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Abstract. The priority queue with DELETEMIN and INSERT opera-
tions is a classical interface for ordering items associated with priorities.
Some important algorithms, such as Dijkstra’s single-source-shortest-
path, Adaptive Huffman Trees, etc. also require changing the priorities
of items in the runtime. Existing lock-free priority queues do not directly
support the dynamic mutation of the priorities. This paper presents
the first concurrent lock-free unbounded binary heap that implements
a priority queue with mutable priorities. The operations are provably
linearizable. We also designed an optimized version of the algorithm by
combining the concurrent operations that substantially improves the per-
formance. For experimental evaluation, we implemented the algorithm in
both C/C++ and Java. A number of micro-benchmarks show that our
algorithm performs well in comparison to existing implementations.

Keywords: Heap * Lock-free * Linearizability - Concurrent heap
Priority-queue - Elimination

1 Introduction

A priority queue orders a set of items by a numerical cost — often called priority
— associated with each item. In its most general form, a priority queue abstract
data type (ADT) is defined by two operations — INSERT and DELETEMIN. An
INSERT (k, elem) inserts an item elem with priority k& and a DELETEMIN ()
removes an item with the highest priority from the set of objects. Priority queues
are widely used at operating system kernels as well as in user-space. Some well-
known applications are discrete event simulations [10], graph search [20], oper-
ating systems schedulers [13], SAT solvers [5] and many others. Several of them,
such as Dijkstra’s single-source-shortest-path (SSSP) algorithm [7], Adaptive
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Huffman Trees [25], etc. require updating the priorities after inserting the items.
In today’s application settings, the underlying datasets grow immensely at run-
time necessitating the employed data structure to be adaptable to size variations.

At the same time, the proliferation of multi-core systems have essentially
mainstreamed the concurrent data structures. Concurrent data structure designs
are evaluated on consistency (correctness) and progress guarantees in addition
to scalability with increasing number of processing threads. The most common
consistency framework used in concurrent settings is linearizability [16], which
relates a concurrent execution on an object to its sequential specification. Lin-
earizability requires that an operation appears to take effect instantaneously at
a single linearization point between the operation’s invocation and its response.

Consistency may be trivially achieved using mutual exclusion locks that seri-
alize the access to the entire data structure, also called coarse-grained locking.
However, it severely limits the concurrent operations. Even if the number of
locks increase, i.e. fine-grained locking, they are still vulnerable to pitfalls such as
deadlock, priority inversion and convoying. An alternative approach is lock-free
implementation. In a lock-free concurrent data structure, at least one non-faulty
processing thread is guaranteed to complete its operation in a finite number of
steps. Effectively, lock-free data structures foster both scalability and progress
guarantee. A stronger progress guarantee is wait-freedom, which ensures that all
the non-faulty processes finish their operations in a finite number of steps. How-
ever, most often wait-freedom results in poor performance. Another approach to
implement consistent concurrent data structure is using software transactional
memory (STM) [22]. However, the performance of such implementations largely
depends on the design of the STM. Unsurprisingly, using STM to design con-
current data structures has often resulted in unacceptable performance [8].

Thus, an efficient and scalable unbounded concurrent lock-free data structure
implementing a mutable priority queue, i.e. one which offers updating priorities
of items dynamically, is highly sought-after in a large number of applications.

Based on the employed data structure, a priority queue implementation can
be categorized primarily as: (a) heap!-based, and (b) skip-list-based.

The previous attempts on heap-based concurrent priority queues have largely
been blocking (lock-based) or impractical non-blocking designs. Hunt et al. [17]
presented a fine-grained lock-based heap, which locks each node separately and
operations release and re-acquire locks after each step in bubble-up to prevent
deadlocks with concurrent bubble-down operations. Tamir et al. [24] extended
the work of [17] by including operations, called CHANGEKEY, to update the pri-
ority of items. The focus of their work is on the CHANGEKEY operations, which
they show that improves the overall performance of Dijkstra’s SSSP algorithm.

