goppa or alternant codes
by more structured codes such as generalised Reed-Solomon (GRS) codes [24],
their low dimensional subcodes [6], or GRS codes to which various transforma-
tions have been applied [2,29,30]. It turns out that most of these proposals have
been subject to polynomial time key-recovery attacks [9,13,28,31]. In addition,
proposals based on Goppa codes which are close to GRS codes, namely Goppa
code with a low extension degree m have been the target of some structural
attacks [12,17]. On the other hand, many proposals suggest the use of codes
with a non trivial automorphism group [5,18,22,26]. A part of these proposals
has been either partially or completely broken [15,16,25]. In particular, in the
design of such proposals, precautions should be taken since the knowledge of a
non trivial automorphism group of the public code facilitates algebraic attacks
by significantly reducing the degrees and number of variables of the algebraic
system to solve in order to recover the secret key.

Among the recent submissions to NIST call for post quantum cryptography,
a proposal called DAGS [3] is based on the use of quasi-dyadic (QD) generalised
Srivastava codes with extension degree m = 2. By quasi-dyadic we mean that the
permutation group of the code is of the form (Z/2Z)γ for some positive integer γ.
Moreover, generalised Srivastava codes form a proper subclass of alternant codes.
DAGS proposal takes advantage of both usual techniques to reduce the size of
the keys. First, by using alternant codes which are close to generalised Reed
Solomon codes i.e. with an extension degree 2. Second, by using codes with
a large permutation group. In terms of security with respect to key recovery
attacks, DAGS parameters are chosen to be out of reach of the algebraic attacks
[15,16]. In addition, it should be emphasised that the choice of alternant codes
which are not Goppa codes permits to be out of reach of the distinguisher by
shortening and squaring used in [12].

Our Contribution. In this article, we present an attack breaking McEliece instan-
tiations based on alternant codes with extension degree 2 and a large permuta-
tion group. This attack permits to recover the secret key in O

(
n3+ 2q

|G|
)

opera-
tions in Fq, where G denotes the permutation group, n the code length and Fq

is the base field of the public code. The key step of the attack consists in finding
some subcode of the public code referred to as D . From this code D and using
an operation we called conductor, the secret key can easily be recovered. For
this main step, we present two ways to proceed, the first approach is based on
a partial brute force search while the second one is based on the resolution of
a polynomial system of degree 2. An analysis of the work factor of this attack
using the first approach shows that DAGS keys with respective estimated secu-
rity levels 128, 192 and 256 bits can be broken with respective approximate work
factors 270, 280 and 258. For the second approach, we were not able to provide
a complexity analysis. However, its practical implementation using Magma [8]
is impressively efficient on some DAGS parameters. In particular, it permits to
break claimed 256 bits security keys in less than one minute!
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This attack is a novel and original manner to recover the structure of alter-
nant codes by jointly taking advantage of the permutation group and the small
size of the extension degree. Even if some variant of the attack reposes on the
resolution of a polynomial system, this system has nothing to do with those of
algebraic attacks of [15–17]. On the other hand, despite this attack shares some
common points with that of [12] where the Schur product of codes (See Sect. 3
for a definition) plays a crucial role, the keys we break in the present article are
out of reach of a distinguisher by shortening and squaring and hence our attack
differs from filtration attacks as in [10,12].

It is worth noting that reparing DAGS scheme in order to resist to the present
attack is possible. Recently, the authors presented new parameter sets which are
out of reach of the first version of the attack. These new parameters are available
on the current version of the proposal1.

2 Notation and Prerequisites

2.1 Subfield Subcodes and Trace Codes

Definition 1. Given a code C of length n over Fqm , its subfield subcode is the
subcode of vectors whose entries all lie in Fq, that is the code:

C ∩ F
n
q .

The trace code is the image of the code by the component wise trace map

TrFqm/Fq
(C )

def
=

{
TrFqm/Fq

(c) | c ∈ C
}

.

Let us recall a classical and well-known result on subfield subcodes and trace
codes.

Theorem 1 (Delsarte Theorem [14]). Let C ⊆ F
n
qm be a code. Then

(C ∩ F
n
q )⊥ = TrFqm/Fq

(C⊥).

2.2 Generalised Reed-Solomon Codes and Alternant Codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by
Fq[z]<k the vector space of polynomials over Fq whose degree is bounded from
above by k. Let m be a positive integer, we will consider codes over Fqm with
their subfield subcodes over Fq. In Sect. 3 and further, we will focus particularly
on the case m = 2.

Definition 2 (Supports and multipliers). A vector x ∈ F
n
qm whose entries

are pairwise distinct is called a support. A vector y ∈ F
n
qm whose entries are all

nonzero is referred to as a multiplier.
1 https://dags-project.org/pdf/DAGS spec.pdf.

https://dags-project.org/pdf/DAGS_spec.pdf
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Definition 3 (Generalised Reed-Solomon codes). Let n be a positive
integer, x ∈ F

n
qm be a support and y ∈ F

n
qm be a multiplier. The generalised

Reed-Solomon (GRS) code with support x and multiplier y of dimension k is
defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fqm [z]<k} .

When y = 1, the code is a Reed-Solomon code and is denoted as RSk(x).

The dual of a GRS code is a GRS code too. This is made explicit in Lemma 1
below. Let us first introduce an additional notation.

Notation 2. Let x ⊆ F
n
qm be a support, we define the polynomial πx ∈ Fqm [z]

as

πx(z) def=
n∏

i=1

(z − xi).

Lemma 1. Let x,y ∈ F
n
qm be a support and a multiplier of length n and k � n.

Then
GRSk(x,y)⊥ = GRSn−k(x,y⊥),

where

y⊥ def
=

(
1

π′
x(x1)y1

, . . . ,
1

π′
x(xn)yn

)
,

and π′
x denotes the derivative of the polynomial πx .

Definition 4 (Alternant code). Let m, n be positive integers such that n �
qm. Let x ∈ F

n
qm be a support, y ∈ F

n
qm be a multiplier and r be a positive integer.

The alternant code of support x, multiplier y and degree r over Fq is defined as

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ F

n
q .

The integer m is referred to as the extension degree of the alternant code.

As a direct consequence of Lemma 1 and Definition 4, we get the following
explicit description of an alternant code.

Ar(x,y) =

{(
1

π′
x(xi)yi

f(xi)
)

i=1,...,n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ F

n
q . (1)

Next, by duality and using Delsarte’s Theorem (Theorem1), we have

Ar(x,y)⊥ = TrFqm/Fq

({
(yig(xi))i=1,...,n

∣∣∣ g ∈ Fqm [z]<r

})
. (2)

We refer the reader to [20, Chap. 12] for further properties of alternant codes.
Recall that the code Ar(x,y) defined in Definition 4 has dimension k � n −
mr and equality holds in general. Moreover, these codes benefit from efficient
decoding algorithms correcting up to � r

2� errors (see [20, Chap. 12 Sect. 9]).
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Fully Non Degenerate Alternant Codes. We conclude this subsection on
alternant codes by a definition which is useful in the sequel.

Definition 5. An alternant code Ar(x,y) is said to be fully non degenerate if
it satisfies the two following conditions.

(i) A generator matrix of Ar(x,y) has no zero column.
(ii) Ar(x,y) �= Ar+1(x,y).

Most of the time, an alternant code is fully non degenerate.

2.3 Punctured and Shortened Codes

The notions of puncturing and shortening are classical ways to build new codes
from existing ones. We recall here their definition.

Definition 6. Let C be a code of length n and I ⊆ {1, . . . , n}. The puncturing
and the shortening of C at I are respectively defined as the codes

PI (C )
def
= {(ci)i∈{1,...,n}\I | c ∈ C },

SI (C )
def
= {(ci)i∈{1,...,n}\I | c ∈ C such that ∀i ∈ I, ci = 0}.

Let us finish by recalling the following classical result.

Notation 3. Let x ∈ F
n
qm be a vector and I ⊆ {1, . . . , n}. Then, the vector xI

denotes the vector obtained from x be removing the entries whose indexes are
in I.

Proposition 1. Let m, r be positive integers. Let x,y ∈ F
n
qm be as in Defini-

tion 4. Let I ⊆ {1, . . . , n}. Then

SI (Ar(x,y)) = Ar(xI ,yI).

Proof. See for instance [12, Proposition 9]. 	


2.4 Quasi-dyadic Codes, Quasi-dyadic Alternant Codes

Quasi-dyadic (QD) codes are codes with a nontrivial permutation group isomor-
phic to (Z/2Z)γ for some positive integer γ. Such a code has length n = 2γn0.
The permutation group of the code is composed of permutations, each one being
a product of transpositions with disjoint supports. The example of interest in
the present article is the case of QD-alternant codes. In what follows, we explain
how to create them.

Notation 4. From now on, q denotes a power of 2 and � denotes the positive
integer such that q = 2�.
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– Let G ⊂ Fqm be an additive subgroup with γ generators, i.e. G is an F2-vector
subspace of Fqm of dimension γ with an F2-basis a1, . . . , aγ . Clearly, as an
additive group, G is isomorphic to (Z/2Z)γ . The group G acts on Fqm by
translation: for any a ∈ G, we denote by τa the translation

τa :
{
Fqm −→ Fqm

x −→ x + a
.

– Using the basis (a1, . . . , aγ), we fix an ordering in G as follows. Any element
u1a1 + · · · + uγaγ ∈ G can be regarded as an element (u1, . . . , uγ) ∈ (Z/2Z)γ

and we sort them by lexicographic order. For instance, if γ = 3:

0 < a1 < a2 < a1 + a2 < a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.

– Let n = 2γn0 for some positive n0 and such that n � qm. Let x ∈ F
n
qm be a

support which splits into n0 blocks of 2γ elements of Fqm , each block being an
orbit under the action of G by translation on Fqm sorted using the previously
described ordering. For instance, suppose γ = 2, then such an x is of the
form,

x = (t1, t1 + a1, t1 + a2, t1 + a1 + a2, . . . ,
. . . , tn0 , tn0 + a1, tn0 + a2, tn0 + a1 + a2),

(3)

where the ti’s are chosen to have disjoint orbits under the action of G by
translation on Fqm .

– Let y ∈ F
n
qm be a multiplier which also splits into n0 blocks of length 2γ

whose entries are equal.
– Let r be a positive integer and consider the code Ar(x,y).
– The set of entries of x is globally invariant under the action of G by transla-

tion. In particular, for any a ∈ G, the translation τa induces a permutation of
the code Ar(x,y). We refer this permutation to as σa. For instance, reconsid-
ering Example (3), the permutations σa1 and σa1+a2 are respectively of the
form

σa1 = (1, 2)(3, 4) · · · (n − 3, n − 2)(n − 1, n)
σa1+a2 = (1, 4)(2, 3) · · · (n − 3, n)(n − 2, n − 1).

The group of permutations {σa | a ∈ G} is isomorphic to G and hence to
(Z/2Z)γ . For convenience, we also denote this group of permutations by G.

Proposition 2. For any r > 0, the code Ar(x,y) is quasi-dyadic.

Proof. See for instance [27, Chap. 5]. 	


2.5 Invariant Subcode of a Quasi-dyadic Code

Definition 7. Given a code C with a non-trivial permutation group G, we define
the code C G as the subcode of C :

C G def
= {c ∈ C | ∀σ ∈ G, σ(c) = c}.
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The invariant subcode has repeated entries since on any orbit of the support
under the action of G, the entries of a codeword are equal. This motivates an
alternative definition of the invariant code where repetitions have been removed.

Definition 8. In the context of Definition 7, let c ∈ F
n
qm be a vector such that

for any σ ∈ G, σ(c) = c. We denote by c the vector obtained by keeping only one
entry per orbit under the action of G on the support. We define the invariant
code with non repeated entries as

C
G def

=
{
c | c ∈ C G}

.

We are interested in the structure of invariant of QD alternant codes. To
study this structure, we first need to recall some basic notions of additive poly-
nomials.

Additive polynomials

Definition 9. An additive polynomial P ∈ Fqm [z] is a polynomial whose mono-
mials are all of the form z2

i

for i � 0. Such a polynomial satisfies P (a + b) =
P (a) + P (b) for any a, b ∈ Fqm .

The zero locus of an additive polynomial in Fqm is an additive subgroup of
Fqm and such polynomials satisfy some interpolation properties.

Proposition 3. Let G ⊂ Fqm be an additive group of cardinality 2γ . There
exists a unique additive polynomial ψG ∈ Fqm [z] which is monic of degree 2γ and
vanishes at any element of G.
Proof. See [19, Proposition 1.3.5 & Lemma 1.3.6]. 	

Notation 5. From now on, given an additive subgroup G ⊆ Fqm , we always
denote by ψG the unique monic additive polynomial of degree |G| in Fqm [z] that
vanishes on G.

Invariant of a Quasi-dyadic Alternant Code. It turns out that the invariant
code with non repeated entries of a QD alternant code is an alternant code too.
This relies on the following classical result of invariant theory for which a simple
proof can be found in [15].

Theorem 2. Let f ∈ Fqm [z] and G ⊂ Fqm be an additive subgroup. Suppose that
for any a ∈ G, f(z) = f(z + a). Then, there exists h ∈ Fqm [z] such that f(z) =
h(ψG(z)), where ψG is the monic additive polynomial of degree |G| vanishing at
any element of G.

This entails the following result on the structure of the invariant code of
an alternant code. We refer to Definition 8 for the notation in the following
statement.

Theorem 3. Let C = Ar(x,y) be a QD-alternant code with permutation group
G of order 2γ . Set r′ =

⌊
r
2γ

⌋
. Then,

C
G

= Ar′(ψG(x),y),

Proof. See [4]. 	
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2.6 DAGS

Among the schemes recently submitted to NIST, the submission DAGS [3] uses
as a primitive a McEliece encryption scheme based on QD generalised Srivastava
codes. It is well known that generalised Srivastava codes form a subclass of
alternant codes [20, Chap. 12]. Therefore, this proposal lies in the scope of the
attack presented in what follows.

Parameters proposed in DAGS submission are listed in Table 1.

Table 1. Parameters proposed in DAGS.

Name q m n n0 k k0 γ r0

DAGS 1 25 2 832 52 416 26 4 13

DAGS 3 26 2 1216 38 512 16 5 11

DAGS 5 26 2 2112 33 704 11 6 11

Let us recall what do the parameters q,m, n, n0, k, k0, γ, r0 stand for:

– q denotes the size of the base field of the alternant code;
– m denotes the extension degree. Hence the GRS code above the alternant

code is defined over Fqm ;
– n denotes the length of the QD alternant code;
– n0 denotes the length of the invariant code with non repeated entries
Ar(x,y)

G
, where G denotes the permutation group;

– k denotes the dimension of the QD alternant code;
– k0 denotes the dimension of the invariant code;
– γ denotes the number of generators of G, i.e. G � (Z/2Z)γ ;
– r0 denotes the degree of the invariant code with non repeated entries, which

is alternant according to Theorem3.

Remark 1. The indexes 1, 3 and 5 in the parameters names correspond to secu-
rity levels according to NIST’s call. Level 1, corresponds to 128 bits security
with a classical computer, Level 3 to 192 bits security and Level 5 to 256 bits
security.

In addition to the set of parameters of Table 1, we introduce self chosen
smaller parameters listed in Table 2. They do not correspond to claimed secure
instantiations of the scheme but permitted to test some of our assumptions by
computer aided calculations.

3 Schur Products

From now on and unless otherwise specified, the extension degree m will be equal
to 2. This is the context of any proposed parameters in DAGS.
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Table 2. Small scale parameters, not proposed in DAGS.

Name q m n n0 k k0 γ r0

DAGS 0 24 2 240 15 80 5 4 5

3.1 Product of Vectors

The component wise product of two vectors in F
n
q is denoted by

a � b
def= (a1b1, . . . , anbn).

Next, for any positive integer t we define a�t as

a�t def= a � · · · � a︸ ︷︷ ︸
t times

.

More generally, given a polynomial P ∈ Fq[z] we define P (a) as the vector
(P (a1), . . . , P (an)). In particular, given a ∈ F

n
q2 , we denote by Tr(a) and N(a)

the vectors obtained by applying respectively the trace and the norm map com-
ponent by component:

Tr(a) def= (a1 + aq
1, . . . , an + aq

n)

N(a) def= (aq+1
1 , . . . , aq+1

n ).

Finally, the all one vector (1, . . . , 1), which is the unit vector of the algebra F
n
q

with operations + and � is denoted by 1.

3.2 Schur Product of Codes

The Schur product of two codes A and B ⊆ F
n
q is defined as

A � B
def= 〈a � b | a ∈ A , b ∈ B〉

Fq
.

In particular, A �2 denotes the square code of a code A : A �2 def= A � A .

3.3 Schur Products of GRS and Alternant Codes

The behaviour of GRS and of some alternant codes with respect to the Schur
product is very different from that of random codes. This provides a manner to
distinguish GRS codes from random ones and leads to a cryptanalysis of GRS
based encryption schemes [9,13,31]. Some alternant codes, namely Wild Goppa
codes with extension degree 2 have been also subject to a cryptanalysis based
on Schur products computations [11,12].

Here we recall an elementary but crucial result.
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Theorem 4. Let x ∈ F
n
qm be a support and y,y′ ∈ F

n
qm be multipliers. Let k, k′

be two positive integers, then

GRSk(x,y) � GRSk′(x,y′) = GRSk+k′−1(x,y � y′).

Proof. See for instance [9, Proposition 6]. 	


4 Conductors

In this section, we introduce a fundamental object in the attack to follow. This
object was already used in [10,12] without being named. We chose here to call
it conductor. The rationale behind this terminology is explained in Remark 2.

Definition 10. Let C and D be two codes of length n over Fq. The conductor
of D into C is defined as the largest code Z ⊆ F

n
q such that D � Z ⊆ C . That

is:
Cond(D ,C )

def
= {u ∈ F

n
q | u � D ⊆ C }.

Proposition 4. Let D ,C ⊆ F
n
q be two codes, then

Cond(D ,C ) =
(
D � C⊥)⊥

.

Proof. See [10,12]. 	

Remark 2. The terminology conductor has been borrowed from number theory
in which the conductor of two subrings O,O′ of the ring of integers OK of a
number field K is the largest ideal P of OK such that P · O ⊆ O′.

4.1 Conductors of GRS Codes

Proposition 5. Let x,y ∈ F
n
qm be a support and a multiplier. Let k � k′ be two

integers less than n. Then,

Cond(GRSk(x,y),GRSk′(x,y)) = RSk′−k+1(x).

Proof. Let E denote the conductor. From Proposition 4 and Lemma 1,

E ⊥ = GRSk(x,y) � GRSn−k′(x,y⊥) = GRSn−k′+k−1(x,y � y⊥).

Note that

y � y⊥ =
(

1
π′
x(x1)

, . . . ,
1

π′
x(xn)

)
.

Then, using Lemma 1 again, we get

E = GRSk′−k+1(x, (y � y⊥)
⊥

) = RSk′−k+1(x).

	

Let us emphasize a very interesting aspect of Proposition 4. We considered

the conductor of a GRS code into another one having the same support and
multiplier. The point is that the conductor does not depend on y. Hence the
computation of a conductor permits to get rid of the multiplier and to obtain a
much easier code to study: a Reed-Solomon code.



An Efficient Structural Attack on NIST Submission DAGS 103

4.2 An Illustrative Example: Recovering the Structure of GRS
Codes Using Conductors

Before presenting the attack on QD-alternant codes, we propose first to describe
a manner to recover the structure of a GRS code. This may help the reader to
understand the spirit the attack to follow.

Suppose we know a generator matrix of a code Ck = GRSk(x,y) where
(x,y) are unknown. In addition, suppose that we know a generator matrix of the
subcode Ck−1 = GRSk−1(x,y) which has codimension 1 in Ck. First compute
the conductor

X = Cond(Ck−1,Ck).

From Proposition 5, the conductor X equals RS2(x). This code has dimension
2 and is spanned by 1 and x. We claim that, from the knowledge of X , a pair
(x′,y′) such that Ck = GRSk(x′,y′) can be found easily by using techniques
which are very similar from those presented further in Sect. 6.6.

Of course, there is no reason that we could know both GRSk(x,y) and
GRSk−1(x,y). However, we will see further that the quasi-dyadic structure per-
mits to find interesting subcodes whose conductor may reveal the secret structure
of the code.

4.3 Conductors of Alternant Codes

When dealing with alternant codes, having an exact description of the conduc-
tors like in Proposition 5 becomes difficult. We can at least prove the following
theorem.

Proposition 6. Let x,y ∈ F
n
q2 be a support and a multiplier. Let r′ � r be two

positive integers. Then,

RSr′−r+1(x) ∩ F
n
q ⊆ Cond(Ar′(x,y),Ar(x,y)). (4)

Proof. Consider the Schur product
(
RSr′−r+1(x) ∩ F

n
q

)
�Ar′(x,y)

=
(
RSr′−r+1(x) ∩ F

n
q

)
� (GRSn−r′(x,y⊥) ∩ F

n
q )

⊆ (RSr′−r+1(x) � GRSn−r′(x,y⊥)) ∩ F
n
q .

Next, using Theorem 4,
(
RSr′−r+1(x) ∩ F

n
q

)
� Ar′(x,y) ⊆ GRSn−r(x,y⊥) ∩ F

n
q

⊆ Ar(x,y).

The last inclusion is a consequence of Lemma 1 and Definition 4. 	
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4.4 Why the Straightforward Generalisation Of the Illustrative
Example Fails for Alternant Codes

Compared to Proposition 5, Proposition 6 provides only an inclusion. However,
it turns out that we experimentally observed that the equality frequently holds.

On the other hand, even if inclusion (4) was an equality, the attack described
in Sect. 3.2 could not be straightforwardly generalised to alternant codes. Indeed,
suppose we know two alternant codes with consecutive degrees Ar+1(x,y) and
Ar(x,y). Then, Proposition 6 would yield

RS2(x) ∩ F
n
q ⊆ Cond(Ar+1(x,y),Ar(x,y)). (5)

Suppose that the above inclusion is actually an equality; as we just said this is in
general what happens. The point is that as soon as x has one entry in Fq2 \ Fq,
then RS2(x)∩F

n
q is reduced to the code spanned by 1 and hence cannot provide

any relevant information.
The previous discussion shows that, if we want to generalise the toy attack

described in Sect. 4.2 to alternant codes, we cannot use a pair of alternant codes
with consecutive degrees. In light of Proposition 6, the gap between the degrees
r and r′ of the two alternant codes should be large enough to provide a non
trivial conductor. A sufficient condition for this is that RSr′−r+1(x)∩F

n
q is non

trivial. This motivates the introduction of a code we called the norm trace code.

4.5 The Norm-Trace Code

Notation 6. In what follows, we fix α ∈ Fq2 such that Tr(α) = 1. In particular,
(1, α) forms an Fq-basis of Fq2 .

Definition 11 (Norm trace code). Let x ∈ F
n
q2 be a support. The norm-trace

code NT (x) ⊆ F
n
q is defined as

NT (x)
def
= 〈1,Tr(x),Tr(αx),N(x)〉Fq

.

This norm trace code turns out to be the code we will extract from the public
key by conductor computations. To relate it with the previous discussions, we
have the following statement whose proof is straightforward.

Proposition 7. Let x ∈ F
n
q2 be a support. Then, for any k > q + 1, we have

NT (x) ⊆ RSk(x) ∩ F
n
q . (6)

Remark 3. It addition to this statement, we observed experimentally that for
2q + 1 > k > q + 1 inclusion (6) is in general an equality.
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4.6 Summary and a Heuristic

First, let us summarise the previous discussions.

– If we know a pair of alternant codes Ar(x,y) and Ar′(x,y) such that
q < r′ − r, then Cond(Ar′(x,y),Ar(x,y)) is non trivial since, according
to Proposition 6 and to (6), it contains the norm-trace code.

– Experimentally, we observed that if q < r′ − r < 2q, then, almost every time,
we have

Cond(Ar′(x,y),Ar(x,y)) = NT (x).

– One problem remains: given an alternant code Ar(x,y), how to get a subcode
Ar′(x,y) in order to apply the previous results? This will be explained in
Sects. 5 and 6 in which we show that for quasi-dyadic alternant codes it is
possible to get a subcode D ⊆ Ar(x,y) such that D ⊆ Ar′(x,y) for some r′

satisfying r′ − r > q + 1.
Moreover, it turns out that Ar′(x,y) can be replaced by a subcode without
changing the result of the previous discussions. This is what is argued in the
following heuristic.

Heuristic 1. In the context of Proposition 6, suppose that q < r − r′ < 2q. Let
D be a subcode of Ar′(x,y) such that

(i) dimD · dimAr(x,y)⊥ � n;
(ii) D �⊂ Ar′+1(x,y);
(iii) a generator matrix of D has no zero column.

Then, with a high probability,

Cond(D ,Ar(x,y)) = NT (x).

Let us give some evidences for this heuristic. From Proposition 4,

Cond(D ,Ar(x,y)) =
(
D � Ar(x,y)⊥)⊥

.

From (2), we have Ar(x,y)⊥ = TrFq2/Fq
(GRSr(x,y)). Since D is a code over

Fq and by the Fq-linearity of the trace map, we get

D � Ar(x,y)⊥ = TrFq2/Fq
(D � GRSr(x,y)) .

Since D ⊆ Ar′(x,y) then, from (1), it is a subset of a GRS code. Namely,

D ⊆ GRSn−r′(x,y⊥), where y⊥ =
(

1
π′
x(x1)y1

, . . . ,
1

π′
x(xn)yn

)
.

Therefore, thanks to Theorem 4, we get

D � Ar(x,y)⊥ ⊆ TrFq2/Fq

(
GRSn−r′+r−1(x,y � y⊥)

)
. (7)
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Note that D �Ar(x,y)⊥ is spanned by dimD · dimAr(x,y)⊥ generators which
are obtained by computing the Schur products of elements of a basis of D by
elements of a basis of Ar(x,y)⊥. By (i), the number of such generators exceeds
n. For this reason, it is reasonable to hope that this Schur product fills in the
target code and that,

D � Ar(x,y)⊥ = TrFq2/Fq

(
GRSn−r′+r−1(x,y � y⊥)

)
.

Next, we have

y � y⊥ =
(

1
π′
x(x1)

, . . . ,
1

π′
x(xn)

)
.

Therefore, using Lemma 1, we conclude that

(
D � Ar(x,y)⊥)⊥

= RSr′−r+1(x) ∩ F
n
q .

Using Remark 3, we get the result.

Remark 4. Assumption (ii) permits to avoid the situation where the conductor
could be the subfield subcode of a larger Reed-Solomon code. Assumption (iii)
permits to avoid the presence of words of weight 1 in the conductor that would
not be elements of a Reed-Solomon code.

Further Discussion on the Heuristic. In all our computer experiments, we never
observed any phenomenon contradicting this heuristic.

5 Fundamental Degree Properties of the Invariant
Subcode of a QD Alternant Code

A crucial statement for the attack is:

Theorem 5. Let x,y ∈ F
n
q2 be a support and a multiplier. Let s be an integer

of the form s = 2γs0. Suppose that As0(ψG(x),y) is fully non degenerate (see
Definition 5 and Sect. 2.5 for notation ψG and y). Then,

(a) As(x,y)G ⊆ As+|G|−1(x,y);
(b) As(x,y)G �⊆ As+|G|(x,y).

Proof. From (1), we have

As(x,y) =

{(
1

yiπ′
x(xi)

f(xi)
)

i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s

}
∩ F

n
q .

This code is obtained by evaluation of polynomials of degree up to

n − s − 1 = (2γ(n0 − s0) − 1).
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From Theorem 2, the invariant codewords of As(x,y) come from evaluations of
polynomials of the form h◦ψG . Such polynomials have a degree that is a multiple
of deg ψG = 2γ and hence their degree cannot exceed 2γ(n0 −s0 −1). Thus, they
should lie in Fq2 [z]�n−s−|G| = Fq2 [z]<n−s−|G|+1. This leads to

As(x,y)G ⊆
{(

1
yiπ′

x(xi)
f(xi)

)

i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s−|G|+1

}
∩ F

n
q

⊆ As+|G|−1(x,y).

This proves (a).
To prove (b), note that the assumption on As0(ψG(x),y) asserts the existence

of f ∈ Fq2 [z]<n0−s0 such that deg f = n0 − s0 − 1 and f(ψG(x)) ∈ F
n0
q . Thus,

f(ψG(x)) ∈ F
n
q and deg(f ◦ ψG) = n − s − |G|. Therefore f(ψ(x)) ∈ As(x,y)G

and As(x,y)G contains an element of As+|G|−1(x,y) that is not in As+|G|(x,y).
	


6 Presentation of the Attack

6.1 Context

Recall that the extension degree is always m = 2. The public code is the QD
alternant code

Cpub
def= Ar(x,y),

with a permutation group G of cardinality |G| = 2γ . As in Sect. 2.6, the code
has a length n = n02γ , dimension k and is defined over a field Fq and q = 2� for
some positive integer �. The degree r of the alternant code is also a multiple of
|G| = 2γ and hence is of the form r = r02γ . We suppose from now on that the
classical lower bound on the dimension k is reached, i.e. k = n− 2r. This always
holds in the parameters proposed in [3]. We finally set k0 = k/2γ . In summary,
we have the following notation

n = n02γ , k = k02γ , r = r02γ . (8)

6.2 The Subcode D

We introduce a subcode D of Cpub and prove that its knowledge permits to com-
pute the norm trace code. This code D is unknown by the attacker and we will see
in Sect. 7 that the time consuming part of the attack consists in guessing it.

Definition 12. Suppose that |G| � q. We define the code D as

D
def
= Ar+q(x,y)G

.
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Remark 5. For parameters suggested in DAGS, we always have |G| � q, with
strict inequality for DAGS 1 and DAGS 3 and equality for DAGS 5.

Remark 6. The case q < |G| which never holds in DAGS suggested parameters
would be particularly easy to treat. In such a situation, replacing possibly G by
a subgroup, one can suppose that |G| = 2q. Next, according to Theorem 5, and
Heuristic 1, we would have

Cond((Cpub)
G
,Cpub) = NT (x),

which would provide a very simple manner to compute NT (x).

The following results are the key of the attack. Theorem6 explains why this
subcode D is of deep interest and how it can be used to recover the norm-trace
code, from which the secret key can be recovered (see Sect. 6.6). Theorem 7
explains why this subcode D can be computed in a reasonable time thanks to
the QD structure. Indeed, it shows that even if D has a large codimension as
a subcode of Cpub its codimension in (Cpub)

G is much smaller. This is why the
QD structure plays a crucial role in this attack (Table 3).

Theorem 6. Under Heuristic 1 and assuming that Ar+q(x,y)
G

is fully non
degenerate (see Definition 5), we have

Cond(D ,Cpub) = NT (x).

Proof. It is a direct consequence of Theorem 5 and Heuristic 1. 	

Theorem 7. The code D has codimension � 2q

|G| = 2�−γ+1 in (Cpub)
G.

Proof. Using Theorem 3, we know that D has the same dimension as
Ar0+

q
|G|

(ψG(x),y). This code has dimension � n0 − 2(r0 + q
|G| ). Since

dim (Cpub)
G = k0 = n0 − 2r0, we get the result. 	


Remark 7. Actually the codimension equals 2�−γ+1 almost all the time.

Table 3. Numerical values for the code D

Proposal D Codimension in (Cpub)
G

DAGS 1 A240(x,y)G 4

DAGS 3 A416(x,y)G 4

DAGS 5 A768(x,y)G 2
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6.3 Description of the Attack

The attack can be summarised as follows:

(1) Compute (Cpub)
G ;

(2) Guess the subcode D of (Cpub)
G of codimension 2q

|G| such that

Cond(D ,Cpub) = NT (x);

(3) Determine x from NT (x) and then y from x.

The difficult part is clearly the second one: how to guess D? We present two
manners to realise this guess.

– The first one consists in performing exhaustive search on subcodes of codi-
mension 2q

|G| of (Cpub)
G .

– The second one consists in finding both D and NT (x) by solving a system
of equations of degree 2 using Gröbner bases.

The first approach has a significant cost but which remains far below the
expected security level of DAGS proposed parameters. For the second approach,
we did not succeed to get a relevant estimate of the work factor but its prac-
tical implementation permits to break DAGS 1 in about 20 min and DAGS 5 in
less than one minute (see Sect. 8 for further details on the implementation). We
did not succeed to break DAGS 3 parameters using the second approach. On the
other hand the first approach would have a work factor of ≈ 280 for keys with
an expected security of 192 bits.

The remainder of this section is devoted to detail the different steps of the
attack.

6.4 First Approach, Brute Force Search of D

A first way of getting D and then of obtaining NT (x) consists in enumerating
all the subspaces X ⊆ (Cpub)

G of codimension 2q
|G| until we find one such that

Cond(X ,Cpub) has dimension 4. Indeed, for an arbitrary X the conductor will
have dimension 1 and be generated by 1, while for X = D the conductor will
be NT (x) which has dimension 4.

The number of subspaces to enumerate is in O(q(2q/|G|)(k0−2q/|G|)) which is
in general much too large to make the attack practical. It is however possible to
reduce the cost of brute force attack as follows.

Using Random Subcodes of Dimension 2. For any parameter set proposed
in DAGS, the public code has a rate k/n less than 1/2. Hence, its dual has rate
larger than 1/2. Therefore, according to Heuristic 1, given a random subcode D0

of D of dimension 2, then Cond(D0,Cpub) = NT (x) with a high probability.
Thus, one can proceed as follows
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– Pick two independent vectors c, c′ ∈ (Cpub)
G at random and compute

Cond(〈c, c′〉,Cpub);
– If the conductor has dimension 4, you probably found NT (x), then pursue

the attack as explained in Sect. 6.6.
– Else, try again.

The probability that c, c′ ∈ D equals q− 4q
|G| . Therefore, one may have found

NT (x) after O(q
4q
|G| ) computations of conductors.

Example 1. The average number of computations of conductors will be

– O(q8) = O(240) for DAGS 1;
– O(q8) = O(248) for DAGS 3;
– O(q4) = O(224) for DAGS 5.

Using Shortened Codes. Another manner consists in replacing the public
code by one of its shortenings. For that, we shorten Cpub = Ar(x,y) at a set of
a = a02γ positions which is a union of blocks, so that the shortened code remains
QD. We choose the integer a such that the invariant subcode of the shortened
code has dimension 2 + 2q

|G| and hence the shortening of D has dimension 2. Let
I be such a subset of positions. To determine SI (D), we can enumerate any
subspace X of dimension 2 of SI (Cpub) and compute Cond(X ,SI (Cpub)).
In general, we get the trivial code spanned by the all-one codeword 1. If the
conductor has dimension 4 it is highly likely that we found SI (D) and that the
computed conductor equals NT (xI).

The number of such spaces we enumerate is in O(q
4q
|G| ), which is very similar

to the cost of the previous method.

6.5 Second Approach, Solving Polynomial System of Degree 2

An alternative approach to recover D and NT (x) consists in solving a polyno-
mial system. We proceed as follows. Since Tr(x) ∈ Cond(D ,Cpub) and, from

Proposition 4, Cond(D ,Cpub) = (D � Cpub
⊥)

⊥
, then

GD �Cpub
⊥ · Tr(x)� = 0,

where GD �Cpub
⊥ denotes a generator matrix of D � Cpub

⊥. The above identity
holds true when replacing Tr(x) by Tr(βx) for any β ∈ Fq2 . Hence,

GD �Cpub
⊥ · x� = 0. (9)

The above identity provides the system we wish to solve. We have two type of
unknowns: the code D and the vector x. Set c

def= 2q
|G| the codimension of D
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in (Cpub)
G . For D , let us introduce (k0 − c)k0 formal variables U11, . . . , U1,c,

. . . , Uk0−c,1, . . . , Uk0−c,c and set

U
def=

⎛
⎜⎝

U11 · · · U1,c

...
...

Uk0−c,1 · · · Uk0−c,c

⎞
⎟⎠ and G(Uij)

def=
(
Ik0−c | U ) · Ginv,

where Ik0−c denotes the (k0 − c) × (k0 − c) identity matrix and Ginv denotes
a k0 × n0 generator matrix of (Cpub)

G . It is probable that D has a generator
matrix of the form G(uij) for some special values u11, . . . , uk0−c,c ∈ Fq. The case
where D has no generator matrix of this form is rare and can be addressed by
choosing another generator matrix for (Cpub)

G .
Now, let H be a parity-check matrix of Cpub. A generator matrix of

D � Cpub
⊥ can be obtained by constructing a matrix whose rows list all the

possible Schur products of one row of a generator matrix of D by one row of a
parity-check matrix of Cpub. Therefore, let R(Uij) be a matrix with entries in
Fq[U1,1, . . . , Uk0−c,c] whose rows list all the possible Schur products of one row of
G(Ui,j) and one row of H. Hence, there is a specialisation u11, . . . , uk0−c,c ∈ Fq

of the variables Uij such that R(uij) is a generator matrix of D � Cpub
⊥.

The second set of variables X1, . . . , Xn corresponds to the entries of x.
Using (9), the polynomial system we have to solve is nothing but

R(Uij) ·

⎛
⎜⎝

X1

...
Xn

⎞
⎟⎠ = 0. (10)

Reducing the Number of Variables. Actually, it is possible to reduce the
number of variables using three different tricks.

1. Since the code is QD, the vector x is a union of orbits under the action of the
additive group G. Therefore, one can introduce formal variables A1, . . . , Aγ

corresponding to the generators of G. Then, one can replace (X1, . . . , Xn) by

(T1, T1 + A1, . . . , T1 + A1 + · · · + Aγ , T2, T2 + A1, . . . ). (11)

for some variables T1, . . . , Tn0 .
2. Without loss of generality and because of the 2-transitive action of the affine

group on Fq2 , one can suppose that the first entries of x are 0 and 1 respec-
tively (see for instance [12, Appendix A]). Therefore, in (11), one can replace
T1 by 0 and A1 by 1.

3. Similarly to the approach of Sect. 6.4, one can shorten the codes so that D
has only dimension 2, which reduces the number of variables Uij to 2c and
also reduces the length of the support we seek and hence reduces the number
of the variables Ti.
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On the Structure of the Polynomial System. The polynomial equations
have all the following features:

– Any equation is the sum of an affine and a bilinear form;
– Any degree 2 monomial is either of the form UijAk or of the form UijTk.

Table 4 lists for the different proposals the number of variables of type U,A
and T of the system when we use the previously described shortening trick.

Table 4. Number of variables of type U, A and T of the system

Proposal Number of Uij ’s Number of Ai’s Number of Ti’s

DAGS 1 8 3 31

DAGS 3 8 4 27

DAGS 5 4 5 25

6.6 Finishing the Attack

When the previous step of the attack is over, then, if we used the first approach
based on a brute force search of D , we know at least NT (x) or NT (xI) for some
set I of positions. If we used the second approach, then x is already computed,
or at least xI for some set of indexes I. Thus, there remains to be able to

(1) recover x from NT (x) or xI from NT (xI);
(2) recover y from x or yI from xI ;
(3) recover x,y from xI ,yI .

Recovering x from NT (x). The code NT (x) has dimension 4 over Fq and
is spanned by 1,Tr(x),Tr(αx),N(x). It is not difficult to prove that

NT (x) ⊗ Fq2 = 〈1,x,x�q,x�(q+1)〉,
where NT (x) ⊗ Fq2 denotes the Fq2 -linear code contained in F

n
q2 and spanned

over Fq2 by the elements of NT (x).
Because of the 2-transitivity of the affine group on Fq2 , without loss of gen-

erality, one can suppose that the first entry of x is 0 and the second one is 1 (see
for instance [12, Appendix A]). Therefore, after shortening NT (x)⊗Fq2 we get
a code that we call S , which is of the form

S
def= S{1}

(
NT (x) ⊗ Fq2

)
= 〈x,x�q,x�(q+1)〉Fq2

.

Next, a simple calculation shows that

S ∩ S �2 = 〈x�(q+1)〉.
Since, the second entry of x has been set to 1, we can deduce the value of x�(q+1).
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Remark 8. Actually, both S and NT (x) have a basis defined over Fq, therefore,
to get 〈x�(q+1)〉Fq

it is sufficient to perform any computation on codes defined
over Fq.

Now, finding x is easy: enumerate the affine subspace of NT (x) ⊗ Fq2 of
vectors whose first entry is 0 and second entry is 1 (or equivalently, the affine
subspace of vectors of S whose first entry equals 1). For any such vector c,
compute c�(q+1). If c�(q+1) = x�(q+1), then c equals either x or x�q. Since
Ar(x,y) = Ar(x�q,y�q) (see for instance [12, Lemma 39]), taking x or x�q has
no importance. Thus, without loss of generality, one can suppose x has been
found.

Recovering y from x. This is very classical calculation. The public code Cpub

is alternant, and hence is well-known to have a parity-check matrix defined over
Fq2 of the form

Hpub =

⎛
⎜⎜⎜⎝

y1 · · · yn

x1y1 · · · xnyn

...
...

xr−1
1 y1 · · · xr−1

n yn

⎞
⎟⎟⎟⎠ . (12)

Denote by Gpub a generator matrix of Cpub. Then, since the xi’s are known,
then the y′

is can be computed by solving the linear system

Hpub · G�
pub = 0.

Recovering x,y from xI ,yI . After a suitable reordering of the indexes, one
can suppose that I = {s, s + 1, . . . , n}. Hence, the entries x1, . . . , xs−1 of x and
y1, . . . , ys−1 are known. Set I ′ def= I \ {s}. Thus, let G(I ′) be a generator matrix
of Ar(xI′ ,yI′), which is nothing by SI′ (Cpub). Using (12), we have

⎛
⎜⎜⎜⎝

y1 · · · ys

x1y1 · · · xsys

...
...

xr−1
1 y1 · · · xr−1

s ys

⎞
⎟⎟⎟⎠ · G(I ′) = 0.

In the above identity, all the x′
is and y′

is are known but xs, ys. The entry ys can
be found by solving the linear system

(
y1 · · · ys

) · G(I ′) = 0.

Then, xs can be deduced by solving the linear system
(
x1y1 · · · xsys

) · G(I ′) = 0.

By this manner, we can iteratively recover the entries xs+1, . . . , xn and
ys+1, . . . , yn. The only constraint is that I should be small enough so that
SI (Cpub) is nonzero. But this always holds true for the choices of I we made in
the previous sections.
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6.7 Comparison with a Previous Attack

First, let us recall the attack on Wild Goppa codes over quadratic extensions
[12]. This attack concerns some subclass of alternant codes called wild Goppa
codes. For such codes a distinguisher exists which permits to compute a filtration
of the public code. Hence, after some computations, we obtain the subcode
Ar+q+1(x,y) of the public code Ar(x,y). Then, according to Heuristic 1, the
computation of a conductor permits to get the code NT (x). As soon as NT (x)
is known, the recovery of the secret is easy. Note that, the use of the techniques
of Sect. 6.6 can significantly simplify the end of the attack of [12] which was
rather technical.

We emphasise that, out of the calculation of NT (x) by computing a con-
ductor which appears in our attack so that in [12], the two attacks remain very
different. Indeed, the way one gets a subcode whose conductor into the public
code provides NT (x) is based in [12] on a distinguisher which does not work for
general alternant codes which are not Goppa codes. In addition, in the present
attack, the use of the permutation group is crucial, while it was useless in [12].

7 Complexity of the First Version of the Attack

As explained earlier, we have not been able to provide a complexity analysis
of the approach based on polynomial system solving. In particular because the
Macaulay matrix in degree 2 of the system turned out to have a surprisingly low
rank, showing that this polynomial system was far from being generic. Conse-
quently, we limit our analysis to the first approach based on performing a brute
force search on the subcode D .

Since we look for approximate work factors, we will discuss an upper bound
on the complexity and not only a big O.

7.1 Complexity of Calculation of Schur Products

A Schur product A �B of two codes A ,B of length n and respective dimensions
ka, kb is computed as follows.

1. Take bases a1, . . . ,aka
and b1, . . . , bkb

of A and B respectively and construct
a matrix M whose rows are all the possible products ai � bj , for 1 � i � ka

and 1 � j � kb. This matrix has kakb rows and n columns.
2. Perform Gaussian elimination to get a reduced echelon form of M .

The cost of the computation of a reduced echelon form of a s × n matrix is
nsmin(n, s) operations in the base field. The cost of the computation of the
matrix M is the cost of kakb Schur products of vectors, i.e. nkakb operations in
the base field. This leads to an overall calculation of the Schur product equal to

nkakb + nkakb min(n, kakb)
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operations in the base field. When kakb � n, the cost of the Schur product can be
reduced using a probabilistic shortcut described in [10]. It consists in computing
an n × n submatrix of M by choosing some random subset of products ai � bj .
This permits to reduce the cost of computing a generator matrix in row echelon
form of A � B to 2n3 operations in the base field.

7.2 Cost of a Single Iteration of the Brute Force Search

Computing the conductor Cond(X ,Cpub) consists in computing the code

(X � Cpub
⊥)

⊥
. Since our attack consists in computing such conductors for var-

ious X ’s, one can compute a generator matrix of Cpub
⊥ once for good. Hence,

one can suppose a generator matrix for Cpub
⊥ is known. Then, according to

Sect. 7.1, the calculation of a generator matrix of X � Cpub
⊥ costs at most 2n3

operations in Fq.

7.3 Complexity of finding D and NT (x)

According to Sect. 6.4, the average number of iterations of the brute force search
is q2CodimD , that is q

4q
|G| . Thus, we get an overall cost of the first step bounded

above by
2n3q

4q
|G| operations in Fq.

Since, n = Θ(q2), we get a complexity in O(n3+ 2q
|G| ) operations in Fq for the

computation of NT (x).

7.4 Complexity of deducing x, y from NT (x)

A simple analysis shows that the final part of the attack is negligible compared
to the previous step. Indeed,

– the computation of NT (x)�2 costs O(n2) operations in Fq (because of
Remark 8, one can perform these computations over Fq) since the code has
dimension 4;

– the computation of NT (x)�2∩NT (x) boils down to linear algebra and costs
O(n3) operations in Fq;

– The enumeration of the subset of NT (x) ⊗Fq2 of elements whose first entry
is 0 an second one is 1 and computation of their norm costs O(q4n) = O(n3)
operations in Fq2 . Indeed the affine subspace of NT (x)⊗Fq2 which is enumer-
ated has dimension 2 over Fq2 and hence has q4 elements, while the computa-
tion of the component wise norm of a vector costs O(n) operations assuming
that the Frobenius z → zq can be computed in constant time in Fq2 .

– The recovery of y from x boils down to linear algebra and hence can also be
done in O(n3) operations in Fq2 . If we have to recover x,y from xI ,yI , it can
be done iteratively by solving a system of a constant number of equations,
hence the cost of one iteration is in O(n2) operations in Fq2 .

Thus, the overall cost remains in O(n3) operations in Fq2 .
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7.5 Overall Complexity

As a conclusion, the attack has an approximate work factor of

2n3q
4q
|G| operations in Fq. (13)

7.6 Approximate Work Factors of the First Variant Of the Attack
on DAGS Parameters

We assume that operations in Fq can be done in constant time. Indeed, the base
fields of the public keys of DAGS proposal are F32 and F64. For such a field, it
is reasonable to store a multiplication and inversion table.

Therefore, we list in Table 5 some approximate work factors for DAGS accord-
ing to (13). The second column recalls the security levels claimed in [3] for the
best possible attack. The last column gives the approximate work factors for the
first variant of our attack.

Table 5. Work factors of the first variant of the attack

Name Claimed security level Work factor of our attack

DAGS 1 128 bits ≈ 270

DAGS 3 192 bits ≈ 280

DAGS 5 256 bits ≈ 258

8 Implementation

Tests have been done using Magma [8] on an Intel R© Xeon 2.27 GHz.
Since the first variant of the attack had too significant costs to be tested on

our machines, we tested it on the toy parameters DAGS 0. We performed 20 tests,
which succeeded in an average time of 2 h.

On the other hand, we tested the second variant based on solving a poly-
nomial system on DAGS 1, 3 and 5. We have not been able to break DAGS 3
keys using this variant of the attack, on the other hand about 100 tests have
been performed for DAGS 1 and DAGS 5. The average running times are listed in
Table 6.

Table 6. Average times for the second variant of the attack.

Name Claimed security level Average time

DAGS 1 128 bits 19 mn

DAGS 5 256 bits < 1 mn
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Abstract. Pattern matching is essential in applications such as deep-
packet inspection (DPI), searching on genomic data, or analyzing medical
data. A simple task to do on plaintext data, pattern matching is much
harder to do when the privacy of the data must be preserved. Exis-
tent solutions involve searchable encryption mechanisms with at least
one of these three drawbacks: requiring an exhaustive (and static) list
of keywords to be prepared before the data is encrypted (like in sym-
metric searchable encryption); requiring tokenization, i.e., breaking up
the data to search into substrings and encrypting them separately (e.g.,
like BlindBox); relying on symmetric-key cryptography, thus implying
a token-regeneration step for each encrypted-data source (e.g., user).
Such approaches are ill-suited for pattern-matching with evolving pat-
terns (e.g., updating virus signatures), variable searchword lengths, or
when a single entity must filter ciphertexts from multiple parties.

In this work, we introduce Searchable Encryption with Shiftable Trap-
doors (SEST): a new primitive that allows for pattern matching with
universal tokens (usable by all entities), in which keywords of arbi-
trary lengths can be matched to arbitrary ciphertexts. Our solution uses
public-key encryption and bilinear pairings.

In addition, very minor modifications to our solution enable it to
take into account regular expressions, such as fully- or partly-unknown
characters in a keyword (wildcards and interval/subset searches). Our
trapdoor size is at most linear in the keyword length (and independent
of the plaintext size), and we prove that the leakage to the searcher is
only the trivial one: since the searcher learns whether the pattern occurs
and where, it can distinguish based on different search results of a single
trapdoor on two different plaintexts.

To better show the usability of our scheme, we implemented it to run
DPI on all the SNORT rules. We show that even for very large plaintexts,
our encryption algorithm scales well. The pattern-matching algorithm is
slower, but extremely parallelizable, and it can thus be run even on very
large data. Although our proofs use a (marginally) interactive assump-
tion, we argue that this is a relatively small price to pay for the flexibility
and privacy that we are able to attain.
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1 Introduction

Learning whether a given pattern occurs in a larger input string (and where
exactly that happens) has many applications, such as when searching on genomic
data, in deep-packet inspection (DPI), or when delegating searches in databases.
In such cases, the entity performing the search, usually called the gateway, is only
semi-trusted by the owner of the input data. Indeed, in all the three scenarios
above, it is of paramount importance to preserve the privacy of the input data1.

Consider the case of a middlebox, such as a virus scan or a firewall. A user
who may trust the middlebox to scan its data for viruses might not, in fact,
be comfortable revealing the full contents of its data to that middlebox. Simi-
larly, a person might trust a laboratory to check whether their genome contains
a particular substring (indicating, e.g., a genetic predisposition to a disease);
however, the laboratory should not, in this way, come into possession of that
person’s full genome. Such concerns have been exacerbated lately by threats
of mass-surveillance, following the revelations of Edward Snowden. As a conse-
quence, data encryption is slowly becoming an a priori pre-requisite for pattern
matching.

In cryptography, pattern matching on encrypted data is closely related to
Searchable Encryption, either Symmetric [16–18,32] or Public-Key [9]. Many
Searchable Encryption solutions, however, only allow to search for pre-chosen
keywords, which are hard-coded in the encrypted input. Searching for a new
keyword – not indicated a priori – in that same (already encrypted) data would
yield a false negative, even if that keyword is, in fact contained in the input
data. Correctly matching the new pattern to the data requires that the latter
be re-encrypted. Therefore this solution is ill-suited to more dynamic environ-
ments, like DPI. We provide a full comparison with related literature, including
searchable encryption, in Sect. 1.2.

Pattern matching with non-static patterns can be achieved through
symmetric-key techniques and so-called tokenization [31]. In this approach, a
sliding-window technique is used to encode keywords of a given, fixed length,
which can then be matched by the searcher. This allows searches to be performed
for arbitrarily-chosen keywords; however, a disadvantage is that each instantia-
tion requires a new generation of tokens. Moreover, this only works for a fixed
keyword length and different ciphertexts are required to handle different pattern
sizes. This is less than ideal for many use-cases such as DPI, since for instance
SNORT rules [1] include patterns of many different lengths. In this paper, our
goal is to improve on this solution, specifically by allowing to search on encrypted
data, with patterns that are non-static (flexible), of variable length, and univer-
sal (no need to re-tokenize). In particular, we achieve secure pattern-matching
on encrypted data with universal tokens.

1 By contrast, in many cases, the patterns themselves may be publicly known.
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1.1 Our Contributions

We opt for a solution in a public-key setting (which immediately achieves uni-
versality for our patterns). The gateway will be able to search for keywords on
encrypted data using trapdoors that are unforgeable. More specifically, our con-
struction can support pattern matching for keywords that can be adaptively
chosen and which can have variable lengths. Moreover, the size of the trapdoors
corresponding to those keywords does not depend on the length of the input data
(our trapdoors are short, even when we are searching in very large input data).
We support regular expressions, such as the presence of wildcards or matching
encrypted input to general data-subsets. Thus, our solution is well suited to deep
packet inspection or delegated searches on medical data.

Intuitively, in our construction we project each coordinate of the plaintext S
(and then of the keyword W ) on a geometric basis consisting of some values zi,
for i = 0, . . . , |S| − 1. We prevent malleability of trapdoors by embedding the
exact order of the bits of W into a polynomial, which cannot be forged without
the secret key. A fundamental part of the searching algorithm that we propose
is the way in which the middlebox will be able to shift from one part of the
ciphertext to another, when searching for a match with W . Thus, our scheme
can be viewed as an anonymous predicate encryption scheme where one could
derive the secret keys for (∗, w1, . . . , w�, ∗, . . . , ∗), . . ., (∗, . . . , ∗, w1, . . . , w�) from
the secret key for (w1, . . . , w�, ∗, . . . , ∗).

Such changes require the definition of a new primitive that we call Search-
able Encryption with Shiftable Trapdoors (SEST). We provide a formal security
model for the latter, which ensures that even a malicious gateway knowing trap-
doors tdW1 , . . . , tdWq

does not learn any information from an encrypted string
S beyond the presence of the keyword Wk in S, for k ∈ [1, q].

Our construction is – to our knowledge – the first SEST scheme, and thus can
be taken as a proof-of-concept construction. We guarantee the desired properties
by only using asymmetric prime order bilinear groups (i.e. a set of 3 groups G1,
G2 and GT along with an efficient bilinear map e : G1×G2 → GT ) for which very
efficient implementations have been proposed (e.g. [7]). Encryption of plaintexts
S only requires operations in the group G1, while detection of the keyword W
is done by performing pairings. The former operation requires only the public
key while the latter additionally needs the corresponding trapdoor; only the
trapdoor-issuing algorithm requires the corresponding secret key.

We are able to allow for pattern-matching when some of the contents of the
keywords are either fully-unknown, i.e., wildcards, or partially-unknown, i.e., in
an interval. Searches for such regular expressions remain fully-compatible with
our original solution. In the first case, the only difference is that when issuing the
trapdoor, instead of fully randomizing it we choose special randomness – equal
to 0 – for the “coefficients” of the polynomial that we project the wildcards or
unknown subsets to. For the scenario of partially-known trapdoors, we require
a more complex key-generation process since we use different values on which
to (uniformly) project the unclear values to. These will be used in the trapdoor
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generation step, ensuring that if a partially-known input is used, that coefficient
of the trapdoor will still “vanish”.

In particular, our pattern-matching algorithm is very similar to that of Rabin-
Karp and consequently, we can use it to solve similar problems. In addition to
the previous use-cases, our technique can also be used to perform 2D pattern
matching in images, or searching subtrees in rooted, labelled trees. However,
note that due to the privacy-preserving goal of our work, we cannot benefit from
many of the tricks used by Rabin-Karp, thus yielding a scheme with limited
efficiency.

We also analyze how well our scheme performs when applied to DPI. We
implemented our scheme to search for all the SNORT rules in input data of vary-
ing sizes. Even for large data, the encryption algorithm is very efficient. More-
over, while the testing (pattern matching) step scales less well with increasing
input-data size, that particular step is highly parallelizable, and thus the running
time can be much reduced.

Impact and Limitations. Our scheme allows for a flexible searchable encryp-
tion mechanism, in which encrypters do not have to embed a list of possible
keywords into their ciphertexts. Moreover, we also provide a great deal of flexi-
bility with respect to searching for keywords of arbitrary lengths. In this sense,
our technique allows for searchable encryption with universal tokens, which can
be used in deep-packet inspection, applications on genomic and medical data, or
matching subtrees in labelled trees.

One limitation of our scheme is the size of our public keys. We require a
public key of size linear in the size of the plaintext to be encrypted (which is
potentially very large). This is mostly due to the need to shift the ciphertext
each time in order to detect the presence of the keyword. We also require a large
ciphertext, consisting of a number of elements that is again linear in the size of
the plaintext; however, the same inefficiency is inherent also to solutions such as
BlindBox [31], in which we must encrypt many “windows” of the data, of same
size. Finally, the search of a keyword of size � in a plaintext of size n requires at
least 2(n − � + 1) pairing computations.

Furthermore, we are only able to prove the security of our construction under
an interactive assumption, unless we severely restrict the size n of the message
space. Indeed, we need an assumption which offers enough flexibility to provide
shiftable trapdoors for all possible keywords except the one that allow trivial
distinction of the encrypted string. We modify the GDH assumption [8] in a
minimal way, to allow the adversary to request the values on which the reduc-
tion will break this assumption. We could remove the need for this flexibility,
by, for instance reducing the value of n so that the simulator could guess the
strings targeted by the adversary but this strongly limits the applications of our
construction.

We argue that despite this interactive assumption, the intrinsic value of our
construction lies in its flexibility, namely in the fact that we are able to search
for arbitrary keywords. This significantly improves existing solutions of, e.g.,
detecting viruses on encrypted traffic over HTTPS [24,25,31].
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Moreover, we emphasize that we achieve this high level of flexibility without
using complex (and costly) cryptographic tools such as fully homomorphic encryp-
tion. We simply need pairings which have become quite standard in cryptography
and which can be implemented very efficiently [7]. We therefore argue that our
scheme, when compared to solutions providing the same features (see Sect. 1.3 for
more details), offers a practical improvement over the state of the art.

1.2 Related Work

How Searchable Encryption Works. In searchable encryption (SE)
[9,16–18,32], any party that is given a trapdoor tdW associated with a keyword
W is able to search for that keyword within a given ciphertext. The ideal pri-
vacy guarantee required is that searching reveals nothing else on the underlying
plaintext (other than the presence or absence of the keyword). Routing encrypted
emails, querying encrypted database or running an antivirus on encrypted traffic
are typical applications which require such a functionality.

In general, SE searches are usually performed by the middlebox on keywords
that have been pre-chosen by the party encrypting the ciphertexts (i.e., the
encrypter). In particular, an encrypted string containing W can be detected by
the middlebox knowing tdW only if the sender has selected W as a keyword
and has encrypted it using the SE scheme. Such approaches are still suitable for
some types of database searches (in which documents are already indexed by key-
words), or in the case of emailing applications – for which natural keywords can
be the sender’s identity, the subject line, or flags such as “urgent”. Unfortunately,
in cases such as messaging applications, or just for common Internet browsing,
the keywords are much harder to find, and can include expressions that are not
sequences of words per se, but rather something of the kind “http://www.exam-
ple.com/index.php?username=1”.

Our solution allows for better flexibility in terms of searching for arbitrarily-
chosen keywords, even after the plaintext has been encrypted and sent. In fact,
it is not even necessary that the encrypter be the same person as the party
which issues the trapdoors. This makes our solution much better suited to DPI
scenarios, whereas SE is typically better suited to database searches.

Tokenization. The solution proposed in [31] to search keywords of length � is to
split the string S = s0 . . . sn−1 into [s0 . . . s�−1], [s1 . . . s�], . . ., [sn−� . . . sn−1] and
then to encrypt each of these substrings using a searchable encryption scheme
(the substrings are thus the keywords associated with S). However, this solution
has a drawback: it works well if all the searchable keywords W1, . . . ,Wq have the
same length but this is usually not the case. In the worst case, if all searchable
keyword Wk are of different length �k, the sender will have, for each k ∈ [1, q],
to split S in substrings of size �k and encrypt them, which quickly becomes
cumbersome. One solution could be to split the searchable keywords Wk into
smaller keywords of the same length �min = mink(�k). For example, if �min = 3
the searchable keyword “execute” could be split into “exe”, “cut” and “ute”
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for which specific trapdoors would be issued. Unfortunately, this severely harms
privacy since these smaller keywords will match many more strings S. Moreover,
repeating this procedure for every keyword Wk will allow the gateway to receive
trapdoors for a large fraction of the set of strings of length �min and so to recover
large parts of S with significant probability.

We note that Canard et al. [14] recently proposed a public key variant of
the Blindbox [31] approach which therefore suffers from the same limitations.
Moreover, their performance corresponds to the “delimiter-based” version of
their protocol that consists in splitting a string s = s0 . . . sn−1 into t substrings
[s0 . . . sn1−1], [sn1 . . . sn2−1], ..., [snt−1 . . . sn−1] which are then independently
encrypted using searchable encryption. While this dramatically reduces com-
plexity, we stress that this only allows to detect patterns that perfectly match
one of the substrings. In particular, a pattern cannot be detected if it straddles
two substrings.

By contrast, our scheme addresses the main drawback of this tokenization
technique: we allow for universal trapdoors of arbitrary length to be matched
against the encrypted data, without false negatives or positives. This comes at a
cost in performance; however, we show in our implementation that our scheme
remains practical.

Generic Evaluation of Functions on Ciphertexts. Evaluation of functions
over encrypted data is a major topic in cryptography, which has known very
important results over the past decade. Generic solutions (e.g., fully homomor-
phic encryption [22], functional encryption [3,4], etc.), supporting a wide class of
functions, have been proposed; however, their very high complexity makes such
solutions impractical. In practice, it is then better to use a scheme specifically
designed for the function(s) that one wants to evaluate.

Several recent publications study secure substring search and text process-
ing [5,21,23,26,28,29,33], specifically in two-party settings. Some of these papers
provide applications to genomic data, specifically matching substrings of DNA
to encrypted genomes. This was done by using secure multi-party computation
or fully-homomorphic encryption. However, the former solution requires interac-
tion between the searcher and the encrypter, whereas the use of FHE induces a
relatively high complexity. Of particular interest here is the approach by Lauter
et al. [28], which presents an application to genomic data. The authors here go
much further than just matching patterns with some regular expressions, how-
ever, they require fully-homomorphic encryption (FHE) for their applications.
We leave it as future work to investigate in how far we can modify our tech-
nique with universal tokens in order to provide some support to the algorithms
presented by Lauter et al. for genomic matching.

At first sight, anonymous predicate encryption (e.g. [27]) or hidden vec-
tor encryption [11] provide an elegant solution to the problem of searching on
encrypted streams. Indeed, the sender could use one of these schemes to produce
a ciphertext for some attributes s0, . . . , sn−1 which together make up a word S,
while the middlebox, knowing the suitable secret keys, could detect whether S
contains a substring W . The encryption process would then not depend on the
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searchable keywords and the anonymity property of these schemes would ensure
that the ciphertext does not leak more information on S.

However, another issue arises with this solution. Indeed, W = w1 . . . w� can be
contained at any position in S. Therefore, the gateway should receive the secret
keys for (w1, . . . , w�, ∗, . . . , ∗), (∗, w1, . . . , w�, ∗, . . . , ∗), . . ., (∗, . . . , ∗, w1, . . . , w�),
where “∗” plays the role of a wildcard, to take into account all the possible
offsets. So, for each searchable keyword of size �, the gateway would have to
store n − � + 1 keys, which is obviously a problem for large strings S.

DPI with Multi-context Key-Distribution. Naylor et al. [30] recently pre-
sented a multi-context key-exchange over the TLS protocol, which aims to allow
middleboxes (read, write, or no) access to specific ciphertext fragments that they
are entitled to see. This type of solution has some important merits, such as the
fact that it is relatively easy to put into practice and allows the middlebox to
perform its task with a very low overhead (the cost of a simple decryption). In
addition, the parties sending and receiving messages need not deviate from the
protocols they employ (such as TLS/SSL).

However, such solutions also have important disadvantages. The first of these
is that the privacy they offer is not ideal. Instead of simply learning whether a
specific content is contained within a given message or not, the middlebox learns
entire chunks of messages. Moreover, the access-control scheme associated to
the key-exchange scheme is relatively inflexible. The middlebox is given read or
write access to a number of message fragments, and this is not easily modifiable
(except by running the key-distribution algorithm once more). Finally, despite
the efficiency of the search step (once the key-repartition is done), the finer-
grained the access control is – thus offering more privacy – the more keys will
have to be generated and stored by the various participating entities.

1.3 Benefits of SEST

Pattern matching on encrypted data is a very frequently-encountered problem,
which can be addressed by many different primitives. In this context, the bene-
fits of our new primitive (SEST) might not seem obvious. To better understand
the intrinsic differences between all these approaches, we provide in Fig. 1 a
comparison of their asymptotic complexities. We choose to only consider the
most relevant alternatives, namely Searchable Encryption (both Symmetric and
Public-Key) and Predicate Encryption/Hidden Vector Encryption. Other solu-
tions do exist, as explained above; however, they induce high complexity, inter-
activity or weaker privacy.

As we explained, searching substrings at any position using SSE or ASE
requires a tokenization process which must be repeated for each possible length
of keyword, hence the O(n · L) size of the ciphertext. ASE performance is an
adaptation of the tokenization idea of BlindBox to the Public Key Encryption
with Keyword Search of Boneh et al. [9].

Conversely, PE and HVE offer a O(n) complexity for the ciphertext but at
the cost of generating and storing n · q trapdoors (to handle any possible offset).
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We therefore argue that SEST is an interesting middle way which almost
provides the best of the previous two types. Its only drawback compared to SSE
and to ASE is the size of the public parameters but we believe this is a reasonable
price to pay to achieve all the other features.

1.4 Pattern Matching and Privacy

At first sight, the ability to search patterns within a ciphertext may seem harmful
to users’ privacy, compared to standard end-to-end encryption. However, we
stress that it is a lesser evil in many use-cases.

For example, in current solutions for DPI [25], the middlebox acts as a man
in the middle to decrypt all traffic, which means that end-to-end encryption is
gone anyway. Using SEST, the users can at least control which information can
be leaked from their traffic since they are the only ones who can issue trapdoors.
In particular, they can check that the keywords submitted by the middlebox are
legitimate. For example, as we describe in Sect. 6.2, they could agree to issue
trapdoors only for patterns associated to malwares, using public rules such as
the ones provided by SNORT [1].

More generally, the incompatibility of standard encryption with any data
processing often jeopardizes users’ privacy since it gives no other choice than
complete decryption of the traffic. We therefore argue that SEST is far from
being a threat to privacy and can actually be used to improve it.

Outline. Our paper has the following structure. We begin in Sect. 2 by for-
mally defining our new primitive, Searchable Encryption with Shiftable Trap-
doors (SEST). Then, in Sect. 3, we describe an instantiation of this primitive,
which relies on public-key encryption and bilinear pairings. In Sect. 4, we describe
under which assumptions our scheme achieves provable security, and provide a
security proof. We then describe how our construction can be used to handle
regular expressions (wildcards and value intervals) in Sect. 5. Handling regular
expressions is important in real-world applications, including DPI. In Sect. 6 we
discuss the efficiency of our protocol and provide implementation results for pat-
tern matching of all the SNORT rules on encrypted data of various sizes. Finally,
we discuss our results and make some concluding remarks in Sect. 7.

Fig. 1. Complexity comparison between related work and our primitive. The Issue
process refers to the generation of trapdoors. The complexity indicated in the last three
columns is the size complexity. The integers n, q, L, s denote respectively the length of
the message to encrypt, the number of issued trapdoors, the number of different lengths
among the q trapdoors and the number of users communicating with the receiver.
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2 Searchable Encryption with Shiftable Trapdoors

We begin by presenting the syntax of our SEST primitive. Note that in addition
to indicating whether the keyword was found in the (encrypted) plaintext, this
scheme also outputs the position(s) at which the keyword is found. This is one
advantage of shiftable trapdoors2, namely yielding the exact position, within the
target plaintext, of the search word. Such a knowledge is indeed necessary for
some use-cases (see Sect. 6.2).

To keep our model as general as possible we consider strings S = s0 . . . sm−1

whose characters si belong to a finite set S. Since S is finite, we may assume that
each of its elements s can be simply indexed by a unique integer f(s) between 0
and |S| − 1. For sake of simplicity, we will omit in the following the function f
and will then directly use s as an index (for example T [f(s)] will be denoted by
T [s]).

2.1 Syntax

A searchable encryption scheme with shiftable trapdoors is defined by 5 algo-
rithms that we call Setup, Keygen, Issue, Encrypt and Test. The first three of
these are run by an entity called the receiver, while Encrypt is run by a sender
and Test by a gateway.

– Setup(1k, n): This probabilistic algorithm takes as input a security parameter
k and an integer n defining the maximum size of the strings that one can
encrypt. It returns the public parameters pp that will be taken in input by
all the other algorithms. In the following, pp will be considered as an implicit
input to all algorithms and so will be omitted.

– Keygen(S): This probabilistic algorithm run by the receiver takes as input a
finite set S and returns a key pair (sk, pk). The former value is secret and
only known to the receiver, while the latter is public.

– Issue(W, sk): This probabilistic algorithm takes as input a string W of any
size 0 < � ≤ n, along with the receiver’s secret key, and returns a trapdoor
tdW .

– Encrypt(S, pk): This probabilistic algorithm takes as input the receiver’s pub-
lic key along with a string S = s0 . . . sm−1 of size 0 < m ≤ n such that si ∈ S
for all i ∈ [0,m − 1] and returns a ciphertext C.

– Test(C, tdW ): This deterministic algorithm takes as input a ciphertext C
encrypting a string S = s0 . . . sm−1 of size m along with a trapdoor tdW for
a string W = w0 . . . w�−1 of size �. If m > n or � > m, then the algorithm
returns ⊥. Else, the algorithm returns a set (potentially empty) J ⊂ {0,m−�}
of indexes j s.t. sj . . . sj+�−1 = w0 . . . w�−1.

2 Solutions using tokenization, such as Blindbox, also output the position. Here we
compare with standard searchable encryption that usually does not reveal this infor-
mation.
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Remark 1. Notice that searchable encryption, e.g., [2,11], usually does not con-
sider a decryption algorithm which takes as input sk and a ciphertext C encrypt-
ing S and which returns S. Indeed, this functionality can easily be added by also
encrypting S under a conventional encryption scheme. Nevertheless, one can note
that decryption can be performed by issuing a trapdoor for all characters s ∈ S
and running the Test algorithm on C for each of them.

2.2 Security Model

Correctness. As in [2], we divide correctness into two parts. The first one
stipulates that the Test algorithm run on (C, tdW ) will always return j if S
contains the substring W at index j (no false negatives). More formally, this
means that, for any string S of size m ≤ n and any W of length � ≤ m: whenever
sj . . . sj+�−1 = w0 . . . w�−1,

Pr[j ∈ Test(Encrypt(S, pk), Issue(W, sk))] = 1,

where the probability is taken over the choice of the pair (sk, pk).
The second part of the correctness property requires that false positives (i.e.,

when the Test algorithm returns j despite the fact sj . . . sj+�−1 �= w0 . . . w�−1)
only occur with negligible probability. More formally, this means that, for any
string S of size m ≤ n and any string W of length � ≤ m:

Pr

[
j ∈ Test(Encrypt(S, pk), Issue(W, sk))

& sj . . . sj+�−1 �= w0 . . . w�−1

]
≤ μ(k)

where μ is a negligible function.

Indistinguishability (SEST-IND-CPA). For the security requirement of
Searchable Encryption with Shiftable Trapdoors (SEST), we adapt the standard
notion of IND-CPA to this case (hence the name SEST-IND-CPA). Informally,
this notion requires that no adversary A, even with access to an oracle OIssue
which returns a trapdoor tdW for any queried string W , can decide whether a
ciphertext C encrypts S0 or S1 as long as the trapdoors issued by the oracle do
not allow trivial distinction of these two strings. This is formally defined by the
experiment Expind−cpa−β

A (1k, n), where β ∈ {0, 1} as described in Fig. 2. The set
W is the set of all the strings W submitted to OIssue.

We define the advantage of such an adversary as Advind−cpa
A (1k, n) =

|Pr[Expind−cpa−1
A (1k, n)] − Pr[Expind−cpa−0

A (1k, n)]|. A searchable encryption
scheme with shiftable trapdoors is SEST-IND-CPA secure if this advantage is
negligible for any polynomial-time adversary.

We note that this security notion is very similar to the attribute hiding prop-
erty of predicate encryption [27]. However, we cannot directly use this latter
property because of the differences between predicate encryption and our prim-
itive (e.g., the lack of decryption algorithm), hence the need for a new security
game.
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Fig. 2. SEST-IND-CPA security game

The restriction in step 6 simply ensures that if Si contains W ∈ W at offset
j, then this is also the case for S1−i. Otherwise, running the Test algorithm on
(C, tdW ) would enable A to trivially win this experiment.

Although this kind of restriction is very common in predicate/functionnal
encryption schemes (e.g. [27]), we stress that, in practice, one must take care
that it does not lead to situations where security becomes meaningless. For
example, if the adversary gets a trapdoor for every character s ∈ S, then it
will always fail the experiment (it will not be able to output two strings S0 and
S1 complying with the requirement of step 6) while being able to decrypt any
ciphertext (see Remark 1).

This example highlights the implicit restrictions placed on the set of trap-
doors. This is obviously a limitation of the security model (that also applies
to all predicate or searchable encryption schemes) but we believe that these
restrictions are very hard to formalize and should rather be considered on a
case-by-case basis. For example, in the context of DPI, the receiver could assess
once and for all the set of rules to check that the leakage remains reasonable.

Selective-Indistinguishability (SEST-sIND-CPA). We also need a weaker
security notion in which the adversary commits to S0 and S1 at the beginning
of the experiment, before seeing pp and pk. Such a restriction is quite standard
and is usually referred to as selective security [15].

Remark 2. We recall that in a public-key setting, it is always possible to recover
W from tdW : one simply has to encrypt the 2|W | strings of size |W | and then
run Test(., tdW ) on each resulting ciphertext. The correctness property ensures
(with overwhelming probability) that one will always get an empty set, except
for the encryption of W .

Therefore, unless we place restrictions on the set of keywords that one can
query (in particular on its min-entropy, as in [10]), we cannot achieve relevant
privacy notions for the trapdoor tdW itself. However, this is not a problem
for, say, deep-packet inspection, in which many of the keywords can even be
public [1].
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Finally, we note that one can achieve interesting privacy notions for the
trapdoors in the private-key setting (e.g. [13]).

3 Our Construction

We are able to construct our SEST scheme by “projecting” both the keyword
and the plaintext onto a multiplicative basis of the type zi for some secret integer
z. We encrypt the plaintext character-by-character, using secret encodings αs for
each s ∈ S. The latter are also used to generate the trapdoors associated with
the keyword. By using a bilinear mapping we are able to shift into the ciphertext
and compare a given fragment of suitable length to the trapdoor.

Note that in order to achieve the security notion of SEST-(s)IND-CPA, we
need to at least guarantee that, given some trapdoors tdWi

for words Wi, the
adversary is not able to forge a trapdoor for some fresh word W ∗. By projecting
keywords on a polynomial in a secret value z, we ensure that trapdoors on
keywords W are essentially un-malleable.

We describe our construction in detail in what follows, prefacing our scheme
by a brief introduction to bilinear groups and pairings.

3.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order
p, along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [20] defined three types of pairings: in type
1, G1 = G2; in type 2, G1 �= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 �= G2 and no efficiently computable homomorphism exists between G1 and
G2, in either direction.

The security of our construction holds as long as no efficient homomorphism
exists from G1 to G2. Our system must therefore be instantiated with pairings
of type 2 or 3. However, in the following, we will only consider the latter type
since it allows simpler security proofs thanks to the separation between the two
groups G1 and G2. We stress that this is not a significant restriction since type
3 pairings offer the best performances among the three types.

3.2 Intuition

Intuitively, our scheme associates each element s of S with a secret encoding
αs. A trapdoor for a string w0 . . . w�−1 is associated with a polynomial V =∑�−1

i=0 vi ·αwi
· zi where vi are random secret scalars whose purpose is to prevent

forgeries of new trapdoors. The trapdoor then consists in the elements g̃V and g̃vi
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for i = 0, . . . , �− 1. In the meantime, a ciphertext encrypting a string s0 . . . sn−1

is the sequence of “monomials” C ′
j = ga·αsj

·zj

where a is a random factor (the
Keygen algorithm will ensure that this can be done by only using elements from
the public key). By using the bilinear map e, one can derive from the ciphertext
and the trapdoor elements of the form e(g, g̃)U where U is a polynomial whose
coefficients depends on the encodings αsi

and on the scalars vi.
In this encoding, if s0 . . . sn−1 contains the pattern w0 . . . w�−1 at offset j (i.e.

if sj+i = wi for i = 0, . . . , � − 1) one can generate e(g, g̃)U =
∏�−1

i=0 e(C ′
j+i, g̃

vi)
where U = a · zj · V . Therefore, by extending the ciphertext with the elements
Cj = ga·zj

, one can simply test the presence of W . By contrast, a difference
sj+i �= wi or the combination of non-successive ciphertext elements will lead to
a random-looking polynomial which would be useless to the adversary.

However, using this solution to search for a pattern of length � within a
string of length m requires (� + 1)(m − � + 1) pairings, which quickly becomes
prohibitive. While it seems natural that the complexity depends on the size m
(since we have to search at every position), one could hope to reduce the factor
(� + 1).

A first attempt could be to set vi = v for all i ∈ [0, � − 1] for some secret
scalar v. Indeed, thanks to the bilinearity of e, the � pairings

∏�−1
i=0 e(C ′

j+i, g̃
vi)

could be replaced by only one: e(
∏�−1

i=0 C ′
j+i, g̃

v). Unfortunately, such a solution
is insecure as proven by the following example.

Let C be a ciphertext encrypting a string S = s0 . . . sm−1 and let us assume
that W is a keyword such that wi = s for all i ∈ [0, � − 1] (i.e. W is a sequence
of identical values, equal to s). Then, for any 0 < j ≤ � − 1

e(C0 · C−1
j , g̃VW ) = e(g, g̃)a(1−zj)VW = e(g, g̃)aV ′

,

with

V ′ =
j−1∑
k=0

v · αs · zk −
�+j−1∑

k=�

v · αs · zk.

Therefore, e(g, g̃)aV ′
can be used to check whether

s0 . . . sj−1 =
j times︷ ︸︸ ︷
s . . . s ∧ s� . . . s�+j−1 =

j times︷ ︸︸ ︷
1 . . . 1 .

Using tdW , a gateway is then able to get more information on S than the
presence of W as a substring, which breaks the security of the construction.

However, this attack does not mean that we necessarily have to select different
scalars vi but simply that the generation process needs to be more subtle. We
indeed prove that one can “recycle” the random elements vi within the same
trapdoor without jeopardizing security. More specifically, the issuing process
that we describe in the next section is based on the observation that the secret
encodings αs already add some variability to the coefficients of the polynomial V .
This therefore means that this variability need not exclusively rely on the random
scalars vi. In particular when wi �= wj , the coefficients vi ·αwi

and vj ·αwj
will be
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different even if vi = vj . In such a case, there is no need to chose distinct scalars,
which allows us to batch the corresponding pairings for the test. Compared to
the solution with random scalars vi, this divides the whole number of pairings
by up to |S| (e.g., 256 if we consider bytestrings).

3.3 The Protocol

– Setup(1k, n): Let (G1, G2, GT , e) be the description of type 3 bilinear groups
of prime order p, this algorithm selects g

$← G1 and g̃
$← G2 and returns

pp ← (G1, G2, GT , e, g, g̃, n).
– Keygen(S): On input a finite set S, this algorithm selects |S| + 1 ran-

dom scalars z, {αs}s∈S and computes gi ← gzi

along with {gαs
i }s∈S for

i = 0, . . . , n − 1. The public key pk is set as {(gi, {gαs
i }s∈S)}n−1

i=0 whereas
sk is set as (z, {αs}s∈S).

– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user
selects a random scalar a and returns C = {(Ci, C

′
i)}m−1

i=0 , where Ci ← ga
i

and C ′
i ← g

a·αsi
i for i = 0 . . . m − 1.

– Issue(W, sk): To issue a trapdoor tdW for a string W = w0 . . . w�−1 of length
� ≤ n, one uses the following algorithm.

Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

tdW ← (c, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V );

Algorithm 1: Issue

Our Issue algorithm formalizes the following principle: the random scalars
(stored in L) can be re-used as long as the coefficients of the polynomial V

are all distinct. In particular, if we write V as
∑�−1

i=0 vi · αwi
· zi, then vi �= vj

if wi = wj .
– Test(C, tdW ): To test whether the string S encrypted by C contains the

substring W , the algorithm parses tdW as (c, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V ) and C
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as {(Ci, C
′
i)}m−1

i=0 and checks, for j = 0, . . . , m − �, if the following equation
holds:

∏c−1

t=0
e(

∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V ).

It then returns the (potentially empty) set J of indexes j for which there is
a match.

Correctness. First note that, if S contains the substring W at index j (i.e.,
sj+i = wi ∀i = 0, . . . , � − 1), then:

c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) =
c−1∏
t=0

e(
∏
i∈It

ga·αsj+i
·zj+i

, g̃L[t])

=
c−1∏
t=0

e(ga, g̃L[t]·∑i∈It
αwi

·zj+i

)

=
c−1∏
t=0

e(ga, g̃
∑

i∈It
L[t]·αwi

·zj+i

)

= e(g, g̃)a·zj ·V = e(Cj , g̃
V )

The set J returned by Test contains j.
Now, let us assume that J contains j but that sj . . . sj+�−1 �= w0 . . . w�−1,

i.e., the algorithm returns a false positive. Let I�= be the (non-empty) set of
indexes i such that sj+i �= wi. For all i ∈ [0, � − 1], we define vi = L[ti] where ti
is such that i ∈ Iti . Since j has been returned by Test, we have,

c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V )

⇔
�−1∏
i=0

e(C ′
j+i, g̃

vi) = e(Cj , g̃
V )

⇔
∏

i∈I�=

e(C ′
j+i, g̃

vi) = e(Cj , g̃
∑

i∈I�= vi·αwi
·zi

)

⇔
∏

i∈I�=

e(g, g̃)a·vi·αsj+i
zi+j

= e(g, g̃)a·zj ∑
i∈I�= vi·αwi

·zi

⇔
∑
i∈I�=

vi · αsj+i
zi =

∑
i∈I�=

vi · αwi
· zi

⇔
∑
i∈I�=

vi(αsj+i
− αwi

) · zi = 0.
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Since αsj+i
�= αwi

for all i ∈ I�=, this amounts to evaluating the probability
that a random scalar z is a root of a non-zero polynomial of degree at most �−1.
The probability that Test returns a false positive j is thus at most �−1

p , which
is negligible.

Remark 3. Our construction achieves the goals that we define at the beginning
of Sect. 1.1. Indeed, the Encrypt procedure does not depend on the keywords
W , and the latter may have distinct lengths. In particular, the size of C only
depends on the length of the message it encrypts. Moreover, the trapdoors tdW

allow to search the word W in S = s0 . . . sm−1 at any possible offset, while being
of size independent of m.

All these features are provided using only asymmetric prime order bilinear
groups, which can be very efficiently implemented on a computer (e.g., [7]). We
refer to Sect. 6 for a more thorough analysis of the efficiency of our protocol.

Remark 4. As explained in Sect. 2.1, public-key searchable encryption schemes
often assume that the sender will also encrypt the string S by using a conven-
tional encryption scheme Π. Such a solution enables fast decryption but should
be used cautiously in some contexts, such as DPI, where the sender is likely to
be malicious. Indeed, nothing prevents the latter from encrypting an harmless
string S using the searchable encryption scheme while encrypting a different
S′ using Π. The message (S) checked by the gateway would then be different
from the one forwarded to the receiver (S′), which would make the inspection
pointless.

It is therefore necessary to check that both ciphertexts decrypt to the same
string S, which can easily be done by the receiver. Indeed, after decrypt-
ing the conventional ciphertext, the latter (who knows sk) can verify whether
{(Ci, C

′
i)}m−1

i=0 encrypts S = s0 . . . sm−1 by testing if C ′
i = C

αsi
i for i ∈ [0,m−1].

One can also perform such tests only for a limited number N ≤ m of indexes i,
but the probability of detecting cheating sender will become N

m .

4 Security Analysis

4.1 Complexity Assumptions

Let us consider an adversary A which, knowing q trapdoors tdWk
, would like to

decide if a ciphertext C encrypts S0 or S1. The natural restrictions imposed by
the security model imply that there is at least one index i∗ such that s

(0)
i∗ �= s

(1)
i∗

and that, for all k ∈ [1, q] and all j ∈ [0, �k − 1] (where �k is the length of Wk),
s
(0)
i∗−�k+1+j . . . s

(0)
i∗+j and s

(1)
i∗−�k+1+j . . . s

(1)
i∗+j both differ from wk,0, . . . , wk,�k−1.

In other words, any substring of S0 (or respectively S1) of length �k containing
s
(0)
i∗ (resp. s

(1)
i∗ ) must be different from Wk, for all k ∈ [1, q].

If we focus on the index i∗, A must then distinguish whether the discrete
logarithm of C ′

i∗ in base gi∗ is a · α
s
(0)
i∗

or a · α
s
(1)
i∗

. To this end, the attacker has
access to many elements of G1 (the public parameters and the other elements
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of the ciphertext) and of G2 (the trapdoors tdWk
). All of them are of the form

gPu(a,αs,z) or g̃Qv(αs,z,vi,k) for a polynomial number of multivariate polynomials
Pu and Qv. The assumption underlying the security of our scheme is thus related
to the General Diffie-Hellman GDH problem [8], whose asymmetric version [12]
is recalled below.

Definition 1 (GDH assumption). Let r, s, t and c be four positive integers
and R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s, and T ∈ Fp[X1, . . . , Xc]t be three
tuples of multivariate polynomials over Fp. Let R(i), S(i) and T (i) denote the i-th
polynomial contained in R, S, and T. For any polynomial f ∈ Fp[X1, . . . , Xc],
we say that f is dependent on <R, S, T> if there are {aj}s

i=1 ∈ F
s
p \ {(0, . . . , 0)},

{bi,j}i=r,j=s
i,j=1 ∈ F

r·s
p and {ck}t

k=1 ∈ F
t
p such that

f(
∑

j

ajS
(j)) =

∑
i,j

bi,jR
(i)S(j) +

∑
k

ckT (k).

Let (x1, . . . , xc) be a secret vector. The GDH assumption states that, given
the values {gR(i)(x1,...,xc)}r

i=1, {g̃S(i)(x1,...,xc)}s
i=1 and {e(g, g̃)T (i)(x1,...,xc)}t

i=1, it
is hard to decide whether U = gf(x1,...,xc) or U is random if f is independent of
<R, S, T>.

Unfortunately, we cannot directly make use of this assumption unless we
severely restrict the size n of the strings that one can encrypt. In our proof,
presented in Sect. 4.2, one of the main important steps is showing that, even given
a number of keyword trapdoors (and in particular, the polynomials V associated
with those keywords), the adversary is unable to detect the presence of a fresh
keyword; consequently, we can bound the leakage on the input plaintexts by only
considering the adversary’s queries to the issuing oracle. This can be mapped
to an instance of GDH, but we will need the adversary to choose which of those
polynomials are input to the GDH instance.

If we did bound the size n of the plaintext, by making a guess on the
string Sβ = s

(β)
1 . . . s

(β)
m , one could define a GDH instance providing all the ele-

ments of the public parameters, the trapdoors for every word W that does not
match any of the substrings of Sβ containing s

(β)
i∗ , the elements {ga

i }n−1
i=0 and

{g
a·αsi
i }i∈[0,n−1]\{i∗} along with the challenge element U ∈ G1 associated with

the polynomial f = a · zi∗ · αsi∗ .
With such a GDH instance, the security proof becomes straightforward and

only requires a proof that f does not depend on the polynomials underlying
the provided elements. However, the reduction does not abort only if the initial
guess is valid, which occurs with probability 1

2n .
So either we require n to be small (say n ≤ 30, for example) or we choose

to rely on an interactive variant of the GDH assumption, in which the elements
gR(i)(x1,...,xc), g̃S(i)(x1,...,xc) and e(g, g̃)T (i)(x1,...,xc) can be queried to specific ora-
cles, to offer enough flexibility to the simulator.

The latter solution is less than ideal because it essentially makes the GDH
instance interactive and consequently our construction will end up offering less
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security than a static assumption. Nevertheless, we argue that this solution
remains of interest for two reasons. The first is that it allows to construct a
quite efficient scheme with remarkable features: the size of the ciphertext is
independent of the ones of the searchable strings, and the size of the trapdoors
is independent of the size of the messages. Achieving this while being able to han-
dle any trapdoor query is not obvious and may justify the use of an interactive
assumption.

A second reason is that, intrinsically, the hardness of the GDH problem
(proven in the generic group model [8]) relies on the same argument as its inter-
active variant : as long as the “challenge” polynomial f does not depend on
<R, S, T>, gf(x1,...,xc) is indistinguishable from a random element of G1. The
fact that the sets R, S, and T are defined in the assumption or by the queries
to oracles does not fundamentally impact the proof. We therefore define the
interactive-GDH (i-GDH) assumption and show that our scheme can be proven
secure under it.

Definition 2 (i-GDH assumption). Let r, s, t, c, and k be five positive integers
and R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s and T ∈ Fp[X1, . . . , Xc]t be three
tuples of multivariate polynomials over Fp. Let OR (resp. OS and OT) be oracles
that, on input {{a(k)

i1,...,ic
}dk

ij=0}k, add the polynomials { ∑
i1,...,ic

a
(k)
i1,...,ic

∏
j

X
ij
j }k to

R (resp. S and T).
Let (x1, . . . , xc) be a secret vector and qR (resp qS) (resp. qT) be the

number of queries to OR (resp. OS) (resp. OT). The i-GDH assumption
states that, given the values {gR(i)(x1,...,xc)}r+k·qR

i=1 , {g̃S(i)(x1,...,xc)}s+k·qS
i=1 and

{e(g, g̃)T (i)(x1,...,xc)}t+k·qT
i=1 , it is hard to decide whether U = gf(x1,...,xc) or U

is random if f is independent of <R, S, T>.

4.2 Security Results

Theorem 3. The scheme described in Sect. 3 is SEST-sIND-CPA secure under
the i-GDH assumption for R, S, and T initially set as R = {(zi, xj · zi, a ·
zi)}i=2n−1,j=|S|−1

i=0,j=0 , S = T = ∅ and f = a · x0 · zn.

Proof. Let G
(β)
0 denote the Expsind−cpa−β

A game, as described in Sect. 2.2 – recall
that this is the selective version of the IND-CPA security notion. Moreover, let
S0 = s

(0)
0 . . . s

(0)
m−1 and S1 = s

(1)
0 . . . s

(1)
m−1 be the two substrings returned by A

at the beginning of the game. Our proof uses a sequence of games G
(β)
j , for

j = 1, . . . , n, to argue that the advantage of A is negligible. This is a standard
hybrid argument, in which at each game hop we randomize another element of
the challenge ciphertext.

Let I�= be the set of indexes i such that s
(0)
i �= s

(1)
i and I(j)

�= be the subset

containing the first j indexes of I�= (if j > |I�=|, then I(j)
�= = I�=). For j = 1, . . . , n,

game G
(β)
j modifies G

(β)
0 by switching the elements C ′

i of the challenge ciphertext



Pattern Matching on Encrypted Streams 139

to random elements of G1, for i ∈ I(j)
�= . Ultimately, in the last game, G

(β)
n , the

challenge ciphertext contains no meaningful information about s
(β)
i ∀i ∈ I�=, so

the adversary cannot distinguish whether it plays G
(0)
n or G

(1)
n .

In particular, we can write:

Advsind−cpa
A (1k, n)

= |Pr[Expsind−cpa−1
A (1k, n)] − Pr[Expsind−cpa−0

A (1k, n)]|
= |G(1)

0 (1k, n) − G
(0)
0 (1k, n)|

≤ ∑n−1
j=0 |G(1)

j (1k, n) − G
(1)
j+1(1

k, n)|
+|G(1)

n (1k, n) − G
(0)
n (1k, n)|

+
∑n−1

j=0 |G(0)
j+1(1

k, n) − G
(0)
j (1k, n)|

≤ ∑n−1
j=0 |G(1)

j (1k, n) − G
(1)
j+1(1

k, n)|
+

∑n−1
j=0 |G(0)

j+1(1
k, n) − G

(0)
j (1k, n)|.

In order to bound this result, we must prove that A cannot distinguish G
(β)
j

from G
(β)
j+1, which is formally stated by the lemma below.

Assuming that this lemma were proved, each term above is negligible under
the i-GDH assumption, which concludes the proof.

Lemma 4. For all j = 0, . . . , n−1 and β ∈ {0, 1}, the difference |Pr[Gβ
j (1k, n) =

1] − Pr[Gβ
j+1(1

k, n) = 1]| is negligible under the i-GDH assumption for R, S, and

T initially set as follows: R = {(zi, xj · zi, a · zi)}i=2n−1,j=|S|−1
i=0,j=0 , S = T = ∅ and

f = a · x0 · zn.

The proof is provided in the full version [19].

5 Handling Regular Expressions

Our solution, introduced in Sect. 3, allows for pattern matching of keywords of
arbitrary lengths, for ciphertexts emitted from arbitrary sources (we call this
having universal tokens). In this section, we extend our notion of keyword-
search to a more generic case, in which some of the keyword characters are
fully-unknown (wildcards) and some are only partially-unknown (in an interval
of size greater than 1).

Consider the general case in which one wants to search for substrings of the
form W = w0 . . . wt−1w

(St)
t wt+1 . . . w�−1 where w

(St)
t denotes any element from

the set St ⊂ S. For example, St can be the set [0-9] of all integers between 0 and 9.
A trivial solution could be to issue a trapdoor for every possible value of wt

but this would imply, for the gateway, to store the |St| resulting trapdoors and
to test each of them separately. This not only raises a question of efficiency, but
it also gives the gateway much more information on the input string. Intuitively,
at the end of the search, the gateway will not only be able to tell that a given
character is within a certain subset, but also which particular element of the
subset it corresponds to.
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In the following, we show how to modify our construction to allow for two
notable regular expressions: wildcards and interval searches, without leaking any
additional information, and with a minimal efficiency loss.

5.1 Handling Wildcards

The first case we consider assumes W = w0 . . . w
(Si1 )
i1

. . . w
(Sir )
ir

. . . w�−1 with

Si1 = ... = Sir = S, which means that w
(Si1 )
i1

, . . . , w
(Sir )
ir

can take any value from
the set S and can consequently be seen as “wildcards”.

Informally, this implies that the (j + i1)-th,...,(j + ir)-th ciphertext elements
must not be taken into account when testing if Cj . . . Cj+�−1 encrypts W . This
leads to the following variant of our main protocol where only the Issue and
the Test algorithms differ (slightly) from the original ones.

– Issue(W, sk): Let D = {i1, . . . , ir}. The issuance process of a trapdoor tdW

for W = w0 . . . w
(Si1 )
i1

. . . w
(Sir )
ir

. . . w�−1 is described by Algorithm 2.
The only difference with the original Issue algorithm is the additional con-
dition i /∈ D which ensures that V will have no monomial of degree i for
i ∈ D.

Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

end

tdW ← (c, D, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V );

Algorithm 2: Issue supporting wildcards

– Test(C, tdW ): this algorithm remains unchanged except that the trapdoor
now contains the set D. The process still consists of checking if the equality

(1)
c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V ).

holds for j = 0, . . . ,m − �.
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One can note that this variant does not increase the complexity of our scheme.
Actually, this is the opposite: all the indexes in D are discarded in the product of
(1). Regarding security, one can note that the proof of Sect. 4 still applies here,
since the latter does not require the coefficients vi to be different from 0.

5.2 Handling General Subsets

Now let us consider the general case where the substring W one wants to search
contains w

(Si)
i for a subset Si � S. For example, Si can be the set [0,9] of all the

integers x ∈ [0, 9] or the set {a, . . . , z} of the letters of the Latin alphabet. Our
construction can actually be modified to handle this kind of searches provided
that: (1) the searchable sets Si are known in advance, and can be used during
the Keygen process; and (2) all these subsets are disjoint. We argue that both
conditions are reasonable since this is often the case for regular expressions.

5.3 The Protocol

– Setup(1k, n): Let (G1, G2, GT , e) be the description of type 3 bilinear groups
of prime order p, this algorithm selects g

$← G1 and g̃
$← G2 and returns

pp ← (G1, G2, GT , e, g, g̃, n).
– Keygen(S,S(1), . . . ,S(k)): This algorithm now takes as input k disjoint subsets

of S. We can assume, without loss of generality, that S = S(1)∪. . .∪S(k) since
we can simply add the complement of all previous sets if this is not the case.
The function f : S → {1, . . . , k} which maps any element s ∈ S to the index
of the set S(j) which contains it is thus perfectly defined. The algorithm then
selects |S| + k + 1 random scalars {αs}s∈S , β1, . . . , βk, z

$← Zp and computes
gi ← gzi

for i = 0, . . . , n − 1 along with (gαs
i , gβd

i ) for d = 1, . . . , k and all
s ∈ S(d). The public key is then set to {gi}n−1

i=0 ∪k
d=1{(gαs

i , gβd

i )}i∈[0,n−1],s∈S(d)

and sk as {αs}s∈S , β1, . . . , βk, z.
– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user

selects a random scalar a and returns C = {(Ci, C
(1)
i , C

(2)
i )}m−1

i=0 , where Ci ←
ga

i , C
(1)
i ← (gαsi

i )a and C
(2)
i ← (g

βf(si)

i )a, for i = 1 . . . m.
– To issue a trapdoor tdW for a string W = w1 . . . w

(Si1 )
i1

. . . w
(Sir )
ir

. . . w� of
length � ≤ n, the algorithm first checks that all the involved subsets have
been taken as input by the Keygen algorithm, i.e. Sij ∈ {S(1), . . . ,S(k)} for
j = 1, . . . , r, and returns ⊥ otherwise. The function h which maps every index
ij to the integer d ∈ {1, . . . , k} such that Sij = S(d) is thus correctly defined.
Let D = {i1, . . . , ir}, we modify the original Issue procedure as described in
Algorithm 3.

– Test(C, tdW ): To test whether the string S encrypted by C contains the
substring W , the algorithm parses tdW as (c,D, {Ij}c−1

j=0, {g̃L[j]}c−1
j=0, g̃

V ) and

C as {(Ci, C
(1)
i , C

(2)
i )}m−1

i=0 and checks, for j = 0, . . . , m − �, if the following
equation holds:
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Ind[s] = 0 for all s ∈ S ;
Ind′[k] = 0 for all k ∈ [0, d − 1] ;
L[i] = 0 for all i ∈ [0, � − 1];
V = 0, c = 0;
for i = 0, . . . , � − 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

else
if L[Ind′[h(i) − 1]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c + 1;

else
IInd′[h(i)−1] = IInd′[h(i)−1] ∪ {i};

end

V = V + zi · βh(i) · L[Ind′[h(i) − 1]];
Ind′[h(i) − 1] = Ind′[h(i) − 1] + 1 ;

end

end

tdW ← (c, D, {Ij}c−1
j=0, {g̃L[j]}c−1

j=0, g̃
V );

Algorithm 3: Issue supporting general subsets

c−1∏
t=0

e((
∏

i∈It∧i/∈D
C

(1)
j+i)(

∏
i∈It∧i∈D

C
(2)
j+i), g̃

L[t]) = e(Cj , g̃
V ).

It then returns the set (potentially empty) J of indexes j for which there is
a match.

The values βj defined in this protocol can be seen as an encoding of the
subset S(j), in the same way as the scalars αs encode the characters s ∈ S.
Actually, it is as if we worked with a larger set S ′ containing S but also the
“characters” S(j). The fact that one encrypts using both encodings makes the
ciphertext compatible with any kind of trapdoors: if the i-th element of W is of
the form wj , we use C

(1)
j , whereas we use C

(2)
j for an element of the form w

(Sj)
j .

Correctness and security follow directly from the original construction.
Regarding efficiency, encrypting for both encodings adds an element of G1

by character to the ciphertext. Nevertheless, as we explain in the next section,
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working with a larger set S ′ allows to reduce the number of random scalars that
we need to generate the trapdoors, which leads to a faster Test procedure.

6 The Complexity of Our Scheme

We describe in this section the timings one can get for different parameters. But
first we discuss the different strategies for choosing the set S.

6.1 Generic Complexity

When considering data streams, the most relevant sets are the one of bits (i.e.
S = {0, 1}) or the one of bytes (i.e. S = {0, . . . , 255}). Larger sets (for example
the one containing all sequences of r bytes for some r > 1) would improve
the efficiency of the Test procedure but would harm our ability to detect all
patterns. We focus on four specific points: the sizes of (1) the public key, of (2)
the ciphertext and of (3) the trapdoor along with (4) the number of pairings
required to detect the presence of a pattern of size �.

1. The size of pk. Let n be the maximum number of bytes one can encrypt
with the protocol of Sect. 3.3. If S = {0, 1}, then the public key contains
(1+2)8n elements of G1 which amounts to 768n bytes using Barreto-Naehrig
(BN) [6] curves. If we now consider bytestrings (i.e. S = {0, . . . , 255}), then
pk contains (1 + 256)n elements of G1 which amounts to 8224n bytes using
the same curves.

2. The length of the ciphertext. Each character is encrypted by 2 elements
of G1 that represent 64 bytes. Therefore, encrypting m bytes requires 512m
bytes if S = {0, 1} and 64m bytes if S = {0, . . . , 255}.

3. The size of tdW . Our algorithm makes this evaluation much more difficult
to perform. Indeed, the fact that we can reuse the same random scalar for two
different characters wi �= wj implies that the size of tdW strongly depends on
the keyword W itself. For example, a “constant” keyword W = s . . . s of size �
would entail a trapdoor containing �+1 elements of G2. Conversely, a keyword
W = w0 . . . w�−1 with wi �= wj for i �= j would only require to store 2 elements
of G2. Nevertheless, we notice that larger sets decrease the probability of
having equal characters. More specifically, assuming uniform distribution of
the characters within a keyword, a trapdoor contains, on average, (1+ ��/2�)
elements of G2 if S = {0, 1} and only (1 + ��/256�) if S = {0, . . . , 255}. We
can then hope to gain a factor 128 in the latter case.

4. The number of pairings. The number of pairings one must compute to
test the presence of a keyword W of length � within an encrypted string
is related to the size of the corresponding trapdoor tdW . More specifically, if
tdW contains N elements of G2, then one must perform N(m−�+1) pairings,
where m is the length of the encrypted string. Therefore, a shorter trapdoor
implies a more efficient Test procedure, which means that it is better to work
with S = {0, . . . , 255} than with S = {0, 1}.
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Public key aside, we note that working on bytes instead of bits allows to
significantly decrease complexity. Our timings then correspond to the case where
S = {0, . . . , 255}.

6.2 Implementation of SEST for DPI

As we explain, evaluating the size of the trapdoors, and therefore the number
of pairings requires to make assumptions about the distribution of the key-
words. Previous estimations assumed a uniform distribution of the latter, which
is unlikely in practice. We therefore evaluate our protocol on the SNORT public
rules set [1] to provide a more concrete estimation3.

The SNORT rules set contains thousands of rules which mostly consist in
searching some specific patterns in a stream. We parsed all these rules and
got 6048 different patterns. Figure 3 describes the sizes of the corresponding
trapdoors.

Fig. 3. Number of trapdoors of size N , where N is the number of elements of G2.
In other words, among the 6048 trapdoors generated for the SNORT rules set, 2076
contain 2 elements of G2, 1879 contain 3 elements of G2, and so on.

This table highlights the advantage of our issuing protocol: even for large
patterns we manage to keep most of the time short trapdoors thanks to the
re-use (when possible) of the random scalars. The whole trapdoors set thus only
amounts to 1.35 MB.

Since the number of pairings is related to the size of the trapdoors, one could
try to deduce from this table the total number of pairings required to test all
SNORT patterns. However, we stress that this would only be a quite inaccurate
upper bound. First, because many of these patterns are part of the same rule
which enables to avoid unnecessary tests: if there is no match for a pattern
defined by a rule, then it is pointless to test the other ones within the same
rule. Second, because many rules include parameters called “depth”, “offset”,
“distance” or “within” which allow to reduce the search to a smaller part of the
stream.

The number of pairings for the whole SNORT rules set is thus significantly
smaller than the one we could expect from the complexity evaluation we provide
in Sect. 6.1. Moreover, we recall that the optimal Ate pairing [34] that we use
to instantiate the map e can be split into two parts that are usually called the
3 We stress that the only goal of this section is to provide timings on a concrete and

non-artificial set of patterns. We chose the DPI use-case for which searching on
encrypted streams is particularly relevant. But we obviously do not claim that our
solution is practical enough to handle all Internet traffic worldwide.
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Fig. 4. Timings for encrypting a string of m bytes and searching a pattern of 100 bytes
within it.

Miller loop and the final exponentiation. The latter, which roughly represents
half of the computational cost of a pairing, can be performed once for all the
pairings involved in the same equality test, which allows to further reduce the
complexity of the Test procedure.

We ran an experiment on a stream of 1500 bytes using a computer running
Linux 4.13 and equipped with an Intel E5-1620 3.70 GHz processor. Testing all
Snort rules took 28 min. This is obviously too much for online analysis but we
stress that alternatives (e.g. FHE) offering the same features would be even more
complex. Moreover, this corresponds to testing thousands of patterns on a single
computer: by using parallelization and more powerful hardware, one could hope
to dramatically reduce these timings.

Finally, we provide in Fig. 4 the timings of the Encrypt and the Test algo-
rithms for larger strings (up to 30 KB). It shows that encryption remains quite
efficient even for large strings. The Test algorithm is obviously slower since it
implies pairings computations but it takes (approximatively) only one second
for strings of few kilobytes.

7 Conclusion

In this work, we introduced the concept of searchable encryption with shiftable
trapdoors (SEST). This type of construction provides a practical solution to the
generic problem of pattern matching with universal tokens. Notably, we are the
first to provide a searchable encryption alternative that allows for arbitrarily-
chosen keywords of arbitrary length, which can be applied to any ciphertext
encrypted with the generated public key in this system. In particular, since we
do not rely on symmetric keys, multiple entities can use the same public key to
encrypt. Moreover, our construction is also highly usable for encrypted streams
of data (we need no backtracking), and it returns the exact position at which the
pattern occurs. Our instantiation of the SEST primitive uses bilinear pairings,
and we allow for some regular expressions such as wildcards, or partial keywords
in which we know some entries to be within a given interval.

Beyond applications in deep-packet inspection, the fact that our algorithm
essentially follows the approach of Rabin-Karp allows us to also use that same
algorithm for application scenarios such as searching on structured data, match-
ing subtrees to labelled trees, delegated searches on medical data (compiled from
multiple institutions), or 2D searches.

We propose a main construction, which we adapt to accounting for wildcards
and for interval searches. The former adaptation is relatively simple, since the
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issued trapdoor just contains zero coefficients for the wildcards. For the interval
searches we need to modify our key generation algorithm, providing special ele-
ments that we map interval characters to; however, this only works for intervals
which are known in advance.

Our scheme provides trapdoors for the keywords which are at most linear in
the size of the keywords only, and the size of the ciphertexts is linear in the size
of the plaintext size. Although our public keys are large (linear in the size of
the maximal plaintext size), we do achieve a complete decorrelation between the
plaintext encryption and the trapdoor generation for the keywords. Our scheme
provides in practice an almost linear – in the size of the plaintext – complexity (in
terms of the number of pairings). Our implementation results for the publicly-
given SNORT rules show that while the encryption algorithm scales well with
the plaintext size, the testing algorithm – which is slower – will benefit from the
fact that it is fully parallelizable.

We prove the security of our scheme under an interactive version of the GDH
assumption. Our modification of this assumption is relatively minor, allowing
the adversary to choose on which input to play the GDH instance. We also
argue that our construction offers an interesting tradeoff between the secure,
but quite cumbersome, systems based on existing cryptographic primitives and
the fast, but unsecure, current solutions where the gateway decrypts the traffic.
Moreover, we hope that the practical applications of this primitive will incite
new work on this subject, in particular to construct new schemes which would
rely on standard assumptions.
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Abstract. We show how to encrypt a relational database in such a
way that it can efficiently support a large class of SQL queries. Our
construction is based solely on structured encryption (STE) and does
not make use of any property-preserving encryption (PPE) schemes such
as deterministic and order-preserving encryption. As such, our approach
leaks considerably less than PPE-based solutions which have recently
been shown to reveal a lot of information in certain settings (Naveed et
al., CCS ’15 ). Our construction is efficient and—under some conditions
on the database and queries—can have asymptotically-optimal query
complexity. We also show how to extend our solution to be dynamic
while maintaining the scheme’s optimal query complexity.

1 Introduction

The problem of encrypted search has received attention from industry, academia
and government due to its potential applications to cloud computing and
database security. Most of the progress in this area, however, has been in the
setting of keyword search on encrypted documents. While this has many appli-
cations in practice (e.g., email, NoSQL databases, desktop search engines, cloud
document storage), much of the data produced and consumed in practice is
stored and processed in relational databases. A relational database is, roughly
speaking, a set of tables with rows representing entities/items and columns rep-
resenting their attributes. The relational database model was proposed by Codd
[18] and most relational DBs are queried using the structured query language
(SQL) which is a special-purpose declarative language introduced by Chamber-
lain and Boyce [14].

The problem of encrypted relational DBs is one of the “holy-grails” of
database security. As far as we know, it was first explicitly considered by
Hacigümüş et al. [25] who described a quantization-based approach which leaks
the range within which an item falls. In [37], Popa, Redfield, Zeldovich and
Balakrishnan describe a system called CryptDB that can support a non-trivial
subset of SQL without quantization. CryptDB achieves this in part by mak-
ing use of property-preserving encryption (PPE) schemes like deterministic and
order-preserving (OPE) encryption, which reveal equality and order, respec-
tively. The high-level approach is to replace the plaintext operations needed
to execute a SQL query (e.g., equality tests and comparisons) by the same oper-
ations on PPE-encrypted ciphertexts. This approach was later adopted by other
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 149–180, 2018.
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systems including Cipherbase [3] and SEEED [23]. While this leads to systems
that are efficient and legacy-friendly, it was shown by Naveed et al. [34] that
PPE-based EDB systems can leak a lot of information when used in certain set-
tings like electronic medical records (EMRs). In light of this result, the major
open problem in encrypted search and, more generally, in database security is
whether it is possible to efficiently execute SQL queries on encrypted DBs with
less leakage than the PPE-based solutions.

Our Contributions. In this work, we address this problem and propose the
first solution for SQL on encrypted DBs that does not make use of either PPE or
general-purpose primitives like fully-homomorphic encryption (FHE) or oblivi-
ous RAM (ORAM).1 As such, our scheme leaks less than any of the previously-
known practical approaches and is more practical than any solution based on
FHE or ORAM. Our approach is efficient and handles a sub-class of SQL queries
and an even larger class if we allow for a small amount of post-processing at the
client.

More precisely, our construction handles the class of conjunctive queries2 [15]
which corresponds to SQL queries of the form

Select attributes From tables Where
(
att1 = X1 ∧ · · · ∧ att� = X�

)
,

where att1 through att� are attributes in the DB schema and X1 through Xn are
either attributes or constants. For ease of exposition, we mainly focus on con-
junctive queries with Where predicates that are uncorrelated which, very roughly
speaking, means that the attributes are not the same across terms (we refer the
reader to Sect. 5 for a precise definition). The case of correlated predicates is
quite involved so it is deferred to the full version of this work. While the class of
conjunctive queries is smaller than the class supported by the PPE-based solu-
tions, it is one of the most well-studied and useful classes of queries. Furthermore,
as mentioned above, if one allows for a small amount of post-processing at the
client, we show how to extend the expressiveness of our solution to a wider
sub-class.

With respect to efficiency, we show that the query complexity of our scheme
is asymptotically optimal in time and space when (s1 + · · · + st)/h = O(1),
where t denotes the number of tables in the query, si denotes the number of

1 In the full version of this work, we present a dynamic variant of our construction
that makes use of ORAM to achieve forward-security, but it is only used to store
and manage one of several data structures needed by the scheme. In other words,
ORAM is not used to store and manage the entire database.

2 We stress that conjunctive queries in the context of relational databases (and as used
throughout this work) is conceptually unrelated to conjunctive keyword queries as
studied in the searchable encryption literature (e.g., in [12,28]). In particular, our
scheme does not make use of any searchable encryption schemes for conjunctive key-
word queries and our problem cannot be solved by applying these schemes directly on
tables. However it is worth mentioning that some of the techniques in the expressive
SSE literature could possibly be leveraged to achieve a better leakage profile.
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columns in the ith table and h denotes the number of attributes in the Select
term of the query. Towards analyzing the asymptotic complexity of our solution,
we precisely characterize the result size of an SPC query as a function of the
query and of the underlying relational database. This analysis, deferred to the
full version of this work, could be of independent interest.

We also show how to extend our construction to be dynamic and to support
two traditional SQL update operations: row addition and row deletions. Sur-
prisingly, our dynamic construction has the same asymptotic efficiency as our
static construction. Finally, we show how to extend our dynamic construction
to be forward-secure at the cost of a poly-logarithmic overhead for updates but
maintaining the same query complexity.

1.1 Possible Approaches

PPE-Based. The PPE-based approach to EDBs essentially replaces the plain-
text execution of a SQL query with an encrypted execution of the query by
executing the server’s low-level operations (i.e., comparisons and equality tests)
directly on the encrypted cells. This can be done thanks to the properties of PPE
which guarantee that operations on plaintexts can be done on ciphertexts as well.
This “plug-and-play” approach makes the design of EDBs relatively straightfor-
ward since the only requirement is to replace plaintext cells with PPE-encrypted
cells. This approach however has been shown to leak a lot of information in cer-
tain scenarios [34].

SSE-Based. Searchable symmetric encryption (SSE) allows one to perform
search queries on an encrypted document collection. While SSE constructions
do not yield an encrypted relational database, they could be used to handle a
very small subset of SQL. By applying SSE to a column one could handle queries
of the form

Select attribute From table Where att = X,

where att is the attribute that has been indexed with SSE and X is a constant.
If the SSE scheme supports ranges this would extend to queries of the form

Select attribute From table Where att � X,

where � ∈ {=, <,>} and if it supports conjunctions it would extend to

Select attribute From table Where
(
att = X1 ∧ · · · ∧ att = X�

)
.

Note that the supported queries in both cases are limited to a single column and
a single table, and don’t support joins or projections. This is, unfortunately, far
from what is expected from a relational database. In addition, extending existing
expressive SSE schemes (e.g., OXT [12], BlindSeer [36] or IEX [28]) to handle
SQL operations would be highly non-trivial—unless one used the naive approach
of executing many simple queries and having the server build the response (e.g.,
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like the naive approach to conjunctions or disjunctions) which would leak a
lot more. In general, expressiveness in SSE does not imply the same level of
expressiveness in the relational setting, i.e., we cannot use an expressive SSE
scheme in a “plug-and-play” fashion (similar to PPE) to handle the same level
of expressiveness in relational databases.

Generic Approaches. Fully-homomorphic encryption (FHE) or oblivious
RAM (ORAM) could be used in a black-box fashion to handle full SQL. However,
these approaches would be inefficient due the inherent cost of the primitives.

1.2 Our Techniques

Conceptual Approach. Our first step towards a solution is in isolating some
of the conceptual difficulties of the problem. Relational DBs are relatively sim-
ple from a data structure perspective since they just consist of a set of two-
dimensional arrays. The high-level challenge stems from SQL and, in particular,
from its complexity (it can express first-order logic) and the fact that it is declar-
ative. To overcome this we restrict ourselves to a simpler but widely applicable
and well-studied subset of SQL queries (see above) and we take a more procedu-
ral view. More precisely, we work with the relational algebra formulation of SQL
which is more amenable to cryptographic techniques. The relational algebra was
introduced by Codd [18] as a way to formalize queries on relational databases.
Roughly speaking, it consists of all the queries that can be expressed from a set
of basic operations. It was later shown by Chandra and Merlin [15] that three of
these operations (selection, projection and cross product) capture a large class
of useful queries called conjunctive queries that have particularly nice theoret-
ical properties. Since their introduction, conjunctive queries have been studied
extensively in the database literature.

The subset of the relational algebra expressed by the selection, projection
and cross product operators is also called the SPC algebra. By working in the
SPC algebra, we not only get a procedural representation of SQL queries, but we
also reduce the problem to handling just three basic operations. Conceptually,
this is reminiscent of the benefits one gets by working with circuits in secure
multi-party computation and FHE. Another important advantage of working in
the SPC algebra is that it admits a normal form; that is, every SPC query can
be written in a standard form. By working with this normal form, we get another
benefit of general-purpose solutions which are that we can design and analyze a
single construction that handles all SPC queries. Note, however, that like circuit
representations the SPC normal form is not always guaranteed to be the most
efficient.

The SPC Algebra. As mentioned, the SPC algebra consists of all queries
that can be expressed by a combination of the select, project and cross product
operators which, at a high-level, work as follows. The select operator σΨ takes
as input a table T and outputs the rows of T that satisfy the predicate Ψ . The
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project operator πatt1,...,atth takes as input a table T and outputs the columns of
T indexed by att1, . . . , atth. Finally, the cross product operator T1×T2 takes two
tables as input and outputs a third table consisting of rows in the cross product
of T1 and T2 when viewed as sets of rows. An SPC query in normal form over a
database DB = (T1, . . . ,Tn) has the form,

πatt1,··· ,atth

(
[a1] × · · · × [af ] × σΨ (Ti1 × · · · × Tit)

)
,

where [aj ] is a 1×1 table that holds a constant aj for all j ∈ [f ], Ψ is of the form
att1 = X1∧· · ·∧att� = X� where att1, . . . , att� are attributes in the schema of DB
and X1, . . . , X� are either attributes or constants. So, concretely, our problem
reduces to the problem of encrypting a relational database DB = (T1, . . . ,Tn)
in such a way that it can support SPC queries in normal form.

Structured Encryption and Constructive Queries. The main difficulty in
the case of relational DBs and, in particular, in handling SPC queries is that
queries are constructive in the sense that they produce new data structures from
the original base structure. Intuitively, handling constructive queries (without
interaction) is particularly challenging because the intermediate and final struc-
tures that have to be created by the server to answer the query are dependent on
the query and, therefore, cannot be constructed by the client in the setup/pre-
processing phase. An important observation about relational DBs that underlies
our approach, however, is that while SPC queries are constructive, they are not
arbitrarily so. In other words, the tables needed to answer an SPC query are not
completely arbitrary but are structured in a way that can be predicted at setup.
What is query-dependent is the content of these tables but, crucially, all of that
content is already stored in the original database. So the challenge then is to
provide the server with the means to construct the appropriate intermediate and
final tables and to design encrypted structures that will allow it to efficiently find
the (encrypted) content it needs to create those tables.

Handling SPC Normal Form Queries. By taking a closer look at the SPC
normal form, one can see that the first intermediate table needed to answer a
query is the cross product T′ = Ti1 × · · ·×Tit . Ignoring the cross products with
[a1], . . . , [af ] for ease of exposition, the remaining intermediate tables as well as
the final table are “sub-tables” of T′ that result from selecting a subset of rows
(according to Ψ) and keeping a subset of columns (according to att1, . . . , atth).
Handling such a query naively requires one to first compute the cross product
of the tables which can be prohibitively large. As we show in Sect. 5, however,
SPC normal form queries can be rewritten in a different and optimized form
we introduce called the heuristic normal form (HNF). We then show how to
encrypt the database in such a way that we can handle queries in their HNF
form. At a high level, we achieve this by creating a set of encrypted structures
that store different representations of the database. For example, one of the
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encrypted structures stores a row-wise representation of the database whereas
another stores a column-wise representation. By using these various representa-
tions and by combining them in an appropriate manner, we can generate tokens
for the server to recover the encrypted database rows needed for it to process
the query in its HNF form.

The SPX Framework. We describe and analyze our scheme using algorithms
that make black-box use of several lower-level STE schemes (e.g., multi-map and
dictionary encryption schemes). As such, our construction is more of a frame-
work that can be used to design encrypted relational databases with various
efficiency/leakage trade-offs. In fact, in Sect. 7.1, we describe an instantiations
of our framework with a zero-leakage variant of the TWORAM-based construc-
tion of Garg et al. [20] which results in a very low-leakage construction at the
cost of an additional poly-logarithmic overhead.

Dynamism. We show how to extend our static construction to be dynamic.
This is challenging as we want to maintain the scheme’s query complexity while
not introducing additional leakage. From a functionality perspective, we restrict
our attention to row additions and deletions and leave as important open prob-
lem the handling of more complex update operations. While real-world databases
also handle edits, we note that these two update operations are already interest-
ing in practice and non-trivial to achieve. As discussed above, we store different
encrypted representations of the database. One of these representations, how-
ever, stores parts of the database that are highly inter-correlated. The difficulty
this poses is that we cannot simply add or remove items from this structure as
any change affects all the other items stored in the structure. We introduce a
two-party protocol to solve this challenge without the client having to trivially
download the entire structure and without leaking too much information to the
server. We then show how to extend this solution to be forward-secure at the
cost of a poly-logarithmic blowup (for updates). This is achieved by storing and
managing one of the structures in an oblivious RAM.

A Note on Our Techniques. We stress that our approach to handle the
SPC algebra is very different from how these queries are handled on plaintext
databases. In other words, our approach does not simply replicate standard data
structures and algorithms from the database literature. In fact, our approach to
handling SPC queries could be of independent interest for plaintext relational
databases.

2 Related Work

Searchable and Structured Encryption. Encrypted search was first consid-
ered explicitly by Song et al. in [38] which introduced the notion of searchable
symmetric encryption (SSE). Goh provided the first security definition for SSE
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and a solution based on Bloom filters with linear search complexity. Curtmola
et al. introduced and formulated the notion of adaptive semantic security for
SSE [19] together with optimal-time and optimal-space constructions. Chase
and Kamara introduced the notion of structured encryption which generalizes
SSE to arbitrary data structures [16]. Cash et al. [11] show how to construct
optimal-time SSE schemes with low I/O complexity and Cash and Tessaro [13]
gave lower bounds on the locality of adaptively-secure SSE schemes. Asharov
et al. build SSE schemes with optimal locality, optimal space overhead and
nearly-optimal read efficiency [4]. Garg et al. [20] presented a new SSE con-
struction with reduced leakage leveraging oblivious RAM and garbled RAM
techniques. Bost [9] proposed an efficient forward-secure SSE construction based
on trapdoor permutations. SSE has also been considered in the multi-user set-
ting [19,27]. Pappas et al. [36] proposed a multi-user SSE construction based
on garbled circuits and Bloom filters that can support Boolean formulas, ranges
and stemming. Other approaches for encrypted search include oblivious RAMs
(ORAM) [22], secure multi-party computation [6], functional encryption [8] and
fully-homomorphic encryption [21] as well as solutions based on deterministic
encryption [5] and order-preserving encryption (OPE) [7].

Encrypted Relational Databases. As far as we know the first encrypted
relational DB solution was proposed by Hacigümüş et al. [25] and was based on
quantization. Roughly speaking, the attribute space of each column is partitioned
into bins and each element in the column is replaced with its bin number. Popa
et al. proposed CryptDB [37]. CryptDB was the first non-quantization-based
solution and can handle a large subset of SQL. Instead of quantization, CryptDB
relies on PPE like deterministic encryption [5] and OPE [2,7]. The CryptDB
design influenced the Cipherbase system from Arasu et al. [3] and the SEEED
system from Grofig et al. [23]. In [34], Naveed et al. study the security of these
PPE-based solutions in the context of medical data. Recently, Grubbs et al.
[24] point out pitfalls in integrating encrypted database solutions in real-world
database management systems (DBMS).

Attacks on SSE. While we do not consider the problem of designing an SSE
scheme in this work, we can use SSE schemes as building blocks to instantiate
SPX. Several works have proposed attacks that try to exploit the leakage of SSE.
This includes the query-recovery attacks of Islam et al. [26], of Cash et al. [10]
and of Zhang et al. [40]. Recently, Abdelraheem et al. [33], presented attacks
on encrypted relational databases. We briefly mention here that although the
attacks in [33] are ostensibly on relational EDBs, they are not related to or appli-
cable to our construction. For more details on these attacks and their relation
to our work we refer the reader to Sect. 7.3.
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3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}.
We write x ← χ to represent an element x being sampled from a distribution
χ, and x

$← X to represent an element x being sampled uniformly at random
from a set X. The output x of an algorithm A is denoted by x ← A. Given a
sequence v of n elements, we refer to its ith element as vi or v[i]. If S is a set
then #S refers to its cardinality. If s is a string then |s| refers to its bit length.

Basic Structures. We make use of several basic data types including dictio-
naries and multi-maps which we recall here. A dictionary DX of capacity n is
a collection of n label/value pairs {(�i, vi)}i≤n and supports get and put oper-
ations. We write vi := DX[�i] to denote getting the value associated with label
�i and DX[�i] := vi to denote the operation of associating the value vi in DX
with label �i. A multi-map MM with capacity n is a collection of n label/tuple
pairs {(�i, ti)}i≤n that supports get and put operations. Similarly to dictionar-
ies, we write ti := MM[�i] to denote getting the tuple associated with label �i

and MM[�i] := ti to denote operation of associating the tuple ti to label �i. Note
that tuples may have different lengths. Multi-maps are the abstract data type
instantiated by an inverted index. In the encrypted search literature multi-maps
are sometimes referred to as indexes, databases or tuple-sets (T-sets). We refer
to the set of all possible queries a data structure supports as its query space and
to the set of its possible responses as its response space. For some data structure
DS we sometimes write DS : Q → R to mean that DS has query and response
spaces Q and R, respectively.

Relational Databases. A relational database DB = (T1, . . . ,Tn) is a set of
tables where each table Ti is a two-dimensional array with rows corresponding
to an entity (e.g., a customer or an employee) and columns corresponding to
attributes (e.g., age, height, salary). For any given attribute, we refer to the set
of all possible values that it can take as its domain (e.g., integers, booleans,
strings). We define the schema of a table T to be its set of attributes and denote
it S(T). The schema of a database DB = (T1, . . . ,Tn) is then the set S(DB) =⋃

i S(Ti). We assume the attributes in S(DB) are unique and represented as
positive integers. We denote a table T′s number of rows as ‖T‖r and its number
of columns as ‖T‖c.

We sometimes view tables as a tuple of rows and write r ∈ T and sometimes
as a tuple of columns and write c ∈ Tᵀ. Similarly, we write r ∈ DB and c ∈ DBᵀ

for r ∈ ⋃
i Ti and c ∈ ⋃

i T
ᵀ
i , respectively. For a row r ∈ Ti, its table identifier

tbl(r) is i and its row rank rrk(r) is its position in Ti when viewed as a tuple of
rows. Similarly, for a column c ∈ Tᵀ

i , its table identifier tbl(c) is i and its column
rank crk(c) is its position in Ti when viewed as a tuple of columns. For any

row r ∈ DB and column c ∈ DBᵀ, we refer to the pairs χ(r)
def
= (tbl(r), rrk(r))
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and χ(c)
def
= (tbl(c), crk(c)), respectively, as their coordinates in DB. Similarly,

we denote by χ(att) the coordinate of column c with attribute att ∈ S(DB)
such that χ(att) = χ(c). We write r[i] and c[i] to refer to the ith element of a
row r and column c. The coordinate of the jth cell in row r ∈ Ti is the triple
(i, rrk(r), j). Given a column c ∈ DBᵀ, we denote its corresponding attribute by
att(c). For any pair of attributes att1, att2 ∈ S(DB) with the same domain such
that dom(att1) = dom(att2), DBatt1=att2 denotes the set of row pairs

{
(r1, r2) ∈

DB2 : r1[att1] = r2[att2]
}
. For any attribute att ∈ S(DB) and constant a ∈

dom(att), DBatt=a is the set of rows
{
r ∈ DB : r[att] = a

}
.

SQL. In practice, relational databases are queried using the special-purpose
language SQL, introduced by Chamberlain and Boyce [14]. SQL is a declarative
language and can be used to modify and query a relational DB. In this work, we
only focus on its query operations. Informally, SQL queries typically have the
form

Select attributes From tables Where condition,

where attributes is a set of attributes/columns, tables is a set of tables and
condition is a predicate over the rows of tables and can itself contain a nested
SQL query. More complex queries can be obtained using Group-by, Order-by and
aggregate operators (i.e., max, min, average etc.) but the simple form above
already captures a large subset of SQL. The most common class of queries on
relational DBs are conjunctive queries [15] which have the above form with
the restriction that condition is a conjunction of equalities over attributes and
constants. In particular, this means there are no nested queries in condition.
More precisely, conjunctive queries have the form

Select attributes From tables Where
(
att1 = X1 ∧ · · · ∧ att� = X�

)
,

where atti is an attribute in S(DB) and Xi can be either an attribute or a
constant.

The SPC Algebra. It was shown by Chandra and Merlin [15] that conjunctive
queries could be expressed as a subset of Codd’s relational algebra which is an
imperative query language based on a set of basic operators. In particular, they
showed that three operators select, project and cross product were enough. The
select operator σΨ is parameterized with a predicate Ψ and takes as input a
table T and outputs a new table T′ that includes the rows of T that satisfy
the predicate Ψ . The projection operator πatt1,...,atth is parameterized by a set
of attributes att1, . . . , atth and takes as input a table T and outputs a table
T′ that consists of the columns of T indexed by att1 through attn. The cross
product operator × takes as input two tables T1 and T2 and outputs a new table
T′ = T1×T2 such that each row of T′ is an element of the cross product between
the set of rows of T1 and the set of rows of T2. The query language that results
from any combination of select, project and cross product is referred to as the
SPC algebra. We formalize this in Definition 1 below.
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Definition 1 (SPC algebra). Let DB = (T1, . . . ,Tn) be a relational database.
The SPC algebra consists of any query that results from the combination of the
following operators:

– T′ ← σΨ (T): the select operator is parameterized with a predicate Ψ of form
att1 = X1 ∧ · · · ∧ att� = X�, where atti ∈ S(DB) and Xi is either a constant
equal to a in the domain of atti (type-1) or an attribute xj ∈ S(DB) (type-2).
It takes as input a table T ∈ DB and outputs a table T′ = {r ∈ T : Ψ(r) = 1},
where terms of the form atti = xj are satisfied if r[atti] = r[xj ] and terms of
the form atti = a are satisfied if r[atti] = a.

– T′ ← πatt1,...,atth(T): the project operator is parameterized by a set of
attributes att1, . . . , atth ∈ S(DB). It takes as input a table T ∈ DB and outputs
a table T′ = {〈r[att1], . . . , r[atth]〉 : r ∈ T}.

– R ← T1 ×T2: the cross product operator takes as input two tables T1 and T2

and outputs a result table R =
{〈

r,v
〉

: r ∈ T1 and v ∈ T2

}
, where 〈r,v〉 is

the concatenation of rows r and v.

Intuitively, the connection between conjunctive SQL queries and the SPC algebra
can be seen as follows: Select corresponds to the projection operator, From to
the cross product and Where to the (SPC) select operator.

SPC Normal Form. Any query in the SPC algebra can be reduced to a normal
form using a certain set of well-known identities. The normal form of an SPC
query over a relational database DB = (T1, . . . ,Tn) has the form:

πatt1,··· ,atth

(
[a1] × · · · × [af ] × σΨ (Ti1 × · · · × Tit)

)
,

where a1, . . . , af ∈ ⋃
att∈S(DB) dom(att) and [aj ] is the 1 × 1 table that holds

aj . The 1 × 1 tables are needed for the normal form to have enough expressive
power to capture the SPC algebra (for more details see [1]). Here, the attributes
att1, . . . , atth in the projection are either in S(DB) or refer to the columns gen-
erated by [a1] through [af ]. In the latter case, we say that they are virtual
attributes and are in S(VDB), where VDB is the virtual database defined as
VDB =

(
[a1], . . . , [af ]

)
.

One of the advantages of working in the relational algebra is that it allows for
powerful optimization techniques. Given a query, we can use several identities
to rewrite the query so that it can be executed more efficiently. The topic of
query optimization is a large and important area of research in both database
theory and engineering and real-world database management systems crucially
rely on sophisticated query optimization algorithms. The main disadvantage of
working with SPC queries in normal form is that their execution is extremely
expensive, i.e., exponential in t. Furthermore, it is a-priori unclear how one could
use standard query optimization techniques over encrypted data. We will see in
Sect. 5, however, that these challenges can be overcome.

We note that while executing normal form SPC queries is prohibitively expen-
sive, converting conjunctive SQL queries to normal form SPC queries is a well-
studied problem with highly-optimized solutions. In particular, the queries that
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result from such a translation are “compact” in the sense that the number of
projects, selects and cross products in the resulting SPC query is the same as
the number of attributes, tables and conditions, respectively, in the original SQL
query (for an overview of SQL-to-SPC translation we refer the reader to [39]).

Basic Cryptographic Primitives. We make use of encryption schemes that
are random-ciphertext-secure against chosen-plaintext attacks (RCPA). RCPA-
secure encryption can be instantiated practically using either the standard PRF-
based private-key encryption scheme or, e.g., AES in counter mode.

4 Definitions

In this Section, we define the syntax and security of STE schemes. A STE scheme
encrypts data structures in such a way that they can be privately queried. There
are several natural forms of structured encryption. The original definition of
[16] considered schemes that encrypt both a structure and a set of associated
data items (e.g., documents, emails, user profiles etc.). In [17], the authors also
describe structure-only schemes which only encrypt structures. Another distinc-
tion can be made between interactive and non-interactive schemes. Interactive
schemes produce encrypted structures that are queried through an interactive
two-party protocol, whereas non-interactive schemes produce structures that can
be queried by sending a single message, i.e, the token. One can also distinguish
between response-hiding and response-revealing schemes: the latter reveal the
query response to the server whereas the former do not.

Our main construction, SPX, is response-hiding but makes use of response-
revealing schemes as building blocks. Furthermore, SPX’s building blocks can
be instantiated using either non-interactive or interactive schemes. We define
response-hiding and response-revealing schemes below, but only for the non-
interactive setting. The definitions, however, can be naturally extended to the
interactive case. At a high-level, non-interactive STE works as follows. During
a setup phase, the client constructs an encrypted structure EDS under a key K
from a plaintext structure DS. The client then sends EDS to the server. During
the query phase, the client constructs and sends a token tk generated from its
query q and secret key K. The server then uses the token tk to query EDS and
recover either a response r or an encryption ct of r depending on whether the
scheme is response-revealing or response-hiding.

Definition 2 (Response-revealing structured encryption [16]). A
response-revealing structured encryption scheme Σ = (Setup,Token,Query) con-
sists of three polynomial-time algorithms that work as follows:

– (K,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a
security parameter 1k and a structure DS and outputs a secret key K and an
encrypted structure EDS.

– tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a
secret key K and a query q and returns a token tk.
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–
{⊥, r

} ← Query(EDS, tk): is a deterministic algorithm that takes as input an
encrypted structure EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for
all k ∈ N, for all poly(k)-size structures DS : Q → R, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens
tki output by Token(K, qi), Query(EDS, tki) returns DS(qi) with all but negligible
probability.

Definition 3 (Response-hiding structured encryption [16]). A response-
hiding structured encryption scheme Σ = (Setup,Token,Query,Dec) consists of
four polynomial-time algorithms such that Setup and Token are as in Definition
2 and Query and Dec are defined as follows:

– {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an
encrypted structured EDS and a token tk and outputs either ⊥ or a ciphertext
ct.

– r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key
K and a ciphertext ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for
all k ∈ N, for all poly(k)-size structures DS : Q → R, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens
tki output by Token(K, qi), DecK

(
Query

(
EDS, tki

))
returns DS(qi) with all but

negligible probability.

Security. The standard notion of security for structured encryption guarantees
that an encrypted structure reveals no information about its underlying structure
beyond the setup leakage LS and that the query algorithm reveals no information
about the structure and the queries beyond the query leakage LQ. If this holds
for non-adaptively chosen operations then this is referred to as non-adaptive
semantic security. If, on the other hand, the operations are chosen adaptively,
this leads to the stronger notion of adaptive semantic security. This notion of
security was introduced by Curtmola et al. in the context of SSE [19] and later
generalized to structured encryption in [16].

Definition 4 (Adaptive semantic security [16,19]). Let Σ = (Setup,Token,
Query) be a response-revealing structured encryption scheme and consider the
following probabilistic experiments where A is a stateful adversary, S is a stateful
simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS
from the challenger, where (K,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of queries q1, . . . , qm. For all i ∈ [m],
the adversary receives tk ← Token(K, qi). Finally, A outputs a bit b that is
output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to
the challenger. Given z and leakage LS(DS) from the challenger, the simulator
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S returns an encrypted data structure EDS to A. The adversary then adaptively
chooses a polynomial number of operations q1, . . . , qm. For all i ∈ [m], the simu-
lator receives a tuple

(
DS(qi),LQ(DS, qi)

)
and returns a token tki to A. Finally,

A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if there exists a ppt
simulator S such that for all ppt adversaries A, for all z ∈ {0, 1}∗, the following
expression is negligible in k:

|Pr [RealΣ,A(k) = 1 ] − Pr [ IdealΣ,A,S(k) = 1 ]|

The security definition for response-hiding schemes can be derived from Def-
inition 4 by giving the simulator

(⊥,LQ(DS, qi)
)

instead of
(
DS(qi),LQ(DS, qi)

)
.

5 SPX: A Relational Database Encryption Scheme

In this Section we describe our main construction SPX. We start by giving a
high-level overview of two of the main techniques we rely on. The first is how we
index the DB to in order to handle HNF queries efficiently. The second is how
we use the “chaining” technique from [16] to build complex encrypted structures
from simpler ones.

Database Indexing. The first step of our construction is to build different
representations of the database, each designed to handle a particular operation
of the SPC algebra. These representations are designed—when combined in an
appropriate manner—to support the efficient processing of SPC queries. We
use four representations. The first is a row-wise representation of the database
instantiated as a multi-map MMR that maps the coordinate of every row in the
DB (recall that a coordinate is a row rank/table identifier pair) to the contents
of the row. The second representation is a column-wise representation of the DB.
Similarly, we create a multi-map MMC that maps the coordinate of every column
to the contents of that. The third representation, contrary to MMR and MMC ,
does not store any content of the table but the equality relation among values
in the database. For this, we create a multi-map MMV that maps each value in
every column to all the rows that contain the same value. Finally, the fourth
representation is a set of multi-maps, one for every column c in the DB. Each
multi-map, MMc, maps a pair of column coordinates to all the rows that have
the same value in both those columns. Now, using multi-map and dictionary
encryption schemes, we encrypt all these representations. This results in the
encrypted multi-maps EMMR,EMMC ,EMMV and an encrypted dictionary EDX
(which stores all the all EMMc’s).

Chaining and Constructive Queries. The different representations we just
described are designed so that, given an SPC query, the server can generate
the intermediate (encrypted) tables needed to produce the final (encrypted)
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result/table. To do this, the server will need to make further intermediate queries
on these (intermediate) encrypted tables. This type of query evaluation is con-
structive in the sense that the intermediate and final encrypted tables are not the
result of pre-processing at setup time but are constructed at query time by the
server as a function of the query and the underlying DB. To handle this, we use
the chaining technique of [16]. At a high level, the idea is to store query tokens
for one encrypted structure as the responses of another encrypted structure. By
carefully chaining the various encrypted multi-maps (EMMs) described above,
we can handle constructive queries by first querying some subset of the EMMs
to recover either tokens for EMMs further down the chain or encrypted content
which we will use to populate intermediate tables. This process proceeds further
down the chain until the final result/table is constructed.

Security and Efficiency. The database representations we choose along with
the careful chaining of their encryptions provide us a way to control both the
efficiency and the security of scheme. While intermediate results/tables will vary
depending on the query, the chaining sequence remains the same for any SPC
query written in our heuristic normal form. The chaining sequence is important
because it determines the leakage profile of the construction. We analyze the
security of our scheme in black-box manner; that is, we provide a black-box
leakage profile that is a function of the leakage profile of the underlying encrypted
multi-map and encrypted dictionaries used. This allows us to isolate the leakage
that is coming from the underlying building blocks and the leakage that is coming
directly from our construction. This further enables us to reason about and
decide which concrete instantiations to use as building blocks so that we can
choose the kind of leakage/performance tradeoff that is most appropriate.

From an efficiency standpoint, we show that when SPX is instantiated with
optimal-time encrypted multi-map and dictionary schemes, it can achieve opti-
mal query complexity and linear storage complexity (in the size of the DB) under
natural assumptions about the database.

5.1 (Plaintext) Database Indexing

As detailed above, SPX relies on several ideas and techniques. Some of these
are cryptographic and some are not. To better explain these techniques we will
progressively build our solution; starting with a naive plaintext algorithm for
evaluating SPC queries and ending with a detailed description of SPX.

The Naive SPC Algorithm. The naive way to evaluate an SPC normal form
query

πatt1,··· ,atth

(
[a1] × · · · [af ] × σΨ (Ti1 × · · · × Tit)

)

on a database DB = (T1, . . . ,Tn) is to first compute R1 := Ti1 × · · · × Tit , then
R2 := σΨ (R1), then R3 := [a1] × · · · × [af ] × R2 and finally R := πatt1,...,atth(R3).



SQL on Structurally-Encrypted Databases 163

This algorithm is dominated by the cross product computation which is O(mt ·∑t
i=1 si), where m = maxt

i=1 ‖Ti‖r and si = ‖Ti‖c. The exponential blowup
in t is the main reason normal form SPC queries are never used in practice. In
addition, since m is usually very large the naive algorithm is prohibitive even
for small t.

The benefit of working with the SPC normal form is generality; that is, we
can handle an entire class of queries by finding a solution for a single well-
specified query form. The disadvantage, however, is that normal form queries
take exponential time to evaluate even on a plaintext database.

Heuristic Normal Form (HNF). We show that certain optimizations can
be applied to the SPC normal form so that its evaluation time only induces a
multiplicative factor of

∑t
i=1 si/h over the optimal evaluation time on a plaintext

database. We refer to this new normal form as the heuristic normal form. In some
cases, this multiplicative factor is a constant as it does not depend on the size of
the result and, in such cases, the HNF evaluation is optimal. The idea is inspired
by a query optimization heuristic from database theory which takes advantage
of a distributive property between the select and cross product operators. For
example, if the predicate Ψ =

(
att1 = a1 ∧ · · · ∧ att� = a�

)
is only composed of

type-1 terms and if, for all i ∈ [�], atti ∈ Ti, and the number of terms in Ψ equals
the number of tables in the cross product, � = t, then we have the identity

σΨ

(
T1 × · · · × Tt

)
= σatt1=a1(T1) × · · · × σattt=at

(Tt).

In the database literature this is known as “pushing selects through products”
and, depending on the selectivity of the terms, it can greatly reduce the cost
of the evaluation. We extend this approach to arbitrary conjunctive predicates
which can have both type-1 and type-2 terms. Optimizing these queries is quite
involved because the terms can have complex dependencies. In the following,
we say that a query is correlated if its predicate Ψ satisfies any of the following
properties: (1) two or more type-2 terms share a common attribute; (2) a type-1
and type-2 term share a common attribute; (3) the attributes of two or more
type-2 terms are from the same table; and (4) the attributes from a type-1 and
type-2 term are from the same table. We say that a query is uncorrelated if it
is not correlated. For ease of exposition, we only describe here how to handle
uncorrelated queries and treat the case of correlated queries in the full version
of this work.

HNF for Uncorrelated Queries. If Ψ is uncorrelated, we process each term
of Ψ and apply the following rules. Let ϕ be an empty query. If there are p ≥ 1
type-1 terms att1 = a1, . . . , attp = ap from some table T, then we set

ϕ := ϕ ×
(

σatt1=a1(T) ∩ · · · ∩ σattp=ap
(T)

)
,
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and remove these terms from Ψ . If the term has form att1 = att2 (i.e., is type-2),
where att1 and att2 are from tables T1 and T2, respectively, then we set

ϕ := ϕ × σatt1=att2(T1 × T2).

Note that if att1 and att2 are from the same table T, then T1 = T2 = T above.
At the end of this rewriting process, we say that the query

πatt1,··· ,atth

(
[a1] × · · · [af ] × ϕ

)

is in the heuristic SPC normal form or simply the heuristic normal form.

Indexing. In database systems, select and project operations can be executed
in one of two ways: with or without an index. In an unindexed execution, the
database management system evaluates the operation using sequential scan. For
example, to evaluate the operation σatt=a(T), it scans the rows of T and returns
the ones that satisfy att = a. In an indexed execution, on the other hand,
the database management system uses a pre-computed data structure (e.g., an
index) to find the relevant rows in sub-linear time. Here, we give an overview
of how one can index the database to support efficient heuristic normal form
queries. Note that our indexing strategy is really designed so that we can support
heuristic normal form queries on encrypted data (which we discuss below) so it
is not necessarily the most natural way to index a plaintext database.

Given a database DB = (T1, . . . ,Tn), we first create a multi-map MMR that
stores, for all r ∈ DB, the pair

(
χ(r), r

)
.

In other words, the multi-map MMR maps row coordinates to rows. We then
create a second multi-map MMC that maps column coordinates to columns.
Following this, we build a third multi-map, MMV , that maps every value/column
pair (v, χ(c)) in the database to the coordinates of the rows that hold v in column
c. That is, for all columns c ∈ DBT and all values v ∈ c, MMV stores the pair

(〈
v, χ(c)

〉
,

(
χ(r)

)

r∈DBatt(c)=v

)
.

Finally, we build a set of multi-maps for every column c ∈ DBT. More pre-
cisely, for all columns c ∈ DBT we create the multi-map MMc which maps the
coordinates of c and any other column c′ that has the same domain as c, to
the coordinates of rows r and r′ such that r[c] = r′[c′]. More precisely, for all
c′ ∈ DBT such that dom(c′) = dom(c), MMc stores pairs

(〈
χ(c), χ(c′)

〉
,

(
χ(r), χ(r′)

)

(r,r′)∈DBatt(c)=att(c′)

)
.
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To speed up access to the multi-map MMc, we store it in a dictionary DX. That
is, for all c ∈ DBᵀ, we set

DX[χ(c)] := MMc.

Note that, in practice, we could store a pointer to MMc in the dictionary instead.

Indexed Execution of HNF Queries. We now show how to perform an
indexed execution of heuristic normal form queries using these structures.3 For
clarity, we use a small database composed of two tables and a simple SQL query.
We hope that this example clarifies some of the ideas behind our construction.

Recall that HNF queries have form

πatt1,··· ,atth

(
[a1] × · · · × [af ] × ϕ

)
,

where ϕ = ϕ1 × · · · × ϕd with each ϕi having form either σatt1=a1(T) ∩ · · · ∩
σattp=ap

(T) or σatt1=att2(T1 × T2). We process each ϕi and create a set Ri of
rows as follows:

– (Case 1) If ϕi has form σatt1=a1(T) ∩ · · · ∩ σattp=ap
(T) we recover for each

term σattj=aj
(T) a set R′

j by computing

(
χ(r)

)

r∈DBattj=aj

:= MMV

[〈
aj , χ(attj)

〉]

and querying MMR on each of the returned row coordinates. We then set

Ri = R′
1 ∩ · · · ∩ R′

p.

– (Case 2) If ϕi has form σatt1=att2(T1 × T2), we first compute MMatt1 :=
DX[χ(att1)] and

(
χ(r1), χ(r2)

)

(r1,r2)∈DBatt1=att2

:= MMatt1

[〈
χ(att1), χ(att2)

〉]
.

Then we query MMR on all of the returned row coordinates to produce a set

Ri :=
{
r1 × r2

}

(r1,r2)∈DBatt1=att2

.

After processing ϕ1, . . . , ϕd, we compute a temporary table

S := [a1] × · · · × [af ] × R1 × · · · × Rd.

3 In the full version of this work, we provide a concrete example that walks through
our indexed HNF algorithm.
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We then consider the set of attributes in the project operation that are in tables
that appear in the select operation. Specifically, this is the set:

I =
{
att ∈ S : att ∈

t⋃

j=1

S(Tij )
}

,

where S
def
= {att1, . . . , atth}. Suppose I has z ≥ 1 elements which we denote

(atti1, . . . , att
i
z). We compute

W := πatti1,...,attiz
(S).

We then consider the attributes in the project operation that are not in the
tables that appear in the select operation; that is, the set O = S \ I. Suppose O
has h − z elements which we denote (atto1, . . . , att

o
h−z). For all 1 ≤ j ≤ h − z, we

compute
cj := MMc

[
χ(attoj)

]
.

Finally, we generate the result table

R := c1 × · · · × ch−z × W,

where the cj ’s are viewed as single-column tables.

5.2 Detailed Construction

We now describe our SPX construction at a high-level. Due to space limita-
tions, we defer the pseudo-code to the full version of this work. The scheme
makes black-box use of a response-revealing multi-map encryption scheme
ΣMM = (Setup,Token,Get), of a response-revealing dictionary encryption scheme
ΣDX = (Setup,Token,Get), of a symmetric-key encryption scheme SKE =
(Gen,Enc,Dec). Note that encrypted multi-maps and dictionaries can be instan-
tiated using a variety of schemes [11,12,16,19,30,35].

Overview. At a high-level, the Setup algorithm takes as input a database
DB = (T1, . . . ,Tn), creates the multi-maps MMR, MMC , MMV , {MMc}c∈DBᵀ

and the dictionary DX, as described above, and then encrypts each structure
with the appropriate structured encryption scheme. The Token algorithm works
by parsing the heuristic normal form query and generating appropriate tokens
for each structure so as to enable the server to perform an indexed execution of
the query (over encrypted data) as described in the previous paragraph.

Setup. The Setup algorithm takes as input a relational database DB = (T1, . . . ,
Tn) and indexes it as above. This results in three multi-maps MMR, MMV and
MMC and a dictionary DX that stores pointers to an additional set of multi-maps



SQL on Structurally-Encrypted Databases 167

{MMc}c∈DBᵀ . The algorithm then encrypts every row r in MMR using SKE. In
other words, MMR now holds value/tuple pairs of the form

(
χ(r),

(
EncK1(r1), . . . ,EncK1(r#r)

))
,

where K1
$← {0, 1}k. It then encrypts MMR with ΣMM which results in a key KR

and an encrypted multi-map EMMR. It then encrypts every column c in MMC

using SKE in the same manner as above and encrypts MMC with ΣMM. This
results in KC and an encrypted multi-map EMMC .

