
Taisuke Izumi
Petr Kuznetsov (Eds.)

 123

LN
CS

 1
12

01

20th International Symposium, SSS 2018 
Tokyo, Japan, November 4–7, 2018 
Proceedings

Stabilization, Safety, 
and Security  
of Distributed Systems



Lecture Notes in Computer Science 11201

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Taisuke Izumi • Petr Kuznetsov (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
20th International Symposium, SSS 2018
Tokyo, Japan, November 4–7, 2018
Proceedings

123



Editors
Taisuke Izumi
Nagoya Institute of Technology
Nagoya, Japan

Petr Kuznetsov
Telecom ParisTech
Paris, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03231-9 ISBN 978-3-030-03232-6 (eBook)
https://doi.org/10.1007/978-3-030-03232-6

Library of Congress Control Number: 2018959139

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The papers in this volume were presented at the 20th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), held during
November 4–7, 2018, in Tokyo, Japan.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their correctness, performance, and/or security in the face of an adverse
operational environment. Research in distributed systems is now at a crucial point in its
evolution, marked by the importance and variety of dynamic distributed systems such
as peer-to-peer networks, large-scale sensor networks, mobile ad hoc networks, and
cloud computing. Moreover, new applications such as grid and Web services, dis-
tributed command and control, and a vast array of decentralized computations in a
variety of disciplines have driven the need to ensure that distributed computations are
self-stabilizing, safe, secure, and efficient.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first two of
which were held in Austin in 1989 and in Las Vegas in 1995. Starting in 1995, the
workshop was held biennially; it was held in Santa Barbara (1997), Austin (1999), and
Lisbon (2001). As interest grew and the community expanded, in 2003 the title of the
forum was changed to the Symposium on Self-Stabilizing Systems (SSS). SSS was
organized in San Francisco in 2003 and in Barcelona in 2005. As SSS broadened its
scope and attracted researchers from other communities, significant changes were made
in 2006. It became an annual event, and the name of the conference was changed to the
International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS). From then, SSS conferences were held in Dallas (2006), Paris (2007), Detroit
(2008), Lyon (2009), New York (2010), Grenoble (2011), Toronto (2012), Osaka
(2013), Paderborn (2014), Edmonton (2015), Lyon (2016), and Boston (2017).

This year the program was organized into three tracks reflecting major trends related
to distributed systems: (1) Theoretical and Practical Aspects of Stabilizing Systems, (2)
Distributed Networks and Concurrency, and (3) Safety in Malicious Environment. We
received 55 submissions from 13 countries. Each submission was reviewed by at least
three Program Committee members with the help of external reviewers. Out of the
submitted papers, 24 were selected for presentation as regular papers. The symposium
also included five brief announcements. Selected papers from the symposium will be
published in a special issue of the journal Information and Computation. The com-
mittee also selected the following papers to be awarded:

– Best paper: Keisuke Doi, Yukiko Yamauchi, Shuji Kijima and Masafumi Yama-
shita, “Exploration of Finite 2D Square Grid by a Metamorphic Robotic System”

– Best student paper: Chirag Juyal, Sweta Kumari, Archit Somani, Sathya Peri and
Sandeep Kulkarni, “An Innovative Approach to Achieve Compositionality Effi-
ciently Using Multi-Version Object Based Transactional Systems”



On behalf of the Program Committee, we would like to thank all the authors who
submitted their work to SSS. Special thanks to the track Program Committee chairs,
Shantanu Das, Swan Dubois, and Jared Saia, for the great work that they put in making
the symposium a success. We sincerely acknowledge the tremendous time and effort
that the Program Committee members invested in the symposium. We are grateful to
the external reviewers for their valuable and insightful comments and to EasyChair for
tremendously simplifying the reviewing process and the preparation of the proceedings.

We also thank the general chairs, Xavier Defago, Toshimitsu Masuzawa, and Koichi
Wada, for their effort in putting together the symposium and their invaluable advice.
We gratefully acknowledge the Organizing Committee members, Doina Bein, François
Bonnet, Masahiro Shibata, Yuichi Sudo, Yasumasa Tamura, for their time and
invaluable effort that greatly contributed to the success of this symposium.

November 2018 Taisuke Izumi
Petr Kuznetsov

VI Preface



Organization

General Chairs

Xavier Defago Tokyo Institute of Technology, Japan
Toshimitsu Masuzawa Osaka University, Japan
Koichi Wada Hosei University, Japan

Steering Committee

Anish Arora Ohio State University, USA
Ajoy K. Datta University of Nevada, Las Vegas, USA
Shlomi Dolev Ben-Gurion University, Israel
Sukumar Ghosh University of Iowa, USA
Mohamed Gouda UT Austin, USA
Ted Herman University of Iowa, USA
Toshimitsu Masuzawa Osaka University, Japan
Franck Petit UPMC, France
Sébastien Tixeuil UPMC, France

Program Committee Chairs

Taisuke Izumi Nagoya Institute of Technology, Japan
Petr Kuznetsov Telecom ParisTech, France

Local Arrangements Chair

Yasumasa Tamura Tokyo Institute of Technology, Japan

Publicity Chairs

Doina Bein California State University, USA
François Bonnet Tokyo Institute of Technology, Japan
Masahiro Shibata Kyushu Institute of Technology, Japan

Publication Chair

Yuichi Sudo Osaka University, Japan

Track A: Theoretical and Practical Aspects of Stabilizing Systems

Track Chair

Swan Dubois Sorbonne University, France



Program Committee

Leonid Barenboim Open University of Israel, Israel
Silvia Bonomi University of Rome La Sapienza, Italy
Sylvie Delaët Paris-Sud University, France
Colette Johnen Bordeaux University, France
Sayaka Kamei Hiroshima University, Japan
Shay Kutten Technion, Israel
Christoph Lenzen MPI for Informatics, Germany
Alexandre Maurer EPFL, Switzerland
Fukuhito Ooshita NAIST, Japan
Stéphane Rovedakis CNAM, France
Christian Scheideler Paderborn University, Germany
Elad Schiller Chalmers University of Technology, Sweden

Track B: Distributed Networks and Concurrency

Track Chair

Shantanu Das Aix-Marseille University, France

Program Committee

François Bonnet Tokyo Institute of Technology, Japan
Armando Castañeda National Autonomous University of Mexico, Mexico
Antonella Del Pozzo CEA LIST, France
Leszek Gasieniec University of Liverpool, UK
Tomasz Jurdzinski University of Wroclaw, Poland
Evangelos Kranakis Carleton University, Canada
Flaminia Luccio Ca’ Foscari University of Venice, Italy
Thomas Nowak Paris-Sud University, France
Lata Narayanan Concordia University, Canada
Gopal Pandurangan University of Houston, USA
Giuseppe Prencipe University of Pisa, Italy
Nicola Santoro Carleton University, Canada

Track C: Safety in Malicious Environment

Track Chair

Jared Saia University of New Mexico, USA

Program Committee

James Aspnes Yale University, USA
John Augustine IIT Madras, India
Valerie King University of Victoria, Canada
Seth Pettie University of Michigan, USA
Cindy Phillips Sandia National Labs, USA

VIII Organization



Peter Robinson McMaster University, Canada
Amitabh Trehan Loughborough University, UK
Maxwell Young Mississippi State University, USA
Mahnush Movahedi DFINITY, USA
Mahdi Zamani Visa Research, USA
Chaodong Zheng Nanjing University, China

Additional Reviewers

Barath Ashok
Gary Bennett
Janna Burman
Soumyottam Chatterjee
Stéphane Devismes
Giuseppe Antonio Di Luna
Reza Fathi
Robert Gmyr
Thorsten Götte
Kristian Hinnenthal
Hirotsugu Kakugawa
Bruce Kapron
Ryan Killick
Anissa Lamani
Robert Lauko

Jonas Lefèvre
Atul Luykx
Ioannis Marcoullis
Ali Mashreghi
William K. Moses Jr.
Lars Nagel
Dominik Pajak
Will Rosenbaum
Negin Salajegheh
Iosif Salem
Alexander Setzer
Hossein Shafagh
Masahiro Shibata
Ben Wiederhake

Sponsored by

Supported by

Organization IX



Contents

A Self-stabilizing Hashed Patricia Trie. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Till Knollmann and Christian Scheideler

Self-stabilizing Overlays for High-Dimensional Monotonic Searchability . . . . 16
Michael Feldmann, Christina Kolb, and Christian Scheideler

An Adaptive Logging Framework for Persistent Memories . . . . . . . . . . . . . . 32
Pavan Poudel and Gokarna Sharma

On Underlay-Aware Self-Stabilizing Overlay Networks . . . . . . . . . . . . . . . . 50
Thorsten Götte, Christian Scheideler, and Alexander Setzer

A Oðlog nÞ Distributed Algorithm to Construct Routing Structures
for Pub/Sub Systems: Regular Submission . . . . . . . . . . . . . . . . . . . . . . . . . 65

Volker Turau

Self-stabilization and Byzantine Tolerance for Maximal Matching . . . . . . . . . 80
Stephan Kunne, Johanne Cohen, and Laurence Pilard

Exploration of Finite 2D Square Grid by a Metamorphic Robotic System . . . 96
Keisuke Doi, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita

Physical Zero-Knowledge Proof for Makaro . . . . . . . . . . . . . . . . . . . . . . . . 111
Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas,
Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Atsuki Nagao,
Tatsuya Sasaki, Kazumasa Shinagawa, and Hideaki Sone

Searching with Increasing Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Leszek Gąsieniec, Shuji Kijima, and Jie Min

BEE’s STRATEGY AGAINST BYZANTINES Replacing Byzantine Participants
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Amitay Shaer, Shlomi Dolev, Silvia Bonomi, Michel Raynal,
and Roberto Baldoni

Simple and Fast Approximate Counting and Leader Election
in Populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Othon Michail, Paul G. Spirakis, and Michail Theofilatos

Reliable Broadcast in Dynamic Networks with Locally Bounded
Byzantine Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil



Acyclic Strategy for Silent Self-stabilization in Spanning Forests . . . . . . . . . 186
Karine Altisen, Stéphane Devismes, and Anaïs Durand

On Fast Pattern Formation by Autonomous Robots . . . . . . . . . . . . . . . . . . . 203
Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry L. Trahan

Load Balanced Distributed Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Shishir Rai, Gokarna Sharma, Costas Busch, and Maurice Herlihy

Relays: A New Approach for the Finite Departure Problem
in Overlay Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Christian Scheideler and Alexander Setzer

Clairvoyant State Machine Replications . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Rida Bazzi and Maurice Herlihy

Set Agreement and Renaming in the Presence of Contention-Related
Crash Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

An Innovative Approach to Achieve Compositionality Efficiently Using
Multi-version Object Based Transactional Systems . . . . . . . . . . . . . . . . . . . 284

Chirag Juyal, Sandeep Kulkarni, Sweta Kumari, Sathya Peri,
and Archit Somani

Ring Exploration with Myopic Luminous Robots . . . . . . . . . . . . . . . . . . . . 301
Fukuhito Ooshita and Sébastien Tixeuil

Uniform Circle Formation for Swarms of Opaque Robots with Lights . . . . . . 317
Caterina Feletti, Carlo Mereghetti, and Beatrice Palano

Arbitrary Pattern Formation with Four Robots . . . . . . . . . . . . . . . . . . . . . . 333
Quentin Bramas and Sébastien Tixeuil

Gracefully Degrading Gathering in Dynamic Rings . . . . . . . . . . . . . . . . . . . 349
Marjorie Bournat, Swan Dubois, and Franck Petit

Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities . . . 365
Ivan Walulya, Bapi Chatterjee, Ajoy K. Datta, Rashmi Niyolia,
and Philippas Tsigas

Brief Announcement: Deterministic Leader Election in Self-organizing
Particle Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Rida A. Bazzi and Joseph L. Briones

Brief Announcement: Time Efficient Self-stabilizing Stable Marriage . . . . . . 387
Joffroy Beauquier, Thibault Bernard, Janna Burman, Shay Kutten,
and Marie Laveau

XII Contents



Brief Announcement: Feasibility of Weak Gathering in
Connected-over-Time Dynamic Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Fukuhito Ooshita and Ajoy K. Datta

Brief Announcement: Optimal Self-stabilizing Mobile Byzantine-Tolerant
Regular Register with Bounded Timestamps. . . . . . . . . . . . . . . . . . . . . . . . 398

Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru,
and Sébastien Tixeuil

Brief Announcement Continuous vs. Discrete Asynchronous Moves:
A Certified Approach for Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Contents XIII



A Self-stabilizing Hashed Patricia Trie

Till Knollmann1(B) and Christian Scheideler2(B)

1 Heinz Nixdorf Institute, Computer Science Department, Paderborn University,
Paderborn, Germany
tillk@mail.upb.de

2 Computer Science Department, Paderborn University, Paderborn, Germany
scheideler@upb.de

https://www.hni.uni-paderborn.de/alg/

https://cs.uni-paderborn.de/ti/

Abstract. While a lot of research in distributed computing has cov-
ered solutions for self-stabilizing computing and topologies, there is far
less work on self-stabilization for distributed data structures. Consider-
ing crashing peers in peer-to-peer networks, it should not be taken for
granted that a distributed data structure remains intact. In this work, we
present a self-stabilizing protocol for a distributed data structure called
the hashed Patricia Trie (Kniesburges and Scheideler WALCOM’11)
that enables efficient prefix search on a set of keys. The data structure
has a wide area of applications including string matching problems while
offering low overhead and efficient operations when embedded on top of
a distributed hash table. Especially, longest prefix matching for x can be
done in O(log |x|) hash table read accesses. We show how to maintain
the structure in a self-stabilizing way. Our protocol assures low overhead
in a legal state and a total (asymptotically optimal) memory demand of
Θ(d) bits, where d is the number of bits needed for storing all keys.

Keywords: Self-stabilizing · Prefix search · Distributed data structure

1 Introduction

We consider the problem of maintaining a distributed data structure for efficient
Longest Prefix Matching in peer-to-peer (P2P) systems. We focus on the hashed
Patricia Trie (HPT) introduced in [14] and present an algorithm rendering a
self-stabilizing version of this data structure when applied on top of any reliable
distributed hash table (DHT).

Definition 1 (Longest Prefix Matching). Consider a set of binary strings
called keys and a binary string x. The task of Longest Prefix Matching is to find
a key y sharing the longest common prefix with x. A prefix of a binary string is
a substring beginning with the first bit. We denote the longest common prefix of
x and y by �cp(x, y).

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901).

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-030-03232-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_1&domain=pdf


2 T. Knollmann and C. Scheideler

We denote a prefix p of x by p � x. p is a proper prefix of x (p � x) if p is a
prefix of x and |p| < |x|, where |p| is the length of p. Longest Prefix Matching
is an old problem with applications in various areas including string matching
problems and IP lookup in Internet routers. To solve it efficiently in a distributed
P2P system, the HPT has been introduced [14]. The HPT is a distributed data
structure applied to any common DHT which allows efficient prefix search for x
in O(log |x|) read accesses to the hash table, i.e., solely based on the length of the
search word x. The costs for an insertion of x is in O(log |x|) read accesses and
O(1) write accesses, while deletion can be done in O(1) accesses. The memory
space used is asymptotically optimal in Θ(sum of all key lengths). Moreover,
Suffix Trees can be implemented efficiently using Patricia Tries and thus also
hashed Patrica Tries (called PAT Trees [10]). This allows us to efficiently decide
if a given string x is a substring of a text in a runtime only depending on the
length of x.

The usefulness of Patricia Tries motivates us to investigate how a HPT can be
maintained in a P2P system where nodes may enter/leave or even fail. While a lot
of research has considered the design of self-stabilizing computation or topologies
(see Sect. 1.2), to the best of our knowledge there are far fewer results concerning
self-stabilizing distributed data structures. However, failures of peers may affect
the correctness of any distributed data structure. Therefore, we consider the
problem of finding an efficient distributed protocol to maintain a HPT in a
self-stabilizing way.

1.1 Model

We assume the existence of a self-stabilizing distributed hash table (DHT) which
provides the operations DHT-Insert(x) to insert data and DHT-Search(x)
to retrieve data. These operations are carried out reliably on the stored data,
i.e., no operation is ever canceled. We assume the existence of a collision-free
hash function which maps binary strings to positions in [0, 1) to store data in
the DHT. The function is available locally at every peer. Each peer has a unique
identifier, manages local variables and maintains a channel. When a peer sends
a message m to peer p, it puts m in the channel of p. A channel has unbounded
capacity and messages never get lost. If a peer processes a message in its channel,
the message is removed from the channel afterwards.

We distinguish between two types of actions: The first one is for standard
procedures and has the form 〈label〉(〈parameters〉) : 〈command〉 where label is
the name of the action, parameters define the set of parameters and command
defines the statements that are executed when calling the action. It may be exe-
cuted locally or remotely. The second type has the form 〈label〉 : (〈guard〉) →
〈command〉 where label and command are defined as above and guard is a pred-
icate over local variables. An action at peer p can only be executed if its guard
is true or a message in the channel of p requests to call it. We call such an action
enabled. The guard of our protocol routine Timeout is always true.

A state of the system is defined by the assignment of variables at every
peer, the data items and their values stored at every peer and all messages in



A Self-stabilizing Hashed Patricia Trie 3

channels of peers. The system can transform from a state s to another state s′ by
executing an enabled action at a peer. An infinite sequence of states (s1, s2, . . . )
is a computation if si+1 can be reached by executing an action enabled in si for
all i ≥ 1. The state s1 is called initial state. We assume fair message receipt, i.e.,
every message contained in a channel is eventually processed. Also, we assume
weakly fair action execution such that any action that is enabled in all but
finitely many states is executed infinitely often. This especially applies to the
Timeout procedure. We call a protocol self-stabilizing if it fulfills convergence
and closure. Convergence means that starting from an arbitrary initial state,
the protocol transforms the system to a legal state in finite time. Closure means
that starting from a legal state, the protocol only transforms the system to
consecutive legal states. Our goal is to provide a self-stabilizing HPT. We define
the legal state of a HPT later in Sect. 4.1.

1.2 Related Work

The basic data structure we consider here is the Patricia Trie. This compressed
tree structure has been introduced by Morrison in [16]. It was extended to the
hashed Patricia Trie by Kniesburges and Scheideler in [14]. In [10], Gonnet et
al. presented PAT Trees which are essentially Patricia Tries for special suffixes
(sistrings) of a text. This widens the applications of Patricia Tries to general
string problems such as deciding if a word or sentence is contained in a text
[10]. The work on self-stabilization started with the research of Dijkstra in [7]
where he analyzed self-stabilization in a token ring scenario. Since then, research
has covered wide areas including self-stabilizing computation [3,5] and coordina-
tion [1,2,7,9]. Furthermore, with the rise of P2P systems [18,20], self-stabilizing
topologies in the sense of overlay networks gained attraction [4,6,8,11–13,19].
We use approaches originally presented for topological self-stabilization. This
includes a technique called Linearization presented by Onus et al. in [17]. A
common approach for storing data in overlay networks is a distributed hash
table (DHT) like Chord [20]. Using hashing, data items, as well as network
peers, are mapped to the [0, 1) interval such that a mapping between them is
established. There are various results on self-stabilizing DHTs in the literature
(for example [13]). Further, most (self-stabilizing) overlay networks can easily
be extended to a DHT given sortable unique identifiers for the peers which is a
common assumption.

1.3 Our Contribution

We present a self-stabilizing protocol called SHPT to maintain a slightly mod-
ified version of the HPT as presented in [14]. Whenever we refer to HPT, we
implicitly mean the modified version. The HPT and our modification are briefly
introduced in Sect. 2. Afterwards, Sect. 3 gives a high-level description of the
most important mechanisms of our protocol. We only require for an initial state
that the underlying DHT is in a legal state and that a set of unique keys is stored
at DHT nodes. In Sect. 4, we show that our protocol stabilizes a HPT in finite



4 T. Knollmann and C. Scheideler

time out of any initial state. When the HPT is in a legal state, our protocol
guarantees a low overhead of a constant amount of hash table read accesses and
messages generated at each DHT node per call of the protocol routine. Further-
more, we can bound the total memory consumption in a legal state to Θ(d) bits
if d is the number of bits needed to store all keys. Due to space limitations, we
deferred the Pseudocode and the full proofs concerning correctness and overhead
to the full version [15].

2 Hashed Patricia Trie

We consider a data structure called the hashed Patricia Trie (HPT) as presented
in [14]. The HPT is an extended Patricia Trie that is distributed in a P2P System
by using a DHT. We briefly describe the construction. For details, we refer to
[14]. The Patricia Trie is a compressed trie which was proposed by Morrison
in [16]. Suppose we are given a key set KEYS consisting of strings. A trie is a
tree structure that consists of labeled nodes and labeled edges. The root node is
labeled by the empty string and every edge is labeled by one character. The label
of a node is the concatenation of all edge labels of edges traversed on the unique
path from the root to the node. For each k ∈ KEYS there is a node labeled by
k (see Fig. 1). The Patricia Trie introduces compression by allowing edge labels
to be strings such that inner nodes with a single child, which do not represent
a key, can be avoided. Similar to [14], we restrict ourselves to keys represented
by binary strings. We store the Patricia Trie in a DHT by hashing all nodes by
their label resulting in the hashed Patricia Trie. Our notation is close to the one
of [14] and can be seen in Fig. 2.

c

a

r t
car cat

ca

c

Fig. 1. Example of a
classical Trie contain-
ing the keys “car” and
“cat”.

Fig. 2. Values stored at nodes of the HPT from the
perspective of v. Nodes are stored by hashing their
label to [0, 1) in combination with a DHT. White
nodes denote Patricia nodes while Msd nodes are
depicted in gray.

Every Patrica node v has a label denoted by b(v) and stores three edges.
The root node stores the empty string b(root) = ε. p−(v) is the parent edge of



A Self-stabilizing Hashed Patricia Trie 5

v pointing to the parent node u such that b(u) ◦ p−(v) = b(v). We denote by
◦ the concatenation of strings. By px(v) we denote the child edge of v starting
with the value x for x ∈ {0, 1}. If b(w) ∈ KEYS for a Patricia node w, we set
key(w) = b(w). Additionally, an inner Patricia node stores a key2(v) = k, where
k is a key with b(v) � k. For efficient updates, the node w storing k has a field
r(w) = b(v). These key2 values allow returning a valid result for a prefix search
when stopping at any Patricia node. It is possible to assure that every inner
Patricia node with two children has a key2 pointing to a leaf node in its subtree.

To allow efficient prefix search, the Patricia Trie has been extended in [14].
Between every pair of directly connected Patricia nodes, Msd nodes (from Most
Significant Digit) are added. Their length is chosen in a way that those nodes are
hit by a binary search first. More specifically, Msd nodes are inserted between
Patricia nodes such that their length is considered first by the binary search
before the Patricia nodes around them are considered. We only give a short
definition of the calculation of an Msd label in Definition 2. In the special case
that an Msd label equals the label of a surrounding Patricia node, no Msd node
is needed at that position. For details on how Msd nodes improve the prefix
search operation, see [14].

Definition 2 (Msd Label). Let a = (am, . . . , a0) and b = (bm, . . . , b0) be two
binary strings of the same length. Possibly, one of them is filled up with leading
zeros to have length m+1. We define msd(a, b) to be the position j where aj 	= bj

and ai = bi for all i > j. That means, msd(a, b) is the most significant bit (digit)
at which a and b differ.

Consider the binary labels b(u) and b(v) of two nodes u, v. Let �u = |b(u)|
and �v = |b(v)| and without loss of generality let �u < �v. We define the Msd
label b(m) between u and v to be the prefix of v of length

∑�log �v�+1
i=msd(�u,�v)

(�v)i · 2i.

For example, consider u, v with b(u) = 10 and b(v) = 100101, where
�u = |b(u)| = (10)2 and �v = |b(v)| = (110)2. Then msd(�u, �v) =
msd((010)2, (110)2) = 2, such that an Msd node m between u and v has label
b(m) = 1001 � b(v) of length 22 = 4.

The HPT supports operations PrefixSearch(x) and Insert(x) for a binary
string x in O(log |x|) read accesses on the hash table. Insertion takes additional
O(1) write accesses and Delete(x) is supported in constant hash table accesses.
Furthermore, the memory space usage is in Θ

(∑
k∈KEYS |k|).

Modification. We modify the HPT to simplify the stabilization technique. Con-
sider Fig. 3. The original HPT has a structure as shown on the left side. The
Msd node m is in between the Patricia nodes u and w such that u and w point
to m and m points to u (parent) and w (child). We modify this structure by
having u and w point to each other and not to m. By this, deletions of Msd
nodes do not concern the connectivity between Patricia nodes while the advan-
tages of Msd nodes are still present. The crucial property of Msd nodes is that
they point to Patricia nodes. Edges towards Msd nodes are not needed for the
efficient operations introduced in [14]. For the rest of this paper, when we refer
to the HPT, we mean the HPT with this small modification.



6 T. Knollmann and C. Scheideler

Fig. 3. Modified HPT

Next, we introduce some common terms that are
used throughout the paper. HPT is the set of all data
nodes of the HPT. This includes PAT as the set of
nodes used in the original Patricia Trie and MSD
which are the Msd nodes. By definition HPT = PAT∪
MSD. We denote by KEYS the set of keys stored by the
HPT. Let u, v ∈ HPT with b(u) � b(v). In this case
we say, u is above v while v is below u. Let w ∈ HPT
such that b(u) � b(w) � b(v). Then w is in between u
and v. If for two u, v ∈ HPT with b(u) � b(v) there
is no w ∈ HPT with b(u) � b(w) � b(v), then u and
v are closest to each other. We say a child edge e of v ∈ HPT is valid, if there
exists a node w ∈ HPT with b(v)◦e = b(w). Similar, a parent edge e of v ∈ HPT
is valid, if there exists a node w ∈ HPT with b(w)◦e = b(v). Consider two nodes
v, u ∈ HPT, where u has an edge pointing to v and vice versa. We then speak
of a bidirectional edge.

3 The SHPT Protocol

In the following, we present SHPT, our self-stabilizing protocol for maintaining
a HPT. The corrections of SHPT can be divided into several parts. We present
our assumptions concerning the underlying DHT first. Afterwards, we give an
intuition on the different types of repairs our protocol performs. We often speak
about actions executed by a HPT node v. This translates to actions that are
executed by the corresponding DHT node storing v. For detailed Pseudocode,
we refer to [15].

3.1 Properties of the DHT

We assume that the underlying DHT is in a legal state, i.e., it provides the
actions DHT-Search(x) and DHT-Insert(x) which are carried out reliably on
the stored data. Deletion of data is only done locally by our protocol. Stability
of the DHT is crucial as our protocol relies on finding/manipulating nodes of
the HPT solely based on their hash value given by their label. There are a lot
of different self-stabilizing DHTs presented in the literature. Some of them are
mentioned in Sect. 1.2.

Our main demand on the DHT is that at some point nodes are stored such
that they can always be retrieved by their labels. HPT nodes are essentially
data-items. Every DHT node regularly checks if all its stored data is at the
correct peer based on the hashing. If data is stored incorrectly, it is sent towards
the correct DHT node. When a data item i is inserted at a DHT node n, n
checks if i is already present. If yes, i is only inserted if it does not collide with
an already stored Patricia node that stores a key. If a HPT node v has been
inserted, a presentation method is triggered for v and v is directly presented to
the nodes referred to by p−(v), p0(v) and p1(v). The presentation mechanism is



A Self-stabilizing Hashed Patricia Trie 7

presented later. This assumption assures that keys are preserved while insertion
is not blocked and every HPT node is presented at least once.

3.2 Correcting Edge Information

One general problem for self-stabilizing solutions is that every stored information
can be corrupted. Thus, our protocol regularly checks information stored in a
HPT node. Consider a node v ∈ HPT. We refer to the information provided by
the fields p−(v), p1(v) and p0(v) as well as key2(v) and r(v) as edge information.
Edge information can be checked rather simply as it allows reconstruction of a
node’s label b(w). The label can be used to query the DHT for an (incomplete)
copy of w. v can then compare the information stored at w with its own and
decide for corrections. Some inconsistencies in the local structure can also be
checked without querying the DHT. In general, when checking an edge e at
node v, we distinguish three cases (see Fig. 4):

(a) e has a wrong form. For example, if p1(v) = (0 . . . ) or p−(v) is not a suffix
of b(v). In this case, the edge is considered corrupted and is cleared.

(b) The node w that e points to does not exist. Again, e is not correct and is
cleared.

(c) The node w ∈ HPT that e points to does exist, but the edge provided by w
which should point to v does not match e. Several sub-cases arise here. The
protocol may have to simply present v to w, or a new node may need to be
inserted.

a) b) c)

10010

11

Fig. 4. Examples for the cases of wrong edge information.

Additionally, every node avoids edges pointing to Msd nodes. Such edges are
treated as if they pointed to a non-existing node. A node v can check the values
of p−(v), key2(v) and r(v) by calculating if the prefix relation between itself and
the respective nodes fulfills the definition of the hashed Patricia Trie. To prevent
the spreading of incorrect information, new edges are only stored if they comply
with the definition of the hashed Patricia Trie from the local perspective of v.
We will go into detail on the creation of new edges and the insertion of nodes
later.



8 T. Knollmann and C. Scheideler

3.3 Maintaining Connections

Our goal to stabilize the Patricia nodes of a HPT can also be formulated using
Branch Sets as described in Definition 3. A Branch Set consists of all Patricia
nodes on a branch from the root to a leaf node (see Fig. 5). When the HPT is
in a legal state, there are as many Branch Sets as there are leaf nodes.

Definition 3 (Branch Set). Consider a set of Patricia nodes with maximum
cardinality S such that u,w ∈ S implies b(u) � b(w) or b(w) � b(u) and the
Patricia node v ∈ S with maximum label length stores a key k. We call this set
the Branch Set of k.

S

Fig. 5. Branch Set S from the root
(ε) to a leaf node (k) is the set
of nodes in a branch of the hashed
Patricia Trie in a legal state.

We apply a technique called Lineariza-
tion [17] to all Patricia nodes to create a list
sorted by label length for all Branch Sets in
finite time. It is important to exclude Msd
nodes from the Linearization. Msd nodes are
not presented nor do they delegate presenta-
tion messages. Due to deletion of a Patricia
node, an Msd node might still be presented
accidentally. However, we limit this problem
by carefully handling deletions and insertions
as described later. For the Linearization to
work, we need to make sure that all nodes in
a Branch Set are brought into and kept in a
weakly connected state.

A Patricia node v with an empty parent
edge tries to recreate connectivity by doing a
modified PrefixSearch(b(v)) similar to the
one presented in [14]. The procedure we call
BinaryPrefixSearch(b(v)) does not search for b(v) itself and only consists
of the binary search phase of the PrefixSearch(x) of [14], returning a copy of a
Patricia node w with b(w) � b(v). If no such node exists, we conclude that the
root node is non-existent and trigger a construction of it.

Further, we let every Patricia node present its own label to its parent and its
two children using a presentation message. A message presenting v is delegated
to the Patricia node w closest to v. Delegation happens only by using edges and
intermediate nodes sharing a Branch Set with v. All nodes maintain connections
to labels which are closest to them while delegating presentations of other labels.
This behavior resembles the Linearization approach presented in [17], allowing
our protocol to form a sorted list for all branches of the HPT.

There is still an important issue we need to resolve. Consider a Branch Set S
of nodes. We can end up in situations where nodes exist that do not contribute
to the hashed Patricia Trie. Such nodes can be Patricia nodes not storing a key.
To reduce memory demands, we are interested in removing unneeded nodes. In
principle, deletion without harming connectivity can be done since the root node
is always known implicitly. However, deletion increases distances. In addition,



A Self-stabilizing Hashed Patricia Trie 9

our protocol must provide the ability to create and integrate new Patricia nodes.
When inserting and deleting nodes, we need to make sure that no loops are
possible in which the system may take forever to stabilize. We will explain how
to avoid such loops in the following.

3.4 Removal/Creation of Nodes

Due to the implicitly known root node, deletion is possible and should be con-
sidered to reduce memory demands. We distinguish between Msd nodes and
Patricia nodes. Our modification allows us to handle Msd nodes in a simple and
efficient way. We try to avoid any edges pointing to Msd nodes such that even-
tually, deletion and creation of Msd nodes does not influence the Patricia nodes
and their structure. Only if there are two Patricia nodes u, w connected via a
bidirectional edge, an Msd node between them might be inserted. Fortunately,
Msd labels can be calculated locally and a corresponding Msd node can easily
be accessed by querying the DHT. Any Msd node which is not between such two
Patricia nodes, or has an incorrect label, is deleted.

A Patricia node v (except for the root) is unnecessary if key(v) = nil and
there are no two Patricia nodes u,w, both storing a key, such that b(v) =
�cp(b(u), b(w)), i.e., u should be in a different subtree than w below v. From
a global point of view, we can easily decide if v is unnecessary solely based
on information about the situation below v. From a local perspective, v can-
not decide but only assume to be unnecessary if it lacks child edges. We make
the local protocol aggressive by deleting any node that lacks child edges and
assumes to be unnecessary. This also introduces deletion of necessary Patricia
nodes. Therefore, we always trigger a creation of new HPT nodes by Patricia
nodes below the new ones. This avoids loops of creation and deletion of nodes,
because newly created nodes inherently have valid children and, thus, do not
assume to be unnecessary. Patricia nodes storing a key essentially form a sta-
ble starting point, because they are never deleted. The need to insert a Patricia
node is detected by comparing a node’s parent edge with the corresponding edge
provided by the parent.

3.5 Distribution of References to Keys

In addition, SHPT tries to achieve the following. Every inner Patricia node v
with two children should store a key2(v) = b(w) which points to a leaf node w
storing a key such that b(v) � b(w). The respective leaf node w stores an r(w)
value pointing to v. This property is helpful for efficient prefix search. No matter
at which Patricia node the prefix search stops, there is a key referenced having
the node’s label as a prefix. This key is a valid result for the search query. We
call all inner Patricia nodes with two children and the root node key2 nodes. Due
to the resemblance of the hashed Patricia Trie with a binary tree, Fact 1 holds.

Fact 1. Let L be the number of leaf nodes. Let I be the number of key2 nodes.
When the HPT is in a legal state, it holds I ≤ L ≤ I + 1. L = I, if the root has
one child and L = I + 1 if it has two.



10 T. Knollmann and C. Scheideler

To assure that every leaf node is referenced by a key2 node, we allow the root
to store up to two key2 values. This reduces the number of hash table accesses
created by our protocol, when the HPT is in a legal state.

If we naively assign leaf nodes to key2 nodes, this may lead to situations
in which a key2 node cannot get a key2 value. For an example, consider Fig. 6.
The critical observation is that key2 nodes with a shorter label, in general, have
more possible leaf nodes they can point to than key2 nodes with a longer label.
Therefore, our protocol aims at prioritizing key2 nodes which are closer to leaf
nodes.

Fig. 6. Example where v cannot get a key2 (left). The leaf nodes k and k′ storing a
key are already associated to Patricia nodes above v. The blocking of v is resolved as
v takes over the key2 of w (right).

We divide the protocol into three parts. First, all nodes continuously check
if they should store a key2 or r value and whether such a value points to a leaf
node, respectively key2 node. Second, if a leaf node v does not store a value in
r(v), it presents its label upwards in the HPT by sending a message crossing
only parent edges. The first key2 node w without a key2 receiving the message
sets key2(w) = b(v). Third, a key2 node v repairs in the following way. If key2(v)
points to leaf node w with b(v) � b(w), there are two cases.

(a) b(v) � r(w): Then key2(v) is set to nil since there may already be some
key2 node with longer label pointing at w.

(b) Else, v has either longer label than r(w) or r(w) = nil. The protocol sets
r(w) = b(v).

If key2(v) = nil, a message is sent upwards in the HPT and the first key2 node w
with b(v) � key2(w) responds to v. Then, key2(v) is set to key2(w). Eventually,
v takes over the key2 value of w, because w executes case (a).

Intuitively, key2 nodes without a key2 pull values from nodes with shorter
label. Simultaneously, leaf nodes without an r value present their label towards
the root.

4 Protocol Analysis

In this section, we show that SHPT is self-stabilizing and transforms the HPT in
finite time to a legal state. Furthermore, we present results concerning memory



A Self-stabilizing Hashed Patricia Trie 11

usage and the number of hash table accesses and messages when the HPT is in
a legal state.

4.1 Correctness

We begin by showing the correctness of our self-stabilizing protocol. We use
a commonly known technique introduced by Dijkstra in [7]. Our goal is to
show Theorem 1. For that we consider a sequence of intermediate states that
are reached consecutively until the HPT is in a legal state. For every state we
show convergence towards the state and closure within it, i.e., the properties of
the state are kept by our protocol.

Theorem 1. The algorithm creates in finite time a hashed Patricia Trie in a
legal state out of any initial state in which the DHT is in a legal state and there
is a set of unique keys stored at DHT nodes.

In the following, we briefly sketch the main proof by presenting a sequence
of main lemmas that roughly reflect the states the system reaches. Each main
lemma thereby consists of multiple properties that are proven by a set of lemmas
on its own. The full proof consisting of all lemmas, their respective proofs, and
the complete definition of a legal state of the HPT can be found in [15].

To prove the correctness captured in Theorem 1, we first need to formally
define a legal state of the HPT. Due to space limitations, we only give an intuitive
definition. For the complete definition, see the full version [15]. Intuitively, the
HPT is in a legal state if we have as few HPT nodes as possible in the system, all
keys are stored correctly, the structure is consistent to the (modified) definition
presented in Sect. 2, and the references to keys in key2 nodes are existing and
stored at correct nodes.

Initially, we only assume that a set of unique keys is stored at DHT nodes.
The first lemma states that general repair mechanisms assure correctly stored
keys and Patricia nodes.

Lemma 1. In finite time it holds: Every key k is stored in a node v ∈ PAT
with b(v) = k. Furthermore, every node is stored at the DHT node responsible
for it. Consider any v ∈ HPT that is deleted. As long as v is not reconstructed,
in finite time it holds:

(a) There is no presentation message for b(v).
(b) There is no edge pointing towards b(v) in the system.

From now on, the proof consists of three phases. In a first phase, all Patricia
nodes which are not needed for the final structure are removed. The second
phase considers the reconstruction of the binary tree structure of the HPT and
corrects the sets of Patricia nodes and Msd nodes. In the third and last phase,
information stored in key2 and r fields is made consistent.



12 T. Knollmann and C. Scheideler

Phase I – Deletion of Patricia Nodes
In this phase, the protocol makes sure that all Patricia nodes which are not
needed in the final structure are removed. Initially, information stored at HPT
nodes that directly contradicts the definition of the HPT is cleared. This can be
information such as a parent edge at v ∈ HPT that is no suffix of b(v). After
that, Patricia nodes and Msd nodes in unnecessary subtrees, i.e., subtrees not
containing a key, and unnecessary inner Patricia nodes are gradually removed
(Fig. 7). Every leaf node in an unnecessary subtree detects in finite time that it
has no valid children and is deleted.

Lemma 2. In finite time, every unnecessary Patricia node is removed. A Patri-
cia node v is unnecessary if there are no two keys k1 and k2 with b(v) =
�cp(k1, k2).

Unnecessary
Subtree Unnecessary

Patricia-Node

Fig. 7. Node k stores a key. Msd nodes are sketched in grey. First, unnecessary subtrees
are deleted (left), then remaining unnecessary Patricia nodes are removed (right).

Patricia nodes which are necessary may still be deleted because of their local
perspective. However, this deletion is limited and stops after finitely many dele-
tions. This holds, because Patricia nodes are only deleted due to incorrect child
edges. If a new Patricia node with a long label is inserted, its child edges are ini-
tially valid and stay valid. There cannot be infinitely many deletions triggered,
because the structure stabilizes bottom-up.

Lemma 3. In finite time, every Patricia node has valid child edges pointing to
Patricia nodes and no further Patricia node is deleted.

Phase II – Reconstruction
In the second phase, SHPT reconstructs the HPT by rebuilding missing Patricia
nodes and repairing connections. Since every node tries to create a parent edge
pointing to a Patricia node with shorter label, eventually all missing Patricia
nodes are detected and can be inserted. The process works in a bottom-up fash-
ion, i.e., Patricia nodes with longer labels reconstruct missing nodes with shorter
ones. The Patricia nodes storing a key as well as the root node act as fixed points
in this case, because they are never deleted once constructed.



A Self-stabilizing Hashed Patricia Trie 13

Lemma 4. In finite time, the root node exists and no Patricia node points to an
Msd node. Furthermore, missing Patricia nodes are reconstructed. Also, every
Patricia node has valid edges pointing only to existing Patricia nodes, i.e., there
is a path from every Patricia node to the root and there is a path from the root
to every Patricia node.

It is crucial that no Patricia node points to an Msd node, because edges to
Msd nodes are effectively treated as corrupt ones. This property assures that Msd
nodes are eventually excluded from the Linearization procedure. Linearization
then allows us to show that every Branch Set (see Definition 3) of Patricia nodes
eventually forms a stable sorted list. Incorrect Msd nodes are removed without
affecting the rest of the HPT and missing Msd nodes are inserted. Further,
correct Msd nodes are not deleted, because the two Patricia nodes closest to
a correct Msd node are not deleted and do not change their edges any more.
All these properties are reflected in Lemma 5. For completeness, we refer to the
definition of incorrect and missing Msd nodes in the full proof in [15].

Lemma 5. In finite time for every Branch Set S it holds: Between every pair of
closest Patricia nodes u, w ∈ S there is a bidirectional edge. Furthermore, every
incorrect Msd node is removed and all missing Msd nodes are inserted.

Phase III – Consistency
In the final phase the information stored in key2 and r fields is corrected to be
consistent. Due to Fact 1, we know that this can be achieved. The root is allowed
to store up to two key2 values. Therefore, there is always a way to store all keys
of leaf nodes in key2 nodes. First, we show that nodes which should not store a
key2 value remove any such stored value. Further, references in key2 and r fields
are deleted when they contradict the relationship r(key2(v)) = b(v), where v is
a key2 nodes and key2(v) references a leaf node.

Lemma 6. In finite time, only key2 nodes store a key2 and only leaf nodes store
an r value. Every key2 value stored at a Patricia node v points to a leaf w with
b(v) � b(w) and every r value stored at a Patricia node w points to a key2 node
v with b(v) � b(w).

From now on, key2 nodes not storing a key2 try to acquire the key2 of a
key2 node above them. Leaf nodes lacking a reference in r present themselves
to key2 nodes above them. Therefore, the length of the longest label of a key2

node not storing a staying key2 reduces over time. As this length is finite, the
process terminates. Thereafter, the r values of leaf nodes are corrected, because
the key2 values do not change any more.

Lemma 7. In finite time, all key2 nodes store a stable key2 and all leaf nodes
store a stable r value. For every key2 node v, the node w with b(w) = key2(v) is
a leaf node with r(w) = b(v).

Finally, our protocol is correct as all unnecessary nodes are removed, missing
nodes are inserted, Patricia nodes are connected by bidirectional edges, and the
information stored in key2 and r fields is consistent such that the HPT is is in
a legal state in finite time.



14 T. Knollmann and C. Scheideler

4.2 Overhead

Assume, the HPT is in a legal state. We give results for the complexity in terms
of hash table accesses and messages and the memory overhead of our solution.
Due to space limitations, we refer to the full version [15] for the proofs of the
following theorems. When a DHT node executes SHPT by calling its Timeout
Method, exactly one HPT node is checked. Thereby, at most a constant number
of other HPT nodes may be partially acquired or notified and Theorem 2 holds.

Theorem 2. When the HPT is in a legal state, SHPT creates a constant number
of hash table (read) accesses and messages per call of Timeout at each DHT
node.

Unnecessary Patricia nodes and incorrect Msd nodes are removed by SHPT.
Therefore, the HPT nodes are the same as presented in the construction in Sect. 2
and Theorem 3 holds.

Theorem 3. Let d be the number of bits needed to store all keys. The total
memory used by a HPT in a legal state is in Θ(d) bits.

References

1. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol.
486, pp. 15–28. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-
7 2

2. Arora, A., Gouda, M.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038
(1994)

3. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: Proceedings 32nd Annual Symposium of
Foundations of Computer Science, pp. 258–267. IEEE, October 1991

4. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic
skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

5. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6),
297–301 (1994)

6. Cramer, C., Fuhrmann, T.: Self-stabilizing ring networks on connected graphs.
Technical report, University of Karlsruhe (2005)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. Dolev, S., Kat, R.I.: HyperTree for self-stabilizing peer-to-peer systems. In: 3rd
IEEE International Symposium on Proceedings of the Network Computing and
Applications. NCA 2004, pp. 25–32. IEEE Computer Society, Washington, DC
(2004)

9. Flatebo, M., Datta, A.K.: Two-state self-stabilizing algorithms for token rings.
IEEE Trans. Softw. Eng. 20(6), 500–504 (1994)

10. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: PAT Trees and
PAT arrays. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Retrieval, pp.
66–82. Prentice-Hall Inc., Upper Saddle River (1992)

https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/3-540-54099-7_2


A Self-stabilizing Hashed Patricia Trie 15

11. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: SKIP+: a self-
stabilizing skip graph. J. ACM 61(6), 36 (2014)

12. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local
Delaunay graph construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 771–780. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10631-6 78

13. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord
overlay network. In: Proceedings of the 23rd Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures. SPAA 2011, pp. 235–244. ACM, New York
(2011)

14. Kniesburges, S., Scheideler, C.: Hashed Patricia Trie: efficient longest prefix match-
ing in peer-to-peer systems. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011.
LNCS, vol. 6552, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19094-0 18

15. Knollmann, T., Scheideler, C.: A Self-stabilizing hashed Patricia Trie. ArXiv e-
prints. http://arxiv.org/abs/1809.04923 (2018)

16. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514–534 (1968)

17. Onus, M., Richa, A., Scheideler, C.: Linearization: locally self-stabilizing sorting in
graphs. In: Proceedings of the Meeting on Algorithm Engineering & Expermiments,
pp. 99–108. Society for Industrial and Applied Mathematics, Philadelphia (2007)

18. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

19. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In:
Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing,
pp. 39–46. IEEE, August 2005

20. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

https://doi.org/10.1007/978-3-642-10631-6_78
https://doi.org/10.1007/978-3-642-10631-6_78
https://doi.org/10.1007/978-3-642-19094-0_18
https://doi.org/10.1007/978-3-642-19094-0_18
http://arxiv.org/abs/1809.04923
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18


Self-stabilizing Overlays
for High-Dimensional Monotonic

Searchability

Michael Feldmann(B), Christina Kolb, and Christian Scheideler

Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany
{michael.feldmann,ckolb,scheideler}@upb.de

Abstract. We extend the concept of monotonic searchability [17,18] for
self-stabilizing systems from one to multiple dimensions. A system is self-
stabilizing if it can recover to a legitimate state from any initial illegal
state. These kind of systems are most often used in distributed appli-
cations. Monotonic searchability provides guarantees when searching for
nodes while the recovery process is going on. More precisely, if a search
request started at some node u succeeds in reaching its destination v,
then all future search requests from u to v succeed as well. Although there
already exists a self-stabilizing protocol for a two-dimensional topol-
ogy [10] and an universal approach for monotonic searchability [18], it
is not clear how both of these concepts fit together effectively. The lat-
ter concept even comes with some restrictive assumptions on messages,
which is not the case for our protocol. We propose a simple novel protocol
for a self-stabilizing two-dimensional quadtree that satisfies monotonic
searchability. Our protocol can easily be extended to higher dimensions
and offers routing in O(log n) hops for any search request.

Keywords: Distributed systems · Topological self-stabilization
Monotonic searchability · Quadtrees · Octtrees

1 Introduction

Due to the growth and relevance of the Internet, the importance of distributed
systems is increasing. Such systems are needed, for instance, in social media
networks or multiplayer games and have to support a large number of partici-
pants. However, as soon as such a system has become large, the occurrence of
changes or faults are not an exception but the rule. In order to recover from
an arbitrary state to a legitimate one, distributed protocols are needed that are
self-stabilizing.

Most of the proposed self-stabilizing protocols only show that the system
eventually converges to a legitimate state, without considering the monotonicity

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center On-The-Fly Computing (SFB 901).

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 16–31, 2018.
https://doi.org/10.1007/978-3-030-03232-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_2&domain=pdf


Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 17

of the actual recovery process. Monotonicity means that the functionality of the
system regarding a specific property never gets worse as time progresses, i.e., for
two points in time t, t′ with t < t′, the functionality of the system is better in t′

than in t.
In this paper we are interested in searching, as this is one of the most impor-

tant operations in a distributed system. We study systems that satisfy monotonic
searchability : If a search request for node w starting at node v succeeds at time
t, then every search request for w initiated by v at time t′ > t succeeds as well.

Previous work on monotonic searchability [17,18] proposed self-stabilizing
protocols for one-dimensional topologies (for instance a sorted list). Still, up to
this point it is not known how to come up with an efficient self-stabilizing pro-
tocol for high-dimensional settings that satisfies monotonic searchability. High-
dimensional settings are relevant for example in wireless ad-hoc networks or
social networks where processes are defined by multiple parameters.

This paper introduces a novel protocol BuildQuadTree for a self-stabilizing
quadtree along with a routing protocol SearchQuad that satisfies monotonic
searchability and terminates after O(log n) hops on any input. To the best of
our knowledge, this is the first protocol that combines self-stabilization and
monotonic searchability for the two-dimensional case. In addition, one can eas-
ily extend our protocols in order to work for multiple dimensions. For the two-
dimensional case, we expand the notion of monotonic searchability to an even
stronger and more realistic property, which we call geographic monotonic search-
ability and show that SearchQuad satisfies this property as well. Our protocols
stand out due to their simplicity and elegance and do not enforce restrictive
assumptions on messages, as it has been done for the universal approach [18].

1.1 Model

We consider a two-dimensional square P of unit side length and model the
distributed system as a directed graph G = (V,E) with n nodes. Each node
v ∈ V represents a single peer and can be identified via its unique position in
P given by coordinates (vx, vy) ∈ [0, 1]2. We define ||(u, v)|| as the Euclidean
distance between two nodes u, v ∈ V , i.e., ||(u, v)|| =

√
(ux − vx)2 + (uy − vy)2.

Additionally, each node v maintains local protocol-based variables and has a
channel v.Ch, which is a system-based variable that contains incoming messages.
We assume a channel to be able to store any finite number of messages. Messages
are never duplicated or get lost in the channel. If a node u knows the coordinates
of some other node v, then u can send a message m to v by putting m into v.Ch.
There is a directed edge (u, v) ∈ E whenever u stores (vx, vy) in its local memory
or when there is a message in u.Ch carrying (vx, vy). In the former case, we call
that edge explicit and in the latter case we call that edge implicit.

Nodes may execute actions: An action is a standard procedure and has the
form 〈label〉(〈parameters〉) : 〈command〉, where label is the name of that action,
parameters defines the set of parameters and command defines the statements
that are executed when calling that action. It may be called locally or remotely,
i.e., every message that is sent to a node has the form 〈label〉(〈parameters〉).



18 M. Feldmann et al.

An action in a process v is enabled if there is a request for calling it in v.Ch.
Once the request is processed, it is removed from v.Ch. There is a special action
called Timeout that is not triggered via messages but is executed periodically
by each node.

We define the system state to be an assignment of a value to every node’s
variables and messages to each channel. A computation is an infinite sequence
of system states, where the state si+1 can be reached from its previous state
si by executing an action in si. We call the first state of a given computation
the initial state. We assume fair message receipt, meaning that every message of
the form 〈label〉(〈parameters〉) that is contained in some channel, is eventually
processed. We place no bounds on message propagation delay or relative node
execution speed, i.e., we allow fully asynchronous computations and non-FIFO
message delivery. Our protocol does not manipulate node coordinates and thus
only operates on them in compare-store-send mode, i.e., we are only allowed to
compare node coordinates to each other, store them in a node’s local memory
or send them in a message.

We assume for simplicity that there are no corrupted coordinates in the initial
state of the system, i.e., coordinates of unavailable nodes. One could use failure
detectors to solve this, but this is not within the scope of this paper, since
without them the problem of guaranteeing monotonic searchability is still non-
trivial. Having node coordinates to be read-only also makes sense in our setting,
as these are usually delivered by an external component that is not in control
of our protocol, for instance like GPS. In initial states there may exist corrupted
messages in node channels, i.e., messages containing false information. We will
argue that at a certain point in time, all of these messages will be processed and
no more corrupted messages are in the system.

Nodes are able to issue search requests at any point in time: A search
request is a message Search(v, (x, y)), where v is the sender of the message
and (x, y) ∈ [0, 1]2 are the coordinates we want to search for. A search request
is delegated along edges in G according to a given routing protocol, until the
request terminates, i.e., either the node with coordinates (x, y) is reached or the
request cannot be forwarded anymore. Note that (x, y) do not necessarily need
to be coordinates of an existing node, i.e., in such a case the routing protocol
may just stop at some node that is close to (x, y). Upon termination at node w,
the reference of w is returned to the sender v (in the pseudocode we indicate
this via a return statement).

