
Clairvoyant State Machine Replications

Rida Bazzi1(B) and Maurice Herlihy2

1 Arizona State University, Tempe, AZ, USA
bazzi@asu.edu

2 Brown University, Providence, RI, USA
mph@cs.brown.edu

Abstract. We propose a new protocol for the generalized consensus
problem in asynchronous systems subject to Byzantine server failures.
The protocol solves the consensus problem in a setting in which infor-
mation about conflict between transactions is available (such information
can be in the form of transaction read and write sets). The use of non-
skipping timestamps permits servers to commit transactions as soon as
they know that no conflicting transaction can be ordered earlier. Unlike
most prior proposals (for generalized or classical consensus), which use
a leader to order transactions, this protocol is leaderless, and relies on
non-skipping timestamps for transaction ordering. Being leaderless, the
protocol does not need to pause for leader elections. For n servers of
which f may be faulty, this protocol requires n > 4f .

1 Introduction

A distributed ledger is a distributed data structure, replicated across multiple
nodes, where transactions from clients are published in an agreed-upon total
order. Today, Bitcoin [25] is perhaps the best-known distributed ledger protocol.

There are two kinds of distributed ledgers. In permissionless ledgers, such as
Bitcoin, any node can participate in the common protocol by proposing transac-
tions, and helping to order them. In permissioned implementations, by contrast,
a node must be authorized before it can participate. Permissionless ledgers make
sense for cryptocurrencies which seek to ensure that nobody can control who can
participate. Permissioned ledgers make sense for structured marketplaces, such
as financial exchanges, where parties do not necessarily trust one another, but
where openness and anonymity are not goals. State machine replication [32] is
the most common way to implement permissioned ledgers.

In state machine replication, a total order is agreed upon for all transac-
tions and every server replica executes the transactions in the same order. If
two successive transactions commute, the two transactions can be executed in
different orders by different servers. To determine if two transactions commute,
we can check if the state variables accessed for reading or writing (read and
write sets) by one transaction are written to by the other transactions and vice-
versa. Existing state machine replication protocols are limited in their ability
to exploit transaction commutativity. Protocols that exploit general transaction
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 254–268, 2018.
https://doi.org/10.1007/978-3-030-03232-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_17&domain=pdf

Clairvoyant State Machine Replications 255

commutativity solve what is called the generalized consensus problem in which a
dependency structure is assumed on the transactions [18,28]. Published work on
generalized consensus, [18,28,29,33] with few exceptions, is limited to systems
with servers subject to crash failures. Pires et al. [30] propose a leader-based
generalized state machine replication algorithm and Abd-El-Malek et al. [1] pro-
pose a client-driven quorum-based protocol called Q/U that is very efficient
under low contention, but that requires n > 5f and can suffer from livelock due
to contention even in synchronous periods.

The contribution of this paper is a novel permissioned ledger algorithm, which
we call Byblos. Byblos has three properties of interest.

– Generalized. Byblos exploits semantic knowledge about client requests to
reduce transaction latency. Client transactions include statically-declared
read and write sets. The technical key to effectively exploiting semantic knowl-
edge is a novel use of non-skipping timestamp [5] to bound the set of in-flight
transactions that might end up ordered before a particular transaction. If
an otherwise-complete transaction does not conflict with any of its potential
predecessors, that transaction can be committed without further delay. For
loads with few conflicts, solution for generalized consensus can be much more
efficient than solutions for traditional consensus [18].

– Leaderless. Byblos is leaderless. With some exceptions [1,9,21], prior repli-
cated state machine algorithms use a leader to order client requests. Leader-
based algorithms typically have two kinds of phases: a relatively simple normal
phase where the leaders send and receive messages to the others, and a com-
plicated reconciliation phase [11,16,20,34] used to detect and replace faulty
leaders. Leader election comes at a cost: client requests are typically blocked
during leader election even in periods of synchrony. Such delays are especially
problematic if valuable periods of synchrony are spent electing leaders instead
of making progress. (Other leaderless protocols, such as EPaxos [23], make
similar observations.)
In Byblos, transactions are guaranteed to terminate in periods of synchrony.
Technically, Byblos does not need a leader because it is centered around a
leaderless non-skipping timestamp algorithm.