Now for all r ∈ DB, it replaces all occurrences of χ(r) in MMV and
{MMc}c∈DBᵀ with

rtkr := ΣMM.Token(KR, χ(r)).

It then encrypts MMV and {MMc}c∈DB with ΣMM which results in keys KV and
{Kc}c∈DBᵀ and encrypted multi-maps EMMV and {EMMc}c∈DBᵀ . It then stores
pairs

(
χ(c),EMMc

)
c∈DBᵀ in a dictionary DX and encrypts DX with ΣDX which

results in a key KD and an encrypted dictionary EDX.
Finally, the Setup algorithms then outputs the key

K = (K1,KR,KV ,KC ,KD, {Kc}c∈DBᵀ),

and the encrypted database

EDB = (EMMR,EMMC ,EMMV ,EDX).

Token. The Token algorithm takes as input a secret key K and a query q in
SPC normal form. It first transforms it in heuristic normal form:

πatt1,··· ,atth

(
[a1] × · · · [af ] × ϕ1 × · · · × ϕd

)
.

For all i ∈ [h], if the project attribute atti does not appear in ϕ1 × · · · × ϕd, the
algorithm computes

ptki := ΣMM.Token
(
KC , χ(atti)

)
,

and sets ytki = (ptki, out); otherwise it sets

ptki := posi,

where posi ∈
[∑t

j=1 ‖Tij‖c

]
denotes the position of the attribute in the tables

referenced in ϕ1 × · · · × ϕd. It then sets ytki = (ptki, in).
For every constant a1 through af it computes e1 ← EncK1(a1) through ef ←

EncK1(af ). It then processes ϕ1 through ϕd and for each ϕi it does the following:
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– (Case 1) if ϕi has form σatt1=a1(T) ∩ · · · ∩ σattp=ap
(T), it sets

stki := (itk1, . . . , itkp),

where, for all j ∈ [p],

itkj := ΣMM.Token
(
KV , 〈aj , χ(attj)〉

)
.

– (Case 2) if ϕi has form σatt1=att2(T1 × T2) it sets stki := (dtki, jtki), where

dtki := ΣDX.Token
(
KD, χ(att1)

)

and

jtki := ΣMM.Token

(
Kc,

〈
χ(att1), χ(att2)

〉)
.

Finally, it outputs the token

tk =
(

(
ytki

)
i∈[h]

,
(
ei

)
i∈[f ]

,
(
stki

)
i∈[d]

)
.

Query. The Query algorithm works like the plaintext indexed HNF query eval-
uation algorithm we described above. Given a token

tk =
(

(
ytki

)
i∈[z]

,
(
ei

)
i∈[f ]

,
(
stki

)
i∈[d]

)

as input, it process the sub-tokens (stk1, . . . , stkd). For each stki it recovers a set
of encrypted rows Ri as follows:

– (Case 1) if stki has form (itk1, . . . , itkp), then it recovers, for all j ∈ [p], a set
R′

j by first computing

(rtk1, . . . , rtks) := ΣMM.Get(EMMV , itkj).

It then computes

ct1 := ΣMM.Get(EMMR, rtk1), . . . , cts := ΣMM.Get(EMMR, rtks),

and sets R′
j := {ct1, . . . , cts}. Finally, it sets Ri = R′

1 ∩ · · · ∩ R′
p.

– (Case 2) if stki has form (dtki, jtki) it first computes

EMMc := ΣDX.Get(EDX, dtki)

and (
(rtk1, rtk′

1), . . . , (rtks, rtk
′
s)

)
:= ΣMM.Get(EMMc, jtki).

It then computes

ct1 := ΣMM.Get(EMMR, rtk1), . . . , cts := ΣMM.Get(EMMR, rtks),
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and

ct′
1 := ΣMM.Get(EMMR, rtk′

1), . . . , ct
′
s := ΣMM.Get(EMMR, rtk′

s).

Finally, it sets Ri =
{
ctj × ct′

j

}

j∈[s]

.

After processing stk1 through stkd, it creates the temporary encrypted table

S = ea1 × · · · × eaf
× R1 × · · · × Rd.

Let (ytki
1, . . . , ytk

i
z) be the ytk sub-tokens with form (ptki, in). It then computes

W := πptk1,··· ,ptkz

(
S
)
.

Let (ytko
1, . . . , ytk

o
h−z) be the ytk sub-tokens with form (ptki, out). For all i ∈

[h − z], it computes
cti := ΣMM.Get(EMMC , ptki).

Finally, it generates the response table

R := ct1 × · · · × cth−z × W,

where the encrypted column cti is viewed as a single-column table.

Decryption. The Dec algorithm takes as input a secret key K and the response
table R returned by the server and simply decrypts each cell of R.

5.3 Efficiency

We now turn to analyzing the search and storage efficiency of our construction.

Search Complexity. Consider an SPC query written in its heuristic normal
form

πatt1,··· ,atth

(
[a1] × · · · [af ] × ϕ1 × · · · × ϕd

)
.

We show in the full version of this work that the size of the result table over a
plaintext database (in cells) is linear in

#R = h · (
mh−z ·

d∏

i=1

#Ri

)
, (1)

where z = #
{
att ∈ S : att ∈ ⋃t

j=1 S(Tij )
}

and S
def
= {att1, . . . , atth}, and Ri is

the set of rows returned by the evaluation of the term ϕi.
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Theorem 1. If ΣDX and ΣMM are optimal dictionary and multi-map encryption
schemes, then the time and space complexity of the Query algorithm presented
in Sect. 5.2 is

O

(
#R

h
·

t∑

i=1

si

)

,

where h is the number of selected attributes, si the number of attributes of the ith
table for all i ∈ [t], and #R is the size of the result table over plaintext database
as shown in Eq. 1.

We defer the proof of Theorem1 to the full version of this work.

Corollary 1. If h−1 · ∑t
i=1 si is a constant in #R, then both time and space

complexity are in O(#R), which is optimal.

The corollary follows simply from Theorem1. Optimality here refers to query
complexity that is linear in the size of the response table, which is the mini-
mum time needed to return it. This is similar to the SSE setting where optimal
solutions are linear in the number of documents that hold the keyword.

Storage Complexity. For a database DB = (T1, . . . ,Tn), SPX produces four
encrypted multi-maps EMMR, EMMC , EMMV and EDX. For ease of exposition,
we again assume each table has m rows. Finally, note that standard multi-
map encryption schemes [11,12,19,30] produce encrypted structures with stor-
age overhead that is linear in sum of the tuple sizes. Using such a scheme as
the underlying multi-map encryption scheme, we have that EMMR and EMMC

will be O(
∑

r∈DB #r) and O
(∑

c∈DBᵀ #c
)
, respectively, since the former maps

the coordinates of each row in DB to their (encrypted) row and the latter maps
the coordinates of very column to their (encrypted) columns. Since EMMV maps
each cell in DB to tokens for the rows that contain the same value, it requires
O

( ∑
c∈DBᵀ

∑
v∈c #DBatt(c)=v

)
storage. EDX maps the coordinates of each col-

umn c ∈ DBᵀ to an encrypted multi-map EMMc which in turn maps each pair
of form (c, c′) such that dom(att(c)) = dom(att(c′)) to a tuple of tokens for rows
in DBatt(c)=att(c′). As such, EDX will have size

O

( ∑

c∈DBᵀ

∑

c′:dom(att(c′))=dom(att(c))

#DBatt(c)=att(c′)

)
.

Note that the expression will vary greatly depending on the number of columns
in DB with the same domain. In the worst case, all columns will have a common
domain and the expression will be a sum of O

(( ∑
i ‖Ti‖c

)2) terms of the form
#DBatt(c)=att(c′). In the best case, none of the columns will share a domain and
EDX will be empty. In practice, however, we expect there to be some relatively
small number of columns with common domains. In the full version of the paper,
we provide a concrete example of the storage overhead of an encrypted database.
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6 Black-Box Security and Leakage of SPX

We show that our construction is adaptively-secure with respect to a well-
specified leakage profile. Part of the subtlety in our security analysis is that
some of the leakage is “black-box” in the sense that it comes from the underly-
ing building blocks and part of it is “non-black-box” in the sense that it comes
directly from the SPX construction.

6.1 Setup Leakage

The setup leakage of SPX captures what an adversary can learn before perform-
ing any query operation. The setup leakage of SPX is

Lspx
S

(
DB

)
=

(
Ldx
S (DX),Lmm

S (MMR) ,Lmm
S (MMC) ,Lmm

S (MMV )
)

,

where Ldx
S and Lmm

S are the setup leakages of ΣDX and ΣMM, respectively. If the
latter are instantiated with standard encrypted multi-map constructions, the
setup leakage of SPX will consist of the number of rows and columns in DB and
the size of the dictionary. Note that standard encrypted dictionary constructions
leak only the maximum size of the values they store so the size of the EMMc’s
will be hidden (up to the maximum size).

6.2 Query Leakage

The query leakage is more complex and is defined as follows,

Lspx
Q

(
DB, q

)
=

(
XPP(DB, q),PrP(DB, q),SelP(DB, q)

)
,

where each individual pattern is described next.

Cross Product. The first leakage pattern is the cross product pattern which
is defined as

XPP(DB, q) =
{

(|ai|
)
i∈[f ]

}
,

and includes the size of the virtual attributes.

Projection. The second leakage pattern is the projection pattern which is
defined as

PrP(DB, q) =
(

P(att1), . . . ,P(atth)
)

,

where

P(atti) =

⎧
⎪⎪⎨

⎪⎪⎩

(

out, Lmm
Q

(

MMC , χ(atti)

)

,
(|cj |

)

j∈[#ci]
, AccP(ci)

)

if atti ∈ S \ I;
(

in, atti

)

otherwise,
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where I =
{
att ∈ S : att ∈ ⋃t

j=1 S(Tij )
}

and S
def
= {att1, . . . , atth}, ci ∈ DBᵀ

denotes the column with attribute atti and AccP(ci) indicates the access pattern,
i.e., if and when the column ci has been accessed before. PrP captures the leakage
produced when the server queries MMC and for every attribute atti reveals
whether the attribute was in or out of the set composed of the attributes in
the predicate Ψ . If it is out, it also reveals the size of the items in the projected
column and if and when this column has been accessed before. Notice that it also
reveals the ΣMM query leakage on the coordinates of the projected attribute. If
the attribute is in, it just reveals the attribute.4

Selection. The third leakage pattern is the selection pattern which is defined as

SelP(DB, q) =

(

Z(ϕ1), . . . , Z(ϕd)

)

.

If ϕi has form σatti,1=ai,1(T) ∩ · · · ∩ σatti,pi=ai,pi
(T), then Z(ϕi) is defined as

Z(ϕi) =

(

case-1, pi,

(

Lmm
Q

(

MMV ,

〈

Xi,j , χ(atti,j)

〉)

,

{

Lmm
Q

(

MMR, χ(r)

)

, AccP(r)

}

r∈DBatti,j=Xi,j

)

j∈[pi]

)

,

where AccP(r) indicates whether the row r has been accessed before, and case-1
refers to the first form of ϕi as introduced in Sect. 5.1. Z(ϕi) captures the leakage
produced when the server queries MMV and uses the resulting row tokens to then
query MMR. It reveals whether the selection term is of case-1, the ΣMM query
leakage on the constant aj , and the coordinates of the attribute atti,j , for all
j ∈ [pi] where pi represents the number of attributes atti,j that are in the same
table T. In addition, it also leaks the ΣMM query leakage on the coordinates of
the rows in DBatti,j=ai,j

as well as if and when they have been accessed before,
for all j ∈ [pi].

If, on the other hand, ϕi has form σatti,1=atti,2(Ti,1 × Ti,2), then Z(ϕi) is
defined as

Z(ϕi) =
(

case-2,Ldx
Q

(
DX, χ(atti,1)

)
,Lmm

S (MMatti,1),AccP(EMMatti,1),

Lmm
Q

(
MMatti,1 ,

〈
χ(atti,1), χ(atti,2)

〉)
,

{
Lmm
Q

(
MMR, χ(r1)

)
,

AccP(r1),Lmm
Q

(
MMR, χ(r2)

)
,AccP(r2)

}

(r1,r2)∈DBatti,1=atti,2

)
,

where AccP(r1), AccP(r2) and AccP(EMMatti) indicate if and when r1, r2 and
EMMatti,1 have been accessed before, and case-2 refers to the second form of ϕi as

4 To be more precise, it reveals only the position of the attribute in the heuristic
normal form. The position, however, is independent of the attribute itself.
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introduced in Sect. 5.1. In this case, Z(ϕi) captures the leakage produced when
the server queries EDX to retrieve some EMMatti,1 which it in turn queries to
retrieve row tokens with which to query EMMR. It reveals whether the selection
term is of case-2, the ΣDX query leakage on the coordinates of atti,1, the ΣMM

setup leakage on MMatti,1 and if and when EMMatti,1 has been accessed in the
past. In addition, it reveals the query leakage of ΣMM on the coordinates of atti,1
and atti,2 and, for every pair of rows (r1, r2) in DBatti,1=atti,2 , their ΣMM query
leakage and if and when they were accessed in the past.

6.3 Black-Box Security of SPX

We show that SPX is adaptively semantically-secure with respect to the leakage
profile described in the previous sub-section.

Theorem 2. If SKE is RCPA secure, ΣDX is adaptively
(Ldx

S ,Ldx
Q

)
-semantically

secure and ΣMM is adaptively
(Lmm

S ,Lmm
Q

)
-secure, then SPX is (Lspx

S ,Lspx
Q )-

semantically secure.

The proof of Theorem 2 is in the full version of the paper.

7 Concrete Security and Leakage of SPX

7.1 With Zero-Leakage Building Blocks

Here, we are interested in the leakage profile of SPX when the underlying build-
ing blocks are ZL. By a ZL encrypted structure, we mean that its query oper-
ations only reveals information that can be derived from the security param-
eter or other public parameters. We write this as LQ(DS, q) = ⊥, for any
query q in its corresponding query space. When instantiated with ZL building
blocks, the query leakage of SPX decreases considerably but its setup leakage
remains the same. Specifically, the projection pattern becomes PrP(DB, q) =(

P(att1), . . . ,P(atth)
)

, where

P(atti) =

⎧
⎪⎪⎨

⎪⎪⎩

(
out,

(|cj |
)
j∈[#ci]

,AccP(ci)
)

if atti ∈ S \ I;
(
in, atti

)
otherwise.

The selection pattern SelP becomes SelP(DB, q) =
(

Z(ϕ1), . . . ,Z(ϕd)
)

, where

if ϕi has form σatti,1=ai,1(T) ∩ · · · ∩ σatti,pi=ai,pi
(T), then Z(ϕi) is defined as

Z(ϕi) =
(

case-1, pi,

{
AccP(r)

}

r∈DBatti,j=Xi,j
,j∈[pi]

)
,
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Otherwise if, ϕi has form σatti,1=atti,2(Ti,1 × Ti,2), then Z(ϕi) is defined as

Z(ϕi) =
(

case-2,Lmm
S (MMatti,1),AccP(EMMatti,1),

{
AccP(r1),AccP(r2)

}

(r1,r2)∈DBatti,1=atti,2

)
.

We are aware of two ZL encrypted multi-map constructions. The first can be
derived from an SSE construction of Garg, Mohassel and Papamanthou [20]
that itself is based on the TWORAM construction. We note that the SSE scheme
proposed in that work is not ZL (since it reveals the response length) but it can be
made so with a careful parametrization of its block size. The second construction
is FZL by Kamara, Moataz and Ohromenko [29]. Of course, ZL schemes come
with an additional efficiency overhead. For example, if the TWORAM-based
construction is used in SPX its time and space complexity would incur an additive
overhead of

Õ

(
(2� + h) · m · log (n · m) + d · m2 · log

( ∑

i∈[n]

‖Ti‖c · m

))
,

where n is the number of tables in DB. Note that SPX becomes interactive if it
is instantiated with any of the currently-known ZL constructions.

7.2 With Standard Building Bocks

In this section, we describe the leakage profile of SPX when instantiated with
encrypted dictionary or multi-map schemes with the “standard” leakage profile
[11,12,16,19,30,35]. A standard response-revealing encrypted multi-map or dic-
tionary encryption reveals the search pattern SP and access pattern AP, whereas
a standard response-hiding encrypted multi-map or dictionary reveals the search
pattern SP and the response length RL. The search pattern reveals if and when
a query is repeated, the access pattern reveals the responses, and the response
length reveals the length of the response. The query leakage of SPX when instan-
tiated with standard STE schemes is the one detailed in Sect. 6.2 except that we
replace Lmm

Q with the patterns detailed above depending on whether the underly-
ing scheme is response-revealing or response-hiding. In the following, we provide
a high level description of both the projection and selection patterns of SPX.

Projection. The projection pattern discloses the frequency of accesses made to
a particular attribute. An adversary can learn the size of the accessed columns,
and therefore the number of entries that a specific table has. The impact of such
leaked information depends on the auxiliary information the attacker possesses.
In some settings, just knowing the size of the table can be sufficient for an
adversary to know the targeted information, but this is a general problem that
can be addressed by padding, for instance.
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Selection. Of all the leakage patterns of SPX, the selection pattern is the one
that leaks the most. If ϕi is of case-1, then an adversary can know the number
of rows that contain the same value at a particular column(s), and this applies
to all the pi attributes in ϕi. The adversary can also learn the frequency with
which a particular row has been accessed, and also the size of that row. If many
queries have been performed on the same table and the same column, then the
adversary can build a frequency histogram of that specific column’s contents.
Otherwise if ϕi is of case-2, then the server learns how many rows are equal to
each other in both columns.

7.3 SPX and SSE Attacks

As mentioned, one of the possible instantiation SPX makes use of standard SSE
to implement the underlying encrypted multi-maps. There are several known
attacks that try to exploit the leakage of various SSE schemes such as the infer-
ence attacks of Islam et al. [26] and of Cash et al. [10] and the file injection
attacks of Cash et al. [10] and Zhang et al. [40]. It is not exactly clear what
the impact of these attacks would be to our setting since our construction han-
dles more complex objects and has a different leakage profile than standard SSE
schemes. What is clear, however, is that our scheme leaks more than standard
SSE schemes so presumably the techniques from these works could be extended
to apply to our construction.

We note, however, that the attacks in [10,26] rely on strong assumptions
including knowledge of a large fraction of the client’s data and knowledge of some
client queries5. Specifically, for IKK, the adversary needs to know about 90% of
the client’s data in order to recover about 10% of its queries. Similarly, the Count
attack from [10] requires the adversary to know 80% of the client’s data and 5%
of its queries in order to recover 40% of the client’s queries (note that the success
rate of the counting attack is not linear so knowing even 75% of the client’s data
is not enough for the adversary to learn even 1% of the client’s queries). With
90% of the data and 2% of the queries, the Count attack does not work at all.
Another limitation of these attacks is related to how the adversary can recover
client data in practice. Recall that in an outsourced storage setting the client is
assumed to erase its data after storing it in encrypted form on the server (that
is the purpose of outsourcing). It is therefore not clear how the adversary can
recover, say 80%, of client data unless the client encrypts publicly-known data—
in which case it should use a different primitive like private information retrieval.
In a model where the adversary does not know any of the client’s data a-priori—
which is the standard model for SSE and structured encryption—neither the
IKK attack nor the Count attack can recover any queries at all.

Unlike the previously mentioned attacks, the file injection attacks of [40] are
effective in practice but are only applicable against dynamic SSE schemes and in
scenarios where the adversary can inject data into the encrypted structure. This

5 While the Count attack is not described as a known-query attack in [10], it has come
to our attention that this was an error and will be fixed by the authors.
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is the case, for example, if one were to use a dynamic SSE scheme to encrypt an
email archive since the server/adversary could send the client malicious emails.
In our setting, we assume the data is generated by the client and is not publicly
modifiable after the setup. However, if our dynamic scheme SPX+ were used in a
setting where row injections are possible then, presumably, attacks like those of
[40] could be designed and some queries could be disclosed. As suggested in [40],
one countermeasure in this case is to use forward-secure constructions. In the
full version of this work, we discuss how to make SPX+ forward-secure.

Recently, Abdelraheem et al. [33] presented an attack on relational databases
encrypted with SSE. We stress, however, that the attack of [33] only applies to
a very specific and naive SSE-based relational EDB construction described in
that work and first used for experiments in [12] (e.g., the construction does not
handle any non-trivial SQL query). While it is not clear at all how this attack
would apply to our construction, we point out that the attack relies on strong
assumptions. In particular, it works only for databases with attributes whose
domain sizes are unique. In addition, it relies on the adversary knowing the
attributes in the database and their domain sizes. Furthermore, the adversary
also needs to know, for each attacked column, which domain element appears
the most frequently, the second most frequently etc. Finally, the attack needs
to solve an NP-complete problem that can be solved in pseudo-polynomial time
only for databases with a small number of rows and small attribute domains
(experimental results were conducted for databases with 32, 561 rows and domain
sizes that range from 2 to 41 and execution times were not reported).

7.4 Comparison to PPE-Based Solutions

As mentioned in Sect. 1, PPE-based solutions can handle a large class of SQL
queries which includes conjunctive queries. To support conjunctive queries, how-
ever, these solutions have to rely on deterministic encryption. For example, to
handle a case-1 query on a table T, they will reveal a deterministic encryptions of
all the accessed attributes c in T (i.e., every element of every column is encrypted
under the same key). To handle a case-2 query between two columns c1 and c2,
they will reveal deterministic encryptions of both columns (under the same key).
In turn, this will provide the frequency information on the entire columns to the
server. Depending on the setting, frequency patterns can be particularly danger-
ous, as shown in [34].

SPX leaks considerably less. First, it does not leak any frequency information
on entire columns or rows. For case-1 queries, it only leaks information about
the attributes in the query and the rows that match the term. For case-2 queries,
it only leaks information about the pair of attributes (atti,1, atti,2) in the select
and the rows that match the term. Note that this leakage is only a function of
the attributes in the query and of the rows that match it, whereas the leakage
in PPE-based solutions is a function of entire columns. Moreover, in the case
of SPX, if the underlying multi-map and dictionary schemes are instantiated
with standard constructions, the information leaked about the attributes and
matching rows is “repetition” type of information, i.e., if and when they have
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appeared in the past. Analogously, the project operations in SPX only leak infor-
mation about the attributes in the project and the columns that match it and
the information being leaked “repetition” type of information.

Formally, the setup leakage of PPE-based solutions like CryptDB is

Lppe
S (DB) =

(
‖Ti‖c, ‖Ti‖r

)

i∈[n]

,

where n is the number of tables in DB. Given a SQL query q, the query leakage
is

Lppe
Q (DB, q) =

(
XPP(DB, q),PrP(DB, q),SelP(DB, q),FrP(DB, q)

)
,

where XPP, PrP and SelP are the cross product, projection and selection pat-
terns (defined as in the leakage profile of SPX), and FrP(DB, q) is the frequency
pattern which leaks frequency information on all queried columns. It is easy to
see that even when SPX is instantiated with non-ZL building blocks, its query
leakage is a subset of the query leakage of the PPE-based solutions. Note that,
not only is FrP relatively easy to exploit [34], it is also persistent in the sense
that it is available not only to an adversary that has the query tokens and wit-
nesses or executes the query operation but also to a “snapshot” adversary which
only has access to the encrypted DB. This is not the case for SPX.

A Remark on Leakage. Ideally, one would hope to better understand how sig-
nificant the leakage of practical encrypted search solutions are but we currently
lack any theoretical framework to conduct such an analysis. In other words, the
best we can currently do is to give a precise leakage profile and prove that our
constructions do not leak anything beyond that profile. For the same reason, the
best we can currently do to compare two leakage profiles is to show that one is
a subset of the other (and in some cases, this is not even possible).

8 Extensions

In the full version of the paper, we show how to extend SPX to handle additional
post-processing operations including Group-by, Order-by and various aggregate
functions such as Sum, Average, Median, Count, Mode, Max and Min.

In addition, due to its modularity, SPX can be extended to be dynamic
without re-designing it entirely. We refer to the dynamic version of SPX as SPX+

and describe it in the full version of this work. Note that SPX+ maintains the
same query complexity and query leakage as SPX. We also discuss how to use
ORAM to make SPX+ forward-secure at the cost of a poly-logarithmic overhead
for updates and without affecting the query complexity.
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9 Future Directions and Open Problems

In this work, we proposed the first encrypted relational database scheme purely
based on STE techniques. As such, our construction offers more security than
the PPE-based solutions and are more efficient than solutions based on general-
purpose techniques like ORAM simulation or FHE. Our work leaves open sev-
eral interesting questions. The first is whether our techniques can be extended
to handle the full relational algebra which, effectively, is the entire SQL. To
achieve this, our solution would have to be extended to handle negations and
disjunctions (set unions) in the Where clause of the SQL query. We believe this
to be challenging. A second problem is to handle SQL queries with ranges in
the Where clause. A first step towards achieving this would be to improve the
state of the art in encrypted range queries. In particular, finding schemes with
improved leakage profiles is important since recent work [31,32] has described
powerful attacks against the state of the art encrypted search solutions (under
some assumptions on the data and queries).
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Abstract. Order-revealing encryption (ORE) is a primitive for out-
sourcing encrypted databases which allows for efficiently performing
range queries over encrypted data. Unfortunately, a series of works, start-
ing with Naveed et al. (CCS 2015), have shown that when the adversary
has a good estimate of the distribution of the data, ORE provides little
protection. In this work, we consider the case that the database entries
are drawn identically and independently from a distribution of known
shape, but for which the mean and variance are not (and thus the attacks
of Naveed et al. do not apply). We define a new notion of security for
ORE, called parameter-hiding ORE, which maintains the secrecy of these
parameters. We give a construction of ORE satisfying our new definition
from bilinear maps.

Keywords: Encryption · Order-revealing encryption

1 Introduction

An emerging area of cryptography concerns the design and analysis of “leaky”
protocols (see e.g. [11,33,36] and additional references below), which are proto-
cols that deliberately give up some level of security in order to achieve better
efficiency. One important tool in this area is order-revealing encryption [7,8]1.
Order-revealing encryption (ORE) is a special type of symmetric encryption
which leaks the order of the underlying plaintexts through a public procedure
Comp. In practice, ORE allows for a client to store a database on an untrusted
server in encrypted form, while still permitting the server to efficiently perform
various operations such as range queries on the encrypted data without the secret
decryption key. ORE has been implemented and used in real-world encrypted
database systems, including CryptDB [36].
1 In [7], it was called efficiently-orderable encryption.
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Various notions of ORE have been proposed. The strongest, called “ideal”
ORE, insists that everything about the plaintexts is hidden, except for their
order. For example, it should be impossible to distinguish between encryptions
of 1, 2, 3 and 1, 4, 9. Such ideal ORE can be constructed from multilinear maps [8],
showing that in principle ideal ORE is achievable. However, current multilinear
maps are quite inefficient, and moreover have been subject to numerous attacks
(e.g. [16,17,32]).

In order to develop efficient schemes, one can relax the security requirements
to allow for more leakage. Order-preserving encryption (OPE) [1,6]—which actu-
ally predates ORE—is one example, where Comp is simply integer comparison.
Very efficient constructions of OPE are known [6]. However, OPE necessarily
leaks much more information about the plaintexts [6] than ideal ORE; intu-
itively, the difference between ciphertexts can be used to approximate the dif-
ference between the plaintexts. More recently, there have been efforts to achieve
better security without sacrificing too much efficiency: Chenette, Lewi, Weis
and Wu (CLWW) [15] recently gave an ORE construction which leaks only the
position of the most significant differing bits of the plaintexts.

Unfortunately, even hypothetical ideal ORE has recently been shown insecure
for various use cases [3,10,19,20,22,24–26,30,34]. This is even if the scheme itself
reveals nothing but the order of the plaintexts. The problem is that just the order
of plaintexts alone can already reveal a significant amount of information about
the data. For example, if the data is chosen uniformly from the entire domain,
then even ideal ORE will leak the most significant bits. As the most significant
bits are often the most important ones, this is troubling.

The problem is that the definitions of ORE, while precise and provable, do not
immediately provide any “semantically meaningful” guarantees for the privacy
of the underlying data. Indeed, the above attacks show that when the adversary
has a strong estimate of the prior distribution the data is drawn from, essentially
no security is possible. However, we contend that there are scenarios (see below)
where the adversary lacks this knowledge. A core problem in such scenarios is
that the privacy of one message is inherently dependent on what other cipher-
texts the adversary sees. Analyzing these correlations under arbitrary sources
of data, even for ideal ORE, can be quite difficult. Only very mild results are
known, for example the fact that either CLWW leakage or ideal leakage provably
hides the least significant bits of uniformly chosen data. Unfortunately, these bits
are probably of less importance (e.g. for salaries).

Therefore, a central goal of this paper is to devise a semantically meaningful
notion of privacy for the underlying data in the case that the adversary does
not have a strong estimate of the prior distribution, and develop a construction
attaining this notion not based on multilinear maps.

We stress that we are not trying to devise a scheme that is secure in the use
cases of the attacks above, as many of the attacks above would apply to any
ORE scheme; we are instead aiming to identify settings where the attacks do
not apply, and then provide a scheme satisfying a given notion of security in this
setting.



Parameter-Hiding Order Revealing Encryption 183

1.1 This Work: Parameter-Hiding ORE

In this work, we give one possible answer to the question above. Rather than
focusing on the individual data records, we instead ask about the privacy of the
distribution they came from. We show how to protect some information about
the underlying data distribution.

Motivating Example. To motivate our notion, consider the following setting. A
large university wants to outsource its database of student GPAs. For simplicity,
we will assume each student’s academic ability is independent of other students,
and that this is reflected in the GPA. Thus, we will assume that each GPA is
sampled independently and identically according to some underlying distribu-
tion. The university clearly wants to keep each individual’s GPA hidden. It also
may want aggregate statistics such as mean and variance to be hidden, perhaps
to avoid getting a reputation for handing out very high or very low grades.

Distribution-Hiding ORE. This example motivates a notion of distribution-
hiding ORE, where all data is sampled independently and identically from some
underlying distribution D, and we wish to hide as much as possible about D.
We would ideally like to handle arbitrary distributions D, but in many cases
will accept handling certain special classes of distributions. Notice that if the
distribution itself is completely hidden, then so too is every individual record,
since any information about a record is also information about D.

We begin with the following trivial observation: if D has high min-entropy
(namely, super-logarithmic), then the ideal ORE leakage is just a random order-
ing with no equalities, since there are no collisions with overwhelming probability.
In particular, this leakage is independent of the distribution D; as such, ideal
ORE leakage hides everything about the underlying distribution, except for the
super-logarithmic lower bound on min-entropy. Thus, we can use the multilinear
map-based scheme of [8] to achieve distribution-hiding ORE for any distribution
with high min-entropy.

We note the min-entropy requirement is critical, since for smaller min-
entropies, the leakage allows for determining the frequency of the most common
elements, hence learning non-trivial information about D.2

Unfortunately, the only way we know to build distribution-hiding ORE is
using ideal leakage as above; as such, we do not know of a construction not
based on multilinear maps. Instead, in hopes of building such a scheme, we will
allow some information about the distribution to leak.

2 This min-entropy requirement may be somewhat problematic in some settings. GPAs
for example, probably have fewer than 10 bits of entropy. However, adding small
random noise to the data before encrypting (much smaller than the precision of the
data) will force the data to have high min-entropy without changing the order of
data, with the exception that identical data will appear different when comparing.
In many cases (such as answering range queries) it is totally acceptable to fail to
identify identical data.
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Parameter-Hiding ORE. We recall that in many settings, data follows a known
type of distribution. For example, the central limit theorem implies that many
quantities such as various physical, biological, and financial quantities are
(approximately) normally distributed. It is also common practice to assign grades
on an approximately normal distribution, so GPAs might reasonably be conjec-
tured to be normal. For a different example, insurance claims are often modeled
according to the Gamma distribution.

Therefore, since the general shape of the distribution is typically known, a
reasonable relaxation of distribution-hiding ORE is what we will call parameter-
hiding ORE. Here, we will assume the distribution has a known, public “shape”
(e.g. normal, uniform, Laplace etc.) but it may be shifted or scaled. We will allow
the overall shape to be revealed; our goal instead is to completely hide the shifting
and scaling information. More precisely, we consider a distribution D over [0, 1]
which will describe the general shape of the family of distributions in question.
For example, if the shape in consideration is the set of uniform distributions over
an interval, we may take D to be uniform distribution over [0, 1]; if the shape is
the normal distribution, we will take D be the normal distribution with mean
1/2, and standard deviation small enough so that the vast majority of the mass
is in [0, 1]. Let Dα,β be the distribution defined as: first sample x ← D, and then
output �αx + β�. We will call α the scaling term and β the shift. The adversary
receives a polynomial number of encryptions of plaintext sampled iid from Dα,β

for some α, β. We will call a scheme parameter hiding if the scale and shift are
hidden from any computationally bounded adversary. Our main theorem is that
it is possible to construct such parameter-hiding ORE from bilinear maps:

Theorem 1 (Informal). Assuming bilinear maps, it is possible to construct
parameter-hiding ORE for any “smooth” distribution D, provided the scaling
term is “large enough.”

We note the restrictions to large scalings are inherent: any small scaling will
lead to a distribution with low min-entropy. As discussed above, even with ideal
ORE, it is possible to estimate the min-entropy of low min-entropy distributions,
and hence it would be possible to recover the scaling term if the scaling term is
small. Some restrictions on the shape of D are also necessary, as certain shapes
can yield low min-entropy even for large scalings. “Smoothness” (which we will
define as having a bounded derivative) guarantees high min-entropy at large
scales, and is also important technically for our analysis.

1.2 Technical Overview

As a starting point, we will consider the leakage profile of Chenette, Lewi, Weis
and Wu [15] (henceforth referred to as CLWW), which reveals the position of the
most significant differing bit between any two plaintexts. This is quite a lot of
information: for example, it can be used to get rough bounds on the difference
between two plaintexts. Thus, CLWW cannot be parameter hiding, since the
scaling term is not hidden. However, CLWW will be a useful starting point, as
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it will allow us to construct shift-hiding ORE, where we only care about hiding
the shift term. To help illustrate our approach, we will therefore first describe
an equivalent formulation of CLWW leakage, which we will then explain how to
extend to get full parameter-hiding ORE.

An Alternative View of CLWW Leakage. Consider the plaintext space
{0, 1, 2, . . . , 2� − 1}. We will think of the plaintexts as leaves in a full binary tree
of depth �. In this tree, the position of the most significant differing bit between
two plaintexts corresponds to the depth of their nearest ancestor. The leakage
of CLWW can therefore can be seen as revealing the tree consisting of all given
plaintexts, their ancestors in the tree up to the lowest common ancestor, and
the order of the leaves, with all other information removed. See Fig. 1 for an
illustration.

Fig. 1. CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and {1, 6, 7, 8, 9}
correspond to equivalent subtrees. If the message space extends beyond 15, the CLWW
leakage remains the same as depicted, since the leakage only reveals the tree up to the
most recent ancestor.

Now, suppose all plaintext elements are in the range [0, 2i) for some i. This
means they all belong in the same subtree at height i; in particular, the CLWW
leakage will only have depth at most i. Now, suppose we add a multiple of 2i to
every plaintext. This will simply shift all the plaintexts to being in a different
subtree, but otherwise keep the same structure. Therefore, the CLWW leakage
will remain the same.

Therefore, while CLWW is not shift hiding, it is shift periodic. In particular,
if imagine a distribution D whose support is on [0, 2i), and consider shifting D by
β. Consider an adversary A, which is given the CLWW leakage from q plaintexts
sampled from the shifted D, and outputs a bit. If we plot the probability p(β)
that A outputs 1 as a function of β, we will see that the function is periodic
with period 2i.
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Shift-Hiding ORE/OPE. With this periodicity, it is simple to construct a scheme
that is shift hiding. To get a shift-hiding scheme for message space [0, 2�), we
instantiate CLWW with message space [0, 2�+1). We also include as part of
the secret key a random shift γ chosen uniformly in [0, 2�). We then encrypt a
message m as Enc(m + γ). Adding a random shift can be seen as convolving the
signal p(β) with the rectangular function

q(β) =

{
2−� if β ∈ [0, 2�)
0 otherwise

Since the rectangular function’s support matches the period of p, the result
is that the convolved signal p̂ is constant. In other words, the adversary always
has the same output distribution, regardless of the shift β. Thus, we achieve
shift hiding.

When the comparison algorithm of an ORE scheme is simple integer com-
parison, we say the scheme is an order-preserving encryption (OPE) scheme.
OPE is preferable because it can be used with fewer modifications to a database
server. We recall that CLWW can be made into an OPE scheme — where cipher-
texts are integers and comparision is integer comparison — while maintaining
the CLWW leakage profile. Our conversion to shift-hiding preserves the OPE
property, so we similarly achieve a shift-hiding OPE scheme.

Scale-Hiding ORE/OPE. We note that we can also turn any shift-hiding ORE
into a scale-hiding ORE. Simply take the logarithm of the input before encrypt-
ing; now multiplying by a constant corresponds to shifting by a constant. Of
course, taking the logarithm will result in non-integers; this can easily be fixed
by rounding to the appropriate level of precision (enough precision to guarantee
no collisions over the domain) and scaling up to make the plaintexts integral.
Similarly, we can also obtain scale-hiding OPE if we start with an OPE scheme.

Impossibility of Parameter-Hiding OPE. One may hope to achieve both shift-
hiding and scale-hiding by some combination of the two above schemes. For
example, since order preserving encryption schemes can be composed, one can
imagine composing a shift-hiding scheme with a scale-hiding scheme. Inter-
estingly, this does not give a parameter-hiding scheme. The reason is that
shifts/scalings of the plaintext do not correspond to shifts/scalings of the cipher-
texts. Therefore, while the outer OPE may provide, say, shift-hiding for its
inputs, this will not translate to shift-hiding of the inner OPE’s inputs.

Nonetheless, one may hope that tweaks to the above may give a scheme that
is simultaneously scale and shift hiding. Perhaps surprisingly, we show that this
is actually impossible. Namely, we show that OPE cannot possibly be parameter-
hiding. Due to space limit, we put the rigorous proof in our full version [12].

This impossibility shows that strategies leveraging CLWW leakage are
unlikely to yield parameter-hiding ORE schemes. Interestingly, all ORE schemes
we are aware of that can be constructed from symmetric crypto can also be made
into OPE schemes. Thus, this suggests we need stronger tools than those used
by previous efficient schemes.
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Parameter Hiding via Smoothed CLWW Leakage. Motivated by the
above, we must seek a different leakage profile if we are to have any hope of
achieving parameter-hiding ORE. We therefore first describe a “dream” leakage
that will allow us to perform similar tricks as in the shift hiding case in order
to achieve both scale and shift hiding simultaneously. Our dream leakage will be
a “smoothed” CLWW leakage, where all nodes of degree exactly 2 are replaced
with an edge between the two neighbors. In other words, the dream leakage is
the smallest graph that is “homeomorphic” to the CLWW leakage. See Fig. 2 for
an illustration.

Fig. 2. Smoothed CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and
{1, 2, 3, 5, 6} correspond to equivalent smoothed subtrees. Notice that the CLWW leak-
age for these two trees is different.

Our key observation is that this smoothed CLWW leakage now exhibits addi-
tional periodicity. Namely, if we multiply every plaintext by 2, every edge in the
bottom layer of the CLWW leakage will get subdivided into a path of length 2,
but smoothing out the leakage will result in the same exact graph. This means
that smoothed CLWW leakage is periodic in the log domain.

In particular, consider a distribution D with support on [0, 2i), and suppose
it is multiplied by α. Consider an adversary A, which is given the smoothed
CLWW leakage from q plaintexts sampled from a scaled D, and outputs a bit.
If we plot the probability p(log2 α) that A outputs 1 as a function of α, we will
see that the function is periodic with period 1.

Therefore, we can perform a similar trick as above. Namely, we convolve
p with the uniform distribution over the period of p in the log domain. We
accomplish this by including a random scalar α as part of the secret key, and
multiplying by α before encrypting. However, this time several things are differ-
ent:

– Since we are working in the log domain, the logarithm of the random scalar
α has to be uniform. In other words, α is log-uniform

– Since we are working over integers instead of real numbers, many issues arise.
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• First, α needs to be an integer to guarantee that the scaled plaintexts
are still integers. This means we cannot choose α at log-uniformly over a
single log period, since then α only has support on {1, 2}. Instead, we need
to choose α log-uniformly over a sufficiently large multiple of the period
that α approximates the continuous log-uniform distribution sufficiently
well.

• Second, unlike the shift case, sampling at random from D and then scaling
is not the same as sampling from a scaled version of D, since the round-
ing step does not commute with scaling. For example, for concreteness
consider the normal distribution. If we sample from a normal distribution
(and round) and then scale, the resulting plaintexts will all be multiples
of α. However, if we sample directly from a scaled normal distribution
(and then round), the support of the distribution will include integers
which are not multiples of α.
To remedy this issue, we observe that if the plaintexts are sampled from
a wide enough distribution, their differing bits will not be amongst the
lowest significant bits. Hence, the leakage will actually be independent
of the lower order bits. For example, this means that while the rounding
does not commute with the scaling, the leakage actually does not depend
on the order in which the two operations are carried out.

• The above arguments can be made to work for, say, the normal distribu-
tion. However, we would like to have a proof that works for any distribu-
tion. Unfortunately, for distributions that oscillate rapidly, we may run
into trouble with the above arguments, since rounding such distributions
can cause odd behaviors at all scales. This problem is actually unavoid-
able, as quickly oscillating distributions may have actually have low min-
entropy even at large scales. Therefore, we must restrict to “smooth”
functions that have a bounded derivative.

Using a careful analysis, we are able to show for smooth distributions that
we achieve the desired scale hiding.

– Finally, we want to have a scheme that is both scale and shift hiding. This
is slightly non-trivial, since once we introduce, say, a random shift, we have
modified the leakage of the scheme, and cannot directly appeal to the argu-
ments above to obtain scale hiding as well. Instead, we distill a set of specific
requirements on the leakage that will work for both shift hiding and scale hid-
ing. We show that our shift hiding scheme above satisfies the requirements
needed in order for us to introduce a random scale and additionally prove
scale hiding.

Achieving Smoothed CLWW Leakage. Next we turn to actually construct-
ing ORE with smoothed CLWW leakage. Of course, ideal ORE has better than
(smoothed) CLWW leakage, so we can construct such ORE based on multilinear
maps. However, we want a construction that uses standard tools.

We therefore provide a new construction of ORE using pairings that achieves
smoothed CLWW leakage. We believe this construction is of interest on its own,
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as it is achieves the to-date smallest leakage of any non-multilinear-map-based
scheme.

CLWW ORE and How to Reduce its Leakage. Our construction builds on the
ideas of CLWW, so we first briefly recall the ORE scheme of CLWW. In their
(basic) scheme, the encryption key is just a PRF key K. To encrypt a plaintext
x ∈ {0, 1}n, for each prefix pi = x[1, . . . , i], the scheme computes

yi = PRFK(pi) + xi+1

where xi+1 is the (i + 1)-st bit of x, and the output of PRF ∈ {0, 1}λ is treated
as an integer (we will take λ to be the security parameter). The ORE ciphertext
is then (y1 . . . , yn). To compare two ciphertexts (y1 . . . , yn) and (y′

1 . . . , y′
n), one

finds the smallest index i such that yi �= y′
i, and outputs 1 if y′

i − yi = 1. This
naturally reveals the index of the bit where the plaintexts differ.

Our approach to reducing the leakage is to attempt to hide the index i where
the plaintexts differ. As a naive attempt at this, first consider what happens if we
modify the scheme to simply randomly permute the outputs (y1 . . . , yn) (with a
fresh permutation chosen for each encryption). We can still compare ciphertexts
by appropriately modifying the comparison algorithm: now given c = (y1 . . . , yn)
and c′ = (y′

1 . . . , y′
n) (permuted as above), it will look for indices i, j such that

either y′
i − yj = 1, in which case it outputs 1, or yj − y′

i = 1, in which case it
outputs 0. (If we choose the output length of the PRF to be long enough then
this check will be correct with overwhelming probability).

This modification, however, does not actually reduce leakage: an adversary
can still determine the most significant differing bit by counting how many ele-
ments c and c′ have in common.

We can however recover this approach by preventing an adversary from
detecting how many elements c and c′ have in common. To do so, we introduce
and employ the new notion of property-preserving hashing (PPH). Intuitively,
a PPH is a randomized hashing scheme that is designed to publicly reveal a
particular predicate P on pairs of inputs.

PPH can be seen as the hashing (meaning, no decryption) analogue of the
notion of property-preserving encryption, a generalization of order-revealing
encryption to arbitrary properties due to Pandey and Rouselakis [35]. (This
can also be seen as a symmetric-key version of the notion of “relational hash”
due to Mandal and Roy [31].)

Specifically, we construct and employ a PPH for the property

P1(x, x′) =

{
1 if x = x′ + 1
0 otherwise

(Here x, x′ are not plaintexts of the ORE scheme, think of them as other inputs
determined below.) Security requires that this is all that is leaked; in particular,
input equality is not leaked by the hash values (which requires a randomized
hashing algorithm).
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Now, the idea is to modify the scheme to include a key KH for such a PPH H,
and the encryption algorithm to not only randomly permute the yi’s but hash
them as well, i.e., output (h1, . . . , hn) where hi = HKH

(yi) for the permuted
yi’s.3 The comparison algorithm can again be modified appropriately, namely to
not to check if y′

i − yj = 1 but rather if their h′
i and h′

j hash values satisfy P1

via the PPH (and similarly for the check yj − y′
i = 1).

For any two messages, the resulting ORE scheme is actually ideal: it only
reveals the order of the underlying plaintexts, but nothing else. However, for
three messages m,m′,m′′ we see that some additional information is leaked.
Namely, if we find that y′

i − yj = 1 y′′
k − yj = 1, then we know that y′

j = y′′
k . We

choose the range of the PRF large enough so that this can only happen if y′
j and

y′
k are both PRFK(p�) + x�+1 for the same prefix p� and same bit x�+1, and y′

j

corresponds to the most significant bit where m′ differs from m, y′′
k corresponds

to the most significant bit where m′′ differs from m, and moreover these positions
are the same. Therefore, the adversary learns whether these most-significant
differing bits are the same. It is straightforward to show that this leakage is
exactly equivalent to the smoothed CLWW leakage we need. Proving this ORE
scheme secure wrt. this leakage based on an achievable notion of security for the
PPH turns out to be technically challenging. Nevertheless, we manage to prove
it “non-adaptively secure,” meaning the adversary is required to non-adaptively
choose the dataset, which is realistic for a passive adversary in the outsourced
database setting.

Property-Preserving Hash From Bilinear Maps. Next we turn to constructing a
property-preserving hash (PPH) for the property P1(x, x′) = x = x′ + 1. For
this, we adapt techniques from perfectly one-way hash functions [9,31] to the
symmetric-key setting and use asymmetric bilinear groups. Roughly, in our con-
struction the key for the hash function is a key K for a pseudorandom function
PRF and, letting e : G1 × G2 → GT be an asymmetric bilinear map on prime
order cyclic groups G1, G2 with generators g1, g2, the hash of x is

HK(x) = (gr1
1 , g

r1PRFK(x)
1 , gr2

2 , g
r2PRFK(x+1)
2 )

for fresh random r1, r2 ∈ Zp. (Thus, the PRF is also pushed to our PPH con-
struction and can be dropped from the higher-level ORE scheme when our hash
function is plugged-in). The bilinear map allows testing whether P1(x, x′) from
HK(x),HK(x′), and intuitively our use of asymmetric bilinear groups prevents
testing other relations such as equality (formally we use the XSDH assumption).
We prove the construction secure under an indistinguishability-based notion in
which the adversary has to distinguish between the hash of a random challenge
x∗ and a random hash value, and can query for hash values of inputs x of its

3 A minor issue here is that we now lose decryptability for the resulting ORE scheme;
however, this can easily be added back in a generic way by also encrypting the
plaintext separately under a semantically secure scheme.
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choice as long as P1(x, x∗) and P1(x∗, x) are both 0. Despite being restricted,4,
this notion suffices in our ORE scheme above.

When our PPH is plugged into our ORE scheme, ciphertexts consist of 4n
group elements, and order comparison requires n(n − 1) pairing computations
on average. We also note that CLWW gave an improved version of their scheme
where ciphertexts are size O(n) rather than O(nλ) for security parameter λ,
however, we have reason to believe this may be difficult for schemes with our
improved leakage profile, see below.

Piecing everything together, we obtain a parameter-hiding ORE from bilinear
maps. We note that, as parameter-hiding OPE is impossible, we achieve the first
construction of ORE without multilinear maps secure with a security notion that
is impossible for OPE.

Generalizing Our ORE Scheme. In our full version [12], we also show several
extensions to our smoothed CLWW ORE scheme. In one direction, we achieve
an improved level of leakage by considering blocks of bits at a time(encrypting
message block by block, rather than bit by bit). We show that if the block
size is only 2, then we improve security and efficiency simultaneously, while for
larger block sizes the leakage continues to reduce but the efficiency compared
to the basic scheme (in terms of both ciphertext size and pairings required for
comparison) decreases.

On the other direction, we also show how to improve efficiency while sacri-
ficing some security. We give a more efficient version of the scheme than above
(only need O(n) pairings for each comparison), that is still sufficient for achieving
parameter-hiding ORE using our conversion.

In addition, we also show how our ORE scheme easily gives a left/right ORE
as defined by [29] that also improves on their leakage. In left/right ORE, cipher-
texts can be generated in either the left mode or right mode, and the comparison
algorithm only compares a left and a right ciphertext. Security requires that no
information is leaked amongst left and right ciphertexts in isolation.

1.3 Discussion and Perspective

The original OPE scheme of [6] leaks “whatever a random order-preserving func-
tion leaks.” Unfortunately, this notion does not say anything about what such
leakage actually looks like. The situation has been improved in recent works on
OPE such as CLWW which define a precise “leakage profile” for their scheme.
However, such leakage profiles are still of limited use, since they do not obviously
say anything about the actual privacy of the underlying data.

We instead study ORE with a well-defined privacy notion for the underlying
plaintexts. A key part of our results is showing how to translate sufficiently
strong leakage profiles into such privacy notions. Nonetheless, we do not claim

4 More generally, following [35] one could allow the adversary to choose two challenge
inputs and make queries that do not allow it to trivially distinguish them, but we
are unable to prove our construction secure under this stronger notion.
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that our new ORE scheme is safe to use in general higher-level protocols. We only
claim security as long all that is sensitive is the scale and shift of the underlying
plaintext distributions. If, for example, if the shape of the distribution is highly
sensitive, or if there are correlations to other data available to the attacker, our
notion is insufficient.

However, our construction provably has better leakage than existing efficient
schemes, and it at least shows some meaningful security for specific situations.
Moreover we suspect that the scheme can be shown to be useful in many other
settings by extending our techniques.

1.4 Related Work

Work done on “leaky cryptography” includes work on multiparty computa-
tion [33], searchable symmetric and structured encryption [11,13,14,18,21,28,
37], and property-preserving encryption [5,6,35]. In the database community,
the problem of querying an encrypted database was introduced by Hacigümüş,
Iyer, Li and Mehrotra [23], leading to a variety of proposals there but mostly
lacking formal security analysis. Proposals of specific outsourced database sys-
tems based on property-preserving encryption like ORE include CryptDB [36],
Cipherbase [2], and TrustedDB [4].

Besides, in [29], the authors give an efficient ORE construction based on
PRFs, while their leakage profile cannot achieve shift hiding and scale hid-
ing simultaneously, which means their scheme cannot meet our privacy notion.
Moreover, in [27], the authors give an alternative ORE construction, based on
function revealing encryption for simple functions, namely orthogonality testing
and intersection cardinality, while their leakage needs further analysis.

2 Background

Notation. All algorithms are assumed to be polynomial-time in the security
parameter (though we will sometimes refer to efficient algorithms explicitly).
We will denote the security parameter by λ. For a random variable Y , we write
y

$← Y to denote that y is sampled according to Y ’s distribution, moreover, let
D be Y ’s distribution, we abuse notation y

$← D to mean that y is sampled
according to D. For an algorithm A, by y

$← A(x) we mean that A is executed
on input x and the output is assigned to y, furthermore, if A is randomized,
then we write y

$← A(x) to denote running A on input x with a fresh random
tape and letting y be the random variable induced by its output. We denote
by Pr[A(x) = y : x

$← X] the probability that A outputs y on input x when
x is sampled according to X. We say that an adversary A has advantage ε in
distinguishing X from Y if Pr[A(x) = 1 : x

$← X] and Pr[A(y) = 1 : y
$← Y ]

differ by at most ε.
When more convenient, we use the following probability-theoretic notation

instead. We write PX(x) to denote the probability that X places on x, i.e.
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PX(x) = Pr[X = x], and we say PX(x) is the probability density function
(PDF) of X’s distribution. The statistical distance between X and Y is given
by Δ = 1

2

∑
x |PX(x) − PY (x)|. If Δ(X,Y ) is at most ε then we say X,Y are

ε-close. It is well-known that if X,Y are ε-close then any (even computationally
unbounded) adversary A has advantage at most ε in distinguishing X from Y .

The min-entropy of a random variable X is H∞(X) = − log(maxx PX(x)).
A value ν ∈ R depending on λ is called negligible if its absolute value goes to
0 faster than any polynomial in λ, i.e. ∀c > 0 ∃λ∗ ∈ N ∀λ ≥ λ∗ : |ν| ≤ 1

λc .
We let [M ] = {1, . . . , M}, [M ]′ = {0, . . . , M − 1} and [M,N ] = {M, . . . , N}.
We write m as a vector of plaintexts and |m | as the vector’s length, namely
m = (m1, . . . , ms) and |m | = s. For a vector m , by am we mean (am1, . . . , ams)
and we write m+b to denote (m1+b, . . . , ms+b). Let x be a real number, we write
�x� as the largest integer s.t. �x� ≤ x, and �x as the smallest integer s.t. �x ≥ x.
By �x, we mean rounding x to the nearest integer, namely −1/2 ≤ �x−x < 1/2.
If P is a predicate, we write 1(P ) for the function that takes the inputs to P
and returns 1 if P holds and 0 otherwise.

PRFs. We use the standard notion of a PRF. A function F : {0, 1}λ × D →
{0, 1}λ is said to be a PRF with domain D if for all efficient A we have that

|Pr[AF (K,·)(1λ) = 1] − Pr[Ag(·)(1λ) = 1]|

is a negligible function of λ, where K is uniform over {0, 1}λ and g is uniform
over all functions from D to {0, 1}λ.

ORE. The following definition of syntax for order-revealing encryption makes
explicit that comparison may use helper information (e.g. a description of a
particular group) by incorporating a comparison key, denote ck.

Definition 2 (ORE). A ORE scheme is a tuple of algorithms Π = (K, E , C)
with the following syntax.

– The key generation algorithm K is randomized, takes inputs (1λ,M), and
always emits two outputs (sk, ck). We refer to the first output sk as the secret
key and the second output ck as the comparison key.

– The encryption algorithm E is randomized, takes inputs (sk,m) where m ∈
[M ], and always emits a single output c, that we refer to as a ciphertext.

– The comparison algorithm C is deterministic, takes inputs (ck, c1, c2), and
always emits a bit.

If the comparison algorithm C is simple integer comparison (i.e., if
C(ck, c1, c2) is a canonical algorithm that treats its the ciphertexts and binary
representations of integers and tests which is greater) then the scheme is said to
be an order-preserving encryption (OPE) scheme.

Correctness of ORE schemes. Intuitively, an ORE scheme is correct if the
comparison algorithm can output the order of the underlying plaintext, by taking
ck and two ciphertexts as inputs.
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Our constructions will only be computationally correct, i.e. correct with
overwhelming probability when the input messages are provided by an effi-
cient process, under hardness assumptions. Formally, we define correctness using
the game CORore

Π (A), which is defined as follows: The game starts by running
(sk, ck) $← K(1λ,M), and it gives ck to A. The adversary A then outputs two
messages x, y ∈ [M ]. The game computes c1

$← E(sk, x) and c2
$← E(sk, y),

outputs 1 if x < y but C(ck, c1, c2) = 0.
We say that an ORE scheme Π is computationally correct if for all efficient

adversaries A, all M = poly(λ), we have that Pr[CORore
Pi(A) = 1] is a negligible

function in the security parameter.

Security of ORE Schemes. The following simulation-based security defini-
tion is due to Chenette et al. [15]. Here a leakage profile is any randomized
algorithm. The definition refers to games given in Fig. 3, which we review now.
In the real game, key generation is run and the adversary is given the compar-
ison key and oracle access to the encryption algorithm with the corresponding
secret key. The adversary eventually outputs a bit that the game uses as its
own output. In the ideal simulation game, the adversary is interacting with the
same oracle, but the comparison key is generated by a stateful simulator, and
the oracle responses are generated by the simulator which receives leakage from
the stateful leakage algorithm L.

Fig. 3. Games REALoreΠ(A) (left) and SIMore
Π,L(A,S) (right), where Π = (E , C) is an

ORE scheme, L is a leakage profile, A is an adversary, and S is a simulator.

Definition 3 (L-simulation-security for ORE). For an ORE scheme Π,
an adversary A, a simulator S, and leakage profile L, we define the games
REALore

Π (A) and SIMore
Π,L(A) in Fig. 3. The advantage of A with respect to S

is defined as

Advore
Π,L,A,S(λ) =

∣∣Pr[REALore
Π (A) = 1] − Pr[SIMore

Π,L(A,S) = 1]
∣∣ .

We say that Π is L-simulation-secure if for every efficient adversary A there
exists an efficient simulator S such that Advore

Π,L,A,S(λ) is a negligible function.
We also define non-adaptive variants of the games where A gets a single

query to an oracle that accepts a vector of messages of unbounded size. In the real
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game REALore-na
Π (A), the oracle returns the encryptions applied independently

to each message. In the ideal game SIMore-na
Π (A), the leakage function gets the

entire vector of messages as input and produces an output L that is then given
to S which produces a vector of ciphertexts, which are returned by the oracle.

We define the non-adaptive advantage of A with respect to S analogously,
and denote it Advore-na

Π,L,A,S(λ). Non-adaptive L-simulation security is defined anal-
ogously.

Ideal ORE. Ideal ORE is the case where the leakage profile L is simply the list
of results of comparisons between the plaintexts. We note that such a L is always
revealed by the comparison algorithm, so ideal ORE is the best one can hope
for. Ideal ORE can be constructed from multilinear maps [8].

CLWW Leakage. As an example of a non-ideal leakage profile, consider the
leakage Lclww of Chenette, Lewi, Weis and Wu [15]. For m0,m1 ∈ {0, 1}n, we
define the most significant differing bit of m1 and m2, denoted msdb(m0,m1),
as the index of first bit where m0,m1 differ, or n + 1 if m1 = m2.

The CLWW leakage profile Lclww takes in input a vector of plaintext m =
(m1, . . . , mq) and produce the following:

Lclww(m1, . . . , mq) := (∀1 ≤ i, j ≤ n,1(mi < mj),msdb(mi,mj))

3 New Security Notions for ORE

In this section, we propose four meaningful notions of privacy: distribution-
hiding, parameter-hiding, scale-hiding and shift-hiding ; in those notions, we are
considering the privacy of the underlying distribution of data records, rather
than the individual data records, and show how to protect information about
the underlying data distribution.

Distribution-Hiding for ORE. We assume that all database entries are inde-
pendently and identically distributed according to some distribution D5, and the
notion of distribution-hiding refers to game defined in Fig. 4. In the interactive
game, after receiving the public parameter and comparison key, adversary A
picks two distributions D0,D1 and sends to challenger C, C then flips a coin b,
samples a sequence of entries from Db, and sends back the encrypted entries.
Eventually A outputs a bit, and we say adversary wins if it guesses b correctly.
We note that if either of Db has low min-entropy, it is possible for an adversary to
estimate the min-entropy by looking for collisions in its ciphertexts. Therefore,
we must restrict Db to have high min-entropy.

Definition 4 (Distribution-Hiding for ORE). For an ORE scheme Π, an
adversary A, function q = q(λ) we define the games DHΠ,q(A, λ) in Fig. 4. The

5 By D, here we mean a sampling algorithm, such that the outputs of this algorithm
obey the distribution D, for ease we denote max D as the maximum item in D’s
support.
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Fig. 4. Games DHΠ,q(A, λ), where Π = (K, E , C) is an ORE scheme, q = poly(λ), and
A is an adversary.

advantage of A is defined as AdvDH
Π,q(A, λ) = |Pr[DHΠ,q(A, λ)− 1

2 ]|. We say that
Π is distribution-hiding if for every efficient adversary A, and any polynomial
q = poly(λ), AdvDH

Π,q(A, λ) is a negligible function.

We immediately observe that ideal ORE achieves distribution hiding, while for
other known leakier ORE schemes, it’s seems unfeasible to achieve this privacy
guarantee. However, in many settings, the general shape of the distribution is
often known (that is, if the distribution is normal, uniform, Laplace, etc.), and
it is reasonable to allow the overall shape to be reveal but hide its mean and/or
variance completely, subject to certain restrictions. Before formalize these notion,
we firstly introduce some notations.

For a continuous random variable X, where D is X’s distribution, we abuse
notation pD(x) = pX(x). Now we introduce three alternative distributions:
Dδ

scale,D
�
shift,D

δ,�
aff with parameter δ, �, where the corresponding probability den-

sity function is defined as:

pDscale
=

pD(x
δ )

δ
; pDshift

(x) = pD(x − �); pDaff
=

pD(x−�
δ )

δ

In other words, Dδ
scale scales the shape of D by a factor of δ; Dshift shifts D by �

and Daff does both.

Rounded distribution. As our plaintexts are integers, we need map real num-
ber to its rounded integer, namely x → �x. More precisely, let D be a distri-
bution over real numbers between α and β; we induce a rounded distribution
Rα,β

D on [�α, �β�]which samples from D and then rounds. Its probability density
function is:

pRα,β
D

(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ �α�+1/2
α

pD(x)dx
∫ β

α
pD(x)dx

k = α
∫ k+1/2

k−1/2 pD(x)dx
∫ β

α
pD(x)dx

k ∈ [�α + 1, �β − 1�]
∫ β

�β�−1/2 pD(x)dx
∫ β

α
pD(x)dx

k = β

0 Otherwise

In the case of Dδ
scale, D�

shift, or Dδ,�
aff , we will use the notation �Dδ

scale, �D�
shift,

and �Dδ,�
aff  to denote the respective rounded distributions.
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Now, we present the notion “(γ,D)-parameter-hiding” ORE, referring to the
game defined in Fig. 5. Here, D is a distribution over [0, 1], which represents the
description of the known shape of the distribution of plaintexts. γ is a lower-
bound on the scaling that is allowed. Then key generation is run and adversary is
given the public parameter, (γ,D), and the comparison key. Then, the adversary
A sends two pairs of parameters (δ0, �0), (δ1, �1) to challenger C. Next, C flips
a coin b, checks whether the parameter is proper(1(δ0 ≥ γ ∩ δ1 ≥ γ) ), then
samples a sequence of data entries from the rounded distribution �Dδb,�b

aff  and
sends back encrypted data. Eventually A outputs a bit, and we say adversary
wins if it guesses b correctly.

Fig. 5. Games para-hidΠ,q(A, λ), where Π = (E , C) is an ORE scheme, D is a distribu-
tion on [0, 1], A is an adversary

Definition 5 ((γ,D)-parameter hiding for ORE). For an ORE scheme Π,
an adversary A, a distribution D, and function q = q(λ), we define the games
(γ,D)-para-hidΠ,q(A, λ) in Fig. 5. The advantage of A is defined as

Advpara-hid
Π,q,γ,D(A, λ) = |Pr[(γ,D)-para-hidΠ,q(A, λ) − 1

2
]|

We say that Π is (γ,D)-parameter hiding if for every efficient adversary A and
polynomial q Advpara-hid

Π,q,γ,D(A, λ) is a negligible function.

Similarly, we define (γ,D)-scale hiding and (γ,D)-shift hiding with little change
as above. More precisely, in the game of (γ,D)-scale hiding, we add the restric-
tion �0 = �1 = 0 and in the game of (γ,D)-shift hiding, we add the restriction
δ0 = δ1. Due to the space limit, we skip the formal definitions here.

We note that these three notions are distribution dependent, and we would
like they work for any distribution. Unfortunately, quickly oscillating distribu-
tions do not fit into our case, as they may have actually low min-entropy for
their discretized distributions on integers, even at large scales. Hence, we place
additional restrictions. We place the following restriction, which is sufficient, but
potentially stronger than necessary:
(η, μ)-smooth distribution. We let D be a distribution where its support
mainly on [0, 1] (Pr[x /∈ [0, 1] : x ← D] ≤ negl(λ)), we denote p′

D(x) as its
derivative, and we say that D is (η, μ)-smooth if (1) ∀x ∈ [0, 1], pD(x) ≤ η; (2)
|p′

D(x)| ≤ η for all x ∈ [0, 1] except for μ points.
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Definition 6 ((γ, η, μ)-parameter hiding for ORE). For an ORE scheme
Π, we say Π is (γ, η, μ)-parameter hiding if for every efficient adversary A,
polynomial q, and any (η, μ)-smooth distribution D, Advpara-hid

Π,q,γ,D(A, λ) is a neg-
ligible function.

4 Parameter Hiding ORE

In this section, we will assume we are given an ORE Π = (K, E , C) with a
“smoothed” version of CLWW leakage, defined below. Later, in Sect. 5, we will
show how to instantiate such a scheme from bilinear maps.

We show how to convert a scheme with smoothed CLWW leakage into a
parameter-hiding ORE scheme by simply composing with a linear function:
namely, for any plaintext m, the ciphertext has form E(αm + β), where α, β
are the same across all messages and are sampled as part of the secret key. Intu-
itively, α helps to hide the scale parameter and β hides the shift. We need to be
careful about the distributions of α and β; α needs to be drawn from a “discrete
log uniform” distribution of appropriate domain, and β needs to be chosen from
a uniform distribution of appropriate domain.

The discrete log uniform distribution D on [A,B] (logU(A,B)) has probabil-
ity density function:

pD(k) =

{
1/k

∑B
i=A 1/i

i ∈ [A,B]

0 Otherwise

We say a leakage function L is smoothed CLWW if:

1. For any two plaintext sequences m0,m1, if Lclww(m0) = Lclww(m1), then
L(m0) = L(m1) (in other words, it leaks no more information that CLWW);

2. For any plaintext sequence m , L(m) = L(2m)

4.1 Parameter-Hiding ORE

In this part, we give the formal description of parameter-hiding ORE. To simplify
our exposition, we first specify some parameters. We will assume we are given:

q = poly(λ),M = 2poly(λ), γ = 2ω(log λ), η, μ ≤ O(1)

We will assume γ and M are exactly powers of 2 without loss of generality
by rounding up. We define:

τ = γ, ξ = γ2, U = 4ξM, T = γ2 × U,K = 2 × T

Let Π = (K, E , C) be an ORE scheme on message space [K] with smoothed
CLWW leakage L. We define our new ORE Πaff = (Kaff , Eaff , Caff) on message
space [M ] as follows:
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– Kaff(1λ,M,Π): On input the security parameter λ, message space [M ] and Π,
the algorithm picks a super-polynomial γ = 2ω(log λ) as a global parameter,
and computes parameters above. Then it runs (ck, sk) ← K(1λ,K), draws

α
$← logU(ξ, 2ξ − 1) and β from discrete uniform on [T ]′ and outputs skaff =

(sk, α, β), ckaff = ck;
– Eaff(skaff ,m). On input the secret key skaff and a message m ∈ [M ], it outputs

CTaff = E(αm + β)

By our choice of message space [K] for Π, the input to E is guaranteed to be
in the message space.

– Caff(ckaff ,CT0
aff ,CT1

aff): On inputs the comparison key ckaff , two ciphertexts
CT0

aff ,CT1
aff , it outputs C(ckaff ,CT0

aff ,CT1
aff)

Here we also give the description of composted schemes that only achieve
“scale-hiding” or “shift-hiding”. Formally, we define Πscale = (Kscale, Escale, Cscale)
and Πshift = (Kshift, Eshift, Cshift), respectively:

– Kscale(1λ,M,Π): On input the security parameter λ, the message space
[M ] and Π, the algorithm picks a super-polynomial γ = 2ω(log λ) as a
global parameter, and computes parameters above. Then it runs (ck, sk) ←
K(1λ,K), draws α

$← logU(ξ, 2ξ −1) and outputs skscale = (sk, α), ckscale = ck;
– Escale(skscale,m). On input the secret key skscale and a message m ∈ [M ], it

outputs
CTscale = E(αm)

– Cscale(ckscale,CT
0
scale,CT

1
scale): On inputs the comparison key ckscale, two cipher-

texts CT0
scale,CT

1
scale, it outputs C(ckscale,CT

0
scale,CT

1
scale).

– Kshift(1λ,M,Π): On input the security parameter λ, the message space [M ]
and Π, the algorithm picks a super-polynomial γ = 2ω(log λ) as a global
parameter, and computes parameters above. Then it runs (ck, sk) ← K(1λ),
draws β from discrete uniform on [T ]′ and outputs skshift = (sk, α), ckshift = ck;

– Eshift(skshift,m). On input the secret key skshift and a message m ∈ [M ], it
outputs

CTshift = E(m + b)

– Cshift(ckshift,CT
0
shift,CT

1
shift): On inputs the comparison key ckshift, two cipher-

texts CT0
shift,CT

1
shift, it outputs C(ckshift,CT

0
shift,CT

1
shift).

The correctness of Πaff ,Πscale and Πshift is directly held by correctness of Π,
and what is more interesting is the privacy that those scheme can guarantee.

4.2 Main Theorem

In the part, we prove Πaff is parameter hiding, formally:

Theorem 7 (Main Theorem). Assuming Π has L-simulation-security where
L is smoothed CLWW, then for any γ = 2ω(log λ), Πaff is (γ, η, μ)-parameter
hiding.
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Proof. According to the security notions, it is straightforward that if an ORE
scheme is (γ, η, μ)-parameter hiding, then it is also (γ, η, μ)-scale hiding and
(γ, η, μ)-shift hiding. Next we claim the converse proposition holds.

Claim. If an ORE scheme Π achieves (γ, η, μ)-scale hiding and (γ, η, μ)-shift
hiding simultaneously, then Π is (γ, η, μ)-parameter hiding.

We sketch the proof by hybrid argument. For any γ = 2ω(log λ) and (η, μ)-
smooth distribution D, firstly, by shift-hiding, there is no efficient adversary
that distinguish (δ0, �0) from (δ0, 0) with non-negligible probability. Then due
to scale-hiding, no efficient adversary can differ (δ0, 0) from (δ1, 0) with non-
negligible probability. Thirdly, same as the first argument, any efficient adversary
can distinguish (δ1, 0) from (δ1, �1) with only negligible advantage. Combining
together, Π achieves (γ, η, μ)-parameter hiding.

Thus, it suffices to show Πaff is both (γ, η, μ)-scale hiding and (γ, η, μ)-shift
hiding, due to space limit, we put the rigorous proof in our full version [12].

5 ORE with Smoothed CLWW Leakage

We start by defining the security we target via a smoothed CLWW leakage func-
tion. Then we recall a primitive for our construction called a property-preserving
hash (PPH) function, and state and analyze our ORE construction using a PPH.
In a later section we instantiate the PPH to complete the construction. Next,
we give variant constructions with trade-offs between efficiency and leakage.

Now We define the non-adaptive version of the leakage profile for our
construction. The leakage profile takes in input a vector of messages m =
(m1, . . . , mq) and produces the following:

Lf (m1, . . . ,mq) := (∀1 ≤ i, j, k ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mi,mk)))

By definition, it’s easy to note that Lf leaks strictly less than CLWW. Except
for the order of underlying plaintexts, it only leaks whether the position of
msdb(mi,mj) and msdb(mi,mj) are the same, therefore the leakage profile pre-
serve consistent if we left-shift all the plaintexts by one bit, which referring to
Lf (m) = Lf (2m). Thus, Lf is smoothed CLWW.

5.1 Property Preserving Hash

Our construction will depend on a tool – property preserving hash (PPH), which
is essentially a property-preserving encryption scheme [35] without the decryp-
tion algorithm. In this section we recall the syntax and security of a PPH.

Definition 8. A property-preserving hash (PPH) scheme is a tuple of algo-
rithms Γ = (Kh,H, T ) with the following syntax:
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– The key generation algorithm Kh is randomized, takes as input 1λ and emits
two outputs (hk, tk) that we refer to as the hash key hk and test key tk. These
implicitly define a domain D and range R for the hash.

– The evaluation algorithm H is randomized, takes as input the hash key hk,
an input x ∈ D, and emits a single output h ∈ R that we refer to as the hash
of x.

– The test algorithm T is deterministic, takes as input the test key tk and two
hashes h1, h2, and emits a bit.

Correctness of PPH schemes. Let P be a predicate on pairs of inputs. We
define correctness of a PPH Γ with respect to P via the game CORpph

Γ,P (A), which

is as follows: It starts by running (hk, tk) $← Kh(1λ) and gives tk to A. Then A
outputs x, y. The game computes h

$← H(hk, x), h′ $← H(hk, y) and outputs 1 if
T (tk, h, h′) �= P (x, y). We say that Γ is computationally correct with respect to
P if for all efficient A, Pr[CORpph

Γ,P (A) = 1] is a negligible function of λ.

Security of PPH Schemes. We recall a simplified version of the security
definition for PPH that is a weaker version of PPE security defined by Pandey
and Rouselakis [35]. The definition is a sort of semantic security for random
messages under chosen-plaintext attacks, except that the adversary is restricted
from making certain queries.

Fig. 6. Game INDpph
Γ,P (A).

Definition 9. Let P be some predicate and Γ = (Kh,H, T ) be a PPH scheme
with respect to P . For an adversary A we define the game INDpph

Γ,P (A) in Fig. 6.
The restricted-chosen-input advantage of A is defined to be Advpph

Γ,P,A(λ) =
2Pr[INDpph

Γ,P (A) = 1] − 1. We say that Γ is restricted-chosen-input secure if
for all efficient adversaries A, Advpph

Γ,P,A(λ) is negligible.

5.2 ORE from PPH

Construction. Let F : K × ([n] × {0, 1}n) → {0, 1}λ be a secure PRF. Let
P (x, y) = 1(x = y + 1) be the predicate that outputs 1 if and only if x = y + 1,
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and let Γ = (Kh,H, T ) be a PPH scheme with respect to P . In our construction,
we interpret the output of F as a λ-bit integer, which is also the input domain
of the PPH Γ . We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M ], the algo-
rithm chooses a key k uniformly at random for F , and runs the key generation
algorithm of the property preserving hash function Γ.Kh to obtain the hash
and test keys (hk, tk). It sets ck ← tk, sk ← (k, hk) and outputs (ck, sk).

– E(sk,m): On input the secret key sk and a message m, the algorithm writes
the binary representation as m as (b1, . . . , bn), and then for i = 1, . . . , n, it
computes:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi mod 2λ, ti = Γ.H(hk, ui).

We note that ui is computed by treating the PRF output as a member of
{0, . . . , 2λ −1}. Then it chooses a random permutation π : [n] → [n], and sets
vi = tπ(i). The algorithm outputs CT = (v1, . . . , vn).

– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′
1, . . . , v

′
n), the algorithm runs

Γ.T (tk, vi, v
′
j) and Γ.T (tk, v′

i, vj) for every i, j ∈ [n]. If there exists a pair
(i∗, j∗) such that Γ.T (tk, vi∗ , v′

j∗) = 1, then the algorithm outputs 1, mean-
ing m1 > m2; else if there exists a pair (i∗, j∗) such that Γ.T (tk, v′

i∗ , vj∗) = 1,
then the algorithm outputs 0, meaning m1 < m2; otherwise it outputs ⊥,
meaning m1 = m2.

Correctness. For two messages m1,m2, let (b1, . . . bn) and (b′
1, . . . , b

′
n) be their

binary representations. Assuming m1 > m2, there must exists a unique index
i∗ ∈ [n] such that ui = u′

i + 1. Therefore correctness of Π is followed by cor-
rectness of PPH. We can use the same argument for the case m1 = m2 and
m1 < m2. What is more interesting is its simulation based security, as it is the
foundation for parameter hiding ORE, formally:

Theorem 10. Assuming F is a secure PRF and Γ is restricted-chosen-input
secure, Π is Lf-non-adaptively-simulation secure.

Proof. We use a hybrid argument, and define a sequence of hybrid games as
follows:

– H−1: Real game REALore
Π (A);

– H0: Same as H−1, except replacing PRF Fk(·) by a truely random function
F ∗ in the encryption oracle;

– Hi·q+j Depend on a predicate Switch(i,j) which is define below. If Switch(i,j) =
0, then Hi·q+j = Hi·q+j−1, else in procedure of E(mj), uj

i is replaced by a
random string.

From the high level, we establish the proof by showing show that any adjacent
hybrids are indistinguishable, and then we construct an efficient simulator S such
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that the output of Hqn and SIMore
Π,Lf

(A,S) are statistically identical. For the
predicate, we say Switchi,j = 1 if ∀k ∈ [q],msdb(mj ,mk) �= i, and 0 otherwise.
We note that when Switchi,j = 0, there exists uk

i such that uj
i = uk

i ± 1, the
relation which can be detected by the test algorithm of PPH(for the i-th bit
of mj , we call such a bit a leaky bit), which means we cannot replace it with
random string, otherwise adversary can trivially distinguish it. In the following
we firstly prove any adjacent objects are computational indistinguishable.

Lemma 11. Assuming Γ is restricted-chosen-input secure, for any k ∈ [qn]
Hk−1

comp
≈ Hk.

Proof. Due to the security of PRF, it’s trivial that H−1

comp
≈ H0, and for any

k > 0 (for ease, k = i∗ · q + j∗ where i∗ ∈ [n − 1], j∗ ∈ [q] ), it suffices to
show Hk−1

comp
≈ Hk under the condition Switchi∗,j∗ = 1(Switchi∗,j∗ = 0 implies

Hk−1 = Hk). We prove that if there exists adversary A that distinguish Hk from
Hk−1 with noticeable advantage ε, then we can construct a simulator B wins the
restricted-chosen-input game with ε-negl. Here is the description of B. Firstly
it runs INDpph

Γ , and sends tk as the comparison key ck to A. After receiving a
sequence of plaintext m1, . . . , mq, it picks a random function F ∗(using the lazy
sampling technique for instance), sets X∗ = F ∗(i∗, bj∗

1 bj∗
2 · · · bj∗

i∗−1||0n−i∗+1)+bj∗
i∗

where bj
i is the i-th bit of mj . Then it sends X∗ to its challenger in restricted-

chosen-input game and gets back T as the challenge term. To simulate the
encryption oracle, B works as follows:

1. (i′, j′) > (i∗, j∗)(here using a natural order for tuples, (i, j) > (i′, j′) iff iq+j >
i′q + j′ ), B computes:

uj′
i′ = F ∗(i∗, bj′

1 bj′
2 · · · bj′

i′−1||0n−i′+1) + bj′
i′ ; tj

′
i′ = Γ.H(hk, uj′

i′ )

2. (i′, j′) < (i∗, j∗)∩Switchi′,j′ = 0, then same as above, else uj′
i′

$← {0, 1}λ, tj
′

i′ =
Γ.H(hk, uj′

i′ ).
3. sets tj

∗
i∗ = T , and ∀j ∈ [q], picks a random permutation πj and outputs the

ciphertexts CTj = (tjπj(1)
, . . . , tjπj(n)

).

Finally, B outputs whatever A outputs6.
Since F ∗ is a random function, Pr[uj′

i′ = X∗ ± 1] is negligible for all (i′, j′) �=
(i∗, j∗), which means B fails to simulate the encryption oracle with only negligible
probability. Besides, when T = Γ.H(hk,X∗), B properly simulates Hk−1, and if
T is random, then B simulates Hk(due to the PRF security, the distribution

of Γ.H(hk, r) : r
$← {0, 1}λ is computationally close to a random variable that

uniformly sampled from the range of Γ ). Hence, if Adv(A) is noticeable, then
B’s advantage is also noticeable. ��

In the following, we describe an efficient simulator S such that the output
of Hqn and SIMore

Π,Lf
(A,S) are statistically identical. Roughly speaking, we note

6 We note that B does not have hk, what it does is to call the hash oracle.
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that Switchi,j = 1 means that i-th bit of mj is not a leaky bit, indicating that its
value would not affect the leakage profile whp. Hence, it suffices to only simulate
the leaky bit of each individual message, which can be extracted by Lf , and sets
the rest just as random string. Due to the final random permutations, Hqn and
SIMore

Π,Lf
(A,S) are statistically identical. Formally:

Description of the simulator. For fixed a message set M = {m1, . . . , mq}
(without loss of generality, we assume m1 > . . . > mq), the simulator S is given
the leakage information Lf (m1, . . . , mq). S firstly keeps a q × n matrix B and
runs a recursive algorithm FillMatrix(1, 1, q) to fill in the entries, as follows:

– If j = k, then ∀i′ ∈ [i, n], B[j][i′] = r where r
$← {0, 1}λ;

– Else, it proceeds as follows:
• searches the smallest j∗ ∈ [j, k] s.t. P (mj ,mj∗) = P (mj ,mk);
• sets B[j′][i] = r′,∀j′ ∈ [j, j∗ − 1];B[j′][i] = r′ − 1,∀j′ ∈ [j∗, k], where

r′ $← {0, 1}λ;
• runs FillMatrix(i + 1, j, j′ − 1) and FillMatrix(i + 1, j′, k) recursively.

More concretely, our recursive algorithm is to fill in the entries by

FillMatrix(i, j, k), ∀i ∈ [n], j ≤ k ∈ [q]

Then S runs Γ.Kh(1λ) and gets the keys tk, hk, and sets ti,j = Γ.H(hk,B[j][i]),
∀i ∈ [n], j ∈ [q]. Finally, S samples random permutations πj , outputs CTj as
CTj = (tjπj(1)

, . . . , tjπj(n)
) We note that the FillMatrix algorithm terminates after

at most qn steps as each cell will not be written twice, hence S is an efficient
simulator.

Finally we claim that S properly simulates the relevant games. We first
observe that the simulator identifies how many leaked bits (prefixes) there
are for the messages m1, . . . , mq. Recall that if messages m1, . . . , mq share the
same prefix up to the � − 1-th bit, and if there exists (the first ) i∗ such that
msdb(m1,mi∗) = msdb(m1,mq), then we can conclude that {m1, . . . , mi∗−1} has
1 on their �-th bit, and {mi∗ , . . . , mq} has 0 on their �-th bit. This way the �-th
bit of these messages are leaked. The simulator recursively identifies other leaked
bits for these two sets. At the end, for each message, how many prefixes whose
next bits are leaked will be identified. As this information will also be identi-
fied in the hybrid Hqn. So a random permutation (for Hqn and the simulation)
will hide these leaked prefixes, except the total number. Thus, our simulation is
identical to Hqn, and we establish the entire proof. ��

5.3 More Efficient Comparisons

The construction above needs to run O(n2) times PPH test algorithm for one
single comparison, which is very expensive for real application. In this part,
we present a variant ORE achieving better efficiency but with a weaker leak-
age profile, which only requires O(n) pairings in each individual comparison.
And what’s more interesting is that this weaker leakage profile is also smoothed
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CLWW, that means we can still construct a parameter hiding ORE based on
it, along with better efficiency. From the high level, we fix a permutation for all
encryptions(this permutation is part of the secret key now), rather than sam-
pling fresh permutation for each ciphertext. Therefore, in the comparison, we
only need run the PPH test for pairs that share the same index, which means
only O(n) pairings for one comparison. Formally:

Construction. Let F be a secure PRF with the same syntax as above, let
P (x, y) = 1(x = y + 1) be the relation predicate that outputs 1 if and only if
x = y+1, and let Γ = (Kh,H, T ) be a PPH scheme with respect to P , as before.
We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M ], the algo-
rithm chooses a key k uniformly at random for F , runs Γ.Kh to obtain the
hash and test keys (hk, tk), and samples a random permutation π : [n] → [n].
It sets ck ← tk, sk ← (k, hk, π) and outputs (ck, sk).

– E(sk,m): On input the secret key SK and a message m, the algorithm com-
putes the binary representation of m = (b1, . . . , bn), and then calculates:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi, ti = Γ.H(hk, ui).

Then it sets vi = tπ(i) and outputs CT = (v1, . . . , vn).
– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′
1, . . . , v

′
n), the algorithm runs

Γ.T (tk, vi, v
′
i) for every i ∈ [n]. If there exists i∗ such that Γ.T (tk, vi∗ , v′

i∗) = 1,
then the algorithm outputs 1, meaning m1 > m2; else if there exists a pair
i∗ such that Γ.T (tk, v′

i∗ , vi∗) = 1, then the algorithm outputs 0, meaning
m1 < m2; otherwise it outputs it outputs ⊥, meaning m1 = m2.

Now, we give the description of the leakage profile, which takes m =
{m1, . . . , mq} as input and produces:

L′
f (m1, . . . ,mq) := (∀1 ≤ i, j, k, l ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mk,ml)))

Compared to Lf , L′
f gives extra information that 1(msdb(mi,mj) =

msdb(mk,ml)) even when i �= k. However, L′
f is still strictly stronger than

CLWW, and for any m , it’s obvious that L′
f (m) = L′

f (2m), which gives evi-
dence that L′

f is also smoothed CLWW. And for its simulation based security,
applying exactly the same argument as the proof of Theorem 10, we can establish
the following theorem.

Theorem 12. The ORE scheme Π is L′
f -non-adaptive-simulation secure,

assuming F is a secure PRF and Γ is restricted-chosen-input secure.

Therefore, to achieve the privacy of parameter hiding, we can use this effi-
cient scheme as an alternative, such that we only need O(n) pairings for each
comparison.
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6 PPH from Bilinear Maps

We construct a PPH scheme for the predicate P required in our ORE construc-
tion. That is, P (x, y) = 1 if and only if x = y + 1.

We let F : {0, 1}λ × {0, 1}λ → Zp be a PRF, where p is a prime to be
determined at key generation.

Construction. We now define our PPH Γ = (Kh,H, T ).

– Kh(1λ) This algorithm takes the security parameter as input. It samples
descriptions of prime-order p groups G, Ĝ,GT , generators g ∈ G, ĝ ∈ Ĝ, a
bilinear map e : G × Ĝ → GT . It then chooses k

$← {0, 1}λ. It sets the hash
key hk ← (k, g, ĝ), the test key tk ← (G, Ĝ,GT , e), a description of the bilinear
map and groups, and outputs (hk, tk).

– H(hk, x) This algorithm takes as input the hash key hk, an input x, picks two
random non-zero r1, r2 ∈ Zp and outputs

H(hk, x) = (gr1 , gr1·F (k,x), ĝr2 , ĝr2·F (k,x+1)).

– T (tk, h1, h2) To test two hash values (A1, A2, B1, B2) and (C1, C2,D1,D2),
T outputs 1 if

e(A1,D2) = e(A2,D1),

and otherwise it outputs 0.

Hence the domain D is {0, 1}λ and the range R is (G2, Ĝ2)

Correctness. Correctness reduces to testing if F (k, y + 1) = F (k, x). If x =
y +1 then this always holds. If not, then it is easily shown that finding x, y with
this property (and without knowing the key) with non-negligible probability
leads to an adversary that contradicts the assumption that F is a PRF.

Security. We prove that PPH is restricted-chosen-input secure, assuming that
F is a PRF and that the following assumption holds.

Definition 13. Let G, Ĝ,GT be prime-order p groups, g be generator of G and
ĝ be a generator of Ĝ, tand e : G × Ĝ → GT be a bilinear pairing. We say the
symmetric external Diffie-Hellman assumption holds with respect to these groups
and pairing if for all efficient A,

|Pr[A(g, ga, gb, gab) = 1] Pr[A(g, ga, gb, T ) = 1]|

and
|Pr[A(ĝ, ĝa, ĝb, ĝab) = 1] Pr[A(ĝ, ĝa, ĝb, T ) = 1]|

are negligible functions of λ, where a, b, c are uniform over Zp and T is uniform
over GT .

We can now state and prove our security theorem.
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Theorem 14. Our PPH Γ is restricted-chosen-input secure, assuming F is a
PRF and the SXDH assumption hold with respect to the appropriate groups and
pairing.

Proof. We use a hybrid argument. Let (A1, A2, B1, B2) ∈ G
2 × Ĝ

2 denote
the challenge hash value given to the adversary during the real game H0 =
INDpph

Γ,P (A). Additionally, let R be a random element of G, R̂ be a random
element of Ĝ, both independent of the rest of the random variables under con-
sideration. Then we define the following hybrid experiments:

– H1: At the start of the game, a uniformly random function F ∗ R←
Funs[{0, 1}λ, {0, 1}λ] is sampled instead of the PRF key K, the rest remain
unchanged.

– H2: The challenge hash value is (A1, R,B1, B2), where R
$← G.

– H3: The challenge hash value is (A1, R,B1, R̂), where R
$← Ĝ.

In H3, the adversary is given a random element from the range R. Therefore,

Advpph
Γ,P,A(λ) = |Pr[H0 = 1] − Pr[H3 = 1]|

To prove H0 is indistinguishable from H3, we show that each step of the hybrid
is indistinguishable from the next. First, it is apparent that H0 and H1 are
computational indistinguishable by the PRF security, then:

Lemma 15. H1 ≈ H2 under the SXDH assumption.

Let A be an adversary playing the PPH security game, and let

ε = |Pr[H1 = 1] − Pr[H2 = 1]|.

Then we can build adversary B that solves SXDH with advantage ε. B is given
as input (g, ĝ, B,C) and the challenge term T . B works as follows:

– B sets tk = (G, Ĝ,GT , e) and sends it to A. After receiving x∗ $← A(tk)
it simulates a random function F ∗ via lazy sampling, and it will implicitly
set F ∗(x∗) = b, the discrete logarithm of B. It prepares the challenge as by
selecting r∗ $← Zp and computing

A1 = gc, A2 = T,B1 = ĝr∗
, B2 = ĝr∗F ∗(x∗+1)

and runs A on input tk, x∗, (A1, A2, B1, B2).
– To answer hash query for x �= x∗ from A, B calculates F ∗(x) and F ∗(x + 1)

(note that x, x + 1 �= x∗). Then B picks r1, r2 randomly and computes:

H(x) = gr1 , gr1·F ∗(x), ĝr2 , ĝr2·F ∗(x+1);

If A queries x = x∗, B calculates F ∗(x∗ +1), picks r′
1, r

′
2

$← Zp, and computes

H(x∗) = gr′
1 , Br′

1 , ĝr′
2 , ĝr′

2·F ∗(x∗+1);
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– Finally B outputs whatever A outputs.

We note that in A’s view, without querying A(x∗ − 1), B simulates the game
properly. If T = gbc, then B simulates H1, and if T s random then it simulates
H2. Hence if A has an advantage ε in distinguishing H1 and H2, then B has the
same advantage to break SXDH assumption.

We also have the following lemma:

Lemma 16. H2 ≈ H3 under the SXDH assumption.

The proof is exactly the same as the prior hybrid step, except in the group Ĝ

part of the hash instead of G. We omit the details.
Collecting the steps completes the proof of Theorem 14.
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tion. This model roughly captures the structures of many famous Feistel
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key, and hopefully with identical round functions.
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minimal conditions on the way to derive the four round-keys, and prove
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1 Introduction

Overview. We extend provable security of models of practical Feistel ciphers
along multi-axes. First, we (significantly) reduce the key-sizes needed for super
pseudorandom security. Second, we provide the first non-trivial multi-user prov-
able results. We also exhibit applications of our results: on designing key-
schedules for practical Feistel ciphers, and on instantiating keyed sponges.

Background. Practical iterative blockcipher (BC) designs roughly fall into two
classes (with some rare exceptions such as IDEA), namely Feistel ciphers and
their generalizations, and substitution-permutation networks (SPNs). In a Feistel
cipher, in the i-th round, the intermediate state x = xL‖xR is updated according
to xL‖xR �→ xR‖xL ⊕ Gi(ki, xR), where Gi is called the i-th round function.
On the other hand, their counterpart SPNs could be further abstracted as the
iterated Even-Mansour (IEM) ciphers, or key-alternating ciphers, which consist
of alternatively applying round-key additions and keyless round permutations,
i.e. IEMP1,...,Pt

k0,k1,...,kt
(M) = kt ⊕ Pt(. . . (k1 ⊕ P1(k0 ⊕ M))).

The traditional security notion for BCs is pseudorandomness: for any adver-
sary with reasonable resources (e.g. polynomial complexity), the BC with a
random and secret key should be indistinguishable from a truly random per-
mutation. Proving such security for concrete BCs such as AES seems out of the
reach of current techniques. Yet, by idealizing the underlying round functions,
security could be proved. Following this line, both idealized Feistel [36,38] and
IEM [11,22] have been proposed and analyzed.

To obtain a 2n-bit BC, the IEM model requires 2n-bit permutations. Whereas
following the Feistel approach, several n-to-n-bit functions suffice. Moreover,
these functions need not to be invertible (this might be the reason why Feistel
ciphers were extremely popular before 1990s). In all, Feistel ciphers could be
built upon primitives with smaller domain and less structural properties, which
is particularly appealing from a theoretical point of view. From the security point
of view, without any additional hardness assumption other than the idealness
of round functions, provable security is limited by the domain-size of the round
functions [49]. Therefore, IEM benefits from the use of larger primitives: with
t independent 2n-bit random permutations and 2tn key bits, t-round IEM is
provably secure up to 2

2tn
t+1 adversarial queries [15] which approaches 22n for large

t. In contrast, Feistel models can only be secure against at most 2n queries [49],
which is far less than its domain-size 22n. This upper bound is very unsatisfying.
Despite this limitation as well as the gap between the idealized model and the
rather weak round functions in practice, this provable approach supplies insights
into the BC structures, excludes generic attacks, and may help refine designs.
Due to these, this approach is valuable and has received a lot of attention.

The Luby-Rackoff (LR) Scheme, in reference to the seminal work of Luby and
Rackoff [38], might be the most popular model for Feistel ciphers so far. In this
model, the round functions Gi(ki, xR) are pseudorandom functions (PRFs). Via
a standard hybrid argument, this is transposed to the Feistel networks formed
by uniformly random and Secret round functions SGi(xR). Following [38], a long



Revisiting KAF Ciphers for Shorter Keys and Multi-user Security 215

series of work established either better security (maybe using a larger number
of rounds)—with [3,31,40,44,49] to name a few,—or reduced complexity for
security [45–47,52].

Key-Alternating Feistel Ciphers. Works along the line of Luby and Rackoff
are very generic and could cover all possible forms of round functions. On the
opposite side, the LR model falls short of showing how to concretely design keyed
primitives (BCs) from (conceptually) simpler keyless primitives—it just “defers”
the task to designing keyed round functions Gi(ki, xR), which is, however, not
known to be simpler than designing the BCs themselves.

In reality, general purpose Feistel ciphers usually employ length-preserving
keyless round functions, and xor each round-key before applying the correspond-
ing round function. Examples include DES, GOST, Camellia variant without
FL/FL−1 functions [9], MIBS [34], and two recent designs LBlock [57] and
Twine [55] (they are multi-line generalizations of Feistel). This idea corresponds
to Feistel networks with round functions instantiated in the probably simplest
form of Gi(ki, xi) = Fi(ki ⊕ xi), where Fi is keyless and public; and at the i-th
round, the intermediate state is updated according to

xL‖xR → xR‖xL ⊕ Fi(ki ⊕ xR).

This model was named Key-Alternating Feistel (KAF) by Lampe and Seurin [36],
and is also known as Feistel-2 schemes according to IACR Tikz library. It has
been extensively studied by the cryptanalytic community [9,29,33], and fre-
quently became the instructive example for new attacks [2,10].

The gap between LR and KAF ciphers is non-negligible. For example, with
less than 22n complexity, the best known generic key recovery attacks break
4-round LR [33] which is in sharp contrast with 6-round KAF [29]. Moreover,
6- or even 5-round LR model is already sufficient for optimal information the-
oretic security against 2n queries [44, Chap. 17]. However, for KAF we exhibit
a generic distinguishing attack against t rounds using O( (t−2)n

t−1 ) queries, which
means O(n) number of rounds are necessary for optimal security. These indicate
the LR model misses some important structural properties in practical Feistel
ciphers, and KAF is likely to be a better model for the reality.

By the above, theoretical analysis of the KAF model is of significance.
In this respect, one would assume the (keyless) round functions Fi as public
random functions that can be queried by the adversary in a black-box way,
and try to establish indistinguishability for the worlds (KAFk, F1, . . . , Ft) and
(P, F1, . . . , Ft) in the random oracle model, i.e. the cipher KAF with a secret
random key k is indistinguishable from a random permutation P even if given
the access of the t random round functions F1, . . . , Ft. This is very similar to
the setting introduced for IEM [11]. In this vein, we are only aware of two
works. First, an early work of Gentry and Ramzan (GR) [24] proved a birthday-
type security for a 4-round keyless Feistel scheme with pre- and post-whitening
keys, which can be translated into a 4-round KAF variant. Then, a recent work
of Lampe and Seurin (LS) [36] proved beyond-birthday security up to 2

tn
t+1
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adversarial queries for 6t-round KAF, assuming the round functions and round-
keys are both completely independent [36].1

Our Problem. The secret-key analyzes of KAF of GR [24] and LS [36] men-
tioned before leave two remarkable gaps. The first gap lies between the models
and ciphers in practice. In detail, both LS and GR assumed completely Indepen-
dent Round-Keys (INDRK). In contrast, BCs in practice utilize identical round
functions as well as round-keys derived from a short main-key (thus highly corre-
lated rather than completely independent). Security arguments with correlated
round-keys are desired to bridge this gap.

On the theoretical side, arguments with correlated round-keys reduce the
amount of key required by secure cryptosystems, and sometimes lead to minimal
designs [14,21]. Therefore, such arguments are of great importance from both
practical and theoretical points of view, and while the INDRK assumption is
common in seminal theoretical results, e.g. LR [38], IEM [11], and models for
SPNs [41], subsequent works usually tried to remove it. For example, Patarin et
al. analyzed the possibility of designing secure LR variants using a single random
function (which is equivalent to pseudorandom function with a single round-
key) [45–48,52]; Chen et al. analyzed 2-round IEM with correlated round-keys
and even identical permutations [14]; and Dodis et al. proved results for SPN
models with correlated round-keys [20].

Regarding the round complexity for beyond-birthday security, there is one
more gap. While optimal security up to 2n queries cannot be achieved by a small
constant number of rounds of KAF (as discussed before), the optimal security of
6-round LR motivates ones to expect that the 6-round KAF is at least beyond-
birthday secure. However, LS only proved (beyond-birthday) security against
2n/3 queries for 12-round KAF, which is twice as the expected rounds.

Contribution I: Security with Correlated Round-Keys. We narrow the
above gaps, and make the first step towards minimizing sufficient conditions for
the provable security of KAF models. The results consist of two parts depending
on the security goal.

Birthday-Type Security: Minimal Solution with 4 Rounds. In this
regime, we consider the KAF ciphers with all the round functions identical,
as depicted in Fig. 1 (left), and denote it KAFSF to make a clear distinction. For
such variants, if the round-keys are also identical, then for S‖T = KAFSF(L‖R)
it always holds KAFSF−1(T‖S) = R‖L, which means it can be distinguished
by 2 queries (more severely, this allows ruining the secrecy of the plaintext in
the CPA setting). Consequently, there have to be some non-trivial correlations
between the round-keys. To unveil this, we investigate the minimal conditions on
the round-keys that suffice for security. We prove that for the four n-bit round
keys (k1, k2, k3, k4), as long as k1, k4, and k1 ⊕ k4 are all uniform (a quite mild
requirement), the 4-round KAFSF is secure up to 2n/2 queries. The bound is
tight, since any 4-round Feistel can be distinguished by 2n/2 queries [45].
1 A more recent work of Gilboa et al. [25] analyzed a variant of 2-round IEM, which

corresponds to a KAF variant with whitening keys. We’ll elaborate later.
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Fig. 1. (Left) The general 4-round KAFSF cipher in question. F is a public random
function. (Right) the “minimal” KAFSF scheme with birthday-type provable security.
ϕ is a fixed orthomorphism of Fn

2 .

This general result on the round-keys allows us to derive them from a short
main-key in various ways. For the best efficiency, one could drop k2 and k3, and
set k1 ← K and k4 ← ϕ(K), where ϕ is an orthomorphism of F

n
2 , cf. Fig. 1

(right).2 This yields a super pseudorandom KAF cipher from a single random
function and an n-bit main-key. This construction is theoretically “minimal” in
the sense that removing any of the components ruins security: removing ϕ brings
the severe weakness KAFSF(L‖R) = S‖T ⇔ KAFSF−1(T‖S) = R‖L back, while
removing any call to F brings us back to a 3-round Feistel network, which is not
super pseudorandom. While it appears crazy to completely drop k2 and k3, this
actually matches an early theoretical result of Ramzan and Reyzin [50], which
will be discussed later. However, we stress our “minimal” scheme is of mainly
theoretical interest. Most importantly, we are not advocating following it to
design general purpose Feistel ciphers.

Birthday-type security is now usually deemed as quite weak. For example,
general purpose Feistel BCs usually take 2n = 128, for which a birthday-bound
merely ensures 32-bit security. Though, we believe it’s of significance to deepen
the understanding of birthday-type security, shape existing results, and derive
theoretically minimal constructions.

Beyond-Birthday Security: Improved Results with 6 Rounds. For KAF
built upon independent round functions, see Fig. 2 (left), we prove security
up to 22n/3 adversarial queries as long as the six round-keys (k1, k2, k3, k4, k5, k6)
are uniform and adjacent round-keys are independent. It seems such a sequence of
round-keys can be easily derived from a 2n-bit main-key K‖K ′ via the “word-
aligned”, feedback-shift-register-based key-schedules that are widely adopted.

2 A permutation ϕ of Fn
2 is an orthomorphism if K �→ K ⊕ϕ(K) is also a permutation.

The Feistel-like linear transformation ϕ(KL‖KR) = KL ⊕ KR‖KL is a very efficient
instance. Orthomorphisms have found many cryptographic applications, particularly
in minimizing LR [52] and IEM models [14].
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As far as we know, this is the first beyond-birthday result on KAF without
INDRK assumption.

More generally, when k1, k3, and k5 are uniform in 2n values, while k2, k4, and
k6 are uniform in only 2n−r values, security is up to 2(2n−r)/3 queries. While such
round-keys appear quite artificial, it’s valuable for two reasons: first, it appears
the first step towards modeling key-schedules of the form {0, 1}cn → {0, 1}tn

for non-integers c; second, it cinches interesting implications on “partial-key”
Even-Mansour and keyed sponges, which will be discussed latter.

Fig. 2. (Left) The 6-round KAF ciphers with notations used in this paper. F1, . . . , F6

are six independent public random functions. (Right) The single-key Even-Mansour
cipher based on a 6-round keyless Feistel permutation LR6.

Application: A Concret Proposal for KAF Key-Schedules. Although our
results turn heuristic once instantiated [13], we believe they shed some light
on how to design key-schedules for practical Feistel ciphers, which appear quite
non-trivial. In particular, key-schedules of KAF ciphers need not to be overly
strong nor “one-way”, and actually key-schedules with some simple combina-
torial properties could be a good starting point (a similar conclusion has been
made for the IEM ciphers [14]).

To further illustrate, based on our results and some additional intuitions,
we propose to consider key-schedules that produce pair-wise independent round-
keys3 in KAF ciphers. We further demonstrate examples of such key-schedules.
3 This should be distinguished from complete independence. For example, given the

main-key K‖K′, the round-keys K, K′, K ⊕ K′ are pair-wise independent, but they
aren’t completely independent. In fact, appealing to pair-wise independence instead
of complete independence is an approach to derandomization [37].
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However, we stress that these proposals only serve as starting points for further
research, and should not be used without deeper investigations.

Multi-User (MU) Setting. The discussed super pseudorandomness model is
now termed as single-user (SU) setting. It has been noticed that in practice,
cryptosystems are typically deployed en masse and attackers are often satisfied
with compromising some users among many, which can be substantially easier [8].
In fact, massively parallel attacks on many keys at once have been considered as
the most promising way to break AES-128 [6]. These motivated the multi-user
(MU) security notion [5] and a lot of follow up works—please see [12] and the
references therein. For BCs, this could even affect higher-level systems: frequently
rekeying is sometimes used in BC-based modes in order to achieve better security
bounds [26] or leakage resilience [54], and the security of such modes inherently
relies on the MU security of the underlying BCs.

According to Mouha and Luykx [42], the MU security of BCs was formalized
as m > 1 instances of BCs with m independent user-keys being indistinguishable
from m independent random permutations. This could be related to the SU
security: with m independent keys, a generic reduction shows the MU security is
log m bits less than the SU security (Jager et al. showed that this is unavoidable
for generic reductions [35]). This is quantitatively weaker. Yet, interestingly,
dedicated analyzes could usually establish MU bounds that are quantitatively
the same as SU bounds [32,42,56].

Contribution II: MU Security of KAF. As mentioned, the MU security
may be quantitatively weaker than the MU security. Yet, our positive results
are proved via establishing the so-called point-wise proximity of Hoang and Tes-
saro [32], and our bounds satisfy their “super-additiveness” requirement. There-
fore, by their general transition, these establish MU security against 2n/2 queries
at 4 rounds and against 2(2n−r)/3 queries at 6 rounds. To our knowledge, these
constitute the first non-trivial MU provable results on Feistel ciphers.

We remark that it’s not as trivial as it appears to ensure “super-additiveness”
during the analysis. For example, this requires to get rid of terms of the form
f(qf ) or f(qf ) ·√qe. In particular, our proof follows a “two-step” approach used
by Cogliati et al. for analyzing tweakable Even-Mansour [16,17], yet neither
of the bounds given in these works fulfills this requirement. To resolve this,
we eschew many concrete approaches used in [16,17] (in particular, the use
of Markov inequality), and extensively use the expectation method from [32]
instead, to derive more “smooth” bounds.

As a final remark, Hoang and Tessaro proved that the SU and MU security
bounds of IEM with INDRK are quantitatively the same [32]. While our results
appear to indicate the same conclusion, we don’t expect this to be true for KAF
in general. A deeper investigation is left for future.

Implications. As multi-user secure BCs, our provable KAF constructions could
be plugged into many BC-based (secret-key) modes to reduce the size of (ideal)
primitives in use, or to drop the requirement on the invertibility of the under-
lying ideal primitives. The latter is particularly attractive in the multi-party
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computation setting, in which invertibility could be quite expensive [51]. In
addition, depending on the concrete parameters, in some cases, e.g. truncated
CBC [23], this even does not result in a security loss.

Less obviously, our general results on 6-round KAF imply that it’s secure to
alternatively use an n-bit key K and another (n − r)-bit key K ′ at each round.
With such an alternating key-schedule, the 6-round KAF collapses to a 1-round
IEM with key 0r‖K ′‖K and the permutation instantiated by a 6-round keyless
Feistel permutation LR6, as in Fig. 2 (right). Therefore, this shows instantiating
the permutation π in the 1-round “Partial-Key” Even-Mansour

PKEMπ
0r‖K′‖K(M) = (0r‖K ′‖K) ⊕ π((0r‖K ′‖K) ⊕ M) (1)

by a 6-round keyless Feistel permutation LR6 preserves security, and for r > n/2
the security is beyond-birthday with respect to the domain-size of the underlying
ideal primitives. This extends the birthday-type result of GR [24] (two more
Feistel rounds for beyond-birthday security).

This results in even more interesting implications. Sponge functions are ver-
satile cryptographic primitives [7]. Keyed sponges can be used for encryption
and message authentication. Many variants of lightweight keyed sponges can be
rewritten as a construction built upon the aforementioned PKEMπ

0r‖K′‖K cipher,
and the sponge is secure as long as PKEMπ

0r‖K′‖K is secure (maybe in the MU
setting) [1,23,43]. Thus by the above implication, such keyed sponges could rely
on PKEMLR6

0r‖K′‖K instead of PKEMπ
0r‖K′‖K . With the keys canceled, we obtain

a sponge built upon LR6. Therefore, our results indicate: the random permuta-
tion underlying many keyed sponge variants could be securely instantiated with
a 6-round keyless Feistel permutation LR6. For concrete security results please
see Sect. 7.

We stress that these results cannot be derived from existing provable results
on IEM/keyed sponges and keyless Feistel via general transitions. The most rele-
vant results are the correlation intractability [39] and CP-indifferentiability [53]
positive results on LR6. But they are quantitatively weak: q4/2n for correlation
intractability of LR6 [39], and q6/2n for CP-indifferentiability of LR5 [53].

Table 1. Comparison to existing provable results on KAF. We stress that our results
include more general ones that allow deriving the round-keys in flexible ways. And
rows 4 and 5 are the theoretically best possible ones derived from the general ones.

Key size Rounds Num. of rand. func SU bound MU bound Reference

4n 4 2 n/2 Missed GR [24]

12n 12 12 2n/3 Missed LS [36]

6tn 6t 6t tn/(t + 1) Missed LS [36]

n 4 1 n/2 n/2 Sect. 4

2n 6 6 2n/3 2n/3 Sect. 5
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Discussion, and Comparison to Related Works. It would be tempting to
ask how we are able to halve the round complexity for 2n/3 security (compared
with LS [36]). Briefly, LS divided a KAF cipher into two halves, proved NCPA
(non-adaptive chosen-plaintext attack) security for each half, and then applied a
composition to obtain CCA security. And (informally) their coupling argument
could only reduce certain collision probability every 3 rounds. Consequently, they
only obtained 2n/3 NCPA security at 6 rounds and 2n/3 CCA security at 12
rounds. In comparison, we follow a “two-step” approach [16,17] for analyzing the
transcripts of queries and answers of the distinguisher, transform the transcripts
into input-output pairs of the inner four rounds, and then employ a more fine-
grained and dedicated analysis. This allows us to remove much redundancy from
the structures and successfully halve the rounds. Due to the randomness of the
1st and 6th round functions, every resulted input-output pair of the inner four
rounds would only be involved in a single collision (one could see Fig. 4 for
illustration), and this significantly simplifies the analysis. Still, the analysis for
4 rounds remains complicated, and the complexity is further increased by the
aim of “super-additiveness” (as mentioned). We remark that such an analysis
for 4-round KAF seems missing in the literature—Patarin’s mirror theory-based
analysis for 4-round LR [44, Chap. 17] does not seem to be transposable to KAF.

On the other hand, our 6-round construction(s) could probably be further
simplified while retaining 2n/3-bit security. However, we figured out some diffi-
culties, see the full version. Since verifiability of the proof is equally important,
we favored the current construction and its relatively simpler proof. Despite this,
our 6-round construction with 2n-bit main-keys has significantly improved upon
existing results. In Table 1, we make comparison with the results of LS [36] and
GR [24]. We remark that GR’s main motivation was to deepen the understanding
of the Even-Mansour cipher [22], rather than to study KAF ciphers.

Also, we list the relevant results on the popular LR and IEM models in Table 2
for comparison. We remark that LR results are in the standard model, and are
better than the ideal model results on IEM and KAF in some theoretical sense.
Yet, as emphasized before, KAF is closer to reality.

The results in Table 2 in particular include the aforementioned work of Gilboa
et al., which proved n/2 security for a 2-round IEM variant with identical round-
permutations and identical round-keys [25]. Moreover, the round-permutation
is instantiated with a 2-round LR construction built upon a public random per-
mutation. This construction is somewhat related to KAF: but it can only be
transformed into a KAF variant with whitening keys rather than the “bare”
KAF model studied in this paper (thus we denote KAFSP∗). Consequently, our
result on 4-round KAFSF—as well as the usefulness of orthomorphisms in this
setting—could not be derived from [25].

In addition, Ramzan and Reyzin proved birthday-type security for a variant
of 4-round LR, in which the middle two round functions are public rather than
secret [50]. As mentioned before, an interesting fact is that our 4-round minimal
construction also captures the idea of leaving the middle two round functions
“unprotected” (as the middle two round-keys are absent). In this sense, our
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Table 2. Comparison to LR and IEM super pseudorandom provable results. For the LR
results, κ is the key-size of the underlying PRFs. For the first row: the proof used the
mirror theory [44, Chap. 14], and was only sketched in [44, Chap. 17.5]. For row 2: it’s
the best result to our knowledge. For row 4 & 5, the MU bounds of EMIP and EMSP
models were not given, yet are trivial: (a) with 2n key bits, it ≤ n-bit [8], while (b) it
≥ n-bit, which is the MU security of the 1-round single-key IEM [32].

Model Block

size

Prim.

size

Key

size

Rounds Number

of prim

SU bound MU bound Reference

LR 2n n 5κ 5 5 ≈ n Missed [44]

LR 2n n κ 4 1 n/2 Missed Nandi [45]

IEM 2n 2n 2tn t t 2tn/(t + 1) 2tn/(t + 1) CS and HT

[15,32]

EMIP 2n 2n 2n 2 2 4n/3 n Chen et al. [14]

EMSP 2n 2n 2n 1 2 4n/3 n Chen et al. [14]

KAFSP∗ 2n n 2n 4 1 n/2 Missed Gilboa et al. [25]

KAF 2n n 6tn 6t 6t tn/(t + 1) Missed LS [36]

KAFSF 2n n n 4 1 n/2 n/2 Sect. 4

KAF 2n n 2n 6 6 2n/3 2n/3 Sect. 5

minimal construction also deepen the understanding of the secrecy of round
functions in Feistel ciphers.

Last, a series of papers analyzed idealized BCs in the indifferentiability frame-
work, which is a different security model. Please see [19] and the references
therein. Among them is a positive result [27] on a variant of KAF abstracted from
NSA’s cipher SIMON [4]. These works shed lights on designing key-schedules
from a different point of view, and are thus complementary to ours.

Organization. Section 2 supplies notations and definitions. Section 3 describes
the generic distinguishing attack against any number of rounds. Then, Sects. 4
and 5 respectively present our results on 4-round KAFSF and 6-round KAF and
their security proofs. After these, based on our results, Sect. 6 presents our key-
schedule proposal, while Sect. 7 makes discussion on the implications.

2 Preliminaries

Notation and General Definitions. In all the following, we fix an integer
n ≥ 1 and denote N = 2n. Further denote F(n) the set of all functions of domain
{0, 1}n and range {0, 1}n, and P(2n) the set of all permutations on {0, 1}2n. For
a random variable ε(s) that relies on another random variable s, we denote by
Es∈S [ε(s)] the expectation of ε(s) taken over all s ∈ S, and Es[ε(s)] for short
when the set S is clear from the context. For X,Y ∈ {0, 1}n, X‖Y or simply
XY denotes their concatenation.

Assume that the i-th round function of KAF is Fi : {0, 1}n → {0, 1}n, and
the corresponding n-bit round-key is ki, then the i-th round transformation of
KAF is the permutation on {0, 1}2n defined as

ΨFi

ki
(Wi−1‖Wi) = Wi‖Wi+1 = Wi‖Wi−1 ⊕ Fi(Ki ⊕ Wi),
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where Wi−1 and Wi are the left and right n-bit halves of the inputs of the i-th
round respectively. And the t-round KAF is specified by t public round functions
F = (F1, . . . , Ft) and a round-key vector k = (k1, . . . , kt):

KAFF
k (W0‖W1) = ΨFt

kt
◦ . . . ◦ ΨF1

k1
(W0‖W1).

These functions may be completely independent, or correlated, or even identical.
To highlight, we denote by KAFSF the variant with identical round function, i.e.

KAFSFF
k (M) = ΨF

kt
◦ . . . ◦ ΨF

k1
(M).

Note that the key spaces of these schemes are not fixed, and depend on the
concrete contexts.

As noted in [18], a KAF cipher with an even number of rounds can be seen
as a special case of an IEM cipher. In detail, two rounds of a KAF cipher can be
rewritten as:

Ψ
Fi+1
ki+1

◦ ΨFi

ki
(Wi−1‖Wi) = (ki+1‖ki) ⊕ Ψ

Fi+1
0 ◦ ΨFi

0 ((ki+1‖ki) ⊕ (Wi−1‖Wi)),

where Ψ
Fi+1
0 ◦ΨFi

0 is a two-round keyless Feistel permutation. As a consequence,
in general, KAF ciphers should avoid using identical round-key, as otherwise the
round-keys would cancel each other and the cipher would collapse to a single
round IEM cipher using a keyless Feistel as the permutation and k‖k as the pre-
and post-whitening key.4

For convenience—in particular, to simplify subscripts,—we follow a classical
notation system (which has been used for Luby-Rackoff schemes [49]):

– for 4-round KAF(SF), we take L,R,X, Y, S, T as W0,W1,W2,W3,W4,W5 cor-
respondingly, as depicted in Fig. 1 (left);

– for 6-round KAF(SF), we take L,R,X, Y, Z,A, S, T as W0,W1, . . . ,W6,W7

correspondingly, as in Fig. 2 (left).

Multi-User (MU) Security of Blockciphers. We concentrate on the MU
security with m users. The SU security definition corresponds to the special
case of m = 1. Concretely, consider a t-round KAF built from t n-to-n-bit
function oracles F = (F1, . . . ,Ft). Only the round-key vectors k with certain
context-dependent properties (will be identified) can ensure security. We denote
by K the set of all k with such desired properties. To study the indistinguisha-
bility, we consider a distinguisher D interacting with F. In the MU setting,
D has access to additional m 2n-bit permutation oracles, which are either m
instances KAFF

k(1) , . . . ,KAF
F
k(m) with m independent keys uniformly picked from

K, or m independent random permutations P(1), . . . ,P(m). The goal of D is to
tell apart the two worlds (KAFF

k(1) , . . . ,KAF
F
k(m) ,F) (termed the real world) and

(P(1), . . . ,P(m),F) (the ideal world) by adaptively making forward and backward
4 In page 8, we indeed take the implication on PKEM as an interesting one. But that

implication concentrates on specific theoretical models, and does not intend to say
anything about general purpose Feistel ciphers.
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queries to each of the permutations and the functions. Formally, D’s distinguish-
ing advantage is defined as

AdvMU
KAF(D) = Pr[(P(1), . . . ,P(m))

$←− (P(2n))m,F
$←− (F(n))t : DP1,...,Pm,F = 1]

− Pr[(k(1), . . . , k(m))
$←− (K)m,F

$←− (F(n))t : D
KAFF

k(1) ,...,KAF
F

k(m) ,F = 1].

Furthermore, we consider computationally unbounded distinguishers, and we
assume without loss of generality that the distinguisher is deterministic and
never makes redundant queries. For non-negative integers qf and qe, we define
the insecurity of the idealized KAF cipher as:

AdvMU
KAF(qf , qe) = maxDAdvMU

KAF(D),

where the maximum is taken over all distinguishers D making exactly qf queries
to each function oracle and in total qe queries to the permutation oracles (termed
as (qf , qe)-distinguishers).

If a collision occurs among the m user keys, e.g. k(i) = k(j), then D can easily
distinguish: in the real world, KAFF

k(i) and KAFF
k(j) are the same, while in the

ideal world the corresponding oracles P(i) and P(j) are independent. For (qf , qe)-
distinguishers, the number of involved users m cannot exceed qe. Thus such a
collision happens with probability at most q2

e

2|K| . For simplicity, throughout the
remaining, we only consider the MU setting in which all the involved user keys
are distinct; and the bounds in the “normal” MU setting can be derived as our
bounds plus the term q2

e

2|K| (this approach resembles [32]).

As mentioned, setting m ← 1, we obtain AdvSU
KAF, which measures the advan-

tage of D on distinguishing one KAF instance from a random permutation.

H-Coefficients. We utilize the H-coefficient technique [15,47], and follow the
paradigm of Hoang and Tessaro (HT) [32]. For this, we summarize the interaction
of D with its oracles in the queries transcripts. Suppose D making qi queries to
the i-th permutation oracle (P(i) or KAFF

k(i)), which are recorded as a set

QEi
= {(L1R1, S1T1), . . . , (Lqi

Rqi
, Sqi

Tqi
)},

where for j = 1, . . . , qi the tuples (LjRj , SjTj) ∈ {0, 1}2n × {0, 1}2n indicate the
queries and answers. On the other hand, for i = 1, . . . , t, the queries made to Fi

are recorded as
QFi

= {(xi,1, yi,1), . . . , (xi,qf
, yi,qf

)},

in which for each j ∈ [1, . . . , qf ], it indicates Fi was queried on xi,j and answered
with yi,j . Let QE = (QE1 , . . . ,QEm

) and QF = (QF1 , . . . ,QFt
). Then the pair

τ = (QE ,QF ) will be called the transcript of the distinguisher in the MU setting:
it contains all the information obtained by D during the interaction. In the SU
setting, we have to focus on only one permutation oracle; therefore, we drop
the index i and simply write QE = {(L1R1, S1T1), . . . , (Lqi

Rqi
, Sqi

Tqi
)} for the

permutation query transcript and write τ = (QE ,QF ). Note that queries are
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recorded in a directionless (for permutation queries) and unordered fashion, but
since D is assumed deterministic, there is a one-to-one mapping between this
representation and the raw transcript of the interaction of D with its oracles (a
formal proof could be found in [15]). Also, the output of D is a deterministic
function of τ .

Given a set QFi
of function queries and a function Fi, we say that Fi extends

QFi
, denoted Fi � QFi

, if Fi(x) = y for all (x, y) ∈ QFi
. Similarly, given

a transcript of permutation queries QEi
and a permutation P(i), we say P(i)

extends QEi
, denoted P(i) � QEi

, if P(i)(LR) = ST for all (LR,ST ) ∈ QEi
.

The latter definition also extends to the t-round KAF cipher built upon F and a
key k(i); in that case, we write KAFF

k(i) � QEi
. Finally, for QF = (QF1 , . . . ,QFt

)
and F = (F1, . . . ,Ft), if F1 � QF1 ∧ . . . ∧ Ft � QFt

, then F � QF .
For all possible transcript τ that describes a possible interaction with either

a tuple of oracles (P(1), . . . ,P(m),F) or (KAFF
k(1) , . . . ,KAF

F
k(m) ,F), we denote

Prre(τ), resp. Prid(τ), the probability that D’s interaction with the real world,
resp. the ideal world, produces τ . Formally,

Prre(τ) = Pr[(k(1), . . . , k(m)) $←− (K)m,F $←− (F(n))t :

KAFF
k(1) � QE1 ∧ . . . ∧ KAFF

k(m) � QEm
∧ F � QF ],

Prid(τ) = Pr[(P(1), . . . ,P(m)) $←− (P(2n))m,F $←− (F(n))t :

P(1) � QE1 ∧ . . . ∧ P(m) � QEm
∧ F � QF ].

With these definitions, the core lemma of the H-coefficients technique states
that the distinguishing advantage could be inferred from the ratio of Prre(τ)
and Prid(τ) (which is a function of qf and qe).

Lemma 1 (From [32]). Assume that in the atk setting (atk ∈ {SU,MU}),
there is a function ε(qf , qe) > 0 such that for every possible transcript τ with qe

and qf queries of the two types it holds

Prid(τ) − Prre(τ) ≤ Prid(τ) · ε(qf , qe), (2)

then it holds
Advatk

KAF(qf , qe) ≤ ε(qf , qe).

Following [32], the lower bound (2) is named “ε-point-wise proximity” of τ .
We partition the key set K into two disjoint subsets Kgood and Kbad such that
K = Kgood∪Kbad. Let Prre(τ, k) be the probability that D interacts with the real
world, where k ∈ K is sampled as the key, and receives a transcript τ . Moreover,
we assume there is a fake key variable k in the ideal world that is uniformly
selected from the key space K, i.e., k

$←− K, and define Prid(τ, k) similarly. It is

trivial that Prid(τ, k) = Prid(τ)×Pr[k $←− K]. With these, HT provided a general
lemma for establishing point-wise proximity.
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Lemma 2 (Lemma 1 of [32]). Fix a transcript τ with Prid(τ) > 0. Assume
that: (i) Pr[k ∈ Kbad] ≤ δ, and (ii) there is a function g : K → [0,∞) such that
for all k ∈ Kgood, it holds

Prre(τ,k)
Prid(τ,k) ≥ 1 − g(k). Then we have

Prid(τ) − Prre(τ) ≤ Prid(τ) · (δ + Ek∈K[g(k)]). (3)

HT also proved that once such point-wise proximity results have been established
for the SU setting, similar results could be established for the MU setting via a
general transformation. For this we restate Lemma 3 of [32] in our KAF setting.

Lemma 3. Let t be the number of calls to F that a single call to KAF/KAF−1

makes. Let ε : N × N → R
≥0 be a function such that

– ε(qf , qe) + ε(qf , q′
e) ≤ ε(qf , qe + q′

e) for every qf , qe, q′
e ∈ N, and

– ε(·, q) and ε(q, ·) are non-decreasing functions on N for every q ∈ N.

Assume that in the SU setting, for every transcript τ with qf and qe queries of
the two types, one has

Prid(τ) − Prre(τ) ≤ Prid(τ) · ε(qf , qe),

then in the MU setting, for every transcript τ with qf and qe queries, one has

Prid(τ) − Prre(τ) ≤ Prid(τ) · 2ε(qf + t · qe, qe).

3 Security Upper Bound: A Distinguishing Attack

Combining the idea of enumerating all the possible round-keys from [11] and
the (round) function reduction technique of [33], the t-round KAF can be distin-
guished by O(N

t−2
t−1 ) queries:

(1) Chooses λ plaintexts L1R1, . . . , LλRλ, with L1, . . . , Lλ pair-wise distinct,
and R1 = . . . = Rλ = R, and makes λ encryption queries Enck(L1, R1) →
(S1, T1), . . ., Enck(Lλ, Rλ) → (Sλ, Tλ);

(2) For 
 from 2 to t − 1, asks λ arbitrary distinct queries x
(1)
� , x

(2)
� , . . . , x

(λ)
� to

F�:
– F�(x

(1)
� ) → y

(1)
� ,

– . . .
– F�(x

(λ)
� ) → y

(λ)
� ;

(3) Denote CON = F1(k1 ⊕ R). For all k = (k1, . . . , kt) ∈ K and all 2n possible
values of CON , if there exists t− 1 query-answer pairs (LiR,SiTi), (x2, y2),
(x3, y3), . . ., (xt−1, yt−1) such that an almost completed computation chain
is formed:
– k2 ⊕ CON = Li ⊕ x2, and
– k3 = R ⊕ y2 ⊕ x3, and
– . . .
– k�+1 = (k�−1 ⊕ x�−1) ⊕ y� ⊕ x�+1, and



Revisiting KAF Ciphers for Shorter Keys and Multi-user Security 227

– . . .
– kt−1 = (kt−3 ⊕ xt−3) ⊕ yt−2 ⊕ xt−1,
and further S = (kt−2 ⊕ xt−2) ⊕ yt−1, then outputs 1 to indicates it’s the
real world (otherwise 0).

When λ = N
t−2
t−1 and thus λt−1

Nt−2 = 1, the probability of forming a chain is
approximately 1. By this, a 6-round KAF ensure at most 4n/5-bit security. This
should be contrasted with the results on the classical LR model (as discussed in
the Introduction).

We also note that the t-round IEM ciphers built upon n-bit random permu-
tations and independent round-keys tightly ensure tn

t+1 -bit security [32], which

is better than the upper bound (t−2)n
t−1 -bit here. This matches the folklore that

compared to IEM ciphers, Feistel ciphers have more structural properties that
are helpful for attacks (as a consequence, to ensure the same amount of security,
KAF needs more rounds). Tight security bounds for t-round KAF remains an
open problem.

4 Four Rounds for Birthday-Type Security

We first present a general positive result for 4-round KAFSF in Subsect. 4.1. Then
in Subsect. 4.2, we discuss how to schedule the desired round-keys from a short
main-key, and present our “minimal” provably secure construction.

4.1 A General Positive Result

The first step is to specify conditions on the round-key vector that will allow us
to upper bound the probability to obtain a round-bad key vector in the ideal
world (the definition of bad key vectors will appear later).

Definition 1 (Suitable Round-Key Vector for 4 Rounds). A round-key
vector k = (k1, k2, k3, k4) is suitable if it satisfies the following conditions:

(i) k1 and k4 are uniform in {0, 1}n (but they need not to be independent);
(ii) k1 ⊕ k4 is also uniformly distributed in {0, 1}n.

If condition (i) is seriously compromised, the cipher would essentially lost 1 or
2 rounds. E.g., when k1 is only uniform in n possibilities, an adversary could
derive the second-round intermediate value X = L ⊕ F (k1 ⊕ R) with n guesses.
The less obvious condition (ii) is intended to prevent palindrome-like relations
in the derived round-keys, which have been found harmful [45]. To further help
understanding, in the full version we present attacks against some round-keys
that do not fulfill condition (ii).

Instantiated with such a suitable round-key vector, KAFSF ensures birthday
security.
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Theorem 1. For the 4-round idealized KAFSF cipher with a suitable round-key
vector as specified in Definition 1, it holds

AdvSU
KAFSF(qf , qe) ≤ 9q2e + 4qeqf

N
, and AdvMU

KAFSF(qf , qe) ≤ 50q2e + 8qeqf

N
.

Proof. We devote to prove that in the SU setting, for any transcript τ , it holds

Prid(τ) − Prre(τ) ≤ Prid(τ) · 9q2e + 4qeqf

N
. (4)

This along with Lemmas 1 and 3 would yield the two main claims. Due to page
limits, the proof of Eq. (4) is deferred to the full version [28]. ��

4.2 How to Schedule the Key: The Minimal Construction

By Definition 1, it can be seen that if pair-wise independence is ensured between
round-keys, then the key vector is suitable. We refer to Sect. 6 for how to derive
such round-keys. Here it would be tempting to ask how to schedule a single
n-bit key K into a suitable key vector. Below we identify a condition on a key-
schedule γ = (γ1, γ2, γ3, γ4) (setting ki = γi(K) for i = 1, 2, 3, 4) that suffices for
this purpose. We call such key-schedules good:

Definition 2 (Good Key-Schedule for 4-Round KAFSF). We say that a
key-schedule γ = (γ1, γ2, γ3, γ4), where γi : {0, 1}n → {0, 1}n, is good if γ1, γ4,
and γ1 ⊕ γ4 are all bijective maps of Fn

2 .

As mentioned in the Introduction, one could take for γ1 the identity, and γ4 = ϕ,
where ϕ is an orthomorphism of Fn

2 , as in Fig. 1 (right).

5 Six Rounds for Beyond-Birthday Security

Similarly to Sect. 4, we also specify conditions on the round-key vectors first.

Definition 3 (Suitable Round-Key Vector for 6 Rounds). A round-key
vector k = (k1, k2, k3, k4, k5, k6) is suitable if it satisfies the following conditions:

(i) k1, k3, and k5 are uniformly distributed in {0, 1}n;
(ii) k2, k4, and k6 are uniformly distributed in 2n−r possibilities;
(iii) for (i, j) ∈ {(1, 2), (2, 3), (4, 5), (5, 6), (1, 6)}, ki and kj are independent.

Unlike Sect. 4, in the subsequent analysis we find the uniformness of every round-
key crucial. This is why we require all of them to be uniform (this is also under-
standable, since beyond-birthday security requires various types of collisions can
be bounded by small enough probability, and thus requiring a larger amount of
randomness). The (mild) independence is also crucially used in the analysis. To
further understand the necessity, please see [28, Appendix A].

Instantiated with such a suitable round-key vector, KAF ensures beyond-
birthday security.
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Theorem 2. For the 6-round idealized cipher KAF with a suitable round-key
vector as specified in Definition 3, it holds

AdvSU
KAF(qf , qe) ≤ 7q3e + 13qeq

2
f + 22q2eqf

N2
+

2r(8qeq
2
f + 2q2eqf )

N2
, and

AdvMU
KAF(qf , qe) ≤ 1214q3e + 26qeq

2
f + 356q2eqf

N2
+

2r(600q3e + 16qeq
2
f + 196q2eqf )

N2
.

Note that when r < n/2, the security is beyond-birthday—and when r = 0, the
bound is of “typical” beyond-birthday form O( q3

N2 ).
We devote to prove the following point-wise proximity result for the SU

setting: for any transcript τ , it holds

Prid(τ) − Prre(τ) ≤ Prid(τ) · 7q3e + 13qeq
2
f + 22q2eqf + 2r(8qeq

2
f + 2q2eqf )

N2
. (5)

Gathering this and Lemmas 1 and 3 yields the claims.
Fix a transcript τ = (QE ,QF ) with QF = (QF1 ,QF2 ,QF3 ,QF4 ,QF5 ,QF6),

|QE | = qe, and |QFi
| = qf for i = 1, . . . , 6, we first define bad key-vectors,

then lower bound the probability Prre(τ, k). These two steps correspond to the
following two subsections respectively.

5.1 Bad Round-Key Vectors and Probability

Similarly to Subsect. 4.1, for any xi ∈ {0, 1}n, if there exists a corresponding
record (xi, yi) in QFi

, then we write xi ∈ DomFi (and xi /∈ DomFi otherwise),
and write ImgFi(xi) for the corresponding yi. Now, the definition is as follows.

Definition 4 (Bad Round-Key Vector for 6 Rounds). With respect to
τ = (QE ,QF ), a suitable key vector k fulfilling one of the conditions is bad:

– (B-1) there exists (LR,ST ) ∈ QE, (x1, y1) ∈ QF1 , and (x6, y6) ∈ QF6 such
that k1 = R ⊕ x1 and k6 = S ⊕ x6;

– (B-2) there exists (LR,ST ) ∈ QE, (x1, y1) ∈ QF1 , and (x2, y2) ∈ QF2 such
that k1 = R ⊕ x1 and k2 = L ⊕ y1 ⊕ x2;

– (B-3) there exists (LR,ST ) ∈ QE, (x5, y5) ∈ QF5 , and (x6, y6) ∈ QF6 such
that k6 = S ⊕ x6 and k5 = T ⊕ y6 ⊕ x5.

Otherwise we say k is good. Denote by Kbad the set of bad key vectors.

We now prove

Pr[k $←− K : k ∈ Kbad] ≤ 3 · 2r · qeq
2
f

N2
. (6)

Consider (B-1) first. Since we have at most qeq
2
f choices for (LR,ST ) ∈ QE and

(x1, y1) ∈ QF1 and (x6, y6) ∈ QF6 and since k1, resp. k6, is uniform in 2n, resp.
2n−r possibilities, and further since k1 and k6 are independent (cf. Definition 3),

it holds Pr[(B-1)] ≤ qeq2
f

22n−r ≤ 2rqeq2
f

N2 .
Similarly, since k1 and k2 are random and independent, and we have at most

qeq
2
f choices for (LR,ST ) ∈ QE and (x1, y1) ∈ QF1 and (x2, y2) ∈ QF2 , we have

Pr[(B-2)] ≤ 2rqeq2
f

N2 ; by symmetry, Pr[(B-3)] ≤ 2rqeq2
f

N2 . The sum yields (6).
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5.2 Analysis for Good Keys

Fix a good round-key vector k, we are to derive a lower bound for the probability
Pr[F $←− (F(n))6 : KAFF

k � QE | F � QF ]. It consists of two steps. In the first
step, we will lower bound the probability that a pair of functions (F1,F6) satisfies
certain “bad” conditions that will be defined. With the values given by a “good”
pair of functions (F1,F6), a transcript of the distinguisher on 6 rounds can be
transformed into a special transcript on 4 rounds; in this sense, we “peel off”
the outer two rounds. Then in the second step, assuming (F1,F6) is good, we
analyze the induced 4-round transcript to yield the final bounds. In the following,
each step would take a subsubsection. As mentioned in the Introduction, this
two-step approach is motivated by Cogliati et al. [16,17].

Peeling Off the Outer Two Rounds. Pick a pair of functions (F1,F6) such
that F1 � QF1 and F6 � QF6 , and for each (LR,ST ) ∈ QE we set X ←
L ⊕ F1(k1 ⊕ R) and A ← T ⊕ F6(k6 ⊕ S). In this way we obtain qe tuples of
the form (RX,AS); for convenience we denote the set of such induced tuples by
Q∗

E(F1,F6). We further denote by EQ(X) the set that contains all such induced
tuples with their second coordinate equaling X—formally,

– EQ(X) = {(RX,AS) : (RX,AS) ∈ Q∗
E(F1,F6)}.

– Similarly, EQ(A) = {(RX,AS) : (RX,AS) ∈ Q∗
E(F1,F6)}.

And we define several key-dependent quantities characterizing τ :

α1(k)
def

===|{((LR, ST ), (x1, y1)) ∈ QE × QF1 : k1 = R ⊕ x1}|,
α2(k)

def
===|{((LR, ST ), (x6, y6)) ∈ QE × QF6 : k6 = S ⊕ x6}|,

α2,3(k)
def

===|{((LR, ST ), (x2, y2), (x3, y3)) ∈ QE × QF2 × QF3 : k3 = R ⊕ y2 ⊕ x3}|,
α4,5(k)

def
===|{((LR, ST ), (x4, y4), (x5, y5)) ∈ QE × QF4 × QF5 : k4 = S ⊕ y5 ⊕ x4}|.

Then we define a predicate Bad(F1,F6) on the pair (F1,F6), which holds if
the corresponding induced set Q∗

E(F1,F6) fulfills at least one of the following
five “collision” conditions (see Fig. 3 for illustration):

– (C-1) there exists three records (RX,AS) ∈ Q∗
E(F1,F6), (x2, y2) ∈ QF2 , and

(x5, y5) ∈ QF5 such that k2 = X ⊕ x2 and k5 = A ⊕ x5;
– (C-2) there exists three records (RX,AS) ∈ Q∗

E(F1,F6), (x2, y2) ∈ QF2 , and
(x3, y3) ∈ QF3 such that k2 = X ⊕ x2 and k3 = R ⊕ y2 ⊕ x3;

– (C-3) there exists three records (RX,AS) ∈ Q∗
E(F1,F6), (x4, y4) ∈ QF4 , and

(x5, y5) ∈ QF5 such that k5 = A ⊕ x5 and k4 = S ⊕ y5 ⊕ x4;
– (C-4) there exists two distinct (RX,AS), (R′X ′, A′S′) in Q∗

E(F1,F6), and a
pair (x2, y2) in QF2 such that X = X ′ and k2 = X ⊕ x2; or, symmetrically,
two distinct (RX,AS), (R′X ′, A′S′) in Q∗

E(F1,F6) and a pair (x5, y5) in QF5

such that A = A′ and k5 = A ⊕ x5;
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Fig. 3. The five “collision” conditions characterizing a pair of functions (F1,F6) such
that Bad(F1,F6) holds. The values X, Y , Z, A in squares satisfy k2 ⊕ X ∈ DomF2,
k3 ⊕ Y ∈ DomF3, k4 ⊕ Z ∈ DomF4, and k5 ⊕ A ∈ DomF5 respectively.

– (C-5) there exists two distinct (RX,AS), (R′X ′, A′S′) in Q∗
E(F1,F6) and a

pair (x2, y2) in QF2 such that A = A′ and k2 = X ⊕ x2; or, symmetrically,
two distinct (RX,AS), (R′X ′, A′S′) in Q∗

E(F1,F6) and a pair (x5, y5) in QF5

such that X = X ′ and k5 = A ⊕ x5.

For convenience, if Bad(F1,F6) does not hold, then we say (F1,F6) is good; in
this case, the induced tuples (RX,AS) are easier to analyze. For Pr[Bad(F1,F6)]
we have the following bound.

Lemma 4. It holds

PrF1,F6 [Bad(F1,F6) | F1 � QF1 ∧ F6 � QF6 ]

≤qeq
2
f

N2
+

4q2eqf

N2
+

α2,3(k) + α4,5(k)
N

+
qf (α1(k) + α2(k))

N
.

Proof. Due to page limits please see the full version [28] for the proofs for:

Pr[(C-1)] ≤ qeq
2
f

N2
, Pr[(C-2)] ≤ α2,3(k)

N
, Pr[(C-3)] ≤ α4,5(k)

N
,

Pr[(C-4)] ≤ 2q2eqf

N2
, and Pr[(C-5)] ≤ 2q2eqf

N2
+

qf (α1(k) + α2(k))
N

.

Summing over them gives the result. All the arguments rely on the uniformness
of entries of F, which are uniform in 2n values rather than 2n−r. This clarifies
why the bounds have nothing to do with the term 2r. ��

Analyzing the Inner Four Rounds. Let F∗ = (F2,F3,F4,F5). We denote

p(τ,F1,F6) = Pr[F∗ $←− (F(n))4 : KAFF∗
k 
 Q∗

E(F1,F6) | Fi 
 QFi , i = 1, 2, 3, 4, 5, 6].
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This captures the probability that the inner four rounds of KAF “extend” the
tuples in Q∗

E(F1,F6). The probability Prre(τ, k) can be related to it.

Lemma 5. Assume that there exists a function ε : (F(n))2 × K → [0,∞) such
that for any good (F1,F6), it holds

p(τ,F1,F6)
/qe−1∏

i=0

(
1

N2 − i

)
≥ 1 − ε(F1,F6, k). (7)

Then we have

Prre(τ, k)
Prid(τ, k)

≥ 1 − Pr[Bad(F1,F6) | F1 � QF1 ,F6 � QF6 ]

− EF1,F6 [ε(F1,F6, k) | F1 � QF1 ,F6 � QF6 ].

Proof. Define p(F1,F6)
def=== Pr[(F∗

1,F
∗
6)

$←− (F(n))2 : (F∗
1,F

∗
6) = (F1,F6)] for

convenience. Then, clearly, once F1 and F6 are fixed such that F1 � QF1 and
F6 � QF6 , the event KAFF

k � QE is equivalent to KAFF∗
k � Q∗

E(F1,F6). Hence

Prre(τ, k) ≥
∑

F1	QF1 ,F6	QF6 :(F1,F6) good

p(F1,F6) · p(τ,F1,F6)
|K| · N4qf

.

Therefore,

Prre(τ, k)
Prid(τ, k)

≥
∑

F1	QF1 ,F6	QF6 :(F1,F6) good p(F1,F6) · p(τ,F1,F6)

Pr[F1 � QF1 ,F6 � QF6 ] · ∏qe−1
i=0

1
N2−i

≥
∑

F1	QF1 ,F6	QF6 :(F1,F6) good p(F1,F6)(1 − ε(F1,F6, k))

Pr[F1 � QF1 ,F6 � QF6 ]
(by (7))

≥ 1 − Pr[Bad(F1,F6) | F1 � QF1 ,F6 � QF6 ]

≥ 11 −
∑

F1	QF1 ,F6	QF6

p(F1,F6)ε(F1,F6, k).

︸ ︷︷ ︸
=EF1,F6 [ε(F1,F6,k)|F1	QF1 ,F6	QF6 ]

as claimed. ��
We now prove the assumption of Lemma 5.

Lemma 6. For any fixed good tuple (F1,F6), there exists a function ε(F1,F6, k)
of the function pair and the round-key vector k such that the inequality (7)
mentioned in Lemma 5 holds. Moreover,

EF1,F6,k[ε(F1,F6, k)] ≤ 7q3e + 10qeq
2
f + 18q2eqf + 3 · 2r · qeq

2
f + 2 · 2r · q2eqf

N2
. (8)
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Proof. The general expression of ε(F1,F6, k) is a function of several variables
defined before, which suffers from a bad readability. Therefore, we directly estab-
lish (and present) the bound on its expectation. However, due to space con-
straints, the full proof has to be deferred to [28].

Below we present a sketch and the core results. According to the type of
the involved collisions, we divide the tuples in Q∗

E(F1,F6) into four groups (see
Fig. 4 for an illustration):

– G1 = {(RX,AS) ∈ Q∗
E(F1,F6) : |EQ(X)| = |EQ(A)| = 1, and further k2 ⊕

X /∈ DomF2 ∧ k5 ⊕ A /∈ DomF5},
– G2 = {(RX,AS) ∈ Q∗

E(F1,F6) : k2 ⊕ X ∈ DomF2},
– G3 = {(RX,AS) ∈ Q∗

E(F1,F6) : k5 ⊕ A ∈ DomF5},
– G4 = {(RX,AS) ∈ Q∗

E(F1,F6) : |EQ(X)| ≥ 2, or |EQ(A)| ≥ 2}.

Fig. 4. Partition of the tuples in Q∗
E(F1,F6). The value X, resp. A, in square satisfies

k2 ⊕ X ∈ DomF2, resp. k5 ⊕ A ∈ DomF5.

Let β1 = |G2|, β2 = |G3|, and β3 = |G4|. Note that by definition, these sets
form a partition of Q∗

E(F1,F6):

– G1 ∩ G2 = G1 ∩ G3 = G1 ∩ G4 = ∅ by definition;
– G2 ∩ G3 = ∅ since otherwise Q∗

E(F1,F6) would satisfy (C-1);
– G2 ∩ G4 = ∅, since for any (RX,AS) ∈ G2, |EQ(X)| ≥ 2 would imply

Q∗
E(F1,F6) fulfilling (C-4), while |EQ(A)| ≥ 2 would imply (C-5);

– G3 ∩ G4 = ∅, since for any (RX,AS) ∈ G3, |EQ(X)| ≥ 2 implies (C-5), while
|EQ(A)| ≥ 2 implies (C-4).

We denote respectively EG1 , EG2 , EG3 , and EG4 the event that KAFF∗
k � G1, G2,

G3, and G4. It can be seen

p(τ,F1,F6) = Pr[EG1 ∧ EG2 ∧ EG3 ∧ EG4 | F � QF ].
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We next analyze the four groups in turn. The first one, i.e. Pr[EG1 | F � QF ],
involves the most complicated analysis. Briefly, for each tuple (RX,AS) in G1,
it consists of three cases:

(i) In the first case, neither of the two corresponding intermediate values Y
and Z derived from F2 and F5 collides with values that have been in the
history. The probability that KAFF

k extends (RX,AS) in this case is roughly
at least (

1 − qf + qe + β1

N

)(
1 − qf + qe + β2

N

)
1

N2
.

(ii) In the second case, the corresponding intermediate value Y collides with
some “existing” values, yet the further derived Z is “free”. The probability
that KAFF

k extends (RX,AS) in this case is roughly at least(
qf + qe

N
− O

(2r · q2f
N2

+
(qf + qe)2

N2

))
1

N2
.

(iii) The third case is symmetrical to the second one: Z collides with “existing”
values, yet Y is “free”. The probability is roughly at least(

qf + qe

N
− O

(
(qf + qe)2

N2

))
1

N2
.

Summing over the above, we obtain

Pr[EG1 | F � QF ] ≥
|G1|∏
�=1

(
1 − β1

N
− β2

N
− O

(2r · q2f
N2

+
(qf + qe)2

N2

))
1

N2
.

Yet, the above results are oversimplified due to the page limits. We in fact
used many additional notations, cf. [28]. The concrete bound is

Ek

[
Pr[EG1 | F 
 QF ]

]

≥
(

1 − 2r · qeq
2
f

N2
− 2qe(2qf + qe)(qf + qe)

N2
− (qf + 2qe)(β1 + β2)

N

)
1

N2|G1| . (9)

To analyze EG2 , EG3 , and EG4 , we again apply the bad predicate approach.
These groups involve collisions, and have relatively small sizes: |G2|, |G3|, |G4| =
O(2r · q2/N) (will be proved later). Therefore, any collisions between tuples
in these groups and values related to QF or G1 can be included in the bad
predicates: for each tuple in these three groups the probability would be O(q/N)
with q = max{qe, qf}, yet it remains O(q/N) · O(2r · q2/N) = O(2r · q3/N2)
in total. See [28] for the formal analyzes. In all, the results are

Pr[EG2 ∧ EG3 | EG1 ∧ F � QF ] ≥
(

1 − (β1 + β2)(qf + qe)
N

)
1

N2(|G2|+|G3|) , (10)

Pr[EG4 | EG1 ∧ EG2 ∧ EG3 ∧ F � QF ] ≥
(

1 − 2β3(qf + qe)
N

)
1

N2|G4| . (11)



Revisiting KAF Ciphers for Shorter Keys and Multi-user Security 235

Summing Up would yield a lower bound of the form

p(τ,F1,F6) = Pr[EG1 ∧ EG2 ∧ EG3 ∧ EG4 | F � QF ]

≥ (1 − ε1)(1 − ε2)(1 − ε3)
1

N2(|G1|+|G2|+|G3|+|G4|)

≥ (1 − (ε1 + ε2 + ε3))
1

N2qe
(since |G1| + |G2| + |G3| + |G4| = qe),

where ε1, ε2, ε3 are in (9), (10), and (11) respectively. We note

1
N2qe

/ (
qe−1∏
i=0

1
N2 − i

)
≥

(
1 − qe

N2

)qe ≥ 1 − q2e
N2

≥ 1 − q3e
N2

,

Thus using (1 − A)(1 − B) ≥ 1 − (A + B) we obtain

p(τ,F1,F6)∏qe−1
i=0

1
N2−i

≥ 1 − ε(F1,F2, k),

for which

Ek

[
ε(F1,F6, k)

] ≤ (2qf + 3qe)(β1 + β2) + 2β3(qf + qe)

N

+
2r · qeq

2
f

N2
+

2qe(2qf + qe)(qf + qe) + q3e
N2

.

We now derive EF1,F6 [Ek[ε(F1,F2, k)] | F1 � QF1 ,F6 � QF6 ]. To this end, note
that by definition, β1, β2, and β3 are quantities that depend on (F1,F6):

β1 = |{(RX,AS) ∈ Q∗
E(F1,F6) : k2 ⊕ X = k2 ⊕ L ⊕ F1(k1 ⊕ R) ∈ DomF2}|,

β2 = |{(RX,AS) ∈ Q∗
E(F1,F6) : k5 ⊕ A = k5 ⊕ T ⊕ F6(k6 ⊕ S) ∈ DomF5}|,

β3 = |{(RX,AS) ∈ Q∗
E(F1,F6) : ∃(R′X ′, A′S′) such that X = X ′, or:

∃(R′X ′, A′S′) ∈ Q∗
E(F1,F6) such that A = A′}|.

We consider β1 first. For each (RX,AS) ∈ Q∗
E(F1,F6), if k1 ⊕ R ∈ DomF1,

then k2 ⊕ X /∈ DomF2 by ¬(B-2). Thus conditioned on F1 � QF1 , F1(k1 ⊕ R)
remains uniform, and Pr[k2 ⊕ L ⊕ F1(k1 ⊕ R) ∈ DomF2] ≤ qf

N . Therefore,

Ek[β1] ≤ qeqf

N
.