1.2 Problem Statement

In this paper we consider the standard definition for self-stabilization:

Definition 1 (Self-stabilization). A protocol is self-stabilizing w.r.t. a set of
legitimate states if it satisfies the following two properties:

1. Convergence: Starting from an arbitrary system state, the protocol is guaran-
teed to arrive at a legitimate state.



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 19

2. Closure: Starting from a legitimate state, the protocol remains in legitimate
states thereafter.

We are interested in topological self-stabilization in this paper, meaning that
our self-stabilizing protocol is allowed to perform changes to the overlay network
G. In order for our protocol to work, we require the directed graph G containing
all explicit and implicit edges to be at least weakly connected initially. Once there
are multiple weakly connected components in G, these components cannot be
connected to each other anymore as it has been shown in [13] for compare-store-
send protocols. For a graph that contains multiple weakly connected components,
our protocol converts each of these components to our desired topology.

Consider the following definition of (standard) monotonic searchability:

Definition 2 (Monotonic Searchability). A self-stabilizing protocol satisfies
monotonic searchability according to some routing protocol R if it holds for any
pair of nodes v, w that once a search request Search(v, (wx, wy)) returns w at
time t, any search request Search(v, (wx, wy)) initiated at at time t′ > t also
returns w.

Realizing monotonic searchability in self-stabilizing systems is a non-trivial
problem, because once a Search(v, (wx, wy)) request returns w to v, it cannot
trivially be guaranteed that w is found again by v at later stages, due to the
modification of edges by the self-stabilizing protocol.

The above definition differs in a minor detail compared to the definition
stated in [17,18]: The initial search request issued by v terminates at time t, but
Scheideler et al. define the time step t to be the one at which the initial search
request was generated by v. They use a probing approach to check for a node v
whether v is still waiting for the result of a previously issued search request and
cache all search requests searching for the same target. The same approach can
be applied to our protocol as well to overcome this, but for the sake of simplicitiy
we use the slightly modified definition stated above.

In two-dimensional scenarios it is more realistic to search for geographic
positions rather than for concrete node addresses. To handle this, we introduce
the following definition of geographic monotonic searchability.

Definition 3 (Geographic Monotonic Searchability). Let (x, y) ∈ [0, 1]2

be an arbitrary position in P . Let w ∈ V be the node that would be returned by
Search(v, (x, y)) if the system is in a legitimate state. A self-stabilizing protocol
satisfies geographic monotonic searchability according to some routing protocol
R if in case the system is in an arbitrary state and Search(v, (x, y)) returns
w at time t, then any request Search(v, (x, y)) initiated at time t′ > t also
returns w.

This definition is even stronger than (standard) monotonic searchability, i.e.,
a protocol satisfying geographic monotonic searchability also satisfies monotonic
searchability. Therefore we focus on geographic monotonic searchability for the
rest of this paper.



20 M. Feldmann et al.

We aim to solve the following problem: Given a weakly connected graph of
n nodes with coordinates in P , construct a self-stabilizing protocol along with a
routing protocol such that geographic monotonic searchability is satisfied.

1.3 Our Contribution

In the following we summarize our contributions:

(1) We propose a novel self-stabilizing protocol BuildQuadTree that arranges
the nodes in a quadtree. BuildQuadTree is based on a special kind of sub-
division of P into subareas inducing an ordering via a space-filling curve (see
Sect. 2) and the BuildList protocol (Sect. 3.1). To the best of our knowledge
this is the first self-stabilizing protocol for the quadtree structure.

(2) Along with the self-stabilizing protocol BuildQuadTree we propose the
routing protocol SearchQuad. When searching for coordinates (x, y), the
protocol returns the node w, which lies within the same subarea as (x, y). We
show that BuildQuadTree along with SearchQuad satisfies geographic
monotonic searchability (and thus also standard monotonic searchability).

(3) We get an upper bound of O(log n) on the number of hops for a search
message (i.e., the amount of times a search message is delegated until it
terminates) if we assume that the Euclidean distance ||(u, v)|| between any
pair of nodes (u, v) ∈ V is at least 1/n. This is particularly an improve-
ment on the protocols proposed in [17,18] regarding the maximum number
of hops for searching a target, even for target addresses that do not exist
(see Sect. 1.4 on related work). To reach this bound, the space-filling curve
mentioned above is of great help, as it allows nodes to construct shortcut
edges based on the subdivision of P .

(4) Finally, one can easily extend BuildQuadTree and SearchQuad to work
in high-dimensional settings, realizing the first self-stabilizing protocol for
octtrees - the high-dimensional equivalent of quadtrees - that even satisfies
geographic monotonic searchability. This makes our protocols highly versa-
tile. Due to space reasons we defer the discussion on this to the full version
of this paper [5].

The rest of the paper is structured as follows: After stating some related
work, we describe our topology for the quadtree in Sect. 2. Then we present
our novel protocol BuildQuadTree in Sect. 3 along with the routing protocol
SearchQuad. We analyze our protocols in Sect. 4. Finally we conclude and
give an outlook on future work in Sect. 5. Due to space constraints, the full
pseudocode and proofs are deferred to the full version of this paper [5].

1.4 Related Work

Quadtrees have first been introduced in 1974 by R. A. Finkel and J.L. Bent-
ley [6]. Since then quadtrees and octrees are most often used in computational
geometry (for surveys consider for example [1,16]). There are also peer-to-peer



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 21

approaches relying on quadtrees [8,19]. Still, the problem of designing a self-
stabilizing protocol that arranges peers in a quadtree is untouched until today.

The concept of self-stabilization has first been introduced by E. W. Dijkstra
in 1974 via a self-stabilizing token-based ring [4]. This led to the introduction
of various other self-stabilizing protocols for network topologies such as sorted
lists [7,14], De Bruijn graphs [15], Chord graphs [11], Skip graphs [3,9] and many
more. A universal approach that is able to derive self-stabilizing protocols for
several types of topologies was introduced in [2]. Interestingly, topological self-
stabilization in two- or high-dimensional settings is barely investigated until now:
There exists only a single self-stabilizing protocol that transforms any weakly
connected graph into a two-dimensional topology - the Delaunay graph [10].
Unfortunately, it seems non-trivial to extend this such that monotonic searcha-
bility is satisfied, without resorting to expensive mechanisms like broadcasting.
Also, one cannot guarantee searching in O(log n) hops in the Delaunay graph,
as its diameter is too large.

Research on monotonic searchability was initiated in [17], where the authors
presented a self-stabilizing protocol for the sorted list that satisfies monotonic
searchability. They also showed that providing monotonic searchability is impos-
sible in general when the system contains corrupted messages. However, this
property is restricted to cases where the desired topology to which the graph
should converge is clearly defined, forcing the underlying protocol to eventually
remove an explicit edge if it is not part of the desired topology. This is not the
case for our topology, because once a specific explicit edge (which we define as
quad edge later on) is generated by our protocol it is never deleted, so the legiti-
mate state s that we reach is dependent on the specific computation done before
reaching s. Therefore we do not need to enforce any restrictions on messages, as
routing is done via quad edges only. Building on that research, the same authors
presented a universal approach for maintaining monotonic searchability at DISC
2016 along with a generic routing protocol that can be applied to a wide range
of topologies [18]. However, adapting their protocol to specific topologies comes
at the cost of convergence times and additional message overhead. This is due to
the fact that whenever an explicit edge is delegated from node u to v, u has to
wait for an acknowledgment from v until it is allowed to remove the explicit edge
from its local storage. Furthermore, search request forwarded via their generic
routing protocol might travel Ω(n) hops when searching for non-existing nodes,
whereas our routing protocol only needs O(log n) hops on any input to terminate,
while still satisfying monotonic searchability. In addition to this, our protocol
BuildQuadTree is simpler and also more lightweight regarding the message
overhead. This is mostly due to the simplicity of the quadtree topology.

Closest but different from our notion of monotonic searchability is the notion
of monotonic stabilization [20]. A self-stabilizing protocol is monotonically sta-
bilizing, if every change done by its nodes is making the system approach a
legitimate state and if every node changes its output only once. The authors
show that processes have to exchange additional information in order to satisfy
monotonic stabilization.



22 M. Feldmann et al.

For the computation of an ordering, we use a space-filling curve similar to
the Morton-curve [12], as it matches the structure of the quadtree best. Other
curves like the Hilbert-curve would also work in principle, however, using them
would make the presentation of our ideas way more harder.

2 Topology and Legitimate State

In this section we introduce our desired topology for the quadtree and define
what it means for our system to be in a legitimate state. We first provide some
intuition: Given a set V of n nodes with coordinates in P , we first cut the area
P into two equally sized subareas, via a vertical cut. This is done recursively for
each subarea, alternating between vertical and horizontal cuts, as long as the
subarea contains more than one node. Once this is done, we can define a total
order on all nodes in P , that is used to connect the nodes into a (doubly-linked)
sorted list. Based on this list and the generated subareas, we establish further
edges, which we use for the routing protocol.

More formally, let us consider the recursive algorithm QuadDivision hav-
ing a set of nodes, a (sub-)area and a flag indicating the next cut (vertical or
horizontal) as input. Initially we call QuadDivision(V, P, 1) and thus perform a
vertical cut on P , dividing it into equally sized subareas P1 and P2. Then we call
QuadDivision recursively on P1 and P2 as long as they contain more than one
node. We say a subarea A contains node v (or conversely, node v is contained
in the subarea A), denoted by v ∈ A, if v’s coordinates (vx, vy) lie within A. If
a subarea A contains no node from V , we say that A is empty. For simplicity,
we assume that nodes do not lie on the boundaries of subareas, as this would
disturb the presentation of our algorithm, but the problem can easily be resolved
in practice. QuadDivision(V, P, 1) returns the set S of subareas that contain at
most one node. Figure 1 shows an example for a sequence of cuts with 4 nodes
v1, . . . , v4. Note that upon termination, QuadDivision returns 5 subareas (one
subarea for each node vi and the empty subarea on the bottom left).

v1

v2
v3

v4

v1

v2
v3

v4

v1

v2
v3

v4

(a) (b) (c)

Fig. 1. Illustration of QuadDivision performed on nodes v1, . . . , v4. (a) illustrates the
first vertical cut on P . (b) illustrates the horizontal cuts done to subareas P1 and P2.
(c) illustrates the final vertical cut before termination.



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 23

In the following we want to view the output of QuadDivision as a binary
tree T : The root node corresponds to the whole square P . An inner node of T
corresponding to a (sub-)area P has two child nodes: Cutting P into two subareas
P1 and P2, the left child represents the subarea that lies west of the other
(when performing a vertical cut on P ) or north of the other (when performing a
horizontal cut on P ). Similarly, the right child represents the subarea that lies
east of the other (when performing a vertical cut on P ) or south of the other
(when performing a horizontal cut on P ). The binary tree is the unique minimal
such tree having no leaf node t ∈ T correspond to a subarea of P that contains
more than one node v ∈ V . Note that this makes nodes v ∈ V correspond to leaf
nodes in T , but a leaf node t ∈ T does not necessarily correspond to a node in V ,
as the subarea represented by t may be empty. Figure 2 shows the corresponding
binary tree T to the previous example from Fig. 1.

v1 v2

v3 v4

t1

t2

t3

t4 t5

t6

t7

t8 t9

Fig. 2. Corresponding binary tree to the previous example from Fig. 1. The subareas
marked in black are the subareas that are represented by the corresponding tree node.
Performing a depth-first search on the tree, when always going to the left child first,
yields the total order v1 ≺ v2 ≺ v3 ≺ v4.

Using the binary tree notation, we can define a total order on V :

Definition 4 (Two-Dimensional Ordering). Let T the be tree correspond-
ing to the subareas that are returned by QuadDivision(V, P, 1). The total order
≺ is given by the depth-first search (DFS) traversal of T , always going to the
left child first.

When comparing nodes v and w via ≺ we say that v is left of w, if v ≺ w,
otherwise v is right of w (note that either of the two cases always holds as we



24 M. Feldmann et al.

assume node coordinates to be unique). In addition we say that v is w’s closest
left neighbor if v ≺ w and there is no node u with v ≺ u ≺ w. Analogously we
define a node v being the closest right neighbor of w.

As nodes in the binary tree T correspond to subareas of P and vice versa,
we use them interchangeably for the rest of the paper. We say that a node t ∈ T
represents a subarea A, if A is the corresponding subarea to t. The next definition
introduces important notation in order to define the legitimate state:

Definition 5. Let T be the tree representing the subareas that are returned by a
QuadDivision(V , P , 1) call. For a node v ∈ V , denote the leaf node representing
the subarea that contains v by A(v). Define the set Q(v) as the set of subareas
represented by nodes t ∈ T such that the following holds:

(a) If t ∈ Q(v), then the subarea represented by t does not contain v.
(b) If t ∈ Q(v), then the subarea represented by the parent node of t contains v.
(c) Combining all subareas in Q(v) with A(v) yields the whole square P .

As an example consider again Fig. 2: The set Q(v1) consists of the subareas
t5, t6 and t7, as the combination of these with the subarea t4 containing v1 yield
the square P . Note that for instance t8 ∈ Q(v1) would violate condition (b).

Using the total order ≺ we are now ready to define the legitimate state of our
system, i.e., the topology that should be reached by our self-stabilizing protocol:

Definition 6 (Legitimate State). The system is in a legitimate state if the
graph induced by the explicit edges satisfies the following conditions:

(a) Each node v is connected to its closest left and right neighbor w.r.t. ≺.
(b) For each non-empty subarea A ∈ Q(v), v is connected to exactly one node

w ∈ A.

Note that we do not clearly define nodes for v to connect to in condition (b)
more specifically, we just want to make sure that v is able to reach the subarea
directly via an outgoing edge in case the subarea contains nodes. As it turns out,
this helps us in order to achieve geometric monotonic searchability. We want to
emphasize that edges in T are not part of the legitimate state, as we use the
binary tree to illustrate our approach and only let nodes compute necessary
parts of the tree locally.

3 Protocol Description

In this section we describe the self-stabilizing BuildQuadTree protocol and
the routing algorithm SearchQuad. We first define the protocol-based variables
for each node. We denote by ⊥ that the variable does not contain any node. Each
node v ∈ V maintains the following variables:

– Variables v.left, v.right ∈ V ∪ {⊥} storing v’s left and right neighbor.
– A set v.Q ⊂ V storing a single node w ∈ V for each non-empty subarea
A ∈ Q(v) such that w ∈ A.



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 25

We refer to the edges represented by variables v.left and v.right as list edges
and to edges (v, w) with w ∈ v.Q as quad edges. Observe that a node w is
allowed to be contained in both v.left (resp. v.right) and v.Q simultaneously in
a legitimate state. The reason for this is that we allow the delegation of search
messages only via quad edges (as we will see in Sect. 3.3), so if v wants to delegate
a search message to the subarea containing one of its list edges, it has to make
sure that there is a node in v.Q for this area.

Before we can describe how we establish the correct list and quad edges,
we shortly describe how a node v that knows some node w is able to locally
determine whether v ≺ w or w ≺ v holds: v just calls QuadDivision({v, w}, P, 1)
and gets a binary tree with subareas containing v and w as leaf nodes. Performing
a DFS on that tree as described earlier yields either v ≺ w or w ≺ v.

It is important to note that using the same approach, v is also
able to compute the set Q(v) for the current system state: v just calls
QuadDivision({v, v.left, v.right}, P, 1). It is easy to see that the corresponding
tree contains all nodes representing subareas in Q(v), so v just has to check each
node in the tree for the properties from Definition 5. Obviously, as long as v.left
and v.right are still subject to changes, Q(v) also changes, but we will show
later that by the way we defined our protocol, Q(v) monotonically increases, s.t.
none of the proposed properties are violated.

We now describe how we build the correct list edges at each node and
then proceed with the description for quad edges. As we have to perform
actions in both parts periodically, we split the Timeout action into subroutines
ListTimeout and QuadTimeout. For list edges, we extend the BuildList pro-
tocol that is based on [14] for the one-dimensional case to the two-dimensional
case.

3.1 List Edges

The base of our self-stabilizing protocol consists of a sorted list for all nodes
v ∈ V based on the ordering ≺ from Definition 4.

The main idea of BuildList is that each node of V keeps its closest left and
right neighbor in v.left and v.right. More concretely, the protocol consists of
two actions called ListTimeout and Linearize (Algorithm 1). ListTimeout
is periodically executed and Linearize can be called locally or remotely.

Whenever ListTimeout or Linearize is executed, v first performs a local
consistency check on its variables v.left and v.right: It might happen that in
initial states v.left 	 v (or v.right ≺ v). If that is the case, v sets v.left (or
v.right) to ⊥ and locally calls Linearize(w) for the removed value w. In addition
to the above described consistency check, v introduces itself to v.left and v.right
in ListTimeout by sending a Linearize(v) message to them.

In case v processes a Linearize(w) request, v does the following: v sets
v.left = w, if w is left of v and closer to v than v.left, i.e., v.left ≺ w ≺ v. In
that case, v delegates the value w′ that got replaced by w in v.left to w, i.e., v
calls Linearize(w′) on w. In case v.left =⊥, v just sets v.left = w. In case w
is right of v, v proceeds analogously for v.right.



26 M. Feldmann et al.

Algorithm 1. The BuildList Protocol (executed at node v)
1: procedure ListTimeout
2: Consistency check for v.left and v.right w.r.t. ≺
3: v.left ← Linearize(v) � Send Linearize(v) message to v.left
4: v.right ← Linearize(v)

5:
6: procedure Linearize(w)
7: Consistency check for v.left and v.right w.r.t. ≺
8: if w ≺ v.left then � Analogously for v.right
9: v.left ← Linearize(w)

10: if v.left ≺ w ≺ v then � Analogously for v.right
11: w ← Linearize(v.left)
12: v.left ← w

Note that node references are never deleted but delegated until the refer-
enced node arrives at the correct spot in the sorted list. From [14] we derive the
following result. The proof works the same as for the one-dimensional setting,
we just replace the (one-dimensional) operator < by ≺.

Lemma 1. BuildList is self-stabilizing.

3.2 Quad Edges

Now we describe the approach for generating quad edges. Note that v can easily
check whether there exists a subarea A ∈ Q(v) for which v does not yet have a
quad edge, by assigning each w ∈ v.Q to the subarea in Q(v) that contains w.

The protocol consists of actions QuadTimeout and QLinearize (see Algo-
rithm2). Before executing any statement of any of these actions, a node v always
checks its set v.Q for consistency, ensuring that no two nodes w1, w2 ∈ v.Q are
contained in the same subarea A ∈ Q(v). In case v finds out that w1, . . . , wk ∈
v.Q are contained in the same subarea A ∈ Q(v) (which may happen in an ini-
tial state), we only keep one of these nodes (arbitrarily chosen) and delegate all
other nodes wi to BuildList by calling Linearize(wi).

In QuadTimeout, v chooses a node w from its set v.Q in round-robin fashion
and delegates w to BuildList. This has to be done to ensure that the sorted list
converges even if the initial weakly connected graph consists of quad edges only.
Afterwards v introduces itself to its left and right neighbors v.left and v.right
by calling QLinearize on them. As part of the same QLinearize request, v
asks these nodes if they know a node w ∈ A, where A ∈ Q(v) is a subarea, for
which v does not have a quad edge yet. If that is the case, then v will receive
a QLinearize call containing the desired node w as the answer. The subarea
A is chosen in round-robin fashion as well, such that each subarea for which v
does not have a quad edge yet is chosen by v eventually. The reason for choosing
nodes and subareas in round-robin fashion is that we do not want to overload the
network with too many stabilization messages that are generated periodically.



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 27

Processing a QLinearize(w,A) request at node v works as follows: We del-
egate w to BuildList and then check if w is contained in a subarea A′ ∈ Q(v)
for which there does not exist a node w′ ∈ v.Q with w′ ∈ A′. If that is the case,
then v does not have a quad edge to the subarea A′ yet, so v includes w into v.Q,
which corresponds to v generating a new quad edge (v, w). Finally v generates
an answer to w as already described above, in case v knows a node (including
itself) that is contained in A.

Algorithm 2. Protocol for establishing quad edges (executed at node v)
1: procedure QuadTimeout
2: Consistency check for v.Q
3: Choose w ∈ v.Q in round-robin fashion and call Linearize(w)
4: Determine A(v) and Q(v) via QuadDivision
5: Choose A ∈ Q(v) in round-robin fashion s.t. ∀w ∈ v.Q : w �∈ A
6: v.left ← QLinearize(v, A) � A =⊥ if no such A exists
7: v.right ← QLinearize(v, A)

8:
9: procedure QLinearize(w, A)

10: Consistency check for v.Q
11: Linearize(w) � Delegation to BuildList
12: Determine A(v) and Q(v) via QuadDivision
13: if ∃A′ ∈ Q(v) ∀w′ ∈ v.Q : w′ �∈ A′ then
14: v.Q ← v.Q ∪ w � Generates new quad edge (v, w)

15: if A �=⊥ ∧ ∃w′ ∈ v.Q ∪ v : w′ ∈ A then
16: w ← QLinearize(w′, ⊥) � Answers w so w can generate quad edge (w, w′)

3.3 Routing

As the last part of this section, we state the routing protocol SearchQuad for
our topology (see Algorithm 3 for pseudocode).

Before a node v processes a search message, it first performs the same con-
sistency checks on its set v.Q as it has been described previously. This makes
sure that our routing protocol is well-defined. Now assume node v wants to pro-
cess a Search(u, (x, y)) message. Consider the subarea A(v) and the set Q(v)
of subareas as defined in Definition 5. Then v determines the subarea A(x, y)
out of Q(v) ∪ A(v) that contains the position (x, y). If A(x, y) = A(v), then
the algorithm terminates and returns v itself to u as the result. Otherwise, v
delegates the Search(u, (x, y)) message to the node w ∈ v.Q with w ∈ A(x, y).
If no edge to a node in A(x, y) exists in v.Q, then the algorithm terminates and
returns v itself to u as the result.



28 M. Feldmann et al.

Algorithm 3. The SearchQuad Protocol (executed at node v)
1: procedure Search(u, (x, y))
2: Consistency check for v.Q
3: Determine A(v) and Q(v) via QuadDivision
4: if (x, y) ∈ A(v) then
5: return v � Search terminated - v is returned to u as the result
6: else
7: Let A(x, y) ∈ Q(v) with (x, y) ∈ A(x, y)
8: if ∃w ∈ v.Q : w ∈ A(x, y) then
9: w ← Search(u, (x, y)) � Delegate request via quad edge (v, w)

10: else
11: return v

4 Analysis

4.1 Quadtree

This section is dedicated to show that BuildQuadTree is self-stabilizing
according to Definition 1, i.e., BuildQuadTree satisfies convergence and clo-
sure.

Recall that our system initially is given by an arbitrary weakly connected
graph G = (V,E). As the graph may consist of both list and quad edges, we
denote the set of list edges by EL and the set of quad edges by EQ, so G =
(V,EL∪EQ). In each action executed by node v, we perform a consistency check
for v’s variables, such that no inconsistencies appear, like v ≺ v.left, v.right ≺ v
or v having multiple quad edges into the same subarea. We show the following
theorem:

Theorem 1. BuildQuadTree is self-stabilizing.

Proof (Sketch). As the first step to show convergence, it is not hard to see that
eventually a state s is reached where G = (V,EL ∪EQ) is free of corrupted mes-
sages, while staying weakly connected. Continuing from state s, we can show
that eventually the explicit edges in EL induce a sorted list w.r.t. ≺. The main
argument here is that each quad edge is periodically delegated to BuildList,
such that the graph induced by edges in EL becomes weakly connected, trigger-
ing Lemma 1. Once the sorted list has formed we can show that all necessary
explicit quad edges in EQ are eventually generated such that a legitimate state
is reached. Here the main argument is that each node v that needs a quad edge
into a specific area A ∈ Q(v) will eventually be introduced by its closest list
neighbor to a node in A. For closure it is easy to see that edges in EL and EQ

are preserved at any point in time once a legitimate state is reached. 
�

4.2 Geographic Monotonic Searchability

In this section we show that BuildQuadTree along with the routing protocol
SearchQuad (Algorithm 3) satisfies geographic monotonic searchability (Def-
inition 3) and thus also monotonic searchability (Definition 2). First we need



Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 29

the following technical lemma stating that for each node v ∈ V the set Q(v)
monotonically increases over time:

Lemma 2. Consider an arbitrary system state at time t and a node v ∈ V .
Let Q(v) be the output of QuadDivision({v, v.left, v.right}, P, 1) executed at
time t and let Q(v)′ be the output of QuadDivision({v, v.left, v.right}, P, 1)
executed at any point in time t′ > t. Then it holds Q(v) ⊆ Q(v)′.

Proof. By definition of our protocols it holds that if node v locally calls
QuadDivision({v, v.left, v.right}, P, 1) in order to compute the set Q(v), then
any inconsistencies regarding v.left and v.right are already resolved. The
lemma then follows from the fact that BuildList does not replace list vari-
ables v.left and v.right with nodes that are further away from v than the
current entries. More formally, consider w.l.o.g. the variable v.right such that
v ≺ v.right. By the definition of Linearize, v does not replace v.right by
a node w for which v.right ≺ w holds. This implies that any subsequent
QuadDivision({v, v.left, v.right}, P, 1) call only transfers subareas to Q(v) that
are obtained by cutting A(v). Therefore, it holds for any subarea A ∈ Q(v) that
A ∈ Q(v)′. 
�
Theorem 2. BuildQuadTree along with SearchQuad satisfies geographic
monotonic searchability and monotonic searchability.

Proof (Sketch). One can formally show that once a Search(v, (x, y)) request
terminated and returned w ∈ V to v at time t, then any subsequent
Search(v, (x, y)) request initiated by v at time t′ > t traverses the exact same
path P as before. By Lemma 2, P is preserved at any time t′ > t implying
geographic monotonic searchability and thus also monotonic searchability. 
�

Finally, we are able to derive an upper bound on the number of hops for
any search message if we assume that the Euclidean distance between any pair
(u, v) ∈ V is at least ||(u, v)|| ≥ 1

n .

Theorem 3. If for the Euclidean distance between any pair (u, v) ∈ V it holds
||(u, v)|| ≥ 1/n, then any search message is delegated at most O(log n) times.

5 Conclusion and Future Work

In this paper we studied monotonic searchability in high-dimensional settings
and came up with a self-stabilizing protocol BuildQuadTree along with its
routing protocol SearchQuad. We showed that BuildQuadTree along with
SearchQuad satisfies monotonic searchability, as well as the even stronger vari-
ant of geographic monotonic searchability.

For future work, one may consider the dynamic setting, where nodes are able
to join or leave the system. Our protocol can be easily extended to include nodes
that join the system at an old node, meaning that an implicit edge is generated.
We then just let BuildQuadTree transform the system to a legitimate state
again. The more interesting scenario is to think of a protocol that allows nodes
to leave the system without violating geometric monotonic searchability. This is
non-trivial, as a leaving node potentially destroys search paths for other nodes.



30 M. Feldmann et al.

References

1. Aluru, S.: Quadtrees and octrees. In: Mehta, D.P., Sahni, S. (eds.) Handbook of
Data Structures and Applications. Chapman and Hall/CRC, Boca Raton (2004).
https://doi.org/10.1201/9781420035179.ch19

2. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

3. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic
skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Feldmann, M., Kolb, C., Scheideler, C.: Self-stabilizing overlays for high-
dimensional monotonic searchability. CoRR abs/1808.10300 (2018). http://arxiv.
org/abs/1808.10300

6. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite
keys. Acta Inf. 4, 1–9 (1974). https://doi.org/10.1007/BF00288933

7. Gall, D., Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A note on
the parallel runtime of self-stabilizing graph linearization. Theory Comput. Syst.
55(1), 110–135 (2014). https://doi.org/10.1007/s00224-013-9504-x

8. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L.: Fractionally cascaded information
in a sensor network. In: IPSN, pp. 311–319 (2004). https://doi.org/10.1145/984622.
984668

9. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140.
ACM (2009)

10. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional
topological self-stabilization: a distributed algorithm for delaunay graphs. Theor.
Comput. Sci. 457, 137–148 (2012). https://doi.org/10.1016/j.tcs.2012.07.029

11. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord
overlay network. Theory Comput. Syst. 55(3), 591–612 (2014)

12. Morton, G.: A computer oriented geodetic data base and a new technique in file
sequencing. In: International Business Machines Company (1966). https://books.
google.de/books?id=9FFdHAAACAAJ

13. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic
message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)

14. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: ALENEX 2007. SIAM (2007)

15. Richa, A., Scheideler, C., Stevens, P.: Self-stabilizing De Bruijn networks. In:
Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3 31

16. Samet, H.: Hierarchical spatial data structures. In: Buchmann, A.P., Günther, O.,
Smith, T.R., Wang, Y.-F. (eds.) SSD 1989. LNCS, vol. 409, pp. 191–212. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52208-5 28

17. Scheideler, C., Setzer, A., Strothmann, T.: Towards establishing monotonic search-
ability in self-stabilizing data structures. In: OPODIS, pp. 24:1–24:17 (2015).
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24

18. Scheideler, C., Setzer, A., Strothmann, T.: Towards a universal approach for mono-
tonic searchability in self-stabilizing overlay networks. In: Gavoille, C., Ilcinkas,
D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 71–84. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53426-7 6

https://doi.org/10.1201/9781420035179.ch19
http://arxiv.org/abs/1808.10300
http://arxiv.org/abs/1808.10300
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/s00224-013-9504-x
https://doi.org/10.1145/984622.984668
https://doi.org/10.1145/984622.984668
https://doi.org/10.1016/j.tcs.2012.07.029
https://books.google.de/books?id=9FFdHAAACAAJ
https://books.google.de/books?id=9FFdHAAACAAJ
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1007/3-540-52208-5_28
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24
https://doi.org/10.1007/978-3-662-53426-7_6


Self-stabilizing Overlays for High-Dimensional Monotonic Searchability 31

19. Tanin, E., Harwood, A., Samet, H.: Using a distributed quadtree index in peer-to-
peer networks. VLDB J. 16(2), 165–178 (2007). https://doi.org/10.1007/s00778-
005-0001-y

20. Yamauchi, Y., Tixeuil, S.: Monotonic stabilization. In: Lu, C., Masuzawa, T., Mos-
bah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 475–490. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17653-1 34

https://doi.org/10.1007/s00778-005-0001-y
https://doi.org/10.1007/s00778-005-0001-y
https://doi.org/10.1007/978-3-642-17653-1_34


An Adaptive Logging Framework
for Persistent Memories

Pavan Poudel and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{ppoudel,sharma}@cs.kent.edu

Abstract. Persistent memory is receiving a tremendous amount of
attention recently from both academia and industry. Atomic and durable
transactions have been studied to ensure crash consistency in persistent
memory. However, whether to use undo or redo logging to execute those
transactions is still a hotly debated topic. Redo logging seems appropri-
ate for write-dominated workloads and transactions in high contention
scenarios whereas undo logging seems appropriate for read-dominated
workloads and transactions in low contention scenarios. This necessi-
tates a priori knowledge on the workload and contention scenario to
select an appropriate logging method between redo or undo to achieve
better performance. In this paper, we argue that we can obtain the best
of both worlds without the need of such a priori knowledge. Particularly,
we present an adaptive logging framework that dynamically switches
between redo and undo logging at runtime so that the performance is
always better than that is obtained from a priori selection of either undo
or redo logging. We formally model our framework, prove its correctness,
and provide an extensive evaluation of it through a persistent memory
emulation of TinySTM using 5 micro-benchmarks and 8 complex bench-
marks from STAMP and STAMPEDE suites that are well-known and
widely used in the literature. The results show significant benefits of our
logging framework.

1 Introduction

Recent advancements in memory technology (such as phase change memory,
STT-RAM, and memristors) suggest the possibility of non-volatile memory
(NVM) devices that are fast and byte-addressable as dynamic random access
memory (DRAM). Moreover, they are predicted to be more power-efficient than
DRAM, yet non-volatile and cheap as hard disk drives (HDDs) [3]. Persistent
memory can allow applications to access the data structures through a fast
load/store interface, without first performing block I/O and then transferring
data into memory based structures [6,20,21]. This feature is quite instrumental
to avoid many overheads and drawbacks of block-oriented storage such as HDDs.
Therefore, one of the most central issues in persistent memory is programming
models that directly leverage persistence of the memory.

The challenge for any programming model designed for persistent memory is
how to ensure consistency of the application data in the event of sudden power
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 32–49, 2018.
https://doi.org/10.1007/978-3-030-03232-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_3&domain=pdf


An Adaptive Logging Framework for Persistent Memories 33

failure or system crash. This issue is commonly known as crash consistency and
the existing research has quite focused on this issue [6,13,16,20,23]. A simply
way to achieve crash consistency is to serialize multiple write operations when
manipulating data structures. However, this hampers application performance
due to inherent serialization. One common technique used in modern processors
to avoid this problem is reordering, i.e., exploit parallelism through shuffling
the execution of multiple write operations. However, if a failure occurs between
two reordered writes, it is again difficult to guarantee consistency and the data
structure could end up in an inconsistent state.

Further difficulty arises when persistency meets the growing number of cores.
On the one hand, as data is already in persistent memory, it seems unnecessary
and redundant to allocate another (duplicate) persistent storage for it. On the
other hand, when an address is written, the new value must be exposed atom-
ically with a new consistent and persistent state to ensure consistency of data.
One way of guaranteeing this atomicity is by means of locks. However, locking
has several drawbacks and bottlenecks when dealing with particularly the ever
growing number of cores [10,18]. A method to achieve atomicity (without the
use of locking) is through transactions studied heavily recently in the context of
hardware/software transactional memory [10,18]. A transaction (in the context
of persistent memory) is a sequence of operations on persistent memory that
either all occur, or nothing occurs with respect to failures. If the execution of a
transaction is interrupted, it is guaranteed, after system restart, to restore the
consistent state from the moment when the transaction was started. The ideal
goal is to maintain consistent persistent states without the use of locking and
without duplicating data.

The prior persistent memory designs, e.g., [6,13,16,20,23], provide atomic
and durable transactions to move the data from a consistent state to another
consistent state supporting the ideal goal discussed above (i.e., do not allocate
another duplicate persistent storage but duplicate only the data needed to main-
tain consistent states, when necessary). This guarantee is provided by requiring
the transactions to write data to a log area (usually called transaction log) before
updating the data in the original persistent memory locations. Notice that this
logging only duplicates the data that a transaction is going to update in persis-
tent memory (reducing significantly the overhead of allocating another duplicate
persistent storage for whole data). Transaction logs are of two kinds:

– Undo logs. In this logging method, a transaction works by first copying the
data in persistent memory locations to a log area (called undo log) in persis-
tent memory, makes them durable, and then performs updates in-place in the
original data locations. In the event the transaction fails, any modifications to
original persistent memory locations are rolled back using the old data stored
in the (undo) log area.

– Redo logs. In this logging method, a transaction copies data in each persistent
memory location that it is going to read/write to a log area (called redo
log), appends all its data updates to that log area, and makes them durable
in persistent memory (different than original locations) before writing the



34 P. Poudel and G. Sharma

Table 1. A comparison of undo and redo logging in persistent memory [12,13,20,21]

Constraint Undo logging Redo logging

Memory
update

Performs in-place memory
update

Updates are written to memory
at the commit time

Reading
overhead

Allows to read most recent
data directly from in-place
memory [12,21]

Reads are intercepted and
redirected to the redo log area
to read recent uncommitted
data [12,13,21]

Persist
ordering

Requires to ensure persist
ordering for each memory write
in a transaction [20]

Requires only one persist
ordering for each transaction
[13,20]

Data
movement

Transaction aborts are costly
as the memory updates need to
be rolled back to consistent
state using undo log

Transaction commits are costly
as the updates need to be
written back to original
persistent memory using redo
log

data back to original persistent memory locations. If the transaction fails,
the updates in log area are simply discarded. Therefore, the writing of data
to redo log in persistent memory and back to original persistent memory
locations happens only when transaction commits.

Table 1 summarizes the advantages and disadvantages of undo and redo log-
ging methods. Although both undo and redo logging for consistency in persis-
tent memory are studied heavily in the literature [6,13,16,20,23], which logging
method is better is still not clear and the previous studies provide contradictory
conclusions. For example, consider two prominent previous work NV-Heaps [6]
and Mnemosyne [20]. The authors of Mnemosyne [20] suggested using redo
logging whereas the authors of NV-Heaps [6] and others [7,16] suggested using
undo logging. There is no study that elaborates the performance gap between
undo and redo logging with comprehensive practical evaluations, besides [21]
which answers this partially. Looking at [21], redo logging seems appropriate for
write-dominated workloads and high contention scenarios whereas undo logging
seems appropriate for read-dominated workloads and low contention scenarios.
However, this necessitates a priori knowledge on the workload and contention
scenario to select a logging method to obtain better performance.

Contributions. We argue that we can obtain the best of both worlds without
any a priori knowledge on workload and contention scenario. Particularly, we
present an adaptive logging framework, which we call Adaptive, that dynam-
ically switches the execution using either undo logging or redo logging at the
runtime so that the performance on any workload (and contention scenario) is
always better than that is obtained by executing the transactions using either



An Adaptive Logging Framework for Persistent Memories 35

undo logging or redo logging selected a priori. For the experimental evaluation,
we incorporate Adaptive in TinySTM [8,9] through appropriate changes and
modifications in the TinySTM execution model to emulate persistent memory.
TinySTM is a well known software transactional memory (STM) implementa-
tion [18] that has been used for experimentation in both persistent and volatile
memory settings. TinySTM has already implemented individually both undo
and redo logging methods but only for DRAM settings. We extend (open source)
TinySTM distribution 1.0.5 [2] to incorporate our Adaptive framework as well
as to emulate persistent memory support (as real persistent memory is not yet
available [13]). We then run experiments using Adaptive against a diverse set of
benchmarks (5 micro-benchmarks and 8 complex benchmarks from STAMP and
STAMPEDE benchmark suites [15,17]) widely used in transactional memory
(TM) research in the literature [8–10].

We measure the performance of Adaptive in terms of total number of move-
ment of data by a transaction to and from persistent memory. The motivation
behind this performance metric is as follows. It has been heavily advocated
that persistent memories significantly outperform traditional DRAM due to low
standby power and fast access speed [22,24]. However, persistent memories suffer
from the write endurance problem, i.e., every persistent memory unit can sustain
a very limited number of writes before it wears-out. The total number of writes
to the persistent memory address can also be defined as the total number of
movement of data to and from the memory address. To mitigate the endurance
problem, the movements of data should be minimized.

Fig. 1. An illustration of (a) undo and (b) redo logging methods in persistent memory.

Therefore, Adaptive focuses on minimizing the total number of movements
of data to and from the persistent memory by incorporating the best of both
redo and undo logging frameworks switching dynamically. Specifically, for undo



36 P. Poudel and G. Sharma

logging, we measure the total number of movement of data between the original
persistent memory locations and the undo log area, whereas for redo logging, we
measure the total number of movement of data between the original persistent
memory, volatile redo log area, and the persistent redo log area. Figure 1 illus-
trates these moves through © steps for both undo and redo logging methods.
The results suggest that, when using an eager version of redo logging, Adap-
tive achieves up to 6× better performance than redo logging and up to 4.6×
better performance than undo logging. When a lazy version of redo logging is
used, Adaptive again achieves up to 6× better performance than redo logging
and up to 35× better performance than undo logging. The implication of our
results is that switching between undo and redo logging dynamically at runtime
provides a way to exploit positive aspects of both the logging methods, minimiz-
ing the total number of movements of data using undo or redo logging methods
individually. This all is achieved with a minimal increase in total execution time,
i.e., the execution time increase in Adaptive is only at most 17% more than
the total execution time using either undo or redo logging.

Related Work. The literature on redo and undo logging methods for crash con-
sistency in persistent memory is vast. We discuss here only very closely related
works. The most closely related work is due to Wan et al. [21], where they empiri-
cally evaluated redo and undo logging methods on the open source NVM library
(NVML) [1] for some constrained workloads, and suggested that “one logging
method does not fit all workloads”. Particularly, they reported that (i) redo log-
ging significantly outperforms undo logging for workloads in which a transaction
updates large number of different objects, while it underperforms undo logging
for read-dominated workloads, and (ii) undo logging is more sensitive to read-to-
write ratios whereas redo logging is less sensitive to those ratios [21]. However,
they did not consider the adaptive framework where logging method is dynam-
ically switched at runtime. Our framework provides the best of the both worlds
without requiring a priori knowledge on the workload and contention scenario.

The other works mostly proposed methods to provide crash consistency either
through undo logging or through redo logging, and there is no work that elabo-
rates the performance gap between undo and redo logging methods. Coburn et
al. [6] suggested NV-Heaps, a STM implementation for persistent memory using
undo logging. The basic idea follows DSTM [10], in which transactional objects
are stored in persistent memory. Each transaction T maintains a volatile read
log and a non-volatile undo log. If a system failure occurs, T is aborted and the
undo log, which is persistent, is used to reverse the changes of T . Volos et al. [20]
suggested Mnemosyne for persistent memory using redo logging and derived
from TinySTM [8,9]. We observed that NV-Heaps [6] and Mnemosyne [20]
drew absolutely opposite conclusions on whether undo or redo logging is better
for persistent memory. The former prefers to use undo logging, and the latter
opts to use redo logging. Our results suggest that a combination of both of them
is better than using these methods individually. A salient feature of our method
is it does not require any priori knowledge on workload and contention scenarios.



An Adaptive Logging Framework for Persistent Memories 37

Recently, Avni et al. [3] studied hardware transactional memory (HTM)
based transactions for consistency in persistent memory through redo logging.
DudeTM [13] provided a technique to answer whether to use undo or redo log-
ging through a framework where a transaction first runs in volatile memory using
any HTM or STM implementation and produces a redo log for that transaction.
The redo log is then flushed to persistent memory satisfying atomicity of data
and then modify the original data in persistent memory according to the persis-
tent redo log. Notice that this approach is different than ours and needs a shared
shadow memory, besides persistent memory where that data is. The recent sev-
eral papers, e.g., [4,5,11,12,14,16,19,23], provided techniques to improve the
time to log the data (e.g., through coalescing, through persistent cache, through
hardware support, through undo+redo logging methods, etc.) for both undo and
redo logs. However, our focus is on taking a different approach of dynamically
switching between undo and redo logging at runtime to exploit advantages of
both the methods and our extensive experimental evaluation (Sect. 4) confirms
this exploitation.

Paper Organization. We discuss the memory model in Sect. 2. We outline our
adaptive logging framework in Sect. 3 and evaluate it in Sect. 4. Finally, we con-
clude in Sect. 5. Some experimental results are omitted due to space constraints.

2 Model

We consider a computer system with unlimited persistent memory, many pro-
cessing cores, and no HDD. All persistent memory is cacheable and caches are
volatile and coherent. The system may include limited size DRAM (but we do
not assume its necessity). We assume that all the writes of a committed transac-
tion can be accommodated in the volatile cache, i.e., once a transaction commits
but before the commit is reflected in original memory locations in persistent
memory, all its newly modified data is in volatile cache. The system restarts and
resumes its computation after experiencing failures/crashes. Therefore, the task
after restart is to bring the data to a consistent state, removing effects of uncom-
mitted transactions and applying the missing effects of the committed ones. We
simulate crashes by periodically wiping out the volatile logs, and use the data
stored in undo or redo logs in persistent memory to recover consistency. We
employ a function that checks and maintains consistency while under execution.

For redo logging, we make sure that all writes that are in volatile cache reach
persistent log before a transaction commit, while all transactional writes stay
in the cache. Moreover, to make sure that the last committed value is used in
the restart process, we attach a version to each logged variable x. Note that the
technique of verifying that x is logged only once in the system can also be used
for this purpose. For undo logging, the data in persistent undo log is used in the
restart process (no versioning required).



38 P. Poudel and G. Sharma

Fig. 2. An illustration of undo logging, redo logging, and adaptive logging methods.
The barrier in Adaptive is to let finish executing in-flight transactions before switch-
ing.

3 Adaptive Logging Framework

We now describe our adaptive logging framework, Adaptive, that runs trans-
actions using either undo or redo logging, switching between these two logging
methods dynamically at runtime. In the existing persistent memory designs, e.g.,
[6,13,16,20,23], transactions execute using either redo logging or undo logging
(without switching) selected a priori. Figure 2 compares Adaptive with undo
and redo logging. The pseudocode of Adaptive is given in Algorithm 1.

Let T be a transaction that comes to the system at time t ≥ 0. We assume
that the execution starts at time t0 = 0. In the following, we describe how
Adaptive schedules T using either undo logging or redo logging dynamically
switching at runtime.

We need the following definitions. Let Nucommit, Nrcommit be the number
of transaction commits in Adaptive from time t0 = 0 until the current time
t > t0 for transactions executed using undo logging and redo logging, respec-
tively. Particularly, Nucommit (Nrcommit) counts the number of transactions that
are committed in Adaptive while running using undo (redo) logging method.
Similarly, let Nuabort, Nrabort be the number of transaction aborts in Adaptive
from time t0 = 0 until time t > t0 for transactions executed using undo log-
ging and redo logging, respectively. Furthermore, let Ncommit and Nabort be the
total number of commits and aborts in Adaptive, respectively. We have that
Ncommit = Nucommit + Nrcommit and Nabort = Nuabort + Nrabort, respectively.

The idea in Adaptive is to decide on which logging method to use for
executing T based on the parameters Nucommit, Nrcommit, Nuabort, and Nrabort

learned from the system at runtime. However, if T comes to the system at time
t0 = 0, we have all Nucommit, Nrcommit, Nuabort, and Nrabort zero. We treat
this as a special case and rely on the size of the read and write sets of T to
decide on which logging method to use. Let Wset(T ) be the write set of T
which is essentially the persistent memory locations that T would modify while
in execution. Similarly, let Rset(T ) be the read set of T which is essentially
the persistent memory locations that T would read (but not modify) while in
execution. We have that RW (T ) = Rset(T ) + Wset(T ), where RW (T ) denotes



An Adaptive Logging Framework for Persistent Memories 39

Algorithm 1. Adaptive logging framework for a transaction T at any time
t ≥ 0.
1 Nucommit ← number of commits until t for transactions executed using undo

logging;
2 Nrcommit ← number of commits until t for transactions executed using redo

logging;
3 Nuabort ← number of aborts until t for transactions executed using undo

logging;
4 Nrabort ← number of aborts until t for transactions executed using undo logging;
5 Ncommit ← Nucommit + Nrcommit, Nabort ← Nuabort + Nrabort;
6 if Ncommit + Nabort == 0 then
7 Wset(T ) ← write set of transaction T ;
8 Rset(T ) ← read set of transaction T ;
9 if Wset(T ) is greater than Rset(T ) then execute T using redo logging;

10 else execute T using undo logging;
11 if Ncommit + Nabort > 0 then

12 AAR ← Nabort
Ncommit+Nabort

, AARundo ← Nuabort
Nucommit+Nuabort

,

ACRundo ← Nuabort
Nucommit

, ACRredo ← Nrabort
Nrcommit

;

13 if (AAR ≥ 2
3
) ∨ ((ACRundo > ACRredo) ∧ (AARundo ≥ 2

3
)) then

14 execute T using redo logging;
15 else execute T using undo logging;

the total number of persistent memory locations that T reads and modifies while
in execution. Therefore, at t0 = 0, if Wset(T ) is greater than Rset(T ), then T
is executed using redo logging, otherwise using undo logging.

If T comes to the system after at least a transaction finishes executing one
time (irrespective of whether that transaction aborts or commits), then it is
executed based on the following parameters. AAR = Nabort

Ncommit+Nabort
denotes the

average abort ratio of transactions in Adaptive from time t = 0 until time
t (using both redo and undo logging). AARundo = Nuabort

Nucommit+Nuabort
denotes

the average abort ratio of transactions in Adaptive from time t = 0 until
time t executed using undo logging. Furthermore, ACRundo = Nuabort

Nucommit
and

ACRredo = Nrabort

Nrcommit
denote the abort to commit ratio of transactions in Adap-

tive from time t = 0 until time t using undo logging and redo logging, respec-
tively. At any time t ≥ 0, 0 ≤ AAR ≤ 1 and 0 ≤ AARundo ≤ 1.

At any time t > t0 in Adaptive, T is executed using redo logging if (i)
AAR ≥ 2

3 or (ii) ACRundo > ACRredo and AARundo ≥ 2
3 . Otherwise, T is exe-

cuted using undo logging. We call the value 2
3 switching threshold and we describe

later how this switching threshold 2
3 is computed. The motivation behind using

2
3 as switching threshold in Adaptive is that it works on all the benchmarks we
experimented our framework against. We now discuss how the switching thresh-
old is computed.

Computing the Switching Threshold 2
3 . The idea we employ is to compute

the number of data movements for redo and undo logging, separately, and switch



40 P. Poudel and G. Sharma

between these methods when the data movement increases. Ideally, we would
like to use the logging method in Adaptive that gives optimum data movement
performance for any specific workload. We use the following notions. Let N be
the total number of transactions in any workload. When the workload finishes
execution and all transactions commit, we have Ncommit = N number of commits
and Nabort ≥ 0 number of aborts (if each transaction commits without even
aborting a single time, then Nabort = 0, otherwise Nabort > 0). Suppose each
transaction T has read write set RW (T ) of size S. Let Wundo be the total number
of operations of moving data (i) from the original persistent memory locations
to the undo log area (again in persistent memory) and (ii) from the undo log
area back to the original persistent memory locations. The first kind of moves
are shown as 1© in Fig. 1(a) and the second kind of moves are shown as 2© in
Fig. 1(a). The first kind of moves are always done in undo logging and the second
kind of moves are done only when the transaction aborts. Therefore,

Wundo = (Ncommit + 2Nabort) · S. (1)

Let Wredo be the total number of operations of moving data (i) from the
original persistent memory locations to the redo log area (in volatile cache),
(ii) from the redo log area (in volatile cache) to persistent memory locations to
persist the redo log in the volatile cache, and (iii) finally, writing the data back to
the original persistent memory locations either from redo log area in persistent
memory after restart or from redo log area in volatile cache. The first kind of
moves are shown as 1© in Fig. 1(b), and the second and third kind of moves are
shown as 2© and 3© in Fig. 1(b), respectively. The first kind of moves are always
done in redo logging and the second and third kind of moves are done only when
the transaction commits. Therefore,

Wredo = (3Ncommit + Nabort) · S, (2)

Notice that a transaction can run using either undo or redo logging when
Wundo = Wredo as the selection of a logging method does not have impact on
the total number of movements. Therefore, from Eqs. 1 and 2, we have that

(Ncommit + 2Nabort) · S = (3Ncommit + Nabort) · S (3)
Ncommit + 2Nabort = 3Ncommit + Nabort (4)

Nabort = 2Ncommit (5)

Also, we have that N ≤ Nabort + Ncommit. This implies that

Nabort

N
+

Ncommit

N
≥ 1 (6)

2Ncommit

N
+

Ncommit

N
≥ 1 (7)

Ncommit

N
≥ 1

3
(8)

Therefore, Nabort

N < 2
3 . That is, if the value of Nabort is such that Nabort

N is
higher than 2

3 , then Wundo > Wredo. Thus, Adaptive switches execution to



An Adaptive Logging Framework for Persistent Memories 41

redo logging when Nabort

N ≥ 2
3 (Line 13 of Algorithm 1) and stay with undo

logging, otherwise.

Time Barrier Requirement and Design. The ideal scenario in Adaptive is
to let each transaction T run Algorithm1 and decide which logging method (redo
or undo) to use for it to execute individually based on the parameters it infers
at runtime. For several benchmarks we experimented with, this works perfectly
fine. However, for some benchmarks, this creates a problem as some transac-
tions are still in progress using one logging method and when T executes using
other logging method, the conflict detection and resolution mechanisms inter-
fere, hampering consistency. Therefore, to handle this situation, we introduce a
time barrier (as shown in Fig. 2) that helps to synchronize the transactions while
switching from one logging method to another. Suppose currently transactions
are running using undo logging. Let a new transaction T arrives and it decides
to run using redo logging. Since there are transactions still running using undo
logging, T waits until those transactions finish executing. We show later in the
experimental results that the possible increase in total execution time is due to
time barriers and this increase is minimal compared to the substantial reductions
in the total number of data movements achieved in Adaptive.

Correctness of Adaptive: We provide the correctness proof showing that the
algorithm discussed above behaves correctly even under faults, achieving crash
consistency.

Theorem 1. Algorithm1 provides crash consistency.