The first attempt to implement a non-blocking concurrent heap was by Her-
lihy [15]. However, this wait-free algorithm required copying the entire heap
making the implementation inherently sequential and of little practical interest.
Barnes [3] proposed a wait-free algorithm to address the drawbacks of Herlihy.
His definition of the wait-free property is different from the generally accepted

! In this work, by a heap we mean a binary heap.
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definition. Additionally, no implementation of this algorithm exits. Israeli et al.
presented a wait-free algorithm for heap-based priority queues [18] which utilizes
atomic primitives? that are not implemented in existing hardware platforms.

Dragicive et al. [8] designed a lock-free heap that uses STM for concurrency
control. Their design offered poor performance due to the overhead of the STM.
We point out that all the previously available concurrent heaps are bounded to
a fixed size allocated at the initialization. There are available works on skip-
list-based concurrent priority queues — Shavit et al. [21], Tsigas et al. [23], etc.
Alistarh et al. [1] proposed an approximate DELETEMIN operation in skip-lists.
However, the skip-list-based implementations face difficulty to implement the
algorithms that require mutable priorities at the runtime: observably, the overall
performance of the algorithm degrades [24].

We present CoMPiQQ - a Concurrent lock-free unbounded heap-based
Mutable Priority Queue. The Table 1 summarily contrasts our contributions
with the relevant existing works.

Table 1. Concurrent priority queues

Paper Data  Struc- |Progress Mutable |Unbound{Practical — Im-
ture Guarantee Priority plementation

Herlihy [15] Heap Wait-free No No No

Hunt et al. [17] Heap Lock-based  |No No Scales poorly

Shavit et al. [21]  |Skip-list Lock-free No Yes Yes

Tsigas et al. [23]  [Skip-list Lock-free No Yes Yes

Dragicive et al. [8] |Heap Lock-free No No Scales poorly

Tamir et al. [24]  |Heap Lock-based  |Yes No Yes

CoMPiQ Heap Lock-free Yes Yes Yes

In the paper, first we present the system model and the sequential specifica-
tion of the heap data structure (Sect.2). Then, we describe the lock-free design
of the heap in detail (Sect.3). We present the proof of linearizability and lock-
freedom of the concurrent operations (Sect.4). We implemented the algorithm
in both C/C++ and Java. We describe the micro-benchmarks that we used to
evaluate the algorithm, wherein we also discuss the performance with respect
to the design optimizations. Our experiments demonstrate that the presented
algorithm performs well in comparison to the existing counterparts (Sect. 5).

2 Preliminaries

We consider an asynchronous shared memory system with a finite set of n
processing threads pi,...,p, where n may exceed the number of physical pro-
cessors. In addition to the atomic read and write instructions, the system
supports Compare-And-Swap (CAS) atomic read-modify-write instructions. The

2 8C2 which validates and writes to two disjoint memory locations atomically.



368 1. Walulya et al.

CAS(address, old, new) instruction checks if the current value at a memory loca-
tion (address) is equivalent to the given value old, and only if true, changes
the value of address to the new value (new) and returns TRUE; otherwise the
memory location remains unchanged and the instruction returns FALSE.

The ADT mutable priority queue is defined by the following operations:

— INSERT (k, elem): An INSERT (k,elem) inserts an item elem with priority k
to the heap. We assume that k belongs to a totally ordered set. INSERT is
typically a void procedure, however, we return a cross-reference to the insert
item instance which can be used in the CHANGEKEY procedure®. In case
there is an item elem’ available in the heap with the same priority k, the
item elem gets inserted and the two items elem and elem’ can have arbitrary
order by their indexes. Thus, the heap allows items with duplicate priority.

— DELETEMIN(): A DELETEMIN removes an item with highest priority from
the heap and returns that item itself. DELETEMIN returns a special item
EMPTY making no changes in the heap, if there are no items in the heap.

— CHANGEKEY (it, k2): A CHANGEKEY (it, k) changes the heap so that an
item elem referenced by the iterator it, if existing in the heap, is placed at
the priority ke. It returns EMPTY if the item referenced by it was deleted from
the priority queue.

In our work, a heap data structure implements a mutable priority queue. A
heap is implemented by way of a resizable array. Thus, it contains items that
allow for random access using a non-negative index. The array is considered
virtually divided in levels. In the array, the root of the heap occupies the index 1
and is considered to be at the level 0. The left and the right children of the item
at the index ¢ are at the indexes 2i and 2i + 1, respectively. We have considered
a minheap, which means that the heap maintains the following heap property.