Similarly by symmetry, using the randomness supplied by F6, Ek[β2] ≤ qeqf

N .
Then we consider β3. We fix a record (LR,ST ) such that k1 ⊕ R /∈ DomF1,

and consider another (L′R′, S′T ′). If R = R′ then it has to be L �= L′ and thus
X �= X ′. Otherwise, as k1⊕R /∈ DomF1, F1(k1⊕R) remains random conditioned
on F1 � QF1 , and Pr[X = X ′] = Pr[F1(k1 ⊕ R) = L ⊕ L′ ⊕ F1(k1 ⊕ R′)] = 1

N .
The number of distinct pairs of such tuples is at most q2e . Thus we know the
expectation of the number of pairs ((RX,AS), (R′X ′, A′S′)) such that X = X ′

is at most q2
e

N . Thus

Ek[|{(RX,AS) : k1 ⊕ R /∈ DomF1, and ∃(R′X ′, A′S′) s.t. X = X ′}|] ≤ q2e
N

.
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As the number of (LR,ST ) such that k1 ⊕ R ∈ DomF1 is α1(k), we obtain

Ek[|{(RX,AS) : ∃(R′X ′, A′S′) s.t. X = X ′}|] ≤ q2e
N

+ α1(k).

Symmetrically, Ek[|{(RX,AS) : ∃(R′X ′, A′S′) s.t. A = A′}|] ≤ q2
e

N +α2(k). Thus

Ek[β3] ≤ 2q2
e

N + α1(k) + α2(k).
Finally, since k1, resp. k6, are uniform in 2n, resp. 2n−r possibilities,

Ek[α1(k)] =
∑

(LR,ST )∈QE

∑
(x1,y1)∈QF1

Pr[k1 = R ⊕ x1] ≤ qeqf

N

and Ek[α2(k)] ≤ 2r·qeqf

N . Gathering all the above yields

EF1,F6,k

[
ε(F1,F6, k)

] ≤4qeq
2
f + 6q2eqf

N2
+

2(qe + qf )(2q2e + qeqf + 2rqeqf )

N2

+
2r · qeq

2
f

N2
+

2qe(2qf + qe)(qf + qe) + q3e
N2

=
7q3e + 10qeq

2
f + 18q2eqf + 3 · 2r · qeq

2
f + 2 · 2r · q2eqf

N2
,

as claimed in (8). ��

5.3 Concluding the Point-Wise Proximity Proof

Gathering Lemma 2, Lemma 5, and (6), we obtain

Prre(τ)
Prid(τ)

≥ 1 −
(3 · 2rqeq

2
f

N2
+ Ek

[
Pr[Bad(F1,F6) | F1 � QF1 ,F6 � QF6 ]

]

+ Ek

[
EF1,F6 [ε(F1,F6, k) | F1 � QF1 ,F6 � QF6 ]

])
,

where ε(F1,F6, k) is the function specified in (7). Note that its expectation has
been bounded in Lemma 6.

For Ek[Pr[Bad(F1,F6) | F1 � QF1 ,F6 � QF6 ]], since k3 and k4 are both
uniformly distributed (in 2n and 2n−r values, respectively), we have

Ek[α2,3(k)] ≤ qeq
2
f

N
, and Ek[α4,5(k)] ≤ 2rqeq

2
f

N
.

At the end of the previous subsection we have shown Ek[α1(k)] ≤ qeqf/N and
Ek[α2(k)] ≤ 2rqeqf/N . Injecting them into the bound of Lemma 4 yields

Ek[Pr[Bad(F1,F6) | F1 � QF1 ,F6 � QF6 ]] ≤ 3qeq
2
f

N2
+

2 · 2rqeq
2
f

N2
+

4q2eqf

N2
.

Gathering all the above eventually establishes (5).
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5.4 (2n− r)/3-bit Security from 2n− r Bits Main-Key, and PKEM

According to Definition 3, a suitable round-key vector could be derived from
two independent main keys K and K ′, where |K| = n and |K ′| = n − r.
A specific case is to alternatively apply the two keys. In this case, the con-
struction collapses to a “partial-key” Even-Mansour variant

PKEMLR6
0r‖K′‖K(M) = (0r‖K ′‖K) ⊕ LR6((0r‖K ′‖K) ⊕ M) (12)

for LR6 the 6-round keyless Feistel permutation built from 6 independent random
functions; see Fig. 2 (right). On the other hand, with an orthomorphisms ϕ one
could set the key vector to (K,K ′, ϕ(K), ϕ(K ′),K,K ′), with which the KAF
would be a “normal” Feistel cipher rather than “collapsing” to PKEM.

6 Application: A Proposal for KAF Key-Schedules

To further demonstrate the usefulness of our theoretical results, we propose some
concrete key-schedules for KAF ciphers. In detail, we propose to consider key-
schedules with produced round-keys (k1, . . . , kt) satisfying the following three
conditions:

(i) Uniformness: every ki is uniform in {0, 1}n;
(ii) Pair-Wise Independence (PWI): any two round-keys ki and kj are indepen-

dent;
(iii) Distinctness: it’s hard to find weak keys K that gives rise to identical round-

keys k1 = . . . = kt.

The considerations behind PWI are two-fold. First, such round-keys satisfy
both Definitions 1 and 3, and are thus supported by our theoretical results.
Second, it’s intuitively good: independence between round-keys plays a crucial
role in our analysis, and would probably help simplify the proof for tighter
bounds for 5 and 6 rounds.

The property distinctness is rather informal. It’s intended to prevent the KAF
cipher from collapsing to 1-round IEM. Note that PWI is able to prevent such
collapsing with “significant probability”; however, this is not enough, since the
number of (weak) main-keys that would cause such collapsing may not be small
enough from the viewpoint of practitioners; see [28] for an example.

As discussed in the Introduction, common “word-aligned” key-schedules usu-
ally ensure independence between adjacent round-keys. This deviates from PWI,
and the latter is not clear to be achieved by ad hoc designs. Fortunately, the
three properties can be achieved from a 2n-bit main-key K = K1‖K2 by efficient
linear functions [37]. Below we exhibit an example. Let Fn

2 be the set {0, 1}n seen
as the field with 2n elements defined by some irreducible polynomial of degree
n over F2, the field with two elements, and denote a ⊗ b the field multiplication
of two elements a, b ∈ F

n
2 . In addition, for 1 ≤ t � 2n, let the constants at and
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at+1 be the t and (t + 1)th values in the prime sequence 1, 2, 3, 5, 7, 11, 13, . . .
respectively. Then, for t � 2n rounds (which is usually the case), one can set

k1 = K1 + 2 ⊗ K2, k2 =2 ⊗ K1 + 3 ⊗ K2,

k3 = 3 ⊗ K1 + 5 ⊗ K2, k4 =5 ⊗ K1 + 7 ⊗ K2,

. . . , kt =at ⊗ K1 + at+1 ⊗ K2,

The proof for PWI is quite simple, and is given in the full version [28].
PWI cannot be achieved from κ < 2n main-key bits. However, nowadays it’s

rather uncommon for a BC to have key-size smaller than its block-size. On the
other hand, instances of Feistel ciphers with 2n-bit blocks and 2n-bit keys do
exist: e.g. SIMON96/96 and SIMON128/128 [4].

More generally, with a cn-bit main-key for c integer we conjecture c-wise inde-
pendent round-keys are desirable. This is however not revealed by our results.
We leave this as an interesting future direction.

7 Other Implications

As multi-user secure BCs, our provable KAF constructions could be plugged into
many BC-based modes to reduce the size of (ideal) primitives in use. In some
cases, this even does not result in a security loss.

For example, Gaži et al. proved that when the adversary makes q queries of
length 
 < 2n/4, the PRF security bound of the truncated CBC mode built upon
a 2n-bit random permutation is roughly q(q+�)

22n−d + �q2

22n , where d is the length of
the output [23]. By this, instantiated with our 6-round KAF (with r = 0), the
resulted bound is

(
q)3

22n
+

(
q)2qf

22n
+

(
q)q2f
22n

+
q(q + 
)
22n−d

+

q2

22n
,

where qf is the number of adversarial function queries. It can be seen that this
is the same as the original when d ≥ 7n/6 (i.e. the output is sufficiently long)
and qf � 22n/3.

7.1 Lightweight Keyed Sponges

A more interesting implication is on keyed sponges. Many lightweight keyed
sponges with permutation π have their security rely on the (MU) security of
the Even-Mansour variant PKEMπ

0r‖K′‖K defined in (1) [1,23,43]. As our results
imply the MU security of PKEMLR6

0r‖K′‖K (Subsect. 5.4, (12)), these keyed sponges

could be based on PKEMLR6
0r‖K′‖K instead. And after the keys are canceled, we

obtain keyed sponge variants using LR6 as the permutation. This means the per-
mutation underlying many keyed sponges can be securely instantiated with LR6.
This results in an improved implementation efficiency (maybe at the expense of
a decreased security). And when r < n/2, security of resulted construction is
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beyond-birthday with respect to n, the size of the underlying ideal functions.
This is usually fulfilled in lightweight sponges, since relatively large c = 2n − r
is desired: e.g. all the members in the Photon family [30].

Concretely, consider the “inner-keyed” sponge with a 2n-bit permutation
π first. By [1], for any distinguisher making qc queries to the sponge and qπ

queries to π, the corresponding distinguishing advantage (from a random oracle)
is q2

c

22n−r + AdvSU
PKEMπ

0r‖K‖K′ (qπ, σ), where σ is the total number of blocks in the
qc construction queries. Therefore, by our results, the security bound of the
inner-keyed sponge with LR6 is

q2c
22n−r

+
σ3

22n
+

σ2qf

22n
+

σq2f
22n

,

where qf is the number of adversarial random function queries. It’s not hard to
see similar implications can be derived on “outer-keyed” sponge; however, we
are unable to derive concrete bounds.

Another example is Chaskey [43], which is a sponge-like MAC of Mouha
et al. With a 2n-bit permutation π, the designers proved that the MAC security
bound of Chaskeyπ is (roughly) σ2

22n + 1
d + AdvMU

PKEMπ
K‖K′ (qπ, σ), where d is the

tag size, σ is total number of blocks in the adversarial MAC queries, and qπ

is the number of adversarial queries to π. Therefore, the security bound of the

variant ChaskeyLR6 is σ2

22n + 1
d + σ3

22n + σ2qf

22n + σq2
f

22n , where qf is the number of
adversarial random function queries.
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Abstract. Length doublers are cryptographic functions that transform
an n-bit cryptographic primitive into an efficient and secure cipher that
length-preservingly encrypts strings of length in [n, 2n−1]. All currently
known constructions are only proven secure up to the birthday bound,
and for all but one construction this bound is known to be tight. We
consider the remaining candidate, LDT by Chen et al. (ToSC 2017(3)),
and prove that it achieves beyond the birthday bound security for the
domain [n, 3n/2). We generalize the construction to multiple rounds and
demonstrate that by adding one more encryption layer to LDT, beyond
the birthday bound security can be achieved for all strings of length
in [n, 2n − 1]: security up to around 22n/3 for the encryption of strings
close to n and security up to around 2n for strings of length close to 2n.
The security analysis of both schemes is performed in a modular manner
through the introduction and analysis of a new concept called “harmonic
permutation primitives.”

Keywords: Length doublers · LDT · Beyond birthday bound
Harmonic primitives · Chi-squared

1 Introduction

Block ciphers are keyed deterministic functions that encrypt bit strings of a fixed
size n bits to ciphertext blocks of the same size. They play a predominant role
in cryptography, and yet, most cryptographic applications deal with arbitrary-
length messages. To achieve this, the applications evaluate a block cipher in a
certain mode of operation.

A simple example of this is counter mode encryption. Given block cipher EK

on n bits, counter mode encrypts a message M of arbitrary length as follows.
First, the message is partitioned into blocks M1, . . . ,M�, where the first � − 1
are of size n bits, and the last one may be smaller. Second, the message is
encrypted as

Ci = Ek(ctr + i) ⊕ Mi for i = 1, . . . , � ,

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 244–274, 2018.
https://doi.org/10.1007/978-3-030-03326-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03326-2_9&domain=pdf
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where the �-th ciphertext block is truncated to have the same size as M�, and
where ctr is a carefully specified counter.

Counter mode is unique in the sense that it allows for easy length-preservation
due to its “streaming” property. Whereas this property is fine in some use cases,
in many others it is lacking. For example, stream cipher encryption is inap-
plicable to disk sector encryption for security reasons. Alternative encryption
modes like CBC [47], OCB [26,38,39], XTS [15], and TC3 [41], however, feed
the message to the block cipher and there is no easy way of keeping length preser-
vation. One often pads input to size a multiple of n-blocks and takes ciphertext
expansion for granted [1,2,26,28]. Ciphertext expansion is, in many cases, not
desirable: it creates overhead, making it unsuitable for disk encryption and low-
bandwidth network protocols.

A generic method for length-preserving variable-length encryption is cipher-
text stealing [13,40]. Informally, it encrypts the first � − 1 blocks as is, but to
encrypt the non-integral �-th block, it is first expanded to n bits by scraping
sufficiently many ciphertext bits from the (� − 1)-th block and gluing these to
M�. The approach is appealing, but it only works on modes of use for which
ciphertext blocks can be decrypted independently of each other: otherwise one
cannot recover the ciphertext bits scraped off of C�−1.

Besides these two generic solutions, many dedicated designs that support
variable-length encryption have appeared, e.g., EME [20], TET [21], HEH [43],
HCTR [46], HCH [10], and XCB [27], but a golden method for generically trans-
forming an existing block cipher mode of operation for integral data to one for
arbitrary-length data was long due.

1.1 Length Doublers

In 2007, Ristenpart and Rogaway [37] introduced length doublers as an ele-
gant way of achieving variable-length encryption. A length doubler is a length-
preserving encryption mode on the set of bit strings of size between n and 2n−1
bits, where n is the state size of the underlying primitive.

By allowing flexibility of the size of the second block, length doublers suit
well as modular building blocks for variable-length encryption and authenti-
cated encryption. For example, whereas the possibility to apply ciphertext steal-
ing depends on the mode in consideration, length doubling can be used generi-
cally for black-box authenticated encryption schemes as demonstrated by Chen
et al. [11]. We discuss further applications of length doublers in Sect. 1.4.

Alongside the formalization, Ristenpart and Rogaway introduced the XLS
length doubler, based on three block cipher calls and two evaluations of a so-
called ε-good mixing function. It found application in first-round CAESAR sub-
mission AES-COPA [2,3]. Only 7 years after its introduction, Nandi found an
attack on XLS [32], an attack that also rendered the solution in the COPA mode
insecure [34]. Nandi further proved that a secure length doubler must make at
least four block cipher calls [33]. Other length doublers introduced after XLS
are DE by Nandi [31] and HEM by Zhang [48], both of which make four block
cipher calls and match the lower bound of [33].
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Chen et al. considered the design of length doublers from tweakable block
ciphers and introduced LDT [11]. It makes two calls to a tweakable block cipher
and uses a pure mixing function, noting that an ε-good mixing function is pure
but not necessarily vice versa. The transition to using tweakable block ciphers
is a natural one: 18 initial submissions to the CAESAR competition were based
on tweakable block ciphers, various novel cryptographic authentication and/or
encryption modes use a tweakable block cipher as black box [23,35,41,45], and
dedicated tweakable block ciphers like TWEAKEY [24] and SKINNY [5] are
gaining traction. The recently announced ARMv8.3 [36] uses an implementation
of the lightweight tweakable blockcipher QARMA [4]. The approach allows for
more modular (and thus simpler) security proofs.

1.2 Towards Beyond Birthday Bound Security

All of the length doublers mentioned so far, barring XLS, are proven secure
up to 2n/2. For DE and HEM this bound is tight as there is an attack matching
this complexity. For LDT, Chen et al. [11] derived an attack in approximately
2n−s/2 queries, as long as all queries are of size at least n+s. The bound suggests
tightness for s = n − 1, but it leaves the possibility of proving beyond birthday
bound security for s � n − 1 open.

Although all length doublers known to date have only birthday bound proven
security, beyond birthday bound secure length doublers are relevant for various
scenarios. First, consider the case of a cryptographic mode that uses a length
doubler in a black-box manner and achieves beyond birthday bound security. If
it is instantiated with any off-the-shelf solution (DE, HEM, LDT) the provable
security guarantee degrades to birthday bound security. Second, considering the
case of format-preserving encryption and electronic product code tag encryption
(see Sect. 1.4), using a birthday bound secure length doubler with a lightweight
64-bit block cipher yields 32-bit security at best. A beyond birthday bound secure
length doubler would guarantee security up to well beyond 32 bits.

1.3 Our Contribution

We challenge the problem of proving beyond birthday bound security of length
doublers. The starting point of our work is Chen et al.’s LDT: it is simple,
modular, and so far the only existing candidate that may offer beyond birthday
bound security.

As first contribution, we prove in Sect. 5 that the original LDT achieves
beyond the birthday security for queries of size in [n, 3n/2): if only evaluations
of size around n are permitted, 2n/3-bit security is achieved, but if evaluations
of size around 3n/2 are permitted, the proven security bound degrades to n/2.
The bound is not tight, but we recall that Chen et al. [11] already demonstrated
a birthday bound attack if s = n − 1, testifying of the fact that the security
decreases with s. As second and main contribution, we generalize the mode to
r-round LDT, recalling that the original construction consists of 2 rounds, and
prove in Sect. 6 that 3-round LDT achieves beyond the birthday bound security
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for the entire domain [n, 2n − 1]. As proven so far, the security of 3-round LDT
increases with s: for evaluations of size around n we achieve 2n/3-bit security,
and for evaluations of size around 2n we get optimal n-bit security. Figure 1 plots
the simplified security results of 2-LDT and 3-LDT for bit strings of length in
{n, 5n/4, 3n/2, 7n/4, 2n−1} (these data are taken from the discussion in Sects. 5
and 6). In aforementioned example of an 80-bit cipher using a 64-bit primitive,
3-LDT achieves 23n/4 = 248 security.

Fig. 1. Security bound of 2-LDT and 3-LDT for various choices of input size, where ◦
stands for 2-LDT and � stands for 3-LDT.

Central to our proofs is the introduction and usage of a new concept: “har-
monic permutation primitives.” These can be seen as lazily-sampled permuta-
tions where one part of the state is always sampled uniformly at random and
the other part in such a way that permutation consistency is maintained. We
describe two harmonic primitives: a harmonic tweakable permutation in Sect. 4.1
and a harmonic variable-length pseudorandom permutation in Sect. 4.2.

These harmonic permutation primitives allow for compact, neat, and modu-
lar security proofs of both 2-round and 3-round LDT. Both proofs use the two
harmonic permutation primitives of Sect. 4 in a different setting, but using the
chi-squared method by Dai et al. [14] and properties of the hypergeometric dis-
tribution, security of both LDT modes is reduced to the security of the harmonic
permutation primitives. What then remains is an analysis of these primitives in
Sects. 7 and 8.

Inspired by the proof approach in this work, one may likewise use the two
harmonic permutation primitives to prove security of r-round LDT for r ≥ 4.
However, it would only render marginal improvement of the bound, with a large
efficiency penalty. It nevertheless appears that the idea of harmonic permutation
primitives and our proof technique may be broadly applicable beyond LDT, for
example in the direction of sponge functions [7].
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1.4 Application

An example use case of length doublers is format-preserving encryption, a
field that got significant attention recently in light of the standardization [16]
of FF1 [6] and FF3 [8]. Format-preserving encryption considers the problem
of encrypting data from a small domain that does not fit the parameters of
standardized block ciphers. For example, there is no practical way to length-
preservingly encrypt 80-bit strings using AES-128 (other than streaming-based).
Whereas the standardized FF1 and FF3 are made to facilitate arbitrary types
of domains, for certain cases this can equally well be resolved using a length
doubler. Above example of 80-bit strings can be resolved with a birthday bound
secure length doubler on top of a lightweight 64-bit tweakable block cipher, but
that would only give 32-bit security. As shown in Fig. 1, for this scenario 2-LDT
would achieve around 37-bit security and 3-LDT even 48-bit security.

A more concrete example is that of electronic product code tag encryption,
which is considered as a replacement for bar codes using low-cost passive RFID-
tags. The standard EPC Class 1 Gen 2 RFID tag [18] proposes to use a unique
96-bit identifier for any physical item [19]. As for above generic case, a birthday
bound secure length doubler on top of a 64-bit block cipher would give 32-bit
security at best. Our bound of 2-LDT does not improve for this regime (see
Fig. 1), but 3-LDT does achieve beyond birthday bound security: instantiated
with a 64-bit tweakable block cipher, it reaches around 53-bit security.

It is straightforward to transform r-LDT into a tweakable length doubler,
where the tweak is fed as additional tweak input to the underlying tweakable
block ciphers (this requires extending the tweak space of the underlying prim-
itive). This observation has two implications. First, one can obtain multi-user
security of r-LDT by considering user IDs as tweak inputs and feeding those
to the underlying tweakable block cipher. Second, r-LDT is an interesting and
non-obvious generalization of the tweakable block cipher based domain exten-
der of Coron et al. [12]. Stated simply, Coron et al. considered the problem of
transforming a tweakable block cipher with 2n-bit tweaks and n-bit blocks into a
domain extender with n-bit tweaks and 2n-bit blocks. They presented a 2-round
scheme (achieving birthday bound security) and a 3-round scheme (achieving
optimal n-bit security). Our tweakable length doublers, instead, transform that
tweakable block cipher into a length doubler with n-bit tweaks and [n, 2n − 1]-
bit blocks, therewith enabling support for variable length input. For the specific
case of s ≈ n, our schemes achieve the same level of security as those of [12].

Finally, we remark that if one considers 2-LDT for fixed s, and sandwiches
it by two universal hash functions in a specific way, the resulting construction is
identical to the Small-Block Cipher (SBC) construction proposed by Minematsu
and Iwata [30] (an extension of ENR [29]). As SBC is designed to achieve beyond
birthday bound security quite efficiently, it makes sense to compare it with 3-
LDT. It turns out that 3-LDT compares favorably in various aspects. First,
Minematsu and Iwata showed that SBC achieves (n + s)/2-bit security, whereas
3-LDT achieves (2n + s)/3-bit security for any fixed s (see also the last column
of Table 1 in Sect. 6). Second, SBC uses two tweakable block ciphers and two
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universal hash functions, whereas 3-LDT uses three tweakable block ciphers. The
latter could be beneficial for implementation on constrained devices. Finally,
SBC is ultimately still a fixed input length cipher, whereas 3-LDT allows for
inputs of size [n, 2n − 1].

2 Preliminaries

For n ∈ N, we denote the set of all bit strings of length n as {0, 1}n, and the
set of all bit strings of arbitrary length as {0, 1}∗. For m ∈ N and m ≤ n
we define {0, 1}[m,n] =

⋃
m≤i≤n{0, 1}i. Given two bit strings X,Y ∈ {0, 1}∗,

we use both X‖Y and XY interchangeably to denote their concatenation. The
length of X is denoted |X|, and if X and Y satisfy |X| = |Y |, we denote their
bitwise addition as X ⊕ Y . For X ∈ {0, 1}n, we denote leftm(X) the m leftmost
bits of X and rightm(X) the m rightmost bits of X, in such a way that X =
leftn−m(X)‖rightm(X).

For n ∈ N and X ∈ {0, 1}[0,n−1], we define a padding function pad(X) =
X‖10n−|X|−1. We denote its inverse unpad that on input of a string of length
n removes the rightmost string 10∗ and returns the resulting string. Note that
unpad is an injective mapping.

The expression S ← T denotes the assignment of the value T to variable S,
L ∪←− S the addition of S to list L, and S

$←− S for finite set S the uniformly
random sampling of S from S. For an algorithm D and a function/oracle O,
DO represents the evaluation of D with oracle interaction to O, and ΔD

(
O ;P

)

represents the advantage of D in distinguishing O from an oracle P.

2.1 (Tweakable) Block Ciphers

For arbitrary finite key space K and n ∈ N, a block cipher is a function E :
K × {0, 1}n → {0, 1}n such that for every fixed key K ∈ K, EK(·) = E(K, ·)
is a permutation on {0, 1}n. We denote its inverse for fixed key K by E−1

K (·) =
E−1(K, ·). Denote by Perm(n) the set of all permutations on {0, 1}n. Tweakable
block ciphers generalize over ordinary block ciphers by input of a t-bit tweak,
for t ∈ N. More detailed, a tweakable block cipher is a function Ẽ : K×{0, 1}t ×
{0, 1}n → {0, 1}n such that for every fixed key K ∈ K and tweak T ∈ {0, 1}t,
ẼK(T, ·) = Ẽ(K,T, ·) is a permutation on {0, 1}n. Its inverse for fixed key K

and tweak T is denoted by Ẽ−1
K (T, ·) = Ẽ−1(K,T, ·). Denote by P̃erm(t, n) the

set of all families of permutations π̃ : {0, 1}t × {0, 1}n → {0, 1}n indexed by
tweak T ∈ {0, 1}t.

The security of a tweakable block cipher Ẽ is measured by considering a
distinguisher D that has two-sided query access to either ẼK for a randomly
drawn key K

$←− K, or a random tweakable permutation π̃
$←− P̃erm(t, n), and its

goal is try to distinguish the real construction from the ideal one:

Advs̃prp

Ẽ
(D) =

∣
∣
∣Pr

[
K

$←− K : DẼ±
K = 1

]
− Pr

[
π̃

$←− P̃erm(t, n) : Dπ̃±
= 1

]∣
∣
∣ .
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For the left probability, the key space K is a fair representation of the random-
ness of Ẽ±

K . Often, it is the set of k-bit strings, where k is the key size. In proofs,
specifically in hybrid arguments within proofs, one regularly considers tweakable
block ciphers with idealized primitives. For example, one may consider the con-
struction of a tweakable block cipher Ẽ from a secret permutation (that could, in
turn, be instantiated using a block cipher with secret key). In this case, the key
space of Ẽ is K = Perm(n). More involved examples appear if the construction
internally consists of lazy sampling, as will for instance be the case with our
harmonic tweakable SPRP in Sect. 4.1.

2.2 Chi-Squared Method

Our proof will rely on the chi-squared method by Dai et al. [14].
Consider two stateless systems O0,O1 and any computationally unbounded

deterministic distinguisher D that has query access to either of these systems.
The distinguisher’s goal is to distinguish both systems. If we denote the maxi-
mum amount of queries by q, we can define a transcript τ = (τ (1), . . . , τ (q)) and
let τ (i) = (τ (1), . . . , τ (i)) for every i ≤ q. Distinguisher D can make its queries
adaptively, but as it makes them in a deterministic manner, the (i+1)-th query
input is determined by the first i query-responses τ (i).

For system O ∈ {O0,O1} and fixed tuple τ (i), we denote by pO,D(τ (i)) the
probability that distinguisher D interacting with O obtains transcript τ (i) for
its first i queries. If pO,D(τ (i)) > 0, then we denote by pO,D(Y (i+1) | τ (i)) the
conditional probability that D receives response Y (i+1) upon its (i+1)-th query,
given transcript τ (i) of the first i queries (that deterministically fixes the input
to the (i + 1)-th query). Define for any i ∈ {1, . . . , q} and any query-response
tuple τ (i):

χ2(τ (i−1)) =
∑

Y (i)

(
pO1,D(Y (i) | τ (i−1)) − pO0,D(Y (i) | τ (i−1))

)2

pO0,D(Y (i) | τ (i−1))
, (1)

where the sum is taken over all Y (i) in the support of the distribution pO0,D(· |
τ (i−1)). The chi-squared method states the following:

Lemma 1 (Chi-squared method [14]). Consider a fixed deterministic distin-
guisher D and two systems O0,O1. Suppose that for any i ∈ {1, . . . , q} and any
query-response tuple τ (i), pO0,D(τ (i)) > 0 whenever pO1,D(τ (i)) > 0. Then:

ΔD
(
O0 ;O1

)
= ‖pO0,D(·) − pO1,D(·)‖ ≤

(
1
2

q∑

i=1

Exp[χ2(τ (i−1))]

)1/2

, (2)

where the expectation is taken over τ (i−1) of the i − 1 first answers sampled
according to interaction with O1.
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2.3 Hypergeometric Distribution

The hypergeometric distribution HG(N,K, n) considers the case of n draws with-
out replacement from a set of size N elements, denote by K the total number of
successes out of N and h the number of successes present in a sample of size n.
It is well-known that for h ∼ HG(N,K, n),

Exp[h] = n · K

N
,

Var[h] = n · K

N
· (N − K)

N
· N − n

N − 1
.

3 Length Doublers and LDT

Following Chen et al. [11], we recall the formalization of length doublers in
Sect. 3.1, and present generalized LDT in Sect. 3.2.

3.1 Length Doublers

For arbitrary finite key space K and n ∈ N, a length doubler is a function
E : K × {0, 1}[n,2n−1] → {0, 1}[n,2n−1] such that for every fixed key K ∈ K,
EK(·) = E(K, ·) is a length preserving invertible function on {0, 1}[n,2n−1]. We
denote its inverse for fixed key K by E−1

K (·) = E−1(K, ·). Note that E should
behave like a random permutation for every length input in [n, 2n − 1]. Denote
by VPerm([n, 2n − 1]) the set of all length-preserving and invertible functions
on {0, 1}[n,2n−1]. The security of E is measured by considering a distinguisher D
that has two-sided query access to either EK for a randomly drawn key K

$←− K,
or a random length-preserving permutation ρ

$←− VPerm([n, 2n−1]), and its goal
is to try to distinguish the real construction from the ideal one:

Advvsprp
E (D) =

∣
∣
∣Pr

[
K

$←− K : DE±
K = 1

]
−

Pr
[
ρ

$←− VPerm([n, 2n − 1]) : Dρ±
= 1

]∣
∣
∣ .

As in Sect. 2.1, the key space K corresponds to the source of randomness of the
construction E±

K . It may take various shapes, but it will always be clear from the
context.

3.2 Generalized LDT

Chen et al. [11] introduced length doubler LDT that internally makes two calls
to an underlying tweakable block cipher, separated by an evaluation of a “pure
mixing function” (a weaker variant of a multipermutation [44]) on part of the
state. In this work, we will consider a generalization of LDT to multiple rounds,
but we simplify it by discarding the pure mixing function and replacing it by the
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simplest possible option: mix(A,B) = (B,A), i.e., a function that swaps the two
halves of its input. This simplification is without loss of generality: all results
in this work generalize to arbitrary pure mixing functions with some notational
overhead. For completeness, we describe pure mixing functions as defined by
Chen et al. [11] in Appendix A.

Algorithm 1. Round function F [ẼK ]
Input: K ∈ K, M ∈ {0, 1}[n,2n−1]

Output: C ∈ {0, 1}|M|

1: s ← |M | − n
2: M1 ← leftn(M), M2 ← rights(M)
3: Y ← ẼK(pad(M2), M1)
4: C ← leftn−s(Y )‖M2‖rights(Y )
5: return C

Algorithm 2. Round function F−1[ẼK ]
Input: K ∈ K, C ∈ {0, 1}[n,2n−1]

Output: M ∈ {0, 1}|C|

1: s ← |C| − n
2: C1 ← leftn(C), C2 ← rights(C)
3: Y ← leftn−s(C1)‖C2

4: M ← Ẽ−1
K (pad(rights(C1)), Y )‖rights(C1)

5: return M

Consider finite key space K and let n ∈ N. Let Ẽ : K × {0, 1}n × {0, 1}n →
{0, 1}n be a tweakable block cipher. Consider the round function F (and its
inverse) that uses ẼK for secret key K ∈ K, and length-preservingly transforms
a plaintext M ∈ {0, 1}[n,2n−1] (resp. a ciphertext C ∈ {0, 1}[n,2n−1]) into a
ciphertext C (resp. a plaintext M) as in Algorithm 1 (resp. Algorithm 2). For
r ≥ 2, the r-round length doubler r-LDT is defined as

r-LDTK (M) = FKr
◦ · · · ◦ FK1(M) , (3)

where K = (K1, . . . ,Kr) ∈ Kr and M ∈ {0, 1}[n,2n−1]. In this evaluation, the
mixing of the last round function evaluation is irrelevant for the scheme’s security
and therefore ignored. For r = 2 and r = 3, the doubler r-LDT is depicted in
Fig. 2.

Chen et al. proved that two rounds of LDT (with arbitrary pure mixing) is
secure against any adversary making around 2n/2 queries.

Proposition 1 (Chen et al. [11]). Let Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be
a tweakable block cipher. Consider two-round 2-LDT. For any distinguisher D
making at most q queries, there exist distinguishers D′

1 and D′
2 with the same

query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) +
q(q − 1)

2n
. (4)

Chen et al. also presented a distinguisher against 2-LDT that succeeds in approx-
imately 2n−s/2 queries, where the distinguisher makes queries of size n + s bits.
The analysis of this attack supports on earlier proofs and attacks by Hall et al.
[22] and Gilboa and Gueron [17] on the truncated permutation construction. The
attack only works if the distinguisher takes large enough s  0 [11]. In addition,
it shows that the birthday bound security analysis is tight for s ≈ n−1, and that
we may only be able to prove beyond birthday bound security for s � n − 1.
Based on these observations, in future analyses we will explicitly limit s to a
certain range by using lower and upper bounds smin and smax.
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Fig. 2. Depiction of 2-round and 3-round LDT. Here, s = |M | − n.

4 Harmonic Permutation Primitives

In this section we introduce two harmonic permutation primitives: a tweakable
SPRP in Sect. 4.1 and a variable SPRP in Sect. 4.2.

4.1 Harmonic Tweakable SPRP Ga,b

We introduce a tweakable pseudorandom permutation Ga,b parameterized by
a, b ∈ {0, 1}. The primitive will be used as intermediate in the analysis of
2-LDT (for (a, b) = (1, 0) and (a, b) = (0, 1)) and in the analysis of 3-LDT
(for (a, b) = (1, 1)).

Ga,b is a tweakable permutation with n-bit tweaks and data blocks (so Ga,b ∈
P̃erm(n, n)). It maintains an initially empty list L to store all query-response
tuples (T,X, Y ). For T ∈ {0, 1}n, write dom(LT ) = {X | (T,X, ·) ∈ L} and
rng(LT ) = {Y | (T, ·, Y ) ∈ L}. The tweakable pseudorandom permutation Ga,b

on input of a new query is described in Algorithm 3 (forward) and Algorithm 4
(inverse).
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Algorithm 3. Harmonic G−1
a,b

Input: T ∈ {0, 1}n\{0n}, X ∈ {0, 1}n

Output: Y ∈ {0, 1}n

1: s ← |unpad(T )|
2: if a = 0 then
3: Y

$←− {0, 1}n\rng(LT )

4: if a = 1 then
5: Z

$←− {0, 1}s

6: Y
$←− {{0, 1}n−s‖Z}\rng(LT )

7: L ∪←− (T, X, Y )
8: return Y

Algorithm 4. Harmonic G−1
a,b

Input: T ∈ {0, 1}n\{0n}, Y ∈ {0, 1}n

Output: X ∈ {0, 1}n

1: s ← |unpad(T )|
2: if b = 0 then
3: X

$←− {0, 1}n\dom(LT )

4: if b = 1 then
5: Z

$←− {0, 1}s

6: X
$←− {{0, 1}n−s‖Z}\dom(LT )

7: L ∪←− (T, X, Y )
8: return X

In our work, Ga,b will never be called for tweak T = 0n, hence the assign-
ment s ← |unpad(T )| is sound. If a = b = 0, G0,0 describes a randomly drawn
tweakable permutation from P̃erm(n, n) (lazily sampled). We will use Ga,b for
the case where a or b is 1.

Lemma 2. Let a, b ∈ {0, 1}, and consider Ga,b. Let smin, smax ∈ [0, n − 1] such
that smin ≤ smax. Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any
distinguisher D making at most q ≤ 2n−1 queries, all with tweaks satisfying
|unpad(T )| ∈ [smin, smax], and restricted to making at most θ inverse queries per
tweak (if a = 1) and at most θ forward queries per tweak (if b = 1), we have

Advs̃prp
Ga,b

(D) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if (a, b) = (0, 0) ,
(

2q3

22n−smax

)1/2

+
(

q

θ

)
1

2(θ−1)smin
, if (a, b) ∈ {(1, 0), (0, 1)} ,

(
4
(
θ + θ2

)
q

22n−smax

)1/2

, if (a, b) = (1, 1) .

Note that no limitation is put on the number of times a single tweak is queried
in forward direction in case a = 0 or in inverse direction in case b = 0. The proof
will be given in Sect. 7.

4.2 Harmonic VSPRP Permutation H

We introduce a variable pseudorandom permutation H, that operates similarly as
G1,1, but on domain {0, 1}[n,2n−1] and without tweak input. H likewise maintains
an initially empty list L to store all query-response tuples (X,Y ). For s ∈ [0, n−
1], write dom(Ls) = {X ∈ {0, 1}n+s | (X, ·) ∈ L} and rng(Ls) = {Y ∈ {0, 1}n+s |
(·, Y ) ∈ L}. The variable pseudorandom permutation H on input of a new query
is described in Algorithm 5 (forward) and Algorithm 6 (inverse).
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Algorithm 5. Harmonic H−1

Input: X ∈ {0, 1}[n,2n−1]

Output: Y ∈ {0, 1}|X|

1: s ← |X| − n

2: Z
$←− {0, 1}s

3: Y
$←− {{0, 1}n‖Z}\rng(Ls)

4: L ∪←− (X, Y )
5: return Y

Algorithm 6. Harmonic H−1

Input: Y ∈ {0, 1}[n,2n−1]

Output: X ∈ {0, 1}|Y |

1: s ← |Y | − n

2: Z
$←− {0, 1}s

3: X
$←− {{0, 1}n‖Z}\dom(Ls)

4: L ∪←− (X, Y )
5: return X

Lemma 3. Consider H. Let smin ∈ [0, n − 1]. For any distinguisher D making
at most q ≤ 2n−1 queries, all of length in [n + smin, 2n − 1] bits, we have

Advvsprp
H (D) ≤

(
2q3

22n+smin

)1/2

.

The proof will be given in Sect. 8.

5 2-Round LDT

As main result on 2-LDT, we derive the following reduction to harmonic primi-
tives Ga,b and H.

Theorem 1. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider two-round 2-LDT. Let smin, smax ∈ [0, n−1] such that smin ≤ smax. Let
1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making at
most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′

1, . . . ,D′
5 with the same query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) + Advvsprp
H (D′

3) (5a)

+Advs̃prp
G1,0

(D′
4) + Advs̃prp

G0,1
(D′

5) +
(

q

θ

)
1

2(θ−1)smin
, (5b)

where D′
4 may make at most θ inverse queries per tweak and D′

5 at most θ
forward queries per tweak.

We will prove Theorem 1 in Sect. 5.1. Plugging the bounds of Lemmas 2 and 3
into the equation yields the following corollary.

Corollary 1. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider two-round 2-LDT. Let smin, smax ∈ [0, n−1] such that smin ≤ smax. Let
1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making at
most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′

1,D′
2 with the same query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2)

+
(

2q3

22n+smin

)1/2

+ 2
(

2q3

22n−smax

)1/2

+ 3
(

q

θ

)
1

2(θ−1)smin
.
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The first two advantages represent the security of the underlying tweakable block
cipher Ẽ. By Stirling’s approximation, if smin ≤ θ, the last term satisfies

3
(

q

θ

)
1

2(θ−1)smin
≤ 3 · 2smin ·

( qe

θ2smin

)θ

≤ 3
(

2qe

θ2smin

)θ

.

As the term decreases with θ but θ is limited by side condition θ ≤ 2n−smax−2,
it makes sense to choose θ = 2n−smax−2, and this term equals

3
(

8qe

2n+smin−smax

)θ

.

We obtain security up to approximately min
{

2n+smin
3 , 2n−smax

3 , n + smin − smax

}

bits, provided that smin ≤ 2n−smax−2. For smax ≥ n/2, the middle term domi-
nates and we achieve n/2-bit security at most. In this case, the bound of Chen
et al. [11] is better. For smax < n/2, our bound guarantees up to at most
2n/3 bits of security, depending of the choice of smax, where smin is adapted
to smin ≤ 2n−smax−2.

5.1 Proof of Theorem 1

Consider any distinguisher D making at most q queries, all of length in [n +
smin, n + smax] bits. It has access to either 2-LDTK for K = (K1,K2)

$←− K2 or
a random length-preserving invertible permutation ρ

$←− VPerm([n . . . 2n − 1]).
For ease of discussion, write

2-LDTK = E [ẼK1 , ẼK2 ] .

Let π̃1, π̃2
$←− P̃erm(n, n). We have

Advvsprp
2-LDT(D) = ΔD

(
E [ẼK1 , ẼK2 ]

± ; ρ±
)

≤ ΔD′
1

(
Ẽ±

K1
; π̃±

1

)
+ ΔD′

2

(
Ẽ±

K2
; π̃±

2

)
+ ΔD

(
E [π̃1, π̃2]± ; ρ±

)

= Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) + ΔD
(
E [π̃1, π̃2]± ; ρ±

)
, (6)

for some distinguishers D′
1 and D′

2 with the same query complexity as D.
We will focus on the remaining distance in (6). Without loss of generality,

we will consider computationally unbounded and deterministic distinguishers.
Consider three harmonic primitives, G1,0 and G0,1 of Sect. 4.1 and H of Sect. 4.2.
We obtain via the triangle inequality:

ΔD
(
E [π̃1, π̃2]± ; ρ±

)
≤ ΔD

(
E [π̃1, π̃2]± ; E [G1,0, G0,1]±

)

+ ΔD
(
E [G1,0, G0,1]± ; H±

)
+ ΔD

(
H± ; ρ±

)

= ΔD
(
E [π̃1, π̃2]± ; E [G1,0, G0,1]±

)

+ ΔD
(
E [G1,0, G0,1]± ; H±

)
+ Advvsprp

H (D′
3) , (7)

for some distinguisher D′
3 with the same query complexity as D (in fact, D′

3 = D).
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Below two claims bound the remaining distances in (7) and complete the
proof.

Claim. We have ΔD
(
E [G1,0, G0,1]± ; H±

)
= 0.

Proof (of claim). For any query to H of length n + s bits (either forward or
inverse), the last s bits of the response are drawn uniformly at random from
{0, 1}s and the first n bits are drawn uniformly at random in such a way that
the permutativity of H is retained (see Algorithms 5 and 6). Consider any query
to E [G1,0, G0,1], without loss of generality a forward query of length n + s bits.
The s rightmost bits of the output equal the s rightmost bits of G1,0, and are
generated uniformly at random (see Algorithm 3). Denote this s-bit block by C2.
The remaining n bits of the response, say C1, come from the evaluation of G0,1

for tweak C2, on input of a data block that never appeared for this tweak before.
As can be deduced from Algorithm 3, G0,1 behaves like a tweakable permutation:
for every tweak input, it behaves like a permutation. Therefore, C1 is generated
uniformly at random in such a way that C1‖C2 has never appeared before.
Concluding, E [G1,0, G0,1]± and H± follow identical distributions. ��

Claim. We have

ΔD
(
E [π̃1, π̃2]

± ; E [G1,0, G0,1]
±

)
≤ Advs̃prp

G1,0
(D′

4) + Advs̃prp
G0,1

(D′
5) +

(
q

θ

)
1

2(θ−1)smin
,

for some distinguishers D′
4 and D′

5 with the same query complexity as D, where
D′

4 may make at most θ inverse queries per tweak and D′
5 at most θ forward

queries per tweak.

Proof (of claim). Consider a computationally unbounded and deterministic dis-
tinguisher D making at most q queries. It has access to either E [π̃1, π̃2]± or
E [G1,0, G0,1]±. Summarize the queries in a transcript τ = (τ (1), . . . , τ (q)), where
the i-th tuple τ (i) = (�(i),X(i), Y (i)) is comprised of a bit �(i) ∈ {−1, 1} denoting
the direction of the query, X(i) is the query input and Y (i) the query output, in
such a way Y (i) = O�(i)

(X(i)). Write s(i) = |X(i)| − n. We assume that the dis-
tinguisher D does not repeat any query, which means that τ (i) does not contain
duplicate elements.

For the threshold θ of the theorem statement, define the following bad event:

BAD : max
�∈{−1,1}

max
s∈[smin,smax]

max
Z∈{0,1}s

∣
∣
∣{i | �(i) = � ∧ s(i) = s ∧ rights(Y

(i)) = Z}
∣
∣
∣ > θ .
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Clearly, writing Oπ̃ = E [π̃1, π̃2]± and OG = E [G1,0, G0,1]± for brevity,

ΔD
(
Oπ̃ ; OG

)
=

∣
∣Pr

[
DOπ̃ = 1

]
− Pr

[
DOG = 1

]∣
∣

≤
∣
∣Pr

[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣
∣

+
∣
∣Pr

[
DOπ̃ = 1 ∧ BAD

]
− Pr

[
DOG = 1 ∧ BAD

]∣
∣

≤
∣
∣Pr

[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣
∣

+ max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}

. (8)

Denoting the distance in (8) by Δ¬BAD
D

(
Oπ̃ ; OG

)
for brevity, a straightforward

triangle argument shows that

Δ¬BAD
D

(
Oπ̃ ; OG

)
≤ Advs̃prp

G1,0
(D′

4) + Advs̃prp
G0,1

(D′
5) , (9)

for some distinguishers D′
4 and D′

5 with the same query complexity as D, where
D′

4 may make at most θ inverse queries per tweak and D′
5 at most θ forward

queries per tweak. These two restrictions follow from the way E evaluates its
primitives (π̃1, π̃2 in the left oracle and G1,0, G0,1 in the right oracle) and from
the conditioning of the bad event.

Consider the max-term in (8). Consider any � ∈ {−1, 1} and s ∈ [smin, smax],
and denote the number of queries with �(i) = � and s(i) = s by q�,s. For OG, in
forward queries the rights(Y (i))-values come from the evaluation of G1,0 and are
always uniformly randomly drawn (see Algorithm 3), whereas in inverse queries
they come from evaluations of G−1

0,1 and are also uniformly randomly drawn (see
Algorithm 4). Therefore,

Pr [OG sets BAD for (�, s)] ≤
(

q�,s

θ

)
1

2(θ−1)s
.

On the other hand, for Oπ̃, the rights(Y (i))-values come from a truncated per-
mutation evaluation, and we find

Pr [Oπ̃ sets BAD for (�, s)] =
(

q�,s

θ

)

· 2s ·
θ−1∏

i=0

2n−s − i

2n − i
≤

(
q�,s

θ

)
1

2(θ−1)s
.

We thus obtain

max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}

≤
(

q

θ

)
1

2(θ−1)smin
, (10)

using that
(
qa

θ

)
+

(
qb

θ

)
≤

(
qa+qb

θ

)
and the distinguisher maximizes its probability

for s = smin. The proof is concluded by combining (8), (9), and (10). ��
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6 3-Round LDT

We derive the following reduction from the security of 3-LDT to harmonic prim-
itives Ga,b and H.

Theorem 2. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider three-round 3-LDT. Let smin, smax ∈ [0, n − 1] such that smin ≤ smax.
Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making
at most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′

1, . . . ,D′
5 with the same query complexity such that

Advvsprp
3-LDT(D) ≤ Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) + Advs̃prp

Ẽ
(D′

3) (11a)

+Advvsprp
H (D′

4) + Advs̃prp
G1,1

(D′
5) +

(
q

θ

)
1

2(θ−1)smin
, (11b)

where D′
5 may make at most θ forward and θ inverse queries per tweak.

We will prove Theorem 2 in Sect. 6.1.
The improvement of the bound of 3-LDT over that of 2-LDT of Theorem 1

is readily visible: Advs̃prp
G1,0

+ Advs̃prp
G0,1

has been replaced with Advs̃prp
G1,1

, which
by Lemma 2 achieves a better bound. Plugging the bounds of Lemmas 2 and 3
into the equation yields the following corollary.

Corollary 2. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider three-round 3-LDT. Let smin, smax ∈ [0, n − 1] such that smin ≤ smax.
Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making
at most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′

1,D′
2,D′

3 with the same query complexity such that

Advvsprp
3-LDT(D) ≤ Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) + Advs̃prp

Ẽ
(D′

3)

+
(

2q3

22n+smin

)1/2

+

(
4
(
θ + θ2

)
q

22n−smax

)1/2

+
(

q

θ

)
1

2(θ−1)smin
.

The first three advantages represent the security of the underlying tweakable
block cipher Ẽ. Two of the terms in the remaining portion of the bound depend
on θ: the first one increases with θ whereas the latter decreases with θ. Recalling
from Sect. 5 that, for smin ≤ θ,

(
q

θ

)
1

2(θ−1)smin
≤

(
2qe

θ2smin

)θ

,

equating the two θ-dependent fractions in the corollary gives θ ≈
2(2n−smax−smin)/3. This threshold value still has to obey to the condition smin ≤
θ ≤ 2n−smax−2, or stated differently,

smax ≤ min
{
(n − 6 + smin)/2 , 2n − smin − 3 log2(smin)

}
. (12)
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Table 1. Interpretation of the bound of Corollary 2 for various choices of smin, where
const is a constant to make the bound meaningful. Small constants are omitted in the
security upper bound.

smin security up to

arbitrary smax smax ≈ n+smin
2

of (12) smax ≈ smin

const min

{
8n

12
,
4n

6
− smax

3

}
n

2

2n

3
n

4
min

{
9n

12
,
5n

6
− smax

3

}
5n

8

3n

4
n

2
min

{
10n

12
,
6n

6
− smax

3

}
3n

4

5n

6
3n

4
min

{
11n

12
,
7n

6
− smax

3

}
7n

8

11n

12

n − 2 log2(n) min

{
12n

12
,
8n

6
− smax

3

}
n n

The minimum is achieved for its left element as long as smin ≤ n − 2 log2(n).
In Table 1, we list the simplified security bound of Corollary 2 (omitting con-
stants) for smin ∈ {const , n/4, n/2, 3n/4, n−2 log2(n)} and three possible choices
of smax: arbitrary, smax ≈ (n + smin)/2 of (12), and smax ≈ smin. For smin

approaching n, n-bit security is achieved.
Note that these two choices of smax set its two extremes: for given smin,

we require that smin ≤ smax ≤ (n + smin)/2. The security bounds for the two
extremes are plotted in Fig. 3: the level of security given by Corollary 2 is in
the shaded area of Fig. 3 and depends on smin and smax. For example, fixing
smin = n/2, the security bound of Corollary 2 lies between 3n/4 (for smax ≈
(n+smin)/2) and 5n/6 (for smax ≈ smin), using that smin ≤ smax ≤ (n+smin)/2
by condition.

6.1 Proof of Theorem 2

The first steps of the proof resemble those of Sect. 5.1. Consider any dis-
tinguisher D making at most q queries. It has access to either 3-LDTK for
K = (K1,K2,K3)

$←− K3 or a random length-preserving invertible permutation
ρ

$←− VPerm([n . . . 2n − 1]). For ease of discussion, write

3-LDTK = E [ẼK1 , ẼK2 , ẼK3 ] .
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Fig. 3. Simplified security bound of 3-LDT for various choices of smin. Lower line is
for smax ≈ (n + smin)/2, upper line for smax ≈ smin. Security of 3-LDT is indicated by
the shaded area and depends on smin and smax, where smin ≤ smax ≤ (n + smin)/2.

Let π̃1, π̃2, π̃3
$←− P̃erm(n, n). We have

Advvsprp
3-LDT(D) = ΔD

(
E [ẼK1 , ẼK2 , ẼK3 ]

± ; ρ±
)

≤ ΔD′
1

(
Ẽ±

K1
; π̃±

1

)
+ ΔD′

2

(
Ẽ±

K2
; π̃±

2

)
+ ΔD′

3

(
Ẽ±

K3
; π̃±

3

)

+ ΔD
(
E [π̃1, π̃2, π̃3]± ; ρ±

)

= Advs̃prp

Ẽ
(D′

1) + Advs̃prp

Ẽ
(D′

2) + Advs̃prp

Ẽ
(D′

3)

+ ΔD
(
E [π̃1, π̃2, π̃3]± ; ρ±

)
, (13)

for some distinguishers D′
1, D′

2, and D′
2 with the same query complexity as D.

We will focus on the remaining distance in (13). Without loss of generality,
we will consider computationally unbounded and deterministic distinguishers.
Consider two harmonic primitives, G1,1 of Sect. 4.1 and H of Sect. 4.2. We obtain
via the triangle inequality:

ΔD
(
E [π̃1, π̃2, π̃3]± ; ρ±

)
≤ ΔD

(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)

+ ΔD
(
E [π̃1, G1,1, π̃3]± ; H±

)
+ ΔD

(
H± ; ρ±

)

= ΔD
(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)

+ ΔD
(
E [π̃1, G1,1, π̃3]± ; H±

)
+ Advvsprp

H (D′
4) ,

(14)
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for some distinguisher D′
4 with the same query complexity as D (in fact, D′

4 = D).
Below two claims bound the remaining distances in (14) and complete the

proof.

Claim. We have ΔD
(
E [π̃1, G1,1, π̃3]± ; H±

)
= 0.

Proof (of claim). For any query to H of length n + s bits (either forward or
inverse), the last s bits of the response are drawn uniformly at random from
{0, 1}s and the first n bits are drawn uniformly at random in such a way that
the permutativity of H is retained (see Algorithms 5 and 6). Consider any query
to E [π̃1, G1,1, π̃3], without loss of generality a forward query of length n + s
bits. The s rightmost bits of the output equal the s rightmost bits of G1,1, and
are generated uniformly at random (see Algorithm 3; here, we make explicit
use of the fact that G1,1 never receives the same input twice). Denote this s-
bit block by C2. The remaining n bits of the response, say C1, come from the
evaluation of π̃3 for tweak C2 on input of a data block that never appeared for
this tweak before. For every tweak input, the tweakable permutation π̃3 behaves
like a permutation. Therefore, C1 is generated uniformly at random in such a
way that C1‖C2 has never appeared before. Concluding, E [π̃1, G1,1, π̃3]± and H±

follow identical distributions. ��

Claim. We have

ΔD
(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)
≤ Advs̃prp

G1,1
(D′

5) +
(

q

θ

)
1

2(θ−1)smin
,

for some distinguisher D′
5 with the same query complexity as D, but that may

make at most θ forward and θ inverse queries per tweak.

Proof (of claim). The first part of the proof resembles that of the corresponding
claim in Sect. 5.1.

Consider a computationally unbounded and deterministic distinguisher D
making at most q queries. It has access to either E [π̃1, π̃2, π̃3]± or E [π̃1, G1,1, π̃3]±.
Summarize the queries in a transcript τ = (τ (1), . . . , τ (q)), where the i-th tuple
τ (i) = (�(i),X(i), Y (i)) is comprised of a bit �(i) ∈ {−1, 1} denoting the direction
of the query, X(i) is the query input and Y (i) the query output, in such a way
Y (i) = O�(i)

(X(i)). Write s(i) = |X(i)| − n. We further denote by Z(i) the last
s bits of the output of π̃1 (which is also the last s bits of the input of π̃3) in
forward queries, and the last s bits of the output of π̃−1

3 (which is also the last
s bits of the input of π̃−1

1 ) in inverse queries. We assume that the distinguisher
D does not repeat any query, which means that τ (i) does not contain duplicate
elements.

For the threshold θ of the theorem statement, define the following bad event:

BAD : max
�∈{−1,1}

max
s∈[smin,smax]

max
Z∈{0,1}s

∣
∣
∣{i | �(i) = � ∧ s(i) = s ∧ Z(i) = Z}

∣
∣
∣ > θ .
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As before, writing Oπ̃ = E [π̃1, π̃2, π̃3]± and OG = E [π̃1, G1,1, π̃3]±,

ΔD
(
Oπ̃ ; OG

)
≤

∣
∣Pr

[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣
∣

+ max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}

. (15)

Denoting the distance in (15) by Δ¬BAD
D

(
Oπ̃ ; OG

)
for brevity, a straightforward

triangle argument shows that

Δ¬BAD
D

(
Oπ̃ ; OG

)
≤ Advs̃prp

G1,1
(D′

5) , (16)

for some distinguisher D′
5 with the same query complexity as D, but that may

make at most θ forward and θ inverse queries per tweak. These two restrictions
follow from the way E evaluates its primitives (π̃2 in the left oracle and G1,1 in
the right oracle) and from the conditioning of the bad event.

Consider the max-term in (15). Consider any � ∈ {−1, 1} and s ∈ [smin, smax],
and denote the number of queries with �(i) = � and s(i) = s by q�,s. For both Oπ̃

and OG, the Z(i)-values come from a truncated permutation evaluation, and we
find for O ∈ {Oπ̃,OG}:

Pr [O sets BAD for (�, s)] =
(

q�,s

θ

)

· 2s ·
θ−1∏

i=0

2n−s − i

2n − i
≤

(
q�,s

θ

)
1

2(θ−1)s
.

We thus obtain

max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}

≤
(

q

θ

)
1

2(θ−1)smin
, (17)

as before. The proof is concluded by combining (15), (16), and (17). ��

7 Proof of Lemma 2 on Ga,b

For a = b = 0, the lemma is trivial. Let a, b ∈ {0, 1} such that a + b ≥ 1, and
consider any distinguisher D making at most q queries, all with tweaks satisfying
|unpad(T )| ∈ [smin, smax], and it makes at most θ inverse queries per tweak (if
a = 1) and at most θ forward queries per tweak (if b = 1). The distinguisher
has access to either random system Ga,b or π̃

$←− P̃erm(n, n), and without loss of
generality, D is computationally unbounded and deterministic.

We will use the chi-squared method of Sect. 2.2, with O2 = Ga,b being the
real system and O0 = π̃ the ideal system. Define an intermediate world O1 that
implements O2, unless some event “BAD” (defined below) happens, from which
point it implements O0. Summarize the communication of D with its oracle in
a transcript τ = (τ (1), . . . , τ (q)), where τ (i) = (�(i), T (i),X(i), Y (i)) consists of a
bit �(i) ∈ {−1, 1} indicating the direction of the query (1 means forward, and
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−1 means inverse), a tweak value T (i), an input value X(i), and a response Y (i),
in such a way that O�(i)

(T (i),X(i)) = Y (i) for O ∈ {O0,O2}.
By a triangle inequality,

Advs̃prp
Ga,b

(D) = ‖pO0,D(·) − pO2,D(·)‖
≤ ‖pO0,D(·) − pO1,D(·)‖ + ‖pO1,D(·) − pO2,D(·)‖ . (18)

Let T denote the set of all possible transcripts, and Tbad the set of all transcripts
that satisfy BAD. We have that pO1,D(τ ) = pO2,D(τ ) for any τ ∈ T \Tbad, and
hence,

‖pO1,D(·) − pO2,D(·)‖ =
∑

τ ∈T
max{0, pO1,D(τ ) − pO2,D(τ )}

=
∑

τ ∈Tbad

max{0, pO1,D(τ ) − pO2,D(τ )}

≤
∑

τ ∈Tbad

pO1,D(τ ) = Pr [O1 sets BAD] .

We obtain from (18):

Advs̃prp
Ga,b

(D) ≤ ‖pO0,D(·) − pO1,D(·)‖ + Pr [O1 sets BAD] . (19)

We will formalize and analyze BAD in Sect. 7.1 and analyze the remaining dis-
tance using the chi-squared technique in Sect. 7.2. These will immediately con-
clude the proof by (19).

7.1 Bad Transcripts

For the threshold θ of the theorem statement, define the following bad events:

BAD1 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣
∣
∣{i | a = 1 ∧ �(i) = 1 ∧ unpad(T (i)) = Z ∧ rights(Y

(i)) = Z ′}
∣
∣
∣ > θ ,

BAD2 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣
∣
∣{i | a = 1 ∧ �(i) = −1 ∧ unpad(T (i)) = Z ∧ rights(X

(i)) = Z ′}
∣
∣
∣ > θ ,

BAD3 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣
∣
∣{i | b = 1 ∧ �(i) = 1 ∧ unpad(T (i)) = Z ∧ rights(X

(i)) = Z ′}
∣
∣
∣ > θ ,

BAD4 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣
∣
∣{i | b = 1 ∧ �(i) = −1 ∧ unpad(T (i)) = Z ∧ rights(Y

(i)) = Z ′}
∣
∣
∣ > θ .

Define BAD = BAD1 ∨ BAD2 ∨ BAD3 ∨ BAD4.
The bad events look complicated, but in fact they are not. If (a, b) = (0, 0),

none of the four bad events are satisfied, and BAD does not hold by construction.
On the other hand, if (a, b) = (1, 1), the distinguisher makes at most θ forward
queries per tweak and at most θ inverse queries per tweak, and also in this
case BAD does not hold by construction. The cases (a, b) = (1, 0), (0, 1) are
symmetric, and we treat the former only. If (a, b) = (1, 0), BAD3,BAD4 do not
hold as b = 0, and BAD2 does not hold as the distinguisher makes at most θ
inverse queries. We are left with BAD1. Consider any s ∈ [smin, smax] and any
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Z ∈ {0, 1}s, and denote the number of queries with �(i) = 1 and unpad(T (i)) = Z
by qs,Z . The rights(Y (i))-values come from the evaluation of G1,0 and are always
uniformly randomly drawn (see Algorithm 3). Therefore,

Pr [O1 sets BAD for (s, Z)] ≤
(

qs,Z

θ

)
1

2(θ−1)s
.

We thus obtain

Pr [O1 sets BAD] ≤
(

q

θ

)
1

2(θ−1)smin
, (20)

using that
(
qa

θ

)
+

(
qb

θ

)
≤

(
qa+qb

θ

)
and the distinguisher maximizes its probability

for s = smin. Recalling that the case of (a, b) = (0, 1) is symmetric and that BAD
is not set for (a, b) = (0, 0), (1, 1), we obtain

Pr [O1 sets BAD] ≤ |a − b| ·
(

q

θ

)
1

2(θ−1)smin
.

7.2 Distance Between O0 and O1

Our aim is to bound the term of (1). Consider a given transcript τ (i−1), which
in turn determines the values �(i), T (i), and X(i). Let s = |unpad(T (i))|, and con-
sider any value Y (i). As both oracles behave independently for different tweaks,
it suffices to focus on earlier queries of the same tweak. We additionally refine
into the number of queries with the same or opposite query direction. Let

ipos =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | T (j) = T (i) ∧ �(j) = �(i)
}∣

∣
∣ ,

ineg =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | T (j) = T (i) ∧ �(j) = −�(i)
}∣

∣
∣ ,

and write i′ = ipos + ineg for brevity. Let

hpos(Y (i)) =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | T (j) = T (i) ∧ �(j) = �(i) ∧ rights(Y
(j)) = rights(Y

(i))
}∣

∣
∣ ,

hneg(Y (i)) =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | T (j) = T (i) ∧ �(j) = −�(i) ∧ rights(X
(j)) = rights(Y

(i))
}∣

∣
∣ ,

where hpos(Y (i)) ≤ ipos and hneg(Y (i)) ≤ ineg, and write h(Y (i)) = hpos(Y (i)) +
hneg(Y (i)). We can distinct the following cases.

(1) �(i) = 1 (forward query) and Y (i) ∈ rng(LT ). This case is excluded as Y (i)

is not in the support of both probabilities;
(2) �(i) = 1 (forward query) and Y (i) /∈ rng(LT ).

(a) a = 0. We have pO0,D(Y (i)|τ (i−1)) = pO1,D(Y (i)|τ (i−1)) = 1
2n−i′ , as the

response is drawn uniformly at random from a set of size 2n minus the
amount of earlier queries for the same tweak;
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(b) a = 1. We have pO0,D(Y (i) | τ (i−1)) = 1
2n−i′ as before, and pO1,D(Y (i) |

τ (i−1)) = 1
2s(2n−s−h(Y (i)))

as rights(Y (i)) is generated uniformly at ran-

dom, and leftn−s(Y (i)) from a set of size 2n−s minus h(Y (i)). For later
usage, note that this case fixes (�(i), T (i), Y (i)), and we have hpos(Y (i)) ≤ θ
by ¬BAD1 and hneg(Y (i)) ≤ θ by ¬BAD2. Therefore, in this case, we have
h(Y (i)) ≤ 2θ.

(3) �(i) = −1 (inverse query) and Y (i) ∈ dom(LT ). The case is symmetric to (1).
(4) �(i) = −1 (inverse query) and Y (i) /∈ dom(LT ).

(a) b = 0. The case is symmetric to (2a).
(b) b = 1. The case is symmetric to (2b), where now we rely on the fact that

by ¬(BAD3 ∨ BAD4), h(Y (i)) ≤ 2θ.

Cases (2b) and (4b) dominate the chi-squared technique, and we obtain for
χ2(τ (i−1)) of (1):

χ2(τ (i−1)) =
∑

Y (i)

(
1

2n−i′ − 1
2s(2n−s−h(Y (i)))

)2

1
2n−i′

=
∑

Y (i)

(2n − i′) ·
(

1
2n − i′

− 1
2s(2n−s − h(Y (i)))

)2

=
∑

Y (i)

1
(2n − i′)(2n−s − h(Y (i)))2

·
(

h(Y (i)) − i′

2s

)2

≤ 1
(2n − i′)(2n−s − 2θ)2

·
∑

Y (i)

(

h(Y (i)) − i′

2s

)2

≤ 8
23n−2s

·
∑

Y (i)

(

h(Y (i)) − i′

2s

)2

,

using that h(Y (i)) ≤ 2θ by ¬BAD (see above), and i′ ≤ 2n−1 and θ ≤ 2n−smax−2.
We find for its expectation:

Exp[χ2(τ (i−1))] ≤ 8
23n−2s

·
∑

Y (i)

Exp

[(

h(Y (i)) − i′

2s

)2
]

. (21)



Short Variable Length Domain Extenders 267

Recalling that i′ = ipos+ineg and h(Y (i)) = hpos(Y (i))+hneg(Y (i)), the remaining
expectation satisfies:

Exp

[(
h(Y (i))− i′

2s

)2
]
= Exp

[(
hpos(Y

(i)) + hneg(Y
(i))− ipos + ineg

2s

)2
]

= Exp

[(
hpos(Y

(i))− ipos

2s

)2
]
+ Exp

[(
hneg(Y

(i))− ineg

2s

)2
]

+ 2 · Exp
[(

hpos(Y
(i))− ipos

2s

) (
hneg(Y

(i))− ineg

2s

)]

= Exp

[(
hpos(Y

(i))− ipos

2s

)2
]
+

(
hneg(Y

(i))− ineg

2s

)2

+ 2 ·
(
Exp

[
hpos(Y

(i))
]
− ipos

2s

) (
hneg(Y

(i))− ineg

2s

)
. (22)

As hpos(Y (i)) ∼ HG(2n, 2n−s, ipos), by Sect. 2.3 it satisfies

Exp[hpos(Y (i))] =
ipos
2s

,

Var[hpos(Y (i))] =
ipos
2s

·
(

1 − 1
2s

)

· 2n − ipos
2n − 1

,

and we obtain that

Exp

[(

h(Y (i)) − i′

2s

)2
]

=
ipos
2s

·
(

1 − 1
2s

)

· 2n − ipos
2n − 1

+
(

hneg(Y (i)) − ineg
2s

)2

≤ ipos
2s

+
(

hneg(Y (i)) − ineg
2s

)2

. (23)

We furthermore claim the following.

Claim. We have
∑

Y (i)

(
hneg(Y (i)) − ineg

2s

)2

≤ i2neg2
n−s.

Proof (of claim). We have

∑

Y (i)

(

hneg(Y (i)) − ineg
2s

)2

=
∑

Z(i)

∑

Y (i)=∗‖Z(i)

(

hneg(Y (i)) − ineg
2s

)2

.
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As hneg(Y (i)) = hneg(Y (i)′) for rights(Y (i)) = rights(Y (i)′), we subsequently have

∑

Y (i)

(

hneg(Y (i)) − ineg
2s

)2

=
∑

Z(i)

2n−s

(

hneg(0n−s‖Z(i)) − ineg
2s

)2

= 2n−s
∑

Z(i)

((
hneg(0n−s‖Z(i))

)2

−2hneg(0n−s‖Z(i))
ineg
2s

+
(

ineg
2s

)2
)

≤ 2n−s

(

i2neg −
2i2neg
2s

+
2si2neg
22s

)

= 2n−s

(

i2neg −
i2neg
2s

)

≤ i2neg2
n−s .

��
Equations (21) and (23), alongside above claim, constitute to

Exp[χ2(τ (i−1))] ≤ 8
23n−2s

·
(
ipos2n−s + i2neg2

n−s
)

=
8
(
ipos + i2neg

)

22n−s
. (24)

If (a, b) ∈ {(1, 0), (0, 1)}, we have ipos, ineg ≤ (i − 1) and

(24) ≤
8
(
(i − 1) + (i − 1)2

)

22n−s
.

This bound is independent of the direction of the i-th query (�(i) ∈ {−1, 1}),
but the parameter s depends on the query, as s = |unpad(T (i))|. The adver-
sary maximizes its chances by sticking to the maximal s. This, finally, gives by
Lemma 1:

‖pO0,D(·) − pO1,D(·)‖ ≤
(

1
2

q∑

i=1

8
(
(i − 1) + (i − 1)2

)

22n−smax

)1/2

=
(

4
3

q3 − q

22n−smax

)1/2

≤
(

2q3

22n−smax

)1/2

.

On the other hand, if (a, b) = (1, 1), we have ipos, ineg ≤ θ and

(24) ≤
8
(
θ + θ2

)

22n−s
.

Again sticking to the maximal s, this gives by Lemma 1:

‖pO0,D(·) − pO1,D(·)‖ ≤
(

1
2

q∑

i=1

8
(
θ + θ2

)

22n−smax

)1/2

=

(
4
(
θ + θ2

)
q

22n−smax

)1/2

.
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8 Proof of Lemma 3 on H

Consider any distinguisher D making at most q ≤ 2n−1 queries, all of length in
[n + smin, 2n − 1] bits. The distinguisher has access to either random system H

or ρ
$←− VPerm([n, 2n − 1]), and without loss of generality, D is computationally

unbounded and deterministic.
We will use the chi-squared method of Sect. 2.2, with O0 = H being the

real system and O1 = ρ the ideal system. Summarize the communication of D
with its oracle in a transcript τ = (τ (1), . . . , τ (q)), where τ (i) = (�(i),X(i), Y (i))
consists of a bit �(i) ∈ {−1, 1} indicating the direction of the query (1 means
forward, and −1 means inverse), an input value (X(i)), and a response Y (i), in
such a way that O�(i)

(X(i)) = Y (i) for O ∈ {O0,O1}.
Unlike the proof of Sect. 7, we will not rely on additional bad events, and there

is no need to perform a hybrid argument and to upper bound the probability of
bad events. We immediately move to bounding the term of (1), and the proof
is very similar to that in Sect. 7.2. Consider a given transcript τ (i−1), which in
turn determines the values �(i) and X(i). Let s = |X(i)| − n, and consider any
value Y (i). As both oracles behave independently for different input lengths, it
suffices to focus on earlier queries of the same size. We additionally refine into
the number of queries with the same or opposite query direction. Let

ipos =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | |X(j)| = |X(i)| ∧ �(j) = �(i)
}∣

∣
∣ ,

ineg =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | |X(j)| = |X(i)| ∧ �(j) = −�(i)
}∣

∣
∣ ,

and write i′ = ipos + ineg. Let

hpos(Y (i)) =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | |X(j)| = |X(i)| ∧ �(j) = �(i) ∧ rights(Y
(j)) = rights(Y

(i))
}∣

∣
∣ ,

hneg(Y (i)) =
∣
∣
∣
{

j ∈ {1, . . . , i − 1} | |X(j)| = |X(i)| ∧ �(j) = −�(i) ∧ rights(X
(j)) = rights(Y

(i))
}∣

∣
∣ ,

where hpos(Y (i)) ≤ ipos and hneg(Y (i)) ≤ ineg, and write h(Y (i)) = hpos(Y (i)) +
hneg(Y (i)). We can distinct the following cases.

(1) �(i) = 1 (forward query) and Y (i) ∈ rng(Ls). This case is excluded as Y (i) is
not in the support of both probabilities;

(2) �(i) = 1 (forward query) and Y (i) /∈ rng(Ls). We have pO0,D(Y (i) | τ (i−1)) =
1

2n+s−i′ as the response is drawn uniformly at random from a set of size 2n+s

minus the amount of earlier queries for the same tweak, and pO1,D(Y (i) |
τ (i−1)) = 1

2s(2n−h(Y (i)))
as rights(Y (i)) is generated uniformly at random, and

leftn(Y (i)) from a set of size 2n minus h(Y (i)).
(3) �(i) = −1 (inverse query) and Y (i) ∈ dom(Ls). The case is symmetric to (1).
(4) �(i) = −1 (inverse query) and Y (i) /∈ dom(Ls). The case is symmetric to (2).
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Cases (2) and (4) dominate the chi-squared technique, and we obtain for
χ2(τ (i−1)) of (1):

χ2(τ (i−1)) =
∑

Y (i)

(
1

2n+s−i′ − 1
2s(2n−h(Y (i)))

)2

1
2n+s−i′

=
∑

Y (i)

(
2n+s − i′

)
·
(

1
2n+s − i′

− 1
2s(2n − h(Y (i)))

)2

=
∑

Y (i)

1
(2n+s − i′)(2n − h(Y (i)))2

·
(

h(Y (i)) − i′

2s

)2

≤ 1
(2n+s − i′)(2n − i′)2

·
∑

Y (i)

(

h(Y (i)) − i′

2s

)2

≤ 8
23n+s

·
∑

Y (i)

(

h(Y (i)) − i′

2s

)2

,

using that h(Y (i)) ≤ i′, and i′ ≤ 2n−1. We find for its expectation:

Exp[χ2(τ (i−1))] ≤ 8
23n+s

·
∑

Y (i)

Exp

[(

h(Y (i)) − i′

2s

)2
]

. (25)

Recalling that i′ = ipos+ineg and h(Y (i)) = hpos(Y (i))+hneg(Y (i)), the remaining
expectation satisfies (identically to (22)):

Exp

[(
h(Y (i)) − i′

2s

)2
]

= Exp

[(
hpos(Y

(i)) − ipos
2s

)2
]

+

(
hneg(Y

(i)) − ineg
2s

)2

+ 2 ·
(

Exp
[
hpos(Y

(i))
]

− ipos
2s

) (
hneg(Y

(i)) − ineg
2s

)
.

As hpos(Y (i)) ∼ HG(2n+s, 2n, ipos), by Sect. 2.3 it satisfies

Exp[hpos(Y (i))] =
ipos
2s

,

Var[hpos(Y (i))] =
ipos
2s

·
(

1 − 1
2s

)

· 2n+s − ipos
2n+s − 1

,

and we obtain that

Exp

[(
h(Y (i)) − i′

2s

)2
]

=
ipos
2s

·
(

1 − 1

2s

)
· 2n+s − ipos

2n+s − 1
+

(
hneg(Y

(i)) − ineg
2s

)2

≤ ipos
2s

+

(
hneg(Y

(i)) − ineg
2s

)2

. (26)

We furthermore claim the following.
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Claim. We have
∑

Y (i)

(
hneg(Y (i)) − ineg

2s

)2

≤ i2neg2
n.

Proof (of claim). The proof is identical to that of the claim in Sect. 7.2, except
that now (n + s)-bit values Y (i) are involved. ��

Equations (25) and (26), alongside above claim, constitute to

Exp[χ2(τ (i−1))] ≤ 8
23n+s

·
(
ipos2n + i2neg2

n
)

=
8
(
ipos + i2neg

)

22n+s

≤
8
(
(i − 1) + (i − 1)2

)

22n+s
.

This bound is independent of the direction of the i-th query (�(i) ∈ {−1, 1}), but
the parameter s depends on the query, as s = |X(i)|−n. The adversary maximizes
its chances by sticking to the minimal s. This, finally, gives by Lemma 1:

Advvsprp
H (D) = ‖pO0,D(·) − pO1,D(·)‖ ≤

(
1
2

q∑

i=1

8
(
(i − 1) + (i − 1)2

)

22n+smin

)1/2

=
(

4
3

q3 − q

22n+smin

)1/2

≤
(

2q3

22n+smin

)1/2

.
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A Example Mixing Functions

Chen et al. [11] defined pure mixing functions as follows.

Definition 1. Let m,n ∈ N such that m ≤ n, and let mix : ∪n
s=m({0, 1}s)2 →

∪n
s=m({0, 1}s)2 be a length-preserving permutation. Define mixL as the left half

of its evaluation and mixR as its right half. The mixing function is called pure
if for all s ∈ [m,n]:

– mixL(A, ·) is a permutation for all A ∈ {0, 1}s, and
– mixR(·, B) is a permutation for all B ∈ {0, 1}s.

Chen et al. already pointed out that the simplest possible pure mixing function,
mix(A,B) = (B,A), is sufficient for LDT.
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24. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

25. Katz, J., Shacham, H. (eds.): CRYPTO 2017. LNCS, vol. 10403. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9

26. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

27. McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol.
4876, pp. 311–327. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77360-3 20

28. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut and Viswanathan [9], pp. 343–355

29. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9 19

30. Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher:
extending fse 2009 proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp.
391–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-
8 24

31. Nandi, M.: A generic method to extend message space of a strong pseudorandom
permutation. Computación y Sistemas 12(3), 285–296 (2009)

32. Nandi, M.: XLS is not a strong pseudorandom permutation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 478–490. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 25

33. Nandi, M.: On the optimality of non-linear computations of length-preserving
encryption schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 113–133. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 5

34. Nandi, M.: Revisiting security claims of XLS and COPA. Cryptology ePrint
Archive, Report 2015/444 (2015)

35. Peyrin, T., Seurin, Y.: Counter-in-Tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 2

36. Qualcomm: Pointer Authentication on ARMv8.3 – Design and Analysis of the
New Software Security Instructions (2017). https://www.qualcomm.com/media/
documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

https://doi.org/10.1007/978-3-540-74143-5_23
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-319-63697-9
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-642-03317-9_19
https://doi.org/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-662-45611-8_25
https://doi.org/10.1007/978-3-662-48800-3_5
https://doi.org/10.1007/978-3-662-48800-3_5
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf


274 Y. L. Chen et al.

37. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74619-5 7

38. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

39. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001, pp. 196–205. ACM (2001)

40. Rogaway, P., Wooding, M., Zhang, H.: The security of ciphertext stealing. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 180–195. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34047-5 11

41. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 16

42. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013. LNCS, vol. 8269. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-42033-7

43. Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee,
G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76788-6 15

44. Schnorr, C.P., Vaudenay, S.: Parallel FFT-hashing. In: Anderson, R. (ed.) FSE
1993. LNCS, vol. 809, pp. 149–156. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58108-1 18

45. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako and Sarkar [42], pp. 405–423

46. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005). https://doi.org/10.1007/11599548 15

47. Ehrsam, W.F., Meyer, C.H.W., Smith, J.L., Tuchman, W.L.: Message verification
and transmission error detection by block chaining. US Patent 40,740,66 (1976)

48. Zhang, H.: Length-Doubling ciphers and tweakable ciphers. In: Bao, F., Samarati,
P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 100–116. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31284-7 7

https://doi.org/10.1007/978-3-540-74619-5_7
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-642-34047-5_11
https://doi.org/10.1007/978-3-642-19074-2_16
https://doi.org/10.1007/978-3-642-42033-7
https://doi.org/10.1007/978-3-540-76788-6_15
https://doi.org/10.1007/3-540-58108-1_18
https://doi.org/10.1007/3-540-58108-1_18
https://doi.org/10.1007/11599548_15
https://doi.org/10.1007/978-3-642-31284-7_7


Building Quantum-One-Way Functions
from Block Ciphers: Davies-Meyer
and Merkle-Damg̊ard Constructions

Akinori Hosoyamada(B) and Kan Yasuda

NTT Secure Platform Laboratories, 3-9-11, Midori-cho Musashino-shi,
Tokyo 180-8585, Japan

{hosoyamada.akinori,yasuda.kan}@lab.ntt.co.jp

Abstract. We present hash functions that are almost optimally one-way
in the quantum setting. Our hash functions are based on the Merkle-
Damg̊ard construction iterating a Davies-Meyer compression function,
which is built from a block cipher. The quantum setting that we use
is a natural extention of the classical ideal cipher model. Recent work
has revealed that symmetric-key schemes using a block cipher or a pub-
lic permutation, such as CBC-MAC or the Even-Mansour cipher, can
get completely broken with quantum superposition attacks, in polyno-
mial time of the block size. Since many of the popular schemes are built
from a block cipher or a permutation, the recent findings motivate us
to study such schemes that are provably secure in the quantum setting.
Unfortunately, no such schemes are known, unless one relies on certain
algebraic assumptions. In this paper we present hash constructions that
are provably one-way in the quantum setting without algebraic assump-
tions, solely based on the assumption that the underlying block cipher is
ideal. To do this, we reduce one-wayness to a problem of finding a fixed
point and then bound its success probability with a distinguishing advan-
tage. We develop a generic tool that helps us prove indistinguishability
of two quantum oracle distributions.

Keywords: Symmetric key cryptography · Provable security
Merkle-Damg̊ard · Davies-Meyer · One-wayness · Non-invertibility
Preimage-resistance · Derangement · Fixed point
Indistinguishability · Quantum ideal cipher model

1 Introduction

The epoch-making work by Shor [25] revealed that widely used cryptographic
schemes such as RSA, DSA and ECDSA would become insecure when a practi-
cal quantum computer becomes available. Since then, researchers have become
increasingly interested in so-called post-quantum cryptography. Today there exist
several schemes that claim to provide post-quantum security. Some of them are
based on computational problems that are seemingly hard to solve even with
c© International Association for Cryptologic Research 2018
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quantum computers, like the lattice-based cryptography based on the short-
est vector problem or its variants. Others are based on the assumption that
there exist post-quantum-secure symmetric-key primitives, e.g. digital signatures
based on one-way hash functions.

Two Levels of Post-Quantum Security. There are two notions of secu-
rity against adversaries with quantum computers: standard security and quan-
tum security [33]. In this paper we focus on the quantum security, because it is
stronger. In the standard-security setting we assume that adversaries have quan-
tum computers but can make only classical queries to the oracles. On the other
hand, in the quantum-security setting, adversaries are allowed to make quantum
superposition queries. In other words, that a scheme provides quantum security
means that it will remain secure even in the far future when all computations
and communications are done in quantum superposition states.

Post-Quantum Insecurity of Symmetric-Key Constructions. On the
negative side, it has turned out that a number of symmetric-key constructions as
well as many public-key schemes can be broken in polynomial time (of the block
size) if adversaries are allowed to make quantum superposition queries. For exam-
ple, such adversaries can distinguish 3-round Feistel ciphers from random [18],
recover keys of Even-Mansour ciphers [19], forge various message authentication
codes like CBC-MAC [16], by making only polynomially many queries. These
attacks tell us that in general there is no guarantee that the classical security of
a symmetric-key scheme implies its quantum security.

Quantum-Secure Schemes Based on One-Way Functions. On the posi-
tive side, previous work [7,26,33] has shown that, if we assume the existence of
one-way functions that are hard to invert even with quantum computers, then
we can come up with a wide range of quantum-secure schemes. These include
pseudo-random functions, message authentication codes, universal one-way hash
functions, one-time signatures, and EU-CMA signature schemes. Thus, the exis-
tence of quantum-secure one-way functions is fundamental, just as in the classical
setting, and the cryptographic hash functions in use like SHA-3 [22] and SHA-
2 [21] are considered to be possible candidates also for the instantiation of these
quantum-secure one-way functions.

Cryptographic Hash Functions Revisited. Recall that cryptographic hash
functions are normally constructed only with public, “keyless” primitives, either
from a public permutation or a block cipher having no secret keys (i.e. key
inputs are public). For example, SHA-3 is constructed from a public permu-
tation, and SHA-2 is essentially based on a public block cipher. The generic
security (indifferentiability) of the sponge construction used in SHA-3 is proven
in the random permutation model, and the security (one-wayness and collision
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resistance) of Davies-Meyer construction adopted by the SHA-2 compression
function is proven in the ideal cipher model.

However, as mentioned above, we should carefully note that the classical
provable security of these hash functions may not carry over to the quantum
setting. For example, recently Carstens et al. [9] gave an evidence that SHA-3
is not indifferentiable in the quantum setting, based on a conjecture. There-
fore, here we would like to pose a fundamental question: do we have a provably
quantum-secure construction of one-way hash functions?

1.1 Our Contributions

Our answer is positive; in this paper we show that the Merkle-Damg̊ard iteration
with the Davies-Meyer compression function is a quantum-secure one-way hash
function. This has been a popular design used in MD5, SHA-1 and SHA-2.
Indeed, our construction is essentially identical to the modes of operation used
in these traditional hash functions, except for minor differences in padding rules,
initialization vectors, and input-size restrictions on the underlying block cipher.

Our contributions come in three steps. First, we fix a security model in which
we prove our main result. Second, we develop a generic tool for bounding quan-
tum oracle indistinguishability. Finally, we use the tool to prove our main result.

1. Introducing the Quantum Ideal Cipher Model. As the first step we
introduce the quantum ideal cipher model, which, as the name suggests, nat-
urally extends the ideal cipher model in the classical setting. Similarly to
the classical case, we treat the underlying block cipher as an ideal cipher E,
i.e., Ek is a random permutation for each key k. We then allow quantum
adversaries to make both forward and backward queries to the cipher. In our
model, a table of all values for the ideal cipher E is determined at the begin-
ning of each game, and the oracle that computes E(·)(·) and E−1

(·) (·) are given
to the adversary. Following the style of previous work in the classical setting,
we consider (quantum) information-theoretic adversaries that have no limi-
tation on computational resources, such as time or the number of available
qubits. We only bound the number q of queries that the adversary makes to
its oracles.

2. A Generic Tool for Quantum Indistinguishability. The second step is
to develop a proof tool to upper-bound quantum oracle distinguishing advan-
tages. The tool can be applied to any pair (D1,D2) of distributions on an
arbitrary (finite) set of functions (Proposition 3.1.) The tool enables us to
obtain an upper bound by mere combinatorial enumeration and associated
probability computations. There is a simplified version of the tool correspond-
ing to the special case when D1 and D2 are distributions on a set of boolean
functions (having some fixed domain size) with D2 being a degenerate dis-
tribution at the zero function (Proposition 3.2.) In fact this simplified ver-
sion suffices to prove our main result. Our tool is developed by generalizing
and integrating several existing techniques [2,5,15,27] corresponding to some
limited cases of the simplified version. However, previous work treats only
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the case that D1 is some specific distributions, and no previous work seems
suitable to our situation. We developed our tool so that it looks familiar to
researchers on symmetric-key provable security (like coefficient-H technique).

3. One-Wayness of Merkle-Damg̊ard with Davies-Meyer. The final but
main contribution of this paper is to give almost optimal security bound for
quantum one-wayness of the Merkle-Damg̊ard construction with a Davies-
Meyer compression function. That is, any quantum query adversary needs to
make about 2n/2 queries to invert the function with n-bit output. This bound
is almost optimal since the Grover search can find a preimage of random
functions with O(2n/2) quantum queries, and it is proven that the Grover
search is optimal strategy to find a preimage of random functions [15]. In our
proof, the input length of functions can be exponentially long but must be
fixed. We stress that this is the first proof for quantum security on symmetric
key schemes based on public block ciphers.

Technical Details. In this paper we give exact security bounds without any
asymptotic notation, because security parameters of symmetric-key schemes are
usually fixed to some constant.

This paper considers two security notions: non-invertibility and one-wayness.
When we say h : {0, 1}s → {0, 1}n has one-wayness, we mean that any adversary
cannot find a preimage of y = h(x), where x is randomly chosen from {0, 1}s.1

On the other hand, when we say h has non-invertibility, we mean that any
adversary cannot find a preimage of y, where y is randomly chosen from {0, 1}n.
These are similar but independent notions.

We firstly show non-invertibility of permutation with feedforward in the
quantum ideal permutation model, secondly show both non-invertibility and one-
wayness of Davies-Meyer constructions, and finally show both non-invertibility
and one-wayness of Merkle-Damg̊ard constructions. It might be unexpected that
permutation with feedforward is non-invertible in the quantum setting although
it uses only public permutation and XOR operation, which seems similar to the
Even-Mansour ciphers that are broken by quantum superposition attacks.

Due to a technical reason, we need some restriction on usage of keys in Davies-
Meyer construction. Similarly, we need a padding function for Merkle-Damg̊ard
construction. However, these do not mean restriction on available block ciphers.
As a subsidiary result, we also show that any quantum query adversary needs to
make about 2n/2 queries to find a fixed point of a public random permutation
(which allow adversaries to make both forward and backward quantum queries).
This is the first result on quantum query lower bound for a property related to
public random permutations.

Our proof strategy is to reduce the problem of breaking security notions
to the problem of distinguishing oracle distributions on boolean functions. A
similar strategy can be found in [15]. Then indistinguishability between quantum
oracle distributions is shown using our new proof tool described above. To reduce
problems on public random permutations to problems on boolean functions,
1 This security notion is also called preimage resistance (see [24] for example).
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we try to approximate the uniform distribution on random permutations by
combining distributions on boolean functions with the uniform distribution on
derangements (permutations without fixed points).

1.2 Related Work

There already exist powerful tools that aim to give quantum security bounds
for cryptographic schemes. These tools include “one-way to hiding” lemma and
quantum random oracle programming by Unruh [28,29], the rank method and
oracle indistinguishability frameworks by Zhandry [7,33,34]. These tools do not
seem to consider the situation where adversaries can make both forward and
backward queries to public permutations or block ciphers. There exists previous
work [1] that proves quantum security of Even-Mansour ciphers in a model where
adversaries make both forward and backward queries to the underlying permuta-
tion, but it should be noted that the proof [1] requires a quantum computational
hardness assumption (the hidden shift problem).

A quantum version of the random oracle model is proposed by Boneh et al., [6],
and many schemes are proven to be secure in this model ([28,34], for example).
Regarding symmetric key schemes, several papers on quantum security already
exist. They include work on quantum security of Carter-Wegman MACs [7], quan-
tum PRP-PRF switching lemma [35], quantum security of the CBC, OFB, CTR,
and XTS modes of operation [3], quantum generic security of random hash func-
tions [15], and quantum security of NMAC [27]. With a computational assump-
tion that hidden shift problem is hard to solve even with quantum computers, it
is shown that Even-Mansour ciphers and CBC-MAC, which are broken in poly-
nomial time with quantum queries, can be modified to have quantum security [1].
For standard security, i.e., with the assumption that adversaries have quantum
computers but can make only classical queries, XOR of PRPs are proven to be
secure [20]. Unruh introduced a security notion named collapsing, which is a gen-
eralized notion of collision-resistant in the quantum setting [31]. Unruh showed
that Merkle-Damg̊ard constructions are collapsing if underlying constructions are
collapsing [30]. Czajkowski et al. showed that sponge constructions are also col-
lapsing [10] (Note that they assume building permutations are one-way permuta-
tions or functions, and do not treat the usual sponge functions that are constructed
from public permutations). Recently Zhandry [32] showed indifferentiability of the
Merkle-Damg̊ard construction in the quantum random oracle model (compression
functions are assumed to be random functions).

2 Preliminaries

In this section we describe notation and definitions. For readers who are not
familiar with quantum terminology, a brief explanation on quantum computation
is given in this paper’s full version [14].
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Notation. Let [i, . . . , j] denote the set of integers {i, i + 1, . . . , j} for i < j, and
[N ] denote the set [1, . . . , N ]. For sets X and Y , let Func(X,Y ) be the set of
functions from X to Y . For a set X, let Perm(X) be the set of permutations
on X. Let Ciph(m,n) denote the set

{E ∈ Func({0, 1}m × {0, 1}n, {0, 1}n) | E(k, ·) ∈ Perm({0, 1}n) for each k} ,

where “·” means arbitrary inputs.
We call an element of Ciph(m,n) an n-bit block cipher with an m-bit key. For

each E ∈ Ciph(m,n) and k ∈ {0, 1}m, let Ek denote the permutation E(k, ·).
For a distribution D, let Prx∼D[event] denote the probability that event occurs
when x is sampled according to the distribution D. For two distributions D1 and
D2, let Δ(D1,D2) denote the total variation distance D1 and D2. Let td(ρ1, ρ2)
denote the trace distance between density matrices ρ1 and ρ2. For a random
variable V that takes values in a set X, define a distribution DV : X → [0, 1]
by DV (x) = Pr[V = x] for each x ∈ X. We call DV the distribution of V . If we
write x

D←− X, then it means to sample x according to the distribution D on X.

Derangements. A permutation P0 ∈ Perm(X) is called a derangement if P0

has no fixed point, i.e. if there is no element x ∈ X such that P0(x) = x. The set
of derangements on a set X is denoted as Der(X). The number of derangements
on a set of size N is written as !N . The following formula is well-known [13]:

Lemma 2.1. We have !N = N ! ·
∑N

i=0
(−1)i

i! =
⌊

N !
e + 1

2

⌋
, where �·� is the floor

function.

A proof of this lemma is given in this paper’s full version [14].

Davies-Meyer and Merkle-Damg̊ard Constructions. For an n-bit block
cipher E with an m-bit key, we define a function DME ∈ Func({0, 1}m ×
{0, 1}n, {0, 1}n) by DME(z, x) = Ez(x) ⊕ x. We call DME the Davies-Meyer
construction made from E ∈ Ciph(m,n). For a permutation P ∈ Perm({0, 1}n),
we define a function FFP ∈ Func({0, 1}n) by FFP (x) := P (x) ⊕ x. We call
the function FFP as permutation P with feedforward. The function FF can be
regarded as a “fixed-key” version of DM.

For a function h : {0, 1}m × {0, 1}n → {0, 1}n and an integer � > 0, the
Merkle-Damg̊ard construction MDh

� : {0, 1}n × {0, 1}m� → {0, 1}n is defined by

MDh
� (x, z1, . . . , z�) := h(z�, h(z�−1, · · · , h(z2, h(z1, x)) · · · ), (1)

where zi ∈ {0, 1}m for each i. We consider the special case when h is the Davies-
Meyer compression function, i.e., h(z, x) = DME(z, x) for an n-bit block cipher
E ∈ Ciph(m,n). Figure 1 illustrates MDDME

� , the combination of a Davies-Meyer
compression function with the Merkle-Damg̊ard iteration.
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Fig. 1. The Merkle-Damg̊ard construction with a Davies-Meyer compression function

Quantum Oracles and Quantum Adversaries. For a function f ∈
Func({0, 1}a, {0, 1}b), quantum oracle of f is defined as the unitary operator
Of such that Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for arbitrary x ∈ {0, 1}a, y ∈ {0, 1}b. By
an abuse of notation, let Of also denote the (a + b + c)-qubit unitary operator
Of ⊗ Ic that maps |x〉 |y〉 |z〉 to |x〉 |y ⊕ f(x)〉 |z〉 for any c.

This paper discusses on information theoretic quantum query adversary. That
is, we fix a constant q and assume that a quantum adversary A can make at most
q quantum queries, but we assume no other limitation for A about quantum com-
putational resources such as time or the number of available qubits. Following
the previous works that treat quantum oracle query adversary ([4,6,7,27,33,34],
for example), we model A as a sequence of unitary operators UqOfUq−1 · · · OfU0.
We write AO(x) = y for the event that a quantum adversary A takes x as input,
makes quantum queries to O, and finally outputs y.

If quantum oracle O is dependent on some distribution, then the state of a
quantum query algorithm A is described as a density operator. Suppose O = Of

for a function f , which is sampled according to a distribution D1 on Func({0, 1}a,
{0, 1}b). Then, the state of A with input x after the i-th query becomes
|φi

f 〉 := UiOfUi−1Of · · · OfU0 |0, x, 0〉 with probability pf
1 := PrF∼D1 [F = f ].

This mixed state is described as

ρi
1 =

∑

f

pf
1 |φi

f 〉 〈φi
f | . (2)

Quantum Oracle Distinguishing Advantage. Following previous works
(see [33], for example), we define quantum oracle distinguishing advantage as
follows. Let D1,D2 be two distributions on a set of functions. Assume that a
quantum algorithm A is allowed to access the quantum oracle of a function
that is chosen according to either D1 or D2. Suppose A can make at most q
queries, and finally outputs the result 1 or 0. Then, we define the distinguishing
advantage of A by

AdvdistD1,D2
(A) :=

∣
∣
∣
∣ Pr
f∼D1

[AOf () = 1] − Pr
g∼D2

[AOg () = 1]
∣
∣
∣
∣ .

In addition, we define

AdvdistD1,D2
(q) := max

A

{
AdvdistD1,D2

(A)
}

,
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where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Distinguishing advantages can be bounded by the trace distance and total
variational distance. Let ρi

1 be the density operator defined by (2), and ρi
2 be

the density operator that is similarly defined according to the distribution D2.
Then we can show the following lemma:

Lemma 2.2. For any quantum algorithm A that makes at most q queries,

AdvdistD1,D2
(A) ≤ td(ρq

1, ρ
q
2) (3)

and
td(ρq

1, ρ
q
2) ≤ Δ(D1,D2) (4)

hold.

The inequality (4) trivially follows from definitions and the proof of inequality (3)
is also straightforward, but a proof of the lemma is given in this paper’s full
version [14] for readers who are not used to quantum computation.

2.1 Modeling Public Random Permutations and Block Ciphers
in the Quantum Setting

To model public ideal permutations and block ciphers, here we introduce quan-
tum ideal permutation model and quantum ideal cipher model, which are quan-
tum versions of the classical ideal permutation model and ideal cipher model,
respectively. There already exist works on quantum provable security [1] in the
models that are essentially same to our quantum random permutation model.
However, this is the first paper on provable security that treats ideal cipher model
in the quantum setting. We begin with formalizing quantum oracles of public
permutations and block ciphers, and then introduce quantum ideal permutation
model and quantum ideal cipher model.

Quantum Oracles of Public Permutations and Ciphers. Here we describe
how to formalize quantum oracles of public permutations and block ciphers. For
an n-bit public permutation P , we define a function P± : {0, 1} × {0, 1}n →
{0, 1}n by

P±(b, x) =

{
P (x) if b = 0,

P−1(x) if b = 1.

For a distribution D on Perm({0, 1}n), let D± be the associated distribution
on Func({0, 1} × {0, 1}n, {0, 1}n) defined by D±(f) = PrP∼D[P± = f ]. For any
public permutation P , we assume that the quantum oracle OP ± is available.
This models the situation that both of forward and backward quantum queries
to the public permutation P are allowed.
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Similarly, if E is an n-bit block cipher with m-bit key, then we define a
function E± : {0, 1} × {0, 1}m × {0, 1}n → {0, 1}n by

E±(b, k, x) =

{
Ek(x) if b = 0,

E−1
k (x) if b = 1.

For a distribution D on Ciph(m,n), let D± be the associated distribution on
Func({0, 1}×{0, 1}m×{0, 1}n, {0, 1}n) defined by D±(f) = PrE∼D[E± = f ]. For
any public block cipher E, we assume that the quantum oracle OE± is available.
This models the situation that both of forward and backward quantum queries
to a block cipher E are allowed.

Quantum Ideal Permutation Model. Assume that P is a public permuta-
tion which is chosen from Perm({0, 1}n) uniformly at random, and an adversary
A is allowed to make at most q quantum queries to P±, for some fixed num-
ber q. We call this model as quantum ideal permutation model. We say that a
scheme constructed from a public permutation is secure (with regard to some
quantum security notion) up to q quantum queries if no such quantum informa-
tion theoretic adversary can break the security notion. We say that P is an ideal
permutation if we assume the situation that quantum adversaries can access
quantum oracle of P , and P is chosen from Perm({0, 1}n) uniformly at random.

Quantum Ideal Cipher Model. Assume that E is a public block cipher which
is chosen from Ciph(m,n) uniformly at random, and an adversary A is allowed
to make at most q quantum queries to E±, for some fixed number q. We call this
model as quantum ideal cipher model. Security in this model is defined similarly
as in the quantum ideal permutation model. Similarly, we say that E is an ideal
cipher if we assume the situation that quantum adversaries can access quantum
oracle of E, and E is chosen from Ciph(m,n) uniformly at random.

2.2 Two Security Notions: Non-invertibility and One-Wayness

This paper considers two security notions: non-invertibility and one-wayness.
These are similar but independent notions (we give a separation proof in this
paper’s full version [14] for completeness). Let hF : {0, 1}s → {0, 1}n be a
function that is constructed from a function (or permutation) F , and O be a
quantum oracle that is defined depending on F . We assume F is chosen from a
set of functions SF uniformly at random. The set SF and how the oracle O is
related to F depend on security models.

If we consider the quantum ideal permutation model, then SF =
Perm({0, 1}n), and O is defined as the oracle of P±. We will consider the case
that hF is a permutation with feedforward. Similarly, if we consider the quan-
tum ideal cipher model, then SF = Ciph(m,n), and O is defined as the oracle
of E±. We will consider the case that hF is the Davies-Meyer constructions or
Merkle-Damg̊ard constructions.
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Non-invertibility. For any quantum oracle query adversary A, define the advan-
tage of A to invert the function hF by

Advinv
hF (A) := Pr

F,y
[AO(y) = x ∧ hF (x) = y], (5)

where F ∈ SF and y ∈ {0, 1}n are chosen uniformly at random. In addition, we
define

Advinv
hF (q) := max

A
{Advinv

hF (A)}, (6)

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

One-wayness. Similarly, define the advantage of A to break the one-wayness of
the function hF by

Advow
hF (A) := Pr

F,x′
[AO(hF (x′)) = x ∧ hF (x) = hF (x′)], (7)

where F ∈ SF and x′ ∈ {0, 1}s are chosen uniformly at random. In addition, we
define

Advow
hF (q) := max

A
{Advow

hF (A)}, (8)

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Trivial Upper Bounds. We note here that there are trivial upper bounds of
quantum query complexity for non-invertibility and one-wayness, if hF is suffi-
ciently random. The bound is given by simple application of the Grover search
or its generalizations [8,12]. Given y, let consider to find x such that hF (x) = y.
Then, if 2s/|(hF )−1(y)| ≈ 2n, (which is the case when hF is a truly random
function and message space {0, 1}s is much larger than range {0, 1}n) then we
can find x such that hF (x) = y with about

√
2n quantum queries to hF . We

say hF is almost optimally non-invertible or one-way if Advinv
hF (q) = Õ(q/

√
2n)

or Advow
hF (q) = Õ(q/

√
2n), respectively, since these imply that there is no way

which is significantly better than the generic attack (the Grover search) to break
one-wayness of hF .

3 A Tool for Quantum Oracle Indistinguishability

Here we give a tool to upper bound quantum oracle distinguishing advantages
Advdist

D1,D2
with only classical probability calculation and purely combinatorial

enumeration (Proposition 3.1). Our tool can be applied to any distributions
D1,D2 on any (finite) set of functions Func({0, 1}n, {0, 1}c). In later sections, to
show non-invertibility and one-wayness of functions, we treat only the cases that
c = 1 and D2 is the degenerate distribution with support on the zero function.
Our tool can be somewhat simplified in those cases, and thus we give a simplified
version of our tool (Proposition 3.2) for later use. We believe that the generalized
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version (Proposition 3.1) itself is also useful to give some quantum security bound
for other schemes or other security notions. To show that the generalized version
is also useful, an application is given in this paper’s full version [14].

There already exist techniques to bound quantum oracle distinguishing
advantages in the situations which are similar to our simplified version (c = 1
and D2 is the degenerate distribution with support on the zero function), but
existing works treat only the case that D1 is some specific distributions. (See
proof of Lemma 37 in [2], proof of Lemma C.1 in [27], for example. Theorem 1
in [15] gives similar result as Lemma 37 in [2], but uses different analyzing tech-
nique by Zhandry [33].) On the other hand, our simplified tool (Proposition 3.2)
enables us to treat any distribution D1 on a (finite) set of boolean functions.

This section is organized as follows. First, we explain our motivations to
develop quantum proof tools. Second, we describe our main tool. Third, we
briefly explain how to apply them to give quantum security bounds in later
sections.

3.1 Motivations: The Coefficient H Technique

In the classical setting, there exist several proof tools to prove oracle indistin-
guishability of symmetric key schemes. The coefficient-H technique developed by
Patarin [23] is one of the most powerful tools. Below we explain essence of the
technique.

Suppose we want to upper bound Advdist
D1,D2

(A) for a (classical) information
theoretic adversary A, and distributions D1,D2. The technique allows A to
obtain transcripts including all input-output pairs defined by queries. Let T1,
T2 be the transcripts that correspond to the oracle distributions D1 and D2,
respectively. Then, T1,T2 define distributions on a set of transcript T . The
coefficient-H technique divides T into a good set good and bad set bad. Roughly
speaking, the technique gives a bound Advdist

D1,D2
(A) ≤ ε + Pr[T2 ∈ bad]. The

parameter ε is a small number that satisfies Pr[T1 = τ ]/Pr[T2 = τ ] ≥ 1 − ε for
any good transcript τ ∈ good. How good bound we can achieve depends on how
well we define the set of transcripts T , good sets good, and bad sets bad.

3.2 Our Main Tool

Following the classical coefficient-H technique, we aim to develop a quantum
proof tool so that: 1. It uses some good and bad sets, and 2. It gives an upper
bound as a sum of an amount related to good events (like ε in the coefficient-H
technique), and a bad probability. In addition, we make our tool so that we can
obtain an upper bound with only classical probability calculation and purely
combinatorial enumeration. We first describe a generalized version that D1 and
D2 can be any distributions, and then explain how it is simplified in the case
c = 1 and D2 is the degenerate distribution.
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Generalized Version. Let D1,D2 be any distributions on any (finite) set of
functions Func({0, 1}n, {0, 1}c). In addition, let D̄ be an arbitrary distribution
on the product space Func({0, 1}n, {0, 1}c) × Func({0, 1}n, {0, 1}c) that satisfies

D1(f) =
∑

g

D̄(f, g) for any f ∧ D2(g) =
∑

f

D̄(f, g) for any g. (9)

(In applications, even though D1 and D2 are given as indipendent distributions,
we try to find a convenient distribution D̄, just like we do so in the (classi-
cal) game-playing proof technique. See this paper’s full version for a concrete
example.)

For each f, g ∈ Func({0, 1}n, {0, 1}c), let pf
1 , pg

2, p
f,g denote PrF∼D1 [F = f ],

PrG∼D1 [G = g], and Pr(F,G)∼D̄[(F,G) = (f, g)], respectively. In addition, define
a boolean function δ(f, g) : {0, 1}n → {0, 1} by δ(f, g)(x) = 1 if and only
if f(x) �= g(x) for each pair (f, g). Let 0 ∈ Func({0, 1}n, {0, 1}) be the zero
function that maps x to 0 for any x. For each g ∈ Func({0, 1}n, {0, 1}c), let δD|g
be the conditional distribution on Func({0, 1}n, {0, 1}) defined by (δD|g)(γ) =
Pr(F,G)∼D̄[δ(F,G) = γ|G = g] for any γ ∈ Func({0, 1}n, {0, 1}).

For each g ∈ Func({0, 1}n, {0, 1}c), take a “bad” set badg ⊂
Func({0, 1}n, {0, 1}) \ {0} arbitrarily (actually we select badg such that
PrΓ∼δD|g [Γ ∈ badg] is small), and define “good” set by goodg :=
Func({0, 1}n, {0, 1}) \ ({0} ∪ badg). Furthermore, decompose the good set goodg

into smaller subsets {goodg
α}α∈Ag

( i.e. goodg =
⋃

α goodg
α and goodg

α ∩ goodg
β =

∅ for α �= β) such that the conditional probability PrΓ∼δD|g [Γ = γ|Γ ∈ goodg
α]

is independent of γ (in other words, for each α ∈ Ag, PrΓ∼δD|g [Γ = γ] =
PrΓ∼δD|g [Γ = γ′] holds for γ, γ′ ∈ goodg

α). In addition, define badall ⊂
(Func({0, 1}n, {0, 1}c))2 by badall := {(f, g)|δ(f, g) ∈ badg}. For each g, α ∈ Ag

and γ ∈ Func({0, 1}n, {0, 1}), let p
goodg

α

δD|g := PrΓ∼δD|g [Γ ∈ goodg
α] and p

γ|goodg
α

δD|g :=

PrΓ∼δD|g [Γ = γ|Γ ∈ goodg
α] (by assumption, p

γ|goodg
α

δD|g is independent of γ). Then
the following proposition holds.

Proposition 3.1 (Generalized version). Let D1,D2 be any distributions
on Func({0, 1}n, {0, 1}c), and D̄ be any distribution that satisfies (9). Let
badall, bad

g, goodg, and {goodg
α}α∈Ag

be the sets as stated above. Then, for any
quantum algorithm A that makes at most q quantum queries, AdvdistD1,D2

(A) is
upper bounded by

2q · EG∼D2

[
∑

α∈AG

p
goodG

α

δD|G

√

p
γ|goodG

α

δD|G · max
x

∣
∣
∣{γ ∈ goodG

α | γ(x) = 1}
∣
∣
∣

]

+ 2q · Pr
(F,G)∼D̄

[(F,G) ∈ badall]. (10)

A proof of this proposition is given in this paper’s full version [14].
In later sections, we apply our tool only to the cases that c = 1 and D2 is the

degenerate distribution with support on the zero function 0. Description of our
tool can be somewhat simplified in such cases, and below we give the simplified
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version for later use. To show that the generalized version itself is also useful,
an application of Proposition 3.1 is given in this paper’s full version [14].

Simplified Version. Now we describe a simplified version of our tool. Let
D1,D2 be distributions on a set of boolean functions Func({0, 1}n, {0, 1}), and
D2 be the degenerate distribution with support on the zero function 0. D1 can
be any distribution.

Take a “bad” set bad ⊂ Func({0, 1}n, {0, 1}) \ {0} arbitrarily (actually we
select bad such that PrF∼D1 [F ∈ bad] will be small), and define“good” set by
good := Func({0, 1}n, {0, 1}) \ ({0} ∪ bad). Furthermore, decompose the good
set good into smaller subsets {goodα}α ( i.e. good =

⋃
α goodα and goodα ∩

goodβ = ∅ for α �= β) such that the conditional probability PrF∼D1 [F = f |F ∈
goodα] is independent of f (in other words, for each α, PrF∼D1 [F = f ] =
PrF∼D1 [F = f ′] holds for f, f ′ ∈ goodα). Let p

goodα
1 := PrF∼D1 [F ∈ goodα] and

p
f |goodα
1 := PrF∼D1 [F = f |F ∈ goodα] (by assumption, p

f |goodα
1 is independent of

f). Then, the following proposition holds, which enables us to bound advantages
of quantum adversaries with only classical probability calculations and purely
combinatorial enumeration, without any quantum arguments.

Proposition 3.2 (Simplified version). Let D1 be any distribution on the set
of boolean functions Func({0, 1}n, {0, 1}), and D2 be the degenerate distribution
with support on the zero function. Let bad, good, and {goodα}α be the subsets of
Func({0, 1}n, {0, 1}) as stated above. Then, for any quantum algorithm A that
makes at most q quantum queries, AdvdistD1,D2

(A) is upper bounded by

2q
∑

α

p
goodα
1

√

p
f |goodα
1 · max

x
|{f ∈ goodα | f(x) = 1}| + 2q Pr

F∼D1
[F ∈ bad].

(11)

This proposition follows as an immediate corollary of the generalized version
Proposition 3.1 as below.

Proof (of Proposition 3.2). Now, D1 and D2 are distributions on a set of boolean
functions Func({0, 1}n, {0, 1}), and D2 is the degenerate distribution with sup-
port on the zero function 0. Let bad, good, and {goodα}α be the sets in Propo-
sition 3.2.

We translate notations in Proposition 3.2 to those in Proposition 3.1. Let D̄ be
the product distribution D1×D2. Let badg := ∅, goodg

α := Func({0, 1}n, {0, 1})\
{0} for g �= 0, and bad0 := bad, good0α := goodα.

Then, δ(f,0) = f holds for any boolean function f , PrG∼D2 [G = g] = 1
holds if and only if g = 0, and δD|0 = D1 holds. In addition, we have
p
good0α
δD|0 = p

goodα
1 , and p

f |good0α
δD|0 = p

f |goodα
1 for any boolean function f . More-

over, badall = {(f,0)|f ∈ bad0} holds, which implies that Pr(F,G)∼D̄[(F,G) ∈
badall] = PrF∼D1 [F ∈ bad]. Therefore Proposition 3.2 follows from Proposi-
tion 3.1. ��
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Remark 3.1. We do not claim that our tool is all-around. Actually the condition
that the probability p

γ|goodg
α

δD|g is independent of γ (in the generalized version) and

p
f |goodα
1 is independent of f (in the simplified version) implicitly means that D1

must have some “uniform” structure to obtain a good bound with our tool. See
proofs of Lemmas 4.3 and 5.1 for concrete examples.

3.3 How to Give Quantum Security Bound with Our Tool

Next, we describe how we apply Proposition 3.2 in later sections to give quantum
security bounds, in a high-level fashion. Roughly speaking, we try to reduce a
target problem to a problem of bounding distinguishing advantage between two
distributions on a set of boolean functions, and then apply Proposition 3.2. This
strategy itself is not new, but we believe our tool enables us to take the strategy
for wider applications.

Let A be a quantum query algorithm, and suppose that a problem to give
a security proof is reduced to a problem to upper bound some distinguishing
advantage AdvdistGreal,Gideal

(A). We introduce intermediate distributions (i.e. inter-
mediate games) G1 = Gideal, G2, . . . , Gt = Greal such that AdvdistGi,Gi+1

(A) can
be bounded using other techniques for 1 ≤ i ≤ t − 2. In addition, we assume
AdvdistGt−1,Gt

(A) can be bounded by AdvdistD1,D2
(B) for some distributions D1,D2

on Func({0, 1}n, {0, 1}), and another quantum query algorithm B. Then we have

AdvdistGreal,Gideal
(A) ≤ AdvdistGt−1,Gt

(A) +
t−2∑

i=1

AdvdistGi,Gi+1
(A)

≤ AdvdistD1,D2
(B) +

t−2∑

i=1

AdvdistGi,Gi+1
(A) (12)

Hence, if AdvdistGi,Gi+1
(A) can be upper bounded by other approaches for 1 ≤ i ≤

t−2, then the remaining term can be bounded without any quantum argument,
by using our tool. In later sections, we will upper bound AdvdistGi,Gi+1

(A) by total
variation distance Δ(Gi, Gi+1). (Remember that AdvdistD,D′(A) ≤ Δ(D,D′) holds
for any distributions D and D′ from Lemma 2.2.) Thus we upper bound the
advantage AdvdistGreal,Gideal

(A) by purely combinatorial enumerating arguments.

4 Non-invertibility of Permutation with Feedforward
in the Quantum Ideal Permutation Model

Now we apply the technique of Sect. 3 to show that permutation with feedforward
is optimally non-invertible in the ideal permutation model. As one step in our
proof, we also prove the difficulty to find a fixed point of random permutations
(Proposition 4.1). We stress that this is the first results on quantum query lower
bound for some property of random permutation P or some scheme constructed
from P , in the model that both of forward and backward queries to permutation
P are allowed. The goal of this section is to prove the following theorem.
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Theorem 4.1. Let n ≥ 32. For any quantum algorithm A that makes at most
q forward or backward queries to a public permutation P ,

Advinv
FFP (A) ≤ 4(e + 1)(q + 1)

2n/2
+ ε(n) (13)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot invert FFP

with constant probability for q � 2n/2.

Remark 4.1. We need the condition n ≥ 32 for technical reasons. This assump-
tion is reasonable since block lengths of block ciphers usually satisfy it.

To show the above theorem, we begin with reducing the problem of finding
a preimage of permutation with feedforward in the ideal permutation model to
the problem of finding a fixed point of an ideal permutation. Let us define the
advantage of a quantum algorithm A to find a fixed point of an ideal permutation
by

Advfixpt
P (A) := Pr

P
[AOP ± () = x ∧ P (x) = x],

here P is chosen uniformly at random, and

Advfixpt
P (q) := max

A

{
Advfixpt

P (A)
}

,

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Lemma 4.1. For a quantum algorithm A that makes at most q quantum queries
to OP ± , there exists a quantum algorithm B that makes at most q quantum
queries to OP ± such that Advinv

FFP (A) = Advfixpt
P (B).

Proof. Given such algorithm A, we construct B with the desired properties.
Firstly, before making queries, B chooses y ∈ {0, 1}n uniformly at random. B
is given the oracle OP ± of the permutation P . Define another permutation P ′

by P ′(x) = P (x) ⊕ y. Then, the pair (P ′, y) follows the uniform distribution. If
x satisfies FFP ′(x) = y, then P (x) = x holds. In addition, B can simulate the
quantum oracle OP ′± using OP ± with no simulation overhead.

Then B runs A, giving y as the target image. If A makes queries, then B
answers using the oracle OP ′± . Finally B outputs the final output of A. This
algorithm B obviously satisfies the desired property. ��

From the above lemma, it suffices to upper bound Advfixpt
P to prove Theo-

rem 4.1. Below we show the following proposition.

Proposition 4.1. Let n ≥ 32. For any quantum algorithm A that makes at
most q forward or backward queries to a public permutation P ,

Advfixpt
P (A) ≤ 4(e + 1)(q + 1)

2n/2
+ ε(n) (14)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot find a fixed

point of P with constant probability for q � 2n/2.
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Next, we reduce the problem of finding a fixed point of permutations to
the problem of distinguishing two oracle distributions: random permutations
and random derangements (permutations without fixed point). Let U be the
uniform distribution on Perm({0, 1}n), and U0 be the uniform distribution on
Der({0, 1}n) ⊆ Perm({0, 1}n). Then

Advfixpt
P (q) ≤ Advdist

U±,U±
0

(q + 1) (15)

holds, since we can distinguish a permutation from derangements if we find its
fixed point.

To upper bound Advdist
U±,U±

0
(q + 1), we apply the technique introduced in

Sect. 3. That is, we reduce the problem of distinguishing U± and U±
0 to the

problem of distinguishing two distributions Λ and Λ0 on Func({0, 1}n, {0, 1}),
introducing intermediate distributions (or games). Λ is the distribution which
is defined according to the distribution of fixed points of random permu-
tations, and Λ0 is the degenerate distribution with support on the zero-
function. To this end, in addition to Λ,Λ0, below we define functions Φ :
Der({0, 1}n) × Func({0, 1}n, {0, 1}) → Perm({0, 1}n), Φ′ : Der({0, 1}n) ×
Func({0, 1}n, {0, 1}) → Func({0, 1}n, {0, 1}n), and distributions Dnum on
[0, . . . , 2n], U ′

1 on Perm({0, 1}n), and U ′
2 on Func({0, 1} × {0, 1}n, {0, 1}n). In

the notation of Sect. 3, G1 = Gideal = U±, G2 = U ′
1
±, G3 = U ′

2, and
G4 = Greal = U±

0 , and D1 = Λ,D2 = Λ0.
Here we briefly explain motivations to introduce U ′

1, U
′
2 and Φ,Φ′. Our goal

is to reduce the problem of distinguishing U± from U±
0 to the problem of dis-

tinguishing Λ from Λ0. That is, we want a technique to simulate the oracle
that follows the distribution U± or U±

0 on Func({0, 1} × {0, 1}n, {0, 1}n), given
the oracle that follows the distribution Λ or Λ0 on Func({0, 1}n, {0, 1}), respec-
tively, without any knowledge that which of Λ and Λ0 is given. However, it is
difficult to directly construct such a technique. Thus, we define an intermediate
distribution U ′

1 that is close to U , and so that we can construct such a tech-
nique between U ′

1
± and U±

0 . The technique is as follows. Firstly, we define a
map Φ : Der({0, 1}n) × Func({0, 1}n, {0, 1}) → Perm({0, 1}n) such that Φ(P0, f)
follows U ′

1 if (P0, f) follows (U0, Λ), and Φ(P0, f) follows U0 if (P0, f) follows
(U0, Λ0), respectively (actually Φ is firstly defined and then U ′

1 is defined using
Φ). Secondly, given an oracle f that follows Λ or Λ0, we choose P0 ∈ Der({0, 1}n)
uniformly at random, and simulate the oracle of (Φ(P0, f))±. Then, we can sim-
ulate the distributions U ′

1
± or U±

0 according to which of Λ or Λ0 is given. How-
ever, there is a problem: simulation cost of U ′

1
± might become very high. Thus

we introduce another distribution U ′
2 and map Φ′, to overcome the problem of

simulation overhead. Details on simulation overhead will be explained later.
Now we give formal description of intermediate distributions and maps Φ,Φ′.

In what follows, we identify a function F ∈ Func({0, 1}n, {0, 1}n) with the asso-
ciated graph GF of which vertexes are n-bit strings. In the graph GF , there is
an edge from a vertex x to another vertex y if and only if F (x) = y. If F is a
permutation P , then each connected component of GP is a cycle, and isolated
points correspond to fixed points of P .
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Distribution Dnum . Distribution Dnum on [0, . . . , 2n] is the distribution of the
number of fixed points of random permutations. Dnum is formally defined by
Dnum(λ) := PrP∼U [λ = |{x|P (x) = x}|]. In other words, Dnum is the distri-
bution of the random variable that takes values in [0, . . . , 2n] which is defined
according to the following sampling.

1. P
$←− Perm({0, 1}n)

2. λ ← |{x|P (x) = x}|
3. Return λ.

Distribution Λ. Distribution Λ on Func({0, 1}n, {0, 1}) is defined according to
the distribution of fixed points of random permutations. For P ∈ Perm({0, 1}n),
define fP ∈ Func({0, 1}n, {0, 1}) by fP (x) = 1 if and only if P (x) = x. Then, Λ is
formally defined by Λ(f) := PrP∼U [f = fP ]. In other words, Λ is the distribution
of the random variable that takes values in Func({0, 1}n, {0, 1}), which is defined
according to the following sampling:

1. P
$←− Perm({0, 1}n)

2. f ← fP

3. Return f .

Distribution Λ0. Distribution Λ0 on Func({0, 1}n, {0, 1}) is the degenerate
distribution with support on the zero-function 0, which maps x to 0 for any x.
Formally, Λ0 is defined by Λ0(g) := 1 if and only if g = 0.

Function Φ. Taking P0 ∈ Der({0, 1}n) and f ∈ Func({0, 1}n, {0, 1}) as inputs,
we want to construct another permutation P = Φ(P0, f) which has, informally
speaking, the following properties:

1. P (x) = x if and only if f(x) = 1 holds with high probability when P0 and f
are chosen uniformly at random.

2. If f(x) = 0, then P (x) = P0(x) for almost all x.

This function Φ is used later to approximate U by using U0 and Λ.
Formally, function Φ : Der({0, 1}n)×Func({0, 1}n, {0, 1}) → Perm({0, 1}n) is

defined by the following process.

1. Take P0 ∈ Perm({0, 1}n), f ∈ Func({0, 1}n) as inputs.
2. For each x ∈ {0, 1}n, define P (x) by:
3. If f(x) = 1
4. P (x) ← x
5. Else
6. Calculate min{i | f(P i

0(x)) = 0}, cnt ← min{i | f(P i
0(x)) = 0}

7. P (x) ← P cnt
0 (x)

8. End If
9. Φ(P0, f) ← P
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Fig. 2. How P = Φ(P0, f) is generated. White circle are the preimages of 1 by f .

Figure 2 illustrates how P = Φ(P0, f) is generated from P0 and f . Each element
x such that f(x) = 1 is converted to isolated points, and the edges y → x, x → z
are converted to new edges y → z, x → x. By definition, images of Φ are certainly
in Perm({0, 1}n). Note that Φ(P0, f)−1 = Φ(P−1

0 , f) holds.

Function Φ′. Φ′ is a function which is defined to approximate U using U0 and Λ
similarly as Φ, but the approximation of Φ′ is more rough than that of Φ. While
outputs of Φ are always permutations, outputs of Φ′ might not be permutations,
although Φ(P0, f) = Φ′(P0, f) holds with high probability when P0 and f are
sampled following U0 and Λ. See this paper’s full version [14] for more details.

Formally, function Φ′ : Der({0, 1}n) × Func({0, 1}n, {0, 1}) → Func({0, 1}n,
{0, 1}n) is defined by the following process.

1. Take P0 ∈ Perm({0, 1}n), f ∈ Func({0, 1}n) as inputs.
2. For each x ∈ {0, 1}n, define P (x) by:
3. If f(x) = 1
4. P (x) ← x
5. Else If f(P0(x)) = 1
6. P (x) ← P 2

0 (x)
7. Else
8. P (x) ← P0(x)
9. End If

10. Φ′(P0, f) ← P

We defined not only Φ but also Φ′ to achieve low simulation overhead: Sup-
pose we are given the oracle of f ∈ Func({0, 1}n, {0, 1}). Then, for any P0 ∈
Der({0, 1}n) which we choose ourselves, we can operate one evaluation of the func-
tion Φ′(P0, f) with only two queries to f . On the other hand, we might need a lot
of queries to f to evaluate Φ(P0, f) in Step 6 of the definition of Φ (we need about
2n queries in the worst case). This is the reason why we introduced Φ′.

For fixed P0 and f , we define P ′±
2 : {0, 1} × {0, 1}n → {0, 1}n by

P ′±
2 (b, x) :=

{
Φ′(P0, f)(x) if b = 0,

Φ′(P−1
0 , f)(x) if b = 1.



Building Quantum-One-Way Functions from Block Ciphers 293

P ′±
2 can be regarded as an approximation of the function Φ±(P0, f) ∈

Func({0, 1}×{0, 1}n, {0, 1}n), which is defined by Φ±(P0, f)(0, x) = Φ(P0, f)(x)
and Φ±(P0, f)(1, x) = Φ(P−1

0 , f)(x).

Distribution U ′
1. Distribution U ′

1 on Perm({0, 1}n) is an approximation of the
uniform distribution U that combines U0 with Λ. Formally, U ′

1 is defined by
U ′
1(P ) = PrP0∼U0,f∼Λ[P = Φ(P0, f)]. In other words, U ′

1 is the distribution of
the random variable that takes values in Perm({0, 1}n) which is defined according
to the following sampling:

1. P0
U0←−− Perm({0, 1}n), f

Λ←− Func({0, 1}n, {0, 1})
2. P ← Φ(P0, f)

Note that if P is sampled following U ′
1, we assume that a quantum adversary A

is given a quantum oracle of P± : {0, 1} × {0, 1}n → {0, 1}n (see Sect. 2.1).

Distribution U ′
2. Distribution U ′

2 on Func({0, 1} × {0, 1}n, {0, 1}n) is another
approximation of U , which is more “rough” than U ′

1. Below, for F ∈ Func({0, 1}×
{0, 1}n, {0, 1}n), the n-bit functions F (0, ·), F (1, ·) are denoted by F+ and F−.
Then, formally, U ′

2 is defined by U ′
2(F ) = PrP0∼U0,f∼Λ[F+ = Φ′(P0, f) ∧ F− =

Φ′(P−1
0 , f)]. In other words, U ′

2 is the distribution of the random variable that
takes values in Func({0, 1} × {0, 1}n, {0, 1}n) which is defined according to the
following sampling:

1. P0
U0←−− Perm({0, 1}n), f

Λ←− Func({0, 1}n, {0, 1})
2. F+ ← Φ′(P0, f), F− ← Φ′(P−1

0 , f)

Now the preparation to use the technique in Sect. 3 is completed. We reduce
the problem of distinguishing U from U0 to the problem of distinguishing Λ and
Λ0. Now we have the following inequalities.

Advdist
U±,U±

0
(A) ≤ Advdist

U±,U ′
1

±(A) + Advdist
U ′

1
±,U ′

2
(A) + Advdist

U ′
2,U±

0
(A)

≤ Δ(U±, U ′
1
±) + Δ(U ′

1
±

, U ′
2) + Advdist

U ′
2,U0

±(A). (16)

Next, we show the following lemma.

Lemma 4.2. For a quantum algorithm A to distinguish U ′
2 from U±

0 that makes
at most q quantum queries, we can construct a quantum algorithm B to distin-
guish Λ from Λ0 that makes at most 2q queries and satisfies

Advdist
U ′

2,U±
0

(A) = Advdist
Λ,Λ0

(B).

Proof. We give a quantum algorithm B that satisfies the desired properties. B
is given a quantum oracle Of , where f is sampled according to Λ or Λ0. Before
making queries, B chooses a derangement P0 uniformly at random. Then, B
runs A. B answers to queries of A by calculating Φ′(P0, f) and Φ′(P−1

0 , f). By
definition of Φ′, B can calculate one evaluation of Φ′(P0, f) (and Φ′(P−1

0 , f))
with two queries to Of . Finally, B outputs what A outputs.
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Since A makes at most q queries, B makes at most 2q queries. B perfectly
simulates the distributions U ′

2 and U0
± according to which of Λ and Λ0 is given.

Thus Advdist
U ′

2,U±
0

(A) = Advdist
Λ,Λ0

(B) holds. ��

From the above lemma and the inequalities (16), we have

Advdist
U±,U±

0
(q) ≤ Δ(U±, U ′

1
±) + Δ(U ′

1
±

, U ′
2) + Advdist

Λ,Λ0
(2q). (17)

The three terms in the right hand side are upper bounded as in the following
lemmas.

Lemma 4.3. Advdist
Λ,Λ0

(q) ≤ 2(e+1)q
2n/2

Lemma 4.4. Δ(U±, U ′
1
±) ≤ 8n3

2n−2n+1 + 16n3

2n + e+1
n! for n ≥ 32.

Lemma 4.5. Δ(U ′
1
±

, U ′
2) ≤ 32n3

2n + 2(e+1)
n! for n ≥ 32.

Thus we have

Advdist
U±,U±

0
(q) ≤ 4(e + 1)q

2n/2
+

8n3

2n − 2n + 1
+

48n3

2n
+

3(e + 1)
n!

.

Combining this inequality and inequality (15), we obtain the desired bound (14)
in Theorem 4.1.

To complete the proof, we give a proof of Lemma 4.3. Proofs of Lemma 4.4
and 4.5 are given in this paper’s full version [14].

Proof of Lemma 4.3. To prove the Lemma 4.3, we use Proposition 3.2. Let
us define a set of functions good, bad ⊂ Func({0, 1}n, {0, 1}) by good :=
Func({0, 1}n, {0, 1})\{0}, and bad := ∅. In addition, for each integer λ > 0, define
goodλ ⊂ good by f ∈ goodλ if and only if |f−1(1)| = λ. Then,

⋃
λ goodλ = good

and goodλ1
∩ goodλ2

= ∅ for λ1 �= λ2. Moreover, the conditional probability
PrF∼Λ[F = f |F ∈ goodλ] is independent on f due to the symmetry of the
distribution Λ. Therefore we can apply Proposition 3.2.

Let p
goodλ
1 := PrF∼Λ [F ∈ goodλ] and p

f |goodλ
1 := PrF∼Λ [F = f | F ∈ goodλ].

For each fixed x, the number of boolean function f such that f(x) = 1 ∧
|f−1(1)| = λ is exactly

(
2n−1
λ−1

)
. Hence we have

max
x

|{f ∈ goodλ | f(x) = 1}| =
(

2n − 1
λ − 1

)

. (18)

In addition,

p
f |goodλ
1 =

1
(
2n

λ

) . (19)

hold.
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Next, we upper bound p
goodλ
1 = Prf∼Λ[f ∈ goodλ] = Pra∼Dnum

[a = λ]. For
any fixed λ, we have

Pr
a∼Dnum

[a = λ] =

(
2n

λ

)
·!(2n − λ)
2n!

=
!(2n − λ)
(2n − λ)!

· 1
λ!

≤ (2n − λ)!/e + 1
(2n − λ)!

· 1
λ!

=
(

1 +
e

(2n − λ)!

)

· 1
e

· 1
λ!

≤ 1 + e

e
· 1
λ!

(20)

(Remember that !N denotes the number of derangements on a set of size N and
!N =

⌊
N !
e + 1

2

⌋
holds. See Sect. 2.) Thus we have

p
goodλ
1 = Pr

f∼Λ
[f ∈ goodλ] ≤ 1 + e

e
· 1
λ!

. (21)

From Proposition 3.2, equality (18), (19), and inequality (21), since
Prf∼Λ[f ∈ bad] = 0 we have

AdvdistΛ,Λ0
(q) ≤ 2q ·

∑

0<λ

p
goodλ
1

√

p
f |goodλ
1 · max

x
{|{f | f(x) = 1 ∧ f ∈ goodλ}|}

≤ 2q ·
∑

0<λ

1 + e

e
· 1
λ!

√
√
√
√
(
2n−1
λ−1

)

(
2n

λ

) ≤ 2q(1 + e)
e

·
∑

0<λ

1
λ!

√
λ

2n

=
2q(1 + e)

e
·
∑

0<λ

1√
λ(λ − 1)!

√
1
2n

≤ 2q(1 + e)
e

·
∑

0≤λ

1
λ!

√
1
2n

=
2(e + 1)q√

2n
, (22)

which is the desired bound. Hence Lemma 4.3 follows. ��
Remark 4.2. In this section we showed the non-invertibility of FFP but did not
show the one-wayness, because it seems difficult to reduce the one-wayness to
the non-invertibility for the case of a permutation with feedforward. For Davies-
Meyer construction, on the other hand, we can reduce its one-wayness to the
non-invertibility by upper-bounding the total variation distance between the
distribution of the game to break the one-wayness and that of the game to
break the non-invertibility. Unfortunately, for permutations with feedforward,
this strategy cannot be applied since the total variation distance between the
two corresponding distributions would become very large.

5 Security of Davies-Meyer Constructions
in the Quantum Ideal Cipher Model

This section gives proofs for security of Davies-Meyer constructions in the quan-
tum ideal cipher model. We begin with showing non-invertibility, and then prove
one-wayness. Our result in this section is the first proof for quantum security of
functions based on public block ciphers.
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5.1 Non-invertibility of Davies-Meyer

Non-invertibility in the ideal cipher model is shown in the similar way as in the
proof for non-invertibility of permutation with feedforward in Sect. 4. We show
the following theorem.

Theorem 5.1 (Non-invertibility of Davies-Meyer). Let n ≥ 32. For any
quantum algorithm A that makes at most q queries to a block cipher E,

Advinv
DME (A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2m(e + 1)
n!

)

+ 2mε(n) (23)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot invert

DME with constant probability if 2m

2n � 1 and q � 2n/2/n1/2.

Remark 5.1. In the above theorem, security bound is valid only for the case that
key length m is less than block length n. (We do not know if there exist any
attacks that exploit long key lengths. The condition that key length should be
shorter than the block length comes from limitation of our proof technique.)
However, even if m ≥ n, then we can achieve the same bound if we restrict key
space. That is, if we are given n-bit block ciphers with m-bit key and m ≥ n, we
use only the keys of which all bits are 0 except for the first n/2-bits, for example.
Then we can construct non-invertible functions with 3n/2-bit input and n-bit
output.

We cannot get rid of this restriction on usage of key space since there are
terms of order O(n3 ·2m−n) in our bound (23), which come from Lemmas 4.4 and
4.5. The bound of Lemma 4.4 cannot be essentially improved, since Δ(U,U ′

1) ≥
1

4e·2n holds (see this paper’s full version [14] for more details). Thus, if we want
to get rid of the restriction, then we have to use other proof strategies.

Let UE be the uniform distribution on Ciph(m,n), and UE,0 be the distri-
bution on Ciph(m,n) defined by UE0(E) =

∏
k U0(Ek) (i.e., when E is sampled

according to UE,0, then Ek is sampled according to U0 for each key k.) We say
that a pair (z, x) is a fixed point of a block cipher E if Ez(x) = x. Let us define
the advantage of a quantum algorithm A to find a fixed point of an ideal block
cipher E by

Advfixpt
E (A) := Pr

E∼UE

[AOE± () = (z, x) ∧ Ez(x) = x],

and
Advfixpt

E (q) := max
A

{
Advfixpt

E (A)
}

,

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Then, similarly as in the proof for permutation with feedforward, we have

Advinv
DME (q) ≤ Advfixpt

E (q) ≤ Advdist
U±

E ,U±
E,0

(q + 1). (24)
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To upper bound Advdist
U±

E ,U±
E,0

, we introduce distributions DE,num, ΛE , ΛE,0, U
′
E,1,

U ′
E,2, which are essentially product distributions of Dnum, Λ, Λ0, U

′
1, U

′
2, respec-

tively.

Distribution DE,num . Distribution DE,num on ([0, . . . , 2n])×2m

is the
product distribution Dnum × · · · × Dnum, i.e. DE,num is defined by
DE,num(λ0, . . . , λ2m−1) := Dnum(λ0) × · · · × Dnum(λ2m−1). DE,num can be
regarded as the distribution of the number of fixed points of ideal ciphers.

Distribution ΛE . Distribution ΛE on the set Func({0, 1}m × {0, 1}n, {0, 1})
= (Func({0, 1}n, {0, 1}))2

m

is defined as the product distribution Λ×· · ·×Λ, i.e.
ΛE is defined by ΛE(F ) := ΛE(F (0, ·)) × ΛE(F (1, ·)) × · · · × ΛE(F (2m − 1, ·)).
ΛE can be regarded as the distribution of fixed points of ideal ciphers.

Distribution ΛE ,0. Distribution ΛE,0 on Func({0, 1}m × {0, 1}n, {0, 1}) is the
degenerate distribution with support on the zero-function 0.

Distribution U ′
E ,1. Distribution U ′

E,1 on Ciph(m,n) is defined by U ′
E,1(E) :=∏

k∈{0,1}m U ′
1(Ek). That is, when E is sampled according to U ′

E,1, then Ek is
chosen according to U ′

1 independently for each key k. Similarly as U ′
1 is an

approximation of U , U ′
E,1 can be regarded as an approximation of UE .

DistributionU ′
E ,2.DistributionU ′

E,2 onFunc({0, 1}×{0, 1}m×{0, 1}n, {0, 1}n)
is defined by U ′

E,2(F ) =
∏

k∈{0,1}m U ′
2(F (·, k, ·)). That is, U ′

E,2 is the distribution
of the random variable that is defined by the following sampling.

1. For each z ∈ {0, 1}m, do:

2. Gz
U ′

2←−− Func({0, 1} × {0, 1}n, {0, 1}n)
3. F (b, z, x) ← Gz(b, x) for each b ∈ {0, 1}, z ∈ {0, 1}m, x ∈ {0, 1}n.
4. Return F

Similarly as U ′
2 is a rough approximation of U±, U ′

E,2 can be regarded as a rough
approximation of U±

E .
Now we apply the technique introduced in Sect. 3. Similarly as inequal-

ity (17), we can show that

Advdist
U±

E ,U±
E,0

(q) ≤ Δ(U±
E , U

′±
E,1) + Δ(U

′±
E,1, U

′
E,2) + Advdist

ΛE ,ΛE,0
(2q),

holds. In addition, since U,U ′
E,1, U

′
E,2 are essentially the product distributions

of U,U ′
1, U

′
2, from Lemmas 4.4 and 4.5 we have

Advdist
U±

E ,U±
E,0

(q) ≤ 2mΔ(U±, U ′
1
±) + 2mΔ(U ′

1
±

, U ′
2) + Advdist

ΛE ,ΛE,0
(2q)

≤ 2m

(
8n3

2n − 2n + 1
+

48n3

2n
+

3(e + 1)
n!

)

+ Advdist
ΛE ,ΛE,0

(2q).

(25)

Thus, to prove Theorem 5.1, it suffices to show the following lemma.
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Lemma 5.1

Advdist
ΛE ,ΛE,0

(q) ≤ 2q

(
n1/2

2n/2
+

2m(e + 1)
n!

)

Proof. To prove the Lemma 5.1, again we use our tool in Sect. 3. Let us define a
set of functions good ⊂ Func({0, 1}m × {0, 1}n, {0, 1}) by f ∈ good if and only
if f �= 0 and λz = |f−1

z (1)| < n for all z ∈ {0, 1}m, where fz(·) = f(z, ·). Let
bad := Func({0, 1}m×{0, 1}n, {0, 1})\(good∪{0}). In addition, for each sequence
of integers λS = (λ0, λ1, . . . , λ2m−1), define goodλS

⊂ good by f ∈ goodλS
if and

only if f−1
z (1) = λz for all 0 ≤ z ≤ 2m − 1. For simplicity, we write λS < n

if and only if λz < n for all 0 ≤ z ≤ 2m − 1. Similarly, we write 0 < λS if
and only if λz > 0 for all 0 ≤ z ≤ 2m − 1. Then,

⋃
0<λS<n goodλS

= good and
goodλS

∩ goodλS′ = ∅ for λS �= λS′ . The conditional probability PrF∼ΛE
[F =

f |f ∈ goodλS
] is independent on f due to the symmetry of the distribution ΛE .

Therefore we can apply Proposition 3.2 with D1 = ΛE and D2 = ΛE,0.
Define

p
goodλS
1 := Pr

f∼ΛE

[
f ∈ goodλS

]
(26)

and
p

f |goodλS
1 := Pr

F∼ΛE

[
F = f | F ∈ goodλS

]
. (27)

Now we upper bound Prf∼ΛE
[f ∈ bad]. Note that Prf∼ΛE

[f ∈ bad] ≤
2m Prf∼Λ[|f−1(1)| ≥ n] holds since ΛE is product distribution of Λ. In addi-
tion, from inequality (21) we have

Pr
f∼Λ

[|f−1(1)| ≥ λ0] ≤ e + 1
e

∑

λ≥λ0

1
λ!

≤ e + 1
e

e

λ0!
=

e + 1
λ0!

, (28)

where we used the fact
∑

λ≥λ0

1
λ! ≤ e

λ0!
. Thus we have

Pr
f∼ΛE

[f ∈ bad] ≤ 2m(1 + e)
n!

. (29)

Next, we upper bound p
f |goodλS
1 · max(z,x)

∣
∣
{
f ∈goodλS

| f(z, x)=fz(x)=1
}∣
∣.

For each fixed w ∈ {0, 1}m, x ∈ {0, 1}n and λS = (λ0, . . . , λ2m−1), the number of
boolean function f ∈ goodλS

such that fw(x) = 1 is equal to
(

2n − 1
λw − 1

)

·
∏

z �=w∈{0,1}m

(
2n

λz

)

=
λw

2n
·
∏

z∈{0,1}m

(
2n

λz

)

. (30)

Thus for each sequence λS < n we have

max
(z,x)

∣
∣
{
f ∈ goodλS

| f(z, x) = fz(x) = 1
}∣
∣ = max

(z,x)

⎧
⎨

⎩

λz

2n
·
∏

z∈{0,1}m

(
2n

λz

)
⎫
⎬

⎭

≤ n

2n
·
∏

z∈{0,1}m

(
2n

λz

)

(31)
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Hence, for each sequence λS < n we have

p
f |goodλS

Δ · max
(z,x)

∣
∣
{
f ∈ goodλS

| f(z, x) = fz(x) = 1
}∣
∣

≤ 1
∏

z∈{0,1}m

(
2n

λz

) · n

2n
·
∏

z∈{0,1}m

(
2n

λz

)

=
n

2n
. (32)

From Proposition 3.2, and inequalities (29) and (32), AdvdistΛ,Λ0
(q) is upper

bounded by

2q ·
∑

λS<n

p
goodλS
1

√

p
f |goodλS
1 · max

(z,x)

∣
∣
{
f ∈ goodλS

| fz(x) = 1
}∣
∣

+ 2q · Pr
f∼ΛE

[f ∈ bad]

≤ 2q ·
∑

λS<n

p
goodλS
1

√
n

2n
+ 2q · 2m(e + 1)

n!
≤ 2q

(√
n

2n
+

2m(e + 1)
n!

)

, (33)

which completes the proof. ��

5.2 One-Wayness of Davies-Meyer

Next, we show that Davies-Meyer constructions are also quantum one-way in
the quantum ideal cipher model.

Theorem 5.2 (One-wayness of Davies-Meyer). Let n ≥ 32 and m ≤ n2.
For any quantum algorithm A that makes at most q queries to a block cipher E,

Advow
DME (A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2m(e + 1)
n!

)

+ 2mε(n) +
2n + 1
2m/3+1

+
n2

2m−2
(34)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot find a

preimage of DME with constant probability if 2m

2n � 1 and q � 2n/2/n1/2.

Remark 5.2. Here we need an additional condition m ≤ n2 for technical reasons.
This assumption is reasonable since usual block ciphers satisfy it.

Proof. Let Un be the uniform distribution on {0, 1}n and V be the distribution
on Ciph(m,n) × {0, 1}n which is defined by V (E, y) = Pre∼UE ,(z,x)∼Um+n

[e =
E ∧DME(z, x) = y]. That is, V is the distribution of the random variable which
is defined by the following sampling:

1. E
UE←−− Ciph(m,n), z

$←− {0, 1}m, x
$←− {0, 1}n

2. y ← DME(z, x)
3. Return (E, y)
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Then Advow
DME (A) = Pr(E,y)∼V [AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y] is upper

bounded by

Pr
E∼UE ,y∼Un

[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]

+
∣
∣
∣ Pr
(E,y)∼V

[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]

− Pr
E∼UE ,y∼Un

[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]
∣
∣
∣

≤ Advinv
DME (A) + Δ(V, (UE , Un)). (35)

Hence Theorem 5.2 follows from Theorem 5.1 and the following lemma.

Lemma 5.2. Δ(V, (UE , Un)) ≤ 2n+1
2m/3+1 + n2

2m−2 for n ≥ 32 and m ≤ n2.

A proof of this lemma is given in this paper’s full version [14]. ��

6 Security of Merkle-Damg̊ard with Davies-Meyer
Constructions

This section shows that the combination of Davies-Meyer constructions with the
Merkle-Damg̊ard constructions are optimally non-invertible and one-way in the
quantum ideal cipher model.

Merkle-Damg̊ard construction is the most basic construction to convert com-
pression functions, which have fixed input length, to a function with (variable)
long input lengths. In particular, lots of popular hash functions like SHA-2 [21]
are based on the Merkle-Damg̊ard constructions, and use Davies-Meyer con-
structions as compression functions. Merkle-Damg̊ard construction with MD-
compliant padding is proven to be collision resistant hash function when under-
lying compression function is collision-resistant [11]. However, there is no guaran-
tee that Merkle-Damg̊ard constructions (with MD-compliant padding) become
one-way (preimage resistant) or second preimage resistant hash functions even
if underlying compression functions are one-way (preimage resistant) or second
preimage resistant. Actually there is an attack that finds a second preimage with
complexity less than 2n [17].

Since usual Merkle-Damg̊ard constructions do not guarantee one-wayness
even in classical settings, in this paper we fix input length. Input length can
be very long (actually we will construct functions of which input bit length are
exponential of n), but must be fixed.

This section assumes that we are given an ideal block cipher E ∈ Ciph(m,n)
with m ≤ n2. For a positive number r (r means “rate”) with 1 < r < n and
� ≥ 1, define a padding function padr,� : {0, 1}n × {0, 1}n

r ·� → {0, 1}n × {0, 1}m�

by
padr,� : x‖z1‖ · · · ‖z� �→ x‖z1‖0‖ · · · ‖zi‖(i − 1)‖ · · · z�‖(� − 1),

where zi ∈ {0, 1}n
r and we assume that each integer i is expressed as an (m−n/r)-

bit string. Let us define a function HE
r,� : {0, 1}n+n

r ·� → {0, 1}n by

HE
r,�(M) := MDDME

� (padr,�(M)).
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The following theorem claims that HE
r,� has both non-invertibility and one-

wayness.

Theorem 6.1 (Security of Merkle-Damg̊ard with Davies-Meyer). Let
n ≥ 32 and m ≤ n2. Assume E ∈ Ciph(m,n) is an ideal cipher. For any quantum
adversary A that makes at most q queries to E,

Advinv
HE

r,�
(A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2n/r(e + 1)
n!

)

+ ε(r, n) (36)

and

Advow
HE

r,�
(A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2n/r(e + 1)
n!

)

+ ε(r, n) + δ(r, �, n) (37)

holds, where ε(r, n) = 2n/r
(

8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n!

)
and δ(r, �, n) = �·

(
2n+1

2n/3r+1

+ n2

2n/r−2

)
. In particular, if � � 2

n
3r , then A cannot find a preimage of HE

r,� with

constant probability for q � 2n/2/n1/2.

Remark 6.1. We need padding function padr,� to restrict key space for each
message block (see Remark 5.1). Our padding function pads different numbers
for different message blocks so that the i-th compression function and the j-th
compression function become essentially independent for i �= j.

Proof. Firstly we show non-invertibility, i.e. inequality (36). Non-invertibility of
HE

r,� is reduced to non-invertibility of the Davies-Meyer construction of the last
block. By using an adversary A to invert HE

r,�, we construct an adversary B to

invert a Davies-Meyer construction DME′
, where E′ ∈ Ciph(n/r, n).

At the beginning of a game, B receives randomly chosen y ∈ {0, 1}n as an
input. In addition, B has oracle access to an ideal cipher E′ ∈ Ciph(n/r, n). B
simulates an oracle of ideal cipher E ∈ Ciph(m,n) as follows. B chooses Ẽ ∈
Ciph(m,n) uniformly at random, and define E ∈ Ciph(m,n) by

E(k, x) =

{
E′(z, x) if k = z‖� for some z ∈ Ciph(n/r, n),
Ẽ(k, x) otherwise.

(38)

The distribution of E equals to the uniform distribution. B runs A, giving y as
the target image. B answers queries of A by using E. After A outputs a message
M = x‖z1‖ · · · ‖z� ∈ {0, 1}n+n

r ·�, B calculates x�−1 := HE
r,�−1(x‖z1‖ · · · ‖z�−1)

and outputs (z�, x�−1). Note that calculation of x�−1 does not need any query
to E′. Since DME′

(z�‖�,HE
r,�−1(x‖z1‖ · · · ‖z�−1)) = HE

r,�(M) = y holds, we have
Advinv

HE
r,�

(A) = Advinv
DME′ (B), and we obtain the desired bound (36) from Theo-

rem 5.1.
Next we show one-wayness, i.e. inequality (37). Similarly as in Sect. 5, we

reduce one-wayness to non-invertibility. Again, let Un be the uniform distribution
on {0, 1}n. Let V1 be the distribution of the random variable which takes values
in Ciph(m,n) × {0, 1}n and is defined by the following sampling:
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1. E
UE←−− Ciph(m,n), M

$←− {0, 1}n+n
r ·�

2. y ← HE
r,�(M)

3. return (E, y)

Then we have

Advow
HE

r,�
(A) ≤ Advinv

HE
r,�

(A) + Δ(V1, (UE , Un)). (39)

Below we upper bound Δ(V1, (UE , Un)) by using intermediate distributions
V2, . . . , V�. For 2 ≤ i ≤ �, let Vi be the distribution of the random variable
which takes values in {0, 1}n and is defined by the following sampling:

1. x‖zi‖ · · · ‖z�
$←− {0, 1}n+n

r (�−i+1)

2. hi−1 ← x
3. For j = i, . . . , �, do:
4. hj ← DME((zi‖i), hj−1)
5. y ← h�

Note that the above definition is valid even for i = 1, and the resulting dis-
tribution is equal to V1. By definition of our padding function pad, function
distributions of the compression functions which process the i-th block and j-th
block are essentially independent for i �= j. Thus, by Lemma 5.2 we have

Δ(Vi, Vi+1),Δ(V�, (UE , Un)) ≤ 2n + 1
2n/3r+1

+
n2

2n/r−2
(40)

for 1 ≤ i ≤ � − 1. Hence Δ(V1, (UE , Un)) is upper bounded by

�−1∑

i=1

Δ(Vi, Vi+1) + Δ(V�, (UE , Un)) ≤ � ·
(

2n + 1
2n/3r+1

+
n

2n/r−2

)

. (41)

Thus inequality (37) follows from inequality (39) and (41). ��
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Abstract. We propose a new construction of tweakable block ciphers
from standard block ciphers. Our construction, dubbed XHX2, is the cas-
cade of two independent XHX block ciphers, so it makes two calls to the
underlying block cipher using tweak-dependent keys. We prove the secu-
rity of XHX2 up to min{22(n+m)/3, 2n+m/2} queries (ignoring logarithmic
factors) in the ideal cipher model, when the block cipher operates on n-
bit blocks using m-bit keys. The XHX2 tweakable block cipher is the first
construction that achieves beyond-birthday-bound security with respect
to the input size of the underlying block cipher in the ideal cipher model.

