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Abstract. While a lot of research in distributed computing has cov-
ered solutions for self-stabilizing computing and topologies, there is far
less work on self-stabilization for distributed data structures. Consider-
ing crashing peers in peer-to-peer networks, it should not be taken for
granted that a distributed data structure remains intact. In this work, we
present a self-stabilizing protocol for a distributed data structure called
the hashed Patricia Trie (Kniesburges and Scheideler WALCOM’11)
that enables efficient prefix search on a set of keys. The data structure
has a wide area of applications including string matching problems while
offering low overhead and efficient operations when embedded on top of
a distributed hash table. Especially, longest prefix matching for x can be
done in O(log |x|) hash table read accesses. We show how to maintain
the structure in a self-stabilizing way. Our protocol assures low overhead
in a legal state and a total (asymptotically optimal) memory demand of
Θ(d) bits, where d is the number of bits needed for storing all keys.

Keywords: Self-stabilizing · Prefix search · Distributed data structure

1 Introduction

We consider the problem of maintaining a distributed data structure for efficient
Longest Prefix Matching in peer-to-peer (P2P) systems. We focus on the hashed
Patricia Trie (HPT) introduced in [14] and present an algorithm rendering a
self-stabilizing version of this data structure when applied on top of any reliable
distributed hash table (DHT).

Definition 1 (Longest Prefix Matching). Consider a set of binary strings
called keys and a binary string x. The task of Longest Prefix Matching is to find
a key y sharing the longest common prefix with x. A prefix of a binary string is
a substring beginning with the first bit. We denote the longest common prefix of
x and y by �cp(x, y).
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We denote a prefix p of x by p � x. p is a proper prefix of x (p � x) if p is a
prefix of x and |p| < |x|, where |p| is the length of p. Longest Prefix Matching
is an old problem with applications in various areas including string matching
problems and IP lookup in Internet routers. To solve it efficiently in a distributed
P2P system, the HPT has been introduced [14]. The HPT is a distributed data
structure applied to any common DHT which allows efficient prefix search for x
in O(log |x|) read accesses to the hash table, i.e., solely based on the length of the
search word x. The costs for an insertion of x is in O(log |x|) read accesses and
O(1) write accesses, while deletion can be done in O(1) accesses. The memory
space used is asymptotically optimal in Θ(sum of all key lengths). Moreover,
Suffix Trees can be implemented efficiently using Patricia Tries and thus also
hashed Patrica Tries (called PAT Trees [10]). This allows us to efficiently decide
if a given string x is a substring of a text in a runtime only depending on the
length of x.

The usefulness of Patricia Tries motivates us to investigate how a HPT can be
maintained in a P2P system where nodes may enter/leave or even fail. While a lot
of research has considered the design of self-stabilizing computation or topologies
(see Sect. 1.2), to the best of our knowledge there are far fewer results concerning
self-stabilizing distributed data structures. However, failures of peers may affect
the correctness of any distributed data structure. Therefore, we consider the
problem of finding an efficient distributed protocol to maintain a HPT in a
self-stabilizing way.

1.1 Model

We assume the existence of a self-stabilizing distributed hash table (DHT) which
provides the operations DHT-Insert(x) to insert data and DHT-Search(x)
to retrieve data. These operations are carried out reliably on the stored data,
i.e., no operation is ever canceled. We assume the existence of a collision-free
hash function which maps binary strings to positions in [0, 1) to store data in
the DHT. The function is available locally at every peer. Each peer has a unique
identifier, manages local variables and maintains a channel. When a peer sends
a message m to peer p, it puts m in the channel of p. A channel has unbounded
capacity and messages never get lost. If a peer processes a message in its channel,
the message is removed from the channel afterwards.

We distinguish between two types of actions: The first one is for standard
procedures and has the form 〈label〉(〈parameters〉) : 〈command〉 where label is
the name of the action, parameters define the set of parameters and command
defines the statements that are executed when calling the action. It may be exe-
cuted locally or remotely. The second type has the form 〈label〉 : (〈guard〉) →
〈command〉 where label and command are defined as above and guard is a pred-
icate over local variables. An action at peer p can only be executed if its guard
is true or a message in the channel of p requests to call it. We call such an action
enabled. The guard of our protocol routine Timeout is always true.