Heap Property: An item elem; with priority k; has higher priority than the
item elems with priority ko, if k1<ks. Thus, a parent always has a smaller
priority compared to its children and the root has the highest priority. Moreover,
no item exists at level [ unless the level [ — 1 is completely full.

To demonstrate the correctness of our concurrent heap design we verify the
safety and liveness properties. The safety property that we use is linearizability
[16], whereas, the liveness is proved as lock-freedom [14].

Lock-free Implementations utilizing CAS are prone to the ABA problem [19]:
a thread P reads a value A from a shared memory location, a concurrent thread
P changes the value to B and then P or another thread changes it back A; when
P executes a CAS instruction on the location, it succeeds erroneously as if the
location has not been changed since last read by P. Several memory management
solutions have been proposed to address the ABA problem [11,19]. For ease of
exposition, we assume the availability of a non-blocking memory management
and garbage collection.

3 In our implementation, the INSERT operations never returns a null or fails to make
any change due to the reason of finding the heap full. The heap is never full as long
as we have sufficient system memory available.
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3 Algorithm

Our heap implementation utilizes the lock-free dynamic resizable arrays [6] as the
underlying container, which offers both unbounded storage and lock-free progress
guarantees. The ADT operations consist of a series of steps, such as modifying
the size and then appending an item to the heap, or swapping the item at the
root with the item at the bottom, or for that matter swapping any two items
in case of a CHANGEKEY, followed by restoring the heap property. Each step
comprises of at least one atomic primitive execution over a shared memory word.
The procedures HEAPIFYUP and HEAPIFYDOWN restore the heap property.

In order to achieve lock-free synchronization on concurrent access, we apply
the cooperative technique described by Barnes [2]. The main idea is to detach
operations from the executing threads. A thread that wishes to execute an oper-
ation on a slot of the array, creates a description of the work that it needs to
perform, and writes the descriptor on the slot: we call it marking the slot. The
operation can be completed by any thread that encounters the descriptor, which
comes handy to ensure lock-freedom if the thread that initiated the operation is
delayed or crashes.

Please note that marking is not locking a slot. It can be thought as shutting
the door of a slot after putting down the description of all that is to be done
inside. Thus any concurrent thread instead of busy waiting at the door actually
carries the description with itself and tries to finish the work initiated by another
thread in case that thread could not finish in time.

In our design, we maintain a global descriptor which encapsulates the cur-
rent size of the heap and allows atomic modification of the size value and the
associated heap slots with a sequence of CAS instructions. Additionally, we use
descriptor objects at the slots during HEAPIFYUP and HEAPIFYDOWN calls. The
threads calling HEAPIFYUP or HEAPIFYDOWN synchronize by way of executing
CAS at these descriptors.

: type Heap { type Info { type Slot {
Slot *vdatal|[[; : bool pending; Elem *elem;
size t size; Info *info;

size_t pos;

1 1:

2 2

3: Info *hdescr; 3

4: } 4:

5: OpType {HPUP, HPDOWN}; 2: OpType op;
7
8:

struct Elem {

value _t key;
T *item

}

Elem *old, *new;
> Heap initialized Info *lup, *rup;

6: Heap* heap < (vdata, (1, null))

PP D

)

(a) (b) (c)

Fig. 1. Type definitions for the heap structure, descriptors and initialization.

Data types and heap initialization are given in Fig.1. The Heap structure
holds pointers to the data storage arrays and a descriptor object, Fig. 1a - line 1
to 4. A descriptor object, Fig. 1b, maintains information about the state includ-
ing the current size of the heap. Therefore, we initialize the heap with a dummy
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descriptor object with size 1, Fig. la - line 6. To store auxiliary data with the
priorities, our design maintains the heap as an array of pointers to item nodes.
Each slot in the heap has a pointer elem to an Elem and a pointer info to
an Info object which records the state of the slot: stable or transient due to an
update, Fig. 1c. An Info descriptor stores enough information, such that a thread
encountering a slot in a transient state can help advance the operation.