– Simple. Byblos is simple to explain and understand. While simplicity is sub-
jective, readers who are familiar with other protocols for Byzantine fault
tolerance will note that the full protocol is described in this paper.

In Byblos, transactions are ordered by timestamp, with ties broken canon-
ically. For a given timestamp value t, Byblos can determine an upper bound
on the set of in-flight pending transactions that might have assigned timestamp
t. This ability to bound the set of potentially conflicting pending transactions
makes Byblos clairvoyant. If a transaction T with timestamp t is the next one
to be executed by a replica among those transactions with timestamp t, and T
does not conflict with any of the pending transactions, then T can be executed
without waiting for the status of the pending transactions to be resolved. Byblos
guarantees progress using an “off-the-shelf” underlying asynchronous Byzantine

256 R. Bazzi and M. Herlihy

agreement algorithm, preferably early deciding [7,35], to CANCEL or COMMIT
pending transactions1.

Byblos tolerates f < n/4 faulty servers, assuming the underlying consensus
algorithm does the same. If there are no conflicts between pending transactions
and transactions waiting for execution, Byblos can make progress even in periods
of complete asynchrony. This does not contradict the FLP impossibility [15].

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the problem and the system model. Section 4 gives
a detailed description of Byblos and Sect. 5 states the theorems for correctness.
Section 6 describes how the protocol can be optimized to eliminate the exchange
of whole pending sets and Sect. 7 describes how Byzantine clients can be toler-
ated. Section 8 discusses the performance.

2 Related Work

Leader-based distributed ledgers such as Paxos [17] and Raft [27] do not exploit
knowledge of read-write sets to reduce latency and increase throughput. Dis-
tributed ledgers that do exploit such information include Generalized Paxos [18],
Egalitarian Paxos [23], Hyperledger Fabric [10], NEO [26], and Bitcoin itself [25].

There is a large body of literature on state machine replication, most of which
is leader-based. Clement et al. [12] observe that many Byzantine fault-tolerant
(BFT) protocols can perform poorly in the presence of Byzantine failures. They
define the notion of a fragile optimization, where a single misbehaving party can
knock the system off an optimized path. They also define gracious (synchronous,
non-faulty) and uncivil (synchronous, limited Byzantine faults) executions. They
argue that while most BFT protocols are optimized for gracious executions, it is
also important that protocols perform well in uncivil executions. They propose
Aardvark, a BFT protocol designed to perform well under uncivil executions.
Aardvark uses a leader, with regularly-scheduled view changes. The protocol
includes safeguards against censorship by the leader. Amir et al. [2] introduce
bounded delay as a performance goal for BFT protocols. They introduced Prime,
a BFT protocol that uses a leader that is monitored by other servers to provide
bounded delay in the presence of limited Byzantine failures.

Paxos [17] and Raft [27] are perhaps the best-known non-Byzantine repli-
cation protocols. Other Paxos-related non-Byzantine protocols include Men-
cius [19] and EPaxos [23]. These protocols, with the exception of EPaxos [23], use
some form of leader (or leaders) and view changes. Milosevic et al. [22] proposed
a BFT-Mencius which also uses performance monitoring and view changes to
limit the effects of slow servers. Byblos does not use view changes or performance
monitoring and hence allows unbounded variance below the timeout threshold.

Existing protocols that perform relatively well under uncivil executions, per-
form less well in civil executions, compared to protocols optimized only for civil
executions. Byblos is different. Its latency, measured in the number of message
1 Asynchronous consensus algorithms are those that guarantee safety at all times, and

progress under eventual synchrony.

