
Brief Announcement: Deterministic
Leader Election in Self-organizing Particle

Systems

Rida A. Bazzi(B) and Joseph L. Briones

Arizona State University, Tempe, AZ, USA
bazzi@asu.edu

Abstract. We consider the leader election problem in the geometric
Amoebot model in which nodes have no unique identifiers and only share
a common local sense of direction. Unlike other works, we consider the
deterministic leader election problem for general connected systems. We
propose a new deterministic leader election protocol that always succeeds
in finding 1, 2, 3, or 6 leaders. We show that if the protocol does not elect
a unique leader, deterministic leader election impossible for the system.

1 Introduction

Leader election is a fundamental problem that has been studied in both shared
memory and message passing system models. It is a prototypical symmetry
breaking problem [7]. The goal of leader election is to identify a unique member
of the system as the leader. In anonymous systems, the requirement is for one
unique member to self-identify as a leader and for other members to agree that
a leader has been self-identified.

In this paper, we are interested in leader election in self-organizing particle
systems, specifically the well studied Amoebot Model [3]. In this model, particles
occupy cells in a hexagonal grid. They have finite memory, can communicate with
adjacent particles, and can expand into unoccupied adjacent cells. The system of
particles is assumed to be initially connected because there is no way to achieve
coordination between different connected components without additional system
assumptions [6]. Electing a leader can facilitate solving problems such as shape-
formation [8], object coating [5] and system compression [1].

Leader election in the Amoebot model has been studied in the general case
without restrictions on the connectedness of the system [2,4], but those solutions
are probabilistic. The only deterministic solution for leader election is that of Di
Luna et al. [8] who use deterministic leader election to solve the deterministic
shape formation problem. While technically involved, their solution assumes that
the particle system is simply connected which means that the unoccupied cells
form a connected component. Their solution takes advantage of the fact that
the shape has no holes. It starts with an initial erosion phase in which particles
on the corners of the system eliminate themselves as candidate leaders. This
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 381–386, 2018.
https://doi.org/10.1007/978-3-030-03232-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_25&domain=pdf


382 R. A. Bazzi and J. L. Briones

phase ends with a unique leader or 2 or 3 candidate leaders. If there are 2
or 3 candidate leaders left, they form trees containing other particles in the
system and compare these trees to each other to break the symmetry. If the
trees are identical, it follows that the particle system has symmetry that makes
deterministic leader election impossible. The approach of Di Luna et al. does not
work in a system with holes because erosion does not work in the general case.
The work of Di Luna et al. assumes no shared local sense of direction (chirality),
but, once candidate leaders have been identified, achieves a common chirality
using particle movement to beak symmetry.

The main contribution of this paper is a solution to the deterministic leader
election problem in general connected systems. To overcome the limitation of the
earlier work, we come up with a novel approach to determine a small number of
leaders (1, 2, 3, or 6) on the unique outer boundary of the system. After the can-
didate leaders are determined, the solution proceeds as in [8]. Candidate leaders
grow trees that are then compared to break symmetry. If breaking symmetry is
not possible, then, like [8] we establish constructively that deterministic leader
election is not possible. Unlike [8] in which candidate leaders are adjacent, in
our setting, coordinating candidate leaders requires more care.

2 System Model

We consider the geometric Amoebot model [3] in which anonymous particles
with finite memory occupy cells within a hexagonal lattice. Particles have the
same chirality. Particles can occupy one cell (contracted) or two cells (expanded)
and no cell can be occupied by more than one particle. Since our leader election
algorithm does not involve any expansion, each particle has six ports ordered
clockwise from port 0 through port 5, one port on each of the adjacent cells. The
ports are used to communicate with other particles in adjoining cells and to sense
if an adjacent cell is occupied by another particle or is empty. A communication
edge between two particles consists of a pair of corresponding ports. For example,
between cells A and B in Fig. 1, port 3 of A and port 4 of B form a communication
edge between A and B. Two adjacent particles know the port numbers that
form the edge between them. Particles communicate by writing to their local
memory and reading the local memory of adjacent particles. This allows for a
simple message passing between particles. We assume the particle system to be
connected.

In the solution, we introduce six virtual nodes for each cell, one node per
port. These nodes are represented in Fig. 1 by black dots at the vertices of the
cells occupied by the particle. Port i is on the edge between node i − 1 mod 6
and node i. Nodes execute steps when they are activated by the scheduler which
we assume to be completely asynchronous.



Deterministic Leader Election in Self-organizing Particle Systems 383

3 Leader Election

The algorithm has two main phases. In the first phase, a small number of candi-
date leaders are selected on the outer boundary of the system and in the second
phase further reduction of this number is attempted. If the algorithm does not
elect a unique leader in the second phase, the system must have symmetry that
prevents deterministic leader election.

Fig. 1. Particle system surrounded by unoccupied cells

In the first phase, the algorithm starts by running separate instances of a
boundary leader election algorithm on all the boundaries of the system (a node
is on a boundary if it is adjacent to an empty cell). An instance of a boundary
leader election algorithm is designed to work correctly if the participants in the
election consist of all nodes of a boundary. On the inner boundaries, if any,
it is guaranteed that no leader is elected. On the unique outer boundary, 1,
2, 3, or 6 candidate leaders are selected. Each leader also has what we call a
stretch, a sequence of contiguous nodes, associated with it. If there is a unique
leader, the algorithm terminates, but if there are multiple leaders, this means
that the outer boundary has symmetry that prevents the deterministic election
of a unique leader. This initial phase is the more involved phase and is done in a
sequence of phases that are not strictly synchronized. Having a small number of
leaders that can communicate around the outer boundary allows us to use the
tree comparison approach of [8] in the second phase.