Proof. Consider a transaction T that arrives at time t ≥ 0. Suppose T runs
with undo logging (Line 10 or 15 from Algorithm1). T maintains the undo log
with unique transaction ID in the undo log area in persistent memory where the
current records of memory locations accessed by T are stored. T then directly
updates on those persistent memory locations. Now, consider any new transac-
tion T1 �= T that arrives at time t1 > t. Suppose T1 also runs with undo logging
and at some time t2 > t1, T and T1 both conflict. Now, the transaction T
aborts and to rollback to the previous consistent state, the records stored in the
persistent undo log are written back to the original memory locations accessed
by T .

Suppose now that T1 tries to execute using redo logging. Since T has arrived
before T1, T is already running with undo logging. Since T1 satisfied for redo
logging, T1 has to wait until T finishes executing (either commit or abort). Since
t1 > t and T1 runs after T finishes its execution, there is no conflict between T
and T1 and barrier helps to synchronize the execution of T and T1.

Finally, consider the power failure scenario. Let a transaction T is running
using either undo logging or redo logging and suddenly, the power failure occurs.
When the system is restarted, the persistent log area is scanned and replayed.
With the persistent undo log records, the inconsistent memory locations are
rolled back to the previous consistent states. With the persistent redo log records,
the memory locations are updated with the latest committed values. Both the



42 P. Poudel and G. Sharma

log records are discarded after they are replayed. The incomplete log records are
also discarded. ��

4 Experimental Evaluation

We now evaluate the performance of Adaptive using 5 micro-benchmarks and 8
complex benchmarks. The evaluation is performed in a STM-based implementa-
tion using TinySTM [8,9] modified appropriately to emulate persistent memory
model described in Sect. 2. The tests were executed on an Intel Core i7-7700K
4.20 GHz, 64-bit Haswell processor with 4 cores, each with 2 hyper threads. Each
core has private L1 and L2 caches, whose sizes are 256 KB and 1 MB, respec-
tively. There is also an 8 MB L3 cache shared by all 4 cores and 32 GB main
memory. We first describe in detail how the experimental platform is set up.
We then describe how a persistent memory framework is emulated. We finally
describe benchmarks and the results achieved. All the results presented in this
section are the average of 10 experimental runs. Moreover, the results are for
varying number of threads ranging from 1 to 16.

Experimental Setup. We developed a STM-based implementation using
TinySTM [8,9]. TinySTM is a word-based STM that uses locks to protect
shared memory locations. TinySTM has implemented separately both redo log-
ging and undo logging methods (called Redo and Undo, respectively) through
Write Back and Write Through designs, respectively. With Write Through
design, transactions directly write to original memory locations and revert their
updates in case the transactions abort. However, with Write Back design, trans-
actions work on a copy of data and delay their updates to original memory
locations of data until commit [8,9]. Furthermore, Write Back design has two
different implementations: Write Back ETL (also called eager or encounter-
time locking) and Write Back CTL (also called lazy or commit-time locking).
Encounter-time locking (ETL) detects transaction conflicts early at the time of
memory write and acquires the lock on the memory address before it is writ-
ten. Commit-time locking (CTL) defers conflict detection on memory address
until commit, i.e., the lock is acquired on the memory address at the commit
time. Therefore, there are two different implementations of Redo in TinySTM:
one based on ETL is called Redo ETL and another based on CTL is called
Redo CTL.

We use Redo ETL and Undo implementations to obtain an adaptive design,
which we call Adaptive ETL. Specifically, Adaptive ETL uses Redo ETL
design of TinySTM as a redo logging method and Undo design of TinySTM
as a undo logging method while executing Algorithm1. Similarly, we use
Redo CTL and Undo implementations to obtain an adaptive design, which we
call Adaptive CTL. Therefore, we run experiments with five different designs
Redo ETL, Redo CTL, Undo, Adaptive ETL, and Adaptive CTL, and com-
pare, particularly, the results using Adaptive ETL with Redo ETL and Undo
implementations, and the results using Adaptive CTL with Redo CTL and
Undo implementations.



An Adaptive Logging Framework for Persistent Memories 43

Persistent Memory Emulation. Persistent memory is not available yet (even
for experimentation purposes) [13]. Therefore, we emulate it using DRAM in our
experiments following previous works, e.g., [3]. We separate 500 MB region of
DRAM for the persistent memory emulation. We use this region for keeping the
persistent undo log when a transaction runs using undo logging and to persist
the redo log when transaction runs using redo logging. To emulate the power
failure and crash in persistent memory, we leave the power on and wipe out all
the volatile log records so that the rollback (in case of abort in undo logging)
and update (in case of commit but not yet written to memory in redo logging)
operations will be handled by those persistent log records.

Benchmarks. We use both micro and complex benchmarks in the experiments.
Micro − Benchmarks: We use 5 well-known and widely-used different micro-
benchmarks, namely bank, red black tree, hash set, linked list, and skip list that
are available in the TinySTM distribution [8,9] and used for experimentation
in several papers, e.g., [10,13,21]. These micro-benchmarks simulate the basic
concurrent access scenario for transactions with (relatively) small read/write
sets.
STAMP : STAMP is also a well-known and widely-used benchmark suite.
It consists of eight applications: bayes, genome, intruder, kmeans, labyrinth,
ssca2, vacation, and yada of varying complexity. These applications span a
variety of computing domains as well as runtime transactional characteristics
such as varying transaction lengths, read and write set sizes, and amounts of
contention [15].
STAMPEDE: Recently, Nguyen et al. [17] argued that the programming model
and data structures used in STAMP benchmarks introduce performance bottle-
necks. They modified them in a way the bottlenecks can be removed. They pro-
vided a set of rewritten STAMP benchmarks called STAMPEDE benchmarks.
These are the same 8 STAMP benchmarks with the only difference on program-
ming model and data structures.

Results on Micro-benchmarks. Figure 3 provides the experimental results
for all 5 different micro-benchmarks. All the transactions in these benchmarks
were run with update rate of 20%. When transactions were executed with small
number of threads, we found that the transaction commit rate is higher than
the transaction abort rate and the cost in redo logging is higher than the cost
in undo logging. With the increase in number of threads, the abort rate is also
increased. We noticed that Redo CTL has consistently better performance than
Redo ETL on all the five micro-benchmarks. This is because the early detec-
tion of conflict and locking the memory address has increased the abort rate
than the detecting conflict and locking the memory address at the commit
time. Adaptive ETL achieved up to 3.4× performance improvement compared to
Redo ETL. Similarly, Adaptive CTL achieved up to 3× performance improve-
ment compared to the Redo CTL. Compared to Undo, Adaptive ETL achieved
up to 1.1× performance improvement and Adaptive CTL achieved up to 1.3×
performance improvement. Furthermore, Adaptive CTL performed up to 2.5×
better than Adaptive ETL. The results show that Adaptive always performs



44 P. Poudel and G. Sharma

Fig. 3. An illustration of data movements in micro-benchmarks and yada from STAMP

better than Redo or Undo. We also noticed that Adaptive CTL performs bet-
ter than Adaptive ETL in each micro-benchmark, since Redo CTL performing
better than Redo ETL.

Results on STAMP Benchmarks. Figure 4 provides results for STAMP
benchmarks. We found that when the transactions are executed with low num-
ber of threads, the transaction commit rate is higher and undo performs better
than redo. This is due to low contention for memory access with small num-
ber of threads. With increasing number of threads, transaction abort rate also
increases and undo starts to perform worse due to the frequent requirement of
rollback. The results obtained for genome and kmeans-low show that undo starts
to perform worse than redo beyond 8 threads. The same scenario starts beyond
4 threads in Intruder and yada. Moreover, we noticed that, irrespective of the
abort rate change in redo and undo logging, Adaptive always has better perfor-
mance. Specifically, Adaptive ETL achieved up to 6× performance improvement
compared to Redo ETL and up to 2× performance improvement compared to
Undo. Adaptive CTL achieved up to 3× performance improvement compared
to Redo CTL and up to 35× performance improvement (in yada) compared to
Undo.

Results on STAMPEDE Benchmarks. Figure 5 provides the experimental
results for STAMPEDE benchmarks. Similar to micro-benchmarks and STAMP
benchmarks, Adaptive has better performance compared to Redo or Undo in
STAMPEDE benchmarks. Adaptive ETL performed up to 3.6× better than
the Redo ETL. Adaptive CTL performed up to 6× better than the Redo CTL.
Compared to Undo, Adaptive ETL achieved up to 4.6× better performance and
Adaptive CTL achieved up to 3.1× better performance.



An Adaptive Logging Framework for Persistent Memories 45

Fig. 4. An illustration of data movements in STAMP benchmarks

Execution Time and Throughput Results. The execution time is impacted
in Adaptive due to the switching between undo and redo logging at runtime. In
most of the benchmarks, the increase in time is compensated as Adaptive low-
ers the number of aborts. We were interested in what is the maximum increase on
time in any benchmark we used in our experimentation. For micro-benchmarks,
we measured throughput (instead of execution time) in terms of total number
of transactions executed per second. This is because all 5 micro-benchmarks
were executed for a fixed time interval of 10,000 ms and throughput is a natural
performance parameter to examine the execution characteristic in this inter-
val. All the 5 micro-benchmarks were executed with 5 different logging designs
and the total number of transactions for each design were counted. The results
obtained are omitted due to space constraints. We noticed that, in some appli-
cations, throughput of Redo ETL is at most 16% more than the throughput of
Adaptive ETL. Throughput of Redo CTL is at most 13% more than that of
Adaptive CTL. Throughput of Undo is at most 11% more than the throughput
of Adaptive ETL and at most 16% more than the throughput of Adaptive CTL.
These results imply that the throughput of Adaptive is slightly decreased (less
than 16%) compared to Undo or Redo. That means, the execution time for



46 P. Poudel and G. Sharma

Fig. 5. An illustration of data movements in STAMPEDE benchmarks

the micro-benchmarks may increase by at most 16% in Adaptive compared to
Undo or Redo.

For the STAMP and STAMPEDE benchmarks, we measured the execu-
tion time for each of the applications. Figure 6 compares the execution time
for STAMP benchmarks (the results for STAMPEDE are omitted due to space
constraints). We noticed that the execution time in Adaptive is at most 17%
more compared to the execution time of Undo or Redo. As Adaptive lowers the
number of aborts, some applications (e.g. bayes, kmeans high, ssca2 in Fig. 6)
have decreased execution time in Adaptive than in Undo or Redo designs. We
claim that the increase in execution time (decrease in throughput accordingly)
for some applications is largely dominated by the performance improvement in
terms of total number of data movements.

To summarize, in all of the cases, Adaptive performs better for number
of data movements compared to individual Undo and Redo designs, without
increasing the execution time running using Undo and Redo designs. In some
cases, the execution time increases but that is minimal compared to that of using
Undo and Redo designs.



An Adaptive Logging Framework for Persistent Memories 47

Fig. 6. An illustration of execution time for STAMP benchmarks

5 Concluding Remarks

Persistent memory is gaining much attention recently from both academia and
industry. One of the most challenging issues in persistent memory is how to
ensure consistency of the application data in the event of sudden power failure
or system crash (commonly known as crash consistency). Redo and undo logging
methods are the widely used techniques for maintaining crash consistency in
persistent memory. However, they were studied separately and whether to use
redo or undo logging (and which is in fact better) is still in hot debate. In
this paper, we have presented an adaptive logging framework that dynamically
switches between undo and redo logging methods at runtime to obtain the best
of the both worlds. Our framework is quite simple and achieves significantly
better performance (in terms of number of data movements addressing the write
endurance problem) compared to undo and redo logging in 5 micro-benchmarks
and 8 applications in STAMP and STAMPEDE benchmarks (with a minimal
overhead in execution time). We believe our results and techniques will be helpful
in choosing proper logging method for future consistency designs for persistent
memories.



48 P. Poudel and G. Sharma

References

1. The Persistent Memory Development Kit (PMDK). https://github.com/pmem/
pmdk/. Accessed 23 Feb 2018

2. TinySTM 1.0.5. http://tmware.org/sites/tmware.org/files/tinySTM/tinySTM-1.
0.5.tgz. Accessed 23 Feb 2018

3. Avni, H., Levy, E., Mendelson, A.: Hardware transactions in nonvolatile memory.
In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 617–630. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48653-5 41

4. Chatzistergiou, A., Cintra, M., Viglas, S.: Rewind: recovery write-ahead system
for in-memory non-volatile data-structures. PVLDB 8, 497–508 (2015)

5. Coburn, J., Bunker, T., Schwarz, M., Gupta, R., Swanson, S.: From ARIES to
MARS: transaction support for next-generation, solid-state drives. In: SOSP, pp.
197–212 (2013)

6. Coburn, J., et al.: NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In: ASPLOS, pp. 105–118 (2011)

7. Dulloor, S.R., et al.: System software for persistent memory. In: EuroSys, pp. 15:1–
15:15 (2014)

8. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional
memory. IEEE Trans. Parallel Distrib. Syst. 21(12), 1793–1807 (2010)

9. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPOPP, pp. 237–246 (2008)

10. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

11. Izraelevitz, J., Kelly, T., Kolli, A.: Failure-atomic persistent memory updates via
JUSTDO logging. ASPLOS 44, 427–442 (2016)

12. Kolli, A., Pelley, S., Saidi, A., Chen, P.M., Wenisch, T.F.: High-performance trans-
actions for persistent memories. In: ASPLOS, pp. 399–411 (2016)

13. Liu, M., et al.: DudeTM: building durable transactions with decoupling for persis-
tent memory. In: ASPLOS, pp. 329–343 (2017)

14. Lu, Y., Shu, J., Sun, L.: Blurred persistence: efficient transactions in persistent
memory. Trans. Storage 12(1), 3:1–3:29 (2016)

15. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: IISWC, pp. 35–46 (2008)

16. Narayanan, D., Hodson, O.: Whole-system persistence. In: ASPLOS, pp. 401–410
(2012)

17. Nguyen, D., Pingali, K.: What scalable programs need from transactional memory.
In: ASPLOS, pp. 105–118 (2017)

18. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213
(1995)

19. Shin, S., Tirukkovalluri, S.K., Tuck, J., Solihin, Y.: Proteus: a flexible and fast
software supported hardware logging approach for NVM. In: MICRO, pp. 178–190
(2017)

20. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory. In:
ASPLOS, pp. 91–104 (2011)

21. Wan, H., Lu, Y., Xu, Y., Shu, J.: Empirical study of redo and undo logging in
persistent memory. In: NVMSA, pp. 1–6 (2016)

22. Zhang, Y., Swanson, S.: A study of application performance with non-volatile main
memory. In: 2015 31st Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2015)

https://github.com/pmem/pmdk/
https://github.com/pmem/pmdk/
http://tmware.org/sites/tmware.org/files/tinySTM/tinySTM-1.0.5.tgz
http://tmware.org/sites/tmware.org/files/tinySTM/tinySTM-1.0.5.tgz
https://doi.org/10.1007/978-3-662-48653-5_41


An Adaptive Logging Framework for Persistent Memories 49

23. Zhao, J., Li, S., Yoon, D.H., Xie, Y., Jouppi, N.P.: Kiln: closing the performance
gap between systems with and without persistence support. In: MICRO, pp. 421–
432 (2013)

24. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: A durable and energy efficient main mem-
ory using phase change memory technology. In: SIGARCH Computer Architecture
News, vol. 37, no. 3, pp. 14–23 (2009)



On Underlay-Aware Self-Stabilizing
Overlay Networks

Thorsten Götte(B), Christian Scheideler, and Alexander Setzer

Department of Computer Science, Paderborn University,
Fürstenallee 11, 33102 Paderborn, Germany
{thgoette,scheidel,asetzer}@mail.upb.de

Abstract. We present a self-stabilizing protocol for an overlay network
that constructs the Minimum Spanning Tree (MST) for an underlay that
is modeled by a weighted tree. The weight of an overlay edge between
two nodes is the weighted length of their shortest path in the tree. We
rigorously prove that our protocol works correctly under asynchronous
and non-FIFO message delivery. Further, the protocol stabilizes after
O(N2) asynchronous rounds where N is the number of nodes in the
overlay.

Keywords: Topological self-stabilization · Overlay networks
Minimum spanning tree

1 Introduction

The Internet is perhaps the world’s most popular medium to exchange any kind
of information. Common examples are streaming platforms, file sharing services
or social media networks. Such applications are often maintained by overlay
networks, called overlays for short. An overlay is a computer network that is
built atop another network, the so-called underlay. In an overlay, nodes that may
not be directly connected in the underlay can create virtual links and exchange
messages if they know each others’ addresses. The resulting links then represent
a path in the underlying network, perhaps through several of its links.

With increasing size of the network, there are several obstacles in designing
these overlays. First of all, errors such as node or link failures are inevitable.
Thus, there is a need for protocols that let the system recover from these faults.
This can be achieved through self-stabilization, which describes a system’s abil-
ity to reach a desired state from any initial configuration. Since its conception
by Edsger W. Dijkstra in 1975, self-stabilization has proven to be a suitable
paradigm to build resilient and scalable overlays that can quickly recover from
changes. There is a plethora of self-stabilizing protocols for the formation and
maintenance of overlay networks with a specific topology. These topologies range

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 50–64, 2018.
https://doi.org/10.1007/978-3-030-03232-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_4&domain=pdf


On Underlay-Aware Self-Stabilizing Overlay Networks 51

from simple structures like line graphs and rings [23] to more complex over-
lay networks with useful properties for distributed systems [12,17,22,26]. These
overlays usually minimize the diameter while also maintaining a small node
degree, usually at most logarithmic in the number of nodes. However, the afore-
mentioned overlay protocols are often not concerned with path lengths in the
underlay. This is remarkable, since for many use cases these path lengths and
the resulting latency are arguably more important than the diameter.

In this paper, we work towards closing this gap by proposing a self-stabilizing
protocol that forms and maintains an overlay that resembles the Minimum Span-
ning Tree (MST) implied by the distances between nodes in the underlying net-
work. In particular, we model these distances as a tree metric, i.e., as the length
of the unique shortest path between two overlay nodes in a weighted tree. We
chose this type of metric because one can find weighted trees in many areas of
networking. In the simplest case, the physical network that interconnects the
overlay nodes resembles a tree. This is often the case in data centers. Here, the
servers are the tree’s leaves while the switches are the tree’s intermediate nodes
(cf. [4,6,21]). Therefore, we can define a tree metric directly on the paths in this
physical infrastructure. Of course, not all physical networks are strictly struc-
tured like trees, and may instead contain cycles. However, for small networks
there are practical protocols that explicitly reduce the network graph to a tree
for routing purposes [24]. These protocols are executed directly on the network
appliances and exclude certain physical connections, such that the remaining
connections form a spanning tree. Thus, we can define a tree metric based on this
tree. Last, in large-scale networks like the internet neither the physical network
nor the routing paths strictly resemble trees. However, there is strong evidence
that even these large-scale networks can be closely approximated by or embed-
ded into weighted trees by assigning them virtual coordinates (cf. [2,3,10,28]).
Thus, we can define a tree metric based on the shortest paths in such an embed-
ding. In summary, tree metrics promise to be a versatile abstraction for many
kinds of real-world networks.

1.1 Model and Definitions

We consider a distributed system based on a fixed set of nodes V . Each node
v ∈ V represents a computational unit, e.g., a computer, that possesses a set
of local variables and references to other nodes, e.g., their IP addresses. These
references are immutable and cannot be corrupted. If clear from the context, we
refer to the reference of some node w ∈ V simply as w. Further, each node in V
has access to a tree metric dT : V 2 → R

+ that assigns a weight to each possible
edge in the overlay. In particular, the function dT returns the weighted length of
the unique shortest path between two nodes in the weighted tree T := (VT , ET , f)
with f : V 2 → R

+ and VT ⊇ V . A node v ∈ V can check the distance dT (v, w)
only if it has a reference to w ∈ V in its local variables. Furthermore, it can check
the distance dT (u,w) of all nodes u,w ∈ V in its local variables. Throughout
this paper, we refer to the metric space (V, dT ) also as a tree metric for ease of
description.



52 T. Götte et al.

Sending a message from a node u to another node v in the overlay is only
possible if u has a reference to v. All messages for a single node are stored in its
so-called channel and we assume fair message receipt, which means each message
will eventually be received. In particular, we do not assume FIFO-delivery, i.e.,
the messages may be received and processed in any order.

We assume that each node runs a protocol that can perform computations
on the node’s local variables and send them within messages to other nodes.
To formalize the protocol’s execution, we use the notion of configurations. A
configuration c contains each node’s internal state, i.e., its assignment of values
to its local variables, its stored references, and all messages in the node’s channel.
We denote C to be the set of all possible configurations. Further, a computation
is an infinite series of configurations (ct, ct+1, . . . ), such that ci+1 is a succeeding
configuration of ci for i ≥ t according to the protocol. In each step from ci to ci+1,
the following happens: One node v ∈ V is activated and an arbitrary (possibly
empty) set of messages from v’s channel is delivered to v. Once activated, the
node will execute its protocol and processes all messages delivered to it. As we do
not specify which node is activated and which messages get delivered, there are
maybe several possible succeeding configurations c′ ∈ C for any configuration c.
Last, we assume weakly fair execution, which means that each node is eventually
activated. Other than that, we place no restriction on the activation order.

Given a subset C ′ ⊆ C, we say that the system reaches C ′ from ct if every
computation that starts in configuration ct eventually contains a configuration
ct′ ∈ C ′. Note that this does not imply that any succeeding configuration of ct′

is in C ′ as well.
Based on this notion of configurations, we can now define self-stabilization.

A protocol is self-stabilizing concerning a set of legal configurations L ⊆ C if
starting from any initial configuration c0 ∈ C each computation will eventually
reach L (Convergence) and every succeeding configuration is also in L (Closure).
Formally:

Definition 1 (Self-Stabilization). A protocol P is self-stabilizing if it fulfills
the following two properties.

1. (Convergence) Let c0 ∈ C be any configuration. Then every computation that
starts in c0 will reach L in finitely many steps.

2. (Closure) Let ct ∈ L be any legal configuration. Then every succeeding con-
figuration of ct is legal as well.

Throughout this paper we distinguish between two kinds of edges in each
configuration c ∈ C. We call an edge (v, w) ∈ V 2 explicit if and only if v has
a reference to w stored in its local variables. Otherwise, if the reference is in
v’s channel, we call the edge implicit. Based on this definitions, we define the
directed graph Gc := (V,EX

c ∪ ET
c ) where the set EX

c ⊆ V 2 denotes the set
of explicit edges and ET

c ⊆ V 2 denotes the set of implicit edges. Further, the
undirected graph G∗

c := (V,E∗
c ) arises from Gc if we ignore all edges’ direction

and whether they are implicit or explicit.



On Underlay-Aware Self-Stabilizing Overlay Networks 53

1.2 Our Contribution

Our main contribution is BuildMST, a self-stabilizing protocol that forms and
maintains an overlay representing the MSTs of all connected components of V .
An MST is a set of edges that connects a set of nodes and minimizes the sum of
the edges’ weights given by the underlying metric. Because of this minimality,
it can serve as a building block for more elaborate topologies. Note that in our
model it is not always possible to construct the MST of all nodes, even if it is
unique. To exemplify this, consider an initial configuration c0 where G∗

c0 is not
connected. Then two nodes from two different connected components of G∗

c0 can
never communicate with each other and create edges because they cannot learn
each other’s reference. This was remarked in [22]. In this case, it is impossible
to construct an MST for all nodes as no protocol can add the necessary edges.
Instead one can only construct the MST of all initially connected components,
i.e., a Minimum Spanning Forest. Formally an MST is defined as follows.

Definition 2 (Minimum Spanning Tree). Let G := (V,E) be a graph and
f : E → R

+ a weight function, then the Minimum Spanning Tree MST (G, f) ⊆
E is a set of edges, such that:

1. (V,MST (G, f)) is a connected graph, and
2.

∑
e∈MST (G,f) f(e) is minimum.

For the special case of E := V 2, i.e., the MST over all possible edges, we write
MST (V, f) for short.

In this paper, we will only consider metrics with distinct distances for each
pair of nodes. Otherwise the MST may not be unique for a metric space (V, dT ).
If we had edges with equal distances, we would need to employ some mechanism
of tie-breaking, e.g., via the nodes’ identifiers.

In the following, we define the set LMST ⊂ C of legal configurations for
BuildMST. We regard all configurations c ∈ LMST as legal in which the explicit
edges form the MST of each connected component in c. Further, a legal config-
uration may contain arbitrarily many implicit edges as long as they are part of
an MST. Formally:

Definition 3. (Legal Configurations LMST ). Let (V, dT ) be a tree metric
and c ∈ C be a configuration. Further denote G1, . . . , Gk as the connected compo-
nents of G∗

c . Then the set of legal configurations LMST is defined by the following
two conditions:

1. A configuration c ∈ LMST contains an explicit edge (v, w) ∈ EX
c if and only

if there is a component Gi := (Vi, Ei) with {v, w} ∈ MST (Vi, dT ).
2. A configuration c ∈ LMST contains an implicit edge (v, w) ∈ ET

c only if there
is a component Gi := (Vi, Ei) with {v, w} ∈ MST (Vi, dT ).



54 T. Götte et al.

2 Related Work

There are several self-stabilizing protocols for constructing spanning trees in
a fixed communication graph, e.g., [5,7–9,16,20]. These works do not consider
a model where nodes can create arbitrary overlay edges. Instead, each node
has a fixed set of neighbors and chooses a subset of these neighbors for the
tree. Furthermore, the communication graph in all these works is modeled as
an arbitrary weighted graph instead of a tree. The fastest protocol given in [7]
constructs an MST in O(N2) rounds where N is the number of nodes. Note
that [20] proves the existence of a protocol that converges in O(N) rounds but
does not present and rigorously analyze an actual protocol. As stated in the
introduction, these protocols can be used in the underlying network to construct
a tree metric for our protocol.

In the area of topological self-stabilization of overlay networks, there is a
plethora of works that consider different topologies like line graphs [23], De-
Bruijn-Graphs [12,26], or Skip-Graphs [17,22]. Besides these results that do
not take the underlying network into account, there are also efforts to build a
topology based on a given metric. An interesting result in this area is a proto-
col for building the Delaunay Triangulation of two-dimensional metric space by
Jacob et al. [18]. This work bears several similarities with ours. In particular, the
Delaunay Triangulation is a superset of the metric’s MST and shares some of the
properties we present in Sect. 3. Also their protocol DSTAB is very similar to our
protocol BuildMST. Recently Gmyr et al. proposed a self-stabilizing protocol
for constructing an overlay based on an arbitrary metric [13]. Instead of building
a spanning tree, their goal is to build an overlay in which the distance between
two nodes is exactly the distance in the underlying metric. In particular, their
algorithm is also applicable to a tree metric. However, note that for a tree metric
the number of edges in the resulting overlay can be as high as Θ(N2).

Last, there are several non-self-stabilizing approaches for creating underlay-
aware overlays, e.g., [1,15,25,27]. With their often-cited work in [25], Plaxton
et al. introduced these so-called location-aware overlays. The authors present an
overlay for an underlay modeled by a growth-bounded two-dimensional metric.
This means that the number of nodes within a fixed distance of a node only
grows by a factor of Δ ∈ R

+ when doubling the distance. Their overlay has
a polylogarithmic degree and the length of the routing paths approximate the
distances in the underlying metric by a polylogarithmic factor. In [1] Abraham et
al. extended on [25] and proposed an overlay for growth-bounded metrics where
the latter is reduced to a factor of 1 + ε. Here, ε ∈ R

+ is a parameter that can
be set to an arbitrarily small value. The resulting overlay’s degree depends on ε
and is not analyzed in detail.

3 Preliminaries

In this section, we present some useful properties of tree metrics and their MSTs
that will help us in designing and analyzing our protocol. Therefore, we use the



On Underlay-Aware Self-Stabilizing Overlay Networks 55

notion of relative neighbors. Two nodes v, w ∈ V are relative neighbors with
regard to a metric dT if there is no third node that is closer to either of them,
i.e., it holds �u ∈ V : (dT (u, v) < dT (v, w)) ∧ (dT (u,w) < dT (v, w)). Through-
out this paper we write u ≺ (v, w) as shorthand for (dT (u, v) < dT (v, w)) ∧
(dT (u,w) < dT (v, w)). Relative neighbors have been defined and analyzed for a
variety of metrics (cf. [19,29,30]), but they prove to be especially useful in the
context of tree metrics. In particular, they allow nodes to form and maintain an
MST based on local criteria. This fact is stated by the following lemma:

Lemma 1. Let (V, dT ) be a tree metric, then the following two statements hold:

1. {v, w} ∈ MST (V, dT ) =⇒ �u ∈ V : u ≺ (v, w)
2. {v, w} �∈ MST (V, dT ) =⇒ ∃u ∈ V :

(
u ≺ (v, w) ∧ {v, u} ∈ MST (V, dT )

)

In the following, we will outline the proof and thereby present some helpful
lemmas, which we will reuse in Sect. 5. First, we note that the lemma’s first
statement is generally true for all metrics (cf. [29]). Thus, it remains to show the
second statement. We begin the proof with a useful fact that will be at the core
of many proofs in this paper.

Lemma 2. Let (V, dT ) be a tree metric. Further let u, v, w, r ∈ V be four nodes,
s.t.

dT (u, r) < dT (w, r) ∧ dT (v, r) < dT (w, r)

Then it either holds u ≺ (v, w) or v ≺ (u,w) (and in particular not w ≺ (u, v)).

We provide a detailed version of the lemma’s proof in the full version [14]. In
the proof, we use the fact that there must be a single unique node ϕ ∈ VT ,
the so-called median, that lies on the three unique paths between u, v and r in
the underlying tree T . The lemma then follows from two facts: First, u and v
must be strictly closer to ϕ than w. Second, either the path from u to w or
from v to w must contain ϕ. Thus, it must either hold dT (w, u) > dT (u, v) or
dT (w, v) > dT (u, v). Since both dT (w, u) < dT (u, v) and dT (w, v) < dT (u, v) is
required for w ≺ (u, v), it cannot hold.

Using Lemma 2 we can show the following.

Lemma 3. Let (V, dT ) be a tree metric and v, w ∈ V two of its nodes. Further,
let v0, . . . , vk ∈ V be the unique path from v0 := v to vk := w in the MST. Then
it holds:

dT (vi, v) < dT (vi+1, v) ∀vi ∈ (v0, . . . , vk−1)

As before, we present a detailed proof in the full version [14] and only sketch it
here. The main idea is constructing a simple contradiction: If we assume there is
a path where the property does not hold, there must be a first deviator vi with
dT (vi, v) > dT (vi+1, v). Note that we assumed that no two nodes have the same
distance to w. Because vi is the first deviator, it holds dT (vi−1, v) < dT (vi, v)
for its direct predecessor vi−1. Also, v1 cannot be the first deviator because
then it would be closer to v than v itself. Now we can use Lemma 2 to show
that the MST could be improved by swapping either (vi−1, vi) or (vi, vi+1) for
(vi−1, vi+1), which is a contradiction.



56 T. Götte et al.

Upon activation a node v ∈ V performs:

for all w ∈ Nv

if ∃u ∈ Nv : u ≺ (v, w)
Nu ←− Nu ∪ {w} #v delegates w to u
Nv ←− Nv \ {w}

else

Nw ←− Nw ∪ {v} #v introduces itself

Listing 1.1. BuildMST

In the remainder, we conclude the proof sketch for Lemma1. Therefore, let
v, w ∈ V be two nodes with {v, w} �∈ MST (V, dT ). Further, let u ∈ V be
the first node of the path Pvw from v to w in the MST. Such a node must
exist because there is no direct edge between v and w in the MST. Note that
Pvw contains the same nodes as a path Pwv from w to v but in reverse order.
Thus, we can apply Lemma 3 in “both directions”. That means, the node u with
{v, u} ∈ MST (V, dT ) must be closer to w than v, but also closer to v than
its successor in Pwv. A simple induction then yields that u ≺ (v, w). Since by
definition it holds {v, u} ∈ MST (V, dT ), this proves the lemma.

4 Protocol

In this section, we describe our protocol BuildMST, which forms and constructs
an overlay according to Definition 3. Intuitively, the protocol works as follows:
Upon activation, a node v ∈ V checks, which of its current neighbors are relative
neighbors. All nodes that fulfill the property are kept in the neighborhood. All
others are delegated in a greedy fashion. This idea resembles that of the proto-
cols in [18] and [23], where essentially the same technique is used for different
underlying metrics, i.e., the two-dimensional plane and a line.

The pseudocode for this protocol is given in Listing 1.1. Therein, each node
v ∈ V only maintains a single variable Nv ⊆ V . This is a set that contains all
currently stored references to other nodes. It contains each entry only once and
multiple occurrences of the same reference are merged automatically.

With each activation, a node iterates over all nodes in w ∈ Nv and checks
whether to delegate w or to introduce itself. In this context, a delegation means
that v sends a reference of w to u and then deletes the reference to w from
Nv. The protocol assures that a node v delegates w to u, if and only if it holds
u ≺ (v, w). Otherwise v introduces itself to w, which means that it sends a
reference of itself to w. Note, that the primitives of introduction and delegation
preserve the system’s connectivity (cf. [22]).

In the pseudocode introductions and delegations are indicated by statements
of the form Nu ←− Nu ∪{w}. This notation is used for convenience. It describes
that the executing node v sends a message containing a reference of w to u.
The variable Nu is not directly changed and w is only added in some later
configuration when u is activated and the message is delivered to u. A graphical
example of the protocol’s computations can be seen in Fig. 1.



On Underlay-Aware Self-Stabilizing Overlay Networks 57

Fig. 1. An example of the protocol’s execution. The black edges are part of the under-
lying tree. Red edges denote the overlay’s edges. The dotted edges are implicit, i.e., the
references are still the node’s channel. Solid edges are explicit,i.e., the references are in
the node’s memory. The numbers denote the edges’ weights. (Color figure online)

5 Analysis

In this section we rigorously analyze BuildMST. We prove the protocol’s cor-
rectness with regard to Definition 1 and the set of configurations given in Defi-
nition 3. Furthermore, we bound the protocol’s convergence time.

The main result of this section is that BuildMST is indeed a self-stabilizing
protocol as stated by the following theorem:

Theorem 1. Let (V, dT ) be a tree metric. Then BuildMST is a self-stabilizing
protocol that constructs an overlay with regard to LMST .

In this section, we will concentrate on initial configurations c0 ∈ C where
G∗

c0 is connected. Since two nodes from different components can never commu-
nicate with each other (cf. [22]), the result can trivially be extended to all initial
configurations.

Our proof’s structure is as follows. First, we will show that eventually the
system will contain all edges of MST (V, dT ) and also keeps them in all subse-
quent configurations. This will be the major part of this section. Then we show
that all remaining edges that are not part of the MST but may still be part of
a configuration will eventually vanish. This proves the protocol’s convergence.
Last, we prove that once the system is in a legal configuration, the set of explicit
edges does not change and no more edges that are not part of the MST are added.
This shows the protocol’s closure. We then conclude the section by analysing the
protocol’s time complexity.

Over the course of this section we will refer to all edges e ∈ MST (V, dT ) as
valid edges. We call all other edges invalid. Further note that all omitted proofs
can be found in the full version [14].

We begin by showing that the system eventually reaches a configuration that
contains all valid edges. For the proof, we assign a potential to each configuration
c ∈ C. As the potential, we choose the weight of the minimum spanning tree
that can be constructed from all implicit and explicit edges in the configuration



58 T. Götte et al.

if we ignore their direction, i.e., we consider the MST of G∗
c . Since G∗

c is simply
an undirected, weighted graph with unique edge weights, it must have a unique
minimum spanning tree if it is connected. This fact is a well-known result in
graph theory. The potential is formally defined as follows:

Definition 4 (Potential). Let c ∈ C be a configuration and further let
Mc := MST (E∗

c , dT ) be the minimum spanning tree of G∗
c := (V,E∗

c ). Then the

potential Φ : C → R
+ is defined as Φ(c) :=

{∑
e∈Mc

dT (e) if G∗
c is connected

∞ else

The weight of the globally optimal minimum spanning tree MST (V, dT ) that
considers all edges provides a lower bound for the potential. Therefore, it can-
not decrease indefinitely. In the following, we show that the potential decreases
monotonically and once the system reached a configuration with minimum poten-
tial it will eventually contain all valid edges. First, we show that the potential
can not increase.

Lemma 4. Consider an execution of BuildMST and let the system be in con-
figuration c ∈ C. Further, let c′ be an arbitrary succeeding configuration of c.
Then it holds Φ(c′) ≤ Φ(c).

Proof. To simplify notation let E and E′ be the set of all edges in G∗
c and G∗

c′

respectively. In the following, we will show that we can only construct equally
good or better spanning trees from the edges in E′. Per definition, exactly one
node v ∈ V is activated in the transition from c to c′. This node then executes
the for-loop given in the pseudocode in Listing 1.1. Let v be the node that is
activated and {v, w} ∈ E be an edge that is delegated removed from E during
its activation, i.e., v delegates w to some node u. As a result of the delegation, the
configuration c′ contains the (implicit) edge (u,w) ∈ ET

c′ and thus E′ contains
the edge {u,w} ∈ E′. This allows us to view the delegation as swapping edge
{v, w} for {u,w}.

In the following we observe the swaps (e1, e′
1), . . . , (ek, e

′
k), such that ei ∈ E

is swapped for e′
i ∈ E′ in the transition from c to c′. The order in which we

observe these swaps must be consistent with the protocol. That means that two
delegations must appear in the same order as they could in the for-loop, i.e., v
can only delegate to node whose reference’s are still in its local memory. Next,
we define E0, . . . Ek ⊆ V 2 with E0 := E and Ei := Ei−1 \ {ei} ∪ {e′

i} for i > 0
as the edge sets resulting from these swaps.

As the proof’s main part we inductively show that each MST (Ei, dT ) with
i ∈ {1, . . . , k} has a lower or equal weight than MST (Ei−1, dT ). For this, we
distinguish between two cases. First, if ei �∈ MST (Ei−1, dT ), the spanning tree
is not affected by the swap and thus the weight remains equal. Second, if ei ∈
MST (Ei−1, dT ), we must show that we can construct an equally good spanning
tree in Ei. For this, consider Mi := MST (Ei−1, dT ) \ {ei} ∪ {e′

i}. Note Mi

and MST (Ei−1, dT ) only differ in the edges ei := {v, w} and e′
i := {u,w}. For

the delegation of w to u it must have held u ≺ (v, w) and thus dT (u,w) <
dT (v, w). Therefore, Mi has lower weight than MST (Ei−1, dT ). It remains to



On Underlay-Aware Self-Stabilizing Overlay Networks 59

show that Mi is a connected spanning tree for V . Further denote Tv and Tw

as the subtrees of MST (Ei−1, dT ) connected by {v, w}. To prove that Mi is
a spanning tree, we must show that {u,w} connects Tv and Tw, i.e., it holds
u ∈ Tv. Suppose for contradiction that u ∈ Tw. Then the path from v to u in
MST (Ei−1, dT ) contains the edge {v, w}. Further, note that Ei−1 must have
contained the edge {v, u} because v cannot delegate any node to u without
having a reference to u itself. Therefore, the edges {v, w} and {v, u} are both
part of Ei and both connect Tv and Tw. Now consider that {v, u} is shorter than
{v, w}, because a delegation requires u ≺ (v, w) and thus dT (v, u) < dT (v, w).
Hence MST (Ei−1, dT ) could be improved by swapping {v, w} for {v, u}. This is
a contradiction because MST (Ei−1, dT ) is a minimum spanning tree. Therefore
u ∈ Tv and the edge {u,w} connects Tv and Tw.

Thus, Mi is a spanning tree that can be constructed solely from edges in Ei.
Further, it has a lower or equal weight than MST (Ei−1, dT ). The lemma then
follows by a simple induction.

It remains to show that the potential actually decreases until it reaches the
minimum. That means, we need to show that there cannot be a configuration
with suboptimal potential where no more delegations that decrease the potential
occur. Note that the proof of Lemma 4 tells us that the potential decreases if an
edge {v, w} ∈ Mc is delegated. Therefore, we first show that in each suboptimal
spanning tree there is a node that can potentially detect an improvement.

Lemma 5. Let the system be in configuration c ∈ C, s.t. the potential Φ(c) is
not minimum. Then there must exist nodes u, v, w ∈ V , such that

(
u ≺ (v, w)

) ∧ ({v, u} ∈ Mc

) ∧ ({v, w} ∈ Mc

)

Proof. Let Mc be the minimum spanning tree of a configuration c. Since the
potential is suboptimal, there must be two nodes v, w ∈ V with {v, w} ∈
MST (V, dT )\Mc. Since Mc is connected, there is a path v := v0, v1, . . . , vk := w
from v to vk in Mc.

Now consider v1. According to Lemma 1 it cannot hold v1 ≺ (v, w) because
{v, w} ∈ MST (V, dT ). Thus, it holds dT (v, w) < dT (v1, w) or dT (v, w) <
dT (v1, v). In the following, we assume that dT (v, w) < dT (v1, w). For the other
case we refer to the full version [14]. Next, consider that it holds dT (vk−1, w) >
dT (vk, w) because no node can be closer to w = vk than w itself. Thus,
there must be a first node vi on the path with dT (vi, w) > dT (vi+1, w). Since
dT (v, w) < dT (v1, w) it further holds that i ≥ 1. Therefore, the node vi−1 is well-
defined and it must hold dT (vi−1, w) < dT (vi, w) because vi+1 is the first node
that is closer to w than its successor. Hence, it holds

(
dT (vi−1, w) < dT (vi, w)

)

and
(
dT (vi+1, w) < dT (vi, w)

)
Following Lemma 2 it follows that either vi−1 ≺

(vi, vi+1) or vi+1 ≺ (vi−1, vi). Since in both cases all of the involved edges are
part of Mc, the lemma follows.

Lemma 5 only made assumptions about edges in G∗
c and did not consider the

actual edges. Since each node only has access to its local references, node v can



60 T. Götte et al.

only perform a delegation if it ever has explicit references to u and w. In the
following lemma, we will see that if the potential does not decrease, a node will
eventually have the references in local memory.

Lemma 6. Let the system be in configuration c ∈ C and let Mc be the minimum
spanning tree of c. If the potential does not decrease, then the following two
statements hold:

1. Every computation that starts in c will reach a set Cc ⊂ C, such that

∀c∗ ∈ Cc :
({v, w} ∈ Mc ⇒ (v, w) ∈ EX

c∗
)

2. Every succeeding configuration of c∗ ∈ Cc is in Cc as well

The idea behind the proof is simple: If no node performs a delegation and reduces
the potential, all nodes eventually introduce themselves. Thus, each node which
can potentially perform a delegation will eventually be able to do it if the poten-
tial does not decrease otherwise. Using this fact we can finally show that the
following holds:

Lemma 7 (Convergence I). The following two statements hold:

1. Every computation will reach a set CMST ⊂ C, such that

∀c′ ∈ CMST :
({v, w} ∈ MST (V, dT ) ⇒ (v, w) ∈ EX

c′
)

2. Every succeeding configuration of c′ ∈ CMST is in CMST as well.

The proof’s idea is as follows: Using Lemmas 4, 5 and 6 we show that the
system must reach a configuration with minimum potential. Lemma6 further
tells us that eventually all valid edges are added because the potential is fixed.
Last, Lemma 1 implies that valid edges can never be removed because they never
fulfill the condition for a delegation.

This concludes the first part of the convergence proof. Now we know that
the system eventually converges to a superset of the MST. It remains to show
that eventually all invalid edges will vanish.

Lemma 8 (Convergence II). The following two statements hold:

1. Eventually each computation will reach a set of configurations C ′ ⊂ C, such
that

∀c ∈ C ′ :
({v, w} �∈ MST (V, dT ) ⇒ {v, w} �∈ E∗

c

)

2. Every succeeding configuration of c′ ∈ C ′ is in C ′ as well.

Proof. For this proof, we will again employ a potential function. The potential
of a configuration c ∈ C is the weight of the longest invalid edge. Formally:

Φ̃(c) :=

{
maxe∈E∗

c \MST (V,dT ) dT (e) if E∗
c \ MST (V, dT ) �= ∅

0 else



On Underlay-Aware Self-Stabilizing Overlay Networks 61

If this potential is 0, there are no invalid edges left. This trivially follows from
the fact that all distances are greater than zero. Just as with the other potential,
we will show that this potential (1) never increases and (2) will decrease as long
as it is not minimum.

1. Φ̃(c) cannot increase.
For the proof let c ∈ C be an arbitrary configuration and c′ ∈ C be any
succeeding configuration of c. To prove the assumption, we show that the
protocol never adds an invalid edge that is longer than any existing edge.
Let v ∈ V be the node that is activated in the transition from c to c′ and
let w ∈ V be an explicit neighbor of v in Gc. Then v performs one of the
following two actions that add new edges to the system:
(a) If v introduces itself to w, it adds the implicit edge (w, v) ∈ ET

c′ to the
system. Since the edge (v, w) ∈ EX

c with dT (v, w) = dT (w, v) is already
present, this cannot raise the potential.

(b) If v delegates w to some node u ∈ V , then it adds the implicit edge
(u,w) ∈ ET

c′ to system if it was not already present before. Since for
delegation it must hold that dT (u,w) < dT (v, w) for the existing edge
(v, w) ∈ EX

c , the new edge cannot raise the potential.
Thus, it holds Φ̃(c′) ≤ Φ̃(c).

2. Φ̃(c) will eventually decrease if Φ̃(c) > 0.
Let c ∈ C be an arbitrary configuration and {v, w} ∈ E∗

c an invalid edge in
c with Φ̃(c) = dT (v, w). Since {v, w} is oblivious of the true edge’s direction,
both (v, w) and (w, v) could be part of the configuration. Since the proof
is analogous for both edges, we will only consider (v, w) and show that all
instances of this edge will eventually be delegated.
First, consider the case that v has an explicit edge to w. Since we assume the
system is in a configuration that contains all edges in MST (V, dT ), we can
use Lemma 1. According to the Lemma, there must be a node u ∈ V with an
explicit edge (v, u) ∈ EX

c and u ≺ (v, w). Thus, v will delegate w to u upon
activation and add the edge (u,w) with dT (u,w) < dT (v, w).
Second, consider the case that (v, w) ∈ ET

c is implicit. For the proof, we
need to mind that there can be multiple instances of the reference to w
in v’s channel. The potential will only sink once all of these instances are
gone. Therefore let θv be the number of references to w in v’s channel. In
the following, we will show that θv decreases to 0. Note that θv can only be
raised if some node u ∈ V delegates w to v or w introduces itself. A delegation
always implies that some node u has a reference to w and it holds dT (u,w) >
dT (v, w). In that case, there exists an invalid edge {u,w} ∈ E∗

c , which is
longer than {v, w}. This is impossible because {v, w} is by assumption the
longest invalid edge. Hence, θv may only increase if w introduces itself. To do
this, there must be an explicit edge (w, v). However, we can apply the same
argumentation as above for (v, w) and see that w must delegate its reference
of v to some other node u′ ∈ V instead of introducing itself. In summary,
the protocol never increases θv and thus it can only decrease if a reference is



62 T. Götte et al.

delivered to v. Since this eventually happens to every reference, the system
will reach a configuration with no references of w in v’s channel.

Hence, the potential will eventually reach 0 and no more invalid edges are left.
Furthermore, no more invalid edges can ever be added as this would increase the
potential.

Thus, we have shown that starting from any weakly connected initial config-
uration c ∈ C the system will converge to a superset of the MST and eventually
to a legal configuration. This is the combined result of Lemmas 7 and 8. To com-
plete the proof we must show that the system once it is legal never leaves the
set of legal configurations. Formally:

Lemma 9 (Closure). Let the system be in a legal configuration c ∈ LMST ,
then every succeeding configuration c′ ∈ C is also legal.

However, the lemma is a direct corollary of Lemmas 7 and 8. Hence, BuildMST
is self-stabilizing with regard to Definition 1. This proves Theorem 1 and con-
cludes the analysis of the protocol’s correctness.

It remains to analyze how many steps are needed until a legal configuration
is reached. Therefore, we adapt the notion of asynchronous rounds from [11].
Each computation can be divided into rounds R0, . . . , Rt with t → ∞, such that
each round Ri consists of a finite sequence of consecutive configurations. Let ci
be the first configuration of Ri, then the rounds in the first configuration, such
that:

1. For each v ∈ V , all messages that are in v’s channel in configuration ci have
been delivered at any of v’s activations in this round.

2. All nodes have been activated at least once.

Since we assume weakly fair action execution and fair message receipt rounds
are well-defined. Using this definition, we can show the following.

Theorem 2. BuildMST needs O(N2) asynchronous rounds to converge to a
legal configuration.

The proof can be found in the full version [14]. Therein we again consider the
potential functions from Definition 4 and the proof of Lemma 8. We show that
both these functions must decrease after a constant number of rounds. Together
with the fact that the functions can only decrease O(N2) times respectively, the
theorem follows.

6 Conclusion and Outlook

In this work, we focused on designing and analysing self-stabilizing overlay net-
works that take into account the underlay. For the tree metric we considered, it
turns out that there is an extremely simple protocol for MST construction that
naturally follows from some general properties of MSTs in such tree metrics



On Underlay-Aware Self-Stabilizing Overlay Networks 63

(notice the close relation between Lemma 1 and the protocol). Considering dif-
ferent kinds of underlays (such as planar graphs or graphs with bounded growth)
as well as other types of overlays than a minimum spanning tree may be possible
next steps. Of course, the high upper bound on the running time of our algorithm
naturally raises the question whether a better running time can be achieved by
a more sophisticated algorithm or a refined analysis. Thus, improving on our
results may also be a possible next step.

References

1. Abraham, I., Malkhi, D., Dobzinski, O.: LAND: stretch (1 + epsilon) locality-
aware networks for DHTs. In: 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 550–559 (2004)

2. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an
empirical study. Networks 67(1), 49–68 (2016)

3. Adcock, A.B., Sullivan, B.D., Mahoney, M.W.: Tree-like structure in large social
and information networks. In: 13th International Conference on Data Mining, pp.
1–10 (2013)

4. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: ACM 2008 Conference on Data Communication, pp. 63–74 (2008)

5. Antonoiul, G., Srimani, P.K.: Distributed self-stabilizing algorithm for minimum
spanning tree construction. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-
Par 1997. LNCS, vol. 1300, pp. 480–487. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0002773

6. Arregoces, M., Portolani, M.: Data Center Fundamentals. Cisco Press, Indianapolis
(2003)

7. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing min-
imum spanning tree construction. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 480–494. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15763-9 46

8. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04355-0 43

9. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-
stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16023-3 7

10. de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the inter-
net. In: 10th IEEE International Symposium on Networking Computing and Appli-
cations, pp. 25–32 (2011)

11. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
12. Feldmann, M., Scheideler, C.: A self-stabilizing general De Bruijn graph. In: Spi-

rakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 250–264. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 17

13. Gmyr, R., Lefèvre, J., Scheideler, C.: Self-stabilizing metric graphs. In: Bonakdar-
pour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 248–262. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49259-9 20

https://doi.org/10.1007/BFb0002773
https://doi.org/10.1007/BFb0002773
https://doi.org/10.1007/978-3-642-15763-9_46
https://doi.org/10.1007/978-3-642-15763-9_46
https://doi.org/10.1007/978-3-642-04355-0_43
https://doi.org/10.1007/978-3-642-04355-0_43
https://doi.org/10.1007/978-3-642-16023-3_7
https://doi.org/10.1007/978-3-319-69084-1_17
https://doi.org/10.1007/978-3-319-49259-9_20


64 T. Götte et al.

14. Götte, T., Scheideler, C., Setzer, A.: On underlay-aware self-stabilizing overlay
networks. ArXiv e-prints (2018). http://arxiv.org/abs/1809.02436

15. Gross, C., Stingl, D., Richerzhagen, B., Hemel, A., Steinmetz, R., Hausheer, D.:
Geodemlia: a robust peer-to-peer overlay supporting location-based search. In: 12th
IEEE International Conference on Peer-to-Peer Computing, Tarragona, Spain, pp.
25–36 (2012)

16. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction on
message-passing networks. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp.
194–208. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45414-4 14

17. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: 28th Annual ACM
Symposium on Principles of Distributed Computing, pp. 131–140 (2009)

18. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local delau-
nay graph construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 771–780. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10631-6 78

19. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. Proc. IEEE 80(9), 1502–1517 (1992)

20. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: 30th Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 311–320 (2011)

21. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomput-
ing. IEEE Trans. Comput. C–34(10), 892–901 (1985)

22. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic
message-passing skip list. In: 13th International Symposium Stabilization, Safety,
and Security of Distributed Systems, pp. 356–370 (2011)

23. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: 9th Workshop on Algorithm Engineering and Experiments, pp. 99–
108 (2007)

24. Perlman, R.J.: An algorithm for distributed computation of a spanningtree in an
extended LAN. In: 9th Symposium on Data Communications, pp. 44–53 (1985)

25. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: 9th Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 311–320 (1997)

26. Richa, A., Scheideler, C., Stevens, P.: Self-stabilizing De Bruijn networks. In:
Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3 31

27. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

28. Shavitt, Y., Tankel, T.: Hyperbolic embedding of internet graph for distance esti-
mation and overlay construction. IEEE/ACM Trans. Netw. 16(1), 25–36 (2008)

29. Supowit, K.J.: The relative neighborhood graph, with an application to minimum
spanning trees. J. ACM 30(3), 428–448 (1983)

30. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognit. 12(4), 261–268 (1980)

http://arxiv.org/abs/1809.02436
https://doi.org/10.1007/3-540-45414-4_14
https://doi.org/10.1007/978-3-642-10631-6_78
https://doi.org/10.1007/978-3-642-10631-6_78
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18


A O(logn) Distributed Algorithm
to Construct Routing Structures

for Pub/Sub Systems
Regular Submission

Volker Turau(B)

Institute for Telematics, Hamburg University of Technology,
Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

turau@tuhh.de

Abstract. The Industrial Internet of Things relies on event-driven ser-
vices that run on wireless networks using low power protocols. The loose
coupling and the inherent scalability make publish/subscribe systems
an ideal candidate for such systems. This work introduces a new routing
structure for such systems and an efficient distributed algorithm to build
this structure. This routing structure supports all features of PSVR, a
recently introduced publish/subscribe Middleware for IIoT applications.
Provided the density of the underlying communication graph is suffi-
ciently high, each node can be reached using at most O(log n) hops. The
algorithm is analyzed for random graphs and we prove that w.h.p. the
data structure can be built in O(log n) synchronous rounds.

