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Abstract. Root-of-Trust (RoT) establishment assures that either a
state of an untrusted system contains all and only content chosen by
an external verifier and the verifier’s code begins execution in that state,
or the verifier discovers the existence of unaccounted content. RoT estab-
lishment is sufficient to assure program booting in malware-free sys-
tem states, and necessary for establishing secure initial states for any
software system. In particular, it is necessary for software deployed in
access control and cryptographic applications despite the presence of
an adversary (e.g., persistent malware) that controls that system. In
this paper, we define requirements for RoT establishment and their rela-
tionships. These requirements differ from those for software-based and
cryptographic attestation protocols. We point out these differences and
explain why these protocols cannot be expected to satisfy the defined
RoT requirements. Then we argue that jointly satisfying all these require-
ments yields a secure solution for establishing malware-free states – a
strictly weaker requirement than RoT establishment. However, to estab-
lish RoT, it is sufficient to load a family of almost universal hash func-
tions in a malware-fee state and then verify their outputs when applied
to state components.

1 Introduction

Suppose a user has a trustworthy program and attempts to boot it in a system
state. The system state comprises the contents of all processor and I/O registers
and primary memories of a chipset and peripheral device controllers at a par-
ticular time; e.g., before boot. If any malicious software (malware) can execute
instructions anywhere in system state, the user wants to discover the presence
of malware with high probability. This goal has not been achieved to date. Sys-
tem components that are not directly addressable by CPU instructions or by
trusted hardware modules enable malware to become persistent; i.e., to survive
in non-volatile memories of system states despite repeated power cycles, secure-,
and trusted-boot operations [1], and to infect the rest of the system state. For
example, persistent malware has been found in the firmware of peripheral con-
trollers [2–5], network interface cards [3,6,7], disk controllers [8–11], routers and
firewalls [11], as well as that of removable devices [12]. A remote adversary can
retain long-term control of a user’s system via persistent malware.
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Suppose that the user attempts to initialize the system state to content that
she chooses; e.g., she includes a small I/O program for loading a trustworthy
microhypervisor or microkernel later, initializes the primary memory to chosen
values, and reflashes device-controller firmware to malware-free code. Further-
more, her chosen content may also satisfy some security invariants; e.g., the
system is disconnected from the Internet, and it has the configuration expected
by the microhypervisor. Now the user wants to verify that the system, which
may have been infected by malware and hence is untrusted, has been initialized
to the content chosen and hence known by the user.

Root of trust (RoT) establishment on an untrusted system assures that a
system state comprises all and only content chosen by, and known to, the user,
and the user’s code begins execution in that state. All implies that no content
is missing, and only implies that no extra content exists. If a system state is
initialized to content that satisfies security invariants and RoT establishment
succeeds, a user’s code begins execution in a secure initial state. Then trust-
worthy OS and application programs booted in a secure initial state can extend
this state to include secondary storage. If RoT establishment fails, unaccounted
content, such as malware, exists. Hence, RoT establishment is sufficient for (and
stronger than) assuring malware freedom and necessary for all access control
models and cryptographic protocols, since all need secure initial states.

In this paper, we answer the following questions:

– How can RoT be established without secrets and trusted hardware modules?
– Can past attestation protocols provide a viable solution to RoT? If not, what

requirements are not satisfied?
– Can jointly satisfying these requirements lead to a sound RoT establishment

protocols? If not, what additional mechanisms are necessary?

Specifically,

– we define requirements for RoT establishment without secrets and trusted
hardware modules, and discuss their relationships;

– we show that past attestation protocols have had different goals than RoT
establishment, and hence cannot be expected to satisfy the requirements
defined herein;

– we argue that jointly satisfying these requirements leads to establishment of
malware-free states.

– we argue that loading a simple family of universal hash functions [24] – one
per system component – and verifying their outputs when applied to those
components yields RoT establishment.