Clairvoyant State Machine Replications 257

round trips, is comparable to protocols optimized for civil execution. In the
absence of slow or faulty clients, its latency in uncivil executions is also compa-
rable to that of protocol optimized for civil executions. On the down side, Byblos
uses signatures, whereas some protocols use faster message authentication codes.

Many BFT protocols that do not exploit commutativity. BFT protocols that
do not use leaders or view changes include HoneyBadgerBFT [21]. Unlike most
BFT protocols, HoneyBadgerBFT does not assume eventual (or partial) syn-
chrony, but relies on a randomized atomic broadcast protocol with a crypto-
graphic shared coin. HoneyBadgerBFT ensures censorship resistance through a
cryptographic subprotocol. Unlike Byblos, HoneyBadgerBFT does not exploit
transaction semantics. The RBFT BFT protocol [4] uses multiple leaders, who
track one another, and provide censorship resistance. It is designed for systems
in which clients can have multiple parallel pending requests. Aublin et al. [3]
describe a family of protocols, some of which have low (2-message) latency in
synchronous executions.

As noted, the protocols discussed, with the exception of EPaxos [23] which
only tolerates crash failures, do not solve the generalized consensus problem [18,
28]. Abd-El-Malek et al. [1] propose a client-driven quorum-based protocol called
Q/U that is very efficient under low contention, but that requires n > 5f and can
suffer from livelock due to contention even in synchronous periods. The algorithm
is leaderless and uses exponential backoff in the presence of contention. Other
work that aims at improving Q/U reverts to using a leader [13]. Recently Pires
et al. [30] proposed a leader-based Byzantine version of generalized Paxos.

In general, faulty clients in Byblos can force servers to revert to an “off-the-
shelf” binary Byzantine consensus protocol to resolve the outcome of “stuck”
transactions. Triggering the agreement protocol might incur a timeout which can
be significantly larger than typical communication delay even for fast protocols
(for example, Ben-Or et al. [8] or Mostefaoui et al. [24]). It might seem that
Byblos replaces one source of delay (faulty leader) with another (faulty clients),
but this replacement allows us to exploit transaction semantics which can be a
significant improvement in some settings. In systems in which faulty servers can
delay the processing of transactions (which is almost all systems), everyone is
delayed. (These issues are discussed in Sect. 8.)

3 Problem and System Model

A ledger (Fig. 1) can be thought of as an automaton consisting of a set of states
(for example, clients’ account balances), a set of deterministic state transitions
called transactions (for example, deposits, withdrawals, and transfers), and a
log recording the sequence of transactions. The state is needed to efficiently
compute transactions’ return values (for example, your account is overdrawn).
The log provides an audit trail: one can reconstruct any prior state of the ledger,
and trace who was responsible for each transaction.

Our solution encompasses the following components. There are n servers that
maintain the ledger’s long-lived state via a set of replicated tamper-proof logs.

258 R. Bazzi and M. Herlihy

Fig. 1. Ledger abstraction

Up to f of n = 4f + 1 servers may be Byzantine (capable of departing from
the protocol). The rest of the servers are honest. The logs of honest servers are
only modified by appending new transactions. The servers satisfy the following
safety property: for any pair of honest servers, one server’s log is a prefix of the
other’s. It follows that honest servers execute all transactions in the same order.

There is a potentially unbounded number of clients who originate transac-
tions. It is the servers’ job to accept transactions from clients, order them, and
publish this order. We assume that the clients are not Byzantine; in Sect. 7 we
explain how to handle Byzantine clients.

Communication is handled by an underlying message-diffusion system.
Clients broadcast messages, which are eventually delivered to all honest servers.
All messages are signed, and cannot be forged. Servers communicate with one
another though the same diffusion infrastructure.

The ledger state is a key-value store. Each client transaction declares a read
set, the set of keys it might possibly read, and a write set, the set of keys it
might possibly write. Any transaction that violates its declaration is rejected.
(Systems such as Generalized Paxos [18], Egalitarian Paxos [23], and NEO [26]
all make use of similar conflict declarations.)

