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Abstract. Persistent memory is receiving a tremendous amount of
attention recently from both academia and industry. Atomic and durable
transactions have been studied to ensure crash consistency in persistent
memory. However, whether to use undo or redo logging to execute those
transactions is still a hotly debated topic. Redo logging seems appropri-
ate for write-dominated workloads and transactions in high contention
scenarios whereas undo logging seems appropriate for read-dominated
workloads and transactions in low contention scenarios. This necessi-
tates a priori knowledge on the workload and contention scenario to
select an appropriate logging method between redo or undo to achieve
better performance. In this paper, we argue that we can obtain the best
of both worlds without the need of such a priori knowledge. Particularly,
we present an adaptive logging framework that dynamically switches
between redo and undo logging at runtime so that the performance is
always better than that is obtained from a priori selection of either undo
or redo logging. We formally model our framework, prove its correctness,
and provide an extensive evaluation of it through a persistent memory
emulation of TinySTM using 5 micro-benchmarks and 8 complex bench-
marks from STAMP and STAMPEDE suites that are well-known and
widely used in the literature. The results show significant benefits of our
logging framework.

1 Introduction

Recent advancements in memory technology (such as phase change memory,
STT-RAM, and memristors) suggest the possibility of non-volatile memory
(NVM) devices that are fast and byte-addressable as dynamic random access
memory (DRAM). Moreover, they are predicted to be more power-efficient than
DRAM, yet non-volatile and cheap as hard disk drives (HDDs) [3]. Persistent
memory can allow applications to access the data structures through a fast
load/store interface, without first performing block I/O and then transferring
data into memory based structures [6,20,21]. This feature is quite instrumental
to avoid many overheads and drawbacks of block-oriented storage such as HDDs.
Therefore, one of the most central issues in persistent memory is programming
models that directly leverage persistence of the memory.

The challenge for any programming model designed for persistent memory is
how to ensure consistency of the application data in the event of sudden power
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failure or system crash. This issue is commonly known as crash consistency and
the existing research has quite focused on this issue [6,13,16,20,23]. A simply
way to achieve crash consistency is to serialize multiple write operations when
manipulating data structures. However, this hampers application performance
due to inherent serialization. One common technique used in modern processors
to avoid this problem is reordering, i.e., exploit parallelism through shuffling
the execution of multiple write operations. However, if a failure occurs between
two reordered writes, it is again difficult to guarantee consistency and the data
structure could end up in an inconsistent state.

Further difficulty arises when persistency meets the growing number of cores.
On the one hand, as data is already in persistent memory, it seems unnecessary
and redundant to allocate another (duplicate) persistent storage for it. On the
other hand, when an address is written, the new value must be exposed atom-
ically with a new consistent and persistent state to ensure consistency of data.
One way of guaranteeing this atomicity is by means of locks. However, locking
has several drawbacks and bottlenecks when dealing with particularly the ever
growing number of cores [10,18]. A method to achieve atomicity (without the
use of locking) is through transactions studied heavily recently in the context of
hardware/software transactional memory [10,18]. A transaction (in the context
of persistent memory) is a sequence of operations on persistent memory that
either all occur, or nothing occurs with respect to failures. If the execution of a
transaction is interrupted, it is guaranteed, after system restart, to restore the
consistent state from the moment when the transaction was started. The ideal
goal is to maintain consistent persistent states without the use of locking and
without duplicating data.

The prior persistent memory designs, e.g., [6,13,16,20,23], provide atomic
and durable transactions to move the data from a consistent state to another
consistent state supporting the ideal goal discussed above (i.e., do not allocate
another duplicate persistent storage but duplicate only the data needed to main-
tain consistent states, when necessary). This guarantee is provided by requiring
the transactions to write data to a log area (usually called transaction log) before
updating the data in the original persistent memory locations. Notice that this
logging only duplicates the data that a transaction is going to update in persis-
tent memory (reducing significantly the overhead of allocating another duplicate
persistent storage for whole data). Transaction logs are of two kinds:

– Undo logs. In this logging method, a transaction works by first copying the
data in persistent memory locations to a log area (called undo log) in persis-
tent memory, makes them durable, and then performs updates in-place in the
original data locations. In the event the transaction fails, any modifications to
original persistent memory locations are rolled back using the old data stored
in the (undo) log area.