Keywords: Tweakable block cipher
Beyond-birthday-bound security · Ideal cipher model

1 Introduction

Tweakable block ciphers, first introduced in [9], are a generalization of stan-
dard block ciphers that accept extra inputs called tweaks. The tweak, providing
inherent variability to the block cipher, makes it easy to design various higher
level cryptographic schemes such as message authentication codes and modes of
operation.

Tweakable block ciphers can either be designed from scratch [4,5,17], or
be built upon off-the-shelf cryptographic primitives such as block ciphers and
(public) permutations [3,8,11,14]. In this work, we will specifically focus on
block cipher-based constructions; one of the advantages of such constructions
is that the trust in extensively-studied block ciphers can be transferred to the
tweakable block ciphers via security reductions. In this line of research, it has
been suggested that changing tweaks should be cheaper than changing keys.
Following this principle, early proposals including LRW1 and LRW2 [8,9], and
their cascades used their underlying block ciphers with fixed keys, namely tweak
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independent keys. So changing tweaks does not require rekeying the underlying
block cipher. The security of tweakable block ciphers without tweak-rekeying
has typically been analyzed in the standard model, where the block cipher with
a secret random key is replaced by a secret random permutation.

Recently, a unified vision for the tweak and key inputs has been proposed
within the TWEAKEY framework [6]. From this point of view, tweakable block
ciphers using tweak dependent keys have been studied [10,18]. By using tweak
dependent keys, one might expect a higher level of security (than using fixed
keys), whereas the security of such constructions is typically analyzed in the
ideal cipher model.

Our Results. Suppose that a κ-bit key tweakable block cipher TBC has been
built on an m-bit key n-bit block cipher E (modeled as an ideal cipher). Typi-
cally, each evaluation of TBC would need a fixed number of calls to the under-
lying block cipher E, and hence O(2κ) block cipher queries will be sufficient to
mount an exhaustive key search on TBC. However, if n+m < κ, then one would
be able to find its secret key (in an information theoretic sense) by making all
possible 2n+m block cipher queries. Therefore, TBC will not be provably secure
beyond 2min{κ,n+m} queries in the ideal cipher model. In this line of research,
recent work has been aimed at achieving security beyond 2n/2 (precisely, 2n)
assuming κ = m = n [10,18]. This level of security is optimal, but still it is only
the birthday bound with respect to the input size of the ideal cipher, namely
n + m. If a tweakable block cipher accepts sufficiently large keys (for example,
if κ > n = m), then one might expect security beyond 2n. The problem that we
tackle in this paper is to construct a tweakable block cipher secure beyond the
birthday bound with respect to the input size of the underlying block cipher in
the ideal cipher model (as the counterpart of LRW2[2] in the standard model),
assuming κ > n + m.1

We begin with XHX proposed by Jha et al. [7]. Let E : {0, 1}m × {0, 1}n →
{0, 1}n be an m-bit key n-bit block cipher, let T be a tweak space, and let G and
H be families of functions g : T → {0, 1}n and h : T → {0, 1}m, respectively.
Then the XHX tweakable block cipher accepts a key (g, h) ∈ G × H and a tweak
t ∈ T , and encrypts a plaintext x ∈ {0, 1}n by computing

Eh(t)(x ⊕ g(t)) ⊕ g(t).

If G is δ-almost uniform and δ-almost XOR-universal, and if H is δ′-almost
uniform and δ′-almost universal with δ ≈ 1/2n and δ′ ≈ 1/2m, then XHX is
proved to be secure up to 2(n+m)/2 queries in the ideal cipher model.

Our main contribution is to prove the security of the cascade of two inde-
pendent XHX constructions (see Fig. 1), dubbed XHX2, up to

min{2
2(n+m)

3 , 2n+m
2 −log2 n}

1 This assumption is similar to the study of key length extension, where the key size
of the entire scheme is sometimes larger than the input size of the underlying block
cipher.
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queries. To the best of our knowledge, this is the first construction of a tweakable
block cipher that achieves beyond-birthday-bound security with respect to the
input size of the underlying block cipher.

For simplicity, we will prove the security of XHX2 under the assumption that
the first and the second block cipher calls are made to independent block ciphers.
However, in the ideal cipher model, a single key bit will be sufficient to separate
a single block cipher into two independent ones with negligible security loss.

We believe that our results are not only of theoretical interest, but also prac-
tically relevant in certain environments, in particular where stronger security is
required with block ciphers operating on (relatively) small blocks (e.g., CAST-
128 [1], KATAN, KTANTAN [2], Simeck [19]). For example, CAST-128 (used in
GPG and PGP) operates on 64-bit blocks using 128-bit keys. Based on this
block cipher, the resulting XHX2 provides 128-bit security (ignoring log fac-
tors and constants), while this level of security would not be achieved with any
other existing construction. On the other hand, the key schedule of the under-
lying block cipher should not be too simple (being secure against related-key
and known-/chosen-key distinguishing attacks) since every block cipher key is
supposed to define an independent permutation in our security model.

Comparison. A comparison of XHX2 with the existing tweakable block ciphers
is given in Table 1. In this table, security is evaluated by the threshold number of
queries in log2. In Min, |t| denotes the fixed tweak length. All the constructions
with tweak-rekeying are analyzed in the ideal cipher model, while the construc-
tions without tweak-rekeying are in the standard model. Efficiency is evaluated
by the number of block cipher calls, the number of multiplications or universal
hashes, and the use of tweak dependent keys (represented by TDK).

Table 1. Comparison of XHX2 with existing tweakable block ciphers.

Discussion. It is notable that our result for XHX2 implies beyond-birthday-
bound security for the cascade of two independent XTX [13] constructions (for
the first time).
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Fig. 1. Tweakable block cipher XHX2.

In typical TBC-based modes of operation (such as TBC, TAE [9] and
SCT [15]), nonces and counters are placed into the tweak; when the tweak size is
limited to the key size of the underlying block cipher, the hash computation can
be defined as a single multiplication, namely t · k for a hash key k and a tweak
t. In this case, different tweaks map to different block cipher keys, removing the
possibility of (C-14), and hence the term 2n+m/2 from the security bound.

Overview of the Proof. Our security proof is based on the standard H-
coefficient technique. We begin by defining a set of bad transcripts. The badness
will be determined solely by the choice of hash keys g1, g2, h1 and h2. Once
the hash keys are fixed, we can associate each construction query (t, x, y) with
a 5-tuple (h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t)), which will be called a
“reduced query”. As long as the hash keys are not bad, the reduced queries
will be all distinct. Let k = h1(t), l = h2(t), u = x ⊕ g1(t), v = y ⊕ g2(t) and
Δ = g1(t) ⊕ g2(t). The relation between a reduced query (k, l, u, v,Δ) and its
original query (t, x, y) can be pictorially represented as follows.

x u

t

k

Δ

t

l yv

The core of the proof is to show that the probabilities to obtain any good
transcript are close in the real and in the ideal world, or particularly, to tightly
lower bound the probability of obtaining a good transcript in the real world.
In the real world, randomness comes only from the underlying ideal ciphers E1

and E2. For example, suppose that E1(k, u) has been determined by a block
cipher query (i.e., query history QE). Then the probability that E1 and E2

complete the reduced query (k, l, u, v,Δ) becomes the probability that E2 maps
E1(k, u) ⊕ Δ to v with key l, where we can assume that E2(l, E1(k, u) ⊕ Δ)
and E−1

2 (l, v) have not been fixed excluding bad keys (of (C-9) and (C-10)).
Fixing E2(l, E1(k, u) ⊕ Δ) = v might affect the freedom of other construction
queries, making the analysis complicated. The notion of a reduced query helps
systematically dealing with this problem; we will carefully classify the reduced
queries into five classes, and compute the (conditional) probability of completing
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each class of queries one by one. This classification will be defined in detail at
Sect. 3.3.

2 Preliminaries

Basic Notation. In all the following, we fix positive integers m and n, and
denote N = 2n. Given a non-empty set X , x ←$ X denotes that x is chosen
uniformly at random from X . For a set X and an integer b ≥ 1, we write
x1, . . . , xb ∈�= X to mean that x1, . . . , xb are pairwise distinct elements of X .
The set of all sequences that consist of b pairwise distinct elements of X is
denoted X ∗b. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1)
and (a)0 = 1 by convention. If |X | = a, then (a)b becomes the size of |X ∗b|.
When two sets X and Y are disjoint, we denote X 	 Y their (disjoint) union.

Useful Lemma. The following lemma, viewed as a generalization of Lemma 5
in [3], will be used in the security proof of XHX2.

Lemma 1. Let N , a, b, c, d be positive integers such that a + b ≤ N/2, a + c ≤
N/2, d ≤ b and d ≤ c. Then

(N − d)a(N − b − c + d)a

(N − b)a(N − c)a
≥ 1 − 4a(b − d)(c − d)

N2
.

Due to the space limit, the proof of this lemma will be given in the full
version.

Uniform, Universal and XOR-Universal Hash Functions. We will need
the following definitions of almost uniform, almost universal (AU) and almost
XOR-universal (AXU) hash functions.

Definition 1. Let δ > 0, and let H be a family of functions h : T → Y for
non-empty sets T and Y.

1. H is said to be δ-almost uniform if for any x ∈ T and any y ∈ Y,

Pr [h ←$ H : h(x) = y] ≤ δ.

2. H is said to be δ-almost universal (δ-AU) if for any distinct x and x′ ∈ T ,

Pr [h ←$ H : h(x) = h(x′)] ≤ δ.

3. When Y = {0, 1}n, H is said to be δ-almost XOR-universal (δ-AXU) if for
any distinct x, x′ ∈ T and any y ∈ Y,

Pr [h ←$ H : h(x) ⊕ h(x′) = y] ≤ δ.

Remark 1. Hash functions in H are typically indexed by keys in a certain key
space, written as H : K × T → Y for a key space K. For example, let K = Y =
{0, 1}n and let T = {0, 1}dn \ {(0, . . . , 0)} for a positive integer d. Identifying
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{0, 1}n with a finite field GF(2n) with 2n elements and representing an element
t ∈ T as a concatenation of n-bit elements td, . . . , t1, define

H : K × T −→ {0, 1}n

(k, td|| . . . ||t1) 
−→ td · kd + · · · + t1 · k.

Then it is not hard to show that H is d
2n -almost uniform and d

2n -almost XOR-
universal. As seen in this example, for any n, one can define a δ-almost uniform
and δ-almost XOR-universal family of functions with n-bit key, n-bit output,
and δ ≈ 1/2n (ignoring d).

The Ideal Cipher Model. A block cipher with key space K and message
space X is a mapping E : K×X → X such that, for any key k ∈ K, x 
→ E(k, x)
is a permutation of X . Throughout this paper, we will fix K = {0, 1}m and
X = {0, 1}n, and write BC(m,n) to mean the set of all such block ciphers.

In the ideal cipher model, a block cipher E is chosen from BC(m,n) uniformly
at random. It allows for two types of oracle queries E(k, x) and E−1(k, y) for
x, y ∈ {0, 1}n and k ∈ {0, 1}m. The response to an inverse query E−1(k, y) is
x ∈ {0, 1}n such that E(k, x) = y.

Tweakable Block Ciphers. A tweakable permutation with tweak space T
and message space X is a mapping ˜P : T × X → X such that, for any tweak
t ∈ T , x 
→ ˜P (t, x) is a permutation of X . Throughout the paper, we will fix
X = {0, 1}n, and write Perm(T , n) to mean the set of all tweakable permutations
with tweak space T and message space {0, 1}n.

A tweakable block cipher TBC with key space K, tweak space T and message
space X is a mapping TBC : K × T × X → X such that for any key k ∈ K,
(t, x) 
→ TBC(k, t, x) is a tweakable permutation with tweak space T and message
space X .

Indistinguishability. For s ≥ 1, we will consider a tweakable block cipher
TBC based on a set of block ciphers

E = (E1, . . . , Es) ∈ BC(m,n)s.

So each key k ∈ K and a set of block ciphers E = (E1, . . . , Es) ∈ BC(m,n)s define
a tweakable permutation, denoted TBCk[E ], with tweak space T and message
space X . Specifically, we have s = 1 for XHX and s = 2 for XHX2, and X =
{0, 1}n for both constructions.

In the real world, a secret key k ∈ K is chosen uniformly at random. A
set of s block ciphers E1, . . . , Es are also chosen independently at random from
BC(m,n). A distinguisher D is given oracle access to TBCk[E ] as well as E =
(E1, . . . , Es). In the ideal world, D is given a random tweakable permutation
˜P ∈ Perm(T , n) instead of TBCk[E ]. However, oracle access to E = (E1, . . . , Es)
is still allowed in this world.
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The adversarial goal is to tell apart the two worlds (TBCk[E ], E) and ( ˜P , E)
by adaptively making forward and backward queries to the construction and
each of the block ciphers. Formally, D’s distinguishing advantage is defined by

AdvTBC(D) = Pr
[

˜P ←$ Perm(T , n), E ←$ BC(m,n)s : 1 ← DE, ˜P
]

− Pr
[

k ←$ K, E ←$ BC(m,n)s : 1 ← DE,TBCk[E]
]

.

For p, q > 0, we define

AdvTBC(p, q) = max
D

AdvTBC(D)

where the maximum is taken over all adversaries D making at most p queries to
each of the block ciphers and at most q queries to the outer tweakable permuta-
tion.

H-coefficient Technique. Suppose that a distinguisher D makes p queries to
each of the block ciphers, and q queries to the construction oracle. The queries
made to the construction oracle are recorded in a query history

QC = (ti, xi, yi)1≤i≤q.

So according to the instantiation, it would imply either TBCk[E ](ti, xi) = yi or
˜P (ti, xi) = yi. For j = 1, . . . , s, the queries made to Ej are recorded in a query
history

QEj
= (j, kj,i, uj,i, vj,i)1≤i≤p,

where (j, uj,i, vj,i) represents the evaluation Ej(kj,i, uj,i) = vj,i obtained by the
i-th query to Ej . We will often omit the index j when it is clear from context.
Let

QE = QE1 ∪ · · · ∪ QEs
.

Then the pair of query histories τ = (QC ,QE) will be called the transcript of
the attack: it contains all the information that D has obtained at the end of the
attack. In this work, we will only consider information theoretic distinguishers.
Therefore we can assume that a distinguisher is deterministic without making
any redundant query, and hence the output of D can be regarded as a function
of τ , denoted D(τ) or D(QC ,QE).

Fix a transcript τ = (QC ,QE), a key k ∈ K, a tweakable permutation
˜P ∈ Perm(T , n), a tuple of block ciphers E = (E1, . . . , Es) ∈ BC(m,n)s and
j ∈ {1, . . . , s}: if TBCk[E ](ti, xi) = yi (resp. ˜P (ti, xi) = yi) for every i = 1, . . . , q,
then we will write TBCk[E ] � QC (resp. ˜P � QC). Similarly, if Ej(kj,i, uj,i) = vj,i

for every i = 1, . . . , p, then we will write Ej � QEj
. We will write E � QE if

Ej � QEj
for every j = 1, . . . , s.

If there exist ˜P ∈ Perm(T , n) and E ∈ BC(m,n)s that outputs τ at the
end of the interaction with D, then we will call the transcript τ attainable. So
for any attainable transcript τ = (QC ,QE), there exist ˜P ∈ Perm(T , n) and
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E ∈ BC(m,n)s such that ˜P � QC and E � QE . For an attainable transcript
τ = (QC ,QE) and a key k ∈ K, let

pid(QC |QE) = Pr
[

˜P ←$ Perm(T , n), E ←$ BC(m,n)s : ˜P � QC

∣

∣

∣

∣

E � QE

]

,

pre(QC |QE) = Pr
[

k ←$ K, E ←$ BC(m,n)s : TBCk[E ] � QC

∣

∣

∣

∣

E � QE

]

,

pkre(QC |QE) = Pr
[

E ←$ BC(m,n)s : TBCk[E ] � QC

∣

∣

∣

∣

E � QE

]

.

With respect to an attainable transcript τ = (QC ,QE), we will define a set of
“bad” keys, denoted Kbad, such that the probability of a uniform random key
being bad is small, while the ratio pkre(QC |QE)/pid(QC |QE) is close to 1 for any
“good” key k ∈ K \ Kbad. With these definitions, the following lemma, the core
of the H-coefficients technique, will be also used in our security proof.

Lemma 2. Let ε1, ε2 > 0. Suppose that for any attainable transcript τ =
(QC ,QE), there exists Kbad ⊂ K such that |Kbad|/|K| ≤ ε1 and for any
k ∈ K \ Kbad

pkre(QC |QE) ≥ (1 − ε2)pid(QC |QE).

Then one has
AdvTBC(D) ≤ ε1 + ε2.

3 Security Proof for XHX2

Let E1, E2 : {0, 1}m × {0, 1}n → {0, 1}n be m-bit key n-bit block ciphers, let T
be a tweak space, and let G and H be families of hash functions g : T → {0, 1}n

and h : T → {0, 1}m, respectively. The XHX2 tweakable block cipher accepts a
key k = (g1, h1, g2, h2) ∈ K =def G ×H×G ×H and a tweak t ∈ T , and encrypts
a plaintext x ∈ {0, 1}n by computing

E2 (h2(t), E1(h1(t), x ⊕ g1(t)) ⊕ g1(t) ⊕ g2(t)) ⊕ g2(t).

Theorem 1. Let δ, δ′ > 0, let G be a δ-almost uniform and universal family of
hash functions from T to {0, 1}n and let H be a δ′-almost uniform and XOR-
universal family of hash functions from T to {0, 1}m. Then for any integers p
and q, one has

AdvXHX2(p, q) ≤ 64p
2
3 q

2
3 δδ′ +

256(8q3 + 2pq2)
1
2 δ

1
2 δ′

N
1
2

+
160(16q3 + 8pq2 + p2q)

1
2 δ′

N

+ 256(16q3 + 8pq2 + 2q2 + 3p2q)δ2(δ′)2 +
131072n2q2δ′

N2
.
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3.1 Giving Free Queries to the Distinguisher

For the security proof of XHX2, we will make an additional assumption on the
attack model; a distinguisher D will be given free queries at the end of the attack
by the following rule.

1. If D has made N/4 or more block cipher queries to E1 (resp. E2) for a fixed key
k ∈ {0, 1}m, then D will be given E1(k, u) (resp. E2(k, u)) for all unqueried
u (if any).

2. If D has made N/16 or more queries to the construction oracle C for a fixed
tweak t ∈ T , then D will be given C(t, x) for all unqueried x (if any).

This modification would not degrade the adversarial distinguishing advantage
since D is free to ignore the additional information. Suppose that D makes at
most p queries to each of the block ciphers and at most q queries to the outer
tweakable permutation. Then the number of free queries given to D is upper
bounded by 3p for each block cipher, and by 15q for the tweakable permutation.
So this assumption can be viewed as transforming D into a new distinguisher D′

that

(i) makes at most 4p queries to each of the block ciphers and at most 16q
queries to the outer tweakable permutation;

(ii) makes either all N queries or less than N/4 queries for each key and each
of the block ciphers;

(iii) makes either all N queries or less than N/16 construction queries for each
tweak.

Let
Adv∗

TBC(p, q) = max
D′

AdvTBC(D′)

where the maximum is taken over all adversaries D′ that make at most p queries
to each of the block ciphers and at most q queries to the outer tweakable per-
mutation satisfying conditions (ii) and (iii). Then we have

AdvXHX2(p, q) ≤ Adv∗
XHX2(4p, 16q). (1)

Henceforth, we will assume that a modified adversary D′ makes p primitive
queries to each of the block ciphers and q construction queries.

For an attainable transcript τ = (QC ,QE), we will use the following nota-
tions: for r, s ∈ {0, 1}m, and w ∈ T ,

QE1(r) = {(k, u, v) ∈ QE1 : k = r},

QE2(s) = {(l, u, v) ∈ QE2 : l = s},

QC(w) = {(t, x, y) ∈ QC : t = w}.

Note that either |QEi
(r)| < N/4 or |QEi

(r)| = N for any r ∈ {0, 1}m and
i = 1, 2. Similarly, we have either |QC(w)| < N/16 or |QC(w)| = N for any
w ∈ T . In particular, we will write

T ∗ = {t ∈ T : |QC(t)| = N}, Q∗
C =

⊔

t∈T ∗

QC(t).
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3.2 Bad Keys

Fix an attainable transcript τ = (QC ,QE), and positive integers M1,M2,M3

(that will be optimized later). Let

A1 = {((t, x, y), (k, u, v)) ∈ QC × QE1 : (h1(t), x ⊕ g1(t)) = (k, u)},

A2 = {((t, x, y), (k, u, v)) ∈ QC × QE2 : (h2(t), y ⊕ g2(t)) = (k, v)},

B1 = {((t, x, y), (t′, x′, y′)) ∈ Q∗2
C : ∃(t′′, x′′, y′′) �= (t, x, y), (t′, x′, y′) such that

x ⊕ g1(t) = x′′ ⊕ g1(t
′′), h1(t) = h1(t

′′), h2(t) = h2(t
′)},

B2 = {((t, x, y), (t′, x′, y′)) ∈ Q∗2
C : ∃(t′′, x′′, y′′) �= (t, x, y), (t′, x′, y′) such that

y ⊕ g2(t) = y′′ ⊕ g2(t
′′), h2(t) = h2(t

′′), h1(t) = h1(t
′)},

B3 = {((t, x, y), (k, u, v)) ∈ QC × QE1 : ∃(t′, x′, y′) �= (t, x, y) such that

y ⊕ g2(t) = y′ ⊕ g2(t
′), h2(t) = h2(t

′), h1(t) = k},

B4 = {((t, x, y), (k, u, v)) ∈ QC × QE2 : ∃(t′, x′, y′) �= (t, x, y) such that

x ⊕ g1(t) = x′ ⊕ g1(t
′), h1(t) = h1(t

′), h2(t) = k},

C1 = {((t, x, y), (t′, x′, y′), (t′′, x′′, y′′)) ∈ Q3
C :

t �= t′, t �= t′′, h1(t) = h1(t
′), h2(t) = h2(t

′′)},

C2 = {((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE1 :

t �= t′, h2(t) = h2(t
′), h1(t) = k},

C3 = {((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE2 :

t �= t′, h1(t) = h1(t
′), h2(t) = k},

C4 = {((t, x, y), (k, u, v), (k′, u′, v′)) ∈ QC × QE1 × QE2 : h1(t) = k, h2(t) = k′}.

A key k = (g1, h1, g2, h2) ∈ K is defined to be bad if one of the following
conditions is fulfilled:

(C-1) |Ai| ≥ M1 for some i = 1, 2;
(C-2) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v), (k′, u′, v′) ∈ QE1 such

that

(h1(t), x ⊕ g1(t)) = (k, u),
(h1(t′), x′ ⊕ g1(t′)) = (k′, u′),

(h2(t), v ⊕ g1(t) ⊕ g2(t)) = (h2(t′), v′ ⊕ g1(t′) ⊕ g2(t′));

(C-3) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v), (k′, u′, v′) ∈ QE2 such
that

(h2(t), y ⊕ g2(t)) = (k, v),
(h2(t′), y′ ⊕ g2(t′)) = (k′, v′),

(h1(t), u ⊕ g1(t) ⊕ g2(t)) = (h1(t′), u′ ⊕ g1(t′) ⊕ g2(t′));

(C-4) |Bi| ≥ M2 for some i = 1, 2, 3, 4;
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(C-5) |Ci| ≥ M3 for some i = 1, 2, 3, 4;
(C-6) there exist (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC such that (t, x, y) �=

(t′, x′, y′), (t, x, y) �= (t′′, x′′, y′′) and

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), y ⊕ g2(t)) = (h2(t′′), y′′ ⊕ g2(t′′));

(C-7) there exist (t, x, y), (t′, x′, y′) ∈�= QC such that

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), g1(t) ⊕ g2(t)) = (h2(t′), g1(t′) ⊕ g2(t′));

(C-8) there exist (t, x, y), (t′, x′, y′) ∈�= QC such that

(h1(t), g1(t) ⊕ g2(t)) = (h1(t′), g1(t′) ⊕ g2(t′)),
(h2(t), y ⊕ g2(t)) = (h2(t′), y′ ⊕ g2(t′));

(C-9) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), y ⊕ g2(t)) = (k′, v′);

(C-10) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), v ⊕ g1(t) ⊕ g2(t)) = (k′, u′);

(C-11) there exist (t, x, y) ∈ QC , (k, u, v) ∈ QE1 and (k′, u′, v′) ∈ QE2 such that

(h1(t), u′ ⊕ g1(t) ⊕ g2(t)) = (k, v),
(h2(t), y ⊕ g2(t)) = (k′, v′);

(C-12) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v) ∈ QE1 such that

(h1(t), x ⊕ g1(t)) = (k, u),
(h2(t), y ⊕ g2(t)) = (h2(t′), y′ ⊕ g2(t′));

(C-13) there exist (t, x, y), (t′, x′, y′) ∈�= QC and (k, u, v) ∈ QE2 such that

(h1(t), x ⊕ g1(t)) = (h1(t′), x′ ⊕ g1(t′)),
(h2(t), y ⊕ g2(t)) = (k, v);

(C-14) there exist k ∈ {0, 1}m and h ∈ {h1, h2} such that

N

4
≤ |{(t, x, y) ∈ QC \ Q∗

C : h(t) = k}|.
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Fig. 2. Reduced queries that make bad conditions (C-2), (C-3) and (C-6) to
(C-13). Black dots (resp. white dots) represent values fixed by QE1 and QE2 (resp.
free values).
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Figure 2 pictorially represents bad conditions (C-2), (C-3) and (C-6) to (C-13)
in terms of reduced queries (as defined in Sect. 3.3). The probability of having
bad keys in the ideal world is upper bounded as follows.

Lemma 3. For an attainable transcript τ = (QC ,QE), let Kbad be the set of
bad keys defined as above. Then we have

|Kbad|
|K| ≤ 2pqδδ′

M1
+ 2M2

1 δδ′ +
(2q3 + 2pq2)δ(δ′)2

M2
+

(q3 + 2pq2 + p2q)(δ′)2

M3

+ (q3 + 2pq2 + 2q2 + 3p2q)δ2(δ′)2 +
512n2q2δ′

N2
.

For i = 1, . . . , 14, let Ei denote the event that a uniform random key k ∈ K
satisfies condition (C-i). Then we have

|Kbad|
|K| ≤ Pr [E1 ∨ E2 ∨ E3] +

14
∑

i=4

Pr [Ei] . (2)

Here we only upper bound Pr [E14]; the analysis of the other events are rather
straightforward. Due to the space limit, the complete proof will be given in the
full version.

Upper Bounding. Pr [E14]. Let

T i = {w ∈ T : 2i−1 ≤ |QC(w)| < 2i},

Qi
C = {(t, x, y) ∈ QC(w) : w ∈ T i},

for i = 1, . . . , n − 4. Then we have

T \ T ∗ =
n−4
⊔

i=1

T i, QC \ Q∗
C =

n−4
⊔

i=1

Qi
C .

For each h ∈ {h1, h2} and i ∈ {1, . . . , n − 4}, we define two random variables

Xi = |{(t, t′) ∈ (T i)∗2 : h(t) = h(t′)}|,
Yi = max

∃t1,...,t�∈ �=T i s.t.
h(t1)=···=h(t�)

�.

Since |T i| ≤ q
2i−1 and by the δ′-almost uniformity of H, we have

E[Xi] ≤ |T i|(|T i| − 1)δ′ ≤
( q

2i−1

)2

δ′

for i = 1, . . . , n − 4. Since Yi(Yi − 1) ≤ Xi and by Markov’s inequality, we have

Pr

[

Yi ≥ q
√

Cδ′

2i−1
+ 1

]

≤ Pr

⎡

⎣Yi(Yi − 1) ≥
(

q
√

Cδ′

2i−1

)2
⎤

⎦

≤ Pr
[

Xi ≥ C
( q

2i−1

)2

δ′
]

≤ 1
C
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for any C > 0. Therefore, for each k ∈ {0, 1}m and h ∈ {h1, h2}, we have

|{(t, x, y) ∈ QC \ Q∗
C : h(t) = k}| <

n−4
∑

i=1

Yi2i <

n−4
∑

i=1

(

q
√

Cδ′

2i−1
+ 1

)

2i

< 2nq
√

Cδ′ +
N

8

except with probability at most n/C. By letting C =
(

N
16nq

)2
1
δ′ (satisfying

2nq
√

Cδ′ = N/8), we have

Pr [E14] ≤ 512n2q2δ′

N2
. (3)

3.3 Lower Bounding pkre(QC |QE )/pid(QC |QE ) For a Good Key

This section will be devoted to the proof of the following lemma.

Lemma 4. For an attainable transcript τ = (QC ,QE) and a good key k =
(g1, h1, g2, h2) ∈ K, one has

pkre(QC |QE)
pid(QC |QE)

≥ 1 −
(

16M2

N
+

16M3

N2

)

.

3.3.1 Useful Definitions and Properties
Let

QC = {(h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t)) : (t, x, y) ∈ QC}.

The elements of QC will be called reduced queries (or simply queries). The
reduced queries of QC are all distinct, namely, if (t, x, y) �= (t′, x′, y′), then

(h1(t), h2(t), x ⊕ g1(t), y ⊕ g2(t), g1(t) ⊕ g2(t))
�= (h1(t′), h2(t′), x ⊕ g1(t′), y ⊕ g2(t′), g1(t′) ⊕ g2(t′))

since k does not satisfy condition (C-6). Let

Q(1) = {(k, l, u, v,Δ) ∈ QC : (k, u, ∗) ∈ QE1 for some ∗ ∈ {0, 1}n},

Q(2) = {(k, l, u, v,Δ) ∈ QC : (l, ∗, v) ∈ QE2 for some ∗ ∈ {0, 1}n},

Q(3) = {(k, l, u, v,Δ) ∈ QC : ∃(k′, l′, u′, v′,Δ′) ∈ QC such that

(k′, l′, u′, v′,Δ′) �= (k, l, u, v,Δ), (k′, u′) = (k, u)} \ Q(1),

Q(4) = {(k, l, u, v,Δ) ∈ QC : ∃(k′, l′, u′, v′,Δ′) ∈ QC such that

(k′, l′, u′, v′,Δ′) �= (k, l, u, v,Δ), (l′, v′) = (l, v)} \ Q(2),

Q(5) = QC \
(

4
⋃

i=1

Q(i)

)

.

Each class of queries are pictorially represented in Fig. 3.
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Fig. 3. Reduced queries in Q(i), i = 1, 2, 3, 4, 5. Black dots represent values fixed by
QE1 and QE2 , while white dots are “free”. Two distinct dots on each side do not
necessarily correspond to distinct values.

Property 1. Sets Q(i), i = 1, 2, 3, 4, 5, partition QC , namely,

QC =
5
⊔

i=1

Q(i).

Proof. The union of Q(i), i = 1, 2, 3, 4, 5, is QC by the definition of Q(5). Fur-
thermore, they are pairwise disjoint; in particular,

1. Q(1) ∩ Q(2) = ∅ by excluding bad keys satisfying (C-9);
2. Q(1) ∩ Q(4) = ∅ by excluding bad keys satisfying (C-12);
3. Q(2) ∩ Q(3) = ∅ by excluding bad keys satisfying (C-13);
4. Q(3) ∩ Q(4) = ∅ by excluding bad keys satisfying (C-6).

�	

We will further classify the queries and count each class using the following
notations.

1. For r, s ∈ {0, 1}m, d ∈ {0, 1}n and i ∈ {1, 2, 3, 4, 5}, let

Q(i)
r,s,d = {(k, l, u, v,Δ) ∈ Q(i) : (k, l,Δ) = (r, s, d)},
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and let

Q(i)
r,s =

⊔

d∈{0,1}n

Q(i)
r,s,d, Q(i)

r,∗ =
⊔

l∈{0,1}m

Q(i)
r,l , Q(i)

∗,s =
⊔

k∈{0,1}m

Q(i)
k,s.

2. For w ∈ T , r, s ∈ {0, 1}m, d ∈ {0, 1}n and i ∈ {1, 2, 3, 4, 5}, let

qw = |QC(w)|, pr,∗ = |QE1(r)|, p∗,s = |QE2(s)|,
q
(i)
r,s,d = |Q(i)

r,s,d|, q(i)r,s = |Q(i)
r,s|,

q
(i)
r,∗ = |Q(i)

r,∗|, q
(i)
∗,s = |Q(i)

∗,s|.

Given the partition of the queries, we can also define the following sets.

1. For r, s ∈ {0, 1}m, let

U1(r) = {u ∈ {0, 1}n : ∃v ∈ {0, 1}n such that (u, v) ∈ QE1(r)},

V1(r) = {v ∈ {0, 1}n : ∃u ∈ {0, 1}n such that (u, v) ∈ QE1(r)},

U2(s) = {u ∈ {0, 1}n : ∃v ∈ {0, 1}n such that (u, v) ∈ QE2(s)},

V2(s) = {v ∈ {0, 1}n : ∃u ∈ {0, 1}n such that (u, v) ∈ QE2(s)}.

2. For r, s ∈ {0, 1}m and i ∈ {1, 2, 3, 4, 5}, let

U
(i)
1 (r) = {u ∈ {0, 1}n : ∃s, v,Δ such that (r, s, u, v,Δ) ∈ Q(i)},

V
(i)
2 (s) = {v ∈ {0, 1}n : ∃r, u,Δ such that (r, s, u, v,Δ) ∈ Q(i)}.

Sets U
(i)
1 (r) and V

(i)
2 (s), i = 1, 2, 3, 4, 5, are pictorially represented in Fig. 4. We

have the following properties on these sets.

Property 2. For r, s ∈ {0, 1}m, one has

1. U
(1)
1 (r) ⊂ U1(r);

2. U1(r) and U
(i)
1 (r), i = 2, 3, 4, 5, are pairwise disjoint;

3. V
(1)
2 (s) ⊂ V2(s);

4. V2(s) and V
(i)
2 (s), i = 1, 3, 4, 5, are pairwise disjoint.

Proof. By definition, U
(1)
1 (r) ⊂ U1(r). U1(r) and U

(2)
1 (r) are disjoint by exclud-

ing bad keys of (C-9); U1(r) and U
(3)
1 (r) are disjoint since Q(1) and Q(3) are

disjoint; U1(r) and U
(4)
1 (r) are disjoint by excluding bad keys of (C-12); U

(2)
1 (r)

and U
(3)
1 (r) are disjoint by excluding bad keys of (C-13); U

(2)
1 (r) and U

(4)
1 (r)

are disjoint by excluding bad keys of (C-13) and since Q(2) and Q(4) are dis-
joint; U

(3)
1 (r) and U

(4)
1 (r) are disjoint by excluding bad keys of (C-6). Since

Q(1)∪Q(2)∪Q(3)∪Q(4) and Q(5) are disjoint, U
(1)
1 (r)∪U

(2)
1 (r)∪U

(3)
1 (r)∪U

(4)
1 (r)

and U
(5)
1 (r) are also disjoint. The remaining properties are proved similarly. �	
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Fig. 4. Sets U
(i)
1 (r) and V

(i)
2 (s), i = 1, 2, 3, 4, 5. As in Fig. 3, black dots (resp. white

dots) represent values fixed by QE1 and QE2 (resp. free values). Distinct dots on each
side do not necessarily correspond to distinct values.
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Property 3. For r, s ∈ {0, 1}m, one has

1. |U1(r)| = |V1(r)| = pr,∗;
2. |U2(s)| = |V2(s)| = p∗,s;
3. |U (i)

1 (r)| = q
(i)
r,∗ for i = 2, 4, 5;

4. |V (i)
2 (s)| = q

(i)
∗,s for i = 1, 3, 5.

Proof. It is straightforward to prove the first two properties. Every
(k, l, u, v,Δ) ∈ Q(2)

r,∗ (resp. Q(4)
r,∗) contains a distinct u since otherwise we would

find queries satisfying (C-13) (resp. (C-6)), which implies |U (2)
1 (r)| = q

(2)
r,∗ (resp.

|U (4)
1 (r)| = q

(4)
r,∗). We also have |U (5)

1 (r)| = q
(5)
r,∗ since Q(5) and Q(3) are disjoint.

The last property is proved similarly. �	

We define a
(3)
r,∗ = |U (3)

1 (r)| and a
(4)
∗,s = |V (4)

2 (s)|.

Property 4. For r, s ∈ {0, 1}m and d ∈ {0, 1}n, one has

1. pr,∗ ≥ q
(1)
r,s,d;

2. p∗,s ≥ q
(2)
r,s,d;

3. a
(3)
r,∗ ≥ q

(3)
r,s,d;

4. a
(4)
∗,s ≥ q

(4)
r,s,d.

Proof. Every (k, l, u, v,Δ) ∈ Q(1)
r,s,d contains a distinct u since otherwise we would

find queries satisfying (C-7). Therefore we have pr,∗ = |U1(r)| ≥ q
(1)
r,s,d. The other

properties are proved similarly. �	

For a subset Q ⊂ QC , we will write (E1, E2) � Q if

E2(l, E1(k, u) ⊕ Δ) = v

for every (k, l, u, v,Δ) ∈ Q. With this notation, let

p1 = Pr
[
(E1, E2) � Q(1) ∪ Q(2)

∣∣∣E1 � QE1 ∧ E2 � QE2

]
,

p2 = Pr
[
(E1, E2) � Q(3) ∪ Q(4)

∣∣∣E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) � Q(1) ∪ Q(2)
]
,

p3 = Pr

[
(E1, E2) � Q(5)

∣∣∣E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) �
4⋃

i=1

Q(i)

]
.

Then we have

pkre(QC |QE) = Pr
[

(E1, E2) � QC |E1 � QE1 ∧ E2 � QE2

]

= p1 · p2 · p3. (4)

3.3.2 Computing p1
Suppose that (k, l, u, v,Δ) ∈ Q(1). It means that E1(k, u) has been already
determined by QE1 . In order for (E1, E2) to complete this query, E2 should
map E1(k, u) ⊕ Δ to v with key l. In this situation, the following properties are
noteworthy.
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1. Not either E−1
2 (l, v) or E2(l, E1(k, u)⊕Δ) has been determined by QE2 since

k does not satisfy either (C-9) or (C-10).
2. There is no collision on the input to E2 by the queries of Q(1); precisely,

for any (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(1) such that l = l′, we have
E1(k, u) ⊕ Δ �= E1(k′, u′) ⊕ Δ′ since k does not satisfy (C-2).

3. There is no collision on the output from E2 by any other query of QC ; pre-
cisely, for any distinct queries (k, l, u, v,Δ) ∈ Q(1) and (k′, l′, u′, v′,Δ′) ∈ QC

such that l = l′, we have v �= v′ since k does not satisfy (C-12).

For a fixed s ∈ {0, 1}m, QE2 determines p∗,s evaluations of E2(s, ·). On the
other hand, the number of queries (k, l, u, v,Δ) ∈ Q(1) such that l = s is q

(1)
∗,s (by

definition). Such queries determine all different inputs and outputs of E2(s, ·), so
E2(s, ·) would complete the queries with probability 1/(N − p∗,s)q

(1)
∗,s

. Therefore
we have

Pr
[

(E1, E2) � Q(1)
∣

∣

∣E1 � QE1 ∧ E2 � QE2

]

=
∏

s∈{0,1}m

1
(N − p∗,s)q

(1)
∗,s

.

Applying a similar argument to Q(2) (excluding bad key satisfying (C-3), (C-9),
(C-11) or (C-13)), we have

p1 =
∏

r∈{0,1}m

1
(N − pr,∗)q

(2)
r,∗

·
∏

s∈{0,1}m

1
(N − p∗,s)q

(1)
∗,s

. (5)

3.3.3 Computing p2
Subject to

E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) � Q(1) ∪ Q(2),

we will lower bound the probability of completing the reduced queries of Q(3) ∪
Q(4) when extending the evaluations of E1 and E2. For r, s ∈ {0, 1}m, we can
fix

V
(2)
1 (r)

def= {E1(r, u) : u ∈ U
(2)
1 (r)},

U
(1)
2 (s)

def= {E−1
2 (s, v) : v ∈ V

(1)
2 (s)}.

Property 5. For any r ∈ {0, 1}m such that U
(3)
1 (r) �= ∅, |V1(r) ∪ V

(2)
1 (r)| < N/2.

Proof. We distinguish two cases.

Case (1) There exists no tweak w ∈ T ∗ such that h1(w) = r. In this case,
(i) |V1(r)| < N/4 since we have modified the adversary so that the number of

block cipher queries is either N or less than N/4 (for any fixed key), and
U

(3)
1 (r) being nonempty implies that the number of block cipher queries

cannot be N , and
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(ii) |V (2)
1 (r)| < N/4 since we are excluding bad keys of (C-14) (with no tweak

w in T ∗ such that h1(w) = r).
Therefore we have

|V1(r) ∪ V
(2)
1 (r)| ≤ |V1(r)| + |V (2)

1 (r)| <
N

4
+

N

4
=

N

2
.

Case (2) There exists w ∈ T ∗ such that h1(w) = r; we again distinguish three
cases. Let s = h2(w).

(i) |QE1(r)| = N ; we have U1(r) = {0, 1}n, and hence U
(3)
1 (r) = ∅.

(ii) |QE2(s)| = N ; since w ∈ T ∗, all possible N construction queries are made
with tweak w, and they are all contained in Q(2) since |QE2(s)| = N for
s = h2(w). This means that U

(2)
1 (r) = {0, 1}n. Since U

(2)
1 (r) and U

(3)
1 (r)

are disjoint by Property 2, we have U
(3)
1 (r) = ∅.

(iii) |QE1(r)|, |QE2(s)| < N/4; there is no query (k, l, u, v,Δ) ∈ Q(2) such
that k = r and l �= s since otherwise we will see queries satisfying (C-
13). Therefore |V (2)

1 (r)| counts the number of queries (k, l, u, v,Δ) ∈ Q(2)

such that k = r and l = s. Such queries correspond to queries in QE2(s),
where |QE2(s)| < N/4. Since |V1(r)| ≤ |QE1(r)| < N/4, we have |V1(r) ∪
V

(2)
1 (r)| < N/2. �	

Similarly, we can prove the following property.

Property 6. For any s ∈ {0, 1}m such that V
(4)
2 (s) �= ∅, |U2(s) ∪ U

(1)
2 (s)| < N/2.

In order to estimate the probability that E1 and E2 complete Q(3) ∪ Q(4),
we will choose an (ordered) set of a

(3)
r,∗( = |U (3)

1 (r)|) elements, denoted V
(3)
1 (r),

from {0, 1}n \ (V1(r) ∪ V
(2)
1 (r)) for each r ∈ {0, 1}m. Once V

(3)
1 (r) is chosen, we

will compute the probability that the queries of Q(3) are completed satisfying
E1(r, U

(3)
1 (r)) = V

(3)
1 (r).2 Similarly, for each s ∈ {0, 1}m, we will choose a set of

a
(4)
∗,s elements, denoted U

(4)
2 (s), from {0, 1}n \ (U2(s)∪U

(1)
2 (s)), and compute the

probability that the queries of Q(4) are completed via the elements of U
(4)
2 (s) (as

E−1
2 (l, v)).

Without any restriction, the number of ways of choosing V
(3)
1 (r) and U

(4)
2 (s)

(over all the keys r, s ∈ {0, 1}m) would be
∏

r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗

·
∏

s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a

(4)
∗,s

.

However, in order to make the analysis simpler, we will avoid certain bad con-
ditions when choosing V

(3)
1 (r) and U

(4)
2 (s); suppose that y has been chosen as

E1(r, u) from {0, 1}n \ (V1(r)∪V
(2)
1 (r)) for a query (r, s, u, v,Δ) ∈ Q(3). In order

2 U
(3)
1 (r) and V

(3)
1 (r) are viewed as ordered sets, and E1(r, U

(3)
1 (r)) = V

(3)
1 (r) means

that each element of U
(3)
1 (r) is mapped to the corresponding element of V

(3)
1 (r) (with

respect to the ordering) under E1(r, ·).
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for E2 complete this query, one should have E2(s, y⊕Δ) = v. Here we would like
the element y ⊕ Δ to be “free”, namely to lie outside U2(s) ∪ U

(1)
2 (s) ∪ U

(4)
2 (s).

We would also like the elements y ⊕ Δ to be all distinct for each key of E2.
Similarly, for each element x that has been chosen as E−1

2 (s, v) for a query
(r, s, u, v,Δ) ∈ Q(4), we would like x⊕Δ to be outside V1(r)∪V

(2)
1 (r)∪V

(3)
1 (r).

For each key of E1, there should be no collision between x ⊕ Δ. More precisely,
the undesirable “colliding” events can be classified as follows.3

Col1 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (l′, u′, v′) ∈ QE2 such that
l = l′ and E1(k, u) ⊕ Δ = u′.

Col2 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (k′, l′, u′, v′,Δ′) ∈ Q(1) such that

l = l′ and E1(k, u) ⊕ Δ = E−1
2 (l′, v′).

Col3 ⇔ there exist (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(3) such that
l = l′ and E1(k, u) ⊕ Δ = E1(k′, u′) ⊕ Δ′.

Col4 ⇔ there exist (k, l, u, v,Δ) ∈ Q(3) and (k′, l′, u′, v′,Δ′) ∈ Q(4) such that

l = l′ and E1(k, u) ⊕ Δ = E−1
2 (l′, v′).

Col5 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, u′, v′) ∈ QE1 such that

k = k′ and E−1
2 (l, v) ⊕ Δ = v′.

Col6 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, l′, u′, v′,Δ′) ∈ Q(2) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E1(k′, u′).

Col7 ⇔ there exist (k, l, u, v,Δ) ∈ Q(4) and (k′, l′, u′, v′,Δ′) ∈ Q(3) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E1(k′, u′).

Col8 ⇔ there exist (k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈�= Q(4) such that

k = k′ and E−1
2 (l, v) ⊕ Δ = E−1

2 (l′, v′) ⊕ Δ′.

Property 7. The probabilities of Coli, i = 1, . . . , 8, (over random choices of
V

(3)
1 (r) and U

(4)
2 (s)) are all upper bounded by 2M2/N .

Proof. To estimate the probability of Col3, consider pairs of distinct queries
(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′) ∈ Q(3) such that l = l′. The set of such pairs can
be partitioned into the following two types;

1. there exists a query (k′′, l′′, u′′, v′′,Δ′′) such that (k′′, u′′) = (k, u) and

(k′′, l′′, u′′, v′′,Δ′′) /∈ {(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′)};

2. there exists no query (k′′, l′′, u′′, v′′,Δ′′) such that (k′′, u′′) = (k, u) and

(k′′, l′′, u′′, v′′,Δ′′) /∈ {(k, l, u, v,Δ), (k′, l′, u′, v′,Δ′)}.

3 For (k, l, u, v, Δ) ∈ Q(3) ∪ Q(4), we will write E1(k, u) and E−1
2 (l, v) to denote the

elements determined by the choice of V
(3)
1 (k) and U

(4)
2 (l), respectively.
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Since (k, l, u, v,Δ) ∈ Q(3), one always has a query (k∗, l∗, u∗, v∗,Δ∗) such that
(k∗, u∗) = (k, u) and (k∗, l∗, u∗, v∗,Δ∗) �= (k, l, u, v,Δ), so if a pair of queries falls
into the second type, then it means that (k∗, l∗, u∗, v∗,Δ∗) = (k′, l′, u′, v′,Δ′),
and hence (k, l, u) = (k′, l′, u′). Then by excluding bad keys of (C-7), we have
Δ �= Δ′. So for any pair of queries of the second type, it cannot be the case that
E1(k, u)⊕Δ = E1(k′, u′)⊕Δ′. On the other hand, the number of the pairs of the
first type is upper bounded by |B1|, which is smaller than M2 by excluding bad
keys of (C-4). For each pair, the probability that E1(k, u)⊕Δ = E1(k′, u′)⊕Δ′ is
upper bounded by 2/N (since |{0, 1}n \ (V1(r)∪V

(2)
1 (r))| > N/2 by Property 5).

Therefore, we have

Pr [Col3] ≤ 2M2

N
.

The other bounds are proved similarly. �	

The number of ways of choosing V
(3)
1 (r) and U

(4)
2 (s) over all r, s ∈ {0, 1}m,

without fulfilling any of the bad conditions Coli, i = 1, . . . , 8, is lower bounded
by

∏

r∈{0,1}m

(N−pr,∗−q
(2)
r,∗)

a
(3)
r,∗

·
∏

s∈{0,1}m

(N−p∗,s−q
(1)
∗,s)a

(4)
∗,s

·
(

1 −
8
∑

i=1

Pr [Coli]

)

. (6)

For each of “good” choices for V
(3)
1 (r) and U

(4)
2 (s), (E1, E2) complete the queries

of Q(3) and Q(4) (via V
(3)
1 (r) and U

(4)
2 (s), respectively) with probability

1
∏

r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗+q

(4)
r,∗

·
∏

s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a

(4)
∗,s+q

(3)
∗,s

. (7)

By (6), (7) and Property 7, we have

p2 ≥

∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a(4)

∗,s
·
(

1 −
8∑

i=1

Pr [Coli]

)

∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗)

a
(3)
r,∗+q

(4)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s)a(4)

∗,s+q
(3)
∗,s

≥ 1∏
r∈{0,1}m

(N − pr,∗ − q
(2)
r,∗ − a

(3)
r,∗)

q
(4)
r,∗

· ∏
s∈{0,1}m

(N − p∗,s − q
(1)
∗,s − a

(4)
∗,s)q(3)∗,s

×
(

1 − 16M2

N

)
. (8)
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3.3.4 Computing p3
Subject to

E1 � QE1 ∧ E2 � QE2 ∧ (E1, E2) �
4
⋃

i=1

Q(i), (9)

we can fix
br

def= pr,∗ + q
(2)
r,∗ + a

(3)
r,∗ + q

(4)
r,∗ (10)

evaluations of E1(r, ·) and

cs
def= p∗,s + q

(1)
∗,s + q

(3)
∗,s + a

(4)
∗,s (11)

evaluations of E2(s, ·) for each (r, s) ∈ {0, 1}m × {0, 1}m. Let

Q(5)
1 = {(r, s, u, v,Δ) ∈ Q(5) : r = h1(t) and s = h2(t) for some t ∈ T ∗},

Q(5)
2 = {(r, s, u, v,Δ) ∈ Q(5) : r �= h1(t) and s �= h2(t) for every t ∈ T ∗}.

Let

R = {r ∈ {0, 1}m : r = h1(t) for some t ∈ T ∗},

S = {s ∈ {0, 1}m : s = h2(t) for some t ∈ T ∗},

and let R′ = {0, 1}m \ R and S ′ = {0, 1}m \ S.

Property 8. With the above definitions, the following hold:

1. Q(5) is partitioned into Q(5)
1 and Q(5)

2 , namely, Q(5) = Q(5)
1 	 Q(5)

2 ;

2. Q(5)
1 =

⊔

(r,s)∈R×S
Q(5)

r,s ;

3. Q(5)
2 =

⊔

(r,s)∈R′×S′
Q(5)

r,s ;

4. Q(5)
r,s = ∅ for (r, s) /∈ (R × S) ∪ (R′ × S ′).

Proof. By definition, we have

Q(5)
1 ⊂

⊔

(r,s)∈R×S
Q(5)

r,s , Q(5)
2 ⊂

⊔

(r,s)∈R′×S′

Q(5)
r,s ,

Q(5)
1 ∪ Q(5)

2 ⊂ Q(5) =
⊔

(r,s)∈(R∪R′)×(S∪S′)

Q(5)
r,s . (12)

Therefore it is obvious that Q(5)
1 and Q(5)

2 are disjoint. If (r, s, u, v,Δ) ∈ Q(5) \
Q(5)

2 , then it should be the case that either r = h1(t) or s = h2(t) for some t ∈ T ∗;
if r = h1(t) for some t ∈ T ∗, then we would have a query (r′, s′, u′, v′,Δ′) ∈ QC

such that u′ = u, r′ = h1(t) = r and s′ = h2(t). Since Q(5) is disjoint from Q(3),
it must be the case that (r′, s′, u′, v′,Δ′) = (r, s, u, v,Δ). Since r = r′ = h1(t)
and s = s′ = h2(t), we have (r, s, u, v,Δ) ∈ Q(5)

1 . With a similar argument
for the case that s = h2(t) for some t ∈ T ∗, we have Q(5) = Q(5)

1 	 Q(5)
2 .

The remaining properties are immediate from the first one (combined with the
observation (12)). �	
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Let

p′
3 = Pr

[

(E1(r, ·), E2(s, ·)) � Q(5)
r,s for every (r, s) ∈ R × S

]

,

p′′
3 = Pr

[

(E1(r, ·), E2(s, ·)) � Q(5)
r,s for every (r, s) ∈ R′ × S ′

]

, (13)

where both probabilities are conditioned on (9). Then by Property 8, we have

p3 = p′
3 · p′′

3 . (14)

Computing. p′
3. We begin with the following property.

Property 9. For (r, s) ∈ R × S, one has

1. q
(1)
r,∗ = q

(1)
∗,s = q

(1)
r,s = pr,∗;

2. q
(2)
r,∗ = q

(2)
∗,s = q

(2)
r,s = p∗,s;

3. q
(3)
∗,s = a

(3)
r,∗ = q

(3)
r,s ;

4. q
(4)
r,∗ = a

(4)
∗,s = q

(4)
r,s ;

5. q
(1)
r,s + q

(2)
r,s + q

(3)
r,s + q

(4)
r,s + q

(5)
r,s = N ;

6. br = cs = N − q
(5)
r,s .

Proof. Define a function

φ : Q(1)
r,s −→ U1(r)

(k, l, u, v,Δ) 
−→ u.

Since r = h1(t) for some t ∈ T ∗, φ is surjective. Suppose that (k, l, u, v,Δ) �=
(k′, l′, u′, v′,Δ′) ∈ Q(1)

r,s with (k, l) = (k′, l′) = (r, s) and u = u′. If their original
queries contain an identical tweak in T , then we have Δ = Δ′, which is a
contradiction since we are excluding bad keys of (C-7). If their original queries
contain different tweaks in T , then we would be able to find queries satisfying
(C-6). So φ is injective. This implies that q

(1)
r,s = pr,∗. Since U

(1)
1 (r) = U1(r), we

also have q
(1)
r,∗ = pr,∗. Furthermore, for any r′ ∈ {0, 1}m such that r′ �= r, we

have q
(1)
r′,s = 0 since otherwise we could find queries satisfying (C-12). So we have

q
(1)
∗,s = q

(1)
r,s . The second property is proved similarly.

Define a function

ψ : Q(3)
r,s −→ U

(3)
1 (r)

(k, l, u, v,Δ) 
−→ u.

Since s = h2(t) for some t ∈ T ∗, ψ is surjective. Suppose that (k, l, u, v,Δ) �=
(k′, l′, u′, v′,Δ′) ∈ Q(3)

r,s with (k, l) = (k′, l′) = (r, s) and u = u′. If their original
queries contain an identical tweak in T , then we have Δ = Δ′, which is a
contradiction since we are excluding bad keys of (C-7). If their original queries
contain different tweaks in T , then we would be able to find queries satisfying
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(C-6). So φ is injective. This implies that q
(3)
∗,s = a

(3)
r,∗. Furthermore, for any

r′ ∈ {0, 1}m such that r′ �= r, we have q
(3)
r′,s = 0 since otherwise we could find

queries satisfying (C-12). So we have q
(3)
∗,s = q

(3)
r,s . The remaining properties are

proved similarly. �	

Fix (r, s) ∈ R × S. If q
(5)
r,s = 0, then we have N − br = 0. If q

(5)
r,s > 0, then there

would exist w ∈ T ∗ such that r = h1(w) and s = h2(w), and E1(r, ·) and E2(s, ·)
might complete the queries in Q(5)

r,s that contain w (in their original forms). In
this case, it cannot be the case that either r �= h1(w′) or s �= h2(w′) for any
w′ ∈ T ∗ such that w′ �= w since the existence of such a tweak would imply
Q(5)

r,s = ∅. Note that

V2(s) ∪
⋃

i=1,3,4

V
(i)
2 (s) =

⎧

⎨

⎩

E2(s,E1(r, u) ⊕ Δ) : u ∈ U1(r) ∪
⋃

i=2,3,4

U
(i)
1 (r)

⎫

⎬

⎭

,

where Δ = g1(w) ⊕ g2(w), and q
(5)
r,s = N − br = N − cs. So the probability that

E1(r, ·) and E2(s, ·) complete all the queries of Q(5)
r,s is 1/(N − br)!, and hence

p′
3 =

∏

(r,s)∈R×S

1
(N − br)!

. (15)

Computing. p′′
3 . We first fix a lexicographical order on R′ × S ′ × {0, 1}n;

(r, s, d) < (r′, s′, d′) if and only if r < r′ or (r = r′ and s < s′) or (r = r′,
s = s′ and d < d′).

Next, we fix (r, s, d) ∈ R′ × S ′ × {0, 1}n, and suppose that E1 and E2 have
completed all the queries of Q(5)

r′,s′,d′ for (r′, s′, d′) < (r, s, d). Subject to this
event, let

Br,s,d =V1(r) ∪

⎧
⎪⎪⎨
⎪⎪⎩

E1(k, u) : (k, l, u, v, Δ) ∈
⋃

i=2,3,4

Q(i)
r,∗ ∪

⋃

(r′,s′,d′)<(r,s,d)

r′=r

Q(5)

r′,s′,d′

⎫
⎪⎪⎬
⎪⎪⎭

,

Cr,s,d = {x ⊕ d : x ∈ U2(s)}

∪

⎧
⎪⎪⎨
⎪⎪⎩

E−1
2 (l, v) ⊕ d : (k, l, u, v, Δ) ∈

⋃
i=1,3,4

Q(i)
∗,s ∪

⋃

(r′,s′,d′)<(r,s,d)

s′=s

Q(5)

r′,s′,d′

⎫
⎪⎪⎬
⎪⎪⎭

,

be the set of all elements y for which E−1
1 (r, y) have been determined, and the set

of all elements y for which E2(s, y⊕d) have been determined, respectively. We will
choose an (ordered) set of q

(5)
r,s,d elements, denoted Y , from {0, 1}n\(Br,s,d∪Cr,s,d)

and consider the probability that each (r, s, u, v, d) ∈ Q(5)
r,s,d is completed with

E1(r, u) = y and E2(s, y ⊕ d) = v for a distinct y ∈ Y .
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Let br,s,d = |Br,s,d| and cr,s,d = |Cr,s,d|. Then we have

br,s,d = br +
∑

i<s

q
(5)
r,i +

∑

j<d

q
(5)
r,s,j ,

cr,s,d = cs +
∑

i<r

q
(5)
i,s +

∑

j<d

q
(5)
r,s,j .

Define a function

φ :
4
⊔

i=1

Q(i)
r,s,d −→ Br,s,d ∩ Cr,s,d

(k, l, u, v,Δ) 
−→ E1(k, u),

where E1(k, u) has already been determined. Suppose that (k, l, u, v,Δ) and
(k′, l′, u′, v′,Δ′) are mapped to the same E1(k, u) = E1(k′, u′). Since both queries
are contained in

⊔4
i=1 Q(i)

r,s,d, we have (k, l,Δ) = (k′, l′,Δ′) = (r, s, d). It implies
that u = u′ and v = E2(l, E1(k, u)⊕Δ) = E2(l′, E1(k′, u′)⊕Δ′) = v′, and hence
(k, l, u, v,Δ) = (k′, l′, u′, v′,Δ′). So we see that φ is injective. Therefore we have

|Br,s,d ∪ Cr,s,d| = |Br,s,d| + |Cr,s,d| − |Br,s,d ∩ Cr,s,d|
≤ br,s,d + cr,s,d − er,s,d,

where

er,s,d
def=

∣

∣

∣

∣

∣

4
⊔

i=1

Q(i)
r,s,d

∣

∣

∣

∣

∣

= q
(1)
r,s,d + q

(2)
r,s,d + q

(3)
r,s,d + q

(4)
r,s,d.

Overall, the number of ways of choosing Y so that E−1
1 (r, y) and E2(s, y ⊕ d)

have not been determined for any y ∈ Y is at least

(N − br,s,d − cr,s,d + er,s,d)q
(5)
r,s,d

.

Property 10. For (r, s, d) ∈ R′ × S ′ × {0, 1}n such that Q(5)
r,s,d �= ∅, one has

1. q
(5)
r,s,d + br,s,d < N/2;

2. q
(5)
r,s,d + cr,s,d < N/2.

Proof. Note that

q
(5)
r,s,d + br,s,d = q

(5)
r,s,d + pr,∗ + q

(2)
r,∗ + a

(3)
r,∗ + q

(4)
r,∗ +

∑

i<s

q
(5)
r,i +

∑

j<d

q
(5)
r,s,j ,

where pr,∗ < N/4 (since Q(5)
r,s,d �= ∅), and the sum of the remaining summands

is upper bounded by the number of queries (k, l, u, v,Δ) such that k = r, which
is smaller than N/4 since there is no tweak t ∈ T ∗ such that r = h1(t) and by
excluding bad keys of (C-14). Therefore we have q

(5)
r,s,d+br,s,d < N/2. The second

property is proved similarly. �	
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Thanks to Property 10, we can apply Lemma 1 to lower bound the probability
that E1 and E2 complete the queries of Q(5)

r,s,d by

(N − br,s,d − cr,s,d + er,s,d)q
(5)
r,s,d

(N − br,s,d)q
(5)
r,s,d

(N − cr,s,d)q
(5)
r,s,d

≥ 1
(N − er,s,d)q

(5)
r,s,d

(

1 −
4q

(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

)

.

Therefore we have

p′′
3 ≥

∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

(

1 −
4q

(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

)

≥
∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −

∑

(r,s)∈R′×S′

d∈{0,1}n

4q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

N2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(16)

By replacing (br,s,d − er,s,d) and (cr,s,d − er,s,d) by (pr,∗ + (br,s,d − pr,∗ − er,s,d))
and (p∗,s + (cr,s,d − p∗,s − er,s,d)), respectively, we have

∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d)

=
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,dpr,∗p∗,s +

∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)p∗,s

+
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗

+
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)(cr,s,d − p∗,s − er,s,d). (17)

Each term of (17) is upper bounded as follows.

Property 11. One has the following upper bounds:

1.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,dpr,∗p∗,s ≤ M3;



332 B. Lee and J. Lee

2.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)p∗,s ≤ M3;

3.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗ ≤ M3;

4.
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − pr,∗ − er,s,d)(cr,s,d − p∗,s − er,s,d) ≤ M3.

Proof. We will prove the third upper bound; the other bounds are proved simi-
larly.

Consider

⊔

(r,s)∈R′×S′

d∈{0,1}n

⎛
⎝Q(5)

r,s,d ×
⎛
⎝ ⊔

i=1,3,4

Q(i)
∗,s ∪

⊔
i<r

Q(5)
i,s ∪

⊔
j<d

Q(5)
r,s,j \

⊔
i=1,3,4

Q(i)
r,s,d

⎞
⎠ × QE1(r)

⎞
⎠ .

A triple of queries from this set corresponds to a triple

((t, x, y), (t′, x′, y′), (k, u, v)) ∈ Q2
C × QE1

(in their original forms) such that t �= t′, h2(t) = h2(t′) and h1(t) = k. (Note
that if two queries (r, s, u, v, d) and (r′, s′, u′, v′, d′) share a common tweak, then
we would have (r, s, d) = (r′, s′, d′).) Since such a triple is contained in C2 and
|C2| ≤ M3 by excluding bad keys of (C-5), the size of this set is also upper
bounded by M3.

For (r, s) ∈ R′ × S ′ and d ∈ {0, 1}n, we have
∣

∣

∣

∣

∣

∣

⊔

i=1,3,4

Q(i)
∗,s ∪

⊔

i<r

Q(5)
i,s ∪

⊔

j<d

Q(5)
r,s,j \

⊔

i=1,3,4

Q(i)
r,s,d

∣

∣

∣

∣

∣

∣

= (q(1)∗,s − q
(1)
r,s,d) + (q(3)∗,s − q

(3)
r,s,d) + (a(4)

∗,s − q
(4)
r,s,d) +

∑

i<r

q
(5)
i,s +

∑

j<d

q
(5)
r,s,j

≥ cr,s,d − p∗,s − er,s,d.

Therefore we have
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(cr,s,d − p∗,s − er,s,d)pr,∗ ≤ |C2| ≤ M3.

�	

By (17) and Property 11, we have
∑

(r,s)∈R′×S′

d∈{0,1}n

q
(5)
r,s,d(br,s,d − er,s,d)(cr,s,d − er,s,d) ≤ 4M3,
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and by plugging it into (16), we obtain

p′′
3 ≥

(

1 − 16M3

N2

)

·
∏

(r,s)∈R′×S′

d∈{0,1}n

1
(N − er,s,d)q

(5)
r,s,d

. (18)

3.3.5 Lower Bounding the Ratio
For each (r, s, d) ∈ {0, 1}m × {0, 1}m × {0, 1}n, let

T (r, s, d) = {w ∈ T : (h1(w), h2(w), g1(w) ⊕ g2(w)) = (r, s, d)}.

Then we have a partition of T , namely,

T =
⊔

r,s∈{0,1}m

d∈{0,1}n

T (r, s, d).

Since
∑

w∈T (r,s,d) qw = q
(1)
r,s,d + q

(2)
r,s,d + q

(3)
r,s,d + q

(4)
r,s,d + q

(5)
r,s,d, we have

pid(QC |QE) =
∏

w∈T

1
(N)qw

≤
∏

r,s∈{0,1}m

d∈{0,1}n

1
(N) ∑

w∈T (r,s,d)
qw

=
∏

r,s∈{0,1}m

d∈{0,1}n

1
(N)

q
(1)
r,s,d+q

(2)
r,s,d+q

(3)
r,s,d+q

(4)
r,s,d+q

(5)
r,s,d

. (19)

By (4), (5), (8), (13), (14), (15), (18), (19), we can prove

pkre(QC |QE)
pid(QC |QE)

≥ 1 −
(

16M2

N
+

16M3

N2

)

, (20)

which completes the proof of Lemma 4. The detailed computation will be given
in the full version of this paper.

3.4 Putting the Pieces Together

Theorem 1 follows from (1), Lemma 2, Lemma 3 and Lemma 4 with

M1 = p
1
3 q

1
3 ,

M2 =
1
4
(2q3 + 2pq2)

1
2 N

1
2 δ

1
2 δ′,

M3 =
1
2
(q3 + 2pq2 + p2q)

1
2 Nδ′.
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Abstract. Strong Pseudo-random Permutations (SPRPs) are impor-
tant for various applications. In general, it is desirable to base an SPRP
on a single-keyed primitive for minimizing the implementation costs.
For constructions built on classical block ciphers, Nandi showed at ASI-
ACRYPT’15 that at least two calls to the primitive per processed mes-
sage block are required for SPRP security, assuming that all further
operations are linear. The ongoing trend of using tweakable block ciphers
as primitive has already led to MACs or encryption modes with high
security and efficiency properties. Thus, three interesting research ques-
tions are hovering in the domain of SPRPs: (1) if and to which extent
the bound of two calls per block can be reduced with a tweakable block
cipher, (2) how concrete constructions could be realized, and (3) whether
full n-bit security is achievable from primitives with n-bit state size.

The present work addresses all three questions. Inspired by Iwata
et al.’s ZHash proposal at CRYPTO’17, we propose the ZCZ (ZHash-
Counter-ZHash) construction, a single-key variable-input-length SPRP
based on a single tweakable block cipher whose tweak length is at least
its state size. ZCZ possesses close to optimal properties with regards to
both performance and security: not only does it require only asymptoti-
cally 3�/2 calls to the primitive for �-block messages; we show that this
figure is close to the minimum by an PRP distinguishing attack on any
construction with tweak size of τ = n bits and fewer than (3�−1)/2 calls
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1 Introduction

SPRPs. Strong Pseudo-Random Permutations (or wide-block ciphers), are
important symmetric-key schemes for protecting the privacy of variable-length
messages. Their tweakable variants (STPRPs) are useful to build strong authen-
ticated encryption [12,31] or onion AE [30]. During the previous two decades,
the symmetric-key community proposed a considerable corpus of SPRPs. From
a high-level point of view, existing constructions could be categorized into (1)
Generalized Feistel networks, (2) Encrypt-Mix-Encrypt, (3) Hash-ECB-Hash,
(4) Hash-Counter-Hash, and (5) miscellaneous designs.

Optimization Goals. The primary goals for optimizations in cryptographic
schemes are, in general, low implementation costs, high provable security guar-
antees, and high performance. For the first criterion, it is desirable to construct
higher-level schemes from a single well-analyzed primitive without large internal
state and with a single key.

High security is essential in many domains that have to process large amounts
of data without the ability of frequent re-keying. In most constructions, however,
it comes at the cost of decreased performance. Unsurprisingly, the challenges of
combining high security guarantees with high performance have been identified
among the hot topics of symmetric-key cryptography at the ESC 2017 workshop
[5]. Often, high security is associated with security beyond the birthday bound. In
the areas of authentication (e.g., [19,32,33]), encryption, as well as authenticated
encryption (e.g., [13,14,28]), beyond-birthday security has undergone a long line
of research. In the area of SPRPs, however, the security of the vast majority of
existing constructions is still limited by the birthday bound of n/2 bits, where n
is the state size of the underlying primitive. So, the privacy guarantees are lost
if q � 2n/2 message blocks have been encrypted under the same key. Assuming
the AES as primitive, this would imply that significantly fewer than 264 blocks
could safely be encrypted under a single key.

Security of SPRPs: State of the Art. Among the earlier proposals, the
LargeBlock1 and LargeBlock2 constructions by Minematsu and Iwata [23]
as well as TCT2 by Shrimpton and Terashima [31] are exceptional for their
security guarantees. The LargeBlock designs can achieve optimal n-bit secu-
rity, whereas TCT2 is limited by 2n/3 bits. Both share similarities to the Ψ2

and Ψ3 constructions from Coron et al. [9], which use two and three calls to
a tweakable block cipher. Both LargeBlock2 and TCT2 possess a sandwich
structure, where an encryption layer is wrapped by two layers of hashing. In the
former, the encryption layer is an application of Ψ2 in ECB-mode; the hashing
layers employs two calls to a polynomial hash of 2(� − 1)multiplications each.
TCT2 can be seen as an unbalanced version of Ψ3, where also 2(�−1) of � input
blocks are hashed in each hashing layer. Both constructions are remarkable for
their time. To be comparably efficient, however, they required two primitives, a
block cipher and a universal hash function.

A different direction is followed by HHFHFH [2] and its instantiations (e.g.,
[3]), which is a four-round unbalanced Feistel network, built on a large-state
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primitive. Instead of providing beyond-birthday security, it possesses large secu-
rity margins due to a larger birthday bound of their internal primitives. However,
the large state size limits its efficiency.

The only approach we are aware of that almost combines both security and
performance desiderata is Simpira (v2) [10], a family of Feistel-like construc-
tions built upon the AES round function. Its authors claim 128-bit security and
high performance on current processors with support for AES native instruc-
tions. However, Simpira’s security claim stems purely from heuristics, which
will demand intensive further cryptanalysis to increase trust into it.

Tweakable Block Ciphers. One established approach for achieving higher
security without considerably sacrificing performance is to use a tweakable block
cipher (TBC) [18] as underlying primitive. At the core, tweakable block ciphers
employ an additional public input called tweak, which allows to efficiently sep-
arate the domains of different calls to the primitive. This fact can reduce the
impact of internal collisions on the security of the scheme built around them. For
message authentication codes (MACs), a series of recent works pushed the secu-
rity bounds further [8,15,24], but a similar trend is also observable in the domain
of encryption modes and authenticated encryption schemes [14,17,21,28,29].
This approach has also been used earlier for SPRPs [9,20,22,23,31] – those pro-
posals, however, originate from at least half a decade ago where TBCs used to
be constructed in cumbersome fashion from classical block ciphers. Nowadays,
we have the option of using efficient dedicated TBCs, such as Deoxys-BC,
Joltik-BC [16], or Skinny [1].

The application of TBCs can also boost the efficiency of constructions, as
has been demonstrated recently for MACs. At CRYPTO’17, Iwata et al. [15]
introduced ZMAC, a TBC-based parallelizable, single-key single-primitive MAC
whose internal hash function ZHash processed the message in both the tweak
and plaintext simultaneously. The additional message bits per primitive call
render ZMAC more efficient than previous MACs and suggest the adoption of
the approach to other domains.

Open Research Questions. When abstracting away the details of the prim-
itive, the number of calls to it per input block becomes the main efficiency
metric. From Encrypt-Mix-Encrypt-based constructions, it is well-known that
the bound is at most two calls per block (plus some minor overhead), assuming
all further operations are linear. Thus, it is an interesting question if SPRPs
can be built from fewer calls to a single-keyed primitive. Moreover, a strongly
related question is that for the minimal number of calls necessary for SPRP
security.

From a theoretical perspective, Nandi [26] showed that constructions built
from a classical single-keyed block cipher require 2� calls for �-block messages
for SPRP security. Though, it seems as though this bound is reducible if one
used a TBC instead as the underlying primitive. For Hash-Counter-Hash-based
constructions, the most efficient (T)BC-based hash function we are aware of is
ZHash. For a TBC with n-bit state and τ -bit tweak length, it would yield a
construction of about � + 2 �σ/(n + τ)� calls for messages of σ bits. For dedi-
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Table 1. Asymptotic #primitive calls for SPRP paradigms. We assume that hash
functions and encryption layers use a single-keyed (tweakable) block cipher with n-bit
state and τ -bit tweak size to encrypt an �-block message of σ bits in total. We assume
the hashing layers use ZHash (as the most efficient blockcipher-based hash function
we are aware of).

cated TBCs, such as Deoxys-BC-128-384 or Skinny-128-384, this figure still
implies that approximately 5�/3 calls are necessary. Regarding the other design
principles, it is unclear if similar results are applicable to constructions based
on the Encrypt-Mix-Encrypt or Hash-ECB-Hash paradigms. We estimate that
Hash-ECB-Hash constructions would need about � primitive calls in each hash-
ing layer, plus � calls in the encryption layer. An instantiation of LargeBlock2
with ZHash instead of multiplications would yield 2�(�−1)/2� calls in each hash-
ing layer, plus � calls in the middle, or 3� calls in sum. TCT2 could use a ZHash
layer each for both top and bottom hashing layer. While further modifications
could make it more efficient, its proposal employed 2�−2 calls in the middle. We
compare the approaches in Table 1. Altogether, three interesting research ques-
tions remain: (1) to which extent can the number of primitive calls be reduced
when employing a tweakable block cipher, (2) how can a specific construction
be realized, and (3) can it be built with high provable security guarantees.

Contribution. This work tries to answer all three questions above: for the
theoretical interest, (1) we show that 1.5� primitive calls per message block is
close to minimal by a generic distinguisher on any construction that employs
fewer than (3� − 1)/2 calls to a single-keyed primitive per message block, where
all further operations are linear. For the practitioner’s interest, (2) we pro-
pose ZCZ (ZHash-Counter-ZHash), an almost fully parallelizable variable-input-
length SPRP based on a single-keyed TBC with n-bit state and n-bit tweak size.
ZCZ matches approximately the optimal number of 1.5� calls to the primitive
for an �-block message, plus a small overhead. Finally, we show (3) that ZCZ
achieves optimal n-bit security, i.e., the SPRP advantage of any adversary that
asks at most q queries of σ blocks in total is in O(σ2/22n).

We note that instantiations of Hash-Counter-Hash with ZHash and a TBC
with large tweaks of τ = 3n, the number of primitive calls could become equal to
that of ZCZ. However, such primitives would introduce a significant slowdown,
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be it due to the requirements of more rounds in a TWEAKEY-like cipher, or
due to the need of calling an additional universal hash function for compressing
the tweak. Concerning practical tweak sizes τ < 3n, the number of calls is
significantly lower for our construction.

Yet Another Encryption Scheme? It may appear that ZCZ is yet another
encryption scheme after all, and with hundreds of encryption schemes already
being present in the literature, it is difficult get excited about another one,
notwithstanding small improvements in performance and security. We beg to
differ on this point primarily for two reasons: (1) very few existing encryption
schemes built upon a primitive with an n-bit output provide n-bit security —
most in fact are only secure up to the birthday bound. As such, the improvement
by ZCZ in terms of security is not a small step, but rather a leap. Since there is a
considerable interest in the (still) small group of constructions that achieve this
security, we believe that our encryption scheme is an exciting addition to this
group. (2) Even more significant is the way that ZCZ exploits the randomness
generated by a tweakable blockcipher. While most previous approaches were
based on generic replacements of two or more blockcipher calls by a single call
to a tweakable block cipher, the approach used by ZCZ is not a corollary of
any previous work. Given its efficiency, we believe it can lead to exciting new
directions in research on tweakable-blockcipher modes.

Outline. The remainder is structured as follows: first, Sect. 2 briefly summarizes
the necessary preliminaries. Given a primitive with an effective tweak size1 τ = n,
Sect. 3 illustrates that every PRP with fewer than 3� − 1 primitive calls for
2�-block messages is insecure, which was the core motivation for our search
for constructions with about 1.5� calls. Subsequently, Sect. 4 defines our basic
construction, which is first described for messages whose length is a positive
multiple of 2n bits. Thereupon, Sect. 5 extends our definition to messages of
more general lengths. Section 6 provides the details of our security analysis.

We provide further insights on the starting point of our research in the full
version of this work [4]. Therein, we also discuss attacks on insecure preliminary
variants that motivated our studies towards the final design of ZCZ.

2 Preliminaries

General Notation. We use lowercase letters x for indices and integers, upper-
case letters X,Y for binary strings and functions, and calligraphic uppercase
letters X ,Y for sets. We denote the concatenation of binary strings X and Y by
X ‖Y ; we mostly treat bit strings as representations of elements in the finite field
F2n , which is the Galois Field GF(2n) with a fixed irreducible polynomial p(x).
There, we interpret a bit string (xn−1 . . . x1x0) as polynomial

∑n−1
i=0 ai ·xi in F2n .

Bit xi represents the coefficient ai ∈ {0, 1}, for 0 ≤ i ≤ n − 1, and the most sig-
nificant bit is the leftmost, and the least significant bit is the rightmost bit. We
1 By effective tweak size, we mean the usable tweak domain without bits that are used

for other purposes such as domain separation.
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denote the result of the addition of two elements as X + Y , which is equivalent
to the XOR of X and Y . For tuples of bit strings (X1, . . . , Xx), (Y1, . . . , Yx) of
equal domain, we denote by (X1, . . . , Xx) + (Y1, . . . , Yx) the element-wise XOR,
i.e., (X1 + Y1, . . . , Xx + Yx). Unless stated otherwise, we consider all additions
of n-bit values to be in F

n
2 . Moreover, we will use ⊕ for the XOR of bit strings

in illustrations. However, all additions and subtractions in sub- and superscripts
that denote indices represent integer additions. We indicate the length of a bit
string X in bits by |X|, and write Xi for the i-th block. Moreover, we denote by
X � X that X is chosen independently uniformly at random from the set X .
We define three sets of particular interest: Func(X ,Y) be the set of all functions
F : X → Y, Perm(X ) the set of all permutations over X , and P̃erm(T ,X ) for
the set of tweaked permutations over X with associated tweak space T .

(X1, . . . , Xx) n←− X denotes that X is split into the minimal number of n-bit
blocks possible i.e., X1 ‖ . . . ‖Xx = X, and |Xi| = n for 1 ≤ i ≤ x − 1, and
|Xx| ≤ n. So, when |X| > 0, then |Xx| > 0. If |X| = 0, Y

x←− X sets Y to the
empty string. 〈X〉n denotes an encoding of an integer X ∈ Zn as an n-bit string.
For two sets X and Y, a uniform random function ρ : X → Y maps inputs X ∈ X
independently and uniformly at random to outputs Y ∈ Y. For an event E, we
denote by Pr[E] the probability of E; ε is the empty string. For a given set X
and integer x, we define X ≤x =

⋃x
i=1 X i and X+ =

⋃∞
j=1 X j . For two integers

n, k with n ≥ k ≥ 1, we denote the falling factorial as (n)k =
∏k−1

i=0 (n − i).

Adversaries. An adversary A is an efficient Turing machine that interacts
with a given set of oracles that appear as black boxes to A. We denote by AO

the output of A after interacting with some oracle O. We write ΔA(O1;O2) :=
|Pr[AO1 ⇒ 1] − Pr[AO2 ⇒ 1]| for the advantage of A to distinguish between
oracles O1 and O2. All probabilities are defined over the random coins of the
oracles and those of A, if any. W.l.o.g., we assume that A never asks queries to
which it already knows the answer.

A block cipher E with associated key space K and message space M is a
mapping E : K × M → M such that for every key K ∈ K, it holds that E(K, ·)
is a permutation over M. A tweakable block cipher Ẽ with additional tweak
space T is a mapping Ẽ : K × T × M → M such that for every key K ∈ K and
tweak T ∈ T , it holds that Ẽ(K,T, ·) is a permutation over M. We also write
ẼT

K(·) as short form. In this work, we assume that SPRPs allow variable-length
inputs, i.e., there is no single fixed length, but the length of the ciphertext always
equals that of the plaintext and vice versa; moreover, over all inputs of equal
length, the construction is a permutation. The advantage is defined as follows.

Definition 1 (SPRP Advantage). Let K be a non-empty set and M ⊂
{0, 1}∗. Let Π : K × M → M be a length-preserving permutation. Let π �
Perm(M) be sampled from the set of all length-preserving permutations of M,
and K � K. Then, the SPRP advantage of A with respect to Π is defined as
AdvSPRP

Π (A) def= ΔA(ΠK ,Π−1
K ;π, π−1).
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Definition 2 (STPRP Advantage). Let K and T be non-empty sets and
let Ẽ : K × T × {0, 1}n → {0, 1}n denote a tweakable block cipher. Let π̃ �
P̃erm(T , {0, 1}n) and K � K. Then, the STPRP advantage of A w.r.t. Ẽ is
defined as AdvSTPRP

˜E
(A) def= ΔA(ẼK , Ẽ−1

K ; π̃, π̃−1).

Definition 3 (Almost-XOR-Universal Hash Function). Let K, X , and
Y ⊆ {0, 1}∗ be non-empty sets. Let H : K × X → Y be a function keyed by
K ∈ K. We call H ε-almost-XOR-universal (ε-AXU) if, for all distinct X,X ′ ∈
X and any Δ ∈ Y, it holds that PrK�K [HK(X) − HK(X ′) = Δ] ≤ ε, where
subtraction is in F2n .

The H-Coefficient Technique. The H-coefficient technique is a proof
method by Patarin [27]. It assumes that the results of the interaction of an
adversary A with its oracles are collected in a transcript τ of the attack:
τ = 〈(M1, C1, d1), . . . , (Mq, Cq, dq)〉. (Mi, Ci) denotes the in- and output of
the i-th query of A; a Boolean variable di denotes the query direction: di = 1
indicates that Ci was result of an encryption query, and di = 0 that Mi was the
result of a decryption query. The task of A is to distinguish the real world Oreal

from the ideal world Oideal. A transcript τ is called attainable if the probability
to obtain τ in the ideal world is non-zero. We denote by Θreal and Θideal the
distribution of transcripts in the real and the ideal world, respectively. Then,
the fundamental Lemma of the H-coefficients technique, whose proof is given
in [6,27], states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [27]).
Assume that the set of attainable transcripts is partitioned into two disjoint sets
GoodT and BadT. Further assume that there exist ε1, ε2 ≥ 0 such that for any
transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − ε1, and Pr [Θideal ∈ BadT] ≤ ε2.

Then, for all adversaries A, it holds that ΔA(Oreal;Oideal) ≤ ε1 + ε2.

3 On the Minimal Number of Required Primitive Calls

This section shows that any PRP with fewer than 3�−1 calls for messages of 2�
blocks to a primitive with n-bit tweak size and n-bit state size is insecure. We
follow the approach by [26], who proved that an SPRP based on a single-keyed
classical block cipher needs at least 2� calls to the primitive for �-block messages.

3.1 Generic Construction

Define positive integers n, τ , and �, and let M ⊆ {0, 1}∗ denote a space for which
({0, 1}n)2� ⊆ M. Let r ≤ 3� − 2 and let π̃i : {0, 1}τ × {0, 1}n → {0, 1}n, for all
1 ≤ i ≤ r, denote tweakable permutations with tweak space {0, 1}τ and state
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Fig. 1. Generic model of a PRP that consists of at most r ≤ 3� − 2 calls to tweakable
block ciphers π̃i for messages of 2� blocks.

size n. Let Π[π̃1, . . . , π̃r] : M → M be a length-preserving cipher that employs
as its only non-linear functions in total r calls to the permutations π̃1, . . . , π̃r.
For simplicity, we also write Π as short form, hereafter. All further components
of Π are linear over F2n . For any such construction, we can formulate this as
follows. Let Xi denote the input to πi, Ti the tweak to πi, and let Yi ← πi(Xi)
denote its output. The linear operations in Π must be describable as non-zero
linear functions Li : M × ({0, 1}n)i−1 → {0, 1}n × {0, 1}τ , for 1 ≤ i ≤ r, and
an additional non-zero linear function Lr+1 : M × ({0, 1}n)r → M that, for
all given inputs (M,Y1, . . . , Yr) ∈ M × ({0, 1}n)r, outputs C s.t. it holds that
|C| = |M |. Then, we can describe the encryption with Π(M) as

(Xi, Ti) ← Li (M,Y1, . . . , Yi−1) , for all 1 ≤ i ≤ r,

Yi ← π̃Ti(Xi), for all 1 ≤ i ≤ r, and
C ← Lr+1(M,Y1, . . . , Yr).

Π must be correct for all inputs, i.e., for all M,C ∈ M, it must hold that
Π−1(Π(M)) = M and Π(Π−1(C)) = C. Figure 1 gives an illustration.

Remark 1. It may not be instantaneously clear why the generic construction
above covers all considered schemes. Note that it computes the values Xi and Ti

by a non-zero linear function of M , Y1, Y2, . . . , Yi−1. So, the previous values Yi

can also be used to generate Xi. Indeed, it is generic enough to include all such
constructions where the only non-linear components are the permutation calls.
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For simplicity, we consider independent permutations with tweak domain F
τ
2

in this section. For efficiency, our proposal later in this work will employ only a
single tweakable primitive with a composite tweak domain TD = D × F

τ
2 , where

D is a non-empty set of domains. So, this approach achieves the same goal of
having independent permutations. We consider that τ is the effectively usable
size of the tweaks without domains.

3.2 A PRP Attack on Constructions with at Most 3� − 2 Calls

Case τ = n. Let A be an adversary with the goal to distinguish the outputs of
a variable-input-length PRP Π under a secret key as above from an ideal PRP.
First, A chooses two messages M and M ′ of 2� blocks each, i.e., M = (M1, . . .,
M2�) and M ′ = (M ′

1, . . ., M ′
2�). We define the differences ΔM = M − M ′, and

analogously the differences ΔXi, ΔYi, and ΔC in the obvious manner. Choose
M and M ′ such that it holds that ΔXi = 0 and ΔTi = 0, for 1 ≤ i ≤ � − 1.
Note that such a choice of M and M ′ must be possible since these variables
correspond to 2�−2 equations (�−1 equations for adjusting the values ΔXi and
�−1 equations for adjusting the values ΔTi) and there exist 2� blocks ΔMi. For
instance, the adversary can efficiently derive an element N from the null space
of L1, . . . , L2(�−1). It chooses M arbitrarily and derives M ′ = M + N .

From ΔXi = 0n and ΔTi = 0τ for 1 ≤ i ≤ � − 1, it follows that ΔYi =
π̃Ti(Xi)⊕ π̃T ′

i (X ′
i) = 0n, for all 1 ≤ i ≤ �−1. The non-linear layer of calls to the

tweakable block cipher maps (ΔX1, . . . , ΔXr) to (ΔY1, . . . , ΔYr). We obtain

Lr+1(ΔM,ΔY1, . . . , ΔY�−1
︸ ︷︷ ︸

=(0, ..., 0)

,ΔY�, . . . , ΔYr) = ΔC.

Since A fixed ΔM and chose M and M ′ so that ΔX1 = . . . = ΔX�−1 = 0n

and ΔT1 = . . . = ΔT�−1 = 0τ , we obtain ΔY1, . . . , ΔY�−1 = 0n. So, there are
at most 2� − 1 free variables ΔY�, . . . ΔYr, and 2� equations for ΔC1, . . . , ΔC2�,
which implies that 2� blocks of ΔC are a linear combination of 2� − 1 values
ΔY�, . . . , ΔYr. So, in the real construction, Lr+1 defines a map from 2� − 1 to
2� n-bit variables, and A can efficiently derive a solution ΔY�, . . . , ΔYr from the
null space of the equation system. This becomes a distinguishing event happening
with probability one in the real construction and with probability 1/2n in the
ideal world for this example. The distinguishing advantage is hence 1 − 1/2n.
A can query it with two messages as above and output real if such a non-zero
linear function L exists and random otherwise, as summarized in Algorithm 1.

For general values of τ . A similar attack is applicable for general values of
τ . Though, we have to consider linearity over F2 then. Define

s =
⌊

2�n

n + τ

⌋

− 1.

The adversary chooses M ∈ (Fn
2 )2� arbitrarily, and M ′ ∈ (Fn

2 )2� with M �= M ′

s. t. ΔX1 = . . . ΔXs = 0n and ΔT1 = . . . = ΔTs = 0τ . Note that we consider
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Algorithm 1. PRP attack on generic constructions Π with at most 3� − 2
primitive calls, here for τ = n.
1: function AΠ

2: Choose Mi for 1 ≤ i ≤ 2� arbitrarily
3: Choose M ′

i for � ≤ i ≤ 2� s. t. it holds that
4: Li(ΔMi) = (ΔXi, ΔTi) = (0n, 0τ ), for 1 ≤ i ≤ 2(� − 1)
5: Ask for the encryption of C = Π(M) and C′ = Π(M ′)
6: Derive ΔC = C′ − C
7: if there exists (ΔY�, . . . , ΔYr), s. t. Lr+1(ΔM, ΔY ) = ΔC then
8: return “Real”
9: return “Random”

the inputs Xi ∈ F
n
2 and the tweaks Ti ∈ F

τ
2 as blocks. Again, such a choice of M ′

exists for the same reason as above and can be found efficiently from the null
space of the linear functions L1, L2, . . . that are involved in the computation of
ΔX1, . . . , ΔXs and ΔT1, . . . , ΔTs. Again, we obtain ΔYi = 0n, for 1 ≤ i ≤ s for
the real construction. We obtain the equation

Lr+1(ΔM,ΔY1, . . . , ΔYs︸ ︷︷ ︸
=(0, ..., 0)

,ΔYs+1, . . . , ΔYr) = ΔC.

The blocks ΔYs+1, . . . , ΔYr contain (r−s)n bits, that are mapped through Lr+1

to ΔC2�n bits. For all schemes Π that use r calls to the primitive with

(r − s) · n < 2�n, which leads to r < 2�

(

1 +
n

n + τ

)

− 1,

we obtain a compressing mapping. Then, there exist are more equations than
variables, and the distinguisher as before applies. However, the advantage may
be smaller and depends on the values of r, n, and τ .

4 Definition of the Basic ZCZ Construction

This section defines the basic ZCZ scheme. First, we consider messages that
consist of at most 2n blocks, and will extend it thereupon to all messages whose
length is a multiple of 2n bits. The subsequent section will then further define
it for messages whose lengths are not necessarily multiples of 2n bits.

Parameters. Let n, τ, k, d ≥ 1 be integers with d � n and n = τ ; we define
N

def= 2n as an alias. Let B = {0, 1}2n define a di-block (or dual block, double
block), i.e., 2n bits. We define non-empty sets of tweaks T = {0, 1}τ , keys
K = {0, 1}k, domains D = {t, s, c, b, t$, s$, c$, b$, xl, xr, yl, yr, p, kd} ⊆ {0, 1}d,
and a set of indices I ⊆ {1, . . . , 2n − 1}. The purpose of domains and indices is
to define an extended tweak set TD,I = D × I × T for a tweakable block cipher
Ẽ : K × TD,I × {0, 1}n → {0, 1}n.
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Fig. 2. Encryption of a message with � complete di-blocks with ZCZ[ ˜EK ].

Overview. The basic ZCZ[ẼK ] construction takes as input a secret key K ∈ K
and a plaintext M ∈ B≤n that is split into � ∈ [1..n] di-blocks. The design can
be split into a top, middle, and a bottom layer. In the top layer, the first � − 1
complete di-blocks (Li, Ri) are processed similarly as in the ZHASH construction
by Iwata et al. [15]. The TBC outputs Xi are accumulated by an MDS code to
two values X∗

L and X∗
R using the Horner rule, which are finally encrypted in a

butterfly-like structure [24] to XL ← Ẽ
xl,�,X∗

R

K (X∗
L) and XR ← Ẽ

xr,�,X∗
L

K (X∗
R). XL

and XR are used to mask the branches of the final di-block, L� and R�. The final
di-block is processed by a four-round Feistel-like network of four TBC calls in
the spirit of the constructions by Coron et al. [9].
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This four-round network generates two intermediate values S and T after
the first and second call to Ẽ. The middle layer derives from S and T a value
S1 ← Ẽs,0,1

K (S) and a series of � − 1 chaining values Z1,j ← Ẽc,j,T (S1). For the
j-th di-block, the chaining value Z1,j is added to both branches of the j-th block.
Moreover, S1 is also added to the right branch of each di-block: L′

j ← Xj + Zi,j

and Yj ← Rj +Z1,j +S1. So, this middle layer ensures that each di-block depends
on all others. Finally, the middle layer generates from the blocks Yj and L′

j two
values YL and YR symmetrically as XL and XR, from the values Yj .

The bottom layer is then a symmetric version of the top layer. The � − 1 di-
blocks are processed by another ZHASH layer to compute the ciphertext blocks:
L′

j ← Xj and R′
j ← Ẽ

b,i,L′
j

K (Yj). The final complete di-block is processed by two
further Feistel rounds before YL added to the left branch, and YR is added to the
right branch of the �-th di-block. The resulting values L′

i, R
′
i, for 1 ≤ i ≤ �, are

concatenated and returned as the ciphertext. The details of the encryption with
ZCZ[ẼK ] is given in Algorithm 2, and is illustrated in parts in Fig. 2, already
for more than n complete di-blocks.

Rationale. The structure is inspired by ZHash [15] and AEZ [12]. The use of
α and α2 prevents that a collision in XL would automatically lead to a collision
also in XR and vice versa; considering also the tweak values Ri for XR renders
birthday collisions in Xi from separate tweaks ineffective. Encrypting X∗

L, X∗
R,

Y ∗
L , and Y ∗

R avoids that differences in the masks cancel differences in the final di-
block. Finally, adding Si and Zi,j prevents adversaries from observing differences
ΔZ1,j . Using the masks XL, XR, YL, and YR in the final block makes its outputs
depend on all blocks; Using S and T for the counter mode in the middle layer
creates a dependency of each di-block on all others. We elaborate on attacks on
preliminary versions of ZCZ in the full version of this work. We employ pairwise
distinct domains for all calls to Ẽ to prevent dependencies between the calls.

Extension to Longer Messages. Messages with more than n di-blocks are
partitioned into chunks. The i-th (complete) chunk denotes the series of the
n consecutive di-blocks (L(i−1)n+1, R(i−1)n+1, . . . Li·n, Ri·n), and employs the
chaining values Si and Zi,j . We derive all chaining values under distinct domains
as before. Furthermore, we derive � − 1 chaining values Zi,j by a TBC call each
from S. For the i-th chunk, Si is computed as Si ← Ẽs,0,i

K (S). Then, for j ∈ [1..n],
Zi,j for the j-th block of the i-th chunk is generated as Zi,j ← Ẽ

c,0,n(i−1)+j
K (Si).

Yn(i−1)+j is then computed as Yn(i−1)+j ← Rn(i−1)+j +Si +Zn(i−1)+j . The rest
of the computations remain unchanged. Letting j take any value in [1..�], we can
rewrite this as

Yj ← Rj + S�j/n� + Zj . (2’)

The encryption of ZCZ[ẼK ] is defined in Algorithm 2, and illustrated in parts
in Fig. 2, already for more than n complete di-blocks. The figure employs bold
bars in the blocks of Ẽ to indicate the parts of the tweaks that stem from T .
The decryption is defined in the obvious way.
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Algorithm 2. Definition of the encryption algorithm of ZCZ[Ẽ] given a tweak-
able block cipher Ẽ. The code in the boxes is only part of ZCZ∗[Ẽ] in Algo-
rithm 3.

10: function ZCZ[ ˜EK ](M)
11: r ← |M | mod 2n
12: � ← (|M | − r)/2n
13: z ← �(� − 1)/n�
14: L′

∗ ← ε; R′
∗ ← ε

15: Parse(M, �)

16: TopEnc[ ˜EK ]()
17: if r > 0 then

18: PartialTopEnc[ ˜EK ]()

19: LastTopEnc[ ˜EK ](XL, XR)

20: MidLayer[ ˜EK ](S, T )

21: BotEnc[ ˜EK ]()

22: LastBotEnc[ ˜EK ](YL, YR)
23: if r > 0 then

24: PartialBotEnc[ ˜EK ]()

25: C ←
(L′

1‖R′
1‖ · · · ‖L′

�‖R′
�‖L′

∗‖R′
∗)

26: return C

30: procedure TopEnc[ ˜EK ]
31: X∗

L ← X∗
R ← 0n

32: for i ← 1 . . . � − 1 do
33: Xi ← ˜Et,i,Ri

K (Li)
34: X∗

L ← X∗
L + α�−1−iXi

35: X∗
R ← X∗

R +(α2)�−1−i(Xi +
Ri)

36: XL ← ˜E
xl,�,X∗

R
K (X∗

L)

37: XR ← ˜E
xr,�,X∗

L
K (X∗

R)

40: procedure MidLayer[ ˜EK ](S, T )
41: S0 ← S
42: for i ← 1 . . . z do
43: Si ← ˜Es,0,i

K (Si−1)

44: for i ← 1 . . . z do
45: for j ← 1 . . . n do
46: Zi,j ← ˜E

c,(i−1)n+j,T
K (Si)

50: procedure LastTopEnc[ ˜EK ](XL, XR)

51: S ← ˜E
t$,�,R�+XR
K (L� + XL)

52: T ← ˜Es$,�,S
K (R� + XR)

60: procedure BotEnc[ ˜EK ]
61: Y ∗

L ← 0n

62: Y ∗
R ← 0n

63: for i ← 1 . . . z − 1 do
64: for j ← 1 . . . n do
65: k ← (i − 1)n + j
66: L′

k ← Xk + Zi,j

67: Yk ← Rk + Zi,j + Si

68: R′
k ← ˜E

b,k,L′
k

K (Yk)
69: Y ∗

L ← Y ∗
L +(α2)�−1−k(Yk+L′

k)
70: Y ∗

R ← Y ∗
R + (α)�−1−kYk

71: for j ← 1 . . . � − 1 − (z − 1)n do
72: k ← (z − 1)n + j
73: L′

k ← Xk + Zz,j

74: Yk ← Rk + Zz,j + Sz

75: R′
k ← ˜E

b,k,L′
k

K (Yk)
76: Y ∗

L ← Y ∗
L + (α2)�−1−k(Yk + L′

k)
77: Y ∗

R ← Y ∗
R + α�−1−kYk

78: YL ← ˜E
yl,�,Y ∗

R
K (Y ∗

L )

79: YR ← ˜E
yr,�,Y ∗

L
K (Y ∗

R)

80: procedure LastBotEnc[ ˜EK ](YL, YR)

81: L′
� ← ˜Ec$,�,T

K (S) + YL

82: R′
� ← ˜Eb$,�,T

K (L′
� + YL) + YR

90: procedure Parse(M, �)
91: i ← � · 2n
92: (L1,R1,· · · ,L�,R�)

n←− M [0..i − 1]
93: if r > 0 then
94: (L∗, R∗)

n←− M [i..|M |]

5 ZCZ∗ for Messages with Partial Final Di-block

We extend the definition of ZCZ to messages whose length is not a multiple
of 2n bits. We denote the last r ← |M | mod 2n bits as partial di-block. Our
approach for ZCZ∗ is inspired by the DE domain extender from [25]. Therefore,
we briefly recap it.

The Domain Extender DE[Π,F,H] : {0, 1}≥n → {0, 1}≥n [25] takes a block-
wise-operating length-preserving permutation Π : ({0, 1}n)+ → ({0, 1}n)+, a
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Algorithm 3. Functions of the encryption algorithm of ZCZ∗[Ẽ] for messages
whose length is not necessarily a multiple of 2n bit (but at least 2n bit). Recall
that r = |M | mod 2n.

10: procedure PartialTopEnc[ ˜EK ]
11: M� ← L� ‖ R�

12: M∗ ← pad2n(L∗ ‖ R∗)
13: (L∗, R∗)

n←− M∗
14: (U�, V�) ← H[ ˜EK , 0](L∗, R∗)
15: L� ← L� + U�

16: R� ← R� + V�

20: function msbx(X)
21: return X[0..x − 1]

30: function padx(X)
31: return X ‖ 1 ‖ 0x−|X|−1

40: procedure PartialBotEnc[ ˜EK ]

41: (P, Q) ← H[ ˜EK , 2](L� + L′
�, R� + R′

�)
42: W ← msbr(P ‖ Q) ‖ 02n−r

43: (P∗, Q∗)
n←− W

44: L′
∗ ← L∗ + P∗

45: R′
∗ ← R∗ + Q∗

46: (L
′
∗, R

′
∗)

n←− pad2n(L′
∗ ‖ R′

∗)
47: (U ′

�, V
′

� ) ← H[ ˜EK , 4](L
′
∗, R

′
∗)

48: L′
� ← L′

� + U ′
�

49: R′
� ← R′

� + V ′
�

50: function H[ ˜EK , i](U, V )

51: U ′ ← ˜Ep,i,V
K (U)

52: V ′ ← ˜Ep,i+1,V
K (U)

53: return (U ′, V ′)

PRF F : {0, 1}n → {0, 1}n, and an XOR-universal hash function H : {0, 1}n ×
{0, 1}2n → {0, 1}n. It produces a length-preserving permutation over bit strings
of any length ≥ n bits. A message M ∈ {0, 1}≥n is split into blocks (M1, . . . , M�);
DE[Π,F,H] computes the corresponding ciphertext C = (C1, . . . , C�) as: (1)
M∗

�−1 ← H(M�−1,M�), (2) (C1, . . . , C�−2, C
∗
�−1) ← Π(M1, . . . , M�−2,M

∗
�−1), (3)

C� ← F (M∗
�−1 + C∗

�−1) +|M�| M�, and (4) C�−1 ← H(C∗
�−1, C�). Where

x +n y
def= msbn(x) + y

for any x, y ∈ {0, 1}∗ and integer n. To obtain that DE is a permutation, the
hash function H must satisfy H(H(M�−1,M�),M�) = M�−1 for any allowed
input M�−1, M� (see [25, Remark 2]).

Overview of ZCZ∗. Our extension ZCZ∗ requires that the message length
is still at least 2n bits. Let M∗ = (L∗, R∗) be the partial message di-block
that follows after � complete di-blocks. Further assume that the partial di-block
consists of ≥ n bits that are split into |L∗| = n and |R∗| < n. The right part
is padded to n bits by a single 1 and as many zero bits as necessary to extend
it to n bits: R∗ ← padn(R∗). The values are given as inputs to a hash function
H[ẼK , i], with i = 0, that is illustrated on the right side of Fig. 3. {H} uses
one of the two n-bit values as state and the other one as tweak input for two
calls to ẼK under distinct tweaks: U ′ ← Ẽp,i,V

K (U) and V ′ ← Ẽp,i+1,V
K (U). The

2n-bit output (U ′, V ′) is added to the final complete di-block. The resulting final
di-block (L�, R�) is then processed by ZCZ[ẼK ]. The sum of (L�, R�) + (L′

�, R
′
�)

is then given again into H[ẼK , i], with i = 2 to produce a 2n-bit value (P ′
� , Q

′
�).

The most significant r bits of it are added to the final partial di-block to obtain
the partial ciphertext di-block M ′

∗. M ′
∗ is again padded to 2n bits and given
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Fig. 3. Encryption of a partial message M1, . . . , M�, M
∗ whose length is not a multiple

of 2n bit with ZCZ∗[ ˜EK ]. All preceeding di-blocks M1, . . . , M� are processed with

ZCZ[ ˜EK ] as before.

as input to a third call to H[ẼK , i], with i = 4. The hash output is added to
the final ciphertext di-block to produce M ′

�. If the partial di-block consists of
less than n bits, it is also padded to 2n bits and processed analogously. So,
the hash function H from the original definition of DE[Π,F,H] is given by
H(M�,M∗)

def= M� + H[ẼK , i](pad2n(M∗)). One can see that the requirement
from above holds for arbitrary M� and M∗: H (H (M�,M∗) ,M∗) = M�.

Remark 2. Note that ZCZ∗ still requires messages to consist of at least 2n bits.
A further minor improvement in future work could be the integration of smaller
messages. For instance, the use of the very recent length-doubling construction
LDT [7] could reduce the minimal message length to n + 1 bits. Though, this
step would require an appropriate integration and ZCZ∗ is already a variable-
input-length SPRP for lengths ≥ 2n bit.

6 Security Analysis of ZCZ and ZCZ∗

This section studies the SPRP security of ZCZ and ZCZ∗. Figure 4 provides a
high-level overview on ZCZ. A given message M is split an input message into
(ML,MR), where MR consists of one 2n-bit di-block, and ML of the remaining
di-blocks; the major part ML is then processed by a variant of ZHash, that is
denoted ZHash∗ here. It differs from ZHash in two aspects: ZHash∗ omits the
XOR of the TBC output to the tweak input blocks. More prominently, ZHash∗

does not compress the input to two hash values, but is a permutation over
(n + τ)∗. So, the top layer returns the TBC outputs and the tweaks. Ṽ1 and Ṽ2

represent tweakable permutations. Internally, they can use the same primitive
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Fig. 4. High-level view on our proposal of ZCZ.

as also for ZHash∗, and the tweakable variant of Counter mode, CTR∗. H
symbolizes an error-correcting code that sums up the inputs to 2n bits.

This high-level view allows to give a rationale for a dedicated analysis. A
straight-forward use of a rate-1 counter mode would allow to apply a standard
generic proof as for HCTR. Though, such an approach would yield 2� calls to the
primitive alone in the counter mode. In combination with ZHash∗, this approach
would need 4� calls to the primitive for messages of 2� blocks. ZCZ considers a
special variant of counter mode that uses only � blocks of entropy to mask 2�
blocks, similar as has been used in AEZ from version 2 [12]. However, this counter
mode disallows to simply adopt the analysis from HCTR-like constructions when
the goal is showing n-bit security. So, a dedicated analysis is needed, which is a
major contribution of the present work. In the following, we study the security of
the basic construction before we consider the extensions for inputs whose length
is not necessarily a multiple of 2n bits, but at least 2n bits. We show the security
of the extension ZCZ∗ at the end of this section.

6.1 Security of the Basic Construction

Theorem 1. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ[π̃], s.t. A asks at most q queries of domain B≤n, that sum up to at most σ
di-blocks in total. Then

AdvSPRP
ZCZ[π̃](A) ≤ 3σ2 + 9q2

2N2
.

Proof. The queries 1 through q by A are collected in a transcript τ where we
define two disjoint sets of indices E and D s.t. [1..q] = E � D, and it holds that
E consists of exactly those indices i s.t. the i-th query of A is an encryption
query; similarly, D consists of exactly those indices i s.t. the i-th query of A is
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an decryption query. We define �i to be the number of di-blocks in the i-query,
where �i ≤ n.

In both worlds, the adversary’s queries are answered immediately with the
corresponding outputs; certain internal parts of the transcript will be revealed to
the adversary after it made all its queries, but before it outputs its decision bit
that represents its guess of which world it interacted with. The internal parts
consist of Si, T i, Si

1,X
i
L,Xi

R, Y i
L, Y i

R for i ∈ [1..q] and Zi
1,j for i ∈ [1..q], j ∈

[1..�i − 1]; for ease of notation, we write Zi
j to refer to Zi

1,j .
We will subsequently define certain transcripts to be good. More specifically,

we describe a mechanism for the ideal oracle to sample the internal values to be
given to the adversary at the end of the query phase, and define the event bad as
the union of five events badA, badB, badC, badD and badE. We call a transcript
good if it can be obtained by the ideal oracle without encountering the event
bad. Now we state two lemmas.

Lemma 2. Pr [bad] ≤ 3σ2 + 8q2

N2
.

Lemma 3. For any good transcript τ ,

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − q2

N2
.

Then, the proof follows from Lemmas 1, 2, and 3. ��
For proving Lemmas 2 and 3, we first define the sampling mechanism of the

ideal oracle and the bad events.

Equations. First, we write the internal variables Xi
j , Y

i
j for i ∈ [1..q], j ∈ [1..�i]

and U i
L, U i

R, V i
L, V i

R for i ∈ [1..q] in terms of Si, T i, Si
1,X

i
L,Xi

R, Y i
L, Y i

R, Zi
j :

Xi
j = L′i

j + Zi
j , (1)

Y i
j = Ri

j + Zi
j + Si

1, . (2)

Moreover, we define four auxiliary variables to easier referral:

U i
L = Li

� + Xi
L, (3)

U i
R = Ri

� + Xi
R, (4)

V i
L = L′i

� + Y i
L, (5)

V i
R = R′i

� + Y i
R. (6)

Identifying A Basis. A basis is the set of variables (internal to the construc-
tions) which can be sampled uniformly and independently in the ideal oracles
after fixing the inputs and outputs that are known to adversary. By looking at
the construction and eliminating the relationships between the internal variables,
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plaintexts, and ciphertexts, some internal variables can be chosen almost freely,
and still the real construction will behave indistinguishable from the ideal world
for the adversary even after observing the plain- and ciphertexts. We call those
variables a basis. For i ∈ [1..q], j ∈ [1..�i], we define (i, j) to be fresh if either of
the following is true:

– i ∈ E, and for any i′ ∈ [1..i − 1]: (Li′
j , Ri′

j ) �= (Li
j , R

i
j);

– i ∈ D, and for any i′ ∈ [1..i − 1]: (L′i′
j , R′i′

j ) �= (L′i
j , R′i

j ).

For i ∈ [2..q], i′ ∈ [1..i − 1], we say i is akin to i′ if either of the following holds:

– �i = �i′
, i ∈ E, and for any j ∈ [1..�i − 1]: (Li′

j , Ri′
j ) = (Li

j , R
i
j);

– �i = �i′
, i ∈ D, and for any j ∈ [1..�i − 1]: (L′i′

j , R′i′
j ) = (L′i

j , R′i
j );

We say i is new if it is not akin to any i′ ∈ [1..i − 1]. Now we define the basis as
follows: for i ∈ [1..q],

– For j ∈ [1..�i − 1], Zi
j is in the basis if (i, j) is fresh;

– Xi
L and Xi

R are in the basis if i ∈ D, or if i ∈ E and i is new;
– Y i

L and Y i
R are in the basis if i ∈ E, or if i ∈ D and i is new;

– Si, T i, and Si
1 are in the basis.

Let σF represent the total number of fresh pairs in the set {(i, j) | i ∈ [q], j ∈
[�i −1]}. Moreover, let qν be the total number of new queries in [1..q]. Then, the
size of the basis is σF + 2qν + 5q.

Extension from Basis. Now we show how all the internal variables Xi
j , Y

i
j

for i ∈ [1..q], j ∈ [1..�i] and U i
L, U i

R, V i
L, V i

R for i ∈ [1..q] can be written in terms
of basis variables. Since we have already seen how to write them in terms of
Si, T i, Si

1,X
i
L,Xi

R, Y i
L, Y i

R for i ∈ [1..q] and Zi
j for i ∈ [1..q], j ∈ [1..�i − 1], and

Si, T i, Si
1 for i ∈ [1..q] are already in the basis, it suffices to show that Zi

j for
i ∈ [1..q], j ∈ [1..�i − 1] and Xi

L,Xi
R, Y i

L, Y i
R for i ∈ [1..q] can be written in terms

of basis variables. An expression of an internal variable in terms of basis variables
and the oracle inputs and outputs will be called the extension expression of the
basis variable. Thus, whenever we sample all the basis elements, we can extend
this through these equations to assign values to all the internal variables.

For i ∈ E, j ∈ [1..�i], let i′ be such that (i′, j) is fresh, and (Li′
j , Ri′

j ) =
(Li

j , R
i
j). Then, i′ is called the j-predecessor of i, denoted i : j. Similarly, for

i ∈ D, j ∈ [1..�i], if for some i′ we have (i′, j) fresh and (L′i′
j , R′i′

j ) = (L′i
j , R′i

j ),
we set i : j = i′. (Thus, when (i, j) is fresh, i : j is i itself.) For i ∈ E, j ∈ [1..�i]
we have from (1) that Xi

j = Xi:j
j = L′i:j

j + Zi:j
j , so

Zi
j = L′i:j

j + L′i
j + Zi:j

j ; (7)
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and for i ∈ D, j ∈ [1..�i] we have from (2)

Y i
j = Y i:j

j = Ri:j
j + Zi:j

j + Si:j
1 ,

so
Zi

j = Ri:j
j + Ri

j + Zi:j
j + Si:j

1 + Si
1. (8)

Now if i and i : j are both in E or both in D, Zi:j
j is a basis element. (In

particular, when i : j = i, Zi
j is a basis element.) Otherwise, we can go back one

step further to (i : j) : j, the j-predecessor of i : j, denoted i : j2. We call (1)
and (2) the extension equations. They will serve useful in the later proofs. Note
that it does not hold in general that (i : j) : j = i : j. This holds only if i : j and
i are both in E or both in D, or when i : j points to a fresh input block.

For i ∈ [2..q], the smallest query index in [1..i− 1] which i is akin to is called
the origin of i, denoted i. We also define the origin of 1 to be 1 itself. Thus, for
i ∈ E,

Xi
L = Xi

L, (9)

Xi
R = Xi

R; (10)

and for i ∈ D,

Y i
L = Y i

L, (11)

Y i
R = Y i

R. (12)

Since for i ∈ E, Xi
L and Xi

R are in the basis, and for i ∈ D, Y i
L and Y i

R are in
the basis, this completes the extensions.

Oracles and Bad Events. The real oracle employs ZCZ[π̃] to answer the
queries of A. In the ideal world, the encryption oracle samples and returns L′i

j , R′i
j

for i ∈ E, j ∈ [1..�i] uniformly at random; the decryption oracle samples and
returns Li

j , R
i
j for i ∈ D, j ∈ [1..�i] uniformly at random. Once the interaction

phase is over, the ideal world oracle samples and returns each basis element
uniformly at random from {0, 1}n, with two exceptions:

– For i ∈ E, Si is drawn uniformly from the set
{0, 1}n \

{
Si′ | i is akin to i′, Ri = Ri′

}
;

– For i ∈ D, T i is drawn uniformly from the set
{0, 1}n \

{
T i′ | i is akin to i′, L′i = L′i′

}
.

The real world releases the values of the basis variables to the adversary. (Thus,
from the extension equations, A can calculate the values of the inputs, tweaks,
and outputs of all internal TBC calls.) A shall distinguish the real world Oreal
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from the ideal world Oideal, given a transcript τ of its interaction with the avail-
able oracles. We say that the event bad occurs when one of the following occurs:

– badA occurs when one of the following holds:
– For some i ∈ E, j ∈ [1..�i], there exists i′ ∈ [1..i − 1] with �i′ ≥ j such

that (L′i′
j , R′i′

j ) = (L′i
j , R′i

j );
– For some i ∈ D, j ∈ [1..�i], there exists i′ ∈ [1..i − 1] with �i′ ≥ j such

that (Li′
j , Ri′

j ) = (Li
j , R

i
j);

– badB occurs when for some i ∈ [2..q] there exists i′ ∈ [1..i − 1] with �i = �i′

such that one of the following holds:
– (U i

L, U i
R) = (U i′

L , U i′
R);

– (Si, U i
R) = (Si′

, U i′
R);

– (Si, T i) = (Si′
, T i′

);
– (V i

L, T i) = (V i′
L , T i′

);
– (V i

L, V i
R) = (V i′

L , V i′
R );

– badC occurs when one of the following holds:
– For some i ∈ [1..q], there exists i′ ∈ [1..i−1] such that (Si

1, T
i) = (Si′

1 , T i′
);

– For some i ∈ [1..q], j ∈ [1..�i −1], there exists i′ ∈ [1..i−1] with �i′ ≥ j +1
such that (Zi

j , T
i) = (Zi′

j , T i′
);

– badD occurs when one of the following holds:
– For some i ∈ E, j ∈ [1..�i − 1], there exists i′ ∈ [1..i − 1] with �i′ ≥ j + 1

such that (L′i
j , Y i

j ) = (L′i′
j , Y i′

j );
– For some i ∈ D, j ∈ [1..�i − 1], there exists i′ ∈ [1..i − 1] with �i′ ≥ j + 1

such that (Ri
j ,X

i
j) = (Ri′

j ,Xi′
j );

– badE occurs when for some i ∈ [2..q], there exists i′ ∈ [1..i − 1] such that i is
not akin to i′ and yet one of the following holds:

– (X∗i
L ,X∗i

R ) = (X∗i′
L ,X∗i′

R );
– (Y ∗i

L , Y ∗i
R ) = (Y ∗i′

L , Y ∗i′
R );

Thus, bad def= badA ∨ badB ∨ badC ∨ badD ∨ badE. Clearly,

Pr [bad] ≤ Pr [badA] + Pr [badB] + Pr [badC] + Pr [badD] + Pr [badE] . (13)

Now, we are in a position to prove Lemmas 2 and 3.

Proof of Lemma 2. Below, we show that each of the collision-pairs that would
result in one of the bad events has a joint probability of ≤ 1/N2. Clearly, we need
the assumption that all basis elements are uniformly sampled from {0, 1}n for
this purpose. Moreover, the values Si and T i are sampled without replacement
under certain circumstances, their bound is at most 1/N(N − 1), which can be
upper bounded by 1/N(N − 1) < 2/N2. Thus, for bounding the bad events, we
simply need to bound the number of candidate collision-pairs.
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For badA, there can be:

– at most σ2
E/2 collision events of the form (L′i′

j , R′i′
j ) = (L′i

j , R′i
j );

– at most σ2
D/2 collision events of the form (Li′

j , Ri′
j ) = (Li

j , R
i
j);

where σE is the total number of encryption query blocks and σD is the total
number of decryption query blocks, so that σ2

E + σ2
D ≤ σ2. Thus

Pr [badA] ≤ σ2

N2
. (14)

For badB, there can be:

– at most q2/2 collision events of the form (U i
L, U i

R) = (U i′
L , U i′

R);
– at most q2/2 collision events of the form (Si, U i

R) = (Si′
, U i′

R);
– at most q2/2 collision events of the form (Si, T i) = (Si′

, T i′
);

– at most q2/2 collision events of the form (V i
L, T i) = (V i′

L , T i′
);

– at most q2/2 collision events of the form (V i
L, V i

R) = (V i′
L , V i′

R );

Thus

Pr [badB] ≤ 5q2

N2
. (15)

For badC, there can be:

– at most q2/2 collision events of the form (Si
1, T

i) = (Si′
1 , T i′

).
– at most σ2/2 collision events of the form (Zi

j , T
i) = (Zi′

j , T i′
);

Thus

Pr [badC] ≤ q2 + σ2

N2
. (16)

For badD, there can be:

– at most σ2
E/2 collision events of the form (L′i

j , Y i
j ) = (L′i′

j , Y i′
j );

– at most σ2
D/2 collision events of the form (Ri

j ,X
i
j) = (Ri′

j ,Xi′
j ).

Thus

Pr [badD] ≤ σ2

N2
. (17)

For badE, there can be:

– at most q2/2 collision events of the form (X∗i
L ,X∗i

R ) = (X∗i′
L ,X∗i′

R );
– at most q2/2 collision events of the form (Y ∗i

L , Y ∗i
R ) = (Y ∗i′

L , Y ∗i′
R ).

Thus

Pr [badE] ≤ 2q2

N2
. (18)

The lemma follows from (13)–(18).
Now, all that is left to do is to establish our claim that each of the collision-

pairs that would result in one of the bad events has a joint probability ≤ 1/N2.
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This is to be done by examining each bad event separately. badA, badB and badC
are fairly straightforward, and we leave out the proofs. badD is more interesting;
we provide below a complete analysis of it. The trickiest case is badE; here, due
to space constraints, we only examine two of its main subcases in detail. The
complete case-by-case analysis, along with a short analysis of badA, badB and
badC, can be found in the Appendix of the full version [4].

Full Analysis of badD. We consider the two cases separately:

– (L′i
j , Y i

j ) = (L′i′
j , Y i′

j ), i ∈ E, i′ < i: We will show that Y i
j = Y i′

j always
leads to an equation containing at least one basis variable that cannot get
canceled out. The required bound follows since the basis variable and L′i

j are
independently sampled. From (2) we have

Ri
j + Zi

j + Si
1 = Ri′

j + Zi′
j + Si′

1 . (19)

Note that Si
1 cannot occur in the expansion of Zi:j

j , since i ∈ E. Now we have
two options of i′:

• i′ ∈ E: From (7) and (19) we have

Ri
j + L′i:j

j + L′i
j + Zi:j

j + Si
1 = Ri′

j + L′i′:j
j + L′i′

j + Zi′:j
j + Si′

1 .

Here the basis element Si
1 cannot be canceled out, since i′ < i.

• i′ ∈ D: From (7), (8) and (19), we have

Ri
j + L′i:j

j + L′i
j + Zi:j

j + Si
1 = Ri′

j + Ri′:j
j + Ri′

j + Zi′:j
j + Si′:j

1 .

Again, the basis element Si
1 cannot be canceled out since i′ : j ≤ i′ < i.

– (Ri
j ,X

i
j) = (Ri′

j ,Xi′
j ), i ∈ D, i′ < i: As above, we show that Xi

j = Xi′
j always

leads to an equation containing at least one basis variable that cannot get
canceled out, and the required bound follows since the basis variable and Ri

j

are independently sampled. From (1), we have

L′i
j + Zi

j = L′i′
j + Zi′

j . (20)

Now, we have two options of i′:
• i′ ∈ E: From (8), (7) and (20), we have

L′i
j + Ri:j

j + Ri
j + Zi:j

j + Si:j
1 + Si

1 = L′i′:j
j + Zi′:j

j .

When i : j < i, the basis element Si
1 cannot be canceled out, and when

i = i : j, we have i′ : j ≤ i′ < i = i : j, so the basis element Zi:j
j = Zi

j

cannot be canceled out.
• i′ ∈ D: From (8) and (19), we have

L′i
j + Ri:j

j + Ri
j + Zi:j

j + Si:j
1 + Si

1 = L′i′
j + Ri′:j

j + Ri′
j + Zi′:j

j + Si′:j + Si′
,

Here again, either Si
1 or the basis element Zi

j cannot be canceled out, and
the argument is identical to the above.
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Partial Analysis of badE. This is trickier than the other bad events, and
requires some careful case analysis. We examine the two most difficult sub-cases
here. Let i′ < i and �

def= �i′
= �i, and let αj(·) and α2

j (·) be linear functions
defined as

αj(x) def= α�−1−j · x and α2
j (x) def= (α2)�−1−j · x.

Both the sub-cases we examine here fall under the case of (X∗i
L ,X∗i

R ) =
(X∗i′

L ,X∗i′
R ). We can write this collision as

�−1∑

j=0

αj(Xi
j + Xi′

j ) = 0 and
�−1∑

j=0

α2
j (X

i
j + Xi′

j ) =
�−1∑

j=0

α2
j (R

i
j + Ri′

j ).

Using (1) we can rewrite these as

�−1∑

j=0

αj(Zi
j + Zi′

j ) =
�−1∑

j=0

αj(L′i
j + L′i′

j ), (21)

�−1∑

j=0

α2
j (Z

i
j + Zi′

j ) =
�−1∑

j=0

α2
j (L

′i
j + L′i′

j + Ri
j + Ri′

j ). (22)

We first observe that since i is not akin to i′, Xi
j + Xi′

j cannot trivially
disappear for all j ∈ [1, .., � − 1]. Also, since αj(Xi

j + Xi′
j ) sum to 0, there must

be at least two indices in [1, .., �−1] where Xi
j +Xi′

j does not trivially disappear;
let j0 and j1 be the two largest such indices, with j0 > j1. Now, we first consider
the sub-case i ∈ E, i′ ∈ E. From (7), (21) and (22) we have

�−1∑

j=0

αj(Z
i:j
j + Zi′:j

j ) =
�−1∑

j=0

αj(L
′i:j
j + L′i′:j

j ), (23)

�−1∑

j=0

α2
j (Z

i:j
j + Zi′:j

j ) =
�−1∑

j=0

α2
j (L

′i:j
j + L′i′:j

j + Ri:j
j + Ri′:j

j ). (24)

By choice of j0, i : j0 �= i′ : j0. Suppose i : j0 > i′ : j0. If i : j0 ∈ D, using (8), we
replace Zi:j0

j0
by R

i:j2
0

j0
+ Ri:j0

j0
+ Z

i:j2
0

j0
+ S

i:j2
0

1 + Si:j0
1 . The basis element Si:j0

1 does
not get canceled out; moreover, Ri:j0

j0
remains only in the top equation, while it

gets canceled out in the bottom equation. Since i : j = i′ : j for all j > j0, none
of the adversary-queried blocks remaining in either equation came after Ri:j0

j0
, so

it is independent of the rest of the equation; along with the basis element Si:j0
1

(which appears in both equations), this makes the two collisions independent,
thus occurring jointly with a probability 1/N2.

If i : j0 ∈ E, Zi:j0
j0

is in the basis, and does not cancel out. On the right hand
side of both equations, L′i:j0

j0
remains uncanceled as well, while all later adver-

sary queries get canceled. Thus, the two equations can become dependent with
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probability at most 1/N ; then, the common collision can occur with probability
at most 1/N . Thus, in either case, the joint collision can occur with a probability
of more than 1/N2. The analysis is similar when i : j0 < i : j0; then we focus on
the latter instead.

The other sub-case we consider is i ∈ E, i′ ∈ D. From (7), (8), (21) and (22)
we have

�−1∑

j=0

αj(Z
i:j
j + Zi′:j

j + Si′
1 + Si′:j

1 ) =
�−1∑

j=0

αj(L
′i:j
j + L′i′:j

j + Ri′
j + Ri′:j

j ), (25)

�−1∑

j=0

α2
j (Z

i:j
j + Zi′:j

j + Si′
1 + Si′:j

1 ) =
�−1∑

j=0

α2
j (L

′i:j
j + L′i′:j

j + Ri:j
j + Ri′:j

j ). (26)

By choice of j0 and j1, i : j0 �= i′ and i : j1 �= i′. Suppose i : j0 < i′. Then Si′
1

and Ri′
j0

remain uncanceled in (25), and no adversary query block queried after
Ri′

j0
remains uncanceled; in (26), Si′

1 remains uncanceled again, but there is no
Ri′

j0
and no adversary query block queried after it. Thus these two can occur

jointly with a probability at most 1/N2.
A symmetric argument can be used when i : j0 > i′ and i : j0 ∈ D: we replace

Zi:j0
j0

by R
i:j2

0
j0

+Ri:j0
j0

+Z
i:j2

0
j0

+S
i:j2

0
1 +Si:j0

1 using (8), and observe that Si:j0
1 remains

uncanceled in either equation, while Ri:j0
j0

remains uncanceled in (25), but gets
canceled out in (26), and no adversary query block queried after it remains in
either equation.

When i : j0 > i′ and i : j0 ∈ E, but i : j1 satisfied one of the above two
conditions, we can argue as above using i : j1 instead. If we also have i : j1 > i′

and i : j1 ∈ E, we observe that Zi:j0
j0

and Zi:j1
j1

are basis elements that do not get
canceled out in either equation. Their combined contribution to the left-hand
side of (25) is α�−1−j0 · Zi:j0

j0
+ α�−1−j1 · Zi:j1

j1
and to the left-hand side of (26)

is (α2)�−1−j0 · Zi:j0
j0

+ (α2)�−1−j1 · Zi:j1
j1

. These two collisions are independent
since α�−1−j0 · (α2)�−1−j1 �= α�−1−j1 · (α2)�−1−j0 , and thus can occur with a
probability at most 1/N2. The rest of the subcases can be analysed similarly.
This completes the proof of Lemma 2. ��

Proof of Lemma 3. Let τ be a good transcript, i.e., none of the events badA,
badB, badC, badD, or badE occurred. Then, in the ideal world, there are 2σ
samplings for generating the query responses and σF + 2qν + 5q for generating
the basis elements. In the ideal world, the basis elements are sampled uniformly
at random and independently from each other. Hence, the probability for those
is given by 1/NσF +2qν+5q. The situation differs for the outputs of the scheme.
The ideal world is an ideal SPRP; hence, the outputs are sampled without
replacement. Since all queries are from the domain B≤n, we can group encryp-
tion and decryption queries into disjoint sets L1, . . . ,Ln s.t. their union con-
tains all queries, and Set Li contains exactly the queries of length i di-blocks.
We define by Load

(
Li

)
the number of queries in Set Li, for all 1 ≤ i ≤ n.
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The probability for ciphertext outputs from encryption queries and plaintext
outputs from decryption queries is

n∏

i=1

1
(N2i)Load(Li)

.

Since each query has at least 2n bits, we can lower bound the probability by
n∏

i=1

1
(N2i)Load(Li)

≤ 1
(N2)2q

· 1
N2σ−2q

.

We obtain that

Pr [Θideal = τ ] ≤ 1
NσF +2qν+3q+2σ

· 1
(N2)q

. (27)

In the real world, the construction employs a permutation π̃T(·) for each tweak
T ∈ TD×I that was used in the transcript, . We write the set of all occurred
tweaks of all di-blocks of all queries in the transcript and write it as

{
T1, . . . ,Tθ

}
.

We further define by Load (T) the load of a tweak T, i.e., the number of distinct
inputs used for it over all queries and di-blocks of the transcript. It holds that∑θ

i=1 Load
(
Ti

)
= σF + 2σ + 2qν + 5q. We adopt the notion of transcript-

compatible permutations from [6]. We call π̃ compatible with τ if for all queries,
π̃ produced all intermediate variables as well as all outputs in τ . Let Comp(τ)
denote the set of tweakable permutations π̃ that are compatible with τ . Thus

Pr [Θreal = τ ] = Pr
[
π̃ � P̃erm (TD,I , {0, 1}n) : π̃ ∈ Comp(τ)

]
.

For a fixed tweak T, the fraction of compatible permutations is

Load(T)−1∏

i=0

1
N − i

=
1

(N)Load(T)
.

Over all tweaks Ti, for 1 ≤ i ≤ θ, the fraction of compatible permutations is
given by

θ∏

i=1

1
(N)Load(Ti)

It is hard to work with this probability directly. Instead, since we are interested
in a bound for the real-world probability of transcripts, we can lower bound the
probability of all σF + 2qν + 5q basis variables by the naive probability that
they are all computed from fresh tweaks: 1/NσF +2qν+5q. For the ciphertext and
plaintext outputs, we can employ similar sets Li, for 1 ≤ i ≤ n, as we had for
the ideal world, where Set Li again consists of all queries of length i di-blocks.
The probability of outputs in the real world can then be lower bounded by

n∏

i=1

1
(N2i)Load(Li)

.
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Now, we can upper bound the ratio of the probability of our transcripts by

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥
1

NσF +2qν+5q ·
∏n

i=1
1

(N2i)Load(Li)

1
NσF +2qν+5q · 1

N2σ−2q · 1
(N2)q

≥

∏n
i=1

1
(N2i)Load(Li)

1
(N2)q

· 1
N2σ−2q

≥
(
N2

)
q
· N2σ−2q

N2σ
=

(
N2

)
q

(N2)q

=
(N2)(N2 − 1) · · · · · (N2 − q + 1)

(N2)q
≥

(
N2 − q + 1

N2

)q

≥
(

N2 − q

N2

)q

=
(
1 − q

N2

)q

≥ 1 − q2

N2
,

where the last inequality is Bernoulli’s. So, we obtain our claim in Lemma 3. ��

6.2 Proof Sketch for Messages with Arbitrary Number of Complete
Di-blocks

Theorem 2. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ[π̃] that asks at most q queries queries of domain B+, whose lengths sum
up to at most σ di- blocks in total, and A runs in time at most time. Then

AdvSPRP
ZCZ[π̃](A) ≤ 4σ2 + 8q2

N2
.

Proof Sketch. The proof follows a similar strategy as that of Theorem 1. So, we
only consider the equations in the analysis of bad events that differ. We add
each Si

k, i ∈ [1..q], k ∈
[
1..

⌈
�i/n

⌉]
to the basis. The ideal oracle samples the

additional basis elements along with the original basis elements in the second
step, and the definitions of the bad cases do not change. From the Eqs. (1)–(6)
that we began with, only (2) is now replaced by

Y i
j = Ri

j + Zi
j + Si

�j/n�. (2’)

In the extension equations, this changes only (8), which is replaced by

Zi
j = Ri:j

j + Ri
j + Zi:j

j + Si:j
�j/n� + Si

�j/n�. (8’)

The definitions of the bad cases remain the same except badC, which now occurs
when:

– For some i ∈ [1..q], k ∈
[
1..

⌈
�i/n

⌉]
, there exists i′ ∈ [1..i − 1] with �i′ ≥

n(k − 1) s.t. (Si
k, T i) = (Si′

k , T i′
);

– For some i ∈ [1..q], j ∈ [1..�i − 1], there exists i′ ∈ [1..i − 1] with �i′ ≥ j + 1
s.t. (Zi

k,c, T
i) = (Zi′

k,c, T
i′
), where k = �j/n� , c = j − n(k − 1).
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Of these, the counting does not change for the latter; for the former, there are
now at most cmaxq

2/2 possible collision pairs now, where cmax is the maximum
number of chunks in one query; we generously bound this by σ2/2. This adds
(σ2 − q2)/2N to our earlier bound, to obtain the new bound for the extended
version. To ensure that the counting argument for badE still goes through, we
only note that for k ∈ [1.. ��/n�], Si

k can only occur in any of the collision
equations from badE with coefficients β�−1−j for j ∈ [n(k − 1) + 1..nk], where β
is either α or α2, and for any choice of k, a non-empty subset of these coefficients
cannot add to 0.

6.3 Proof Sketch for the Security of ZCZ∗

Theorem 3. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ∗[π̃] that asks at most q queries of domain {0, 1}≥2n, whose lengths sum
up to at most σ di-blocks in total, q′ of which contains an incomplete di-block
at the end. Then

AdvSPRP
ZCZ∗[π̃](A) ≤ 4σ2 + 8q2 + 9q′2

N2
.

Proof Sketch. The ideal oracle’s sampling mechanism for the tweakable blockci-
pher outputs for the partial di-block messages is slightly trickier. Let I denote
the indices of the queries with incomplete di-blocks. Instead of simulating an
ideal permutation, the ideal oracle simulates what [11] calls an ± ˜rnd oracle,
which always returns random bits, as long as no pointless queries are asked.
(It is easy to argue for our construction why not permitting pointless queries
does not diminish the adversary’s power, so we can confine our attention to the
no-pointless-query scenario.)

We use the notation (U, V ), (Um, Vm), (U ′, V ′) for outputs of the blockcipher
calls in the top, middle, and bottom layers respectively. Mj denotes (Lj , Rj),
and ∗ denotes the index of the incomplete di-block.

– For the smallest i ∈ I, U i
∗, V

i
∗ , U ′i

∗ , V i
∗ are sampled uniformly from {0, 1}n;

– For each i in I such that for no i′ in I with i′ < i we have (Li
∗, R

i
∗) �= (Li′

∗ , Ri′
∗ ):

• U i
∗ is sampled uniformly from {0, 1}n \

{
U i′

∗ | i′ ∈ I, i′ < i
}

;

• V i
∗ is sampled uniformly from {0, 1}n \

{
V i′

∗ | i′ ∈ I, i′ < i
}

;

– For each i in I such that for no i′ in I with i′ < i we have (L′i
∗ , R′i

∗ ) �=
(L′i′

∗ , R′i′
∗ ):

• U ′i
∗ is sampled uniformly from {0, 1}n \

{
U ′i′

∗ | i′ ∈ I, i′ < i
}

;

• V ′i
∗ is sampled uniformly from {0, 1}n \

{
V ′i′

∗ | i′ ∈ I, i′ < i
}

;

– For each i ∈ I the (2n − s)-bit suffix Ri of (U i
m∗, V

i
m∗) is sampled uniformly

from {0, 1}2n−s, and (U i
m∗, V

i
m∗) is set to (M i

∗ + M ′i
∗ )||Ri.



ZCZ – Achieving n-bit SPRP Security 363

The new bad cases are:

– For some distinct i, i′ in I with �i = �i′
= � we have

(M i
1..�−1,M

i
� + (U i

∗, V
i
∗ )) = (M i′

1..�−1,M
i′
� + (U i′

∗ , V i′
∗ ));

– For some distinct i, i′ in I with �i = �i′
= � we have

(M ′i
1..�−1,M

′i
� + (U ′i

∗ , V ′i
∗ )) = (M ′i′

1..�−1,M
′i′
� + (U ′i′

∗ , V ′i′
∗ ));

– For some distinct i, i′ in I with �i = �i′
= � we have

(Li
� + L′i

� + U i
∗ + U ′i

∗ , Ri
� + R′i

� + V i
∗ + V ′i

∗ )

= (Li′
� + L′i′

� + U i′
∗ + U ′i′

∗ , Ri′
� + R′i′

� + V i′
∗ + V ′i′

∗ );

– For some distinct i, i′ in I with �i = �i′
= � we have

(Ri
� + R′i

� + V i
∗ + V ′i

∗ , U i
m∗) = (Ri′

� + R′i′
� + V i′

∗ + V ′i′
∗ , U i′

m∗);

– For some distinct i, i′ in I with �i = �i′
= � we have

(Ri
� + R′i

� + V i
∗ + V ′i

∗ , V i
m∗) = (Ri′

� + R′i′
� + V i′

∗ + V ′i′
∗ , V i′

m∗).

The probabilities of these bad cases can be bounded by q′2/2N ′2, q′2/2N ′2,
q′2/2N ′2, q′2/2NN ′, q′2/2NN ′ in that order, where N ′ = N − q′. With the
reasonable assumption that q′ ≤ N/2, we can replace N ′ with N/2 in these
bounds and have them sum to 8q′2/N2, which is our bound for the combined
probability of the new bad cases. The theorem follows from Theorem 2 and
Lemma 6 of [11].

Our results in Theorems 1 and 3 had considered the instantiation with an
ideal random tweaked permutation π̃ � P̃erm(TI,D, {0, 1}n). Corollaries 1 and 2
yield the resulting security bounds when ZCZ and ZCZ∗ are instantiated with
a given tweakable block cipher ẼK : K×TI,D ×{0, 1}n → {0, 1}n be a tweakable
block cipher with K � K.

Corollary 1. Let A be an SPRP adversary on ZCZ[ẼK ], s.t. A asks at most
q queries of domain B≤n, that sum up to at most σ di-blocks in total, and A
runs in time at most time. Then

AdvSPRP
ZCZ[ ˜EK ]

(A) ≤ 3σ2 + 10q2

2N2
+ AdvSTPRP

˜EK , ˜E−1
K

(A′),

where A′ is an STPRP adversary against ẼK that asks at most a′ = 3σ +
�σ/n� + 6q queries and runs in time at most time + O(a′).
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Corollary 2. Let A be an SPRP adversary on ZCZ∗[ẼK ] that asks at most
q queries of domain {0, 1}≥2n, whose lengths sum up to at most σ di-blocks
in total, q′ of which contains an incomplete di-block at the end, and A runs in
time at most time. Then

AdvSPRP
ZCZ∗[ ˜EK ]

(A) ≤ 4σ2 + 8q2 + 9q′2

N2
+ AdvSTPRP

˜EK , ˜E−1
K

(A′),

where A′ is an STPRP adversary against ẼK that asks at most a′ = 3σ +
�σ/n� + 6q + 6q′ queries and runs in time at most time + O(a′).
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Abstract. The Blockwise-Korkine-Zolotarev (BKZ) lattice reduction
algorithm is central in cryptanalysis, in particular for lattice-based cryp-
tography. A precise understanding of its practical behavior in terms of
run-time and output quality is necessary for parameter selection in cryp-
tographic design. As the provable worst-case bounds poorly reflect the
practical behavior, cryptanalysts rely instead on the heuristic BKZ sim-
ulator of Chen and Nguyen (Asiacrypt’11). It fits better with practical
experiments, but not entirely. In particular, it over-estimates the norm
of the first few vectors in the output basis. Put differently, BKZ performs
better than its Chen–Nguyen simulation.

In this work, we first report experiments providing more insight on this
shorter-than-expected phenomenon. We then propose a refined BKZ sim-
ulator by taking the distribution of short vectors in random lattices into
consideration. We report experiments suggesting that this refined simula-
tor more accurately predicts the concrete behavior of BKZ. Furthermore,
we design a new BKZ variant that exploits the shorter-than-expected
phenomenon. For the same cost assigned to the underlying SVP-solver,
the new BKZ variant produces bases of better quality. We further illus-
trate its potential impact by testing it on the SVP-120 instance of the
Darmstadt lattice challenge.

1 Introduction

A (full-rank) lattice L of dimension n can be generated by a basis B made
of linearly independent vectors b1, · · · ,bn ∈ R

n via integer combinations:
L(B) =

∑
i≤n Zbi. Lattice reduction aims to compute a basis made of relatively

short vectors from an arbitrary input basis. Quantitatively, one measure of qual-
ity is the so-called Hermite factor HF(B) = ‖b1‖/|detB|1/n = ‖b1‖/(det L)1/n.
Understanding the practical behavior and limits of reduction algorithms is
important for setting parameters in lattice-based cryptography. Indeed, the best
known attacks against lattice-based schemes typically consist in finding short
vectors/bases of lattices provided by publicly available data [APS15].
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 369–404, 2018.
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In [SE94], Schnorr and Euchner proposed a practical lattice reduction algo-
rithm, named the Block Korkine-Zolotarev (BKZ) algorithm. It is parameter-
ized by a block-size β ≥ 2: the larger the block-size β, the more expensive
in terms of running-time, but the smaller the output Hermite factor. This is
because it internally relies on an algorithm that solves the Shortest Vector
Problem (SVP) in dimension β, i.e., which can find a shortest non-zero vec-
tor in any β-dimensional lattice. Since then, several optimizations of BKZ have
been investigated, such as early termination [HPS11] and progressive reduc-
tion [CN11,AWHT16]. In [HPS11] (see also [Neu17]), it was shown that in the
worst case, BKZβ (with early termination) achieves a Hermite factor of βO(n/β)

within a polynomial number of calls to the SVP solver, for β = o(n) and n grow-
ing to infinity. It was shown in [HS08] that there exist bases with such Hermite
factors (up to a constant factor in the exponent) which are left unchanged when
given as inputs to BKZβ . Unfortunately, these worst-case bounds are quantita-
tively very far from experimental data.

The BKZ algorithm proceeds by improving the Gram–Schmidt orthogonal-
ization B∗ = (b∗

1, · · · ,b∗
n) of the current basis B = (b1, · · · ,bn). More precisely,

it aims at updating B such that the norms ‖b∗
1‖, · · · , ‖b∗

n‖ of the Gram–Schmidt
vectors do not decrease too fast. In [Sch03], Schnorr presented a heuristic on the
shape of the Gram–Schmidt norms of the output basis, named the Geometric
Series Assumption (GSA). It states that there exists a constant r > 1 such
that the output basis satisfies ‖b∗

i ‖/‖b∗
i+1‖ ≈ r for all i < n. Among others, this

implies that HF(B) ≈ r(n−1)/2. It was argued in [CN11] (see also [Che09, Chp. 4])
that for β small compared to n, one should have r ≈ ( β

2πe (πβ)
1
β )

1
β−1 . The latter

value is derived by relying on the Gaussian heuristic1 to estimate the small-
est non-zero norm in a β-dimensional lattice L by GH(L) := ((det L)/vβ)1/β ,
where vβ denotes the volume of the β-dimensional unit ball. It was experimen-
tally observed that the GSA is a good first approximation to the practical
behavior of BKZ. Nevertheless, it does not provide an exact fit: for β � 30,
the typical BKZ output basis has its first few Gram–Schmidt norms and its last
≈ β Gram–Schmidt norms violate this assumption. These first and last Gram–
Schmidt norms are respectively called the head and the tail, the rest being the
body. In [CN11], Chen and Nguyen refined the sandpile model from [HPS11] and
provided a BKZ simulator based on the Gaussian heuristic (with a modification
for the tail, see Subsect. 2.3). Their BKZ simulator captures the body and tail
behaviors of the Gram–Schmidt norms very precisely [CN11,YD17]. However,
as investigated in [CN11,AWHT16,YD17], the Chen–Nguyen simulator fails to
capture the head phenomenon: the head almost follows the GSA in the simula-
tions, whereas, in the experiments, the logarithmic Gram–Schmidt norms form
a concave curve (instead of a line). Put plainly, BKZ finds shorter vectors than
predicted by the Chen–Nguyen simulator. Refer to Figs. 1 and 2 for an example:
we run BKZ with block-size 45 on 100-dimensional lattices (generated by the

1 The Gaussian heuristic states that a measurable S ⊆ R
n should contain

≈ vol(S)/ det(L) points of L.
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Darmstadt lattice challenge generator)2 and record the Gram–Schmidt norms
of the reduced bases after 2000 tours (each data is averaged over 100 trials).
This inaccuracy may lead to overestimated security evaluations in cryptographic
design. Understanding the head concavity phenomenon was put forward as an
important open problem in [YD17], for assessing the bit-security of concrete
lattice-based cryptosystems.
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Fig. 1. Gram–Schmidt log-norms for
BKZ45 at tour 2, 000.
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Fig. 2. Same as left hand side, but
zoomed in.

Contributions. Our first main contribution is the design of a more accurate
BKZ simulator, relying on a probabilistic version of the Gaussian heuristic. More
precisely, we take into account the fact that the norm of a shortest non-zero vec-
tor of a random lattice is not a fixed quantity driven by the Gaussian heuristic,
but a random variable. Concretely, we use a distribution derived from the result
on the distribution of short vectors in random lattices by Södergren [Söd11]. We
compare our probabilistic simulator and experimental BKZ, and observe that
our simulator provides accurate predictions of the head region, while maintain-
ing a good approximation on both body and tail regions. If we focus on the head
region, the new simulator is always more precise than the Chen–Nguyen simula-
tor, and similarly accurate for body and tail. Therefore, the Hermite factors esti-
mated by the new simulator are more accurate and fit the experimental results
more precisely. This is established through extensive experiments designed to
measure the head concavity phenomenon. Such understanding also allows to
efficiently assess how it scales for larger block-sizes: when β increases, the head
phenomenon decreases, i.e., the GSA is followed more closely.

Our second main contribution is an algorithmic exploitation of the fact that
BKZ performs better than the GSA for its first output vectors. We propose a
new variant of BKZ, pressed-BKZ, that aims to exploit the head phenomenon
everywhere in the graph of Gram–Schmidt norms. To do so, we proceed itera-
tively: we run BKZ between indices 1 and n, then we freeze the first basis vector

2 https://www.latticechallenge.org/svp-challenge/.
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and run BKZ between indices 2 and n (i.e., on the appropriately projected basis),
then we freeze the first two basis vectors and run BKZ between 3 and n, etc.
The bonus of being at the start of the basis is exploited at every position. The
output basis tightly follows the GSA in the head and body regions. The gain is
that the logarithmic Gram–Schmidt slope is better than that from the original
BKZ. Overall, for the same block-size as in BKZ, pressed-BKZ produces lattice
bases of improved quality. We adapt our BKZ simulator to pressed-BKZ, and
again, the simulation seems quite accurate, giving further confidence that our
simulation correctly captures the head phenomenon.

Another way to exploit the head phenomenon was suggested in [AWHT16].
As the first BKZ blocks are more reduced, solving the corresponding SVP
instances is easier. In [AWHT16], Aono et al. propose using a larger block-size
in the head region than in the rest of the basis. The purpose is to make the head
region even better, without increasing the overall cost significantly. We combine
this “adaptive block-size” strategy with pressed-BKZ. This allows to accelerate
the convergence of pressed-BKZ towards its typical output quality.

Finally, we demonstrate the usefulness of the BKZ variant by testing it on
an SVP-120 instance obtained with the Darmstadt lattice challenge generator.
We also compare the quality of pressed-BKZ60 reduced bases with standard
BKZβ-reduced bases for various block-sizes β.

Impact. For concrete lattice-based cryptosystems with parameters set using the
Chen–Nguyen simulator (or the corresponding GSA ratio), the head phenomenon
is a potential security risk: as BKZ performs better than what has been taken
into account while setting parameters, the parameters were potentially set too
low for the targeted bit-security levels. Our simulator, which accurately pre-
dicts the head phenomenon, suggests that the head phenomenon vanishes when
the block-size becomes large. We conjecture this is because the distribution of
the first minimum in random lattices has a standard deviation that decreases
to 0 relatively quickly when the lattice dimension increases (this lattice dimen-
sion corresponds to the BKZ block-size β). Quantitatively, the phenomenon has
almost fully disappeared for β ≈ 200. It is also less important when n is much
larger than β. Concrete figures are provided at the end of Subsect. 4.4.