4 Byblos Description

In Byblos, transactions are assigned integer timestamps, which partially deter-
mine the order in which they are applied. If two transactions do not overlap
in time, the later one will be assigned the later timestamp, but overlapping
transactions may be assigned the same timestamp. The timestamps assigned to
transactions are non-skipping [5]. This means that if a timestamp t is assigned
to a transaction, then every timestamp whose value is less than t must have been
previously assigned to some other transaction.

The non-skipping timestamp protocol [5] at the heart of the algorithm is
simple. A client broadcasts a timestamp request to the servers, and collects
at least n − f timestamps in response. The client selects the (f + 1)st latest
timestamp, which is guaranteed to be less than or equal to the latest timestamp
assigned to any transaction. The client increments that timestamp by one, and
later broadcasts it to the servers. It can be shown [5] that this way of choosing
timestamps ensures that no timestamp values are skipped.

Clairvoyant State Machine Replications 259

The properties of non-skipping timestamps suggest a simple way for servers
to execute transactions in a deterministic order in the absence of client failures.
For each timestamp value t, starting with 0, execute all transactions whose
timestamp is t in a deterministic order. Once all transactions with timestamp
t are executed, transactions with timestamp t + 1 can be executed and so on.
This seems too simple (even in the absence of client failures) and indeed it is.
The catch is that servers will need to be able to determine when all transactions
with a given timestamp value have been received.

To determine when all transactions with timestamp t have been received,
Byblos calculates for each transaction T a set of pending transactions: transac-
tions that were detected to be concurrent with T . The set of pending transactions
contains transactions, but not their assigned timestamps, because those times-
tamps might not be determined at the time a transaction is added to a pending
set. The crucial property is the following: if a transaction T has timestamp t,
then its set of pending transactions is guaranteed to contain all transactions
whose assigned timestamp will be t. However, it may also include transactions
whose assigned timestamp will be larger than t. With the set of pending trans-
action, in the absence of client failures, servers can execute all transactions in a
deterministic order as follows. If there are no pending transactions that conflict
either with T or with any transaction with the same timestamp ordered before
T , then T can be executed. Eventually, T will be executed when the timestamps
of all conflicting transactions in T ’s pending set become known.

The description so far assumes no client failures. If clients can fail, some
transactions in the pending set might never complete and the servers will be
stuck, unable to determine when all potentially conflicting transactions with
timestamp t have been received. We resolve this situation by executing a binary
consensus algorithm, over the values COMMIT and CANCEL, to resolve the fates
of orphaned transactions. Each client tries to commit its own transaction using
the consensus algorithm, and servers try to cancel pending set transactions that
are slow to arrive (with their timestamp). We can use any ”off-the-shelf” consen-
sus algorithm guaranteed to terminate if the system is eventually synchronous,
including known algorithms that terminate in one round if the system is well-
behaved [35]. Transaction execution proceeds as follows. Once all conflicting
transactions in the pending set of some transaction with timestamp t are either
cancelled or committed, the set of transactions with timestamp t is also known.
The execution can then proceed as outlined above for all transactions that have
not been cancelled.

The protocol guarantees safety at all times and liveness under eventual syn-
chrony [11]. The rest of this section describes the client and server code in details.

4.1 Client Code

The client code (Fig. 2) proceeds in three stages. In the first stage (Lines 6–
12), the client sends a Propose message to all servers, and collects at least n− f
ProposeAck responses. The client calculates t̂ which is equal to 1 plus the (f+1)st