A state of the system is defined by the assignment of variables at every
peer, the data items and their values stored at every peer and all messages in
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channels of peers. The system can transform from a state s to another state s′ by
executing an enabled action at a peer. An infinite sequence of states (s1, s2, . . . )
is a computation if si+1 can be reached by executing an action enabled in si for
all i ≥ 1. The state s1 is called initial state. We assume fair message receipt, i.e.,
every message contained in a channel is eventually processed. Also, we assume
weakly fair action execution such that any action that is enabled in all but
finitely many states is executed infinitely often. This especially applies to the
Timeout procedure. We call a protocol self-stabilizing if it fulfills convergence
and closure. Convergence means that starting from an arbitrary initial state,
the protocol transforms the system to a legal state in finite time. Closure means
that starting from a legal state, the protocol only transforms the system to
consecutive legal states. Our goal is to provide a self-stabilizing HPT. We define
the legal state of a HPT later in Sect. 4.1.

1.2 Related Work

The basic data structure we consider here is the Patricia Trie. This compressed
tree structure has been introduced by Morrison in [16]. It was extended to the
hashed Patricia Trie by Kniesburges and Scheideler in [14]. In [10], Gonnet et
al. presented PAT Trees which are essentially Patricia Tries for special suffixes
(sistrings) of a text. This widens the applications of Patricia Tries to general
string problems such as deciding if a word or sentence is contained in a text
[10]. The work on self-stabilization started with the research of Dijkstra in [7]
where he analyzed self-stabilization in a token ring scenario. Since then, research
has covered wide areas including self-stabilizing computation [3,5] and coordina-
tion [1,2,7,9]. Furthermore, with the rise of P2P systems [18,20], self-stabilizing
topologies in the sense of overlay networks gained attraction [4,6,8,11–13,19].
We use approaches originally presented for topological self-stabilization. This
includes a technique called Linearization presented by Onus et al. in [17]. A
common approach for storing data in overlay networks is a distributed hash
table (DHT) like Chord [20]. Using hashing, data items, as well as network
peers, are mapped to the [0, 1) interval such that a mapping between them is
established. There are various results on self-stabilizing DHTs in the literature
(for example [13]). Further, most (self-stabilizing) overlay networks can easily
be extended to a DHT given sortable unique identifiers for the peers which is a
common assumption.

1.3 Our Contribution

We present a self-stabilizing protocol called SHPT to maintain a slightly mod-
ified version of the HPT as presented in [14]. Whenever we refer to HPT, we
implicitly mean the modified version. The HPT and our modification are briefly
introduced in Sect. 2. Afterwards, Sect. 3 gives a high-level description of the
most important mechanisms of our protocol. We only require for an initial state
that the underlying DHT is in a legal state and that a set of unique keys is stored
at DHT nodes. In Sect. 4, we show that our protocol stabilizes a HPT in finite
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time out of any initial state. When the HPT is in a legal state, our protocol
guarantees a low overhead of a constant amount of hash table read accesses and
messages generated at each DHT node per call of the protocol routine. Further-
more, we can bound the total memory consumption in a legal state to Θ(d) bits
if d is the number of bits needed to store all keys. Due to space limitations, we
deferred the Pseudocode and the full proofs concerning correctness and overhead
to the full version [15].