– Redo logs. In this logging method, a transaction copies data in each persistent
memory location that it is going to read/write to a log area (called redo
log), appends all its data updates to that log area, and makes them durable
in persistent memory (different than original locations) before writing the
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Table 1. A comparison of undo and redo logging in persistent memory [12,13,20,21]

Constraint Undo logging Redo logging

Memory
update

Performs in-place memory
update

Updates are written to memory
at the commit time

Reading
overhead

Allows to read most recent
data directly from in-place
memory [12,21]

Reads are intercepted and
redirected to the redo log area
to read recent uncommitted
data [12,13,21]

Persist
ordering

Requires to ensure persist
ordering for each memory write
in a transaction [20]

Requires only one persist
ordering for each transaction
[13,20]

Data
movement

Transaction aborts are costly
as the memory updates need to
be rolled back to consistent
state using undo log

Transaction commits are costly
as the updates need to be
written back to original
persistent memory using redo
log

data back to original persistent memory locations. If the transaction fails,
the updates in log area are simply discarded. Therefore, the writing of data
to redo log in persistent memory and back to original persistent memory
locations happens only when transaction commits.

Table 1 summarizes the advantages and disadvantages of undo and redo log-
ging methods. Although both undo and redo logging for consistency in persis-
tent memory are studied heavily in the literature [6,13,16,20,23], which logging
method is better is still not clear and the previous studies provide contradictory
conclusions. For example, consider two prominent previous work NV-Heaps [6]
and Mnemosyne [20]. The authors of Mnemosyne [20] suggested using redo
logging whereas the authors of NV-Heaps [6] and others [7,16] suggested using
undo logging. There is no study that elaborates the performance gap between
undo and redo logging with comprehensive practical evaluations, besides [21]
which answers this partially. Looking at [21], redo logging seems appropriate for
write-dominated workloads and high contention scenarios whereas undo logging
seems appropriate for read-dominated workloads and low contention scenarios.
However, this necessitates a priori knowledge on the workload and contention
scenario to select a logging method to obtain better performance.

Contributions. We argue that we can obtain the best of both worlds without
any a priori knowledge on workload and contention scenario. Particularly, we
present an adaptive logging framework, which we call Adaptive, that dynam-
ically switches the execution using either undo logging or redo logging at the
runtime so that the performance on any workload (and contention scenario) is
always better than that is obtained by executing the transactions using either
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undo logging or redo logging selected a priori. For the experimental evaluation,
we incorporate Adaptive in TinySTM [8,9] through appropriate changes and
modifications in the TinySTM execution model to emulate persistent memory.
TinySTM is a well known software transactional memory (STM) implementa-
tion [18] that has been used for experimentation in both persistent and volatile
memory settings. TinySTM has already implemented individually both undo
and redo logging methods but only for DRAM settings. We extend (open source)
TinySTM distribution 1.0.5 [2] to incorporate our Adaptive framework as well
as to emulate persistent memory support (as real persistent memory is not yet
available [13]). We then run experiments using Adaptive against a diverse set of
benchmarks (5 micro-benchmarks and 8 complex benchmarks from STAMP and
STAMPEDE benchmark suites [15,17]) widely used in transactional memory
(TM) research in the literature [8–10].

We measure the performance of Adaptive in terms of total number of move-
ment of data by a transaction to and from persistent memory. The motivation
behind this performance metric is as follows. It has been heavily advocated
that persistent memories significantly outperform traditional DRAM due to low
standby power and fast access speed [22,24]. However, persistent memories suffer
from the write endurance problem, i.e., every persistent memory unit can sustain
a very limited number of writes before it wears-out. The total number of writes
to the persistent memory address can also be defined as the total number of
movement of data to and from the memory address. To mitigate the endurance
problem, the movements of data should be minimized.

Fig. 1. An illustration of (a) undo and (b) redo logging methods in persistent memory.