Keywords: Distributed algorithm · Publish/Subscribe
Routing structure · Random graph

1 Introduction

Emerging applications such as the Industrial Internet of Things (IIoT) require
dynamic forms of the many-to-many communication paradigm for data dissemi-
nation. This communication style is best supported by publish/subscribe systems
instead of using request-reply messaging. Pub/Sub is a well-established commu-
nication paradigm allowing any number of publishers to communicate with any
number of subscribers asynchronously and anonymously. In topic-based pub/sub
systems, each publication carries a topic id. The pub/sub paradigm guarantees
disseminating all messages to all subscribers that expressed their interest in the
topic, a.k.a. subscribing to a topic. The advantage is the loose coupling, pub-
lishers are unaware of the subscribers that will receive their messages. Nodes
can take the role of publishers, subscribers, or both and can freely change their

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
DFG TU 221/6-3.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 65–79, 2018.
https://doi.org/10.1007/978-3-030-03232-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_5&domain=pdf
http://orcid.org/0000-0001-9964-8816


66 V. Turau

role at any time. An overview about existing applications of pub/sub systems in
IIoT ranging from virtual power plants to electric vehicles is given in [19].

The main requirement for a pub/sub system is to reliably deliver publications
to all current subscribers of the specified topic. The dominating non-functional
requirements concern message latency, bandwidth, and local memory usage to
store routing tables. Particularly in wireless networks with limited bandwidth,
it is crucial to keep the number of message forwards during the delivery pro-
cess as low as possible. To get along with the restricted memory size of IIoT
devices routing tables must be kept small. In addition the time complexity for
constructing routing tables is an important criteria for evaluating the quality of
routing schemes.

The two main parameters characterizing a routing scheme are the size of
its routing tables, and the path stretch. The latter is defined as the maximum,
taken over all pairs of source-target nodes, of the ratio between the path length
from the source to the target achieved by a routing scheme, and the length of
a shortest path between these two nodes. There is a fundamental relationship
between the size of a routing table and the quality of routes it defines. It is
well-known that to accomplish shortest path routing, the routing table of each
node needs to grow as Ω(n), where n denotes the number of nodes. Gavoille and
Gengler proved that any protocol that keeps the path stretch strictly below three,
requires a Ω(n) bit state at each node [10]. Hence, in order to significantly reduce
the state required for routing (e.g., to O(log n)), algorithms that may inflate the
path lengths must be considered. This is even more true for pub/sub systems,
because of the many-to-many communication style.

This work proposes an efficient distributed algorithm AFiber for constructing
routing structures using a O(log n) bit state that support pub/sub systems in
resource constrained networks. To this effect the paper extends the work of
Siegemund et al. [19]. They proposed a distributed self-stabilizing data structure
based on a virtual ring that implicitly defines a multicast tree for each node.
The advantage of their proposal is that the maintenance of routing tables in
case of fluctuations is well supported. A virtual ring is a directed closed path of
a network involving each node, possibly several times. The basic scheme is to
route a publication around the virtual ring, each node with a subscription to the
topic grabs the message. Upon returning to the sender a publication is discarded.
The key idea of [19] is to dynamically augment the virtual ring with shortcuts
such that a hierarchical structure emerges. This allows to concurrently forward
publications along disjoint paths to all subscribers. This way the delivery time of
a publication is significantly reduced. The routing along shortcuts is dynamically
updated as nodes subscribe to and unsubscribe from topics.

There are two determining factors for the time complexity of all pub/sub
operations. Firstly, the length of the virtual ring and secondly, the number and
the distribution of shortcuts. Turau et al. propose a distributed algorithm to
construct short virtual rings in O(n) rounds [23] extending the work of [11]. The
shortest possible virtual ring is a Hamiltonian cycle, but this is a rather illusive
target. In [19] shortcuts are selected purely based on link quality, their range
respectively their coverage is not a selection a criterion.



Routing Structures for Pub/Sub Systems 67

The main contribution of this paper is a proposal to replace the virtual ring
by a considerably shorter ring and attaching the remaining nodes evenly to the
nodes on the ring. In particular, while for the algorithm of [23] no statement
about the length L of a constructed virtual ring can be made (except L ≥ n),
in our case L is part of the input and can be as small as

√
n log n.

Secondly, the shortcuts (called fibers) constructed in this work guarantee that
each path has length at most O(log n). No limit about the path length is given
in [23]. This shorter ring structure together with the system of fibers still sup-
ports the concepts of [19] and thus leads to more efficient pub/sub systems. The
proposed distributed algorithm to construct the routing structure works very
efficiently. We formally prove that for random graphs, the algorithm terminates
in O(log n) rounds.

The rest of the paper is organized as follows. After a summary of the state
of the art, Sect. 2 informally introduces algorithm AFiber. A formal description
is given in the following section. In Sect. 4 we analyze the behavior of AFiber for
random graphs G(n, p) and prove its correctness for the case p ≥ γ log n/

√
n for

some constant γ. The last section discusses possible extensions of this work.

1.1 State of the Art

A variety of options for routing in pub/sub systems have been considered. Flood-
ing publications into the entire network does not require routing tables but leads
to scaling issues. Flooding can also be performed along a fixed spanning tree. In
this case each node needs to store the indices of the addresses of its successors in
the tree only. Alon et al. proved that the best achievable upper bound on aver-
age path stretch for spanning trees is in Ω(log n) [1]. This result only considers
point-to-point communication and not the many-to-many style. Obviously, rout-
ing structures that incorporate or even dynamically adopt to subscriptions and
unsubscriptions will lead to shorter routes.

The majority of recent research on topic-based pub/sub systems has focused
on overlay networks. Chockler et al. introduced an optimization problem, called
Topic-Connected Overlay, capturing the trade-off between the scalability of the
overlay and the message forwarding overhead [7]. The task is to select a mini-
mal number of edges of a fully connected network such that for each topic c
the selected edges incident to the publishers and subscribers for c form a con-
nected subgraph. Such overlays are called topic-connected. The decision problem
whether there exists a topic-connected overlay with at most k edges is NP-
hard. Chockler et al. present a centralized algorithm with approximation ratio
O(log T ) (T is the number of topics). Topic-connected overlays were recently
further researched [5,6,15]. The results show that optimal routing structures are
illusive and suggest to focus on approximations.

Overlay networks are logical networks on top of real network where links
correspond to paths in the underlying topology. The main assumption is that
the underlying network routing protocol provides connectivity between all pairs
of nodes. Thus, to implement this approach in networks without a network or



68 V. Turau

transport layer requires additional efforts. All these approaches based on peer-to-
peer networks have in common that they construct an overlay from a potentially
fully connected network instead of constructing an overlay structure from an
existing network. Therefore, we consider approaches such as Chord [20] and
Pastry [18] not applicable in wireless low power networks. Instead we construct
an overlay network by selecting existing edges with high link quality.

Two different types of routing schemes are considered in the literature. The
first allows the routing scheme to assign names to nodes, and each target node
is then identified by this given name. This allows for example to use techniques
such as network address translation (NAT). The other, called name independent,
assumes that fixed names are given a priori, and the scheme cannot take benefit
of naming nodes for facilitating routing. An import name dependent routing
scheme was proposed in [21]. This scheme’s routing tables have size Õ(

√
n) bits

and stretch 3, in any network. The routing scheme proposed in this work is name-
independent. Note that pub/sub systems do not rely on request-reply messaging.
The proposed scheme can be extend to also support this style of communication.
This requires to assign new names to some of the nodes.

The only work that comes close to our work is that of Banerjee et al. They
propose two proximity-aware, on-demand, distributed algorithms for construct-
ing ring-like overlays at the application layer for wireless sensor networks [2].
This approach is rather ad hoc and no formal analysis is given.

Only few distributed algorithms have been analyzed for random graphs. To
the best of our knowledge the only work dedicated to the analysis of distributed
algorithms for random graphs is [4,12,13,22]. This is rather surprising consid-
ering the profound knowledge about the structure of random graphs available
since decades [3,9]. While algorithms designed for general graphs obviously can
be used for random graphs the specific structure of random graphs often allows to
prove asymptotic bounds that are far better. Distributed algorithms to efficiently
construct w.h.p. a Hamiltonian cycle in random graphs are given in [4,22].

1.2 Computational Model and Assumptions

This work employs the synchronous CONGEST model of the distributed message
passing model [16], i.e., each message contains at most O(log n) bits. The com-
munication network is represented by an undirected graph G = (V,E), where
V is a set of n processors (nodes) and E represents the set of m bidirectional
communication links (edges) between them. Each node carries a unique identi-
fier and has only limited local memory, e.g. it is impossible to locally store a
copy of the graph. Communication between nodes is performed in synchronous
rounds using messages exchanged over the links. Upon reception of a message, a
node performs local computations and possibly sends messages to its neighbors.
These operations are assumed to take negligible time.

The prerequisite of our algorithms is a distinguished node v0 which is the
starting point to construct a cycle. Also, each node needs to know the total
number of nodes. In the analysis we use the classical Erdős and Rényi model
for random graphs: A graph G(n, p) is an undirected graph with n nodes where



Routing Structures for Pub/Sub Systems 69

each edge independently exists with probability p [8]. The results proved in this
work hold for random graphs with high probability (w.h.p.) which means with
probability tending to 1 as n → ∞. Note that p will also depend on n and if n
goes to infinity p converges to 0.

2 Informal Description of Algorithm AFiber

The input to algorithm AFiber is a starting node v0 and an upper bound L for
the size of the constructed cycle C. AFiber operates in sequential phases. The
first two phases last O(log n) rounds. Each subsequent phase requires a constant
number of rounds only. Let r be an integer such that 2r ∈ O(log n). Phase 0
constructs in 2r − 2 rounds a path P of length 2r − 1 starting in v0. In the
next log n rounds Phase 1 closes P into a cycle C of length 2r. The following
k = �log L/ log n − r� middle phases extend C by integrating nodes outside C
into C and construct the system of fibers. The choice of k implies |C| ≤ L. Note
that r is also part of the input. As we show later, the values of r and L influence
the density of the fibers as well as the runtime of the algorithm.

The integration of new nodes is achieved by replacing edges (v, w) of C by
two edges (v, x) and (x,w), where x is a node outside of C, edge (v, w) becomes a
fiber. In the best case, the number of nodes of C double in every phase. We prove
that provided the graph has a particular density, C increases in every phase by a
constant factor. After the number of nodes of C has reached a predefined limit,
the ring and fiber structure is completed. Figure 1(a) shows an example for the
fiber structure. In this case the cycle after phase 1 (depicted in red) consists of
the four nodes c0, c4.c8, and c12, i.e., r = 2. The resulting cycle C that emerges
after two middle phases is depicted.

In the final phase each node outside C randomly selects a neighbor on C. This
node acts as a proxy for the node outside C. When the algorithm terminates each
node outside C is attached to a single proxy and the number of nodes attached to
individual proxy has small variance. Figure 1(b) shows the assignment of nodes
outside the circle C to proxies.

We call the constructed subgraph as depicted in Fig. 1 a sunlet graph with
fibers. It is called perfect if the fiber structure is complete, i.e., during the con-
struction the number of nodes of C doubles in every middle phase.

2.1 Relationship to Routing Scheme PSVR

PSVR arranges nodes in a virtual ring and constructs short-cuts, i.e., edges
between nodes on the ring in the style of chords. The edges of the ring together
with the shortcuts define the virtual ring graph, an overlay structure. As nodes
subscribe and unsubscribe from topics the pub/sub layer of PSVR dynamically
builds a routing structure on top of the virtual ring graph. The advantage of this
structure is that it can be efficiently maintained in case of frequent fluctuations
of subscribers.



70 V. Turau

c0 c1
c2

c3

c4

c5

c6
c7c8

c9

c10

c11

c12

c13

c14

c15
c0 c1

c2

c3

c4

c5

c6
c7c8

c9

c10

c11

c12

c13

c14

c15

Fig. 1. Routing structure constructed by algorithm AFiber. (Color figure online)

The idea of our work is to replace the virtual ring graph by a new ring based
structure, such that the pub/sub layer of PSVR can be executed unaltered. This
allows to carry over the efficient adaptability of PSVR with respect to fluctuating
subscribers. PSVR dynamically uses the fibers to construct a routing structure
that reflects the current set of subscribers (for details see [19]). There are two
improvements compared to the original proposal of [19]: The size of the ring is
considerably shorter and the selection of fibers (i.e., shortcuts) produces routes
of length in O(log n) for some classes of graphs.

The first improvement is achieved by the proxies. Nodes outside C that are
attached to the proxies do no longer participate in the forwarding of messages.
Thus, the circle becomes significantly shorter than the virtual ring. The prox-
ies maintain the subscriptions of their attached nodes and upon reception of
a publication they deliver it to all subscribed attached nodes. Thus, a proxy
subscribes to a topic if at least one attached node or itself has interest in the
topic. Hence, subscriptions and unsubscriptions of attached nodes do not entail
further messages to be sent along the ring, except for the first subscription of an
attached node.

Note that message delivery in pub/sub systems is anonymous, i.e. there is no
need for addresses. If the ring structure is to be used for the routing of messages
outside the pub/sub system network address translation (NAT) can be used.
After a node is attached to a proxy, the proxy assigns a new unique address to
the attached node. The address of the proxy is a prefix of the new address.

The second improvement is due to the replacement of shortcuts by the fibers,
i.e., PSVR is executed on the subgraph consisting of the nodes on the cycle C and
the fibers. This reduces the number of messages and the latency since |C| 
 n.
Furthermore, the systematic arrangements of fibers as opposed to the rather



Routing Structures for Pub/Sub Systems 71

random procedure of selecting shortcuts in [19] brings considerable performance
effects, since the length of the routing paths is bounded (see Lemma 7).

In PSVR the number of shortcuts is bounded by a constant depending on the
available memory. This was done to respect the resource-constraint character of
devices use in IIoT. For the same reason the number of fibers is limited. This
number can be controlled by the number of middle phases. Note that as in
[19] the selection of links for the communication graph can still be based on a
topology control algorithm.

In contrast to [19] our approach is not self-stabilizing, but the use of the
leasing technique to handle faults with respect to subscriptions as described in
[19] is still possible. Also the relatively fast construction of the ring in O(log n)
rounds makes a repeated recomputation feasible.

3 Formal Description of Algorithm AFiber

Algorithm AFiber operates in synchronous rounds. By counting the rounds a node
is always aware in which round and therefore also in which phase it is. Each
phase lasts a known fixed number of rounds. If the work is completed earlier,
the network is idle for the remaining rounds. This requires each node to know
n. Algorithm AFiber gradually builds an oriented cycle C.

3.1 Phase 0

Let r = �log(d log n)/ log 2�, for some constant d > 1. This yields 2r ∈ O(log n).
As stated above the value of d resp. r determines the length of the initial cycle.
This value allows to tailor the resulting routing structure with respect to the
diameter. It has no influence on the analysis.

In phase 0 an oriented path P starting in v0 of length 2r −1 is constructed in
O(log n) rounds. Initially P = {v0}. For 2r −2 rounds the end node v of P sends
a message to all neighbors. All neighbors not on P respond to v and v selects a
successor among the responding nodes. After completion of phase 0 each node
on P knows the id of node v0.

3.2 Phase 1

In phase 1 one more node is added to P such that P becomes a cycle C with
2r nodes. The overall idea is as follows: The end node of P sends a message
including the id of node v0 to all neighbors. If a receiving node outside P is
connected to v0 the cycle can be completed. Otherwise, P is extended by a new
node and node v0 is removed, i.e., the successor of v0 takes over the role of v0.
Thus, the length of P is unchanged. This is repeated d log n times.

At the beginning of phase 1 each node on P sends its id towards the end node
w of P . Thus, after 2r − 2 rounds w has a list L = v0, v1, . . . , vv2r−2 with the
nodes of P . In the following P is either extended by one node or P is closed into
a cycle of 2r nodes. In parallel node w successively sends the ids of the nodes of



72 V. Turau

L towards the new end of P . Thus, due to this pipe-lining at any point in time
the current end node of P always is aware of the node on P with distance 2r −2.
The id of this end node is included in the message sent to all neighbors. After
the cycle C is established, the nodes of P that are forerunner of the current
end node of P are informed that they are no longer part of C. All these actions
can be completed in O(log n) rounds. After the completion of phase 1 each node
knows whether it is on C or not.

We will prove that in random graphs phases 0 and 1 succeed w.h.p. In prin-
ciple it is not necessary that the size of C is a power of 2. This simplifies the
analysis for random graphs.

3.3 Middle Phases

The middle phases are almost identical to those of Algorithm AHC of [22]. Each
middle phase performs the following steps in three rounds (see Fig. 2).

1. Each node node maintains a variable Cu with Cu = ∅ at the beginning of
every phase.

2. Each node ci on C broadcasts its own id and the id of its predecessor on C
using message I1 (red arrows).

3. If a node u outside C receives a message I1 from a node ci such that the
predecessor of ci on C is a neighbor of u, it inserts ci into a set Cu.

4. Each node u outside C with Cu �= ∅ randomly selects a node ci from Cu and
sends an invitation message I2 to the predecessor of ci on C (orange arrows).

5. A node ci ∈ C that received an invitation I2 randomly selects a node u
from which it received an invitation, sets ci.next = u, and informs u with
acceptance message I3 (blue edge). Thus, edge (ci, ci+1) is replaced by the
edges (ci, u) and (u, ci+1). Furthermore, nodes ci and ci+1 mark edge (ci, ci+1)
as a fiber.

Individual extensions do not interfere with each other. Each node outside C gets
in the last round of a middle phase at most one request for extension and for
each edge of C at most one request is sent.

3.4 The Final Phase

In the final phase each node in v ∈ V \ C randomly selects a neighbor u on
C and informs it. Node u is the proxy for v. Next, the proxy assigns unique
addresses to all attached nodes, e.g. by appending a bit string that is unique in
its neighborhood to its own address. These new addresses must then be made
public. Note that this is only required if point-to-point communication is desired.

4 Analysis of Algorithm AFiber for Random Graphs

In this section we analyze the time complexity of algorithm AFiber for a class of
random graphs G(n, p). To analyze the time complexity of iterative algorithms



Routing Structures for Pub/Sub Systems 73

Fig. 2. Integration of nodes during a middle phase. The blue ribbon depicts extended
cycle and edge (c3, c4) becomes a fiber. (Color figure online)

on random graphs it is necessary to organize the proof such that one only slowly
uncovers the random choices in the input graph while constructing the desired
structure, i.e., the cycle C. This is done in order to cleanly preserve the needed
randomness and independence of events that establish the correctness proof. We
achieve this by partitioning the edges of G into disjoint subsets Ei and in phase
i the edges Ei are revealed. The idea of the coupling technique is to choose Ei

such that the graph (V,Ei) is of type G(n, q) for some value q (see [9], p. 5). For
i ≥ 0 let Gi be the union of i independent copies of G(n, q). In middle phase i the
constructed cycle C consists of edges belonging to Gi. Note that the probability
that any two nodes of V are connected with an edge from Gi+1 \Gi is q. In each
middle phase we only consider the nodes outside C.

For each such node we consider unused edges incident to it, each of those
exist with probability q independent of the choice of C, because C consist of
edges of other copies of G(n, q). Some unused edges may also exist in Gi, but
that does not matter. The downside of this technique is that q > p. Algorithm
AFiber requires γ log n phases (γ ∈ N), γ depends on the desired length of C
as specified by the input. Thus, we require γ log n copies of a suitable random
graph. Let p̂ = 1− (1−p)1/γ log n. Then p = 1− (1− p̂)γ log n and G(n, p) is equal
to the union of γ log n independent copies of G(n, p̂).

Since algorithm AFiber is similar to algorithm AHC of [22] (except the final
phase) it follows from the analysis of AHC that γ is at most 21.

For which value of p does algorithm AFiber construct w.h.p. the described
routing structure? Let C be a cycle of length c. What is the minimum value for
c such that w.h.p. all nodes can attach to C? The probability of this event is
(1 − (1 − p)c)n−c. This converges to 1 if (1 − p)c(n − c) converges to 0. Thus, if
p = γ log n/

√
n and c ≥ log n

√
n then w.h.p. each node of V \ C has a neighbor

on C. Therefore, we consider p = γ log n/
√

n in the following. Then we have
p̂ ≥ 1/

√
n and thus,

γ log n⋃

i=1

G(n, 1/
√

n) ⊆ G(n, γ log n/
√

n).



74 V. Turau

We superimpose γ log n independent copies of G(n, 1/
√

n) and replace any dou-
ble edge which may appear by a single one. In the following proof in each phase
we will uncover a new copy of G(n, 1/

√
n). We set q = 1/

√
n and assume

c ≥ (log n)2
√

n for the rest of this section. Thus, by considering G(n, q) instead
of G(n, p) the above discussed issues are resolved.

The lemmas in the remaining part of this section prove Theorem 1 that
summarizes the properties of algorithm AFiber.

Theorem 1. Let G(n, p) with p ≥ γ log n/
√

n be a random graph. Algorithm
AFiber computes in the synchronous model in O(log n) rounds w.h.p. a sunlet
graph with fibers for G using messages of size O(log n).

4.1 Phase 1

Phase 1 sequentially tries to extend P into a cycle C in at most log n rounds.

Lemma 1. If q ≥ 1/
√

n phase 1 finds w.h.p. in log n rounds a cycle with 2r

nodes.

Proof. By considering only the edges of the fresh copy of G(n, q) we note that
the probability that path P cannot be closed into a cycle with 2r nodes within
d log n rounds is at most

(1 − q2)(n−log n
√

n)d log n.

Calculations show that this value converges to 0. ��

4.2 Middle Phases

For v ∈ V \C let Xv be a random variable that is 1 if v forms a triangle with at
least one even numbered edge of C. Denote by c the length of C. The variables
Xv1 , . . . , Xvn−c

are independent Bernoulli-distributed random variables. Define
a random variable X as X =

∑
v∈V \C Xv. Then we have

E[X] = (n − c)(1 − (1 − q2)c/2). (1)

Obviously X is a lower bound for the number of nodes that sent a message I2.

Lemma 2. Let n, c ∈ N and 0 < θ < 1. Then (n−c)(1−(1− 1
n )c/2) > 0.39(1−θ)c

for all 0 ≤ c ≤ θn.

Proof. For fixed n let fn(c) = 1−(1− 1
n )c/2. Then fn is monotonically increasing

and concave because fn(c)′′ < 0. Note that fn(n) = 1 − (1 − 1
n )n/2 = 1 −

en log(1−1/n)/2 > 1 − e−1/2. Thus, the line segment from (0, fn(0)) to (n, fn(n))
is below fn. Hence,

1 −
(

1 − 1
n

)c/2

≥ fn(n)c/n > (1 − e−1/2)c/n ≥ 0.39c/n

and hence, (n−c)(1−(1− 1
n )c/2) ≥ 0.39c(1−c/n). For c ≤ θn we have 1−c/n ≥

(1 − θ). Thus, (n − c)(1 − (1 − 1
n )c/2) ≥ 0.39(1 − θ)c. ��



Routing Structures for Pub/Sub Systems 75

Lemma 3. Let n ∈ N and 0 < θ < 1. Let 3 log n ≤ c ≤ θn. Then there exists
d > 0 such that X > 0.39(1 − θ)c with probability 1 − n−0.01887(1−θ)3c/ log n.

Proof. From Eq. (1) and Lemma 2 it follows that

E[X] = (n − c)(1 − (1 − 1
n

)c/2) > 0.39(1 − θ)c ≥ 1.17(1 − θ) log n.

Thus, 1 > 0.39(1 − θ)c/E[X] for 3 log n ≤ c ≤ θn. Also, 0.39(1 − θ)c/E[X] is
strictly monotonically increasing in this range for fixed n. Furthermore, for fixed
n we have

lim
c→θn

0.39(1 − θ)c
E[X]

≤ 0.39 θ

(1 − e−θ/2)
< 0.22θ + 0.78.

Thus, for c in the specified range

lim
n→∞ (1 − 0.39(1 − θ)c/E[X])2 > 0.0484(1 − θ)2.

Let δ = 1 − 0.39(1 − θ)c/E[X]. Then 0 < δ < 1 and we have

E[X]δ2 = E[X] (1 − 0.39(1 − θ)c/E[X])2 ≥ 0.01887(1 − θ)3c

for 3 log n ≤ c < θ n. Hence, e−E[X]δ2/2 ≤ n−0.01887(1−θ)3c/ log n. The Chernoff
bound yields that

X > (1 − δ)E[X] =
(

1 − 1 +
0.39(1 − θ)c

E[X]

)
E[X] = 0.39(1 − θ)c

with probability at least 1 − n−0.01887(1−θ)3c/ log n. ��

Let Y be a random variable denoting the number of nodes of V \ C that
receive a message I3 provided that X = x nodes sent an invitation I2. The
computation of E[Y |X = x] can be reduced to the urns and balls model: The
number of balls is x and the number of bins is c. Note that the probability that
a node v in C is connected to a node w in V \ C is independent of v and w at
least q. Thus, Y is equal to the number of nonempty bins and hence

E[Y |X = x] = c(1 − (1 − 1/c)x). (2)

Lemma 4. Let β = 0.92, 0 < θ < 1, and 3 log n < c ≤ θn. Then there exist
d > 0 such that Y ≥ β

(
1 − 1

e0.39(1−θ)

)
c with probability 1 − n−d.

Proof. From Eq. (2) it follows

E[Y |X ≥ 0.39(1 − θ)c] ≥ c

(
1 − (1 − 1

c
)0.39(1−θ)c

)
.

Let δ2 = 2α log n/c with α = (3/2)(1 − β)2. Then δ2 < 1 and

e−E[Y |X≥0.39(1−θ)c]δ2/2 ≤ e−2α log n(1−(1−1/c)0.39(1−θ)c)/2 =

(
1

n

)α(1−(1−1/c)0.39(1−θ)c)

.



76 V. Turau

The Chernoff bound implies that Y |(X ≥ 0.39(1 − θ)c) > (1 − δ)E[Y |X ≥
0.39(1 − θ)c] with probability 1 − 1/nα(1−(1−1/c)0.39(1−θ)c). Hence, by Lemma 3
there exists d > 0 such that

Y ≥
(

1 −
√

2α log n

c

)
c(1 − (1 − 1

c
)0.39(1−θ)c)

with probability 1 − n−d. This gives for any θn ≥ c ≥ 3 log n

Y

c
≥

(
1 −

√
2α log n

c

)
(1 − (1 − 1

c
)0.39(1−θ)c) ≥ β(1 − 1

e0.39(1−θ)
).

��
Lemma 5. Let 0 < θ ≤ 1/2 and C be a cycle with 3 log n < c < nθ nodes. Then
after 5i phases C has w.h.p. at least (4(1 − θ))ic nodes. In particular for any
constant κ, after at most 4 log n phases C has w.h.p. at least κ log n

√
n nodes.

Similarly after at most 8 log n phases C has at least n/2 nodes.

Proof. Lemma 4 yields that while the circle has less than θn nodes w.h.p. in
i phases the number of nodes in C grows from c to c

(
1 +

(
1 − 1

e0.39(1−θ)

))i. In

particular, c
(
1 +

(
1 − 1

e0.39(1−θ)

))5 ≥ 4c(1 − θ) ≥ 2c. Thus, it doubles at least
every five phases, provided θ ≤ 1/2. Hence, starting with c = 3 log n, after at i
phases C has at least 2i/53 log n nodes.

Note that 2i0/53 log n ≥ κ log n
√

n for i0 = 5/ log 2 (log(κ/3) + log n/2).
Hence, 4 log n ≥ i0 for larger values of n. Therefore, the union bound implies
that after at most 4 log n phases w.h.p. the circle has at least κ log n

√
n

nodes. ��
The last lemma gives a lower bound for the number of nodes on C for a given

number of phases. Trivially the following upper bound also holds.

Lemma 6. After k phases, C has at most 2k+r nodes.

We call a middle phase perfect if the number of nodes of C doubles. The
following lemma states an upper bound for the diameter of the resulting sunlet
graph with fibers in the optimal case. Depending on the density of the graph
not all fibers will exist and therefore, the diameter may be larger.

Lemma 7. Let |C| = 2r after phase 1. Then after k perfect middle phases any
two nodes of the fiber graph have distance at most 2k + 2r ∈ O(log n).

Proof. Denote the merging cycles by Ci for i = 0, . . . , k, where C0 is the initial
cycle. Then |Ci| = 2r+i. A node from cycle Ci can reach in one hop a node
on cycle Ci+1 and vice versa. Thus, an upper bound for the distance between
two nodes is given by the following simple routing procedure: The route goes
first from a starting node to a node on cycle C0. Then it continues along cycle
C0 to the node that is nearest to the target node and finally from there to the
target node. Clearly this path has length at most 2k + 2r. Since n ≥ 2r+k we
have log n ≥ (r + k) log 2. Thus, k ∈ O(log n). Since 2r ∈ O(log n) we have
2k + 2r ∈ O(log n). ��



Routing Structures for Pub/Sub Systems 77

4.3 The Final Phase

The probability that w.h.p. all nodes can attach to C is (1 − (1 − q)c)n−c. This
converges to 1 if (1 − q)c(n − c) converges to 0. Thus, if q = 1/

√
n and c ≥

(log n)2
√

n then w.h.p. each node of V \ C has a neighbor on C.
The following lemma shows that the load of the proxies is rather equally

spread.

Lemma 8. The maximum number of nodes attached to a single proxy is less
than e(n/c − 1) with probability 1 − 1/c.

Proof. The probability that a node v ∈ V \ C has no neighbor in C is equal to
(1 − q)c. Thus, for c ∈ ω(

√
n) (e.g., c = log n

√
n) w.h.p. each node v ∈ V \ C

has a neighbor in C. The probability that w ∈ C becomes a proxy for v ∈ V \ C
is independent of v and w at least q. Hence, this phase can be described using
the balls and bins model: n− c balls are thrown independently and uniformly at
random into c bins. The probability that a node of C is not attached to a node
outside C (i.e., is not a proxy) is at most c(1 − 1/c)n−c. If n ∈ ω(c) then this
value is 0 w.h.p. If n ≥ c(1 + log c) (e.g., c ≤ n/ log n) the maximum number of
nodes attached to a single proxy is less than e(n/c− 1) with probability 1− 1/c.
Even better bounds can be found in [17]. ��

This analysis heavily relies on the properties of random graphs. It can only
be conjectured that the properties of the algorithm still hold in general graphs
with similar densities.

5 Extensions

There are several variations of the proposed routing structure. In the follow-
ing two such options are discussed. One option is to connect nodes outside C
indirectly to their proxies, e.g., via path of length 2 (see Fig. 3(a)). To equally

Fig. 3. Routing structures that can be build with a variation of algorithm AFiber. Note,
that in both cases the fibers are not depicted.



78 V. Turau

spread the load we first compute a maximal matching for the graph induced by
the nodes outside C. This can be achieved in O(log n) time, see [12,14]. The
final phase is then executed for the unmatched nodes and the nodes with the
smaller id of each edge contained in the matching. The addresses of the nodes
can easily adopted to work with the PSVR system.

A second option is to randomly partition the nodes in two subsets and to
run Algorithm AFiber in each partition. In a final phase a maximal matching
is constructed for the bipartite graph formed by the sets of nodes of the two
cycles (see Fig. 3(b)). These edges form a set of spokes for the two cycles. This
structure requires some small changes of PSVR. Subscriptions and publications
are forwarded into both rings.

6 Conclusion

This work introduces a new routing structure for pub/sub systems in wireless
networks and an efficient distributed algorithm to build this structure. The kernel
of the routing structure is a ring that contains a fraction of the nodes of the
network, e.g., O(

√
n log n). The nodes on the ring have the role of a proxy. Nodes

outside attached to a single proxy, which administers the subscriptions of the
attached nodes. This structure can be used for the lower layer of PSVR, a recently
introduced publish/subscribe Middleware for IIoT applications. Provided the
density of the underlying communication graph is sufficiently high, each node can
be reached using at most O(log n) hops. The algorithm is analyzed for random
graphs and we prove that w.h.p. the data structure can be build in O(log n)
rounds.

We leave it as future work to formally analyze the variations of algorithm
AFiber discussed in Sect. 5. Another open problem is determine the expected value
for the diameter of the constructed sunlet graph with fibers for p = log n/

√
n.

References

1. Alon, N., Karp, R., Peleg, D., West, D.: A graph-theoretic game and its application
to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)

2. Banerjee, A., King, C.-T.: Building ring-like overlays on wireless ad hoc and sensor
networks. IEEE Trans. Parallel Distrib. Syst. 20(11), 1553–1566 (2009)

3. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

4. Chatterjee, S., Fathi, R., Pandurangan, G., Pham, N.D.: Fast and efficient dis-
tributed computation of hamiltonian cycles in random graphs. In: Proceedings of
38th International Conference on Distributed Computing Systems, ICDCS 2018
(2018)

5. Chen, C., Jacobsen, H.-A., Vitenberg, R.: Algorithms based on divide and conquer
for topic-based publish/subscribe overlay design. IEEE Trans. Netw. 24(1), 422–
436 (2016)



Routing Structures for Pub/Sub Systems 79

6. Chen, C., Vitenberg, R., Jacobsen, H.-A.: A generalized algorithm for pub-
lish/subscribe overlay design and its fast implementation. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 76–90. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33651-5 6

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for Pub-Sub with many topics. In: Proceedings of 22nd Annual ACM Symposium
Principles of Distributed Computing, pp. 109–118 (2007)

8. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. (Debr.) 6, 290–297 (1959)
9. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University

Press, Cambridge (2015)
10. Gavoille, C., Gengler, M.: Space-efficiency for routing schemes of stretch factor

three. J. Parallel Distrib. Comput. 61(5), 679–687 (2001)
11. Hélary, J., Raynal, M.: Depth-first traversal and virtual ring construction in dis-

tributed systems. Research Report RR-0704, IRISA-Institut de Recherche en Infor-
matique et Systèmes Aléatoires, INRIA Rennes (1987)

12. Krzywdziński, K., Rybarczyk, K.: Distributed algorithms for random graphs.
Theor. Comput. Sci. 605, 95–105 (2015)

13. Levy, E., Louchard, G., Petit, J.: A distributed algorithm to find hamiltonian cycles
in G(n, p) random graphs. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004.
LNCS, vol. 3405, pp. 63–74. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527954 7

14. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate match-
ing. J. ACM 62(5), 38:1–38:17 (2015)

15. Onus, M., Richa, A.W.: Parameterized maximum and average degree approxima-
tion in topic-based publish-subscribe overlay network design. Comput. Netw. 94,
307–317 (2016)

16. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Monographs
on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, Philadelphia (2000)

17. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby,
M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6 13

18. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

19. Siegemund, G., Turau, V.: A self-stabilizing publish/subscribe middleware for IoT
applications. ACM Trans. Cyber-Phys. Syst. (TCPS) 2(2), 12:1–12:26 (2018)

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

21. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2001, pp. 1–10. ACM, New York (2001)

22. Turau, V.: A distributed algorithm for finding hamiltonian cycles in random graphs
in O(log n) time. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol.
11085. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7 11

23. Turau, V., Siegemund, G.: Scalable routing for topic-based publish/subscribe sys-
tems under fluctuations. In: Proceedings of 37th International Conference on Dis-
tributed Computing Systems, ICDCS 2017 (2017)

https://doi.org/10.1007/978-3-642-33651-5_6
https://doi.org/10.1007/978-3-642-33651-5_6
https://doi.org/10.1007/11527954_7
https://doi.org/10.1007/11527954_7
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/978-3-030-01325-7_11


Self-stabilization and Byzantine Tolerance
for Maximal Matching

Stephan Kunne1, Johanne Cohen1(B) , and Laurence Pilard2

1 LRI-CNRS, Université Paris-Sud, Université Paris Saclay, Orsay, France
{kunne,jcohen}@lri.fr

2 LI-PaRAD, Université Versailles-St. Quentin, Université Paris Saclay,
Versailles, France

laurence.pilard@uvsq.fr

Abstract. We analyse the impact of transient and Byzantine faults
on the construction of a maximal matching in a general network. We
consider the self-stabilizing algorithm called AnonyMatch presented by
Cohen et al. [3] for computing such a matching. Since self-stabilization
is transient fault tolerant, we prove that this algorithm still works under
the more difficult context of arbitrary Byzantine faults. Byzantine nodes
can prevent nodes close to them from taking part in the matching for
an arbitrarily long time. We give bounds on their impact depending on
the distance between a non-Byzantine node and the closest Byzantine,
called the containment radius. We present the first algorithm tolerating
both transient and Byzantine faults under the fair distributed daemon
while keeping the best known containment radius. We prove this algo-
rithm converges in O(max(Δn, Δ2 log n)) rounds w.h.p., where n and Δ
are the size and the maximum degree of the network, resp.. Additionally,
we improve the best known complexity as well as the best containment
radius for this problem under the fair central daemon.

Keywords: Matching · Self-stabilization · Byzantine faults
Randomized algorithm

1 Introduction and State of the Arts

A matching M in a graph G is a subset of the edges of G without common
nodes. A matching is maximal if no proper superset of M is also a matching. A
maximum matching is a maximal matching with the highest cardinality among
all possible maximal matchings. Computing a matching is one of the important
tasks in distributed computing. Matchings are often used as building blocks in
complex distributed algorithms such as the implementation of load balancing [2,
9,22]. In the wireless network context, the wireless resource management problem
can be viewed as a matching problem between resources and users. Computing

S. Kunne—This work is eligible for best student paper.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 80–95, 2018.
https://doi.org/10.1007/978-3-030-03232-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_6&domain=pdf
http://orcid.org/0000-0002-9548-5260
http://orcid.org/0000-0002-1104-8216


Self-stabilization and Byzantine Tolerance for Maximal Matching 81

the maximal matching is the basic fundamental problem in matching theory (see
[12] for a survey).

In this paper, we focus on the construction of a maximal matching handling
both transient and Byzantine faults. On one side, transient faults can appear in
the whole system, possibly impacting all nodes. However, these faults are not
permanent, thus they stop at some point of the execution. Self-stabilization [5]
is the classical paradigm to handle transient faults. Starting from any arbitrary
configuration, a self-stabilizing algorithm eventually resumes a correct behavior
without any external intervention. On the other side, (permanent) Byzantine
faults [17] are located on some faulty nodes and so the faults only occur from
them. However, these faults can be permanent, i.e., they could never stop during
the whole execution.

In this work, we assume the fair distributed daemon, and we deal with ran-
domized and anonymous algorithm. Indeed, on one side, it is well known that
some mechanism is required to break symmetry under the distributed daemon.
This can be done either relying on identifiers or using random trial. Breaking
symmetry using identifiers allows Byzantine nodes to use this mechanism at their
advantage by always choosing the most convenient identifier. However, this is
not the case using random trial. This is why we focus on randomized distributed
algorithm in anonymous network. On the other side, because of the presence
of Byzantines with the unfair daemon, it is impossible to bound the number of
transitions before a correct behavior is reached; indeed, for an arbitrarily high
number of transitions, the daemon could choose to activate Byzantine nodes
and their neighbours only. Thus the fairness of the daemon is needed since it
guarantees that eventually, all activable nodes will be activated.

Self-stabilizing algorithms for computing a maximal matching have been
designed in various models (anonymous network [1,3,14] or not [13,14,18,23],
weighted or unweighted, see [11] for a survey, 1-maximal1 [1,15]). Hsu and
Huang’s algorithm [14] is the first one working in an anonymous network. This
algorithm operates under the central daemon, which guarantees symmetry break-
ing. Manne et al. [18] proved that in an anonymous general network there exists
no deterministic self-stabilizing solution to the maximal matching problem under
the distributed daemon. This is a general result that holds whatever the com-
munication and atomicity model. Cohen et al. [3] extends this previous result by
presenting a randomized self-stabilizing algorithm in anonymous networks that
converges in O(n2) moves w.h.p. under the distributed unfair daemon. Observe
that self-stabilizing algorithms for optimization problems in anonymous networks
can sometimes be solved by a deterministic algorithm, provided the algorithm
only uses the distance-2 unique identifier property. This can be achieved by a
distance-2 coloring algorithm that builds a coloring of the graph in which each
node has a distinct color among colors used by any other node within distance
2. But creating identifiers, even if there are only unique at distance 2, would give
more power to the Byzantine nodes. We avoid this technique.

1 A matching M is 1-maximal if it is not possible to build a matching by removing
one edge and adding two edges to M .



82 S. Kunne et al.

Making a distributed system tolerant to both transient and Byzantine faults
is challenging. Since 1982, it is known that the classical consensus problem is
impossible to solve in the presence of at least one third of Byzantine nodes in
the system [17]. Many other impossible results came, e.g., for some matching
[8], or asynchronous unison [7]. However, for some locally checkable problems
such as edge or link coloring, maximal independent set, or matching, the fault
containment technique can be used. Nesterenko and Arora [20] define the strict
stabilization property that guarantees a containment radius exists such that
no node outside this radius can be affected by the Byzantine nodes once the
stabilization is reached: see [8] for matchings and [19,21] for colorings.

Dubois et al. [8] present an anonymous self-stabilizing maximal matching
algorithm resilient to Byzantine faults under the strongly-fair central daemon,
which converges in a finite number of moves. In this work, we analyse algorithm
AnonyMatch [3] under the more general weakly-fair distributed daemon (Def-
inition 1). We prove its resilience to Byzantine faults and its convergence in
O(Δn log n) rounds w.h.p, with the same containment radius as [8]. We reduce
the previous best known containment radius by 1 under the fair central daemon.

Organization of the Document: We present the model in Sect. 2. The algo-
rithm AnonyMatch and its specification are given in Sect. 3. In Sect. 4, the algo-
rithm is proven to be self-stabilizing using a containment radius equal to 2 under
the distributed daemon. This is a generalization of the result from Dubois et al.
[8] to a more general daemon and of the result from Cohen et al.[3] to Byzantine
fault tolerance. In Sect. 5, AnonyMatch is proven to be self-stabilizing using a
containment radius equal to 1 under the central daemon, improving the result
from Dubois et al. [8] by reducing the containment radius. In Sect. 6, a coun-
terexample shows that AnonyMatch is not self-stabilizing using a containment
radius equal to 1 under the distributed daemon.

2 Model

The system consists of a set of processes, or nodes, where two adjacent nodes
can communicate with each other. The communication relation is represented
by an undirected graph G = (V,E), where |V | = n, V is the set of nodes, E
of edges. The set of neighbours of a node u is Nu. The maximum degree of the
graph is Δ. The network is anonymous: nodes are not assumed to have unique
identifiers. It is assumed that each node u may distinguish its neighbours by
locally labelling them; each neighbour v ∈ Nu will recognize itself if its label
is used in an internal variable of u. This is a classical assumption; for instance,
Hsu and Huang [14] make it implicitly; Goddard et al. [10] explicitly assume that
every two adjacent nodes share a private register containing an incorruptible link
number. Each node maintains a set of internal variables. The variables of a node
u make up the local state of that node. The product of all local states make up
the configuration of the system. We assume the state model, meaning each node
can read from the variables of its neighbours, and read and write to its own



Self-stabilization and Byzantine Tolerance for Maximal Matching 83

variables. The nodes of V execute the same distributed algorithm, which is a set
of rules denoted by name :: 〈guard〉 → 〈action〉. A guard is a predicate on the
variables of the node and of its neighbours. An action is a modification of the
variables of the node. A rule is enabled if its predicate is true. A node is enabled
if one of its rules is enabled. Starting from an arbitrary initial configuration, i.e.,
from arbitrary values for all internal variables, at each step, a subset S ⊆ V is
chosen, and the nodes of S are activated. The chosen nodes must be enabled.2

Then, all activated nodes simultaneously execute the action of the rule they
were activated for. We assume rule atomicity, meaning that a node can execute
a rule in an atomic step, i.e., without being interrupted by another node action.
An execution is a sequence of configurations γ0, γ1, ... such that for every pair
(γt, γt+1) of consecutive configurations, there exists a set St ⊆ V such that:

– all nodes in St are enabled in γt, and St �= ∅;
– ∀u ∈ V \ St, u has the same local state in γt and γt+1;
– ∀u ∈ St, the local state of u in γt+1 is the result of u’s local state in γt and

the execution of the rule u was enabled for.

A pair of consecutive configurations is called a transition. An execution is said
to be maximal if it is infinite, or if it is finite and no nodes are enabled in the
final configuration. The set S ⊆ V of nodes to be activated during a transition
is chosen by a virtual entity called the daemon. The daemon is central if it
guarantees that only one node will be activated at a time, and distributed in the
general case. In Sect. 4, the daemon is distributed, and in Sect. 5, it is central.
We use the weakest fairness property [4,16]:

Definition 1. The daemon is weakly fair if it guarantees that in any execution,
no node may be continuously enabled while never activated. It is strongly fair if
it guarantees that no node may be infinitely often enabled while never activated.
The daemon is unfair if it is not assumed to be fair.

A self-stabilizing algorithm ensures a legitimate, or desired, configuration
is eventually reached, from any arbitrary initial configuration and despite the
choices made by the daemon; and that the set of legitimate configurations is
closed, i.e., an execution starting in a legitimate configuration may not con-
tain any non-legitimate configuration. A silent self-stabilizing algorithm further
ensures that legitimate configurations are stable, i.e., in any legitimate configu-
ration, no node is enabled; and thus no node may be activated or change states.
The algorithm is to be executed in the presence of Byzantine nodes; that is,
there is a subset B ⊆ V of adversarial nodes that are not bound by the algo-
rithm. Byzantine nodes are always enabled. An activated Byzantine node is free
to update or not its internal variables. Without loss of generality, we assume
that the distributed daemon activates all Byzantine nodes in every transition.

2 Alternatively, the daemon could specify a set of pairs (enabled node, rule for which
that node is enabled). In our algorithm, all guards are mutually exclusive; that is,
at any time, a given node can be enabled for one rule at most. Therefore, that
distinction does not matter.



84 S. Kunne et al.

We make no assumption for the central daemon. Finally, because of the Byzan-
tine nodes, observe that all maximal executions are infinite. In the presence of
Byzantines, the concept of stability has to be relaxed: Byzantines can always be
activated, and their activation might result in a change of states of neighbouring
nodes. Thus, a definition of silence or stability should ignore the possible acti-
vation or change of states of nodes that are very close to the Byzantines. These
definitions will be given along with the definitions of legitimate configurations,
in Subsect. 3.1. The time complexity of an algorithm that assumes the fair dae-
mon is calculated in number of rounds. The concept of round was introduced by
Dolev et al. [6], and reworded by Cournier et al. [4] to take into account enabled
nodes. We quote the two following definitions from Cournier et al. [4]:

Definition 2. “We consider that a node u executes a disabling action in the
transition γ1 
→ γ2 if u (i) is enabled in γ1, (ii) does not execute any rule
in γ1 
→ γ2 and (iii) is not enabled in γ2. The disabling action represents the
situation where at least one neighbour of u changes its state in γ1 
→ γ2, and
this change effectively made the guard of all rules of u false in γ2. The definition
of round [6] captures the speed of the slowest node in any execution: Given an
execution E, the first round of E (let us call it R1) is the minimal prefix of E
containing the execution of one action (the execution of a rule or a disabling
action) of every enabled processor from the initial configuration. Let E ′ be the
suffix of E such that E = R1E ′. The second round of E is the first round of E ′,
and so on.”

Observe that Definition 2 is equivalent to Definition 3, which is simpler in
the sense that it does not refer back to the set of enabled nodes from the initial
configuration of the round.

Definition 3. Let E be an execution. A round is a sequence of consecutive steps
in E. The first round begins at the beginning of E; successive rounds begin imme-
diately after the previous round has ended. The current round ends once every
node u ∈ V satisfies at least one of the following two properties:

– u has been activated in at least one transition during the current round;
– u has been non-enabled in at least one configuration during the current round.

When studying a configuration γ, it is convenient to ignore what might have
happened before γ, and consider that γ is the initial configuration in an execution
E0. If the results of this study were then to be applied to an execution E1 in
which configuration γ appears, it should be noted that the rounds in E0 do not
necessarily align exactly with the rounds in E1. However, not all hope is lost:

Lemma 1. Let E1 be an execution, and γ a configuration appearing in E1. Let
E0 be the suffix of E1 starting with γ. Let R0 be the first round of E0, and R1 the
first round of E1 after γ. Then R0 ends before or at the same time as R1.

3 Maximal Matchings

The algorithm studied in this paper, called AnonyMatch, was introduced in [3].
Each node u ∈ V has an internal variable pu whose possible values are the



Self-stabilization and Byzantine Tolerance for Maximal Matching 85

elements of the set Nu ∪ {⊥}. Hence, the space complexity of this algorithm is
O(log n) per node. If two adjacent nodes u and v are such that pu = v ∧ pv = u,
then these two nodes are married. Algorithm AnonyMatch builds a matching:

Definition 4. Every configuration γ induces a matching M(γ):

M(γ) = {(u, v) ∈ E : pu = v ∧ pv = u}.

In any configuration, a given node u is in exactly one of the following six classes3:
if pu =⊥:

– undecided: ∃v ∈ Nu, pv = u;
– single : ∀v ∈ Nu, pv �= u ∧ ∃v ∈ Nu, pv =⊥;
– alone : ∀v ∈ Nu, pv /∈ {u,⊥};

if pu �=⊥:

– married : ppu
= u;

– proposing : ppu
=⊥;

– doomed : ppu
/∈ {u,⊥}.

Algorithm AnonyMatch has three rules. Their three guards are equivalent to
the three classes single, undecided and doomed, respectively. A node in one of the
other three classes is not enabled. It is well known that under the distributed
daemon, algorithms need some way of symmetry-breaking; AnonyMatch is a ran-
dom algorithm. The random element appears in the form of function choose(S),
which chooses an element uniformly at random in finite set S. A single node
u executes rule Seduction to try and initiate a marriage with one of its neigh-
bours. This attempt is successful if neighbour v later responds by executing rule
Marriage so that u and v become married, or fails if v updates its own variable
to show its preference for a third node w (either by executing rule Marriage, or
by coincidentally executing rule Seduction in the same transition as u). If the
attempt fails, node u then executes rule Abandonment to reset its variable. When
a node executes rule Marriage, it becomes married to one of its neighbours, and
this marriage is definitive unless one of the two nodes is a Byzantine.

Algorithm 1. (AnonyMatch)

Seduction :: (pu =⊥) ∧ (∀v ∈ Nu, pv �= u) ∧ (∃v ∈ Nu, pv =⊥)
→ if choose({0, 1}) = 1 then pu := choose({v ∈ Nu : pv =⊥})

Marriage :: (pu =⊥) ∧ (∃v ∈ Nu, pv = u) → pu := choose({v ∈ Nu : pv=u})
Abandonment :: (pu �=⊥) ∧ (ppu

/∈ {u,⊥}) → pu :=⊥

3 The names and definitions of the six classes are inspired by similar definitions in
[3,8], but were adapted to form a partition and to depend on the states of node u
and its direct neighbours’ internal variables only.