largest amongst the timestamps it received and assigns it to its transaction. It

260 R. Bazzi and M. Herlihy

Fig. 2. Client code

is important to note that this particular way of choosing timestamps is what
guarantees timestamps to be non-skipping. In the second stage (Line 15–20), the
client broadcasts a Confirm message with t̂, waits for at least n − f responses,
each containing a set txn of transactions that have been proposed at a server,
and calculates the set pending, which is the union of these sets. The set pending is
guaranteed to contain every transactions whose timestamp is less than or equal
to t̂. We implicitly assume that the client verifies responses for well-formedness,
and for authenticity by checking signatures. In the third stage (Line 23–30), the
client broadcasts a Resolve message with the set pending, and waits to receive
f + 1 identical ResolveAck responses to determine the transaction’s outcome.
A ResolveAck message has three fields: (1) the transaction, (2) a code, either
COMMIT or CANCEL, and (3) a result. If the return code is COMMIT, the
call was successful, and the result is returned, otherwise a failure indication is
returned.

Clairvoyant State Machine Replications 261

Fig. 3. Server state with initializations

4.2 Server Code

Server State. The server state (Fig. 3) is composed of the following fields.

– state is the ledger state. A transaction is applied to state when it commits.
– clock is an integer counter that tracks the latest timestamp assigned to a

transaction. We assume this counter does not overflow.
Since timestamps are non-skipping, a 128-bit counter should be more than
sufficient in practice.

– proposed is set of transactions that have been proposed. When a transaction
is added to proposed, its timestamp might not be known.

– pending is a map from timestamps to sets of transactions. For timestamp t,
pending[t] is the set of transactions that might be assigned timestamp t.

– confirmed is a map from timestamps to sets of transactions. For timestamp
t, confirmed[t] is the set of known transactions that will either commit with
timestamp t or will be cancelled.

– committed is set of transactions known to have committed.
– cancelled is the set of transactions known to be cancelled.
– log is the sequence of committed transactions.
– timer is an array of timers used to timeout pending transactions.
– time is a local clock at the server to measure real time for timeouts. The local

clocks of servers are independent and need not be synchronized.

Server Actions. The server continually receives messages (Fig. 4). When it
receives a message from client c, it does the following. For Propose(T) (Lines 2–
4), it adds T to proposed, and returns the current clock value to the client.

For Confirm(T,t̂) (Line 6–12), the server advances clock to the maximum
of t̂ and its current value, and adds the transaction to the set of confirmed
transactions. The server also launches a consensus protocol with the other servers
to try to to COMMIT T. Then, it returns the current proposed set to the client.

For Resolve(T,t̂, txns) (Lines 14–29), the server adds the set of concurrent
transactions, txns, to the pending set. If this is a Resolve for a new transaction,

262 R. Bazzi and M. Herlihy

Fig. 4. Server code

the server propagates the resolve message in case other servers do not hear
directly from the client. At this point, at least 2f +1 servers must have initiated
a consensus protocol to commit T (a client does not send a resolve message
until it has received n − f confirm messages). The only remaining point that
can obstruct T’s execution are pending transactions. So, the server sets a timer
to give pending transaction the chance to arrive without being timed out. If
the timer expires and a transaction in the pending set is not confirmed, the
transaction is considered obstructing and an attempt is made to CANCEL it.
In practice the delay can be increased dynamically to guarantee that eventually
it reaches a value that works for periods of synchrony [20].

We assume that the consensus protocol executed by a server adds T to the
set committed if the server decides to COMMIT and adds T to the set cancelled
if it decides to CANCEL the transaction. We also assume that the first message
sent by the consensus protocol is a StartResolution (T,code) message which lets

Clairvoyant State Machine Replications 263

Fig. 5. Applying resolved transactions

a server that has not heard directly from a client join the consensus for a given
transaction (Lines 20–23).