Therefore, Adaptive focuses on minimizing the total number of movements
of data to and from the persistent memory by incorporating the best of both
redo and undo logging frameworks switching dynamically. Specifically, for undo
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logging, we measure the total number of movement of data between the original
persistent memory locations and the undo log area, whereas for redo logging, we
measure the total number of movement of data between the original persistent
memory, volatile redo log area, and the persistent redo log area. Figure 1 illus-
trates these moves through © steps for both undo and redo logging methods.
The results suggest that, when using an eager version of redo logging, Adap-
tive achieves up to 6× better performance than redo logging and up to 4.6×
better performance than undo logging. When a lazy version of redo logging is
used, Adaptive again achieves up to 6× better performance than redo logging
and up to 35× better performance than undo logging. The implication of our
results is that switching between undo and redo logging dynamically at runtime
provides a way to exploit positive aspects of both the logging methods, minimiz-
ing the total number of movements of data using undo or redo logging methods
individually. This all is achieved with a minimal increase in total execution time,
i.e., the execution time increase in Adaptive is only at most 17% more than
the total execution time using either undo or redo logging.

Related Work. The literature on redo and undo logging methods for crash con-
sistency in persistent memory is vast. We discuss here only very closely related
works. The most closely related work is due to Wan et al. [21], where they empiri-
cally evaluated redo and undo logging methods on the open source NVM library
(NVML) [1] for some constrained workloads, and suggested that “one logging
method does not fit all workloads”. Particularly, they reported that (i) redo log-
ging significantly outperforms undo logging for workloads in which a transaction
updates large number of different objects, while it underperforms undo logging
for read-dominated workloads, and (ii) undo logging is more sensitive to read-to-
write ratios whereas redo logging is less sensitive to those ratios [21]. However,
they did not consider the adaptive framework where logging method is dynam-
ically switched at runtime. Our framework provides the best of the both worlds
without requiring a priori knowledge on the workload and contention scenario.

The other works mostly proposed methods to provide crash consistency either
through undo logging or through redo logging, and there is no work that elabo-
rates the performance gap between undo and redo logging methods. Coburn et
al. [6] suggested NV-Heaps, a STM implementation for persistent memory using
undo logging. The basic idea follows DSTM [10], in which transactional objects
are stored in persistent memory. Each transaction T maintains a volatile read
log and a non-volatile undo log. If a system failure occurs, T is aborted and the
undo log, which is persistent, is used to reverse the changes of T . Volos et al. [20]
suggested Mnemosyne for persistent memory using redo logging and derived
from TinySTM [8,9]. We observed that NV-Heaps [6] and Mnemosyne [20]
drew absolutely opposite conclusions on whether undo or redo logging is better
for persistent memory. The former prefers to use undo logging, and the latter
opts to use redo logging. Our results suggest that a combination of both of them
is better than using these methods individually. A salient feature of our method
is it does not require any priori knowledge on workload and contention scenarios.
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Recently, Avni et al. [3] studied hardware transactional memory (HTM)
based transactions for consistency in persistent memory through redo logging.
DudeTM [13] provided a technique to answer whether to use undo or redo log-
ging through a framework where a transaction first runs in volatile memory using
any HTM or STM implementation and produces a redo log for that transaction.
The redo log is then flushed to persistent memory satisfying atomicity of data
and then modify the original data in persistent memory according to the persis-
tent redo log. Notice that this approach is different than ours and needs a shared
shadow memory, besides persistent memory where that data is. The recent sev-
eral papers, e.g., [4,5,11,12,14,16,19,23], provided techniques to improve the
time to log the data (e.g., through coalescing, through persistent cache, through
hardware support, through undo+redo logging methods, etc.) for both undo and
redo logs. However, our focus is on taking a different approach of dynamically
switching between undo and redo logging at runtime to exploit advantages of
both the methods and our extensive experimental evaluation (Sect. 4) confirms
this exploitation.

Paper Organization. We discuss the memory model in Sect. 2. We outline our
adaptive logging framework in Sect. 3 and evaluate it in Sect. 4. Finally, we con-
clude in Sect. 5. Some experimental results are omitted due to space constraints.

2 Model

We consider a computer system with unlimited persistent memory, many pro-
cessing cores, and no HDD. All persistent memory is cacheable and caches are
volatile and coherent. The system may include limited size DRAM (but we do
not assume its necessity). We assume that all the writes of a committed transac-
tion can be accommodated in the volatile cache, i.e., once a transaction commits
but before the commit is reflected in original memory locations in persistent
memory, all its newly modified data is in volatile cache. The system restarts and
resumes its computation after experiencing failures/crashes. Therefore, the task
after restart is to bring the data to a consistent state, removing effects of uncom-
mitted transactions and applying the missing effects of the committed ones. We
simulate crashes by periodically wiping out the volatile logs, and use the data
stored in undo or redo logs in persistent memory to recover consistency. We
employ a function that checks and maintains consistency while under execution.