86 S. Kunne et al.

The Marriage rule is a particular instance of that rule in the original algorithm
[3]: in the original algorithm, the action does not specify how to choose which
node to get married to among all proposing nodes v ∈ Nu : pv = u. Because of
Byzantines, we need to guarantee that a node u will not be tricked into repeatedly
becoming married to a Byzantine neighbour while a non-Byzantine node is also
proposing to u. For this reason, we introduce a random choice in rule Marriage.
Note that a node u’s variable pu can take a value outside the set Nu ∪ {⊥} as
the result of a transient fault. In this situation, we decide that u is enabled for
rule Abandonment. Thus, at the end of the first round of execution, all variables
of non-Byzantine nodes hold a value inside their domain of definition. Similarly,
a Byzantine node b may choose a value outside Nb ∪ {⊥}. However, the proofs
below make no hypotheses on the possible states of Byzantine nodes, therefore
this has no impact on the correctness and time complexity of the algorithm.

3.1 Problem Specification

The aim of the algorithm is to reach a matching as large as possible. Because of
the presence of Byzantines, however, it is unreasonable to define the specification
as a maximal matching on V . Instead, we should define the specification as a
maximal matching on a subset S ⊆ V . This set should only contain nodes
sufficiently far from Byzantines. We use the following definitions from Dubois et
al. [8], where d(u,B) is the distance from node u to the closest Byzantine:

Definition 5.

∀k ≥ 0, Vk = {u ∈ V : d(u,B) > k};
V ′
k = Vk ∪ {u ∈ V \ Vk : ∃v ∈ Vk, pu = v ∧ pv = u}.

In words, Vk is the set of nodes at a distance at least k + 1 away from the
nearest Byzantine. In particular, V0 is the set of all non-Byzantine nodes; V0 \V1

is the set of non-Byzantine nodes neighbour to Byzantines; and a close attention
will be given to V2, the set of nodes at a distance at least 3 from the Byzantines.
V ′
k is the set of nodes that are either in Vk themselves, or married to a node in

Vk. Based on this definition, we give the specification of the problem:

Definition 6. k-Spec: Build a maximal matching on a superset of Vk.

Figure 1 depicts a network. An arrow starting from a node represents the
internal variable of that node. No arrow means the variable is set to ⊥. Two
arrows on the same edge form a marriage. Byzantine nodes are shown with a
square. The greyness of a non-Byzantine node and the thickness of its border
represent its distance to the nearest Byzantine: nodes x, y, v are at distance 1,
2, 3, respectively. Set Vk is the set of nodes at distance greater than k from the
Byzantines; for instance, nodes x, y, v are all in V0; y and v are both in V1; and
v is in V2. z is not in V1, but is in V ′

1 because it is married to node t ∈ V1.

Taking k = 2: In this paper, we prove that algorithm AnonyMatch is self-
stabilizing and silent for 2-Spec under the weakly-fair distributed daemon, using
the legitimate configuration and silence properties defined below.



Self-stabilization and Byzantine Tolerance for Maximal Matching 87

Fig. 1. Illustration of our notations Vk and V ′
k .

Definition 7. A configuration γ is k-legitimate if, for every node u ∈ Vk, either
u is married, or pu =⊥ and all of its neighbours v ∈ Nu are married. A k-
legitimate configuration induces a maximal matching on V ′

k.

Definition 8. A configuration γ is k-stable if no node in V ′
k is enabled in γ,

and in any execution starting in configuration γ, the state of every node in V ′
k

remains constant. A self-stabilizing algorithm is said to be k-silent if all legitimate
configurations are k-stable.

The configuration in Fig. 1 is not 2-legitimate. Indeed, node v is in V2, but
it is not married, and its neighbour u is not married either. The configuration
would become 2-legitimate if v became married to u (in which case all nodes in
V2 would be married, and u would be part of V ′

2), or if u became married to w
(in which case v would be alone, and all of its neighbours would be married).

Taking k = 1: Observe that the set V ′
2 is constant in any execution starting

from a 2-legitimate configuration. However, in an execution starting from a 1-
legitimate configuration, it is not true that set V ′

1 remains constant. Indeed, in
a k-legitimate configuration, if u ∈ Vk and pu =⊥, then all neighbours of u
are required to be married. When k = 2, these marriages are final, since they
only involve V0 nodes. However, when k = 1, these marriages can be destroyed
since they could involve Byzantines. Hence, the definition of 1-legitimacy is not
suited to prove that algorithm AnonyMatch is self-stabilizing for 1-Spec. We give
a relaxed definition for legitimate configurations. In this paper, we prove that
AnonyMatch is self-stabilizing for 1-Spec under the weakly-fair central daemon,
using this definition:

Definition 9. A configuration is k-weakly-legitimate if, for every node u ∈ Vk,
either u is married, or pu /∈ Vk and all of its neighbours v ∈ Nu∩Vk are married.
A k-weakly-legitimate configuration induces a maximal matching on V ′

k.

The main difference with the definition of k-legitimacy is that if a node u ∈
Vk is not married, only its neighbours in Vk are required to be married. The
configuration in Fig. 1 is not 1-weakly-legitimate; but it would be if nodes u and



88 S. Kunne et al.

v, or u and w, became married. Observe the difference with 1-legitimacy: node y is
not married, and has a non-married neighbour, x. However, x /∈ V1, and all nodes
in Ny ∩ V1 are married. The drawback is that k-weakly-legitimate configurations
are not likely to be stable, because set V ′

k can increase: if x becomes married to
y in the example, then x becomes part of V ′

1 . However, stability and silence in
the context of Byzantines are already a relaxed concept: they ignore the possible
activation and change of states of nodes close to the Byzantines. Relaxing the
concept slightly further is not an unreasonable stretch. Observe that for all
u ∈ V2, Nu ⊂ V1; the property “u is married, or pu /∈ V1 and ∀v ∈ Nu ∩ V1, v
is married” that u is required to satisfy for 1-weak-legitimacy is equivalent to
the property “u is married, or pu =⊥ and ∀v ∈ Nu, v is married” required for
2-legitimacy, provided u ∈ V2. Hence, 1-weakly-legitimacy is strictly stronger than
2-legitimacy. Moreover, a maximal matching on V ′

1 induces a maximal matching
on V ′

2 . In addition, although each 1-weakly-legitimate configuration might not be
stable in itself, the set of 1-weakly-legitimate configurations is closed:

Proposition 1. The set LC2 of 2-legitimate configurations is closed. Every 2-
legitimate configuration is 2-stable: if E is an execution starting in configuration
γ ∈ LC2, then set V ′

2 remains constant throughout E, and no node u ∈ V ′
2 is ever

enabled during E. The set wLC1 of 1-weakly-legitimate configurations is closed.

Finally, a given 1-weakly-legitimate configuration can only evolve into a “bet-
ter” 1-weakly-legitimate configuration, in the sense that set V ′

1 can only increase
during a transition.

3.2 From legitimacy to weakly-legitimacy

Dubois et al. [8] study the same problem, but limit themselves to the strongly-
fair central daemon. The legitimate configuration considered in their paper is
the same as 2-legitimate from Definition 7. They motivate the need to stay at
distance at least 3 away from Byzantines with a counterexample for which the
set of 1-legitimate configurations cannot be closed, regardless of the algorithm.

Fig. 2. Example of a 1-legitimate configuration given by Dubois et al. [8]. Node b is the
only Byzantine. V1 = {u2, u3, u4}.

The configuration in Fig. 2 is indeed 1-legitimate; every node in V1 is either
married (u3 and u4) or all of its neighbours are married (u2 is neighbour only
to u1 and u3, which are both married). However, no algorithm can ensure that
the next configuration is 1-legitimate: if the daemon activates only Byzantine
node b in the next transition, and node b sets its variable pb to ⊥, then node u1

becomes proposing instead of married; hence u2 is no longer neighbour only to
married nodes, and the next configuration is not 1-legitimate.



Self-stabilization and Byzantine Tolerance for Maximal Matching 89

That counterexample is specific to the definition of 1-legitimacy, and does not
exclude that for another, well-chosen, definition of legitimacy, an algorithm might
be self-stabilizing, with legitimate configurations inducing a maximal matching
on a superset of V1. In Fig. 2, although the configuration ceases to be 1-legitimate,
it does so because u1 ceases to be married; but u1 /∈ V ′

1 , and the configuration still
induces a maximal matching on V ′

1 after the activation of b. The only way u1 can
perturbate V ′

1 is to become married to u2. Then set V ′
1 would actually increase

with the addition of u1; the configuration would be 1-legitimate once again,
stable this time; and the induced matching on V ′

1 would be greater than it was
before. The argument against 1-legitimate configurations thus amounts to saying
that they are unstable because good situations are susceptible to become even
better. This is quite unsatisfying, which is why we gave the relaxed Definition 9
of k-weakly-legitimate configurations.

4 2-Spec under the Distributed Daemon

We give in this section a sketch of the proof of our main result: algorithm Anony-
Match is self-stabilizing for 2-Spec [Theorem 1]. The proof consists in the study
of a potential function, the edge set of marriages between two non-Byzantine
nodes in a configuration γ:

α(γ) = {(u, v) ∈ E : u ∈ V0 ∧ v ∈ V0 ∧ pu = v ∧ pv = u}.

Every node in V can contribute to at most one edge in α(γ), and each edge in
α(γ) requires two nodes: |α(γ)| ≤ n/2. Observe that for any transition γ1 
→ γ2,
α(γ1) ⊆ α(γ2). Indeed, married non-Byzantine nodes are never enabled, thus
can never break their marriage. We show that until a 2-legitimate configuration
is reached, α keeps increasing with some positive probability; this implies that
the algorithm eventually converges to a 2-legitimate configuration, with high
probability bound on the convergence time. The driving force behind α’s increase
are the non-doomed nodes in V2 (either undecided or single). In a first step,
we show that their activation directly or indirectly causes α to increase. To
understand the indirect link between activations of nodes in V2 and α, we study
a second edge set, called β(γ), and then give more attention to a specific kind of
undecided nodes, called dangerously-undecided. β(γ) is the set of edges proposing-
to-undecided between two non-Byzantine nodes:

β(γ) = {(u, v) ∈ E : u ∈ V0 ∧ v ∈ V0 ∧ pu = v ∧ pv =⊥}.
We show that if a non-doomed node u ∈ V2 is activated in a transition

γ1 
→ γ2, then with probability at least 1/4, either α increases or β(γ2) �= ∅:

Proposition 2. Let γ1 
→ γ2 be a transition in which a node u ∈ V2 is activated.

1. if u is undecided in γ1, then u executes rule Marriage, and α(γ1) � α(γ2);
2. if u is single in γ1, then u executes rule Seduction, and with probability at least

1/4, u seduces a neighbour v ∈ Nu in such a way that either α(γ1) � α(γ2),
or β(γ2) �= ∅;

3. otherwise, u is doomed in γ1.



90 S. Kunne et al.

The second case eventually leads to α increasing as well. To prove this, we
first give a definition: a dangerously-undecided node is a node that is undecided,
has been proposed to by a non-Byzantine neighbour, and is neighbour to a
Byzantine. Second, we show the two following propositions:

Proposition 3. Consider a round R starting in a configuration γ1 such that
β(γ1) �= ∅, and ending in a configuration γ2. Then either a dangerously-undecided
node is activated during R, or α(γ1) � α(γ2).

Indeed, β �= ∅ means there exist two neighbours u and v such that u is
proposing to v, and v is undecided. When v executes rule Marriage, if v is not
dangerously-undecided, then its marriage is added to α.

Proposition 4. Let E be an execution. The number ndanger of activations of
dangerously-undecided nodes in E is finite with probability 1, and ∀0 < p < 1,
ndanger = O(max(Δn,−Δ2 log p)) with probability at least 1 − p.

Whenever a dangerously-undecided node u is activated, it becomes married to
a non-Byzantine with probability at least 1/Δ. Such a marriage is impossible to
break, and in particular u can never be dangerously-undecided again. The number
of distinct nodes that can be dangerously-undecided is of course bounded by n.
The exact high probability bound is derived using Hoeffding’s inequality.

We still need to take care of the third case of Proposition 2: doomed nodes
in V2. Nodes that are already doomed in the initial configuration are not an
issue, since the fairness of the daemon ensures that they either execute rule
Abandonment, or cease being doomed for another reason, within one round. We
prove in Lemma 2 that if a non-doomed node u ∈ V2 becomes doomed during
a transition, then α increases or β becomes nonempty with probability at least
1/2, or a dangerously-undecided node is activated, during that transition. Indeed,
for a node u ∈ V2 to become doomed, one of its neighbours v ∈ Nu needs to
execute rule Marriage or Seduction and update its variable pv to a neighbour
w �= u, with consequences on α and β depending on the action of w.

Lemma 2. Consider a transition γ1 
→ γ2, and a node u ∈ V2 which is doomed
in γ2 but not doomed in γ1. Then one of the following three scenarii happens:
– a dangerously-undecided node is activated in γ1 
→ γ2;
– α(γ1) � α(γ2);
– β(γ2) �= ∅ with probability at least 1/2.

So far, we have proven that activating a node in V2 eventually gets the system
closer to a 2-legitimate configuration, either by increasing the potential function,
or by depleting the reserve of potentially dangerously-undecided nodes. It remains
to be shown that nodes in V2 are, in fact, activated.

Lemma 3. Consider a sequence S of four consecutive rounds R1,R2,R3,R4,
ending with configuration γ. Assume γ is not 2-legitimate. Then at least one of
the three following scenarii happens:

– a node in V2 is activated during R1,R2 or R3;



Self-stabilization and Byzantine Tolerance for Maximal Matching 91

– a dangerously-undecided node is activated during R1, R2, or R3;
– α increases during S with probability at least 1/(2Δ).

Proof. Assume that no node in V2 is activated during R1,R2 or R3. Then, by
definition of a round, every node u ∈ V2 has been non-enabled in at least one
configuration γu in R1; i.e., has been one of married, proposing, or alone. Note
that since configuration γ is not 2-legitimate, no previous configuration can be
2-legitimate, according to the contrapositive of Proposition 1. All V2 nodes which
are married will remain so. Since γ is not 2-legitimate, at least one node in V2 is not
married. If a node u ∈ V2 is proposing in a configuration in R1, then according
to Proposition 3 and Lemma 1, either α increases, or a dangerously-undecided
node is activated, during R1 or R2. Assume now that there is no proposing V2

node in any configuration in R1. Therefore, at least one node in V2 is alone in
at least a configuration in R1. Furthermore, since all configurations in R1 are
non-2-legitimate, there exists a node u ∈ V2 and a configuration γu in R1, such
that u is alone and has a non-married neighbour v0 ∈ Nu ⊂ V1 in configuration
γu. Since u is alone, pv0 = v1 /∈ {u,⊥}. Consider the chain pv0 = v1, pv1 = v2,
pv2 = v3, ..., pvk−1 = vk, where vk is the first node in the chain whose variable
pvk

is either ⊥, a Byzantine, or a previous node in the chain.
Case 1. If pvk

=⊥, since vk ∈ V0 by definition, Proposition 3 can be applied:
either a dangerously-undecided node is activated, or α increases, during R1 or R2.

Case 2. If pvk
is a Byzantine, then all nodes v0, ..., vk−1 will remain continu-

ously enabled for rule Abandonment, until either one of them executes Abandon-
ment, or vk executes Abandonment. This will happen within one round. Among
the one or more nodes in the chain that execute Abandonment first, consider the
node vi which is closest in the chain to u. There are two cases: i > 0, and i = 0.

Case 2.1. If i > 0, then the situation becomes that of Case 1 (after a delay of
up to one round). Either a dangerously-undecided node is activated, or α increases,
during R1,R2, or R3.

Case 2.2. If i = 0, then u and v0 are both single or undecided, and in V1. In
particular, none of them is alone, since they are neighbours. They will remain
continuously single or undecided, until one of them is activated during R1,R2 or
R3. In the best case, u executes rule Marriage or Seduction, or v0 executes rule
Marriage. In the worst case, v0 executes rule Seduction; then v0 has probability at
least 1/(2Δ) of seducing u. If that happens, u will remain continuously enabled
for rule Marriage, until it is activated during R1,R2,R3 or R4, and α increases.

Case 3. If pvk
is a previous node in the chain, then all nodes v0, ..., vk are

continuously enabled for rule Abandonment, and at least one of them will execute
it within one round: the situation is exactly the same as Case 2.

Proposition 2 and Lemma 2 combine to refine Lemma 3:

Proposition 5. Consider a sequence S of 6 consecutive rounds R1,R2,R3,R4,
R5,R6. Assume R6 ends in a non-2-legitimate configuration. Then at least one
of the following two scenarii happens:
– a dangerously-undecided node is activated during S;
– α increases during S with probability at least 1/(2Δ).



92 S. Kunne et al.

Finally, we apply Hoeffding’s inequality to get Theorem 1. Then, taking p =
1/n in this theorem, we obtain Corollary 1.

Theorem 1. Under the weakly-fair distributed daemon, algorithm AnonyMatch
is self-stabilizing for 2-Spec: in any execution, a 2-legitimate configuration is
eventually reached with probability 1; this takes less than 12Δn rounds in expec-
tation; furthermore, for any 0 < p < 1, a 2-legitimate configuration is reached
within 24max(Δn,−Δ2 log p) rounds with probability at least (1 − p).

Corollary 1. Under the weakly-fair distributed daemon, algorithm AnonyMatch
is self-stabilizing for 2-Spec, with time complexity O(max(Δn,Δ2 log n)) rounds
with probability 1 − 1

n .

5 1-Spec Under the Central Daemon

The structure of the proof that AnonyMatch is self-stabilising for 1-Spec under
the central daemon is very similar to that of 2-Spec under the distributed dae-
mon. However, the study of what happens in a given transition is different:
previously, things worked out well because the nodes involved were far from the
Byzantines. In what follows, the nodes which are required to become married
are closer to the Byzantines, but only one node can be activated at a time. In
particular, the only way for a node u ∈ V1 to become doomed is if a neighbour
v ∈ V0 executes rule Marriage; immediately increasing α if v is not dangerously-
undecided. This time, the lead role is played by nodes in V1. We adapt the results
of Propositions 2 and 5 to take advantage of the central daemon. Note that the
bound on the number of activations of dangerously-undecided nodes (Proposi-
tion 4) still applies under the central daemon, which is a specific instance of the
distributed daemon. Finally, we apply Hoeffding’s inequality to get Theorem 2.
Then, taking p = 1/n in this theorem, we obtain Corollary 2.

Theorem 2. Under the weakly-fair central daemon, algorithm AnonyMatch is
self-stabilising for 1-Spec: in any execution, a 1-weakly-legitimate configuration
is eventually reached with probability 1; this takes less than 6n(Δ + 1) rounds in
expectation; furthermore, for any 0 < p < 1, a 1-weakly-legitimate configuration
is reached within 24max

(
Δn,−Δ2 log p

)
rounds of execution with probability at

least (1 − p).

Corollary 2. Under the weakly-fair central daemon, algorithm AnonyMatch is
self-stabilising for 1-Spec, with time complexity O(max

(
Δn,Δ2 log n

)
) rounds

with probability 1 − 1
n .

6 About 1-Spec and the Distributed Daemon

According to previous sections, algorithm AnonyMatch ensures that a maximal
matching is found on a superset of V2 under the distributed daemon, and on a
superset of V1 under the more forgiving central daemon. A natural question to



Self-stabilization and Byzantine Tolerance for Maximal Matching 93

ask is whether a maximal matching can always be found by AnonyMatch on a
superset of V1 under the distributed daemon. Unfortunately, the answer is no,
even with just one Byzantine node in the network. Consider the configuration
in Fig. 3(a).

Fig. 3. Node b is a Byzantine node. V1 = {u1, u2}.

Whatever the definition of legitimacy, if the algorithm is self-stabilizing for
1-Spec, the configuration should eventually induce a maximal matching on a
superset of V1, i.e., a set containing u1 and u2. Unfortunately, the daemon and
the Byzantine node have a colluding strategy to prevent u1 and u2 from ever
proposing to one another, and to prevent v1 and v2 from ever accepting u1

and u2’s proposals. Consider the following execution of algorithm AnonyMatch,
which is consistent with the strongly-fair distributed daemon (and thus also with
any less fair distributed daemon). In the first step, the daemon activates v1
(Abandonment), and u1 (Abandonment), while b sets pb := v1, leading to Fig. 3(b).
In the second step, the daemon activates v1 (Marriage), and u1 (Seduction), while
b sets pb := w /∈ {v1,⊥}. Node u1 randomly decides whether to set pu1 :=⊥,
leading to Fig. 3(c’), or pu1 := v1, leading to Fig. 3(c”). If u1 chooses pu1 :=⊥,
the daemon activates v1 (Abandonment), while b sets pb := v1, leading back
to Fig. 3(b). Since u1 has probability 1/2 of choosing pu1 := v1 every time it
executes rule Seduction, this cycle will eventually be broken, leading to Fig. 3(c”).
The configuration is now the same as the initial configuration. The daemon is
assumed to be fair, so nodes v2 and u2 need to be activated before the execution
can be called an infinite loop. However, the configuration is obviously symmetric,
so the daemon and the Byzantine node can apply the strategy of steps 1 and
2 to v2 and u2, eventually leading back to the initial configuration. Algorithm
AnonyMatch is indeed stuck in a infinite loop, and there will be no maximal
matching on a set containing V1.

References

1. Asada, Y., Inoue, M.: An efficient silent self-stabilizing algorithm for 1-maximal
matching in anonymous networks. In: Rahman, M.S., Tomita, E. (eds.) WALCOM
2015. LNCS, vol. 8973, pp. 187–198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15612-5 17

2. Berenbrink, P., Friedetzky, T., Martin, R.A.: On the stability of dynamic diffusion
load balancing. Algorithmica 50(3), 329–350 (2008)

https://doi.org/10.1007/978-3-319-15612-5_17
https://doi.org/10.1007/978-3-319-15612-5_17


94 S. Kunne et al.

3. Cohen, J., Lefèvre, J., Maâmra, K., Pilard, L., Sohier, D.: A self-stabilizing algo-
rithm for maximal matching in anonymous networks. Parallel Process. Lett. 26(4),
1–17 (2016). https://doi.org/10.1142/S012962641650016X

4. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless compu-
tations. In: 12th International Conference on Parallel and Distributed Systems,
ICPADS 2006, Minneapolis, Minnesota, USA, 12–15 July 2006, pp. 39–48 (2006).
https://doi.org/10.1109/ICPADS.2006.100

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

6. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997). https://doi.org/10.1109/
71.588622

7. Dubois, S., Potop-Butucaru, M., Nesterenko, M., Tixeuil, S.: Self-stabilizing
Byzantine asynchronous unison. J. Parallel Distrib. Comput. 72(7), 917–923
(2012). https://doi.org/10.1016/j.jpdc.2012.04.001

8. Dubois, S., Tixeuil, S., Zhu, N.: The Byzantine brides problem. In: Kranakis, E.,
Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 107–118. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0 13

9. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings. J.
Comput. Syst. Sci. 53(3), 357–370 (1996)

10. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm
for 1-maximal matching in trees. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications and Conference
on Real-Time Computing Systems and Applications, PDPTA, vol. 2, pp. 797–803
(2006)

11. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput.
70(4), 406–415 (2010)

12. Han, Z., Gu, Y., Saad, W.: Matching Theory for Wireless Networks. WN. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56252-0

13. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

14. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

15. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon for arbitrary networks. In: Spirakis,
P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69084-1 7

16. Karaata, M.H.: Self-stabilizing strong fairness under weak fairness. IEEE Trans.
Parallel Distrib. Syst. 12(4), 337–345 (2001). https://doi.org/10.1109/71.920585

17. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

18. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theor. Comput. Sci. (TCS) 410(14), 1336–1345 (2009)

19. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded Byzantine faults. Int. J. Princ. Appl. Inf. Sci. Technol. (PAIST) 1(1),
1–13 (2007)

20. Nesterenko, M., Arora, A.: Tolerance to unbounded Byzantine faults. In: Proceed-
ings 21st IEEE Symposium on Reliable Distributed Systems 2002, pp. 22–29. IEEE
(2002)

https://doi.org/10.1142/S012962641650016X
https://doi.org/10.1109/ICPADS.2006.100
https://doi.org/10.1109/71.588622
https://doi.org/10.1109/71.588622
https://doi.org/10.1016/j.jpdc.2012.04.001
https://doi.org/10.1007/978-3-642-30347-0_13
https://doi.org/10.1007/978-3-319-56252-0
https://doi.org/10.1007/978-3-319-69084-1_7
https://doi.org/10.1109/71.920585


Self-stabilization and Byzantine Tolerance for Maximal Matching 95

21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to Byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005). https://doi.org/
10.1007/11516798 21

22. Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary
network topologies. In: 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 341–350. IEEE (2012)

23. Turau, V., Hauck, B.: A new analysis of a self-stabilizing maximum weight match-
ing algorithm with approximation ratio 2. Theor. Comput. Sci. (TCS) 412(40),
5527–5540 (2011)

https://doi.org/10.1007/11516798_21
https://doi.org/10.1007/11516798_21


Exploration of Finite 2D Square Grid
by a Metamorphic Robotic System

Keisuke Doi, Yukiko Yamauchi(B), Shuji Kijima, and Masafumi Yamashita

Graduate School of Information Science and Electrical Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

doi@tcslab.csce.kyushu-u.ac.jp,

{yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

Abstract. We consider exploration of a finite 2D square grid by a meta-
morphic robotic system consisting of anonymous oblivious modules. The
number of possible shapes of the metamorphic robotic system grows as
the number of modules increases. The shapes of the system serve as its
memory and show its functionality. We consider the effect of global com-
pass on the minimum number of modules for exploration of a finite 2D
square grid. We show that if the modules agree on the directions (north,
south, east, and west), three modules are necessary and sufficient for
exploration from an arbitrary initial configuration, otherwise five mod-
ules are necessary and sufficient for limited initial configurations.

Keywords: Metamorphic robotic system · Autonomous modules
Exploration

1 Introduction

Distributed systems consisting of mobile computing entities, often called robots,
agents, or particles have gathered much attention in these twenty years as compu-
tational models for mobile networks, biological systems, chemical reactions, etc.
Each computing entity is often assumed to have very weak capabilities, i.e., it is
anonymous and oblivious (memory-less), and does not have any communication
capability or any access to the global coordinate system. Most existing papers
focus on shape formation that requires mobile computing entities to form a spec-
ified shape. Suzuki and Yamashita investigated the pattern formation problem
by anonymous autonomous mobile robots, each of which moves in continuous 2D
space by sensing the positions of other robots and computing its next position
with a common (deterministic) algorithm. They pointed out that the pattern
formation problem is essentially related to the agreement problem because once
the robots agree on a common coordinate system, they can form an arbitrary
pattern [17]. Derakhshandeh et al. first presented a shape formation algorithm

This work is partially supported by JST SICORP and JSPS KAKENHI Grant Num-
ber JP17K19982.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 96–110, 2018.
https://doi.org/10.1007/978-3-030-03232-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_7&domain=pdf


Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 97

for the amoebot model [6]. The system consists of programmable particles mov-
ing in the 2D triangular grid by repeating an extension and a contraction. Each
vertex of a triangular grid is occupied by at most one particle, which is equipped
with constant-size memory and communication capability with other particles
in its neighboring vertex. Their algorithm is based on a randomized leader elec-
tion, which allows formation of an arbitrary shape. Dumitrescu et al. considered
the metamorphic robotic system model, which consists of autonomous modules
moving in the 2D square grid [10,11]. Each module can perform two types of
local movements, called a rotation and a sliding, with maintaining their connec-
tivity. They showed a canonical shape, to which any shape can be transformed.
The reversibility of movements guarantees transformation between any pair of
shapes via the canonical shape. The goal of all these studies is the structure of
shapes. Reachability among shapes decomposes the system’s configuration space
into subspaces, which indicate the degree of global agreement and coordination,
in other words, distributed computing ability of the system. However, when we
take a closer look at existing shape formation algorithms, we find that inter-
mediate shapes are used to guarantee the progress of distributed coordination.
That is, geometric configuration of the system is used as global memory though
each computing entity is memory-less or equipped with constant-size memory.

In this paper, we investigate the functionality of shapes of a distributed
system consisting of mobile computing entities. We focus on the exploration
problem in the metamorphic robotic system model. The problem requires the
system to find a target put in one cell of a given field, which is a finite rectangular
subspace of the 2D square grid. Clearly, as the number of modules increases,
the number of possible shapes increases and the system can memorize more
information with its shape. We present the minimum number of modules to
accomplish exploration and investigate the effect of the global compass, which
allows the modules to agree on north, south, east, and west.

Our Results. In this paper, we consider the exploration problem by a metamor-
phic robotic system. Although shape formation [10,16] and locomotion [2,11] by
the metamorphic robotic system have been discussed, to the best of our knowl-
edge, this is the first time the exploration problem is discussed for the model.
We demonstrate the effect of the global compass on the minimum number of
modules for exploration. We first show when the modules are equipped with the
global compass, three modules are necessary and sufficient for exploration from
an arbitrary initial configuration. Then, we show that when the modules lack
the global compass, five modules are necessary and sufficient for exploration;
however, there are initial shapes from which the metamorphic robotic system
cannot accomplish exploration.

Related Works. Computational power of a distributed system consisting of
mobile computing entities with very weak capabilities is currently one of the
most active topics in distributed computing theory. The quest also reveals the
minimum capabilities to accomplish a given task. The results serve as a design
guideline for robotic systems with cheap hardware and are expected to give a
clue to understanding complex behavior of natural systems. There are a variety



98 K. Doi et al.

of indicator tasks such as gathering, shape formation, leader election, computing
a function, exploration, and decomposition. Regarding the autonomous mobile
robot model, formable patterns have discussed by considering various aspects,
such as obliviousness [17], asynchrony [14,18], limited visibility [20], and ran-
domness [21]. These papers showed that symmetry of initial positions of the
robots determines formable shapes, i.e., obliviousness and asynchrony generally
have no effect. Randomness allows probabilistic symmetry breaking and realizes
universal pattern formation. Yamauchi et al. introduced the plane formation
problem in 3D space and used the rotation group to measure the symmetry of
the robots [19].

Distributed shape formation in the amoebot model is investigated for shapes
consisting of triangles [6] and arbitrary shapes [9]. Di Luna et al. considered
the limit of deterministic leader election and characterized formable shapes by
the symmetry of an initial configuration [9]. Derakhshandeh et al. proposed the
universal coating problem of a given obstacle [5].

Shape formation in the metamorphic robotic system model is investigated
in a distributed setting and in a centralized setting. Dumitrescu et al. consid-
ered distributed transformability of an initial (horizontally) convex shape to a
line (also called a chain) shape with the global compass [10]. Dumitrescu et al.
considered locomotion of a metamorphic robotic system and showed the shape
that realizes fastest locomotion [11]. While these two papers assume unlimited
visibility, Chen et al. considered locomotion with limited visibility [2]. When the
movement is limited to rotations, there are pairs of shapes that are not trans-
formable. Michail et al. considered the complexity of deciding transformability
of a pair of shapes only by rotations [16].

Michail and Spirakis proposed the network constructor model that considers
finite-state agents under passive movement [15]. The communication model is
based on the population protocol model [1], while the agents can construct an
edge when they interact. They discussed distributed transformation of shapes in
the network constructor model.

All these papers consider reachability and classification of shapes. Little is
known about the functionality of shapes. Das et al. investigated the formation
of a sequence of patterns, which also serves as finite memory formed by oblivi-
ous mobile robots [3]. Simulating a Turing machine by a line shape of comput-
ing entities has been separately discussed for the metamorphic robotic system
model [10], the network constructor model [15], and the amoebot model [9]. Di
Luna et al. showed a constant number of oblivious mobile robots can simulate a
robot with memory [8]. In this paper, we focus on the fact that geometric con-
figuration of a metamorphic robotic system functions as memory and processor,
and we investigate how a small number of oblivious modules accomplish explo-
ration of a given field. Note that exploration by a single metamorphic robotic
system is different from exploration by ants [12], mobile agents [4], or mobile
robots [7,13] because a metamorphic robotic system cannot separate into sev-
eral small fragments.



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 99

2 Preliminary

We consider the rectangular metamorphic robotic system introduced in [2,10,11,
16]. Consider a two dimensional (2D) square grid where each square cell ci,j is
labeled by the underlying x-y coordinate system. We consider a finite subspace of
width w and height h and call it the field. Without loss of generality, we assume
that c0,0 is the southwesternmost cell and cw−1,h−1 is the northeasternmost
cell (Fig. 1). Each cell ci,j has eight adjacent cells; (E)ast ci+1,j , (N)orth(E)ast
ci+1,j+1, (N)orth ci,j+1, (N)orth(W)est ci−1,j+1, (W)est ci−1,j , (S)outh(W)est
ci−1,j−1, (S)outh ci,j−1, and (S)outh(E)ast ci+1,j−1. The four cells N, S, E, and
W are said to be side-adjacent to ci,j . An infinite sequence of cells with the same
x coordinate is called a column and an infinite sequence of cells with the same y
coordinate is called a row. The field is surrounded by walls, the (−1)th column
(the west wall), the wth column (the east wall), the (−1)th row (the south wall),
and the hth row (the north wall). These cell labels are used just for description
and there is no way to distinguish the cells.

A metamorphic robotic system R consists of n anonymous modules, each of
which occupies a distinct cell in the grid at discrete time steps t = 0, 1, 2, . . ..
The configuration Ct of R at time t is the set of cells occupied by the modules
at time t. An execution is an evolution of configurations C0, C1, C2, . . ..

The evolution is generated by movements of modules. Let Mt be the set of
modules that move at time t. We call the modules in Bt = Ct \ Mt a backbone,
that does not move at time t. There are two types of movements, a rotation and
a sliding, guided by backbone modules (Fig. 2). A rotation of a moving module
m side-adjacent to a backbone module b is a rotation around b by an angle of
π/2 either clockwise or counter-clockwise. A 1-sliding of a moving module m is a
sliding to a side-adjacent cell. In this case, there must be two backbone modules;
one is b1 that is side-adjacent to m and the other is b2 that is side-adjacent to
b1 and the target cell of m. A k-sliding (k ≥ 2, 3, . . .) is defined in the same way;
however, it requires (k + 1) backbone modules along the track.1 In a rotation
and a sliding, the cells that m passes must not contain any module.

The connectivity of configuration Ct is represented by a connectivity graph
Gt = (Ct, Et). The edge set Et contains an edge (c, c′) for c, c′ ∈ Ct if and only
if cells c and c′ are side-adjacent. When Gt is connected, we say Ct is connected.
Any execution C0, C1, C2, . . . must satisfy the following three conditions:

1. Connectivity: For any t = 0, 1, 2, . . ., Ct is connected.
2. Single backbone: For any t = 0, 1, 2 . . ., Bt is connected.
3. No interference: For any t = 0, 1, 2, . . ., the trajectories of two moving modules

m and m′ never overlap.

The modules are uniform, i.e, they are anonymous and execute a common
deterministic distributed algorithm. At each time step, each module observes
the modules in its neighborhood and decides its movement. Thus, the modules

1 The original metamorphic robotic system model in [2,10,11,16] allows rotations and
1-slidings. We extended the original model by allowing k-slidings for k = 2, 3, . . ..



100 K. Doi et al.

c0,0

ci,j

0

i

j

h

w0

N

S

W E

NENW

SW SE

Fig. 1. A field and walls.

mmm

b b1 b1b2 b2 b3

Fig. 2. A rotation, a 1-sliding, and a 2-sliding

Fig. 3. Symmetry Fig. 4. A deadlock

are synchronous. A cell ci′,j′ is a k-neighborhood of cell ci,j if |i′ − i| ≤ k and
|j′ − j| ≤ k. A distributed algorithm of neighborhood size k is a total function
that maps a (2k + 1) × (2k + 1) square grid to one cell. Thus, the modules are
oblivious. We assume that k is constant regarding w and h, and a module can
observe whether each cell in its k-neighborhood is occupied by a module or a
target and whether the cell is a part of the walls or not. When the modules are
equipped with the global compass, they share common north, south, east, and
west directions. When the modules are not equipped with the global compass,
they do not know directions and their observations may be inconsistent. However,
we assume that the modules agree on the clockwise direction, i.e., they share a
common handedness.

The state of R in Ct is the local shape of R. We often describe a state of n
modules as Sn. If the modules are equipped with global compass, the state of R
contains global directions; otherwise, it does not contain any direction because
the modules cannot recognize any rotation on their state.

The exploration problem requires the metamorphic robotic system to find
the target put in one cell in a given field without any a priori information (i.e.,
the size of the field and the target cell). We say that the metamorphic robotic
system finds the target from a given initial configuration C0, if, in any execution
from C0, some module reaches the cell with the target and the metamorphic
robotic system stops thereafter. We say that the metamorphic robotic system
accomplishes exploration if, for any given field and a target, it can find the target
from any initial configuration.

When the modules are equipped with the global compass, the execution
is uniquely determined by C0 because the modules are synchronous. On the
other hand, when the modules have no access to the global compass, there exist
multiple executions from C0 depending on the local compass of each module.
For example, if one endpoint module in Fig. 3 performs a rotation, the other
endpoint module may also perform a rotation when they have symmetric local
compasses. More precisely, due to symmetry, the two modules cannot distinguish



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 101

themselves. Another example is shown in Fig. 4. In this case, the only possible
movements are rotations; however, the four modules cannot move because if one
of them moves, then others may also move. Then, the backbone requirement
is not satisfied. Consequently, without global compass, exploration is generally
impossible from an arbitrary initial configuration.

3 Exploration with Global Compass

In this section, we consider the metamorphic robotic system consisting of mod-
ules with the global compass. We show the following theorem.

Theorem 1. Three modules are necessary and sufficient for a metamorphic
robotic system with the global compass to accomplish exploration.

The necessity is shown by the impossibility with less than three modules.
Due to space limitation, we omit the proof.

To show the sufficiency, we present an exploration algorithm. Our basic
method is to make the metamorphic robotic system R visit all cells of the field,
i.e., R moves to the south with sweeping each row. However, since the initial con-
figuration is arbitrary, when it reaches the southernmost (0th) row, it moves to
the northernmost ((w − 1)st) row along either the east wall or the west wall and
it explores unvisited cells. Figure 5 shows examples of “tracks” of R. Depend-
ing on the number of rows and an initial configuration, R moves along one of
such tracks. We demonstrate the progress of exploration using a reference point
of R defined by its spine and frontier that will be defined later. The tracks in
Fig. 5 show the tracks of reference points. Note that the reference point does
not refer to some specific module. Rather, different modules serve as reference
points during an evolution of configurations.

The proposed algorithm consists of the following basic moves;

– A move to the east and a move to the west.
– A turn on the east wall and a turn on the west wall.
– A turn on the southwest corner and a turn on the southeast corner.
– A move to the north wall along the east wall and that along the west wall.
– A turn on the northeast corner and a turn on the northwest corner.

Figure 6 shows all possible states of R. We assume that each module can observe
the cells in its 2-neighborhood. When one module of R reaches a cell with the
target, R stops. More precisely, because of the sufficient visibility, each module
can detect the target and never perform any movement thereafter.

Moves along a Row. Figures 7 and 8 show the move to the east and the
move to the west, respectively. By repeating one of the two moves, R moves
to one direction. Each module can observe the state of R and the two sets
of configurations used in the two moves are disjoint. Thus, the modules can
consistently agree on the direction to which R is moving.



102 K. Doi et al.

Fig. 5. Example of tracks. Each track starts from the black circle.

In the first state of the unit move to the east, the spine is the ith row and
the frontier is the jth column (Fig. 7). At the end of a unit move, the frontier
reaches (j + 1)st column. During the move, the modules do not care whether
(i + 1)st row, (i − 2)nd row and (j − 3)rd column are walls or not.

In the first state of the unit move to the west, the spine is the ith row and the
frontier is the jth column (Fig. 8). The modules do not care whether (i − 2)nd
row, (i + 1)st row and (j + 1)st column are walls or not.

Turns on the Walls. Figures 9 and 10 show a turn on the east wall and a turn
on the west wall, respectively. On the east wall and the west wall, R changes its
spine and starts a new move to the west and to the east, respectively.

Turns on the South Corners and Moves to the North Wall. By repeating
the above four moves, R eventually reaches the south wall. Then, it turns and
moves along either the east wall or the west wall until it reaches the north
wall. Figures 11 and 12 show these turns. Figures 13 and 14 show the moves to
the north wall. When R moves along the east wall or the west wall, its spine
is the (w − 1)th column and the 0th column, respectively. The frontier is the
northernmost module in both cases. By repeating one of the two moves, the
reference point of R moves to the north.

Turns on the North Corners. By repeating either the moves in Fig. 13 or
Fig. 14, R eventually reaches the north wall. Then, it turns in the corner (Figs. 15
and 16) and starts moving along a row with the moves shown in Figs. 7 and 8.

We finally add exceptional movements. When R is in the center of the field,
all states appear in the above moves and any move can be executed. However,
when R is on a wall or in a corner, moves for some states are not defined or
impossible. Figure 17 shows additional movements to avoid deadlocks in these
states.

The reference point of R visits all cells in each row except the southernmost
row and the northern most row. The cells of the southernmost row are visited
by the modules under the spine when R moves along the first row. The cells of
the northernmost row are visited by the modules over the spine when R moves
along the (h − 2)nd row. Thus, we have Theorem1.



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 103

S3
1 S3

2 S3
3 S3

4 S3
5 S3

6

Fig. 6. States of R consisting of three modules

i

j j + 1

Fig. 7. Move to the east (S3
1 → S3

2 → S3
3 → S3

1)

i

j

j − 1

Fig. 8. Move to the west (S3
4 → S3

5 → S3
6 → S3

4)

i

i− 1

Fig. 9. Turn on the east wall (S3
1 → S3

2 → S3
6 → S3

1)

i

i− 1

Fig. 10. Turn on the west wall (S3
4 → S3

3 → S3
5 → S3

1)

Fig. 11. Turn on the southeast corner (S3
2 → S3

3 → S3
4)



104 K. Doi et al.

Fig. 12. Turn on the southwest corner (S3
4 → S3

3 → S3
2 → S3

4)

i
i+ 1

Fig. 13. Move to the northeast corner (S3
4 → S3

5 → S3
3 → S3

4)

i
i+ 1

Fig. 14. Move to the northwest corner (S3
4 → S3

6 → S3
2 → S3

4)

Fig. 15. Turn on the northeast corner (S3
4 → S3

5 → S3
6 → S3

4)

Fig. 16. Turn on the northwest corner (S3
4 → S3

6 → S3
2 → S3

3 → S3
1)

S3
1 to S3

2 S3
5 to S3

3 S3
6 to S3

5 S3
5 to S3

3 S3
3 to S3

5

Fig. 17. Exceptions. A gray column is either a wall or non-wall cells.



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 105

4 Exploration Without Global Compass

In this section, we consider the metamorphic robotic system consisting of mod-
ules without the global compass. We show the following theorem.

Theorem 2. Five modules are necessary and sufficient for a metamorphic
robotic system without the global compass to accomplish exploration from allowed
initial configurations.

When the metamorphic robotic system R consists of five modules, there is
a state from which no module can move. Additionally, there are three states
from which R may transit to the deadlock state. These three states also form
a cycle. More precisely, we consider the transition diagram of the four states in
Fig. 18, where each arc represents the fact that there are possible movements that
translates its starting state to its endpoint state. In S5

1 , no module can move.
The three states S5

2 , S5
3 , and S5

4 form a cycle and from these states, R can transit
to themselves and S5

1 . For example, in S5
4 , possible movements are rotations of

the two endpoint modules. However, when one of them moves, the other may
also move. Then, possible next states are S5

2 and S5
3 . In the same manner, when

two endpoint modules move in S5
2 and S5

3 , possible next states are S5
1 (by 1-

slidings), S5
2 (by 2-slidings), S5

3 (by 2-slidings), and S5
4 (by rotations). During

these transitions, R cannot move forward to any direction. Hence, from these
states, R cannot accomplish exploration and these states cannot be used in an
exploration algorithm.

The necessity of Theorem 2 is shown by the impossibility with less than five
modules. Due to space limitation, we omit the proof.

To show the sufficiency, we present an exploration algorithm. In the following,
we consider initial configurations where the state of R is none of the four states.
Figure 19 shows all the other possible states of R. Note that since the modules
lack the global compass, they cannot recognize a rotation of a state. We assume
that each module can observe the cells in its 4-neighborhood. In addition, we
use 2-slidings and 3-slidings, which are not used in Sect. 3.

We adopt the same method as Sect. 3, i.e., R visits every cell in the field.
However, the modules cannot use the global compass, and even with five modules
it is not easy to realize all the ten moves in Sect. 3. Instead, R uses a single track
that checks the rows from north to south with visiting each cell of a row from
west to east (Fig. 20). R rotates the track by π/2 at the southwest corner in
order to visit all cells. It repeats the moves until it finds the target. We explain
the basic case where the directions are identical to the global compass.

S5
1 S5

2 S5
3 S5

4

Fig. 18. Forbidden states.



106 K. Doi et al.

S5
5 S5

6 S5
7 S5

8

S5
9 S5

10 S5
11 S5

12

S5
13 S5

14 S5
15 S5

16

S5
17 S5

18

Fig. 19. States of R consisting of five modules

Fig. 20. Track of the metamorphic robotic system consisting of five modules.

i

j j + 1

Fig. 21. Move to the east (S5
5 → S5

6 → S5
5)



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 107

i

j

j − 1

Fig. 22. Move to the west (S5
7 → S5

8 → S5
9 → S5

10 → S5
7)

i

i

Fig. 23. Turn on the east wall (S5
5 → S5

6 → S5
2 → S5

11 → S5
9 → S5

10 → S5
7)

i

i− 1

Fig. 24. Turn on the west wall (S5
7 → S5

8 → S5
12 → S5

7 → S5
13 → S5

11 → S5
9 → S5

10 →
S5
14 → S5

5)

Fig. 25. Turn on the southeast corner (S5
7 → S5

8 → S5
11 → S5

10 → S5
9 → S5

14 → S5
5)



108 K. Doi et al.

S5
11 to S5

9 S5
12 to S5

6 S5
13 to S5

6 S5
14 to S5

10

S5
15 to S5

6 S5
16 to S5

13 S5
17 to S5

15 S5
18 to S5

9

Fig. 26. Exceptions without walls

S5
9 to S5

8 S5
10 to S5

11 S5
10 to S5

11S5
9 to S5

8

Fig. 27. Exceptions with walls

Moves along a Row. Figures 21 and 22 show the move to the east and the
move to the west, respectively. By repeating one of the two moves, R moves to
one direction. In the beginning of the two moves, its spine is the ith row an its
frontier is the jth column.

Turns on the Walls. Figures 23 and 24 show a turn on the east wall and a
turn on the west wall, respectively. The spine changes after a turn on the west
wall, while it does not change after a turn on the east wall.

A Turn on the Southwest Corner. When the spine of R reaches the first row
and it comes back to the west wall, it turns the track by π/2 as shown in Fig. 25.
Note that the cells of the 0th row have been visited by the modules under the
spine when R moves from the east wall to the west wall. The final state of the
turn is S5

5 and R moves along the 0th column by the moves in Fig. 21. Here, the
spine is the first column, and the 0th column is visited by the modules over the
spine.

We finally add exceptional movements. Figures 26 and 27 show all states, for
which no movement is defined yet. To be more precise, for states S5

1 , S5
2 , . . . , S5

10,
almost all states (including walls) are used in the proposed algorithm except S5

9

and S5
10 with walls. For states S5

11, . . . , S
5
18, only six states with walls are used

in the proposed algorithm. Hence in the remaining states, R changes its state to
one of S5

1 , S5
2 , . . . , S5

10 through at most two steps as shown in Figs. 26 and 27.
The reference point of R visits all cells in each row and its progress is clear

from the proposed algorithm. Thus, we have Theorem2.



Exploration of Finite 2D Square Grid by a Metamorphic Robotic System 109

5 Conclusion and Future Work

We proposed the exploration problem of a finite 2D square grid by a meta-
morphic robotic system. We demonstrated the effect of global compass on the
necessary and sufficient number of modules to accomplish exploration and pre-
sented exploration algorithms that make the metamorphic robotic system visit
all cells. One of the most important research directions is to consider other fields,
for example, a convex field in the 2D square grid, a finite 3D square grid, torus,
graphs, sphere, and generalization to continuous space.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

2. Chen, F., Yamauchi, Y., Kijima, S., Yamashita, M.: Locomotion of metamorphic
robotic systems based on local information (extended abstract), In: Proceedings of
SRDS Workshops 2014, pp. 40–45 (2014)

3. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric
patterns with oblivious mobile robots. Distrib. Comput. 28(2), 131–145 (2015)

4. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)

5. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theor. Comput. Sci. 671, 56–68 (2017)

6. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: Proceedings of SPAA 2016,
pp. 289–299 (2016)

7. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5 7

8. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G.: TuringMobile: a turing
machine of oblivious mobile robots with limited visibility and its applications. In:
Proceedings of DISC 2018 (to appear)

9. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape
formation by programmable particles. In: Proceedings of OPODIS 2017, pp. 31:1–
31:16 (2017)

10. Dumitrescu, A., Suzuki, I., Yamashita, M.: Motion planning for metamorphic sys-
tems: feasibility, decidability, and distributed reconfiguration. IEEE Trans. Robots
Autom. 20(3), 409–418 (2004)

11. Dumitrescu, A., Suzuki, I., Yamashita, M.: Formation for fast locomotion of meta-
morphic robotic systems. Int. J. Robot. Res. 23(6), 583–593 (2004)

12. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does
it take to find the food? Theor. Comput. Sci. 608, 255–267 (2015)

13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

14. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7


110 K. Doi et al.

15. Michail, O., Spirakis, P.G.: Connectivity preserving network transformers. Theor.
Comput. Sci. 671, 36–55 (2017)

16. Michail, O., Skretas, G., Spirakis, P.G.: On the transformation capability of feasible
mechanisms for programmable matter. In: Proceedings of ICALP 2017, pp. 136:1–
136:15 (2017)

17. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

18. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

19. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional euclidean space. J. ACM 64(3),
16:1–16:43 (2017)

20. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-
9 17

21. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asyn-
chronous oblivious mobile robots. In: Proceedings of DISC 2014, pp. 137–151 (2014)

https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17


Physical Zero-Knowledge Proof
for Makaro

Xavier Bultel1, Jannik Dreier2, Jean-Guillaume Dumas3, Pascal Lafourcade4,
Daiki Miyahara5,6, Takaaki Mizuki5, Atsuki Nagao7, Tatsuya Sasaki5,

Kazumasa Shinagawa6,8(B), and Hideaki Sone5

1 University of Rennes 1, IRISA, Rennes, France
2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

3 Université Grenoble Alpes, IMAG-LJK, CNRS UMR 5224,
700 avenue centrale, 38058 Grenoble, France

4 University Clermont Auvergne, LIMOS, CNRS UMR 6158,
Campus des Cézeaux, Aubière, France
5 Tohoku University, Sendai, Japan

6 National Institute of Advanced Industrial Science and Technology,
Kōtō, Japan

shinagawakazumasa@gmail.com
7 Ochanomizu University, Bunkyō, Japan

8 Tokyo Institute of Technology, Meguro, Japan

Abstract. Makaro is a logic game similar to Sudoku. In Makaro, a grid
has to be filled with numbers such that: given areas contain all the num-
bers up to the number of cells in the area, no adjacent numbers are
equal and some cells provide restrictions on the largest adjacent number.
We propose a proven secure physical algorithm, only relying on cards,
to realize a zero-knowledge proof of knowledge for Makaro. It allows a
player to show that he knows a solution without revealing it.

Keywords: Zero-knowledge proofs
Card-based secure two-party protocols · Puzzle · Makaro · Privacy

1 Introduction

To maintain safety in malicious environment, implementing cryptographic tech-
nologies such as secure multi-party computations and zero-knowledge proofs are
indispensable. While these technologies must be useful, usefulness alone is not
always sufficient for technology diffusion, as Hanaoka pointed out [13]. In other
words, we need to convince not only researchers but also everyone from engineers
to non-experts of the importance of such techniques.

To understand the concept of zero-knowledge proof, games and puzzles can
serve as powerful models of computation. Indeed, in game-theoretic terms, the
P vs NP asks whether an optimal puzzle player can be simulated efficiently by a
Turing machine [15]. The NP class is that of problems for which a given solution

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 111–125, 2018.
https://doi.org/10.1007/978-3-030-03232-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_8&domain=pdf


112 X. Bultel et al.

correctness is easy to verify. There, a zero-knowledge proof is such a verification
procedure, but which prevents the verifier from gaining any knowledge about
the solution other than its correctness. For instance, there exist generic crypto-
graphic zero-knowledge proofs for all problems in NP [10], via a reduction to an
NP-Complete problem with a known zero-knowledge proof.