Finally, a server attempts to apply transactions (Fig. 5). For every timestamp
t, we have three groups of transactions: (1) those that have been committed, (2)
those that have been cancelled, and (3) those that are pending. For a pend-
ing transaction we assign it to the timestamp t for which it first appeared in a
pending set. Note that it is possible that pending transactions might appear in
groups with different timestamps at different honest servers, but if they become
committed, they will have the same timestamp at all honest servers, and if they
are cancelled, they will be cancelled by all honest servers. Servers order all trans-
actions according to their timestamp and for a given timestamp, the transaction
(in all three groups) are ordered by taking a hash of the transaction request.
The OrderBefore() predicate is used to determine the order of transactions at a
given time. A transaction that is confirmed is ordered before another confirmed
transaction if it has a smaller timestamp or the same timestamp but T < T ′ in
the canonical order (Line 3). A transaction that is confirmed with timestamp t is
ordered before another pending transaction whose first appearance in a pending
set is for timestamp t′ if t < t′ or t = t′ but T < T ′ in the canonical order (Lines
4–5). A transaction that is cancelled is ordered before any other transaction
because such transactions do not conflict with other transactions (Lines 6–7). A
transaction T that is pending is ordered before another confirmed transaction
T ′ if the first timestamp for which T is pending is the same as the timestamp for
T ′, the two transactions conflict and either T appears before T ′ in the canonical
order or the timestamp of T is smaller than that of T ′.

264 R. Bazzi and M. Herlihy

5 Correctness

Safety and progress are established by the following lemmas and theorems. Proofs
are omitted for lack of space.

Lemma 1 (Same order for applied transaction). If two honest servers
apply two non-cancelled transactions T1 and T2 to the log, they apply them in
the same order.

Lemma 2 (Agreement on committed transaction). If an honest server
decides to commit or cancel a transaction, then every honest server eventually
makes the same decision.

Theorem 1 (Linearizability). The implementation is linearizable.

Theorem 2 (Progress in periods of synchrony). In periods of synchrony,
all transactions of correct clients are applied.

6 Eliminating Pending Sets

For ease of exposition, the protocol as presented so far requires clients and servers
to exchange proposed and pending sets that can grow without bounds. We explain
how the protocol can be modified to eliminate the exchange of these sets.

At a given correct server, the pending set of a confirmed transaction T with
timestamp t̂ is the set of all previously proposed transactions received by the
time the server receives the Confirm message for T. This is the txns set that the
client receives from the server then propagates as part of the pending set.

Instead of sending pending sets to clients, every server sends to every other
server confirmed transactions (with their timestamps) and proposed transactions
that it receives in the order in which they are received together with the clock
value at the time they are received. This is done once for every proposed and
confirmed transaction. The pending set for T can be given by the formula

pendingT =
⋃

s:s∈S∧|S|≥n−f

previous(s,T)

where previous(s,T) is the set of proposed transactions received before receiving
the Confirm message for T. In the original protocol, the client itself collects
n−f previous , which are simply the proposed sets. In the modified protocol, the
servers can only be guaranteed to receive n− 2f previous sets because f correct
servers might not have heard from the client and another f faulty servers might
deny having received the Confirm message for T. This can be easily fixed by
requiring every server to treat a Confirm message forwarded by another server as
a Confirm received from the client (if it has not previously received it). This way,
we guarantee that every server can calculate a pending set for every timestamp.

Clairvoyant State Machine Replications 265

7 Byzantine Clients

The solution as presented assumes clients fail by crashing. Also, it assumes that
some implicit checks are done by clients. For instance, it is possible for a Byzan-
tine server to send some fake pending transactions. We assume that the server
provides proof that all transactions in a pending set were indeed received by the
server. Conversely, when the client send a pending set to the servers, it can be
required to provide proof in the form of signatures that every transaction in the
set was indeed received by a server. Similarly, the client should provide proof at
the calculated hash is justified based on the individual timestamp received from
servers. Avoiding replay attacks is straightforward by having the servers sign
a cryptographic hash of the messages they send to the clients. These messages
include the transaction identifiers.

8 Performance

To evaluate the performance of our solution, we adopt the definitions of gracious
and uncivil executions from Clement et al. [12].

Definition 1 (Gracious execution [12]). An execution is gracious if and only
if (a) the execution is synchronous with some implementation-dependent short
bound on message delay and (b) all clients and servers behave correctly.