For redo logging, we make sure that all writes that are in volatile cache reach
persistent log before a transaction commit, while all transactional writes stay
in the cache. Moreover, to make sure that the last committed value is used in
the restart process, we attach a version to each logged variable x. Note that the
technique of verifying that x is logged only once in the system can also be used
for this purpose. For undo logging, the data in persistent undo log is used in the
restart process (no versioning required).
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Fig. 2. An illustration of undo logging, redo logging, and adaptive logging methods.
The barrier in Adaptive is to let finish executing in-flight transactions before switch-
ing.

3 Adaptive Logging Framework

We now describe our adaptive logging framework, Adaptive, that runs trans-
actions using either undo or redo logging, switching between these two logging
methods dynamically at runtime. In the existing persistent memory designs, e.g.,
[6,13,16,20,23], transactions execute using either redo logging or undo logging
(without switching) selected a priori. Figure 2 compares Adaptive with undo
and redo logging. The pseudocode of Adaptive is given in Algorithm 1.

Let T be a transaction that comes to the system at time t ≥ 0. We assume
that the execution starts at time t0 = 0. In the following, we describe how
Adaptive schedules T using either undo logging or redo logging dynamically
switching at runtime.

We need the following definitions. Let Nucommit, Nrcommit be the number
of transaction commits in Adaptive from time t0 = 0 until the current time
t > t0 for transactions executed using undo logging and redo logging, respec-
tively. Particularly, Nucommit (Nrcommit) counts the number of transactions that
are committed in Adaptive while running using undo (redo) logging method.
Similarly, let Nuabort, Nrabort be the number of transaction aborts in Adaptive
from time t0 = 0 until time t > t0 for transactions executed using undo log-
ging and redo logging, respectively. Furthermore, let Ncommit and Nabort be the
total number of commits and aborts in Adaptive, respectively. We have that
Ncommit = Nucommit + Nrcommit and Nabort = Nuabort + Nrabort, respectively.

The idea in Adaptive is to decide on which logging method to use for
executing T based on the parameters Nucommit, Nrcommit, Nuabort, and Nrabort

learned from the system at runtime. However, if T comes to the system at time
t0 = 0, we have all Nucommit, Nrcommit, Nuabort, and Nrabort zero. We treat
this as a special case and rely on the size of the read and write sets of T to
decide on which logging method to use. Let Wset(T ) be the write set of T
which is essentially the persistent memory locations that T would modify while
in execution. Similarly, let Rset(T ) be the read set of T which is essentially
the persistent memory locations that T would read (but not modify) while in
execution. We have that RW (T ) = Rset(T ) + Wset(T ), where RW (T ) denotes
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Algorithm 1. Adaptive logging framework for a transaction T at any time
t ≥ 0.
1 Nucommit ← number of commits until t for transactions executed using undo

logging;
2 Nrcommit ← number of commits until t for transactions executed using redo

logging;
3 Nuabort ← number of aborts until t for transactions executed using undo

logging;
4 Nrabort ← number of aborts until t for transactions executed using undo logging;
5 Ncommit ← Nucommit + Nrcommit, Nabort ← Nuabort + Nrabort;
6 if Ncommit + Nabort == 0 then
7 Wset(T ) ← write set of transaction T ;
8 Rset(T ) ← read set of transaction T ;
9 if Wset(T ) is greater than Rset(T ) then execute T using redo logging;

10 else execute T using undo logging;
11 if Ncommit + Nabort > 0 then

12 AAR ← Nabort
Ncommit+Nabort

, AARundo ← Nuabort
Nucommit+Nuabort

,

ACRundo ← Nuabort
Nucommit

, ACRredo ← Nrabort
Nrcommit

;

13 if (AAR ≥ 2
3
) ∨ ((ACRundo > ACRredo) ∧ (AARundo ≥ 2

3
)) then

14 execute T using redo logging;
15 else execute T using undo logging;

the total number of persistent memory locations that T reads and modifies while
in execution. Therefore, at t0 = 0, if Wset(T ) is greater than Rset(T ), then T
is executed using redo logging, otherwise using undo logging.