3.1 Lock-Free ADT Operations

The mutable priority queue operations in the lock-free heap are shown by flow-
charts in Figs. 2 and 4. The main procedures called by these operations are shown
in Figs. 3, 5 and 6. The pseudo-codes of each of the operations, their subroutines,
and detail descriptions thereof are presented in the extended version of the paper
[26]. For ease of exposition, the flow-chart based presentation of the algorithm
is recursive. However, our implementation is fully non recursive as presented in
the pseudo-code in the [26].

Info ojects:- gd: Heap Global Descriptor, od: An operation’s descriptor.k, k1, ko represent
priorities starting at 0 (highest priority), whereas s, [, m, etc. represent the slot indexes.

. . () DELETEMIN() (i)
NsERT (k) CoMPLETEWRITE(gd).
| CoMPLETEWRITE(gd). | A
A Pending operation
Pending operation v \
y Check at gd the heap size and
| Check at gd if 3 a pending operation. | if 3 a pending operation.
No pending operation No pending operation
v Unsuccessful . Unsuccessful
and 3 items # any
| CAS od at gd to register. v item
Successful |CAS od at gd to register. A J
Ret
v Successful Eﬁp};;fl
| CoMPLETEWRITE(od). | v
| k= COMPLETEWRITE(Od).|
| HeapiryUp(size, 0). |—>| Return. | ¢
Return
| HeaPiFyDownN(1, k). |—> Min.

Fig. 2. INSERT and DELETEMIN operations in CoMPiQ.

The INSERT and DELETEMIN operations, Fig.2(i) and (ii), start with an
attempt to modify the size of the heap, this is achieved by registering the oper-
ation by way of executing a CAS to write its descriptor at the heap’s global
descriptor. That initiates the preliminary phase of the operation. The regis-
tered operation is considered pending until it is ready to call the procedures for
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CoMmPLETEWRITE(0d) bd: descriptor at the bottom slot.

] CAS at T CAS exchange
Help(size, bd). to reliasreoi))d Return. ; Return

items b/w

bottom slot.

priority

Unsuccessful OT = HPUP. OT = root and bottom. [ at the

y Successful|OT « od. OPTYPE] HPDOWN. CAS delete bottom.
| > >

|CAS to mark bottom.l

Fig. 3. COMPLETEWRITE procedure.

CHANGEKEY (it, k2) P Unsuccessful
¢ ﬁ Help(s, s.D). [

False 0d.OPTYPE

Check at gd <~ HPDOWN.

if heap size > s.
CAS od at s

to register.| Successful

Help(s, od).

0d.OPTYPE
< HPUP.

False

Fig. 4. CHANGEKEY operation in CoMPiQ.

restoring the heap property. The threads that encounter this operation, can help
complete the preliminary phase.

The steps to complete the preliminary phase are taken in the procedure CoM-
PLETEWRITE, see Fig.3. COMPLETEWRITE first fixes the bottom of the heap
and then depending upon the type of restoration required: HPUP or HPDOWN,
release the root or bottom. This procedure helps in scaling the method because
it releases one end of the heap as soon as the preliminary phase is completed. In
case of DELETEMIN operation calling COMPLETEWRITE, it returns the priority
of the bottom-most item in the heap.

A CHANGEKEY operation, Fig. 4, starts with checking the size of the heap
at the global descriptor to verify if the item with the priority that it desires to
change exists in the heap. Thereafter, it attempts to register itself by marking
the slot of the item, and calls HEAPIFYUP or HEAPIFYDOWN as needed. If
the marking fails, it helps the operation that would have marked the slot and
thereafter reattempts marking.

In the Fig.5, the procedures HEAPIFYUP and HEAPIFYDOWN are shown.
They take two inputs: the index of the source slot where it starts and the priority
of the destination. HEAPIFYUP keeps on exchanging the item with its parent up
the heap until the destination priority is set at the slot such that heap property is
restored. On the other hand, HEAPIFYDOWN traverses down the heap to do the
same. To exchange the item of the current node with that of either the parent or
a child, a CAS is used to first put a descriptor over there and thereafter exchange
is done atomically. If CAS fails then HELP is called to first help the obstructing
operation and then reattempt. The helping procedure ensures lock-freedom.