More precisely, a Zero Knowledge Proof of knowledge (ZKP) is a secure two-
party protocol that allows a prover P to convince a verifier V that he knows a
solution s to the instance I of a problem P, without revealing any information
about s. In fact, when both randomization and interaction are allowed, the
proofs that can be verified in polynomial time are exactly those proofs that can
be generated within polynomial space [36]. More than the mere existence of a
cryptographic interactive protocol, it is interesting to obtain direct (rather than
via a reduction) and physical (rather than computer-aided) proofs in order to
improve on their understandability. Further, sometimes, an interplay of physical
and cryptographic protocols can improve efficiency or practicality due to the
reduced cryptographic overhead [33]. With this in mind, finding direct physical
proofs for puzzles actually augments the number of constraints that can be very
efficiently proven in zero knowledge. For instance, we know how to guarantee the
presence of all numbers in some set without revealing their order [12], or how
to guarantee that two numbers are distinct without revealing their respective
values [2]. In this paper, via providing a complete physical zero-knowledge proof
for the Nikoli puzzle Makaro, we will show in particular that it is possible to
physically prove that a number is the largest in a list, without revealing any
value in the list.

Formally, for a solution s to any instance I of a problem P , a convincing
interactive zero-knowledge protocol between P and V must then satisfy the
three following properties1:

Completeness: If P knows s, then he is able to convince V .

Extractability2: If P does not know s, then he is not able to convince V except
with some small probability. More precisely, we want a negligible probability, i.e.,
the probability should be a function f of a security parameter λ (for example
the number of repetitions of the protocol) such that f is negligible, that is for
every polynomial Q, there exists n0 > 0 such that ∀ x > n0, f(x) < 1/Q(x).

Zero-Knowledge: V learns nothing about s except I, i.e. there exists a prob-
abilistic polynomial time algorithm Sim(I) (called the simulator) such that out-
puts of the real protocol and outputs of Sim(I) follow the same probability
distribution.

1 Moreover, if P is NP-complete, then the ZKP should be run in a polynomial time [11].
Otherwise it might be easier to find a solution than proving that a solution is a correct
solution, making the proof pointless.

2 This implies the standard soundness property, which ensures that if there exists no
solution of the puzzle, then the prover is not able to convince the verifier regardless
of the prover’s behavior.



Physical Zero-Knowledge Proof for Makaro 113

As already mentioned, there exist two kinds of ZKP: interactive and non-
interactive. In an interactive ZKP the prover can exchange messages with verifier
in order to convince him, while in the non-interactive case the prover can just
create the proof in order to convince the verifier.

ZKPs are usually executed by computers. They are often used in electronic
voting to prove that some parties correctly mix some ballots without cheating,
or in multi-party computation [4,6,34].

In this paper, we consider physical ZKPs, such proofs only rely on physical
objects such as cards or envelopes and are executed by humans.

Contributions: In this paper we construct a secure physical ZKP for Makaro.
This provides in particular a physical zero-knowledge proof of knowledge of the
largest element in a list. Our construction uses only 2k − 1 + n + (k − 1)(n + 4)
cards where n is the number of empty cells and k is the maximum room size of the
Makaro’s grid. The salient feature of our protocol is to use efficient zero knowl-
edge shuffle and shift operations together with a positional encoding in order
to obtain an efficient implementation of zero-knowledge proof. Our construction
physically proves that a number is the largest in a list, without revealing any
value in the list.

As mentioned above, our protocol uses a deck of physical cards, and such card-
based cryptography has attracted many people from researchers to non-experts,
and many card-based protocols have been published in top-tier conferences in
cryptography such as Crypto, Eurocrypt, and Asiacrypt [5,8,20,22,26]. Thus,
card-based cryptography has contributed to increasing the number of people who
have strong interest in cryptography and information security. We hope that the
protocol in this paper also will motivate potential users to understand and use
zero-knowledge proof to attain safety in malicious environment.

Related Work: Secure computation without computers have been widely stud-
ied and constructed based on various objects: a deck of cards [8] (including polar-
izing plates [37], polygon cards [38], and the standard deck of playing cards [23]),
a PEZ dispenser [1], tamper-evident seals [28], a dial lock [24], and a 15 puzzle
[25], Among them, secure computations with cards, referred to as card-based
protocols, especially has been studied recently, due to its simplicity and appli-
cability. Indeed, card-based protocols can be used to compute many boolean
functions as shown in [5], later improved in terms of efficiency by [22,27,30,39],
or to perform specific computations [14,17,29,32].

Sudoku, introduced under this name in 1986 by the Japanese puzzle com-
pany Nikoli, and similar games such as Akari, Takuzu, Ken-Ken or Makaro have
gained immense popularity in recent years. Many of them have been proved
to be NP-complete [7,19,21], and, in 2007, Gradwohl, Naor, Pinkas, and Roth-
blum proposed the first physical zero-knowledge proof protocols for Sudoku [12].
A novel protocol for Sudoku using fewer cards and with no soundness error was
then proposed [35]. Physical protocols for other games, such as Hanjie, Akari,
Kakuro, KenKen and Takuzu have then extended the physically verifiable set of
functions [2,3].



114 X. Bultel et al.

Outline: We first present the rules of the game, Makaro, in Sect. 2. We construct
our zero-knowledge proof in Sect. 3. We start with some notations in Subsect. 3.1,
then we describe the shuffling and shifting subroutines in Subsect. 3.2 as well as
our construction in Subsect. 3.3. Finally we prove the security of our protocol in
Sect. 4. We also propose some optimizations and conclude in the last section.

2 Rules of Makaro

Makaro is a pencil puzzle published in the famous puzzle magazine Nikoli. The
puzzle instance is a rectangular grid of cells. All cells are colored either white or
black. All white cells are divided into rooms enclosed by bold lines. Some white
cells already contain numbers while most white cells are empty. The former is
called a (white) filled cell and the latter is called a (white) empty cell. Some black
cells contain an arrow and they are called (black) arrow cells. The goal of the
puzzle is to fill in all empty white cells with numbers according to the following
rules [31]:

1. Room condition: Each room contains all the numbers from 1 up to the number
of cells in the room.

2. Neighbor condition: A number can not be next (adjacent) to the same number
in another room.

3. Arrow condition: Every black arrow cell must point at the largest number
among the numbers in the adjacent cells of the black cell (possibly the fours
cells: right, left, above, and bottom).

In Fig. 1, we give a simple example of a Makaro game, where all black cells are
arrow cells and all white cells are empty cells except for one filled cell with three.
It is easy to verify that the three constraints are satisfied in the solution on the
right part of the figure. We remark that in a solution all white cells are filled
with numbers between 1 and k, where k is the maximum size of all the rooms of
the grid.

Solving Makaro was shown to be NP-complete via a reduction from 3-SAT
in [19].

Fig. 1. Example of a Makaro grid and its solution.



Physical Zero-Knowledge Proof for Makaro 115

3 Zero-Knowledge Proof for Makaro

In this section, we construct our protocol of zero-knowledge proof for Makaro.
We first introduce some notations in order to properly give our encoding of the
values of a Makaro’s solution using some cards. We also describe a few tricks
that we use in our construction in order to obtain the extractability and the
zero-knowledgeness.

3.1 Notations

Card. We use the following cards:

♣ ♥ 1 2 3 4 5 · · ·

We call ♣ ♥ binary cards and the others number cards. We note that binary
cards are not necessary when 1 2 are regarded as binary cards. However, we
believe that the use of binary cards makes it easier to understand our protocol.
In our construction, binary cards are used to encode the value of a cell, while
number cards are used for rearrangement.

All the back sides of the cards are assumed to be indistinguishable. Our
protocol also works when all back sides of binary cards are indistinguishable and
all back sides of number cards are indistinguishable, but these back sides of the
former and the latter are distinguishable. For ease of explanation, we assume
that all of them are indistinguishable and denote them by ? .

Encoding. Let k be an integer. For a number x ∈ {1, 2, · · · , k}, we use the
following encoding:

Ek(x) = ♣ · · · ♣
︸ ︷︷ ︸

x−1

♥ ♣ · · · ♣
︸ ︷︷ ︸

k−x

The position of the ♥ corresponds to the value of x. Note that in our actual
construction, encodings are placed face-down in order not to reveal encoded
values.

Matrix. In our construction, we often place a sequence of cards as a matrix.
The following is an example of a 4 × 6 matrix (of face-down cards).

1 2 3 4 5 6
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?

It contains four rows and six columns. We refer to the leftmost column as the
1st column and to the topmost row as the 1st row.



116 X. Bultel et al.

Pile-Shifting Shuffle. Given an � × k matrix M , a Pile-shifting shuffle, which is
first used in [38], generates a new “randomly shifted” � × k matrix M ′: a random
number r is uniformly chosen in {0, 1, · · · , k − 1}; and then, each column of M
is cyclically shifted by r. Here, the shifting number r is hidden from all parties.
This operation is performed on cards face-down. For example if we consider the
following 4 × 6 matrix with a shift of r = 2.

1 2 3 4 5 6
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?

We obtain the following matrix, where columns have been shifted by to position
on the right side.

5 6 1 2 3 4
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?

In order to implement a pile-shifting shuffle, we first put each columns of cards
in an envelope; and then, we cyclically shuffle them by applying a Hindu cut to
the sequence of envelopes, which is widely used in games of playing cards (see,
e.g., [40] for the implementation of random shifting by the Hindu cut).

Pile-Scramble Shuffle. Given an � × k matrix M , a Pile-scramble shuffle,
which is first used in [17], generates a new “randomly scrambled” � × k matrix
M ′: a random permutation π is uniformly chosen in Sk, the set of all possible
permutations of length k; and then, the i-th column of M is moved to the π(i)-
th column of M ′. Here, the random permutation π is hidden from all parties.
This operation is performed on cards face-down. For example if we consider the
following 4 × 6 matrix with the following permutation π = (13652).

1 2 3 4 5 6
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?

We obtain the following matrix, where columns have been mixed according to π.

2 5 1 4 6 3
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?



Physical Zero-Knowledge Proof for Makaro 117

In order to implement a pile-scramble shuffle, similar to the pile-shifting shuf-
fle, we first put each columns of cards in an envelope; and then, we mix them
completely randomly.

Miscellaneous Definitions. We define two sequences of cards as follows:

ek = 1 2 3 4 · · · k

βk = ♣ ♣ ♣ ♣ · · · ♣
︸ ︷︷ ︸

k

Moreover, we call the former the identity commitment of degree k. Again, we
note that they are placed face-down in our actual construction. We define “◦”
as a concatenation of sequences. For example, E3(2) ◦ β3 is a concatenation of
E3(2) and β3 as shown in the following:

E3(2) ◦ β3 = ♣ ♥ ♣ ♣ ♣ ♣

This results in E6(2). In general, it holds that Ek(x) ◦ β� = Ek+�(x).

3.2 Rearrangement Protocol

In this section, we present the Rearrangement Protocol which is invoked by
our main construction as a subroutine. This protocol is implicitly used in some
previous works of card-based protocols with permutations (e.g., Ibaraki et al. [16],
Hashimoto et al. [14], and Sasaki et al. [35]).

The input of our Rearrangement Protocol is an � × k matrix whose first
row consists of number cards 1 2 · · · k in an arbitrary order. It outputs an
� × k matrix such that the i-th column of the resultant matrix is the column of
the input matrix containing the number card i (without revealing the original
order). It proceeds as follows:

1. Apply a pile-scramble shuffle to the matrix .
2. Turn over the first row. Suppose that the opened cards are v1 v2 . . . vk such

that {v1, v2, · · · , vk} = {1, · · · , k}.
3. Sort the columns of the matrix so that the vi-th column of the new matrix is

the i-th column of the old matrix.

3.3 Our Construction

In this section, we present our construction of zero-knowledge proof for Makaro.
Suppose that a puzzled instance M has n empty cells and the maximum room-
size is k. The protocol is played with two players, a verifier V and a prover
P , where only P has a solution of M . It requires 2k − 1 numbered cards (from
1 up to 2k − 1) and n + (k − 1)(n + 4) binary cards (n cards of type ♥ and
(k − 1)(n + 4) cards of type ♣ ). Our protocol proceeds as follows.



118 X. Bultel et al.

Setup. In the setup phase, the prover P places an encoding of the number x
on each empty cell, where x is the value of the cell according to the solution.
Note that they are placed face-down in order to hide the solution. Similarly,
the prover P and the verifier V (cooperatively) place k face-down cards on each
filled cell according to the value given by the Makaro grid, in the same way.

Verification. The verification proceeds as follows:

1. The prover P convinces the verifier V of the validity of the room condition by
performing the following for each room: Let k′ be the room-size of the room
and let α1, · · · , αk′ be the sequence of cards on each cell in the room. The
prover P and the verifier V interact as follows:
(a) Arrange a k × k′ matrix A such that the i-th column is αi.

A =
[

αT
1 αT

2 · · · αT
k′

]

(b) Append ek′ to the topmost row of A. The following is an example when
k = 4, k′ = 3, α1 = E4(2), α2 = E4(3), and α3 = E4(1):

[

ek′

A

]

=
[

1 2 3
αT
1 αT

2 αT
3

]

=

1 2 3
♣ ♣ ♥
♥ ♣ ♣
♣ ♥ ♣
♣ ♣ ♣

Note that all cards are face-down in an actual execution.
(c) Apply a pile-scramble shuffle to the matrix.
(d) Turn over all cards except for the topmost row. If the columns do not

contain the encodings Ek(1),Ek(2), · · · ,Ek(k′), then the verifier outputs
0 and the protocol terminates.

(e) Turn over all face-up cards so that all cards are face-down; then, apply
the Rearrangement Protocol explained in Sect. 3.2; finally, put back
α1, · · · , αk′ to their original cells.

2. The prover P convinces the verifier V of the validity of the neighbor condition
by performing the following verification for each two adjacent cells that are in
different rooms: Let α1 and α2 be two sequences on these two adjacent cells.
The prover P and the verifier V interact as follows:
(a) Arrange the following 3 × k matrix:

⎡

⎣

ek

α1

α2

⎤

⎦

The following is an example when k = 4 and α1 = E4(2) and α2 = E4(1).
⎡

⎣

ek

α1

α2

⎤

⎦ =

⎡

⎣

e4
E4(2)
E4(1)

⎤

⎦ =
1 2 3 4
♣ ♥ ♣ ♣
♥ ♣ ♣ ♣

Note that all cards are face-down in an actual execution.



Physical Zero-Knowledge Proof for Makaro 119

(b) Apply a pile-scramble shuffle to the matrix.
(c) Turn over the second and third rows. If two ♥ s are in distinct columns, it

proceeds to Step 2-(d). Otherwise, the verifier outputs 0 and the protocol
terminates. The following is an example when the turning result is valid.

? ? ? ?
♥ ♣ ♣ ♣
♣ ♣ ♥ ♣

(d) Turn over all face-up cards so that all cards are face-down; then, apply
the Rearrangement Protocol; finally, put back α1 and α2 to their original
cells.

3. The prover P convinces the verifier V of the validity of the arrow condition
by performing the following verification for each black arrow cell: Suppose
that the black cell has four adjacent white cells and that the arrow of the cell
points to the above cell. We note that three-neighbors case and two-neighbors
case can be performed in the same way. Let αa, αb, αr, and αl be sequences of
k cards placed respectively on the above, bottom, right, and left cells of the
black cell. The prover P and the verifier V interact as follows:
(a) Arrange the following 5 × (2k − 1) matrix:

⎡

⎢

⎢

⎢

⎢

⎣

e2k−1

αa ◦ βk−1

αb ◦ βk−1

αr ◦ βk−1

αl ◦ βk−1

⎤

⎥

⎥

⎥

⎥

⎦

The following is an example when k = 4 and αa = E4(4), αb = E4(2), αr =
E4(3), and αl = E4(2).

⎡

⎢

⎢

⎢

⎢

⎣

e2k−1

αa ◦ βk−1

αb ◦ βk−1

αr ◦ βk−1

αl ◦ βk−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

e7
E7(4)
E7(2)
E7(3)
E7(2)

⎤

⎥

⎥

⎥

⎥

⎦

=

1 2 3 4 5 6 7
♣ ♣ ♣ ♥ ♣ ♣ ♣
♣ ♥ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♥ ♣ ♣ ♣ ♣
♣ ♥ ♣ ♣ ♣ ♣ ♣

Note that all cards are face-down in an actual execution.
(b) Apply a pile-shifting shuffle to the matrix.
(c) Turn over the second row. Let v ∈ {1, · · · , 2k − 1} be the position of ♥ .

The following is an example when v = 3 and other parameters are the
same as in the previous example.

? ? ? ? ? ? ?
♣ ♣ ♥ ♣ ♣ ♣ ♣
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?



120 X. Bultel et al.

(d) Turn over k − 1 columns, v + 1, v + 2, · · · , v + k − 1 columns in a cyclic
sense, of the third, fourth, and fifth rows of the matrix. If they are not
3(k − 1) ♣s, the verifier outputs 0 and the protocol terminates. The fol-
lowing is an example when the parameters are the same as in the previous
example. In this example, three columns, v + 1, v + 2, and v + 3 columns,
are turned over.

? ? ? ? ? ? ?
♣ ♣ ♥ ♣ ♣ ♣ ♣
? ? ? ♣ ♣ ♣ ?
? ? ? ♣ ♣ ♣ ?
? ? ? ♣ ♣ ♣ ?

(e) Turn over all face-up cards so that all cards are face-down; then, apply
the Rearrangement Protocol; finally, put back αa, αb, αr, and αl to their
original cells (unless these cells are not used in the next verification of the
Arrow condition).

4. The verifier accepts by outputting 1.

4 Security Proofs for Our Construction

In this section, we prove the completeness, the extractability, and the zero-
knowledge property of our construction.

Lemma 1 (Completeness). If the prover P has a solution for the Makaro
puzzle, then P can always convince the verifier V (i.e., V outputs 1).

Proof. We show that for prover P with a solution, the verifier never outputs 0.

– First, let us consider Step 1. Due to the room condition, for each room of
room-size k′, all cells in the room have distinct numbers from 1 up to k′. Thus,
the k × k′ matrix A in Step 1-(a) contains all encodings Ek(1), · · · ,Ek(k′).
Therefore, the verifier never outputs 0 after the turning over in Step 1-(d).

– Let us move to Step 2. Due to the Neighbor condition, for each pair of cells
between different rooms, they have different numbers. Thus, the turning over
in Step 2-(c) brings one (♥,♣) column, one (♣,♥) column, and k − 2 (♣,♣)
columns. Therefore, the verifier never outputs 0 in Step 2-(c).

– Let us consider Step 3. Due to the Arrow condition, for each black arrow cell,
the arrow points to the largest number in adjacent cells. Let xa, xb, xr, xl ∈
{1, 2, · · · , k} be numbers in adjacent cells and suppose that xa is the largest
number pointed by the arrow. Then, the position of ♥ of Ek(xa) is also the
largest number among other encodings Ek(xb),Ek(xr), and Ek(xl). Therefore,
the turning over in Step 3-(d) brings 3(k − 1) ♣ cards which never causes the
verifier to output 0.

Therefore, the protocol always proceeds to Step 4 and the verifier outputs 1. ��



Physical Zero-Knowledge Proof for Makaro 121

Lemma 2 (Extractability). If the prover does not know a solution for the
Makaro puzzle, then the verifier V always rejects (i.e., V outputs 0) regardless
of the prover P ’s behavior.

Proof. If some of encodings are invalid, i.e., do not form the encoding format,
then this fact is always exposed in Step 1-(d). Thus, we can assume that all
encodings are valid. Because the verifier does not know a solution, at least one
condition among three conditions must be violated. The following three cases
occur:

– Suppose that room condition is violated for some room. In this case, the
turning over in Step 1-(d) does not bring Ek(1), · · · ,Ek(k′), which causes the
verifier to output 0.

– Suppose that Neighbor condition is violated for some pair of cells. In this
case, the turning over in Step 2-(c) brings two (♥,♥) in one column, which
causes the verifier to output 0.

– Suppose that Arrow condition is violated for some black cell with an arrow.
Let αa, αb, αr, and αl be encodings on the adjacent cells of such a black cell
such that αa = Ek(xa), αb = Ek(xb), αr = Ek(xr), and αl = Ek(xl) for some
xa, xb, xr, xl ∈ {1, 2, · · · , k}. Due to the violation of Arrow condition, one of
xb, xr, and xl is larger than xa while the arrow points to the above cell. In
this case, the turning over in Step 3-(d) brings at least one ♥ , which causes
the verifier to output 0.

In any case, the verifier always outputs 0. ��
Lemma 3 (Zero-knowledge). During an execution of our protocol, the veri-
fier V learns nothing about P ’s solution.

Proof. In order to prove this, it is sufficient to show that all distributions of
opening values are simulated without knowing the prover’s solution.

– In Step 1, the “turning over” appears only in Step 1-(d) and 1-(e). The open-
ing in Step 1-(d) brings a set of encodings Ek(1), · · · ,Ek(k′), where k′ is the
room-size. Their order is uniformly distributed among Sk′ due to the pile-
scramble shuffle. Thus, it can be simulated without knowing the solution.
The opening in Step 1-(e), specifically the Rearrangement Protocol, brings
number cards from 1 up to k′. Their order is uniformly distributed among Sk′

due to the pile-scramble shuffle. Thus, it can be simulated without knowing
the solution.

– In Step 2, there are two steps with a “turning over”: Steps 2-(c) and 2-(d).
The opening in Step 2-(c) brings one (♥,♣) column, one (♣,♥) column, and
k − 2 (♣,♣) columns. The position of the former two columns are uniformly
distributed due to the pile-scramble shuffle. Thus, it can be simulated without
knowing the solution. The opening in Step 2-(d), specifically the Rearrange-
ment Protocol, brings number cards from 1 up to k. Their order is uniformly
distributed among Sk due to the pile-scramble shuffle. Thus, it can be simu-
lated without knowing the solution.



122 X. Bultel et al.

– In Step 3, there are three steps containing a “turning over”: Steps 3-(c),
3-(d), and 3-(e). The opening in Step 3-(c) brings one ♥ and k − 1 ♣
cards. The position of ♥ is uniformly distributed among {1, 2, · · · , 2k − 1}
due to the pile-shifting shuffle. Thus, it can be simulated without knowing
the solution. The opening in Step 3-(d) brings 3(k − 1) ♣ cards. Thus, it
can be trivially simulated without knowing the solution. The opening in Step
3-(e), specifically the Rearrangement Protocol, brings number cards from 1
up to 2k − 1. Their order is uniformly distributed among S2k−1 due to the
pile-scramble shuffle. Thus, it can be simulated without knowing the solution.

Therefore, the verifier V learns nothing about the solution. ��

5 Conclusion

In this paper we construct the first physical zero-knowledge proof for Makaro.
Our construction uses a special encoding of the values of a Makaro solution.
This allows us to design a physical zero-knowledge proof that uses a reasonable
number of cards and hence, our proposed protocol is efficient. This number can
even be further reduced via the following two optimizations:

Optimization 1. For each room, use encodings Ek′(x) for the room-size k′

instead of Ek(x), where k is the maximum room-size. When encodings in different
rooms appear in Steps 1 and 2, append additional ♣ cards. This idea reduces
the number of cards.

Optimization 2. Do not place cards in the initially (white) filled cells although
other cards on empty cells are still placed. Instead, make an encoding of filled
cells only when it is needed. Indeed those numbers are part of the input problem
and are thus known to the verifier, so no secrecy is required there. This idea also
reduces the overall number of cards.

We finally note that our technique especially for the Arrow condition can
also be reused for other interesting problems including zero-knowledge proofs
for other games or real-world problems related to auctions, stock markets, and
so on. We leave it as an open problem to find such interesting applications.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Numbers 17J01169 and 17K00001. It was conducted with the support of the FEDER
program of 2014-2020, the region council of Auvergne-Rhône-Alpes, the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-
Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project
DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.



Physical Zero-Knowledge Proof for Makaro 123

References

1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a
PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)

2. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.)
8th International Conference on Fun with Algorithms, FUN 2016. LIPIcs, La Mad-
dalena, Italy, 8–10 June 2016, vol. 49, pp. 8:1–8:20 (2016)

3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol.
6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13122-6 12

4. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

6. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 4

7. Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game
theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 3

8. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

9. Foresti, S., Persiano, G. (eds.): Cryptology and Network Security - 15th Inter-
national Conference, CANS 2016, Milan, Italy, 14–16 November 2016, Proceed-
ings. LNCS, vol. 10052. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0

10. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 174–187, October 1986

11. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

12. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. In: Crescenzi, P.,
Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3 16

13. Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M.
(eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 24

14. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol.
10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72089-0 8

https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/3-540-44683-4_3
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-319-48965-0
https://doi.org/10.1007/978-3-319-48965-0
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-319-61273-7_24
https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1007/978-3-319-72089-0_8


124 X. Bultel et al.

15. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd.,
Natick (2009)

16. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: 2016 Third International Conference
on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257,
August 2016

17. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

18. Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) 9th International Conference
on Fun with Algorithms, FUN 2018. LIPIcs, La Maddalena, Italy, vol. 100. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2018

19. Iwamoto, C., Haruishi, M., Ibusuki, T.: Herugolf and Makaro are NP-complete. In:
Ito et al. [18], pp. 24:1–24:11

20. Kastner, J., et al.: The minimum number of cards in practical card-based protocols.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

21. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J.
31(1), 13–34 (2008)

22. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

23. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Foresti and Persiano [9], pp. 484–499

24. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial
lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp.
499–510. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-
6 45

25. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15
puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp.
255–266. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-
4 28

26. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

27. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

28. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 24

29. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: Foresti and Persiano [9], pp. 500–517

30. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1), 173–183 (1998)

31. Nikoli: Makaro. https://www.nikoli.co.jp/en/puzzles/makaro.html

https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/11523468_24
https://doi.org/10.1007/11523468_24
https://www.nikoli.co.jp/en/puzzles/makaro.html


Physical Zero-Knowledge Proof for Makaro 125

32. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

33. Ramzy, I., Arora, A.: Using zero knowledge to share a little knowledge: bootstrap-
ping trust in device networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 371–385. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24550-3 28

34. Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with
untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.)
SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31909-9 15

35. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In:
Ito et al. [18], pp. 29:1–29:10

36. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
37. Shinagawa, K., et al.: Secure computation protocols using polarizing cards. IEICE

Trans. 99-A(6), 1122–1131 (2016)
38. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE

Trans. 100-A(9), 1900–1909 (2017)
39. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–

678 (2001)
40. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement

a random bisection cut. In: Mart́ın-Vide, C., Mizuki, T., Vega-Rodŕıguez, M.A.
(eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49001-4 5

https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-642-24550-3_28
https://doi.org/10.1007/978-3-642-24550-3_28
https://doi.org/10.1007/978-3-642-31909-9_15
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5


Searching with Increasing Speeds

Leszek G ↪asieniec1(B), Shuji Kijima2,3, and Jie Min1

1 Department of Computer Science, University of Liverpool, Liverpool, UK
lechu@liverpool.ac.uk

2 Department of Informatics, Kyushu University, Fukuoka, Japan
3 JST PRESTO, Tokyo, Japan

Abstract. In the classical search problem on the line or in higher dimen-
sion one is asked to find the shortest (and often the fastest) route to be
adopted by a robot R from the starting point s towards the target point
t located at unknown location and distance D. It is usually assumed that
robot R moves with a fixed unit speed 1. It is well known that one can
adopt a “zig-zag” strategy based on the exponential expansion, which
allows to reach the target located on the line in time ≤ 9D, and this
bound is tight. The problem was also studied in two dimensions where
the competitive factor is known to be O(D).

In this paper we study an alteration of the search problem in which
robot R starts moving with the initial speed 1. However, during search it
can encounter a point or a sequence of points enabling faster and faster
movement. The main goal is to adopt the route which allows R to reach
the target t as quickly as possible. We study two variants of the consid-
ered search problem: (1) with the global knowledge and (2) with the local
knowledge. In variant (1) robot R knows a priori the location of all inter-
mediate points as well as their expulsion speeds. In this variant we study
the complexity of computing optimal search trajectories. In variant (2)
the relevant information about points in P is acquired by R gradually,
i.e., while moving along the adopted trajectory. Here the focus is on the
competitive factor of the solution, i.e., the ratio between the solutions
computed in variants (2) and (1). We also consider two types of search
spaces with points distributed on the line and subsequently with points
distributed in two-dimensional space.

Keywords: Search problem · Line · 2d space · Increasing speeds

1 Introduction

Search problems refer to frequently considered combinatorial (structural or algo-
rithmic) problems within and across multiple fields including operations research,
computing, mathematics and others. The search problem in the form studied in

This work was initiated while the first author visited Kyushu University. The work
is partly supported by JST PRESTO Grant Number JPMJPR16E4 and Networks
Sciences and Technologies (NeST) EEECS School initiative, University of Liverpool.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 126–138, 2018.
https://doi.org/10.1007/978-3-030-03232-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_9&domain=pdf


Searching with Increasing Speeds 127

this paper was originally posed more than a half-century ago by Bellman [6] who
asked: “A hiker is lost in a forest which size is not known to her. What is the
best path to adopt to escape the forest?”

In more general terms, search problems deal with either single or multiple
searchers looking for a hidden object referred to as target, with the ultimate goal
of minimising the time required to accomplish the task. Numerous variants of
the problem have been considered reflecting on different search spaces (e.g., a
geometric setting vs. a graph), whether the target is fixed or mobile, whether
the search space is stable, or if the target is a point or a collection of points,
a curve or a closed non-zero volume region. Another separation line refers to
deterministic versus randomized search strategies, and whether the searchers
have access to extra tools supporting navigation, see [2–4,7,8,14,16,21,22].

The search on the line has been analysed in detail by Baeza-Yates et al.
in [2] under the name of the cow-path problem. This seminal work prompted
further work on on different variants of the search problem including extensions
[3,4,14,17,18,22,24]. In addition to the line, Baeza-Yates et al. [2,3] studied the
cow-path problem on co-centred w infinite rays, and proposed a deterministic
algorithm with the name linear spiral search. The case with w = 1 is trivial, and
for w = 2 (the case with infinite line) the algorithm always finds the target in
time at most 9D, where D is the time needed to move from the starting point s to
the target t. They also provided the lower bound argument showing optimality of
their solution up to lower order terms. In the same work, the authors considered
also a system of rays with w > 2 showing an optimal (up to lower order terms)
result of

(
1 + 2 ww

(w−1)w−1

)
·D time bound to find the target using a deterministic

search strategy.
In [4] Baeza-Yates and Schott examined also other variants of the cow-path

problem. They observed that if D is known in advance, the search on the line
requires time 3D in the worst case. They also studied scenarios with two or more
robots having uniform speeds. They show that if robots are able to communi-
cate at arbitrary distance, the total distance 2D must be travelled to find the
destination, and 4D if the two robots must reach the destination. Baeza-Yates
and Schott showed also that the total distance travelled when no communication
is present, and both robots must reach the target is also 9D, the same time it
would take a single robot. A similar study, however with an arbitrary number of
robots can be found in [9] where the authors study also the case with different
speeds. More tight analysis for two robots with different speeds was subsequently
published in [5]. The case with multiple speeds was also studied in the context
of patrolling linear environments first by Czyzowicz et al. in [11] and in the fol-
low up work of Kawamura and Kobayashi in [19]. Another interesting study on
robots with different speeds can be found in [10] where the authors distinguish
between moving and searching speeds.

In terms of probabilistic approach Kao et al. [18] examined the first random-
ized algorithm for the cow-path problem and, for the case of w = 2 rays, he
obtained an optimal randomized 4.59112 · D bound for the search time. They



128 L. G ↪asieniec et al.

also provided a bound for w > 2 paths, where they conjecture their this approach
to be an optimal randomized strategy.

In this paper we consider the search problem in which the robot can increase
its speed by visiting specific points in space. This work apart from having an
intrinsic combinatorial value can be also seen as a simplification of the gravity
assist concept [23] used in space exploration. Also there is some parallel to shar-
ing schemes with different vehicle types, e.g., city bikes combined with electric
cars and others.

1.1 The Model and the Search Problem

In this work we consider search by a single robot R either on the infinite line or in
two-dimensional (Euclidean) space. The robot has a zero-visibility radius, moves
freely and starts the exploration with the uniform speed 1. The search space is
populated by n points from set P = {p1, . . . , pn}, with the starting point s = pσ

and the target t = pτ , for some integer 1 ≤ σ �= τ ≤ n. Similarly to the past
work in this area we assume that the points in P have integer coordinates. This
is to avoid dealing with infinitesimal moves and the assumption about non-zero
visibility radius of R. Each point pi ∈ P has the associated expulsion speed vi.
More precisely, robot R always leaves pi with the speed vi if the speed it entered
pi was smaller or equal. Please note that R can only go faster, i.e., visiting a
node with a smaller expulsion speed does not affect the current speed of R. For
the completeness we also assume that vσ = 1 and vτ = +∞.

The main task for robot R is to compute (and subsequently adopt) the fastest
route from the starting point s to the target/destination point t taking advantage
of the increasing expulsion speeds of points in P visited on the way to t. We study
two variants of the considered search problem: (1) with the global knowledge and
(2) with the local knowledge. In variant (1) robot R knows a priori the location
of all points in P as well as their expulsion speeds. In this variant we study the
complexity of computing optimal search trajectories. In variant (2) the relevant
information about points in P is acquired by R gradually, i.e., while moving
along the adopted trajectory. Here the focus is on the competitive ratio of the
solution, i.e., the ratio between the solution computed in variant (2) and the
optimal solution from (1). We also consider two types of search spaces with
points distributed on the line and subsequently with points distributed in two-
dimensional space.

1.2 Our Contribution

The following results constitute the contribution of this paper.

On the Line. In variant (1) with full knowledge we show that the line of points
can be processed in time O(n) to find the fastest route from any point in P to t.
The algorithm is based on the known solution for the range queries. In fact after
O(n)−time preprocessing one can query any point on the line for the shortest
route to t in time O(log n). In variant (2) with local knowledge we show that the



Searching with Increasing Speeds 129

trajectory based on the classical “zig-zag” strategy always admits a competitive
factor 9. I.e., consistently with the classical version of the search problem where
it is known that one cannot reduce this constant in the worst case.

In 2D Space. In variant (1) we observe that one can process P with Dijkstra’s
algorithm in time O(n2) to compute the fastest route from any point in P to
target t. After this preprocessing one can query any point on the plane for the
shortest route to t in time Q(n), where Q(n) = polylog(n) refers to query time
for the nearest point in additively weighted Voronoi diagrams of size n. Using
this result we show that if there are at most k different expulsion speeds one can
process the points in P in time O(k ·n ·polylog(n)). In variant (2) we show that
the spiral strategy admits the asymptotically optimal competitive ratio O(D).

2 Search on the Line

In this section we assume that the moves of robot R are limited to an infinite
(integer) line L which contains all points in P offering different expulsion speeds.
In Sect. 2.1 we consider the search problem in the full-knowledge model where
we show how to find the fastest route to from the starting point s to the target t
in the optimal time O(n). We also comment on querying arbitrary points on the
line. Later in Sect. 2.2 we show that the classical zig-zag strategy [3] provides
9-competitive solution also when R is allowed to increase its speed throughout
the searching process.

2.1 Variant (1) - with Full Knowledge

Recall that in this variant robot R is fully aware of its own starting position s,
the content of P including offered speeds and the location of target t.

Example. In order to build some intuition we first consider a simple informal
example, see Fig. 1, where s = p4 is the starting point with the initial speed
v4 = 1, each point pi offers the relevant expulsion speed vi, and the arcs indicate
the consecutive steps (during which R moves with strictly increasing expulsion
speeds) on the optimal (fastest) path towards target t = p8.

Fig. 1. Solution example



130 L. G ↪asieniec et al.

In the example above the robot must have a very good reason to turn back
(as it is initially moving towards the target) after visiting p5. In other words it
must be more beneficial for the robot to visit (and to adopt the expulsion speeds
of) points p3 and p1, rather than going directly from p5 to p6. This can happen
when points p1, p3, and p5 are relatively close to each other and v5 � v3 � v1.
And the total time needed to move with speed v5 from p5 to p3, then with speed
v3 from p3 to p1, and finally with speed v1 towards p6 is smaller than going
directly from p5 to p6 with speed v5. The adopted route has to be faster also
from a more direct route p5 → p3 → p6. This example indicates also that robot
R changes the direction on its walk only in points with higher expulsion speeds.

Motivated by this example one can summarise the properties of the optimal
(fastest) walk to be adopted by the robot as follows.

1. While visiting point pi robot R adopts the expulsion speed vi iff vi is higher
than the current speed of R. This reflects the assumption that at any time R
moves with the highest possible speed encountered so far.

2. Robot R changes the direction on its walk only at points with higher speeds.
I.e., changing direction without increasing speed always results in suboptimal
solution as one could construct a faster route by turning a bit earlier.

3. It is enough to compute for each point pi ∈ P the closest to the left and to
the right points HL(pi) and HR(pi) with higher expulsion speeds than vi.
According to properties 1 and 2 these are the only points in which the speed
and possibly the direction of the walk change.

Let a walk be a direct move from pi ∈ P to pj ∈ P with the expulsion
speed vi (walks are denoted by arcs in the example). Thanks to property 3 one
can conclude that in search for the optimal solution (from any point in P to t)
instead of dealing with a quadratic number of walks, it is enough to consider
at most 2n walks connecting any pi ∈ P with the corresponding HL(pi) and
HR(pi).

Nearest Larger Neighbour. Note that all these walks can be determined in
time O(n) by swiping (with the help of a single stack) the line of points once
in each direction. During each swipe, e.g., from left to right, while processing
each point pi we assume inductively that on the top of the stack we have the
expulsion speeds of pi−1, and below of HL(pi−1), and below of HL(HL(pi−1)),
etc. In order to find HL(pi) we keep removing points from the stack until we
find a point with a higher expulsion speed than vi. We set this point as HL(pi)
and to maintain the invariant we push pi on the top of the stack. The process
explained above is a known solution to the classical nearest larger neighbour
problem [1].

Note that the directed graph solely based on points in pi ∈ P and the respec-
tive walks pi to HL(pi) and to HL(pi) is acyclic, I.e., the walks always lead
towards higher speeds. Thus the points in P can be sorted topologically (start-
ing from the target t) in time O(n). Finally, one can visit these points one by one
in the computed order to determine the fastest route between any point pi ∈ P
and target t. Such route is computed instantly on the basis of the fastest routes



Searching with Increasing Speeds 131

already computed for HL(pi) and HR(pi) as the fastest route from pi to t has
to visit first one of these points. The following theorem holds.

Theorem 1. For the collection P of n points on the line one can compute the
fastest route between any point pi and target t in the optimal time O(n).

Having computed optimal routes towards t for all points in P one can also
compute for any point p ∈ L the closest point (to the left and to the right) in
P by simple binary search in time O(log n). This allows to compute the fastest
route from any point p to target t in time O(log n).

2.2 Variant (2) - with Local Knowledge

Recall that in this case, the robot only knows its initial speed 1 and is not aware
of neither the location of other points nor the expulsion speeds available in them.
In what follows we show that the classical “zig-zag” strategy ZL can be adopted
here with the same 9-competitive guarantee as in the cow-path problem.

Given an instance I of the considered search problem. Let the route S ≡
(s = pσ

vσ=1−−−→ pi2

vi2−−→ . . . pil

vil−−→ t = pτ ) be the optimal solution of I. The
points chosen to this solution are called critical points. This solution is based on
l potentially overlapping segments on the line L. The first segment defined by
critical points pσ, pi2 is traversed with the speed vσ = 1. The next l−2 segments
based on points pij

, pij+1 are traversed with the speeds vij
respectively, for all

j = 2, . . . , l − 1. The last segment based on points pil
, pτ is traversed with the

speed vil
. Let dj be the total distance traversed from pσ to pij

, for all j = 2, . . . , l,
and dl+1 referring to the total distance traversed on the way to target t = pτ . In
addition let Dj be the absolute (Euclidean) distance between pσ and all critical
points included in the optimal solution S. Note that the lengths of l segments
defined above can be expressed as dj − dj−1, for all j = 2, . . . , l, where d1 = 0.
And finally, the respective traversal times on the considered segments are: d2

vσ
on

segment (pσ, pi2),
dj+1−dj

vij
on segments (pij

, pij+1), for all j = 2, . . . , l, including
dl+1−dl

vil
on segment (pil

, pτ ).

Lemma 1. Given a traversal path U = (pi1

vi1−−→ pi2

vi2−−→ ...
vik−1−−−−→ pik

) with
strictly increasing expulsion speeds and the traversal time T (U). And another

traversal path with the same points U ′ = (pi1

v′
i1−−→ pi2

v′
i2−−→ ...

v′
ik−1−−−−→ pik

) with the
traversal time T (U ′), where vij

≤ v′
ij
, for all j = 1, . . . , k. Then T (U ′) ≤ T (U).

Proof. The thesis of the lemma follows directly from the fact that all segments
are shared by U and U ′, and each of them is traversed not slower in U ′.

Lemma 2. If the order of critical points used in the optimal solution S ≡ (s =
pσ

vσ=1−−−→ pi2

vi2−−→ . . . pil

vil−−→ t = pτ ) corresponds to the first occurrences of these
points on the zigzag path ZL, the traversal time admitted by ZL is 9-competitive.



132 L. G ↪asieniec et al.

Proof. Let PZ be the actual path that robot R adopted on the way to target t,
i.e., the relevant prefix of ZL. Also, let d′

j be the length of prefix of PZ until the
first encounter of pij

and v′
ij

be the expulsion speed associated with the segment
of PZ connecting pij

and pij+1 . This segment is of length d′
ij+1

− d′
ij

. Thus the
total traversal time to target t along consecutive segments of ZL is

T (PZ) =
l∑

j=1

d′
ij+1

− d′
ij

v′
ij

Note that the speed used by robot R between consecutive critical points can be
the same as in the optimal solution, or it may be faster as due to taking wider
swings (on ZL) robot R can pick some faster expulsion speeds earlier at non-
critical points visited on the way. Thus the (average) speeds adopted between
critical points satisfy vij

≤ v′
ij

. And, the competitive ratio of the “zig-zag”
strategy can be expressed as:

r =
T (PZ)
T (S)

=

∑l
j=1

d′
ij+1

−d′
ij

v′
ij∑l

j=1

dij+1−dij

vij

≤
∑l

j=1

d′
ij+1

−d′
ij

vij∑l
j=1

dij+1−dij

vij

=

d′
il

vil
+

∑l−1
j=1 d′

ij
( 1

vij−1
− 1

vij
)

dil

vil
+

∑l−1
j=1 dij

( 1
vij−1

− 1
vij

)
.

Now knowing that d′
ij

≥ Dij
and using the fact from [3] that the distance walked

along ZL towards each critical point pij
is d′

ij
≤ 9Dij

, for each j = 1, . . . , l, we
can estimate the competitive ratio

r ≤
9Dil

vil
+

∑l−1
j=1 9Dij

( 1
vij−1

− 1
vij

)
Dil

vil
+

∑l−1
j=1 Dij

( 1
vij−1

− 1
vij

)
= 9

We conclude with the following theorem.

Theorem 2. The traversal time admitted by ZL is 9-competitive.

Proof. We already know, see Lemma 2, that the 9-competitive ratio is secured
if the order in which the critical points are visited in the optimal solution is the
same as their first occurrences in ZL. However, if this order is altered certain
critical points will be approached (and segments in between traversed) with
faster speeds than in the optimal solution S. This observation combined with
Lemma 1 admit the thesis of the theorem.

3 Search on 2d Plane

In this section we consider the search problem in 2d Euclidean plane Π. Similarly
to the case on the line we study first the variant with the full knowledge and
later focus on the case where robot R has only local knowledge. Also in this
section we assume that the points in P have integer coordinates.



Searching with Increasing Speeds 133

3.1 Variant (1) - with Global Knowledge

The task of finding the optimal route in 2d-plane is to some extent similar to the
case on the line. Namely, one can construct a DAG = (P,A) with a collection A
of directed edges (arcs) pi → pj , for all pi, pj ∈ P with vi < vj . Each arc pi → pj

has the associated weight representing the time needed to traverse from pi to
pj with the expulsion speed vi available in pi. The size of DAG is quadratic in
|P | = n, thus one can solve the search problem by finding all shortest (fastest)
paths from points in P to target t in time O(n2).

While in the case on the line we managed to reduce the size of such DAG to
O(n), in 2d-plane the challenge is steeper due to greater freedom of movement
of robot R. In addition, after computing all shortest paths in DAG further
queries on arbitrary points (outside of P ) for the fastest routes towards target t
remain non-trivial. To counterpart, one can use the concept of additively weighted
Voronoi diagrams, see, e.g., [13], based on points in P where each pi ∈ P has
weight wi which reflects the time required to move from pi to t in DAG. This
type of diagram partitions the whole plane into n cells C1, . . . , Cn, where cell
Ci contains all points p for which the value |(p, pi)| + wi is minimised w.r.t.
all i = 1, . . . , n. It is known, that one can compute additively weighted Voronoi
diagrams on n points in time O(n log n) [13]. One can also enhance such diagrams
in time O(n · polylogn) to enable a (randomised) algorithm finding the closest
(among n) weighted point in time Q(n) = polylog(n), see the work of Karavelas
and Yvinec [15] based on the ideas from [12]. While this complexity is not as
good as the basic query time O(log n) available for unweighed points, see the
classical algorithm of Kirkpatrick for planar point location [20], it still allows us
to construct a faster solution to the search problem if there is a relatively small
number k � n of distinct expulsion speeds v∗

1 ≥ · · · ≥ v∗
k present in the system.

The Invariant. The improved construction of all fastest paths (to target t)
operates in k rounds and is based on the following invariant. On the conclusion
of round i we compute the fastest routes to t for any point with the expulsion
speed at least as fast as v∗

i . Let Pi = {pi1 , . . . , pim
} ⊂ P be the set of all such

points with the traversal times Ti1 , . . . , Tim
respectively. Note that these times

are computed for good, i.e., they never change, as in further rounds we only
add points with strictly smaller expulsion speeds. During round i + 1 for each
point p ∈ Pi+1 \ Pi we need to determine whether robot should go directly to
t or should be relayed via some point in Pi with a higher expulsion speed. The
time of moving directly to target t can be computed easily, however, choosing
the right relay point in Pi is more complex.

The Best Relay Node. In the solution we use additively weighted Voronoi
diagrams in which times Ti1 , . . . , Tim

will determine (after proper rescaling) the
weights of points in Pi. Recall that in additively weighted Voronoi diagrams the
closest point is chosen according to the (Euclidean) distance to the point added
to its weight. In our problem we try to minimise the sum of times needed to
walk from p to a point pij

∈ Pi and its weight Tij
which is

dist(p,pij
)

v∗
i+1

+Tij
. Since

the first term is not referring to the Euclidean distance we can multiply both



134 L. G ↪asieniec et al.

terms by v∗
i+1 to obtain dist(p, pij

) + Tij
· v∗

i+1. This rescaling applied for each
point in Pi does not change the selection of the fastest route to t via points in
Pi, while it allows to use additively weighted Voronoi diagrams to speed up the
search for the best relay node in Pi. Thus if we construct an additively weighted
Voronoi diagram for points in Pi with weights Ti1 · v∗

i+1, . . . , Tim
· v∗

i+1, we can
find for any p ∈ Pi+1 \ Pi the best relay node in Pi in polylogarithmic time.

The following theorem holds.

Theorem 3. If the number of distinct speeds is limited to k � n one can find
all fastest routes to target t in time O(n · k · polylog(n)).

Proof. The algorithm works in k rounds. During each round one needs to con-
struct an additively weighted Voronoi diagram which is enhanced to answer the
closest point queries. The total cost of such construction is k·O(n·polylog(n)). In
addition, every point in P is queried exactly once during the search for the best
relay node. This give the total complexity k·O(n·polylog(n))+O(n·polylog(n)) =
O(n · k · polylog(n)).

After computing all fastest paths from points in P to target t one can compute
one more (enhanced) additively weighted Voronoi diagram to provide the fastest
route queries for any point in Π in time Q(n) = polylog(n).

Search on a 2d-Grid. In the last part of this section we show that if all points
in P are located on a relatively small grid with at least one dimension limited to
size g � n (e.g., the grid has g rows) and the robot is allowed to use only edges
of the grid one can find all fastest routes to target t in time O(g · n log n).

Dynamic Nearest Larger Neighbour. In this model we also use the solution
to the nearest larger neighbour problem on the line. However this time we adopt
the dynamic version in which one can ask queries at arbitrary points, remove
and add values in time O(log n), where n is the cap on the number of values
currently stored. The three operations can be implemented with the help of a
balanced binary search tree, in which all values are kept in the leaves and each
internal node contains the largest value stored in the respective subtree.

Also here the construction is done by considering distinct expulsion speeds in
decreasing order v∗

1 ≥ · · · ≥ v∗
k, for some k ≤ n. In fact we use the same notation,

division into rounds and a similar invariant. In particular, we assume that on
the conclusion of round i the fastest routes from all points in Pi to t are already
computed and they never change. In addition we assume that the points from
Pi are processed in the relevant rows for the nearest larger neighbour queries
according to their expulsion speeds.

During round i + 1 we consider points from Pi+1 \ Pi in an arbitrary order.
Let p ∈ Pi+1 \ Pi where p belongs to some column c in the grid. In order to
compute the fastest route from p to t we first compute the fastest direct route
(without relay nodes) in constant time. This route needs to be compared with
the best route via some relay node in Pi. In order to find the best relay node we
query each row at column c for the nearest largest value, i.e., to find the closest



Searching with Increasing Speeds 135

points pl and pr, to the left and right respectively, with larger expulsion speeds
for which the fastest routes are already computed in earlier rounds. These are
the only relay points in this row which need to be considered as going directly
(i.e., not visiting any other relay points in this or some other rows which are
considered separately) to any other relay point in this row will always result in
slower solution. Thus the fastest route from p to target t can be computed by
examining at most 2g nodes which can be done in time O(g · log n). And when
the fastest route from p is finally computed, we insert p to the nearest larger
neighbour solution in the relevant row in time O(log n).

Finally, since the cost of inclusion (finding the fastest route) of each node in
P is bounded by time O(g · log n) we conclude with the following theorem.

Theorem 4. If the points from P are distributed in a grid with one dimension
limited to g � n and robot R can move only along edges of the grid, all fastest
routes towards target t can be computed in time O(g · n log n).

3.2 Variant (2) - with Local Knowledge

It is well known that in the classical search problem in 2d space the competitive
ratio of search process is Ω(D) as on the way to target t located at an unspecified
distance D robot R needs to visit all (discrete, with integer coordinates) points
within a ball of radius D centred in s. Since there are Ω(D2) integral points in
such ball and the fastest route is of length D the competitive ratio follows.

In this section we show that analogously to the classical search the spiral
strategy admits also in this case O(D)-competitive solution w.r.t. the fastest
route from the starting point s to target t. Since we adopted the model with the
integral points we will use a simplification of the spiral shape formed of borders
bi of increasing in size boxes Bi, where B0 = {s} with s = (xσ, yσ), and for i ≥ 1
box Bi contains all points u = (x, y), such that |x−xσ|, |y − yσ| ≤ i. The border
bi is defined as Bi\Bi−1, it has a square shape and it contains exactly 8·i integral
points, for any i ≥ 0. The spiral strategy instructs robot R to search through the
consecutive (with increasing i) borders bi, and to adopt faster expulsion speeds
as soon as they are encountered.

The proof of O(D)-competitiveness is done in two steps. We first relocate
points in set P such that the fastest solution S′ for the new locations of points
is at least as fast as S, which is the fastest solution for the original location of
points in P . We later show that the spiral based solution is O(D)−competitive
with respect to S′, so in turn it is also O(D)−competitive with respect to S.

Let D′ ≤ D be the index of the border to which target t belongs to, i.e.,
t ∈ bD′ and let S ≡ (s = pi1

vσ=1−−−→ pi2

vi2−−→ . . . pil

vil−−→ t) be the fastest route
from s to t. We construct a different arrangement (with alternative locations) of
points in the solution S in which if pij

∈ S belongs to border bj , for any j < D′,
it is moved to the location (xσ, yσ+j) on the vertical line originating in s. All
other points in S including target t are moved to the location (xσ, yσ+D′).

Let S′ ≡ (s = pi′
1

vi′
1
=1

−−−−→ pi′
2

vi′
2−−→ . . . pi′

m−1

vi′
m−1−−−−→ pi′

m
= t) be the fastest

route from s to t on the newly formed line. We point out here that the time



136 L. G ↪asieniec et al.

complexity T (S′) of the solution S′ is not worse than the time complexity T (S),
in other words T (S′) ≤ T (S). And this happens because the distance between
any pair of points in S can be only reduced during the relocation process.