The lattice-based submissions to the NIST post-quantum standardization
process3 use conservative security estimates. In particular, they rely on lower
bounds for the cost of solving SVP in dimension β, which are significantly below
what can currently be achieved in practice (we refer to [ACD+18] for concrete
figures). Note that this seems unrelated to the head phenomenon: the BKZ
block-sizes needed to break the scheme are often in the hundreds, a range of
block-sizes for which the head phenomenon has already vanished. The NIST
candidates most impacted are those that were more aggressive in setting their
parameters, though the impact remains limited even for them.

Oppositely, for block-sizes that can be handled in practice (e.g., β � 100),
the head concavity phenomenon is non-negligible, and can be exploited. Our
work can then help make concrete cryptanalysis more accurate. By allowing one
3 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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to solve SVP in larger dimensions β using pressed-BKZβ′ with β′ < β as a pre-
processing, our work should allow one to perform BKZ in larger block-sizes β. It
is well-known that for small block-sizes (say β � 35), the BKZ output quality is
inaccurately predicted by the Gaussian Heuristic (see [CN11], for example). This
phenomenon vanishes when the block-size becomes higher. But then BKZβ ben-
efits from the head concavity phenomenon. As a result, extrapolating concrete
experiments in such block-sizes to draw conclusions in much larger block-sizes
seems to amount to wild guessing. On the other hand, we have a better simula-
tion of the head phenomenon for BKZ with practical block-sizes. By exploiting
the head phenomenon, we can hope to reach higher block-sizes, for which such
small block-size effects do not occur anymore. In this smoother regime, extrap-
olating experiments should become sounder.

Related Works. The first simulator for predicting the Gram–Schmidt norms
of a BKZ-reduced basis was proposed by Chen and Nguyen in [CN11]. It relies
on the assumption that each SVP-solver in the projected local block finds a lat-
tice vector whose norm exactly matches its Gaussian heuristic estimate for that
local block, except for a few blocks at the end of the basis. It is a good first
approximation, but remains inaccurate in two ways. First, it does not capture
the head concavity phenomenon (which is reported nevertheless in the exper-
iments of [CN11]). Second, it does not take into account that in practice it is
preferable to use heuristic SVP-solvers which may miss the optimal solutions.
The main such heuristic SVP-solver is pruned enumeration, introduced in [SE94]
and refined and improved in [GNR10]. It consists of pruning the enumeration
tree by keeping only the nodes that are most likely to lead to interesting leaves.
As a result, only a subset of lattice points are enumerated within the required
radius, and the optimal solution may be missed. Extreme pruning [GNR10] goes
even further: it decreases the probability of finding a shortest non-zero vec-
tor to lower the time/probability ratio, and runs the process several times to
boost the success probability. Each time, the lattice basis is re-randomized and
reduced with a lower block-size to prepare for the enumeration. An alterna-
tive approach for solving SVP is lattice sieving. The fast sieving variants, such
as [NV08,MV10,Duc18,BDGL16], are also not guaranteed to return a shortest
non-zero lattice vector.

In [AWHT16], Aono et al. described the so-called progressive-BKZ.
The main new ingredient is that the latter tries to avoid the re-
randomization/preprocessing overheads by using a single enumeration in any
SVP call. For this, the authors increase the search radius in the enumeration,
aiming to find a short vector but not necessarily a shortest one by pruning
the enumeration tree. This search radius is adaptively derived from the current
basis quality. Since the authors are not in the regime of finding a shortest non-
zero vector, to estimate the success probability, the authors model lattice points
of norm below the search radius as random points in the ball of that radius
(see [AWHT16, Lemma 1]). This pruned enumeration with increased search
radius heuristically produces a non-zero vector in lattice Λ of norm β

β+1 ·α·GH(Λ)
for some α ≥ 1, using their random point model. For α = 1, we obtain an expec-
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tation for the first minimum that is lower than the Gaussian heuristic. Aono et
al. also adapted the Chen–Nguyen simulator by modifying the expected norm
found by the SVP-solver using the random points model rather than the Gaus-
sian heuristic value. Note that the updated simulator takes some probabilistic
phenomenon into account but remains deterministic. In particular, it does not
capture the head concavity phenomenon. Finally, as mentioned earlier, Aono et
al. also experimentally observed the head concavity phenomenon, and proposed
to exploit it by using BKZ with larger block-size on the first few blocks.

Yu and Ducas [YD17] ran extensive experiments to assess the practical behav-
ior of BKZ. They have two main experimental observations. First, the distribu-
tion of differences vi := log ‖b∗

i ‖ − log ‖b∗
i+1‖ between two consecutive Gram–

Schmidt log-norms, varies as a function of the index i when i belongs to the
head and tail regions (and it does not in the body region). Second, the covariance
between vi and vi+2 is 0 for all i, but vi and vi+1 are negatively correlated: in the
head and tail regions, their covariance depends on both i and the block-size β,
but in the body region only the block-size β contributes to their covariance.
These observations quantify the head concavity phenomenon more precisely.

Software. The BKZ experiments were run using the fplll [dt16] (version 5.2.0)
and fpylll [dt17] (version 0.4.0dev) open-source libraries. The efficiency of these
libraries for large block sizes β ≥ 50 was essential for obtaining useful statistics.
Our simulator, coded in Python, and the BKZ variants, coded in C++, are freely
available.

As mentioned earlier, we report experiments on pressed-BKZ with an adap-
tive block-size strategy, for the SVP-120 challenge. We expect our BKZ improve-
ments to be useful in larger dimensions as well (e.g., SVP-150), if given sufficient
computational resources. We want to stress that our primary goal is to model,
predict and exploit the head phenomenon, the SVP-120 experiment being an
illustration of its relevance.

Auxiliary material. We provide a significant amount of material to make our
results reproducible and to report experimental observations in more details.
Concretely, we provide codes (as mentioned above), experimental raw data,
graphs that could not fit within the page limit and video files. Data and links
are provided on the authors’ webpages.

2 Preliminaries

In this section, we recall some basic facts on lattices and lattice reduction. We
refer the reader to the survey [NV09] for more background. We first introduce
the notations used throughout the paper.

Notations. We let lower-case bold letters denote (column) vectors and upper-
case bold letters denote matrices. For a vector x, we use ‖x‖ to denote its �2-
norm. Similarly, a matrix B = (b1, · · · ,bn) is also parsed column-wise. For n ≥ 1
and r > 0, we let Vn(r) denote the volume of an n-dimensional ball with radius r
and vn the volume of an n-dimensional unit ball. Correspondingly, we let cn
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denote the radius of an n-dimensional ball of unit volume. Logarithms are in
base 2. For λ > 0, we let Expo(λ) denote the exponential distribution with
density function proportional to x �→ λe−λx, up to a normalization factor. We
let log denotes the natural logarithm with base e.

2.1 Euclidean Lattices

Let B ∈ R
n×n be full rank. The lattice L generated by B is L(B) = {Bx | x ∈

Z
n}, and the matrix B is called a basis of L. We let B∗ = (b∗

1, · · · ,b∗
n) denote

the Gram–Schmidt orthogonalization of B. The determinant of a lattice L with
basis B is defined as det(L) =

∏
i≤n ‖b∗

i ‖. The norm of a shortest non-zero vector
in L is denoted by λ1(L) and called the minimum of L. Minkowski’s theorem
asserts that λ1(L) ≤ 2 · v

−1/n
n · det(L)1/n. For i ≤ n, we let πi denote the

orthogonal projection onto the linear subspace (b1, · · · ,bi−1)⊥. For i < j ≤ n,
we let B[i,j] denote the local block (πi(bi), · · · , πi(bj)), and L[i,j] denote the
lattice generated by B[i,j].

Lattice Reduction. A lattice basis B is called size-reduced, if it satisfies |μi,j | ≤
1/2 for j < i ≤ n where μi,j = 〈bi,b

∗
j 〉/〈b∗

j ,b
∗
j 〉. A basis B is HKZ-reduced if it

is size-reduced and further satisfies:

‖b∗
i ‖ = λ1(L[i,n]), ∀i ≤ n.

A basis B is BKZ-β reduced for block size β ≥ 2 if it is size-reduced and satisfies:

‖b∗
i ‖ = λ1(L[i,min(i+β−1,n)]), ∀i ≤ n.

Heuristics. Lattice reduction algorithms and their analyses often rely on heuris-
tic assumptions. Let L be an n-dimensional lattice and S a measurable set in
the real span of L. The Gaussian Heuristic states that the number of lattice
points in S, denoted |L ∩ S|, is about vol(S)/det(L). In particular, taking S
as a centered n-ball of radius R, the number of lattice points contained in the
n-ball is about Vn(R)/det(L). Furthermore, by setting Vn(R) ≈ det(L), we see
that λ1(L) is about GH(L) := v

−1/n
n · det(L)1/n. Note that this is a factor

of 2 smaller than the rigorous upper bound provided by Minkowski’s theorem.
In [Sch03], Schnorr introduced the Geometric Series Assumption (GSA), which
states that the Gram-Schmidt norms {‖b∗

i ‖}i≤n of a BKZ-reduced basis behave
as a geometric series, i.e., there exists r > 1 such that ‖b∗

i ‖/‖b∗
i+1‖ ≈ r for

all i < n.

Random Lattices. We use Γn = {L ∈ R
n | vol(L) = 1} to denote the set of

all full-rank lattices of rank n with unit volume. The distribution of short(est)
vectors in random lattices uniformly chosen in Γn was studied, among others,
in [Rog56,Sch59,Söd11]. In [Che09], Chen proposed the following statement as
a direct corollary of [Söd11, Theorem 1].

Theorem 1. [Che09, Corollary 3.1.4] Sample L uniformly in Γn. The distribu-
tion of vn · λ1(L)n converges in distribution to Expo(1/2) as n → ∞.
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If we set λ1(L) as a random variable Y = X1/n · GH(L), with X sampled
from Expo(1/2), then the expected value of λ1 is

E(λ1(L)) = 21/n · Γ (1 + 1/n) · GH(L).

In lattices of unit volume, the GH(L) term can be replaced by v
−1/n
n . In the rest

of this paper, we refer to this quantity as the minimum expectation. For large n,
this is ≈ (1+0.116/n+ o(1/n)) ·GH(L). It can be also seen that the variance is

V(λ1(L)) = 22/n · (
Γ (1 + 2/n) − (Γ (1 + 1/n))2

) · (
GH(L)

)2
,

which is ≈ π2

6n2 (1 + o(1)) · (GH(L))2 for large n.

2.2 The BKZ Algorithm

The Schnorr-Euchner BKZ algorithm [SE94] takes as inputs a block-size β
and a basis B = (b1, · · · ,bn) of a lattice Λ, and outputs a basis which is
“close” to being BKZβ-reduced (up to numerical inaccuracies, as the underly-
ing Gram–Schmidt orthogonalization is computed in floating-point arithmetic,
and up to the progress parameter δ < 1). BKZ can be seen as a practical vari-
ant of Schnorr’s algorithm from [Sch87]. BKZ starts by LLL-reducing the input
basis, then calls an SVP-solver on consecutive local blocks B[k,min(k+β−1,n)] for
k = 1, · · · , n − 1. This is called a BKZ tour. After each execution of the SVP-
solver, if we have λ1(Λ[k,min(k+β−1,n)]) < δ · ‖b∗

k‖, then BKZ updates the block
B[k,min(k+β−1,n)] by inserting the vector found by the SVP-solver between indices
k−1 and k, and LLL-reducing the updated block (in this case, the input is a gen-
erating set instead of a basis). Otherwise, we LLL-reduce the local block directly,
without any insertion. The procedure terminates when no change occurs at all
during a tour. We refer to Algorithm 1 for a complete description of the BKZ
algorithm.

Algorithm 1. The Schnorr and Euchner BKZ algorithm
Input: A basis B = {b1, · · · ,bn}, a block size β ≥ 2 and a constant δ < 1.
Output: A BKZβ-reduced basis of Λ(B).
1: repeat
2: for k = 1 to n − 1 do
3: Find any b such that ‖πk(b)‖ = λ1(Λ[k,min(k+β−1,n)])
4: if δ · ‖b∗

k‖ > ‖b‖ then
5: LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)).
6: else
7: LLL-reduce(b1, · · · ,bmin(k+β,n)).
8: end if
9: end for

10: until no change occurs.

For practical reasons, there are diverse BKZ variants.
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• Early-abort. The BKZ reduction aborts when a selected number of tours are
completed or when a desired output quality has been reached [HPS11].

• SVP-solver. BKZ could be run with any SVP solver; in practice for typical
block sizes, the fastest one is lattice enumeration [Kan83,FP83]; the latter
can be significantly accelerated with tree pruning [SE94] and even further
with extreme pruning [GNR10]. In the case of enumeration with pruning,
the SVP solver is not guaranteed to return a shortest non-zero vector in its
input lattice. Furthermore, one can set the enumeration radius to either ‖b∗

i ‖
or Gaussian heuristic (whichever is smaller). In the experiments of Sects. 3
and 4, we use the enumeration radius 0.99·‖b∗

i ‖, which is the default choice in
the implementation of BKZ in fplll [dt16]. In the experiments of Sect. 5.4,
we set the enumeration radius to be 1.05 times the Gaussian heuristic of the
local block. In all these cases, the SVP solver is not guaranteed to return a
shortest non-zero vector.

• Pre-processing and post-processing. Pre-processing is performed before the
call to the SVP solver. In the pre-processing step, some strategies (e.g., BKZ
with a smaller block size) are chosen to further improve the basis. Post-
processing is executed after the call to the SVP-solver, e.g., running LLL on
indices 1 to min(k + β − 1, n), in order to propagate the progress made at
index k.

2.3 The Chen–Nguyen Simulator

In [CN11], Chen and Nguyen proposed a simulator to capture the practical
behavior of BKZ with relatively large block size (e.g., β ≥ 45). The goal was
to estimate the practical behavior of BKZ for hard-to-solve instances. Overall,
the simulation proceeds closely to BKZ. It considers successive tours. For each
tour, it computes new Gram-Schmidt log-norms �̂1, . . . , �̂n from current Gram-
Schmidt log-norms �1, . . . , �n. At the beginning of each BKZ tour, a boolean flag
τ is initialized to be true. To update each local block, the simulator first (deter-
ministically) compute the Gaussian heuristic value GH(B[k,min(k+β−1,n)]) as an
estimation of first miminum, by looking at the Gram–Schmidt norms of the cur-
rent local block (except for small blocks in the end). This corresponds to Line 8
of Algorithm 2, we recall that the vd denotes the volume of d-dimensional unit
ball. The computed Gaussian heuristic value is then used to update the current
local block, if it is smaller than the current ‖b∗

k‖ (as written in Line 10--11).
Else, the local block is kept unchanged. To update, the first Gram–Schmidt norm
is replaced by the selected value, and the boolean flag τ is flipped once such an
update occurs (as written in Line 12). Once the boolean flag τ is changed, all
the remaining Gram–Schmidt norms, of indices k′ ∈ [k + 1, n − 45] are updated
one by one to GH(B[k′,min(k′+β−1,n)]), independently of whether the current
‖b∗

k‖ is already small enough or not (as written in Line 15). At the end of each
tour, there is an additional update of the tail block of length 45 (as written in
Line 19--21). The Gram–Schmidt norms in this tail block are simulated with
the experimental Gram–Schmidt norms of HKZ-reduced bases of 45-dimensional
unit-volume lattices. The experimental Gram–Schmidt norms are prepared in
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Line 1--2 of Algorithm 2. This length of 45 was chosen because the minimum
of blocks of dimension ≥ 45 within BKZ follows the Gaussian heuristic quite well
(as observed by the extensive experiments of [CN11]). This special treatment on
the tail block also make the simulator more precise for capturing the practical
behavior of BKZ compared to GSA assumption.

Algorithm 2. The Chen–Nguyen BKZ simulator
Input: The Gram–Schmidt log-norms {�i = log ‖b∗

i ‖}i≤n and an integer N ≥ 1.

Output: A prediction of the Gram–Schmidt log-norms {̂�i = log ‖b∗
i ‖}i≤n after N

tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗

k‖ : B HKZ-reduced basis of Λ ← Γ45]
2: end for
3: for j = 1 to N do
4: τ ← true

5: for k = 1 to n − 45 do
6: d ← min(β, n − k + 1); e ← k + d − 1

7: log vol(Λ[k,e]) ← ∑e
i=1 �i − ∑k−1

i=1
̂�i

8: g ← (

log vol(Λ[k,e] − log vd

)

/d
9: if τ = true then

10: if g < �k then
11: ̂�k ← g
12: τ ← false

13: end if
14: else
15: ̂�k ← g
16: end if
17: end for
18: log vol(Λ[k,e]) ← ∑n

i=1 �i − ∑n−45
i=1

̂�i

19: for k′ = n − 44 to n do

20: ̂�k′ ← log vol(Λ[k,e])

45
+ rk′+45−n

21: end for
22: {�1, · · · , �n} ← {̂�1, · · · , ̂�n}
23: end for

3 Measuring the Head Concavity

In this section, we describe in detail the concavity phenomenon in the leading
Gram–Schmidt log-norms. In particular, we report experiments on the quality
of bases output by BKZβ and on the evolution of Gram–Schmidt norms during
the execution of the algorithm.

In our experiments, we consider the knapsack-type lattice bases generated by
the Darmstadt lattice challenge generator. In dimension n, the generator selects
a prime p of bitsize 10 ·n and sets the first basis vector as (p, 0, · · · , 0). For i > 1,
the i-th basis vector starts with a uniformly chosen integer modulo p, and all
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other entries are 0 except the i-th entry which is 1. When using the generator
file, the seed is from the set {0, · · · , k − 1}, where k is total number of samples
in the experiment, which enables reproducibility. We always run LLL reduction
before a BKZ reduction. We use the default LLL in fplll of parameter δ = 0.99.

3.1 BKZ Output Quality

In our first set of experiments, we measure the output quality of the BKZ algo-
rithm. We consider the final reduced basis, for increasing block sizes β. We let
BKZ run until it fully stops and use a full enumeration as SVP-solver (with-
out pruning), to avoid side-effects. We then measure the Gram–Schmidt log-
norms {log ‖b∗

i ‖}i≤n of the reduced basis B. In particular, when BKZ completes,
the vector b∗

i is a shortest non-zero vector of the lattice Λ[i,i+min(i+β−1,n)] (up to
the 0.99 factor), for every i (see Subsect. 2.2).

As we use BKZ until exhaustion with full enumeration, the experiments are
quite lengthy. We restricted them to dimension n = 100, with selected block
sizes β ranging from 4 to 40. For each choice of β, we conduct the experiment 100
times using input lattices generated with different seeds. For each experiment,
we normalize the log ‖b∗

i ‖’s of the reduced basis by substracting one hundredth
of the logarithmic determinants of its input lattice, such that the summation of
the new logarithmic Gram–Schmidt norms is normalized to be 0. This step helps
eliminate the small differences of determinants of all generated lattices. We then
average log ‖b∗

i ‖ for each i over the 100 samples.
We plotted the results for the various block sizes in Figs. 3, 4, 5, 6, 7

and 8. The x-axis corresponds to the basis vector at index i and the y-axis
is the Gram–Schmidt log-norm. Each figure contains several plots: the red
dots are the (averaged) experimental log ‖b∗

i ‖’s; the brown dots are obtained
by applying the first Minkowski’s theorem to each one of the experimentally
obtained local blocks B[i,i+min(i+β−1,n)] of the output basis; the purple dots
are the values obtained by replacing Minkowski’s theorem by the Gaussian
heuristic value GH(Λ[i,i+min(i+β−1,n)]), and the blue dots are the expected
λ1(Λ[i,i+min(i+β−1,n)]) (see Subsect. 2.1).

The experiments highlight that the Gaussian heuristic and expected value of
first minimum are not very accurate for predicting the output of the BKZ algo-
rithm (and neither is Minkowski’s theorem, but that is less surprising). For small
block sizes, the experimental Gram–Schmidt log-norms are above the Gaussian
heuristic values. Notice this even appears to happen for the tail blocks for large β.
When the block size increases, the Gaussian heuristic and first minimum expecta-
tion get closer to each other (except in the tail region), but still do not accurately
predict the genuine BKZ output. In particular, the experimental Gram–Schmidt
log-norms are concave in the head region (the other curves are also somewhat
concave, but less so, as they are smoothed versions of the experimental curve).
This is essentially the same as the phenomenon we already observed in Sect. 1,
which we refer to as head concavity. It starts being quite noticeable with β ≈ 30.
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Fig. 4. Output of BKZ8.
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Fig. 5. Output of BKZ16.
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Fig. 6. Output of BKZ20.
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Fig. 7. Output of BKZ30.
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Fig. 8. Output of BKZ40.
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3.2 Enumeration Costs in Local Blocks

The enumeration cost for SVP in each local block is also an interesting quantity
for evaluating the extent of the head concavity of a BKZ-reduced basis. As
explained in [HS07], under the Gaussian heuristic, the full enumeration cost (in
terms of number of nodes enumerated, denoted by “# nodes”) of a d-dimensional
lattice using enumeration radius ‖b∗

1‖ can be estimated by
d∑

k=1

1
2

· Vk(‖b∗
1‖)

∏d
i=d−k+1 ‖b∗

i ‖
. (1)

We take the (averaged) BKZ40 preprocessed basis from the previous subsec-
tion and compute the local SVP costs of BKZ50 and BKZ60 on the BKZ40-
preprocessed basis. We also compute the local SVP costs of BKZ40 which can be
considered as the cost for checking that the basis is indeed BKZ40-reduced. In
Fig. 9, we plot the logarithm of the quantity above for each local block of SVP40,
SVP50 and SVP60. It can be seen that the local SVP costs in the first few blocks
are cheaper. The enumeration costs keep increasing until the last β − 1 blocks.
These last blocks are of smaller dimensions, explaining why their enumeration
costs become lower. As cheaper enumeration reflects stronger reducedness, Fig. 9
hints at a concavity of the log ‖b∗

i ‖’s in the head.
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Fig. 9. Estimated enumeration costs (of each local block) for BKZ40, BKZ50 and BKZ60

on a BKZ40 reduced basis.

3.3 Evolution of the Gram–Schmidt Norms During the Execution

The previous experiments suggest that the Gaussian heuristic may be inaccu-
rate for a BKZ-reduced basis in the head region. Below, we further investigate
the evolution of the accuracy of the Gaussian heuristic for each local block
Λ[i,min(i+β,n)] during the running of the BKZ algorithm. We focus on the evolu-
tion of the BKZ40 experiments from Subsect. 3.1. After each BKZ tour, we record
{b∗

i }i∈[n] for each experiment. Again we use a full enumeration as SVP-solver
(without pruning), to avoid side-effects and wait until BKZ completes.



382 S. Bai et al.

In Fig. 10, we plot the Gram–Schmidt log-norms after each tour (for the
first 1000 tours, plus those of the initial LLL-reduced input). For each BKZ40

experiment, we normalize the log-norms after each tour as in Subsect. 3.1. Fur-
thermore, we take the average of the log-norms for the 100 experiments (one
individual graph would be less smooth). Finally, we plot the log-norms for the
first 1000 tours (one BKZ instance completes before 1000 tours; and after this
one completes, for a given tour number, we take the average over the BKZ exper-
iments that are running for more than 1000 tours). The dots corresponding to
the earlier tours are colored in blue, and those corresponding to the later tours
are colored in red (the color changes gradually).

The plot shows the evolution of the log-norms across tours. However, it does
not clearly highlight the evolution of the relation between the ‖b∗

i ‖’s and the
Gaussian heuristic values. Hence we further compute the quantities

‖b∗
i ‖

GH(Λ[i,min(i+β,n)])
for i ≤ n.

Note that this should be expected to be close to 1 for a random lattice, under the
Gaussian heuristic. For each tour, for all indices i, we record all the (averaged)
quantities at i’s across the 100 experiments. We plot a line for each tour and
hence Fig. 11 contains 1001 lines. In Fig. 11, the x-axis corresponds to the index i;
the y-axis corresponds to the quantities above. Note that for each i, there are
1001 dots vertically, corresponding to the number of BKZ tours plus the initial
LLL-reduced input.

Fig. 10. Evolution of the Gram–
Schmidt log-norms during BKZ40’s
execution.

Fig. 11. Evolution of the ‖b∗
i ‖/GH’s

during BKZ40’s execution.

As observed in prior works, BKZ distorts the distribution of the projected
lattices: the first projected sublattices are denser (the minimum is smaller) and
the last projected sublattices are sparser. This can be seen from Fig. 11 since
the red points are significantly lower than 1 in the first indices. Further, this
distortion occurs often quickly during the execution of BKZ, sometimes within
a few tours.
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3.4 Evolution of Root Hermite Factor of the Basis

We now consider the asymptote of the root Hermite factor of the basis being
BKZ-reduced, as the number of BKZ tours increases. A similar experiment was
done in [HPS11]. We compare the experimental behavior to the Chen–Nguyen
simulator. Note that the root Hermite factor only measures the head concavity
phenomenon for the first basis vector. We fix the block size at β = 45 and run
BKZβ on 100 random instances. After each tour, we record the average root
Hermite factor. In Fig. 23 (we also duplicate it here for convenience, as Fig. 12),
we plot the averaged root Hermite factors over all experiments. The root Hermite
factor δ is computed as:

δ = (‖b∗
1‖/ (det Λ)1/n)1/n.

It can be seen that the evolution of the root Hermite factor does not match with
its prediction by the Chen–Nguyen simulator. Indeed, the root Hermite factor
obtained with the Chen–Nguyen simulator does not further improve after the
first few tours; while it keeps improving in the actual experiments. It should also
be noted that in the first few tours, the root Hermite factors in the actual experi-
ments are worse than those of the Chen–Nguyen simulation. In the experiments,
we do not use pruned enumeration nor early-abort. One potential reason is that
the local SVP solver used only attempts to find a vector slightly smaller than
‖b∗

i ‖ (instead of the Gaussian heuristic value). As the number of tours increases,
the root Hermite factors in experiments become smaller than those obtained by
the Chen–Nguyen simulator.
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Fig. 12. Evolution of Root Hermite factors during the execution of BKZ45.
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3.5 BKZ with Pruning

All of the previous experiments used BKZ without pruning to avoid side-effects
on the quality. The purpose of this subsection is to show that using extreme
pruning within the enumeration indeed affects the behavior of BKZ to some
extent (this was also observed in [YD17]). Nevertheless, the head concavity phe-
nomenon remains visible even in pruned-enumeration BKZ. Again we run the
BKZ experiments until they fully complete (i.e., no early-abort).

We consider two experiments. First, we run BKZ40 with pruned enumeration
and compare it with standard BKZ40. We used the default pruning strategy of
fplll. We note that there is no known canonically best way to prune, and the
experimental results may vary a little across different pruning strategies. We see
by comparing Fig. 13 (with pruned enumeration) with Fig. 8 (without) that the
extent of the head concavity phenomenon is less than without pruned enumer-
ation. In the second experiment, we run BKZ with pruned enumeration with
larger block size, which is also more relevant to cryptanalysis. In particular, we
run BKZ60 with pruned enumeration and then plot the evolution of the corre-
sponding ‖b∗

i ‖/GH’s (for the first 500 tours) in Fig. 14. This is to be compared
with Fig. 11. We can conclude that the head concavity phenomenon still exists
for practical versions of BKZ with larger block sizes.
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Fig. 13. Output Gram–Schmidt log-
norms for BKZ40 with pruning.

Fig. 14. Evolution of the ‖b∗
i ‖/GH’s

during the execution of BKZ60 with
pruning.
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4 A Refined BKZ Simulator

In this section, we describe a refined BKZ simulator, and report on experiments
indicating that the simulation is quite accurate, in particular in capturing the
head concavity phenomenon.

4.1 The Refined Simulator

Our probabilistic BKZ simulator aims to provide a more accurate simulation
of the experimental behavior of the BKZ algorithm. Our simulator has similar
structure as the Chen–Nguyen simulator (refer to Subsect. 2.2), in particular, we
also consider the Gram–Schmidt log-norms. There are several differences with
the Chen–Nguyen simulator.

The main difference is the emulation of the probabilistic nature of the min-
imum in random lattices. Theorem 1 provides the distribution of the minimum
of a uniform unit-volume lattice. The new BKZ simulator, given as Algorithm 3,
is probabilistic. It takes this distribution into consideration when updating
each local block. In more detail, suppose that we are updating the local block
Λ[k,e] = Λ(B[k,e]) for some k ≤ n − 45 and e = min(k + β − 1, n) with dimension
d = min(β, n − k + 1). Let us assume this is a random lattice. By Theorem 1,
we have that λ1(Λ[k,e]) is distributed as

λ1(Λ[k,e]) =
(

X · vol(Λ[k,e])
vd

)1/d

,

where X is sampled with distribution Expo[1/2]. Recall that vd is the volume of
n-dimensional unit ball. Now we can take the logarithm to obtain

log λ1(Λ[k,e]) =
log X + log vol(Λ[k,e]) − log vd

d
.

This explains Line 14 in Algorithm 3. In Line 15, the simulator checks whether
a value sampled as above, e.g., log ‖b∗

k‖, is smaller than the current log ‖b∗
k‖. If

it is indeed smaller, then the value of log ‖b∗
k‖ is updated. Else the former one is

kept. This is corresponding to the main step in the BKZ algorithm (Line 4--7):
once the found vector (in the SVP call) is shorter than current b∗

i in current
local block, then the found vector will be used to replace bi, thus b∗

i is updated.
Otherwise the found vector will be discarded, and the simulation assumes that
b∗

i is not changed during the LLL-reduction.
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A further difference with the Chen–Nguyen simulator is the way we han-
dle the remaining Gram–Schmidt log-norms in the current local block in case
log ‖b∗

k‖ has been updated. In the Chen–Nguyen simulator, after updating the
first Gram–Schmidt log-norms log ‖b∗

k‖ in the current local block, all the remain-
ing log-norms log ‖b∗

i ‖ for i > k will be updated by using the Gaussian heuristic
directly without further checking whether the estimated value gives an improve-
ment or not (refer to Algorithm 2). In our simulator, we consider a refined
update of the remaining log ‖b∗

i ‖’s of the block. Concretely, we update all the
remaining indices in the current local block by increasing them by a common
amount chosen so that the volume of current block is preserved (it compen-
sates for the decrease of log ‖b∗

k‖). There is one further subtlety in the actual
update applied by the simulator. For the second Gram–Schmidt log-norm of the
block, it sets �̂k+1 ← �k + log(

√
1 − 1/d) rather than increasing it by the same

amount as for the d − 2 remaining log-norms. The quantity
√

1 − 1/d is used
to simulate the change in norm for the old vector b∗

k after being projected with
respect to a new vector (the shortest vector of the local block inserted). We
assume that the coefficients of the shortest vector in terms of the normalized
Gram–Schmidt basis (b∗

1/ ‖b∗
1‖ ,b∗

2/ ‖b∗
2‖ , · · · ,b∗

n/ ‖b∗
n‖) looks like a uniformly

distributed vector of the same norm. This twist also occurs in experiments: the
updated second Gram–Schmidt norm is almost always a bit smaller than the
old first Gram–Schmidt norm of the block. Such a strategy also makes the sim-
ulator more flexible. In the new simulator, it is not necessary to update all the
remaining blocks with the value estimated by the Gaussian heuristic once we
have an update: the simulator makes an update only when needed, i.e., when an
improving Gram–Schmidt norm is sampled.

We also use two sets of boolean values {t
(i)
0 }i≤n and {t

(i)
1 }i≤n, to record if

there is a change of log ‖b∗
i ‖ in the last and the current tours, respectively. If we

know there was no change at all in current local block during the last tour, we
simply skip the current block and go to the next one. Correspondingly, in BKZ,
it means that the found shortest vector in current block in this tour will be the
same as the one in current block in last tour. As it was not used to make an
update during the last tour, so will it not be used in this tour.
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Algorithm 3. The probabilistic BKZ simulator
Input: The Gram–Schmidt log-norms {�i = log ‖b∗

i ‖}i≤n and an integer N ≥ 1.
Output: A prediction of the Gram–Schmidt log-norms after N tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗

k‖ : B HKZ-reduced basis of Λ ← Γ45]
2: end for
3: t

(i)
0 ← true, ∀i ≤ n

4: for j = 1 to N do
5: t

(i)
1 ← false, ∀i ≤ n

6: for k = 1 to n − 45 do
7: d ← min(β, n − k + 1); e ← k + d
8: τ ← false

9: for k′ = k to e do τ ← τ‖t
(k′)
0

10: end for
11: log vol(Λ[k,e]) ← ∑e−1

i=1 �i − ∑k−1
i=1

̂�i

12: if τ = true then
13: X ←↩ Expo[1/2]
14: g ← (log X + log vol(Λ[k,e]) − log vd)/d
15: if g < �k then
16: ̂�k = g
17: ̂�k+1 ← �k + log(

√

1 − 1/d)

18: γ ← (�k + �k+1) − (̂�k + ̂�k+1)
19: for k′ = k + 2 to e do
20: ̂�k′ ← �k′ + γ/(d − 2)

21: t
(k′)
1 ← true

22: end for
23: τ ← false

24: end if
25: end if
26: {�k, · · · , �e−1} ← {̂�k, · · · , ̂�e−1}
27: end for
28: log vol(Λ[k,e]) ← ∑n

i=1 �i − ∑n−45
i=1

̂�i

29: for k′ = n − 44 to n do

30: ̂�k′ ← log vol(Λ[k,e])

45
+ rk′+45−n

31: t
(k′)
1 ← true

32: end for
33: {�1, · · · , �n} ← {̂�1, · · · , ̂�n}
34: {t

(1)
0 , · · · , t

(n)
0 } ← {t

(1)
1 , · · · , t

(n)
1 }

35: end for

As the Chen–Nguyen simulator is deterministic, it terminates relatively fast,
within a few hundreds of tours typically. Oppositely, our probabilistic simulator
may perform far more tours and continue making further (though smaller and
smaller) Gram–Schmidt progress. Another difference between the behaviors of
the simulators comes from the fact that the expectation of a given sample (g in
Line 14 of Algorithm 3) for updating each local block in our simulator is slightly
larger than the one used in the Chen–Nguyen simulator that uses the Gaussian
heuristic (but they are closer to each other as the block size increases). As a
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result, the sampled value for the first minimum of a local block can be slightly
larger than in the Chen–Nguyen simulator. However (and more importantly), the
chosen value can also be smaller than the Gaussian heuristic, and in fact smaller
than the current value even if that one is already quite small. This is exactly
what makes the Gram–Schmidt log-norms progress further in the simulations
and makes the simulations closer to the practical behavior of BKZ.

4.2 Heuristic Justification

We now give a heuristic explanation as to why the probabilistic simulator (and
BKZ) keeps making progress even after some significant amount of time. Every
time it considers a block, it keeps trying to find a shorter vector than the current
first vector of the block, thanks to fresh random sampling. Let X ←↩ Expo(1/2)
and Y = X1/n. Assume for simplicity that there is only one block (i.e., n = β)
and that the lattice Λ has been scaled so that the volume of the lattice is 1,
which implies that λ1(Λ) has the same distribution as Y . The CDF of Y is

F (y) = 1 − e−yn/2.

Let Ymin,K be the minimum among K independent Yi’s. Its CDF and PDF are

Fmin,K(y) = 1 − e−Kyn/2 and fmin,K(y) = Knyn−1e−Kyn/2/2,

respectively. We can hence compute the expected value

E(YK,min) = (2/K)1/n · Γ (1 + 1/n) = E(λ1(Λ))/K1/n.

One sees that the expectancy keeps decreasing, although much more slowly as
K increases. Notice that K here can be regarded as proportional to the number
of tours in our probabilistic simulator. We conjecture that BKZ is enjoying a
similar phenomenon.

This simple model does not work for explaining BKZ with a single block
(because for a single block, once the SVP instance has been solved, it cannot
be improved further). In the more interesting case where β < n, the fact there
are many intertwined blocks helps as an improvement for one block ‘refreshes’
the neighbouring blocks, which then have a chance to be improved. In this case,
however, this simple model does not capture the impact of one block on the
neighbouring blocks, nor the fact that the SVP instances across blocks are not
statistically independent (in particular, the blocks overlap).

4.3 Quality of the New Simulator

In this subsection, we describe experiments aiming to assess the accuracy of
our probabilistic BKZ simulator. We measure the quality of our simulator by
comparing with the practical BKZ and the Chen–Nguyen simulator using two
quantities: the Gram–Schmidt log-norms after certain tours and the root Hermite
factors. We then describe some limitations of our simulator.
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(a) Graph of Gram–Schmidt Log-norms. In practice, the full sequence of
Gram–Schmidt log-norms is important for evaluating the quality of a basis. For
example, if we extrapolate the log-norms by a straight line, the slope of the line
can be used to indicate whether the basis is of good quality or not. For this
reason, we are interested in how accurately the simulator predicts the evolu-
tion of the full sequence of Gram–Schmidt log-norms during the BKZ execution.
We consider the following two experiments: (1) The input lattices are SVP-100
instances and we use BKZ45 without pruned enumeration up to 2, 000 tours. For
this experiment, the setup is the same as the one used in Subsect. 3.4. We plot
the averaged Gram–Schmidt log-norms at tours 50 and 2, 000. (2) The input lat-
tices are SVP-150 instances and we use BKZ60 with pruned enumeration up to
20, 000 tours. Note some experiments (and simulation) completes before 20, 000
tours. In such cases, we take the Gram–Schmidt log-norms of the basis obtained
at completion. We plot the averaged Gram–Schmidt log-norms at tours 50 and
20, 000 (or the last Gram–Schmidt log-norms if it completes before 20, 000 tours).
We record the full log-norm sequences at the end of selected tours. As shown
in Figs. 15, 16, 17, 18, 19, 20, 21 and 22, after a few tours, both the new BKZ
simulator and the Chen–Nguyen simulator approach the experimental behavior
of BKZ. As the number of BKZ tours increases, both the experimental BKZ and
the probabilistic BKZ simulator evolve, and the corresponding log-norms even-
tually become concave in the head region. However, the Chen–Nguyen simulator
stops making progress after a few tours. By comparison, the new simulator fits
the experimental results quite accurately in both situations.
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Fig. 15. Gram–Schmidt log-norms for
BKZ45 at tour 50.
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Fig. 16. Same as left hand side, but
zoomed in.

(b) Root Hermite Factor. In Subsect. 3.4, we have seen that the asymptotes
(for a large number of tours) of the root Hermite factors obtained with the
genuine BKZ algorithm and the Chen–Nguyen simulator diverge. Here in Figs. 23
and 24, we investigate the behavior of the root Hermite factor obtained with the
new probabilistic simulator, when the number of tours increases. One can observe
that, after a few tours, the probabilistic simulator predicts the experimental data
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Fig. 17. Gram–Schmidt log-norms for
BKZ45 at tour 2, 000.
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Fig. 19. Gram–Schmidt log-norms for
BKZ60 at tour 50.
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Fig. 21. Gram–Schmidt log-norms for
BKZ60 at tour 20, 000.
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zoomed in.
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more closely. One can also observe that, in the very first several tours, neither
the Chen–Nguyen simulator nor the probabilistic simulator is very accurate. In
the case of pruned enumeration, the experimental root Hermite factors seem
to drop faster than in the simulators; while with non-pruned enumeration, the
root Hermite factors in experiments evolve more slowly. This may be due to the
algorithmic and implementation complications brought by the pre-processing,
the SVP solver, pruning and post-processing.
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Fig. 23. Evolution of the root Hermite
factor during the execution of BKZ45

(no pruned enumeration) on SVP-100.
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Fig. 24. Evolution of the root Hermite
factor during the execution of BKZ60

(with pruned enumeration) on SVP-150.

(c) Limitations of the New Simulator. The probabilistic simulator does
not fully match with the experimental behavior of BKZ in the first few tours.
In particular, the progress of the real Gram–Schmidt log-norms with BKZ with
non-pruned enumeration is slower than the simulator’s (refer to Fig. 23). One
potential reason is the local SVP solver only attempts to find a vector slightly
smaller than ‖b∗

i ‖ (instead of the Gaussian heuristic value). On the other hand,
it may be observed that the progress of the real Gram–Schmidt log-norms is a
bit faster than the simulated log-norms in the very first BKZ tours, for BKZ
with pruned enumeration (refer to Fig. 24) in these experiments. One potential
reason could be that the pruned enumeration uses extensive pre-processing in a
local block (which is not captured by the simulator), and this helps to lower the
root Hermite factor in the beginning of the execution. However, as soon as the
number of tours increases, the probabilistic phenomenon seems to weigh more
and the new simulator becomes accurate.

Next, we verify if the preprocessing indeed helps make the experimental root
Hermite factor decrease faster than the corresponding quality in the simulator.
To verify the impact of preprocessing in pruned enumeration, we run BKZ60

(with pruned enumeration) without pre-processing on SVP150 instances. We plot
the root Hermite factor of the basis after each tours (up to 100 tours). Each data
is taken averaged over 100 results. As shown in Fig. 25, the BKZ variant without
pre-processing makes progress no faster than the simulator. This suggests that
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pre-processing indeed accelerates the progress made by BKZ. On the other hand,
we can also observe that without preprocessing, the root Hermite factor decrease
slower than the corresponding quality in the simulator. One possible reason for
this could be that the vector found by extreme pruning in each local block may
be longer than the minimum of the local lattice.
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Fig. 25. Comparison of Gram–Schmidt log-norms obtained by the simulators and
BKZ60 (no pre-processing) on SVP-150, after 4,000 tours.

In conclusion, it seems quite difficult to use the simulator to estimate the
precise evolution of Gram–Schmidt log-norms for the first few tours due to the
following two reasons: (1) we are not clear about how much improvement is pro-
vided by the pre-processing; (2) we do not have a precise understanding on the
distribution of norms of vectors output by the enumeration (ideally with prun-
ing). On other hand, after the first few tours, the simulator seems to be more
accurate when estimating the Hermite factors, which is important for crypto-
graphic applications.

4.4 Predicting the Root Hermite Factor for Large Block Sizes

As our proposed simulator predicts real BKZ quite well for the range of block
sizes for which such experiments can be run, we expect that our simulator keeps
this accuracy for larger block sizes. This is in particular relevant in cryptanalysis
and for security analyses of concrete lattice-based cryptosystems. Indeed, many
of the existing security analyses rely on the root Hermite factor predicted by
the Chen–Nguyen simulator (see [ACD+18] and the references therein), which,
as we have seen, is an over-estimate. We thus run the simulators for large block
sizes and large dimensions, to assess how the discrepancy scales.



Measuring, Simulating and Exploiting the Head Concavity Phenomenon 393

In this experiment, we consider two cases:

(1) the dimension n is much larger than the block-size β.
(2) the dimension n is a small constant times larger than the block-size β.

The Case (1) is a scenario often considered to assess the quality of BKZ-type algo-
rithms (see, e.g., [CN11]). On the other hand, in practice, we are also interested in
Case (2) where the dimension/block-size ratio is small. This is a typical situation
for the lattice-based NIST candidates (see [ACD+18]). Concretely, in the first case,
we run our simulator of BKZ with block-size β ∈ [50, 250] on 1000-dimensional lat-
tices and our simulator on BKZ with block-size β ∈ [260, 300] in 2000-dimensional
lattices, both with 20,000 tours. In the second case, we run the same experiment as
above except with a fixed ratio of 3 between dimension and block-size. Each data
point is averaged over 10 samples. We plot the root Hermite factor corresponding
to the Gram–Schmidt log-norms output by our simulator.
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Fig. 26. Root Hermite factor for
selected β ∈ {50, 60, · · · , 300}. Here
the dimension is 1000 for β ∈ [50, 250]
and 2000 for β ∈ [260, 300].
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Fig. 27. Root Hermite factor for
selected β ∈ {50, 60, · · · , 300}. Here
the dimension is 3 · β.

As can be seen in Figs. 26 and 27, for large block sizes, the discrepancy
vanishes: both simulators converge to the same root Hermite factors. This
may be explained by considering the distribution of the minimum of a uni-
form unit-volume lattice, used in the probabilistic simulator. The expectation is
21/β · Γ (1 + 1/β), which converges to 1, the Gaussian heuristic value (when β
grows to infinity). Further, as we have seen in Subsect. 2.1, the variance of the
selected value is 22/β · (

Γ (1 + 2/β) − (Γ (1 + 1/β))2
) · v

−2/β
β , which decreases

to 0 as O(1/β2), making the distribution “more concentrated” and lowering the
chance of being“lucky” in finding unexpectedly short vectors in local lattices.

5 Pressing the Concavity

In this section, we propose a new BKZ variant. For practical purposes, we further
twist this new algorithm with several different strategies. We also quantify the
quality of the obtained lattice bases.
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5.1 Pressed-BKZ

Below, we first describe the new BKZ variant, pressed-BKZ, and then explain
why it provides an improvement. Pressed-BKZ is described as Algorithm 4.

Algorithm 4. The pressed-BKZ algorithm
Input: A basis B = {b1, · · · ,bn}, a block-size β ≥ 2 and a constant δ < 1.
Output: A basis of Λ(B).
1: for s = 1 to n − β + 1 do // progressive starting point
2: Re-randomize the projected lattice Λ[s,n].
3: repeat
4: for k = s to n − 1 do
5: Find b such that ‖πk(b)‖ = λ1(Λ[k,min(k+β−1,n)])
6: if δ · ‖b∗

k‖ > ‖b‖ then
7: LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)).
8: else
9: LLL-reduce(b1, · · · ,bmin(k+β,n)).

10: end if
11: end for
12: until no change occurs (or other condition).
13: end for

The pressed-BKZ algorithm runs standard BKZ on block Λ[s,n] with an incre-
mentally increased starting index s ∈ [1, n − β + 1]. In particular, in the case
of s = 1, pressed-BKZ executes standard BKZ. Note that in Line 12, “no change
occurs” means that no local block was updated during the last tour (from k = s
to k = n − 1). The difference between pressed-BKZ and standard BKZ starts
with s > 1. At that stage, it does not run BKZ on the full lattice basis anymore.
Instead, it freezes the first s − 1 lattice vectors {bi}i∈[1,s−1] and re-randomizes
the projected lattice Λ[s,n], then runs stardard BKZ on the projected lattice.
Note that the re-randomization is necessary, otherwise after the BKZ reduction
on Λ[1,n], no improvement will happen in BKZ reduction on Λ[2,n] in the second
iteration and either in the following iterations. In particular, in the second iter-
ation, the re-randomization helps randomize the basis vectors of the projected
lattice Λ[2,n], thus gives a chance of generating a denser leading block of Λ[2,n]

via BKZ reduction. The re-randomization on the projected lattice is done via
tranforming the basis of the projected lattice with a unimodular matrix. Here,
we use the unimodular matrix generated in the fplll library.

The design rationale is as follows. Suppose BKZ creates a head concavity
for the Gram–Schmidt log-norms. Then the first iteration with s = 1 will help
to lower log ‖b∗

1‖. The iteration with s = 2 will preserve log ‖b∗
1‖ and help to

lower log ‖b∗
2‖, etc. This explains the name of the algorithm.

5.2 On the Behavior of Pressed-BKZ

The goal of pressed-BKZ is to further improve the quality of bases obtained by
the original BKZ algorithm without a block-size increase. In order to illustrate
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the idea, we run standard BKZ60 on 120-dimensional random lattices (generated
in the same way as mentioned at the start of Sect. 4) with 500 tours (i.e., with
early-abort) first, and then run pressed-BKZ with the same number of tours in
each iteration with start index s = 2. Each data point is averaged over 100 sam-
ples. As shown in Fig. 28, pressed-BKZ successfully presses the “head concavity”
that was produced by the standard BKZ algorithm.

From the experiment above, we can already see that pressed-BKZ produces a
basis with better quality, as its corresponding Gram–Schmidt log-norms achieve
a smaller slope. Next, we try to assess by how much pressed-BKZ improves stan-
dard BKZ in this respect. We first adapt the simulator for BKZ from Sect. 4 in
the direct way to simulate pressed-BKZ. Before we go further, we check the accu-
racy of our simulator when simulating the behavior of pressed-BKZ by running
the same experiment above, but with the simulator. As shown in Fig. 29, our
simulator produces a result that is close to the one experimentally obtain with
pressed-BKZ.
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Fig. 28. Full sequences of Gram–
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Now we have an accurate simulator for pressed-BKZ, we can proceed to
check the behavior of pressed-BKZ further. For this, we run our simulator of
pressed-BKZ for block-sizes between 50 and 300, with many tours. We again
consider two cases: (1) the dimension n is much larger than the block-size β;
(2) the dimension n is a small constant times larger than the block-size β. In
the first case, we simulate pressed-BKZ with block-size β ∈ [50, 250] on 1,000-
dimensional lattices with 5,000 tours for each iteration, and pressed-BKZ with
block-size β ∈ [260, 300] on 2,000-dimensional lattices with 10,000 tours. Each
data is averaged over 10 samples. In the second case, we run the same experiment
as above except with the dimension/block-size ratio set to 3. Further, we recall
the Chen–Nguyen simulator for a comparison. Note that we can also adapt the
Chen–Nguyen simulator for pressed-BKZ, which however, gives a same result as
the simulation for standard BKZ. Here, we use the extrapolated slope to evaluate
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the quality of a reduced basis. To compute the slope, we fit the Gram–Schmidt
log-norms with a line using the least square method of fplll and fpylll. Note
that the default implementation in fplll and fpylll computes the slope using
the Gram–Schmidt log-norms multiplied by 2. Here we compute the slope using
the Gram–Schmidt log-norms only. As we can see in Fig. 30, there is a difference
between our simulator for pressed-BKZ and the Chen–Nguyen simulator (for
standard BKZ), which means our simulator for pressed-BKZ may be used to
make a severer cryptanalysis on lattice-based cryptography compared to the
Chen–Nguyen simulator.

As can be seen in Fig. 31, when the dimension is relatively close to the block-
size, our simulator for pressed-BKZ outputs the Gram–Schmidt norms with slope
more significantlly better than the one output by the Chen–Nguyen simulator.
In particular, for small block-size β = 50, our simulator for pressed-BKZ can
produce Gram–Schmidt norms with slope almost equal to the one produced by
the Chen–Nguyen simulator for standard BKZ with block-size 85. Thus we earn
almost 35 dimensions while only relying on an SVP solver in dimension 50. The
difference becomes very small when the block-size considered is larger than 200.
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Fig. 30. Comparison of the slopes of
Gram–Schmidt log-norms between our
simulator for pressed-BKZ and the
Chen–Nguyen simulator for standard
BKZ for selected β ∈ {50, 60, · · · , 300}.
Here the dimension is 1000 for β ∈
[50, 250] and 2000 for β ∈ [260, 300].
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Fig. 31. Comparison of the slopes of
Gram–Schmidt log-norms between
our simulator for pressed-BKZ
and the Chen–Nguyen simulator
for standard BKZ for selected
β ∈ {50, 60, · · · , 300}. Here the
dimension is 3 · β.

5.3 Variable Block-Size Strategy

Pressed-BKZ helps improve the quality of the basis such that its Gram–Schmidt
log-norms approximate a line. However, the concavity phenomenon may still
exist within each iteration during pressed-BKZ. Concretely, in the BKZβ reduc-
tion for each projected sub-lattice Λ[s,n] for s ∈ [1, · · · , n − β + 1], one can still



Measuring, Simulating and Exploiting the Head Concavity Phenomenon 397

observe the head concavity phenomenon after a few tours of the BKZ algorithm.
As a result, the costs of solving SVP instances in the leading blocks become less
than those for the middle blocks (we refer to Subsect. 3.2 for the correspondence
between quality of basis and enumeration cost for SVP).

We adapt the variable block-size strategy from [AWHT16]. The principle of
the variable block-size strategy is to adaptively use larger block-sizes for the
leading blocks, so that their enumeration costs match the enumeration costs for
the middle blocks. We use the following simple variant: for the case of BKZβ

on the projected (n − s + 1)-dimensional sub-lattice, we always take the specific
block Λ[k,e] in the middle with k = �n/2� − �β/2� + �s/2� + 1 and e = �n/2� +
�β/2� + �s/2� as the standard SVP cost for comparison. When the estimated
SVP cost for any leading block is smaller than the cost of this middle block, we
progressively increase the block-size of the current leading block until its SVP
cost matches the standard SVP cost. Correspondingly, we only use the variable
block-size strategy for those leading blocks, with starting index not exceeding k
(the starting index of the selected middle block).

Note that if such variable block-size strategy improves standard BKZ, then it
is likely to improve pressed-BKZ: if the variable block-size strategy can decrease
the first Gram–Schmidt norm of the projected lattice Λ[k,n] (for k from 1 to
n − β + 1) a little more (compared to standard BKZ without such a strategy),
then the improvement from each iteration will eventually contribute to the final
pressed-BKZ reduced basis. Thus we will only consider such variable block-size
strategy with standard BKZ. As our simulator seems to be precise on the quality
of BKZ, we first compare BKZ with and without such a variable block-size
strategy using our simulator.

We run the simulation (100 instances) for BKZ60 (with and without the
variable block-size strategy) and plot the average root Hermite factor after each
tour. As shown in Figs. 32 and 33, BKZ with variable block-size makes the root
Hermite factor decrease slightly faster. It seems that the difference becomes
smaller when the number of tours increases. However, we also notice that after
sufficiently many tours, such a difference reoccurs as shown in Fig. 33. One can
observe that the largest gap in Fig. 33 is less than 0.0001. Thus we may conclude
that the variable block-size strategy helps improve the root Hermite factor faster.
However, it does not seem to give a significant improvement on the root Hermite
factor itself.

Next, we run experiment to verify if the variable block-size strategy indeed
helps decreasing the root Hermite factor faster (and check if this matches the
simulated results). We run standard BKZ60 with and without variable block-
size on an SVP-120 instance from the Darmstadt lattice challenge. We plot the
average root Hermite factor (over 100 samples) after each tour. As can be seen
in Figs. 34 and 35, the convergence of root Hermite factor of basis output by the
standard BKZ60 with variable block-size is slightly better than the one output
by BKZ60 without such strategy.
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Fig. 32. Comparison of root Hermite
factors of simulated BKZ with and
without variable block-size. The simu-
lation is performed with our new simu-
lator up to 40 tours.
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Fig. 33. Comparison of root Hermite
factors of simulated BKZ with and
without variable block-size. The sim-
ulation is performed with our new
simulator up to 2,000 tours.
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Fig. 34. Comparison of root Hermite
factors of standard BKZ60 with and
without variable block-size within 40
tours.
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Fig. 35. Comparison of root Hermite
factors of standard BKZ60 with and
without variable block-size within
2,000 tours.

5.4 Solving SVP-120 with Pressed-BKZ

In this subsection, we use pressed-BKZ for the preprocessing phase to solve an
SVP-120 challenge, to demonstrate its practical relevance. We are interested in
the quality of pressed-BKZ-reduced bases as reflected by the total enumeration
cost, i.e., the sum the preprocessing and enumeration costs, divided by the suc-
cess probability. In the experiment, we consider an SVP challenge of dimension
120 (generated using the Darmstadt lattice challenge generator) and preprocess
it using pressed-BKZ60 with the adaptive block-size strategy described in the
previous subsection. The preprocessing took a total 5 × 105 s on an Intel Xeon
processor of 2.67GHz (the enumeration speed is 2 × 107 nodes per second and
hence the runtime corresponds to an enumeration tree of 1 × 1013 nodes).
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Comparison with Standard BKZ. We first investigate the quality of the
pressed-BKZ60-reduced basis in terms of BKZ-reducedness. The aim is to find
the block-sizes β (and the number of tours) for which the output of standard
BKZβ would be of similar quality. This suggests that the bases produced by
pressed-BKZ60 and standard BKZβ have similar full enumeration cost.

We have to determine some criterion for the quality of bases. Essentially, one
wants to compare the pruned enumeration cost of the pressed-BKZ60-reduced
basis with the pruned enumeration cost of the standard BKZβ-reduced basis. As
a first approximation, we compute the full enumeration cost of BKZβ-reduced
basis (right after each BKZ tour) and stop as soon as it is close to the full
enumeration cost for the pressed-BKZ-reduced basis. This also gives us roughly
the number of tours needed for BKZ with the corresponding block-size to achieve
a similar quality as our basis reduced by pressed-BKZ60. A better approach,
which we did not implement, would be to invoke the pruning optimizer right
after each local SVP to estimate the enumeration cost and stop as soon as it is
close to the pruned enumeration cost for the pressed-BKZ reduced basis.

Instead of doing the actual BKZβ experiment for all candidate blocksizes, we
first use simulation to find the most competitive blocksizes. As investigated in
Sect. 4, the probabilistic simulator seems quite precise after the first few tours:
if the number of tours involved in the simulation is tiny, we conduct true BKZ
experiments for confirmation. After we have determined the most appropriate
blocksizes β, we conduct true BKZ experiments for these blocksizes to double-
check their quality and run-time (as opposed to simulation).

To start with, we have to determine some suitable searching range for the
block-size β. As we already saw, in the case where the dimension is not much
larger than the block-size, the quality of a basis reduced by pressed-BKZ60 can
be quite superior to that obtained by using BKZβ for β > 60. Thus we try sev-
eral larger blocksizes starting for β = 70, 75, 80, 85, 90. For each blocksize β, the
Gram–Schmidt norms of standard BKZβ are simulated by the probabilistic sim-
ulator. We start with the LLL-reduced basis of the SVP-120 input and average
over the 100 simulations for each β. We set a maximum of 50, 000 tours in the
simulator but break as soon as (if possible) the full enumeration cost is smaller
than the full enumeration cost of our reduced pressed-BKZ60.

For blocksizes 70 and 75, the full enumeration cost cannot beat the full enu-
meration cost of pressed-BKZ60 reduced basis within the limit of 50, 000 tours
and therefore terminates. For other blocksizes, after the simulator terminates,
we compute the (average) minimum number of tours needed. They are listed in
the legend of Fig. 36. In Fig. 36, we also plot the Gram–Schmidt log-norms of the
pressed-BKZ60-reduced basis along with the average simulated Gram–Schmidt
log-norms of the output bases of standard BKZβ (for the relevant numbers of
tours). One can observe that, at the point of termination, the simulated Gram–
Schmidt log-norms have comparable shape as the pressed-BKZ60 reduced basis.
We confirm this by examining their full enumeration cost in Table 1. The full



400 S. Bai et al.

0 20 40 60 80 100 120

6

7

8

Index i

lo
g

‖b
∗ i
‖

Pressed-BKZ60

Sim. BKZ70 (50000 tours)
Sim. BKZ75 (50000 tours)
Sim. BKZ80 (7408 tours)
Sim. BKZ85 (6 tours)
Sim. BKZ90 (2 tours)

Fig. 36. Gram–Schmidt log-norms of
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Fig. 37. Gram–Schmidt log-norms
of experimental pressed-BKZ60 and
BKZ90 (28 tours).

enumeration cost is tabulated for each (averaged) simulated basis. As a con-
clusion, it can be seen that the most competitive blocksizes are 85 and 90: the
number of tours involved for blocksizes 70, 75, 80 are too large.

So far, we have only judged the quality of the preprocessed basis using simu-
lation. It should be noted that the probabilistic simulator may not to be accurate
when the number of tours involved are tiny (see Subsect. 4.3). This is the case for
blocksizes 85 and 90. Therefore, instead of simulation, we conduct actual BKZ85

and BKZ90 experiments with the LLL-reduced basis as input: we used a parallel
implementation of the BKZ algorithm implemented in fpylll and ran BKZ90

on the LLL-reduced basis with 280 cores. The local SVP solver attempts to find
a vector smaller than 1.05 times the Gaussian heuristic of the local block. Also,
if too many trials have been attempted without a success, then it moves to the
next block. Therefore, the number of tours in experiments could be larger than
in simulations (but each local SVP takes less time).

In the experiments, we aborted the BKZ90 execution right after the full enu-
meration cost of the current basis is similar to (if possible) that of the pressed-
BKZ60-reduced basis. Then we used the previous BKZ tour (where the full enu-
meration cost was slightly larger than that of the pressed-BKZ60-reduced basis).
BKZ90 took 28 tours to reach a similar full enumeration cost and the overall run-
time was 5 × 106 s (the number of cores is taken into account). In Fig. 37, we
plot the Gram–Schmidt log-norms of this BKZ90-reduced basis and compare it
with pressed-BKZ60. This confirms that their qualities are analogous. For BKZ85,
we aborted the computation after 100 tours as the overall run-time was already
8 × 106 s. Note that both are already much larger than the cost we spent on the
pressed-BKZ60 preprocessing, of 5 × 105 s. The full enumeration costs of BKZ90

and BKZ85-reduced bases is computed in Table 1. Note that the experiments for
BKZ90 (and BKZ85) took much more tours to achieve the same quality (if possible)
compared to simulation. This might be due to the facts that our implementation
is greedy as mentioned above and does not always solve the local SVP problem.
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Table 1. Estimated enumeration cost to solve the SVP-120 instance. The row “Full
of Sim.” records the full enumeration cost (number of nodes) based on the simulated
preprocessed basis. The row “Full of Exp.” records the full enumeration cost on BKZ85

and BKZ90-reduced bases (from experiments) after 100 tours and 28 tours respectively.
The row “Prune of Exp.” records the cost for pruned enumeration for Pressed-BKZ60

and BKZ90 reduced basis (from experiments): it includes the costs of all trial enumer-
ations and the cost of preprocessing before each trial enumeration (but excludes the
initial preprocessing cost).

Pressed-BKZ60 BKZ70 BKZ75 BKZ80 BKZ85 BKZ90

Full of Sim. n/a 6.83 × 1027 3.21 × 1027 1.17 × 1027 1.15 × 1027 0.83 × 1027

Full of Exp. 1.21 × 1027 n/a n/a n/a 2.64 × 1027 1.35 × 1027

Prune of Exp. 5.9 × 1013 n/a n/a n/a n/a 6.3 × 1013

So far, we have only used the full enumeration cost to measure the quality.
We confirm this using a pruner to estimate the enumeration cost (for Pressed-
BKZ60 and BKZ90-reduced bases). A pruner optimizes the pruning coefficients
to minimize the overall run-time of preprocessing plus enumeration divided by
the success probability. The general strategy in extreme pruning [CN11] is to
preprocess the basis using BKZ and then run the enumeration with a certain
success probability p. If the enumeration fails, it rerandomizes the basis and
then conducts the preprocessing and enumeration again. The expected number
of repetitions to succeed in the enumeration is ≈ 1/p. It remains to determine
the preprocessing time before each enumeration. It should be noted if the first
enumeration fails, one usually runs a mild re-randomization before the next pre-
processing, thus the next preprocessing will be faster than the first preprocessing,
since it still benefits from the BKZ reduction in last preprocessing.

We determine the preprocessing time with the following experiment. For the
BKZ90-reduced basis, after re-randomization, the full enumeration cost increases
from 1.35 × 1027 to 1.56 × 1027. We re-preprocess the randomized basis using
BKZ80 until the full enumeration cost decreases to around 1.35 × 1027. Here
we just used BKZ80 for simplicity (there could be other strategies). The re-
preprocessing took 1.7 × 105 s (i.e., 3.4 × 1012 nodes). We use this preprocessing
cost (the preprocessing before each trial enumeration except the initial prepro-
cessing) as input to the pruner (for both Pressed-BKZ60 and BKZ90-reduced
bases). The total pruned enumeration cost estimate in fpylll, tabulated in
Table 1, confirms that Pressed-BKZ60 and BKZ90-reduced bases indeed have
similar quality as they all admit similar total pruned enumeration costs. In gen-
eral, the pruner seems to be quite precise in practice (hence so are the estimates
in Table 1). Thus it suffices to compare the initial preprocessing cost between
Pressed-BKZ60 and BKZ90: pressed-BKZ60 (5 × 105 s) took less time compared
to BKZ90 (28 tours in 5 × 106 s).
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In this subsection, we have only considered a straightforward strategy, BKZ
plus enumeration, for solving the SVP-120 instance. In the following we will
further compare with progressive-BKZ [AWHT16].

Comparison with Progressive-BKZ. The main idea of progressive-BKZ is to
preprocess the basis using BKZ with progressively increased blocksizes and use
local enumeration with high success probability to avoid the overheads brought
in by the preprocessing. Furthermore, a progressive blocksize strategy (optimized
based on their adaptation of the Chen–Nguyen simulator for their progressive-
BKZ algorithm) was used for preprocessing before a final enumeration. In par-
ticular, [AWHT16, Table 4] gives the cost of solving SVP challenges using their
blocksize strategy: this table is to be understood as the cost of an idealized algo-
rithm and is hence optimistic compared to current algorithms. We re-investigate
the estimates in that table by combining their progressive-BKZ method with our
pressed-BKZ algorithm.

Given the pressed-BKZ60 reduced basis, we use the progressive-BKZ method
in the bkz2 sweet spot4 branch in fplll. Note that it implements a variant of
progressive-BKZ: the progressive strategy differs from that of [AWHT16] but it
suffices for our comparison. It should be noted that our pressed-BKZ60 reduced
basis is already quite reduced so we start progressive-BKZ with blocksize ≈ 75
to avoid a superfluous re-computation. We used 80 cores for the computation
on the pressed-BKZ60 reduced basis. We spent 5.78 core days (5 × 105 s) on the
initial pressed-BKZ60 and 1.21 core days for the progressive-BKZ to complete
the SVP instance. In total, we completed the computation in a total of 6.99
core days (with enumeration speed of ≈ 2 × 107 nodes per second), faster than
the 14.94 lower bound (with enumeration speed of 6 × 107 nodes per second)
in [AWHT16, Table 4].

For further comparison, we also ran the same experiment using an LLL-
reduced basis instead of pressed-BKZ60 reduced basis in the beginning. The
overall run-time was 8.75 core days. This implies that bkz2 sweet spot is faster
than the estimates in [AWHT16]. Compared to this LLL-based experiment, the
pressed-BKZ60-reduced basis helps to reduce the overall run-time by about 20%.

It should be noted that we only provide one such strategy that lowers the
estimates in [AWHT16, Table 4] and demonstrate the usefulness of the pressed-
BKZ algorithm. It is quite possible that this is far from an optimal strategy,
which could combine variants of progressive preprocessing, extreme pruning and
adaptive choices based on simulation. For instance, it may be better to also use
pressed-BKZ inside progressive-BKZ (recursively for any preprocessing) to better
maintain the shape of the pressed-BKZ preprocessed basis. Also, we only con-
ducted two SVP-120 experiments, which is not statistically significant. We leave
the question of how to optimize the strategy based on the existing approaches
open for future work.

4 https://github.com/fplll/fpylll/tree/bkz2 sweet spot.

https://github.com/fplll/fpylll/tree/bkz2_sweet_spot
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Abstract. Enumeration is a fundamental lattice algorithm. We show
how to speed up enumeration on a quantum computer, which affects the
security estimates of several lattice-based submissions to NIST: if T is
the number of operations of enumeration, our quantum enumeration runs
in roughly

√
T operations. This applies to the two most efficient forms

of enumeration known in the extreme pruning setting: cylinder pruning
but also discrete pruning introduced at Eurocrypt ’17. Our results are
based on recent quantum tree algorithms by Montanaro and Ambainis-
Kokainis. The discrete pruning case requires a crucial tweak: we modify
the preprocessing so that the running time can be rigorously proved to
be essentially optimal, which was the main open problem in discrete
pruning. We also introduce another tweak to solve the more general
problem of finding close lattice vectors.

1 Introduction

The main two hard lattice problems are finding short lattice vectors (SVP) and
close lattice vectors (CVP), either exactly or approximately. Both have been
widely used in cryptographic design for the past twenty years: Ajtai’s SIS [2]
and Regev’s LWE [38] are randomized variants of respectively SVP and CVP.

With the NIST standardization of post-quantum cryptography and the devel-
opment of fully-homomorphic encryption, there is a need for convincing security
estimates for lattice-based cryptosystems. Yet, in the past ten years, there has
been regular progress in the design of lattice algorithms, both in theory (e.g.
[1,20,31]) and practice (e.g. [10,17,19,21,25,32,35]), which makes security esti-
mates tricky. Lattice-based NIST submissions use varying cost models, which
gives rise to a wide range of security estimates [5]. The biggest source of diver-
gence is the cost assessment of a subroutine to find nearly shortest lattice vectors
in certain dimensions (typically the blocksize of reduction algorithms), which is
chosen among two families: sieving [3,15,25,32,35] and enumeration.

Enumeration is the simplest algorithm to solve SVP/CVP: it outputs L∩B,
given a lattice L and an n-dimensional ball B ⊆ R

n. Dating back to the early

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 405–434, 2018.
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1980s [24,37], it has been significantly improved in practice in the past twenty
years, thanks to pruning methods introduced by Schnorr et al. [40–42], and
later revisited and generalized as cylinder pruning [21] and discrete pruning [10]:
these methods offer a trade-off by enumerating over a subset S ⊆ B, at the
expense of missing solutions. One may only be interested in finding one point in
L ∩ S (provided it exists), or the ‘best’ point in L ∩ S, i.e. a point minimizing
the distance to a target. Enumeration and cylinder pruning compute L ∩ S by
a depth-first search of a tree with super-exponentially many nodes. Discrete
pruning is different, but the computation of S uses special enumerations.

The choice between sieving and enumeration for security estimates is not
straightforward. On the one hand, sieving methods run in time 2O(n) much
lower than enumeration’s 2O(n log n), but require exponential space. On the other
hand, until very recently [6], the largest lattice numerical challenges had all been
solved by pruned enumeration, either directly or as a subroutine: cylinder prun-
ing [21] for NTRU challenges [43] (solved by Ducas-Nguyen) and Darmstadt’s
lattice challenges [28] (solved by Aono-Nguyen), and discrete pruning [10,19]
for Darmstadt’s SVP challenges [39] (solved by Kashiwabara-Teruya). Among
all lattice-based submissions [5,36] to NIST, the majority chose sieving over
enumeration based on the analysis of NewHope [8, Sect. 6], which states that
sieving is more efficient than enumeration in dimension ≥ 250 for both classical
and quantum computers. But this analysis is debatable: [8] estimates the cost of
sieving by a lower bound (ignoring sub-exponential terms) and that of enumera-
tion by an upper bound (either [17, Table 4] or [16, Table 5.2]), thereby ignoring
the lower bound of [17] (see [11] for improved bounds).

The picture looks even more blurry when considering the impact of quantum
computers. The quantum speed-up is rather limited for sieving: the best quan-
tum sieve algorithm runs in heuristic time 20.265n+o(n), only slighty less than the
best classical (heuristic) time 20.292n+o(n) [15,25]. And the quantum speed-up for
enumeration is unclear, as confirmed by recent discussions on the NIST mailing-
list [4]. In 2015, Laarhoven et al. [26, Sect. 9.1] noticed that quantum search
algorithms do not apply to enumeration: indeed, Grover’s algorithm assumes
that the possible solutions in the search space can be indexed and that one can
find the i-th possible solution efficiently, whereas lattice enumeration explores a
search tree of an unknown structure which can only be explored locally. Three
recent papers [7,8,18] mention in a short paragraph that Montanaro’s quan-
tum backtracking algorithm [33] can speed up enumeration, by decreasing the
number T of operations to

√
T . However, no formal statement nor details are

given in [7,8,18]. Furthermore, none of the lattice-based submissions to NIST
cite Montanaro’s algorithm [33]: the only submission that mentions enumera-
tion in a quantum setting is NTRU-HSS-KEM [23], where it is speculated that
enumeration might have a

√
T quantum variant.

Our Results. We show that lattice enumeration and its cylinder and discrete
pruning variants can all be quadratically sped up on a quantum computer, unlike
sieving. This is done by a careful interpretation and analysis of enumeration as
tree algorithms. Interestingly, we show that this speedup also applies to extreme
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pruning [21] where one repeats enumeration over many reduced bases: a naive
approach would only decrease the classical cost mt (where m is the number of
bases and t is the number of operations of a single enumeration) to m

√
t quantum

operations, but we bring it down to
√

mt.
First, we clarify the application of Montanaro’s algorithm [33] to enumeration

with cylinder pruning: the analysis of [33] assumes that the degree of the tree
is bounded by a constant, which is tailored for constraint satisfaction problems,
but is not the setting of lattice enumeration. To tackle enumeration, we add
basic tools such as binary tree conversion and dichotomy: we obtain that if a
lattice enumeration (with or without cylinder pruning) searches over a tree with
T nodes, the best solution can be found by a quantum algorithm using roughly√

T poly-time operations, where there is a polynomial overhead, which can be
decreased if one is only interested in finding one solution. This formalizes earlier
brief remarks of [7,8,18], and applies to both SVP and CVP.

Our main result is that the quantum quadratic speed-up also applies to the
recent discrete pruning enumeration introduced by Aono and Nguyen [10] as a
generalization of Schnorr’s sampling algorithm [40]. To do so, we tweak discrete
pruning and use an additional quantum algorithm, namely that of Ambainis and
Kokainis [9] from STOC ’17 to estimate the size of trees. Roughly speaking, given
a parameter T , discrete pruning selects T branches (optimizing a certain metric)
in a larger tree, and derives T candidate short lattice vectors from them. Our
quantum variant directly finds the best candidate in roughly

√
T operations.

As mentioned previously, we show that the quadratic speed-up of both enu-
merations also applies to the extreme pruning setting (required to exploit the
full power of pruning): if one runs cylinder pruning over m trees, a quantum
enumeration can run in

√
T poly-time operations where T is the sum of the m

numbers of nodes, rather than
√

mT naively; and there is a similar phenomenon
for discrete pruning.

As a side result, we present two tweaks to discrete pruning [10], to make
it more powerful and more efficient. The first tweak enables to solve CVP in
such a way that most of the technical tools introduced in [10] can be reused.
This works for the approximation form of CVP, but also its exact version for-
malized by the Bounded Distance Decoding problem (BDD), which appears in
many cryptographic applications such as LWE. In BDD, the input is a lattice
basis and a lattice point shifted by some small noise whose distribution is cru-
cial. We show how to handle the most important noise distributions, such as
LWE’s Gaussian distribution and finite distributions used in GGH [22] and lat-
tice attacks on DSA [34]. Enumeration, which was historically only described for
SVP, can trivially be adapted to CVP, and so does [21]’s cylinder pruning [29].
However, discrete pruning [10] appears to be less simple.

The second tweak deals with the selection of optimal discrete pruning param-
eters, and is crucial for our quantum variant. Intuitively, given an integer T > 0,
the problem is to find the T “best” integral vectors t ∈ N

n which minimize
some objective function f(t). Aono and Nguyen [10] introduced a fast practical
algorithm to do so for a very special useful choice of f , but the algorithm was
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heuristic: no good bound on the running time was known. We show that their
algorithm can actually behave badly in the worst case, i.e. it may take exponen-
tial time. But we also show that by a careful modification, the algorithm becomes
provably efficient and even optimal for that f , and heuristically for more general
choices of f : the running time becomes essentially T operations.

Our theoretical analysis has been validated by experiments, which show that
in practical BDD situations, discrete pruning is as efficient as cylinder pruning.
Since discrete pruning has interesting features (such as an easier parallelization
and an easier generation of parameters), it might become the method of choice
for large-scale blockwise lattice reduction.

Impact. Figure 1 illustrates the impact of our quantum enumeration on security
estimates: the red and yellow curves show

√
#bases ∗ N where N is an upper

bound cost, i.e., number of nodes of enumeration with extreme pruning with
probability 1/#bases. The upper bounds for HKZ/Rankin bases are computed
by the method of [11]. Here, we omitted the polynomial overhead factor because
small factors in quantum sieve have also never been investigated. Note that the
estimate 2(0.187β log β−1.019β+16.1)/2 (called Q-Enum in [5]) of a hypothetical
quantum enumeration in NTRU-HSS-KEM [23], which is the square-root of a
numerical interpolation of the upper bound of [16,17], is higher than our HKZ
estimate: however, both are less than 2128 until blocksize roughly 400.

Quantum enumeration with extreme pruning would be faster than quantum
sieve up to higher dimensions than previously thought, around 300 if we assume
that 1010 quasi-HKZ-bases can be obtained for a cost similar as enumeration,
or beyond 400 if 1010 Rankin-bases (see [17]) can be used instead. Such ranges
would affect the security estimates of between 11 and 17 NIST submissions
(see Fig. 2), depending on which basis model is considered: these submissions
state that the best attack runs BKZ with a blocksize seemingly lower than our
threshold between quantum enumeration and quantum sieving, except in the
case of S/L NTRU Prime, for which the blocksize 528 corresponds to less than
2200 in Fig. 1, whereas the target NIST category is 5.

Fig. 1. Q-sieve vs Q-enum: (Left) Using HKZ bases (Right) Using Rankin bases

Furthermore, we note that our quantum speedup might actually be more
than quadratic. Indeed, the number T of enumeration nodes is actually a ran-
dom variable: the average quantum running time is E(

√
T ), which is ≤

√
E(T )

and potentially much less (e.g. a log-normal distribution). It would be useful to
identify the distribution of T : it cannot be log-normal for LLL bases (unlike what
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Name NIST category Blocksize
EMBLEM 1 260/337
uRound2 1 286/302/304

Ding Key Exchange 1 330-366
R EMBLEM 1 345/383

CRYSTALSDilithium 1 347
uRound2 2 355/358/386/397

CRYSTALSKyber 1 386
NewHope 1 386
uRound2 3 394/401/427/425

NTRUEncrypt 1 319
S/L NTRU Prime 5 528

Fig. 2. Lattice-based NIST submissions affected by quantum enumeration

seems to be suggested in [44]), because it would violate the provable running time
2O(n2) of enumeration with LLL bases.

On the other hand, we stress that this is just a first assessment of quantum
enumeration. If one is interested in more precise estimates, such as the number
of quantum gates, one would need to assess the quantum cost of the algorithm
of Montanaro [33] and that of Ambainis and Kokainis [9].

Related Work. Babai’s nearest plane algorithm [14] can be viewed as the first
form of BDD discrete pruning, using only a single cell. Lindner-Peikert’s algo-
rithm [27] generalizes it using exponentially many cells, and is the BDD analogue
of Schnorr’s random sampling [40] (see [29]). But for both [27,40], the selection
of cells is far from being optimal. In 2003, Ludwig [30] applied Grover search to
speed up [40] quantumly.

Roadmap. Section 2 provides background. Section 3 gives a general description of
enumeration to find close lattice vectors. In Sect. 4, we speed up cylinder pruning
enumeration on a quantum computer, using [33]. In Sect. 5, we adapt lattice
enumeration with discrete pruning to CVP. In Sect. 6, we show how to efficiently
select the best parameters for discrete pruning, by modifying the orthogonal
enumeration of [10]. In Sect. 7, we speed up discrete pruning enumeration on
a quantum computer, using [9,33]. Supplementary material is given in the full
version [12], including proofs and experimental results.

2 Preliminaries

We follow the notations of [10].

General. N is the set of integers ≥ 0. For any finite set U , its number of elements
is #U . For any measurable subset S ⊆ R

n, its volume is vol(S). We use row
representations of matrices. The Euclidean norm of a vector v ∈ R

n is ‖v‖. We
denote by Balln(c, R) the n-dim Euclidean ball of radius R and center c, whose
volume is vol(Balln(R)) = Rn πn/2

Γ(n/2+1) . If c is omitted, we mean c = 0.

Lattices. A lattice L is a discrete subgroup of R
m, or equivalently the set

L(b1, . . . , bn) = {
∑n

i=1 xibi : xi ∈ Z} of all integer combinations of n linearly
independent vectors b1, . . . , bn ∈ R

m. Such bi’s form a basis of L. All the bases
have the same number n of elements, called the dimension or rank of L, and
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the same n-dimensional volume of the parallelepiped {
∑n

i=1 aibi : ai ∈ [0, 1)}
they generate. We call this volume the co-volume of L, denoted by covol(L). The
lattice L is said to be full-rank if n = m. The shortest vector problem (SVP) asks
to find a non-zero lattice vector of minimal Euclidean norm. The closest vector
problem (CVP) asks to find a lattice vector closest to a target vector.

Orthogonalization. For a basis B = (b1, . . . , bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . , bi−1)⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the sequence of orthogonal
vectors B� = (b�

1, . . . , b
�
n), where b�

i := πi(bi). We can write each bi as b�
i +∑i−1

j=1 μi,jb
�
j for some unique μi,1, . . . , μi,i−1 ∈ R. Thus, we may represent the

μi,j ’s by a lower-triangular matrix μ with unit diagonal. πi(L) is a lattice of rank
n + 1 − i generated by πi(bi), . . . , πi(bn), with covol(πi(L)) =

∏n
j=i

∥∥b�
j

∥∥.

Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on
the number of lattice points inside a “nice enough” set:

Heuristic 1. Given a full-rank lattice L ⊆ R
n and a measurable set S ⊆ R

n,
the number of points in S ∩ L is approximately vol(S)/covol(L).

Both rigorous results and counter-examples are known (see [10]). One should
therefore experimentally verify its use, especially for pruned enumeration which
relies on strong versions of the heuristic, where the set S is not fixed, depending
on a basis of L.

Statistics. We denote by E() the expectation and V() the variance of a random
variable. For discrete pruning, it is convenient to extend E() to any measurable
set C of Rn by using the squared norm, that is E{C} := Ex∈C(‖x‖2).

Gaussian Distribution. The CDF of the Gaussian distribution of expectation
0 and variance σ2 is 1

2 (1 + erf( x
σ

√
2
)) where the error function is erf(z) :=

2√
π

∫ z

0
e−t2dt. The multivariate Gaussian distribution over R

m of parameter σ

selects each coordinate with Gaussian distribution.

Quantum Tree Algorithms. Like in [9], a tree T is locally accessed given:

1. the root r of T .
2. a black box which, given a node v, returns the number of children d(v) for

this node. If d(v) = 0, v is called a leaf.
3. a black box which, given a node v and i ∈ [d(v)], returns the i-th child of v.

We denote by V (T ) its set of nodes, L(T ) its set of leaves, d(T ) =
maxv∈V (T ) d(v) its degree and n(T ) an upper-bound of its depth. When there is
no ambiguity, we use d and n directly without the argument T . We also denote
by #T the number of nodes of the tree T .

Backtracking is a classical algorithm for solving problems such as constraint
satisfaction problems, by performing a tree search in depth-first order. Each node
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represents a partial candidate and its children say how to extend a candidate.
There is a black-box function P : V (T ) → {true, false, indeterminate} such
that P(v) ∈ {true, false} iff v is a leaf: a node v ∈ V (T ) is called marked if
P(v) = true. Backtracking determines whether T contains a marked node, or
outputs one or all marked nodes. Classically, this can be done in #V(T ) queries.
Montanaro [33] studied the quantum case:

Theorem 2 ([33]). There is a quantum algorithm ExistSolution(T , T,P, n, ε)
which given ε > 0, a tree T such that d(T ) = O(1), a black box function P, and
upper bounds T and n on the size and the depth of T , determines if T contains a
marked node by making O(

√
Tn log(1/ε)) queries to T and to the black box function

P, with a probability of correct answer ≥ 1 − ε. It uses O(1) auxiliary operations
per query and uses poly(n) qubits.

Theorem 3 ([33]). There is a quantum algorithm FindSolution(T ,P, n, ε)
which, given ε > 0, a tree T such that d(T ) = O(1), a black box function P, and
an upper bound n on the depth of T , outputs x such that P(x) is true, or “not
found” if no such x exists by making O(

√
#V(T )n3/2 log(n) log(1/ε)) queries to

T and to the black box function P, with correctness probability at least 1 − ε. It
uses O(1) auxiliary operations per query and uses poly(n) qubits.

Notice that Theorem 3 does not require an upper-bound on #V(T ) as input.
Ambainis and Kokainis [9] gave a quantum algorithm to estimate the size

of trees, with input a tree T and a candidate upper bound T0 on #V(T ). The
algorithm must output an estimate for #V(T ), i.e. either a number of T̂ ∈ [T0]
or a claim “T contains more than T0 vertices”. The estimate is δ-correct if:

1. the estimate is T̂ ∈ [T0] which satisfies |T − T̂ | ≤ δT where T is the actual
number of vertices;

2. the estimate is “T contains more than T0 vertices” and the actual number of
vertices T satisfies (1 + δ)T > T0.

An algorithm solves the tree size estimation problem up to precision 1 ± δ with
correctness probability at least 1 − ε if for any T and any T0, the probability
that it outputs a δ-correct estimate is at least 1 − ε.

Theorem 4 ([9]). There is a quantum algorithm TreeSizeEstimation(T , T0,
δ, ε) which, given ε > 0, a tree T , and upper bounds d and n on the degree
and the depth of T , solves tree size estimation up to precision 1 ± δ, with cor-
rectness probability at least 1 − ε. It makes O

(√
nT0

δ1.5 d log2( 1
ε )

)
queries to T

and O(log(T0)) non-query transformations per query. The algorithm uses
poly(n, log(d), log(T0), log(δ), log(log(1/ε))) qubits.

3 Enumeration with Pruning

We give an overview of lattice enumeration and pruning, for the case of finding
close lattice vectors, rather than finding short lattice vectors: this revisits the
analysis model of both [21] and [10].
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3.1 Finding Close Vectors by Enumeration

Let L be a full-rank lattice in R
n. Given a target u ∈ Q

n, a basis B =
(b1, . . . , bn) of L and a radius R > 0, enumeration [24,37] outputs L ∩ S where
S = Balln(u , R): by comparing all the distances to u , one extracts a lattice vec-
tor closest to u . It performs a recursive search using projections, to reduce the
dimension of the lattice: if ‖v‖ ≤ R, then ‖πk(v)‖ ≤ R for all 1 ≤ k ≤ n. One
can easily enumerate πn(L) ∩ S. And if one enumerates πk+1(L) ∩ S for some
k ≥ 1, one derives πk(L)∩S by enumerating the intersection of a one-dimensional
lattice with a suitable ball, for each point in πk+1(L) ∩ S. Concretely, it can be
viewed as a depth-first search of the enumeration tree T : the nodes at depth
n+1− k are the points of πk(L)∩S. The running-time of enumeration depends
on R and B, but is typically super-exponential in n, even if L ∩ S is small.

3.2 Finding Close Vectors by Enumeration with Pruning

We adapt the general form of enumeration with pruning introduced by [10]:
pruned enumeration uses a pruning set P ⊆ R

n, and outputs L ∩ (u + P ). The
advantage is that for suitable choices of P , enumerating L ∩ (u + P ) is much
cheaper than L ∩ S, and if we further intersect L ∩ (u + P ) with S, we may
have found non-trivial points of L ∩ S. Note that we use u + P rather than P ,
because it is natural to make P independent of u , and it is what happens when
one uses the pruning of [21] to search for close vectors. Following [21], we view
the pruning set P as a random variable: it depends on the choice of basis B.

We distinguish two cases, which were considered separately in [10,21]:

Approximation setting: This was studied in [10], but not in [21]. Here, we are
interested in finding any point in L∩S ∩ (u +P ) by enumerating L∩ (u +P )
then intersect it with the ball S, so we define the success probability as:

Pr
succ

= Pr
P,u

(L ∩ S ∩ (u + P ) �= ∅), (1)

which is the probability that it outputs at least one point in L∩S. By (slightly)
adapting the reasoning of [10] based on the Gaussian heuristic, we estimate
that (1) is heuristically

Pr
succ

≈ min(1, vol(S ∩ (u + P ))/covol(L)), (2)

and that the number of elements of L ∩ S ∩ (u + P ) is roughly vol(S ∩ (u +
P ))/covol(L). This corresponds to approximating the closest vector problem
in a lattice, whose hardness is used in most lattice-based signature schemes.

Unique setting: Here, we know that the target u is unusually close to the
lattice, that is L ∩ S is a singleton, and we want to find the closest lattice
point to u : this is the so-called Bounded Distance Decoding problem (BDD),
whose hardness is used in most lattice-based encryption schemes. Thus, u is
of the form u = v + e where v ∈ L and e ∈ R

n is very short, and we want
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to recover v . This was implicitly studied in [21], but not in [10]: [21] studied
the exact SVP case, where one wants to recover a shortest lattice vector (in
our setting, if the target u ∈ L, the BDD solution would be u , but one could
alternatively ask for the closest distinct lattice point, which can be reduced to
finding a shortest lattice vector). We are only interested in finding the closest
lattice point v ∈ L, so we define the success probability as:

Pr
succ

= Pr
P,u

(v ∈ L ∩ (u + P )), (3)

because we are considering the probability that the solution v belongs to the
enumerated set L ∩ (u + P ). Usually, the target u is derived from the noise
e , which has a known distribution, then we can rewrite (3) as:

Pr
succ

= Pr
P,e

(0 ∈ e + P ) = Pr
P,e

(−e ∈ P ). (4)

In the context of SVP, we would instead define Prsucc = PrP (v ∈ P ) where v
is a shortest lattice vector. In general, it is always possible to make u depend
solely on e : one can take a canonical basis of L, like the HNF, and use it to
reduce u modulo L, which only depends on e . Whether PrP,e(−e ∈ P ) can
be evaluated depends on the choice of P and the distribution of the noise e .
For instance, if the distribution of −e is uniform over some measurable set
E, then:

Pr
P,e

(−e ∈ P ) =
vol(E ∩ P )

vol(E)
.

We discuss other settings in Sect. 5.6. This can be adapted to a discrete
distribution. If the distribution of −e is uniform over a finite set E ∩ Z

n,
then:

Pr
P,e

(−e ∈ P ) =
#(E ∩ P ∩ Z

n)
#(E ∩ Zn)

,

where #(E ∩P ∩Z
n) is heuristically ≈ vol(E ∩P ) by the Gaussian heuristic,

and #(E ∩ Z
n) is usually given by the specific choice of E.

When it fails, we can simply repeat the process with many different P ’s until we
solve the problem, in the approximation-setting or the unique-setting.

We have discussed ways to estimate the success probability of pruned enu-
meration. To estimate the running time of the full algorithm, we need more
information, which depends on the choice of pruning:

– An estimate of the cost of enumerating L ∩ S ∩ (u + P ).
– An estimate of the cost of computing the (random) reduced basis B.

3.3 Cylinder Pruning

The first pruning set P ever used is the following generalization [21] of pruned
enumeration of [41,42]. There, P is defined by a function f : {1, . . . , n} → [0, 1],
a radius R > 0 and a lattice basis B = (b1, . . . , bn) as follows:

Pf (B,R) = {x ∈ R
n s.t. ‖πn+1−i(x )‖ ≤ f(i)R for all 1 ≤ i ≤ n}, (5)
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where the πi’s are the Gram-Schmidt projections defined by B. We call cylinder
pruning this form of enumeration, because Pf (B,R) is an intersection of cylin-
ders: each inequality ‖πn+1−i(x )‖ ≤ f(i)R defines a cylinder. Cylinder pruning
was introduced in the SVP setting, but its adaptation to CVP is straightfor-
ward [29].

Gama et al. [21] showed how to efficiently compute tight lower and upper
bounds for vol(Pf (B,R)), thanks to the Dirichlet distribution and special inte-
grals. Then we can do the same for vol(Pf (B,R) ∩ S) if S is any zero-centered
ball. Using the shape of Pf (B,R), [21] also estimated of the cost of enumerating
L∩S ∩Pf (B,R), using the Gaussian heuristic on projected lattices πi(L): these
estimates are usually accurate in practice, and they can also be used in the CVP
case [29]. To optimize the whole selection of parameters, one finally needs to take
into account the cost of computing the (random) reduced basis B: for instance,
this is done in [13,17].

4 Quantum Speed-Up of Cylinder Pruning

4.1 Tools

The analysis of quantum tree algorithms requires the tree to have constant degree
d = O(1). Without this assumption, there is an extra poly(d) term in the com-
plexity bound like in Theorem 4. Instead, it is more efficient to first convert the
tree into a binary tree, so that the overhead is limited to poly(log d). We will
use the following conversion (illustrated by Fig. 3):

Theorem 5. One can transform any tree T of depth n and degree d into a
binary one T2 so that: T2 can be explored locally; T and T2 have roughly the
same number of nodes, namely #T ≤ #T2 ≤ 2#T ; the leaves of T and T2 are
identical; the depth of T2 is ≤ n log d. Moreover, a black-box function P over
T can be adapted a black box P2 for T2, so that the marked nodes of T and T2

are the same. One query to P2 requires at most one query to P with additional
O(log d) auxiliary operations.

In the context of enumeration with pruning, instead of enumerating the whole
set L∩S, we may only be interested in the ‘best’ vector in L∩S, i.e. minimizing
some distance. In terms of tree, this means that given a tree T with marked
leafs defined by a predicate P, we want to find a marked leaf minimizing an
integral function g which is defined on the marked leaves of T . We know that
L(T ) = L(T2). g is thus also defined on the marked leaves of T2. We denote by
gV the predicate which returns true on a node N if and only if it is a marked leaf
and g(N ) ≤ V . We first find a parameter R such that there is at least one marked
leaf N such that g(N ) ≤ R. Then we decrease R by dichotomy using Theorem 3
with different marking functions. We thus obtain FindMin1(T ,P, g, R, d, ε)
(Algorithm 1), which is a general algorithm to find a leaf minimizing the function
g with error probability ε, using the binary tree T2.1

1 The access to T2 is guaranteed by Theorem 5 via the access to T .
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Fig. 3. An example of the transformation in Theorem 5

Algorithm 1. Finding a minimum: FindMin1(T ,P, g, R, d, ε)
Input: A tree T with marked leaves defined by the predicate P. An integral function

g defined on the marked leaves of T . A parameter R, such that g(N ) ≤ R has at
least one solution over all of the marked leaves. An upper-bound d of the number
of children of a node in T .

Output: A marked leaf N such that g takes its minimum on N among all the marked
leaves explored by the backtracking algorithm.

1: T2 ← the corresponding binary tree of T . (see Footnote 1)
2: N ← R, N ′ ← 0, Round ← �log2 R�, v ← (0, · · · , 0)
3: while N ′ < N − 1 do
4: Call FindSolution(T2, g�(N+N′)/2�, n log d, ε/Round)
5: if FindSolution(T2, g�(N+N′)/2�, n log d, ε/Round) returns x then
6: v ← x, N ← �(N + N ′)/2�
7: else
8: N ′ ← �(N + N ′)/2�
9: end if

10: end while
11: return v

Theorem 6. Let ε > 0. Let T be a tree with its marked leaves defined by a
predicate P. Let d be an upper-bound on the degree of T . Let g be an integral
function defined on the marked leaves such that g(N ) ≤ R has at least one
solution over all of the marked leaves. Then Algorithm 1 outputs N ∈ T such that
g takes its minimum on N among all of the marked leaves of T , with probability
at least 1 − ε. It requires O(

√
T (n log d)3/2 log(n log d) log(�log2 R�/ε)�log2 R�)

queries on T and on P, where T = #T . Each query on T requires O(log d)
auxiliary operations. The algorithm needs poly(n log d, log R) qubits.

Proof. Correctness is trivial. Regarding the query complexity, there are in total
Round = �log2 R� calls to FindSolution. According to Theorem 3, each
call requires O(

√
T (n log d)3/2 log(n log d) log(Round/ε)) queries on the local

structure of T2 and on g. Thus according to Theorem 5, in total, we need
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O(
√

T (n log d)3/2 log(n log d) log(�log2 R�/ε)�log2 R�) queries on the local struc-
ture of T and on g. Each query on T requires O(log d) auxiliary operations.
For each call, we need poly(n log d) qubits. In total, we need poly(n log d, log R)
qubits. ��

If we know an upper-bound of T of the number of nodes in the tree T , we can
speed up the algorithm by replacing FindSolution by ExistSolution in lines
4, 5: the new algorithm FindMin2(T ,P, g, R, d, T, ε) is given and analyzed in
the full version [12].

4.2 Application to Cylinder Pruning

Lemma 1. Let (b1, · · · , bn) be an LLL-reduced basis. Let T be the backtracking
tree corresponding to the cylinder pruning algorithm for SVP with radius R ≤
‖b1‖ and bounding function f . Then the degree of the tree satisfies: d(T ) ≤ 2n.

Proof. In T , the number of children of a node N of depth k can be upper-
bounded by dk = 2f(k) ‖b1‖

‖b�
n−k+1‖ + 1 ≤ 2(n−k)/2+1 + 1. The result follows from

the fact that an LLL-reduced basis satisfies: ‖b1‖2

‖b�
i ‖2 ≤ 2i−1 for all 1 ≤ i ≤ n. ��

Theorem 7. There is a quantum algorithm which, given ε > 0, an LLL-reduced
basis B = (b1, · · · , bn) of a lattice L in Z

n, a radius R ≤ ‖b1‖ and a bounding
function f : {1, · · · , n} → [0, 1], outputs with correctness probability ≥ 1 − ε:

1. a non-zero vector v in L∩Pf (B,R), in time O(
√

Tn3poly(log(n), log(1/ε)))),
if L ∩ Pf (B,R) �⊆ {0}.

2. all vectors in L ∩ Pf (B,R), in time O(#(L ∩ Pf (B,R))
√

Tn3 log(n)
poly(log(#(L ∩ Pf (B,R)), log(1/ε))).

3. a shortest non-zero vector v in L ∩ Pf (B,R), in time O(
√

Tn3β
poly(log(n), log(1/ε), log(β))), if L ∩ Pf (B,R) �⊆ {0}. Here β is the bitsize
of the vectors of B.

Here T is the total number of nodes in the enumeration tree T searched by the
cylinder pruning algorithm over Pf (B,R).

Proof. Let T be the enumeration tree searched by the cylinder pruning algo-
rithm in which a node of depth i, where 1 ≤ i ≤ n, is encoded as
(∗, · · · , ∗, xn−i+1, · · · , · · · , xn) and where the root is encoded as (∗, · · · , ∗). Let T2

be the corresponding binary tree. Let P be a predicate which returns true only on
the nodes encoded as (x1, · · · , xn) in T2 (i.e. the leaves of T2, where all the vari-
ables are assigned), such that ‖

∑n
i=1 xibi‖2 ≤ R2 and (x1, · · · , xn) �= (0, · · · , 0).

For 1, if L ∩ Pf (B,R) �= ∅, we apply FindSolution(T2,P, n log d, ε). For
2, we find all marked nodes by simply repeating the algorithm FindSolution,
modifying the oracle operator to strike out previously seen marked elements,
which requires space complexity O(#(L ∩ Pf (B,R))).
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For 3, if L ∩ Pf (B,R) �= ∅, we apply Theorem 6 to FindMin1(T ,P, ‖ ·
‖2, R2, 2n + 1, ε). In T2, the height of the tree can be upper-bounded by
n log d = O(n2). We also have Round = O(β). The time complexity is
O(

√
Tn3βpoly(log(n), log(1/ε), log(β))). ��

As corollary, we obtain the following quantum speed-up of Kannan’s algo-
rithm for the shortest vector problem:

Theorem 8. There is a quantum algorithm which, given ε > 0, and a basis B
of a full-rank lattice L in Z

n, with entries of bitlength≤ β, outputs a shortest
non-zero vector of L, with error probability at most ε, in time (n

n
4e + o(n)) ·

poly(log(n), log(1/ε), β) using poly(n, β) qubits.

We can also apply the quantum tree algorithms to extreme pruning. If we run
cylinder pruning over m trees, we can combine these trees into a global one and
apply the quantum tree algorithms on it.

Theorem 9 (Quantum speed-up for SVP extreme pruning). There is
a quantum algorithm which, given ε > 0, m LLL-reduced bases B1, · · · Bm of
a lattice L in Z

n,a radius R ≤ mini ‖b1,i‖ where b1,i is the first vector of
Bi and a bounding function f : {1, · · · , n} → [0, 1], outputs with correctness
probability ≥ 1 − ε a shortest non-zero vector v in L ∩ (∪Pf (Bi, R)), in time
O(

√
Tn3βpoly(log(n), log(1/ε), log(β), log(m))), if L∩(∪Pf (Bi, R) �⊆ {0}. Here

β is a bound on the bitsize of vectors of Bi’s, T is the sum of number of nodes
in the enumeration trees Ti searched by cylinder pruning over Pf (Bi, R) for all
1 ≤ i ≤ m.

In the case of CVP with target vector u , we use the cylinder pruning
algorithm with radius R ≤

√∑n
i=1 ‖b�

i ‖2/2 and bounding function f . The
degree of the tree is now upper-bounded by d = max

√∑n
i=1 ‖b�

i ‖2/‖b�
j‖ + 1.

We have log d = O(β + n) where β is the bitsize of the vectors of the basis
B. We can obtain a similar theorem as Theorem 7 with different overheads.
For exemple for the first case, the time complexity becomes O(

√
Tn3/2(n +

β)3/2poly(log(n), log(1/ε), log(β)))).
For the extreme pruning for CVP the time complexity is O(

√
Tn3/2(n +

β)3/2βpoly(log(n), log(1/ε), log(β), log(m))).

5 BDD Enumeration with Discrete Pruning

We adapt Aono-Nguyen’s discrete pruning [10] to the BDD case.

5.1 Discrete Pruning for the Enumeration of Short Vectors

Discrete pruning is based on lattice partitions defined as follows. Let L be a
full-rank lattice in Q

n. An L-partition is a partition C of Rn such that:

– The partition is countable: Rn = ∪t∈T C(t) where T is a countable set, and
C(t) ∩ C(t′) = ∅ whenever t �= t′.
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– Each cell C(t) contains a single lattice point, which can be found efficiently:
given any t ∈ T , one can “open” the cell C(t), i.e. compute C(t) ∩ L in
polynomial time. In other words, the partition defines a function g : T → L
where C(t) ∩ L = {g(t)}, and one can compute g in polynomial time.

Discrete pruning is obtained by selecting the pruning set P as the union of
finitely many cells C(t), namely P = ∪t∈UC(t) for some finite U ⊆ T . Then
L ∩ P = ∪t∈U (L ∩ C(t)) can be enumerated by opening each cell C(t) for t ∈ U .

[10] presented two useful L-partitions: Babai’s partition where T = Z
n and

each cell C(t) is a box of volume covol(L); and the natural partition where
T = N

n and each cell C(t) is a union of non-overlapping boxes, with total vol-
ume covol(L). The natural partition is preferable, and [10] explained how to
select good cells for the natural partition. In theory, one would like to select the
cells C(t) which maximize vol(C(t)∩S): [10] shows how to compute vol(C(t)∩S),
but an exhaustive search to derive the best vol(C(t) ∩ S) exactly would be too
expensive. Instead, [10] shows how to approximate efficiently the optimal selec-
tion, by selecting the cells C(t) minimizing E(C(t)): given m, it is possible to
compute in practice the m cells which minimize E(C(t)).

5.2 Universal Lattice Partitions

Unfortunately, in the worst case, L-partitions are not sufficient for our frame-
work: if P = ∪t∈UC(t), then L ∩ (P + u) = ∪t∈U (L ∩ (C(t) + u)) but the
number of elements in L ∩ (C(t) + u) is unclear, and it is also unclear how to
compute in L ∩ (C(t) + u) efficiently. To fix this, we could compute instead
L ∩ P ∩ S = ∪t∈U (L ∩ C(t)) ∩ S, but that creates two issues:

– In the unique setting, it is unclear how we would evaluate success probabili-
ties. Given a tag t and a target u = v + e where e is the noise and v ∈ L,
we would need to estimate the probability that v ∈ C(t), i.e. u − e ∈ C(t).

– We would need to select the tag set U depending on the target u , without
knowing how to evaluate success probabilities.

BDD asks to find the lattice point v ∈ L closest to some target vector
u ∈ Q

n, unusually close to L. To adapt discrete pruning to BDD, the most
natural solution would be to subtract u to the lattice L as follows.

Definition 1. Let L be a full-rank lattice in Q
n. An L-partition C is universal

if for all u ∈ Q
n, the shifted partition C + u is an L-partition, i.e.:

– The partition is countable: R
n = ∪t∈T C(t) where T is a countable set, and

C(t) ∩ C(t′) = ∅ whenever t �= t′.
– For any u ∈ Q

n, each cell C(t) contains a single point in L −u = {v−u, v ∈
L}, which can be found efficiently: given any t ∈ T and u ∈ Q

n, one can
“open” the cell u + C(t), i.e. compute (u + C(t)) ∩ L in polynomial time.

Unfortunately, an L-partition is not necessarily universal, even in dimension
one. Indeed, consider the L-partition C with T = Z defined as follows: C(0) =
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[−1/2, 1/2]; For any k > 0, C(k) = (k − 1/2, k +1/2]; For any k < 0, C(k) = [k −
1/2, k+1/2). It can be checked that C is not universal: the shifted cell C(0)+1/2
contains two lattice points, namely 0 and 1. Fortunately, we show in the full
version that the two L-partitions (related to Gram-Schmidt orthogonalization)
introduced in [10] for discrete pruning are actually universal:

Lemma 2. Let B be a basis of a full-rank lattice L in Z
n. Let T = Z

n and for
any t ∈ T , CZ(t) = tB� + D where D = {

∑n
i=1 xib

�
i s.t. − 1/2 ≤ xi < 1/2}.

Then Babai’s L-partition (CZ(), T ) is universal.

Lemma 3. Let B be a basis of a full-rank lattice L in Z
n. Let T = N

n and
for any t = (t1, . . . , tn) ∈ T , CN(t) = {

∑n
i=1 xib

�
i s.t. − (ti + 1)/2 < xi ≤

−ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then the natural partition (CN(), T ) is univer-
sal.

5.3 BDD Discrete Pruning from Universal Lattice Partitions

Any universal L-partition (C, T ) and any vector u ∈ Q
n define a partition R

n =
∪t∈T (u + C(t)). Following the SVP case, discrete pruning opens finitely many
cells u + C(t), as done by Algorithm 2: discrete pruning is parametrized by a
finite set U ⊆ T of tags, specifying which cells u + C(t) to open. It is therefore
a pruned CVP enumeration with pruning set P = ∪t∈UC(t).

Algorithm 2. Close-Vector Discrete Pruning from Universal Lattice Partitions

Input: A target vector u ∈ Q
n, a universal lattice partition (C(), T ), a finite subset

U ⊆ T and if we are in the approximation setting, a radius R.
Output: L ∩ (u + (S ∩ P )) where S = Balln(R) and P = ∪t∈UC(t).
1: R = ∅
2: for t ∈ U do
3: Compute L ∩ (u + C(t)) by opening u + C(t): in the approx setting, check if the

output vector is within distance ≤ R to u , then add the vector to the set R. In
the unique setting, check if the output vector is the solution.

4: end for
5: Return R.

The algorithm performs exactly k cell openings, where k = #U is the number
of cells, and each cell opening runs in polynomial time. So the running time is
#U poly-time operations: one can decide how much time should be spent.

Since the running time is easy to evaluate like in the SVP case, there are
only two issues: how to estimate the success probability and how to select U , in
order to maximize the success probability.
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5.4 Success Probability

Following Sect. 3.2, we distinguish two cases:

Approximation setting: Based on (2), the success probability can be derived
from:

vol(S ∩ (u + P )) =
∑

t∈U

vol(Balln(R) ∩ C(t)). (6)

This is exactly the same situation as in the SVP case already tackled by [10].
They showed how to compute vol(Balln(R) ∩ C(t)) for Babai’s partition and
the natural partition by focusing on the intersection of a ball with a box
H = {(x1, . . . , xn) ∈ R

n s.t. αi ≤ xi ≤ βi}:

– In the case of Babai’s partition, each cell CZ(t) is a box.
– In the case of the natural partition, each cell CN(t) is the union of 2j symmetric

(non-overlapping) boxes, where j is the number of non-zero coefficients of t .
It follows that vol(CN(t) ∩ Balln(R)) = 2jvol(H ∩ S), where H is any of these
2j boxes.

And they also showed to approximate a sum
∑

t∈U vol(Balln(R)∩C(t)) in prac-
tice, without having to compute separately each volume.

Unique setting: Based on (4), if the noise vector is e , then the success prob-
ability is

Pr
succ

= Pr
P,e

(−e ∈ P ) =
∑

t∈U

Pr
P,e

(−e ∈ C(t)) (7)

It therefore suffices to compute the cell probability PrP,e(e ∈ C(t)), instead
of an intersection volume. Similarly to the approximation setting, we might
be able to approximate the sum

∑
t∈U PrP,e(e ∈ C(t)) without having to

compute individually each probability. In Sect. 5.6, we focus on the natural
partition: we discuss ways to compute the cell probability PrP,e(e ∈ C(t))
depending on the distribution of the noise e .

In both cases, we see that the success probability is of the form:

Pr
succ

=
∑

t∈U

f(t), (8)

for some function f() : T → [0, 1] such that
∑

t∈T f(t) = 1, where (8) is rigorous
for the unique setting, and heuristic for the approximation setting due to the
Gaussian heuristic. If ever the computation of f() is too slow to compute indi-
vidually each term of

∑
t∈U f(t), we can use the statistical inference techniques

of [10] to approximate (8) from the computation of a small number of f(t). Note
that if we know that the probability is reasonably large, say > 0.01, we can
alternatively use Monte-Carlo sampling to approximate it.
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5.5 Selecting Parameters

We would like to select the finite set U of tags to maximize Prsucc given by (8).
Let us assume that we have a function g : T → R

+ such that
∑

t∈T g(t) con-
verges. If (8) provably holds, then

∑
t∈T f(t) = 1, so the sum indeed converges.

Since T is infinite, this implies that for any B > 0, the set {t ∈ T s.t. f(t) > B}
is finite, which proves the following elementary result:

Lemma 4. Let T be an infinite countable set. Let f : T → R
+ be a function

such that
∑

t∈T f(t) converges. Then for any integer m > 0, there is a finite
subset U ⊆ T of cardinal m such that f(t) ≤ minu∈U f(u) for all t ∈ T \U . Such
a subset U maximizes

∑
u∈U f(u) among all m-size subsets of T .

Any such subset U would maximize Prsucc among all m-size subsets of T , so we
would ideally want to select such a U for any given m. And m quantifies the
effort we want to spend on discrete pruning, since the bit-complexity of discrete
pruning is exactly m poly-time operations.

Now that we know that optimal subsets U exist, we discuss how to find such
subsets U efficiently. In the approximation setting of [10], the actual function f()
is related to volumes: we want to select the k cells which maximize vol(Balln(R)∩
C(t)) among all the cells. This is too expensive to do exactly, but [10] provides
a fast heuristic method for the natural partition, by selecting the cells C(t)
minimizing E{CN(t)}: given as input m, it is possible to compute efficiently in
practice the tags of the m cells which minimize

E{CN(t)} =
n∑

i=1

(
t2i
4

+
ti
4

+
1
12

)
‖b�

i ‖2.

In other words, this is the same as replacing the function f() related to volumes
by the function

h(t) = e
−

∑n
i=1

(
t2i
4 +

ti
4 + 1

12

)

‖b�
i ‖2

,

and it can be verified that
∑

t∈Nn h(t) converges. In practice (see [10]), the m
cells maximizing h(t) (i.e. minimizing E{CN(t)}) are almost the same as the cells
maximizing vol(Balln(R) ∩ C(t)).

However, the method of [10] was only heuristic. In Sect. 6, we modify that
method to make it fully provable: for any integer m > 0, we can provably find
the best m cells in essentially m polynomial-time operations and polynomial
space (the m solutions are output as a stream).

5.6 Noise Distributions in the Unique Setting

We discuss how to evaluate the success probability of BDD discrete pruning
in the unique setting for the natural partition. This can easily be adapted to
Babai’s partition, because it also relies on boxes. Following (7), it suffices to
evaluate:

p(t) = Pr
P,e

(e ∈ −C(t)), (9)
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where P is the (random) pruning set, e is the BDD noise and C(t) is the cell of
the tag t . We now analyze the most frequent distributions for e .

LWE and Gaussian Noise. The most important BDD case is LWE [38]. How-
ever, there are many variants of LWE using different distributions of the noise
e . We will use the continuous Gaussian distribution over R

n, like in [38]. Many
schemes actually use a discrete distribution, such as some discrete Gaussian dis-
tribution over Z

n (or something easier to implement): because this is harder to
analyze, cryptanalysis papers such as [27,29] prefer to ignore this difference, and
perform experiments to check if it matches with the theoretical analysis. The
main benefit of the Gaussian distribution over R

n is that for any basis, each
coordinate is a one-dimensional Gaussian.

Lemma 5. Let t = (t1, . . . , tn) ∈ N
n be a tag of the natural partition CN()

with basis B = (b1, . . . , bn). If the noise e follows the multivariate Gaussian
distribution over R

n with parameter σ, then:

p(t) =
n∏

i=1

(
erf

(
1√
2σ

· ti + 1
2

· ‖b�
i ‖

)
− erf

(
1√
2σ

· ti
2

· ‖b�
i ‖

))
(10)

Spherical Noise. If the noise e is uniformly distributed over a centered ball,
we can reuse the analysis of [10]:

Lemma 6. Let (C, T ) be a universal L-partition. Let t ∈ T be a tag. If the noise
e is uniformly distributed over the n-dimensional centered ball of radius R, then:

p(t) =
vol(C(t) ∩ Balln(R))

vol(Balln(R))
(11)

For both Babai’s partition CZ and the natural partition CN, C(t) is the union
of disjoint symmetric boxes, so the evaluation of (11) is reduced to the compu-
tation of the volume of a ball-box intersection, which was done in [10].

Product of Finite Distributions. We now consider a general distribution D
for the noise e where each coordinate ei is independently sampled from the uni-
form distribution over some finite set. This includes the box distribution, which
is the uniform distribution over a set of the form

∏n
i=1{ai, . . . , bi}. The con-

tinuous Gaussian distribution and the uniform distribution over a ball are both
invariant by rotation. But if the noise distribution D is not invariant by rotation,
the tag probability p(t) may take different values for the same (‖b�

1‖, . . . , ‖b�
n‖),

which is problematic for analysing the success probability. To tackle this issue,
we reuse the following heuristic assumption introduced in [21]:

Heuristic 10 ([21, Heuristic 3] ) The distribution of the normalized Gram-
Schmidt orthogonalization (b�

1/||b�
1||, . . . , b�

n/||b�
n||) of a random reduced basis

(b1, . . . , bn) looks like that of a uniformly distributed orthogonal matrix.
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We obtain:

Lemma 7. Let CN be the natural partition. Let t ∈ N
n be a tag. If the distribu-

tion of the noise e has finite support, then under Heuristic 10:

p(t) =
∑

r∈E

Pr
e

(‖e‖ = r) × Pr
x←Sn

(x ∈ C(t)/r) (12)

where E ⊆ R≥0 denotes the finite set formed by all possible values of ‖e‖ and
Sn denotes the n-dimensional unit sphere.

6 Linear Optimization for Discrete Pruning

We saw in Sect. 5.6 how to compute or approximate the probability p(t) that
the cell of the tag t contains the BDD solution. From Lemma 4, we know that
for any integer m > 0, there are m tags which maximize p(t) in the sense that
any other tag must have a lower p(t). To select optimal parameters for BDD
discrete pruning, we want to find these m tags as fast as possible, possibly in m
operations and polynomial-space (by outputting the result as a stream).

6.1 Reduction to Linear Optimization

We distinguish two cases:

– Selection based on expectation. Experiments performed in [10] show that in
practice, the m tags t which maximize vol(CN(t)∩Balln(R)) are essentially the
ones which minimize the expectation E{CN(t)} where E{C} := Ex∈C(‖x‖2)
over the uniform distribution. Cor. 3 in [10] shows that this expectation is:

E{CN(t)} =
n∑

i=1

(
t2i
4

+
ti
4

+
1
12

)
‖b�

i ‖2.

So we can assume that for a noise uniformly distributed over a ball (see
Lemma 6), the m tags t maximizing p(t) are the tags minimizing E{CN(t)}.

– Gaussian noise. If the noise distribution is the continuous multivariate Gaus-
sian distribution, Lemma 5 shows that p(t) is given by (10). This implies that
the m tags t which maximize p(t) are the ones which minimize − log p(t)

In both cases, we want to find the m tags t ∈ N
n which minimize an objective

function g of the form g(t) =
∑n

i=1 f(i, ti), where f(i, ti) ≥ 0. The fact that the
objective function can be decomposed as a sum of individual positive functions
in each coordinate allows us to view this problem as a linear optimization. We
will see that in the case that g has integral outputs, it is possible to provably find
the best m tags which minimize such a function g in essentially m operations. If
g is not integral, it is nevertheless possible to enumerate all solutions such that
g(t) ≤ R where R is an input, in time linear in the number of solutions. A special
case is the problem of enumerating smooth numbers below a given number.
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In practice, it is more efficient to rely on the expectation, because it is
faster to evaluate. Figure 4 shows how similar are the best tags with respect
to one indicator compared to another: to compare two sets A and B formed
by the best M tags, the graph displays #(A ∩ B)/M . For instance, the top
curve confirms the experimental result of [10] that the m tags t which maximize
vol(CN(t)∩Balln(R)) are almost the same as the ones which minimize the expec-
tation E{CN(t)}. The top second curve shows that the best tags that maximize
the LWE probability are very close to those minimizing the expectation. The
bottom two curves compare with the finite noise distribution arising in GGH
challenges [22] (see the full version for details). In all cases, at most 10% of the
best tags are different, and more importantly, we report that the global success
probabilities are always very close, with a relative error typically ≤ 1%.

Fig. 4. Similarity between optimal sets of tags, depending on the objective function.

We conclude that in practice, the expectation is a very good indicator to
select the best tags for the distributions studied in Sect. 5.6.

6.2 Limits of Orthogonal Enumeration

Aono and Nguyen [10, Sect. 6] presented a heuristic method to solve this
linear optimization problem in the special case: g(t) = E{CN(t)} =
∑n

i=1

(
t2i
4 + ti

4 + 1
12

)
‖b�

i ‖2, by noticing that E{CN(t)} was the squared distance
between a target point and a special lattice with a known orthogonal basis. This
allowed to find all t ∈ N

n such that E{CN(t)} ≤ R for any R, using a variant [10,
Alg. 6] of enumeration. And by using a binary search based on an early-abort
variant, it was also possible to find an R yielding slightly more than m solutions.

[10, Sect. 6] reported that this algorithm worked very well in practice: if � is
the number of t ∈ N

n such that E{CN(t)} ≤ R, the number of nodes L of the
enumeration algorithm [10, Alg. 6] seemed to be bounded by O(�n), perhaps
even � × n. This was in contrast with the usual situation where the number
of nodes of the enumeration tree is exponentially larger than the number of
solutions. However, no rigorous result could be proved in [10], leaving it as an
open problem to show the efficiency of [10, Alg. 6].
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Surprisingly, we solve this open problem of [10] in the negative. More pre-
cisely, we show that there are cases where the number of nodes L of enumer-
ation [10, Alg. 6] is exponentially larger than the number of solutions �. To
see this, consider the orthogonal lattice Z

n with the canonical basis. Then:
E{CN(t)} =

∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
. But we have:

Lemma 8. Let R = n
12 + 1

2 and n′ = �n/10�. Then the number � of t ∈ N
n

such that
∑n

i=1

(
t2i
4 + ti

4 + 1
12

)
≤ R is exactly n + 1. But the number �′ of

(xn−n′+1, . . . , xn) ∈ N
n′

such that
∑n

i=n−n′+1

(
x2

i

4 + xi

4 + 1
12

)
≤ R is ≥ 2n′

.

Proof. For the choice R = n
12 + 1

2 , we have
∑n

i=1

(
t2i
4 + ti

4 + 1
12

)
≤ R if and only

if all the ti’s are equal to zero, except at most one, which must be equal to one.
Furthermore, for any (xn−n′+1, . . . , xn) ∈ {0, 1}n′

, we have:

n∑

i=n−n′+1

(
x2

i

4
+

xi

4
+

1
12

)
≤ n′

(
1
2

+
1
12

)
≤ n

10
7
12

=
7n

120
< R.

��

It follows in this case that the number of nodes L of the enumeration algorithm
[10, Alg. 6] for that R is at least exponential in n, though the number of solutions
is linear in n.

6.3 Solving Linear Optimization

We show that a slight modification of orthogonal enumeration can solve the
more general problem of linear optimization essentially optimally. This is based
on two key ideas. The first idea is that when solving linear optimization, we
may assume without loss of generality that each function f(i, ) is sorted by
increasing value, with a starting value equal to zero, which changes the tree:
f(i, 0) = 0 and f(i, j) ≤ f(i, j′) whenever j ≤ j′. Indeed, it suffices to sort
the values of f(i, ) if necessary and subtract the minimal value: however, note
that for both the expectation E{CN(t)} =

∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b�

i ‖2 and for

−
∑n

i=1 log
(
erf

(
1√
2σ

· ti+1
2 · ‖b�

i ‖
)

− erf
(

1√
2σ

· ti

2 · ‖b�
i ‖

))
, the values of f(i, )

are already sorted. For instance, t2i
4 + ti

4 + 1
12 is an increasing function of ti.

The second idea is that we may assume to simplify that f has integral values,
which allows us to bound the running time of dichotomy. This is not directly true
for the expectation E{CN(t)} =

∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b�

i ‖2. However, because we

deal with integer lattices, the basis B is integral, the ‖b�
i ‖2’s are rational numbers

with denominator covol(L(b1, . . . , bi−1))2, so we can transform the expectation
into an integer, by multiplying with a suitable polynomial-size integer.

First, we present a slight modification Algorithm 3 of [10, Alg. 6], whose
running time is provably essentially proportional to the number of solutions:
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Theorem 11. Assume that f : {1, . . . , n} × N → R satisfies f(i, 0) = 0 and
f(i, j) ≥ f(i, j′) for all i and j > j′. Given as input a number R > 0, Algorithm 3
outputs all (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R using O(nN + 1)
arithmetic operations and ≤ (2n − 1)N + 1 calls to the function f(), where the
number N is the number of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R.

Proof. To analyze the complexity of Algorithm 3, let nk denote the number of
times we enter Lines 3–18, depending on the value of k, which is ≥ 1 and ≤ n
at each Line 3. Then nk can be decomposed as nk = ak + bk, where ak (resp.
bk) denotes the number of times we enter Lines 5–10 (resp. Lines 12–17). Notice
that an+1 = 0 and a1 is exactly the number N of (v1, . . . , vn) ∈ N

n such that∑n
i=1 f(i, vi) ≤ R. And if 1 < i ≤ n, then ai is the number of times that the

variable k is decremented from i to i−1. Similarly, bn = 1, and if 1 ≤ i ≤ n, then
bi is the number of times that the variable k is incremented from i to i + 1. By
Line 1 (resp. 14), the initial (resp. final) value of k is n (resp. n + 1). Therefore,
for any 1 ≤ i ≤ n− 1, the number of times k is incremented from i to i+1 must
be equal to the number of times k is decremented from i+1 to i, in other words:
bi = ai+1. Thus, the total number of loop iterations is:

n∑

i=1

ni =
n∑

i=1

(ai + bi) = N + 1 + 2
n∑

i=2

ai.

Note that because f(i, 0) = 0, any partial assignment
∑n

i=i0
f(i, vi) ≤ R can be

extended to a larger partial assignment
∑n

i=1 f(i, vi) ≤ R, which implies that
a1 ≥ a2 ≥ . . . an. It follows that the total number of loop iterations is:

n+1∑

i=1

ni ≤ N + 1 + 2(n − 1)N = (2n − 1)N + 1.

For each loop iteration (Lines 3–18), the number of arithmetic operations per-
formed is O(1) and the number of calls to f() is exactly one. It follows that the
total number of arithmetic operations is O(nN + 1) and the number of calls to
f() is ≤ (2n − 1)N + 1. ��

We showed that the number of nodes in the search tree is linear in the
number of solutions. Next, we present Algorithm 4, which is a counting version
of Algorithm 3:

Theorem 12. Assume that f : {1, . . . , n} × N → R satisfies f(i, 0) = 0 and
f(i, j) ≥ f(i, j′) for all i and j > j′. Given as input two numbers R > 0
and M > 0, Algorithm 4 decides if is N ≥ M or N < M , where N is the
number of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R. Furthermore, if N ≥
M , the number of arithmetic operations is O(N), and otherwise, the number of
arithmetic operations is O(nN + 1), and the algorithms outputs N .

Proof. Similarly to the proof of Theorem 11, let nk denote the number of times
we enter Lines 3–17, depending on the value of k, which is ≥ 1 and ≤ n at each
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Line 3. Then nk can be decomposed as nk = ak +bk, where ak (resp. bk) denotes
the number of times we enter Lines 5–9 (resp. Lines 11–16).

Let M be the number of (v1, . . . , vn) ∈ N
n such that

∑n
i=1 f(i, vi) ≤ R. If

M ≤ N , then Algorithm 4 will perform the same operations as Algorithm 3
(except Line. 6), so the cost is O(nM + 1) ≤ O(nN + 1) arithmetic operations.
Otherwise, M > N , which means that the while loop will stop after exactly N
iterations, and the total number of operations is therefore O(N). ��

Our main result states that if the function f is integral, given any M , Algorithm 5
finds the best N assignments in time M where M ≤ N ≤ (n + 1)M :

Theorem 13. Assume that f : {1, . . . , n} × N → N satisfies f(i, 0) = 0 and
f(i, j) < f(i, j′) for all i and j > j′. Assume that f(i, j) ≤ jO(1)2nO(1)

. Given as
input a number M > 1, Algorithm 5 outputs the N assignments (v1, . . . , vn) ∈ N

n

which minimize
∑n

i=1 f(i, vi) in time O(n(n+1)M)+nO(1) +O(log2 M), where
the number N satisfies: M ≤ N ≤ (n + 1)M .

Proof. We have the following invariant at the beginning of each loop iter-
ation: the number of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R0 is
< M , and the number of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R1

is ≥ M . Initially, this holds because the number of (v1, . . . , vn) ∈ N
n such

that
∑n

i=1 f(i, vi) ≤ 0 is 1 and the number of (v1, . . . , vn) ∈ N
n such that∑n

i=1 f(i, vi) ≤
∑n

i=1 f(i, �M1/n�) is ≥ (M1/n)n = M . Furthermore, the loop
preserves the invariant by definition of the loop. Since the length R1 − R0

decreases by a factor two, it follows that the number of loop iterations is
≤ log2(

∑n
i=1 f(i, �M1/n�)).

After the loop, we must have R0 = R1 − 1. Let N1 (resp. N0) be the number
of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R1 (resp. R0) after the loop. By
the invariant, we know that N0 < M ≤ N1. We claim that (N1 − N0) ≤ nM ,
which implies that N1 ≤ (n + 1)M . Notice that N1 − N0 is the number of
(v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) = R1. For any such assignment, one of
the vi’s must be ≥ 1: if we decrement that vi, we get a cost < R1, so it must be
≤ R0 because R0 = R1 − 1, which means that this assignment is counted by N0.
Since we have at most n possibilities for i, it follows that N1 − N0 ≤ nM . ��

Furthermore, Algorithm 5 uses negligible space, except that the output is linear
in M : the best tags are actually output as a stream. If we sort the N tags, which
requires space, we could output exactly the best M tags.

7 Quantum Speed-Up of Discrete Pruning

We present a quadratic quantum speed-up for discrete pruning, namely:

Theorem 14. There is a quantum algorithm which, given ε > 0, a number M >
0, and an LLL-reduced basis B of a full-rank lattice L in Z

n, outputs the shortest
non-zero vector in L∩P in time O(n2

√
M)poly(log(n), log(M), log(1/ε), β) with

error probability ε. Here, β denotes the bitsize of the vectors of B, P = ∪t∈UCN(t)
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Algorithm 3. Enumeration of low-cost assignments
Input: A function f : {1, . . . , n}×N → R≥0 such that f(i, 0) = 0 and f(i, j) ≥ f(i, j′)

for all i and j > j′; a bound R > 0.
Output: All (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R.
1: v1 = v2 = · · · = vn = 0 and ρn+1 = 0 and k = n
2: while true do
3: ρk = ρk+1 + f(k, vk) // cost of the tag (0, . . . , 0, vk, . . . , vn)
4: if ρk ≤ R then
5: if k = 1 then
6: return (v1, . . . , vn); (solution found)
7: vk ← vk + 1
8: else
9: k ← k − 1 and vk ← 0 // going down the tree

10: end if
11: else
12: k ← k + 1 // going up the tree
13: if k = n + 1 then
14: exit (no more solutions)
15: else
16: vk ← vk + 1
17: end if
18: end if
19: end while

Algorithm 4. Counting low-cost assignments
Input: A function f : {1, . . . , n}×N → R≥0 such that f(i, 0) = 0 and f(i, j) ≥ f(i, j′)

for all i and j > j′; a bound R > 0 and a number M ≥ 0.
Output: Decide if the number of (v1, . . . , vn) ∈ N

n such that
∑n

i=1 f(i, vi) ≤ R is
≥ M or < M .

1: v1 = v2 = · · · = vn = 0 and ρn+1 = 0 and k = n and m = 0
2: while m < M do
3: ρk = ρk+1 + f(k, vk) // cost of the tag (0, . . . , 0, vk, . . . , vn)
4: if ρk ≤ R then
5: if k = 1 then
6: m ← m + 1 and vk ← vk + 1 (one more solution)
7: else
8: k ← k − 1 and vk ← 0 // going down the tree
9: end if

10: else
11: k ← k + 1 // going up the tree
12: if k = n + 1 then
13: return m < M // no more solutions
14: else
15: vk ← vk + 1
16: end if
17: end if
18: end while
19: return m ≥ M
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Algorithm 5. Enumeration of lowest-cost assignments
Input: A function f : {1, . . . , n}×N → R≥0 such that f(i, 0) = 0 and f(i, j) ≥ f(i, j′)

for all i and j > j′; a number M > 0.
Output: Output the N assignments (v1, . . . , vn) ∈ N

n that minimize
∑n

i=1 f(i, vi),
where M ≤ N ≤ nM .

1: R0 ← 0 and R1 ←
∑n

i=1 f(i, �M1/n�);
2: while R0 < R1 − 1 do
3: Call Alg. 4 with R = �(R0 + R1)/2� and M
4: if number of solutions ≥ M then
5: R1 ← R
6: else
7: R0 ← R
8: end if
9: end while

10: Call Alg. 3 with R1.

where CN() is the natural partition with respect to B, U is formed by the N tags
t minimizing E{CN(t)}, for some M ≤ N ≤ 32n2M with probability at least
1 − ε/2. If the algorithm is further given a target u ∈ Z

n, it also outputs the
shortest vector in (L − u) ∩ P .

By comparison, opening all the cells returned by Algorithm 5 of Sect. 6 does
the same in O(M) poly-time operations, except that the upper bound on N
is slightly lower. The proof of Theorem 14 has two parts: first, we show how to
determine the best N cells without computing them, for some N close to M , with
high probability; then we find the best candidate inside these N cells. Both rely
on a tree interpretation. Algorithm 3 can be seen as a backtracking algorithm
on a tree T (R), where each node can be encoded as (∗, · · · , ∗, vk, · · · , vn). The
root is encoded as (∗, · · · , ∗). Given a node (∗, · · · , ∗, vk, · · · , vn), if k = 1, then
it is a leaf. If

∑n
i=k f(i, vi) > R, then it is also a leaf. If

∑n
i=k f(i, vi) ≤ R,

then its children are (∗, · · · , ∗, vk−1, vk, · · · , vn), where vk−1 can take all integer
values between 0 and ρvk,··· ,vn

. Here ρvk,··· ,vn
is the smallest integer such that

f(i−1, ρvk,··· ,vn
)+

∑n
i=k f(i, vi) > R. In case of discrete pruning, f is quadratic.

We can compute ρvk,··· ,vn
and build the black-box on T (R).

7.1 Determining the Best Cells Implicitly

Given a number M > 0, Algorithm 5 finds (in time essentially M) the
best N vectors t ∈ N

n (for some N close to M) minimizing E{CN(t)} =
∑n

i=1

(
t2i
4 + ti

4 + 1
12

)
‖b�

i ‖2 by minimizing instead the function:

g(v1, · · · , vn) =
n∑

i=1

f(i, vi) =
n∑

i=1

vi(vi + 1)‖b�
i ‖2 =

n∑

i=1

αivi(vi + 1).

This is done by finding a suitable radius R by dichotomy, based on logarithmi-
cally many calls to Algorithm 4 until the number of solutions is close to M , and
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eventually enumerating the marked leaves of a search tree by Algorithm 3. Both
Algorithm 3 and Algorithm 4 can be viewed as algorithms exploring a tree T (R)
depending on a radius R > 0: Algorithm 4 decides if the number #S(T (R)) of
marked leaves (i.e. the number of outputs returned by Algorithm 3) is ≥ or <
than an input number; Algorithm 3 returns all the marked leaves.

This tree interpretation gives rise to Algorithm 6, which is our quantum ana-
logue of Algorithm 5 with the following differences: we are only interested in
finding a suitable radius R such that N = #S(T (R)) is close to M up to a
factor of 32n2, with correctness probability at least 1 − ε/2, because enumer-
ating all the marked leaves would prevent any quadratic speed up. We replace
Algorithm 4 by the quantum tree size estimation algorithm of [9]: this gives a
quadratic speed up, but approximation errors slightly worsens the upper bound
on N . The input (α1, · · · , αn) of Algorithm 6 corresponds to (‖b�

1‖2, · · · , ‖b�
n‖2),

where (b1, · · · , bn) is an integer basis. We know that (‖b�
1‖2, · · · , ‖b�

n‖2) ∈ Q
n,

but by suitable multiplication preserving polynomial sizes, we may assume that
(‖b�

1‖2, · · · , ‖b�
n‖2) ∈ N

n. The order between the ‖b�
i ‖2’s doesn’t matter in our

analysis. We can assume that ‖b�
1‖2 ≤ · · · ≤ ‖b�

n‖2. We show that Algorithm 6
finds a radius R corresponding to the best M cells in approximately

√
M quan-

tum operations:

Algorithm 6. Computing implicitly the best cells quantumly
Input: ε, M > 0 and (α1, · · · , αn) ∈ N

n with α1 ≤ · · · ≤ αn such that the input
f : {1, · · · , n} × N → N of Alg. 3 satisfies f(i, x) = αix(x + 1)

Output: R such that M ≤ #S(T (R)) ≤ 32n2M with probability ≥ 1 − ε
1: r ← �log2(

∑n
i=1 f(i, �(4nM)1/n�))� and R ←

∑n
i=1 f(i, �(4nM)1/n�) and R0 ← 0

and R1 ← R
2: while R1 − R0 > 1 do
3: Call TreeSizeEstimation(T2(R), 16n2M, 1/2, εr/2, 2)
4: if the answer is “T2(R) contains more than 16n2M vertices” then
5: R1 ← R and R ← �(R0 + R1)/2�
6: else if the answer is “T2(R) contains T̂ vertices” with T̂ < 3(2n − 1)M then
7: R0 ← R and R ← �(R0 + R1)/2�
8: else
9: Return R

10: end if
11: end while
12: Return R0

Theorem 15. The output R of Algorithm 6 satisfies M ≤ #S(T (R)) ≤
32n2M with probability ≥ 1 − ε/2. Algorithm 6 runs in quantum time
O(n2

√
Mpoly(log(n), log(M), log(1/ε), β)) where β is the bitsize of the basis

vectors (b1, · · · ,bn). The algorithm needs O(poly(n, log(M), log(1/ε))) qubits.
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7.2 Finding the Best Lattice Vector

We now know R such that the number N of (v1, · · · , vn) ∈ N
n which satis-

fies
∑n

i=1 f(i, vi) ≤ R is in [M, 32n2M ] with probability at least 1 − ε/2. All
these solutions are leaves of the tree T (R) and they form the set U of the
best N tags minimizing t minimizing E{CN(t)}. Let P = ∪t∈UCN(t) where CN()
is the natural partition with respect to the input basis B. We would like to
find a shortest non-zero vector in L ∩ P for the SVP setting, or the shortest
vector in (L − u) ∩ P in the CVP setting, when we are further given tar-
get u ∈ Z

n. To do this, we notice that it suffices to apply FindMin2 (in
App), provided that the basis (b1, · · · ,bn) is LLL-reduced. More precisely,
we call FindMin2(T (R),P, h, ‖b1‖2, d, 32n2M, ε/2). Here P is the predicate
which returns true on a node iff it is a leaf encoded as (x1, · · · , xn) such that
g(x1, · · · , xn) =

∑n
i=1 f(i, xi) ≤ R. hV (x1, · · · , xn) is the predicate which indi-

cates if the square of the norm of the lattice vector in the cell of tag (x1, · · · , xn)
is ≤ V . The time complexity is O(n2

√
Mpoly(log(n), log(M), log(1/ε), β)).

Since the subroutine of determining the best cells and the one of finding a
shortest non-zero vector, both have an error probability ε/2, by union bound,
the total error probability is ε. We thus have proved Theorem 14.

7.3 The Case of Extreme Pruning

In this section, we explain how to tackle the extreme pruning case, where one
wants to run discrete pruning over many reduced bases. Due to space limitations,
we only give a proof sketch, but the main ideas are the same.

Given m LLL-reduced bases (B1, · · · ,Bm) of the same integer lattice L
of rank n, we define for each basis Bi a function gi : N

n → Q such that
gi(x1, · · · , xn) =

∑n
j=1 ‖b�

i,j‖2xi(xi + 1), where (b�
i,1, · · · , b�

i,n) is the Gram-
Schmidt orthogonalization of the basis Bi. Here, we want to first find the
poly(n) ∗ M best cells with respect to all of the functions gi altogether,
and then find the shortest vector in these cells. Both steps have complex-
ity O(

√
Mpoly(n, log M, log 1/ε, β)), where ε is the total error probability and

where β is the bitsize of the vectors of the input bases.

Theorem 16. There is a quantum algorithm which, given ε > 0, a number M >
0, and m LLL-reduced bases (B1, · · · ,Bm) of an n-rank integer lattice L, outputs
the shortest non-zero vector in L ∩ P in time O(

√
Mpoly(n, log M, log 1/ε, β))

with error probability ε. Here, β denotes the maximum bitsize of the vectors of
all given bases, P = ∪(i,t)∈UCN(i, t) where CN(i, ·) is the natural partition with
respect to Bi, U is formed by the N tuples (i, t) ∈ {1, · · · ,m} × N

n minimizing
gi(t) among all tuples, for some N = poly(n) ∗ M with probability at least
1 − ε/2. If the algorithm is further given a target u ∈ Z

n, it also outputs the
shortest vector in (L − u) ∩ P .

The main idea of the proof is the following. For each basis Bi, there is a back-
tracking tree with respect to the function gi as we explained in the previous
section. We put all these trees together and obtain one single tree. We first
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apply the TreeSizeEstimation algorithm several times to find a good common
radius R for all functions gi by dichotomy, such that the total number of good
cells in all trees is poly(n) ∗ M . After that, we apply FindMin2 to find the
shortest vector among all these cells. Remark that in the previous section, we
required the function g to have integral values, and this was achieved by multi-
plying all ‖b�

i ‖2 by a common denominator. Instead, we here want to keep the
output rational, which is proved sufficient by the following lemma:

Lemma 9. Given a basis (b1, · · · ,bn) of an integer lattice L, g : Nn → Q such
that g(x1, · · · , xn) =

∑n
i=1 ‖b�

i ‖2xi(xi+1), we denote T (R) the backtracking tree
for finding all solutions of g(x1, · · · , xn) ≤ R, T2(R) the corresponding binary
tree. For all R ∈ R

+, #S(T2(R + δ)) ≤ 2n#S(T2(R)), where δ = 1∏n
i=1 Δi

and

Δi = covol(b1, · · · ,bi)2 =
∏i

j=1 ‖b�
i ‖2.

The proof of this lemma is the same as the proof of a similar lemma in the full
version by noticing that

∏n
i=1 Δi is a common denominator of all ‖b�

i ‖2.
For each basis Bi, we define δi as in Lemma 9. In the dichotomy step, we

stop when the difference of the two terms is smaller than minj∈{1,··· ,m} δj . The
other steps are the same as in the previous section.
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Abstract. In this paper, we propose a new assumption, the Computa-
tional Learning With Rounding over rings, which is inspired by the com-
putational Diffie-Hellman problem. Assuming the hardness of R-LWE, we
prove this problem is hard when the secret is small, uniform and invert-
ible. From a theoretical point of view, we give examples of a key exchange
scheme and a public key encryption scheme, and prove the worst-case
hardness for both schemes with the help of a random oracle. Our result
improves both speed, as a result of not requiring Gaussian secret or noise,
and size, as a result of rounding. In practice, our result suggests that
decisional R-LWR based schemes, such as Saber, Round2 and Lizard,
which are among the most efficient solutions to the NIST post-quantum
cryptography competition, stem from a provable secure design. There are
no hardness results on the decisional R-LWR with polynomial modulus
prior to this work, to the best of our knowledge.

1 Introduction

Organizations and research groups are looking for candidate algorithms to
replace RSA and ECC based schemes [48,49] due to the threat of quantum
computers [58]. Among all candidates, lattice based solutions seem to offer the
most promising solutions. One of the fundamental features enabled by the Learn-
ing With Errors (LWE) [39,57]/the Small Integer Solution (SIS) [1,45] family of
problems, is that the average-case security of the cryptosystem stems from the
worst-case hardness of well studied lattice problems [2,16,39,45,51,55,57].

The celebrated work of worst-case/average-case reductions was firstly pre-
sented in [51,57] for LWE and in [39] for R-LWE. In both cases, the errors follow a
rounded Gaussian distribution. Albeit great improvements in a sequence of work
[3,13,28–30,35,47,52,56], Gaussian sampling is still the most intricate part to
implementing (R-)LWE based schemes.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 435–464, 2018.
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An average-case/worse-case reduction without Gaussian sampling is a long
standing problem. It has been studied by a series of works from different angles
[9,12,26,43,44]. Generally, there are two ways to solve this problem. One may
either reduce LWE to LWE with uniform/binary errors [9,26,43,44], or reduce
LWE to the Learning With Rounding (LWR) problem [4,5,10,12]. Here the
(R-)LWR problem, introduced in [10], is a variant of (R-)LWE where random errors
are replaced by a deterministic rounding function. Interestingly, there exists a
reduction from LWE with uniform errors to LWR [12] that indicates a connection
between the aforementioned two solutions.

In addition to avoiding Gaussian sampling, it is also common to resort to a
ring setting [39,41,55]. However, the above methods are no longer applicable,
since the reductions from generic LWE to “binary LWE” in [9,26,43,44] all rely
on a search-to-decision reduction from [43]. How to carry over this reduction to
the ring setting is still an open problem. Moreover, there is no reduction from
R-LWE to the decisional version of R-LWR when the modulus is polynomial, to
our best knowledge.1

Another obstacle of deploying (R-)LWE based cryptosystems is that the sizes
of public keys and the ciphertexts are significantly larger than those of RSA and
ECC [13]. One direction to lower the size of public keys/ciphertexts, is to choose
a smaller modulus q. However, a smaller q leads to a higher (and sometime
non-negligible) decryption error rate. In some cases, this may result in an inval-
idation of a security proof. For example, in [3], the failure probability is around
2−61 for a security level of 128. The security proof in [3,13,14] only provides
an indistinguishability between a session key derived by Bob and a uniformly
random string. Now that Alice and Bob may derive different session keys with
a non-negligible probability, it is also essential to prove the pseudorandomness
of Alice’s key. This is not captured by the existing proofs. In addition, many
schemes rely on the Fujisaki-Okamoto transformation [33] to achieve CCA-2
security. This also requires a negligible failure probability [36]. In history we
have seen non-negligible failure lead to attacks, such as [37].

A trivial solution to decryption errors is to perform key validation. This,
however, needs additional round trips for the protocol. An alternative solution
is to further tuning the parameters. For example, to use a narrower secret/error.
However, the worst-case hardness theorems for R-LWE [39,55] require the widths
of the error distributions to exceed certain Ω(

√
n) bounds, where n is the degree

of the secret polynomial. On the other hand, if the errors are smaller than
√

n,
LWE can be solved in polynomial time using the Arora-Ge’s algorithm [7] with
m = O(n2) samples. There is a natural extension of this attack to R-LWE by
viewing each R-LWE instance as n LWE samples. In general, as pointed out in
[54], error distributions that are too far from the provably hard ones shall not
be used, to avoid weak instances of the R-LWE problem [17,18,31,32].

1 [10] proved hardness of decisional Ring-LWR for super-polynomial q is as secure as
decisional Ring-LWE for super-polynomial q. However, the hardness of decisional
Ring-LWE for super-polynomial q is not well understood yet.
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Due to its great simplicity and efficiency, R-LWR based constructions, namely,
Saber [24], Round2 [8], Lizard [21], Round5 [11] and OKCN [38], are among
the most promising candidates to the NIST post-quantum cryptography compe-
tition [48]. See [42] for a comparison of performance versus security among all
lattice based candidates. Specifically,Saber [24] provides a decisional module-
LWR based KEM,to which R-LWR can be viewed as a special case. The KEM and
PKE algorithms in Round2 [8] may be based on either decisional LWR or deci-
sional R-LWR, while the algorithms in the ring version of Lizard [21] is based on
both of decisional R-LWE and decisional R-LWR. Thus, the hardness of R-LWR is
a long await result in the community, to show that those three schemes indeed
stem from a provable secure design.

1.1 Our Contributions

In the literature, there exists a reduction from search R-LWE to search R-
LWR [12], using the tool of Rényi Divergence (RD). However, it is hard to instan-
tiate a scheme directly from this result since cryptosystems are usually based
on decisional problems. On the other hand, it seems very difficult to provide
a reduction from decisional R-LWE to decisional R-LWR when the modulus is
polynomial, due to the limitation of RD in dealing with decisional problems [9].

To bridge this gap, we propose a new assumption, the Computational Learn-
ing With Rounding over rings (R-CLWR) in this paper, in analogy to the Com-
putational Diffie-Hellman (CDH) assumption. Next, we provide a reduction from
decisional R-LWE to R-CLWR when the secret of the R-LWE instances is uniform
from the set of all invertible elements whose coefficients lie in a small interval
[−β, β]n for some integer β < q. Combining the existing average-case/worst-
case reduction for R-LWE [39,55], we prove that the R-CLWR problem is hard,
assuming the hardness of some worst-case lattice problems.

Applications. We give two applications of R-CLWR, a public key encryption
(PKE) scheme in Sect. 5 and a Diffie-Hellman type key exchange scheme in
Sect. 6. Asymptotically speaking, our scheme improves a classical R-LWE based
solutions in two ways:

1. we allow for smaller size of public keys/ciphertexts as a result of rounding;
2. we remove the cumbersome Gaussian samplings.

We remark that it is hard to find overlaps between the concrete world and
the asymptotic world. In practice, most of the NIST submissions and other
schemes [3,13,14] only consider the best known cryptanalytic attacks [20,42]
and ignore the average-case/worst-case proof. For the same reason, none of the
Ring-LWE/LWR based NIST candidates sample errors from rounded Gaussian.
Our result is asymptotic. Thus, we do not provide a direct comparison between
our scheme and the NIST submissions in this paper. Instead, we give asymp-
totic parameters for both R-LWE scheme and our R-CLWR based scheme for a fair
comparison. In addition, we also assume that the decryption failure probability
needs to be exponentially small within this asymptotic world.
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R-LWE R-CLWR

Samples - KeyGen 2 1

Samples - Encrypt 3 1

Sampler Gaussian Uniform & Invertible

Modulus Ω(n5.5 log0.5 n) Ω(n3.75 log0.25 n)

– A R-LWE based scheme needs to proceed two Gaussian samplings during key
generation and three Gaussian samplings during encryption. The modulus of
the public key and the ciphertext is q = Ω(n5.5 log0.5 n).

– A R-CLWR based scheme needs to proceed one sampling during the key gener-
ation and one sampling during the encryption. The sampling procedure is to
simply draw an element from a small interval and output when it is invertible,
The modulus of the public key and the ciphertext is p = Ω(n3.75 log0.25 n).

To show the power of our result, we give security proofs for a variant of
Saber and Round2, as well as Lizard, based on the R-CLWR assumption.
Nonetheless, since the worst-case connection does not imply definite security
for any concrete choice of parameters, our proofs will be based on asymptotic
simplifications of their original algorithms.

Technique Overview. The notion of R-CLWR is inspired by the following
observation. Decisional Diffie-Hellman (DDH) based schemes, such as ElGamal
[34], are provable secure under the CDH assumption and the random oracle model
(ROM). There, instead of distinguishing the ciphertexts of different plaintexts,
the adversary needs to find a pre-image of the hash function using the public key
and ciphertexts. Therefore, with the help of ROM, one converts the underlying
decisional problem into a computational problem. At a high level, we apply
same methodology to lattice based cryptography and reduce the security of the
cryptosystem (a decisional problem) to a computational problem. In doing so,
we are able to utilize the tool of RD. A similar idea is also used in the secure
analysis of Newhope [3].

To present the R-CLWR problem, first, let us present a set of interactive
experiments between a challenger C and an adversary A. There exist a source
S where the C gets all its input from. For simplicity, assuming all sources S
can be partitioned in two parts: a variable part var that is different for distinct
sources, and a constant part con that remains the same for all sources. We view
the challenger as a function that takes inputs X ← var and aux ← con, and
outputs two quantities, Input and Target (from A’s point of view).

Next, we are ready to describe a computational assumption based on the
above experiments. Suppose there are two experiments, namely, Exp1 and Exp2.
In Exp1, X1 contains a set of R-LWR samples that are sampled from var1. In
Exp2, X2 contains a set of uniform samples from var2. Assuming all the rest
variables in those experiments remain identical (i.e., A and C), if the success
probability in Exp2 is negligible for any adversary, then, that in Exp1 will also be
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negligible. Intuitively, this definition captures that, assuming all rest variables
remain the same, A cannot learn more information from R-LWR samples than
from uniform samples.

In what it follows, we provide definitions for the R-CLWR assumption (Defi-
nition 7) and the R-CRLWE assumption (Definition 8), along with the following
reductions:

R-LWE (decisional) =⇒ R-CRLWE =⇒ R-CLWR.

As stated earlier, the first “=⇒” allows us to convert a decisional problem into
a computational problem, so that RD becomes applicable to the second “=⇒”.
Then, the key becomes to show that RD between an R-LWR sample (a, �as�p)
and a rounded R-LWE sample (a, �as + e�p) is small. A natural way to obtain
this result is to extend the estimation of [12] to meet the requirement of the
average-case/worst-case reduction for R-LWE [39,55]. We highlight the challenge
for this task at a high level. For R-LWE, [12] requires the error distribution to be
bounded, the coefficients to be independent, and the secret to be invertible over
the ring. By contrast, in the first “=⇒” the worst case hardness results [39,55]
require the error to follow rounded Gaussian over the H space (see Sect. 2) where
the secret is not necessarily invertible unless the ring Rq is also a finite field. This
rules out common rings such as xn + 1 with n a power of 2. We solve this issue
with rejection sampling arguments. We will provide more details in Sect. 4.