2 Hashed Patricia Trie

We consider a data structure called the hashed Patricia Trie (HPT) as presented
in [14]. The HPT is an extended Patricia Trie that is distributed in a P2P System
by using a DHT. We briefly describe the construction. For details, we refer to
[14]. The Patricia Trie is a compressed trie which was proposed by Morrison
in [16]. Suppose we are given a key set KEYS consisting of strings. A trie is a
tree structure that consists of labeled nodes and labeled edges. The root node is
labeled by the empty string and every edge is labeled by one character. The label
of a node is the concatenation of all edge labels of edges traversed on the unique
path from the root to the node. For each k ∈ KEYS there is a node labeled by
k (see Fig. 1). The Patricia Trie introduces compression by allowing edge labels
to be strings such that inner nodes with a single child, which do not represent
a key, can be avoided. Similar to [14], we restrict ourselves to keys represented
by binary strings. We store the Patricia Trie in a DHT by hashing all nodes by
their label resulting in the hashed Patricia Trie. Our notation is close to the one
of [14] and can be seen in Fig. 2.

c

a

r t
car cat

ca

c

Fig. 1. Example of a
classical Trie contain-
ing the keys “car” and
“cat”.

Fig. 2. Values stored at nodes of the HPT from the
perspective of v. Nodes are stored by hashing their
label to [0, 1) in combination with a DHT. White
nodes denote Patricia nodes while Msd nodes are
depicted in gray.

Every Patrica node v has a label denoted by b(v) and stores three edges.
The root node stores the empty string b(root) = ε. p−(v) is the parent edge of
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v pointing to the parent node u such that b(u) ◦ p−(v) = b(v). We denote by
◦ the concatenation of strings. By px(v) we denote the child edge of v starting
with the value x for x ∈ {0, 1}. If b(w) ∈ KEYS for a Patricia node w, we set
key(w) = b(w). Additionally, an inner Patricia node stores a key2(v) = k, where
k is a key with b(v) � k. For efficient updates, the node w storing k has a field
r(w) = b(v). These key2 values allow returning a valid result for a prefix search
when stopping at any Patricia node. It is possible to assure that every inner
Patricia node with two children has a key2 pointing to a leaf node in its subtree.

To allow efficient prefix search, the Patricia Trie has been extended in [14].
Between every pair of directly connected Patricia nodes, Msd nodes (from Most
Significant Digit) are added. Their length is chosen in a way that those nodes are
hit by a binary search first. More specifically, Msd nodes are inserted between
Patricia nodes such that their length is considered first by the binary search
before the Patricia nodes around them are considered. We only give a short
definition of the calculation of an Msd label in Definition 2. In the special case
that an Msd label equals the label of a surrounding Patricia node, no Msd node
is needed at that position. For details on how Msd nodes improve the prefix
search operation, see [14].

Definition 2 (Msd Label). Let a = (am, . . . , a0) and b = (bm, . . . , b0) be two
binary strings of the same length. Possibly, one of them is filled up with leading
zeros to have length m+1. We define msd(a, b) to be the position j where aj 	= bj

and ai = bi for all i > j. That means, msd(a, b) is the most significant bit (digit)
at which a and b differ.

Consider the binary labels b(u) and b(v) of two nodes u, v. Let �u = |b(u)|
and �v = |b(v)| and without loss of generality let �u < �v. We define the Msd
label b(m) between u and v to be the prefix of v of length

∑�log �v�+1
i=msd(�u,�v)

(�v)i · 2i.

For example, consider u, v with b(u) = 10 and b(v) = 100101, where
�u = |b(u)| = (10)2 and �v = |b(v)| = (110)2. Then msd(�u, �v) =
msd((010)2, (110)2) = 2, such that an Msd node m between u and v has label
b(m) = 1001 � b(v) of length 22 = 4.

The HPT supports operations PrefixSearch(x) and Insert(x) for a binary
string x in O(log |x|) read accesses on the hash table. Insertion takes additional
O(1) write accesses and Delete(x) is supported in constant hash table accesses.
Furthermore, the memory space usage is in Θ

(∑
k∈KEYS |k|).