The HELP call is all about synchronization between concurrent HEAPIFYUP
and HEAPIFYDOWN procedures. At a conflict, HEAPIFYDOWN is given priority.
HEAPIFYUP allows the HEAPIFYDOWN to gain ownership of a child slot. This
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HeapirYUP(s, k) () HiAPIFYDOWN(s, k) (i)
s.priority Help(p, p.D). s.priority | Help(l, l.D),| | Help(r, r.D).
< k? > k7
Unsuccessful
True Unsuccessful False True
False l i \ 4 Unsuccessful| Y
CAS at the parent p of CAS at left child I CAS at right child r
s to mark. v of s to mark. of s to mark.
¢ Successful Ig Successful
Return. Successful
p.priority False Y
< k? m.priority Find min m
¥ Truc P of l and r
> ke by priority.
CAS to exchange items. l False
CAS to release s. True
Y
cAS t loas CAS to exchange items
© release p. between s and m. Y
CAS to release s
A leas .
\ and other child. CAS to release m
| HeapriryUpr(p, k). | ¢
Y

|—>|‘ Return. | | HeapiryDowN(m, k). |—>|M

Fig. 5. HEAPIFYUP and HEAPIFYDOWN procedures.

is done by marking the slot with a so called flat descriptor that stores the old
information as well. This information is carried by the descriptor at the heap
slots, thereby other concurrent operations help accordingly. A HEAPIFYDOWN
after completing its own task, restores the information of HEAPIFYUP if that
existed at the slot previously.

Please note that, we compare the items at the slots according to their priori-
ties. Moreover, the higher the value of a priority, the lower is the priority as per
the min-heap property.

3.2 Design Optimizations

We add two optimizations: (1) “bit-reversal” to ensure that the consecutive
INSERT operations traverse different subtrees up the heap to restore heap prop-
erty [17]. (2) Elimination of INSERT by handing the items off to the concurrent
DELETEMIN operations, instead of having the DELETEMIN uproot an item out
of position from the end of the heap. An eliminated INSERT operation can return
immediately without even attempting to register itself. Below a brief description
of the elimination technique is given.

Elimination Optimization: We observe that the DELETEMIN operation lifts
an item from the bottom slot in the heap and heapifesDown the heap, while
as the INSERT operation appends an item to the end of the heap and heapifies
Up the heap. Therefore, we can optimize by allowing the INSERT to hand-off its
item to a concurrent DELETEMIN. Thus, the DELETEMIN takes an item from
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a pending INSERT instead of dislodging one from the end of the heap. Once
an INSERT operation successfully hands-off its item, it returns without calling
HEAPIFYUP.

We utilize elimination arrays as suggested by Hendlar et. al [12], with each
INSERT operation having a dedicated slot in the array. The DELETEMIN oper-
ation traverses the array sequentially until it finds a pending INSERT or gets to
the end of the array. If the DELETEMIN operation fails to eliminate a pend-
ing INSERT, it proceeds with displacing the last item in the heap, otherwise it
continues with the item taken from the pending INSERT as described below.

After eliminating a pending INSERT operation (lifting its item from the elim-
ination array), the DELETEMIN compares the lifted item to the item at the root
of the heap. If the lifted item has a higher priority, the DELETEMIN returns
the lifted item without having to call HEAPIFYDOWN. Otherwise, it proceeds to
place the lifted item and returns the item previously at the root.

4 Correctness Proof

To prove linearizability, we define the linearization point of each ADT opera-
tion. We order the operations, which have definitely returned, according to their
linearization points, thus obtaining a sequential history of execution. Thereby,
it is shown that the concurrent history of execution of a finite number of ADT
operations is equivalent to a sequential history. By induction, any concurrent
execution is thus shown to be equivalent to a definite sequential history. Addi-
tionally, we need to show that each of the ADT operations necessarily brings
the heap in a state that satisfies the heap property before its completion.
Proving lock-freedom requires that infinitely often some non-faulty processing
thread will complete its operation in a finite number of steps regardless of the
failed or delayed threads. To prove lock-freedom, we shall show that no operation
op busy-waits (by holding locks, for example) when obstructed by a concurrent
operation op’ and goes to help op’ to finish its operation. It may well be that
op is repeatedly obstructed by concurrent operations op;, i € {1,2,...} never
letting it complete its own operation, however, by virtue of the same protocol
it is proved that at least one non-faulty thread completes its operation in finite
number of steps. Under the constraints of space, we sketch the two proofs here.

