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Networks of mobile robots captured the attention of the distributed computing
community, as they promise new application (rescue, exploration, surveillance) in
potentially harmful environments. Originally introduced in 1999 by Suzuki and
Yamashita [27], the model has been refined since by many authors while growing
in popularity (see [20] for a comprehensive textbook). From a theoretical point
of view, the interest lies in characterising, for each of these various refinements,
the exact conditions under which a particular task can be solved or not.

In the model we consider, all robots are anonymous and operate using the
same embedded program through repeated Look-Compute-Move cycles. In each
cycle, a robot first “looks” at its environment and obtains a snapshot containing
some information about the locations of all robots, expressed in the robot’s
own self-centred coordinate system, whose scale and orientation might not be
consistent with the other robot’s coordinate systems. Then the robot “computes”
a destination, still in its own coordinate system, based only on the snapshot it
just obtained. Finally the robot “moves” towards the computed destination.

The general model is agnostic to the shape of the space where the robots
operate, which can be the real line, a two dimensional Euclidean space, a discrete
space (a.k.a. a graph), or even another space with a more intricate topology. To
date, two independent lines of research focused on (i) continuous Euclidean
spaces, and (ii) graphs, studying different sets of problems and using distinct
algorithmic techniques.

1 Continuous vs. Discrete Spaces

The core problem to solve in the context of mobile robot networks that operate in
bidimensional continuous spaces is pattern formation, where robots starting from
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distinct initial positions have to form a given geometric pattern. Arbitrary pat-
terns can be formed when robots have memory [27] or common knowledge [21],
otherwise only a subset of patterns can be achieved. Forming a point as the
target pattern is known as gathering [27], where robots have to meet at a single
point in space in finite time, not known beforehand. The problem is generally
impossible to solve [25] unless the setting is fully synchronous [3] or robots are
endowed with multiplicity detection [10]. Recently, researchers considered tridi-
mensional Euclidean spaces [28], where robots must solve plane formation, that
is, land on a common plane (not determined beforehand) in finite time. In the
context of robots operating on graphs, typical problems are terminating explo-
ration [16,19], where robots must explore all nodes of a given graph and then
stop moving forever, exclusive perpetual exploration [7,14], where robots must
explore all nodes of a graph forever without ever colliding, exclusive search-
ing [6,13], where robots must capture an intruder in the graph without collid-
ing, and gathering [8,14,22,23], where robots must meet at a given node in finite
time.

Although some of the studied problems overlap (e.g. gathering), the algo-
rithmic techniques that enable solving problems are substantially different. On
the one hand, robots operating in continuous spaces may typically use fractional
distance moves to another robot, or non-straight moves in order to make the
algorithm progress, two options that are not possible in the discrete model. On
the other hand, in the asynchronous continuous setting, a robot may be seen
by another robot as it is moving, hence at some arbitrary position between its
source and destination point within a cycle, something that is impossible to
observe in the discrete setting. Indeed, all aforementioned works for robots on
graph consider that their moves are atomic, even in the ASYNC setting, which
may seem unrealistic to a practitioner.

2 Related Works

Designing and proving mobile robot protocols is notoriously difficult. Formal
methods encompass a long-lasting path of research that is meant to overcome
errors of human origin. Unsurprisingly, this mechanised approach to protocol
correctness was successively used in the context of mobile robots.

In the discrete setting, model-checking proved useful to find bugs (usually
in the ASYNC setting) in existing literature [5,17,18] and formally check the
correctness of published algorithms [5,15]. Automatic program synthesis [9,24]
can be used to obtain automatically algorithms that are “correct-by-design”.
However, those approaches are limited to small instances with few robots. Gen-
eralising to an arbitrary number of robots with similar approaches is doubtful as
Sangnier et al. [26] proved that safety and reachability problems become unde-
cidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space, to
the best of our knowledge the only formal framework available is the Pactole



406 T. Balabonski et al.

framework.1 Pactole enabled the use of higher-order logic to certify impossi-
bility results [1,4,11] as well as certifying the correctness of algorithms [3,12],
possibly for an arbitrary number of robots (hence in a scalable manner). Pactole
was recently extended by Balabonski et al. [4] to handle discrete spaces as well
as continuous spaces, thanks to its modular design. However, to this paper,
Pactole only allowed one to express specifications and proofs with the FSYNC
and SSYNC models.

3 Our Contribution

In this brief announcement, we explore the possibility of establishing a first
bridge between the continuous movements and observation vs. discrete move-
ments and observation in the context of autonomous mobile robots. Our position
is that the continuous model reflects well the physicality of robots operating in
some environment, while the discrete model reflects well the digital nature of
autonomous robots, whose sensors and computing capabilities are inherently
finite. For this purpose, we consider that robots make continuous, non atomic
moves, but only sense in a discrete manner the position of robots. Our approach
is certified using the Coq proof assistant and the Pactole framework.

In more details, our full paper [2] first extends the Pactole framework to
handle the ASYNC model, preserving its modularity by keeping the operating
space and the robots algorithm both abstract. This permits to retain the same
formal framework for both continuous and discrete spaces, and the possibility
for mobile robots to be faulty (even possibly malicious a.k.a. Byzantine). Then,
as an application of the new framework, we formally prove in the full paper [2]
the equivalence between atomic moves in a discrete space (the classical model for
robots operating on graphs) and non-atomic moves in a continuous unidimen-
sional space when robot vision sensors are discrete (that is, robots are only able
to see another robot on a node when they perform the Look phase, but robots
can move anywhere between two adjacent nodes), irrespective of the problem
being solved. Our effort consolidates the integration between the model, the
problem specification, and its proof that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at http://
pactole.lri.fr.
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