Modification. We modify the HPT to simplify the stabilization technique. Con-
sider Fig. 3. The original HPT has a structure as shown on the left side. The
Msd node m is in between the Patricia nodes u and w such that u and w point
to m and m points to u (parent) and w (child). We modify this structure by
having u and w point to each other and not to m. By this, deletions of Msd
nodes do not concern the connectivity between Patricia nodes while the advan-
tages of Msd nodes are still present. The crucial property of Msd nodes is that
they point to Patricia nodes. Edges towards Msd nodes are not needed for the
efficient operations introduced in [14]. For the rest of this paper, when we refer
to the HPT, we mean the HPT with this small modification.
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Fig. 3. Modified HPT

Next, we introduce some common terms that are
used throughout the paper. HPT is the set of all data
nodes of the HPT. This includes PAT as the set of
nodes used in the original Patricia Trie and MSD
which are the Msd nodes. By definition HPT = PAT∪
MSD. We denote by KEYS the set of keys stored by the
HPT. Let u, v ∈ HPT with b(u) � b(v). In this case
we say, u is above v while v is below u. Let w ∈ HPT
such that b(u) � b(w) � b(v). Then w is in between u
and v. If for two u, v ∈ HPT with b(u) � b(v) there
is no w ∈ HPT with b(u) � b(w) � b(v), then u and
v are closest to each other. We say a child edge e of v ∈ HPT is valid, if there
exists a node w ∈ HPT with b(v)◦e = b(w). Similar, a parent edge e of v ∈ HPT
is valid, if there exists a node w ∈ HPT with b(w)◦e = b(v). Consider two nodes
v, u ∈ HPT, where u has an edge pointing to v and vice versa. We then speak
of a bidirectional edge.

3 The SHPT Protocol

In the following, we present SHPT, our self-stabilizing protocol for maintaining
a HPT. The corrections of SHPT can be divided into several parts. We present
our assumptions concerning the underlying DHT first. Afterwards, we give an
intuition on the different types of repairs our protocol performs. We often speak
about actions executed by a HPT node v. This translates to actions that are
executed by the corresponding DHT node storing v. For detailed Pseudocode,
we refer to [15].

3.1 Properties of the DHT

We assume that the underlying DHT is in a legal state, i.e., it provides the
actions DHT-Search(x) and DHT-Insert(x) which are carried out reliably on
the stored data. Deletion of data is only done locally by our protocol. Stability
of the DHT is crucial as our protocol relies on finding/manipulating nodes of
the HPT solely based on their hash value given by their label. There are a lot
of different self-stabilizing DHTs presented in the literature. Some of them are
mentioned in Sect. 1.2.

Our main demand on the DHT is that at some point nodes are stored such
that they can always be retrieved by their labels. HPT nodes are essentially
data-items. Every DHT node regularly checks if all its stored data is at the
correct peer based on the hashing. If data is stored incorrectly, it is sent towards
the correct DHT node. When a data item i is inserted at a DHT node n, n
checks if i is already present. If yes, i is only inserted if it does not collide with
an already stored Patricia node that stores a key. If a HPT node v has been
inserted, a presentation method is triggered for v and v is directly presented to
the nodes referred to by p−(v), p0(v) and p1(v). The presentation mechanism is
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presented later. This assumption assures that keys are preserved while insertion
is not blocked and every HPT node is presented at least once.

3.2 Correcting Edge Information

One general problem for self-stabilizing solutions is that every stored information
can be corrupted. Thus, our protocol regularly checks information stored in a
HPT node. Consider a node v ∈ HPT. We refer to the information provided by
the fields p−(v), p1(v) and p0(v) as well as key2(v) and r(v) as edge information.
Edge information can be checked rather simply as it allows reconstruction of a
node’s label b(w). The label can be used to query the DHT for an (incomplete)
copy of w. v can then compare the information stored at w with its own and
decide for corrections. Some inconsistencies in the local structure can also be
checked without querying the DHT. In general, when checking an edge e at
node v, we distinguish three cases (see Fig. 4):

(a) e has a wrong form. For example, if p1(v) = (0 . . . ) or p−(v) is not a suffix
of b(v). In this case, the edge is considered corrupted and is cleared.

(b) The node w that e points to does not exist. Again, e is not correct and is
cleared.