If T comes to the system after at least a transaction finishes executing one
time (irrespective of whether that transaction aborts or commits), then it is
executed based on the following parameters. AAR = Nabort

Ncommit+Nabort
denotes the

average abort ratio of transactions in Adaptive from time t = 0 until time
t (using both redo and undo logging). AARundo = Nuabort

Nucommit+Nuabort
denotes

the average abort ratio of transactions in Adaptive from time t = 0 until
time t executed using undo logging. Furthermore, ACRundo = Nuabort

Nucommit
and

ACRredo = Nrabort

Nrcommit
denote the abort to commit ratio of transactions in Adap-

tive from time t = 0 until time t using undo logging and redo logging, respec-
tively. At any time t ≥ 0, 0 ≤ AAR ≤ 1 and 0 ≤ AARundo ≤ 1.

At any time t > t0 in Adaptive, T is executed using redo logging if (i)
AAR ≥ 2

3 or (ii) ACRundo > ACRredo and AARundo ≥ 2
3 . Otherwise, T is exe-

cuted using undo logging. We call the value 2
3 switching threshold and we describe

later how this switching threshold 2
3 is computed. The motivation behind using

2
3 as switching threshold in Adaptive is that it works on all the benchmarks we
experimented our framework against. We now discuss how the switching thresh-
old is computed.

Computing the Switching Threshold 2
3 . The idea we employ is to compute

the number of data movements for redo and undo logging, separately, and switch
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between these methods when the data movement increases. Ideally, we would
like to use the logging method in Adaptive that gives optimum data movement
performance for any specific workload. We use the following notions. Let N be
the total number of transactions in any workload. When the workload finishes
execution and all transactions commit, we have Ncommit = N number of commits
and Nabort ≥ 0 number of aborts (if each transaction commits without even
aborting a single time, then Nabort = 0, otherwise Nabort > 0). Suppose each
transaction T has read write set RW (T ) of size S. Let Wundo be the total number
of operations of moving data (i) from the original persistent memory locations
to the undo log area (again in persistent memory) and (ii) from the undo log
area back to the original persistent memory locations. The first kind of moves
are shown as 1© in Fig. 1(a) and the second kind of moves are shown as 2© in
Fig. 1(a). The first kind of moves are always done in undo logging and the second
kind of moves are done only when the transaction aborts. Therefore,

Wundo = (Ncommit + 2Nabort) · S. (1)

Let Wredo be the total number of operations of moving data (i) from the
original persistent memory locations to the redo log area (in volatile cache),
(ii) from the redo log area (in volatile cache) to persistent memory locations to
persist the redo log in the volatile cache, and (iii) finally, writing the data back to
the original persistent memory locations either from redo log area in persistent
memory after restart or from redo log area in volatile cache. The first kind of
moves are shown as 1© in Fig. 1(b), and the second and third kind of moves are
shown as 2© and 3© in Fig. 1(b), respectively. The first kind of moves are always
done in redo logging and the second and third kind of moves are done only when
the transaction commits. Therefore,

Wredo = (3Ncommit + Nabort) · S, (2)

Notice that a transaction can run using either undo or redo logging when
Wundo = Wredo as the selection of a logging method does not have impact on
the total number of movements. Therefore, from Eqs. 1 and 2, we have that

(Ncommit + 2Nabort) · S = (3Ncommit + Nabort) · S (3)
Ncommit + 2Nabort = 3Ncommit + Nabort (4)

Nabort = 2Ncommit (5)

Also, we have that N ≤ Nabort + Ncommit. This implies that

Nabort

N
+

Ncommit

N
≥ 1 (6)

2Ncommit

N
+

Ncommit

N
≥ 1 (7)

Ncommit

N
≥ 1

3
(8)

Therefore, Nabort

N < 2
3 . That is, if the value of Nabort is such that Nabort

N is
higher than 2

3 , then Wundo > Wredo. Thus, Adaptive switches execution to
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redo logging when Nabort

N ≥ 2
3 (Line 13 of Algorithm 1) and stay with undo

logging, otherwise.