Theorem 1. The ADT operations implemented by CoMPiQ are linearizable.
Proof. The linearization points of the ADT operations are the following;:

1. INSERT: An INSERT(k,elem) operation begins with checking the global
descriptor gd of the heap. If it finds that there is a pending concurrent oper-
ation, it goes to first help that by calling a COMPLETEWRITE(gd). Thus, an
INSERT starts taking steps for itself only after the successful CAS that registers
it. After that, INSERT calls COMPLETEWRITE to write its descriptor, and on
completion, a HEAPIFYUP is called. The HEAPIFYUP finally makes the item
elem part of the heap with the successful CAS. Thus for an INSERT operation
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that successfully performs this CAS step, its linearization point is there. In
case it gets helped by a concurrent operation the successful CAS that finally
makes the item elem part of the heap is the linearization point. However, in
either case the CAS of linearization point is performed before the completion
of INSERT. For detail, see [26]. Clearly, the linearization point of an INSERT

1. Walulya et al.

operation is between its invoke and return.
2. DELETEMIN: Depending on the return, there can be following cases:

(a) DELETEMIN returns EMPTY: The linearization point is at the atomic read
step where the DELETEMIN reads that the heap-size is 1 i.e. it contains

a the dummy descriptor object.

(b)

of a DELETEMIN in this case is at the step where it registers itself.

Thus, the linearization point of a DELETEMIN is between invoke and return.

DELETEMIN returns an item elem: In this case, where it registers itself
by a successful CAS at gd, it is guaranteed that it will itself complete if not
obstructed, or will get helped by a concurrent operation. Also, once the
descriptor od is written, a concurrent INSERT or DELETEMIN operation
treats the root of the binary heap as deleted. Thus, the return of the
concurrent operation treats the DELETEMIN that successfully put the
descriptor as if it had already returned. Therefore, the linearization point

Help(s, od).

Read destination
priority k£ and
OPTYPE OT at od.

Help(1, 1.D).

Unsuccessful &

OT = HPDOWN.

OoT =
HPUP.

HeaPiryUP(s, k)

4

Unsuccessful &
OT = HPDOWN. OT = HPDOWN.

Help(r, r.D).

\4

Y

CAS at left child 1
of s to mark.

CAS at right child r
of s to mark.

Unsuccessful &

L4

Complete X.

CAS mark with a fat descriptor
that includes the old one. If left
child then CAS mark the right one.

CAS back previous descriptor
(probably updated).

OT = HPUP. Successful
X m.priority Find min m
Y S k7 < of [ a.md. T
by priority.
True l False
Y
CAS to exchange items
between s and m. Y

CAS to release s

and other child.

!

| CAS to release m. |

| HeapiryDownN(m, k). ’—)| Return. |

Successful

Fig. 6. HELP procedure in CoMPiQ.
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3. CHANGEKEY: Similar to an INSERT, a CHANGEKEY terminates after its item
is relocated from one slot to another by way of calling a HEAPIFYUP or a
HEAPIFYDOWN. The CAS where the item will be visible to every operation
with its modified priority is the linearization point of a CHANGEKEY opera-
tion. When a CHANGEKEY returns without making any changes in the heap,
its linearization point is at the atomic read step where it reads the size of
the heap.

Furthermore, it can be observably determined that no operation returns
before the heap property is restored by calling either a HEAPIFYUP or a
HEAPIFYDOWN procedure. Any write on a shared memory word in the algo-
rithm happens by way of only a CAS. A dummy descriptor at the root ensures
that no null pointer is dereferenced. Clearly, the heap invariant is maintained
across the linearization points of the ADT operations. O

Theorem 2. The ADT operations implemented by CoMPiQ) are lock-free.

Proof. We can observe in the algorithm that a concurrent write at any shared
word happens only using a CAS. Further, if op; and ops are any two concurrent
operations, at no point after the failure of a CAS, op; or ops repeats the same
CAS step without helping the other operation. This methodology ensures that at
least one of the processes do finish its operation in a finite number of steps. 0O

5 Evaluation

In this section, we present an evaluation of our lock-free heap using micro-
benchmarks and a parallelized implementation of Dijkstra’s SSSP algorithm
described in [24]. For the micro-benchmark, we compare the heap-based con-
current priority queue implementations described below:

1. CoMPiQ: Our implementation of a lock-free heap as described in Sect. 3
with elimination optimization.

2. LB-Heap: A fine grained locking implementation by Hunt et. al. [17].
Releases locks and re-aquires them on each iteration of the heapifyup opera-
tion to prevent deadlocks with concurrent heapifydown operation.