(c) The node w ∈ HPT that e points to does exist, but the edge provided by w
which should point to v does not match e. Several sub-cases arise here. The
protocol may have to simply present v to w, or a new node may need to be
inserted.

a) b) c)

10010

11

Fig. 4. Examples for the cases of wrong edge information.

Additionally, every node avoids edges pointing to Msd nodes. Such edges are
treated as if they pointed to a non-existing node. A node v can check the values
of p−(v), key2(v) and r(v) by calculating if the prefix relation between itself and
the respective nodes fulfills the definition of the hashed Patricia Trie. To prevent
the spreading of incorrect information, new edges are only stored if they comply
with the definition of the hashed Patricia Trie from the local perspective of v.
We will go into detail on the creation of new edges and the insertion of nodes
later.
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3.3 Maintaining Connections

Our goal to stabilize the Patricia nodes of a HPT can also be formulated using
Branch Sets as described in Definition 3. A Branch Set consists of all Patricia
nodes on a branch from the root to a leaf node (see Fig. 5). When the HPT is
in a legal state, there are as many Branch Sets as there are leaf nodes.

Definition 3 (Branch Set). Consider a set of Patricia nodes with maximum
cardinality S such that u,w ∈ S implies b(u) � b(w) or b(w) � b(u) and the
Patricia node v ∈ S with maximum label length stores a key k. We call this set
the Branch Set of k.

S

Fig. 5. Branch Set S from the root
(ε) to a leaf node (k) is the set
of nodes in a branch of the hashed
Patricia Trie in a legal state.

We apply a technique called Lineariza-
tion [17] to all Patricia nodes to create a list
sorted by label length for all Branch Sets in
finite time. It is important to exclude Msd
nodes from the Linearization. Msd nodes are
not presented nor do they delegate presenta-
tion messages. Due to deletion of a Patricia
node, an Msd node might still be presented
accidentally. However, we limit this problem
by carefully handling deletions and insertions
as described later. For the Linearization to
work, we need to make sure that all nodes in
a Branch Set are brought into and kept in a
weakly connected state.

A Patricia node v with an empty parent
edge tries to recreate connectivity by doing a
modified PrefixSearch(b(v)) similar to the
one presented in [14]. The procedure we call
BinaryPrefixSearch(b(v)) does not search for b(v) itself and only consists
of the binary search phase of the PrefixSearch(x) of [14], returning a copy of a
Patricia node w with b(w) � b(v). If no such node exists, we conclude that the
root node is non-existent and trigger a construction of it.

Further, we let every Patricia node present its own label to its parent and its
two children using a presentation message. A message presenting v is delegated
to the Patricia node w closest to v. Delegation happens only by using edges and
intermediate nodes sharing a Branch Set with v. All nodes maintain connections
to labels which are closest to them while delegating presentations of other labels.
This behavior resembles the Linearization approach presented in [17], allowing
our protocol to form a sorted list for all branches of the HPT.

There is still an important issue we need to resolve. Consider a Branch Set S
of nodes. We can end up in situations where nodes exist that do not contribute
to the hashed Patricia Trie. Such nodes can be Patricia nodes not storing a key.
To reduce memory demands, we are interested in removing unneeded nodes. In
principle, deletion without harming connectivity can be done since the root node
is always known implicitly. However, deletion increases distances. In addition,
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our protocol must provide the ability to create and integrate new Patricia nodes.
When inserting and deleting nodes, we need to make sure that no loops are
possible in which the system may take forever to stabilize. We will explain how
to avoid such loops in the following.

3.4 Removal/Creation of Nodes

Due to the implicitly known root node, deletion is possible and should be con-
sidered to reduce memory demands. We distinguish between Msd nodes and
Patricia nodes. Our modification allows us to handle Msd nodes in a simple and
efficient way. We try to avoid any edges pointing to Msd nodes such that even-
tually, deletion and creation of Msd nodes does not influence the Patricia nodes
and their structure. Only if there are two Patricia nodes u, w connected via a
bidirectional edge, an Msd node between them might be inserted. Fortunately,
Msd labels can be calculated locally and a corresponding Msd node can easily
be accessed by querying the DHT. Any Msd node which is not between such two
Patricia nodes, or has an incorrect label, is deleted.