Time Barrier Requirement and Design. The ideal scenario in Adaptive is
to let each transaction T run Algorithm1 and decide which logging method (redo
or undo) to use for it to execute individually based on the parameters it infers
at runtime. For several benchmarks we experimented with, this works perfectly
fine. However, for some benchmarks, this creates a problem as some transac-
tions are still in progress using one logging method and when T executes using
other logging method, the conflict detection and resolution mechanisms inter-
fere, hampering consistency. Therefore, to handle this situation, we introduce a
time barrier (as shown in Fig. 2) that helps to synchronize the transactions while
switching from one logging method to another. Suppose currently transactions
are running using undo logging. Let a new transaction T arrives and it decides
to run using redo logging. Since there are transactions still running using undo
logging, T waits until those transactions finish executing. We show later in the
experimental results that the possible increase in total execution time is due to
time barriers and this increase is minimal compared to the substantial reductions
in the total number of data movements achieved in Adaptive.

Correctness of Adaptive: We provide the correctness proof showing that the
algorithm discussed above behaves correctly even under faults, achieving crash
consistency.

Theorem 1. Algorithm1 provides crash consistency.

Proof. Consider a transaction T that arrives at time t ≥ 0. Suppose T runs
with undo logging (Line 10 or 15 from Algorithm1). T maintains the undo log
with unique transaction ID in the undo log area in persistent memory where the
current records of memory locations accessed by T are stored. T then directly
updates on those persistent memory locations. Now, consider any new transac-
tion T1 �= T that arrives at time t1 > t. Suppose T1 also runs with undo logging
and at some time t2 > t1, T and T1 both conflict. Now, the transaction T
aborts and to rollback to the previous consistent state, the records stored in the
persistent undo log are written back to the original memory locations accessed
by T .

Suppose now that T1 tries to execute using redo logging. Since T has arrived
before T1, T is already running with undo logging. Since T1 satisfied for redo
logging, T1 has to wait until T finishes executing (either commit or abort). Since
t1 > t and T1 runs after T finishes its execution, there is no conflict between T
and T1 and barrier helps to synchronize the execution of T and T1.

Finally, consider the power failure scenario. Let a transaction T is running
using either undo logging or redo logging and suddenly, the power failure occurs.
When the system is restarted, the persistent log area is scanned and replayed.
With the persistent undo log records, the inconsistent memory locations are
rolled back to the previous consistent states. With the persistent redo log records,
the memory locations are updated with the latest committed values. Both the
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log records are discarded after they are replayed. The incomplete log records are
also discarded. ��

4 Experimental Evaluation

We now evaluate the performance of Adaptive using 5 micro-benchmarks and 8
complex benchmarks. The evaluation is performed in a STM-based implementa-
tion using TinySTM [8,9] modified appropriately to emulate persistent memory
model described in Sect. 2. The tests were executed on an Intel Core i7-7700K
4.20 GHz, 64-bit Haswell processor with 4 cores, each with 2 hyper threads. Each
core has private L1 and L2 caches, whose sizes are 256 KB and 1 MB, respec-
tively. There is also an 8 MB L3 cache shared by all 4 cores and 32 GB main
memory. We first describe in detail how the experimental platform is set up.
We then describe how a persistent memory framework is emulated. We finally
describe benchmarks and the results achieved. All the results presented in this
section are the average of 10 experimental runs. Moreover, the results are for
varying number of threads ranging from 1 to 16.

Experimental Setup. We developed a STM-based implementation using
TinySTM [8,9]. TinySTM is a word-based STM that uses locks to protect
shared memory locations. TinySTM has implemented separately both redo log-
ging and undo logging methods (called Redo and Undo, respectively) through
Write Back and Write Through designs, respectively. With Write Through
design, transactions directly write to original memory locations and revert their
updates in case the transactions abort. However, with Write Back design, trans-
actions work on a copy of data and delay their updates to original memory
locations of data until commit [8,9]. Furthermore, Write Back design has two
different implementations: Write Back ETL (also called eager or encounter-
time locking) and Write Back CTL (also called lazy or commit-time locking).
Encounter-time locking (ETL) detects transaction conflicts early at the time of
memory write and acquires the lock on the memory address before it is writ-
ten. Commit-time locking (CTL) defers conflict detection on memory address
until commit, i.e., the lock is acquired on the memory address at the commit
time. Therefore, there are two different implementations of Redo in TinySTM:
one based on ETL is called Redo ETL and another based on CTL is called
Redo CTL.