Finally, we show that the time complexity Ts of our spiral strategy applied
to points in P (before rearrangement) is only O(D) multiplicative factor away
from T (S′). In the analysis, we bound Ts from above by T ∗

s referring to the time
complexity of a “lazy” strategy in which while searching border bi robot R uses
the fastest expulsion speed v∗(i − 1) encountered earlier in box Bi−1, and the
fastest expulsion speed found in bi (if larger than v∗(i − 1)) will be used only in
border bi+1 and later (until finally substituted by a higher expulsion speed).

In what follows we show that T ∗
s

T (S′) = O(D′). Note that T (S′) =
∑m

j=2

i′
j−i′

j−1
vi′

j−1

. On the other hand in the lazy strategy robot R will search i′2−i′1+1

the most central borders with the speed vi′
1
, then it will search through i′j − i′j−1

borders with speed vi′
j−s

, for any j = 3, . . . m, and finally the last i′m − i′m−1

borders with speed vi′
m−1

. The size of each border is not larger than 8 · D, thus

we can estimate T ∗
s from above by

∑m
j=2

(i′
j−i′

j−1)·8D′

vi′
j−1

+ 8
vi′

1

. Comparing the two

complexities we note that in the summations every term in T ∗
s is larger at most

8D′ times, where D′ ≤ D. The only extra (positive) cost in T ∗
s refers to the

term 8
vi′

1

. However, since robot R has to walk at least distance 1 along P with

the speed vs = vi′
1

we obtain a good amortisation and finally conclude with the
following theorem.

Theorem 5. The spiral search strategy admits asymptotically optimal solution
with O(D)-competitive factor.

4 Conclusion

In this paper we considered the search problem with increasing speeds for models
with local and global knowledge. Several problems remain open. This includes
computation of more accurate asymptotic bound (beyond Big-O) notation of
the competitive factor in the solution based on the spiral strategy. Another
unanswered question refers to faster computation of the best routes from points
in P to target t when the number of distinct expulsion speeds can be linear in n.
Finally, one could also consider the case with points in P moving along known
or unknown trajectories.

Acknowledgements. The authors would like to thank Jurek Czyzowicz for early
discussions on the studied problem and the anonymous reviewers for a number of
corrections and suggestions which helped us to improve the presentation.



Searching with Increasing Speeds 137

References

1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding nearest larger neighbors. In: Albers,
S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 249–260.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5 17

2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching with uncertainty
extended abstract. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318,
pp. 176–189. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19487-
8 20

3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106(2), 234–252 (1993)

4. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom.
Theory Appl. 5(3), 143–154 (1995)

5. Bampas, E., et al.: Linear search by a pair of distinct-speed robots. In: Suomela,
J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48314-6 13

6. Bellman, R.: Minimization problem. Bull. AMS 62(3), 270 (1956)
7. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of

a pebble: exploring and mapping directed graphs. In: STOC 1998, pp. 269–278
(1998)

8. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on
a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp.
205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-
4 18

9. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

10. Czyzowicz, J., G ↪asieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
beachcombers’ problem: walking and searching with mobile robots. Theor. Com-
put. Sci. 608, 201–218 (2015)

11. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling
by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23719-5 59

12. Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Sym-
posium on Computational Geometry, pp. 106–115 (1998)

13. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174
(1987)

14. Ghosh, S.K., Klein, R.: Online algorithms for searching and exploration in the
plane. Comput. Sci. Rev. 4(4), 189–201 (2010)

15. Karavelas, M.I., Yvinec, M.: Dynamic additively weighted Voronoi diagrams in
2D. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 586–598.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6 52

16. Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. Comput.
Geom. 18(3), 125–139 (2001)

17. Jeż, A., �Lopuszański, J.: On the two-dimensional cow search problem. Inf. Process.
Lett. 131(11), 543–547 (2009)

18. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 109(1), 63–79
(1996)

https://doi.org/10.1007/978-3-642-03456-5_17
https://doi.org/10.1007/3-540-19487-8_20
https://doi.org/10.1007/3-540-19487-8_20
https://doi.org/10.1007/978-3-319-48314-6_13
https://doi.org/10.1007/978-3-642-40450-4_18
https://doi.org/10.1007/978-3-642-40450-4_18
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-642-23719-5_59
https://doi.org/10.1007/3-540-45749-6_52


138 L. G ↪asieniec et al.

19. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distrib. Comput. 28(2), 147–154 (2015)

20. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

21. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 135

22. Li, H., Chong, K.P.: Search on lines and graphs. In: Proceedings of 48th IEEE
Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference (CDC/CCC 2009), vol. 109, no. 11, pp. 5780–5785 (2009)

23. Shortt, D.: Gravity assist, 27 September 2013. www.planetary.org
24. Temple, T., Frazzoli, E.: Whittle-indexability of the cow path problem. In: Amer-

ican Control Conference (ACC), pp. 4152–4158 (2010)

https://doi.org/10.1007/3-540-61440-0_135
http://www.planetary.org


BEE’S STRATEGY AGAINST BYZANTINES

Replacing Byzantine Participants
(Extended Abstract)

Amitay Shaer1, Shlomi Dolev1(B), Silvia Bonomi2, Michel Raynal3,
and Roberto Baldoni2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

{shaera,dolev}@cs.bgu.ac.il
2 Research Center of Cyber Intelligence and Information Security (CIS),

Department of Computer, Control, and Management Engineering “A. Ruberti”,
Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy

{bonomi,baldoni}@diag.uniroma1.it
3 IRISA, Université de Rennes, 35042 Rennes, France

michel.raynal@irisa.fr

Abstract. Schemes for the identification and replacement of two-faced
Byzantine processes are presented. The detection is based on the compar-
ison of the (blackbox) decision result of a Byzantine consensus on input
consisting of the inputs of each of the processes, in a system containing n
processes p1, . . . , pn. Process pi that received a gossiped message from pj

with the input of another process pk, that differs from pk’s input value as
received from pk by pi, reports on pk and pj being two-faced. If enough
processes (where enough means at least t+1, t < n is a threshold on the
number of Byzantine participants) report on the same participant pj to
be two-faced, participant pj is replaced. If less than the required t+1 pro-
cesses threshold report on a participant pj , both the reporting processes
and the reported process are replaced. If one of them is not Byzantine, its
replacement is the price to pay to cope with the uncertainty created by
Byzantine processes. The scheme ensures that any two-faced Byzantine
participant that prevents fast termination is eliminated and replaced.
Such replacement may serve as a preparation for the next invocations
of Byzantine agreement possibly used to implement a replicated state
machine.

Keywords: Distributed algorithms · Consensus · Byzantine failures
Detection

The research was partially supported by the Rita Altura Trust Chair in Computer
Sciences; the Lynne and William Frankel Center for Computer Science; the Ministry
of Foreign Affairs, Italy; the grant from the Ministry of Science, Technology and
Space, Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Sci-
ence, Technology and Space, Infrastructure Research in the Field of Advanced Com-
puting and Cyber Security; and the Israel National Cyber Bureau. Michel Raynal vis-
ited BGU with the support of the Dozor foundation. Contact author: Shlomi Dolev.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 139–153, 2018.
https://doi.org/10.1007/978-3-030-03232-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_10&domain=pdf


140 A. Shaer et al.

1 Introduction

The Byzantine Agreement (BA) problem, introduced by Pease, Shostak, and
Lamport in [7], is known as a fundamental problem in fault-tolerant distributed
computing. The problem has received a lot of attention in the literature and has
become the essence of a variety of schemes in distributed computing.

Solving the Byzantine agreement problem is not necessarily tied to the detec-
tion of the Byzantine processes, the only success criterion of the agreement is
whether all correct processes agree on the same value. In this work, we focus on
detecting a sub-class of Byzantine behavior (i.e., namely two-faced Byzantine
processes) for the sake of replacing them in the next Byzantine agreement invo-
cation. The detection and replacement procedure can be plugged in any other
algorithm using a Byzantine Agreement e.g., possibly as part of the implemen-
tation of a replicated state machine. The final goal is to prepare for the future
invocations of the agreement, trying to ensure that the next invocation of the
Byzantine agreement will cope with a smaller number of two-faced Byzantine
processes.

The Byzantine Agreement Problem. In the Byzantine Agreement Problem,
there are n processes, Π = {p1, . . . , pn} with unique names over N = {1, . . . , n}
and at most t < n of the processes can be Byzantine. Each process starts with
an input value v from a set of values V 1. The goal is to ensure that all non-faulty
processes eventually output the same value. The output of a non-faulty process
is called the decision value.
More formally, an algorithm solves the Byzantine Agreement if the following
conditions hold:

– Agreement. All non-faulty processes agreed on the same value (i.e., there
are no two non-faulty processes that decide different values).

– Validity.2 If all non-faulty processes start with the same value v, the decision
value of all non-faulty participants is v.

– Termination. Eventually, all non-faulty processes decide a value.

Reaching agreement in presence of Byzantine processes is expensive as the num-
ber of messages grows quadratically with the number of participants n and the
number of rounds (time) grows linearly with the number of Byzantine partici-
pants t (with n > 3t).

Applications may repeatedly invocate agreement instances (e.g., as part of
implementing a replicated state machine). Typically, the presence of Byzantine
activity is rare, and it is desirable that the overhead in handling Byzantine
activity will be tuned to the actual situation. Hence, we want to adjust the time
it takes for each consensus invocation to run according to the actual situation at
the time. In addition, when the system is interactive and never stops (as in the
case of a replicated state machine) the number of Byzantine participants may be
1 Binary Agreement is defined with the set V = {0, 1}.
2 There is an alternative, stronger property for Validity [6]. The decision value v has

to be an input value of at least one non-faulty process.



Bee’s Strategy Against Byzantines 141

accumulated to exceed any threshold. To avoid the accumulation of Byzantine
participants over time, we suggest a detection and replacements of Byzantine
participants. Thus, we suggest to couple the consensus algorithm with a detection
mechanism. As soon as a Byzantine activity is detected, the suspected Byzantine
process will be eliminated and replaced.

The rest of the paper is organized as follows: in Sect. 2, we describe shortly our
system settings. In Sect. 3, we introduce our approach of the detection process
as a combination of two algorithms, fast and slow presented in Sects. 4 and 5
respectively. Due to space limitations, proofs and details are omitted from this
extended abstract and can be found in [8].

2 System Settings

We consider a distributed system composed of n processes, each having a unique
identifier p1, p2, . . . , pn. We assume that up to t processes can be Byzantine with
n > 3t. A process is said to be Byzantine if it deviates from the protocol, other-
wise it is said to be correct. Processes communicate trough message exchanges.
A reliable communication is assumed, where a point-to-point channel exists for
every pair of processes. More precisely, if a correct process pi sends a message m
to a process pj , then m will be delivered by process pj . Channels are authenti-
cated, i.e., when a process pj receives a message m from a process pi, pj knows
that m has been generated by pi.

We consider a particular sub-class of Byzantine failures called two-faced
Byzantine. A process is said to be two-faced Byzantine if it is supposed to send
a broadcast message to all processes in the system but it is sending different
messages to different processes. In the sequel, we use the term process acting as
Byzantine to refer to a process that exhibits two-faced behaviour.

The system is synchronous and evolves in sequential synchronous rounds
r1, r2, . . . ri . . .. Every round is divided into three steps: (i) send step where the
processes send all the messages for the current round, (ii) receive step where the
processes receive all the messages sent at the beginning of the current round3

and (iii) computation step where the processes process the received messages
and prepare new messages to be sent in the next round. The processes have
the ability to make speculative execution when needed, meaning an execution
is made, but all states are saved until a condition holds, sometimes forcing the
system rolling back to the previous state (see e.g., [5]).

We assume the existence of a trusted entity component (or components),
called hypervisor. The hypervisor can only receive messages from the processes
but cannot send them messages. The hypervisor can eliminate or replace a pro-
cess with a different process instance. The hypervisor is assumed to be correct
all the time. We consider two different types in which the hypervisor integrated
into the system:

3 Let us note, that in round-based computations, all deliver() events happen during
the receive step.



142 A. Shaer et al.

– Global hypervisor. There exists just one global hypervisor that controls all
the processes in the system.

– Local hypervisor. There is a hypervisor that controls p for each process p.
Each local hypervisor can communicate with the other local hypervisors.

3 Byzantine Detection and Replacement

Many various algorithms exist for solving different problems given Byzantine
processes (some of the algorithms require a restriction on the number of Byzan-
tine participants). In order to detect Byzantine processes, it is necessary that
participants running the distributed algorithm report and audit activities per-
formed by each other. Let us observe that given t + 1 or more testimonies for
process pj as faulty, pj is Byzantine as there exists at least one correct process
suspecting pj with correct evidences (i.e., there exists at least one correct process
that observed a misbehavior from pj). On the other hand, in case there are at
least one and less than t + 1 testimonies on pj being Byzantine, then at least
one process is Byzantine among the reporting processes and pj . Unfortunately,
in this case it is not possible to detect who is the Byzantine process but it is
possible to identify a group of processes that collectively exhibits a bad behavior
and that for sure contains the Byzantine process.

In the heart of the detection, we expect two main parts: fast and slow. The
fast part is run by the processes as long as there is no Byzantine activity. When
Byzantine activity is discovered the slow part takes place and replaces the Byzan-
tine processes that acted in a two faced fashion, enforcing the system to continue
beyond the fast part. We use the term fast termination for a scenario in which
the fast part is successfully completed.

Thus, our problem can be summarized by adding the following properties to
the specification of the original Byzantine agreement problem:

– Completeness. A process pi acting two-faced in a manner that eliminates
fast termination is suspected by some correct process pj .

– Sacrifice. If process pi is suspected by at least t + 1 processes, pi is the
only one to be replaced. Otherwise, pi and the processes that suspect pi are
replaced.

Note, that the completeness above somewhat resembles game theory con-
sideration, enforcing Byzantine process that would like to survive to allow the
system to terminate fast, and the best global utility is achieved.

4 Byzantine Free Fast Termination

We suggest a Byzantine agreement protocol composed of fast and slow parts.
As long as there is no indication of a Byzantine activity, such that is causing the
slow algorithm to be executed, only the fast algorithm takes place (Algorithm1).
Combined with the capability of speculative execution and roll back, the actual



Bee’s Strategy Against Byzantines 143

execution is only two rounds (rounds 1 and 2 of Phase 1). Contrarily, when a
testimony of Byzantine activity has been discovered, processes start to execute
the slow algorithm (Algorithms 3 or 4).

Optimistically, all processes are assumed to be correct and start with the
fast algorithm. When a Byzantine activity is detected by a correct process, the
correct process notifies other processes, essentially, invoking the slow algorithm.

Preliminaries. In our schemes, a process p is replaced whenever enough tes-
timonies of a two-faced behavior of p are collected. When there is no sufficient
number of testimonies for a two-faced behavior of a particular process p, several
replacements may take place. A replacement may be scheduled for the processes
that provide the testimonies (possibly as a sacrifice action), and also for the
process that is blamed to be two-faced.

A consensus vector of n inputs is required for maintaining the replicated
state machine as described, for example in [3]. We are interested in providing
a consensus vector solution with Byzantine detection, as we define next. The
properties of the consensus vector task are defined in terms of n inputs. In a
more formal way:

– Agreement. All non-faulty processes agreed on the same vector. There are
not two non-faulty processes that decide on different vectors.

– Validity. Let V be the decision vector. ∀i ∈ N , if pi is correct then vector[i]
is the input value of pi.

As for the detection properties, the following are defined:

– Completeness. A process pi acting in a two-faced manner that causes the
system not to decide in a fast termination fashion is suspected by some correct
process pj (and eventually replaced by the hypervisor).

– Sacrifice. If process pi is suspected by at least t + 1 processes, pi is the
only one to be replaced. Otherwise, pi and the processes that suspect pi are
replaced.

The Fast Algorithm (Algorithm 1). The fast algorithm takes place in the first
three rounds following a consensus invocation. In the first round (lines 1–2), each
process sends its input value while in the second round (lines 3–5) each process
sends the values it received in the previous round. After these two rounds, each
process looks for conflicting messages as an indication for Byzantine activity and
extracts a suspect list. In the third round, a process sends a bit (an indication bit)
with value of 1 (suspect message) as an indication for Byzantine activity if such
activity is detected. Then, processes start a new binary consensus invocation
(phase 2 line 9). The input value is determined as follows: if a process receives
suspect messages, the process uses 1 as an input value and uses 0 otherwise.

Either way, starting from this point, the processes make a speculative exe-
cution of the consensus. The processes use the consensus vector of the first two
rounds as a decision value, save the state before the consensus execution and con-
currently, start the consensus and a new fast algorithm. If the decision value is 0,



144 A. Shaer et al.

then the speculative execution appears to be the right execution and the saved
state is discarded. Otherwise, the decision value equals 1, meaning a Byzantine
activity occurred. The processes roll back to the state before making the consen-
sus and start the slow algorithm that will replace the Byzantine processes that
cause disagreement on the input vectors. The relevant suspect lists that have
been recorded in the corresponding incarnation of the fast algorithm is used by
the slow one.

An early stopping Byzantine agreement is used to agree on the indication bit.
For example, one may use the algorithm suggested in [1,4]. Such an early stopping
algorithm terminates in min{t+1, f+1} rounds, where t is the maximum number
of Byzantine and f is the actual Byzantine processes.

Algorithm 1. Fast Algorithm for process pi, Denote by N the group of processes’
identities, by vi, the input value of process pi:
Process fields (initialized with each invocation):

vector = [⊥, . . . , ⊥]
vectors = [⊥, . . . , ⊥]
slow = 0, suspects = ∅

Phase 1:
Round 1:

1: ∀j ∈ N : send vi to pj

2: on receive of vj from pj : vector[j] = vj
Round 2:

3: ∀j ∈ N : send vector to pj

4: on receive of vectorj from pj : vectors[j] = vectorj
� Concurrently decides vector and speculatively executes the rest

Round 3:
5: suspects = getSuspects(vectors) � check for conflicts
6: if (|suspects| ≥ 1) then ∀j ∈ N : send ′1′ to pj � indication for suspicion
7: on receive of ′1′ from pj : slow = 1

Phase 2:
8: if BA.decide(slow) = 1 then � BA - optimal early stopping Agreement
9: role back state and apply SLOW algorithm with suspects list

The getSuspected function is used in the third round of the first phase. This
function is used to detect Byzantine processes based on the received messages
of the first two rounds. The function input is vectorsi, a vector of vectors that
represents all the received messages of the two rounds. The value of vectorsi[k][j],
k, j ∈ N , represents the value of pj as received by pk in the first round. The value
of vectorsi[k][j] has been sent to pi by pk during the second round (if k = i then
vectorsi[i][j] is known after the first round).

At the beginning, the function finds Byzantine processes and removes their
values from vectorsi. Then the function searches for suspected processes. By
analysing the vector it is possible to use a voting approach for each value pro-
posed on the basis of the value received during the exchanges in the first two



Bee’s Strategy Against Byzantines 145

rounds. Majority of process pj is the most frequent value in {vectors[i][j] : i ∈
N}, where N is the unique processes’ identifier.

In order to find faulty processes based on vectorsi, the getSuspects function
checks, for each process pk, if there are at least n − t processes that sent the
same value in the second round, otherwise pk is faulty. This check is done by
examining the k-th entry of each vector in vectorsi. Then, the function counts
how many times pk provides a value v for pj (given by vectorsi[k][j]), such that v
and the majority value for pj are different. If it counts more than t occurrences,
pk is faulty. The function then checks, that the value received from pk in the first
round equals the majority value for pk. After finding faulty process (or processes),
their value is removed from vectorsi. However, when at least one faulty process
had been found, less than t + 1 testimonies are required to discover additional
faulty processes. Finally, when no more faulty processes can be discovered, the
remaining processes’ conflicts are considered to be the suspected processes only.
The function returns a union of the faulty and suspect groups.

Algorithm 2. Description of the function getSuspects(vectors) for process pi
1: procedure getSuspects(vectors)
2: maxFaults = t
3: faulty = ∅
4: repeat
5: newFaulty = ∅
6: for k ∈ N \ faulty do
7: majorityDiff = {j ∈ N \ faulty : vectors[k][j] �= majority(j)}
8: if (majority(k) = ⊥) OR (vectors[i][k] �= majority(k))

OR (|majorityDiff | ≥ maxFaulty + 1) then
9: newFaulty = newFaulty ∪ {k}

10: for k ∈ newFaulty do
11: vectors[k] = [⊥, ..., ⊥]
12: ∀j ∈ N : vectors[j][k] = ⊥
13: maxFaults = t − |faulty|
14: faulty = faulty ∪ newFaulty
15: until (newFaulty = ∅ OR |faulty| = t)
16: suspects = {k : k ∈ {i, j} s.t. ∃j,i∈N\faulty vectors[j][i] �= majority(i)}
17: return faulty ∪ suspects

18: procedure majority(k)
19: if vectors[i][k] = ⊥ then
20: return ⊥
21: return v s.t. |{j ∈ N : vectors[j][k] = v}| ≥ n − t, ⊥ otherwise

The first two rounds of the algorithm are based on the exponential informa-
tion gathering (EIG) Byzantine agreement algorithm introduced in [2]. In the
first round, each process sends its own input value. In round r > 1, each process
sends all the messages it receives in round r − 1.



146 A. Shaer et al.

The following definitions and proofs are used to explain the detection pro-
cess of the fast algorithm. The main detection process is done by the function
getSuspects (Algorithm 2) after collecting messages of two rounds. The function
starts with identification of the Byzantine processes, then the function finds sus-
pect processes using pi messages (i.e., from pi’s point of view). The definitions
c-order lie with respect to pi and A c-discoverable with respect to pi are used to
explain the detection of Byzantine process and the definition pi co-suspects pj
and pk is used for explaining the detection of suspected processes. Then lemmas
are used, based on those definitions, to prove the correctness of the detection
algorithm. First, getSuspects function tries to identify Byzantine processes by
finding A c-discoverable with respect to pi processes. Then, identifies the suspects
process by looking for processes pj , pk such that pi co-suspects pj and pk.

Definition 1. pi co-suspects pj and pk. Let r > 1, process pi co-suspects pj
and pk if in round r, pj has sent to pi value v, which supposed to be the value
that pk sent in round r − 1, while a majority of processes have sent value v′ �= v
to pi as the value sent by pk in round r − 1.

Definition 2. c-order lie with respect to pi. Let c ≥ 1, C - a correct processes
group of size c, called the lied group, pi ∈ C. There are two kinds of c-order lie:

– Two-faced. Process pj , j ∈ N/C sends value v to all processes in C and a
different value (or values) to others not in C.

– Anomalous. ∀pi ∈ C, pi co-suspects pj and pk, k ∈ N .

A better understanding of the difference between two-faced and anomalous
requires a look in Algorithm1. In the first round only one value, the input value,
is sent. In the second round, n values are sent (as a single message). A two-
faced lie can be made in the first round and be discovered in the second round.
In that case, in the first round, the process may send v as its initial value to
0 < c < n processes and value v′, v �= v′, to others, but it can only lie concerning
a single value in its message. On the other hand, an anomalous lie can be made
in the second round, where there are n possibilities to lie for each one of the
n values.

c-order lie leads to the c-discoverable definition. Usually, given t + 1 testi-
monies for process p to be Byzantine, process p is doomed to be Byzantine.
However, if we already count x Byzantine processes, then only t + 1 − x testi-
monies are required to discover another Byzantine process. Using this fact, the
algorithm starts looking for Byzantine processes using t + 1 testimonies to find
x Byzantine processes, then uses t−x+1 testimonies, and so on, as long as new
Byzantine processes are found. Note, that both lies are two-faced, but the way
of detecting those lies is different.

Definition 3. A c-discoverable with respect to pi process. Let 1 ≤ c ≤
t + 1, a process pj is c-discoverable with respect to pi if i �= j, and pj made a
c-order lie to the lied group C, pi ∈ C and:



Bee’s Strategy Against Byzantines 147

Fig. 1. We focus only on messages regarding process p3. p1 co-suspects p2 and p3.
Three processes (including p1) notify p1 that p3 sent ‘1’ at the first round and p2 tells
p1 that p3 sent ‘0’ at the first round.

Fig. 2. p4 sends different values to different processes. p4 is 3-discoverable (C =
{5, 3, 2}) and P7 is 2-discoverable (C = {1, 2}). p4 and p7 will cause the processes
to run the slow algorithm. p4 and p7 will be replaced by the hypervisor then.

– c = t + 1 or
– c < t + 1, and there is a group G = {k ∈ N : pk is a c′-discoverable with

respect to pi, c′ > c}, such that |G| > t − c

In Fig. 1, we focused only on messages involving p3, even though other mes-
sages are sent as well. In the first round p1, p2 and p4 receive the value 1 from
p3. In the second round, p4 and p1 notify p1 (p1 sends the message to itself),
that p3 sent 1 in the first round, while p2 claims that the value 0 had been sent
by p3. In that case, p1 has two processes, including itself, that report 1, and one
process that reports 0. p1 cannot identify whether p3 or p2 are faulty and p1
suspects them both. p1 co-suspects p2 and p3. Figure 2 depicts the case in which
p4 and p7 are 4 and 3-discoverable, respectively. The algorithm first detects p4
and only then can detect p3.

Lemma 1. If p is a c-discoverable with respect to pi, then p is detected as Byzan-
tine by pi.

Proof Sketch. The proof is given by decreasing induction on the value of c, 1 ≤
c ≤ t + 1, starting with c = t + 1 as the base case. Let c = t + 1, pi has t + 1
testimonies claiming pj as faulty. Since there are at most t faulty processes, at
least one of them is correct. Thus pj is faulty.



148 A. Shaer et al.

The inductive step. Assuming the claim is correct for c < t + 1, we show its
correctness for c′ = c− 1. By definition, there is a group of processes G wherein,
each process is c′′-discoverable with respect to pj , such that c′′ > c′. Therefore,
by the induction assumption, all processes in G will be detected as faulty by pi.
|G| > t − c′ means that pi has already discovered at least t − c′ faulty processes.
By definition of c-order lie with respect to pi, c refers to the number of correct
processes that have been lied to. Consider the case in which N ′ = N/G, in such
a case any group of c′ processes in N ′ includes at least one correct process. Now,
given c′ testimonies claiming pj as faulty, there is at least one correct process,
therefore pj is faulty and discovered by pi.

The following lemmas can be used for the exponential information gathering
(EIG) Byzantine agreement algorithm [2] where the algorithm terminates in t+1
rounds. In our algorithm, these lemmas hold for the first two rounds of the fast
algorithm.

Lemma 2. Let pj be a c-discoverable with respect to pi in round r ≥ 1. If pj
is two-faced, assuming at least one round left, pi detects pj as faulty in round
r + 1.

Lemma 3. Let pj be a c-discoverable with respect to pi in round r ≥ 1. If r > 1
and pj is anomalous, pi detects pj as faulty in round r.

Remark 1. Lines 5–9 in Algorithm 2 are searching for two−faced or anomalous
processes with maxFaults testimonies.

Remark 2. Line 16 in Algorithm2 when applied with vectorsi is searching for
pj , pk such that pi co-suspects pj and pk.

Lemma 4. Let pj a c-discoverable with respect to pi, then getSuspects(vectorsi)
for pi will return pj as faulty.

Lemma 5. Let pj be a c-discoverable with respect to pi, with two − faced in
round 1 or anomalous in round 2, where pi is a correct process. Then all pro-
cesses moved to the slow algorithm, where at least one process has non-empty
suspect list.

Claim 1. After applying getSuspects(vectorsi) for each correct process pi the
following holds:

– Let pj be a Byzantine process that exhibits Byzantine behavior. If pj is a
c-discoverable with respect to pi, pj will be included in pi’s faulty list, where
pi is a correct process. Otherwise, if pi co-suspects pj and pk, k ∈ N , pj will
be included in pi’s suspect list, where pi is correct process.

Proof Sketch. Suppose pj acts in a Byzantine two-faced fashion in the first two
round of the fast algorithm. In case pj acts in a c-discoverable fashion, then by
Lemma 4 pj will be discovered as faulty. Otherwise, suppose pi co-suspects pj
and pk, k ∈ N , by Remark 2 it will be discovered as suspected.



Bee’s Strategy Against Byzantines 149

Lemma 6. If there is no Byzantine activity, while running the fast algorithm,
the algorithm satisfies Agreement, validity, and termination.

Theorem 1. The fast algorithm satisfies completeness.

Proof Sketch. Suppose there is a Byzantine behavior of c-order lie (either two-
faces or anomalous) occurs by process pk while running the Fast algorithm.
suppose the Byzantine activity occurs at phase 1, by Claim 1 there is a correct
process pi that the return value of applying getSuspects function will return pro-
cess pk either as faulty or suspect. Thus, pi will let the other correct processes
know about the Byzantine activity and the Slow algorithm will be scheduled.
Otherwise, suppose that Byzantine activity occurs at phase 2 only, by the spec-
ulative execution method, the fast algorithm keeps running and if the decision
value equals 1, a rollback is scheduled, and the slow algorithm is scheduled to
replace the faulty process that has been detected before running the consensus.

Sacrifice property will be dealt with later in the Slow algorithm.

5 Using Byzantine Agreement Objects

5.1 Global Hypervisor

The Slow Algorithm (Algorithm 3). The algorithm consists of n stages that
run one after another, one for each process. The stage computation steps are
presented in Algorithm 3 and composed of 3 phases. The first 2 phases are done
by the processes, and the third phase is done by the global hypervisor, a single
hypervisor for controlling all the processes as defined earlier. In stage s, phase
1 (lines 1–7), process pi, such that (s mod n) + 1 = i, is the sender. The sender
sends its input value, vi, to all the other processes. Then the processes invoke
an initialized version of a Byzantine consensus on vi. Process pj sets the suspect
variable to 1 (line 7) if an agreement is reached, but the decision value is differed
from the received value, or pj had suspect pi in the fast algorithm already. In
that cases, pj suspects pi. In phase 2 (lines 8–10) each process, with suspect
variable set to 1, sends a suspect message to the global hypervisor (line 10).

The hypervisor can decide to eliminate or replace a process based on the
testimonies of other processes. In phase 3 (lines 11–14), if the hypervisor receives
at least t + 1 testimonies claiming that process pi is faulty, pi is doomed to be a
Byzantine process since at least one non-faulty process’s testimony exists. If the
number of testimonies is less than t + 1, it is unclear whether pi is Byzantine or
not. Either the testimonies are correct and pi is Byzantine, or the t Byzantine
processes worked together to incriminate pi. Thus, in this case, the hypervisor
has to replace them all, i.e., pi and the other processes that sent the testimonies.

By this approach, once Byzantine activity occurs by sender process pi, it will
be replaced by the hypervisor. Still, sometimes some correct processes would
be replaced along with pi. As a conclusion, the addition of third party (the
hypervisor) cannot identify Byzantine process pi unless there are at least t + 1



150 A. Shaer et al.

Algorithm 3. Code for process pi and hypervisor in stage s, each process starts
with suspect list it discovered in the fast algorithm:
Process fields: ini[1 . . . n] initially [null, . . . ,null],

suspect = 0
suspects = initialized from fast algorithm
BA[1 . . . n] initially [null, . . . ,null]

Phase 1 of stage s:
1: if s (mod n)+1 = i then
2: send vi to all processes
3: else � upon receiving vj from pj

4: ini[j] = vj
5: deci[j] = BA[j].decide(vj) � BA - Byzantine Agreement object
6: if deci[j] �= ini[j] OR j ∈ suspects then
7: turn on hypervisor ; suspect = 1

Phase 2 of stage s:
8: if s (mod n)+1 �= i AND suspect = 1 then
9: j = s (mod n)+1

10: send suspect(j) to hypervisor

Hypervisor code:

Phase 3 of stage s: � Let P = {i1, . . . , ik} group of processes that send suspect(i)
messages.

11: if (k > t) then
12: replace pi

13: else
14: ∀j ∈ P ∪ {i}: replace pj

processes that claim pi is Byzantine. Otherwise, in the worst case scenario, the
only possibility left is to suspect all the t + 1 processes. That way, in all cases
Byzantine process pi that has been discovered in the fast part is doomed to be
replaced at stage s′, such that (s′ mod n) + 1 = i. At the end of the n stages,
each Byzantine process that has been discovered in the fast algorithm will be
replaced and each non-faulty process will have the same vector of values. The
next theorem summarizes the above observations.

Theorem 2. Algorithm3 satisfies agreement, validity, and termination.

Proof Sketch. Agreement. The algorithm consists of n stages, at each stage, all
the correct processes agree on the same value for process pi with s(mod n)+1 = i
through a Byzantine consensus (line 5). Eventually, after n stages, all correct
processes received the same n values representing the vector of size n.

Validity. For each entry i in the vector a consensus had been made at stage
s, such that i(mod n) + 1 = i. Validity, by definition, concerns only the input
value of correct processes. If the sender is correct, it sent the same value, v to



Bee’s Strategy Against Byzantines 151

Algorithm 4. Code for separated hypervisors and process pi in stage s, each
process starts with suspect list it discovered in the fast algorithm:
local hypervisor turned off except for pi, such that s (mod n)+1 = i
Process fields:

ini[1 . . . n] initially [null, . . . ,null],
BA[1 . . . n] initially [null, . . . ,null] � BA - Byzantine Agreement object
suspects = initialized from fast algorithm

Phase 1 of stage s:
1: if s (mod n)+1 = i then
2: send val(vi) to all processes
3: else � upon receiving vj from pj

4: ini[j] = vj
5: deci[j] = BA[j].decide(vj) � BA - Byzantine Agreement object
6: if deci[j] �= ini[j] OR j ∈ suspects then
7: turn on local hypervisor

Hypervisor code (for pi’s turned on (active) local hypervisor):

Phase 2 of stage s:
8: if s (mod n)+1 �= i then
9: j = s (mod n)+1

10: send suspect(j) to all active hypervisors
11: else � counter-testimony for all active hypervisors
12: ∀j ∈ N s.t. pj ’s hypervisor is active: send suspect(j) to pj ’s local hypervisor

Phase 3 of stage s: � k - amount of received suspect(i) messages.
13: if s (mod n)+1 = i AND k > 0 then
14: replace pi

15: else if k ≤ t then � upon receiving k suspect(j) messages
16: replace pi

all processes in phase 1 (line 2). Then Byzantine agreement is invoked and all
correct processes hold the same input value v. By validity property of Byzantine
consensus, the decision value is v.

Termination. The algorithms consist of n stages. Each stage composed of three
phases. The first phase contains one round and Byzantine agreement execution
(lines 1–7), which is finite due to the Byzantine agreement termination property.
The second phase lasts for one round (lines 8–10) and finally, the third phase
(lines 11–14) contains the hypervisor part which requires one round. Given that
stage is finite, n stages are also finite, thus the algorithm terminates.

5.2 Local Hypervisor

In this part, we assume a different hypervisor, namely, a local hypervisor for
each process. The local hypervisor can be turned on by its process and assumed



152 A. Shaer et al.

to be correct all the time. The local hypervisors can send and receive suspects
messages (as explained in the sequel) but cannot send messages to the processes.
The hypervisor can replace the process based on the suspect messages.

Algorithm 4. The algorithm starts the same as Algorithm 3, in phase 1 there is
a sender process sending its own input value to all processes, following by Byzan-
tine consensus invocation for the received value, and suspect if the decision value
is different from the received value or if the sender had already suspected in the
fast algorithm. Algorithm 4 differs from Algorithm 3 following the detection part.
A process that suspects the sender turns on its local hypervisor as an indication
for the detection. In phase 2, the local hypervisor sends suspect messages to all
other hypervisors. During phase 3, after all suspects messages of phase 2 have
been received, the local hypervisor that controls the sender replaces the sender
as a consequence of receiving at least one suspect message. The local hypervisor
of the other processes, different from the sender, replaces their hosted process
only when there are less than t + 1 suspect messages.

Theorem 3. Algorithm4 satisfies agreement, validity, and termination.

Proof Sketch. Agreement. The algorithm consists of n stages, at each stage, all
the correct processes agree on the same value for process pi with s(mod n)+1 = i
through a Byzantine consensus (line 5). Eventually, after n stages, all correct
processes receive the same n values representing the vector of size n.

Validity. For each entry i in the vector a consensus had been made at stage
s, such that i(mod n) + 1 = i. Validity, by definition, concerns only the input
value of correct processes. If the sender is correct, it sent the same value, v, to
all processes in phase 1 (line 2). Then Byzantine agreement is invoked and all
correct processes hold the same input value v. By validity property of Byzantine
consensus, the decision value is v.

Termination. The algorithms consist of n stages. Each stage composed of three
phases. The first phase contains one round and Byzantine agreement execution
(lines 1–7), which is finite due to the Byzantine agreement termination property.
The second phase lasts for one round (lines 8–12) and finally, the third phase
(lines 13–16) which requires one round. Given that stage is finite, n stages are
also finite, thus the algorithm terminates.

Theorem 4. The slow algorithm satisfies completeness and sacrifice.

Proof Sketch. Completeness. As seen in the algorithm, a process can lie either
as the sender (line 2) and make up to processes to be restarted, or as a receiver
(line 7) and it will make itself and the sender be restarted. Either way the faulty
process will pay for it.

Sacrifice. Following lines 13–16, if there is not enough, e.g. at least t + 1,
receivers that claims the sender (process i with s (mod n) + 1 = i) for being
faulty, the sender and the reporting receivers will be restarted as an act of
sacrifice. Otherwise, the sender alone will be restarted.



Bee’s Strategy Against Byzantines 153

Theorem 5. The combinations of Algorithm4 and Algorithm1 satisfies Com-
pleteness and sacrifice.

Proof Sketch. Completeness. As already mentions, the fast algorithm satisfy
completeness (Theorem 1) by recording and delivering the faulty and suspects
process list to the slow algorithm. Then the slow algorithm continues satisfies
Completeness (Theorem 4) collect more evidences (if there is any) for Byzantine
behavioral.

Sacrifice. Restart of processes is done only in the slow part. As seen earlier
(Theorem 4), the slow algorithm satisfies sacrifice.

6 Conclusion

This paper presented an approach to detect and remove Byzantine processes
from consensus-based computation. Long-lived computation relying on consen-
sus (e.g., state machine replication) may benefit from our solution as it allows to
continuously monitor the computation and inhibits Byzantine processes to act,
if they wants to remain in the computation.

References

1. Abraham, I., Dolev, D.: Byzantine agreement with optimal early stopping, opti-
mal resilience and polynomial complexity. In: Proceedings of the 47th Annual on
Symposium on Theory of Computing (STOC) (2015)

2. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting gears: changing algorithms
on the fly to expedite Byzantine agreement. Inf. Comput. 97(2), 205–233 (1992)

3. Binun, A., et al.: Self-stabilizing Byzantine-tolerant distributed replicated state
machine. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp.
36–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 4

4. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in Byzantine agreement. J.
ACM 37(4), 720–741 (1990)

5. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6(2), 213–226 (1981)

6. Mostfaoui, A., Raynal, M.: Intrusion-tolerant broadcast and agreement abstractions
in the presence of Byzantine processes. IEEE Trans. Parallel Distrib. Syst. 27(4),
1085–1098 (2016)

7. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

8. Shaer, A., Dolev, S., Bonomi S., Raynal, M., Baldoni, R.: Bee’s strategy against
Byzantines, replacing Byzantine participant. Technical report #18-05, Department
of Computer Science, Ben-Gurion University of the Negev (2018)

https://doi.org/10.1007/978-3-319-49259-9_4


Simple and Fast Approximate Counting
and Leader Election in Populations

Othon Michail1(B), Paul G. Spirakis1,2(B), and Michail Theofilatos1(B)

1 Department of Computer Science, University of Liverpool, Liverpool, UK
2 Computer Engineering and Informatics Department, University of Patras,

Patras, Greece
{Othon.Michail,P.Spirakis,Michail.Theofilatos}@liverpool.ac.uk

Abstract. We study the problems of leader election and population
size counting for population protocols: networks of finite-state anony-
mous agents that interact randomly under a uniform random scheduler.
We provide simple protocols for approximate counting of the size of the
population and for leader election. We show a protocol for leader elec-

tion that terminates in O( log2 n
logm

) parallel time, where 1 ≤ m ≤ n is a
parameter, using O(max{m, log n}) states. By adjusting the parameter
m between a constant and n, we obtain a single leader election protocol
whose time and space can be smoothly traded off between O(log2 n) to
O(log n) time and O(log n) to O(n) states. We also give a protocol which
provides an upper bound n̂ of the size n of the population, where n̂ is at
most na for some constant a > 1. This protocol assumes the existence of
a unique leader in the population and stabilizes in Θ(log n) parallel time,
using constant number of states in every node, except from the unique
leader which is required to use Θ(log2 n) states.

Keywords: Population protocol · Epidemic · Leader election
Counting · Approximate counting · Polylogarithmic time protocol

1 Introduction

Population protocols [1] are networks that consist of very weak computational
entities (also called nodes or agents), regarding their individual capabilities.
These networks have been shown that are able to construct complex shapes [2]
and perform complex computational tasks when they work collectively. Leader
Election, which is a fundamental problem in distributed computing, is the pro-
cess of designating a single agent as the coordinator of some task distributed
among several nodes. The nodes communicate among themselves in order to

All authors were supported by the EEE/CS initiative NeST. The last author was also
supported by the Leverhulme Research Centre for Functional Materials Design. This
work was partially supported by the EPSRC Grant EP/P02002X/1 on Algorithmic
Aspects of Temporal Graphs.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 154–169, 2018.
https://doi.org/10.1007/978-3-030-03232-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_11&domain=pdf


Simple and Fast Approximate Counting and Leader Election in Populations 155

decide which of them will get into the leader state. Counting is also a funda-
mental problem in distributed computing, where nodes must determine the size
n of the population. Finally, we call Approximate Counting the problem in which
nodes must determine an estimation k of the population size n. Counting can
be then considered as a special case of population size estimation, where k = n.

Many distributed tasks require the existence of a leader prior to the execution
of the protocol and, furthermore, some knowledge about the system (for instance
the size of the population) can also help to solve these tasks more efficiently with
respect both to time and space.

Consider the setting in which an agent is in an initial state a, the rest n − 1
agents are in state b and the only existing transition is (a, b) → (a, a). This is the
one-way epidemic process and it can be shown that the expected time to conver-
gence under the uniform random scheduler is Θ(n log n) (e.g., [3]), thus Θ(log n)
parallel time. Here, parallel time is the total number of interactions divided by
n. In this work, we make an extensive use of epidemics, which means that infor-
mation is being spread throughout the population, thus all nodes will obtain this
information in O(log n) expected parallel time. We use this property to construct
an algorithm that solves the Leader Election problem. In addition, by observing
the rate of the epidemic spreading under the uniform random scheduler, we can
extract valuable information about the population. This is the key idea of our
Approximate Counting algorithm.

1.1 Related Work

The framework of population protocols was first introduced by Angluin et al. [1]
in order to model the interactions in networks between small resource-limited
mobile agents. When operating under a uniform random scheduler, population
protocols are formally equivalent to a restricted version of stochastic Chemical
Reaction Networks (CRNs), which model chemistry in a well-mixed solution [4].
“CRNs are widely used to describe information processing occurring in natural
cellular regulatory networks, and with upcoming advances in synthetic biology,
CRNs are a promising programming language for the design of artificial molecu-
lar control circuitry” [5,6]. Results in both population protocols and CRNs can
be transfered to each other, owing to a formal equivalence between these models.

Angluin et al. [7] showed that all predicates stably computable in popula-
tion protocols (and certain generalizations of it) are semilinear. Semilinearity
persists up to o(log log n) local space but not more than this [8]. Moreover, the
computational power of population protocols can be increased to the commu-
tative subclass of NSPACE(n2), if we allow the processes to form connections
between each other that can hold a state from a finite domain [9], or by equip-
ping them with unique identifiers, as in [10]. For introductory texts to population
protocols the interested reader is encouraged to consult [9,11] and [12] (the lat-
ter discusses population protocols and related developments as part of a more
general overview of the emerging theory of dynamic networks).

Optimal algorithms, regarding the time complexity of fundamental tasks in
distributed networks, for example leader election and majority, is the key for



156 O. Michail et al.

many distributed problems. For instance, the help of a central coordinator can
lead to simpler and more efficient protocols [3]. There are many solutions to the
problem of leader election, such as in networks with nodes having distinct labels
or anonymous networks [13–17].

Although the availability of an initial leader does not increase the compu-
tational power of standard population protocols (in contrast, it does in some
settings where faults can occur [18]), still it may allow faster computation. Specif-
ically, the fastest known population protocols for semilinear predicates without
a leader take as long as linear parallel time to converge (Θ(n)). On the other
hand, when the process is coordinated by a unique leader, it is known that
any semilinear predicate can be stably computed with polylogarithmic expected
convergence time (O(log5 n)) [19].

For several years, the best known algorithm for leader election in population
protocols was the pairwise-elimination protocol of Angluin et al. [1], in which all
nodes are leaders in state l initially and the only effective transition is (l, l) →
(l, f). This protocol always stabilizes to a configuration with unique leader, but
this takes on average linear time. Recently, Doty and Soloveichik [20] proved
that not only this, but any standard population protocol requires linear time
to solve leader election. This immediately led the research community to look
into ways of strengthening the population protocol model in order to enable the
development of sub-linear time protocols for leader election and other problems
(note that Belleville, Doty, and Soloveichik [21] recently showed that such linear
time lower bounds hold for a larger family of problems and not just for leader
election). Fortunately, in the same way that increasing the local space of agents
led to a substantial increase of the class of computable predicates [8], it has
started to become evident that it can also be exploited to substantially speed-up
computations. Alistarh and Gelashvili [15] proposed the first sub-linear leader
election protocol, which stabilizes in O(log3 n) parallel time, assuming O(log3 n)
states at each agent. In a very nice work, Gasieniec and Stachowiak [16] designed
a space optimal (O(log log n) states) leader election protocol, which stabilises in
O(log2 n) parallel time. They use the concept of phase clocks (introduced in
[3] for population protocols), which is a synchronization and coordination tool
in distributed computing. General characterizations, including upper and lower
bounds, of the trade-offs between time and space in population protocols were
recently achieved in [22]. Moreover, some papers [23,24] have studied leader
election in the mediated population protocol model.

For counting, the most studied case is that of self-stabilization, which makes
the strong adversarial assumption that arbitrary corruption of memory is possi-
ble in any agent at any time, and promises only that eventually it will stop. Thus,
the protocol must be designed to work from any possible configuration of the
memory of each agent. It can be shown that counting is impossible without hav-
ing one agent (the “base station”) that is protected from corruption [25]. In this
scenario Θ(n log n) time is sufficient [26] and necessary [27] for self-stabilizing
counting.



Simple and Fast Approximate Counting and Leader Election in Populations 157

In the less restrictive setting in which all nodes start from the same state
(apart possibly from a unique leader and/or unique ids), not much is known.
In a recent work, Michail [28] proposed a terminating protocol in which a pre-
elected leader equipped with two n-counters computes an approximate count
between n/2 and n in O(n log n) parallel time with high probability. The idea is
to have the leader implement two competing processes, running in parallel. The
first process counts the number of nodes that have been encountered once, the
second process counts the number of nodes that have been encountered twice,
and the leader terminates when the second counter catches up the first. In the
same paper, also a version assuming unique ids instead of a leader was given.

A uniform protocol for exact population counting, but much more compli-
cated than here is provided by our team and other co-authors in [29].

The task of counting has also been studied in the related context of worst-case
dynamic networks [30–34].

1.2 Contribution

In this work we employ the use of simple epidemics in order to provide efficient
solutions to approximate counting the size of a population of agents and also to
leader election in populations. Our model is that of population protocols. Our
goal for both problems is to get polylogarithmic parallel time and to also use
small memory per agent. First, we show how to approximately count a population
fast (with a leader) and then we show how to elect a leader (very fast) if we have
a crude population estimate.

(a) We start by providing a protocol which provides an upper bound n̂ of the
size n of the population, where n̂ is at most na for some a > 1. This protocol
assumes the existence of a unique leader in the population. The runtime of
the protocol until stabilization is Θ(log n) parallel time. Each node except
from the unique leader uses only a constant number of states. However, the
leader is required to use Θ(log2 n) states.

(b) We then look into the problem of electing a leader. We assume an approx-
imate knowledge of the size of the population (i.e., an estimate n̂ of at
most na, where n is the population size) and provide a protocol (parame-
terized by the size m of a counter for drawing local random numbers) that
elects a unique leader w.h.p. in O( log

2 n
logm ) parallel time, with number of states

O(max{m, log n}) per node.
(c) Finally, we combine our two protocols in order to provide a size oblivious

protocol which elects a leader in O( log
2 n

logm ) parallel time.

2 The Model

In this work, the system consists of a population V of n distributed and anony-
mous (i.e., do not have unique IDs) processes, also called nodes or agents, that
are capable to perform local computations. Each of them is executing as a



158 O. Michail et al.

deterministic state machine from a finite set of states Q according to a transition
function δ : Q×Q → Q×Q. Their interaction is based on the probabilistic (uni-
form random) scheduler, which picks in every discrete step a random edge from
the complete graph G on n vertices. When two agents interact, they mutually
access their local states, updating them according to the transition function δ.
The transition function is a part of the population protocol which all nodes store
and execute locally.

The time is measured as the number of steps until stabilization, divided by n
(parallel time). The protocols that we propose do not enable or disable connec-
tions between nodes, in contrast with [2], where Michail and Spirakis considered
a model where a (virtual or physical) connection between two processes can be in
one of a finite number of possible states. The transition function that we present
throughout this paper, follows the notation (x, y) → (z, w), which refers to the
process states before (x and y) and after (z and w) the interaction, that is, the
transition function maps pairs of states to pairs of states.

The Leader Election Problem. The problem of leader election in distributed
computing is for each node eventually to decide whether it is a leader or not
subject to only one node decides that it is the leader. An algorithm A solves the
leader election problem if eventually the states of agents are divided into leader
and follower, a leader remains elected and a follower can never become a leader.
In every execution, exactly one agent becomes leader and the rest determine
that they are not leaders. All agents start in the same initial state q and the
output is O = {leader, follower}. A randomized algorithm R solves the leader
election problem if eventually only one leader remains in the system w.h.p.

Approximate Counting Problem. We define as Approximate Counting the prob-
lem in which a leader must determine an estimation n̂ of the population size,
where n̂

a < n < n̂. We call the constant a the estimation parameter.

3 Fast Counting with a Unique Leader

In this section we present our Approximate Counting protocol. The protocol is
presented in Sect. 3.1. In Sect. 3.2 we prove the correctness of our protocol and
finally, in Sect. 5, experiments that support our analysis can be found.

3.1 Abstract Description and Protocol

In this section, we construct a protocol which solves the problem of approxi-
mate counting. Our probabilistic algorithm for solving the approximate count-
ing problem requires a unique leader who is responsible to give an estimation
on the number of nodes. It uses the epidemic spreading technique and it stabi-
lizes in O(log n) parallel time. There is initially a unique leader l and all other
nodes are in state q. The leader l stores two counters in its local memory, ini-
tially both set to 0. We use the notation l(cq,ca), where cq is the value of the



Simple and Fast Approximate Counting and Leader Election in Populations 159

first counter and ca is the value of the second one. The leader, after the first
interaction starts an epidemic by turning a q node into an a node. Whenever a
q node interacts with an a node, its state becomes a ((a, q) → (a, a)). The first
counter cq is being used for counting the q nodes and the second counter ca for
the a nodes, that is, whenever the leader l interacts with a q node, the value of
the counter cq is increased by one and whenever l interacts with an a node, ca
is increased by one. The termination condition is cq = ca and then the leader
holds a constant-factor approximation of log n, which we prove that with high
probability is 2cq+1 = 2ca+1.

We first describe a simple terminating protocol that guarantee with high
probability n−a ≤ ne ≤ na, for a constant a, i.e., the population size estimation is
polynomially close to the actual size. Chernoff bounds then imply that repeating
this protocol a constant number of times suffices to obtain n/2 ≤ ne ≤ 2n with
high probability.

Protocol 1. Approximate Counting (APC)
Q = {q, a, l(cq,ca)}
δ :
(l(0,0), q) → (l(1,0), a)
(a, q) → (a, a)
(l(cq,ca), q) → (l(cq+1,ca), q), if cq > ca
(l(cq,ca), a) → (l(cq,ca+1), a), if cq > ca
(l(cq,ca), ·) → (halt, ·), if cq = ca

3.2 Analysis

Lemma 1. When half or less of the population has been infected, with high
probability cq > ca. In fact, cq − ca ≈ ln (n/2) − √

log n > 0.