A Patricia node v (except for the root) is unnecessary if key(v) = nil and
there are no two Patricia nodes u,w, both storing a key, such that b(v) =
�cp(b(u), b(w)), i.e., u should be in a different subtree than w below v. From
a global point of view, we can easily decide if v is unnecessary solely based
on information about the situation below v. From a local perspective, v can-
not decide but only assume to be unnecessary if it lacks child edges. We make
the local protocol aggressive by deleting any node that lacks child edges and
assumes to be unnecessary. This also introduces deletion of necessary Patricia
nodes. Therefore, we always trigger a creation of new HPT nodes by Patricia
nodes below the new ones. This avoids loops of creation and deletion of nodes,
because newly created nodes inherently have valid children and, thus, do not
assume to be unnecessary. Patricia nodes storing a key essentially form a sta-
ble starting point, because they are never deleted. The need to insert a Patricia
node is detected by comparing a node’s parent edge with the corresponding edge
provided by the parent.

3.5 Distribution of References to Keys

In addition, SHPT tries to achieve the following. Every inner Patricia node v
with two children should store a key2(v) = b(w) which points to a leaf node w
storing a key such that b(v) � b(w). The respective leaf node w stores an r(w)
value pointing to v. This property is helpful for efficient prefix search. No matter
at which Patricia node the prefix search stops, there is a key referenced having
the node’s label as a prefix. This key is a valid result for the search query. We
call all inner Patricia nodes with two children and the root node key2 nodes. Due
to the resemblance of the hashed Patricia Trie with a binary tree, Fact 1 holds.

Fact 1. Let L be the number of leaf nodes. Let I be the number of key2 nodes.
When the HPT is in a legal state, it holds I ≤ L ≤ I + 1. L = I, if the root has
one child and L = I + 1 if it has two.
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To assure that every leaf node is referenced by a key2 node, we allow the root
to store up to two key2 values. This reduces the number of hash table accesses
created by our protocol, when the HPT is in a legal state.

If we naively assign leaf nodes to key2 nodes, this may lead to situations
in which a key2 node cannot get a key2 value. For an example, consider Fig. 6.
The critical observation is that key2 nodes with a shorter label, in general, have
more possible leaf nodes they can point to than key2 nodes with a longer label.
Therefore, our protocol aims at prioritizing key2 nodes which are closer to leaf
nodes.

Fig. 6. Example where v cannot get a key2 (left). The leaf nodes k and k′ storing a
key are already associated to Patricia nodes above v. The blocking of v is resolved as
v takes over the key2 of w (right).

We divide the protocol into three parts. First, all nodes continuously check
if they should store a key2 or r value and whether such a value points to a leaf
node, respectively key2 node. Second, if a leaf node v does not store a value in
r(v), it presents its label upwards in the HPT by sending a message crossing
only parent edges. The first key2 node w without a key2 receiving the message
sets key2(w) = b(v). Third, a key2 node v repairs in the following way. If key2(v)
points to leaf node w with b(v) � b(w), there are two cases.

(a) b(v) � r(w): Then key2(v) is set to nil since there may already be some
key2 node with longer label pointing at w.

(b) Else, v has either longer label than r(w) or r(w) = nil. The protocol sets
r(w) = b(v).

If key2(v) = nil, a message is sent upwards in the HPT and the first key2 node w
with b(v) � key2(w) responds to v. Then, key2(v) is set to key2(w). Eventually,
v takes over the key2 value of w, because w executes case (a).

Intuitively, key2 nodes without a key2 pull values from nodes with shorter
label. Simultaneously, leaf nodes without an r value present their label towards
the root.

4 Protocol Analysis

In this section, we show that SHPT is self-stabilizing and transforms the HPT in
finite time to a legal state. Furthermore, we present results concerning memory
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usage and the number of hash table accesses and messages when the HPT is in
a legal state.