We use Redo ETL and Undo implementations to obtain an adaptive design,
which we call Adaptive ETL. Specifically, Adaptive ETL uses Redo ETL
design of TinySTM as a redo logging method and Undo design of TinySTM
as a undo logging method while executing Algorithm1. Similarly, we use
Redo CTL and Undo implementations to obtain an adaptive design, which we
call Adaptive CTL. Therefore, we run experiments with five different designs
Redo ETL, Redo CTL, Undo, Adaptive ETL, and Adaptive CTL, and com-
pare, particularly, the results using Adaptive ETL with Redo ETL and Undo
implementations, and the results using Adaptive CTL with Redo CTL and
Undo implementations.
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Persistent Memory Emulation. Persistent memory is not available yet (even
for experimentation purposes) [13]. Therefore, we emulate it using DRAM in our
experiments following previous works, e.g., [3]. We separate 500 MB region of
DRAM for the persistent memory emulation. We use this region for keeping the
persistent undo log when a transaction runs using undo logging and to persist
the redo log when transaction runs using redo logging. To emulate the power
failure and crash in persistent memory, we leave the power on and wipe out all
the volatile log records so that the rollback (in case of abort in undo logging)
and update (in case of commit but not yet written to memory in redo logging)
operations will be handled by those persistent log records.

Benchmarks. We use both micro and complex benchmarks in the experiments.
Micro − Benchmarks: We use 5 well-known and widely-used different micro-
benchmarks, namely bank, red black tree, hash set, linked list, and skip list that
are available in the TinySTM distribution [8,9] and used for experimentation
in several papers, e.g., [10,13,21]. These micro-benchmarks simulate the basic
concurrent access scenario for transactions with (relatively) small read/write
sets.
STAMP : STAMP is also a well-known and widely-used benchmark suite.
It consists of eight applications: bayes, genome, intruder, kmeans, labyrinth,
ssca2, vacation, and yada of varying complexity. These applications span a
variety of computing domains as well as runtime transactional characteristics
such as varying transaction lengths, read and write set sizes, and amounts of
contention [15].
STAMPEDE: Recently, Nguyen et al. [17] argued that the programming model
and data structures used in STAMP benchmarks introduce performance bottle-
necks. They modified them in a way the bottlenecks can be removed. They pro-
vided a set of rewritten STAMP benchmarks called STAMPEDE benchmarks.
These are the same 8 STAMP benchmarks with the only difference on program-
ming model and data structures.

Results on Micro-benchmarks. Figure 3 provides the experimental results
for all 5 different micro-benchmarks. All the transactions in these benchmarks
were run with update rate of 20%. When transactions were executed with small
number of threads, we found that the transaction commit rate is higher than
the transaction abort rate and the cost in redo logging is higher than the cost
in undo logging. With the increase in number of threads, the abort rate is also
increased. We noticed that Redo CTL has consistently better performance than
Redo ETL on all the five micro-benchmarks. This is because the early detec-
tion of conflict and locking the memory address has increased the abort rate
than the detecting conflict and locking the memory address at the commit
time. Adaptive ETL achieved up to 3.4× performance improvement compared to
Redo ETL. Similarly, Adaptive CTL achieved up to 3× performance improve-
ment compared to the Redo CTL. Compared to Undo, Adaptive ETL achieved
up to 1.1× performance improvement and Adaptive CTL achieved up to 1.3×
performance improvement. Furthermore, Adaptive CTL performed up to 2.5×
better than Adaptive ETL. The results show that Adaptive always performs
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Fig. 3. An illustration of data movements in micro-benchmarks and yada from STAMP

better than Redo or Undo. We also noticed that Adaptive CTL performs bet-
ter than Adaptive ETL in each micro-benchmark, since Redo CTL performing
better than Redo ETL.