2 Software-Based Attestation - An Overview

To define the requirements for RoT establishment we review the basic steps of
software-based attestation [25–29] for a simple untrusted system connected to a
local trusted verifier.
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Suppose that the simple system has a processor and a m-word memory com-
prising random-access memory, processor, and I/O registers. The verifier asks
the system to initialize the m words to chosen content. Then the verifier chal-
lenges the system to perform a computation Cm,t(·) on a pseudorandom nonce
in the m words and time t. Suppose that Cm,t(·) is space-time (i.e., m − t)
optimal, Cm,t(nonce) is unpredictable by an adversary, and the computation is
non-interruptible. If the system returns Cm,t(nonce) to the local verifier in time
t, then after accounting for the local communication delay, the verifier concludes
that the memory state contains all and only the chosen content.

When applied to multiple device controllers, this protocol proceeds from the
faster controllers to the slower ones, repeating the attestation of the faster ones,
so that they do not end execution early and act as proxies for the slow ones [3].

3 Adversary Definition

Our adversary can exercise all known attacks that insert persistent malware into
a computer system, including having brief access to that system; e.g., an EFI
attack by an “evil maid”. Also, it can control malware remotely and extract
all software secrets stored in the system, via a network channel. Malware can
read and write the verifier’s local I/O channel, which is always faster and has
less transfer-time variability than the adversary’s network channel. However,
malware does not have access to the verifier’s code nor to the true random
number generator.

We assume the adversary can break all complexity-based cryptography but
cannot predict the true random numbers to be received from the verifier. Also,
the adversary can optimize Cm,t’s code in a system at no cost; i.e., it can encode
small values of nonces and memory content into the immediate address fields of
instructions to lower Cm,t’s space and/or time below m, t, in zero extra time and
memory space. Furthermore, the adversary can output the result of a different
computation that takes less time than t or space than m, or both. Why is the
no-cost code change a prudent assumption in a timed protocol? First, some code
changes can take place before a nonce’s arrival, which marks the beginning of
the timed protocol. Second, to account for (e.g., cache and TLB) jitter caused by
random memory access by typical Cm,t(·) computations, verifiers’ time measure-
ments typically build in some slack time; e.g., 0.2%–2.6% of t [2,26,29–31]. This
could enable an adversary to exploit the slack and use unaccounted instructions;
viz., [31].

4 Requirements

4.1 Concrete Optimality

Optimality of a Cm,t computation means that its lower bounds match the upper
bounds non-asymptotically1 in both memory size, m, and execution time, t. If the
1 Different constants of asymptotic lower and upper bounds of Cm,t cause these bounds

to differ for concrete values of m and t.
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time bounds differ, the verifier faces a fundamental problem: its measurement
becomes either useless or meaningless. If the measurement is checked against
the theoretical lower bound, which is often unattainable in practice, then false
positives as high as 100% would render attestation useless. If it’s checked against
a value that exceeds the theoretical lower bound or if it’s checked against the
upper bound, then it would be impossible to prove that an adversary’s code
could not produce better timing and render attestation meaningless. In contrast,
if the optimal time bounds are non-asymptotic, the only challenge is to reduce
the measurement slack in specific systems, which is an engineering, rather than
a basic computational complexity, problem.

If the memory bounds differ, the adversary can exercise time-memory trade-
offs and the verifier faces a similar measurement dilemma as above. For example,
such trade-offs can be exploited in the evaluation of univariate polynomials of
degree d in algebraic models of computation, where t · m2 ≥ d/8 [32].

Optimality in a concrete computational model. Optimal bounds for any com-
putation always depend on the model of computation used. For example, lower
bounds differ with the instruction set architectures (ISA) of a practical WRAM
model – which is close to a real computer – even for simple computations such
as static dictionaries [33,34]. Few optimal bounds exist in these models, even
if asymptotic, despite the fact that their variable word length allows the use of
the circuit-based complexity hierarchy. Instead, lower bounds for more complex
problems have been proved only in the cell probe model [40], where references
to memory cells (i.e., bits) are counted, but not instruction executions. Unfor-
tunately, these lower bounds cannot be used for any Cm,t since they can never
match upper bounds non-asymptotically, and are unreachable in reality.