If at the end of the first phase there are multiple candidate leaders, each
particle with a leader node tries to recruit as many particles as it can to form
a tree with the particle itself as the root of the tree. This is the same as the
approach of [8]. After all particles in the systems have joined a tree, each root
compares its tree to the tree of the root to its right on the outer border according
to an order relation. Every candidate leader then shares the results of these
comparisons will all other candidate leaders on the boundary. If the results of
all these comparison are equality, then there is symmetry in the system and
deterministic leader election is not possible. If the result of one of the comparisons



384 R. A. Bazzi and J. L. Briones

Fig. 2. Vertex labeling
and initialization of
stretches.

Fig. 3. Intermediate
step with two stretches
remaining.

Fig. 4. Final config-
uration. Termination
detected.

Algorithm 1. Stretch Expansion
1: function AttemptExpansion()
2: � s and s′ are two adjacent stretches. s′ is to the right of s.
3: if s.count > s′.count ∧ (s.count + s′.count ≤ 6 ∧ s.count > 0) then
4: Merge(s, s′)
5: else if s.count = s′.count = 1, 2, 3, or 6 then
6: if s ≡ s′ then � if s and s′ are lexicographically equal
7: DetectTermination() � initiate termination detection
8: else if s > s′ then � if s is lexicographically greater than s′

9: Merge(s, s′)

is inequality, then one or more candidate leaders are eliminated and the process
is repeated with the remaining roots. This is repeated a constant number of times
until either there is one unique remaining leader or there are multiple leaders
who are all tied in the tree comparison. If there is a unique leader, we are done,
otherwise, there is symmetry that prevents deterministic leader election. In what
follows, we describe some of the details of the first phase.

The first phases starts by having each particle sense its surrounding to deter-
mine if one or more cells around it are unoccupied. A particle can be on more
than one border, but each node can be on at most one border. When a particle
has identified itself as part of the outer border and its successors and predeces-
sors have been initialized, the particle labels its nodes with a unary label which
is +1 for border nodes that belong to only one particle and −1 for border nodes
that are shared between adjacent particles. This is illustrated in Fig. 2.

After labeling each node on the outer border, stretches attempt to expand
to eliminate possible leaders. The leftmost node in a stretch is considered the
leader (or head) of the stretch. The rightmost node in a stretch is called the
tail of a stretch. Within a stretch, each node has a predecessor pointer and a
successor pointer. The leader of the stretch maintains a counter which is equal
to the sum of the unary labels of the nodes in the stretch. The counter value
never exceeds the value 6. Initially, all nodes on the outer border are considered
independent stretches, of size 1, with a respective counter equal to their unary
label. All nodes are initialized to be both the head and tail of their stretch.
Figures 3 and 4 illustrate stretches.



Deterministic Leader Election in Self-organizing Particle Systems 385

Algorithm 2. Termination Detection
1: function DetectTermination(s)
2: terminate ← true
3: for i ← 1, k/s.count do � k = 6/s.count
4: s′ ← s
5: for j ← 1, i − 1 do
6: s′ ← s′.left � Rotate to the stretch left of s’
7: terminate ← (terminate ∧ (s′.count ≡ s.count))

8: s′ ← s′.left
9: terminate ← (terminate ∧ (s′.count = s.count))∧ s′ ≡ s

10: return terminate

Stretches can expand by merging with adjacent stretches. When two stretches
merge, the leader of the stretch on the left (s in Algorithm 1) becomes the leader
of the resulting stretch and its new count is the sum of its old count and the
count of the stretch being merged into. A merge is allowed only if the sum of the
two counts is less than or equal to 6. We avoid deadlocks by placing an order
relationship based on the count and lexicographic comparison between stretches.
We require that the stretch s on the left has a positive count and either its count
is larger than that of the stretch s′ on the right (s′) or the two counts are equal,
but the sequence of unary labels of s is lexicographically larger than that of s′.

Finally, to detect termination, a stretch attempts to establish that the whole
border on which it resides is covered with k identical stretches that have the
same positive count (k = 1, 2, 3, or 6).

References

1. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm for
compression in self-organizing particle systems. In: Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, pp. 279–288. ACM (2016)

2. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Fernández Anta, A.,
Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS,
vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72751-6 10

3. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: amoebot-a new model for programmable matter. In: Pro-
ceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, pp. 220–222. ACM (2014)

4. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An
algorithmic framework for shape formation problems in self-organizing particle sys-
tems. In: Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, p. 21. ACM (2015)

5. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theor. Comput. Sci. 671, 56–68 (2017)

https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10


386 R. A. Bazzi and J. L. Briones

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–
447 (2008)

7. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput. 88(1),
60–87 (1990)

8. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape for-
mation by programmable particles. In: 21st International Conference on Principles
of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017, pp.
31:1–31:16 (2017)


	Brief Announcement: Deterministic Leader Election in Self-organizing Particle Systems
	1 Introduction
	2 System Model
	3 Leader Election
	References