Results on STAMP Benchmarks. Figure 4 provides results for STAMP
benchmarks. We found that when the transactions are executed with low num-
ber of threads, the transaction commit rate is higher and undo performs better
than redo. This is due to low contention for memory access with small num-
ber of threads. With increasing number of threads, transaction abort rate also
increases and undo starts to perform worse due to the frequent requirement of
rollback. The results obtained for genome and kmeans-low show that undo starts
to perform worse than redo beyond 8 threads. The same scenario starts beyond
4 threads in Intruder and yada. Moreover, we noticed that, irrespective of the
abort rate change in redo and undo logging, Adaptive always has better perfor-
mance. Specifically, Adaptive ETL achieved up to 6× performance improvement
compared to Redo ETL and up to 2× performance improvement compared to
Undo. Adaptive CTL achieved up to 3× performance improvement compared
to Redo CTL and up to 35× performance improvement (in yada) compared to
Undo.

Results on STAMPEDE Benchmarks. Figure 5 provides the experimental
results for STAMPEDE benchmarks. Similar to micro-benchmarks and STAMP
benchmarks, Adaptive has better performance compared to Redo or Undo in
STAMPEDE benchmarks. Adaptive ETL performed up to 3.6× better than
the Redo ETL. Adaptive CTL performed up to 6× better than the Redo CTL.
Compared to Undo, Adaptive ETL achieved up to 4.6× better performance and
Adaptive CTL achieved up to 3.1× better performance.
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Fig. 4. An illustration of data movements in STAMP benchmarks

Execution Time and Throughput Results. The execution time is impacted
in Adaptive due to the switching between undo and redo logging at runtime. In
most of the benchmarks, the increase in time is compensated as Adaptive low-
ers the number of aborts. We were interested in what is the maximum increase on
time in any benchmark we used in our experimentation. For micro-benchmarks,
we measured throughput (instead of execution time) in terms of total number
of transactions executed per second. This is because all 5 micro-benchmarks
were executed for a fixed time interval of 10,000 ms and throughput is a natural
performance parameter to examine the execution characteristic in this inter-
val. All the 5 micro-benchmarks were executed with 5 different logging designs
and the total number of transactions for each design were counted. The results
obtained are omitted due to space constraints. We noticed that, in some appli-
cations, throughput of Redo ETL is at most 16% more than the throughput of
Adaptive ETL. Throughput of Redo CTL is at most 13% more than that of
Adaptive CTL. Throughput of Undo is at most 11% more than the throughput
of Adaptive ETL and at most 16% more than the throughput of Adaptive CTL.
These results imply that the throughput of Adaptive is slightly decreased (less
than 16%) compared to Undo or Redo. That means, the execution time for
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Fig. 5. An illustration of data movements in STAMPEDE benchmarks

the micro-benchmarks may increase by at most 16% in Adaptive compared to
Undo or Redo.

For the STAMP and STAMPEDE benchmarks, we measured the execu-
tion time for each of the applications. Figure 6 compares the execution time
for STAMP benchmarks (the results for STAMPEDE are omitted due to space
constraints). We noticed that the execution time in Adaptive is at most 17%
more compared to the execution time of Undo or Redo. As Adaptive lowers the
number of aborts, some applications (e.g. bayes, kmeans high, ssca2 in Fig. 6)
have decreased execution time in Adaptive than in Undo or Redo designs. We
claim that the increase in execution time (decrease in throughput accordingly)
for some applications is largely dominated by the performance improvement in
terms of total number of data movements.

To summarize, in all of the cases, Adaptive performs better for number
of data movements compared to individual Undo and Redo designs, without
increasing the execution time running using Undo and Redo designs. In some
cases, the execution time increases but that is minimal compared to that of using
Undo and Redo designs.
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Fig. 6. An illustration of execution time for STAMP benchmarks

5 Concluding Remarks

Persistent memory is gaining much attention recently from both academia and
industry. One of the most challenging issues in persistent memory is how to
ensure consistency of the application data in the event of sudden power failure
or system crash (commonly known as crash consistency). Redo and undo logging
methods are the widely used techniques for maintaining crash consistency in
persistent memory. However, they were studied separately and whether to use
redo or undo logging (and which is in fact better) is still in hot debate. In
this paper, we have presented an adaptive logging framework that dynamically
switches between undo and redo logging methods at runtime to obtain the best
of the both worlds. Our framework is quite simple and achieves significantly
better performance (in terms of number of data movements addressing the write
endurance problem) compared to undo and redo logging in 5 micro-benchmarks
and 8 applications in STAMP and STAMPEDE benchmarks (with a minimal
overhead in execution time). We believe our results and techniques will be helpful
in choosing proper logging method for future consistency designs for persistent
memories.
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