Optimality retention in Cm,t composition. In abstract WRAM models pro-
gram optimality is considered without regard of whether extra system code and
data in memory could invalidate the program’s lower bounds. Input data and
optimal programs simply exist in system registers and memory, and I/O opera-
tions and register initialization (Init) are assumed to be done already.

In contrast, a concrete WRAM model must be implemented in real systems,
and hence it must include I/O registers and instructions (e.g., for data transfers,
interrupt handling, busy/done status) and instructions that initialize special reg-
isters and configure processors; e.g., clear/evict cache and TLB content, disable
VM. Thus Cm,t’s code must be composed with I/O and Init code, which could
invalidate Cm,t’s lower bounds. Hence, proving its optimality must account for
all extra code and data in memory when Cm,t’s code runs, and hence the less
extra code and data the better.

Unpredictability of Cm,t(nonce). Most optimality results are obtained assum-
ing honest execution of Cm,t’s code. An execution is honest if the Cm,t code is
fixed (i.e., committed) before it reads any inputs, and returns correct results for
all inputs. Unfortunately, the optimality of Cm,t’s code in honest execution does
not necessarily hold in adversarial execution since an adversary can change Cm,t’s
code both before and after receiving the nonce, or simply guess Cm,t(nonce)
without executing any instructions. Before the nonce’s arrival, the adversary
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can modify the code independent of the verifier’s nonce. After a nonce’s arrival,
the adversary can check its value, and determine the best possible code modifi-
cation, at no cost. For example, she can encode a small-value nonce into imme-
diate address fields of instructions, and save register space and instruction exe-
cutions. More insidiously, an adversary could change the entire code to that of
another function C ′

m′,t′(·) and nonce′, such that (C ′
m′,t′ , nonce′) �= (Cm,t, nonce),

(m′, t′) < (m, t), and C ′
m′,t′(nonce′) = Cm,t(nonce).

The adversary’s goal is to write the result Cm,t(nonce) into the output reg-
ister after executing fewer instructions, if any, and/or using less memory than
the honest optimal code. If adversary succeeds with better than low probability
over the pseudo-random choice of nonce, then she could execute unaccounted
instructions that arbitrarily modify system state before returning the result,
which would remain undetected.

To counter all possible adversary behaviors, we require that the adversary
succeeds in writing Cm,t(nonce) to the output register with low probability over
the nonce, after executing fewer instructions, if any, and/or using less memory
than the honest optimal code. We call this requirement the unpredictability of
Cm,t(nonce). Thus, the correctness and timeliness of Cm,t(nonce) must imply
unpredictability.

4.2 Protocol Atomicity

The verifier’s protocol begins with the input of the nonce challenge in a system
and ends when the verifier receives the system’s output; e.g., Cm,t(nonce). Proto-
col atomicity requires integrity of control flow across the instructions of the ver-
ifier’s protocol with each system component; i.e., each device controller and the
(multi)processor(s) of the chipset. Asynchronous events, such as future-posted
interrupts, hardware breakpoints on instruction execution or operand access [29],
and inter-processor communication, can violate control-flow integrity outside of
Cm,t(·)’s execution. For instance, a malware instruction can post a future inter-
rupt before the verifier’s protocol begins execution. The interrupt could trigger
after a correct and timely Cm,t(nonce) result is sent to the verifier, and exe-
cute code that undetectably corrupts system state [31]. Clearly, optimality of
Cm,t(·) is insufficient for control-flow integrity. Nevertheless, optimality is nec-
essary: otherwise, a predictable Cm,t(nonce) would allow time and space for an
interrupt-enabling instruction to be executed undetectably.