4.1 Correctness

We begin by showing the correctness of our self-stabilizing protocol. We use
a commonly known technique introduced by Dijkstra in [7]. Our goal is to
show Theorem 1. For that we consider a sequence of intermediate states that
are reached consecutively until the HPT is in a legal state. For every state we
show convergence towards the state and closure within it, i.e., the properties of
the state are kept by our protocol.

Theorem 1. The algorithm creates in finite time a hashed Patricia Trie in a
legal state out of any initial state in which the DHT is in a legal state and there
is a set of unique keys stored at DHT nodes.

In the following, we briefly sketch the main proof by presenting a sequence
of main lemmas that roughly reflect the states the system reaches. Each main
lemma thereby consists of multiple properties that are proven by a set of lemmas
on its own. The full proof consisting of all lemmas, their respective proofs, and
the complete definition of a legal state of the HPT can be found in [15].

To prove the correctness captured in Theorem 1, we first need to formally
define a legal state of the HPT. Due to space limitations, we only give an intuitive
definition. For the complete definition, see the full version [15]. Intuitively, the
HPT is in a legal state if we have as few HPT nodes as possible in the system, all
keys are stored correctly, the structure is consistent to the (modified) definition
presented in Sect. 2, and the references to keys in key2 nodes are existing and
stored at correct nodes.

Initially, we only assume that a set of unique keys is stored at DHT nodes.
The first lemma states that general repair mechanisms assure correctly stored
keys and Patricia nodes.

Lemma 1. In finite time it holds: Every key k is stored in a node v ∈ PAT
with b(v) = k. Furthermore, every node is stored at the DHT node responsible
for it. Consider any v ∈ HPT that is deleted. As long as v is not reconstructed,
in finite time it holds:

(a) There is no presentation message for b(v).
(b) There is no edge pointing towards b(v) in the system.

From now on, the proof consists of three phases. In a first phase, all Patricia
nodes which are not needed for the final structure are removed. The second
phase considers the reconstruction of the binary tree structure of the HPT and
corrects the sets of Patricia nodes and Msd nodes. In the third and last phase,
information stored in key2 and r fields is made consistent.
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Phase I – Deletion of Patricia Nodes
In this phase, the protocol makes sure that all Patricia nodes which are not
needed in the final structure are removed. Initially, information stored at HPT
nodes that directly contradicts the definition of the HPT is cleared. This can be
information such as a parent edge at v ∈ HPT that is no suffix of b(v). After
that, Patricia nodes and Msd nodes in unnecessary subtrees, i.e., subtrees not
containing a key, and unnecessary inner Patricia nodes are gradually removed
(Fig. 7). Every leaf node in an unnecessary subtree detects in finite time that it
has no valid children and is deleted.

Lemma 2. In finite time, every unnecessary Patricia node is removed. A Patri-
cia node v is unnecessary if there are no two keys k1 and k2 with b(v) =
�cp(k1, k2).

Unnecessary
Subtree Unnecessary

Patricia-Node

Fig. 7. Node k stores a key. Msd nodes are sketched in grey. First, unnecessary subtrees
are deleted (left), then remaining unnecessary Patricia nodes are removed (right).

Patricia nodes which are necessary may still be deleted because of their local
perspective. However, this deletion is limited and stops after finitely many dele-
tions. This holds, because Patricia nodes are only deleted due to incorrect child
edges. If a new Patricia node with a long label is inserted, its child edges are ini-
tially valid and stay valid. There cannot be infinitely many deletions triggered,
because the structure stabilizes bottom-up.

Lemma 3. In finite time, every Patricia node has valid child edges pointing to
Patricia nodes and no further Patricia node is deleted.