It is also worth pointing out that conversions between R-LWE instances and
R-LWR instances are not straightforward. For simplicity, let (a, as+e) ∈ R2

q be an
R-LWE instance, and (a′, �a′s′�p) ∈ Rq × Rp be an R-LWR instance. Notice that
a and as+e are both in Rq, while �a′s′�p is in Rp. In a security proof, we need to
replace as + e with a random element u, and pass u to the next R-LWE instance
as a public input. In comparison, for R-LWR, �as�p is in Rp instead of Rq; and
it will not be a valid public input to the next R-LWR instance, unless we change
the modulus for the hardness assumption from q to p. This is indeed an issue
for Round2 [8], whose proof only works when q dividable by p. We solve this
problem by introducing a new probabilistic function Inv(·) in this paper that
“lifts” an Rp element back to Rq. Particularly, we have �Inv(�a�p)�p = �a�p

and Inv(�a�p) is uniform in Rq when a is uniform in Rq. Note that q is not
required to be dividable by p. This allows for NTT friendly prime q-s for efficient
implementations. We will provide details in Sect. 5.

2 Preliminaries

For a set S and a probability distribution χ over S, denote by x ←$ χ sampling
x ∈ S according to χ. When χ is a uniform distribution over S, denote by x ←$

U(S) to sample x uniformly at random from S. For simplicity, we sometimes
write it as x ←$ S. Additionally, we use U(�Zq�p) to denote the distribution of
�x�p where x ←$ U(Zq).
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2.1 The Rounding Function

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integers modulo q.
We define a (floor) rounding function �·�p : Zq → Zp as �x�p = �(p/q) · x̄� mod p,
where q ≥ p ≥ 2 will be apparent from the context, x̄ is an integer congruent
to x mod q. We extend �·�p componentwise to vectors and matrices over Zq,
and coefficient-wise (with respect to the “power basis”) to the quotient ring Rq.
Note that in [4,10,12], LWR is defined with the function �·
p, while it can be
extended directly to �·�p with a similar definition while preserving the proof. We
opt to use �·�p for the following reason: in the implementation when q and p are
both powers of some common base b (e.g., 2), �·�p is equivalent to dropping the
least-significant digit(s) in base b. Moreover, �x�p is uniformly random in Zp if
x is uniformly random in Zq when p divides q.

2.2 Rényi Divergence

In [9], Bai et al. show that Rényi divergence (RD) is a powerful tool to improve
or generalize security reductions in lattice-based cryptography. The formal defi-
nition is shown below.

Definition 1 (Rényi divergence). Let P, Q be two distributions s.t.
Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), the Rényi divergence of order a is defined
by

RDa(P‖Q) =

⎛
⎝ ∑

x∈Supp(P)

(P(x)a/Q(x)a−1
)
⎞
⎠

1
a−1

.

Specifically, the Rényi divergence of order +∞ is given by

RD∞(P‖Q) = max
x∈Supp(P)

(P(x)/Q(x)) .

The Rényi divergence has following useful properties.

Lemma 1 ([9]). For two distributions P, Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies the following properties:

– Data processing inequality. For any function f , RDa(Pf‖Qf ) ≤
RDa(P‖Q).

– Multiplicativity. RDa(
∏

i Pi‖
∏

i Qi) =
∏

i RDa(Pi‖Qi).
– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)a/(a−1)/RDa(P‖Q),

Q(E) ≥ P(E)/RD∞(P‖Q).

2.3 Lattice and Algebra

Now we are ready to present a few well-known results related to lattice based
cryptography. For more details, see [39,40,46,54,55].
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Lattice. A (full-rank) lattice is a set of the form L =
∑

i≤n Zbi, where bi’s are
linearly independent vectors in R

n. The integer n is called the lattice dimension,
and the bi’s are called a basis of L. The first minimum λ1(L) (resp. λ∞

1 (L))
is the Euclidean (resp. infinity) norm of any shortest non-zero vector of L. If
B = (bi)i is a basis matrix of L, the fundamental parallelepiped of B is the set
P (B) =

{∑
i≤n cibi : ci ∈ [0, 1)

}
. The volume |det(B)| of P (B) is an invariant

of the lattice L, denoted by det(L). Minkowski’s theorem states that λ1(L) ≤√
n(det L)1/n. The k-th successive minima λk(L) for any k ≤ n is defined as the

smallest r such that L contains at least k linearly independent non-zero vectors
of norm ≤ r. The dual lattice of L is defined as L∗ = {c ∈ R

n : ∀i, 〈c,bi〉 ∈ Z}.

H Space. We follow the framework of [39] by working over the H Space to deal
with ideal lattices. Recall that H ⊆ R

s1 × C
s2 is defined as

H := (x1, . . . , xn) ∈ R
s1 × C

2s2 : xs1+s2+j = xs1+j , ∀j ∈ 1, . . . , s2

for some nonnegative integers s1, s2 with n = s1 + 2s2. As shown in [39], H is
isomorphic to R

n.
Let f(x) ∈ Q[x] be a (monic) polynomial of degree n that is irreducible

over R, and ζ be a root of f(x) such that f(ζ) = 0. A number field is then a
field extension K = Q(ζ) obtained by adjoining an element ζ to the rationals.
There exists an isomorphism between K ∼= Q[X]/(f(X)), given by ζ �→ X.
Hence, elements in K can be represented with polynomials, using the power
basis {1, ζ, . . . , ζn−1}.

The Ring of Integers of a cyclotomic number field, denoted by R, is the set
of all algebraic integers in the number field K. Hence, R ⊂ K forms a ring
under the same operations in K. In addition Z[ζ] ∼= Z[X]/f(X) under the above
isomorphism. In other words, the power basis {1, ζ, . . . , ζn−1} for R has a Z-
basis. Looking ahead, we will use Rq = R/qR to denote the localisation of R,
for some modulus q. When dealing with Rq, we assume that the coefficients are
in [−q/2, q/2) (except for R2 where the coefficients are in {0, 1}).

Canonical Embedding. For a given f , there are n none-necessarily distinct
roots or power basis. This allows us to define n embeddings σi : K → C by
sending ζ to one of the roots of f . The canonical embedding σ : K → C

n is the
concatenation of all the embeddings for n, i.e. σ(a) = (σi(a))i∈n, a ∈ K. Let R
be an n × n Vandermonde matrix

R =

⎛
⎜⎝

1, σ1(ζ), . . . , σn−1
1 (ζ)

...
...

1, σn(ζ), . . . , σn−1
n (ζ)

⎞
⎟⎠ .

Then σ(a) = Ra, where a is the vector of the coefficients of the polynomial a.
The trace and norm are the sum and product, respectively, of the canonical

embeddings: Tr(x) =
∑

i∈[n] σi(x) and N (x) =
∏

i∈[n] σi(x). The norm of an
ideal I is its index as an additive subgroup of R, i.e., N (I) = |R/I|.
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In addition, with a proper indexation, the image H of σ is the Q vector space
generated by the columns of

√
2 · T where:

T =
1√
2

(
Iφ(m)/2 iIφ(m)/2

Iφ(m)/2 −iIφ(m)/2

)

with i =
√−1 and I is the identity matrix. In other words, for any element

x ∈ Q(ζ), there exists a vector v ∈ Q
n such that σ(x) = Rx =

√
2Tv, and vice

versa. For the rest of the paper, we will refer to the column vectors of T as the
canonical basis for the embedding space H.

Defining
B := 1/

√
2 · T−1R (1)

the transformation matrix from the canonical basis to the power basis, then, for
any a ∈ Q(ζ), there exists a corresponding vector v = Ba where a is the vector
form of a. It is straightforward to see that B is invertible since both R and T
are nonsingular. Hence we also have v = B−1x. This allows us to bound the
norm of v in functions of x. According to the results in the functional analysis2,
there are positive constants c1 and c2 such that

c1‖x‖ ≤ ‖B−1x‖ ≤ c2‖x‖ (2)

for any x. The absolute values of c1 and c2 depends solely on B which is only
determined by the ring R, and cn

1 ≤ det(B−1) ≤ cn
2 .

For cyclotomic rings Z[x]/(xn + 1) where n is a power of 2, we have c1 = c2
since B is an orthogonal matrix [27]. Estimating the asymptotic bounds for other
rings is still an open problem, although it was shown in [23], that even if c1 and
c2 were not bounded by some constant, they seems to grow very slowly in n.
Hence in this paper, we assume that

c2 ≤ (1 + 1/n)τ1 c1 (3)

for some constant τ1, c1 and c2.

The Ideal Lattice. We follow [39] by viewing an ideal I in R as a lattices
with a Z-basis U = {u1, ..., un}, under the canonical embedding σ. Correspond-
ingly, denote the volume vol(I) := vol(σ(I)) of an ideal, the minimum distance
λ1(I) := λ1(σ(I)), etc.

The (absolute) discriminant ΔK = vol(R)2 of a number field K is the squared
volume of its ring of integers R = OK , viewed as a lattice; equivalently,

ΔK = |det(Tr(ui · uj))| = |det(U∗ · U)|

2 The following statement can be found in most functional analysis textbooks. Here
we refer to [50] Corollary 2.3.1.: Let X, Y be two Banach space, if T : X → Y is a
one-to-one onto bounded linear operator, there are two positive numbers a, b > 0,
such that a‖x‖ ≤ ‖Tx‖ ≤ b‖x‖, ∀x ∈ X.
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where U = σ(U) for an arbitrary Z-basis U = (u1, . . . , un) of R. A use-
ful dimension-normalized quantity is the root discriminant δK :=

√
ΔK

1/n =
vol(R)1/n (sometimes also denoted δR). It is a measurement of the “spar-
sity” of the algebraic integers in K. It follows directly from the definition that
vol(I) = N (I) ·√ΔK for any fractional ideal I in K. The following standard fact
is an immediate consequence of Minkowski’s first theorem (for the upper bound)
and the arithmetic mean-geometric mean inequality (for the lower bound).

Lemma 2 ([54]). For any fractional ideal I in a number field K of degree n,
√

n · N (I)1/n ≤ λ1(I) ≤ √
n · N (I)1/n · δK .

Dual Lattice. For any lattice L in K (i.e., for the Z-span of any Q-basis of
K), its dual is defined as L∨ = {x ∈ K : Tr(xL) ∈ Z}. Recall that the ring of
integers of Q(ζ) is Z[ζ] := Z[X]/(f). Let I∨ ⊂ K be the dual fractional ideal of
I. Under the canonical embedding, I∨ embeds as the complex conjugate of the
(usual defined) dual lattice of I, i.e., σ(I∨) = σ(I)∗. Specifically, the dual (or co-
different ideal) of Z[ζ], denoted by Z[ζ]∨, is the fractional ideal 1

f ′(ζ)Z[ζ], where
f ′ is the derivative of f [22]. That is, given a vector a corresponding to a ∈ R∨,
we can injectively map a to b = f ′(ζ)a ∈ R though a linear transformation
Da = b. Similar to matrix B, here, the matrix D is determined by the ring R,
and there exist constants c3 and c4 such that

c3‖x‖ ≤ ‖D−1x‖ ≤ c4‖x‖ (4)

for any x. Again, it is an open problem to give asymptotical bounds for c3 and
c4, except for the case of cyclotomic ring Z[x]/(xn + 1) with n is a power of 2,
where c3 = c4 = 1/n. Therefore, for the rest of rings, we assume that

c4 ≤ (1 + 1/n)τ2 c3 (5)

for some constant τ2, c3 and c4.
For a function F that maps lattices to non-negative reals, the bounded dis-

tance decoding problem (BDD) over H is defined as given a lattice L ⊂ H, a
distance bound d ≤ F(L), and a coset e + L where ‖e‖ ≤ d, find e.

2.4 Gaussian Distribution

For α > 0, the continuous Gaussian distribution DH
α of parameter (or width)

α over H is defined to by a probability density function f(x) = 1
αn ρα(x) =

1
αn exp

(
−π 〈x,x〉

α2

)
. This naturally induce a distribution over the field tensor

product KR = K ⊗Q R with respect to the canonical basis. When converting
to the power basis, the random vector y = Bx follows a probability density
function f ′(y) = 1

αn
√

Σ
exp

(
−π yT Σ−1y

α2

)
, where Σ = BBT for B defined in

(1). The rounded Gaussian, denoted by D̄H
α , is the distribution �x
 mod q ∈ Rq

where x ← DH
α and the rounding is performed over the power basis.
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Next we recall an important definition, the smoothing parameter [46], and
its various related lattice quantities.

Definition 2. For a lattice L and positive real ε > 0, the smoothing parameter
ηε(L) is defined to be the smallest r such that ρ1/r (L∗/{0}) ≤ ε.

Lemma 3 ([46]). For any n-dimensional lattice L, we have η2−2n(L) ≤√
n/λ1(L∗), and ηε(L) ≤ √

ln(n/ε)λn(L) for all 0 < ε < 1.

Lemma 4 ([46]). For any lattice L, ε > 0, r ≥ ηε(L), and c ∈ H, the statistical
distance between (Dr + c) mod L and uniform distribution modulo L is at most ε.

The next lemma describes the tail cutting property of a Gaussian distribution.

Lemma 5 (Tail Cutting). A one-dimensional Gaussian Dα over R satisfies
the tail bound Prx←Dα

[|x| ≥ B] ≤ 2 exp(−π(B/α)2) for any B ≥ 0. Particularly,
if B >

√
nα for some integer n, Prx←Dα

[|x| ≥ B] is exponentially small in n.

2.5 The Learning with Errors Problem over the Ring

The first hardness result for decisional R-LWE problem is for cyclotomic fields
[39,40], assuming that the BDD problem is hard. In [55], the result is extended
to any ring, with the help of a discrete Gaussian sampling problem.

Let K be some number field of dimension n. Let R = OK be its ring of
integers which embeds as a lattice. R∨ ⊂ K is the dual fractional ideal of R.
For simplicity and convenience for our applications, we present the problem in
its discretized, “normal” form [6], where the secret are drawn from the same
distribution with the error. See [40,41,54] for more general forms.

Definition 3 (R-LWE Distribution). For an s ∈ R∨
q and a distribution χ over

the field tensor product KR = K ⊗Q R, a sample from the R-LWE distribution
Os,χ over Rq × KR/qR∨ is generated by choosing a ← Rq uniformly at random,
choosing e ← χ, and outputting (a, b = a · s + e).

Definition 4 (R-LWE Average-Case Decisional Problem). The decision
version of the R-LWE problem, denoted by R-DLWEq,χ′,χ, is to distinguish with
non-negligible advantage between independent samples from Os,χ for some s cho-
sen from χ′, and the same number of uniformly random and independent samples
from Rq × KR/qR∨.

The claim that R-DLWEq,χ′,χ is hard for any probabilistic polynomial time dis-
tinguisher A is equivalent to the following statement: Let Pr(AOχ,s = 1) = p0(s)
and Pr(AU(Rq×Rq) = 1) = p1. Denote by Sε the set where for any elements
s ∈ S, |p0(s) − p1| > ε except for some negligible ε. Then there is a negligible δ
such that Pr (s ∈ S|s ← χ′) < δ.

Theorem 1 ([40,41]). Let K be the m-th cyclotomic number field with dimen-
sion n = ψ(m) and R = OK be its ring of integers. Let ξ = ξ(n) > 0,
and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime such that
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ξq ≥ ω(
√

log n). Then there is a polynomial-time quantum reduction from
Õ(

√
n/ξ)-approximate SIVP (or SVP) on ideal lattices in K to the problem of

solving R-DLWEq,Dα
, given l − 1 samples, where α = qξ · (nl/log(nl))1/4.

The theorem above captures reductions from ideal lattice GapSVP (GapSIVP)
to R-LWE. To guarantee an average-case/worst-case reduction as in [40], the
error distribution χ needs to be a continuous Gaussian distribution DH

α over H.
In practice, it is more convenient to work with a discretized “non-dual” form
of R-LWE [27], where the secret and the error are both in Rq instead of R∨

q .
Accordingly, samples will be of the form (ai, bi = s · ai + ei mod qR) ∈ Rq ×Rq.
To achieve so, we multiply the error distribution by t = f ′(ζ), then discretize it by
rounding each coefficient in the power basis to the nearest integer. Consequently,
the error distribution becomes t · DH

α over R. In the paper we adapt the “normal”
form R-LWE [6], i.e., the secret is also drawn from the distribution t · DH

α .

3 Warm up

Our computational assumption is defined by the success probability among mul-
tiple experiments, where each experiment is a sequence of interactions between
a challenger C and an adversary A as defined in Definition 5. In addition, we use
a third party, the Source, denoted by S, who is responsible for generating the
samples for C, as illustrated in Fig. 1.

Definition 5 (Exp(C,A)). The experiment is defined as a sequence of interac-
tions as follows:

1. S samples from var and con to obtain a sample (X, aux), and sends it to C;
2. C computes (Input,Target) ← C(X, aux), and sends Input to the A;
3. A replies with a guess Output.

The adversary wins the experiment if Target = Output.

S1 ..= (var1, con)

S2 ..= (var2, con)

C(X, aux) → (Input, Target) A

1© (X, aux)

2© Input

3© Output

4© Output
?=Target

Fig. 1. Data flow for our experiments

We claim that the success probability of A will depend on three factors: (a),
the distribution of the source var; (b) the distribution of the Target; and (c) the
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connection between Input and Target, i.e., the combination of C and A. Our goal
is to ensure that, for variance Expi, the success probability of Ai will only depend
on the distribution of the source Si. To achieve so, we use a same challenger C
and adversary A pair throughout the experiments.

As a result, those experiments will reveal the impact of different S-s on A’s
success probability. If A successfully guesses an Output for an Xi, we can deduce
that C leaks enough information about S for the adversary to compute Target.
Thus, for two sources S1 and S2, our definition captures that, no matter what
information is leaked through C, if an adversary cannot compute Target from X1

for source S1, then it cannot compute Target from X2 for source S2. That is, the
adversary cannot learn more information from S1 than from S2 for a fixed C.

Then, for any PPT challenger C, if the success probability of any adversary
A in Exp1 of Table 1 is negligible, so does A in Exp2.

Table 1. Exp1 v.s. Exp2

To show that the above model is useful in a security proof, let us present a
proof of an (informal) Diffie-Hellman version of the assumption within the above
model. Looking ahead, we will use a similar approach to proof R-CLWR.

Definition 6 (The Diffie-Hellman analogue to our assumption). Let G

be a group. Let Zs be the distribution of (a, b) = (g, gs) where g ←$ G is a
randomly chosen group element and s is an randomly chosen and fixed index.
Accordingly, let U be the distribution of (a, b) = (g, u) where g, u ←$ G. Let var1
denote the distribution Z l

s and var2 denote the distribution U l. Let con be an
arbitrary distribution over {0, 1}∗ which is independent of var1 and var2. For a
fixed PPT challenger C, P̊C(A) is the probability for a PPT adversary A to win
the Exp1(C,A) with S1 in Table 1, while Q̊C(A) is that for A to the Exp2(C,A)
with S2. Then, if Q̊C is negligible for any PPT adversary A, so is P̊C.

We claim that this assumption implies the CDH assumption. Recall that CDH
says that given gx and gy for a randomly chosen element g, no PPT adversary is
able to compute gxy. Slightly different with the traditional CDH assumption, here
we require g is randomly chosen from a cyclic group instead of a fixed element.
So g, gx, gygxy all can be as distributions. We sketch a reduction through the
following games.
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Game 1. The Input for A is (gx, gy), and the Target is gxy.
Game 2. The Input for A is (u, gy) for some random u, and the Target is uy.
Game 3. The Input for A is (u, v) for some random u and v, and the Target is w

for some random w.

Observe that, in Game 3, u, v and w are independent, therefore the success
probability of the adversary will be 1/ |G|, which is negligible.

In the rest of the reduction, we will firstly proof the success probability of the
adversary in Game 2 is also negligible. To meet the notation, we set var1 to be the
distribution of ((a1, b1), (a2, b2)) for (a1, b1) = (g, gy) and (a2, b2) = (u, uy), and
var2 to be that for (a1, b1) = (g, v) and (a2, b2) = (u,w). Set con to be dummy.
C is then defined as given X = ((a1, b1), (a2, b2)), compute Input = (a2, b1) and
Target = b2. As per Definition 6, if the success probability of Exp2 in Table 2 is
negligible, so is that of Exp1. Therefore, the success probability of the adversary
in Game 2 is negligible.

Table 2. Reduction between Game 2 and 3

Then we will proof the success probability of the adversary in Game 1 is
also negligible. Let con be the distribution of choosing an arbitrary index y;
var1 be the distribution of (a1, b1) for (a1, b1) = (g, gx); and var2 be that for
(a1, b1) = (g, v). Accordingly, C is defined as given X = ((a1, b1), y) and computes
Input = (b1, a

y
1) and Target = by

1. As per Definition 6, if the success probability of
Exp2 in Table 3 is negligible, so is that of Exp1. Therefore, the success probability
of the adversary in Game 1 is negligible.

Table 3. Reduction between Game 1 and 2
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In the next section, we will give more details on how to instantiate the frame-
work as per Definition 6 where the underlying discrete log problem is replaced
by a lattice problem.

4 The Computational Ring-LWR Assumption

For simplicity, we make use of the following additional notations. We refer to a
uniformly distribution over [−β, β] as Uβ . Accordingly, denote by Un

β the distri-
bution over Rq where each coefficient is no greater than β. For a distribution χ
over K, we say χ̄ is the discretization distribution over R, which is obtained by
rounding each coefficient in the power basis to the nearest integer. For a distri-
bution χ′ over R, denote by (χ′)× the distribution of the output of the following
process: sample an element a ← χ′, output a if a is invertible; repeat until an
output is obtained.

Now we are ready to give a formal definition of the R-CLWR assumption. This
definition, as hinted in previous section, allows us to prove that an adversary
cannot learn more information from R-CLWR sample inputs than from uniform
inputs. Our definition follows the framework of the Table 1. The only variation
here is on the definitions of var1 and var2.

Definition 7 (Computational Ring-LWR Assumption). Let q, p and l be
positive integers. Fix an s that is chosen from a distribution χ over R. Denote
by Xs the distribution of (a, �as�p) where a ←$ Rq; and denote by U the distri-
bution of (a, �b�p) where a, b ←$ Rq. Let Si = (vari, con), where var1 denotes
the distribution X l

s; var2 denote the distribution U l; and con is an arbitrary
distribution over {0, 1}∗ which is independent from var1 and var2. For a fixed
PPT challenger C, let PC,A(χ) be the probability for a PPT adversary A to win
Exp1(C,A) with S1, while QC,A be that for A to win Exp2(C,A) with S2.

The computational ring-LWR assumption with regard to a secret distribution
χ, denoted by R-CLWRp,q,l,χ, or R-CLWRχ for short, is that for any challenger
C, if QC,A is negligible for any PPT adversary A, so is PC,A.

Correspondingly, we also define the computational rounded learning with
errors over the ring (R-CRLWE) assumption. Notice its difference from a com-
putational LWE over the ring assumption, which, by the analogy to R-CLWR,
replaces R-LWR samples (�as�p) with R-LWE samples (as + e). By contrast, in
R-CRLWE, one replaces R-LWR samples with rounded R-LWE samples (�as+e�p).

Definition 8 (Computational Ring-RLWE Assumption). Let q, p, l, s,
χ and U be the same as Definition 7. Denote by Ys,χ′ the distribution of
(a, �as + e�p) where a ←$ Rq and e ← χ′ over R. Let Si = (vari, con), where
var1 denotes the distribution Y l

s,χ′ ; var2 denotes the distribution U l; con denotes
an arbitrary distribution over {0, 1}∗ which is independent of S1 and S2. For a
fixed PPT challenger C, let P ′

C,A(χ, χ′) be the probability for a PPT adversary
A to Exp1(C,A) with S1, while QC,A to be that for A to win Exp2(C,A) with S2.

The computational ring-RLWE assumption with a secret distribution χ and
an error distribution χ′, denoted by R-CRLWEp,q,l,χ,χ′ or R-CRLWEχ,χ′ for short,
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is that for any challenger C, if QC,A is negligible for any PPT adversary A, so
is P ′

C,A(χ, χ′).

This definition suggests that the adversary cannot learn more information
from R-CRLWE inputs than from uniform inputs. Next, we show that the R-
CLWR assumption holds for uniform secrets, assuming the hardness of the deci-
sional R-LWE assumption. Formally, we will have the following theorem.

Theorem 2 (Main Theorem). Following the notions in Definitions 7 and
8. For any ring R satisfying (3) and (5), the largest degree of the irreducible
factors modulo integer q of the polynomial f is less than kq. If l is a constant,
α ≥ c2c4

√
n ln(2n)qkq/n · δK , β = Ω(nlα) and q/p = Ω(nlα/c2c4), there is

a reduction from the decisional ring-LWE assumption R-LWE
q,t·DH

α ,t·DH
α

to the
computational ring-LWR assumption R-CLWRp,q,l,(Un

β )× (Fig. 2).

R-CLWR
(Un

β
)× R-CLWR

(Un
β

+D̄n
α′ )× R-CRLWE

(Un
β

+D̄n
α′ )×,D̄n

α′
R-CRLWE

(Un
β

+t·DH
α )×,t·DH

α

R-LWE
(Un

β
+t·DH

α )×,t·DH
α

R-LWE
Un

β
+t·DH

α ,t·DH
α

R-LWE
t·DH

α ,t·DH
α

§4.1 §4.2 §4.3

§4.4

§4.5§4.6

Fig. 2. Reduction flow from R-LWE to R-CLWR

Combing with the worst-case/average-case reduction in Theorem 1, the hard-
ness of our R-CLWR problem will be based on the worse-case hardness of lattice
problems. It is worth pointing out that, the majority of practical cryptosystems
uses a cyclotomic ring R = Z[x]/(xn + 1) where n is a power of 2. For this ring,
we have the following result.

Corollary 1. Following the same notations. For R = Z[x]/(xn + 1) where n
is a power of 2, if l is a constant, α ≥ 2

√
n ln(2n) · q2/n, β = Ω(nlα) and

q/p = Ω(n2lα), there is a reduction from the decisional ring-LWE assumption R-
LWE

q,t·DH
α ,t·DH

α
to the computational ring-LWR assumption R-CLWRp,q,l,(Un

β )× .

4.1 From R-CLWR(U n
β +D̄n

α ′)× to R-CLWR(U n
β )×

We begin with proving the following lemma which shows the RD between the
two distributions on Z, namely Uβ and Uβ + D̄α, is bounded by 1 + 1/n.

Lemma 6. Following the same notion. In addition, let Uβ be a uniform distri-
bution from [−β, β] over Z where β > α. Let the distribution ψ = D̄α + Uβ.
Then RD2 (Uβ ‖ ψ) ≤ 1+ α

cβ where c = (1−exp(−π))2

2 ≈ 0.4577. Specifically, when
β > nα/c, RD2 (Uβ ‖ ψ) < 1 + 1/n.

Proof. Please see the full version [19].
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With Lemma 6, we are ready to proof the first reduction.

Lemma 7. Following the same notation, if β = Ω(nlα), PC,A(Un
β ) ≤ 2PC(Un

β +
D̄n

α). Hence there is a reduction from R-CLWR(Un
β +D̄n

α′ )× to R-CLWR(Un
β )× .

Proof. Note that PC,A((Un
β )×) ≤ PC,A((Un

β + D̄n
α)×) · RD2

(
Uβ‖Uβ + D̄α

)nl
.

Lemma 6 says RD2

(
Uβ‖Uβ + D̄α

)nl ≤ 2 when β = Ω(nlα). On the other hand,
assuming the hardness of R-CLWR(Un

β +D̄n
α)× , we have that for any challenger C,

PC,A((Un
β + D̄n

α)×) is negligible when QC,A is negligible. By the above result,
PC,A((Un

β )×) is also negligible. So the assumption R-CLWR(Un
β )× holds. ��

4.2 From R-CRLWE(U n
β +D̄n

α ′)×,D̄ n
α ′ to R-CLWR(U n

β +D̄n
α ′)×

The following lemma is adapted from [12] with a slight modification on the noise
distribution. We provide a proof for completeness.

Lemma 8 ([12]). Assume B < q/2p. For every unit s ∈ Rq and noise dis-
tribution χ that is balanced over Rq and each coefficient is bounded by B with
probability larger than δ, we have RD2(Xs‖Ys) ≤ (1 + 2pB/q)n/δn where Xs is
the random variable (a, �a · s�p) and Ys is the random variable (a, �a · s + e�p)
with a ← Rq and e ← χ.

Proof. By the definition,

RD2(Xs‖Ys) = Ea←Rq

Pr(Xs = (a, �a · s�p))
Pr(Ys = (a, �a · s + e�p))

= Ea←Rq

1
Pre←χ (�a · s + e�p = �a · s�p)

.

We define the set borderp,q(B) =
{

x ∈ Zq :
∣∣∣x − q

p�x�p

∣∣∣ < B
}

. For a ring
element a ∈ Rq, we use ai to denote the ith coefficient in the power basis. For
fixed s and for any t ∈ [n], we define the set

BADs,t = {a ∈ Rq : |{i ∈ [n], (a · s)i ∈ borderp,q(B)}| = t} .

These are candidate a-s for which a · s has exactly t coefficients which are dan-
gerously close to the rounding boundary. Fix an arbitrary t and a ∈ BADs,t. For
any i ∈ [n] such that (a · s)i /∈ borderp,q(B), Prei

[�(as)i + ei�p = �(as)i�p] ≥ δ.
For any i ∈ [n] such that (a · s)i ∈ borderp,q(B), we still have �(a · s)i + ei�p =
�(a · s)i�p as long as ei ∈ [−B, . . . , 0]. By the assumption on the noise distri-
bution, we have Prei

[�(a · s)i + ei�p = �(a · s)i�p] ≥ 1/2. Because e is inde-
pendent over all coefficients and a has exactly t coefficients in borderp,q(B),
Pre←χ (�a · s + e�p = �a · s�p) ≥ 1

2t δ
n−t ≥ 1

2t δ
n.

Since s is a unit in Rq, a · s will be uniform over Rq and

Pr [a ∈ BADs,t] ≤
(

n

t

)(
1 − |borderp,q(B)|

q

)n−t ( |borderp,q(B)|
q

)t

.
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Conditioning on the event a ∈ BADs,t, we conclude

RD2(Xs‖Ys) ≤ δ−n
n∑

t=0

2t · Pr[a ∈ BADs,t] = δ−n

(
1 +

|borderp,q(B)|
q

)n

.

��
Lemma 9. Adopt the same notions and symbols in Definitions 7 and 8. If p >

q
√

π

2nlα
√

ln(2nl)
, we have PC,A(Un

β + D̄n
α)× ≤ e2P ′

C,A(Un
β + D̄n

α)×. Hence there is a

reduction from R-CRLWE(Un
β +D̄n

α′ )×,D̄n
α′ to R-CLWR(Un

β +D̄n
α′ )× .

Proof. We have PC,A(Un
β + D̄n

α) ≤ P ′
C,A(Un

β + D̄n
α) · RD2(Xs‖Ys)l. Note that a

one-dimensional Gaussian Dα over R satisfies the tail bound Prx←Dα
[|x| ≥ B] ≤

2 exp(−π(B/α)2) for any B ≥ 0. We set B =
√

ln(2nl)
π α, so 2 exp(−π(B/α)2) ≤

1/nl and δ ≥ 1 − 1
nl . Also we set p > q/2nlB, then we have

RD2(Xs‖Ys)l ≤ (1 + 2pB/q)nl/δnl ≤ (1 + 1/nl)nl

(1 − 1/nl)nl
≤ e2 (6)

Assuming R-CRLWE(Un
β +D̄n

α′)×
,D̄n

α′
assumption holds, then for any C and A,

P ′
C,A

(
(Un

β + D̄n
α′)×, D̄n

α′

)
is negligible so long as QC,A is negligible. By the result

of (6), PC,A(Un
β + D̄n

α′)× is also negligible. This proves the R-CLWR(Un
β +D̄n

α′ )×

assumption. ��

4.3 From R-CRLWE(U n
β +t·DH

α )×
,t·DH

α

to R-CRLWE(U n
β +D̄n

α ′)×
,D̄ n

α ′

Lemma 10. Following the same notations. Additionally, let t · DH
α be the dis-

cretization of t · DH
α , where DH

α is the continuous Gaussian with width α over
the H space. D̄n

α′ is the discretization of the continuous Gaussian with width α
according to the power basis. Y ′

t·DH
α ,t·DH

α

is the random variable (a, �a·s+e�p) with

a ←$ Rq and s, e ← t · DH
α , and Y ′̄

Dn
α′ ,D̄n

α′
is the random variable (a, �a · s + e�p)

with a ←$ Rq and s, e ← D̄n
α′ . For any ring R satisfying (3) and (5), when

α/c1c3 ≤ α′ ≤ (
1 + 1

n

)τ1+τ2
α/c2c4, we have RD∞

(
Y ′

t·DH
α ,t·DH

α

‖Y ′̄
Dn

α′ ,D̄n
α′

)
≤

eτ1+τ2 .

Proof. According to the data processing inequality of Rényi divergence, it
is sufficient to show RD∞

(
Dn

α‖t · DH
α

) ≤ eτ1+τ2 . So we need to prove for
all x ∈ R

n, ρ(x)/ρ′(x) ≤ eτ1+τ2 . Recall that t · DH
α has the proba-

bility density function over the power basis ρ(x) = (αn det(D) det(B))−1

exp
(
−πxT

(
D−1

)T
Σ−1D−1x/α2

)
, and Dn

α has the probability density func-

tion over the power basis ρ′(x) = α′−n exp
(−πxT x/α′2) . Hence,

ρ(x)
ρ′(x)

=
α′n

αn det(D) det(B)
exp

(
π

(
xT x
α′2 − xT

(
D−1

)T
Σ−1D−1x

α2

))
.
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According to (2) and (4), Σ = BT B, ‖D−1x‖ ≥ c1‖x‖ for any x ∈ R
n and

‖B−1y‖ ≥ c3‖y‖ for any y ∈ R
n. If α′ ≥ α/c1c3, we have

xT (D−1)T
Σ−1D−1x

α2 ≥
c21c23x

T x
α2 ≥ xT x

α′2 . Therefore,

ρ(x)
ρ′(x)

≤ α′n

αn det(D) det(B)
≤ eτ1+τ2

when α′ ≤ (
1 + 1

n

)τ1+τ2
αc2c4 ≤ (

1 + 1
n

)τ1+τ2
α|det(D)|1/n|det(B)|1/n. Accord-

ing to (3) and (5), we have c2 ≤ (
1 + 1

n

)τ1
c1 and c3 ≤ (

1 + 1
n

)τ2
c4. Therefore

there must exist at least an α′ that satisfies α/c1c3 ≤ α′ ≤ (
1 + 1

n

)τ1+τ2
α/c2c4.

��
Lemma 11. Adopt the same notions and symbols as above. For any ring R
satisfying (3) and (5), when α/c1c3 ≤ α′ ≤ (1 + 1/n)τ1+τ2 α/c2c4, we have

P ′
C,A

((
Un

β + t · DH
α

)×
, t · DH

α

)
≤ el(τ1+τ2)P ′

C,A

((
Un

β + D̄n
α

)×
, D̄n

α

)
. Hence

there is a reduction from R-CRLWE(Un
β +t·DH

α )×
,t·DH

α

to R-CRLWE(Un
β +D̄n

α′)×
,D̄n

α′
.

4.4 From R-LWE
(U n

β +t·DH
α )×,t·DH

α
to R-CRLWE

(U n
β +t·DH

α )×,t·DH
α

Lemma 12. Adopt the same notions and symbols in Definitions 7 and 8.
Assume the advantage of any probabilistic polynomial time algorithm to solve
the decisional R-LWE problem R-LWE

(Un
β +t·DH

α )×,t·DH
α

is less than ε, then we

have
∣∣∣∣P ′

C,A

((
Un

β + t · DH
α

)×
, t · DH

α

)
− QC,A

∣∣∣∣ < ε for any PPT adversary A.

Proof. We construct an adversary B who breaks the decisional R-LWE problem
as follows. At the high level, B will play the role as the challenger C in the
experiment. Given samples (x1, y1), . . . , (xl, yl), the algorithm B sets ai = xi

and bi = �yi�p for i � l, and X = (a1, b1), . . . , (al, bl). Since B can obtain all the
view of any challenger C, B can simulate all the behaviors of C and compute the
corresponding Input and Target. B also check whether the Output of A equals
the Target. If the check is passed, B outputs 1; otherwise it outputs 0.

When (x1, y1), . . . , (xl, yl) are R-LWE samples,

Pr(B ((x1, y1), . . . , (xl, yl)) = 1) = P ′
C,A

((
Un

β + t · DH
α

)×
, t · DH

α

)
;

by contrast, when (x1, y1), . . . , (xl, yl) are uniform samples,

Pr (B ((x1, y1), . . . , (xl, yl)) = 1) = QC,A

for adversary A. Thus, assuming the hardness of decisional ring-LWE, we have∣∣∣∣P ′
C,A

((
Un

β + t · DH
α

)×
, t · DH

α

)
− QC,A

∣∣∣∣ < ε for negligible ε.

��
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4.5 From R-LWE
U n

β +t·DH
α ,t·DH

α
to R-LWE

(U n
β +t·DH

α )×,t·DH
α

Lemma 13. Let Dn
α̂ be a continuous Gaussian with width α̂ and DH

α be a con-
tinuous Gaussian over H with width α. Let t = f ′(ζ). If the assumption (3) and
(5) holds, when α

(1+1/n)τ1+τ2c1c3
≤ α̂ ≤ α

c2c4
, we have RD∞(Dn

α̂|t ·DH
α ) ≤ eτ1+τ2 .

The proof is similar to Lemma 10. We omit the details and recommend readers
to refer the full version [19].

Lemma 14. Let Dn
α̂ be a continuous Gaussian distribution over KR where K ∼=

Q[X]/(f(X)). The largest degree of the irreducible factors modulo integer q of
the polynomial f is less than kq. Let α̂ ≥ √

n ln(n/ε)qkq/n · δK and β is any
positive integer. If a ← Un

β + Dn
α̂, the probability of that a is invertible is larger

than 1 − q−kq − ε.

Proof. Our goal is to bound the probability that a is in I := 〈q, φ〉 by q−n/kq +ε,
for any k ≤ kq, when a ← Un

β + Dn
α̂. Specifically, denote a := a1 + a2 where

a1 ← Un
β and a2 ← Dn

α̂. We have N (I) ≥ qkq . By Minkowski’s theorem, this
implies λ1(I) ≤ √

nqkq/n. Since I is an ideal of R, we have λn(I) = λ1(I).
Then, in Lemma 2, we have λn(I) ≤ √

nqkq/n · δK , and in Lemma 3, we have
ηε(I) ≤ √

ln(n/ε)λn(I) ≤ √
n ln(n/ε)qkq/n · δK . In addition, Lemma 4 shows

that the statistical distance between b mod I and a uniform distribution modulo
I is less than ε for b ← Dn

α̂. Since a1 = �b
 ∈ R and I ⊆ R, a1 will be uniform in
R mod I with a statistical distance ε. This implies that a = a1 + a2 is uniform
in R mod I with statistical distance ε. So we have a = 0 mod I with probability
less than q−kq + ε. When we set ε = 1/2, we get the desired result. ��
Lemma 15. Following the above notations. For any ring R satisfying (3)
and (5), when α ≥ c2c4

√
n ln(2n)q2/n · δK , there is a reduction from

R-LWE
Un

β +t·DH
α ,t·DH

α
to R-LWE(Un

β +t·DH
α )×

,t·DH
α

.

Proof. Let Pr(AOχ,s = 1) = p0(s), Pr(AU(Rq×Rq) = 1) = p1 and the set Sε

denote the all s that |p0(s) − p1| > ε for any non-negligible ε, then we have

Pr
(
s ∈ Sε|s ← Un

β + t · DH
α

)

= Pr
(

s ∈ Sε|s ←
(
Un

β + t · DH
α

)×)
Pr

(
s ∈ R×

q |s ← Un
β + t · DH

α

)

+ Pr
(
s ∈ Sε|s ← Un

β + D̄H
α and output when s not invertible

)

Pr
(
s is not invertible|s ← Un

β + D̄H
α

)

≥ Pr
(

s ∈ Sε|s ←
(
Un

β + t · DH
α

)×)
Pr

(
s ∈ R×

q |s ← Un
β + t · DH

α

)
.
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Next, Lemma 13 says for α
(1+1/n)τ1+τ2c1c3

≤ α̂ ≤ α
c2c4

,

Pr
(
s ∈ R×

q |s ← Un
β + t · DH

α

)
≥

Pr
(
s ∈ R×

q |s ← Un
β + Dn

α̂

)

RD∞(Dn
α̂ ‖ t · DH

α )

≥
Pr

(
s ∈ R×

q |s ← Un
β + Dn

α̂

)

exp(τ1 + τ2)

In addition, in Lemma 14 we have proved Pr
(
s ∈ R×

q |s ← Un
β + Dn

α̂

)
is non-

negligible for α̂ ≥ √
n ln(n/ε)qkq/n ·δK . So Pr

(
s ∈ R×

q |s ← Un
β + t · DH

α

)
is also

non-negligible. This implies Pr
(
s ∈ S|s ← Un

β + t · DH
α

)
is non-negligible as long

as Pr
(

s ∈ S|s ←
(
Un

β + t · DH
α

)×)
is also non-negligible, i.e. an adversary can

solve R-LWE
Un

β +t·DH
α ,t·DH

α
so long as it can solve R-LWE(Un

β +t·DH
α )×

,t·DH
α

. ��

4.6 From R-LWE
t·DH

α ,t·DH
α

to R-LWE
U n

β +t·DH
α ,t·DH

α

Lemma 16. Let ψ = t · DH
α +Un

β be a distribution. If there is a PPT algorithm
A′ that distinguishes Os,χ from U within m queries for s ← ψ, then there is a
PPT algorithm A which distinguishes Os,χ from U within m queries for s ←
t · DH

α .

Proof. Given m elements (ai, bi) ∈ Rq × Rq, drawn from either
(Os,D̄α

)m for
s ← t · DH

α , or (U(Rq × Rq))
m, the reduction algorithm chooses s′ ← Un

β and
outputs m elements (ai, bi + ais

′) ∈ Rq ×Rq. Obviously, when (ai, bi) are drawn
from Os,D̄α

, (ai, bi +ais
′) are drawn from Os+s′,D̄α

and the distribution of s+s′

will be ψ = t · DH
α +Un

β . When (ai, bi) are all drawn from U(Rq×Rq), (ai, bi+ais
′)

are also drawn from U(Rq × Rq). ��

5 Application I: A Public Key Encryption

In this section, we will provide an IND-CPA secure PKE scheme based on the
R-CLWR assumption. Our scheme improves R-LWE based schemes in both time
and space efficiency. At a high level, our scheme uses the standard KEM-DEM
approach, where the KEM, similar to that of [53], stems from an IND-CPA
secure scheme.

5.1 Reconciliation Mechanism

Reconciliation was firstly proposed by [25], and has a few variants, for example,
[3,53]. In this paper, for the ease of presentation, we will follow the work of [53].



On the Hardness of the Computational Ring-LWR Problem 455

Let us define the reconciliation rounding function as [·]2,q : x →
⌊
2
q · x

⌋
mod

2, and the reconciliation cross-rounding function as 〈·〉2,q : x →
⌊
4
q · x

⌋
mod 2.

Then the algorithm Rec will be defined as follows. On input y ∈ Zq and z ∈
{0, 1}, Rec(y, z) outputs [x]2,q, where x is the closest element to y such that
〈x〉2,q = z. First, when q is even, we have following results.

Lemma 17. If x ∈ Zq is uniformly random, [x]2,q is uniformly random given
〈x〉2,q.

Lemma 18. If |x − y| < q/8, then we have Rec(y, 〈x〉2,q) = [x]2,q.

On the other hand, when the modulus q is odd, we make use of a randomized
doubling function: let Dbl : Zq → Z2q, x �→ Dbl(x) = 2x−e, where e is sampled
from {−1, 0, 1} with probabilities p−1 = p1 = 1/4 and p0 = 1/2. We have two
similar lemmas.

Lemma 19. For odd q, if x ∈ Zq is uniformly random and x̄ ←$ Dbl(x), then
[x̄]2,2q is uniformly random given 〈x̄〉2,2q.

Lemma 20. For odd q, let |x − y| < q/8 for x, y ∈ Zq. Let x̄ = Dbl(x). Then

Rec
(
y, 〈x̄〉2,2q

)
= [x̄]2,2q.

Moreover, the above reconciliation mechanism can be extended coefficient-wise
to Rq with respect to the power basis.

5.2 PKE Schemes

Before describing our R-CLWR based PKE, let us recall a variant of the R-
LWE based scheme in [53]. This scheme slightly differentiate from [53] in that
the element a in a public key is derived from a PRNG which can be modeled as
a random oracle. This modification is adopted by many (R-)LWE based schemes
such as [3,13,15]. For simplicity, we choose the ring R = Z[x]/(xn + 1) where n
is a power of 2. Here q is odd, since Theorem 1 requires a prime q.

Ring-LWE Based PKE. Let H : {0, 1}n → {0, 1}k be a hash function for
integer k. G : {0, 1}k′ → Rq be a pusedorandom generator. The R-LWE based
scheme consists of the following three algorithms.

– RLWE.KeyGen(1λ): Given the security parameter λ, choose seed ← {0, 1}k′
,

a = G(seed) ∈ Rq and s, e1 ← t · DH
α . Output (seed, b = sa + e1) ∈ {0, 1}k′ ×

Rq as the public key and s as the secret key.
– RLWE.Encryption(pk = (seed, b), m ∈ {0, 1}k): Given the message m, choose

r, e2, e3 ← t · DH
α . Compute v̂ = br + e2 and v = 〈Dbl(v̂)〉2,2q. Also compute

a = G(seed), u = ra + e3 and w = H ([Dbl(v̂)]2,2q) ⊕ m. The ciphertext is
ct = (u, v, w) ∈ Rq × {0, 1}n × {0, 1}k.

– RLWE.Decryption(ct = (u, v, w), sk = s): Compute v′ = su and output m′ =
w ⊕ H(Rec(v′, v)).
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Correctness. In fact, v̂ = br + e2 = (as + e1)r + e2 = asr + (e1r + e2) and v′ =
su = (ar + e3)s = asr + se3. Suppose each coefficient of e1, e2, e3, r, s is bounded
by B with overwhelming probability, we have |e2r + e1| ≤ nB2 + B and |se3| ≤
nB2. To ensure correctness, we need to make sure |v̂−v′| < q/8, hence we require

2nB2 + B < q/8. (7)

Ring-CLWR Based PKE. Next, we describe the R-CLWR version of the above
scheme. Firstly, as mentioned in the Sect. 1.1, we make use of a probabilistic func-
tion Inv(·) : Zp → Zq that takes x ∈ Zp as input and uniform randomly chooses
an element from the set {u ∈ Zq|�u�p = x} as the output. Apparently, we have
�Inv(�x�p)�p = �x�p and Inv(�x�p) is uniform in Zq when x is uniform in Zq.
We extend Inv(·) coefficient-wisely to Rq with respect to the power basis. Also
note that both Inv(·) and its extension to Rq are polynomial time algorithms.
so long as p, q and n are of polynomial size.

– RCLWR.KeyGen(1λ): Given the security parameter λ, choose a seed ← {0, 1}k′

and a = G(seed) ∈ Rq. Then, sample s from (Un
β )× by repeating s ← Un

β

until s is invertible. Output (seed, b = �sa�p) as the public key and s as the
secret key.

– RCLWR.Encryption(pk = (seed, b), m ∈ {0, 1}k): Given a message m, sam-
ple r from (Un

β )× by repeating r ← Un
β until r is invertible. Compute

v̄ = �Inv(b)r�p, v̂ = Inv(v̄) and v = 〈Dbl(v̂)〉2,2q. Also compute a = G(seed),
u = �ra�p and w = H ([Dbl(v̂)]2,2q) ⊕ m. The ciphertext is ct = (u, v, w) ∈
Rp × {0, 1}n × {0, 1}k.

– RCLWR.Decryption(ct = (u, v, w), sk = s): Compute v′ = sInv(u) and output
m′ = w ⊕ H(Rec(v′, v)).

Correctness. To show the correctness of the scheme, we need to make sure
|v̂ − v′| < q/4. Specifically, we have

v̂ = Inv(v̄) = Inv(b)r + e1 = (as + e2)r + e1 = asr + (e2r + e1)

and
v′ = sInv(u) = (ar + e3)s = asr + se3.

When the secret is drawn from a uniform distribution Un
β , we have |e1| ≤ q/p,

|e2| ≤ q/p |e3| ≤ q/p, |r| ≤ β, |s| ≤ β. We have |e2r + e1| ≤ nβq/p + q/p and
|se3| ≤ nβq/p, hence we require

2nβq/p + q/p < q/8. (8)

5.3 Security Proof

In this subsection, we prove the IND-CPA security of the above PKE based on
R-CLWR assumption as per Definition 7.

First, we will reduce the IND-CPA security to searching the pre-image of a
hash function H through the following Game.
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1. The challenger C gives the adversary A the public key pk.
2. A chooses two messages m0 and m1 and gives them to the challenger.
3. C chooses a random bit b and gives A a ciphertext ctb that encrypts mb.
4. The adversary A outputs a bit b′ as a guess of b.

Since H is modeled as a random oracle, the adversary A will successfully
guess the bit b with probability 1/2, unless he has previously queried the value
[Dbl(v̂)]2,2q corresponding to the challenge ciphertext to the random oracle.
Therefore, we can construct an adversary A′ from A, which, upon inputting the
public key pk and (u, v) ∈ Rp × {0, 1}n, outputs the value [Dbl(v̂)]2,2q. In a
bit more details, when A′ receives pk and (u, v) ∈ Rp × {0, 1}n, it returns pk
to A. When A generates the message pair (m0,m1), A′ chooses r ← {0, 1}n,
b ← {0, 1} and sends A the ciphertexts (u, v,mb ⊕ r). In the meantime, A′

answers the H queries of A by keeping a random oracle table. Since we have
assumed that A successfully guesses the bit b with a non-negligible advantage,
the value of [Dbl(v̂)]2,2q must be queried by A with a non-negligible proba-
bility. Consequently, A′ can successfully output the value [Dbl(v̂)]2,2q with a
non-negligible probability.

Next, we will show that the success probability of A′ is negligible under the
R-CLWR assumption. Specifically, we can construct following games.

Game 1. Choose a ← Rq and s, r ← (Un
β )×. b = �sa�p, v̄ = �Inv(b)r�p, v̂ =

Inv(v̄), v = 〈Dbl(v̂)〉2,2q and u = �ra�p. A′ is given (u, v) and its target is
to compute [Dbl(v̂)]2,2q.

Game 2. Choose a ← Rq and s, r ← (Un
β )×. b ← U(�Rq�p), v̄ = �Inv(b)r�p,

v̂ = Inv(v̄), v = 〈Dbl(v̂)〉2,2q and u = �ra�p. A′ is given (u, v) and its target
is to compute [Dbl(v̂)]2,2q.

Game 3. Choose a ← Rq and s, r ← (Un
β )×. c ← Rq, v̄ = �cr�p, v̂ = Inv(v̄),

v = 〈Dbl(v̂)〉2,2q and u = �ra�p. A′ is given (u, v) and its target is to compute
[Dbl(v̂)]2,2q.

Game 4. Choose a ← Rq and s, r ← (Un
β )×. c ← Rq, v̄ ← U(�Rq�p), v̂ = Inv(v̄),

v = 〈Dbl(v̂)〉2,2q and u ← U(�Rq�p). A′ is given (u, v) and its target is to
compute [Dbl(v̂)]2,2q.

Firstly, we define var1,var2, con and C as follows. We set con as the distri-
bution of choosing r from (Un

β )×. Let var1 be the distribution of (a, b) where
b = �sa�p and var2 be the distribution of (a, b) where b ← U(�Rq�p). The
challenger C computes Input = (�ra�p, 〈Dbl(Inv(�Inv(b)r�p))〉2,2q) = (u, v) and
Target = [Dbl(Inv(�Inv(b)r�p))]2,2q. According to the R-CLWR assumption, if
the success probability for any A is negligible when b ← U(�Rq�p),that is also
negligible when (a, b) is an R-LWR instance. Therefore, the success probability
of Game 1 is negligible if that of Game 2 is negligible.

Secondly, the success probability of Game 2 and that of Game 3 are same,
since Inv(b) is uniform in Rq for b ← U(�Rq�p), and the views and the goals of
the adversary in both games remain the same.

Thirdly, we define var1, var2, con and C as follows. We set con to be dummy.
Let var1 be the distribution of ((c, v̄), (a, u)) where v̄ = �cr�p and u = �ra�p,
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while S2 to be the distribution of ((c, v̄), (a, u)) where v̄, u ← U(�Rq�p). The
challenger C computes the Input = (u, 〈Dbl(Inv(v̄))〉2,2q) = (u, v) and Target =
[Dbl(Inv(v̄))]2,2q.

According to the R-CLWR assumption, if the success probability for any A is
negligible when v̄, u ← U(�Rq�p), then that is also negligible when ((c, v̄), (a, u))
is an R-LWR instance. Therefore, the success probability of Game 3 is negligible
if that of Game 4 is negligible.

Finally, u and v̄ are independent in Game 4. Since v̄ ← U(�Rq�p), Inv(v̄) is
uniform in Rq. According to Lemma 19, [Dbl(Inv(v̄))]2,2q is uniformly random
given 〈Dbl(Inv(v̄))〉2,2q, so the success probability of Game 4 is negligible.

Combining all above analyses, we conclude that the success probability of
A′ in Game 1 is negligible under the R-CLWR assumption. In other words, the
R-CLWR based PKE scheme is IND-CPA secure.

5.4 Parameters and Comparisons

Time Complexity. As discussed in the introduction, the sampling subroutine is
usually the most intricate part during the implementations. In an R-LWE based
scheme, one needs to produce two samplings during the key generation and
three samplings during the encryption. In comparison, in an R-CLWR based
scheme, one only needs to proceed a single sampling for each key generation and
encryption. Moreover, an R-LWE based scheme needs to sample from rounded
Gaussian, while we can simply sample uniformly from a small interval and reject
when it is non-invertible for an R-CLWR based scheme.

In terms of efficiency, we believe that our sampling subroutine will be much
more efficient for the following reasons. First, it allows us to save a huge amount
of entropy in practice. Secondly, and more importantly, a single sampling routing
becomes more efficient in our case as we only require uniform sampling.

Nonetheless one may be concerned that the overall improvement may not be
as much due to the required rejection sampling. Here, we give two arguments.
Firstly, the total number of samples required to generate a valid one will be
small according to Hoeffding’s inequality. This is shown in Lemma 21. In the
meantime, the invertibitiy check for a ring element can be carried out efficiently
through the extended GCD algorithm.

Lemma 21. Let Dn
α be a continuous Gaussian distribution over KR where K ∼=

Q[X]/(f(X)). The largest degree of the irreducible factors modulo integer q of
the polynomial f is less than kq. Let α̂ ≥ √

n ln(n/ε)qkq/n · δK and β > 3nα̂. If
b ← Un

β , the probability of that b is invertible is larger than 1 − 2q−kq − 2ε.

Proof. According to Lemma 14, when a ← Un
β + Dn

α̂, the probability of that
a is non-invertible is smaller than q−kq + ε. According to Lemma 6, RD2(Un

β ‖
Un

β + Dn
α̂) = RD2(Uβ ‖ Uβ + Dα̂)n ≤ 2. So

Pr(b is non-inv) ≤ Pr(a is non-inv) · RD2

(
Un

β ‖ Un
β + Dn

α̂

) ≤ 2q−kq + 2ε.

��
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Space Complexity. Next, we will choose the parameters for these two schemes
to deliver a fair comparison. As motivated in the introduction, we aim to keep
decryption failure probability less than O(1/en).

For the R-LWE based scheme, as per average-case/worst-case reduction in
Theorem 3, α = Ω(n1/4 log1/4 n). Since R = Z[x]/(xn + 1), we have c1 = c2 =
1/

√
n, c3 = c4 = 1/n. Since t = n · ζn−1, each coefficient of the error from t · DH

α

is one-dimensional rounded Gaussian with width α′ = n1.5α, which is smaller
than B = Ω(n0.5α′) = Ω(n0.5α/c2c4) = Ω(n2.25 log1/4 n) with probability 1 −
O(e−n). To make sure that (7) holds with probability 1 − O(e−n), we must
choose q = Ω(n5.5 log0.5 n). If we set q = n5.5 log0.5 n, the public key has size of
k′ +n log(q) = k′ +2.75 ·n log n and the ciphertext has size of k +n+n log(q) =
k + n + 2.75 · n log n.

For the R-CLWR based scheme with uniform secret, according to the reduc-
tions, β = Ω(nα′) = Ω(n2.75 log1/4 n) and q/p = Ω(n2.75 log0.75 n). To make
sure that (8) holds with overwhelming probability, we can choose q = n6.5 log n

and p = n3.75 log1/4 n. That results in the public key of size k′ + n log(p) = k′ +
0.9375 ·n log n and the ciphertext of size k+n+n log(p) = k+n+0.9375 ·n log n.

6 Application II: Diffie-Hellman Type Key Exchange

For completeness, we also describe a key exchange protocol based on R-
CLWR with binary secret. The protocol is described in Table 4. Alice and Bob pre-
viously share the public ring element a ∈ Rq. For every new exchange instance,
Alice and Bob generate their secret ring elements s, s′ respectively, which are
uniformly over (Un

β )×. κ and κ′ are the session key which are finally acquired by
Alice and Bob respectively.

Table 4. A key exchange protocol based on R-CLWR.
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The security proof is similar to the PKE scheme in Sect. 5, since the pusedo-
randomness of κ′ can be reduced from the computational problem that A′ inputs
(b, b′, c) and outputs km′. So the proof is similar to the PKE scheme.

7 Application III: New Proofs for Variant Schemes

In this section, we will prove the IND-CPA security of a variant of Saber and
Round2, under the R-CLWR assumption, for proper parameters and distribu-
tions. Below we give an asymptotic simplification of their algorithms. There are
two differences between the scheme to be presented and Saber/Round2. First,
our scheme does not encrypt the message m directly, instead, we encrypt a bit
string g and mask m by a one-time pad. Second, during the encryption, we lifted
b to Rq before multiplying it by r and rounding. These two modifications make
the scheme suitable for our computational assumption.

Theorem 3. The simplified Round2 and Saber scheme is IND-CPA secure
under the R-CLWR assumption R-CLWRp,q,1,χ and R-CLWRp,q,2,χ′ under the ran-
dom oracle model.

The proof is similar to Subsect. 5.3, and please refer to the full version [19].
Similarly, we can prove the IND-CPA security of the PKE scheme of the

ring version of Lizard under R-LWE and R-CLWR, for proper parameters and
distributions. We also need an asymptotic simplification of the algorithm that
is similar to the scheme in previous subsection.

Theorem 4. The simplified Lizard scheme is IND-CPA secure under the ring-
CLWR assumption R-LWEq,χ and R-CLWRp,q,2,χ′ in the random oracle model.

The proof can be found in the full version [19].

8 Conclusion

The learning with rounding over the ring problem is the most practical variants
within the (R-)LWX family of problems. However, it is yet still unclear on how to
build a proof for polynomial modulus and uniform secret. In this paper, we take
an alternative approach by proposing the computational learning with rounding
problem over the ring and show that variance practical schemes, including those
that are among most practical solutions in NIST PQC competitions, can be
derived from this provable secure framework.
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Abstract. At EUROCRYPT 2013, Garg, Gentry and Halevi proposed a
candidate construction (later referred as GGH13) of cryptographic multi-
linear map (MMap). Despite weaknesses uncovered by Hu and Jia (EURO-
CRYPT 2016), this candidate is still used for designing obfuscators.

The naive version of the GGH13 scheme was deemed susceptible to
averaging attacks, i.e., it could suffer from a statistical leak (yet no
precise attack was described). A variant was therefore devised, but it
remains heuristic. Recently, to obtain MMaps with low noise and mod-
ulus, two variants of this countermeasure were developed by Döttling et
al. (EPRINT:2016/599).

In this work, we propose a systematic study of this statistical leakage
for all these GGH13 variants. In particular, we confirm the weakness of
the naive version of GGH13. We also show that, among the two variants
proposed by Döttling et al., the so-called conservative method is not so
effective: it leaks the same value as the unprotected method. Luckily,
the leakage is more noisy than in the unprotected method, making the
straightforward attack unsuccessful. Additionally, we note that all the
other methods also leak values correlated with secrets.

As a conclusion, we propose yet another countermeasure, for which
this leakage is made unrelated to all secrets. On our way, we also make
explicit and tighten the hidden exponents in the size of the parameters,
as an effort to assess and improve the efficiency of MMaps.

Keywords: Cryptanalysis · Multilinear maps · Statistical leakages
Ideal lattices

1 Introduction

Since their introduction in cryptographic constructions by Joux in 2000 [25],
cryptographic bilinear maps, as provided by pairings on elliptic curves, have
enabled the construction of more and more advanced cryptographic protocols,
starting with the Identity-Based Encryption scheme of Boneh and Franklin [8].
More abstractly, a group equipped with an efficient bilinear map, and on which
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some discrete-logarithm like problems are hard (such as the bilinear Diffie-
Hellmann problem), provides foundation for a whole branch of cryptography. A
natural open question is whether it can be generalized to degrees higher than 2
while ensuring hardness of generalizations of the Diffie-Hellmann problem. Such
hypothetical objects are referred to as Cryptographic Multilinear Maps (or, for
short, MMaps).

In 2013, Garg, Gentry and Halevi [17] proposed a candidate construction for
MMaps related to ideal-lattices, yet without a clearly identified underlying hard
lattice problem. It differs from the pairing case in the sense that elements in the
low-level groups have no canonical representation, and that the representation is
noisy. Yet, these differences are not too problematic on the functionality front.

On the security front, it rapidly turned out that this construction was inse-
cure, at least in its original set-up. In particular, the natural one-round k-partite
protocol based on this MMap was broken by the zeroizing attack of Hu and
Jia [24]: this construction fails to securely mimic the tripartite protocol of [25].
More generally, the mere knowledge of a non-trivial representative of 0 tends
to make constructions based on this MMap insecure. Orthogonally, it has been
discovered that solving over-stretched versions of the NTRU problem (whose
intractability is necessary for the security of the GGH MMap) was significantly
easier than previously thought, due to the presence of an unusually dense sub-
lattice [1,12,26], yet this can be compensated at the cost of increasing param-
eters. Also, due to recent algorithms for the Principal Ideal Problem [6,7] and
Short generator recovery [10,14], the GGH MMap can be broken1 in quantum
polynomial time, and classical subexponential time exp(Õ(

√
n)), where n is the

dimension of the used ring.
Nevertheless, this candidate MMap was still considered in a weaker form,2 to

attempt realizing indistinguishability obfuscation (or, for short, iO). Several iO
candidates were broken by attacks that managed to build low-level encodings of
zero even if no such encodings were directly given (this is referred to as zeroizing
attacks, see e.g. [11,13]). To try to capture and prevent such attacks, a Weak
MMap model was devised in [18,34].

Some iO constructions come with a security proof based on assumptions
in the standard model [2,29,30], but cannot be securely instantiated with the
GGH13 MMap as they require low-level encodings of 0. Others are proved
secure in a non-standard model (the Generic MMap model [4,9] or the Weak
MMap Model [15,18]). These models remain not fully satisfactory, as they imply
Virtual-Black-Box Obfuscation [9,18], a provably impossible primitive [5]. The
latest candidate of Lin and Tessaro [31] did escape these pitfalls by relying on
pairings, but it required special Pseudo-Random Generators that were rapidly
proved not to exist [3,32].

1 The secret value h can be recovered exactly, allowing in particular to construct
zero-tester at larger levels.

2 Without providing any low-level encoding of 0, and keeping the order of the multi-
linear group secret.
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Statistical leaks in lattice-based cryptography. Early signature schemes based
on lattices [21–23] suffered from statistical leaks, which led to devastating
attacks [20,35]. Those leaks can be fixed in a provably secure way using a Gaus-
sian Sampling algorithm from Klein [27], as proven in [19]: the samples available
to the adversary are made statistically independent from the secret key.

Similar leaks are a worry in the original construction of [17], and therefore, a
candidate countermeasure was developed, making use of Klein’s sampling proce-
dure. Nevertheless, no formal statement was made on what this countermeasure
prevents: the countermeasure is heuristic. This particular countermeasure turned
out to be a difficulty when considering variants of the original scheme, as done
in [15]. This candidate obfuscator aims at reaching polynomially small errors
and modulus (in order to improve both efficiency and security of the GGH map,
especially in the light of the dense sublattice attacks [1,12,26]) and hence can-
not use the original sampling methods from [17]. Two modified versions of [17]
are then proposed in [15], a so-called conservative one, leading to quite efficient
parameters, and a so-called aggressive one.

Ideally, one wishes to make provable statements about those four variants,
as done in other contexts [19]. Unfortunately, in the context of MMaps, it is not
even clear what the statement should exactly be. The next best guarantee is a
precise understanding of what can be done from a cryptanalytic point of view,
as initiated in [17].

The analysis of the leak of [17] focuses on the covariance of products of
encodings of zero. One can (informally) argue that this analysis captures all
the information of the leakage. Indeed, up to discretization, such a product is
the product of several centered Gaussian distributions (non necessary spherical),
and such a distribution is fully identified by its covariance. The countermeasure
proposed in Sect. 6.4 of [17] attempts to make this covariance proportional to
the identity matrix (and therefore unrelated to all secrets) by sampling each
element of the product according to a spherical distribution, that is a distribution
whose covariance is proportional to the identity matrix. As we shall see, this
attempt is unsuccessful, as one of the factors of the product (namely, the one
related to the zero-testing parameter) is fixed. Obtaining several independent
multiples of it, with covariance proportional to the identity matrix, then reveals
an approximation of this factor.

Contributions. Our main contribution is to give a systematic study of the sta-
tistical leakage in the GGH13 scheme and its variants, in a simple framework we
define. We first suggest a common formalism that encompasses all the variants
at hand, by parametrising the sampling procedure for encodings by an arbitrary
covariance matrix. Following the nomenclature of [15,17], except for the second
one that had no clear name, we consider:

1. The simplistic method: the GGH MMap without countermeasure [17,
Sect. 4.1]. This method was only given for simplicity of exposition and was
already highly suspected to be insecure;
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2. The exponential method:3 the GGH MMap with countermeasure [17,
Sect. 6.4];

3. The conservative method, proposed in [15]—which we partly revisit to tackle
some of its limitations;

4. The aggressive method, proposed in [15]—we note that this method is specific
to the iO construction of [15], and is not applicable to all constructions over
the GGH MMap.

In order to formalize our study of the leakage, we propose a simple setting of
the GGH multilinear map. Indeed, due to the attacks in presence of encodings
of zero, the exact set-up for the analysis of the leakage in [17] is not relevant
anymore. We adjust their setting to not provide low-level encodings of zero
directly. Still, some relations between encodings are needed for the MMaps to
be non-trivial; to ensure that those relations do not allow zeroizing attacks, we
provide a security proof in the weak multilinear map model of [15,18,34]. For
ease of exposure, we restrict ourselves to degree κ = 2, yet our analysis easily
extends to higher degrees.

Using this framework, we are able to analyse a particular averaging attack
against the GGH multilinear map. On the one hand, our analysis shows that
Method 3 leads to the same leakage as Method 1. We also prove that with
Method 1, a polynomial-time attack can be mounted using the leakage. Interest-
ingly, it does not require the Gentry-Szydlo algorithm [20], unlike the approach
discussed in [17, Sects. 6.3.2 and 7.6]. Nevertheless, we did not manage to extend
the attack to Method 3: while the same quantity is statistically leaked, the num-
ber of samples remains too low for the attack to go through completely. On the
other hand, we show that the statistical leakage of Method 4 is similar to the
one of Method 2: perhaps surprisingly the aggressive method seems more secure
than the conservative one.

Finally, having built a better understanding of which information is leaked,
we devise a countermeasure that we deem more adequate than all the above:

5. The compensation method.

This method is arguably simpler, and provides better parameters. More impor-
tantly, applying the same leakage attack than above, one only obtains a distri-
bution whose covariance is independent of all secrets. We wish to clarify that
this is in no way a formal statement of security. The statistical attacks con-
sidered in this work are set up in a minimalistic setting, and extensions could
exist beyond this minimalistic setting. For example, one could explore what can
be done by varying the zero-tested polynomial, or by keeping certain encodings
fixed between several successful zero-tests.

As a secondary contribution, we also make explicit and tighten many hidden
constants present in the previous constructions, in an effort to evaluate and
improve the efficiency of GGH13-like MMaps.

3 The naming reflects the fact that this method leads to a modulus q which is expo-
nential in the number � of so-called atoms.
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Impact. This result may be useful in pursuit of an underlying hard problem on
which one could based the GGH multilinear map. Indeed, we show here that it is
possible to recover some information about secret elements, for all the previously
proposed sampling methods. Hence, an underlying hard problem (or the security
reduction) should capture this leak. This enables us to get a bit more insight
into what could be (or could not be) an underlying hard problem for the GGH
map. In that regard, finding such a hard underlying problem could be easier
with our new method, since one specific leak has been sealed. Again, we do not
claim that no other leaks exist.

Further, our analysis shows that the weak multilinear map model does not
capture averaging attacks. This is not surprising, as the weak multilinear map
model only allows to evaluate polynomials in the post-zero-test values, while
we need to average on them for this attack. But proving that averaging cannot
be achieved by evaluating polynomials is not so immediate. Interestingly, our
results prove it. Indeed, using averaging techniques, we were able to mount a
polynomial time attack against our setting when using the simplistic sampling
method (Method 1), but we also proved that in the weak multilinear map model,
no polynomial time attacks could be mounted. This proves that the weak mul-
tilinear map model does not capture averaging attacks.4

Finally, our new method severely decreases the length of encodings in the
GGH13 multilinear map, which substentially contribute to their practical feasi-
bility.

Outline of the article. In Sect. 2, we recall some mathematical background about
cyclotomic number fields and statistics. We also describe the GGH multilinear
map and detail the size of its parameters. In Sect. 3, we describe different sam-
pling methods for the GGH multilinear map, which come from [15,17], using
a common formalism so as to factor the later analysis. We describe our simple
setting and analyse the leakage in Sect. 4. The security proof of this simple set-
ting in the weak multilinear map model can be found in the full version of this
article [16]. Finally, we discuss the design of sampling methods in Sect. 5, and
propose a design we deem more rational.

2 Preliminaries

2.1 Mathematical Background

Rings. We denote by R the ring of integers Z[X]/(Xn + 1) for some n which
is a power of 2 and K = Q[X]/(Xn + 1) its fraction field. We denote by σj :
K → C, with 1 ≤ j ≤ n, the complex embeddings of K in C. We also denote
KR = R[X]/(Xn+1) the topological closure of K. For x ∈ KR, we denote xi ∈ R

its i-th coefficient, so that x =
∑n−1

i=0 xiX
i. For g ∈ K (or even KR) we denote

gR the ideal generated by g: gR = {gx|x ∈ R}. The complex conjugation over R

4 The precise component of the attack which is not captured by the weak multilinear
map model is the rounding operation performed at the end.
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and K is denoted ·̄. It is the automorphism of R sending X to X−1. We denote S
the subring of KR of symmetric elements, that is S = {x ∈ KR|x = x̄}. We set S+

the subset of symmetric positive elements of S, defined by S+ = {xx̄|x ∈ KR}.
Alternatively, S is the completion of the real subfield of K, and S+ is (the
completion of) the set of elements of K whose embeddings are all non-negative
real numbers. Note that S+ is closed under addition, multiplication, division,
but not under subtraction. The elements of S+ also admit one and exactly one
square root (resp. k-th root) in S+, which we denote

√· (resp. k
√·) . Finally, we

call xx̄ ∈ S+ the autocorrelation5 of x ∈ KR, and denote it A(x). For Σ ∈ S+

it holds that A(
√

Σ) = Σ. We also define equivalence over S+ up to scaling
by reals, and write x ∼ y for invertible elements x, y ∈ S+ if x = αy for some
positive real α > 0. Let q be a prime congruent to 1 modulo 2n. We denote
by Rq the quotient ring R/(qR). For x ∈ R, we denote by [x]q (or [x] when
there is no ambiguity) the coset of the element x in Rq. We will often lift back
elements from Rq to R, in which case we may implicitly mean that we choose
the representative with coefficients in the range [−q/2, q/2]. To avoid confusion,
we will always write x−1 for the inversion in Rq, and keep the fraction symbols
1/x and 1

x for inversion in K and KR.

Geometry. Because we work in the ring Z[X]/(Xn + 1), the canonical geometry
of the coefficients embeddings is equivalent, up to scaling, to the geometry of
the Minkowski embeddings. We stick with the former, following the literature
on multilinear maps. More precisely, the inner product of two elements x, y ∈ K
is defined by 〈x, y〉 =

∑
xiyi. The Euclidean norm (or �2-norm) is defined by

‖x‖ =
√〈x, x〉. The �∞-norm is noted ‖x‖∞ = max |xi|.

We recall the following inequalities:

‖xy‖ ≤ √
n · ‖x‖ · ‖y‖ (1)

‖x‖∞ ≤ ‖x‖ ≤ √
n · ‖x‖∞ (2)

‖x‖2 ≤ ‖xx̄‖∞ (3)
‖x̄‖ = ‖x‖ and ‖x̄‖∞ = ‖x‖∞. (4)

Statistics. We denote by Pr[E] the probability of an event E. For a random
variable x over KR, we denote by E[x] the expectation of x, and by V[x] =
E[xx̄]−E[x]E[x̄] its variance. It should be noted that V[x] ∈ S+ for any random
variable x over KR. A random variable x is said centered if E[x] = 0, and isotropic
if V[x] ∼ 1. We recall Hoeffding’s inequality.

Theorem 1 (Hoeffding’s inequality). Let Y1, · · · , Ym be independent ran-
dom variables in R with the same mean μ ∈ R and such that |Yi| ≤ B for all i’s.

5 In an algebraic context, this would be more naturally described as the norm of x
relative to the maximal real subfield of K, yet for our purposes it is more adequate
to use the vocabulary of statistics.
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Then for all t > 0,

Pr

[∣
∣
∣
∣
∣

1
m

m∑

i=1

Yi − μ

∣
∣
∣
∣
∣
≥ t

]

< 2e− mt2

2B2 .

Hoeffding’s inequality, as given above, applies to random variables in R. In this
article, we will be interested in random variables in R. We will then see our
elements in R as vectors in R

n and apply Hoeffding’s inequality coefficient-wise.

Corollary 1 (Hoeffding’s inequality in R). Let Y1, · · · , Ym be independent
random variables in R with the same mean μ ∈ KR and such that ‖Yi‖∞ ≤ B
for all i’s. Let ε > 0, then

Pr

[∥
∥
∥
∥
∥

1
m

m∑

i=1

Yi − μ

∥
∥
∥
∥
∥

∞
≥ B

√
2(ln n − ln ε)

m

]

< 2ε.

Proof. For 1 ≤ i ≤ m and 0 ≤ j ≤ n − 1, define Yi,j to be the j-th coefficient
of the variable Yi ∈ R and μj to be the j-th coefficient of μ. For a fixed j,
the variables Yi,j (where only i varies) are independent random variables in R

of mean μj . Moreover, as ‖Yi‖∞ ≤ B for all i’s, the coefficients Yi,j are also
bounded by B. We can then apply Hoeffding’s inequality (Theorem 1) to them.
We obtain

Pr

[∥
∥
∥
∥
∥

1
m

m∑

i=1

Yi − μ

∥
∥
∥
∥
∥

∞
≥ B

√
2(ln n − ln ε)

m

]

= Pr

[

∃j :

∣
∣
∣
∣
∣

1
m

m∑

i=1

Yi,j − μj

∣
∣
∣
∣
∣
≥ B

√
2(ln n − ln ε)

m

]

≤
n−1∑

j=0

Pr

[∣
∣
∣
∣
∣

1
m

m∑

i=1

Yi,j − μj

∣
∣
∣
∣
∣
≥ B

√
2(ln n − ln ε)

m

]

<

n−1∑

j=0

2e− 2mB2(ln n−ln ε)
2B2m =

n−1∑

j=0

2
ε

n
= 2ε.

We used the union bound and Hoeffding’s inequality with t = B
√

2(lnn−ln ε)
m . �

Discrete Gaussians. For Σ ∈ S+ and x0 ∈ KR, we define the Gaussian weight
function on KR as

ρ√
Σ,x0

: x �→ exp

(

−1
2

∥
∥
∥
∥

x − x0√
Σ

∥
∥
∥
∥

2
)

.
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For any shifted ideal I + c, I ⊂ K, c ∈ KR, we define the discrete Gaussian
distribution over I + c of parameter

√
Σ, centered in x0 by:

∀x ∈ I + c, DI+c,
√

Σ,x0
(x) =

ρ√
Σ,x0

(x)

ρ√
Σ,x0

(I + c)
.

For concision, we write DI+c,
√

Σ instead of DI+c,
√

Σ,0 and ρ√
Σ instead of ρ√

Σ,0.

Theorem 2 (Reformulation of [19, Theorem 4.1.]). There exists a PPT
algorithm that given g ∈ R, c ∈ KR and a parameter Σ such that ‖g/

√
Σ‖ ≤

o(1/
√

log n), outputs x from a distribution negligibly close to DgR+c,
√

Σ.

This reformulation simply relies on the identity DgR+c,
√

Σ =
√

Σ
σ ·D(gR+c)/

√
Σ,σ.

We also recall that, above the smoothing parameter [33], a discrete Gaussian
resembles the continuous Gaussian, in particular it is almost centered at 0, and
of variance almost Σ.

Lemma 1. For any g ∈ K, Σ ∈ S+, c ∈ KR such that ‖g/
√

Σ‖ ≤ o(1/
√

log n),
if x ← DgR+c,

√
Σ, then ‖E[x]‖ ≤ ε · ‖√Σ‖ and ‖V[x] − Σ‖ ≤ ε · ‖Σ‖ for some

negligible function ε(n).

The proof of this result, using [33, Lemma 4.2], can be found in the full
version [16].

2.2 The GGH13 Multilinear Map

We describe in this section the GGH13 multilinear map [17], in its asymmetric
setting. The GGH13 multilinear map encodes elements of a ring of integers R,
modulo a secret small element g ∈ R. More concretely, an authority generates
the following parameters:

• an integer n which is a power of 2 (serving as the security parameter).
• a (small) element g in R. We denote by I = gR the ideal generated by g in R.
• a (large) positive integer q such that q ≡ 1 mod 2n. Originally, q was chosen

exponentially large in n [17], but variants were proposed for polynomially
sized q [15,28].

• � invertible elements [zi] ∈ R×
q , for 1 ≤ i ≤ �, chosen uniformly at random in

R×
q .

• a zero-testing parameter [pzt] = [hz∗g−1] where [z∗] = [
∏

1≤i≤� zi] and h is
a random element in R, generated according to a Gaussian distribution of
standard deviation approximately

√
q.

We detail in Sect. 2.2 the size of the parameters described above (we will
choose them to ensure the correctness of the scheme). The elements n, q and pzt

are public while the parameters h, g and the zi’s are kept secret.
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Encoding of an element. The GGH13 multilinear map allows to encode cosets
of the form a + I for some element a in R. Let v ∈ {0, 1}� be a vector of size �.
An encoding of the coset a + I at level v is an element of Rq of the form

u =
[
(a + rg) · z−1

v

]

where [zv ] = [
∏

i,v [i]=1 zi] and a + rg is a small element in the coset a + I.
We call v the level of the encoding.6 We abuse notation by saying that u is an
encoding of a (instead of an encoding of the coset a + I).

An encoding generated by the authority is called a fresh encoding, by oppo-
sition to encodings that are obtained by adding or multiplying other encod-
ings. The precise distribution of a + rg for a fresh encoding will be a discrete
Gaussian distribution over the coset a + I, but not necessarily a spherical one:
a + rg ← Da+I,

√
Σv

. The shape Σv of this Gaussian is essentially what distin-
guishes the variants that we will discuss in Sect. 3.

Adding and multiplying encodings. If u1 and u2 are two encodings of ele-
ments a1 and a2 at the same level v then u1 + u2 is an encoding of a1 + a2 at
level v.

If u1 and u2 are two encodings of elements a1 and a2 at levels v and w with
v[i] ·w[i] = 0 for all 1 ≤ i ≤ �, then u1 ·u2 is an encoding of a1 ·a2 at level v+w
(where the addition is the usual addition on vectors of size �).

Zero-testing. We denote by v∗ = (1, . . . , 1) the maximum level of an encoding.
The zero testing parameter allows us to test if an encoding u at level v∗ is an
encoding of zero, by computing

[w] = [u · pzt].

If w is small compared to q (the literature usually requires its coefficients to be
less than q3/4), then u is an encoding of zero. Otherwise, it is not.

Size of the parameters and correctness. We define Q such that q = nQ and
L such that � = nL (the elements Q and L are not necessarily integers). The
bounds below on the size of g and h come from [17]. The secret generator g is
sampled so that:

‖g‖ = O(n), ‖1/g‖ = O(n2). (5)

Remark. There seems to be some inconsistencies in [17] about the size of g,
which is on page 10 sampled with width σ = Õ(

√
n), while on page 13 the

width σ is set to
√

nλ to ensure the smoothing condition σ ≥ η2−λ(Zn) (where
λ = O(n) denote the security parameter). Yet, according to [33, Lemma 3.3], it
holds that η2−λ(Zn) ≤ O(

√
λ + log n), so σ = O(

√
n) is sufficient, and we do

have ‖g‖ ≤ O(n) with overwhelming probability by [33, Lemma 4.4].

6 Remark that we could define encodings of level v even if v is not binary (but still
has non negative integer coefficients). This is not necessary for a honest use of the
GGH13 map, but we will use it in Sect. 4 for our attack.
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The numerator c = a + rg of a fresh encoding of a + I at level v is sampled
such that

‖c‖ = Θ(nγ+η·‖v‖1+νL), (6)

where γ, η and ν are positive reals, and depend on the sampling method, such
as the ones proposed in [15] (depending on the method, η and ν may be zero).
We describe later the different sampling methods and the values of γ, η and ν
associated to each method. When we do not need to focus on the dependence on
‖v‖1 and L, we just call E := Θ(nγ+η·‖v‖1+νL) the bound above. For each sam-
pling method described below, we choose this bound to be as small as possible
under the specific constraints that will arise with the sampling method.

The mildly large element h is sampled so that

‖h‖ = Θ(
√

nq). (7)

Remark. In the second variant proposed in [17, Sect. 6.4] to try to prevent aver-
aging attacks, the authors generate h according to a non spherical Gaussian
distribution. However, as h is sampled only once, its distribution does not mat-
ter for the attack we analyze in this article. This is why we only specify here the
size of h, and not its distribution.

We now give a condition on the modulus q to ensure correctness of the GGH13
multilinear map. This condition will depend on the number κ of fresh encodings
that we have to multiply in order to obtain a top level encoding. A natural
upper bound for κ is �, the number of levels of the multilinear map. However,
in the following, we will be interested in cases where we are provided with fresh
encodings at a somewhat high level and we only need to multiply a small number
of them (much smaller than �) to obtain a top level encoding. Choosing a small
degree κ is motivated by the fact that we want to obtain a small modulus q.
We will see below that q should be at least exponential in κ. Hence, in order to
achieve a polynomial modulus q, it should be that κ is at most logarithmic in
the security parameter (while � can be much larger). In the simple setting we
describe in Sect. 4.1, we choose κ = 2, which enables q to be polynomial (if we
use the good sampling methods).

Correctness of zero-testing a homogeneous polynomial of degree κ, whose
absolute sum of the coefficients is bounded by nB and evaluated in fresh encod-
ings, is guaranteed if nB · ‖h

g

∏κ
i=1 ci‖ ≤ q3/4. It is then sufficient to have

B +
κ + 1

2
+

Q + 1
2

+ 2 + κ(γ + νL) + η� ≤ 3
4
Q. (8)

The term κ+1
2 appears from applying inequality (1) κ+1 times. One should also

note that
∑κ

i=1 ‖vi‖1 = ‖v∗‖1 = �, because we can only zero test at level v∗

(where vi is the level of encoding ci). More compactly, correctness holds if:

B + 3 + κ(1/2 + γ + νL) + η� ≤ Q/4. (9)

In our simple setting of the GGH multilinear map defined in Sect. 4.1, we
will only query the zero-testing procedure on encodings of this form, with κ = 2
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and B = log(m)/ log(n), for some constant m we will define later. Hence, taking
4 + 2γ + 2νL + η� + log(m)/ log(n) ≤ Q/4 will be sufficient in our setting to
ensure correctness of the zero-testing procedure.

Remark. We note that the bound q3/4 for positive zero-tests is somewhat arbi-
trary and could very well be replaced by q/4, allowing to square-root the parame-
ter q. Indeed, the probability of a false positive during zero-testing would remain
as small as 2−n. This would have a serious impact on concrete efficiency and
security.

3 Sampling Methods

We describe in this section different sampling methods that can be used to
generate the fresh encodings of the GGH multilinear map and we give the values
of γ, η and ν that correspond to these methods. As said above, we will be
interested in cases where (at least some of) the fresh encodings have a somewhat
high degree and we just have to multiply a constant number of them (say 2) to
obtain an encoding at maximal level v∗. We denote by A the set of “atoms”, that
is the set of levels v ∈ {0, 1}� at which we want to encode fresh encodings. In our
simple setting of the GGH multilinear map (see Sect. 4.1 for a full description
of our setting), we will chose A to be the set of levels v ∈ {0, 1}� that have
weight exactly 1 or � − 1, where the weight of v is the number of its non-zero
coefficients. For all v ∈ A, we denote by ṽ = v∗ − v the complement of v. We
note that A is closed by complement.

In all the following sampling methods except the first one, one chooses a
representative zv ∈ R of [zv ] ∈ Rq for all v ∈ A. This representative will not
necessarily be the canonical one, with coefficients in [−q/2, q/2]. Then, we will
take Σv = σ2

vzv z̄v , with σv = Θ(n2‖1/zv‖). Using Inequalities (3) and (4), we
can see that ‖1/

√
Σv‖ ≤ 1/σv · n1/4 · ‖1/zv‖. Hence, with our choice of σv and

the fact that ‖g‖ = O(n), we obtain
∥
∥
∥
∥

g√
Σv

∥
∥
∥
∥ ≤ √

n · ‖g‖ ·
∥
∥
∥
∥

1√
Σv

∥
∥
∥
∥ = O

(
1

n1/4

)

= o

(
1√

log n

)

.

We can therefore apply Theorem 2 to sample the numerators of fresh encod-
ings at level v, according to a Gaussian distribution of parameter Σv . Using
tail-cut of Gaussian distributions, we have that if c is the numerator of a fresh
encoding, then ‖c‖ ≤ n‖√Σv‖ ≤ n1.5σv‖zv‖ with overwhelming probability.
This means that we can take

E ≤ Θ(n3.5 · ‖1/zv‖ · ‖zv‖). (10)

Hence, in the following methods (except the simplistic one), we will focus on
the size of ‖1/zv‖ · ‖zv‖ to get a bound on the value of E.

Remark. Inequality (10) above is not tight. We could at least improve it to
E ≤ Θ(n3+ε · ‖1/zv‖ · ‖zv‖) for any ε > 0, by taking σv = Θ(n1.75+ε‖1/zv‖) (it
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still satisfies the condition of Theorem 2) and by noticing that ‖c‖ ≤ n‖√Σv‖ ≤
n1.25σv‖zv‖ for the numerator of a fresh encoding. This ensures statistical close-
ness to the desired distribution up to exp(−n2ε). Considering that there are
already classical attacks in time exp(Õ(

√
n)) (namely, using [6,14] to recover h

from the ideal hR), one may just choose ε = 1/4.

3.1 The Simplistic Method

The simplistic method consists in always choosing Σv ∼ 1, independently of v
and zv . This is done by applying Klein’s algorithm [27], and requires for cor-
rectness [19, Theorem 4.1] that Σv = σ2 for a positive scalar σ ∈ R, where
σ ≥ ‖g‖ · ω(

√
log n). So by taking σ = Θ(n1+ε) with ε > 0, one may have

E = Θ(
√

nσ) = Θ(n1.5+ε), that is γ = 1.5 + ε and η = ν = 0.
This method was deemed subject to averaging attacks and hence less secure

than the following one in [17], but the authors claim that their attack attempts
failed because all recovered elements were larger that

√
q, and that averaging

attacks would need super-polynomially many elements.7 We make explicit an
attack, and will show that this attack is possible even for exponential q, as
long as Eκ remains polynomial: in other words, the presence of the mildly large
factor h (of size

√
q) can be circumvented.

3.2 The Exponential Method

We present here the countermeasure of [17, Sect. 6.4], generalized to multi-
dimensional universe, as done in [15, Sect. 2.1]. For 1 ≤ i ≤ �, set zi to be the
canonical representative of [zi] in R (with coefficients in the range [−q/2, q/2]).
Using rejection sampling when choosing zi, assume that ‖zi‖·‖1/zi‖ ≤ Z; this is
efficient for Z as small as n5/2 using [15], and can even be improved to Z = n3/2

using Lemma 3 below and its corollary.
For v in A, set zv =

∏
zvi
i over R. Recall that Inequality (10) gives us: E ≤

Θ(n3.5‖1/zv‖ · ‖zv‖). But we have ‖zv‖ ≤ n(‖v‖1−1)/2
∏

i∈v ‖zi‖ and ‖1/zv‖ ≤
n(‖v‖1−1)/2

∏
i∈v ‖1/zi‖. Hence we can take

E = Θ(n2.5+‖v‖1 · Z‖v‖1) = Θ(n2.5+2.5‖v‖1).

This means that we have γ = 2.5, η = 2.5 and ν = 0.
Correctness is guaranteed for q ≥ nΩ(�) (because η �= 0), and because � is

much larger than the constant degree κ in [15], this is not a satisfying solution,
as we aim at decreasing q to polynomial. Two alternatives (conservative and
aggressive) are therefore developed in [15].

7 Recall that the original proposal was setting E and therefore q to be super-
polynomial even for bounded degree � because of the drowning technique for pub-
licly sampling encodings. Since then, attacks using encodings of zero [13,24,34] have
restricted encodings to be private, allowing polynomially large E.
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3.3 The Conservative Method [15]

The first alternative suggested is to do as above, but reducing the zv modulo q,
that is, set zv to be the representative of [

∏
zvi
i ] with coefficients in [−q/2, q/2].

One then ensures, by rejection of all the zi’s together, that ‖zv‖ · ‖1/zv‖ ≤ n2.5

for all v ∈ A. This leads to E = Θ(n3.5 · n2.5) = Θ(n6) (i.e., γ = 6, η = ν = 0)
and therefore allows correctness for q as small as nO(κ), which is polynomial for
constant degree κ.

Using [15, Lemma 8] restated below, the authors conclude that this method
is quite inefficient because for the above bound to hold simultaneously for all
v ∈ A with good probability, n must increase together with �. Indeed, using
Lemma 2, we can bound the probability that one of the zv does not satisfy
‖zv‖·‖1/zv‖ ≤ n2.5 by 2|A|/n = 4�/n. So if we want this probability to be small
(say less than 1/2) in order for the sampling procedure to be efficient, we should
increase n with �.

Lemma 2 (Lemma 8 from [15]). Let [z] be chosen uniformly at random in Rq

and z be its canonical representative in R (i.e., with coefficients in [−q/2, q/2]).
Then it holds that

Pr
[‖1/z‖ ≥ n2/q

] ≤ 2/n.

In the following section, we revisit the conservative method by generalizing
this lemma.

3.4 The Conservative Method Revisited

In the following lemma, we introduce an extra degree of freedom c compared to
the lemma of [15], but also improve the upper bound from O(n1−c) to O(n1−2c).

Lemma 3. Let [z] be chosen uniformly at random in Rq and z be its repre-
sentative with coefficients between −q/2 and q/2. Then, for any c ≥ 1, it holds
that

Pr [z = 0 ∨ ‖1/z‖ ≥ nc/q] ≤ 4/n2c−1.

Corollary 2. Let [z] be chosen uniformly at random in R×
q and z be its repre-

sentative with coefficients between −q/2 and q/2. Then, for any c ≥ 1, it holds
that

Pr [‖1/z‖ ≥ nc/q] ≤ 8/n2c−1.

We can use this corollary to compute the probability that one of the zv does
not satisfy ‖1/zv‖ ≤ nc/q when the [zi]’s are independent and chosen uniformly
at random in R×

q . Indeed, the [zv ]’s are uniform in R×
q because they are a product

of uniform invertible elements, and, by union bound, we have

Pr [∃v ∈ A s.t. ‖1/zv‖ > nc/q] ≤
∑

v∈A
Pr [‖1/zv‖ > nc/q]

≤ 8|A|
n2c−1

.
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If we want this probability to be less than 1/2, in order to re-sample all the zi’s
only twice on average, we should take

|A| ≤ n2c−1

16
. (11)

But we also have ‖zv‖ ≤ √
n‖zv‖∞ ≤ √

nq, hence ‖1/zv‖ · ‖zv‖ ≤ nc+0.5. In
order to minimize E, we wish to minimize c, under (11). By taking the minimal
value of c that satisfies this constraint, and recalling that |A| = 2�, we obtain

E = Θ(n4.5+L/2).

This means that γ = 4.5, ν = 0.5 and η = 0. This conservative method
revisited is the same as the original one, except that we improve on the encodings
size bound E.8 In the following, we will then only focus on the conservative
method revisited and not on the original one.

Proof (Proof of Lemma 3). The proof of this lemma uses the same ideas as the
one of [36, Lemma 4.1], but here, the element z is sampled uniformly modulo q
instead of according to a Gaussian distribution. Let [z] be chosen uniformly at
random in Rq and z be its representative with coefficients between −q/2 and q/2.
Recall that we denote σj : K → C the complex embeddings of K in C, with
1 ≤ j ≤ n. We know that the size of z is related to the size of its embeddings.
Hence, if we have an upper bound on the |σj(1/z)|, we also have an upper bound
on ‖1/z‖. Moreover, the σj ’s are morphisms, so σj(1/z) = 1/σj(z), and it suffices
to have a lower bound on |σj(z)|.

Let j ∈ {1, · · · , n}, there exists a primitive 2n-th root of unity ζ such that

σj(z) =
n−1∑

i=0

aiζ
i,

where the ai’s are the coefficients of z, and so are sampled uniformly and inde-
pendently between −q/2 and q/2. As ζ is a primitive 2k-th root of unity for some
k, there exists i0 such that ζi0 = I, where I is a complex square root of −1. So
we can write

σj(z) = a0 + Iai0 + z̃,

for some z̃ ∈ C that is independent of a0 and ai0 . Now, we have that

Pr
[
|σj(z)| <

q

nc

]
= Pr

[
a0 + Iai0 ∈ B(−z̃,

q

nc
)
]

≤ Vol(B(−z̃, q
nc ))

q2

≤ 4
n2c

,

8 We also change a bit the point of view by fixing n first and then obtaining an upper
bound on � (which will appear because ν �= 0 in E), while the authors of [15] first
fix � and then increase n consequently.
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where B(−z̃, q/nc) is the ball centered in −z̃ of radius q/nc. A union bound
yields that

Pr
[
∃j, |σj(z)| <

q

nc

]
≤ n · 4

n2c
=

4
n2c−1

.

Which in turns implies

Pr
[

∀j,

∣
∣
∣
∣σj

(
1
z

)∣
∣
∣
∣ ≤ nc

q

]

≥ 1 − 4
n2c−1

.

To complete the proof, we use the fact that for cyclotomic fields of power-
of-two order, we have ‖1/z‖ ≤ maxj(|σj(1/z)|). This gives the desired result.
�
Proof (Proof of Corollary 2). First, note that sampling [z] uniformly in R×

q is the
same as sampling [z] uniformly in Rq and re-sampling it until [z] is invertible.
We denote by U(Rq) (resp. U(R×

q )) the uniform distribution in Rq (resp. R×
q ).

We then have that

Pr
[z]←U(R×

q )
[‖1/z‖ ≥ nc/q] = Pr

[z]←U(Rq)
[‖1/z‖ ≥ nc/q | [z] ∈ R×

q ].

But using the definition of conditional probabilities, we can rewrite

Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×
q ] =

Pr[z]←U(Rq)[[z] ∈ R×
q and ‖1/z‖ ≥ nc/q]

Pr[z]←U(Rq)[[z] ∈ R×
q ]

.

The numerator of this fraction is less than Pr[z]←U(Rq)[‖1/z‖ ≥ nc/q], which
is less than 4

n2c−1 using Lemma 3. And at least half of the elements of Rq are
invertible (if q is prime, we can even say that the proportion of non invertible
elements is at most n/q, because q ≡ 1 mod 2n). Hence, Pr[z]←U(Rq)[[z] ∈
R×

q ] ≥ 1/2 and we obtain the desired result

Pr
[z]←U(R×

q )
[‖1/z‖ ≥ nc/q] ≤ 8

n2c−1
.

�

3.5 The Aggressive Method

This aggressive method was proposed by Döttling et al. in [15] in order to instan-
tiate the GGH multilinear map for their obfuscator. This method cannot be used
for any set of atoms A, as it relies on the fact that the levels at which we encode
fresh encodings have a specific structure. Indeed, for each v ∈ A, we have either
[zv ] = [zi] for some i ∈ {1, · · · , �} or [zv ] = [z∗ · z−1

i ]. Using this remark, the
secret [zi]’s are generated in the following way.
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For i from 1 to � do:

– sample a uniformly random invertible element [zi] in Rq. Let zi be the rep-
resentative of [zi] in R with coefficients between −q/2 and q/2, and z̃i be the
representative of [z−1

i ] in R with coefficients between −q/2 and q/2.
– until both following conditions are satisfied, re-sample [zi]:

‖1/zi‖ ≤ n3/q (12)
‖1/z̃i‖ ≤ n/q. (13)

– if i = �, we also re-sample [zi] until this third condition is met

‖1/z∗‖ ≤ n/q, (14)

where z∗ is the representative of [
∏

1≤i≤� zi] with its coefficients between −q/2
and q/2.

Remark. As we sample the [zi]’s from i = 1 to �, when we generate [z�] all other
[zi]’s are already fixed, so we can define [z∗].

Note that with this method, we re-sample each zi an expected constant num-
ber of times, independently of �. Indeed, all [zi]’s for i ≤ � − 1 are sampled
independently. And the two conditions we want are satisfied except with prob-
ability at most 8

n for each condition (using Corollary 2 with [zi] and [z−1
i ] that

are uniform in R×
q and with c = 3 or c = 1). So, applying a union bound, the

probability that we have to re-sample [zi] is at most 16
n , which is less than 1/2

if n ≥ 32. The idea is the same for [z�] except that we also want ‖1/z∗‖ to be
small. But all [zi] for i < � are already fixed, so [z∗] only depends on [z�] and is
uniform in R×

q . Hence this last condition is also satisfied except with probability
8
n from Corollary 2. And the probability that the three conditions are met for
[z�] is at least 1/2 as long as n ≥ 48.

To conclude, if n ≥ 48, the procedure described above will sample each [zi]
at most twice in average, independently of the choice of �. So we can choose �
arbitrarily large and the sampling procedure will take time O(�) · poly(n).

It remains to choose our representative zv ∈ R of [zv ] ∈ Rq and to get a
bound on ‖1/zv‖ · ‖zv‖ for all v ∈ A, in order to get the value of E. We will
show that ‖zv‖ · ‖1/zv‖ ≤ n4 for some choice of the representative zv we detail
below.

First case. If v has weight 1, that is [zv ] = [zi] for some i, then we take
zv = zi. With our choice of [zi], we have that ‖1/zv‖ ≤ n3/q. And as ‖zv‖
has its coefficients between −q/2 and q/2 we have that ‖zv‖ ≤ √

nq and hence
‖zv‖ · ‖1/zv‖ ≤ n3.5 ≤ n4.

Second case. If v has weight � − 1, then there exists i ∈ {1, · · · , �} such that
[zv ] = [z∗ ·z−1

i ]. We choose as a representative of [zv ] the element zv = z∗ ·z̃i ∈ R,
with z∗ and z̃i as above (with coefficients between −q/2 and q/2). We then have

‖1/zv‖ = ‖1/z∗ · 1/z̃i‖ ≤ √
n · ‖1/z∗‖ · ‖1/z̃i‖ ≤ n2.5/q2.



On the Statistical Leak of the GGH13 Multilinear Map and Some Variants 481

Further, we have that ‖zv‖ = ‖z∗ · z̃i‖ ≤ √
n · √

nq · √
nq = n1.5q2. This finally

gives us

‖zv‖ · ‖1/zv‖ ≤ n4.

To conclude, this method gives us

E = Θ(n7.5).

This means that γ = 7.5 and both η and ν are zero.

Remark. For all methods with Σv ∼ zv z̄v (i.e., all methods except the simplistic
one), if c ← DI+a,

√
Σv

is sampled using a Gaussian distribution of standard
deviation

√
Σv , we can rewrite c = c∗zv with c∗ ← D I+a

zv
,σv

for some σv ∈ R.
Note that c∗ is now a following a spherical Gaussian distribution but its support
depends on zv . In addition to this remark, one can observe that in all the methods
described above, there exists a real σ such that σvσṽ = σ for all v ∈ A (in fact,
σv only depends on the weight of v in all the methods above). This means
that for every fresh encodings [cvz−1

v ] and [cṽz−1
ṽ ] at level v and ṽ generated

independently, we have an element c∗ ∈ K, following an isotropic distribution9

of variance σ2 such that cv cṽ = c∗zvzṽ in R. Again, we note that the support
of c∗ depends on zv and zṽ , but as σ is larger than the smoothing parameter,
this has no influence on the variance of c∗ (by Lemma 1).

A summary of the different values of γ, η and ν for the different sampling meth-
ods can be found in Table 1.

4 Averaging Attack

4.1 Our Simple Setting of the GGH Multilinear Map

To study the leakage of the GGH multilinear map, we need to make reasonable
assumptions on what is given to the adversary. It has been shown in [24] that
knowing low level encodings of zero for the GGH13 multilinear map leads to
zeroizing attacks that completely break the scheme. So our setting should not
provide any, yet we will provide enough information for some zero-tests to pass.
To this end, we will prove our setting to be secure in the weak multilinear map
model, which supposedly prevents zeroizing attacks.

This setting is inspired by the use of multilinear maps in current candidate
obfuscator constructions, and more precisely the low noise candidate obfuscator
of [15]. Yet, for easier analysis, we tailored this setting to the bare minimum.
We will assume the degree of the multilinear map to be exactly κ = 2, and will
provide the attacker with elements that pass zero-test under a known polynomial.
The restriction κ = 2 can easily be lifted but it would make the exposition of
the model and the analysis of the leakage less readable.
9 c∗ is isotropic as it is the product of two independent isotropic Gaussian variables.
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More precisely, we fix a number m > 1 of monomials, and consider the
homogeneous degree-2 polynomial:

H(x1, y1, . . . , xm, ym) =
∑

xiyi.

Recall that we chose the set of “atoms” A to be the set of levels v ∈ {0, 1}�

that have weight exactly 1 or �−1, where the weight of v is the number of its non-
zero coefficients. For all v ∈ A, we let ṽ = v∗−v (we say that ṽ is the complement
of v). We assume that for each v ∈ A of weight 1, the authority reveals encodings
uv ,1, . . . , uv ,m at level v of random values av ,1, . . . , av ,m modulo I, and encodings
uṽ ,1, . . . , uṽ ,m at level ṽ of random values aṽ ,1, . . . , aṽ ,m modulo I, under the only
constraint that

H(av ,1, aṽ ,1, . . . , av ,m, aṽ ,m) = 0 mod I.

We remark that generating almost uniform values a·,· under the constraint above
is easily done, by choosing all but one of them at random, and setting the last
one to

aṽ ,m = −a−1
v ,m

m−1∑

i=1

av ,iaṽ ,i mod I.

In the weak multilinear map model [15,18,34], we can prove that an attacker
that has access to this simple setting of the GGH multilinear map cannot recover
a multiple of the secret element g, except with negligible probability. The def-
inition of the weak multilinear map model and the proof that an attacker can-
not recover a multiple of g can be found in the full version [16].10 This weak
multilinear-map model was used to prove security of candidate obfuscators in
[15,18], as it is supposed to capture zeroizing attacks, like the ones of [11,34]. In
the weak multilinear map model, recovering a multiple of g is considered to be
a successful attack. This is what motivates our proof that no polynomial time
adversary can recover a multiple of g in our simple setting, under this model.

4.2 Analysis of the Leaked Value

We describe in this section the information we can recover using averaging
attacks, depending on the sampling method. We will see that depending on the
sampling method, we can recover an approximation of A(z∗h/g), or an approxi-
mation of A(h/g) or even the exact value of A(h/g). In order to unify notation,
we introduce the leakage L, which will refer to A(z∗h/g) or A(h/g) depending the
method. We explain below what is the value of L for the different methods, and
how we can recover an approximation of it. In the case of the simplistic method,
we also explain how we can recover the exact value of L from its approximation
and how to use it to create a zero-testing parameter at level 2v∗.
10 The idea of the proof is the same as in [15,18], in a much simpler context (this is

based on a generalized version of the Schwartz-Zippel lemma from [34]).
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Statistical leakage. Let v ∈ A be of weight 1. We denote by [uv ] the encod-
ing [H(uv ,1, uṽ ,1, . . . , uv ,m, uṽ ,m)]. Recall that we have [ui,v ] = [ci,vz−1

v ], where
ci,v = ai,v + ri,vg for some ri,v ∈ R. So using the definition of H and the fact
that [uv ] passes the zero test, we can rewrite

[uvpzt] = [H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m)(zvzṽ )−1 · z∗hg−1]

= [H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m) · hg−1]
= H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m) · h/g.

Note that the product of the last line is in R, as it is a product of small
elements compared to q. Also, the first term is a small multiple of g so we can
divide by g. We denote by wv ∈ R the value above (i.e., the representative of
[uvpzt] with coefficients in [−q/2, q/2]). The term h/g of the product is fixed,
but the first factor H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m) depends on v: we can average
over it. We now analyze this first factor, depending on the method we choose
for generating the fresh encodings of the GGH map. We will denote by Yv the
random variable H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m).

By definition of the polynomial H, we know that Yv =
∑

ci,v ci,ṽ . Moreover,
all the ci,v are independent when i or v vary. So the ci,v ci,ṽ are centered random
variables of variance ΣvΣṽ (observe that the variance of a product of indepen-
dent centered variables is the product of their variances) and Yv is a centered
random variable of variance mΣvΣṽ (recall that H is a sum of m monomials).
We now consider several cases, depending on the choice of Σv .

Case 1 (the simplistic method). In this case, we have Σv = σ2 for all v ∈ A,
for some σ ∈ R. This means that the Yv are centered isotropic random variables
with the same variance. Let us call μ := E[A(Yv )] = mσ2 ∈ R

+ this variance. If
we compute the empirical mean of the A(Yv ), this will converge to μ and we can
bound the speed of convergence using Hoeffding’s inequality. Going back to the
variables wv = Yv · h/g, we have that E [A(wv )] = μ · A(h/g) for some μ in R

+.
Furthermore, all the A(wv ), with v of weight 1, are independent variables with
the same mean, so we can apply Hoeffding’s inequality.

Case 2 (the conservative method). In this case, we chose Σv ∼ zvzṽ . We do not
know the variance of the Yv (because the zv are secret) but we will be able to
circumvent this difficulty, by averaging over the zv ’s.

First, using the remark we made at the end of Sect. 3, we have that
Yv =

∑
ci,v ci,ṽ =

∑
c∗
i,vzvzṽ , with the c∗

i,v being independent centered isotropic
random variables with the same variance σ2 ∈ R

+. Hence, we can rewrite
Yv = Xvzvzṽ with Xv a centered isotropic variable of variance mσ2 (which
is independent of v). Unlike the previous case, we now have some zvzṽ that
contribute in Yv. However, we will be able to remove them again by averaging.

Indeed, even if all the zv satisfy [zvzṽ ] = [z∗] in Rq, this is not the case
in R, and that individually each zv is essentially11 uniform in the hypercube
11 Up to the invertibility condition in Rq.
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[−q/2, q/2]n, in particular it is isotropic. For our analysis, let us treat the zvzṽ
as random variables in R, that are isotropic and independent when v varies.
The isotropy follows from the fact that the two factors are isotropic. The inde-
pendence assumption is technically incorrect, yet as the only dependence are of
arithmetic nature over Rq and that the elements in question are large, one does
not expect the correlation to be geometrically visible.

We will call μz := E [A(zvzṽ )] their variance. Recall that as the zvzṽ are
isotropic, μz is in R

+. While the independence assumption may be technically
incorrect, experiments confirm that the empirical mean E [A(zvzṽ )] does indeed
converge to some μz ∈ R

+ as the number of sample grows, and more precisely
it seems to converge as μz · (1 + ε) where ε ∈ KR satisfies ‖ε‖∞ = Õ(

√
1/|A|),

as predicted by the Hoeffding bound (results of the experiments are given in the
full version [16]).

Assuming that the Xv are independent of the zvzṽ ,12 we finally obtain

E[A(Yv )] = E[A(Xv )]E[A(zvzṽ )] = mσ2μz.

We denote by μ = mσ2μz this value. As in the previous case, the variables
A(wv ) are independent (when v has weight 1) and have the same mean

E [A(wv )] = μ · A(h/g),

with μ ∈ R
+.

Case 3 (the exponential and aggressive methods). In these methods, we can again
write Yv = Xvzvzṽ with Xv a centered isotropic variable of variance mσ2 for
some σ ∈ R

+, independent of v. However, unlike the previous case, the zvzṽ are
not isotropic variables anymore and therefore the z’s do not “average-out”.

In the exponential method, the identity zvzṽ = z∗ holds over R (where
z∗ =

∏
i zi ∈ R is a representative of [z∗]), hence, zvzṽ is constant when v

varies, and we have

E [A(wv )] = μ · A(hz∗/g),

for some scalar μ ∈ R
+.

In the aggressive method, we have zvzṽ = z∗ ·z̃i ·zi for some 1 ≤ i ≤ �, with z∗

the representative of [z∗], zi the representative of [zi] and z̃i the representative
of [z−1

i ] with coefficients in [−q/2, q/2]. The element z∗ is fixed, but, as in the
conservative case, we can see the z̃i · zi as isotropic variables. Assuming they are
independent, we then have E [A(zvzṽ )] = μzA(z∗) for some scalar μz ∈ R

+. And
we again have

E [A(wv )] = μ · A(hz∗/g),

for some scalar μ ∈ R
+.

12 We can view the variables c∗
i,v as being independent of the variables zv because

the standard deviation of the Gaussian distribution is larger than the smoothing
parameter (see Lemma 1).
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Conclusion on the average. To conclude, we have argued that in all methods,

E [A(wv )] = μ · L
for some scalar μ ∈ R

+, where the leaked variable L depends on the sampling
method in the following way:

• L = A(h/g) for the simplistic and the conservative methods.
• L = A(hz∗/g) for the exponential and the aggressive methods.

Now, using the fact that the random variables A(wv ) are independent for
different v ∈ A of weight 1, we can compute their empirical mean and Hoeffding’s
inequality will allow us to bound the distance to the theoretical mean. In the
following we assume that we know μ.13

Relative error of the leakage. Compute

W =
2

|A|
∑

v∈A
v of weight 1

A(wv )

the empirical mean of the random variables A(wv ). This is an approximation of
μ · L. We know that the coefficients of the random variable wv are less than q,
so the coefficients of A(wv ) are less that nq2. By applying Hoeffding’s inequality
in R (Corollary 1) with ε = 1/n, B = nq2 and m = |A|/2, we have that ‖W −
μ · L‖∞ < nq2√

8 lnn√
|A| (except with probability at most 2/n). As the coefficients

of μL are of the order of nq2, we have a relative error δ <
√

8 ln n/|A| for each
coefficient of μL. As μ is known, this means that we know L with a relative error
at most

√
8 ln n/|A|.14

Unfortunately, we cannot directly recover the exact value of L because its
coefficients are not integers. When L = A(hz∗/g), i.e., for the exponential and
aggressive methods, we do not know how to use this approximation of L to
recover the exact value of L.15 When L = A(h/g), i.e., for the simplistic and
conservatives methods, we can circumvent this difficulty. The idea is to trans-
form our approximation of L into an approximation of an element r ∈ R, with
coefficients that are integers of logarithmic bit-size. Indeed, if we have an approx-
imation of r with error less that 1/2 we can round its coefficients and recover
the exact value of r. And we can get such an approximation using a polynomial
13 The value of the scalar μ can be obtained from the parameters of the multilinear

maps. If we do not want to analyze the multilinear map, we can guess an approxi-
mation of μ with a sufficiently small relative error, by an exhaustive search.

14 Again, if we do not know μ, we can guess an approximation of μ with relative error
at most

√
8 ln n/|A| (so that it has no influence on our approximation of L), with

an exhaustive search.
15 Note that if we recover the exact value of A(hz∗/g), then its denominator is a multiple

of g and this is considered as a success of the attacker in the weak multilinear map
model.
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number of samples because the coefficients we want to recover have logarithmic
bit-size. This is what we explain in next subsection. Unfortunately, we will see
that for the conservative method, the number of samples we need to be able to
round r to its exact value is not compatible with the constraint we had on |A|
for being able to generate the zv .

From the leakage to a complete attack against the GGH map. In this
section, we explain how we can recover the exact value of A(h/g), when L =
A(h/g) and we have enough samples. We then show how we can use this exact
value to construct a zero-testing parameter at level 2v∗.

Recovering L exactly when L = A(h/g). In the following, we assume that
we have an approximation of A(h/g) with relative error δ <

√
8 ln n/|A|

and we want to recover the exact value of A(h/g). Let u be any encod-
ing at level v∗ that passes the zero test (we can take u to be one of the
[uv ] = [H(uv ,1, uṽ ,1, . . . , uv ,m, uṽ ,m)]). We have that [u · pzt] = c · h/g ∈ R
for some small multiple c of g. In particular, the coefficients of c are somehow
small16 and are integers. Using our approximation W of μ ·A(h/g) with relative
error δ plus the fact that we know μ and c ·h/g, we can recover an approximation
of A(c) with relative error at most δ · n2 by computing A(c · h/g) · μ · W−1.

The coefficients of A(c) are integers and are less than m2n2E4. Indeed, c =
H(cv ,1, cṽ ,1, . . . , cv ,m, cṽ ,m) for some v and we have ‖cv ,i‖ ≤ E for all v’s and i’s.
So we know that ‖c‖ ≤ mn1/2E2 and we get the desired bound on ‖A(c)‖∞.
Hence, if we have an approximation of the coefficients of A(c) with relative
error at most 1

2m2n2E4 , the absolute error is less that 1/2 and we can round
the coefficients to recover A(c) exactly. We can then recover A(h/g) exactly by
computing A(c · h/g)/A(c).

Putting together the conditions we got on the parameters, we have δ <√
8 lnn
|A| and we want δ ·n2 < 1

2m2n2E4 to be able to recover A(c). This is satisfied

if
√

8 lnn
|A| < 1

2m2n4E4 , i.e., |A| > 32E8m4n8 lnn.

To conclude, if |A| > 32E8m4n8 ln n, we can recover A(g/h) ∈ K exactly.17

In Sect. 4.3, we compare this constraint to the ones we had for the samplings
methods. We will see that for the simplistic method, our constraints are compat-
ible, so we can perform the attack. But this is not the case with the conservative
method.

Using A(h/g) to create a zero testing parameter at a forbidden level. We present
here a possible way of using the recovered value A(h/g). Note that in current
obfuscation model (for instance the weak multilinear map model of [18] or [15]),
recovering A(h/g) is already considered as a success for the attacker. Indeed,
its denominator is a multiple of A(g) = gḡ so in particular we have recovered a
16 Recall that q may be exponentially large but we assumed that the numerator of a

top level encoding remains polynomial in n.
17 Note that this bound does not depends on q but only on E. This is why our attack

still works even if q is exponential in n, as long as E remains polynomial in n.
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multiple of g, which is considered as a success of the attacker in these models.18

Moreover, even if we do not consider that recovering a multiple of g is bad news,
we present here a way of using A(h/g) to create a zero-testing parameter at a
higher level than v∗ (here we create a zero-testing parameter at level 2v∗).

First, note that the complex conjugation ·̄ in R is compatible with Rq. Indeed,
let c, r ∈ R, we have c + qr = c + qr = c + qr (because ·̄ is R-linear). So
c + qr ≡ c mod q and we can define the operation ·̄ in Rq by [r] = [r]. We will
use this to construct our zero-testing parameter. Let again [u] be an encoding
of zero at level v∗ and write [u] = [c · (z∗)−1] where c is a small multiple of g.
Compute

p′
zt = [u · p2zt · pzt · A(h/g)−1]

=
[

c

z̄∗ · (z∗)2h2

g2
· z̄∗h

g
· gg

hh

]

=
[
(z∗)2 · (hc̄)

g

]

.

As hc̄ is small compared to q, this is likely to give us a zero-testing parameter at
level 2v∗. To be sure that we can indeed zero-test at level 2v∗, we should check
that the noise obtained at that level, when multiplied by hc̄, does not become
larger than q.

A sufficient condition for this attack to succeed is that

B + 3 + 3κ(1/2 + γ + νL) + η� ≤ Q/4 (15)

which is a variation on Inequality (9) where κ has been replaced by 3κ.
Note that the typical choice of q in [15,17] includes quite some extra margin

compared to our condition (9). But even if q is chosen tightly following Inequal-
ity (9), it is not clear that the attack is prevented. Indeed, these conditions (9)
and (15) are derived from the worst case inequality (1) (‖xy‖ ≤ √

n · ‖x‖ · ‖y‖),
and may therefore be far from tight in the average case. In fact, ‖xy‖/(‖x‖ ·‖y‖)
can be arbitrarily small for well chosen x and y.

Determining whether there exist parameters that guarantee that legitimate
zero-tests at level v∗ almost always succeed while fraudulent zero-tests at level
2v∗ almost always fail would require a quite refined analysis of the distributions
at hand, which is beyond the scope of this work. Indeed, we find it preferable to
block this type of attacks by more robust means.

4.3 Noise Analysis of the Leakage

We sum up in this section the leakage that we can obtain and with which pre-
cision, depending on the sampling methods presented in Sect. 3.

18 For this to be true, we need h and g to be co-prime. But as the ideal 〈g〉 is prime,
this will be true unless h is a multiple of g. And the case where h is a multiple of g
is not a problem, as we can easily recover multiples of h (and so multiples of g).
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The simplistic method. In this method, we have L = A(h/g). Recall that in
this case, we can recover the exact value of L if � > 16E8m4n8 ln n (using the
fact that |A| = 2�). But in this method, we had E = O(n1.5+ε), for any ε > 0.
Hence, taking � = Θ(n20+8εm4 ln n) satisfies the conditions for generating the
parameters plus our condition � > 16E8m4n8 ln n. To conclude, when using
the simplistic method with some choice of the parameters, we can recover the
exact value A(h/g) and use it to construct a forbidden zero-testing parameter at
level 2v∗. Note that recovering A(h/g) also means that we recovered a multiple
of g. However, we proved that in the weak multilinear map model, no polynomial
time attacker could recover a multiple of g. This proves that the averaging attack
described above is not captured by the weak multilinear map model.

Remark. For this sampling method, as Σv ∼ 1, we do not need to average over
the v, so we could also have � = 2 as long as we have enough samples for each v.

The exponential method. In this method, we have L = A(z∗h/g). We can recover
an approximation of μL with relative error at most

√
8 lnn
|A| . We do not know if

it is possible to recover L exactly.

The conservative method revisited. In this method, we have L = A(h/g), we
can recover an approximation of μL with relative error at most

√
8 lnn
|A| accord-

ing to our heuristic analysis. While the independence condition between the
A(zvzṽ ) for applying Hoeffding’s bound may not be satisfied, we show that this
rate of convergence seems correct in practice (see the experiments in the full
version [16]).

Recall that if � > 16E8m4n8 ln n, then we can recover A(h/g) exactly. But
for the sampling method to work, we need to take E = Θ(n4.5

√
�). Hence, the

condition � > 16E8m4n8 ln n can be rewritten

� > Θ(n44�4m4 ln n).

This condition cannot be satisfied, so we cannot have enough samples for our
attack when using this sampling method. And all we get is an approximation of
μA(h/g). Nevertheless, the only thing that prevents the full attack is the size
of the parameters we have to choose in order to be able to generate the fresh
encodings.

The aggressive method. In this method, we have L = A(z∗h/g). We can recover
an approximation of μL with relative error at most

√
8 lnn
|A| . We do not know if

it is possible to recover L exactly.

4.4 Conclusion

We give in Table 1 a summary of the parameters used for the different sampling
methods, and of the resulting leakage. The column’constraints’ specifies possible
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constraints on the parameters or on the atoms set A, that arise when using this
sampling method. Recall that due to the correctness bound (9), there is always a
constraint on the modulus q, so we do not mention it in the column ‘constraints’.
This constraint on q can be obtained from the columns γ, η and ν, using the
formula log q ≥ 4 log(n)(3 + κ/2 + κγ + κνL + η�) + 4 log(m).

Table 1. Summary of the leakage analysis, depending on the sampling method. This
includes our new method, sketched in Sect. 5. We recall that, according to correctness
bound (9), the modulus q must satisfy log q ≥ 4 log(n)(3+κ/2+κγ+κνL+η�)+4 log(m).

Sampling method γ η ν leakage L full attack? constraints

Simplistic [17] 1.5 + ε 0 0 A(h/g) yes none

Exponential [17] 2.5 2.5 0 A(z∗h/g) no none

Conservative [15] 6 0 0 A(h/g) no n ≥ 4�

Conservative (revisited) 4.5 0 0.5 A(h/g) no none

Aggressive [15] 7.5 0 0 A(z∗h/g) no structure of A
Compensation (Sec. 5) 1.5 + 1/κ + ε 0 0 1 no none

We have seen that the leakage obtained in the conservative method is the
same as the one of the unprotected scheme (the simplistic method). However,
in the case of the conservative method, the number of available samples is not
sufficient to complete the attack, as it is the case in the simplistic method.
This limitation on the number of samples comes from some constraints in the
sampling procedure and seems a bit accidental, we do not find this version of
the countermeasure fully satisfactory.

We can also question the security of the other methods (exponential and
aggressive), which leak an approximation of A(hz∗/g), related to secret values.
More precisely, one could wonder whether this noisy leakage could be combined
with the knowledge of pzt = [hz∗g−1] to mount an attack. As this problem does
not look like any traditional (ideal) lattice problem, we fail to conclude beyond
reasonable doubt that it should be intractable. We would find it more rational
to make the leakage unrelated to secret parameters. In the following section, we
propose such a design, which is simple, and leads to better parameters.

5 The Compensation Method

In this section, we propose a new sampling method which is designed so that the
leakage L that an attacker can recover by using the averaging attack described
above, reveals no information about secret parameters of the GGH map. Never-
theless, we note that even if the attack described above does not apply directly
to this method, other averaging attacks may be able to leak secret information.
An idea could be to fix some encodings and average over the others.
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Discussion on design. We have seen that choosing different covariance parame-
ters Σv at different levels v can in fact make the leak worse, as the attacker can
choose to average them out. We also remark that the parameters [zv ] can be pub-
licly re-randomized without affecting anything else, in particular without affect-
ing the covariance Σv of the numerator of the encodings. Indeed, we can choose
random invertible elements [ẑi] ∈ R×

q , and apply the following transformation
to all encodings ev at level v, as well as to the zero-testing parameter [pzt]:

[ev ] �→
[
∏

i∈v

ẑ−1
i

]

· [ev ], [pzt] �→
[

∏

i∈v�

ẑi

]

[pzt].

This means that the relation between the covariance Σv and the denominators
zv can be publicly undone while maintaining functionality.

The compensation method. We therefore proceed to set Σv = Σ for all levels v,
and to choose Σ independently of the zv . Doing so, we observe that the leakage
L will generically be:

L ∼ Σκ · A(h/g). (16)

We then choose Σ ∼ A(g/h)1/κ, ensuring L ∼ 1: the leakage is made constant,
unrelated to any secret. We insist nevertheless that, as the previous methods,
this method comes with no formal security argument. We also warn that we have
not thoroughly explored more general leakage attacks, varying the zero-tested
polynomials or keeping some encodings fixed.

It remains to see how short one can efficiently sample encodings following this
choice. To get tighter bounds, we look at the conditioning number (or distortion)
δ(

√
Σ) = max(σi(

√
Σ))

min(σi(
√

Σ))
, where σi runs over all embeddings. One easily verifies the

following properties:

δ(A(x)) = δ(x)2 (17)

δ(xk) = δ(x)|k| for any k ∈ R, (18)
δ(xy) ≤ δ(x)δ(y). (19)

If a variable x ∈ KR has independent continuous Gaussian coefficients of
parameter 1, then its embeddings are (complex) Gaussian variables of parameter
Θ(

√
n), and it holds with constant probability that

∀i, Ω(1) ≤ |σi(x)| ≤ O(
√

n log n). (20)

Indeed, the right inequality follows from classic tail bounds on Gaussian. For the
left inequality, consider that |σi(x)| ≥ max(|�(σi(x))|, |�(σi(x))|), where both
the real and imaginary parts are independent Gaussian of parameter Θ(

√
n):

each part will be smaller than Θ(1) with probability at most 1/
√

2n. By inde-
pendence, |σi(x)| ≤ Θ(1) holds with probability at most 1/2n for each i, and
one may conclude by the union bound.
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By scaling (and plausibly ignoring discreteness issues since g and h are sam-
pled above the smoothing parameter of Z

n) we can therefore assume, using
rejection sampling over h and g, that δ(g), δ(h) ≤ O(

√
n log n) , and therefore

δ(
√

Σ) = δ(A(g/h))1/2κ ≤ (δ(g)δ(h))1/κ ≤ O(n log n)1/κ.

This allows us to scale Σ so that:

• ‖g/
√

Σ‖ ≤ o(1/
√

log n), so that we can sample efficiently via Theorem 2.
• E =

√
n·‖√Σ‖ ≤ √

n·‖g‖·δ(√Σ)·ω(
√

log n) = O(n1.5+1/κ+ε): the size of the
numerators of the encodings is barely worse than in the simplistic method,
and significantly better than in all other methods.

Acknowledgments. The authors are grateful to Alex Davidson, Nico Döttling and
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Abstract. This paper is devoted to analyzing the variant of Regev’s
learning with errors (LWE) problem in which modular reduction is omit-
ted: namely, the problem (ILWE) of recovering a vector s ∈ Z

n given
polynomially many samples of the form (a, 〈a, s〉 + e) ∈ Z

n+1 where a
and e follow fixed distributions. Unsurprisingly, this problem is much
easier than LWE: under mild conditions on the distributions, we show
that the problem can be solved efficiently as long as the variance of e
is not superpolynomially larger than that of a. We also provide almost
tight bounds on the number of samples needed to recover s.

Our interest in studying this problem stems from the side-channel
attack against the BLISS lattice-based signature scheme described by
Espitau et al. at CCS 2017. The attack targets a quadratic function
of the secret that leaks in the rejection sampling step of BLISS. The
same part of the algorithm also suffers from a linear leakage, but the
authors claimed that this leakage could not be exploited due to signa-
ture compression: the linear system arising from it turns out to be noisy,
and hence key recovery amounts to solving a high-dimensional problem
analogous to LWE, which seemed infeasible. However, this noisy linear
algebra problem does not involve any modular reduction: it is essentially
an instance of ILWE, and can therefore be solved efficiently using our
techniques. This allows us to obtain an improved side-channel attack on
BLISS, which applies to 100% of secret keys (as opposed to ≈7% in the
CCS paper), and is also considerably faster.
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1 Introduction

Learning with Errors. Regev’s learning with errors problem (LWE) is the
problem of recovering a uniformly random vector s ∈ (Z/qZ)n given polynomi-
ally many samples of the form (a, 〈a, s〉 + e mod q), with a uniform in (Z/qZ)n,
and e sampled according to a fixed distribution over Z/qZ (typically a dis-
crete Gaussian). Regev showed [43] that for suitable parameters, this prob-
lem is as hard as worst-case lattice problems, and is polynomial-time equiva-
lent to its decision version, which asks to distinguish the distribution of tuples
(a, 〈a, s〉 + e mod q) as above from the uniform distribution over (Z/qZ)n+1.
These results are a cornerstone of modern lattice-based cryptography, which is
to a large extent based on LWE and related problems.

Many variants of the LWE problem have been introduced in the literature,
mostly with the goal of improving the efficiency of lattice-based cryptography.
For example, papers have been devoted to the analysis of LWE when the error e
has a non-Gaussian distribution and/or is very small [6,16,38], when the secret
s is sampled from a non-uniform distribution [2,3,5,7,12], or when the vectors a
are non-uniform [20,23]. A long line of research has considered variants of LWE in
which auxiliary information is provided about the secret s [12,15,21,31]. Exten-
sions of LWE over more general rings have also been extensively studied, start-
ing from the introduction of the Ring-LWE problem [29,36,37,46]. Yet another
notable variant of LWE is the learning with rounding (LWR) problem [4,8,9],
in which the scalar product 〈a, s〉 is partly hidden not by adding some noise e,
but by disclosing only its most significant bits.

Recently, further exotic variants have emerged in association with schemes
submitted to the NIST postquantum cryptography standardization process. One
can mention for example Compact-LWE [33,34], which has been broken [11,30,
48]; learning with truncation, considered in pqNTRUSign [24]; and Mersenne
variants of Ring-LWE, introduced for ThreeBears [22] and Mersenne–756839 [1].

The ILWE Problem. In this paper, we introduce a simpler variant of LWE
in which computations are carried out over Z rather than Z/qZ, i.e. without
modular reduction. More precisely, we consider the problem which we call ILWE
(“integer LWE”) of finding a vector s ∈ Z

n given polynomially many samples of
the form (a, 〈a, s〉 + e) ∈ Z

n+1, where a and e follow fixed distributions on Z.
This problem may occur more naturally in statistical learning theory or

numerical analysis than it does in cryptography; indeed, contrary to LWE, it
is usually not hard. It can even be solved efficiently when the error e is much
larger than the inner product 〈a, s〉 (but not superpolynomially larger), under
relatively mild conditions on the distributions involved.

The fact that standard learning techniques like least squares regression should
apply to this problem can be regarded as folklore, and is occasionally mentioned
in special cases in the cryptographic literature (see e.g. [20, Sect. 7.6]). The main
purpose of this work is to give a completely rigorous treatment of this question,
and in particular to analyze the number of samples needed to solve ILWE both
in an information-theoretic sense and using concrete algorithms.
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ILWE and Side-Channel Attacks on BLISS. Our main motivation for
studying the ILWE problem is a side-channel attack against the BLISS lattice-
based signature scheme described by Espitau et al. at CCS 2017 [19].

BLISS [17] is one of the most prominent, efficient and widely implemented
lattice-based signature schemes, and it has received significant attention in terms
of side-channel analysis. Several papers [13,19,40] have pointed out that, in avail-
able implementations, certain parts of the signing algorithm can leak sensitive
information about the secret key via various side-channels like cache timing,
electromagnetic emanations and secret-dependent branches. They have shown
that this leakage can be exploited for key recovery.

We are in particular interested in the leakage that occurs in the rejection
sampling step of BLISS signature generation. Rejection sampling is an essential
element of the construction of BLISS and other lattice-based signatures follow-
ing Lyubashevsky’s “Fiat–Shamir with aborts” framework [35]. Implementing it
efficiently in a scheme using Gaussian distributions, as is the case for BLISS, is
not an easy task, however, and as observed by Espitau et al., the optimization
used in BLISS turns out to leak two functions of the secret key via side-channels:
an exact, quadratic function, as well as a noisy, linear function.

The attack proposed by Espitau et al. relies only on the quadratic leakage,
and as a result uses very complex and computationally costly techniques from
algorithmic number theory (a generalization of the Howgrave-Graham–Szydlo
algorithm for solving norm equations). In particular, not only does the main,
polynomial-time part of their algorithm takes over a CPU month for standard
BLISS parameters, technical reasons related to the hardness of factoring make
their attack only applicable to a small fraction of BLISS secret key (around
7%; these are keys satisfying a certain smoothness condition). They note that
using the linear leakage instead would be much simpler if the linear function
was exactly known, but cannot be done due to its noisy nature: recovering the
key then become a high-dimensional noisy linear algebra problem analogous to
LWE, which should therefore be hard.

However, the authors missed an important difference between that linear
algebra problem and LWE: the absence of modular reduction. The problem can
essentially be seen as an instance of ILWE instead, and our analysis thus shows
that it is easy to solve. This results in a much more computationally efficient
attack taking advantage of the leakage in BLISS rejection sampling, which more-
over applies to all secret keys.

Our Contributions. We propose a detailed theoretical analysis of the ILWE
problem and show how it can be applied to the side-channel attack on BLISS.
We also provide numerical simulations showing that our proposed algorithms
behave in a way consistent with the theoretical predictions.

On the theoretical side, our first contribution is to prove that, in an
information-theoretic sense, solving the ILWE problem requires at least m =
Ω

(
(σe/σa)

)2 samples from the ILWE distribution when the error e has stan-
dard deviation σe, and the coefficients of the vectors a in samples have standard
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deviation σa. We show this by estimating the statistical distance between the
distributions arising from two distinct secret vectors s and s′. In particular, the
ILWE problem is hard when σe is superpolynomially larger than σa, but can be
easy otherwise, including when σe exceeds σa by a large polynomial factor.

We then provide and analyze concrete algorithms for solving the problem
in that case. Our main focus is least squares regression followed by rounding.
Roughly speaking, we show that this approach solves the ILWE problem with m
samples when m ≥ C ·(σe/σa)2 log n for some constant C (and is also a constant
factor larger than n, to ensure that the noise-free version of the corresponding
linear algebra problem has a unique solution, and that the covariance matrix
of the vectors a is well-controlled). Our result applies to a very large class of
distributions for a and e including bounded distributions and discrete Gaussians.
It relies on subgaussian concentration inequalities.

Interestingly, ILWE can be interpreted as a bounded distance decoding prob-
lem in a certain lattice in Z

n (which is very far from random), and the least
squares approach coincides with Babai’s rounding algorithm for the approximate
closest vector problem (CVP) when seen through that lens. As a side contribu-
tion, we also show that even with a much stronger CVP algorithm (including
an exact CVP oracle), one cannot improve the number of samples necessary to
recover s by more than a constant factor. And on another side note, we also
consider alternate algorithms to least squares when very few samples are avail-
able (so that the underlying linear algebra system is not even full-rank), but the
secret vector is known to be sparse. In that case, compressed sensing techniques
using linear programming [14] can solve the problem efficiently.

After this theoretical analysis, we concretely examine the noisy linear algebra
problem arising from the linear part of the BLISS rejection sampling leakage, and
show that is strongly resembles an ILWE problem, which allows us to estimate
the number of side-channel traces needed to recover the secret key.

Simulation results both for the vanilla ILWE problem and the BLISS attack
are consistent with the theoretical predictions (only with better constants). In
particular, we obtain a much more efficient attack on BLISS than the one in [19],
which moreover applies to 100% of possible secret keys. The only drawback is
that our attack requires a larger number of traces (around 20000 compared to
512 in [19] for BLISS–I parameters), and even that is to a large extent coun-
terbalanced by the fact that we can easily handle errors in the values read off
from side-channel traces, whereas Espitau et al. need all their leakage values to
be exact.

2 Preliminaries

2.1 Notation

For r ∈ R, we denote by �r� the nearest integer to r (rounding down for half-
integers), and by �r� the largest integer less or equal to r. For a vector x =
(x1, . . . , xn) ∈ R

n, the p-norm ‖x‖p of x, p ∈ [1,∞), is given by ‖x‖p =
(|x1|p +
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· · · + |xn|p)1/p, and the infinity norm by ‖x‖∞ = max
(|x1|, . . . , |xn|). For a

matrix A ∈ R
m×n, the operator norm ‖A‖opp of A with respect to the p-norm,

p ∈ [1,∞], is given by:

‖A‖opp = sup
x∈Rn\{0}

‖Ax‖p

‖x‖p
= sup

‖x‖p=1

‖Ax‖p.

For any random variable X, we denote by E[X] its expectation and by Var(X) =
E[X2] − E[X]2 its variance. We write X ∼ χ to denote that X follows the
distribution χ. If χ is a discrete distribution over some set S, then for any
s ∈ S, we denote by χ(s) the probability that a sample from χ is equal to s. In
particular, if f : S → R is any function and X ∼ χ, we have:

E[f(s)] =
∑

s∈S

f(s) · χ(s).

Similarly, the statistical distance Δ(χ, χ′) of two distributions χ, χ′ over the
set S is:

Δ(χ, χ′) =
1
2

∑

s∈S

∣
∣ χ(s) − χ(s′)

∣
∣.

Let ρ(x) = exp(−πx2) for all x ∈ R. We define ρc,σ(x) = ρ
(
(x − c)/σ

)
the

Gaussian function of parameters c, σ. For any subset S ⊂ R such that the sum
converges, we let:

ρc,σ(S) =
∑

s∈S

ρc,σ(s).

The discrete Gaussian distribution Dc,σ centered at c and of parameter σ is the
distribution on Z defined by

Dc,σ(x) =
ρc,σ(x)
ρc,σ(Z)

=
exp

( − π(x − c)2/σ2
)

ρc,σ(Z)

for all x ∈ Z. We omit the subscript c in ρc,σ and Dc,σ when c = 0.

2.2 LWE over the Integers

It is possible to define a variant of the LWE problem “over the integers”, i.e.
without modular reduction. We call this problem ILWE (“integer-LWE”), and
define it as follows. The problem arising from the scalar product leakage in the
BLISS rejection sampling is essentially of that form.

Definition 2.1 (ILWE Distribution). For any vector s ∈ Z
n and any two

probability distributions χa, χe over Z, the ILWE distribution Ds,χa,χe
associated

with those parameters (which we will simply denote Ds for short when χa, χe are
clear) is the probability distribution over Zn ×Z defined as follows: samples from
Ds,χa,χe

are of the form

(a, b) =
(
a, 〈a, s〉 + e

)
with a ← χn

a and e ← χe.
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Definition 2.2 (ILWE Problem). The ILWE problem is the computational
problem parametrized by n,m, χa, χe in which, given m samples {(ai, bi)}1≤i≤m

from a distribution of the form Ds,χa,χe
for some s ∈ Z

n, one is asked to recover
the vector s.

2.3 Subgaussian Probability Distributions

In this paper, the distributions χa, χe we will consider will usually be of mean
zero and rapidly decreasing. More precisely, we will assume that those distribu-
tions are subgaussian. The notion of a subgaussian distribution was introduced
by Kahane in [27], and can be defined as follows.

Definition 2.3. A random variable X over R is said to be τ -subgaussian for
some τ > 0 if the following bound holds for all s ∈ R:

E
[
exp(sX)

] ≤ exp
(τ2s2

2

)
. (2.1)

A τ -subgaussian probability distribution is defined in the same way.

This section collects useful facts about subgaussian random variables; most
of them are well-known, and presented mostly in the interest of a self-contained
and consistent presentation (as definitions of related notions tend to vary slightly
from one reference to the next).

For a subgaussian random variable X, there is a minimal τ such that X is τ -
subgaussian. This τ is sometimes called the subgaussian moment of the random
variable (or of its distribution).

As expressed in the next lemma, subgaussian distributions always have mean
zero, and their variance is bounded by τ2.

Lemma 2.4. A τ -subgaussian random variable X satisfies:

E[X] = 0 and E[X2] ≤ τ2.

Proof. For s around zero, we have:

E[exp(sX)] = 1 + sE[X] +
s2

2
E[X2] + o(s2).

Since, on the other hand, exp(s2τ2/2) = 1 + s2

2 τ2 + o(s2), the result follows
immediately from (2.1). ��

Many usual distributions over Z or R are subgaussian. This is in particular
the case for Gaussian and discrete Gaussian distributions, as well as all bounded
probability distributions with mean zero.
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Lemma 2.5. The following distributions are subgaussian.

(i) The centered normal distribution N (0, σ2) is σ-subgaussian.
(ii) The centered discrete Gaussian distribution Dσ of parameter σ is σ√

2π
-

subgaussian for all σ ≥ 0.283.
(iii) The uniform distribution Uα over the integer interval [−α, α] ∩ Z is α√

2
-

subgaussian for α ≥ 3.
(iv) More generally, any distribution over R of mean zero and supported over a

bounded interval [a, b] is
(

b−a
2

)
-subgaussian.

Moreover, in the cases (i)–(iii) above, the quotient τ ≥ 1 between the subgaussian
moment and the standard deviation satisfies:

(i) τ = 1;
(ii) τ <

√
2 assuming σ ≥ 1.85;

(iii) τ ≤ √
3/2

respectively.

Proof. See the full version of this paper [10]. ��
The main property of subgaussian distributions is that they satisfy a very

strong tail bound.

Lemma 2.6. Let X be a τ -subgaussian distribution. For all t > 0, we have

Pr[X > t] ≤ exp
(

− t2

2τ2

)
. (2.2)

Proof. Fix t > 0. For all s ∈ R we have, by Markov’s inequality:

Pr[X > t] = Pr[exp(sX) > est] ≤ E[exp(sX)]
est

since the exponential is positive. Using the fact that X is τ -subgaussian, we get:

Pr[X > t] ≤ exp
(s2τ2

2
− st

)

and the right-hand side is minimal for s = t/τ2, which exactly gives (2.2). ��
The following result states that a linear combination of independent subgaus-

sian random variables is again subgaussian.

Lemma 2.7. Let X1, . . . , Xn be independent random variables such that Xi is
τi-subgaussian. For all μ1, . . . , μn ∈ R, the random variable X = μ1X1 + · · · +
μnXn is τ -subgaussian with:

τ2 = μ2
1τ

2
1 + · · · + μ2

nτ2
n.
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Proof. Since the Xi’s are independent, we have, for all s ∈ R:

E[exp(sX)] = E

[
exp

(
s(μ1X1 + · · · + μnXn)

)]

= E

[
exp(μ1sX1) · · · exp(μnsXn)

]
=

n∏

i=1

E
[
exp(μisXi)

]
.

Now, since Xi is τi-subgaussian, we have

E
[
exp(μisXi)

] ≤ exp
(s2(μiτi)2

2

)

for all i. Therefore:

E[exp(sX)] ≤
n∏

i=1

exp
(s2(μiτi)2

2

)
= exp

(s2τ2

2

)

with τ2 = μ2
1τ

2
1 + · · · + μ2

nτ2
n as required. ��

The previous result shows that the notion of a subgaussian random variable
has a natural extension to higher dimensions.

Definition 2.8. A random vector x in R
n is called a τ -subgaussian random

vector if for all vectors u ∈ R
n with ‖u‖2 = 1, the inner product 〈u,x〉 is a

τ -subgaussian random variable.

It clearly follows from Lemma 2.7 that if X1, . . . , Xn are independent
τ -subgaussian random variables, then the random vector x = (X1, . . . , Xn) is
τ -subgaussian. In particular, if χ is a τ -subgaussian distribution, then a random
vector x ∼ χn is τ -subgaussian. A nice feature of subgaussian random vectors is
that the image of such a random vector under any linear transformation is again
subgaussian.

Lemma 2.9. Let x be a τ -subgaussian random vector in R
n, and A ∈ R

m×n.
Then the random vector y = Ax is τ ′-subgaussian, with τ ′ = ‖AT ‖op2 · τ .

Proof. Fix a unit vector u0 ∈ R
m. We want to show that the random variable

〈u0,y〉 is τ ′-subgaussian. To do so, first observe that:

〈u0,y〉 = 〈ATu0,x〉 = μ〈u,x〉

where μ = ‖ATu0‖2, and u = 1
μATu0 is a unit vector of R

n. Since x is τ -
subgaussian, we know that the inner product 〈u,x〉 is a τ -subgaussian random
variable. As a result, by Lemma 2.7 in the trivial case of a single variable, we
obtain that 〈u0,y〉 = μ〈u,x〉 is

(|μ|τ)
-subgaussian. But by definition of the

operator norm, |μ| ≤ ‖AT ‖op2 , and the result follows. ��
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3 Information-Theoretic Analysis

A first natural question one can ask regarding the ILWE problem is how hard it
is in an information-theoretic sense. In other words, given two vectors s, s′ ∈ Z

n,
how close are the ILWE distributions Ds,Ds′ associated to s and s′, or equiva-
lently, how many samples do we need to distinguish between those distributions?

In this section, we show that, at least when the error distribution χe is
either uniform or Gaussian, the statistical distance between Ds and Ds′ admits
a bound of the form O

(
σa

σe
‖s − s′‖)

. In particular, distinguishing between those
distributions with constant success probability requires

Ω

(
1

‖s − s′‖2
(σe

σa

)2
)

samples, and the distributions are statistically indistinguishable when σe is
superpolynomially larger than σa. To see this, we first give a relatively simple
expression for the statistical distance.

Lemma 3.1. The statistical distance between Ds and Ds′ is given by:

Δ(Ds,Ds′) = E
[
Δ(χe, χe − 〈a, s − s′〉)],

where χe + t denotes the translation of χe by the constant t, and the expectation
is taken over a ← χn

a .

Proof. By definition of the statistical distance, we have:

Δ(Ds,Ds′) =
1
2

∑

(a,b)∈Zn+1

∣
∣Pr

[
(a, b) ← Ds

] − Pr
[
(a, b) ← Ds′

]∣∣ .

Now to sample from Ds, one first samples a according to χn
a , independently

sample e according to χe, and returns (a, b) with b = 〈a, s〉 + e. Therefore:

Pr
[
(a, b) ← Ds

]
= χn

a(a) · χe(b − 〈a, s〉),
and similarly for Ds′ . Thus, we can write:

Δ(Ds,Ds′) =
1
2

∑

(a,b)∈Zn+1

χn
a(a) · |χe(b − 〈a, s〉) − χe(b − 〈a, s′〉)|

=
∑

a∈Zn

χn
a(a) · 1

2

∑

b∈Z

|χe(b − 〈a, s〉) − χe(b − 〈a, s′〉)|

=
∑

a∈Zn

χn
a(a) · 1

2

∑

x∈Z

|χe(x) − χe(x + 〈a, s − s′〉)|

where the last equality is obtained with the change of variables x = b − 〈a, s〉.
We now observe that the expression

1
2

∑

x∈Z

|χe(x) − χe(x + 〈a, s − s′〉)|
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is exactly the statistical distance Δ(χe, χe − 〈a, s − s′〉), and therefore we do
obtain:

Δ(Ds,Ds′) = E
[
Δ(χe, χe − 〈a, s − s′〉)]

as required. ��
Thus, we can bound the statistical distance Δ(Ds,Ds′) using a bound on the

statistical distance between χe and a translated distribution χe + t. We provide
such a bound when χe is either uniform in a centered integer interval, or a
discrete Gaussian distribution.

Lemma 3.2. Suppose that χe is either the uniform distribution Uα in [−α, α]∩
Z for some positive integer α, or the centered discrete Gaussian distribution
Dσ with parameter σ ≥ 1.60. In either case, let σe =

√
E[χ2

e] be the standard
deviation of χe. We then have the following bound for all t ∈ Z:

Δ(χe, χe + t) ≤ C · |t|/σe

where C = 1/
√

12 in the uniform case and C = 1/
√

2 in the discrete Gaussian
case.

Proof. See the full version of this paper [10]. ��
Combining Lemmas 3.1 and 3.2, we obtain a bound of the form announced

at the beginning of this section.

Theorem 3.3. Suppose that χe is as in the statement of Lemma 3.2. Then, for
any two vectors s, s′ ∈ Z

n, the statistical distance between Ds and Ds′ is bounded
as:

Δ(Ds,Ds′) ≤ C · σa

σe
‖s − s′‖2,

where C is the constant appearing in Lemma 3.2.

Proof. Lemma 3.1 gives:

Δ(Ds,Ds′) = E
[
Δ(χe, χe − 〈a, s − s′〉)],

and according to Lemma 3.2, the statistical distance on the right-hand side is
bounded as:

Δ(χe, χe + 〈a, s − s′〉) ≤ C

σe
· ∣
∣〈a, s − s′〉∣∣.

It follows that:

Δ(Ds,Ds′) ≤ C

σe
· E

[∣
∣〈a, s − s′〉∣∣

]
≤ C

σe

√

E

[
〈a, s − s′〉2

]

where the second inequality is a consequence of the Cauchy–Schwarz inequality.
Now, for any u ∈ Z

n, we can write:

E

[
〈a,u〉2

]
= E

[ ∑

1≤i,j≤n

uiujaiaj

]
=

∑

1≤i,j≤n

uiujE[aiaj ] = σ2
a‖u‖22
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since E[aiaj ] = σ2
aδij . As a result:

Δ(Ds,Ds′) ≤ C · σa

σe
‖s − s′‖2

as required. ��
As discussed in the beginning of this section, this shows that distinguishing

between Ds and Ds′ requires Ω

(
1

‖s−s′‖2

(
σe

σa

)2
)

samples. In particular, recov-

ering s (which implies distinguishing Ds from all Ds′ for s′ �= s) requires

m = Ω
(
(σe/σa)2

)
(3.1)

samples. In what follows, we will describe efficient algorithms that actually
recover s from only slightly more samples than this lower bound.

Remark 3.4. Contrary to the results of the next section, which will apply to arbi-
trary subgaussian distributions, we cannot establish an analogue of Lemma 3.2
using only a bound on the tail of the distribution χe. For example, if χe is sup-
ported over 2Z, then Δ(χe, χe + t) = 1 for any odd t! One would presumably
need an assumption of the small-scale regularity of χe to extend the result.

4 Solving the ILWE Problem

We now turn to describing efficient algorithms to solve the ILWE problem. We
are given m samples (ai, bi) from the ILWE distribution Ds, and try to recover
s ∈ Z

n. Since s can a priori be any vector, we, of course, need at least n samples
to recover it; indeed, even without any noise, fewer samples can at best reveal an
affine subspace on which s lies, but not its actual value. We are thus interested
in the regime when m ≥ n.

The equation for s can then be written in matrix form:

b = As + e (4.1)

where A ∈ Z
m×n is distributed according to χm×n

a , e ∈ Z
m is distributed as χm

e ,
A,b are known and e is unknown.

The idea to find s will be to use simple statistical inference techniques to
find an approximate solution s̃ ∈ R

n of the noisy linear system (4.1) and to
simply round that solution coefficient by coefficient to get a candidate �s̃� =
(�s̃1�, . . . , �s̃n�) for s. If we can establish the bound:

‖s − s̃‖∞ < 1/2 (4.2)

or, a fortiori, the stronger bound ‖s − s̃‖2 < 1/2, then it follows that �s̃� = s
and the ILWE problem is solved.