3. Champ: Modification of LB-Heap to remove redundant unlock and lock oper-
ations. Deadlocks are prevented using tryLock() in the heapifyup and only
releasing already acquired locks if a subsequent tryLock() fails. We received
Java code from the authors, reimplemented it in C/C++ and included the
exponential back-off and bit-reversal scheme [17] to reduce contention.

4. STL-Heap: The C++ STL std: :priority_queue<T> made thread-safe with
a single global lock (coarse-grained locking). We experimented with multiple
lock synchronization primitives, however the mutex was the best performing.

Methodology: We performed our evaluations on a dual-socket server with a
3.4 GHz Intel E5-2687W-v2 having 16 physcores (32 hardware threads by hyper-
threading), 16 GB of RAM, running Ubuntu 13.04 Linux. All the algorithms in
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Fig. 7. Throughput Insert/DeleteMin operations executed uniformly and randomly
independent on the heap implementations as we vary the number of threads and
parallel-work (pw) in CPU cycles. K represents the initial number of items in the heap.

the micro-benchmark were implemented in C/C++, compiled with gce version
4.9.2, -O3 and run as part of the ASCYLIB library [4]. Additionally, we pin soft-
ware threads onto hardware cores so as to leverage CPU affinity within sockets.
We utilize SSMEM [4] with epoch-based garbage collection [9].

We measured throughput as Million operations per second (Mops/s), while
varying the number of threads, initial heap size and contention (parallel-work:
work performed by threads outside accessing the heap). We do not expect the
concurrent heap to be repeatedly accessed by threads without work in between
so we simulate this work by varying parallel-work(pw), thus giving a more real-
istic evaluation than just stress testing. The lower the parallel-work, the more
contention experienced by threads accessing the heap. We varied the number of
items in the heap before starting the measurements with (k € {210,217 220}),
Operations on the heap are randomly chosen with a distribution of 50% Insert
and 50% DeleteMin operations. Priorities for inserted items where selected uni-
formly at random from the range of all 64-bit integers. Each experiment run for
5 seconds, we present the average over 6 runs for each parameter configuration.

Throughput: Figure 7 presents measured throughput in Million operations per
second (Mops/s) as we vary the contention in parallel-work (pw) in CPU cycles
and the number of threads. We present three sets of graphs for three initial sizes
of the heap (k € {210,217 2201)  this is to show the effect of heap size on the
execution time of the operations.
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The figure shows that with small initial size 2!° (row 1, Fig. 7), at low thread
contention, the single lock implementation STL-Heap outperforms other imple-
mentations. This attributed to the low overheads incurred by STL-Heap using
mutual exclusion, and high overheads on both the multi-lock LB-Heap, Champ
and lock-free CoMPiQ. Similar observation about the single-lock implementation
was made in previous works [17,23].

Champ optimizes on the heapifyup operation of LB-Heap by removing redun-
dant unlock and re-lock operations in uncontended cases, however, in case
of contention, failure to acquire a lock, results in releasing locks held, and an
attempt to reacquire them. On modern architectures with private caches, a pro-
cess that releases a lock has a much higher probability of reacquiring the lock if
it attempts to acquire the lock immediately. Thus, an implementation of Champ
was showing similar performance figures as LB-Heap. We modified the imple-
mentation by adding exponential back-off between releasing a lock, and attempts
to re-acquire the same lock. This is the major reason for the performance differ-
ences between Champ and LB-Heap.

As we increase the number of threads, contention for the lock increases and
performance deteriorates. We observe that the lock-free algorithm with elimina-
tion(CoMPiQ), scales up as we increase the thread count. Elimination increases
the concurrency exploited by the operations as an INSERT completes without
contending for the global descriptor or creating contention within the heap
with HEAPIFYUP operations. All implementations degrade in performance as we
deploy more than 16 threads due to communication overheads across sockets. We
still observe that CoMPiQ offers better throughput on multi-socket executions.