Definition 2 (Uncivil execution [12]). An execution is uncivil if and only
if (a) the execution is synchronous with some implementation-dependent short
bound on message delay, (b) up to f servers and an arbitrary number of clients
are Byzantine, and (c) all remaining clients and servers are correct.

8.1 Performance in Gracious Executions

In gracious execution, and in the absence of contention, the protocol requires
3 round-trip message delay from the time a client makes a request to the time
it gets the result. It takes one round-trip delay to receive the first response
and calculate the timestamp t̂. It takes 1/2 round-trip delay for the servers to
receive t̂. At that time correct servers initiate a consensus protocol to commit the
transaction and another one round-trip delay is needed to decide to COMMIT
the transaction (this is possible because all correct servers will be proposing
the same COMMIT value). The client replies to the confirm message after two
round-trip delays and gets a response to its resolve message after 3 round-trip
delays (there is no need to wait for the result of the consensus which will arrive
at the same time as the resolve message).

In the presence of contention, the processing can be delayed by conflicting
transactions that have the same timestamp. The latest a transaction started after
T can get the same timestamp as T is just short of 1.5 round-trip delay from the
time T started (we assume that previous transactions that are not concurrent

266 R. Bazzi and M. Herlihy

with T have already been cleared). In fact, a transaction that starts 1.5 round-
trip delay after T cannot reach the servers before the time T’s timestamp is
propagated and will get a later timestamp (we are assuming that the Propose
message for the contending transaction will propagate instantaneously in the
worst case). So, in the presence of contention, a response might not arrive before
4.5 round-trip delays.

We expect that a closer integration of the solution with a particular consensus
protocol will further reduce the delay by another one half of a round-trip which
would make it more competitive in terms of latency (PBFT [11] achieves 2 round-
trip delay with a number of optimizations including speculative execution, but
PBFT does not perform well in uncivil executions).

8.2 Performance in Uncivil Executions

In uncivil executions, the delay depends on the level of contention. If a trans-
action is initiated and is not overlapping with any other conflicting transaction,
its delay will be the same as in gracious executions.

In the presence of contention, a transaction can be delayed further. As in the
gracious execution case, we consider the latest time a transaction can be added to
the pending set of transaction T. As in the case of gracious executions, the time is
1.5 round-trip delay after T is initiated. If the client of the contending transaction
fails, the full timeout would need to be incurred and a consensus protocol would
need to be executed. So, the delay in this case would be the timeout value δ
plus the consensus time. The client will get a response by 0.5 round-trip delay
after the consensus has ended (because the other message exchanges of the client
overlap with the timeout time).

8.3 Other Performance Considerations

It is important to note that the delays are not additive. If we have transactions
with different timestamps and for each timestamp there is a pending transaction
that is slow, no transaction incurs more than one timeout plus consensus delay
because the timers are started in a pipelined fashion. This ensures that Byblos
average throughput under client delays is minimally affected by slow clients.
Also, recall that this delay is only incurred by conflicting transactions whereas
in systems in which faulty servers are the source of the delay, all transactions
are affected by server delays.

Another potential performance improvement that we did not consider is
transaction batching [11]. In our solution, servers communicate information
about individual transactions. On the positive side, in Byblos, in the presence
of contention, more transactions will get the same timestamp and the delay
incurred for that timestamp is one for all transactions. This should improve
throughput.

As described, Byblos uses public-key signatures [14,31], which can add sig-
nificant overhead. Replacing signatures with message authentication codes [6]
is a subject for future work. Finally, the message complexity of our solution is

Clairvoyant State Machine Replications 267

rather high: O(n2) messages per transaction. Such high message complexity is
not unusual for protocols that aim to achieve bounded delay ([2,4,12,22] for
example).