The main technique we propose to use is least squares regression. Under
the mild assumption that both χa and χe are subgaussian distributions, we will
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show that the corresponding s̃ satisfies the bound (4.2) in the linear programming
setting with high probability when m is sufficiently large. Moreover, the number
m of samples necessary to establish those bounds, and hence solve ILWE, is only
a log n factor larger than the information-theoretic minimum given in (3.1) (with
the additional constraint that m should be a constant factor larger than n, to
ensure that A is invertible and has well-controlled singular values).

We also briefly discuss lattice reduction as well as compressed sensing tech-
niques based on linear programming. We show that even an exact-CVP oracle
cannot significantly improve upon the log n factor of the least squares method.
On the other hand, if the secret is known to be very sparse, compressed sensing
techniques can recover the secret even in cases when m < n, where the least
squares method is not applicable.

4.1 Least Squares Method

The first approach we consider to obtain an estimator s̃ of s is the linear, uncon-
strained least squares method: s̃ is chosen as a vector in R

n minimizing the
squared Euclidean norm ‖b − As̃‖22. In particular, the gradient vanishes at s̃,
which means that s̃ is simply a solution to the linear system:

AT As̃ = ATb.

As a result, we can compute s̃ in polynomial time (at most O(mn2)) and it is
uniquely defined if and only if AT A is invertible.

It is intuitively clear that AT A should be invertible when m is large. Indeed,
one can write that matrix as:

AT A =
m∑

i=1

aiaT
i

where the ai’s are the independent identically distributed rows of A, so the
law of large numbers shows that 1

mAT A converges almost surely to E
[
aaT

]
as

m → +∞, where a is a random variable in Z
n sampled from χn

a . We have:

E
[
(aaT )ij

]
= E[aiaj ] = δijσ

2
a,

and therefore we expect AT A to be close to mσ2
aIn for large m.

Making this heuristic argument rigorous is not entirely straightforward,
however. Assuming some tail bounds on the distribution χa, concentration of mea-
sure results can be used to prove that,with high probability, the smallest eigenvalue
λmin(AT A) is not much smaller than mσ2

a (and in particular AT A is invertible) for
m sufficiently large, with a concrete bound on m. This type of bound on the small-
est eigenvalue is exactly what we will need in the rest of our analysis.

More precisely, when χa is bounded, one can apply a form of the so-called
Matrix Chernoff inequality, such as [47, Corollary 5.2]. However, we would prefer
a result that applies to e.g. discrete Gaussian distributions as well, so we only
assume a subgaussian tail bound for χa. Such result can be derived from the
following lemma due to Hsu et al. [26, Lemma 2] (for simplicity, we specialize
their statement to ε0 = 1/4 and to the case of jointly independent vectors).



506 J. Bootle et al.

Lemma 4.1. Let χ be a τ -subgaussian distribution of variance 1 over R, and
consider m random vectors x1, . . . ,xm in R

n sampled independently according
to χm. For any δ ∈ (0, 1), we have:

Pr

[

λmin

( 1
m

m∑

i=1

xixT
i

)
< 1 − ε(δ,m) or λmax

( 1
m

m∑

i=1

xixT
i

)
> 1 + ε(δ,m)

]

< δ

where the error bound ε(δ,m) is given by:

ε(δ,m) = 4τ2

(√
8 log 9 · n + 8 log(2/δ)

m
+

log 9 · n + log(2/δ)
m

)

.

Using this lemma, one can indeed show that for χa subgaussian, λmin(AT A)
is within an arbitrarily small factor of mσ2

a with probability 1 − 2−η for m =
Ω(n + η) (and similarly for λmax).

Theorem 4.2. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be
an m×n random matrix sampled from χm×n

a . There exist constants C1, C2 such
that for all α ∈ (0, 1) and η ≥ 1, if m ≥ (C1n + C2η) · (τ4/α2) then

Pr
[
λmin

(
AT A

)
< (1 − α) · mσ2

a or λmax

(
AT A

)
> (1 + α) · mσ2

a

]
< 2−η. (4.3)

Furthermore, one can choose C1 = 28 log 9 and C2 = 29 log 2.

Proof. Let ai be the i-th row of A, and xi = 1
σa

ai. Then the coefficients of xi

follow a τ -subgaussian distribution of variance 1, and every coefficient of any of
the xi is independent from all the others, so the xi’s satisfy the hypotheses of
Lemma 4.1. Now:

1
m

m∑

i=1

xixT
i =

1
mσ2

a

m∑

i=1

aiaT
i =

1
mσ2

a

AT A.

Therefore, Lemma 4.1 shows that:

Pr
[
λmin

(
AT A

)
<

(
1−ε(2−η, m)

) ·mσ2
a or λmax

(
AT A

)
>

(
1+ε(2−η, m)

) ·mσ2
a

]
< 2−η

with ε(δ,m) defined as above. Thus, to obtain (4.3), it suffices to take m such
that ε(2−η,m) ≤ α.

The value ε(δ,m) can be written as 4τ2 · (
√

8ρ + ρ) where ρ =
(
log 9 · n +

log(2/δ)
)
/m. For the choice of m in the statement of the theorem, we necessarily

have ρ < 1 since σa ≤ τa, and hence τ4 ≥ 1. As a result, ε(δ,m) ≤ 16τ2 · √
ρ.

Thus, to obtain the announced result, it suffices to choose:

m ≥ 28τ4

α2

(
log 9 · n + log 21+η

)
,

which concludes the proof. ��
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Remark 4.3. The ratio τ between the subgaussian moment τa of χa and the
actual standard deviation σa is typically small (e.g. 1 for Gaussians,

√
3 for

uniform distributions in a centered interval, etc.), so it isn’t the important factor
in the theorem.

The asymptotic bound saying that m = Ω
(
(n + η)/α2

)
suffices to ensure

that λmin(AT A) is within a factor α of the limit mσ2
a is a satisfactory result,

but the implied constant in our theorem is admittedly rather large. This is an
artifact of our reliance on Hsu et al.’s lemma. A more refined analysis is carried
out by Litvak et al. in [32], and can in principle be used to reduce the constant
C1 in our theorem to 1+ o(1) for sufficiently large n. The authors omit concrete
constants, however, and making [32, Theorem 3.1] explicit is nontrivial.

From now on, let us suppose that the assumptions of Theorem 4.2 are satisfied
for some α ∈ (0, 1), and η equal to the “security parameter”. In particular, AT A
is invertible with overwhelming probability, and we can thus write:

s̃ = (AT A)−1 · ATb.

As discussed in the beginning of this section, we would like to bound the distance
between the estimator s̃ and the actual solution s of the ILWE problem in the
infinity norm, so as to obtain an inequality of the form (4.2). Since by definition
b = As + e, we have:

s̃ − s = (AT A)−1 · AT
(
As + e

) − s = (AT A)−1 · ATe = Me,

where M is the matrix (AT A)−1 · AT . Now suppose that all the coefficients
of e are τe-subgaussian. Since they are also independent, the vector e is a τe-
subgaussian random vector in the sense of Definition 2.8. Therefore, it follows
from Lemma 2.9 that s̃ − s = Me is τ̃ -subgaussian, where:

τ̃ = ‖MT ‖op2 · τe = τe

√
λmax(MMT ) = τe

√
λmax

(
(AT A)−1AT · A(AT A)−1

)

= τe

√
λmax

(
(AT A)−1

)
=

τe√
λmin(AT A)

.

As a result, under the hypotheses of Theorem 4.2, s̃ − s is a τe

σa

√
(1−α)m

-

subgaussian random vector, except with probability at most 2−η on the ran-
domness of the matrix A.

This bound on the subgaussian moment can be used to derive a bound with
high probability on the infinity norm as follows.

Lemma 4.4. Let v be a τ -subgaussian random vector in R
n. Then:

Pr
[‖v‖∞ > t

] ≤ 2n · exp
(

− t2

2τ2

)
.
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Proof. If we write v = (v1, . . . , vn), we have ‖v‖∞ = max(v1, . . . , vn,−v1, . . . ,
−vn). Therefore, the union bound shows that:

Pr
[‖v‖∞ > t

] ≤
n∑

i=1

Pr[vi > t] + Pr[−vi > t]. (4.4)

Now each of the random variables v1, . . . , vn,−v1, . . . ,−vn can be written as
the scalar product of v with a unit vector of R

n. Therefore, they are all
τ -subgaussian. If X is one of them, the subgaussian tail bound of Lemma 2.6
shows that Pr[X > t] ≤ exp

(− t2

2τ2

)
. Combined with (4.4), this gives the desired

result. ��
This is all we need to establish a sufficient condition for the least squares app-

roach to return the correct solution to the ILWE problem with good probability.

Theorem 4.5. Suppose that χa is τa-subgaussian and χe is τe-subgaussian, and
let (A,b = As+e) the data constructed from m samples of the ILWE distribution
Ds,χa,χe

, for some s ∈ Z
n. There exist constants C1, C2 > 0 (the same as in the

hypotheses of Theorem 4.2) such that for all η ≥ 1, if:

m ≥ 4
τ4
a

σ4
a

(C1n + C2η) and m ≥ 32
τ2
e

σ2
a

log(2n)

then the least squares estimator s̃ = (AT A)−1ATb satisfies ‖s− s̃‖∞ < 1/2, and
hence �s̃� = s, with probability at least 1 − 1

2n − 2−η.

Proof. Applying Theorem 4.2 with α = 1/2 and the same constants C1, C2 as
introduced in the statement of that theorem, we obtain that for m ≥ τ4

a

σ4
a
(4C1n+

4C2η), we have
Pr

[
λmin

(
AT A

)
< mσ2

a/2
]

< 2−η. (4.5)

Therefore, except with probability at most 2−η, we have λmin

(
AT A

) ≥ mσ2
a/2.

We now assume that this condition is satisfied.
We have shown above that s̃ − s is a τ̃ -subgaussian random vector with

τ̃ = τe/
√

λmin(AT A). Applying Lemma 4.4 with t = 1/2, we therefore have:

Pr
[‖s̃ − s‖∞ >

1
2
] ≤ 2n · exp

(
− 1

8τ̃2

)
≤ 2n · exp

(
− λmin(AT A)

8τ2
e

)

≤ exp
(

log(2n) − mσ2
a

16τ2
e

)
.

Thus, if we assume that m ≥ 32 τ2
e

σ2
a

log(2n), it follows that:

Pr
[‖s̃ − s‖∞ >

1
2
] ≤ exp

(
log(2n) − 2 log(2n)

)
=

1
2n

.

This concludes the proof. ��
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In the typical case when τa and τe are no more than a constant factor larger
than σa and σe, Theorem 4.5 with η = log(2n) says that there are constants
C,C ′ such that whenever

m ≥ Cn and m ≥ C ′ · σ2
e

σ2
a

log n (4.6)

one can solve the ILWE problem with m samples with probability at least 1−1/n
by rounding the least squares estimator. The first condition ensures that AT A
is invertible and to control its eigenvalues: a condition of that form is clearly
unavoidable to have a well-defined least squares estimator. On the other hand,
the second condition gives a lower bound of the form (3.1) on the required
number of samples; we see that this bound is only a factor log n worse than the
information-theoretic lower bound, which is quite satisfactory.

We also note that the cost of this approach is equal to the complexity of
computing (AT A)−1ATb, hence at most O(n2 · m). This is quite efficient in
practice (see Sect. 6 for concrete timings). In practice, arithmetic operations
can be implemented using standard floating point instructions, since the almost
scalar nature of AT A ensures that the computations are numerically very stable.

4.2 An Exact-CVP Oracle Will Not Help

One can interpret this approach to solving ILWE by computing a least squares
estimator and rounding it as an application of Babai’s rounding algorithm for
the closest vector problem (CVP).

More precisely, consider the sublattice L = AT A · Zn of Z
n, which is full-

rank when AT A is invertible (i.e. m large enough). Then, the ILWE problem
can be seen as the problem of recovering the lattice vector v = AT As ∈ L given
the close vector ATb = v + ATe (which is essentially an instance of bounded
distance decoding in L). Closeness in this setting is best measured in terms of
the infinity norm. Now, since for large m, the matrix AT A is almost scalar,
and hence the corresponding lattice basis of L is somehow already reduced, one
can try to solve this problem by applying a CVP algorithm like Babai rounding
directly on this basis. It is easy to see that this approach is identical to our least
squares approach.

One could ask whether applying another CVP algorithm such as Babai’s
nearest plane algorithm could allow solving the problem with asymptotically
fewer samples (e.g. reduce the log n factor in (4.6)). The answer is no. In fact,
a much stronger result holds: one cannot improve Condition (4.6) using that
strategy even given access to an exact-CVP oracle for any p-norm, p ∈ [2,∞].
Given such an oracle, the secret vector v can be recovered uniquely if and only
if the vector of noise ATe lies in a ball centered on v and of radius half the first
minimum of L in the p-norm, λ

(p)
1 (L) = minx∈L ‖x‖p, that is:

‖ATe‖p ≤ λ
(p)
1 (L)

2
. (4.7)
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To take advantage of this condition, we need to get sufficiently precise estimates
of both sides.

Estimation of the First Minimum. Due to the quasi-scalar shape of the
matrix AT A, one can estimate accurately the λ

(p)
1 (L). Indeed, AT A has a low

orthogonality defect, so that it is in a sense already reduced. Hence, the shortest
vector of this basis constitutes a very good approximation of the shortest vector
of L.

Lemma 4.6. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be
an m × n random matrix sampled from χm×n

a . Let L be the lattice generated
by the rows of the matrix AT A. There exist constants C1, C2 (the same as in
Theorem 4.2) such that for all α ∈ (0, 1), p ≥ 2 and η ≥ 1, if m ≥ (C1n + C2η) ·
(τ4/α2) then

Pr
[
λ
(p)
1 (L)

(
AT A

)
> mσ2

a(1 + α)
]

≤ 2−η. (4.8)

Proof. Remark first that by norm equivalence in finite dimension, x ∈ R
n we

have ‖x‖p ≤ ‖x‖2 so that λ
(p)
1 (L) ≤ λ

(2)
1 (L), this bound being actually sharp.

Without loss of generality it then suffices to prove the result in 2-norm. From
Theorem 4.2, we can assert that except with probability at most 2−η, ‖AT A‖op2 ≤
mσ2

a(1 + α); for any integral vector x ∈ Z
n we therefore have by definition of

the operator norm:

‖AT Ax‖2 ≤ mσ2
a‖x‖2(1 + α).

In particular, for any x ∈ Z
n of unit 2-norm, λ

(2)
1 (L) ≤ ‖AT Ax‖2 ≤ (1+α)mσ2

a.
��
Estimation of the p-norm of ATe. Suppose that χe is a centered Gaussian
distribution of standard deviation σe. The distribution of ATe for e ∼ χn

e is then
a Gaussian distribution of covariance matrix σ2

eAT A ≈ mσ2
aσ2

eIn. We deal with
the cases p = ∞ and p ≤ ∞ separately.

Case p < ∞: The expected p-th power of the p-norm of ATe satisfies:

E

[
‖ATe‖p

p

]
= nE[xp] = n(2m)p/2σp

eσp
a · Γ

(
p
2 + 1

2

)

√
π

,

where x is drawn under the centered gaussian distribution of variance mσ2
eσ2

a,
and Γ is classically the Euler’s Gamma function. But by the partial converse
of Jensen’s inequality for norms of Stadje [44] we have:

E

[
‖ATe‖p

p

]
≤ 2pΓ

(
p

2
+

1
2

)√
π
(p−1)

E

[
‖AT e‖p

]p

so that:

n1/pσeσa

√
m

2π
≤ E

[
‖ATe‖p

]
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Case p = ∞: The estimate is obtained by the order statistic theory of Gaussian
distributions (see e.g. [42]):

C∞σeσa

√
m log n ≤ E

[
‖ATe‖∞

]
,

where C∞ = 3
2

(
1 − 1

e

) − 1√
2π

≈ 0.23

Now that we have access to the expected value of the random variable
‖ATe‖p, we are going to use the concentration of its distribution around its
expected value. Explicitly by the random version of Dvoretzky’s theorem proven
in [39], there exist absolute constants K, c > 0 such that for any 0 < ε < 1:

Pr
[∣∣
∣ATe − E

[
‖ATe‖p

]∣∣
∣ > εE

[
‖ATe‖p

]
≤ Ke−cβ(n,p,ε) (4.9)

with

β(m, p, ε) =

⎧
⎪⎨

⎪⎩

ε2n if 1 < p ≤ 2
max(min(2−pε2n, (εn)2/p), εpn2/p) if 2 < p ≤ c0 log n

ε log n if p > c0 log n

,

for 0 < c0 < 1 a fixed absolute constant.

Summing Up. Taking ε = 1/2 in (4.9) ensures that, except with probability
Ke−cβ(n,p,1/2),

1
2
E

[
‖AT e‖p

]
≤ ‖AT e‖p ≤ 3

2
E

[
‖ATe‖p

]
. (4.10)

For any fixed p, the probability can be made as small as desired for large enough
n. We can therefore assume that (4.10) occurs with probability at least 1− δ for
some small δ > 0.

In that case, Condition (4.7) asserts that if E
[
‖ATe‖p

]
> λ

(p)
1 (L) then s can’t

be decoded uniquely in L. Now using the result of Lemma 4.6 with α = 1/2 and
the previous estimates, we know that this is the case when:

n1/pσeσa

√
m

2π
>

3
2
mσ2

a, that is, m <

(
σe

σa

)2 2n2/p

9π
,

when p < ∞, and

0.23σeσa

√
m log n >

3
2
mσ2

a, that is, m < 0.02
(

σe

σa

)2

log n,

otherwise. In both cases, it follows that we must have m = Ω
(
(σe/σa)2 log n

)

for the CVP algorithm to output the correct secret with probability > δ. Thus,
this approach cannot improve upon the least squares bound 4.5 by more than a
constant factor.
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4.3 Sparse Secret and Compressed Sensing

Up until this point, we have supposed that the number m of samples we have
access to is greater than the dimension n. Indeed, without additional information
on the secret s, this condition is necessary to get a well-defined solution to the
ILWE problem even without noise.

Suppose however that the secret s is known to be sparse, with only a small
number S � n of non zero coefficients. Even if the positions of these non zero
coefficients are not known, knowledge of the sparsity S may help in determining
the secret, possibly even with fewer samples than the ambient dimension n with
the sole additional knowledge of its sparsity (though of course more than S
samples are necessary!). Such a recovery is made possible by compressed sensing
techniques, epitomized by the results of Candes and Tao in [14]. The idea is once
again to find an estimator s̃ such that the infinity norm ‖s̃−s‖∞ is small enough
to fully recover the secret s from it. This can be done with the Dantzig selector
introduced in [14], and efficiently computable as a solution s̃ = (s̃1, . . . , s̃n) of
the following linear program with 2n unknowns s̃i, ũi, 1 ≤ i ≤ n:

min
n∑

i=1

ui such that − ui ≤ s̃i ≤ ui and

−σeσa

√
2m log n ≤ [

AAT (ATb − AT As̃)
]
i
≤ σeσa

√
2m log n.

(4.11)

In the case when the distributions χe and χa are Gaussian distributions of respec-
tive standard deviations σe and σe, the quality of the output of the program
defined by (4.11) is quantified as follows.

Theorem 4.7 (adapted from [14]). Suppose s ∈ Z
n is any S-sparse vector so

that log(mσ2
a/n)S ≤ m Then with large probability, s̃ obeys the relation

‖s̃ − s‖22 ≤ 2C2
1S log n

(
σe√
mσa

)2

(4.12)

for some constant C1 ≈ 4.

Hence as before, if ‖s̃− s‖22 ≤ 1/4, we have ‖s̃− s‖∞ ≤ 1/2 and one can then
decode the coefficients of s by rounding s̃. This is satisfied with high probability
as soon as:

2C2
1

S log n

m

(
σe

σa

)2

≤ 1
4
.

Since we aim at solving the ILWE problem in parsimonious sample setting, where
m < n we deduce that the compressed sensing methodology can be successfully
applied when

S ≤ n

8C2
1 log n

(
σa

σe

)2

. (4.13)
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Table 1. Maximum value of the ratio σe/σa to recover a S sparse secret in dimension
n with the Dantzig selector

Let us discuss the practicality of this approach with regards to the parameters
of the ILWE problem. First of all, note that in order to make Condition (4.13)
non-vacuous, one needs σe and σa to satisfy:

2C1

√
2 log n

n
≤ σa

σe
≤ 2C1

√
2 log n,

where the lower bound follows from the fact that S is a positive integer, and
the upper bound from the observation that the right-hand side of (4.13) must
be smaller than n to be of any interest compared to the trivial bound S ≤ n.
Practically speaking, this means that this approach is only interesting when the
ratio σe/σa is relatively small; concrete bounds are provided in Table 1 various
sparsity levels and dimensions ranging from 128 to 2048.

We note that the required sparsity is much higher than proposed parameters
for BLISS, for example. Moreover, the complexity of this linear programming
based approach is worse than least squares regression. However, only this method
is applicable when only m < n samples are available.

5 Application to the Side-Channel Attack of BLISS

5.1 BLISS Signatures and Rejection Sampling Leakage

The BLISS signature scheme [17] is a lattice-based signature scheme based on the
Ring-Learning With Error (RLWE) assumption. Its signing algorithm is recalled
in Fig. 1.

The Rejection Sampling. The BLISS signature scheme follows the
“Fiat–Shamir with aborts” paradigm of Lyubashevsky [35]. In particular, signa-
ture generation involves a rejection sampling step (Step 8 of functionSign inFig. 1)
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Fig. 1. BLISS signing algorithm. The hash function H is modeled as a RO with values
in the set of polynomials in R with 0/1-coefficient and Hamming weight κ. See [17] for
details regarding notation like ζ, �·�d and p not discussed in this paper.

which is essential for security: in order to ensure that the distribution of signatures
is independent of the secret key s = (s1, s2), a signature candidate

(
z = (z1, z2), c

)

should be kept with probability

1

/(

M exp
(

− ‖sc‖2
2σ2

)
cosh

( 〈z, sc〉
σ2

))

.

Since it would be impractical to directly compute this expression involv-
ing transcendental functions with sufficient precision, all existing implemen-
tations of BLISS [18,41,45] rely instead on the iterated Bernoulli trials tech-
nique described in [17, Sect. 6]. A signature (z, c) is kept if the function calls
SampleBernExp(xexp) and SampleBernCosh(xcosh) both return 1, where
functions SampleBernExp and SampleBernCosh are described in Fig. 2
and the values xexp, xcosh are given respectively by xexp = log M − ‖sc‖2 and
xcosh = 2 · 〈z, sc〉.

Side-Channel Leakage of the Rejection Sampling. Based on their descrip-
tion in Fig. 2, it is clear that SampleBernExp and SampleBernCosh do not
run in constant time. In fact, they iterate over the bits of their input, and part
of the code is executed when the bit is 1 and skipped over when the bit is 0. As
a result, as observed by Espitau et al. [19, Sect. 3], the inputs xexp, xcosh of these
functions can be read off directly on a trace of power consumption or electromag-
netic emanations, in much the same way as naive square-and-multiply implemen-
tations of RSA leak the secret exponent via simple power analysis [28, Sect. 3.1]. As
a result, side-channel analysis allows to reliably recover the squared norm ‖sc‖2 =
‖s1c‖2 + ‖s2c‖2 and the scalar product 〈z, sc〉 = 〈z1, s1c〉 + 〈z2, s2c〉 from gener-
ated signatures.
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1: function SampleBernExp(x)
2: for i = 0 to � − 1 do
3: if xi = 1 then
4: Sample a ← Bci

5: if a = 0 then return 0
6: return 1

1: function SampleBernCosh(x)
2: if x < 0 then x ← −x
3: Sample a ← Bexp(−x/f)

4: if a = 1 then return 1
5: Sample b ← B1/2

6: if b = 1 then restart
7: Sample c ← Bexp(−x/f)

8: if c = 1 then restart
9: return 0

Fig. 2. Sampling algorithms for the distributions Bexp(−x/2σ2) and B1/ cosh(x/σ2). The

values ci = 2i/f precomputed, and the xi’s are the bits in the binary expansion of
x =

∑�−1
i=0 2ixi. BLISS uses x = K − ‖sc‖2 for the input to the exponential sampler,

and x = 2〈z, sc〉 for the input to the cosh sampler.

Espitau et al. show that the norm leakage can be leveraged in practice to
recover the secret key from a little over n̄ signature traces, where n̄ is the exten-
sion degree of the ring R (n̄ = 512 for the most common parameters). However,
the recovery technique is mathematically quite involved and computationally
costly (it is based on the Howgrave-Graham–Szydlo solution to cyclotomic norm
equations [25], and takes over a month of CPU time for typical parameters).
More importantly, it has the major drawback of relying on the ability to factor
this norm and thus only applying to “weak” signing keys satisfying a certain
semismoothness condition (around 7% of BLISS secret keys).

It is natural to think that the scalar product leakage, which is linear rather
than quadratic in the secret key, is a more attractive target to attack. And
indeed, Espitau et al. point out that in a simplified version of BLISS where z2
is returned in full as part of signatures, it is very easy to recover the secret key
from about 2n̄ side-channel traces using elementary linear algebra. However, in
the actual BLISS scheme, the element z2 is returned in a compressed form z†

2, so
that the linear system arising from scalar product leakage is noisy. Solving this
linear system amounts to solving a problem analogous to LWE [43] in dimension
about 2n̄, which leads Espitau et al. to conclude that this approach is unlikely
to be helpful. In doing so, however, they overlook a crucial difference between
standard LWE and the problem that actually arises in this way, namely the lack
of modular reduction.

5.2 Description of the Attack

As we have mentioned already, recovering the secret s ∈ Z
2n̄ = Z

n from the
linear leakage 〈z, sc〉 essentially amounts to an instance of the ILWE problem.
We now describe more precisely in what sense. To do so, we need to write this
inner product in terms of the known ring elements (c, z1, z

†
2) that appear in the
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signature on the one hand, and unknown elements on the other hand. This can
be done as follows:

〈z, sc〉 = 〈z1, s1c〉 + 〈z2, s2c〉 = 〈z1c∗, s1〉 + 〈2dz†
2, s2c〉 + 〈z2 − 2dz†

2, s2c〉
= 〈z1c∗, s1〉 + 〈2dz†

2c
∗, s2〉 + e = 〈a, s〉 + e,

where we let:

a = (z1c∗, 2dz†
2c

∗) ∈ Z
2n̄ = Z

n and e = 〈z2 − 2dz†
2, s2c〉.

The vector a can be computed from the signature, and is therefore known to
the side-channel attacker, whereas e is some unknown value. In these expressions,
c∗ is the conjugate of c with respect to the inner product (i.e. the matrix of
multiplication by c in the polynomial basis of Z[x]/(xn̄ + 1) is the transpose of
that of c).

Now the rejection sampling ensures that the coefficients of z1 are independent
and distributed according to a discrete Gaussian D of standard deviation σ. On
the other hand, c is a random vector with coefficients in {0, 1} and exactly κ
non zero coefficients; thus, c∗ has a similar shape possibly up to the sign of
coefficients. It follows that the coefficients of z1c∗ are all linear combinations
with ±1 coefficients of exactly κ independent samples from D and the signs
clearly do not affect the resulting distribution.

Therefore, if we denote by χa the distribution D∗κ obtained by summing κ
independent samples from D, the coefficients of z1c∗ follow χa. It is not exactly
correct that z1c∗ as a whole follows χn̄

a (as its coefficients are not rigorously
independent), but we will heuristically ignore that subtlety and pretend it does.
Note that χa is a distribution of variance:

σ2
a = Var

(
D∗κ

)
= κ · Var(D) = κσ2.

We have not precisely described how the BLISS signature compression works,
but roughly speaking, z†

2 is essentially obtained by keeping the (log q − d) most
significant bits of z2, and therefore the distribution of 2dz†

2 is close to that of z2.
The distributions cannot coincide exactly, since all the coefficients of 2dz†

2 are
multiples of 2d while this normally does not happen for z2, but the difference
will not matter much for our purposes, and we will therefore heuristically assume
that the entire vector a is distributed as χn

a .
We now turn our attention to the noise value e, which we write as 〈w,u〉

with w = z2 − 2dz†
2 and u = s2c. Now, w is obtained as the difference between

z2 and 2dz†
2, where again the latter is roughly speaking obtained by zeroing out

the d least significant bits of z2 in a centered way. We can therefore heuristically
expect that the coefficients of w are distributed uniformly in [−2d−1, 2d−1] ∩ Z,
i.e. w ∼ U n

α with α = 2d−1. In particular, these coefficients have variance
α(α + 1)/3 ≈ 22d/12.
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As for u, its coefficients are obtained as sums of κ coefficients of s2. Now
s2 itself (ignoring the constant coefficient, which is shifted by 1) is obtained
as a random vector with δ1n̄ coefficients equal to ±2, δ2n̄ coefficients equal to
±4 and all its other coefficients equal to zero. This is a somewhat complicated
distribution to describe, but we do not make a large approximation by pretending
that all the coefficients are sampled independently in the set {−4,−2, 0, 2, 4}
with probabilities δ2/2, δ1/2, (1−δ1−δ2), δ1/2 and δ2/2 respectively. Making that
approximation, it follows that the coefficients of u have variance κ · (4δ1 +16δ2).

Write u = (u1, . . . , un̄) and w = (w1, . . . , wn̄). Under the heuristic approxi-
mations above, since w and u are independent and their coefficients have mean
zero, the error e follows a certain bounded distribution χe of variance σ2

e given
by:

σ2
e = E[e2] = E

[( n̄∑

i=1

wiui

)2
]

= E

[ ∑

i,j

wiwjuiuj

]
= E

[ n̄∑

i=1

w2
i u2

i

]

=
n̄∑

i=1

E[w2
i ] · E[u2

i ] = n̄ · Var
(
Uα

) · κ(4δ1 + 16δ2) ≈ 22d

3
(δ1 + 4δ2)n̄κ.

With these various approximations, recovering s from the leakage exactly
becomes an ILWE problem with distributions χa and χe, where each side-channel
trace provides a sample. It should therefore be feasible to recover the full secret
key with least squares regression using m = O

(
(σe/σa)2 log n

)
traces.

5.3 Experimental Distributions

The description of the previous section made a number of heuristic approxi-
mations which we know cannot be precisely satisfied in practice. In order to
validate those approximations nonetheless, we have carried out numerical simu-
lations comparing in particular our estimates for the standard deviations σa and
σe of the distributions of a and e with the standard deviations obtained from
the actual rejection sampling leakage in BLISS.

These simulations were carried out in Python using the numpy package.
We used 10000 ILWE samples arising from side channel leaks for each BLISS
parameter set. Results are collected in Table 2; experimental values for σa are
provided separately for the two halves (a1,a2) of the vector a, which we have
seen are computed differently. As we can see, the experimental values match the
heuristic estimates quite closely overall.

6 Numerical Simulations

In this section, we present simulation results for recovering ILWE secrets using
linear regression, first for normal ILWE instances, and then for ILWE instances
arising from BLISS side-channel leakage, as described in Sect. 5.2, leading to
BLISS secret key recovery. These results are based on simulated leakage data
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Table 2. Parameter estimation for ILWE instances arising from the side channel attack

BLISS–0 BLISS–I BLISS–II BLISS–III BLISS–IV

n = 2n̄ 512 1024 1024 1024 1024

σa (theory) 346 1031 513 1369 1692

σe (theory) 1553 49695 49695 38073 24535

σa1 (exp.) 347 1031 513 1370 1691

σa2 (exp.) 349 2009 1418 1782 1814

σe (exp.) 1532 42170 32319 38627 23926

rather than actual side-channel traces. However, we note that the leakage sce-
nario for BLISS is essentially identical to the one described in [19] (namely, a
SPA/SEMA setting where each trace reveals the exact value of a certain function
of the secret key—in our case, the linear function given by the inner product),
and was therefore experimentally validated in that paper.

6.1 Plain ILWE

Recall that the ILWE problem is parametrized by n,m ∈ Z and probability
distributions χa and χe. Samples are computed as b = As + e, where s ∈ Z

n,
b ∈ Z

m, A ∈ Z
m×n with entries drawn from χa, and e ∈ Z

m with entries drawn
from χe. Choosing χa and χe as discrete gaussian distributions with standard
deviations σa and σe respectively, we investigated the number of samples, m
required to recover ILWE secret vectors s ∈ Z

n for various concrete values of
n, σa and σe. We sampled sparse secret vectors s uniformly at random from the
set of vectors with �0.15n� entries set to ±1, �0.15n� entries set to ±2, and the
rest zero.

We present two types of experimental results for plain ILWE. In our first
experiment, we began by estimating the number of samples m required to recover
the secret perfectly with good probability, for different values of n, σa, and σe.
Then, fixing m, we measured the probability of recovering s over the random
choices of s, A and e. Our results are displayed in Table 3.

In our second experiment, we investigated the distribution of the minimum
value of m required to recover the secret perfectly, over the random choices of
s, A, and e, when the linear regression method was run to completion. In other
words, for fixed n, σa, and σe, we generated more and more samples until the
secret could be perfectly recovered. Our results for σe = 2000 are plotted in
Fig. 3. Additional results and some additional notes may be found in the full
version of this paper [10]. Each figure plots the dimension n against the mean
number of samples m required to recover the secret, for σa = 100, 200, and 500.
Here, ‘mean’ refers to the interquartile mean number of samples. The error bars
show the upper and lower quartiles for the number of samples required.
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The results of our second experiment are consistent with the theoretical
results given in Sect. 4.1. According to (4.6), we require

m ≥ C ′ · σ2
e

σ2
a

log n

samples in order to recover the secret correctly. The dimension n on the hor-
izontal axis of each graph is plotted on a logarithmic scale. Therefore, theory
predicts that we should observe a straight line, which the graphs confirm.

The gradient of the graph corresponds to the constant C ′ giving the number
of samples required for secret-recovery in practice. Note that in this case, where
χa and χe follow the discrete Gaussian distribution, Theorem 4.5 gives C ′ = 32
for a small failure probability of 1

2n . However, in this experiment, we are likely
to succeed much sooner, with a smaller number of samples. For example, in any
particular trial, as soon as m is such that the failure probability is at least one
half, we are likely to recover the secret. This explains why the gradient is much
lower than given by Theorem 4.5. Computing the gradients of the lines of best fit
and dividing by (σe/σa)2 gives an estimate for the observed value of the constant
C ′. See the full version of this paper [10] for details.

Fig. 3. Results for σe = 2000

6.2 BLISS Side-Channel Attack

Having obtained an instance of the ILWE problem from BLISS side-channel
leakage as described in Sect. 5.2, we used linear regression to recover BLISS secret
keys. We performed several trials. For each trial, we generated ILWE samples
using side-channel leakage until we could recover the secret key. For BLISS–0, we
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Table 3. Practical results of the experiments on ILWE

simply used regression to recover the entire secret key. For BLISS–I and BLISS–
II, we usually ran into memory issues before being able to successfully recover
the entire secret key. However, we noticed that in practice, we could recover the
first half of the secret key correctly using far fewer samples. Since the two halves
of the secret key are related by the public key, this is sufficient to compute the
entire secret key. Therefore, for BLISS–I and BLISS–II, we stopped generating
samples as soon as the least-squares estimator correctly recovered the first half
of the secret.

For these two different scenarios, we obtain the results displayed on Table 4,
which gives information on the range, quartiles, and interquartile mean of the
number of samples required. Typical timings for the side-channel attacks, using
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Table 4. Number of samples required to recover the secret key (minimum, lower quar-
tile, interquartile mean, upper quartile, maximum)

# Trials Min LQ IQM UQ Max

BLISS–0 12 1203 1254 1359.5 1515 1641

BLISS–I 12 14795 18648 20382.9 21789 24210

BLISS–II 8 19173 20447 22250.3 24482 29800

Table 5. Typical timings for secret key recovery

Typical ILWE sample gen. Typical time for regression

BLISS–0 ≈2 min ≈5 s

BLISS–I ≈10 min ≈2 min

BLISS–II ≈10 min ≈2 min

SAGEMath, on a laptop with 2.60 GHz processor, are displayed in Table 5. Tim-
ings are in the orders of minutes and seconds. By comparison, some of the attacks
from [19] may take hours, or even days, of CPU time.

Acknowledgments. This work has been supported in part by the European Union’s
H2020 Programme under grant agreement number ERC-669891.

References

1. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosys-
tem via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481 (2017).
http://eprint.iacr.org/2017/481

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, part II. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 4

3. Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching
for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 429–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 25

4. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, part I. LNCS, vol. 8042, pp.
57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

http://eprint.iacr.org/2017/481
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-22006-7_34


522 J. Bootle et al.

7. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

9. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016, part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9 9

10. Bootle, J., Delaplace, C., Espitau, T., Fouque, P.A., Tibouchi, M.: LWE without
modular reduction and improved side-channel attacks against BLISS. Cryptology
ePrint Archive, Report 2018/822 (2018). http://eprint.iacr.org/2018/822. Full ver-
sion of this paper

11. Bootle, J., Tibouchi, M., Xagawa, K.: Cryptanalysis of compact-LWE. In: Smart,
N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 80–97. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76953-0 5

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
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Abstract. The k-xor (or generalized birthday) problem is a widely stud-
ied question with many applications in cryptography. It aims at finding k
elements of n bits, drawn at random, such that the xor of all of them is 0.
The algorithms proposed by Wagner more than fifteen years ago remain
the best known classical algorithms for solving them, when disregarding
logarithmic factors.

In this paper we study these problems in the quantum setting, when
considering that the elements are created by querying a random function
(or k random functions) H : {0, 1}n → {0, 1}n. We consider two sce-
narios: in one we are able to use a limited amount of quantum memory
(i.e. a number O(n) of qubits, the same as the one needed by Grover’s
search algorithm), and in the other we consider that the algorithm can
use an exponential amount of qubits. Our newly proposed algorithms
are of general interest. In both settings, they provide the best known
quantum time complexities.

In particular, we are able to considerately improve the 3-xor algo-
rithm: with limited qubits, we reach a complexity considerably better
than what is currently possible for quantum collision search. Further-
more, when having access to exponential amounts of quantum memory,
we can take this complexity below O(2n/3), the well-known lower bound
of quantum collision search, clearly improving the best known quantum
time complexity also in this setting.

We illustrate the importance of these results with some cryptographic
applications.

Keywords: Quantum algorithms · Generalized birthday problem
Quantum cryptanalysis · 3-xor · k-xor · List-merging algorithms
Amplitude amplification

1 Introduction

In this paper we consider a generic algorithmic problem with numerous applica-
tions in cryptography: the k-xor problem. We study it when considering elements
generated by a random function (or k random functions) H : {0, 1}n → {0, 1}n,
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and we provide the best known quantum algorithms for solving it, taking into
account two possible scenarios regarding quantum memory.

In this section we first introduce the studied problem and provide some exam-
ples of applications. Second, we recall the scenario of post-quantum cryptogra-
phy; and finally, we summarize our contributions, that propose the best known
quantum time complexities and, in most of the cases, give considerable quantum
speedups over the best classical algorithms.

1.1 Generalized Birthday Problem

The birthday problem is a widely used cryptanalytical tool.

Birthday Problem. Given two lists L1, L2 of elements drawn at random from
{0, 1}n, find x1 ∈ L1 and x2 ∈ L2 such that x1 ⊕ x2 = 0 (where ⊕ denotes the
bitwise exclusive-or, below xor, operation).

A solution of this problem exists with high probability once |L1|× |L2| � 2n

holds, and it can be found in O(2n/2) time by e.g. sorting and then scanning L1

and L2.
The birthday problem has many applications, the most used one being per-

haps the research of a collision for a hash function h(·) : {0, 1}� → {0, 1}n. The
application to this case is simple. First of all, one constructs the list Li by defin-
ing the j−th element of Li as h(i|j) (where i|j denotes i concatenated with j).
Assuming that h behaves like a random function, the lists contain values dis-
tributed uniformly and independently at random, so the premises of the problem
statement will be met. Consequently, one may expect to find a solution to the
corresponding problem, and a collision for the hash function, with O(2n/2) work.

A generalization of this problem – called generalized birthday problem (GBP)
or k-list problem – has been introduced by Wagner [54].

Generalized Birthday Problem. Given k lists L1, L2, . . . , Lk of elements
drawn at random from {0, 1}n, find x1 ∈ L1, x2 ∈ L2, . . .xk ∈ Lk such that
x1 ⊕ x2 ⊕ . . . ⊕ xk =

⊕k
i=1 xi = 0.

Obviously, if |L1| × |L2| × . . . × |Lk| ≥ 2n, then with a high probability the
solution exists. The real challenge, however, is to find it efficiently. When k = 2t,
Wagner’s algorithm requires classical time and space O(2n/(t+1)).

Applications. Even if the GBP may not appear very natural at first sight,
it has been applied successfully to the cryptanalysis of various systems. In the
following, we recall the most relevant applications for symmetric cryptography.

XHASH and the (R)FSB SHA-3 Candidate. XHASH [8] has been introduced as
a plausible candidate for an incremental collision-free hash function, defined as

H(x) :=
k⊕

i=1

h(i|xi),
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where each xi is a b-bit block and h(·) : {0, 1}l → {0, 1}n. The size l = b+log2(k)
is chosen to be large enough to accommodate the block plus an encoding of its
index, by dint of making k larger than the number of blocks in any message to
be hashed. As showed e.g. in [8,22], it is possible to set up an attack based on
GBP that easily finds collisions in XHASH.

Among other designs, this construction appears in the “fast syndrome-based”
hash function (R)FSB [4], a candidate of the SHA-3 competition. It uses a com-
pression function in a Merkle-Damgȧrd construction and it, is based on xoring
the columns of a random binary matrix and has the advantages to be fast, incre-
mental and parallelizable. In particular, this candidate can be rewritten as

FSB(H,m) :=
k⊕

i=1

hi(mi).

As showed in [12,13,22,35,47], the previous GBP attack applies as well also in
this case.

AdHash, NASD Incremental Hashing and the SWIFFT SHA-3 Candidate. One
proposal for network-attached secure disks (NASD) [27] uses the following hash
function for integrity purposes [8]:

H(x) :=
k∑

i=1

h(i|xi) mod 2256,

where x = 〈x1, ..., xk〉 denotes a padded k-block message. By simple observation,
inverting this hash corresponds to a k-sum problem over the additive group
(Z/2256Z,+).

This may be viewed as a special case of a general incremental hashing con-
struction proposed by Bellare et al. [8], where the sum is computed modulo m
and where the modulus m is public and chosen randomly.

Among other designs, such a construction has been exploited in the SWIFFT
hash function [42], one candidate of the SHA-3 competition. SWIFFT is a col-
lection of provably secure hash functions, based on the fast Fourier transform
(FFT). The SWIFFT function can be described as a simple algebraic expression
over some polynomial ring R = Zp[α]/(αn + 1), that is

SWIFFT (a, x) =
m∑

i=1

f(xi) mod (αn + 1) =
m∑

i=1

(ai · xi) mod (αn + 1)

where the m fixed elements a1, ..., am ∈ R – called multipliers – specify the hash
function, and each xi is an element of R. Examples of attacks on the SWIFFT
hash function based on the k-sum problem over the additive group (Z/2256Z,+)
are given in [5,35,47].
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The PCIHF Hash. Another hash construction that can be attacked using a sim-
ilar strategy is the PCIHF hash function [28], proposed for incremental hashing
and defined as

H(x) :=
k∑

i=1

SHA(xi|xi+1) mod 2160 + 1.

With respect to the previous case, the main difference is that each xi affects
two terms. To overcome this problem and apply an attack based on the GBP,
it is sufficient to choose (and fix) x2j = 0 for each j. In this case, the hash
computations takes the form

H(x) :=
�(k+1)/2�∑

j=1

h(x2j−1) mod 2160 +1 where h(x) = SHA(x|0)+SHA(0|x).

CAESAR Candidates and the 3-xor Problem. The GBP has been as well applied
to the cryptanalysis of authenticated encryption schemes proposed at the ongo-
ing CAESAR competition [18]. To process the final incomplete blocks of mes-
sages, some of these schemes use the XLS construction proposed by Ristenpart
and Rogaway [49].

Even if XLS was initially proven secure, Nandi [44] pointed out flaws in the
security proof and showed a very simple attack that requires three queries to
break the construction. Actually, the CAESAR candidates that rely on XLS do
not allow this trivial attack as the required decryption queries are not permitted
by the schemes. A possible way to overcome this limitation has been proposed
by Nandi in [44], whose forgery attack requires only encryption queries. As a
result, it is possible the design flaw of XLS can be reduced to the 3-xor problem.

The CAESAR schemes based on XLS are – the COPA modes of – the finalist
Deoxys [23], Joltik [32], KIASU [33] and SHELL [55]. As a result, any 3-xor
algorithm that goes below the birthday bound results in a slight weakness of
some of these candidates. We refer to [45,48] for concrete examples of attacks.

Fast Correlation Attacks. Finally, the k-xor problem (especially for k ≥ 4) is
interesting for searching parity check relations in fast correlation attacks [21,51,
52], whose main targets are synchronous stream ciphers.

A synchronous stream cipher is a stream cipher where the ciphertext is
produced by bitwise adding the plaintext bits to a stream of bits called the
keystream, which is independent of the plaintext, only produced from the secret
key and the initialization vector. A large number of stream ciphers use Linear
Feedback Shift Registers (LFSR) as building blocks, the initial state of these
LFSRs being related to the secret key and to the initialization vector. In nonlin-
ear combination generators, the keystream bits are then produced by combining
the outputs of these LFSRs through a nonlinear boolean function. Examples –
among many others – of stream ciphers based on the previous construction are
the hardware oriented finalists of the eSTREAM project [24], e.g. Grain-v0 [31].
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A fast correlation attack targets nonlinear combination keystream genera-
tors. In particular, it requires the existence of linear correlations between LFSR
internal stages and the nonlinear function output. GBP can be used to find such
correlations – which is the hardest part of the job.

Remark. Though the GBP could be defined with many operations other than
XOR, like modular additions (the k-sum problem then), and the algorithms
proposed by Wagner would still apply, in this paper we concentrate for the sake of
simplicity, on solving the k-xorproblem, i.e. the case of having a XOR operation.
In general, our algorithms can be easily adapted to other settings.

1.2 Cryptography in the Quantum World

Post-quantum cryptography (or quantum-resistant cryptography) is a whole new
line of research that aims at developing new cryptographic primitives that would
(hopefully) withstand attackers equipped with quantum computers. It is now
a well-known fact that the existence of sufficiently large quantum computers
would severely impact the security of many cryptographic schemes in use today.
In particular, the seminal work of Shor [50] showed that such computers would
allow to factor numbers and compute discrete logarithms in abelian groups in
polynomial time. As almost all public key schemes currently in use are build
upon the assumption that those problems are intractable, the advent of quantum
computers has motivated the rise of quantum-resistant public-key cryptography.

Post-quantum Symmetric Cryptography. At first sight, the situation seems less
critical for symmetric primitives: Grover’s algorithm [54] for searching in an
unstructured database finds a marked element among 2n in time O(2n/2), pro-
viding a quadratic speedup compared to the classical exhaustive search, essen-
tially optimal. Hence doubling the key length of block ciphers seems sufficient to
counter that attack, and achieve the same security against quantum attackers.

However, recent works have shown that Grover’s algorithm might not be the
only threat for symmetric cryptography. One of the most relevant works is the
one by Kuwakado and Morii [36,37], who first showed that the Even-Mansour
construction [25] could be broken in polynomial time in the quantum CPA set-
ting. Briefly, the Even-Mansour construction consists of a public permutation P
on n bits and of two secret keys k1 and k2 that are used as pre- (resp. post-)
whitening keys for the encryption EncEM (m) := k2⊕P (m⊕k2) of some message
m. The main idea of [36,37] was to consider the function

f(x) := EncEM (x) ⊕ P (x) = P (x ⊕ k1) ⊕ k2 ⊕ P (x).

Since such a function has period k1, it is possible to exploit Simon’s quantum
algorithm [15,53] to compute the (unknown) period in polynomial time.

Many other works have since appeared in the literature – such as attacks
on symmetric cryptosystems based on quantum period finding [34], a quantum
attack of the FX-construction [38],. . . – showing that the post-quantum security
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of some symmetric primitives, depending on the quantum adversary model, could
fall largely below the limit provided by the Grover’s algorithm.

As we are trying to build quantum-safe primitives, understanding and
improving quantum algorithms, as well as designing new quantum attacks is
of main importance: only this way can we know what are the needs in order to
resist to the mentioned attacks.

1.3 Our Contributions

How can we solve the k-xor problem in the quantum setting? We answer this
question by proposing new quantum algorithms. We consider two different set-
tings, of separate interest: (1st) the case in which the adversary has access to a
big amount of quantum memory and (2nd) the case in which she has access to
small quantum memory, say O(n). How one should treat classical vs. quantum
memory is an open problem (e.g. can quantum memory become as cheap as
classical memory?) that we do not attempt to fix here. Instead, we consider sep-
arately the two cases and take both classical and quantum memory into account
in the cost of our algorithms.

About the 2-xor problem, Brassard et al. [17] provide a quantum algorithm
that requires O(2n/3) time and O(2n/3). When “only” O(n) qubits of memory
are allowed, Grover’s algorithm provides a solution in time O(2n/2). Chailloux
et al. [19] showed that the problem can be solved in quantum time O(22n/5) and
using O(2n/5) classical memory.

While the quantum query complexity of the k-xor problem is well-known,
and can be attained by a modification of the algorithm in [3], there has been -
to the best of our knowledge - no previous attempt at systematic time-efficient
quantum algorithms (apart from the 2-xor case above).

Parallelized Algorithms. While the k-xor algorithms using O(n) quantum mem-
ory that we develop are first intended to be used by “small” quantum com-
puters, we further remark that they can be efficiently parallelized. Even with
the most restrictive (and debatable) benchmark on “total cost” (which counts
together the number of processors and the memory consumption, and multiplies
this “hardware cost” by the time complexity), we show that our parallelized
3-xor algorithm reaches below the classical product O(2n/2). We conclude that
it attains a range of effectiveness unreached by all collision search algorithm
previously known.

Our Results. In this paper, we present the first analysis of the k-xor problem
in the quantum world for generic k ≥ 3 with competitive quantum time with
respect to both algorithms in the classical and in the quantum setting present in
the literature. Our results – compared to others in the literature – are provided
in Table 1.

Linear – Quantum Memory. For the case in which the adversary can use only
O(n) quantum memory, we propose solutions with better time complexity than



Quantum Algorithms for the k-xor Problem 533

Table 1. Complexity of k-xor quantum algorithms (without logarithmic factors). Our
results are in bold. When referring to Ambainis’ work [3], we hint at our own quantum
time complexity analysis from Sect. 3.

k (collision) Quantum time Superposition queries Quantum memory Classical

memory

Reference

2 2n/2 2n/2 O(n) - [29]

2 2n/3 2n/3 2n/3 - [17]

2 22n/5 22n/5 O(n) 2n/5 [19]

3 25n/14 25n/14 O(n) 2n/7 Theorem 1

3 2n/2 2n/4 2n/4 - [3]

3 23n/10 23n/10 2n/5 - Theorem 2

4 2n/3 2n/3 O(n) 2n/9 Theorem 1

4 2n/2 2n/5 23n/10 - [3]

4 2n/4 2n/4 2n/4 - Theorem 4

5 27n/22 27n/22 O(n) 2n/11 Theorem 1

5 2n/2 2n/6 21/3 - [3]

5 2n/4 2n/4 2n/4 - Theorem 4

6 24n/13 24n/13 O(n) 2n/13 Theorem 1

6 2n/2 2n/7 25n/14 - [3]

6 2n/4 2n/4 2n/4 - Theorem 4

7 23n/10 23n/10 O(n) 2n/15 Theorem 1

7 2n/2 2n/8 23n/8 - [3]

7 2n/4 2n/4 2n/4 - Theorem 4

k ≥ 8 2n/2 2n/(k+1) 2

n(k+1)
2(k+1) - [3]

k ≥ 8 2n/(2+�log2(k)�) 2n/(2+�log2(k)�) 2n/(2+�log2(k)�) - Theorem 4

classical algorithms up to k < 8. We use building blocks from [19] (initially used
for collision search) and ideas from [46], inspired for instance from the parallel
matching techniques.

Exponential – Quantum Memory. When the adversary might use big amounts
quantum memory, we propose a strategy that improves k-xor problems for all
k ≥ 3. For k ≥ 4, we use the well-known quantum walk framework. Our attack
requires time O(2n/(2+�log2(k)�)) and memory O(2n/(2+�log2(k)�)), giving an expo-
nential quantum speedup over Wagner’s algorithm. For the 3-xor problem, we
specially design an algorithm with time O(23n/10) and O(2n/5) quantum mem-
ory.

We highlight that, in the two cases above, the 3-xor algorithm has an expo-
nential acceleration over collision search, which was not the case classically.

Organization. In the next section, we detail some basic notions of quantum
computing and building blocks for our new algorithms. In Sect. 3, we recall the
algorithms present in the literature to solve the k-xor problem both in the classi-
cal and in the quantum setting. New quantum algorithms for the 3-xor problem
– both for the linear and the exponential quantum memory – are proposed in
Sect. 4, while in Sect. 5 we describe algorithms for the k-xor problem for k ≥ 4.
We emphasize again that our goal is to set up algorithms with optimal time
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and memory complexities (rather than query complexity). We give insights on
parallelization in Sect. 6. We conclude in Sect. 7 with implications of our results
and some open problems for future research.

2 Preliminaries

In this section, we recall some definitions and simple quantum algorithmic tech-
niques that will be used throughout the paper. We stress that most of our algo-
rithms, and the design principles thereof, can be understood with only some
basic notions of quantum computing, which we provide below.

2.1 Quantum Algorithms

For a comprehensive introduction into quantum algorithms, we suggest the text-
books of Mermin [41] and Lipton, Regan [39].

Quantum Circuit Model. We only work in the standard quantum circuit model.
A quantum circuit is an abstract representation of a quantum algorithm running
on a universal quantum computer. Given a number of qubits, put in an arbitrary
initial state (say |0〉), we apply a succession of quantum gates, analog to classical
boolean gates. After, the state of the qubits is measured. The final measurement
should contain the result of the algorithm. The quantum computing literature
also often considers that a quantum algorithm can run in a number of successive
steps, which we will do below. The sequence of gates of a step can depend on
the results of the previous measurements.

Superposition Oracles. When solving k-xor instances, if the elements in the lists
are produced by a random function H (or multiple random functions) – which
we safely assume below, then instead of mere classical query access to H, we
require access to a superposition oracle:

OH : |x〉 |0〉 → |x〉 |H(x)〉
which, as a linear operator, acts on superposition of states:

OH :
(∑

αi |xi〉
)

|0〉 →
∑

αi |xi〉 |H(xi)〉 .

This implies that H has been implemented as a quantum circuit.

Quantum Complexities. We adopt the following usual definitions of complexities:

• The quantum query complexity is the number of superposition oracle calls
performed.

• The time complexity is the gate count of the quantum circuit. In all algo-
rithms in this paper, it will turn out to be equal to the circuit depth, up to
a logarithmic factor.

• The memory complexity is the number of qubits (including ancillas) on which
it runs. Our memory complexities hide the constant overhead induced by
running an oracle OH .
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Conventions. Hereafter, we count oracle queries and n-qubit register operations
such as comparisons between n-bit numbers as a single time unit O(1), in order
to make the complexities more readable. We use the notation Õ when the time
or memory complexity contains additional factors due to the management of
quantum data structures, since the details of such implementations remain out
of the scope of our work.

2.2 Grover’s Algorithm and Amplitude Amplification

Alongside Shor’s, Grover’s algorithm [29] is one of the most widely known quan-
tum algorithms. While a complete description - for which we refer to the quantum
computing literature - would be outside the scope of this work, we recall that
this algorithm speeds up quadratically exhaustive search.

More precisely, given a search space, e.g. {0, 1}n, and a function f :
{0, 1}n → {0, 1} for which there are 2t preimages of 1, such a preimage can
be found in quantum time O(2(n−t)/2), assuming that a superposition oracle Of

can be efficiently implemented. Grover’s algorithm first constructs the uniform
superposition over the whole search space, then repeatedly applies an operator
(O(2(n−t)/2) times) which moves the current state towards the superposition of
all preimages of 1. There are some errors, which can in turn be corrected if the
exact number of preimages is known. Such errors will not impact our algorithms
below.

Amplitude Amplification [16] is a generalization of Grover’s algorithm where
the search space has some structure. If (1st) there are 2t solutions among a
search space of size 2n, (2nd) this search space is constructed using a quantum
algorithm A and (3rd) the test uses the oracle Of , then Amplitude Amplification
returns (up to some error) the superposition of all preimages of 1 in time:

c · 2(n−t)/2 (|A| + |Of |)
where c is a constant, and |A| and |Of | are the respective quantum time com-
plexities of A and Of .

More precisely, the procedure starts in an initial state |s〉, the uniform super-
position over the whole search space, and applies c2(n−t)/2 iterations. Each
iteration contains a reflection through the search space (applying the operator
2 |s〉 〈s| − I) and another through the “good” subspace (the uniform superpo-
sition over all wanted solutions). The first reflection requires to recompute |s〉,
the second to apply Of and flip the phase of the good elements. After c2(n−t)/2

iterations, the state is the uniform superposition over the good subspace.

2.3 Quantum Algorithms with Small Quantum Space

While constant progress has been made towards quantum fault-tolerant com-
putation, the number of qubits seems to be, to date, a more challenging limi-
tation on the realizability of universal quantum computers. Indeed, a quantum
computer acting on S qubits needs to maintain a coherent superposition over
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this whole system during the computation. In light of this potential caveat,
some time-efficient quantum algorithms may reveal themselves costly. This was
already argued by Grover and Rudolph regarding collision search in [30].

This is why we are interested in reducing at most the quantum time com-
plexity while working with a limited number of qubits. “Limited”, in the rest of
this paper, means O(n) (the same number as Grover’s algorithm).

A technique helping to turn quantum memory requirements into classical
ones is used in [19] for collision search: if one is interested in collision search
with few qubits, the best time complexity manageable is O(22n/5) (instead of the
lower bound O(2n/3)), using distinguished points.

Given a random function H : {0, 1}n → {0, 1}n, the query-optimal BHT
algorithm for collision search [17] works in two steps:

• Query 2n/3 arbitrary inputs;
• With Grover, search for a collision on one of these inputs: there are 2n/3

solutions among 2n, hence 2n/3 Grover iterations.

In order to perform each iteration in time O(1), this algorithm needs superposi-
tion query access to the memory that holds the 2n/3 results of the first step. In
other terms, this algorithm requires O(n2n/3) qubits.

Sequential Membership Testing. To overcome this cost, Chailloux et al. first
remark that testing membership in a set of size 2t, without quantum memory,
can be done in time O(2t) (even in superposition). Indeed, given an input x,
it suffices to compare sequentially x against all 2t elements. This replaces the
initial need for quantum memory by classical storage, as performing this test
amounts to go through the whole set in a sequential manner.

Now, since this would bring the time complexity of BHT’s algorithm to the
heights of 22n/3, we reduce the size of the list, and we now replace the arbitrary
inputs by distinguished points: the list now contains only inputs x such that
H(x) is distinguished (say, by a zero-prefix of some size).

Since the collision we are looking for happens on a distinguished point, the
search space is more structured: we use amplitude amplification instead of a
simple Grover search. Assume that the list has size v and the distinguished points
have all the same prefix of length u. The first step costs 2v+u/2, as each element
now needs to be constructed using Grover search. The second step has 2(n−u−v)/2

iterations, as there are 2v solutions among all distinguished points (2n−u). Inside
each iteration, the set of distinguished points needs to be constructed (time 2u/2)
and membership to the intermediate list needs to be tested (time 2v). This gives:

2v+u/2 + 2(n−u−v)/2(2u/2 + 2v)

optimized to O(22n/5) by taking u = 2n/5 and v = n/5.
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3 State-of-the-Art: Known Results for the k-xor Problem

3.1 Classical Algorithms for the k-xor Problem

In [54], Wagner analyses the k-xor problem between k lists L1, . . . Lk of elements
drawn uniformly at random from {0, 1}n. The goal is to find a k-tuple of elements
x1 ∈ L1, . . . , xk ∈ Lk which xor to 0. Alternatively, one may consider a random
function H : {0, 1}n → {0, 1}n; the elements of the lists are created by querying
H and the goal is to find x1, . . . xk such that H(x1) ⊕ . . . ⊕ H(xk) = 0.

Problem 1 (k-xor with a random function). Given query access to a random
function H : {0, 1}n → {0, 1}n, find x1, . . . xk such that H(x1)⊕. . .⊕H(xk) = 0.

Problem 2 (k-xor, with k random functions). Given query access to k random
functions H1, . . . , Hk : {0, 1}n → {0, 1}n, find x1, . . . xk such that H1(x1)⊕ . . .⊕
Hk(xk) = 0.

Both problems will remain equivalent throughout this paper. All algorithms
studied and developed below have the same time and memory complexities in
either formulation.

Wagner gives an algorithm that requires O
(
k · 2n/(�log2(k)�+1)

)
time and

space. The design principle is to construct a binary tree whose leafs are the k
initial lists. We number these levels from 1 (leafs) to 	log2(k)
+1 (root). Level i,
for i ≤ 	log2(k)
, contains lists of 2i-tuples which xor to 0 on the n

�log2(k)�+1 × i

first bits, of size 2
n

�log2(k)�+1 each. The root of the tree contains the expected
k-xor instance. We omit constant factors in the analysis.

The base operation of Wagner’s k-tree algorithm is merging two lists in order
to obtain their parent in the tree. Merging two lists at level i − 1 costs time
O(2

n
�log2(k)�+1 ) (the size of the lists). The resulting list at level i contains all

pairs of 2i−1-tuples (hence 2i-tuples) which collide on n
�log2(k)�+1 more bits. This

explains why the parent list has (up to a constant) the same size as its children.

Remark 1. The information-theoretic query lower bound for the k-xor (alterna-
tively, the k-sum) problem is O(2n/k). Using a simple time-memory tradeoff, a
trivial algorithm for this problem runs in time and memory O(2n/2) if k ≥ 3.
(When k = 2, we fall back on collision search).

Wagner’s algorithm offers classically the best time complexity exponent. In
particular, by taking k = 2

√
n, finding a k-xor can be done in time O(22

√
n).

Various improvements have proposed [12,14,43,48] but, as they target the
logarithmic factors in the k-tree algorithm, study specific instances or concern
time-memory tradeoffs, they remain out of scope of this paper.

�-xor is easier than k-xor for � ≥ k. Classically and quantumly, an algorithm
for the k-xor problem can also be applied to the �-xor problem for � ≥ k, with
the same time complexity. This reduction was outlined by Wagner [54]. Using a
formulation such as Problem 2, one can remark that given an instance H1, . . . , H�

it suffices to call the k-xor algorithm with functions G1 = H1, . . . , Gk−1 = Hk−1,
Gk = Hk ⊕ . . . ⊕ H�.
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3.2 Quantum Algorithms for the k-xor Problem

In this section, we review known quantum algorithms that can be applied to the
k-xor problem or some of its instances. As we turn ourselves towards quantum
algorithms, instead of considering lists of elements drawn at random (as Wagner
does in his work), we consider these lists to be produced by random functions
that we can query in superposition (Problem 1 or 2).

Ambainis [3] presented a quantum algorithm for element distinctness and
extended it to k-distinctness. With this algorithm, deciding k-distinctness among
2n elements can be done with O(2nk/(k+1)) queries and Õ(2nk/(k+1)) quantum
time, using the same amount of quantum memory (i.e., qubits), by a quantum
random walk on the Johnson graph. It was later noticed [20] that this algorithm
works as well for the k-sum problem, or any k-relation, giving a good query
complexity. In [9], Belovs and Spalek proved this upper bound to be optimal,
using an adversary method.

Lemma 1 ([9,20]). The quantum query complexity of k-xor for a random func-
tion is O(2n/(k+1)), the bound is tight.

A Problem with Time. While no best method is currently known for general k
when limited to O(2n/(k+1)) superposition queries, the algorithm derived from
Ambainis’ is highly uncompetitive with respect to time. We estimate that it
needs at least Õ(2n/2) operations, for any k. In a sense, this method can be seen
as the quantum equivalent of classically taking the cross-product of k lists of
size 2n/k.

Grover Search. Using Grover’s algorithm [29] in a “raw” manner seems also a
poor idea. If the search space spans all k-tuples in input to H, looking for one
whose images xors to 0, the probability that this happens is 2−n. Hence a k-xor
will be found in time O(2n/2). This complexity is trivially beaten by classical
algorithms for k > 2 and does not perform better than classical collision search
when k = 2. Grover is known to be parallelized on 2s quantum processors with
a 2s/2 time speedup. Improvements of this speedup have been obtained for some
search problems (see [6] for preimage search) but we choose to focus primarily
on single-processor algorithms.

Collision Search. As mentioned above, any k-xor instance can be reduced to a �-
xor instance for � ≤ k. From the point of view of time complexity alone, the best
quantum algorithm for collision search (2-xor) runs in time and queries O(2n/3)
for an n-bit to n-bit random function [17]. This has been proven to be optimal
[1,2,56]. In return, this means that there exists a quantum algorithm for the
k-xor problem, for any k, running with the same time complexity. As Wagner’s
algorithm already obtains time O(2n/3) for k = 4, this seems only relevant for
collision and 3-xor search.
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Subset-sum Problem. In the subset-sum problem, one is given a set of elements
and looks for a subset which xors (or sums) to zero. The k-xor problem can be
seen as a simpler case where the size of the sum is fixed. This problem has been
widely studied classically and the quantum walk framework has been successfully
applied to it [11], but these works remain, to our knowledge, unrelated to ours.

4 Quantum Algorithms for the 3-xor Problem

We now present our new quantum algorithms for the 3-xor problem. Further
results for the k-xor problem for k ≥ 4 are left to the next section. In Sect. 3,
we saw that 3-xor was at least easier than collision search; while there is no
exponential gap in the classical setting, we find better quantum algorithms for
3-xor than the current best known algorithms for collision search:

• First with O(n) memory, improving on the time complexity of O(22n/5) [19];
• Second, with an exponential number of qubits, improving on O(2n/3) [17],

which is optimal for quantum collision search.

4.1 First Approach

We consider a first approach to the 3-xor problem, formulated as Problem 1, with
a single random function H : {0, 1}n → {0, 1}n, to which we have superposition
query access via a quantum oracle OH . The algorithm obtained below gives an
overview of the techniques that enable us to overcome the complexity of collision
search. In the rest of this paper, when storing the results of queries of H, we
will often omit that we keep track of the antecedents of these queries. We put
the focus on outputting a k-xor of images H(x1), . . . , H(xk) while disregarding
the x1, . . . xk.

Algorithm Description. Let S be the set of all x ∈ {0, 1}n such that H(x) has a
prefix of u zeroes.

Our algorithm runs in two mains steps:

1. Build two lists L1 and L2 of size 2v, where v is a parameter to be set later,
which have the form in Fig. 1. That is, they contain images H(x) ∈ {0, 1}n

such that H(x) has a prefix of u zeroes (for example, in the first u bits).1

2. Using Amplitude Amplification [16], look for an element x ∈ S (the search
space of this subprocedure) such that H(x) ⊕ z1 ⊕ z2 = 0 for some z1, z2 ∈
L1 × L2.

1 At first sight, the parameters already seem over-restricted: nothing prevents us to
use lists L1 and L2 of different sizes. We considered this situation and did not find
any advantage.
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L1 u n − u

2v

0 . . . 0 α1

...
...

0 . . . 0 αi

...
...

0 . . . 0 α2v

L2 u n − u

2v

0 . . . 0 β1

...
...

0 . . . 0 βi

...
...

0 . . . 0 β2v

Fig. 1. Structure of the lists L1 and L2, of size 2v. In the rest of this paper, the elements
of the lists and their structures refer only to H(x), while we may keep x alongside in
order to output the antecedents of our final k-xor tuple.

Algorithm Analysis: First Step. Finding an element of S can be done using
Grover’s algorithm in O(2u/2) iterations, as there is a proportion 1

2u of “good
elements” to find, the prefix condition being a u-bit condition. This gives in total
2v×2u/2 calls to OH (for simplicity, we dismiss constant factors in the complexity
analyses).

Algorithm Analysis: Second Step. The second step is an Amplitude Amplification
instance. It starts from the initial state |s〉, which is a uniform superposition over
the whole search space S, and applies a sequence of iterations. Inside each iter-
ation, we must recompute the initial state and check (in superposition) whether
elements are good or not (see Sect. 2 for more details).

Checking Step. Given x ∈ {0, 1}n, checking if there exists z1 ∈ L1 and z2 ∈ L2

such that H(x) ⊕ z1 ⊕ z2 = 0 can be done in time 22v via sequential testing.
More precisely, given a precomputed list L of 2t elements in {0, 1}n, it is easy to
build a quantum oracle which tests if an input x appears in L. On input |x〉 |0〉,
the oracle returns |x〉 |1〉 if x ∈ L and |x〉 |0〉 otherwise. It runs in quantum time
O(n · 2t), without any quantum memory requirement: this amounts to control a
sequence of n-bit comparisons against x (see Sect. 2 for a reminder of [19]).

The fact that L is known beforehand introduces a cost in classical storage.
This storage is read sequentially (it only instructs which operations to perform)
and does not need random-access. In our case, the list L contains the sums of all
pairs z1 ∈ L1, z2 ∈ L2. It is produced on the fly and does not need to be stored
itself. As it has 22v elements, the checking step costs 22v comparisons.

Initial State. The initial state of this Amplitude Amplification is the uniform
superposition over the search space S (elements whose image has a prefix of u
zeroes). It can be produced in 2u/2 time and queries using Grover’s algorithm.

Number of Iterations. The search space S is of size 2n−u. A “good element” in
this search space gives a solution to the 3-xor problem. As it must collide with
some sum z1 ⊕ z2 in L1 × L2 and there are 22v such sums, the number of good
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elements is 22v. Hence the number of iterations is O
(√

2n−u/22v
)
. In each of

these iterations, the initial state is computed and uncomputed, and the current
superposition goes through the checking step.

All in all, the second step costs a quantum time:

2(n−u−2v)/2
(
2u/2 + 22v

)

Optimizing both parameters u and v gives v = n
8 and u = 4v, which yields a

time complexity O(23n/8). The classical memory complexity is O(2n/8). All of
this analysis is average-case. With a random function H, the fluctuations (e.g., in
the size of Su) cannot, with overwhelming probability, yield more than constant
variations in the total time complexity.

Remark 2. Although the obtained time complexity is higher than the collision
query lower bound O(2n/3), it improves on O(22n/5), the current best known
collision query and time complexity with O(n) quantum memory.

Another Consequence of this Approach. If we disregard quantum memory con-
sumption, the lists L1 and L2 may be stored using qubits. More precisely, to
perform the checking step more efficiently, one may store L1 in a quantum mem-
ory and then, given x, try every element y in L2 sequentially and test whether
x⊕y ∈ L1 efficiently (even when x is given in superposition). This decreases the
cost of this test from 22v to 2v. As a consequence, the time complexity becomes:

2u/2+v + 2(n−u−2v)/2
(
2u/2 + 2v

)

which implies 2u = v as best parameters and v = n
6 . We obtain a time complexity

of O(2n/3) using O(2n/6) quantum memory, improving on [17] w.r.t quantum
memory.

4.2 Second Approach

In order to improve over the previous algorithm, we modify the structure of the
lists (Fig. 2). This new algorithm is inspired from the list-merging ones from [46].
We introduce not two, but three parameters v, u, t such that:

• Both lists2 have size 2v;
• The “completely free” part has size t;
• Elements of L1 take 0 on u bit positions;
• Elements of L2 take 0 on u different bit positions;
• Elements of both L1 and L2 take 0 on the n−2u−t remaining bits (a common

prefix, as before).

We first consider the case v ≥ u.
2 As before, we seem to over-restrict the parameters, since both lists could have differ-

ent sizes. We found that it gave no improvement: intuitively, we wish to maximize
a certain number of “good elements” given by a cross-product of L1 and L2, whose
size is maximized w.r.t the cost of producing L1 and L2 when both have equal size.
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L1 n − 2u − t u u t

2v

0 . . . 0 0 . . . 0 x1 β1

...
...

...
...

0 . . . 0 0 . . . 0 xi βi

...
...

...
...

0 . . . 0 0 . . . 0 x2v β2v

L2 n − 2u − t u u t

2v

0 . . . 0 y1 0 . . . 0 α1

...
...

...
...

0 . . . 0 yi 0 . . . 0 αi

...
...

...
...

0 . . . 0 y2v 0 . . . 0 α2v

Fig. 2. Structure of the lists L1 and L2 of size 2v.

Algorithm Design. As above, we consider the set S of “distinguished” elements
x such that H(x) has zeroes in the first n−2u− t bits. We build the lists L1 and
L2 and look for a 3-xor instance H(x) ⊕ z1 ⊕ z2 = 0 with z1 ∈ L1, z2 ∈ L2. But
the new structure of the lists L1 and L2 makes the checking step more efficient:
there will be no need to go through the whole product L1 × L2.

Our algorithm runs in two main steps:

1. Build the lists L1 and L2;
2. Using Amplitude Amplification, look for x ∈ S (the search space) such that

H(x) ⊕ z1 ⊕ z2 = 0.

Analysis: First Step. The first step builds two lists of 2v elements with zeroes
in u + n − 2u − t positions. Each of these elements is produced separately using
Grover search. The total time complexity, without constant factors, is:

2v × 2
n−u−t

2 .

Analysis: Second Step. In the second step, the search space is S, and it contains
22u+t elements among 2n. The initial state

∑
x∈S |x〉 can be constructed using

Grover’s algorithm in 2
n−2u−t

2 time and queries. To estimate the number of
iterations, we have to find the number of good elements, that is, the number of
x ∈ S such that there exists z1 ∈ L1, z2 ∈ L2, H(x) ⊕ z1 ⊕ z2 = 0. For x ∈ S,
there are on average 2v−u elements z1 in L1 that collide with H(x) on the third
column and 2v−u elements z2 in L2 that collide with H(x) on the second column.
Each of these 22(v−u) pairs z1, z2 yields a 3-xor to 0 on the three first columns.
For each of these pairs, there are t remaining bits to cancel (the last column).
Hence the probability that x yields a solution is 22(v−u)

2t , which gives 2
t−2(v−u)

2

iterations.

Checking Step. We now detail how to check quantumly whether x ∈ S yields a
solution or not, in 22v−u comparisons only (with minor constants). Since v ≥ u,
we can cut the list L1 in sublists of size 2u and expect each of these sublists to
contain an element z1 which collides partially with H(x) on the third column. We
will simply assume that there is exactly one. If there are more, these additional
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solutions will be dismissed. If there is none, we will skip this sublist and go
directly to the next one.

We can build a unitary that, given x in input, does for each sublist L′
1:

1. Go through L′
1 and retrieve z1 which yields the partial collision. This requires

2u comparisons, since this is the size of L′
1, and no additional quantum mem-

ory, since these comparisons are performed sequentially as above;
2. After retrieving z1 and storing it, go through L2 and find z2 which yields a

3-xor, if it exists. This requires 2v comparisons.
3. If a solution is found, return it, if not, return None.

As there are 2v−u sublists to analyze, there are in total 2v−u(2u + 2v) = 22v−u

comparisons performed (since v ≥ u). The output gives whether x is a good
element or not and if so, the corresponding 3-xor instance.

Reduction of the Solution Space. Keeping only one partially colliding z1 where
there could be more has the consequence of reducing the actual set of good
elements of the Amplitude Amplification procedure (the test function drops some
good elements). We show that this has no asymptotic consequence.

Let x be a fixed element of the search space. There are 2v−u sublists L′
1,

from which (1 − e−1)2v−u contain at least one solution z1 (the others yield no
solution). We bound probabilistically the total number of z1 that will be dropped.
Let Z(x) be the total number of z1 over all these sublists, then Z(x) is the sum
of (1 − e−1)2v−u independent random variables of expectation 1. An additive
Chernoff bound applies. For any 0 < δ ≤ 1:

Pr
(
Z(x) ≥ (1 + δ)(1 − e−1)2v−u

) ≤ e−δ2(1−e−1)2v−u/3 .

Where
(
Z(x) − (1 − e−1)2v−u

)
represents the total number of z1 lost for x.

We can do a union bound with x spanning the whole search space (of size
22u+t):

Pr
(∃x,Z(x) ≥ (1 + δ)(1 − e−1)2v−u

) ≤ 22u+te−δ2(1−e−1)2v−u/3 .

By taking an appropriate δ, we find that with high and constant probability,
for all x simultaneously, the number of z1 dropped is negligible w.r.t the total
amount. Assume now that x should have been a solution. Some z1 yields a 3-xor
instance: with our test, it may or not be dropped. We see that the probability
for it to be dropped is negligible. With high probability, x remains a solution;
the same goes for any x. Hence the final solution space is only negligibly smaller
than the previous one, with no consequence on the time complexity.

Total Time. The time complexity rewrites:

2v+u
2 +n−2u−t

2 + 2
t−2(v−u)

2

(
2

n−2u−t
2 + 22v−u

)
= 2

n
2 +v−u+t

2 + 2
n
2 −v + 2

t
2+v .

To find the right point of optimization, let us write the partial derivative in
v and nullify it:

2
n
2 +v−u+t

2 − 2
n
2 −v + 2

t
2+v = 0 .
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This gives an equality between the exponents: n
2 − v = t

2 + v i.e. t = n − 4v and
n
2 + v − u+t

2 = n
2 − v i.e. u = 8v − n.

Optimization. The final complexity is 2
n
2 −v with an (apparently) free parameter

v. Let us have a look at the conditions on the range of v: first, we have considered
the case v ≥ u, i.e. v ≥ 8v − n ⇒ v ≤ n

7 . Second, we must have t − 2(v − u) ≥ 0
(the Amplification Amplitude procedure needs a positive number of iterations,
1 means that all elements of the initial space are solutions), i.e. v ≥ n

10 . Finally,
we must have u ≥ 0, i.e. 8v − n ≥ 0 i.e. v ≥ n

8 . This means that this technique
works only in the range v ∈ [

n
8 ; n

7

]
where it gives a quantum time complexity

2
n
2 −v and a classical memory complexity 2v.

Case u > v. When u > v, the probability that an element x ∈ S in the search
space yields a partial collision with z ∈ L1 is 2v−u < 1. The checking procedure
needs to be reconsidered with this point of view: we now go through the whole
list L1 sequentially (and computationally, by performing comparisons) and find
the element z1, if it exists, which collides with H(x) on the u bits of the third
column. If it does not exist, we return 0 immediately (not a good element).
Otherwise, we go through L2 and find the element z2, if it exists, which collides
with H(x) on the u bits of the second column. The number of comparisons
performed by this checking step is now 2v. The other terms in the total time
complexity are unchanged. It rewrites:

2v+u
2 +n−2u−t

2 + 2
t−2(v−u)

2

(
2

n−2u−t
2 + 22v−u

)
= 2

n
2 +v−u+t

2 + 2
n
2 −v + 2

t
2+u .

Optimizing gives t = 10v − n and u = n − 6v, but u ≥ v enforces the condition
n − 6v ≥ v i.e. v ≤ n

7 , which means that we fall back in the complexity range of
above.

This leads to a few remarks:

• When v is minimal in this range, v = n
8 leads to u = 0: we obtain the first

approach as above.
• When v is maximal, v = n

7 leads to u = v, and the best time complexity,
in O(25n/14). This is very close to 2n/3, but does not yet reach the quantum
collision bound (optimal number of queries).

Details of the Best Method. The case v = n
7 and u = v - represented in Fig. 3 -

gives the best quantum time complexity. Given an element x ∈ {0, 1}n such that
H(x) has the according zero-prefix, we expect it to collide on average with one
element of L1 on the third column and with one element of L2 on the second
column. Finding these elements takes time 2 × 2v to go through both lists. It
remains to verify if H(x) ⊕ z1 ⊕ z2 sums to zero in the last t bits.
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L1 2n
7

n
7

n
7

3n
7

2n/7

0 . . . 0 0 . . . 0 x1 β1

...
...

...
...

0 . . . 0 0 . . . 0 xi βi

...
...

...
...

0 . . . 0 0 . . . 0 x2n/7 β2n/7

L2 2n
7

n
7

n
7

3n
7

2n/7

0 . . . 0 y1 0 . . . 0 α1

...
...

...
...

0 . . . 0 yi 0 . . . 0 αi

...
...

...
...

0 . . . 0 y2n/7 0 . . . 0 α2n/7

Fig. 3. Structure of the lists L1 and L2 of size 2n/7.

To build the lists L1 and L2, one needs time 2n/7+n/7+n/14 = 25n/14. To find
a 3-xor, one needs time:

23n/14
(
2n/7 + 2n/7

)

since, given an element of the 2n/7-zero prefix space, there exists a match on the
intermediate n/7 bits of L1 and L2 with high probability; then the probability
that it is the good one only depends on the 3n/7 remaining degrees of freedom
(hence 23n/14 iterations are necessary).

Theorem 1 (Quantum 3-xor Algorithm with Small Number of
Qubits). There exists a quantum algorithm for the 3-xor problem running in
quantum time O(25n/14), using O(n) qubits and O(2n/7) classical memory.

It is worth to notice that this algorithm, as the others in this paper, is
inherently quantum: although we can write a classical counterparts (by replacing
Grover search steps with classical exhaustive searches), trying to optimize the
classical time complexity gives a time O(2n/2) and O(2n/4) classical memory (we
get u = v = t = n

4 ).

4.3 Using Exponential Quantum Memory

If we allow an exponential amount of qubits to be used, we can also take the
time complexity of the 3-xor problem below the best quantum time for collision
search. This time, it is more surprising, since we go below the optimal query
complexity for collision search.

Theorem 2 (Quantum 3-xor Algorithm). There exists a quantum algo-
rithm for the 3-xor problem running in time Õ(23n/10) and using O(2n/5) qubits.

Proof. This procedure is inspired from the low-memory one. Since we authorize
quantum memory, the 2n/7 common prefix of zeroes is not necessary anymore
(it has been used to amortize the cost of the membership oracle in the amplitude
amplification procedure).
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As before, building two lists of different sizes does not give better results, nor
does building lists of size 2v with v ≤ u, where u is the number of inner zeroes
in the intermediate columns. So we take v ≥ u and write the time complexity:

2v+u
2 + 2

n−2v
2

(
2v−u

)
= 2v+u

2 + 2
n−2u

2 .

Since we store the lists in quantum memory, testing membership now costs a
logarithmic overhead which we dismiss. The 2v−u factor stems from the fact
that there are approximately 2v−u partial collisions on L1, each of which yields
a membership test to L2.

Optimization now yields v + u
2 = n

2 − u i.e. u = n
3 − 2v

3 . The complexity is
2

2v
3 +n

6 . We also need v ≥ u, hence v ≥ n
5 . ��

We cannot reduce v below n
5 , but there is also no interest in increasing it,

since this would increase both the time and memory complexity. Taking v = n
5

also implies u = v = n
5 .

5 Quantum Algorithms for the k-xor Problem, k ≥ 4

In this section, we present new algorithms for the k-xor problem, with k ≥ 4.
Again, we propose algorithms in two different models. When using exponential
quantum memory, we propose a general quantum algorithm for the k-xor prob-
lem which gives a speedup over Wagner’s k-tree method for any k. With O(n)
qubits, we find quantum speedups for specific values of k.

Table 2 gives a summary of our k-xor quantum algorithms with exponential
quantum memory, while Table 3 gives a summary of k-xor quantum algorithms
with O(n) quantum memory. In both cases, complexities given are those of the
best algorithms available, with respect to the time (in particular, there can be
memory-efficient algorithms with higher time complexity).

Table 2. k-xor quantum algorithms with exponential quantum memory. Complexities
C are given as log2(C)/n. The complexities of the classical algorithms are given by
Pollard’s rho algorithm for collisions, and by [54].

k Classical time Classical memory Quantum time Quantum memory Reference

2 1/2 0 1/3 1/3 [17]

3 1/2 0 3/10 1/5 Theorem 2

4 1/3 1/3 1/4 1/4 Theorem 4

5 1/3 1/3 1/4 1/4 Theorem 4

6 1/3 1/3 1/4 1/4 Theorem 4

7 1/3 1/3 1/4 1/4 Theorem 4

8 1/4 1/4 1/5 1/5 Theorem 4

... ... ... ... ... ...

k (1 + �log2(k)�)−1 (1 + �log2(k)�)−1 (2 + �log2(k)�)−1 (2 + �log2(k)�)−1 Theorem 4

... ... ... ... ... ...
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Table 3. k-xor quantum algorithms with polynomial quantum memory. Complexities
C are given as log2(C)/n. The complexities of the classical algorithms are given by
Pollard’s rho algorithm for collisions, and by [54].

k Classical time Classical memory Quantum time Classical memory Reference

2 1/2 0 2/5 1/5 [19]

3 1/2 0 5/14 1/7 Theorem 1

4 1/3 1/3 1/3 1/9 Theorem 3

5 1/3 1/3 7/22 1/11 Theorem 3

6 1/3 1/3 4/13 1/13 Theorem 3

7 1/3 1/3 3/10 1/15 Theorem 3

A graphical comparison between these cases is provided in Fig. 4.

Fig. 4. Time and memory complexities of some k-xor algorithms. Blue: algorithm with
classical time and classical memory (CT+CM), as provided in Pollard’s rho algorithm
for collisions, and by [54]. Red : algorithm with quantum time and exponential quantum
memory (QT+QM), as provided in Theorems 2 and 4. Green: algorithm with quantum
time and O(n) quantum memory (QT+CM), as provided in Theorems 1 and 3. (Color
figure online)

5.1 Quantum k-xor Algorithms With Low Quantum Memory

We propose an algorithm that enables us to find better-than-classical quantum
time complexities, when using O(n) qubits only. The result can be applied suc-
cessfully for k = 5, 6, 7. Its complexity is given by the following theorem:



548 L. Grassi et al.

Theorem 3. For each k, there exists a quantum algorithm for solving the k-xor
problem running in time O

(
2

(k+2)n
2(2k+1)

)
and using O

(
2n/(2k+1)

)
classical storage.

L1 t u u . . . u n − (k − 1)u − t

2u

0 . . . 0 x1 0 . . . 0 0 . . . 0 0 . . . 0 α1

...
...

...
...

...
...

0 . . . 0 xi 0 . . . 0 0 . . . 0 0 . . . 0 αi

...
...

...
...

...
...

0 . . . 0 x2u 0 . . . 0 0 . . . 0 0 . . . 0 α2u

Fig. 5. Structure of the list L1 of size 2u.

Lj t u . . . u (column j + 1) . . . u n − (k − 1)u − t

2u

0 . . . 0 0 . . . 0 0 . . . 0 y1 0 . . . 0 0 . . . 0 β1

...
...

...
...

...
...

...
0 . . . 0 0 . . . 0 0 . . . 0 yi 0 . . . 0 0 . . . 0 βi

...
...

...
...

...
...

...
0 . . . 0 0 . . . 0 0 . . . 0 y2u 0 . . . 0 0 . . . 0 β2u

Fig. 6. Structure of the list Lj of size 2u.

Proof. We take k −1 lists L1, . . . , Lk−1, each of size 2u and containing elements
with t + (k − 2)u zeroes, a prefix of size t and k − 2 ranges of size u (Figs. 5 and
6). Of these ranges in list Lj , they all contain zeroes, except column j + 1 (see
Figs. 5 and 6).

Given x ∈ {0, 1}n, it collides on average with one element in L1 on its
corresponding non-zero column of size u, the same for L2, etc. It remains to
obtain 0 in n − (k − 2)u − t bits. The time is:

2u+(k−2)u/2+t/2 + 2
n−(k−1)u−t

2

(
2t/2 + 2u

)
(1)

which gives u = n
2k+1 , t = 2u and a complexity exponent (k+2)n

2(2k+1) . ��

When k = 4, we fall back on complexity 2n/3, but the memory complexity is
better than Wagner’s 2n/3: it drops to 2n/9.
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When 4 < k < 8, this gives better-than-classical time complexities in the
bounded quantum memory setting3. In particular, setting k = 7 gives O(23n/10)
time.

For k ≥ 8, the cost of the Grover search step fails to decrease enough to be
competitive against Wagner’s algorithm, which is why Table 3 stops at k = 7.
With k ≥ 8, no quantum speedup for k-xor, with polynomial quantum memory,
is known.

5.2 A Quantum Walk 4-xor Algorithm

In this subsection and the next one, we present a quantum walk algorithm for
the general k-xor problem. First, we focus on the 4-xor case; a generalization of
this method to any power of 2 will be presented later. Our algorithm uses the
framework of quantum walks as described in [40]. It is inspired by [3] in that it
also walks on the Johnson graph.

We formulate the 4-xor problem as following: given superposition query
access to a random function H : {0, 1}n → {0, 1}n, finding 4 or less distinct
elements x1, x2, x3, x4 such that H(x1) ⊕ H(x2) ⊕ H(x3) ⊕ H(x4) = 0. This
algorithm adapts when we consider 4 random functions instead of one, when we
consider quantum random memory accesses instead of oracle calls and when we
enforce exactly 4 outputs (and refuse “smaller” collisions).

We define the Johnson graph J(2n, 2r), where vertices are subsets of 2r

elements in {0, 1}n. This is the same graph as used by Ambainis’ element-
distinctness algorithm in [3]; its spectral gap is approximately δ = 2−r.

We add additional information to a vertex in the graph: we maintain the
list of all r-collisions (collisions on the first r bits) within this set. There are
approximately 2r such collisions. A vertex in the graph is marked if two of
these r-collisions collide. Hence, a random vertex in the graph has probability
22r−(n−r) of being marked, as there are approximately 22r pairs of r-collisions
to construct and n − r bit conditions to check.

Remark 3. In the way we mark vertices, we are losing information: indeed, there
are vertices which contain a 4-sum to zero, but are not marked. Any method
to efficiently mark more vertices would improve the complexity of our quantum
walk, but it would also have consequences on the classical complexity of k-xor.

There is actually no need to perform this check on the fly; in the data struc-
ture representing a vertex, we store the list of r-collisions in a sorted manner
(using e.g. a skip list, as in [3], which adds logarithmic overhead) and keep
updated a “flag” bit which indicates whether the vertex is marked.

3 Note that 2
(k+2)n
2(2k+1) ≥ 2

n
1+�log2 k� for each k ≥ 8, since

k + 2

4k + 2
≥ 1

1 + �log2 k� ⇔ (1 + �log2 k�)(k + 2) ≥ 4(k + 2) ≥ 4k + 2.
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Using this data structure, the cost of an update (constructing the superpo-
sition of all neighbors) is constant. Indeed, we only need to perform one query
and update the list of r-collisions: on average, a given element appears in 1 of
these collisions; we remove this one and add the potential new collision (which
is found in constant time, since the list of elements is also sorted).

The time complexity of this quantum walk is, by [40]:

S +
1√
ε

(

C +
1√
δ
U

)

where U is the update cost (constant), C the checking cost (constant), S the
setup cost (equal to 2r, as there are 2r initial queries to perform), ε the proportion
of marked vertices and δ the spectral gap. In our case, this gives:

2r + 2
n−3r

2

(
2r/2

)
= 2r + 2

n
2 −r .

As it appears, the optimal time complexity is Õ(2n/4) (there are logarithmic
factors to take into account while updating the quantum data structures) with
a quantum memory complexity of Õ(2n/4). Besides, this gives a quantum time-
quantum memory trade-off curve T × S = 2n/2 for the 4-xor problem.

Lemma 2. For any quantum memory size S ≤ 2n/4, there exists a quantum
algorithm for the 4-xor problem running in time T = 2n/2/S.

Remark 4. There are some possible caveats to this method, which we address in
the next subsection. First, it is possible that the final 4-xor is a sum of the form
H(x1)⊕H(x2)⊕H(x3)⊕H(x4) = 0 where H(x1) = H(x3) and H(x2) = H(x4),
giving a trivial result. This kind of failure happens infrequently. Furthermore, we
did not bound precisely the cost of a vertex update: such an update is performed
in superposition on all vertices. When we remove and add an element of a vertex,
although there would be on average only one r-collision to remove and add, the
“average case” is not enough, since we are considering all vertices at the same
time. This may incur another quantum time overhead.

5.3 A Quantum Walk 2k-xor Algorithm

The technique used successfully for the 4-xor problem can be applied for the
2k-xor, in a similar manner as Wagner’s classical k-tree technique. We perform a
quantum walk on the Johnson graph J(2n, 2r). Marked (“good”) vertices contain
a 2k-xor, but most of the vertices with a 2k-xor are actually not marked: this is
where we lose the most against the quantum query lower bound.

Our quantum data structure for vertices stores much additional information,
multiplying the quantum memory by a factor k. There are k sorted lists on k
levels:

• On the first level, we store the 2r elements of the vertex (L1);
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• On the second level, we store the 2r r-collisions expected from these elements
(and store, for each collision, a pair of pointers towards the elements which
produced it) (L2);

• On the third level, we store the 2r 2r-4-xor (4-xor on 2r bits) expected from
the collisions above (collisions of collisions) (L3);

• . . .
• On the k-th level, we store the (approximately) 2r (k−1)r-2k−1-xor expected

(Lk).

What remains is, from pairs of these 2r (k − 1)r-2k−1-xor, to obtain a collision
on the n − (k − 1)r remaining bits. Such a collision is easy to find, since the list
at the k-th level is sorted.

Updating the vertex data structure (i.e., removing an element and adding
another) should be done in time O(k), as we have k levels to go through and to
update. The time (and memory) complexity of this walk then amounts to:

k × 2r + 2
n−(k−1)r−2r

2 (2r/2 × k)

which we optimize using r = n
k+2 to O

(
k2

n
k+2

)
. A number of technicalities

remain to be handled.

The Diminution of the Number of Collisions. Suppose that at level i, the 2r

bit-strings corresponding to the non-colliding part of the (i − 1)r-2i−1-xor of
this level take exactly 2r different values (i.e., |Li| = 2r). At level i + 1, they
make take strictly less values (i.e., |Li+1| < |Li|). This could make the number
of distinct elements stored at level i + 2 decrease further, and so on. If we
authorize non-distinct elements in the 2k-xor instance in output, this is not
an issue. Indeed, |Li+1| < |Li| happens only if a pair of elements at level i
already completely collides. We can check this while computing or updating Li

and immediately mark the vertex: a full collision at level i + 1 corresponds to
a 2i-xor instance, which in turn corresponds trivially to a 2k-xor instance with
non-distinct elements. If this is not authorized, then the average size of the lists
indeed decreases. We will handle this below.

Increasing the Number of Collisions. On the contrary, there may be too much
collisions at level i and Li+1 may increase in size. This is an issue for all vertices,
since the quantum memory used stores the data structures in superposition for
all. We must ensure that Li is bounded for all i and for all vertices. But this is
trivially done: if there are too much collisions, we dismiss them. Recall that the
goal of our marking procedure is to mark efficiently some vertices containing a
2k-xor, not all of them.

Outputting the 2k-xor Result. At the end of the quantum walk, we perform a
measurement and get the whole data structure of a vertex. We make sure to store,
for each partial collision or xor at level i, the two elements of level i − 1 which
produced it (this introduces only a constant overhead). Hence, outputting the
whole 2k-xor instance amounts to the traversal of a tree of pointers, performed
in time O(2k). This adds to the complexity of our algorithm.
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The Real Cost of an Update. Updating the data structure is done when we
remove, and then add an element to the vertex (going to one of its neighbors). We
then have to go through the k levels. We expect “on average” O(1) computations
to be performed at each level, as each element on level i intervenes “on average”
in one collision at level i + 1 (collision which we have to remove, or to add,
depending on the situation). Classically, we may consider such an average case,
but quantumly, we are studying all elements in superposition.

Suppose that x ∈ {0, 1}n intervenes in multiple collisions of a random func-
tion H : {0, 1}n → {0, 1}n. This means that f(x)⊕f(yi) = 0 for multiple values:
y1, . . . y�−1. This means, in turn, that x is actually involved in a �-collision for
some � > 2.

The average number of �-collisions in a random n-bit to n-bit function is
e−12n

�! ([26], Theorem 4). At each level, computing the next collisions is done by
sorting a list of 2r values; this enables us to select only 2-collisions and avoid
any element to appear twice. That way, only one update has to be propagated
towards the next levels. Besides, some of the branches die out, as the number of
collisions is below 2r: we expect 2re−1/2 � 0.184 × 2r.

This seems to be a caveat of our technique: as the number of levels grows
higher, the number of collisions at the k-th level is of the order 2r

(2e)k
. The number

of marked vertices, in turn, is smaller than our first estimation.

Adapted Time Complexity. The remarks above make us rewrite the time com-
plexity by taking k into account more precisely:

k × 2r + 2
n−(k−1)r−2r

2 (2e)k(2r/2 × k) + 2k = k2r + k2
n−kr

2 +k(1+1/ ln 2) + 2k

which optimizes to (k + 2)r = n + 2k
(
1 + 1

ln 2

)
. Notice that 22k(1+ 1

ln 2 )/(k+2) ≤
4e2, a constant.

General Case. We studied the case of a power of 2, but generally, the K-xor
problem may be solved using a similar quantum walk as the 2�log2 K�-xor.

Theorem 4 (Quantum Walk K-xor Algorithm). For any integer K, there
exists a quantum algorithm that, given superposition oracle access to a random
function H : {0, 1}n → {0, 1}n, solves the K-xor problem in quantum time and
memory (asymptotic in K and with additional factors in r due to data structure
management):

Õ
(
K2

n
�log2 K�+2

)
.

At first, the time complexity could have been with a factor Kc with c =
1 + 1

ln 2 slightly greater than 1, coming from the way we propagate the update
in the log2 K-leveled data structure. We correct this time complexity by slightly
increasing the size of the lists stored in the structure, which in turn increases the
number of partial collisions we get, and makes the time and memory complexities
equal.

When querying K independent oracles instead of one (alternatively, when
we have K independent lists), the complexities are the same. Since the lists are
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independent, we consider K levels instead of log2 K; level i contains increasing
partial collisions between elements from L1 . . . Li.

Multiple K-xor . Let 	log2 K
 = k. Using Wagner’s algorithm, [54], one can out-
put 2c K-xor instances in time O

(
K2

n
k+1 × 2

c
k+1

)
, provided that c ≤ n

k . Using
our quantum walk algorithm, it is possible to obtain a similar result. We use more
quantum memory. The initialization step is performed as above. The march is
then divided in 2c steps, each of which corresponds to a new K-xor instance,
that we may store until the end. First, we march on the Johnson graph and
marked vertices are those which contain at least a K-xor; second, we march on
vertices that contain a K-xor and marked vertices are those which contain at
least two K-xors, and so on. The end of each subwalk is the beginning of the
next one. The quantum time complexity becomes approximately:

K × 2r + 2c × 2
n−(k−1)r−2r

2 (2r/2 × K)

with a final r = 2c+n
k+2 and a time complexity: Õ

(
K2

2c+n
k+2

)
. This is legitimate as

long as n ≥ (k + 1)r (positive number of iterations), i.e. n ≥ 2c+n
k+2 (k + 1), i.e.

c ≤ n
2(k+1) .

6 Quantum k-xor Parallel Algorithms

While an involved discussion on all respective parallelization strategies for clas-
sical and quantum algorithms for the k-xor problem would be outside the scope
of our work, we can make a few remarks on the cost of parallelized versions of
our algorithms.

First of all, we consider as “quantum parallel algorithm” a quantum algo-
rithm written in the circuit model, with an adapted definition of time complexity :
instead of merely counting the number of quantum gates, we authorize up to 2s

of them, if there are 2s “quantum processors” available, to be applied in a single
time step. Such a definition, which puts away possible communication overheads
between quantum processors, has been extensively justified in [7].

Parallelization of quantum algorithms seems sometimes to give more negative
than positive results: as an example, although Grover’s algorithm can be paral-
lelized, it cannot gain more than a factor 2s/2 in time when using 2s processors,
while classical exhaustive search does not suffer from this issue.

Quantum Parallel 3-xor Algorithm. Consider our 3-xor algorithm of Sect. 4, run-
ning on one processor in time O(25n/14) with classical storage of size O(2n/7).
We distribute it over 2s quantum processors, in the following way: both the
computation of intermediate lists and the final step (amplitude amplification)
are shared among these processors; the former more efficiently (a factor 2−s)
than the latter (2−s/2). Rewriting the time complexity and performing a similar
optimization process, we obtain a time O

(
2

n
2 −v− s

2
)

for v ≤ n+s
7 .
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By taking v = n+s
7 , i.e. increasing the classical resources4, we get a

time Õ
(
2

5n
14 − 9s

14

)
, with a more significant parallelization speedup compared to

Grover’s algorithm.
Although trading quantum memory for classical storage seems advantageous,

many alternative and debatable benchmarks can be used to quantify the overall
cost of running algorithms. One of these benchmarks (used in [10] against the
quantum collision algorithm of [19]) binds together the memory and the num-
ber of processors used as hardware resources. Using this particular benchmark,
single-processor Pollard rho costs O(2n/2), while 2s-processor parallelized rho
costs O(2n/2−s × 2s) = O(2n/2), and no quantum collision search (because of
their memory usage) outperforms the classical ones.

Even with this benchmark, our new 3-xor algorithm performs efficiently. Sup-
pose that we equalize the number of processors and the memory used (which
remains single-access): s = n+s

7 gives s = n
6 . This gives a time Õ

(
2n/4

)
. The prod-

uct time-resources is Õ
(
25n/12

)
and improves over the best classical complexity.

7 Conclusion

In this work, we have studied quantum k-xor algorithms, proposing new ones
with the lowest known time complexity.

The previous best known quantum attacks could only rely on collision search
for k = 3 and did not outperform Wagner’s algorithm for k ≥ 4. Even though
the optimal quantum query complexity could be attained, there was virtually
no quantum time-efficient method for the k-xor problem.

We filled this gap in two settings, depending on the status of quantum mem-
ory (see Fig. 4 for more details).

• If quantum memory is considered as cheap as classical memory, we autho-
rize the adversary to use exponential amounts of it. We obtain an improve-
ment over quantum collision search for the 3-xor problem (Õ(23n/10) instead
of Õ(2n/3), with significantly reduced quantum memory). For general k, we
also improve Wagner’s time and memory complexities of O(2n/(1+�log2(k)�))
towards O(2n/(2+�log2(k)�)) quantum time and memory.

• If quantum memory is reduced to O(n), we obtain quantum speedups for
k-xor up to k = 7. In particular, 3-xor search can be performed in time
O(25n/14), which is better than the current state of the art for low-qubits
quantum collision search.

4 Notice also that, although all 2s processors seem to require concurrent accesses to the
classical intermediate storage, we can do better if communication overheads between
processors are negligible, as advocated by [7]. All processors perform the sequential
membership oracle at the same time and in exactly the same manner. Hence, lists
elements need only to be sent to one of them and broadcasted to the others with
logarithmic overhead.
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In particular, contrary to classical algorithms, we have clearly shown that
the quantum 3-xor problem is exponentially easier to solve than the quantum
collision finding problem, which was not an intuitive conclusion. In contrast, clas-
sical time improvements of the 3-xor problem have concerned only logarithmic
factors.

Parallelization. Our algorithms for k-xor running with O(n) qubits give rise to
efficient parallel versions. In particular, our quantum parallelized 3-xor algorithm
attains, using 2n/6 processors and the same amount of classical storage, a time-
hardware product of Õ(25n/12), effectively below classical algorithms.

7.1 Implications of Our Results

Our results, in particular for small k, can be used to improve quantumly crypt-
analysis results of particular hash constructions or authenticated encryption
schemes.

In the following, we give some practical examples:

XHASH and the (R)FSB SHA-3 Candidate: we are able to improve
the best GBP attack on the SHA-3 candidate (R)FSB. Referring to [4], the
parameters for FSBlength (the SHA-3 proposal contains five versions of FSB,
that is FSB160, FSB224, FSB256, FSB384 and FSB512) are given by r – i.e. the
output size in bits – and n – i.e. the size of the message to be hashed, where
the message is split in ω blocks of size u = 2a. Given the FSB hash function

FSB(H,m) :=
k⊕

i=1

hi(mi),

to set up the GBP the idea is to construct l = 2 log2(u) − 1 lists (see [22]
for details), where each list is given by the xor-sum of ω/l values hi(mi). The
complexity of a classical GBP is well estimated 2n/(1+�log2(l)�). A Wagner-type
attack (see [4, Table 7]) against FSB160 finds a 16-xor between 16 lists which
contain elements of size 632. Time and memory, up to smaller constant factors,
are given by Wagner’s 16 × 2127. If we are able to query the elements of these
lists in superposition, in other words, to produce them quantumly on-the-fly,
the quantum time and memory complexities of this operation decrease to 2105.
Similar results can be obtained also for the SWIFFT hash function previously
recalled.
Authenticated Encryption Schemes - CAESAR: we are able to improve
the best forgery attacks on the CAESAR schemes based on XLS. Let us
focus on the 128-bit CAESAR candidates Deoxys and KIASU (64 bits of –
claimed – security level). The 3-xor problem for XLS in these candidates has
the parameter n = 128. According to Table 1, the 3-xor can be produced in
quantum time 245.7 and 218.3 classical memory (w.r.t. quantum time 251.2 and
225.6 classical memory of [19]) or in quantum time 238.4 and 225.6 quantum
memory (w.r.t. quantum time 242.7 and 242.7 quantum memory of [17]).

Similar results can be obtained for the other applications previously discussed.
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7.2 Open Questions

There are still some open questions and further lines of research that would
be interesting to investigate. Most of them concern k-xor algorithms with O(n)
qubits:

1. Does there exist such a 3-xor algorithm reaching below the quantum collision
bound of O(2n/3)?

2. Is it possible to find a 4-xor quantum algorithm with O(n) quantum memory
giving a quantum time speedup over Wagner’s method?

3. Still with O(n) quantum memory, can we give a quantum speedup over Wag-
ner’s method for a general k?

4. How to adapt our algorithms to the k-sum case? The evolved ones will have
a certain overhead that should be computed.

Another question that we believe to be of interest is the fact that classi-
cal algorithms for solving the 3-xor problem had a comparable complexity to
collision-finding algorithms. With our new quantum algorithm, the 3-xor prob-
lem is clearly easier to solve, and might therefore imply that new applications
of this problem can appear, as for instance for building bricks of attacks.
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Abstract. At Eurocrypt 2017 a tweak to counter Simon’s quantum
attack was proposed: replace the common bitwise addition with other
operations, as a modular addition. The starting point of our paper is a
follow up of these previous results:

First, we have developed new algorithms that improves and general-
izes Kuperberg’s algorithm for the hidden shift problem, which is the
algorithm that applies instead of Simon when considering modular addi-
tions. Thanks to our improved algorithm, we have been able to build
a quantum attack in the superposition model on Poly1305, proposed at
FSE 2005, widely used and claimed to be quantumly secure. We also
answer an open problem by analyzing the effect of the tweak to the FX
construction.

We have also generalized the algorithm. We propose for the first time a
quantum algorithm for solving the hidden problem with parallel modular
additions, with a complexity that matches both Simon and Kuperberg
in its extremes.

In order to verify our theoretical analysis, and to get concrete esti-
mates of the cost of the algorithms, we have simulated them, and were
able to validate our estimated complexities.

Finally, we analyze the security of some classical symmetric construc-
tions with concrete parameters, to evaluate the impact and practicality
of the proposed tweak. We concluded that the tweak does not seem to
be efficient.

Keywords: Quantum cryptanalysis · Hidden shift problem
Simon-meets-kuperberg · Poly1305 · Symmetric cryptography
Modular additions

1 Introduction

As years go by, quantum computers becomes an increasingly concrete threat.
The scientific community is already anticipating the changes in the hardness
of various problems such a computer would produce. Cryptology is one of the
affected disciplines. Indeed, the current state-of-the-art asymmetric primitives
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would become insecure, and the NIST has launched a competition for finding
new primitives.

Symmetric cryptography, essential for enabling secure communications,
seemed much less affected at first sight: for a long time, the greatest known threat
was Grover’s algorithm, which allows exhaustive key searches in the square root
of the normal complexity. Thus, it was believed that doubling the key lengths
suffices to maintain an equivalent security in the post-quantum world.

At the same time, the security proofs in symmetric cryptography often need
to make unrealistic assumptions. Therefore, the security of concrete symmetric
primitives is mainly based on cryptanalysis: we only gain confidence in their
security through extensive and continuous scrutiny. Hence, it is not possible
to determine if a symmetric primitive is secure in the quantum world without
first understanding how a quantum adversary can attack it. New results in this
direction have appeared lately, like quantum generic meet-in-the-middle attacks
on iterative block ciphers [28], quantum linear and differential attacks [30], or
improved algorithms for collisions or multicollisions [17,27].

Using Simon’s Algorithm. Some other recent attacks are based on the
polynomial-time quantum algorithm of Simon [43]. It began with [34], which
presented a distinguisher for 3-round Feistel schemes. It has then been followed
among other works by an attack against the classically secure Even-Mansour con-
struction [35], some quantum related-key attacks [41] or a key-recovery attack
against the CAESAR candidate AEZ [11].

This algorithm has also been proven efficient against well-known modes of
operation for MACs and authenticated encryption at Crypto 2016 [29], where
a quantum slide attacks was also demonstrated, with a complexity linear in
the block size (see also [42]). An analysis of the FX construct against quan-
tum adversaries was presented at Asiacrypt 2017 [37]. A combination of Grover
and Simon showed it was much less secure than expected, and for instance the
PRINCE cipher is broken in the quantum setting. These surprising results were
the first clearly showing that doubling the key-length of symmetric primitives is
not enough – in some cases – to provide an equivalent security against quantum
adversaries when considering the superposition scenario, that we discuss next.

The Attack Model. These last mentioned attacks apply in a scenario of super-
position quantum queries. It means that the adversary is not only allowed to
perform local computations on a quantum computer1, but is also allowed to per-
form superposition queries to a remote quantum cryptographic oracle, to obtain
the superposition of the outputs. These attacks have been described as superposi-
tion attacks [20], quantum chosen message attacks [10] or quantum security [50].

This is a strong model for the attacker, but there are very good arguments for
studying the security of symmetric primitives in this setting (see for instance [24]
or [25] for more detailed justifications of the model):

1 In [9,15,47,51], it can query a quantum oracle with an arbitrary quantum input.
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1. This model is simple. Using another model would imply artificial and hard
to respect measures with respect to cryptographic oracles in a world with
quantum resources, with complex manipulations of yet uncertain outcome2.

2. Safety in this model implies safety in any other scenario, even advanced ones
(e.g. obfuscated algorithms).

3. Though powerful, this model is not trivial: not all primitives are broken in it.
Actually, several resistant constructions have been proposed [4,10,20,25,44].

All the attacks proposed in this paper fit in this model.

Countering the Attacks [2]. At Eurocrypt 2017, a proposal for countering the
attacks from [29] was presented [2]. The authors propose to replace the common
(Z/(2))n addition, vulnerable to the Simon algorithm, with other operations
that imply a harder problem to solve. The most promising of these operations,
because of efficiency and implementations issues, already used in several sym-
metric schemes (i.e. [26,40,49]), is addition over Z/(2n), i.e. modular addition.
The authors claim the quantum hardness of the hidden shift problem proves the
security of their proposal against quantum chosen-plaintext attacks.

This approach is a priori an interesting direction to analyze and study. The
authors did not provide a deeper analysis of the impact of various parameters
on the security. The attacks are no longer in O(n) (with n the state size) when
using the modular addition, as Simon’s algorithm does not apply anymore, but
we could describe attacks that are still a lot faster than the generic ones by using
Kuperberg’s algorithm [32], e.g. 2O(

√
n) instead of O

(√
2n

)
.

Indeed, classically, a symmetric primitive is considered secure when no attack
better than the generic attack exists. While the complexity of the generic exhaus-
tive search is exponential (2n/2), the quantum attacks on primitives with mod-
ular additions have a sub-exponential complexity. This implies a need for a
redefinition of security, when building secure primitives with these counter mea-
sures, as the best generic attacks that define the security of the cipher (based
on Kuperberg now) will be better than the exhaustive search. Also, concrete
proposals for the size of the primitives needed in order to provide the typical
security needs (i.e. 128 bits) are missing.

Describing in detail the new best quantum attacks on the proposed con-
structions is necessary to provide concrete designs for a given wanted security.
To evaluate the interest of such constructions, we should compare these designs
with concrete parameters to other (quantum-secure) ones, like the Advanced
Encryption Standard (AES) [19].

On Kuperberg’s Complexity, Improvements, Applications. Studying in detail
Kuperberg’s algorithm, proposing improvements and simulating the complexity
for concrete parameters has not been done before and is of algorithmic general
interest. Such an analysis is required to determine suitable parameter sizes for

2 Implementations of theoretically secure quantum cryptography remain yet not fully
understood, as shown by the attacks [38,48,52].
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a given security level. Hidden shift algorithms have an impact beyond the sym-
metric variants we just mentioned, and can threaten other primitives, such as
Poly1305 [6], which uses modular additions. Hidden shift problems also arise in
some other cryptographic areas, such as isogenies. They are for example relevant
to assess the security of CSIDH [16].

1.1 Our Contributions

1. Kuperberg’s algorithm: improvement, generalization. We studied
Kuperberg’s quantum algorithm for hidden shifts in the group Z/(N) [32] and its
applications in symmetric cryptography.3 We focus on the groups Z/(2n), which
are widely used in symmetric cryptography. The original algorithm retrieves
one bit of the secret shift at a time and uses a reducibility property to get the
next bit. We propose a variant that performs better by getting all the bits in
one step, allowing a drastic cost reduction of the attack on Poly1305. In the
extended version of this paper [12], we also propose a generic algorithm to solve
the hidden shift problem in non-abelian groups.

2. Simon Meets Kuperberg. We propose a new quantum algorithm that
considers a generalization for products of cyclic groups (Z/(2w))p and its sub-
groups), commonly used in symmetric primitives. The problem is more easily
solvable in these groups than in Z/(2wp). Our complexity analysis shows how it
meets Simon (w = 1) and Kuperberg (p = 1) in each extreme.

3. Simulation of the algorithms. We have implemented the classical
part of these algorithms (Kuperberg, improved Kuperberg and Simon-meets-
Kuperberg) and simulated them in order to estimate the asymptotic query
complexity, and to get values for parameters of interest, verifying the expected
complexities4.

4. Attack on Poly1305 in the superposition model. We propose a quan-
tum attack on Poly1305 [6], a MAC that has been standardized for TLS 1.2 [36]
and 1.3 [1], and is notably used by OpenSSH, Firefox and Chrome. In [8] a clas-
sical and quantum security of 128 bits is claimed for Poly1305: “‘Information-
theoretic’ MACs such as GMAC and Poly1305 already protect against quantum
computers without any modifications: their security analysis already assumes an
attacker with unlimited computing power.” Our attack, that works in the super-
position model, has a complexity of 238 and uses our improved Kuperberg’s
algorithm. It recovers half of the 234-bit key, allowing forgeries of authenticator

3 Even if some later algorithms have been developed and are more efficient, we focus
on the original algorithm for two main reasons. We focus on quantum query and time
complexity and the gain from [39] is in memory and [21] needs an exponential time
classical post-processing. Moreover, we want concrete values and not asymptotic
exponents and the algorithm in [33] is far harder to estimate precisely.

4 The code is available at https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.
gz.

https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
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messages with the same nonce. The attack is not a direct application of the
algorithm and requires some additional techniques.

5. Attack on the FX variants. We answer an open question asked in [37],
assessing the quantum security of the FX construction with any group law. If the
inner key addition is done with a commutative group law, the security gain of the
construct is marginal, and the best we can hope to achieve with a non-abelian
group is a gain of around n/3 bits of security for an n-bit inner key.

6. Evaluate the proposed countermeasures from [2]. The final aim was to
determine how to size the symmetric primitives in order to offer a certain desired
security, and to decide whether the proposed countermeasure was sufficient, and
efficient enough in practice. Using modular additions in vulnerable constructions
instead of xors for key addition increases the complexity of the corresponding
quantum key-recovery attack, but we show that the proposal from [2] does not
seem practical. It would require an internal state size of a few thousand bits, to
be compared with the size of the internal state of AES-256, which is 128 bits.

Organization of the Paper. Section 2 introduces some preliminary material.
Section 3 presents our study on Kuperberg’s algorithm and our improvement,
several generalizations, our simulations and the inferred complexities. Section 4
describes our new quantum algorithm for parallel additions. Section 5 presents
the first quantum attack on Poly1305 in the superposition model, using Kuper-
berg’s algorithm. Section 6 estimates the strength of the FX construct with new
group laws. Section 7 applies our previous results to actual symmetric primitives,
deducing the key or internal state size that must be used in those constructs to
offer a desired quantum security. The paper ends with a conclusion in Sect. 8.

2 Preliminaries

In this section, we present the quantum symmetric attacks from [29,37], the
proposed solution from [2] and our cost model.

2.1 Quantum Attacks Using Simon’s Algorithm from [29]

In [29] Simon’s quantum algorithm was applied to cryptanalyze several widely
used modes of operation and CAESAR candidates. This was possible due to the
exponential speedup of Simon’s algorithm, that solves the following problem:

Let f : {0, 1}n → {0, 1}n. Given the promise that there exists s ∈ {0, 1}n

such that for any (x, y) ∈ {0, 1}n, [f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}], find s.
The authors applied Simon’s algorithm to find a secret information in time

linear in the block size (O(n) instead of O(2n/2) classically). One implication of
the problem was not verified in the attacks: with a small probability, we might
have f(x) = f(y) and x ⊕ y /∈ {0n, s}. However, they showed that the algorithm
is still efficient with a random function in place of a random permutation.
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2.2 Solution Proposed in [2]

In [2], the authors propose to change the group law in the primitives broken
by [29], to prevent the use of Simon’s algorithm. They also propose a security
reduction from the primitives to the corresponding hidden shift problem, and
claim that they are safe, as no polynomial algorithm for these problems is known.
They notably propose (Z/(2n),+) (for which Kuperberg’s algorithm is, in a
sense, not a threat, as it is superpolynomial), or the symmetric group Sn.

2.3 Cryptanalysis of the FX Construction [37]

The FX construction [31] uses a block cipher Ek and two additional keys k1, k2,
and is defined as FXk0,k1,k2(x) = Ek0(x⊕k1)⊕k2. It can be broken by combining
Simon’s and Grover’s algorithms: one can perform an exhaustive search on k0
and then see the FX construct as an Even-Mansour with the public permutation
Ek0 , which can be broken with Simon’s algorithm. The authors left as an open
problem the case where the whitening keys were added with modular addition.

2.4 Cost Model

We’re interested in the explicit costs of the algorithms we study. These algorithm
have all a similar shape: they use a generation circuit that produces some rele-
vant qubits, a combination circuit that uses the produced qubits, and a control
circuit that chooses which qubits are to be combined. The generation circuit is
a Quantum Fourier Transform applied to an oracle, whose total cost in time
and memory is the number of queries. The combination circuit has a fixed cost,
and can only be used once per query. The control circuit can be more complex,
but only have to reason about classical values, and hence can be implemented
purely classically. Its cost in time and memory will be the cost in query, with a
polynomial overhead. As we expect that a classical computer will be far more
efficient than a quantum computer to apply the same number of gates, we esti-
mated that the bottleneck of our algorithm will be the quantum part of it, and
that the relevant cost unit here is the number of queries.

3 New Results on Kuperberg’s Algorithm

In this section, we study Kuperberg’s quantum algorithm for solving the hidden
shift problem. While the final aim is to be able to accurately estimate the com-
plexities of the cryptanalysis on primitives whose security rely on the hidden shift
problem, we have also performed a deeper work that verifies and helps better
understanding Kuperberg’s algorithm and its performance. We propose a new
variant of the algorithm that reduces its cost, and that will allow to build the
performant attack from Sect. 5. We’ve implemented the classical part of these
algorithms and made some simulations in order to get concrete estimates of the
asymptotic complexity and values for parameters of interest, that match and
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refine the theoretical expectations. In the extended version of this paper [12], we
also propose a generic algorithm to solve the hidden shift problem in non-abelian
groups.

3.1 Hidden Shift Problem and Quantum Algorithms

The hidden shift problem (HSP) is defined as follows:
Let f , g be two injective functions, (G, ·) a group. Given the promise that

there exists s ∈ G such that, for all x, f(x) = g(x · s), retrieve s.
We say that f is a shifted version of g, the shift being s. To estimate the

complexity, we consider n = log2 |G|. The hardness of the problem depends on
the group law. If it is a bitwise xor, Simon’s algorithm [43] solves it in polyno-
mial time. If the group law is a modular addition, it can be solved with a linear
number of queries [21]. This method requires an exponential-time classical post-
processing, and as such, won’t be interesting for us. The first sub-exponential
(in quantum query and quantum and classical time) algorithms are presented in
[32]. They have a time and space complexity in 2O(

√
n) for a group of size 2n.

Other variants were developed later, with an algorithm with quantum polyno-
mial space, but slightly worse time complexity, in 2O(

√
n log(n)) [39], and some

algorithms in [33], that generalize the previous one, allowing some trade-offs
between classical and quantum memory and time.

From this point, we focus on additions modulo a power of 2, as they are very
common in symmetric cryptography, due to implementation reasons.

Single Modular Addition. All these algorithms are in two parts: an oracle
that calls f and g to produce some labeled qubits (�, |ψ�〉), with � a classical
value that we call a label, and a combination circuit that transforms them into
more interesting ones. The oracle part uses the quantum oracle

O : |b〉 |x〉 |y〉 �→
{ |0〉 |x〉 |y ⊕ f(x)〉 if b = 0

|1〉 |x〉 |y ⊕ g(x)〉 if b = 1 .

Generation. The oracle circuit (Fig. 1a) produces the uniform superposition in
the registers b and x with Hadamard gates (H), feeds them to the oracle (O),
and then measures register y. This measurement gives a result y0 and collapses
the b and x registers in the state

∑
f(x)=y0

|0〉 |x〉+
∑

g(x)=y0
|1〉 |x〉, which is the

state |0〉 |x0〉 + |1〉 |x0 + s〉 for a given (unknown) x0, thanks to the promise. We
then apply a quantum Fourier transform (QFT) on the x register and measure
the result. This gives us a uniformly distributed �, and collapses the remaining
qubit in the state |ψ�〉 = |0〉 + exp

(
2iπ s�

2n

) |1〉.
This qubit depends on s, but is not directly exploitable. The qubit |ψ2n−1〉 =

|0〉 + exp (iπs) |1〉 is very interesting, as it is |+〉 if the lowest bit of s is 0, and
else is |−〉. Hence, if we measure it in the {|−〉 , |+〉} basis, we get one bit of s.
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b : |0〉

x : |0〉

y : |0〉

H

H O

�

�n n

m

n

m

n |ψ�1〉 |ψ�〉

|ψ�2〉 �

Fig. 1. Quantum circuits for Kuperberg’s algorithm

Combination. We have then a combination part, that uses the produced qubits
to generate some more interesting ones. The combination is done with the circuit
in Fig. 1b, that consists of one controlled-not and a measurement of the second
register. By doing so, we destroy two elements in order to produce one. Before
the measurement, the system is in the state CNOT |ψ�1〉 |ψ�2〉 =

|00〉 + exp

(
2iπ

s(�1 + �2)

2n

)
|10〉 + exp

(
2iπ

s�2
2n

) (
|01〉 + exp

(
2iπ

s(�1 − �2)

2n

)
|11〉

)

If we measure a 0 we’ll get the qubit |ψ�1+�2〉, and if we measure a 1 we’ll
get |ψ�1−�2〉. Both outcomes are equiprobable. If we only look at the labels,
the combination routine destroys 2 labels and produces a new label, which is
either their sum or difference. We want to obtain the label 2n−1. This abstract
problem would be a problem of subset-sum modulo 2n if the operation at each
combination was fixed, and not picked randomly in {+,−}, as we would want
to find a tuple satisfying

∑

i∈I

�i = 2n−1 mod 2n.

However, in our situation, the problem is closer to finding a tuple satisfying

∑

i∈I

δi�i = 2n−1 mod 2n,

with δi ∈ {−1, 1} unknown before the actual destructive computation.
With these quantum tools, we can produce random elements and combine

them, but we need an algorithm to choose which elements to combine.

Choosing the Elements to Combine. As a combination produces either a + b or
a − b, we need to find a property preserved in both cases, to not lose everything
if the wrong outcome occurs. It turns out divisibility by 2 is such a property: if
both a and b are multiples of 2k, a + b and a − b will also be multiples of 2k.
Hence comes naturally the idea of the combination algorithm: from the elements
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we have, generate elements with a higher divisibility by 2, until we get 2n−1.
To achieve this, we can combine elements such that a + b or a − b has a high
divisibility by 2 (e.g. have a long trail of 0 in their binary representation).

Hence, an algorithm to find 2n−1 is then to separate the elements in pools
by their divisibility by 2, and, beginning with the odd numbers, to combine the
two elements that can produce a number with the highest possible divisibility
by 2. As this property corresponds to the longest partial collision in the binary
representation of the elements, they can be efficiently found with a radix tree.
There is however one caveat: we don’t want the useless 0 element, so we try to
not combine two identical elements, or one element and its opposite.

As the interesting a and b collide on their lowest bits, they have the same
divisibility by 2, hence a = 2k(2a′ + 1) and b = 2k(2b′ + 1). Then, a + b =
2k+1(a + b + 1) and a − b = 2k+1(a − b). This means that even in the bad case
(with a small divisibility by 2), we still get a slightly better divisibility by 2.
Then, the algorithm consists in using this heuristic until we get 2n−1.

This is Algorithm 1, which is Algorithm 3 of [32]. The paper also presents
a sketch of proof that its complexity is in Õ

(
2
√

2 log2(3)n
)
. As the paper only

focuses on the asymptotic exponent complexity, the polynomial part is not
well known. We can however deduce from the sketch of proof a complexity in
O

(
n
√

n2
√

2 log2(3)n
)

to retrieve the whole hidden shift, which may not be a tight
bound (both for the polynomial and the exponent), due to the way the sketch
of proof works.

Algorithm 1. Kuperberg’s original algorithm [32], without qubits, in base 2
Generate a sufficiently large number N of elements in Z/(2n) � Queries
Separate them in pools Pi of elements divisible by 2i and not 2i+1

for i := 0 to n − 2 do
while |Pi| ≥ 2 do

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 (and is not 0)

c is chosen randomly in {a + b, a − b} � Combination
Insert c in the corresponding Pj

if Pn−1 �= ∅ then � Found |ψ2n−1〉?
Perform a measurement on |ψ2n−1〉
return s0

end if
end while

end for
return Failure

If this succeeds, we get the value of the lowest significant bit of the hidden
shift, s0. We have then to retrieve the other bits of s. This can be done using
a recursive procedure: with the knowledge of s mod 2 = s0, we can construct
the functions f ′(x) = f(2x) and g′(x) = g(2x + s0), that have the hidden shift
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s′ = (s − s0)/2 in Z/(2n−1). The 2nd bit of s is the lowest bit of s′, and we can
reapply the routine, and so on until we get all the bits.

Quantum Memory Cost. This algorithm has a cost in quantum memory of
one qubit per query, plus the memory cost of the quantum oracle, which depends
on the concrete instance. This memory is weakly entangled: after the quantum
oracle queries, we will have only pairs of entangled qubits. This notably implies
that a corrupted qubit will not disrupt the whole computation, one would only
need to erase the corresponding label.

Classical Cost. The classical part needs to search for the best colliding pairs.
This can be efficiently implemented using a radix tree. Moreover, as for our
purposes, the labels x and −x are equivalent, we can normalize them, for
example by forcing, in the binary representation, the most significant bit or
the bit after the lowest significant one to be a zero. The time and memory
cost will be in O(N log(N)). With N = O(2

√
2 log2(3)n), the complexity will be

in O(
√

n2
√

2 log2(3)n). This represents a logarithmic overhead compared to the
quantum query cost. This part is purely classical, and we consider here that the
relevant cost metric is the quantum cost.

3.2 New Variant with Improved the Time Complexity

In this section we propose an optimization of the previous algorithm that allows
to perform the attack in Sect. 5. Previously each bit of the shift was retrieved
independently. We have noticed that if some qubits remains once we have found
the target qubit, we can reuse them in the rest of the computation. The phase
of the element � is 2π �s

2n = 2π �(s0+2s′)
2n = 2π �s′

2n−1 +2π �s0
2n . If s0 = 0, we can reuse

them directly as elements of Z/(2n−1) to retrieve the next bit (we just have to
see the label modulo 2n−1, that is, drop its most significant bit).

If s0 = 1, we have an additional phase of 2π �
2n that prevents us to do so.

We can get rid of it by applying a phase shift gate of angle −2π �
2n (which is the

identity for |0〉 and changes the phase of |1〉 by a given angle) before reusing it.
We can apply this trick to reuse the remaining qubits, once we have found 2n−1.
Moreover, in the 2nd phase, the interesting elements are 010...0 and 110...0,
that is, any element of the penultimate pool. Likewise, we can use an element in
a pool to retrieve one bit of the shift if we know all the preceding bits.

This strategy leads to the improved Algorithm 2, where we ensure that each
pool stays non-empty. If we miss one qubit, won’t have the value of the corre-
sponding bit of s, and, as we won’t know which rotations to do, on the following
bits of s.

Differences in Complexity. The elements we keep to retrieve the whole shift
are not used in a combination, hence we can have n − 1 combination less. The
combination not done will be the least interesting one, hence this will have a
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negligible impact. Another constraint is that all the pools must be nonempty.
As the hardest to fill is the one targeted by the original algorithm, it does not
change much the cost. Empirically, we found that the overhead compared to
the original algorithm is less than 2, and converges to 1 as n grows. The main
difference is that we only need to proceed once and not n times.

The complexity proof of the original algorithm naturally carries to the new
one. The core idea is that by combining 2e elements, we can expect to produce
around 2e/3 elements whose label is a multiple of 2e. Applying this principle
multiple times leads to needing an initial pool of size O

(
n2

√
2 log2(3)n

)
in order

produce the wanted qubit with a negligible failure probability. Hence, the com-
plexity is in O

(
n2

√
2 log2(3)n

)
. As the only difference in both algorithms concerns

the use of 2n qubits, the same principle is applicable for both algorithms. With
these complexity estimates, we obtain that the cost to retrieve the whole secret
with our algorithm is in O

(
n2

√
2 log2(3)n

)
, while the original algorithm would be

in O
(
n
√

n2
√

2 log2(3)n
)
. We found out that it is better in practice, as developed

in Sect. 3.4.
The memory complexity is negligibly increased, as we have slightly more

elements to deal with at once.

Algorithm 2. Variant to get all the bits of the secret in one pass
Generate N random numbers in Z/(2n)
Separate them in pools Pi of elements divisible by 2i and not 2i+1

for i := 0 to n − 2 do
while |Pi| ≥ 3 do � Ensures Pi stays non-empty

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 (and is not 0)

c is chosen randomly in {a + b, a − b}
Insert c in the corresponding Pj

if ∀i ∈ [0, n − 1], Pi �= ∅ then
Perform a measurement on a qubit in each pool
return s

end if
end while

end for
return Failure

3.3 Approximated Promise

In concrete attacks, we may want to use this algorithm on functions that respect
partially the promise. We study in this section various cases.

Lemma 1 (Unwanted collisions). Let f : Z/(2n) → Z/(2n) be a random
function, s ∈ Z/(2n), g such that g(x) = f(x + s). Given a quantum oracle
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access to f and g, we can retrieve s in Q quantum queries if we can solve the
hidden shift problem in Z/(2n) with a permutation using Q/e quantum queries.

Proof. This case was studied in Sect. 2.2 of [29] in the context of Simon’s algo-
rithm. It corresponds to the hidden subgroup problem with a non-injective func-
tion. It then still respect for all x, f(x) = g(x + s) for a secret s.

Let’s decompose each step. The measurement of the third register of

∑

x

|0〉 |x〉 |f(x)〉 + |1〉 |x〉 |g(x)〉

produces

|0〉
c∑

j=1

|xj〉 + |1〉
c∑

j=1

|xj + s〉

and the measurement yields f(xj) with probability c/2n. After the QFT, the
measurement will give us a label � and a qubit

⎛

⎝
c∑

j=1

exp
(

2iπ
xj�

2n

)
⎞

⎠

⎛

⎝|0〉 + exp
(

2iπ
s�

2n

)
|1〉

⎞

⎠

As a qubit is invariant by a global phase shift, we still get a valid element.
However, it is not uniformly sampled, and the probability of getting a given � is

p =
1

c2n

∣∣∣∣∣
c∑

j=1

exp

(
2iπ

xj�

2n

)∣∣∣∣∣
2

.

Notably, the case � = 0, which is useless for us, is the most probable.
It is known [23] that for a random function, the expected number of images

with r preimages is 2n/ (er!). The first measurement samples on the images,
uniformly if it is a bijection, and proportionally to the number of preimages in
the general case. That means we’ll have a probability of r/(er!) = 1/(e(r−1)!) of
getting an image with r preimages. We’ll get a unique preimage with probability
1/e, so that means with e times the number of samples, we’ll get enough elements
with only one preimage. This is a very rough approximation, as the multiple
preimages induces only a bias on the generated elements.

Remark 1. Alternatively, we can consider the function F (x) = (f(x), f(x +
1), . . . ), that has the same shifts as f , but has a smaller probability of unwanted
collisions, at the cost of having to query f multiple times for one query of F .

Lemma 2 (Multiple shifts). Let (si)i≤m ∈ Z/(2n)m, let f, g two permuta-
tions of Z/(2n) such that, for all x, i, f(x) = g(x + si). The first bits of the si

can be retrieved if and only if they are all equal. They can be retrieved by solving
the HSP in Z/(2k) with the same functions, with 2k = gcdi�=j(2n, si − sj).
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Proof. We can study what happens with two shifts, s and t. We have, for all x,
f(x) = g(x + s) = g(x + t).

From these equalities, we can deduce that for all x and λ, f(x) = f(x+λ(s−
t)) = g(x+ s+λ(s− t)). The functions have in fact plenty of shifts: s+λ(s− t),
the exact number depending on the divisibility by 2 of s − t. The bits of x that
are above this level have in fact no impact on the value of f , so this problem is
degenerate: if s − t = 2kμ, we have an instance of the problem in Z/(2k), with
a hidden shift s′ = s mod 2k = t mod 2k, and we have 2k = gcd(2n, s − t). We
cannot get the other bits of s or t, as all the s + λ(s − t) are also valid shifts.

For more shifts, we need to consider the difference that have the smallest
divisibility by two, that is, the gcd of all the differences with 2n.

As the divisibility by two of the difference corresponds to an equality in the
first bits, the lemma holds.

Remark 2. If we don’t know that the functions have multiple shifts, or if the gcd
is not known in advance, this is still detectable, as the labels we measure will
always divide 2n−k.

Proof of the Remark. The formula of the probability of measuring � is p(�) =
1

c2n

∣
∣
∣
∑c

j=1 exp
(
2iπ

xj�
2n

)∣
∣
∣
2

with c shifts. This reduces to

1

c2n

∣∣∣∣∣exp

(
2iπ

x�

2n

) ∑
λ

exp

(
2iπ

λ2k�

2n

)∣∣∣∣∣
2

.

This is 0 if exp
(
2iπ 2k�

2n

)
	= 1, that is, if 2n−k

� �. This means we’ll only get some
�s with at least n − k trailing zeros.

The following lemma addresses the problem of functions which respect the
shift promise only for a subset of their input, and shows this is still resolvable if
the number of wrong inputs is small enough.

Lemma 3 (Partial shift). Let f , g two permutations of Z/(N), s ∈ Z/(N),
X ⊂ Z/(N) such that, for all x ∈ X, f(x) = g(x + s). Then if the hidden
subgroup problem in Z/(N) costs Q queries, we can retrieve s given quantum
oracle access to f and g in Q queries, with probability (|X|/N)Q.

Proof. If we measure an f(x) whose x is in X, then we have a valid element.
This happens with probability |X|/N . If this is not the case, we get a malformed
qubit. We can expect the algorithm to succeed only if all the Q queried elements
are valid, which happens with probability (|X|/N)Q.

Remark 3. It would also be possible for the algorithm to succeed if we have a
way to identify the bad x from the value f(x)/g(x), which is measured, as it
would allow us to drop the corrupted qubit when we create it. The problem
would then only concern the unidentified bad x.
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Lemma 4 (Input restriction). Let f, g be two permutations of Z/(N), s ∈
Z/(N) such that, for all x, f(x) = g(x + s). Given a quantum oracle access to
f and g restricted to the inputs 0 ≤ x < 2n, if 0 ≤ s < 2n−1 and the hidden
subgroup problem in Z/(2n−1) can be solved in Q queries, s can be retrieved in
eQ2 queries.

Proof. We are only given access to the interval [0; 2n). We cannot see the hidden
shift in Z/(N) as a hidden shift in Z/(2n). However, if s is small enough, we
have an instance of a partial hidden shift, the valid elements being the ones such
that 0 ≤ x < 2n and 0 ≤ x+ s < 2n. The probability to get a bad element is less
than s/2n in this case. If we need Q queries, and s/2n � 1/Q, then the success
probability will be greater than (1 − 1/Q)Q � 1/e. This fails for greater s.

However, we can query a subinterval of [0; 2n) for f and g. For A ∈ [0; 2n−1),
if we query [0; 2n−1) to f(x) and g(x + A), we will retrieve s with probability
1/e if 0 ≤ s − A < 2n−1/Q′, if we need Q′ queries to solve the hidden subgroup
problem in Z/(2n−1).

To retrieve s, we can sequentially test for all A multiples of 2n−1/Q′, until
we reach 2n−1. We then have Q′ intervals to test, and each test costs Q′ queries.
Moreover, the algorithm will succeed if the test with the right guess of A succeeds,
and can be verified with a few classical queries. As the right guess has a success
probability greater than 1/e, we expect to find the shift in eQ′2 queries.

Remark 4. Here, we do a sequential test of the intervals. We could do a Grover
search on it instead, but we would need to choose a slightly higher number of
queries, in order to have a success probability very close to one. Moreover, it
would force us to implement all the control system that chooses which qubit to
collide quantumly and not classically.

Remark 5. We can see this method as trying to solve the HSP in Z. It also shows
that considering only the cyclic groups Z/(2n) allows to solve the problem in
any cyclic group in subexponential time, despite a different group structure.

3.4 Simulations

We have simulated the classical part of the algorithm by replacing the quantum
measurements by random outcomes. We used this to get an estimate of the
query complexity: We generate a certain amount of random numbers, and then
combine them in order to get the values we want. We hence get an estimate
of the success probability for a given amount of samples (Fig. 2), and deduce
from it an asymptotic complexity for a constant success probability. Table 1
shows some results of these simulations for different values of n, for 90% success
probability. The code of this implementation is available at https://who.paris.
inria.fr/Xavier.Bonnetain/extra/code.tar.gz.

Figure 2 shows the estimated probability of retrieving the whole secret in
function of the number of initial queries for a 64-bit secret. We’ve considered this
parameter instead of some finer ones, such as the numbers of bits we retrieved

https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
https://who.paris.inria.fr/Xavier.Bonnetain/extra/code.tar.gz
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Fig. 2. Estimated success probability in the number of samples, for 64 bits

because of the dependency between the bits we can retrieve: we have to retrieve
them in order, and the first ones are the hardest to get. We can try to guess
the missing bits, but as we destroy our qubits when we measure them, we can’t
recover from a wrong guess. It shows a transition from a negligible probability
of success to a negligible probability of failure in less than a factor 2. As the
algorithm is collision-based, it performs significantly better if it is run once with
a bigger initial pool than many times with smaller pools. It also shows that the
gap to get an arbitrarily small failure probability is small, which is useful if we
want to combine it with another quantum algorithm, like a Grover search.

Table 1. Some results of the simulation of Algorithm 2 for 90% success probability

n Queries log2(queries) 1.8
√

n − 0.5 Number of tests

16 118 6.9 6.7 106

32 826 9.7 9.7 106

64 14975 13.9 13.9 5 × 105

80 49200 15.6 15.6 105

128 9.8 × 105 19.9 19.9 5 × 104

We can then deduce a heuristic complexity in query of 0.7×21.8
√

n for a 90%
success probability for Algorithm 2, which matches the exponent complexity of
Õ

(
2
√

2 log2(3)n
)

of the less efficient Algorithm 1, as
√

2 log2(3) � 1.8. We also
performed a few simulations of Algorithm 1, which gave slightly smaller results
(the ratio was less than 2, and decreased as n increased). As Algorithm 1 needs
to be repeated n times, it performs worse, both asymptotically and for the ranges
we were able to simulate. We see that the polynomial part is in fact a constant
next to 1 for Algorithm 2, which hints that the bound in [32] for Algorithm 1 of
O

(
n2

√
2 log2(3)n

)
to retrieve the last bit is probably tight for the exponent part,

but not for the polynomial part.
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4 New Algorithm: Simon Meets Kuperberg

We describe in this section a new quantum algorithm, that, for the first time,
solves efficiently the HSP problem when considering a product of cyclic groups,
which often appears in symmetric constructions [5,7,22,45]. We also provide a
simulation of the algorithm in Sect. 4.3, showing that our complexity estimations
are correct.

4.1 Solving the Hidden Shift Problem for Parallel Modular
Additions

An interesting generalization for, inter alia, symmetric cryptography is to con-
sider p termwise additions modulo 2w, that is, a modular addition in Z/(2w)p.
The hidden shift in this case is a vector s = (s1, . . . , sp) of p words of w bits each.
The aim of this section is to propose a new algorithm that deals efficiently with
that group. The first natural approach was to apply an adapted variant of Kuper-
berg (as suggested in [32, Thm 7.1]), but its complexity of 2O(

√
n) significantly

differs from optimal: we explain in this section how to considerably improve this.
We propose a new algorithm which complexity is close to optimal. It exploits
three facts in particular that allow us to consequently improve the complexity.
In order to describe our algorithm, we need to previously adapt the first part of
Kuperberg’s algorithm by considering a quantum Fourier transform compatible
with the group law, so the original one is changed to into a termwise variant.
The oracle circuit produces the qubits

∣
∣ψ�1,...,�p

〉
= |0〉+exp

(
2iπ

∑
sj�j
2w

)
|1〉, the

product is replaced by an inner product. The combination circuit also works the
same way, and produces a termwise sum or difference.

Better Worst-Case Gain. The first fact that allows to improve the complexity
over a basic algorithm is realizing that, though the combination strategy can be
quite similar with a research of partial collisions on the lowest significant bits of
each term, there is however a difference in the behavior in the disadvantageous
case: while we gained only one 0 in the former situation, here, we’ll get a 0
in each term in which we have a collision in the lowest 1 (p zeros) while the
size of the corresponding list is big enough. We also have more choices in the
combinations, and we can have various equivalent and incompatible possibilities,
with collisions on different parts of the vector.

With p+1 Equations We Can Always Gain p Zeros. As before, we can separate
the elements in pools, depending on the divisibility by 2 of each term. Instead
of looking at the position of the first one, we look at the position of the first
one in any component of the vector to separate in pools. In each w pool, we can
restrict ourselves to the bit slice corresponding to the corresponding level. This
slice corresponds to a vector in (Z/(2))p. Hence, we can produce a vector that
will fit in the next pool if we manage to find some linearly dependent vectors,
that is, whose sum (or difference, as it is the same in Z/(2)) is 0.
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Recovering the Shift. We realized that the elements with �j ∈ {
0, 2w−1

}
are

of the form
∣
∣ψ�1,...,�p

〉
= |0〉 + exp (iπ

∑
sj�j) |1〉, so measuring them in the

{|−〉 , |+〉} basis will give us the parity of
∑

sj�j , that is, a linear equation in
the parity bits of the sj . In the case w = 1, we get a variant of Simon’s algorithm
for hidden shifts.

We describe next how to apply each approach separately, and then describe
how our algorithm combines them to obtain an optimized complexity, that will
be discussed and analyzed in Sect. 4.2.

First Idea: Kuperberg’s Variant with a Better Worst-Case Gain. A
simple strategy represented in Algorithm 3 is to mimic the former one: we apply
directly the strategy with the first term to zero all its bits except the most
significant one, and then process the second term, and so on. We can also apply
it the other way around: we can see the vector (sw−1

1 · · · s01, . . . , sw−1
p · · · s0p) as

the number sw−1
p sw−1

p−1 · · · sw−1
1 sw−2

p · · · s0p · · · s01, and apply directly the former
strategy, until we get enough elements of the form sw−1

p sw−1
p−1 · · · sw−1

1 0 · · · 0 that
we can measure. Another approach is to weight all the possible combinations
with the expected gain in the total number of trailing zeros, and choose the
most favorable one. The first two have the advantage of being classically easy to
implement, with a radix tree.

Algorithm 3. Variant 1 for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with all p terms divisible by 2i and at least
one term not divisible by 2i+1

for i := 0 to w − 1 do
while |Pi| ≥ 2 do

Pop two elements (a, b) of Pi where a + b or a − b has the highest possible
divisibility by 2 on each term

c is chosen randomly in {a + b, a − b}
Insert c in the corresponding Pj

end while
end for
if Pw−1 �= ∅ then return Found
else return Failure
end if

Second Idea: p+1 Dependent Equations Always Gain p Zeros. There
is however another way to use the parallel structure of the hidden subgroup:
given p + 1 random elements, we can find a subset whose sum (or difference)
will always be even on all the components: if we look at the parity vector of the
elements, this corresponds to a linearly dependent subset of the vectors. This
approach can be useful if p is big with respect to the size of the pools: with on
average p/2 + 1 vectors, we can zero p bits. We can then iterate the technique
to set to zero the next row of bits, and so on. This is described in Algorithm 4.
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Moreover, seeing the elements in a pool as equations allows us to perform the
same optimisation we have proposed for the case p = 1, to get all the secret in one
pass. Instead of storing one element per pool, we have to store p elements that
are linearly independent, that is, a full system of equations. As this optimisation
does not depend on what we do to each pool, we can also apply it to improve
Algorithm 3.

As, on average, we combine (p/2 + 1) elements, we divide at each w step the
pool by (p/2+1). This algorithm has a complexity in O((p/2+1)w). If w = 1, it
matches Simon’s complexity (and is, indeed, Simon’s algorithm). It is interesting
for big p, as it is polynomial in p, but it quickly becomes costly if w rises, as it
is exponential in it.

Our New Algorithm: Combining both Ideas. As the two variants merge
the elements to progressively create new elements with a greater number of
zeros, we can, to be more efficient, combine both methods. Algorithm 4 is more
efficient when we have a small number of qubits to deal with, with a large p,
but is exponential in w, while Algorithm 3, having the same structure than the
original algorithm, is subexponential. Hence, the most efficient way to combine
them is to begin with Algorithm 3 until we produce some elements that lies in a
subgroup (Z/(2w′

))p with a sufficiently small w′, where we can use Algorithm 4.

Algorithm 4. Variant 2 for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with each terms divisible by 2i and at least
one term not divisible by 2i+1

System = ∅
for i := 0 to w − 1 do

Pop p elements from Pi linearly independent at the level i, put them in System

Basis = ∅
for e ∈ Pi do

if
{
x mod 2i+1

∣∣x ∈ {e} ∪ Basis
}

is linearly independent then
Add e to Basis

else
Find a linearly dependent subset J
Compute c = ±

x∈J
x

Insert c in the corresponding Pj

end if
end for

end for
if System is full then return Found
else return Failure
end if
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To estimate the complexity, we reasoned backwards: we estimated how many
elements in (Z/(2w))p we needed to obtain a given number of elements in
(Z/(2w′

))p, with w′ < w, for increasing w.
The point at which we change of algorithm is the threshold, τ . The value of

this threshold is estimated and studied in the next section. Our new algorithm
is described in Algorithm 5, where all the bits are also recovered in one pass
thanks to our adapted improvement.

4.2 Complexity Analysis

In this section we provide a complexity analysis of the previously described
algorithm, that will depend on the relation between the parameters w and p. A
summary can be found in Table 4.

We first estimate the complexity of Algorithms 3 and 4, and then combine
these costs to compute the best thresholds, and derive the final complexity.

Complexity Using Partial Collisions. To estimate the complexity of par-
tial collisions, we first need to estimate the cost of the partial collisions with
independent bits (in (Z/(2))p), which is a more favourable situation than the
collisions in Z/(2n), as we do not have any uncertainty in the outcome of a com-
bination. We had the same approach as for the original algorithm: we performed
simulations. An optimistic approach could estimate that the complexity is 2

√
2p,

which would mean that a pool of 2e elements produces a pool of 2e−1 elements
that all have e more zeroes. In practice, this is not what we observed, and we
found a complexity of around 2

√
2.3p, as presented in Table 2. This algorithm is

far from the best method to solve this problem, but it can become relevant if we
need a huge number of elements that are zeroed on p bits.

Collision Cost. We have two heuristics for collision cost. When we don’t have
enough elements to have some collisions, we estimate from our simulations the
cost to produce E elements to be around 2

√
2.3p+log2(E)2 in this situation.

The minimal cost is around 2E, as we need to combine every element with
another one. Doing simulations, we found that it is (2E + 2p−2)/(1 + 1/2p),

Table 2. Some results of the simulations, for 90% success.

p Queries log2(queries)
√

2.3p − 0.2 Number of tests

40 642 9.3 9.4 106

80 10770 13.4 13.4 106

100 33100 15.0 15.0 106

128 132600 17.0 17.0 105

140 228500 17.8 17.8 105

170 808000 19.6 19.6 104
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Algorithm 5. Combined algorithm for termwise additions
Generate N random numbers in Z/(2w)p

Separate them in pools Pi of elements with each terms divisible by 2i and at least
one term not divisible by 2i+1

System = ∅
for i := 0 to w − τ − 1 do � Partial collisions

Pop p elements from Pi linearly independent at the level i, put them in System

while |Pi| ≥ 2 do
Pop two elements (a, b) of Pi where a + b or a − b has the highest possible

divisibility by 2 on each term
c is chosen randomly in {a + b, a − b}
Insert c in the corresponding Pj

end while
end for
for i := w − τ to w − 1 do � Zero-sum

Pop p elements from Pi linearly independent at the level i, put them in System

Basis = ∅
for e ∈ Pi do

if
{
x mod 2i+1

∣∣x ∈ {e} ∪ Basis
}

is linearly independent then
Add e to Basis

else
Find a linearly dependent subset J
Compute c = ±

x∈J
x

Insert c in the corresponding Pj

end if
end for

end for
if System is full then return Found
else return Failure
end if

asymptotically in E. The 2E comes from the fact that we do for almost all non-
zero elements one combination, the 2p−2 corresponds to the small number of
elements that don’t have a total collision with another element, and the (1+1/2p)
corresponds to the zero element that can naturally occur, with probability 1/2p.