Phase II – Reconstruction
In the second phase, SHPT reconstructs the HPT by rebuilding missing Patricia
nodes and repairing connections. Since every node tries to create a parent edge
pointing to a Patricia node with shorter label, eventually all missing Patricia
nodes are detected and can be inserted. The process works in a bottom-up fash-
ion, i.e., Patricia nodes with longer labels reconstruct missing nodes with shorter
ones. The Patricia nodes storing a key as well as the root node act as fixed points
in this case, because they are never deleted once constructed.
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Lemma 4. In finite time, the root node exists and no Patricia node points to an
Msd node. Furthermore, missing Patricia nodes are reconstructed. Also, every
Patricia node has valid edges pointing only to existing Patricia nodes, i.e., there
is a path from every Patricia node to the root and there is a path from the root
to every Patricia node.

It is crucial that no Patricia node points to an Msd node, because edges to
Msd nodes are effectively treated as corrupt ones. This property assures that Msd
nodes are eventually excluded from the Linearization procedure. Linearization
then allows us to show that every Branch Set (see Definition 3) of Patricia nodes
eventually forms a stable sorted list. Incorrect Msd nodes are removed without
affecting the rest of the HPT and missing Msd nodes are inserted. Further,
correct Msd nodes are not deleted, because the two Patricia nodes closest to
a correct Msd node are not deleted and do not change their edges any more.
All these properties are reflected in Lemma 5. For completeness, we refer to the
definition of incorrect and missing Msd nodes in the full proof in [15].

Lemma 5. In finite time for every Branch Set S it holds: Between every pair of
closest Patricia nodes u, w ∈ S there is a bidirectional edge. Furthermore, every
incorrect Msd node is removed and all missing Msd nodes are inserted.

Phase III – Consistency
In the final phase the information stored in key2 and r fields is corrected to be
consistent. Due to Fact 1, we know that this can be achieved. The root is allowed
to store up to two key2 values. Therefore, there is always a way to store all keys
of leaf nodes in key2 nodes. First, we show that nodes which should not store a
key2 value remove any such stored value. Further, references in key2 and r fields
are deleted when they contradict the relationship r(key2(v)) = b(v), where v is
a key2 nodes and key2(v) references a leaf node.

Lemma 6. In finite time, only key2 nodes store a key2 and only leaf nodes store
an r value. Every key2 value stored at a Patricia node v points to a leaf w with
b(v) � b(w) and every r value stored at a Patricia node w points to a key2 node
v with b(v) � b(w).

From now on, key2 nodes not storing a key2 try to acquire the key2 of a
key2 node above them. Leaf nodes lacking a reference in r present themselves
to key2 nodes above them. Therefore, the length of the longest label of a key2

node not storing a staying key2 reduces over time. As this length is finite, the
process terminates. Thereafter, the r values of leaf nodes are corrected, because
the key2 values do not change any more.

Lemma 7. In finite time, all key2 nodes store a stable key2 and all leaf nodes
store a stable r value. For every key2 node v, the node w with b(w) = key2(v) is
a leaf node with r(w) = b(v).

Finally, our protocol is correct as all unnecessary nodes are removed, missing
nodes are inserted, Patricia nodes are connected by bidirectional edges, and the
information stored in key2 and r fields is consistent such that the HPT is is in
a legal state in finite time.
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4.2 Overhead

Assume, the HPT is in a legal state. We give results for the complexity in terms
of hash table accesses and messages and the memory overhead of our solution.
Due to space limitations, we refer to the full version [15] for the proofs of the
following theorems. When a DHT node executes SHPT by calling its Timeout
Method, exactly one HPT node is checked. Thereby, at most a constant number
of other HPT nodes may be partially acquired or notified and Theorem 2 holds.

Theorem 2. When the HPT is in a legal state, SHPT creates a constant number
of hash table (read) accesses and messages per call of Timeout at each DHT
node.

Unnecessary Patricia nodes and incorrect Msd nodes are removed by SHPT.
Therefore, the HPT nodes are the same as presented in the construction in Sect. 2
and Theorem 3 holds.

Theorem 3. Let d be the number of bits needed to store all keys. The total
memory used by a HPT in a legal state is in Θ(d) bits.
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