Verifiable control flow. Instructions that disable asynchronous events must be
executed before Cm,t(·). Their execution inside Cm,t(·) would violate optimality
bounds, and after Cm,t(·) would be ineffective: asynchronous events could trigger
during the execution of the last Cm,t(·) instruction. However, verification that
an instruction is located before Cm,t(·) in memory (e.g., via a digital signature
or a MAC) does not guarantee its execution. The adversary code could simply
skip it before executing Cm,t(·). Hence, verification must address the apparent
cyclic dependency: on the one hand, the execution of the event-disabling instruc-
tions before Cm,t(·) requires control-flow integrity, and on the other, control-flow
integrity requires the execution of the event-disabling instructions before Cm,t(·).
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Concurrent all-or-nothing transaction. Protocol atomicity also requires that
the verifier’s protocol with n device controllers and CPUs of the (multiproces-
sor) chipset is implemented as a concurrent all-or-nothing transaction. That is,
all optimal Cm1,t1 , . . . , Cmn,tn codes for the n components must execute con-
currently and pass verification. This prevents register and memory modification
of already attested devices (e.g., reinfection) by yet-to-be attested devices, not
only proxy attacks [3]. Note that powering off individual devices and power-
ing them one-at-a-time before performing individual attestation is inadequate
because some (e.g., chipset) devices cannot be powered-off without system shut-
down, and insufficient because malicious firmware can still corrupt an already
attested controllers after power-on and before attestation starts.

Concurrent all-or-nothing execution requires that for distinct fixed ti’s, the
faster Cmj ,tj computations be performed kj ≥ �max(ti)/tj� times, where
max(ti) is the optimal time bound of the slowest device controller. As shown in
the next section, a protocol does not exist that uses a fixed ti for a given mi and
produces concurrent all-or-nothing execution, and at the same time retains both
Cmi,ti ’s optimality m and result unpredictability. Hence, atomicity requires a
scalable time bound t; i.e., t can be increased independent of the constant mem-
ory bound m and yet preserves Cm,t’s optimality2.

5 Past Attestation Protocols and RoT Establishment

Past attestation protocols, whether software-based [25,26,29,35,38],
cryptographic-based [17,19–21,39], or hybrid [3,41], have different security goals
than those of RoT requirements defined here: some are weaker and some are
stronger. For example, whether these protocols are used for single or multiple
devices, they typically aim to verify a weaker property, namely the integrity of
software – not system – state. However, they also satisfy a stronger property: in
all cryptographic and hybrid attestation protocols the verification can be remote
and can be repeated after boot, rather than local and limited to pre-boot time
as here.

Given their different goals, it is unsurprising that past protocols do not sat-
isfy some RoT establishment requirements defined here, even for bounded adver-
saries and secret-key protection in trusted hardware modules. For example, these
protocols need not be concerned with system’s register content (e.g., for general
processor and I/O registers), since they cannot contain executable code. Further-
more, they need not satisfy the concurrent all-or-nothing atomicity (see Sect. 4.2)
of the verifier’s protocol since they need not establish any state properties, such
as secure initial state in multi-device systems. Finally, since none of these sys-
tems aim to satisfy security properties unconditionally, they do not require that
verifiers are equipped with true random number generators; e.g., pseudo-random
numbers are sufficient for nonce generation. Beyond these common differences,
past protocols exhibit some specific differences.
2 This is the opposite of perfect universal hash functions, which seek a constant t

independent of the scalable m.
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Software-based attestation. Some applications in which software-based attes-
tation is beneficially used do not require control-flow integrity [37], and natu-
rally this requirement need not always be satisfied [31,36]. Here we illustrate
a more subtle challenge that arises if one uses traditional checksum designs for
RoT establishment in a multi-device system, where the concurrent all-or-nothing
requirement becomes important. That is, some past designs cannot jointly satisfy
concurrent all-or-nothing atomicity and either code optimality or result unpre-
dictability. Software-based attestation models [38] also face this challenge.

Some past Cm,t computations are checksums that have a fixed bound t
for a given m. Let a concurrent all-or-nothing transaction comprise checksums
Cm1,t1 , . . . , Cmn,tn for n devices. This implies that some Cm,t must be executed
k ≥ �max(ti)/t� times and its executions Cm,t(nonce0), . . . , Cm,t(noncek−1)
must be linked to eliminate idle waiting [3]. Suppose that linking is done by
the verifier: optimal Cm,t(noncej) cannot end execution until it inputs noncej+1

from the verifier. Then Cm,t can no longer be optimal, since the variable input-
synchronization delays within Cm,t invalidate the optimal time bounds t3. If
synchronization buffers of noncej+1, m also becomes invalid.