Alternative Approach. Instead of considering only one row of bits and try to zero
it, we can consider a bigger chunk. That is, we want to produce E elements that
have a certain amount (greater than p) of zeroes in their firsts bits. In order to
estimate this cost, we refer to Kuperberg’s original algorithm. In practice, the
algorithm will be more efficient, but we can approximate it with the original
complexity. We can then estimate the cost of the algorithm to zero q bits to be
2
√

2 log2(3)q+log2(E)2 . As before, this will not hold if we have to many elements to
produce, as the minimal cost is 3E. We should never be in this regime, as this
would mean that we can obtain what the wanted value in one good combination.
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Complexity Using Equations

Lemma 5 (Equation cost). An iteration of the outer for loop of Algorithm 4
produces on average N/(p/2 + 1) elements with p zeroed bits using N elements,
and needs p qubits.

Proof. A step of Algorithm 4 uses random equations to produce a zeroed element.
If we have p elements that form a basis of Z/(2)p, any other element is a linear
combination of p/2 elements, on average, in this basis. If we have a basis, we
can hence get an equation that has, on average p/2 + 1 elements, and that sums
to zero on the p bits. We can then construct such a basis by choosing p random
elements: if they form a free family, we have a basis, if not, we then have some
elements that sums to zero. This allows to perform the algorithm on-the-fly: each
time a new element arrives, we can try to form a basis with the previous ones.
If we new element is linearly independent, we add it in our memory. If it is not,
we combine all the elements that sums to zero.

Theorem 1. Algorithm 4 has a complexity in quantum queries and time of
around 2(p/2 + 1)w. It needs 2p(w − 1) quantum memory, plus the oracle cost.

Proof. At each outer for loop iteration, we store p independent elements that
will allow us to retrieve p bits, and divide the remaining number of elements by
p/2 + 1 (Lemma 5). At the end, we want p elements (with only p elements, as
they would be random, the success probability is only of 1/e, but we can get
arbitrarily close to 1 with a fixed overhead). The total cost is then of

p(p/2 + 1)w−1 + p(p/2 + 1)w−2 + · · · + p,

which reduces to 2(p/2+1)w. The total cost in quantum memory is then p(w−1)
qubits for the w − 1 steps, and p(w − 1) qubits that will yield an equation in the
bits of the shift, but that we cannot measure immediately. This cost in memory
is optional, as we could do the algorithm w times, but we would then have to
pay the constant overhead at each step and not only at the last one.

Remark 6. We found that the marginal cost of (p/2 + 1) elements to produce
one can be beaten if the total number of elements is huge by sorting them before
searching for a zero-sum set. As extracting values from a radix tree naturally
produces a sorted list, this was observed in our simulations.

Determining the Total Complexity. To determine the complexity, we will
run the algorithm backwards : we estimate how many elements we need at a point
of the algorithm, and then deduce how many elements we need before to obtain
this number of elements. More precisely, we consider a fixed p, and estimate what
we have to do to get the elements we want as w grows. We considered four cases.
First, when w is small enough to use Algorithm 4. Next, when we have to use
Algorithm 3 but the number of queries is small enough to have partial collisions
on independent bits, such that we never have bad outcomes in our combination.
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For bigger w, we considered another approximation, which is that a combination
gains at least one zero in each independent component in the worst case. This
is not a relevant model when p = 1, as it produces estimates exponential in w,
but it is interesting here. Finally, the last approximation model is to neglect the
gains due to the parallel additions, and consider Kuperberg’s original algorithm
complexity estimation.

The Final Steps. The final steps uses Algorithm 4. The complexity to process
w rows is then C0(p,w) = 2(p/2 + 1)w.

Changing to Collision Finding. With collision finding, we can erase one row
and produce E elements at a cost of 2

√
2.3p+log2(E)2 . Hence, if we combine this

algorithm, the cost is C1(p,w) = 2
√

2.3p(w−τ)+log2(C0(p,τ))2 , with τ rows handled
by the other algorithm.

Threshold. We want to change of algorithm if C0(p,w) > 2
√

2.3p+log2(C0(p,w−1))2 .
This means that 2(p/2 + 1)w ≥ 2

√
2.3p+(1+(w−1) log2(p/2+1))2 , which implies

τ = �1.15p/ log2(p/2 + 1)2 + 1/ log2(p/2 + 1) − 1/2�.
This threshold is the number of steps in which we should use Algorithm 4, and
the previous steps are solved using Algorithm 3.

Saturated Regime of Collisions. We saw before that the cost of zeroing one
row is asymptotically around 2E, and cannot outperform this bound. We can
now estimate when our previous estimate violates this bound. This occurs when
2
√

2.3p+log2(E)2 ≤ 2E, which implies E ≥ 2
2.3p−1

2 � 21.15p. Using this constraint
to the previous complexity, we get that w must be lower than

w1 = �2.3p/4 + τ − (1 + τ log2(p/2 + 1))2/2.3p�.
We can still use the algorithm in this saturated regime, and estimate that one
row can be erased if we divide by 2 the number of elements. Then, the complexity
is C2(p,w) = 2w−w1+

√
(1+τ log2(p/2+1))2+2.3p(w1−τ).

Multiple Steps at Once. The complexity we got at the previous step does not have
any constraint. It can however become irrelevant, as we have a better approxima-
tion if w is big enough, as it is exponential in w. Indeed, we can consider Kuper-
berg‘s original algorithm model and estimate that we can erase pw′ zeros and get
E elements at a cost of 2

√
2 log2(3)pw′+log2(E)2 , as the combinations we are doing

here are more favorable than the ones done with a cyclic group. This approxi-
mation will become relevant when 2

√
2 log2(3)p+log2(C2(p,w−1))2 ≤ C2(p,w), which

implies

w ≥ w2 = �log2(3)p − 1/2 + w1 −
√

(1 + τ log2(p/2 + 1))2 + 2.3p(w1 − τ)�.

The total complexity is then C3(p,w) = 2
√

2 log2(3)p(w−w2)+(log2(C2(p,w2))
2
.
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Table 3. Threshold points for Algorithm 5.

Threshold Value

τ = 
1.15p/ log2(p/2 + 1)2 + 1/ log2(p/2 + 1) − 1/2�
w1 = �2.3p/4 + τ − (1 + τ log2(p/2 + 1))2/2.3p
w2 = �log2(3)p − 1/2 + w1 − √

(1 + τ log2(p/2 + 1))2 + 2.3p(w1 − τ)

Table 4. Complexity of Algorithm 5.

Constraint Cost

(w ≤ τ) C0(p, w) = 2(p/2 + 1)w

τ ≤ w ≤ w1 C1(p, w) = 2
√

(log2(C0(p,τ))2+2.3p(w−τ)

w1 ≤ w (≤ w2) C2(p, w) = 2w−w1C1(p, w1)

w2 ≤ w C3(p, w) = 2
√

2 log2(3)p(w−w2)+log2(C2(p,w2))2

Quantum Memory Cost. The quantum memory cost is the same than in
the original algorithm, of one qubit per query, plus the oracle cost. Also, as the
original algorithm, we only have at most pairs of entangled qubits at a time in
the combinations.

Classical Cost. The classical cost for Algorithm 3 is the same as the original
algorithm, as the only change to choose the combinations is the computation
of a sum and a difference of labels. The other difference is that we take a basis
before looking for combinations. This can be done in time linear in the size of
the basis, hence it is negligible.

Algorithm 4 is slightly less memory-consuming, as it can look for combina-
tions on-the-fly, hence performing classically in O(N), with N queries (Table 3).

Simon Meets Kuperberg. From Table 4 we can see how Simon’s complexity is met
in the extreme case where w = 1 and Kuperberg’s complexity is obtained when
p = 1, as expected. It also shows that even if asymptotically in w, the complexity
becomes closer to the complexity of Kuperberg’s algorithm in Z/(2pw), the last
w2 rows of bits of the state do not provide as much security.

4.3 Simulations of the Algorithm

We have performed various simulations of the algorithm, in order to confirm
our models and theoretical complexities. For w = 1, the obtained complexity
corresponds to solving an equation system, hence it needs around p queries, and
our model holds. For p = 1, the complexity is reduced to 2

√
2 log2(3)p, which cor-

responds to our previous simulations. We’ve considered two types of simulations
in order to confirm the model of complexity of our algorithm. First, as before, we
simulated the success probability of the algorithm for a given input size. Second,
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Table 5. Simulations compared with our model, with a success probability of 90%,
1000 tests per estimation, in log scale, for pw = 100 and 128.

p/w 2/50 4/25 5/20 10/10 20/5 25/4 50/2 2/64 4/32 8/16 16/8 32/4 64/2

Theoretical model 17.7 17.5 17.3 15.3 14.2 13.7 10.4 20.1 19.9 18.8 16.6 15.2 11.1

Simulations 17.9 17.5 16.9 15.3 14.4 13.9 10.6 20.3 19.7 18.2 16.7 15.4 11.2

Fig. 3. Comparison between our model and our simulations for the number of elements
in each pool at each step for p, w = 8, 16, in log scale.

we simulated the number of elements at each step of the algorithm, in order to
see more precisely the accuracy of each model.

From Table 5, we see that our estimates correspond to the simulations in the
ranges we were able to simulate, with a slightly pessimistic estimation when p
is not too small and w is bigger than p. In order to estimate the accuracy of our
different models, we also simulated the number of elements in each pool at the
beginning of each step, as for example in Fig. 3.

The computed thresholds for Fig. 3 are (2,3,7). As they are in reverse, they
correspond to (13,12,8) on the graph. The two curves are converging at around
step 9, which suggests that our models 3 and 4 are slightly pessimistic. This is
explained by the fact that model 3 neglects the gains of good combinations and
model 4 the gains of bad combinations.

5 Cryptanalysis of Poly1305 in the Superposition Model

We propose in this section the first quantum superposition attack on the
Poly1305 primitive, with a complexity of about 238 in time and queries, that
shows that it is not secure in the superposition model.

5.1 Poly1305 Description

Poly1305 is a MAC designed by Bernstein [6]. It has been standardized for
TLS 1.2 [36], is currently a part of a recommended cipher suite in the TLS
1.3 draft [1], and is notably supported by OpenSSH, Firefox and Chrome. The
designer announced in [8] a classical and quantum security of Poly1305 of 128
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bits. We’ll describe Poly1305-AES, but our analysis works with any internal
block cipher used.

Poly1305-AES uses two 128-bit keys (r, k) and a 128-bit nonce n, takes as
input a variable-length message m considered as an array of 128-bit blocks, and
outputs a 128-bit tag. For efficiency purposes, some bits of r are fixed to 0, which
means it can only take 2106 different values. The function is

Poly1305-AES(r,k,n)((mi)i≤q)=

(
q∑

i=1

(mq−i+1 + 2128)ri mod 2130 − 5

)

+AESk(n).

5.2 Quantum Attack in the Superposition Setting

For our quantum attack, we consider having access to the oracle

Polyn : |m1〉 |m2〉 |0〉 �→ |m1〉 |m2〉 |Poly1305-AES(r,k,n)(m1,m2) 〉 .

The nonce is classical, and changes at each query. As we consider the superpo-
sition scenario, we consider that the function can be called in superposition. We
aim at retrieving r (and not k), as r is sufficient to retrieve AESk(n) for any
tag, which allows some forgeries. If one also wants k, one can perform a Grover
search on it, with an additional cost of 264. In the long version of this paper [12]
we describe a distinguisher on Poly1305 and a simple key-recovery attack, but in
this section we propose a more evolved attack that uses Kuperberg’s algorithm.

Poly1305 uses a polynomial structure for hashing, and the commutative alge-
bra Z/(2130 − 5)[X] contains many possible shift structures, both in Z/(2130 − 5)
(with addition) and in Z/(2130 − 6) (with multiplication). For example, one can
consider the two functions f(x) = xr+r2+2128(r+r2) and g(x) = xr+2128(r+
r2), which satisfies f(x) = g(x+r). We cannot call them directly, but we can call
F (x) = Poly1305-AES(r,k,n)(1, x) and G(x) = Poly1305-AES(r,k,n)(0, x), which
also satisfy F (x) = G(x + r) if the nonce is the same.

There are two issues that do not allow the direct application of Kuperberg’s
algorithm: first, the nonce changes at each query, which means that in order to
have F (x) = G(x+r), we must compute F and G in only one query to Poly1305.
This is feasible, as both are of the form Poly1305(a(x)), with a(x) a function of
x: one can compute aF (x) = (1, x) and aG(x) = (0, x) in superposition in an
auxiliary register, and then call Polyn on it. Second, and more annoyingly, the
inputs of Poly1305 are restrained to be between 0 and 2128 − 1, which means we
cannot sample all group elements.

This can still be solved by using Lemma 4, as we can query [0; 2128). Solving
the hidden shift in Z/(2127) costs around 220. We can thus set the interval size at
2106. r can be retrieved if it is below 2127. This is the case, as the bit constraints
on r implies r < 2124, which means we need only to test 218 intervals. The total
cost is then 220 × 218 = 238, for a success probability better than one half. We
can check if the found r is the right one by trying to forge some valid messages,
or we can use the distinguisher presented in Appendix A of [12].
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Quantum Memory Use. This attack needs around 220 qubits, plus the cost
of the quantum oracle, which would need at least a few hundred qubits.

Grover Acceleration. As the previous attack involves an exhaustive search on
the correct interval among the 218, one might want to use Grover’s algorithm,
in order to gain up to 29 on the attack. We automatically lose a factor 2 because
of the uncomputation of the algorithm. Moreover, we would need to compute
all the qubit choices quantumly, and we must have a success probability of the
inner function very close to one. All these factors make the attack more efficient
in queries (around 231), with a small time gain.

5.3 Impact of Our Improvements

The total cost of the attack is highly dependent of the precise cost of Kuper-
berg’s algorithm. The original algorithm, with an estimated complexity of around
n
√

n2
√

2 log3(2
n), has here a cost of around 231 queries. The total attack is then

more costly, around 259, which is very close to the cost of a simple exhaustive
search on the key if AES-128 is used, and exceeds the cost of the simple quantum
attack described in [12]. We could also use a Grover search, which would lead to
a cost estimate of around 245, which is higher than both the non-Grover variant
of our attack (at 238) and the Grover variant (at 231).

6 Attack on the FX Construction

The FX construction, proposed by Killian and Rogaway [31], is a simple way
to extend the key-length of a block cipher. It uses a block cipher Ek0 and two
additional keys k1, k2 whose length is the block size of the block cipher, and the
new cipher is

FXk0,k1,k2(x) = Ek0(x ⊕ k1) ⊕ k2.

We can see it as an Even-Mansour construction, with a block cipher taking the
role of the random permutation. The quantum security of this scheme has been
studied by Leander and May in [37] in the superposition model. Their conclusion
is that this construction is essentially as secure as the inner cipher Ek0 .

Their approach is close to the quantum attack against the Even-Mansour
construction, with the addition that the key of the inner cipher has to be sought.
They consider the function f(k, x) = FXk0,k1,k2(x) ⊕ Ek(x), which fulfills the
promise f(k0, x) = f(k0, x ⊕ k1). They then recover k0 and k1 by performing
a Grover search on k0, with a test function that is the application of Simon’s
algorithm to the partial function x �→ f(k0, x). If this function is periodic, then
k0 has a very high probability of being correct, and the period of the function
is k1. It can moreover be efficiently checked, by testing the periodicity for a
few values. Once k0 and k1 are known, k2 can be retrieved with one known
plaintext/ciphertext pair. The total cost is around 2|k1|2|k0|/2.
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This leads to some efficient attacks against the FX-based primitives DESX,
PRINCE [14] and PRIDE [3]. For PRINCE and PRIDE, |k0| = |k1| = 64, the
attack costs around 239 queries and time, whereas for DESX, |k0| = 56 and
|k1| = 64, the attack costs around 235 queries and time5.

The authors only considered the original construction, that uses some xors,
and left as an open problem the evaluation of the security using another group
law. We can here give an answer for the most natural variant, which is to use
modular additions instead of xors, with the cipher

FX+k0,k1,k2(x) = Ek0(x + k1) + k2.

The function is no longer periodic in this situation, but we can find a hidden shift
problem with the two functions f(k, x) = FX+k0,k1,k2(x)+Ek(−x) and g(k, x) =
FX+k0,k1,k2(−x) + Ek(x), which fulfills the promise f(k0, x) = g(k0, x + k1).
These two function can efficiently be computed in superposition, for a total
cost of one query and one encryption. The attack consists then in a Grover
search that uses Kuperberg’s algorithm as a test function. The Grover search
needs the same number of iterations (2|k0|/2), but Kuperberg’s algorithm needs
around 21.8

√
|k1| samples. The total cost is around 2|k0|/2+1.8

√
|k1| × 2 queries

(we can factor the query to f and g to only one query to FX+, and we double
to uncompute Kuperberg’s algorithm).

Other Group Laws. If the group is abelian, the attack can be straightforwardly
applied. If the group law is not abelian, we need a slightly different approach
which is developed in the extended version of this paper [12].

Quantum Attack on PRINCE+ and PRIDE+. We can directly attack a variant
of PRINCE and PRIDE where the key whitening is done through a modular
addition. Concretely, we can attack them in around 247.4 queries and time, which
is smaller than the ideal 64-bits of quantum security. We also attack DESX+ in
243.4 queries and time.

7 Concrete Proposals

The most interesting idea from [2] for preventing Simon-based attacks is using
modular additions, which is already common in symmetric primitives (see for
instance [26,40,49]). Based on the complexities of the new algorithms and attacks
from the previous sections, we can now correctly size some of the primitives
that were broken using Simon-based algorithms, now patched to use modular
additions, in order to provide a certain desired post-quantum security.

Let us point out that we used a slightly unconventional definition of the
security: we consider a cipher to provide a security of Q bits when no attack of
complexity lower than 2Q exists (the more conventional definition being when
no attack better than the generic exhaustive search is known, whose complexity
usually is 2Q = 2k/2).
5 In [37], they considered the time of a parallelized Simon’s algorithm, which can be

neglected, leaving a complexity of 232.
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7.1 Concrete Parameters and Security of Some Generic
Constructions

If we consider the generic Even-Mansour constructions, with a xor, it will provide
a security of 8 or 9 bits for an state size of 128 or 256 bits respectively. When
using one or several modular additions, this security is augmented, becoming 20
or 28.5 bits for states of 128 or 256 bits respectively, but all the constructions
are far from the ideal 264 security offered by an ideal cipher with a 128-bit key,
and even more from the 2128 offered quantumly by a classical primitive with a
256-bit key. To the best of our knowledge, the quantum security offered by the
AES [19] meets these ideal claims.

In Table 6 we show the needed security parameters of some popular con-
structions in order to resist their corresponding attacks when using Kuperberg’s
algorithm. As expected, p modular additions of words of size w provide less
security than one modular addition of the state size. We can see that, in all the
cases, the size of the state needed to achieve a certain security becomes much
bigger than for common symmetric primitives (128 bits for instance), needing
to be bigger than 5200 bits in some cases. The problem of a bigger state is not
limited to implementation issues: designing a secure permutation for such a big
state would be a very challenging task. We considered the needed size when
using non-abelian groups in the extended version [12].

Table 6. Examples of parameters for 128-bit security when using modular additions
instead of ⊕. E-M stands for Even-Mansour and O-M for operation modes.

(p/w) E-M(1/n) O-M/LRW(1/n) E-M(2048/13) E-M(1024/14) E-M(4/1304)

State 5168 5168 26624 14336 5216

Key 5168 k ≥ 256 26624 14336 5216

8 Conclusion

Modular Additions Are Not Enough. We have shown that the proposal from [2],
even though it is interesting and could provide any wanted security with the
right (big) parameters, does not seem practical. Indeed, using modular addi-
tions6 instead of xors, in most constructions vulnerable to Simon’s attacks, would
increase the complexity of such attacks when using Kuperberg’s algorithm, and
therefore also the security, but it would need a much larger internal state to
provide reasonable security, far beyond the size of typical classical symmetric
constructions providing an equivalent degree of security. For instance, a key-
alternating cipher with modular addition that provides a 128-bit security would
need around 5200 bits of internal state and key size, to be compared with the 128
bits of internal state and 256 key-bits of AES-256. Beyond the obvious efficiency

6 The most realistic counter measure proposed.
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drawback, the design of a correspondingly large secure permutation would be a
very challenging task. Intuitively, we can see how more bits need to be mixed,
which will imperatively imply more rounds and bigger transformations (also
slower to mix).

That is why, regarding constructions that are vulnerable to Simon’s or Kuper-
berg’s attacks, the substitution of xors by modular additions seems hazardous,
as can be seen in the previous section, and we rather recommend the use of some
of the resistant constructions (many exist).

Kuperberg’s Algorithm Simulation and Verification. We have been able to study,
improve and simulate Kuperberg’s algorithm: the concrete complexity of our
tweaked version is 21.8

√
n, which is small enough for a practical use on typical

parameters of n (we have therefore implemented the part that could be simulated
and verified this). We also have presented a way to solve the hidden shift problem
in various situations (which extends to non-abelian groups), and provided an
estimate of the complexity.

New Algorithm Representing Simon-Meets-Kuperberg. We provided a new effi-
cient algorithm that solves the problem when considering parallel modular addi-
tions. We have simulated the algorithm and verified that our estimated com-
plexity is met in practice. As in the case of single modular additions, though the
security is increased with respect to the same constructions when using xors, the
size state is equally increased, and the tweak does not seem more promising.

Cryptanalysis of FX Variants and Poly1305. This paper proposes some new
quantum attacks, mainly using our generalized and improved Kuperberg’s algo-
rithm, that provide an important speed-up with respect to Grover’s quantum
generic exhaustive search attack.

Further Applications. Hidden shift algorithms can be applied in other crypto-
graphic fields. They have in particular been successfully applied to ordinary iso-
genies [18] and are relevant to assess the security of some proposed post-quantum
asymetric schemes, such as CSIDH [16]. Indeed, in [13] one of the first concrete
quantum cryptanalysis of post-quantum primitives is proposed, suggesting an
important re-dimension of parameters in order to propose the wanted security.
This result builds upon our work and simulations.

Open Problems

(1) Prove a tighter bound on the complexity of Kuperberg’s algorithm, or study
the success probability.

(2) Study combinations and alternance of xor and modular additions to increase
the complexity of the attacks or counter them.

(3) Find more attacks using the new algorithm, for instance, considering ARX
constructions. Also study applications to other post-quantum primitives, like
lattice-based ones.
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1 Introduction

A zero-knowledge proof system [GMR85] enables a prover to convince a verifier
that a statement is true without revealing anything else. We are interested in
proving statements of the form u ∈ L, where L is a language in NP. A zero-
knowledge proof is an interactive protocol between a prover and a verifier, where
both hold the same instance u, and the prover also holds a witness w to u ∈ L.
The protocol should satisfy three properties:

Completeness: A prover holding a witness to u ∈ L can convince the verifier.
Soundness: A cheating prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction only shows the statement u ∈ L is true. It

reveals nothing else, in particular it does not disclose anything of the witness.

Zero-knowledge proofs have numerous applications and are for instance used
in constructions of public-key encryption schemes secure against chosen cipher-
text attack, digital signatures, voting systems, auction systems, e-cash, secure
multi-party computation, and verifiable outsourced computation. The zero-
knowledge proofs impact the performance of all these applications, and it is
therefore important for them to be as efficient as possible.

There are many zero-knowledge proofs for dealing with arithmetic or boolean
circuit satisfiability. However, in applications usually the type of statements we
want to prove is that a protocol participant is following the protocol honestly;
whatever that protocol may be. This means we want to express statements relat-
ing to program execution such as “running program P specified by the protocol
on public input x and private input y returns the output z.” In principle such a
statement can be reduced to circuit satisfiability but the cost of the NP-reduction
incurs a prohibitive cost. In this paper, we therefore focus on the important ques-
tion of getting zero-knowledge proofs for statements relating directly to program
execution.

Performance can be measured on a number of parameters including the
prover’s running time, the verifier’s running time, the number of transmitted
bits and the number of rounds the prover and verifier interact. Current state of
the art zero-knowledge proofs get very good performance on verification time,
communication and round complexity, which makes the prover’s running time
the crucial bottleneck. Indeed, since the other costs are so low, we would hap-
pily increase them for even modest savings on the proving time since this is
the barrier that make some applications such as verifiable outsourced computa-
tion currently unviable. The research challenge we focus on is therefore to get
prover-efficient zero-knowledge proofs for correct program execution.

1.1 Our Contribution

We use the TinyRAM model [BCG+13,BSCG+13] for computation. TinyRAM
specifies a random access machine with a small instruction set working on W -
bit words and addresses. The specification of TinyRAM considers a Harvard-
architecture processor, which means that the program being executed is stored
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separately from the data being processed and does not change during execu-
tion.1 Experimental results [BCG+13] show that programs written in C can
be compiled efficiently into TinyRAM programs and only have a modest con-
stant overhead compared to optimized compilation to machine code on a modern
processor.

In our proof system, an instance consists of a TinyRAM program and public
data given to the program, and a witness is private data given as input to the
program. The statement is the claim that the TinyRAM program P running on
given public and private data will terminate with answer 0 within specific time
and memory bounds. When measuring performance we think of the prover and
verifier as being TinyRAM programs with the same word size2.

Our main contribution is an interactive proof system for correct TinyRAM
computation, which has perfect completeness, statistical zero-knowledge, and
computational knowledge soundness based on collision-resistant hash functions.
Knowledge soundness means that not only do we have soundness and it is infea-
sible to prove a false statement, but it is also a proof of knowledge such that
given access to a successful prover it is possible to extract a witness. For maximal
asymptotic efficiency we may use linear-time computable hash functions, which
yields the performance given in Fig. 1.

Our proof system is highly efficient for computationally intensive programs
where the execution time dominates other parameters (see Sect. 6 for a detailed
discussion of parameter choices). For a statement about the execution of a
TinyRAM program of length L, running with time bound T and memory
bound M , the prover runs in O(αT ) steps3 for an arbitrarily small supercon-
stant function α(λ) = ω(1). The proof system is also efficient on other per-
formance parameters: the verifier running time and the communication grows
roughly with the square-root of the execution time4 and we have log-logarithmic
round complexity. Figure 1 gives an efficiency comparison with a state of the art
zk-SNARK [BCTV14b] for verifying correct program execution on TinyRAM.

1 TinyRAM can with minor changes also be adapted to a von Neumann architecture
where program instructions are fetched from memory [BCTV14b]. The performance
of our proof systems adapted to a von Neumann architecture would remain the same
up to a constant factor.

2 We stress the choice of comparing the prover and verifier to program execution on
the same platform. We do this to get an apples-to-apples comparison; there are many
zero-knowledge proofs that are “linear time” because they use different metrics for
statement evaluation and the prover time, for instance that the cost of validating
the statement given the witness is measured in field multiplications and the prover
computation is measured in exponentiations.

3 The big-O notation hides big constants and we do not recommend implementing the
proof system as it is; our contribution is to make significant asymptotic gains com-
pared to state-of-the-art zero-knowledge proofs by demonstrating that the prover’s
computation can be nearly linear.

4 Disregarding the SHVZK property for a moment, this is also the first proof system
for general purpose computation that has both nearly linear computation for the
prover and sublinear communication.
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Further discussion of other proof systems that can verify correct TinyRAM or
other types of program execution can be found in Sect. 1.3. The best of these
achieve similar asymptotic prover efficiency as [BCTV14b].

Work Prover Verifier Communication Rounds Assumption
[BCTV14b] Ω(T log2 T ) ω(L + |v|) ω(1) 1 KoE
This work O(αT ) poly(λ)(

√
T + L + |v|) poly(λ)(

√
T + L) O(log log T ) LT-CRHF

Fig. 1. Efficiency comparisons between our arguments and the most efficient zero-
knowledge argument for the correct execution of TinyRAM programs, both at security
level 2−ω(log λ). Computation is measured in TinyRAM steps and communication in
words of length W = Θ(log λ) with λ the security parameter. KoE stands for knowledge
of exponent type assumption in pairing-based groups and LT-CRHF stands for linear-
time collision resistant hash function. It is worth noting KoE assumptions do not resist
quantum computers while a LT-CRHF may be quantum resistant.

Remarks. Our proof system assumes some public parameters to be set up that
include a description of a finite field, an error-correcting code, and a collision-
resistant hash function. The size of the public parameters is just poly(λ)(L +
M +

√
T ) bits which can be computed from a small uniformly random string in

poly(λ)(L + M +
√

T ) TinyRAM steps. This means the public parameters have
little effect on the overall efficiency of the proof system. Moreover, there are
variants of the parameters where it is efficiently verifiable the public parameters
have the correct structure. This means the prover does not need to trust the
parameters to get special honest verifier zero-knowledge, so they can be chosen
by the verifier making our proof systems work in the plain model without setup.
We let the public parameter be generated by a separate setup though because
they are independent of the instance and can be used over many separate proofs.

We did not optimize communication and verification time to go below
√

T
but if needed it is possible to compose our proof system with a verifier-efficient
proof system and get verification time that grows logarithmically in T . This is
done by letting the prover send linear-time computable hashes of her messages to
the verifier instead of the full messages. Since our proof system is public coin the
prover knows after this interaction exactly how the verifier in our proof system
ought to run if given the messages in our proof system. She can therefore give a
verifier-efficient proof of knowledge that she knows pre-images to the hashes that
would make the verifier in our proof system accept. We outline this procedure
in the full paper [BCG+18].

1.2 New Techniques

Ben-Sasson et al. [BCG+13,BCTV14b] offer proof systems for correct TinyRAM
program execution where the prover commits to a time-sorted execution trace
as well as an address-sorted memory trace. They embed words, addresses and
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flags that describe the TinyRAM state at a given time into field elements. The
correct transition in the execution trace between the state at time t and the
state at time t + 1 can then be checked by an arithmetic circuit, the correct
writing and reading of memory at a particular address in the memory trace can
be checked by another arithmetic circuit, and finally the consistency of memory
values in the two traces can be checked by a third arithmetic circuit that embeds
a permutation network. Importantly, in these proofs the state transitions can be
proved with the same arithmetic circuits in each step so many of the proofs can
be batched together at low average cost.

Combining their approach with the recent linear-time proofs for arithmetic
circuit satisfiability by Bootle et al. [BCG+17] it would be possible to get a zero-
knowledge proof system with sublinear communication and efficient verification.
The prover time, however, would incur at least a logarithmic overhead compared
to the time to execute the TinyRAM program. First, the use of an arithmetic
circuit that embeds a permutation network to check consistency between exe-
cution and memory traces requires a logarithmic number of linear-size layers to
describe an arbitrary permutation which translates into a logarithmic overhead
when generating the proof. Second, TinyRAM allows both arithmetic operations
such as addition and multiplication of words, and logical operations such as bit-
wise XOR, AND and OR. To verify logical operations they decompose words
into single bits that are handled individually. Bit-decomposition makes it easy
to implement the logical operations, but causes an overhead when embedding
bits into full size field elements. From a technical perspective our main contri-
bution is to overcome these two obstacles.

To reduce the time required to prove the execution trace is consistent with
the memory usage we do not embed a permutation network into an arithmetic
circuit. Instead we relate memory consistency to the existence of a permutation
that maps one memory access in the execution trace to the next access of the
same memory address in the execution trace. Neff [Nef01] proposed permutation
proofs in the context of shuffle proofs used in mix-nets. Follow-up works [Gro10b,
GI08] have improved efficiency of such proofs with Bayer and Groth [BG12]
giving a shuffle argument in the discrete logarithm setting where the prover uses
a linear number of exponentiations and communication is sublinear. These shuffle
proofs are proposed for the discrete logarithm setting and we do not want to
pay the cost of computing exponentiations. The core of the shuffle proofs can be
formulated abstractly using homomorphic commitments to vectors though. Since
the proofs by Bootle et al. [BCG+17] also rely on an idealization of homomorphic
commitments to vectors the ideas are compatible and we get permutation proofs
that cost a linear number of field operations.

To remove the overhead of bit-decomposition we invent a less costly decom-
position. While additions and multiplications are manageable using a natural
embedding of words into field elements, such a representation is not well suited to
logical operations though. However, instead of decomposing words into individ-
ual bits, we decompose them into interleaved odd-position bits and even-position
bits. A nibble (a3, a2, a1, a0) can for instance be decomposed into (a3, 0, a1, 0) +
(0, a2, 0, a0). The key point of this idea is that adding two interleaved even bit
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nibbles yields (0, a2, 0, a0) + (0, b2, 0, b0) = (a2 ∧ b2, a2 ⊕ b2, a0 ∧ b0, a0 ⊕ b0).
So using another decomposition into odd-position and even-position bits we can
now extract the XORs and the ANDs. Using this core idea, it is possible to repre-
sent all logical operations using field additions together with decomposition into
odd and even-position bits. This reduces the verification of logical operations to
verifying correct decomposition into odd and even bits. This decomposition and
its use are described in the full paper [BCG+18].

To enable decomposition proofs into odd and even-position bits, we develop
a new lookup proof that makes it possible to check that a field element belongs
to a table of permitted values. By creating a lookup table of all words with even-
position bits, we make it possible to verify such decompositions. Lookup proofs
not only enable decomposition into odd and even-position bits but also turn out
to have many other uses such as demonstrating that a field element represents
a correct program instruction, or that a field element represents a valid word
within the range {0, . . . , 2W − 1}.

Combining arithmetic circuits, permutations and table lookups we get a set
of conditions for a TinyRAM execution being correct. The program execution
of T steps on the TinyRAM machine can in our system be encoded as O(T )
field elements that satisfy the conditions. Using prime order fields of size 2O(W )

would make it possible to represent these field elements as O(1) words each.
However, the soundness of our proof systems depends on the field size and to
get negligible soundness error we choose a larger field to get a superconstant ratio
e = log |F|

W . This factors into the efficiency of our proof system giving a prover
runtime of O(αT ) TinyRAM steps for an instance requiring time T , where α is
a superconstant function which specifies how many steps it takes to compute a
field operation, i.e., α = O(e2).

Having the inner core of conditions in place: arithmetic circuits for instruc-
tion executions, permutations for memory consistency, and look-ups for word
decompositions we now deploy the framework of Bootle et al. [BCG+17] to get
a zero-knowledge proof system. They use error-correcting codes and linear-time
collision-resistant hash functions to give proof systems for arithmetic circuit
satisfiability, while we will use their techniques to prove our conditions on the
execution trace are satisfied. Their proof system for arithmetic circuit satisfi-
ability requires the prover to use a linear number of field multiplications and
the verifier to use a linear number of field additions. However, we can actually
get sublinear verification when the program and the input is smaller than the
execution time. Technically, the performance difference stems from the type of
permutation proof that they use for verifying the correct wiring of the circuit
and that we use for memory consistency in the execution trace. In their use, the
permutation needs to be linked to the publicly known wiring of the arithmetic
circuit and in order for the verifier to check the wiring is correct he must read
the entire circuit. We on the other hand do not disclose the memory accesses in
the execution trace to the verifier, indeed to get zero-knowledge it is essential the
memory accesses remain secret. We therefore need a hidden permutation proof
and such proofs can have sublinear verification time.
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1.3 Related Work

Interaction. Interaction is measured by the number of rounds the prover and
verifier exchange messages. Feige and Shamir [FS90] showed that constant round
argument systems exist, and Blum, Feldman and Micali [BFM88] showed that if
the prover and verifier have access to an honestly generated common reference
string it is possible to have non-interactive zero-knowledge proofs where the
prover sends a single message to the verifier.

Communication. A series of works [KR08,IKOS09,Gen09,GGI+15] have con-
structed proof systems where the number of transmitted bits is proportional to
the witness size. It is unlikely that sublinear communication is possible in proof
systems with statistical soundness but Kilian [Kil92] constructed an argument
system, a computationally sound proof system, with polylogarithmic communi-
cation complexity. Kilian’s zero-knowledge argument relies on probabilistically
checkable proofs [AS98], which are still complex for practical use, but the inven-
tion of interactive oracle proofs [BCS16] have made this type of proof system
a realistic option. Recent work by Ben-Sasson et al. [BSBTHR18] presents a
new PCP-based argument system, known as STARKs, which also has polylog-
arithmic communication costs, and is optimized for better practicality. Ishai et
al. [IKO07] give laconic arguments where the prover’s communication is mini-
mal. Groth [Gro10a], working in the common reference string model and using
strong assumptions, gave a pairing-based non-interactive zero-knowledge argu-
ment consisting of a constant number of group elements. Follow-up works on
succinct non-interactive arguments of knowledge (SNARKs) have shown that it
is possible to have both a modest size common reference string and proofs as
small as 3 group elements [BCCT12,GGPR13,PHGR16,BCCT13,Gro16].

Verifier Computation. In general the verifier has to read the entire instance
since even a single deviating bit may render the statement u ∈ L false. However,
in many cases an instance can be represented more compactly than the witness
and the instance may be small compared to the computational effort it takes
to verify a witness for the instance. In these cases it is possible to get sublinear
verification time compared to the time it takes to check the relation defining
the language L. This is for instance the case for the SNARKs mentioned above,
where the verification time only depends on the size of the instance but not the
complexity of the relation.

Prover Computation. Given the success in reducing interaction, communi-
cation and verification time, the important remaining challenge is to get good
efficiency for the prover.

Boolean and Arithmetic Circuits. Many classic zero-knowledge proofs rely on
cyclic groups and have applications in digital signatures, encryption schemes,
etc. The techniques first suggested by Schnorr [Sch91] can be generalized
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to NP-completel languages such as boolean and arithmetic circuit satisfiabil-
ity [CD,Gro09,BCC+16]. In these proofs and arguments the prover uses O(N)
group exponentiations, where N is the number of gates in the circuit. For the
discrete logarithm assumption to hold, the groups must have superpolynomial
size in the security parameter though, so exponentiations incur a significant over-
head compared to direct evaluation of the witness in the circuit. The SNARKs
mentioned earlier also rely on cyclic groups and likewise require the prover to
do O(N) exponentiations. Recently, Bootle et al. [BCG+17] used the structure
of [Gro09] to give constant overhead zero-knowledge proofs for arithmetic cir-
cuit satisfiability, where the prover uses O(N) field multiplications, relying on
error-correcting codes and efficient collision-resistant hash functions instead of
cyclic groups. STARKs [BSBTHR18] achieve slightly worse, quasilinear prover
computation but have lower asymptotic verification costs.

An alternative to these techniques is to use the “MPC in the head” paradigm
by Ishai et al. [IKOS09]. Relying on efficient MPC techniques, Damg̊ard, Ishai
and Krøigaard gave zero-knowledge arguments with little communication and
a prover complexity of polylog(λ)N . Instead of focusing on theoretical perfor-
mance, ZKBoo [GMO16] and its subsequent optimisation ZKB++ [CDG+17]
are practical implementations of a “3PC in the head” style zero-knowledge proof
for boolean circuit satisfiability. Communication grows linearly in the circuit
size in both proofs, and a superlogarithmic number of repetitions is required
to make the soundness error negligible, but the speed of the symmetric key
primitives makes practical performance good. Ligero [AHIV17] provides another
implementation using techniques related to [BCG+17]. It has excellent practical
performance but asymptotically it is not as efficient as [BCG+17] due to the use
of more expensive error-correcting codes. Another alternative also inspired by
the MPC world is to use garbled circuits to construct zero-knowledge arguments
for boolean circuits [BP12,JKO13,FNO15]. The proofs grow linearly in the size
of the circuit and there is a polylogarithmic overhead for the prover and verifier
due to the cryptographic operations but implementations are practical [JKO13].

There are several proof systems for efficient verification of outsourced com-
putation [GKR08,CMT12,Tha13,WHG+16]. While this line of works mostly
focus on verifying deterministic computation and does not require zero-
knowledge, recent works add in cryptographic techniques to obtain zero-
knowledge [ZGK+17,WJB+17,WTas+17]. Hyrax [WTas+17] offers an imple-
mentation with good concrete performance. It has sublinear communication and
verification, while the prover computation is dominated by O(dN +S log S) field
operations for a depth d and width S circuit when the witness is small compared
to the circuit size. If in addition the circuit can be parallelized into many iden-
tical sub-computations the prover cost can be further reduced to O(dN) field
operations. The system vSQL [ZGK+17] is tailored towards verifying database
queries and as in this work it avoids the use of permutation networks using per-
mutation proofs based on invariance of roots in polynomials as first suggested
by Neff [Nef01].



Arya: Nearly Linear-Time Zero-Knowledge Proofs 603

Correct Program Execution. In practice, most computation does not resem-
ble circuit evaluation but is instead done by computer programs processing
one instruction at a time. There has been a sustained effort to construct effi-
cient zero-knowledge proofs that support real-life computation, i.e., proving
statements of the form “when executing program P on public input x and
private input y we get the output z.” In the context of SNARKs there are
already several systems for proving correct execution of programs written in
C [PHGR16,BFR+13,BCG+13,WSR+15]. These system generally involve a
front-end which compiles the program into an arithmetic circuit which is then fed
into a cryptographic back-end. Much work has been dedicated to improving both
sides and achieving different trade-offs between efficiency and expressiveness of
the computation.

When we want to reason theoretically about zero-knowledge proofs for correct
program execution, it is useful to abstract program execution as a random-access
machine that in each instruction can address an arbitrary location in memory
and do integer operations on it. For closer resemblance to real-life computation,
we can bound the integers to a specific word size and specify a more general set
of operations the random-access machine can execute. TinyRAM [BSCG+13,
BCG+13] is a prominent example of a computational model bridging the gap
between theory and real-word computation. It comes with a compiler from C
to TinyRAM code and underpins several implementations of zero-knowledge
proofs for correct program execution [BCG+13,BCTV14b,BCTV14a,CTV15,
BBC+17] where the prover time is Ω(T log2 λ) for a program execution that
takes time T . Similar efficiency is also achieved, asymptotically, by other proof
systems that can compile (restricted) C programs and prove correct execution
such as Pinocchio [PHGR16], Pantry [BFR+13] and Buffet [WSR+15]. Our work
reduces the prover’s overhead from Ω(log2 λ) to an arbitrary superconstant α =
ω(1) and is therefore an important step towards optimal prover complexity.

Concurrent Work. Zhang et al. [ZGK+18] have concurrently with our work devel-
oped and implemented a scheme for verifying RAM computations. Like us and
[ZGK+17], they avoid the use of permutation networks by using permutation
proofs based on polynomial invariance by Neff [Nef01]. The idea underlying
their technique for proving the correct fetch of an operation is related to the
idea underpinning our look-up proofs. There are significant differences between
the techniques used in our works; e.g. they rely on techniques from [CMT12]
for instantiating proofs where we use techniques based on ideal linear commit-
ments [BCG+17]. The proofs in [ZGK+18] are not zero-knowledge since they
leak the number of times each type of instruction is executed, while our proofs
are zero-knowledge. In terms of prover efficiency, [ZGK+18] focuses on concrete
efficiency and yields impressive concrete performance. Asymptotically speaking,
however, we are a polylogarithmic factor more efficient. This may require some
explanation because they claim linear complexity for the prover. The reason is
that they treat the prover as a TinyRAM machine with logarithmic word size in
their performance measurement. Looking under the hood, we see that they use
bit-decomposition to handle logical operations, which is constant overhead when
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you fix a particular word size (e.g. 32 bits) but asymptotically the cost of this is
logarithmic since it is linear in the word size. Also, they base commitments on
cyclic groups and the use of exponentiations incurs a superlogarithmic overhead
for the prover when implemented in TinyRAM.

Setup and Assumptions. Many proof systems, such as SNARKs, require a
large and complex common reference string in order to run. The common ref-
erence string must be generated correctly, or the security of the proof system
is at stake. This leads to concerns over parameter subversion, and efficiency,
since the more complex the common reference string, the more costly it is to
ensure that it was generated correctly. Recently, alternatives have been inves-
tigated. Hyrax [WTas+17] relies on the discrete logarithm assumption, and
Ligero [AHIV17] and STARKs [BSBTHR18] rely on collision-resistant hash func-
tions. Our scheme relies only on collision-resistant hash functions for soundness,
and pseudorandom generators in order to achieve full zero-knowledge, which
means that the setup information required is comparable to existing works, like
STARKs, which focus on transparency.

Our proof system benefits from simple setup ingredients, nearly linear prover
costs, and sublinear, hence, scalable communication and verification costs, and
therefore enjoys many of the same desirable properties as STARKs [BSBTHR18].

In addition, although we do not know how to prove that our scheme is secure
in any quantum security model, it is based on post-quantum assumptions and
may offer some security against quantum adversaries, since it is not known how
to efficiently attack collision-resistant hash functions and pseudorandom gen-
erators using quantum algorithms. Note that there are general proof systems,
such as ZKB++ [CDG+17], which do have quantum proofs of security, but are
asymptotically less efficient as previously discussed.

2 Preliminaries

2.1 Notation

We write y ← A(x) for an algorithm returning y on input x. When the algorithm
is randomized, we write y ← A(x; r) to explicitly refer to the random coins r
picked by the algorithm. We use a security parameter λ to indicate the desired
level of security. The higher the security parameter, the smaller the risk of an
adversary compromising security should be. For functions f, g : N → [0, 1], we
write f(λ) ≈ g(λ) if |f(λ) − g(λ)| = 1

λω(1) . We say a function f is overwhelming
if f(λ) ≈ 1 and that it is negligible if f(λ) ≈ 0. In general we want the adver-
sary’s chance of breaking our proof systems to be negligible in λ. As a minimum
requirement for an algorithm or adversary to be efficient it has to run in polyno-
mial time in the security parameter. We abbreviate probabilistic (deterministic)
polynomial time in the security parameter PPT (DPT). For a positive integer
n, [n] denotes the set {1, . . . , n}. We use bold letters such as v for row vectors
over a finite field F.
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2.2 Proofs of Knowledge

We follow [BCG+17] in defining proofs of knowledge over a communication chan-
nel and their specification of the ideal linear commitment channel and the stan-
dard channel. A proof system is defined by stateful PPT algorithms (K,P,V).
The setup generator K is only run once to provide public parameters pp that will
be used by the prover P and verifier V. We will in our security definitions just
assume K is honest, which is reasonable since in our constructions the public
parameters are publicly verifiable and could even be generated by the verifier.

The prover and verifier communicate with each other through a commu-
nication channel chan←→. When P and V interact on inputs s and t through a
channel chan←→ we let viewV ← 〈P(s) chan←→ V(t)〉 be the view of the verifier
in the execution, i.e., all inputs he gets including random coins, and we let
transP ← 〈P(s) chan←→ V(t)〉 denote the transcript of the communication between
prover and channel. The protocol ends with the verifier accepting or rejecting the
proof. We write 〈P(s) chan←→ V(t)〉 = b depending on whether he accepts (b = 1)
or rejects (b = 0).

In the standard channel ←→, all messages are forwarded between prover and
verifier. As in [BCG+17], we also consider an ideal linear commitment channel,
ILC←→, described in Fig. 2. When using the ILC channel, the prover can submit a
commit command to commit to vectors of field elements of some fixed length
k, specified in the public parameters. The vectors remain secretly stored in the
channel, and will not be forwarded to the verifier. Instead, the verifier only learns
how many vectors the prover has committed to. The verifier can submit a send
command to the ILC channel to send a message to the prover. In addition, the
verifier can also submit open queries to the ILC channel to obtain openings of
linear combinations of the vectors sent by the prover. We stress that the verifier
can request several linear combinations of stored vectors within a single open
query, as depicted in Fig. 2 using matrix notation.

PILC VILC

Fig. 2. Description of the ILC channel.
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We say a proof system is public coin if the verifier’s messages to the com-
munication channel are chosen uniformly at random and independently of the
actions of the prover, i.e., the verifier’s messages to the prover correspond to
the verifier’s randomness ρ. All our proof systems will be public coin. In a proof
system over the ILC channel, sequences of commit, send and open queries can
alternate arbitrarily. However, since our proof systems are public coin we can
without loss of generality assume the verifier will only make one big open query
at the end of the protocol and then decide whether to accept or reject.

Let R be an efficiently decidable relation of tuples (pp, u, w). We can define
a matching language L = {(pp, u)|∃w : (pp, u, w) ∈ R}. We refer to u as the
instance and w as the witness to (pp, u) ∈ L. The public parameter pp will
specify the security parameter λ, perhaps implicitly through its length, and may
also contain other parameters used for specifying the relation. Typically, pp will
also contain parameters that do not influence membership of R but may aid the
prover and verifier, for instance the field and vector size in the ILC channel.

The protocol (K,P,V) is called a proof of knowledge over a communication
channel chan←→ for a relation R if it has perfect completeness and computational
knowledge soundness as defined below.

Definition 1 (Perfect Completeness). A proof system is perfectly complete
if for all PPT adversaries A

Pr

[
pp ← K(1λ); (u,w) ← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w) chan←→ V(pp, u)〉 = 1

]
= 1.

Definition 2 (Knowledge soundness). A public-coin proof system has com-
putational (strong black-box) knowledge soundness if for all DPT P∗ there exists
an expected PPT extractor E such that for all PPT adversaries A

Pr

[
pp ← K(1λ); (u, s) ← A(pp);w ← E〈P∗(s)

chan←→V(pp,u)〉(pp, u) :
b = 1 ∧ (pp, u, w) /∈ R

]
≈ 0.

Here the oracle 〈P∗(s) chan←→ V(pp, u)〉 runs a full protocol execution and if the
proof is successful it returns the transcript transP of the prover’s communication
with the channel. The extractor E can ask the oracle to rewind the proof to any
point in a previous transcript and execute the proof again from this point on with
fresh public-coin challenges from the verifier. We let b ∈ {0, 1} be the verifier’s
output in the first oracle execution, i.e., whether it accepts or not, and we think
of s as the state of the prover. The definition can then be paraphrased as saying
that if the prover in state s makes a convincing proof, then E can extract a
witness.

If the definition holds also for unbounded P∗ and A we say the proof has
statistical knowledge soundness.

If the definition holds for a non-rewinding extractor, i.e., E only requires a
single transcript of the prover’s communication with the channel, we say the
proof system has knowledge soundness with straight-line extraction.
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We will construct public-coin proofs of knowledge that have special honest-
verifier zero-knowledge. This means that if the verifier’s challenges are known
in advance then it is possible to simulate the verifier’s view without knowing a
witness. In our definition, the simulator works even for verifiers who may use
adversarial biased coins in choosing their challenges as long as they honestly
follow the specification of the protocol.

Definition 3 (Special Honest-Verifier Zero-Knowledge). A public-coin
proof of knowledge is computationally special honest-verifier zero-knowledge
(SHVZK) if there exists a PPT simulator S such that for all stateful interactive
PPT adversaries A that output randomness ρ for the verifier, and (u,w) such
that (pp, u, w) ∈ R,

Pr

[
pp ← K(1λ); (u,w, ρ) ← A(pp);

viewV ← 〈P(pp, u, w) chan←→ V(pp, u; ρ)〉 : A(viewV) = 1

]

≈ Pr
[
pp ← K(1λ); (u,w, ρ) ← A(pp); viewV ← S(pp, u, ρ) : A(viewV) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against
unbounded adversaries, and we say the proof is perfectly SHVZK if the proba-
bilities are exactly equal.

2.3 TinyRAM

TinyRAM is a random-access machine model operating on W -bit words and
using K registers. We now describe the key features of TinyRAM but refer the
reader to the specification [BSCG+13] for full details. A state of the TinyRAM
machine consists of a program P (list of L instructions), a program counter pc
(word), K registers reg0, . . . , regK−1 (words), a condition flag flag (bit), and M
words of memory with addresses 0, . . . , M − 1.

The TinyRAM specification includes two read-only tapes to retrieve its inputs
but with little loss of efficiency we may assume the program starts by reading
the tapes into memory5 We will therefore skip the reading phase and assume
the memory is initialized with the inputs (and 0 for the remaining words). Also,
we will assume on initialization that pc, the registers and flag are all set to 0.

The program consists of a sequence of L instructions that include bit-wise
logical operations, arithmetic operations, shifts, comparisons, jumps, and stor-
ing and loading data in memory. The program terminates by using a special
command answer that returns a word. A description of the allowed operations
is given in Table 1. We consider the program to have succeeded if it answers 0,
otherwise we consider the answer to be a failure code.

We write regi and ri when referring to register i and to its content, respec-
tively. We write A to refer to either a register or an immediate value specified in
a program instruction and write A for the value stored therein. Depending on the

5 The specification [BSCG+13] calls a program proper if it first reads all inputs into
memory and provides a 7-line TinyRAM program that does this in ∼5M steps.
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instruction a word a may be interpreted as an unsigned value in {0, . . . , 2W − 1}
or as a signed value in {−2W−1, . . . , 2W−1 − 1}. Signed values are in two’s com-
plement, so given a word a = (aw−1, . . . , a0) ∈ {0, 1}W the bit aW−1 is the sign
and the signed value is −2W + a if aW−1 = 1 and a if aW−1 = 0. We distinguish
operations over signed values by using subscript s, e.g. a ×s b and a ≥s b are
used to denote product and comparison over the signed values.

Correct Program Execution. It is often important to check that a proto-
col participant supposedly running program P on public input x and private
input w provides the correct output z. Without loss of generality, we can formu-
late the verification as an extended program that takes public input v = (x, z)
and answers 0 if and only if z is the output of the computation. We therefore
formulate correct program execution as the program just answering 0.

We now give a relation that captures correct TinyRAM program execution.
An instance is of the form u = (P, v, T,M), where P is a TinyRAM program, v
is a list of words given as input to the program, T is a time bound, and M is
the size of the memory. A witness w is another list of words. We assume without
loss of generality that the witness is appended by 0’s, such that |v| + |w| = M
and the program starts with the memory being initialized to these words.

The statement we want to prove is that the program P terminates in T steps
using M words of memory on the public input v and private input w with the
instruction answer 0. We therefore define

RTinyRAM =

⎧⎪⎪⎨
⎪⎪⎩

(pp, u, w) = ((W,K, ∗), (P, v, T,M), w)
∣∣

P is a TinyRAM program with W -bit words, K registers,
and M words of addressable memory, which on inputs v and w
terminates in T steps with the instruction answer 0.

⎫⎪⎪⎬
⎪⎪⎭

Our main interest is to prove correct execution of programs that require heavy
computation so we will throughout the article assume the number of steps out-
weigh the other parameters, i.e., T > L + M , where L is the number of instruc-
tions in the program.

3 Arithmetization of Correct Program Execution

As a first step towards the realization of proofs for the correct execution of
TinyRAM programs we translate RTinyRAM into a more amenable relation involv-
ing elements in a finite field. Given a TinyRAM machine with word-size W and
a finite field F, we can in a natural way embed words into field elements by
encoding a word a ∈ {0, . . . , 2W − 1} as the field element a · 1F = 1F + · · · + 1F
(a times). We will use fields of characteristic p > 22W − 2W−1 because then
sums and products of words are less than p and we avoid overflow in the field
operations we apply to the embedded words.

We will encode the program, memory and states of a TinyRAM program as
tuples of field elements. We then introduce a new relation Rfield

TinyRAM consisting
of a set of arithmetic constraints these encodings should satisfy to guarantee
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the correct program execution. The relation will take instances u = (P, v, T,M),
and witnesses w consisting of the encodings as well as a set of auxiliary field
elements.

In this section we specify instructions supported by TinyRAM machines and
the structure of the witness w and how the relation of correct program execution
decomposes into simpler sub-relations. It will be the case that the encoding of
the witness can be done alongside an execution of the program in O(L+M +T )
field operations.

Table 1 described the supported operations in TinyRAM. Each line in the
program consists of one of these instructions in and up to three operands, e.g.
add regi regj A. The first operand, regi, usually points to the register storing
the result of the operation, add, computed on the words specified by the next
two operands, regj , A. The last operand A indicates an immediate value that
could be either used directly in the operation or to point to the content of
another register. We refer to the value to be used in the operation generically as
A, stressing that the selection between either the immediate value or a register
value can be handled by using the appropriate selection vector.

Formatting the Witness. Given a correct program execution we encode pro-
gram, memory and states of the TinyRAM machine as field elements and arrange
them in a number of tables as pictured in Table 2. The execution table Exe, con-
tains the field elements encoding of the states of the TinyRAM machine. It
consists of T rows, where row t describes the state at the beginning of step t.
A row includes field elements that encode the time t, the program counter pct,
the instruction instpct

corresponding to pct, an immediate value At, the values
r0,t, . . . , rK−1,t contained in the registers reg0, . . . , regK−1 at time t, and the flag
flagt. The next row contains the resulting state of the TinyRAM machine at time
t+1. Each row also includes a memory address addrt, and the value vaddrt stored
at this address after the execution of the step, as well as a constant number of
auxiliary field elements to be specified later that will be used to check correctness
of program execution.

The next table is the program table Prog, which contains the field elements
encoding of the TinyRAM program P . Each row contains the description of one
line of the program, consisting of one instruction, at most three operands, and
possibly an immediate value. Furthermore, we introduce a constant number of
auxiliary field elements in each row. These entries can be efficiently computed
given the program line stored in the same row and will help verifying its execu-
tion, e.g. we encode the position of input and output registers as auxiliary field
elements.

The memory table Mem has rows that list the possible memory addresses,
their initial values, and an auxiliary field element usd ∈ {0, 1}. For every pair of
address and corresponding initial value, the memory table Mem contains a row
in which usd = 0 and another row in which usd = 1. Recall that the memory is
initialized with input words listed in v, w, i.e., the input words contributing to
the instance and witness of the relation RTinyRAM.
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Table 1. TinyRAM instruction set, excluding the read command. The flag is set equal
to 1 if the condition is met and 0 otherwise. If the pc exceeds the program length, i.e.,
pc ≥ L, or we address a non-existing part of memory, i.e., in a store or load instruction
A ≥ M , the TinyRAM machine halts with answer 1.

Instruction Operands Effect Flag

and regi regj A Compute ri as bitwise

AND of rj and A

Result is 0W

or regi regj A Compute ri as bitwise

OR of rj and A

Result is 0W

xor regi regj A Compute ri as bitwise

XOR of rj and A

Result is 0W

not regi A Compute ri as bitwise

NOT of A

Result is 0W

add regi regj A Compute

ri = rj + A mod 2W
Overflow: rj + A ≥ 2W

sub regi regj A Compute

ri = rj − A mod 2W
Borrow: rj < A

mull regi regj A Compute

ri = rj × A mod 2W
¬ overflow: rj × A < 2W

umulh regi regj A Compute ri as upper W

bits of rj × A

¬ overflow: ri = 0

smulh regi regj A Compute ri as upper W

bits of the signed

2W -bit rj ×s A (mull

gives lower word)

¬ over/underflow: ri = 0

udiv regi regj A Compute ri as quotient

of rj/A

Division by zero: A = 0

umod regi regj A Compute ri as

remainder of rj/A

Division by zero: A = 0

shl regi regj A Compute ri as ri shifted

left by A bits

MSB of rj

shr regi regj A Compute ri as ri shifted

right by A bits

LSB of rj

cmpe regi A Compare if equal Equal: ri = A

cmpa regi A Compare if above Above: ri > A

cmpae regi A Compare if above or

equal

Above/equal: ri ≥ A

cmpg regi A Signed compare if

greater

Greater: ri >s A

cmpge regi A Signed compare if

greater or equal

Greater/equal: ri ≥s A

mov regi A Set ri = A Flag unchanged

cmov regi A if flag = 1 set ri = A Flag unchanged

jmp A Set pc = A Flag unchanged

cjmp A If flag = 1 set pc = A Flag unchanged

cnjmp A If flag = 0 set pc = A Flag unchanged

store A regi Store in memory

address A the word ri

Flag unchanged

load regi A Set ri to the word

stored at address A

Flag unchanged

answer A Stall or halt returning

the word A

Flag unchanged
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Table 2. The execution table Exe, the program table Prog, the memory table Mem
and the table EvenBits.

In addition to these, we also consider an auxiliary lookup table EvenBits
containing the encoding of words of length W whose binary expansion has 0 in
all odd positions. The table contains 2

W
2 field elements and will be used as part

of a check that certain field elements encode a word of length W .

3.1 Decomposition of TinyRAM

Let (Exe,Prog,Mem,EvenBits) be the tables of field elements encoding the pro-
gram execution and the auxiliary values. We can now reformulate the correct
execution of a TinyRAM program defined by RTinyRAM as a relation that imposes
a number of constraints the field elements included in tables should satisfy:

Rfield
TinyRAM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗)
(pp, (P, v, T,M),w) ∈ Rcheck

(pp, (T,M),w) ∈ Rmem

(pp,⊥,w) ∈ Rstep

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the relations Rcheck, Rmem,Rstep jointly guarantee the witness w consists
of field elements encoding a correct TinyRAM execution that answers 0 in T
steps using M words of memory, public input v, and additional private inputs.

Specifically, the relation Rcheck checks the initial values of the memory are
correctly included into Mem, the program is correctly encoded in Prog, EvenBits
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contains the correct encodings of the auxiliary lookup table, the initial state of
the TinyRAM machine is correct and that it terminates with answer 0 in step
T . The role of Rmem is to check that memory usage is consistent throughout
the execution of the program. That is, if a memory value is loaded at time t
then it should match the last stored value at the same address. Finally, Rstep

checks that each step of the execution has been performed correctly. In the rest
of the section we describe Rcheck, Rmem and Rstep, gradually decomposing them
into smaller and simpler relations. Ultimately, we specify each of these subrela-
tions in terms of some building block: equality, lookup, permutation, and range
relations. Figure 3 illustrates the decomposition of Rfield

TinyRAM into progressively
smaller relations.

Fig. 3. Diagram of the decomposition of TinyRAM into equality, lookup, permutation,
and range relations.

Building Blocks. We give a brief description of the building block relations
used in the decomposition of Rfield

TinyRAM.

– An equality relation Req checks that rows Tabi of a table Tab in the witness
encode tuples v1, . . . , vm of given W -bit words

– A lookup relation checks the membership of a tuple of field elements w in the
set of rows of a table Tab. This differs from the previous relation as both w
and Tab are both in the witness. We extend this relation in the natural way
for checking the membership of multiple tuples w1,w2, . . . in a table.

– A range relation to check that a field element a can be written as a W -bit
word, i.e., a is in the range {0, . . . , 2W − 1}.

– A permutation relation can be used to check that two ordered sets of a given
size are permutations of each other. The permutation is in the witness i.e. it
is unknown to the verifier.

3.2 Checking the Correctness of Values

The role of Rcheck is to check that w consists of the correct number of field
elements that can be partitioned into the appropriate tables and also to check
that specific entries in these tables are correct.
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Rcheck =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (P, v, T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗),
Exe = {Exet}T

t=1, Prog = {Progi}L−1
i=0

Prog0 = (0, inst0,A0, . . .)
(pp, (1, 0, inst0, A0, 0, . . . , 0, . . .) ,Exe1) ∈ Req

(pp, (T,answer, 0, . . .),ExeT ) ∈ Req(
pp,

(
0, 1, 4, 5, . . . ,

∑W
2 −1

i=0 22i
)

,EvenBits
)

∈ Req

(pp, P,Prog) ∈ Req (pp, v,Mem) ∈ Req

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The relation Rcheck checks that: the first and last row of the execution table
contains the correct initial values; the auxiliary lookup table EvenBits contains
the embeddings of all W -bit words with 0 in all odd positions; the program
table Prog contains the correct field element embedding of the program P as
well as the correct auxiliary entries; the memory table Mem contains the correct
embedding of the input words listed in v.

3.3 Checking Memory Consistency

The relation Rmem checks that the memory is used consistently across different
steps in the execution. For instance, if at step t a value is loaded from memory,
then it should be equal to the last value stored in the same address. If it is
the first time a memory address is accessed, we need to ensure consistency with
the initial values. If two consecutive memory accesses to the same address were
placed into two adjacent rows of Exe it would be easy to check their consistency.
However, this is generally not the case since the Exe table is sorted by execution
time rather than memory access. Therefore, we need to devise a way to check
consistency of memory accesses that could be located in any position of Exe.
Overall the memory consistency relation Rmem decomposes as follows

Rmem =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (T,M),w)
∣∣

w = (Exe,Prog,Mem,EvenBits, π, ∗),
Exe = {Exet}T

t=1 Mem = {Memj}2M−2
j=0

(pp, T, (Exe, π)) ∈ Rcycle, (pp, T,Exe) ∈ Rtime

(pp, (T,M), (Exe,Mem)) ∈ Rblookup, (pp, T,Exe) ∈ Rload

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

To help with checking the memory consistency, we include in each row of the
execution table the following auxiliary entries

auxExe = τlink vlink vinit usd S L · · ·
where τlink contains the previous time-step at which the current address was
accessed, unless this is the first time a location is accessed in which case it is
set equal to the last time-step this location is accessed. Similarly, vlink stores the
value contained in the address after time τlink, unless this is the first time that
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location is accessed, in which case it stores the last value stored in that location.
The value vinit is a copy of the initial value assigned to that memory location,
which is also stored in the memory table Mem. The value usd is a flag which is
set equal to 0 if this is the first time we access the current memory address, and 1
otherwise. The values S, L are flags set equal to 1 in case the current instruction
is a store or load operation, respectively, and 0 otherwise. The values S, L are
also stored in the auxiliary entries of the program table auxProg = S L · · · .
Memory Accesses Form Cycles. We check memory consistency by specifying
cycles of memory accesses, so that consecutive terms in a cycle correspond to two
consecutive accesses to the same memory location. By using the above auxiliary
entries, we use the relation Rcycle for the memory access pattern in the rows of
Exe being in correspondence with a permutation π defined by such cycles. The
relation Rcycle checks that all memory accesses (i.e. with S + L = 1) relative to
the same address are connected into cycles and that rows not involving memory
operations (S + L = 0) are not included in these cycles. The relation does not
include any explicit checks on whether S+ L is equal to 0 or 1. It is sufficient to
check that St + Lt = St′ + Lt′ , t = τlinkt′ , vaddrt = vlinkt′ and addrt = addrt′ for
some t′ = π(t), which ensures that operations which are not memory operations
are not part of cycles including memory operations.

Rcycle =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), T, (Exe, π))
∣∣

Exet = (t, . . . , addrt, vlinkt, τlinkt, . . . , St, Lt, . . .) for t ∈ [T ]
a t = (t, addrt, vaddrt ,St + Lt) for t ∈ [T ]

bt = (τlinkt, addrt, vlinkt,St + Lt) for t ∈ [T ]
((W,K,F, ∗), T, ({a i, bi}T

i=1, π)) ∈ Rperm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Memory Accesses are in the Correct Order. Consecutive terms in a cycle
should correspond to the consecutive time-steps in which the memory is accessed.
To check that the memory cycles are time-ordered we can simply verify that t >
τlinkt for any given time-step t ∈ [T ]6. Since memory accesses are connected into
cycles, the first time we access a new memory location the τlink entry stores the
last point in time that location is accessed by the program. In this case (usd = 0),
we verify that t ≤ τlinkt. The relation Rtime incorporates these conditions

Rtime =

⎧⎨
⎩

(pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , τlinkt, . . . , usdt, . . .) for t ∈ [T ]
∀ t ∈ [T ] : (usd = 0 ∧ t ≤ τlinkt) ∨ (usd = 1 ∧ t > τlinkt)

⎫⎬
⎭

Memory Locations are in no more than one Cycle. To ensure that the
cycles correspond to sequences of memory addresses we also require that all the

6 For this to be sufficient we also need the time-steps in the execution table to be
correct but this is ensured by the Rcheck and Rconsistent (appears later) relations.
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rows touching the same memory address are included in the same cycle. Since
the cycles are time-ordered, they require one time-step for which usd = 0 in order
to close a cycle. Thus, we can ensure each memory location to be part of at most
on cycle by letting usd to be set equal to 0 at most once for each memory address.
We introduce a bounded lookup relation Rblookup to address this requirement. The
relation checks that for any row in Exe, the tuple (addrt, vinitt, usd) is contained
in one row of the table Mem and that each row (j, vj , 0) of Mem is accessed at
most once by the program.

Rblookup =

⎧⎪⎪⎨
⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗), (T,M), (Exe,Mem))
∣∣

Exet = (t, . . . , addrt, . . . , vinitt, usdt, . . .) for t ∈ [T ]
∀ t ∈ [T ] (pp,⊥, ((addrt, vinitt, usdt) ,Mem)) ∈ Rlookup ∧

∀ (j, vj , 0) ∈ Mem : (. . . , j, . . . , vj , 0, . . .) occurs at most once in Exe

⎫⎪⎪⎬
⎪⎪⎭

Load Instructions are Consistent. Finally, we are only left to check that if
the program executes a load instruction the value vaddrt loaded from memory
is consistent with the value stored at the same address at the previous access.
Similarly, if load is executed on a new memory location, then the value loaded
should match with the initial value vinitt. No additional checks are required for
store instructions. These checks are incorporated in the relation Rload.

Rload =

⎧⎨
⎩

(pp, u, w) = ((W,K,F, ∗), T,Exe)
∣∣

Exet = (t, . . . , addrt, vaddrt , τlinkt, vlinkt, vinitt, usdt, . . .) for t ∈ [T ]
∀ t ∈ [T ] : Lt(vaddrt − vinitt + usdt(vinitt − vlinkt)) = 0

⎫⎬
⎭

3.4 Checking Correct Execution of Instructions

We use the relation Rstep to guarantee that each step of the execution has been
performed correctly. This involves checking for each row Exet of the execution
table that the stored words are in the range {0, . . . , 2W − 1}, the flagt is a bit,
the program counter pct matches the instruction and the immediate value At

in the program, and that instt is correctly executed. An instruction takes some
inputs, e.g., values indicated by the operands regj , A or the flag and as a result
may change the program counter, a register value, a value stored at a memory
address, or the flag. Since we have already checked memory correctness, if the
operation is a load or store we may assume the memory value is correct.

Rstep =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(pp, u, w) = ((W,K,F, ∗),⊥,w)
∣∣

w = (Exe,Prog,Mem,EvenBits, ∗) ∧ Exe = {Exet}T
t=1

∀t ∈ {1, . . . , T − 1} :
(pp,⊥, (Exet,Exet+1)) ∈ Rmux

(pp,⊥, (Exei,Exei+1,Prog)) ∈ Rconsistent

(pp,⊥, (Exei,Exei+1,EvenBits, ∗)) ∈ Rins

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
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To help checking the consistency of the operations the rows of the execution and
program tables include some auxiliary entries. These consist of some temporary
variables, an output vector, and some selection vectors which are also listed in
the program table. The temporary variables are used to store a copy of the
inputs and outputs of an instruction. The advantage of the temporary variables
is that for each addition operation we check, we will always have the inputs and
outputs stored, instead of having to handle multiple registers holding inputs and
output in arbitrary order.

Ensuring Temporary Values are Correct. A multiplexing relation Rmux is
used to check that the temporary variables are consistent with operands con-
tained in instt. Checking operations on temporary values require us to multiplex
the corresponding register, immediate, and memory values in and out of the
temporary values. We do this using selection vectors that are bit-vectors encod-
ing the operands of an instruction. Each row of the execution table includes
multiple variables that may be selected as an operand. A selection vector will
have a bit for each of these variables indicating whether it is picked or not. More
details about the multiplexing relation are provided in the full version of the
paper [BCG+18].

The Execution Table and the Program Table are Consistent. The con-
sistency relation Rconsistent checks that the time is correctly incremented and
that the program counter is in the correct range, i.e. pct+1 ∈ {0, . . . , L − 1}
and is incremented unless a jump-instruction is executed. It also checks that the
instruction, the immediate value and the selection vectors stored in the execu-
tion table are consistent with the program the line indexed pc. Furthermore,
it checks that the entries in the output vector relevant to instt are all equal to
zero and that the contents of the registers do not change, unless specified by the
instruction, e.g. the register storing the result of the computation. Verifying that
rows of the execution table match with states of a TinyRAM machine involves
checking that entries that are not affected by an instruction remain the same in
the next state. For this we use another selector vector with entries equal to 0,
positioned in correspondence of entries that are changed during the execution,
and 1 for entries that do not change in the execution.

Instructions are Executed Correctly. An instruction checker relation Rins

checking that the temporary values are in the range {0, . . . , 2W − 1} and are
consistent with the output vector. We divide the entries of the output vector
into 4 groups: logical (AND,XOR,OR), arithmetic (SUM,PROD,SSUM,SPROD,
MOD), shift (SHIFT), and flag (FLAG1,FLAG2,FLAG3,FLAG4). By specifying
constraints to all these entries, we can directly verify all the logical, arithmetic,
and shifts operations after which the variables are named.

The Rins can be decomposed into 3 sub-relations: Rlogic, Rarith, and Rshift. In
the full paper [BCG+18] we show choices of selection vectors which reduce the
verification of any other operation to the ones contained in these 3 categories.
We also describe the decomposition of Rlogic, Rarith, Rshift into our elementary
building blocks.
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4 Efficient Bit Decomposition for Logical Relations

In this section we summarise a new decomposition technique which will enable
verification of bitwise AND and XOR operations. This allows us to check all
boolean operations more efficiently. Let a, b be the inputs of the bit-wise AND
or bit-wise XOR operation, and let c be the output. To verify the correctness of
the operation, e.g. a∧b = c, consider the decompositions of the inputs into their
odd and even-position bits, namely a = 2ao + ae and b = 2bo + be. Observe that
taking the sum of the integers storing the even-positions of a and b gives

ae + be = (0, aW−2, . . . , 0, a0) + (0, bW−2, . . . , 0, b0)
= (aW−2 ∧ bW−2, aW−2 ⊕ bW−2, . . . , a0 ∧ b0, a0 ⊕ b0)

The above contains the bit-wise AND of the even bits of a and b placed in odd
position and the bit-wise XOR of the even bits of a and b in even position.
Therefore we can consider taking again the decomposition of ae +be into its odd
and even-position bits, i.e. ae + be = 2eo + ee so that half of the bits of a∧ b are
stored in eo and half of the bits of a⊕b are stored in ee. We can repeat the above
procedure starting from the odd-position bits of a and b getting the following

ao + bo = (0, aW−1, . . . , 0, a1) + (0, bW−1, . . . , 0, b1)
= (aW−1 ∧ bW−1, aW−1 ⊕ bW−1, . . . , a1 ∧ b1, a1 ⊕ b1) = 2oo + oe

where oo stores half of the bits of a ∧ b and oe stores and half of the bits of a ⊕
b. Putting everything together, given the decompositions ao, ae, bo, be, oo, oe, eo,
ee ∈ EvenBits such that the following hold

a = 2ao + aegg b = 2bo + begg ao + bo = 2oo + oegg ae + be = 2eo + ee

then the bit-wise AND and XOR of a and b is given by the following

a ∧ b = 2oo + eo a ⊕ b = 2oe + ee

it is then sufficient to check c = 2oo + eo for checking a ∧ b = c.

5 Proofs for the Correct Program Execution over the ILC
Channel

In this section we give an overview of our proof system for correct TinyRAM
program execution over the ILC channel by giving a breakdown of it into simpler
proofs, which are detailed in the full paper [BCG+18]. Recall that in the ide-
alised linear commitment channel ILC the prover can submit commit commands
to commit vectors of field elements of length k. The vectors remain secretly
stored in the channel. The verifier can do two things: it can use a send com-
mand to send a message to the prover; and it can submit open queries to the ILC
channel for obtaining the openings of linear combinations of vectors committed
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by the prover. The field F and the vector length k are specified by the public
parameter ppILC. It will later emerge that the best communication and compu-
tation complexity for a TinyRAM program terminating in T is achieved when k
is approximately

√
T .

In Sect. 3 we broke the relation of correct program execution down to a
number of sub-relations defined over a finite field F. Our strategy for proving
that they are all satisfied is to commit the extended witness to the ILC channel
and then give an sub-proofs for each sub-relation. To begin we describe how we
commit to the execution trace to the ILC model and discuss a relation Rformat

for checking that the commitments are well formed. We then take a top down
approach in order to describe how to check in the ILC model that the program
has been executed correctly. In the first layer we describe a proof for correct
TinyRAM execution in the ILC model. This proof decomposes into proofs check-
ing that Rcheck, Rmem, Rstep, and Rformat all hold. In the second layer we then
decompose proofs for Rformat, Rcheck, Rmem, and Rstep in terms of generic proofs
for checking relations Rconst, Rperm, Rrange, Req, Rblookup and Rlookup. In the
third layer we detail how these proofs decompose into proofs in ILC for elemen-
tal relations, such as sums, products, shifts, entry-products and grand-sums of
committed vectors. Our fourth and final layer will provide proofs in the ILC for
these elemental relations.

5.1 Commitments to the Tables

In our proof system, the prover first commits to the extended witness w. The
extended witness includes the field elements in the execution table Exe, the
memory table Mem, the program table Prog, the range table EvenBits and the
exponent table Pow. The prover arranges these tables in multiple matrices and
to their rows.

The prover commits to each column of the execution table (such as the T
entries containing the time t, the T entries containing the programt counter pct,
etc.) by arranging it into an 	 by k matrix, and making a commitment to each
row of the resulting matrix. Entries of Exe relative to the same TinyRAM state
will be inserted in the same position across the different matrices. Furthermore,
in all these matrices the last entry of each column is duplicated in the first entry
of the next column. As an example, let consider the first column of Exe which
contains field elements representing the time-steps of the execution. Without
loss of generality let T = (	 − 1)k + 1, where T is the number of steps executed
by the program and k is the vector length of the ILC. The prover organizes the
field elements representing time in a matrix Et ∈ F

�×k

Et =

⎛
⎜⎜⎜⎜⎜⎝

1 	 2	 − 1 . . .
2 	 + 1 2	 . . .
...

. . .
	 − 1 2	 − 2 3	 − 3 . . . (	 − 1)k

	 2	 − 1 3	 − 2 . . . T

⎞
⎟⎟⎟⎟⎟⎠
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Similarly, the prover organizes the rest of the Exe table into matrices
Epc,Einst,EA, . . . one for each column. Let E be the matrix obtained by stacking
all matrices on top of each other and let E = {ei}, for e i ∈ F

k. The prover
commits to Exe by sending the command (commit, {e i}i) to the ILC.

Each column of the program table is also committed to the ILC separately.
In case L ≤ k we can store each column of Prog in one vector, i.e.

P =

⎛
⎜⎜⎝

Ppc

Pinst

PA

. . .

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 . . . L − 1
inst0 inst1 . . . instL−1

A0 A1 . . . AL−1

. . . . . .

⎞
⎟⎟⎠

otherwise, multiple rows can be used. The prover sends (commit, {Ppc,Pinst, . . .})
to the ILC channel to commit to P.

The memory table Mem, the auxiliary lookup table EvenBits and the expo-
nent table Pow can be committed in a similar way using matrices M, R and S

M =
(
M0

M1

)
R =

⎛
⎜⎜⎝

0 1 4 5 . . .
∑W

2 −1
i=0 ki22i

. . . ∑W
2 −1

i=0 22i

⎞
⎟⎟⎠ S =

(
0 1 2 3 . . . W − 1 W

1 2 4 8
. . . 2W−1 0

)

where

M0 =

⎛
⎝
Maddr,0

Mv,0

Musd,0

⎞
⎠ =

⎛
⎝

0 1 . . . M − 1
v0 v1 . . . vM−1

0 0 . . . 0

⎞
⎠ M1 =

⎛
⎝
Maddr,1

Mv,1

Musd,1

⎞
⎠ =

⎛
⎝

0 1 . . . M − 1
v0 v1 . . . vM−1

1 1 . . . 1

⎞
⎠

and (kW
2 −1, . . . , k0) is the binary expansion of k.

In order to show that the tables are committed to in the above manner the
prover will show that the first row each of the matrices describing [Exe] is a shift
the last row.

Rformat =
{

(pp, u, w) = ((W,K,F, ∗), [E],⊥)
∣∣

for 1 ≤ j ≤ k − 1 : [E]�,j = [E]1,j+1

}

5.2 Proof for Correct TinyRAM Execution in the ILC Model

Given the witness for the correct execution of a TinyRAM program, we now
describe how a prover can use the ILC channel to convince a verifier that the trace
satisfies the relation Rfield

TinyRAM corresponding to the correct program execution.
The prover and verifier are given in Fig. 4.

Theorem 1. (KILC,PTinyRAM,VTinyRAM) is a proof system for Rfield
TinyRAM over

the ILC channel with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest-verifier zero-knowledge.
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Fig. 4. Proof of correct TinyRAM execution in the ILC model

Proof. Perfect completeness follows from the perfect completeness of the sub-
proofs. Perfect SHVZK follows from the perfect SHVZK of the sub-proofs.
A simulated transcript is obtained by combining the outputs of the simulators of
all the sub-proofs. Statistical knowledge soundness follows from the knowledge
soundness of the sub-proofs. Since all sub-proofs have knowledge soundness with
straight-line extraction, so does the main proof. ��

The efficiency of our TinyRAM proof in the ILC model is given in Fig. 5. The
asymptotic results displayed below are obtained when the parameter k specified
by ppILC is approximately

√
T . The query complexity qc is the number of linear

combinations the verifier queries from the ILC channel in the opening query. The
verifier communication CILC is the number of messages sent from the verifier to
the prover via the ILC channel and in our proof system it is proportional to the
number of rounds. Let μ be the number of rounds in the ILC proof and t1, . . . , tμ
be the numbers of vectors that the prover sends to the ILC channel in each round,
and let t =

∑μ
i=1 ti.

Fig. 5. Efficiency of our TinyRAM proof in the ILC model for (pp, u, w) ∈ RTinyRAM.
Here we are assuming that the number of instructions and words of memory L, M <√

T , and that the number of registers K is constant.
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6 Proofs for the Correct Program Execution
over the Standard Channel

In the previous section we gave an efficient SHVZK proof of knowledge over
the ILC channel for correct TinyRAM program execution. We now want to give
a SHVZK proof of knowledge for correct TinyRAM program execution in the
standard communication model where messages are exchanged directly between
prover and verifier. To do this, we use the compiler from Bootle et al. [BCG+17]
who use an error-correcting code and a collision-resistant hash function to com-
pile a zero-knowledge proof over the ILC channel to a zero-knowledge proof over
the standard communication channel. We refer to the full paper [BCG+18] for
a transformation to turn SHVZK proofs into ones achieving full-zero knowledge,
and for a recursive approach for reducing the verification time of our proofs.

From ILC to the Standard Channel. The compiler from Bootle et
al. [BCG+17] uses an hash function to instantiate a non-interactive commitment
scheme which realizes the commitment functionality of the ILC in the standard
model. The compilation relies on a common reference string that specifies an
error-correcting code and the hash function. However, the common reference
string is instance-independent and can be reused for several proofs. Moreover, it
can be generated from uniformly random bits in poly(λ)(L+M +

√
T ) TinyRAM

steps and has similar size, so it has little effect on the overall performance of the
system. The following theorem follows directly from their work.

Theorem 2 (Bootle et al. [BCG+17]). Using a linear-distance linear error-
correcting code and a statistically-hiding commitment scheme, we can compile a
public-coin straight-line extractable proof (KILC,PILC,VILC) for a relation R over
the ILC channel to a proof (K,P,V) for R over the standard channel. The com-
pilation is computationally knowledge sound, statistically SHVZK, and preserves
perfect completeness of the ILC proof.

Combining the above with Theorem 1 we get our main theorem.

Theorem 3 (Main Theorem). Compiling the ILC proof system (KILC,
PTinyRAM,VTinyRAM) of Fig. 4, we get a proof system over the standard chan-
nel for the relation Rfield

TinyRAM with perfect completeness, statistical SHVZK, and
computational knowledge soundness assuming the existence of collision-resistant
hash functions.

In the following section we detail the efficiency of the proof system obtained by
compiling the proof system of Fig. 4.

Efficiency of the compiled TinyRAM Proof System. Computation is fea-
sible only when it is polynomial in the security parameter, i.e., T = poly(λ)
and M = poly(λ). Assuming T,M ≥ λ, this means log T = Θ(log λ) and
log M = Θ(log λ). To address all memory we therefore need W = Ω(log λ).
To keep the circuit size of a processor modest, it is reasonable to keep the word
size low, so we will assume W = Θ(log λ). Our proof system also works for larger



622 J. Bootle et al.

word size but it is less efficient when the word size is superlogarithmic. Note that
we can at the cost of a constant factor overhead store register values in memory
and therefore without loss of generality assume K = O(1).

To get negligible knowledge error we need the field to have superpolynomial
size |F| = λω(1). This means we need a superconstant ratio e = log |F|

W = ω(1). On
a TinyRAM machine, field elements require e words to store and using school
book arithmetic field operations can be implemented in α = O(e2) steps7.

Our proof system is designed for a setting where the running time is large,
so we will assume T � L + M . In the ILC proof for correct program execution
the prover commits to O(T ) field elements and uses O(T ) field operations. The
verifier on the other hand, only uses O(L + |v| +

√
T ) field operations.

To compile the ILC proof into a proof over the standard channel, Bootle et
al. use a linear-time collision-resistant hash function and linear error-correcting
codes. The collision-resistant hash function by Applebaum et al. [AHI+17] based
on the bSVP assumption for sparse matrices is computable in linear time and can
be used to instantiate the statistically hiding commitment scheme used in the
compilation. As the hash function operates over bit-strings we need to ensure
that the efficiency is preserved once implemented in a TinyRAM program. If
we stored each bit in a separate word of size W = Θ(log λ) we would incur
a logarithmic overhead. However, the hash function is computable by a linear-
size boolean circuit and we can therefore apply a bit-slicing technique. We view
the hash of an n-word string as W parallel hashes of n-bit strings. Each of the
bit-strings is processed with the same boolean circuit, which means they can
computed in parallel in one go by a TinyRAM program using a linear number
of steps.

The error-correcting codes by Druk and Ishai [DI14] have constant rate and
can be computed with a linear number of field additions. Applying the error-
correcting codes therefore only changes the prover and verifier complexities by
constant factors during the compilation. This means the compilation preserves
the efficiency of the ILC proof up to constant factors. Taking into account the
overhead of doing field operations, we summarize the efficiency of our proof
system in Fig. 6.

Fig. 6. Efficiency of our proof system for RTinyRAM under the assumption W = Θ(log λ),
K = O(1), L + M < T ≈ 2W , k ≈ √

T , and log |F| = Θ(
√

α) log λ for an arbitrarily
small α = ω(1).

7 More sophisticated techniques such as FFT may reduce the cost of field multiplica-
tions to O(e log e) steps, but if e is only slightly superconstant it will take a long
time before the asymptotics kick in.
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Abstract. We construct the first (almost) tightly-secure unbounded-
simulation-sound quasi-adaptive non-interactive zero-knowledge argu-
ments (USS-QA-NIZK) for linear-subspace languages with compact
(number of group elements independent of the security parameter) com-
mon reference string (CRS) and compact proofs under standard assump-
tions in bilinear-pairings groups. In particular, under the SXDH assump-
tion, the USS-QA-NIZK proof size is only seventeen group elements with
a factor O(log Q) loss in security reduction to SXDH. The USS-QA-
NIZK primitive has many applications, including structure-preserving
signatures (SPS), CCA2-secure publicly-verifiable public-key encryption
(PKE), which in turn have applications to CCA-anonymous group sig-
natures, blind signatures and unbounded simulation-sound Groth-Sahai
NIZK proofs. We show that the almost tight security of our USS-QA-
NIZK translates into constructions of all of the above applications with
(almost) tight-security to standard assumptions such as SXDH and, more
generally, Dk-MDDH. Thus, we get the first publicly-verifiable (almost)
tightly-secure multi-user/multi-challenge CCA2-secure PKE with prac-
tical efficiency under standard bilinear assumptions. Our (almost) tight
SPS construction is also improved in the signature size over previously
known constructions.

Keywords: QA-NIZK · Simulation-soundness · Tight security
Public-key encryption · CCA · Structure-preserving signatures

1 Introduction

Over the last decade, pairing-based cryptography has facilitated many new
cryptographic protocols and applications that are provably-secure under static
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assumptions. Some of these static assumptions (SXDH, DLIN, MDDH) are
now considered standard, as they generalize decisional-Diffie-Hellman (DDH)
assumption to pairings-based groups. Some of the ground-breaking ideas include
the Groth-Sahai (GS) non-interactive zero-knowledge (NIZK) proofs [GS12],
fully-secure identity-based-encryption (IBE) [Wat09], structure-preserving sig-
natures (SPS) [AFG+10], quasi-adaptive NIZK arguments (QA-NIZK) [JR13],
and tightly-secure IBE [CW13]. In particular, structure-preserving signatures use
Groth-Sahai NIZK proof structure to enable a wide-range of privacy-preserving
applications, such as, group signatures [AHO10], blind signatures [AO09a,
AFG+10], group encryption [CLY09], among others. Recent works [JR17,
JOR18] have employed QA-NIZK to get more efficient SPS, and tightly-secure
unbounded-simulation-sound QA-NIZK (USS-QA-NIZK [LPJY14,KW15]) to
get tightly-secure CCA2-secure public-key encryption (PKE) in the multi-user
and multi-challenge setting [LPJY15].

In this work we focus on the basic primitive of USS-QA-NIZK for linear-
subspaces of vector spaces of bilinear groups, which has important implications
as a structure-preserving version of it directly implies structure-preserving sig-
natures. Further, it is already known to imply CCA2-secure PKE [LPJY15],
which in turn leads to several new applications such as CCA-anonymous
group signatures [AHO10], and UC-commitments [FLM11]. Further, an (almost)
tightly-secure USS-QA-NIZK implies (almost) tightly-secure version of all the
above applications. While an (almost) tightly-secure USS-QA-NIZK was given
in [LPJY15] it required a large common reference string (CRS), which was of the
order of the security parameter λ. In this work, we give the first (almost) tightly-
secure USS-QA-NIZK for linear-subspaces with compact (number of group ele-
ments independent of λ) CRS and compact proofs. Moreover, the earlier con-
struction only worked under the DLIN assumption in symmetric groups, and
required non-standard assumptions in the asymmetric pairing-group setting,
whereas we give a construction which is tightly-secure under the SXDH assump-
tion in asymmetric groups. Asymmetric groups usually allow leaner construc-
tions, which we validate below. At the same time, we make the CRS compact.
Our construction of USS-QA-NIZK is also structure-preserving.

Related Techniques. In [KW15], Kiltz and Wee observed that QA-NIZK can be
seen as a generalization of hash proof systems [CS98] to public-verifiability by
publishing a “partial commitment” to the secret hash-key k in the second group
G2 of a pairings-based groups (G1,G2,GT , e). Simulation of proofs of statements
then just requires hash computation using the secret hash-key k. Computational-
soundness is slightly more tricky to prove than in the hash-proof setting, but
essentially an adversary cannot generate hash proofs of false statements given
only the “partial commitment” to k and the projection-key (of the hash-proof
system). In the simulation-soundness setting, the simulation of fake proofs would
give additional information to the adversary about secret-hash key k, and hence
to obtain a USS-QA-NIZK, [KW15] encrypt the hash-proofs and employ a dual-
system [Wat09] technique to achieve soundness. This methodology should be
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contrasted with the “OR” proof methodology of [LPJY15] (for USS-QA-NIZK)
and [CCS09] (for unbounded simulation-sound GS-NIZK).

While the USS-QA-NIZK of [KW15] leads to compact proofs (of size only
(2k + 2) under k-linear assumption), the security reduction to the underly-
ing hardness assumption is not tight. The reason behind this being that the
dual-system approach is itself not tight as at its heart it employs one-time
simulation-soundness along with two-universal hash-proof systems [JR15], simi-
lar to Cramer-Shoup CCA2-encryption [CS98]. A nested-version of dual-system
approach does lead to (almost) tight IBE [CW13], but then requires non-compact
(master) public keys.

However, the concept of identity-space partitioning introduced in [CW13]
is also applicable to signature schemes, and this technique repeatedly splits
the message space into two based on the message or a tag. This idea was
further enhanced in [Hof17] to adaptive partitioning in which the partition-
ing is decided dynamically based on an encrypted partitioning-bit. [AHN+17]
refined this technique by introducing new ideas using “OR” GS-NIZK systems
and made the scheme structure-preserving. Since signature schemes, especially
the ones considered in the above works, usually encrypt a secret and prove in
zero-knowledge that such a secret is encrypted in the signature, the question
arises if this refined adaptive-partitioning methodology can be employed to the
USS-QA-NIZK of [KW15] discussed above that encrypted the hash-proofs. One
main difference between NIZK proofs embedded in signature schemes is that
they need only be “designated-prover” NIZK proofs. In other words, such NIZK
proofs while still providing public verifiability, need only give the proving capa-
bility to a designated party, namely the CRS (or public-key) generator itself.
Hence, such designated-prover NIZK proofs are much easier to devise and it is
not immediately clear if such restricted NIZK proofs can be extended to usual
NIZK proofs (especially in the tight USS-NIZK setting).

Finally, we argue that the recent constructions of tight CCA2-secure PKE
[GHK17,Hof17] (along with [CCS09]) also do not easily imply tight USS-NIZK.
[CCS09] requires proving an OR-statement where one of the disjuncts is that a
CCA2-PKE ciphertext is well-formed. For [GHK17], this statement is not Groth-
Sahai friendly as its own “qualified”-OR proof in the ciphertexts employs a map-
ping that maps group elements to Zq elements. This should be contrasted with
Cramer-Shoup CCA2-PKE, which also has such a tag, but that is publicly com-
putable from other elements in the ciphertext. This is not the case for [GHK17]
as the mapping is from private elements. As for [Hof17], it uses disjunctive hash-
proofs from [ABP15] which require the hash proof to be in the target group;
GS-proofs of such statements are only possible in the Witness-Indistinguishable
setting.

Our Contributions. We show that a different “OR” system than considered in
[AHN+17] (or later works such as [JOR18]) does allow one to give (almost) tight
(structure-preserving) USS-QA-NIZK for linear-subspaces with compact proof
sizes and compact CRS-es. This “OR” system can be proved in the generic
framework of [Ràf15], allowing us to obtain USS-QA-NIZKs under the SXDH
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assumption in asymmetric pairings groups, which was not previously known
even for non-compact CRS. We also mention that while our structure-preserving
USS-QA-NIZK construction loses a factor of O(λ) in the security reduction, we
give another variant employing tags (and hence not structure-preserving) that
only has a O(log Q) factor loss in security reduction, where Q is the number
of adversarial requests for simulated proofs. In yet another variant, we consider
the “designated prover” setting as described above, and give a leaner structure-
preserving construction with a tighter reduction as well, i.e. with only a O(log Q)
factor loss.

As a first application, we show that a labeled version of our tight USS-QA-
NIZK construction gives us a tight CCA2-secure publicly-verifiable labelled PKE
in the multi-user multi-challenge setting1. In Table 1, we compare our scheme
with the state of the art schemes in [GHKW16,Hof17,GHK17] with the small-
est possible assumption for each. While being practical by itself, our scheme is
not the best one in terms of efficiency. What separates our scheme from other
tightly secure schemes is the public verifiability, which allows anyone, without
knowing the secret key, to check if a ciphertext decrypts to some plaintext. Fea-
sibility results for publicly-verifiable tight CCA-PKE can be found in [HJ16]
and [ADKNO13], but their ciphertext overhead is hundreds or even more than a
thousand of group elements. Ours is the first practical publicly-verifiable scheme
having only 19 elements of ciphertext overhead. Our scheme is also secure under
the SXDH assumption with only a O(log Q) loss in security reduction, where Q
is the total number of (multi-challenge, multi-user) encryption-oracle requests by
the adversary. CCA2-secure PKE and its variants that encrypt long messages
have further applications, such as UC commitments, and we refer the reader
to [LPJY15] for a good introduction.

Table 1. Comparison of tightly-secure public-key encryption schemes when the under-
lying assumptions are set to minimum ones, SXDH or DDH. Sizes count the number
of group elements and (n1, n2) denotes n1 and n2 elements in G1 and G2, respec-
tively. Column ‘Pairings?’ shows necessity of pairing groups. SAE stands for symmetric
authenticated encryption.

|pk| |ct| − |m| Verifiability Pairings? Sec. Loss Assumption

[GHKW16] O(λ) 3 private no O(λ) DDH

[Hof17] 28 6 private yes O(λ) DLIN

[GHK17] 6 3 private no O(λ) DDH+SAE

Ours Sect. 5.1 (13, 8) (13, 6) public yes O(log Q) SXDH

As a second application, we show that our designated-prover variant of
structure-preserving USS-QA-NIZK from Sect. 5.2 yields an SPS scheme with

1 This requires adapting our USS-QA-NIZK to the multi-language USS-QA-NIZK
described in [LPJY15], but our scheme readily adapts to that.
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the shortest signature size in the literature. Recall that unbounded simulation-
soundness guarantees that it is hard to create a valid proof for any no-instances
taken out of the legitimate subspace even after seeing simulated proofs for (also
no-) instances of one’s choice. If we look at the simulation trapdoor as a secret-
key and the simulated proofs as signatures, the USS-QA-NIZK can be considered
as a signature scheme for message space consisting of no-instances, and the notion
of unbounded simulation-soundness is exactly the same as existential unforge-
ability against adaptive chosen-message attacks. As formally proven in [AAO18],
for bringing this idea to reality, we need an efficient mapping from desired mes-
sage space to these no-instances. Since our USS-QA-NIZK allows simulation
of fake proofs and we present a simple and efficient construction of injective
mapping from a sequence of group elements to no-instances, this construction
suffers no overhead for unilateral messages. This, along with the more efficient
(designated-prover) USS-QA-NIZK gives us the shortest SPS known under the
SXDH assumption, and with only a O(log Q) factor loss in security-reduction
(see Table 2).

Table 2. Comparison with existing SPS schemes for unilateral messages when assump-
tions are set to minimal ones. Columns labeled as |M |, |σ|, and |pk| show number of
group elements in a message, a signature and a public key. For [HJ16], the parameter
d limits number of signing queries to 2d.

|M | |σ| |pk| Sec. Loss Assumption

[HJ16] 1 10d + 6 13 8 DLIN

[ACD+12] (n1, 0) (7, 4) ( 5, n1 + 12) O(Q) SXDH, XDLIN

[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLIN

[KPW15] (n1, 0) (6, 1) ( 0, n1 + 6) O(Q2) SXDH

[JR17] (n1, 0) (5, 1) ( 0, n1 + 6) O(Q log Q) SXDH

[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH

[JOR18] (n1, 0) (11, 6) ( 7, n1 + 16) O(λ) SXDH

[GHKP18] (n1, 0) (8, 6) ( 2, n1 + 9) O(log Q) SXDH

Ours (Sect. 5.2) (n1, 0) (6, 6) (10, n1 + 5) O(log Q) SXDH

Finally, we mention some plug-in applications of our tightly-secure PKE and
SPS without details. Combining these two applications, we have the first (almost)
tightly-secure CCA-anonymous dynamic group signature scheme with compact
signature sizes and compact public keys under standard assumptions. Also we
can instantiate a generic structure-preserving blind signature scheme of [Fis06]
using our SPS to get an (almost) tight round-optimal scheme under Dk-mddh
with compact signature size, whereas previous schemes in standard model were
based on non-static assumptions [Fuc09,AO09b]. Finally, our (almost) tight
CCA2-secure PKE scheme along with the generic construction of [CCS09], leads
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to a first (almost) tightly-secure unbounded simulation-sound Groth-Sahai NIZK
proof system with compact CRS and proofs.

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1 ×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A�B as
A · B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

2.1 Matrix-DDH Assumptions and Boosting

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Z

l×k
q which is full-ranked with overwhelming

probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Z

k
q and s′ ← Z

l
q, the tuple ([A], [As]) is computationally indis-

tinguishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by
Dk.

It was shown in [JR16] that a Dk-MDDH assumption can be boosted to
generate additional (computationally) independently random elements.

For an l × k matrix A, we denote Ā to be the top k × k square sub-matrix of
A and A to be the bottom (l − k) × k sub-matrix of A.

Theorem 1 (Boosting [JR16]). Let Dk be a matrix distribution on Z
(k+1)×k
q .

Define another matrix distribution Dl,k on Z
l×k
q as follows: First sample matri-

ces A ← Dk and R ← Z
(l−k)×k
q and then output

(
Ā
R

)
. Then the Dk-

MDDH assumption implies the Dl,k-MDDH assumption with an (l − k) security
reduction.

They called boosting to be the process of stretching Dk to Dl,k as above. In
our construction we will need to boost Dk to D2k,k.

2.2 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
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language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our USS-QA-NIZK construction we will also need a property called true-
simulation-soundness. We recall the definitions of these concepts below.

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) proof system for witness-relations Rη = {Rρ} with parameters sam-
pled from a distribution D over associated parameter language Lpar, if there
exist simulators crssim and sim such that for all non-uniform PPT adversaries
A1,A2,A3, we have (in all of the following probabilistic experiments, the exper-
iment starts by setting η as η ← pargen(1λ), and choosing ρ as ρ ← Dη):

Quasi-Adaptive Completeness:

Pr

⎡
⎣crs ← crsgen(η, ρ)

(x,w) ← A1(crs, ρ)
π ← prover(crs, x, w)

:
ver(crs, x, π) = 1 if

Rρ(x,w)

⎤
⎦ = 1

Quasi-Adaptive Soundness:

Pr
[
crs ← crsgen(η, ρ)
(x, π) ← A2(crs, ρ) :

x /∈ Lρ and
ver(crs, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
crs ← crsgen(η, ρ) : Aprover(crs,·,·)

3 (crs, ρ) = 1
]

≈
Pr

[
(crs, trap) ← crssim(η, ρ) : Asim∗(crs,trap,·,·)

3 (crs, ρ) = 1
]
,

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both ora-
cles (i.e. prover and sim∗) output failure if (x,w) �∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if soundness holds even when an adaptive adversary has
access to simulated proofs on language members. More precisely, for all PPT A,

Pr
[

(crs, trap) ← crssim(η, ρ)
(x, π) ← Asim(crs,trap,·,·)(crs, ρ)

:
x �∈ Lρ and

ver(crs, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x �∈ Lρ.
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The construction of [JR14] yielded k element proofs of any linear subspace
language membership and [KW15] generalized it to any Dk-mddh assumption.
Both constructions are true-simulation-sound.

We now define the unbounded simulation-soundness (USS) property, which
we seek to achieve in this paper. The prover and verifier can additionally accept
a label which is bound to the proof.

Definition 3 (Unbounded Simulation-Soundness). A QA-NIZK is called
(labeled) unbounded simulation sound if soundness holds even when an adap-
tive adversary has access to simulated proofs on arbitrary words of its choice.
More precisely, for all PPT A,

Pr
[

(crs, trap) ← crssim(η, ρ)
(x, lbl, π) ← Asim(crs,trap,·,·)(crs, ρ)

:
x �∈ Lρ ∧ (x, lbl) /∈ Q

ver(crs, x, π) = 1

]
≈ 0,

where the set Q records (word, label) tuples queried to the simulator.

A stronger notion called Enhanced Unbounded Simulation-Soundness in the
multi-CRS setting was formalized by [LPJY15], where soundness holds even if
the discrete logs of the language are given to the adversary and the adversary
has access to multiple CRS-es and corresponding oracles. We note that our
construction satisfies this property as well.

Our main construction is also Structure-Preserving as the CRS and proof
elements are all in the base groups of the bilinear map and verification consists
only of pairing product equations.

2.3 Public-Key Encryption Schemes

Let GEN be an algorithm that, on input security parameter λ, outputs par that
includes parameters of pairing groups.

Definition 4 (Public-key encryption). A Public-Key Encryption (PKE)
scheme consists of probabilistic polynomial-time algorithms PKE := (KeyGen,
Enc,Dec):

– Key generation algorithm KeyGen(par) takes par ← GEN(1λ) as input and
generates a pair of public and secret keys (pk, sk). Message space M is deter-
mined by pk.

– Encryption algorithm Enc(pk,M) returns a ciphertext ct.
– Decryption algorithm Dec(sk, ct) is deterministic and returns a message M.

For correctness, it must hold that, for all par ← GEN(1λ), (pk, sk) ←
KeyGen(par), messages M ∈ M, and ct ← Enc(pk,M), Dec(sk, ct) = M.

Definition 5 (IND-mCPA Security [BBM00]). A PKE scheme PKE is indis-
tinguishable against multi-instance chosen-plaintext attack (IND-mCPA-secure)
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if for any qe ≥ 0 and for all ppt adversaries A with access to oracle Oe at most
qe times the following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr
[
b′ = b

∣∣∣∣par ← GEN(1λ); (pk, sk) ← KeyGen(par);
b ← {0, 1}; b′ ← AOe(·,·)(pk)

]
− 1

2

∣∣∣∣ ,

where Oe(M0,M1) runs ct∗ ← Enc(pk,Mb), and returns ct∗ to A.

There exist public-key encryption schemes that are structure-preserving,
IND-mCPA secure, and have tight reductions based on compact assumptions.
Examples are ElGamal encryption [ElG84] and Linear encryption [BBS04] based
on the DDH assumption and the Decision Linear assumption, respectively. In
particular, we will use the scheme of [EHK+13], which is based on the Dk-mddh
assumption. We will use the linear homomorphic property of this PKE in the
construction - adding the ciphertexts implicitly adds the underlying plaintexts.

We now recall the definition of IND-CCA2 secure public key encryption
scheme in the multi-challenge multi-user setting [BBM00], where the par are
shared by multiple users while generating their own keys using KeyGen.

Definition 6 (Multi-CCA [BBM00] (or see [LPJY15])).
A public-key encryption scheme is (μ, qe)-IND-CCA secure, for integers

μ, qe ∈ poly(λ), if no PPT adversary has non-negligible advantage in the fol-
lowing game:

1. The challenger first generates par ← GEN(1λ) and runs (sk(i), pk(i)) ←
KeyGen(par) for i = 1 to μ. It gives {pk(i)}μ

i=1 to the adversary A and retains
{sk(i)}μ

i=1. In addition, the challenger initializes a set D ← φ and a counter
jq ← 0. Finally, it chooses a random bit d ← {0, 1}.

2. The adversary A adaptively makes queries to the following oracles on multiple
occasions:
– Encryption query: A chooses an index i ∈ [1..μ] and a pair (M0,M1)

of equal length messages. If jq = qe, the oracle returns ⊥. Otherwise, it
computes C ← Enc(pk(i),Md) and returns C. In addition, it sets D :=
D ∪ {(i, C)} and jq := jq + 1.

– Decryption query: A can also invoke the decryption oracle on arbitrary
ciphertexts C and indices i ∈ [1..μ]. If (i, C) ∈ D, the oracle returns ⊥.
Otherwise, the oracle returns M ← Dec(sk(i), C), which may be ⊥ if C is
an invalid ciphertext.

3. The adversary A outputs a bit d′ and is deemed successful if d′ = d. As usual,
A’s advantage is measured as the distance Advmcca(A) = |2 Pr[d′ = d] − 1|.

2.4 Structure-Preserving Signatures

Let GEN be a common parameter generation algorithm that outputs par for
given security parameter λ.
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Definition 7 (Structure-Preserving Signature). A structure-preserving
signature scheme SPS is a triple of probabilistic polynomial time (PPT) algo-
rithms SPS = (KeyGen,Sign,Verify):

– Key generation algorithm KeyGen(par) takes common parameter par and
returns a public/secret key, (pk, sk), where pk ∈ G

npk for some npk ∈ poly(λ).
It is assumed that pk implicitly defines a message space M := G

n for some
n ∈ poly(λ).

– Signing algorithm Sign(sk,M) takes secret key sk and a message M ∈ M as
input and returns a signature σ ∈ G

nσ for nσ ∈ poly(λ).
– Verification algorithm Verify(pk,M, σ) takes public key pk, message M ∈ M,

and signature σ and outputs 1 or 0. It only evaluates group membership oper-
ations and pairing product equations.

Perfect correctness holds if for all (pk, sk) ← KeyGen(par) and all messages
M ∈ M and all σ ← Sign(sk,M) we have Verify(pk,M, σ) = 1.

Definition 8 (Existential Unforgeability against Chosen Message
Attack). To an adversary A and scheme SPS we associate the advantage func-
tion:

Advcma
SPS(A) := Pr

⎡
⎣par ← GEN(1λ)

(pk, sk) ← KeyGen(par)
(M∗, σ∗) ← ASignO(·)(pk)

:
M∗ /∈ Qmsg and

Verify(pk,M∗, σ∗) = 1

⎤
⎦

where SignO(M) runs σ ← Sign(sk,M), adds M to Qmsg (initialized with ∅)
and returns σ to A. An SPS is said to be (unbounded) EUF-CMA-secure if for
all PPT adversaries A, Advcma

SPS(A) is negligible.

3 The New (Almost) Tightly-Secure USS-QA-NIZK

The new USS-QA-NIZK scheme is formally described in Fig. 1, with the CRS and
proof simulators described in Fig. 2. While a brief overview of the new scheme
was given in the introduction, we now describe it in more detail.

We essentially combine techniques from the USS-QA-NIZK scheme of Kiltz
and Wee [KW15] and the tightly secure SPS scheme of Jutla, Ohkubo and
Roy [JOR18]. Following [KW15], we encrypt a basic QA-NIZK proof of the
given word y = [Mx]1 using an augmented ElGamal encryption scheme:

ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := x�[p1]1 + r�[p2]1

Notice that unlike [KW15], we did not use an integer tag in the encryption.
This helps us keep the construction structure preserving. We also include a
QA-NIZK Π2 certifying that (ρ, ρ̂, γ) is well-formed. Now we extend this tuple
with elements which enable adaptive partitioning as in [JOR18]. This includes a
double ElGamal encryption of a bit z, along with a QA-NIZK proof of equality
of plaintexts. The final piece is an OR-NIZK proof that proves either (ρ, ρ̂) is
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consistent, or that z is same as a bit x which is given encrypted in the public key.
Intuitively, in several games in the proof, the OR proof enables us to randomize
the ciphertexts in the partitions where the disjunct z = x holds, while restricting
the adversary to attempt a win only in the other partitions. Instantiations of
OR-NIZKs are given in Sect. 4.

The (almost) tight security of this scheme is proved in the next section. We
prove that this construction has an O(λ) reduction to Dk-mddh. In Sect. 3.2,
we provide another construction which builds upon this one and enjoys a better
O(log Q) reduction, where Q is the number of simulated proofs given out. Finally,
in Sect. 3.3, we describe some optimizations which reduce the size of the proofs
even further.

3.1 Security of the USS-QA-NIZK Scheme

In this section we state and prove the security of the USS-QA-NIZK scheme Π
described in Fig. 1, with simulators described in Fig. 2.

Theorem 2. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advuss

Π (Q)) in
the USS game against the scheme Π is at most

advtss
Π2

+ 12L · advtss
Π1

+ 8L · advD2k,k-mddh + (12L + 1)advzk
Π0

+4L · advmcpa
PKE +

6L + (Q + 1)2 + 1
q

+
Q

2L

Here L is the least integer greater than the bit size of q and hence is O(λ).

Remark 1. advtss
Πi

of a QA-NIZK Πi reduces to Dk-mddh by a factor of (n − t)
where the (affine) linear subspace language is of dimension t within a full space
of dimension n. Also, advzk

Π0
of the OR-NIZK Π0 reduces to Dk-mddh by a

factor of 1.
Finally, D2k,k-mddh reduces to Dk-mddh by a factor of k by boosting (See

Sect. 2.1). Thus the overall reduction in Theorem 2 to Dk-mddh is O(λ).

Proof Intuition. At the highest level, we go through a sequence of games (0–4),
starting from Game 0 which is the NIZK simulator of Fig. 2 playing against a
USS adversary and ending with Game 4, where the adversary has information
theoretically negligible chance of winning. Essentially, in going from Game 2 to
Game 3, the γ component is masked with an independently random element
which depends on the input word, except for a randomly chosen point τ , where
the mask is 0. Then finally in Game 4, the quantity k1 is shifted by a random vec-
tor in the kernel of the language matrix M. This still keeps the CRS unchanged
and since the simulated proofs have been masked by independently random ele-
ments (except at the point τ which occurs with negligible probability), they are
also independent of this random kernel vector. However, the random kernel vec-
tor shows up in the winning condition of Game 4 and makes it statistically hard
for the adversary to satisfy verification with a non-member word.
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ G
n×t
1 ) :

Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2).
Boost the given distribution Dk+1,k to D2k,k.
Sample B ← D2k,k-mddh and (k1, k2) ← Z

n
q × Z

k
q .

Set p1 := M�k1 and p2 := B̄
�
k2

Sample (crsip,crsiv) ← Πi.crsgen(q,G1,G2,GT , e, [1]1, [1]2, ·) for i = 1, 2, with
parameters described below.

Sample (pki, ski) ← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Z

k
q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).

Set crsp := (crs0,crs1p,crs2p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).
Set crsv := (crs0,crs1v,crs2v, [B]1, pk1, pk2, ctx).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x):
Sample (r, r1z, r2z) ← Z

k
q × Z

k
q × Z

k
q .

Set ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := x�[p1]1 + r�[p2]1.

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs0, (ρ, ρ̂, ct1z − ctx), (r, 0)).
Set π1 := Π1.prover(crs1p, (ct1z, ct2z), (0, r1z, r2z)).
Set π2 := Π2.prover(crs2p, (y, ρ, ρ̂, γ), (x, r)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

ver (crsv, y, π) :
Check all the NIZK proofs:

Π0.ver(crs0, (ρ, ρ̂, ct1z − ctx), π0)
and Π1.ver(crs1v, (ct1z, ct2z), π1)
and Π2.ver(crs2v, (y, ρ, ρ̂, γ), π2).

Languages:
Π0 is an OR-NIZK for L0

def= {(ρ, ρ̂, ct) | ∃(r, rc) : ( ρ = [B̄r]�1 and ρ̂ =
[Br]�1 ) or ct = PKE.Enc(pk1, 0; rc)}. Instantiation is given in Fig. 5.

Π1 is a QA-NIZK for L1
def= {(ct1z, ct2z) | ∃(z, r1z, r

2
z) : ct1z =

PKE.Enc(pk1, z; r
1
z) and ct2z = PKE.Enc(pk2, z; r

2
z)}, with parameters (pk1, pk2).

Instantiations as in [JR14,KW15].

Π2 is a QA-NIZK for L2
def= {(y, ρ, ρ̂, γ) | ∃(x, r) : y = [Mx]1 and ρ =

[B̄r]�1 and ρ̂ = [Br]�1 and γ = x�[p1]1 + r�[p2]1}, with parameters
([M]1, [B]1, [p1]1, [p2]1). Instantiations as in [JR14,KW15].

Fig. 1. Tightly-secure USS-QA-NIZK Π.
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crssim (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ G
n×t
1 ) :

Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2).
Boost the given distribution Dk+1,k to D2k,k.
Sample B ← D2k,k-mddh and (k1, k2) ← Z

n
q × Z

k
q .

Set p1 := M�k1 and p2 := B̄
�
k2

Sample (crs1p,crs1v) ← Π1.crsgen(· · · ) and (crs2p,crs2v, trap2) ← Π2.crssim(· · · ).
Sample (pki, ski) ← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Z

k
q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).

Set crsp := (crs0,crs1p,crs2p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).
Set crsv := (crs0,crs1v,crs2v, [B]1, pk1, pk2, ctx).
Set trap := (k1, trap2)

Return (crsp,crsv, trap).

sim (crsp, trap, y):
Sample (r, r1z, r2z) ← Z

k
q × Z

k
q × Z

k
q .

Set ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := y�k1 + r�[p2]1.

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs0, (ρ, ρ̂, ct1z − ctx), (r, 0)).
Set π1 := Π1.prover(crs1p, (ct1z, ct2z), (0, r1z, r2z)).
Set π2 := Π2.sim(crs2p, trap2, (y, ρ, ρ̂, γ)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

Fig. 2. CRS and Proof simulators for Π.

Going from Game 2 to 3 requires another set of hybrid games in which we
introduce the mask elements into the γ’s. The games proceed bit by bit based on
a random bit-string rp(y) of length L, which is obtained by applying a random
injective function rp to the input word y. In every hybrid j, which runs from
0 to L, the mask depends on the first j bits of rp(y). The mask function is
inductively defined as follows:

rfj(rp(y)|j) def=
{
rfj−1(rp(y)|j−1), if (rp(y)j = τj)
rf′

j−1(rp(y)|j−1), if (rp(y)j �= τj)

}
,

where rfj is a random function from {0, 1}j to Zq, except at a point τ |j , the
first j bits of τ , where its value is 0. rf′

j−1 is another independently random
function from {0, 1}j−1 to Zq. The 0-th hybrids start as Game 2 with the ‘0’
mask, which is the value of rf0(ε). The L-th hybrids end in Game 3 with the
mask depending on all the bits of rp(y), hence essentially the whole word.

The adaptive partitioning technique of [Hof17] helps us switching from rfj−1

to rfj with a constant number of MDDH reductions. Essentially, in the j-th hybrid,
the j-th bit of rp(y) induces two partitions of the message space: (1) where the
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bit is τj , soundness is enforced to hold in the winning condition and (2) where
the bit is 1 − τj , all such simulated proofs can be switched in one go with a
constant number of MDDH transitions. Formal details follow.

Proof. We go through a sequence of Games G0 to G4 which are described below
and summarized in Fig. 3. In the following, Pri[X] will denote probability of
predicate X holding in probability space defined in game Gi and WINi will
denote the winning condition for the adversary in game Gi.

Game G0: This game exactly replicates the simulator in Fig. 2 to the adver-
sary. So the adversary’s advantage in G0 (defined as WIN0 below) is the USS
advantage we seek to bound.

WIN0
�
= (y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Game G0
′: In Game G0

′, the challenger lazily simulates (by maintaining a
table) a random function rp from G

n
1 to {0, 1}L. Define Col to be the predicate

which returns true when there is a collision, i.e., when any pair of message vectors
from the set of signature queries union the adversarial response message at the
end get mapped to the same output L-bit string. In this game, the adversary is
allowed to win outright if Col is true at the end:

WIN′
0

�
= Col or ((y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗))

The difference in advantage is at most the collision probability, which is bounded
by (Q + 1)2/q.

Game G1: In this game the CRS of Π2 is generated in the simulation mode
and the trapdoor is kept by the challenger to generate simulated proofs. The
challenge-response in this game is the same as G0. The winning condition is
now defined as:

WIN1
�
= Col or

WIN0 and π∗ = (ρ∗, ρ̂∗, γ∗, ct1∗
z , ct2∗

z , π∗
0 , π

∗
1 , π

∗
2) s.t.

(γ∗ = y∗�k1 + ρ∗k2) and (ρ∗‖ρ̂∗)� ∈ span([B]1)

The difference in advantages of the adversary is upper bounded by the
unbounded true-simulation-soundness of Π2:

|Pr1[WIN1] − Pr0[WIN0]| ≤ advtss
Π2

(1)

Game G2: In this game, the OR-NIZK CRS is generated as a simulation CRS
and the witness of (ρi, ρ̂i, ct1i

z −ctx) ∈ L0, is switched to (0, r1i
z −rx). The winning

condition WIN2 remains the same as WIN1.

|Pr2[WIN2] − Pr1[WIN1]| ≤ advzk
Π0

(2)
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crssim() : · · ·
Games 0-1 crs0 ← Π0.crsgen()

Games 2-4 (crs0, trap0) ← Π0.crssim()

Game 0 crs2 ← Π2.crsgen()

Games 1-4 (crs2, trap2) ← Π2.crssim()

Sample (k′
1, u) ← Z

n
q × Z

n−t
q

Games 1-3 Set k1 := k′
1

Game 4 Set k1 := k′
1 +M⊥u

· · ·

sim(yi ∈ G
n
1 ) :

Set (ρi, ρ̂i, γi) :=

Games 0-2 ([B̄ri]�1 , [Bri]�1 , yi�k1 + ρik2)

Game 3 ([B̄ri]�1 , [Bri]�1 , yi�k1 + [rfL(νi)]1 + ρik2)

Game 4 ([B̄ri]�1 , [Bri]�1 , yi�k′
1 + yi�M⊥u+ [rfL(νi)]1 + ρik2)

· · ·

WIN
def=

Games 0’-4 if (Col) return true; else

π∗ = (ρ∗, ρ̂∗, γ∗, ct1∗
z , ct2∗

z , π∗
0 , π∗

1 , π∗
2) :

(y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Games 1-3 and γ∗ = y∗�k1 + ρ∗k2

Game 4 and γ∗ = y∗�k′
1 + y∗�M⊥u+ ρ∗k2

Games 1-4 and (ρ∗‖ρ̂∗)� ∈ span([B]1)

Fig. 3. Top level games and winning conditions

Game G3: In this game, the challenger first chooses a uniformly random string
τ ∈ {0, 1}L and also lazily maintains a function rfL mapping {0, 1}L to Zq. The
function rfL has the property that it is a random and independent function from
{0, 1}L to Zq, except at τ where its value is 0. In G3, each signature component
γi is generated as yi�k1+[rfL(rp(yi))]1+ρik2, instead of yi�k1+ρik2. For ease
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of exposition, we will denote rp(yi) as νi. The winning condition WIN3 remains
the same as WIN2.

Lemma 1. |Pr3[WIN3] − Pr2[WIN2]| ≤

12L · advtss
Π1

+ 8L · advD2k,k-mddh

+12L · advzk
Π0

+ 4L · advmcpa
PKE +

6L

q

We prove this lemma in the full paper by going through a finer set of hybrid
games.

Game G4: In this game, the challenger samples (k′
1,u) ← Z

n
q × Z

n−t
q , and

generates k1 differently as k′
1 + M⊥u, where M⊥ is a Z

t×(n−t)
q matrix such

that M�M⊥ = 0t×(n−t). Observe that the public key component [p]1 becomes
[M�k1]1 = [M�k′

1]1. So u does not show up in the public key.
Consequently, the computations of γi’s are changed to yi�k′

1 + yi�M⊥u +
[rfL(νi)]1+ρik2. Also, the winning condition check on γ∗ is modified accordingly
to γ∗ = y∗�k′

1 + y∗�M⊥u + ρ∗k2.

We now claim that Pr4[WIN4] ≤ 1
q + Q

2L . To see this, recall that rf maps
any element of {0, 1}L to a uniformly random element of Zq, except τ , which it
maps to 0. Now, if none of the adversary queries is actually mapped to τ by rp,
no information about it is leaked to the adversary. The probability that for any
i, rp(yi) = τ , is upper bounded by Q

2L .
Now, in the case that rp(yi) is not τ for any i, we have that rf(rp(yi)) is

uniformly random and independent of everything else. This means that it com-
pletely hides the term yi�M⊥u in the γi components of the signature responses.

As for the adversary’s forged proof, y∗�M⊥ is non-zero if y∗ is not in the
span of [M]1. Also, u is not shown in any public key and as we reasoned in
the last paragraph, it doesn’t show up (whp) in any signature either. Conse-
quently, y∗�M⊥u is uniformly random in Zq and independent of the adversary’s
view. Therefore, the probability of satisfying γ∗ − y∗�k′

1 − ρ∗k2 = y∗�M⊥u is
upper bounded by 1/q. This proves the claim.

3.2 USS-QA-NIZK Scheme with O(log Q) Reduction

The scheme is given in Fig. 4 and the top level proof game table is given in the
full paper. Since this scheme is very similar to the one given earlier, we only
point out the essential points of difference in the construction and proof.

The scheme uses a similar augmented ElGamal encryption of a basic QA-
NIZK proof:

ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := x�[p1]1 + r�[p2 + τp3]1



Improved (Almost) Tightly-Secure Simulation-Sound QA-NIZK 643

The additional part is a tagged component reminiscent of the Cramer-Shoup
CCA2 encryption scheme [CS02], where τ is a collision resistant hash on rest
of the proof components. Rest of it is fairly similar to the earlier construction.
Unfortunately, this construction is no longer structure-preserving due to the tag
computation.

To prove O(log Q) reduction, we follow the partitioning strategy
of [GHKP18], where the partition is done on the bits of the query index i,
instead of a random function applied to the argument. This strategy did not
work for our earlier construction because rf mapped to 0 at one point of it’s
domain and the proof relied on the fact that such a point is exponentially hard
to determine since the domain size is exponential in λ.

In the proof of security of this construction, we take account of the fact
that rf could map to 0 at a point which can non-negligibly occur in a query. We
instead argue that since the tag of such a query response would be different from
the tag of the adversary’s output proof, the response can still be randomized due
to pairwise independence. A detailed proof will be in the full version of the paper.

Theorem 3. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advuss

Π′(Q)) in
the USS game against the scheme Π ′ is at most (Here L is log Q):

advtss
Π2

+ 12L · advtss
Π1

+ 8L · advD2k,k-mddh + (12L + 1)advzk
Π0

+4L · advmcpa
PKE +

6L + (Q + 1)2 + 1
q

.

3.3 Optimizations

In this section, we describe two optimizations which reduce the size of the proofs
further by 2k elements under the Dk-mddh assumption.

ElGamal Encryption with Common Randomness. As described in [AHN+17],
the randomnesses r1z and r2z of ciphertexts ct1z and ct2z can be shared and merged
into a single k-element rz. In more details, let’s say ct1z = ([Ā1r1z]1, [z + A1r

1
z]1)

and ct2z = ([Ā2r2z]1, [z + A2r
2
z]1), which are encryptions of z under public keys

[A1]1 and [A2]1. Then instead of computing the ciphertexts independently, we
can merge them into ([Ā1rz]1, [z+A1rz]1), [z+A2rz]1). This saves us k elements.
Importantly, we can still enable transitions where we can hold the decryption
key of one system, while switching the plaintext of the other.

Merge QA-NIZKs in the Same Group. The reason we did not combine Π1 and
Π2 is that we needed to use the true-simulation-soundness of one system, while
producing proofs over fake instances with the other. However, we show in the full
paper, that we can still merge the proofs into one proof over the combined linear
system, and still be independently able to use the true-simulation-soundness of
its parts. This saves us k elements from Π.
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ G
n×t
1 ) :

Sample crs0 ← Π0.crsgen().
Boost the given distribution Dk+1,k to D2k,k.
Sample B ← D2k,k-mddh and (k1, k2, k3) ← Z

n
q × Z

k
q × Z

k
q .

Set p1 := M�k1, p2 := B̄
�
k2 and p3 := B̄

�
k3.

Sample (crsip,crsiv) ← Πi.crsgen() for i = 1, 2.

Sample (pki, ski) ← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Z

k
q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).

Let crh be a collision resistant hash from {0, 1}∗ to Zq.

Set crsp := (crs0,crs1p,crs2p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).
Set crsv := (crs0,crs1v,crs2v, [B]1, pk1, pk2, ctx).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x, label lbl):
Sample (r, r1z, r2z) ← Z

k
q × Z

k
q × Z

k
q .

Set ρ := [B̄r]�1 , ρ̂ := [Br]�1 .

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs0, (ρ, ρ̂, ct1z − ctx), (r, 0)).
Set π1 := Π1.prover(crs1p, (ct1z, ct2z), (0, r1z, r2z)).

Set τ := crh(ρ, ρ̂, ct1z, ct
2
z, π0, π1, lbl).

Set γ := x�[p1]1 + r�[p2 + τp3]1.
Set π2 := Π2.prover(crs2p, (y, ρ, ρ̂, γ, tag = τ), (x, r)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

ver (crsv, y, π, lbl) :
Set τ := crh(ρ, ρ̂, ct1z, ct

2
z, π0, π1, lbl).

Check all the NIZK proofs:
Π0.ver(crs0, (ρ, ρ̂, ct1z − ctx), π0)
and Π1.ver(crs1v, (ct1z, ct2z), π1)
and Π2.ver(crs2v, (y, ρ, ρ̂, γ, tag = τ), π2).

Languages:
Π0 is an OR-NIZK for L0

def= {(ρ, ρ̂, ct) | ∃(r, rc) : ( ρ = [B̄r]�1 and ρ̂ =
[Br]�1 ) or ct = PKE.Enc(pk1, 0; rc)}.

Π1 is a QA-NIZK for L1
def= {(ct1z, ct2z) | ∃(z, r1z, r

2
z) : ct1z =

PKE.Enc(pk1, z; r
1
z) and ct2z = PKE.Enc(pk2, z; r

2
z)}, with parameters (pk1, pk2).

Π2 is a QA-NIZK for L2
def= {(y, ρ, ρ̂, γ, tag = τ) | ∃(x, r) : y = [Mx]1 and ρ =

[B̄r]�1 and ρ̂ = [Br]1 and γ = x�[p1]1 + r�[p2 + τp3]1}, with parameters
([M]1, [B]1, [p1]1, [p2]1, [p]3).

Fig. 4. Labeled Tightly-secure USS-QA-NIZK Π ′, with O(log Q) reduction to
Dk-mddh.
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In more details, let the combined language be defined by the matrix M =(
Mn1×t

1

Mn2×t
2

)
, where both n1 and n2 are greater than t. What we show is, pro-

vided the words corresponding to [M1]1 are not faked then even if the words
corresponding to [M2]1 are faked, true-simulation-soundness holds for the [M1]1
components.

4 NIZK for Disjunction of Linear Subspaces

We have critically used an “OR”-NIZK in our USS-QA-NIZK construction. In
this section we describe three flavors of OR-NIZKs. The first one is a standard
NIZK where both the prover and verifier are public algorithms. The second one
is a designated prover system where only the verifier is public - this flavor is use-
ful for signature schemes where the signing key is held private. The final one is a
designated verifier system where the prover is public, but the verifier is private -
this is useful in public-key encryption schemes where the public encryption algo-
rithm is required to prove consistency, but only the private decryption algorithm
needs to check a proof.

4.1 Public CRS Setting

In this section we describe a NIZK proof system for languages of the following
type:

L∨ def=
{

([x0]1, [x1]1) ∈ G
n0
1 × G

n1
1 |

∃r0 ∈ Z
t0
q : [x0]1 = [A0]1r0 or ∃r1 ∈ Z

t1
q : [x1]1 = [A1]1r1

}

The system is described in Fig. 5 and is based on [Ràf15] with syntax based
on [GHKP18]. The proofs of completeness, zero-knowledge and soundness are
similar to these papers. We only give a sketch below.

The completeness of the system is straightforward. Zero-knowledge is proved
by transitioning to a different way of generating the CRS along with a trapdoor.
The transition is enabled by the Dk-mddh assumption on ([D]1, [z]1) and the
resulting CRS and proof simulators are also given in the same figure.

We now prove perfect soundness. Since z0 + z1 = z /∈ span(D), at least one
of z0 and z1 should be outside the span of D. WLOG, let this be z0. Therefore,
there should be a vector d⊥ ∈ Z

k+1
q , such that D�d⊥ = 0 and z�

0 d
⊥ = 1. Right

multiplying this vector to the verification equation A0C0 = P0D
� + x0z�

0 gives
us A0C0d

⊥ = x0. This means r0
def= C0d

⊥ satisfies the disjunct x0 = A0r0.

4.2 Designated Prover Setting

In Fig. 5 we saw an efficient NIZK proof for the “OR” language of Fig. 1, where
one of the disjuncts was a predicate on group elements in the CRS of the USS-
QA-NIZK, namely that ctx was a binding commitment to x (using randomness
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OR Languages :

Let L∨ def=
{

([x0]1, [x1]1) ∈ G
n0
1 × G

n1
1 |

∃r0 ∈ Z
t0
q : x0 = [A0r0]1 or ∃r1 ∈ Z

t1
q : [x1]1 = [A1r1]1

}
.

crsgen (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D ← Dk-mddh and z ← Z

k+1
q \ span(D).

Return crs := ([D]2, [z]2).

prover (crs, ([x0]1, [x1]1), (j, rj)):
Sample (v, S0,S1) ← Z

k
q × Z

t0×k
q × Z

t1×k
q .

Set [z1−j ]2 := [D]2v and [zj ]2 := [z]2 − [z1−j ]2.

Set [Cj ]2 := Sj [D]�2 + rj [zj ]�2 and [Pj ]1 := [Aj ]1Sj .

Set [C1−j ]2 := S1−j [D]�2 and [P1−j ]1 := [A1−j ]1S1−j − [xj ]1v�.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1) ∈ G
(n0+n1)k
1 × G

(t0+t1+1)(k+1)
2 .

ver (crs, ([x0]1, [x1]1), π) :
Set [z1]2 := [z]2 − [z0]2.
Check the following equations for all j ∈ {0, 1}:

e([Aj ]1, [Cj ]2) = e([Pj ]1, [D]�2 ) · e([xj ]1, [zj ]�2 ).

crssim (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D ← Dk-mddh and u ← Z

k
q .

Set z := Du
Return crs := ([D]2, [z]2) and trap := u.

sim (crs, trap, ([x0]1, [x1]1)):
Sample (v, S0,S1) ← Z

k
q × Z

t0×k
q × Z

t1×k
q .

Set [z0]2 := [D]2v and [z1]2 := [z]2 − [z0]2.

Set [C0]2 := S0[D]�2 and [P0]1 := [A0]1S0 − [x0]1v�.

Set [C1]2 := S1[D]�2 and [P1]1 := [A1]1S1 − [x1]1(u − v)�.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1).

Fig. 5. NIZK for OR languages based on [Ràf15].

rx). The quantity rx cannot be made public in this general setting as proving
simulation-soundness requires us to hide x from the public. However, in the
application of USS-QA-NIZK to build SPS, the quantity rx can indeed be given
to a “designated” prover, i.e. the signer, and the quantity still remains private. In
particular, in a forgery attempt, the adversary does not have access to rx, as the
signer is an honest party. In such a situation, i.e. where rx in the commitment
to x is available to the designated prover, we can give an even more efficient
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NIZK. For ease of exposition, we will restrict ourselves to the SXDH asymmetric
pairings-group setting in this section. The results can easily be generalized to
Dk-mddh setting.

Consider the “OR” language,

L =
{

α, α̂,x | ∃r, rx ∈ Zq :
(α = r[1]1 and α̂ = r[b]1) or x = com(0; rx)

}

where com(x; rx) is a binding commitment to x using randomness rx (e.g. a
GS-commitment or ElGamal encryption), and [b]1 is public.

It is not difficult to see that the above is implied by the following (i.e. L1 ⊆ L)

L1 =
{

α, α̂,x | ∃x, rx, x̂ ∈ Zq :
α̂ · x − [b]1 · x̂ = 0 and [1]1 · x̂ − α · x = 0 and x = com(x; rx)

}

since if x �= 0 in L1, one can take r = x̂/x, and otherwise x is commitment to
zero with rx. Thus soundness of NIZK proof of L1 implies the tuple is in L.

Now, consider another language L2,

L2 =
{

α, α̂,x | ∃r, x, rx ∈ Zq :
((α = r[1]1 and α̂ = r[b]1) or (x = 0)) and x = com(x; rx)

}

Thus, in the language the value x is always a commitment to x under rx. First
note that L2 implies L1, i.e. L2 ⊆ L1. This is so because if x = 0 in L2, then we
just set x̂ = 0 as well, and if there is a good r, then we set x̂ = r · x.

Since the “designated” prover always knows x and rx in the commitment x,
then if it has an (r, x) which satisfies the “or” part of L2, it can generate the
witnesses required to satisfy membership in L1 and hence give a valid NIZK
proof.

Under the SXDH assumption, L1 can be proved by using two group elements
and in addition two elements for commitment to x̂ (and not counting the two
for x which is commitment to x) using the technique by Escala and Groth in
[EG14]. Namely, the size of π0 is (2, 2). For this to work, we also need to sample
public keys pk1 of ElGamal encryption (i.e. com) from G2. Furthermore, pk1 is
taken from crs1 (see Fig. 1). We note that this dependency of pk1 to crs1 does
not affect the security proof since we can use ciphertext with respect to pk2 when
crs1 is set to the simulation mode. We further optimize ct1z and ct2z by applying
the common randomness technique from Sect. 3.3. With these modifications, ct1z
and ct2z together consist of (0, 3) elements, and proof π1 is a single element in
G2 (rather than in G1 in the original construction). Other components, ρ, ρ̂, γ,
and π2 are unchanged; each of them is represented by a single element in G1.
In total, the proof size will be (6, 6). Under general Dk-mddh assumption, the
optimized proof will consist of (5k + 1, 4k + 2) elements.

Finally we note that in the designated prover setting, the scheme Π1 can
be made O(log Q)-reduction secure, while maintaining its structure-preserving
property. Essentially we add an affine constant to γ as done in [JOR18]. In the
split-CRS QA-NIZK setting, this constant would only appear in the prover CRS.
This still lets the security proof go through as the adversary’s view at the final
game would be independent of this affine constant.
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4.3 Designated Verifier Setting

As the most expensive part (from the size of USS-QA-NIZK perspective and
applications) is the size of the “OR”-proof considered in our general construc-
tion, we now consider the designated-verifier setting [ES02]. In the designated-
verifier setting of a NIZK, the CRS is split into two parts, crsp and crsv,
and only a designated-verifier gets access to crsv and the public information is
only crsp (required by the prover). Alternatively, one can think of designated-
verifier NIZKs as hash-proof systems, as the crsv is just the secret hash-key,
and crsp is the projection hash-key – by the fact that hash-proofs can be gen-
erated without the witness (but using the secret hash-key), zero-knowledge is
automatic; further, soundness is information-theoretic. Since hash-proofs for lin-
ear subspace languages are well known [CS98], and we even have hash-proofs for
“OR”-languages [ABP15], so we have designated-verifier NIZK proofs for our
“OR”-language used in the USS-QA-NIZK construction. Consequently, we have
smaller sized (almost) tightly-secure designated-verifier USS-QA-NIZKs.

For this idea to work, we instantiate PKE in G2 in our construction so that
the OR-language consists of relations from both G1 and G2. This allows us to
use the hash proof system of [ABP15]. The downside of such a construction is
that we have more G2 elements in the proof and the USS-QA-NIZK is itself
in the target group GT , as the construction of [ABP15] generates hashes in
the target group. Since these elements require much longer representation we
give a more precise estimation. In the original construction of our USS-QA-
NIZK with optimizations in Sect. 3.3, a proof consists of (11, 6) elements in the
SXDH setting, of which (3, 6) are for proof π0. In remaining (8, 0) elements,
(4, 0) are the ciphertext of PKE and proof π1. Moving the (4, 0) elements to
G2 and replacing (3, 6) of π0 with a target group element, the proof size of
our designated-verifier USS-QA-NIZK will be (4, 4) source group elements and
1 target group element. Thus it saves (7, 2) elements in exchange of having an
extra target group element. Since the target group element is computed from a
product of four pairings, it can also be represented by randomized (4, 4) group
elements by using the PPE randomization technique of [AFG+16]. However,
either representation requires larger space than original (7, 2) elements. Thus,
the known approach with [ABP15] does not seem to yield shorter proofs than
our original construction in the designated verifier setting.

5 Applications

In this section, we demonstrate that our tightly secure USS-QA-NIZK can be
used to develop CCA2-secure public key encryption and structure-preserving
signatures (SPS). Besides being (almost) tightly secure under standard matrix
assumptions in bilinear groups, these applications have particular advantage over
previous constructions. Our CCA2-secure public-key encryption is publicly veri-
fiable and our SPS scheme yields the shortest signatures. By plugging our CCA2-
secure public key encryption and SPS into the generic frameworks of blind sig-
natures [Fis06], group signatures [Gro07], and simulation-sound NIZKs [CCS09]
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we have blind SPS, group SPS, and simulation-sound Groth-Sahai proofs, all of
which have (almost) tight reduction to standard matrix assumptions in bilin-
ear groups and efficiency improvements over known schemes. Details for these
plug-in applications are given in the full version of this paper.

5.1 (Almost) Tight CCA2-Secure PKE Scheme

In this section we show that the labelled (enhanced) USS-QANIZK for linear-
subspaces can be used to build a publicly verifiable labeled CCA-secure public-
key encryption (PKE) scheme (described in Fig. 6) which is (almost) tightly-
secure in the multi-user, multi-challenge setting. The security reduction to USS-
QANIZK is tight and is independent of the number of decryption-oracle requests
of the CCA2 adversary.

KeyGen (q,G1,G2,GT , e, [1]1, [1]2) :
[Boost distribution Dk+1,k to D2k,k.]
Sample B ← D2k,k-MDDH and k ← Z

k
q ,

Sample (crsp,crsv) ← Π ′.crsgen(〈q,G1,G2,GT , e, [1]1, [1]2〉, [B]1),
Set p := B̄

�
k, pk := (crsp, [B]1, [p]1), sk := (crsv, k).

Return (pk, sk).

Enc (pk = (crsp, [B], [p]1), M ∈ G1, lbl):
Sample r ← Z

k
q , and set ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := M + r�[p]1,

π := Π ′.prover(crsp, 〈ρ, ρ̂〉, 〈γ, lbl〉; r).
Return ctxt := (ρ, ρ̂, γ, π).

Dec (sk = (crsv, k), ctxt = (ρ, ρ̂, γ, π), lbl) :
If the NIZK proof verification

Π ′.ver(crsv, 〈ρ, ρ̂〉, 〈γ, lbl〉, π)
returns true then return γ − ρk else return ⊥.

Language for Π ′:
L

def= {(ρ, ρ̂) | ∃r : ρ = [B̄r]�1 and ρ̂ = [Br]�1 } with parameters ([B]1).

Fig. 6. CCA2 Public-Key Encryption using labelled (strong) USS-QA-NIZK.

Theorem 4. Under the Dk-MDDH assumption, and using the labeled USS-
QANIZK Π ′ of Fig. 4, the public-key encryption scheme described in Fig. 6 is
(μ, qe) IND-CCA secure with Adversary’s advantage A upper-bounded by

2 · advtss
Π′ + 6k · advDk-mddh + 2 · advuss

Π′(qe) + O(1/q).

The proof of this theorem can be found in the full paper.
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Remark. The public-key encryption construction in Fig. 6, during encryption,
uses randomness r to construct ρ. Then, it calls USS-QA-NIZK prover in a black-
box manner to obtain π. The USS-QANIZK construction itself picks another s
and constructs its own ρ. We remark that in a non-black box construction of
tight CCA2-secure public key encryption scheme, i.e. by utilizing the USS-QA-
NIZK construction in a non-black fashion, one can use the same B̄ matrix in the
PKE construction above and the USS-QANIZK construction, while keeping B
matrices sampled randomly and independently. This leads to a savings of k group
elements. The proof of the (almost) tight security of this scheme combines the
proof given in the full paper with the proof of the USS-QANIZK tight-security
(Theorem 2).

5.2 Direct Construction of Tight SPS from Tight USS-QA-NIZK

Recall that unbounded simulation-soundness assures that, after having simu-
lated proofs for any instances of adversary’s choice, it is hard for the adver-
sary to find a valid proof for any fresh no-instances. This corresponds to the
notion of unforgeability against adaptive chosen message attacks of a signature
scheme where no adversary can find a valid signature for any fresh messages after
seeing signatures for any chosen messages. Indeed, syntactically, an unbounded
simulation-sound NIZK system can be seen as a signature scheme whose key gen-
eration, signature generation, and signature verification functions correspond to
CRS simulation, proof simulation, and proof verification functions of the NIZK
system, respectively. For this translation to work in reality, it is required that
the NIZK system allows simulation for any no-instance in a certain set and there
exists a collision resistant mapping (ideally injection) from the desired message
space for the signature scheme to the set of no-instances. In [AAO18], this intu-
ition is proven formally in a more general setting (allowing errors in correctness,
etc). We use the simplest form of their result with adjustment to the syntax of
USS-QA-NIZK.

Let Π := (pargen, crsgen, prover, ver, crssim, sim) be a designated prover USS-
QANIZK system for L := span([M]1) ⊂ G

n
1 with soundness advantage AdvussΠ (A).

We assume that Π is perfectly no-instance simulation correct with respect to C :=
G

n
1 \span([M]1) which means that, for any crsv and trap generated by Π .crssim,

y ∈ C, π ← Π .sim(trap, y), 1 ← Π .ver(crsv, y , π) holds with probability 1.
Let [M]1 ← G

n×t
1 denote a sampling where matrix M is chosen uniformly

with constraint that its upper square sub-matrix is full rank. For message space
M := G

t
1 and n ≥ 2t+1, we construct a function H : M → C as follows. Choose

c uniformly from G
n−t
1 . Then define H(M ) for M ∈ G

t
1 as M ||c. For any M and

M ∈ G
t
1, with probability at least 1 − 1/q over the choice of c, there exists no

x that satisfies (M ||c)� = [Mx]1. Thus H is an efficiently computable injection
from M to C. Following this idea, we construct a signature scheme as shown in
Fig. 7.

Theorem 5. With the above USS-QA-NIZK system Π , SIG in Fig. 7 is a sig-
nature scheme for message space M := G

t
1. It is tightly unforgeable against
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Common parameters: par := (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ G
n×t
1 ).

KeyGen(1m) :
λ := (q,G1,G2,GT , e, [1]1, [1]2) ← Π .pargen(1m)
[M]1 ← G

n×t
1

c ← G
n−t
1

(crs, trap) ← Π .crssim(λ, [M]1)
pk := (crs, c), sk := (trap, c)
return(pk, sk)

Sign(sk,M ) :
(trap, c) ← sk
y := M ||c
σ ← Π .sim(trap, y)
return(σ)

Verify(pk,M , σ) :
(crs, c) ← pk
y := M ||c
b ← Π .ver(crsv, y , σ)
return(b)

Fig. 7. Signature scheme SIG for unilateral messages in G
t
1 based on USS-QA-NIZK Π

for a linear subspace language.

adaptive chosen message attacks, i.e., for every ppt adversary A breaking the
unforgeability of SIG with a chosen message attack with advantage Advcma

SIG (A),
there exists a ppt algorithm B that breaks the unbounded simulation soundness
of Π with advantage AdvussΠ (B) ≥ Advcma

SIG (A)− 1/q and almost the same running
time as A. Furthermore, if Π is structure preserving, so is SIG.

Proof. To show unforgeability, we construct B using A as black-box as follows.
Given crs, [M]1, B picks c ← G

n−t
1 and send pk := (crs, c) to A. For message M

queried from A, B sends y := M ||c to its oracle, receives a simulated proof π, and
returns σ := π to A. Given a forgery M ∗, σ∗ from A, B outputs y∗ := M ∗||c and
π∗ := σ∗. Since H(M ) := M ||c is an injection to G

n
1 \span([M]1) with probability

at least 1 − 1/q, y∗ is a fresh instance not in span([M]1), and (y∗, π∗) passes the
verification whenever A succeeds. Hence we have AdvussΠ (B) ≥ Advcma

SIG (A) − 1/q.
Running time of B is the same as A except for performing concatenation and
parsing. Structure-preserving property is obvious from the construction.

We remark that we can remove the negligible 1/q term in the above bound in
an enhanced model [LPJY15,JR13] where M is given to the adversary playing
the simulation soundness game.

In Fig. 8 we present an instantiation of SIG in Fig. 7 using our optimized des-
ignated prover USS-QA-NIZK from Sect. 4.2 under the SXDH assumption. Des-
ignated prover is sufficient in this application as the signing key is private. The
signature size is exactly the same as the proof size of the underlying USS-QA-
NIZK and it retains structure preserving property. Hence the signature scheme
in Fig. 8 is an SPS scheme having signatures consisting of (6, 6) elements for
unilateral messages. (Under Dk-mddh assumption, the signature size will be
(5k + 1, 4k + 2)). For bilateral messages (M1,M2) ∈ G

t1
1 ×G

t2
2 where t1 = t − 1,
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Common parameters: par := (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ G
n×t
1 ).

KeyGen(par):
Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2),

(crs1p, crs1v) ← Π1.crsgen(par), and (crs2p, crs2v, trap2) ← Π2.crssim(par).
Let ([u1]2, [u2]2, [u3]2) denote elements of G2 in crs0.
Set pk1 := [u3]2 and sk1 := u3.
Sample sk2 ← Zq and set pk2 := [sk2]2.
Sample B ← D2,1-mddh and (k1, k2) ← Z

n
q × Zq.

Set p1 := M�k1 and p2 := B̄�k2

Sample rx ← Zq . Set x := 0, Rx := [rx]2, and Ex := [x]2 + rx pk1.

Set crsp := (crs0, crs1p, crs2p, [B]1, [p1]1, [p2]1, pk1, pk2, Ex, Rx).
Set crsv := (crs0, crs1v, crs2v, [B]1, pk1, pk2, Ex, Rx).
Set trap := (k1, trap2).

Set c ← G
n−t
1 .

Set pk := (crsv, c), sk := (crsp, trap, c).

Return (pk, sk).

Sign(sk,M ∈ G
t
1):

Parse (trap, c) ← sk, and set y := M ||c.
Sample (r, rz) ← Zq × Zq .
Set ρ := [B̄r]�1 , ρ̂ := [Br]�1 , γ := y�k1 + r�[p2]1.

Set z := 0. Compute Rz := [rz ]2.
Compute Ei

z := [z]2 + rz pki for i = 1, 2.
Set Eδ := E1

z − Ex, Rδ := Rz − Rx, rδ := rx − rz .

Set π0 := Π0.prover(crs0, (ρ, ρ̂, Eδ, Rδ), (x, rδ, x̂)).
Set π1 := Π1.prover(crs1p, (E1

z , E2
z , Rz), (0, rz)).

Set π2 := Π2.sim(crs2p, trap2, (y, ρ, ρ̂, γ)).

Return σ := (ρ, ρ̂, γ, E1
z , E2

z , Rz, π0, π1, π2).

Verify(pk,M , σ):
Parse (crs, c) ← pk, and set y := M ||c.
Parse (ρ, ρ̂, γ, E1

z , E2
z , Rz, π0, π1, π2) ← σ.

Check all the NIZK proofs:
Π0.ver(crs0, (ρ, ρ̂, Eδ, Rδ), π0)
and Π1.ver(crs1v, (E1

z , E2
z , Rz), π1)

and Π2.ver(crs2v, (y, ρ, ρ̂, γ), π2).

Languages:

Π0 is a NIZK proof for OR-language L0
def= {(ρ, ρ̂, Eδ, Rδ) | ∃x, rδ, x̂ ∈ Zq : x ρ̂ − x̂ [B]1 =

[0]1 and x̂ [1]1 − x ρ = [0]1 and (Eδ, Rδ) = com2(x; rδ)} by Escala-Groth proof system for
multi scalar multiplication equations.

Π1 is a QA-NIZK for linear language L1
def= {(E1

z , E2
z , Rz) | ∃(z, rz) : E1

z := [z]2 +
rz pk1 and E2

z := [z]2 + rz pk2} with parameters (pk1, pk2).

Π2 is a QA-NIZK for linear language L2
def= {(y, ρ, ρ̂, γ) | ∃(x, r) : y = [Mx]1 and ρ =

[B̄r]�1 and ρ̂ = [Br]�1 and γ = x�[p1]1 + r�[p2]1} with parameters ([M]1, [B]1, [p1]1, [p2]1).

Fig. 8. An SPS constructed directly by using the customized USS-QA-NIZK with
designated prover (in Sect. 4.2) with optimizations from Sect. 3.3.
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we follow a generic construction in [ACD+16, Sect. 6.3] that combines partially
one-time signature for a part of messages in G2. It requires extra (0, t2) public-
key elements, and the signature size increases by (1, 2) elements sacrificing one
group element in the message space G

t1
1 . A signature thus consists of (7, 8) ele-

ments for a bilateral message.
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