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable Byzantine fault-tolerant services. ACM SIGOPS Oper. Syst. Rev. 39(5),
59–74 (2005)

2. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine replication under attack.
IEEE Trans. Dependable Secur. Comput. 8(4), 564–577 (2011)

3. Aublin, P.L., Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700
BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015)

4. Aublin, P.L., Mokhtar, S.B., Quéma, V.: RBFT: redundant Byzantine fault tol-
erance. In: Proceedings of the 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 297–306 (2013)

5. Bazzi, R.A., Ding, Y.: Non-skipping timestamps for Byzantine data storage sys-
tems. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 405–419. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30186-8 29

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

7. Ben-Or, M.: Another advantage of free choice (extended abstract): completely
asynchronous agreement protocols. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)

8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 183–192. ACM, New York
(1994)

9. Borran, F., Schiper, A.: A leader-free Byzantine consensus algorithm. In: Kant, K.,
Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935,
pp. 67–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11322-
2 11

10. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (2016)

11. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

12. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine
fault tolerant systems tolerate Byzantine faults. In: Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, pp. 153–168 (2009)

13. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a
hybrid quorum protocol for byzantine fault tolerance. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, pp. 177–190 (2006)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review, vol. 41,
pp. 45–58. ACM (2007)

https://doi.org/10.1007/978-3-540-30186-8_29
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-642-11322-2_11
https://doi.org/10.1007/978-3-642-11322-2_11

268 R. Bazzi and M. Herlihy

17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

18. Lamport, L.: Generalized consensus and paxos. Technical report, Microsoft, March
2005

19. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state
machines for WANs. In: Proceedings of the 8th OSDI Conference, pp. 369–384
(2008)

20. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Secur.
Comput. 3(3), 202–215 (2006)

21. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: ACM CCS, pp. 31–42 (2016)

22. Milosevic, Z., Biely, M., Schiper, A.: Bounded delay in Byzantine-tolerant state
machine replication. In: 2013 IEEE 32nd International Symposium on Reliable
Distributed Systems, pp. 61–70, September 2013

23. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in Egalitarian
parliaments. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 358–372. ACM, New York (2013)

24. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine
consensus with t < n/3, O(n2) messages and O(1) expected time. In: 2014 Pro-
ceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
pp. 2–9. ACM (2014)

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
26. NEO: Neo contract whitepaper. http://docs.neo.org/en-us/basic/neocontract.

html. Accessed 6 May 2018
27. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.

In: Proceedings of the USENIX Annual Technical Conference, pp. 305–320 (2014)
28. Pedone, F., Schiper, A.: Handling message semantics with generic broadcast pro-

tocols. Distrib. Comput. 15(2), 97–107 (2002)
29. Peluso, S., Turcu, A., Palmieri, R., Losa, G., Ravindran, B.: Making fast consensus

generally faster. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 156–167. IEEE (2016)

30. Pires, M., Ravi, S., Rodrigues, R.: Generalized paxos made Byzantine (and less
complex). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 203–
218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 14

31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

32. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

33. Sutra, P., Shapiro, M.: Fast genuine generalized consensus. In: 2011 30th IEEE
Symposium on Reliable Distributed Systems (SRDS), pp. 255–264. IEEE (2011)

34. Van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Comput.
Surv. (CSUR) 47(3), 42 (2015)

35. Zielinski, P.: Optimistically terminating consensus: all asynchronous consensus pro-
tocols in one framework. In: 2006 The Fifth International Symposium on Parallel
and Distributed Computing, ISPDC 2006, pp. 24–33. IEEE (2006)

http://docs.neo.org/en-us/basic/neocontract.html
http://docs.neo.org/en-us/basic/neocontract.html
https://doi.org/10.1007/978-3-319-69084-1_14

	Clairvoyant State Machine Replications
	1 Introduction
	2 Related Work
	3 Problem and System Model
	4 Byblos Description
	4.1 Client Code
	4.2 Server Code

	5 Correctness
	6 Eliminating Pending Sets
	7 Byzantine Clients
	8 Performance
	8.1 Performance in Gracious Executions
	8.2 Performance in Uncivil Executions
	8.3 Other Performance Considerations

	References