Alternatively, suppose that Cm,t’s executions are linked through nonces:
noncej+1 = Cm,t(noncej). However, Cm,t(noncej+1)’s unpredictability requires
that its input noncej+1 is pseudo-random. This would no longer be guaranteed
since Cm,t need not be a pseudo-random function; e.g., Pioneer’s checksum [26]
and its descendants (e.g., [29]) are not.

Despite their differences from RoT establishment, software-based attestation
designs met their goals [2,26,35], and offered deep insights on how to detect mal-
ware on peripheral controllers [3], embedded devices [31,36], mobile phones [30],
and specialized processors; e.g., TPMs [29].

Cryptographic attestation. Cryptographic protocols for remote attestation
typically require a trusted hardware module, which can be as simple as a ROM
module [18], to protect a secret key for computing digital signatures or MACs.
If used in applications that require control-flow integrity for the signature or
MAC computation, as in RoT establishment, a trusted hardware model in each
device must protect both the secret key and the signature/MAC generation code.
Otherwise, these applications would exhibit similar control-flow vulnerabilities
as software-based attestation.

More importantly, cryptographic attestation relocates the trust to the third
parties who install the cryptographic keys in each device and those who dis-
tribute them to verifiers. The trustworthiness of these parties can be uncertain;
e.g., a peripheral-controller supplier operating in jurisdictions that can compel
the disclosure of secrets could not guarantee the secrecy of the protected crypto-
graphic key. Similarly, the integrity of the distribution channel for the signature-
verification certificate established between the device supplier/integrator and

3 Input synchronization delays for noncej+1 within a checksumj computation on a
network interface card (Netgear GA 620) that takes time t can be as high as 0.4t
with a standard deviation of about 0.0029t; see [3], Sects. 5.4.2-5.4.4.
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verifier can be compromised, which enables known attacks; e.g., see the Cuckoo
attack [13]. Thus, these protocols aim to offer only conditional security.

Nevertheless if the risk added when third parties manage one’s system secrets
is acceptable and protocol atomicity requirements can be met, then crypto-
graphic protocols for remote attestation could be used in RoT establishment.

Fig. 1. Requirements for RoT establishment

6 Satisfying RoT Requirements – Overview

Necessity. Figure 1 summarizes the relationships among the requirements for
RoT establishment. Atomicity of the verifier’s protocol has unavoidable depen-
dencies on both Cm,t(·)’s scalable time bounds and unpredictability. As illus-
trated above, identifying dependencies is important because they show which
requirements must be jointly satisfied to discharge proof obligations for estab-
lishing malware-free states. It is also useful since unnecessary dependencies can
introduce cycles that often rule out proofs; e.g., the spurious optimality depen-
dency on atomicity [31].

The concrete optimality requirements must be jointly satisfied independent
of protocol atomicity. First, unpredictability must not depend on control-flow
integrity: even if an adversary can trace the execution of each instruction of
optimal evaluation code, she cannot write the correct result into the output reg-
ister by executing fewer instructions or using less memory than optimal, except
with very small probability over guessing.

Second, unpredictability enables verifiable execution of instructions that dis-
able asynchronous events durably, which achieves control-flow integrity.

Third, a scalable optimal time bound and the implementation of concurrent
all-or-nothing transactions based on them will complete the support for estab-
lishing malware-free states.
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Sufficiency. Note that jointly satisfying the requirements presented above
only yields malware-free states – a strictly weaker property than RoT establish-
ment. However, it is sufficient to load a family of almost universal hash func-
tions [24] in a malware-fee state and then verify their outputs when applied to
state components to establish RoT unconditionally.

Acknowledgment. Comments received from Gene Tsudik and Adrian Perrig helped
clarify the differences between RoT establishment and past attestation protocols.
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