As we increase the initial size of the heap (height of the heap), “bit-reversal”
allows for more concurrency, and thus reducing the impact of synchronization
overhead on the performance. In this regard, we see that for heap size 22° the per-
formance of the single-lock implementation drops significantly relative to other
implementations with increasing thread count. The CoMPiQ performs best with
increased opportunities for concurrency and reduced contention on the heap.

Increasing parallel work (pw € {1,10,100,1000}) affects the lock-based
implementations more than the lock-free implementations because the concur-
rency overheads no longer dominate performance, but concurrency. Thus, CoM-
PiQ still outperforms other implementations.

Discussion: Key observations are that — the heap is an inherently sequential
data structure and even the most efficient implementation is still outperformed
significantly by a single thread executing on a sequential heap for low levels of
parallel-work. However, as the parallel work increases, the benefit of increas-
ing concurrency becomes more significant. Additionally, bit-reversal offers more
opportunities for disjoint-access allowing better exploitation of concurrency on
larger size heaps to offset synchronization overheads. This is less significant in
smaller heaps as successive Insert operations conflict on the paths to the root.
The root and the size variable create a severe bottleneck in both blocking and
non-blocking implementations, as all operations have to modify the size vari-
able, while all DeleteMin operations modify the size and also block the root for



378 1. Walulya et al.

Random graph(p=1%) Random graph(p=5%)
0.09 0.4
0.3
0.06 02
0.03 01
0.00 0.0
1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32
Random graph(p=10%) Random graph(p=20%)
0.8 15
g 06 10
&2
g ™ 05
= 02 ’
0.0 0.0
1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32
Random graph(p=50%) Random graph(p=80%)
4 5
3 4
Py 3
2
1 1
0 0
1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32
#Threads

Champ CoMPIQ

Fig. 8. Runtimes for parallel Dijkstra’s SSSP for different random graphs

exclusive access. CoMPiQ uses elimination to reduce on the contention at the
bottleneck, thus resulting in better performance.

Parallel SSSP: One important application of priority queues that utilizes the
changeKey operation is the Dijkstra’s SSSP algorithm. To evaluate the perfor-
mance of CoMPiQ, we implemented CoMPiQ as part of the benchmark suite
received from [24] which included a parallel implementation Dijkstra’s algorithm
and Champ which is the only other implementation that supports changeKey
operation. The parallel Dijkstra’s SSSP algorithm availed in the benchmark relies
heavily on locks to ensure correctness, with this in mind, we plugged in our imple-
mentation without modifying the parallel SSP algorithm for fair comparison. A
more optimistic parallel implementation of Dijkstra’s SSSP algorithm is left as
future work. In the benchmark, running time is measured over several input
graphs and number of execution threads. Each input graph is generated with
10,000 vertices, with edges occurring independently randomly with some proba-
bility p and a random weight in the range [1-100]. The parallel Dijkstra’s SSSP
algorithm and the evaluated priority queues are implemented in Java.

Figure 8 shows that the CoMPiQ performs comparably with Champ. This
implies that overheads incurred to ensure lock-freedom do not degrade perfor-
mance of CoMPiQ) when used in parallel applications. Note that node locks
are used in this parallelization, thus, as pointed out earlier, we anticipate sig-
nificant performance improvements with a more optimistic parallelization, that
uses atomics to update node weights. We only considered implementations that
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support the changeKey operation. Please refer to [24] for an evaluation involving
skiplist-based priority queues that do not support changeKey.

6 Conclusion

In this paper, we presented a novel algorithm for an array-based unbounded
concurrent lock-free heap. The heap implements a priority queue interface with
the additional facility of changing the priority of an item in the runtime. Our
work contributes to many important applications, which use the priority queue
ADT and need to modify the priority of the items dynamically, in a definitive
way. Our micro-benchmark based experiments demonstrated that our algorithm
performs well in comparison to similar existing algorithms that use locks.

With array-based implementations, it is trivial to represent a d-ary heap,
however, implementation of a concurrent multi-way heap creates new challenges.
The multi-way heaps lower the traversal cost by reducing the height of the tree,
but increase the synchronization overhead as an operation attempts to determine
the priorities of all the d-children. The techniques introduced in this article may
be useful in implementing non-blocking versions of the heap-ordered d-ary heaps.
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