The previous results show that the counter cq is a function of n and with
high probability greater than ca until half of the population becomes infected.
Chernoff bounds show that w.h.p. cq ≈ ln (n/2), while ca ≈ ln 2 and w.h.p.
ca <

√
log n.

Corollary 1. APC does not terminate w.h.p. until more than half of the popu-
lation becomes infected.

When the infected agents are in the majority, cq is increased by a small con-
stant number, while ca eventually catches up the first counter. The termination
condition (cq = ca) is satisfied and the leader gives a constant-factor approxi-
mation of log n. A proof can be found in the full version of the paper.

Lemma 2. Our Approximate Counting protocol terminates after Θ(log n) par-
allel time w.h.p.



160 O. Michail et al.

It takes Θ(log n) parallel time for half agents to become infected. At that
point, it holds that |ca − cq| = O(log n). When the a nodes are in the majority,
this difference reaches zero after Θ(log n) leader interactions. Thus, the total
parallel time to termination is Θ(log n). A proof can be found in the full version
of the paper.

Lemma 3. When half or less of the population has been infected, with high
probability cq < log (n/2) + ε and cq > log (n/2) − ε. When more than half of
the population is infected, cq is expected to increase by log 2 and w.h.p. less than
log n.

Corollary 2. When cq = ca, w.h.p. 2cq+1 is an upper bound on n.

4 Leader Election with Approximate Knowledge of n

The existence of a unique leader agent is a key requirement for many population
protocols [3] and generally in distributed computing, thus, having a fast protocol
that elects a unique leader is of high significance. In this section, we present our
Leader Election protocol, giving, at first, an abstract description Sect. 4.1, the
algorithm Sect. 4.2 and then, we present the analysis of it Sect. 4.3. Finally, we
have measured the stabilization time of this protocol for different population
sizes and the results can be found in Sect. 5.

4.1 Abstract Description

We assume that the nodes know an upper bound on the population size nb, where
n is the number of nodes and b is any big constant number.

All nodes store three variables; the round e, a random number r and a counter
c and they are able to compute random numbers within a predefined range [1,m].
We define two types of states; the leaders (l) and the followers (f). Initially, all
nodes are in state l, indicating that they are all potential leaders. The protocol
operates in rounds and in every round, the leaders compete with each other
trying to survive (i.e., do not become followers). The followers just copy the
tuple (r, e) from the leaders and try to spread it throughout the population.
During the first interaction of two l nodes, one of them becomes follower, a
random number between 1 and m is being generated, the leader enters the first
round and the follower copies the round e and the random number r from the
leader to its local memory. The followers are only being used for information
spreading purposes among the potential leaders and they cannot become leaders
again. Throughout this paper, n denotes the population size and m the maximum
number that nodes can generate.

Information Spreading. It has been shown that the epidemic spreading of
information can accelerate the convergence time of a population protocol. In this
work, we adopt this notion and we use the followers as the means of competition
and communication among the potential leaders. All leaders try to spread their



Simple and Fast Approximate Counting and Leader Election in Populations 161

information (i.e., their round and random number) throughout the population,
but w.h.p. all of them except one eventually become followers. We say that a
node x wins during an interaction if one of the following holds:

– Node x is in a bigger round e.
– If they are both in the same round, node x has bigger random number r.

One or more leaders L are in the dominant state if their tuple (r1, e1) wins every
other tuple in the population. Then, the tuple (r1, e1) is being spread as an
epidemic throughout the population, independently of the other leaders’ tuples
(all leaders or followers with the tuple (r1, e1) always win their competitors). We
also call leaders L the dominant leaders.

Transition to Next Round. After the first interaction, a leader l enters the
first round. We can group all the other nodes that l can interact with into three
independent sets.

– The first group contains the nodes that are in a bigger round or have a bigger
random number, being in the same round as l. If the leader l interacts with
such a node, it becomes follower.

– The second group contains the nodes that are in a smaller round or have a
smaller random number, being in the same round as l. After an interaction
with a node in this group, the other node becomes a follower and the leader
increases its counter c by one.

– The third group contains the followers that have the same tuple (r, e) as l.
After an interaction with a node in this group, l increases its counter c by
one.

As long as the leader l survives (i.e., does not become a follower), it increases or
resets its counter c, according to the transition function δ. When the counter c
reaches b log n, where nb is the upper bound on the population size, it resets it
and round r is increased by one. The followers can never increase their round or
generate random numbers.

Stabilization. The protocol that we present stabilizes, as the whole population
will eventually reach in a final configuration of states. To achieve this, when the
round of a leader l reaches � 2b log n−log(b log2 n)

logm �, l stops increasing its round r,
unless it interacts with another leader. This rule guarantees the stabilization of
our protocol.

4.2 The Protocol

In this section, we present our Leader Election protocol. We use the notation
pr,e to indicate that node p has the random number r and is in the round e.
Also, we say that (r1, e1) > (r2, e2) if the tuple (r1, e1) wins the tuple (r2, e2). A
tuple (r1, e1) wins the tuple (r2, e2) if e1 > e2 or if they are in the same round
(e1 = e2), it holds that r1 > r2.



162 O. Michail et al.

4.3 Analysis

The leader election algorithm that we propose, elects a unique leader after
O( log

2 n
logm ) parallel time w.h.p.. To achieve this, the algorithm works in stages,

called epochs throughout this paper and the number of potential leaders
decreases exponentially between the epochs. An epoch i starts when any leader
enters the ith round (r = i) and ends when any leader enters the (i+1)th round
(r = i+1). Here we do the exact analysis for m = log n. This can be generalized
to any m between a constant and n.

Lemma 4. During the execution of the protocol, at least one leader will always
exist in the population.

Protocol 2. Leader Election
Q = {l, fr,e, lr,e} : r ∈ [1, m]
δ :

#First interaction between two nodes. One of them becomes follower and the other
remains leader. The leader generates a random number r and enters the first round
(e = 1).
(l, l) → (lr,1, fr,1)

#A leader in round 0 always loses (i.e., becomes a follower) against a node in a
higher round.
(fr,e, l) → (fr,e, fr,e)
(lr,e, l) → (lr,e, fr,e), lcounter = lcounter + 1

#The winning node propagates its tuple. If a leader loses, it becomes follower.
(fr,i, fs,j) → (fk,l, fk,l), if (r, i) > (s, j) then (k, l) = (r, i) else (k, l) = (s, j)
(lr,i, ls,j) → (lk,l, fk,l), lcounter = lcounter + 1, if (r, i) ≥ (s, j) then (k, l) =
(r, i) else (k, l) = (s, j)
(lr,i, fs,j) → (fs,j , fs,j), if (s, j) > (r, i)
(lr,i, fs,j) → (lr,i, fr,i), lcounter = lcounter + 1, if (r, i) > (s, j)
(lr,e, fr,e) → (lk,j , fk,j), lcounter = lcounter + 1

#When a leader increases its counter, the following code is being executed. It
checks whether it has reached c log n. If yes, it moves to the next round, generates
a new random number and checks if it has reached the final round in order to
terminate.
if (lcounter = b log n) then{

Increase round;
Generate a new random number between 1 and m;
Reset counter to zero;

if (Round = � 2b logn−log(b log2 n)
logm

�) Stop increasing the round, unless
you interact with a leader;

}



Simple and Fast Approximate Counting and Leader Election in Populations 163

Our protocol does not allow all nodes to become followers. A proof is in the
full version of the paper.

Lemma 5. Assume an epoch e and k leaders with the dominant tuple (r, e) in
this epoch. The expected parallel time to convergence of their epidemic in epoch
e is Θ(logn).

Lemma 6. If a counter c of a leader l reaches b log n, its epidemic will have
already been spread throughout the whole population w.h.p.

The previous lemma implies that no leader enters the next round if the
epidemic has not been spread throughout the whole population before. This is
important as we need to ensure that a non-dominant leader becomes follower by
the end of an epoch, otherwise, the number of leaders would not be decreased
exponentially between successive epochs. A proof can be found in the full version
of the paper.

Theorem 1. After O( logn
logm ) epochs, there is a unique leader in the population

w.h.p.

The number of potential leaders decreases exponentially between the epochs,
and after O( logn

logm ), a unique leader exists in the population. A proof can be
found in the full version of the paper.

Theorem 2. Our Leader Election protocol elects a unique leader in O( log2 n
log log n )

parallel time w.h.p.

Proof. There are initially n leaders in the population. During an epoch e, by
Lemma 5 the dominant tuple spreads throughout the population in Θ(log n)
parallel time, by Lemma 6 no (dominant) leader can enter to the next epoch if
their epidemic has not been spread throughout the whole population before and
by Theorem 1, there will exist a unique leader after O( logn

logm ) epochs w.h.p., thus,

for m = b log n the overall parallel time is O( log2 n
log log n ). Finally, by Lemma 4, the

unique leader can never become follower and according to the transition function
in Protocol 2, a follower can never become leader again.

The rule which says the leaders stop increasing their rounds if r >=
2b logn−log (b log2 n)

logm , unless they interact with another leader, implies that the

population stabilizes in O( log2 n
log log n ) parallel time w.h.p. and when this happens,

there will exist only one leader in the population and eventually, our protocol
always elects a unique leader.

Remark 1. By adjusting m to be any number between a constant and n and
conducting a very similar analysis we may obtain a single leader election protocol
whose time and space can be smoothly traded off between O(log2 n) to O(log n)
time and O(log n) to O(n) space.



164 O. Michail et al.

4.4 Dropping the Assumption of Knowing logn

Call a population protocol size-oblivious if its transition function does not
depend on the population size. Our leader election protocol requires a rough
estimate on the size of the population in order to elect a leader in polylogarith-
mic time, while our approximate counting protocol requires a unique leader who
initiates the epidemic process and then gives an upper bound on the population
size. In this section, we combine our Approximate Counting and Leader Elec-
tion protocols in order to construct a size-oblivious protocol that elects a unique
leader in O( log

2 n
logm ) parallel time and can be executed in any uniform model of

population protocols.
To combine our protocols, in the our new Leader Election algorithm, the

nodes instead of using the c counter, as described in Sect. 4.1, they use two
counters cq and ca. The first counter is being used in order to count the non-
followers and the latter to count the followers. Initially, cq = 1 and ca = 0. Let
l be a leader with the tuple (r1, e1). As in Sect. 4, a tuple (r1, e1) is bigger that
the tuple (r2, e2) if r1 > r2 or if r1 = r2 and e1 > e2. We can group all the other
nodes that l can interact with into three independent sets.

– (r1, e1) > (r2, e2). l increases its cq counter by one.
– (r1, e1) = (r2, e2). l increases its ca counter by one.
– (r1, e1) < (r2, e2). l becomes follower and resets its counters to zero.

When cq = ca holds, l increases its round e1 by one and resets cq to one and ca to
zero. This process simulates the behavior of our Approximate Counting protocol,
meaning that when cq = ca holds, the epidemic of the dominant leaders will
have been spread throughout the whole population. Regarding the termination
condition, where log n is needed, the nodes store a variable s which contains
the average value of cq. To this end, whenever a leader enters from round e1 to
e1 + 1, it updates the value of s as follows:

s =
s(e1 − 1) + cq

e1
(1)

where s is initially zero. When e1 = � as
logm� holds (a ≥ 1 is a small constant

number), the leader stops increasing it’s round and the population stabilizes in
a configuration with a unique leader. Finally, we show that the variable s of the
unique leader is a function of log n. Even though we do not provide any proof of
correctness of this protocol, in Sect. 5 we provide experiments that confirm this
behavior.

5 Experiments

We have also measured the stabilization time of all of our protocols for different
network sizes. We have executed them 100 times for each population size n,
where n = 2i and i = [4, 14]. Regarding the Leader Election algorithm which



Simple and Fast Approximate Counting and Leader Election in Populations 165

assumes some knowledge on the population size, the results (Fig. 1) support
our analysis and confirm its logarithmic behavior. In these experiments, the
maximum number that the nodes could generate was m = 100. Finally, all
executions elected a unique leader in a log2 n

logm parallel time.
The stabilization time of our Approximate Counting with a unique leader pro-

tocol is shown in Fig. 2a. The algorithm always gives a constant factor approxi-
mation of log n, as shown in Fig. 2b. Moreover, in Fig. 3, we show the values of
the counters cq and ca, when half of the population has been infected by the

Fig. 1. Leader election with approximate knowledge of n. Both axes are logarithmic.
The dots represent the results of individual experiments and the line represents the
average values for each network size.

(a) Convergence time. (b) Estimations and actual sizes of the pop-
ulation.

Fig. 2. Approximate counting with a unique leader.



166 O. Michail et al.

epidemic. These experiments support our analysis, while the counter of infected
nodes reaches a constant number and the counter of non-infected nodes reaches
a value close to log n.

Regarding our protocol for leader election with no knowledge of log n, the
results are shown in Fig. 4. All executions elected a unique leader after a log2 n

logm
parallel time, as shown in Fig. 4a. Finally, as shown in Fig. 4b, the unique leader
holds a constant factor upper bound on log n after a log2 n

logm parallel time.

Fig. 3. Approximate counting with a unique leader. Counters cq and ca when half of
the population has been infected by the epidemic.

(a) Convergence time. (b) Upper bounds and actual sizes of logn

Fig. 4. Composition of our approximate counting and leader election protocols.



Simple and Fast Approximate Counting and Leader Election in Populations 167

6 Open Problems

In our leader election protocol, when two nodes interact with each other, the
amount of data which is transfered is O(max{log log n, log m}) bits. In certain
applications of population protocols, the processes are not able to transfer arbi-
trarily large amount of data during an interaction. Can we design a polyloga-
rithmic time population protocol for the problem of leader election that satisfies
this requirement?

Acknowledgments. We would like to thank David Doty and Mahsa Eftekhari for
their valuable comments and suggestions during the development of this research work.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

2. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable
network construction. Distrib. Comput. 29(3), 207–237 (2016)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008)

4. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)

5. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 7, 517–534 (2014)

6. Doty, D.: Timing in chemical reaction networks. In: Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 772–784 (2014)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

8. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Pas-
sively mobile communicating machines that use restricted space. Theor. Comput.
Sci. 412(46), 6469–6483 (2011)

9. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New models for population proto-
cols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool (2011)

10. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate
byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1 40

11. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and
Mobile Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-89707-1 5

12. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun.
ACM 61(2), 72 (2018)

13. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th Annual ACM Symposium on Theory of Computing (STOC). ACM
(1980)

https://doi.org/10.1007/978-3-642-02930-1_40
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5


168 O. Michail et al.

14. Attiya, C., Snir, M., Warmuth, M: Computing on an anonymous ring. In: PODC
1985. ACM (1985)

15. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6 38

16. Gasieniec, L., Stachowiak, G.: Fast space optimal leader election in population
protocols. In: SODA 2018, ACM-SIAM Symposium on Discrete Algorithms (2018,
to appear)

17. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-
state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006). https://doi.org/10.1007/
11945529 28

18. Di Luna, G.A., Flocchini, P., Izumi, T., Izumi, T., Santoro, N., Viglietta, G.:
Population protocols with faulty interactions: the impact of a leader. In: Fotakis,
D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 454–466.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 38

19. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC 2006, New York. ACM Press (2006)

20. Doty, D., Soloveichik, D.: Stable leader election in population protocols requires
linear time. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 602–616. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 40

21. Belleville, A., Doty, D., Soloveichik, D.: Hardness of computing and approxi-
mating predicates and functions with leaderless population protocols. In: ICALP
2017, Leibniz International Proceedings in Informatics (LIPIcs), vol. 80. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

22. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space
trade-offs in population protocols. In: Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2560–2579. SIAM (2017)

23. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-
stabilizing leader election in mediated population protocol. Distrib. Comput. 25(6),
451–460 (2012)

24. Das, S., Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G.: Mediated popula-
tion protocols: leader election and applications. In: Gopal, T.V., Jäger, G., Steila,
S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 172–186. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55911-7 13

25. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks with a base station. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 63–76. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75142-7 8

26. Beauquier, J., Burman, J., Clavière, S., Sohier, D.: Space-optimal counting in pop-
ulation protocols. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 631–646.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 42

27. Aspnes, J., Beauquier, J., Burman, J., Sohier, D.: Time and space optimal counting
in population protocols. In: OPODIS 2016, vol. 70 (2017)

28. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, pp. 37–46 (2015). Also in Distributed Computing (2017)

29. Doty, D., Eftekhari, M., Michail, O., Spirakis, P.G., Theofilatos, M.: Exact size
counting in uniform population protocols in nearly logarithmic time. CoRR,
abs/1805.04832 (2018)

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/11945529_28
https://doi.org/10.1007/11945529_28
https://doi.org/10.1007/978-3-319-57586-5_38
https://doi.org/10.1007/978-3-662-48653-5_40
https://doi.org/10.1007/978-3-319-55911-7_13
https://doi.org/10.1007/978-3-540-75142-7_8
https://doi.org/10.1007/978-3-540-75142-7_8
https://doi.org/10.1007/978-3-662-48653-5_42


Simple and Fast Approximate Counting and Leader Election in Populations 169

30. Izumi, T., Kinpara, K., Izumi, T., Wada, K.: Space-efficient self-stabilizing counting
population protocols on mobile sensor networks. Theor. Comput. Sci. 552, 99–108
(2014)

31. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the 42nd ACM Symposium on Theory of computing (STOC),
pp. 513–522. ACM (2010)

32. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in anony-
mous unknown dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
281–295. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0 20

33. Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting in anony-
mous dynamic networks under worst-case adversary. In: IEEE 34th International
Conference on Distributed Computing Systems (ICDCS) (2014)

34. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

https://doi.org/10.1007/978-3-319-03089-0_20


Reliable Broadcast in Dynamic Networks
with Locally Bounded Byzantine Failures

Silvia Bonomi1, Giovanni Farina1,2(B), and Sébastien Tixeuil2

1 Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti,
Sapienza Università di Roma, Rome, Italy

bonomi@diag.uniroma1.it
2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,

75005 Paris, France
{giovanni.farina,sebastien.tixeuil}@lip6.fr

Abstract. Ensuring reliable communication despite possibly malicious
participants is a primary objective in any distributed system or network.
In this paper, we investigate the possibility of reliable broadcast in a
dynamic network whose topology may evolve while the broadcast is in
progress. In particular, we adapt the Certified Propagation Algorithm
(CPA) to make it work on dynamic networks and we present conditions
(on the underlying dynamic graph) to enable safety and liveness proper-
ties of the reliable broadcast. We furthermore explore the complexity of
assessing these conditions for various classes of dynamic networks.

Keywords: Byzantine reliable broadcast · Locally bounded failures
Dynamic networks

1 Introduction

Designing dependable and secure systems and networks that are able to cope
with various types of adversaries, ranging from simple errors to internal or exter-
nal attackers, requires to integrate those risks from the very early design stages.
The most general attack model in a distributed setting is the Byzantine model,
where a subset of nodes participating in the system may behave arbitrarily
(including in a malicious manner), while the rest of processes remain correct.
Also, reliable communication primitives are a core building block of any dis-
tributed software. Finally, as current applications are run for extended periods of
time with expected high availability, it becomes mandatory to integrate dynamic

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03),
supported by French state funds managed by the ANR (Agence Nationale de la
Recherche), and it has has been partially supported by the INOCS Sapienza Ateneo
2017 Project (protocol number RM11715C816CE4CB). Giovanni Farina thanks the
Université Franco-Italienne/Universitá Italo-Francese (UFI/UIF) for supporting his
mobility through the Vinci grant 2018.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 170–185, 2018.
https://doi.org/10.1007/978-3-030-03232-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_12&domain=pdf


Reliable Broadcast in Dynamic Networks 171

changes in the underlying network while the application is running. In this paper,
we address the reliable broadcast problem (where a source node must send data
to every other node) in the context of dynamic networks (whose topology may
change while the broadcast is in progress) that are subject to Byzantine failures
(a subset of the nodes may act arbitrarily). The reliable broadcast primitive is
expected to provide two guarantees: (i) safety, namely if a message m is delivered
by a correct process, then m was sent by the source and (ii) liveness, namely
if a message m is sent by the source, it is eventually delivered by every correct
process.

Related Works. In static multi-hop networks (in which the topology remains
fixed during the entire execution of the protocol) the necessary and sufficient
condition enabling reliable broadcast while the maximum number of Byzantine
failure is bounded by f has been identified by Dolev [5], stating that this problem
can be solved if and only if the network is 2f + 1-connected. Subsequently, the
reliable broadcast problem has been analyzed assuming a local condition on the
number of Byzantine neighbors a node may have [10,16]. All aforementioned
works require high network connectivity. Indeed, extending a reliable broadcast
service to sparse networks required to weaken the achieved guarantees [12–14]:
(i) accepting that a small minority of correct nodes may accept invalid messages
(thus compromising safety), or accepting that a small minority of correct nodes
may not deliver genuine messages (thus compromising liveness).

Adapting to dynamic networks proved difficult, as the topology assumptions
made by the mentioned proposals may no longer hold: the network changes
during the execution. Some core problems of distributed computing have been
considered in the context of dynamic networks subject to Byzantine failures [1,8]
but, to the best of our knowledge, there exists a single contribution for the reli-
able communication problem, due to Maurer et al. [15]. Their work can be seen
as the dynamic network extension of the Dolev [5] solution for static networks,
and assumes that no more than f Byzantine processes are present in the network.
Also, the protocol to be executed spreads an exponential number of messages
with respect to the size of the network and requires each node to compute the
minimal cut over the set of paths traversed by each received message, making
the protocol unpractical for real applications.

The Byzantine tolerant reliable broadcast can also be solved by employing
cryptography (e.g., digital signatures) [4,6] that enable all nodes to exchange
messages guaranteeing authentication and integrity. The main advantage of cryp-
tographic protocols is that they allow solving the problem with simpler solutions
and weaker conditions (in terms of connectivity requirements). However, on the
negative side, the safety of the protocols is bounded to the crypto-system.

Contributions. In this paper, we investigate the possibility of reliable broad-
cast in a dynamic network that is subject to Byzantine faults. More precisely,
we address the possibility of a local criterion on the number of Byzantine (as



172 S. Bonomi et al.

opposed to a global criterion as in Maurer et al. [15]) in the hope that a practi-
cally efficient protocol can be derived in case the criterion is satisfied. Our start-
ing point is the CPA protocol [2,10,16,18], that was originally designed for static
networks. In particular, our contributions can be summarized as follows: (i) we
extend the CPA algorithm to make it work in dynamic networks; (ii) we prove
that the original safety property of CPA naturally extends to dynamic networks
and we define new liveness conditions specifically suited for the dynamic net-
works and (iii) we investigate the impact of nodes awareness about the dynamic
network on reliable broadcast possibility and efficiency.

Due to lack of space, part of the proofs of lemmas and theorems are omitted.
They can be found inside the full version paper https://hal.archives-ouvertes.
fr/hal-01712277

2 System Model & Problem Statement

We consider a distributed system composed by a set of n processes Π =
{p1, p2, . . . pn}, each one having a unique integer identifier. The passage of time
is measured according to a fictional global clock spanning over natural numbers
N. The processes are arranged in a multi-hop communication network. The net-
work can be seen as an undirected graph where each node represents a process
pi ∈ Π and each edge represents a communication channel between two elements
pi, pj ∈ Π such that pi and pj can communicate.

Dynamic Network Model. The communication network is dynamic i.e., the
set of edges (or available communication channels) changes over time. More
formally, we model the network as a Time Varying Graph (TVG) [3] i.e., a
graph G = (V,E, ρ, ζ) where:

– V is the set of processes (in our case V = Π);
– E ⊆ V × V is the set of edges (i.e., communication channels);
– ρ : E × N → {0, 1} is the presence function. Given an edge ei,j between two

nodes pi and pj , ρ(ei,j , t) = 1 indicates that edge ei,j is present at time t;
– ζ : E ×N → N is the latency function that indicates how much time is needed

to cross an edge starting from a given time t. In particular, ζ(ei,j , t) = δi,j,t
indicates that a message m sent at time t from pi to pj takes δi,j,t time units
to cross edge ei,j .

The evolution of G can also be described as a sequence of static graphs
SG = G0, G1, . . . GT where Gi corresponds to the snapshot of G at time ti (i.e.
Gi = (V,Ei) where Ei = {e ∈ E | ρ(e, ti) = 1}). No further assumptions on the
evolution of the dynamic network are made. The static graph G = (V,E) that
considers all the processes and all the possible existing edges is called underlying
graph of G and it flattens the time dimension indicating only the pairs of nodes
that have been connected at some time t′. In the following, we interchange-
ably use terms process and node and we will refer to edges and communication

https://hal.archives-ouvertes.fr/hal-01712277
https://hal.archives-ouvertes.fr/hal-01712277


Reliable Broadcast in Dynamic Networks 173

channels interchangeably. Let us note that the TVG model is one among the
most general available and it is able to abstract and characterize several real
dynamic networks [3].

Communication Model and Timing Assumption. Processes communicate
through message exchanges. Every message has (i) a source, which is the id of
the process that has created the message and (ii) a sender, that is the id of the
process that is relaying the message. The source and the sender may coincide.
The sender is always a neighbor in the communication network. The ID of the
source is included inside the message, i.e. any message is composed by its content
and the source ID. We refer with ms to a message m with ps as source.

We assume authenticated and reliable point-to-point channels where (a)
authenticated ensures that the identity of the sender cannot be forged; (b) reli-
able guarantees that the channel delivers a message m if and only if (i) m was
previously sent by its sender and (ii) the channel has been up long enough to
allow the reception (i.e. given a message m sent at time t from pi to pj and
having latency δi,j,t, we will have reliable delivery if ρ(ei,j , τ) = 1 for each
τ ∈ [t, t + δi,j,t]). Notice that these channel assumptions are implicitly made
also on analysis of CPA on static networks and that they are both essential to
guarantees the reliable broadcast properties.

At every time unit t each process takes the following actions: (i) send where
processes send all the messages for the current time unit (potentially none),
(ii) receive where processes receive and store all the messages for the current
time unit (potentially none) and (iii) computation where processes process the
buffer of received messages and compute the messages to be sent during the
next time unit according to the deterministic distributed protocol P that they
are executing. Thus, the system is assumed to be synchronous in the sense that
(i) every channel has a latency function that is bounded and the overall message
delivery time is bounded by the maximum channel latency and (ii) computation
steps are bounded by a constant that is negligible with respect to the overall
message delivery time and we consider it equal to 0. We discuss the implications
and consequences of lack of synchrony inside the full version paper.

Failure Model. We assume an omniscient adversary able to control several
processes of the network allowing them to behave arbitrarily (including corrupt-
ing/dropping messages or simply crashing). We call them Byzantine processes.
Processes that are not Byzantine faulty are said to be correct. Correct pro-
cesses do not a priori know which processes are Byzantine. Specifically to reli-
able broadcast protocols, a Byzantine process can spread messages carrying a
fake source ID and/or content or it can drop any received message preventing its
propagation.

We considered the f-locally bounded failure model [10] as all CPA related
works, i.e., along time every process pi can be connected with at most f Byzan-
tine processes. In other words, given the underlying static graph G = (V,E),
every process pi ∈ V has at most f Byzantine neighbors in G.



174 S. Bonomi et al.

Problem Statement. In this paper, we consider the problem of Reliable Broad-
cast over dynamic networks assuming a f -locally bounded Byzantine failure
model from a given correct1 source ps. We say that a protocol P satisfies reliable
broadcast, if a message m broadcast by a correct process ps ∈ Π (also called
source or author) is eventually delivered (i.e., accepted as a valid message) by
every correct process pj ∈ Π. Said differently, a protocol P satisfies reliable
broadcast, if the following conditions are met:

– Safety: if a message m is delivered by a correct process, then such message
has been sent by the source ps;

– Liveness: if a message m is broadcast by the source ps, it is eventually
delivered by every correct process.

In other words, a reliable broadcast protocol extends the guarantees provided
by the communication channels to the message exchanges between a node and
any correct process not directly connected to it.

3 The Certified Propagation Algorithm (CPA)

The Certified Propagation Algorithm (CPA) [10,16] is a protocol enforcing reli-
able broadcast, from a correct source ps, in static multi-hop networks with a
f -locally bounded Byzantine adversary model, where nodes have no knowledge
on the global network topology. Given a message m to be broadcast, CPA starts
the propagation of ms from ps and applies three acceptance policies (denoted
by AC ) to decide if ms should be accepted and forwarded (i.e., transmitted also
by nodes different from the source) by a process pj . Specifically:

− ps delivers ms (AC1), forwards it to all of its neighbors, and stops;
− when receiving ms from pi, if pi is the source then pj delivers ms (AC2), for-

wards ms to all of its neighbors and stops; otherwise the message is buffered.
− upon receiving f + 1 copies of ms from distinct neighbors, pj delivers ms

(AC3), then forwards it to all its neighbors and stops.

The correctness of CPA on static networks has been proved to be dependent
on the network topology. In particular, Litsas et al. [11] provided topological
conditions based on the concept of k-level ordering. Informally, given a graph
G = (V,E) and considering a node ps as the source, we can define a k-level
ordering as a partition of nodes into ordered levels such that: (i) ps belongs to
level L0, (ii) all the neighbors of ps belong to level L1, and (iii) each node in a
level Li has at least k neighbors over levels Lj , with j < i. A k-level ordering is
minimum if every node appears in the minimum level possible.

Definition 1 (MKLO). Let G = (V,E) be a graph and let ps be a node of
G called source. The minimum k-level ordering (MKLO) of G from ps is the

1 Note the assumption of a possibly faulty source leads to a more general problem,
the Byzantine Agreement [5].



Reliable Broadcast in Dynamic Networks 175

partition Pk of nodes into disjoint subsets called levels Li defined as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p ∈ L0 if p = ps

p ∈ L1 if p ∈ Ns

p ∈ Li>1 if p ∈ V \ (
i−1⋃

j=0

Lj) and |Np ∩ (
i−1⋃

j=0

Lj)| ≥ k

For CPA to ensure reliable broadcast from ps, a sufficient condition is that
a k-level ordering from ps exists, with k ≥ 2f + 1. Conversely, the necessary
condition demands a k-level ordering from ps with k ≥ f + 1 (see [11]). Those
conditions can be verified with an algorithm whose time complexity is polynomial
in the size of the network, specifically with a modified Breadth-First-Search. In
the case that a graph G = (V,E) satisfies the necessary condition from ps but
not the sufficient one, then further analysis must be carried out. In particular, in
order to verify whether G enables reliable broadcast from ps, one should check
whether a k-level ordering from ps exists (with k = f + 1) in every sub-graph
G′ obtained from G by removing all nodes corresponding to possible Byzantine
placement in the f -locally bounded assumption. The verification of the strict
condition has been proven to be NP-Hard [9].

4 The Certified Propagation Algorithm on Dynamic
Networks

In this section, we analyze how CPA behaves on dynamic networks, i.e. networks
whose topology may evolve over time, and how it needs to be extended to work
in such settings.

S

3

2

1

4

G2

S

3

2

1

4

G1

S

3

2

1

4

G0

(a) A Time Varying Graph G = (V, E, ρ, ζ).

G0

S

3

2

1

4

(b) Underlying graph G = (V, E).

Fig. 1. Example of a simple TVG and its underlying static graph.

Let us consider the TVG shown in Fig. 1 and suppose process p2 is Byzantine.
If we consider the static underlying graph G = (V,E) shown in Fig. 1b, it is easy
to verify that running CPA from the source node ps is possible to achieve reliable
broadcast in a 1-locally bounded adversary. However, if we consider snapshots



176 S. Bonomi et al.

of the TVG at different times2 as shown in Fig. 1a, one can verify that nodes
p3 and p4 remain unable to deliver the message forever. In fact, p3 is not a
neighbor of the source ps when the message is broadcast by ps (i.e., at time t0),
and even if it had happened (es,3 at time t0) the edge connecting p4 with its
correct neighbor p3 appears only before the message would have been delivered
and accepted by p3, and thus it is not available for the retransmission. From this
simple example its easy to see that the temporal dimension plays a fundamental
role in the definition of topological constraints that a TVG must satisfy to enable
reliable broadcast.

4.1 CPA Safety in Dynamic Networks

In the following, we show that the authenticated and reliable channels are nec-
essary to ensure the reliable broadcast through CPA.

Lemma 1. The CPA algorithm does not ensure safety of reliable broadcast when
channels are not both authenticated and reliable (even on static graphs).

The same channel assumptions are sufficient for ensuring safety also on
dynamic networks.

Theorem 1. Let G = (V,E, ρ, ζ) be the TVG of a network with f-locally
bounded Byzantine adversary. If every correct process pi runs CPA on top of
reliable authenticated channels, then if a message ms is delivered by pi, ms was
previously sent by the correct source ps.

4.2 CPA Liveness in Dynamic Networks

The CPA liveness in static networks is based on the availability of a certain topol-
ogy that supports the message propagation. Indeed every edge is always up so,
once the communication network satisfies the topological constraints imposed
by the protocol, the assumption that channels do not lose messages is suffi-
cient to guarantee their propagation. In dynamic networks, this is no longer
true. Let us recall that each edge e in a TVG is up according to its presence
function ρ(e, t). At the same time, the message delivery latency are determined
by the edge latency function ζ(e, t). As a consequence, in order to ensure that
a message m sent at time t from pi to pj is delivered, we need that (pi, pj)
remains up until time t + ζ(e, t). Contrarily, there could exist a communication
channel where every message sent has no guarantee to be delivered as the edge
disappears while the message is still traveling. Thus, in addition to topological
constraints, moving to dynamic networks we need to set up other constraints on
when edges appear and for how long they remain up. Considering that processes
have no information about the network evolution, they do not know if and when
a given transmitted message will reach its receiver. Hence, without assuming
extra knowledge, a correct process must re-send messages infinitely often.
2 For the sake of simplicity, we consider the channel delay always equal to 1 in the

example.



Reliable Broadcast in Dynamic Networks 177

G0

S

3

2

1

4

G0

S

3

2

1

4 S

3

2

1

4

G1

S

3

2

1

4

G2

S

3

2

1

4

G3

S

3

2

1

4

G4

Fig. 2. TVG example.

As a consequence, CPA must be extended to the dynamic context incorpo-
rating the following additional steps:

– if process pi delivers a message m, it forwards m to all of its neighbors
infinitely often, at every time unit.

As a consequence, each time that the neighbors of pi changes, pi attempts to
propagate the message. Let us notice that such an infinite retransmission can be
avoided/stopped only if a process get the acknowledgments about the delivery
of the communication channels. This issue has been analyzed by considering
further assumptions on the dynamic network [7,17]. To ease of explanation, we
will refer to this extended version of CPA as Dynamic CPA (DCPA).

We now characterize the conditions enabling a communication channel to
deliver messages in order to argue about liveness. For this purpose, we define a
boolean predicate whose value is true if and only if the TVG allows the reliable
delivery of a message m sent from pi to pj at time t.

Definition 2. Let G = (V,E, ρ, ζ) be a TVG. We define the predicate Reliable
Channel Delivery at time t′, RCD(pi, pj , t′) as follows:

RCD(pi, pj , t′) =

{
true if ρ(<pi, pj>, τ) = 1, ∀τ ∈ [t′, t′ + ζ(ei,j , t′)].
false otherwise.

The communication channels do not usually have memory, thus we consider any
message sent while the RCD() predicate is false as dropped.

Now that we are able to express constraints on each edge through the RCD()
predicate, we need to define those RCD() that enable liveness of reliable broad-
cast. Let us define the k-acceptance function, that encapsulates temporal aspects
for the three acceptance conditions of CPA.

Definition 3. Let ps ∈ Π be a process that starts a reliable broadcast at time
tbr. The k-acceptance function Ak(p, t) over the time t ∈ N is defined as follows:

Ak(pj , t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if pj = ps with t ≥ tbr (AK1)
1 if ∃ t′ ≥ tbr : RCD(ps, pj , t′) = true with t ≥ t′ + ζ(es,j , t′) (AK2)
1 if ∃ p1, . . . , pk : ∀i ∈ [1, k], Ak(pi, ti) = 1 and

∃ t′i ≥ ti : RCD(pj , pi, t′i) = true with t ≥ t′i + ζ(ei,j , t′i) (AK3)
0 otherwise



178 S. Bonomi et al.

Definition 4. Let G = (V,E, ρ, ζ) be a TVG, and let ps be a node called source.
A temporal minimum k-level ordering of G (TMKLO) from ps is a partition of
the nodes in levels Lti defined as follows:

p ∈ Lti iff ti = min t ∈ N such that Ak(p, ti) = 1

Let us denote as Pk the partition identifying the temporal minimum k-level
ordering.

As an example, let us consider the TVG presented in Fig. 2: it evolves in five
discrete time instants (i.e., t0, t1, . . . , t4), its latency function ζ(e, t) is equal to
1 for every edge e at any time t. Now, let us consider process ps as a source
node that broadcasts m at time tbr = 0, and let us assume that k = 2. Such
a TVG admits a temporal minimum 2-level ordering P2 = {Lt0 = {ps}, Lt1 =
{p1}, Lt2 = {p3}, Lt4 = {p2, p4}}. Indeed:

– The 2-acceptance function A2(ps, t) is equal to 1 for t ≥ tbr = t0 according
to AK1.

– The acceptance function evaluated on process p1 is equal to 1 for t ≥ 1
according to AK2 (i.e., t′ = 0 and RCD(ps, p1, 0) = true due to the presence
function ρ(<ps, p1>, τ) = 1, ∀τ ∈ [0, 1]).

– On processes p3 and p2, the acceptance function evaluates to 1 respectively
for t ≥ 2 and for t ≥ 4, for the same reasons as p1.

– The acceptance function on p4 evaluates to 1 for t ≥ 4 according to AK3
(i.e., RCD(pi, p4, t′i) = true for pi = p1, t′i = 1, and for pi = p3, t′i = 3).

We now present a sufficient condition (Theorem2) and a necessary condition
(Theorem 3) for the liveness of reliable broadcast based on the TMKLO.

Theorem 2 (DCPA liveness sufficient condition). Let G = (V,E, ρ, ζ)
be a TVG, let ps be the source which broadcasts m at time tbr, and let us
assume f-locally bounded Byzantine failures. If there exists a partition Pk =
{Ltbr , Lt1 . . . Ltx} of the nodes in V representing a TMKLO of G associated to
m with k > 2f , then the message m spread using DCPA is eventually delivered
by every correct process in G.
Proof. We need to prove that if there exist a TMKLO with k > 2f associated
to message m, then any correct process eventually satisfies one of the CPA
acceptance policies. A TMKLO with k > 2f implies that there exist a time t
such that the 2f + 1-acceptance function Ak(p, t) is equal to 1 for every node of
the network.

The process ps belongs to any TMKLO due to AK1: as the source of the
broadcast, ps delivers the message according to AC1. Remind that the correct
processes running DCPA spread the delivered messages over their neighborhood
infinitely often. Then, the other nodes belong to the TMKLO due to the occur-
rence of AK2 or AK3.

If AK2 is satisfied by a node pj from time tj , then m: (i) can be delivered
by the channel interconnecting ps with pj by definition of RCD(), and (ii) it is



Reliable Broadcast in Dynamic Networks 179

transmitted by ps, because tj is greater than tbr. It follows that pj delivers m
according to AC2: indeed, pj has received m directly from the source.

If AK3 is satisfied on a node pj , it is possible to identify two scenarios:

– Case 1: RCD() is satisfied between pj and 2f + 1 nodes pi where AK2 is
already satisfied. We have shown that the processes satisfying AK2 accept
m, and so they retransmit m. Assuming the f -locally bounded failure model,
at most f nodes among the neighbors of pi can be Byzantine and may not
propagate m. Thus, pj receives at least f +1 copies of m from distinct neigh-
bors. According to AC3 of DCPA pj delivers m.

– Case 2: RCD() is satisfied between pj and 2f+1 nodes pi where AK2 or AK3
is already satisfied. Inductively, as the nodes considered in Case 1 deliver m,
it follows that the nodes pj satisfying AK3 due to at least 2f + 1 nodes pi
where AK2 or AK3 already holds also deliver m.

Theorem 3 (DCPA liveness necessary condition). Let G = (V,E, ρ, ζ) be
a TVG, let ps be the source that starts to broadcast m at time tbr, and let us
assume f-locally bounded Byzantine failures. The message m can be delivered by
every correct process in G only if a partition Pk = {Ltbr , Lt1 . . . Ltx} of nodes in
V representing a TMKLO of G associated to m with k > f exists.

Proof. Let us assume for the purpose of contradiction that: (i) every correct
process in G delivers m, (ii) the Byzantine failures are f -locally bounded, and
(iii) there does not exist a TMKLO associated to m with k > f . The latter
implies that the TMKLO with k = f + 1 does not include all the nodes, i.e.
∃p ∈ Π | ∀t ∈ N,Af+1(p, t) = 0.

The process ps is always included in a TMKLO of any k. Thus, ps is included
in Pf+1. The nodes that deliver m according to AC2 have received m from ps.
Thus, the RCD() predicate evaluated between ps and pi was true at least once
after the delivery of m by ps. It follows that the condition defined in AK2 is
eventually satisfied, and that those nodes are included in Pf+1.

The remaining nodes that deliver according to AC3 have received the message
from f + 1 distinct neighbors. Let us initially assume that such neighbors have
delivered the message by AC2. Again, the RCD predicate evaluated between the
receiving node pj and the distinct f +1 neighbors pi has been true at least once
after the respective deliveries of m. We already proved that such neighbors of
pi are included in Pf+1, therefore the condition defined in AK2 is satisfied by
those pj and they are included in Pf+1.

It naturally follows that the remaining nodes (the ones that have received the
message from neighbors satisfying AC2 or AC3) are included in Pf+1. This is in
contradiction with the assumptions we made, because eventually every process
satisfies one of the conditions AK1, AK2 or AK3, and the claim follows.

5 On the Detection of DCPA Liveness

In Sect. 4, we proved that DCPA always ensure the reliable broadcast safety, and
we provided the necessary and sufficient conditions about the dynamic network



180 S. Bonomi et al.

to enforce the reliable broadcast liveness. In this section, we are investigating the
ability of individual processes to detect whether the reliable broadcast liveness
is actually achieved in the current network. In more detail, we seek answers to
the following questions:

– (Conscious Termination): Given a message ms sent by a source ps on
TVG G, is ps able to detect if ms will eventually be delivered by every correct
process?

– (Bounded Broadcast Latency): Given a message ms sent by a source
ps on TVG G, is ps able to compute upper and lower bounds for reliable
broadcast completion?

Obviously, if ps has no knowledge about G, nothing about termination can
be detected. As a consequence, some knowledge about G is required to enable
Conscious Termination and Bounded Broadcast Latency. We now formalize the
notion of Broadcast Latency, and introduce oracles that abstract the knowledge
a process may have about G.

Definition 5 (Broadcast Latency (BL)). Let G = (V,E, ρ, ζ) be a TVG and
let ps be a node called source that broadcasts a message m at time tbr. We define
as Broadcast Latency BL the period between tbr and the time of the last delivery
of m by a correct process.

We define the following knowledge oracles (from more powerful to least power-
ful):

– Full knowledge Oracle (FKO): FKO provides full knowledge about the
TVG, i.e., it provides G = (V,E, ρ, ζ);

– Partial knowledge Oracle (PKO): given a TVG G = (V,E, ρ, ζ), PKO
provides the underlying static graph G = (V,E) of G;

– Size knowledge Oracle (SKO): given a TVG G = (V,E, ρ, ζ), SKO pro-
vides the size of G, that is |V |.

5.1 Detecting DCPA Liveness on Generic TVGs

In Sect. 4 we showed that the conditions guaranteeing the liveness property of
reliable broadcast are strictly bounded to the network evolution. It follows that
the knowledge provided by an FKO, in particular about the network evolution
starting from the broadcast time tbr, is necessary to argue on liveness, unless
further assumptions are taken into account. In the following, we clarify how a
process can employs an FKO to detect Conscious Termination and Bounded
Broadcast Latency.

Lemma 2. Let G = (V,E, ρ, ζ) be a TVG, let ps be a node called source that
broadcasts a message m at time tbr and let us assume f-locally bounded Byzantine
failures. If ps has access to an FKO then it is able to verify if there exists a
TMKLO for the current broadcast on G.



Reliable Broadcast in Dynamic Networks 181

Proof. In order to prove the claim it is enough to show an algorithm that verifies
if a TMKLO exists, given the full knowledge of the TVG provided by FKO.

Such algorithm works as follow: initially, the source ps is placed in level Ltbr of
the TMKLO. Then, the snapshots characterizing the TVG have to be analyzed,
starting from Gtbr and following their order. In particular, for each snapshot Gti ,
ti ≥ tbr, we need to verify that:

1. edges with only one endpoint already included in some level of the TMKLO
are up enough to satisfy RCD() and

2. whenever RCD() is satisfied for a given edge ei,j , we need to check if it allows
pj to be part of the TMKLO as it satisfies one condition among AK2 and
AK3.

The algorithm ends when a TMKLO is found or when all the snapshots have
been analyzed (and in the latter case we can infer that no TMKLO exists for
the considered message on the given TVG). Assuming that G spans over T time
instants, the complexity of this algorithm is:

O(|T ||E) + O(|V | + |E|) = O(|V | + |T ||E|)

A more detailed description of the algorithm is delegated to the full version
paper.

Theorem 4. Let G = (V,E, ρ, ζ) be a TVG, let ps be a node called source that
broadcasts a message m at time tbr and let us assume f-locally bounded Byzantine
failures. If ps has access to an FKO then it is able to detect if eventually every
correct process will deliver m.

Let us note that if a process has the capability of computing the TMKLO for a
message m sent at time tbr, then it can also establish a lower bound and an upper
bound on the time needed by every correct process to deliver m simply evaluating
the maximum level of the TMKLO that satisfy respectively the necessary and
the sufficient condition for DCPA.

Theorem 5. Let G = (V,E, ρ, ζ) be a TVG and let ps be a node called source
that broadcasts a message m at time tbr and let us assume f-locally bounded
Byzantine failures. Let Pf+1 = {Lt0 , Lt1 . . . Ltx} be the TMKLO with k = f + 1
associated to m and let tf+1

max be the time associated to the last level of Pf+1.
Let assume the existence of the TMKLO with k = 2f + 1 associated to m,
P2f+1 = {Lt0 , Lt1 . . . Ltx}, and let t2f+1

max be the time associated to the last level
of P2f+1. The computed TMKLOs provide respectively a lower bound and an
upper bound for BL such that:

tf+1
max − tbr ≤ BL ≤ t2f+1

max − tbr

Remind that, as the sufficient condition we provided is not strict, a TMKLO
with k = 2f + 1 could not exist even if the reliable broadcast is achievable. It is
also possible to provide a stricter upper bound for BL as we explained inside the



182 S. Bonomi et al.

proof of Theorem 4, but is not practical to compute. Finally, let us remark that
the knowledge on the underlying topology is not enough on dynamic networks
to argue on liveness.

Remark 1. Let G = (V,E, ρ, ζ) be a TVG and let ps be a node called source
that broadcasts a message m at time tbr and let us assume f -locally bounded
Byzantine failures. If a process ps has access only to a PKO (and not to an
FKO) then it is not able to detect either Conscious Termination and Bounded
Broadcast Latency. Indeed, as we highlighted in Sect. 4.2, moving on dynamic
network the knowledge on the underlying graph is not enough, because specific
sequences of edge appearances are required in order to guarantee the message
propagation (let us take again Fig. 1 as clarifying example). Thus, a PKO is not
enough in arguing on liveness. The same can be said about Bounded Broadcast
Latency as PKO provides no information about the time instants when the edges
will appear.

5.2 Detecting DCPA Liveness on Restricted TVGs

Casteigts et al. [3] defined a hierarchy of TVG classes based on the strength
of the assumptions made about appearance of edges. So far, we considered the
most general TVG3. In the following, we consider two more specific classes of
the hierarchy where we show that liveness can be detected using oracles weaker
than FKO. In particular, we consider the following classes that are suited to
model recurring networks:

– Class recurrence of edges, ER: if an edge e appears once, it appears
infinitively often4.

– Class time bounded recurrences, TBER: if an edge e appears once, it
appears infinitively often and there exist an upper bound Δ between two
consecutive appearances of e5.

Let us recall that assuming predicate RCD(ei,j , t) = true for every edge ei,j at
some time t is necessary to guarantee liveness. While considering classes ER and
TBER, such condition must be satisfied infinitely often, otherwise it is easy to
show that the results presented in the previous section still apply. Let us also
note that the conditions we defined in Sect. 4.2 are related to a single broadcast
generated by a specific source ps i.e., for a source ps broadcasting a message
at time tbr the conditions must hold from tbr on. Contrarily, exploiting the
recurrence of edges it is possible to define different conditions that are valid for
every broadcast from the same source ps, independently from when it starts.

Detecting DCPA Liveness in ER TVG. In this section, we prove that
considering TVG of class ER, we can get the following results: (i) PKO (an oracle
3 Class 1 TVG according to Casteigts et al. [3].
4 Class 6 TVG in Casteigts et al. [3].
5 Class 7 TVG in Casteigts et al. [3].



Reliable Broadcast in Dynamic Networks 183

weaker than FKO) is enough to enable Conscious Termination, (ii) despite the
more specific TVG considered, FKO is still required to establish upper bounds for
BL. Intuitively, this results follows from the fact that PKO allows to determine
whether a MKLO exists on the static underlying graph, and this is enough
to detect if eventually every correct process will be able to deliver the message.
However, given the absence of information on when each edge is going to appear,
it is impossible to compute an upper bound on the time required to accomplish
the broadcast.

Theorem 6. Let G = (V,E, ρ, ζ) be a TVG of class ER that ensures RCD()
infinitively often, and let ps be a node called source that broadcasts m at time
tbr, and let us assume f-locally bounded Byzantine failures. If ps has access to
a PKO, then it is able to detect if eventually every correct process delivers m.

Detecting DCPA Liveness in TBER TVG. The liveness condition enabling
CPA to enforce reliable broadcast relays on the network topology, therefore an
oracle weaker that FKO cannot enable Conscious Termination unless further
assumptions are made. On the other hand, the weaker oracle SKO allows a
process to compute Bounded Broadcast Latency.

Theorem 7. Let G = (V,E, ρ, ζ) be a TVG of class TBER where each edge
ei,j reappears in at most Δ time instants satisfying RCD(ei,j , t). Let δmax =
max(ζ(e, t)). Let ps be a node called source that broadcasts m at time tbr, and
let us assume f-locally bounded Byzantine failures. Let P2f+1 = {Lt0 , Lt1 . . . Ltx}
be the MKLO with k = 2f + 1 associated to m and computed on the underlying
graph G = (V,E) (if exists) and let S2f+1 be size of P2f+1. If ps uses SKO or
PKO, then ps is able to compute an upper bound for BL. Specifically:

BL ≤ |V |(δmax + Δ)using SKO

BL ≤ S2f+1(δmax + Δ)using PKO

6 Conclusion

We considered the reliable broadcast problem in dynamic networks represented
by TVG. We analyzed the porting conditions enabling CPA to be correctly
employed on dynamic networks. The analysis of this simple algorithm is impor-
tant as it works exploiting only local knowledge. This contrasts to the best result
so far in the same setting [15], that demands an exponential costs to check when
a message can be delivered. Moreover, we presented necessary and sufficient con-
ditions to ensure safety and liveness DCPA. We analyzed how much knowledge
of the TVG is needed to detect whether the liveness condition is satisfied, and
its cost. Our work is a starting point to identify more general parameters of
dynamic networks that guarantees the fulfillment of the conditions we provided,
both in a deterministic and probabilistic way. Other interesting points to address
in future works are: (i) the definition of a more realistic locally bounded failure



184 S. Bonomi et al.

model that takes also the time dimension into account, (ii) the research of con-
ditions on the dynamic network enabling nodes to conscious termination with
just local information.

References

1. Augustine, J., Pandurangan, G., Robinson, P.: Fast Byzantine agreement in
dynamic networks. In: Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium on
Principles of Distributed Computing, PODC 2013, 22–24 July 2013, Montreal, QC,
Canada, pp. 74–83. ACM (2013)

2. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally
bounded failures. IEEE Trans. Parallel Distrib. Syst. 21(6), 801–811 (2010)

3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

4. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

5. Dolev, D.: Unanimity in an unknown and unreliable environment. In: 1981 22nd
Annual Symposium on Foundations of Computer Science, SFCS 1981, pp. 159–168.
IEEE (1981)

6. Drabkin, V., Friedman, R., Segal, M.: Efficient Byzantine broadcast in wireless
ad-hoc networks. In: 2005 Proceedings of International Conference on Dependable
Systems and Networks, DSN 2005, pp. 160–169. IEEE (2005)

7. Gómez-Calzado, C., Casteigts, A., Lafuente, A., Larrea, M.: A connectivity model
for agreement in dynamic systems. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 333–345. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48096-0 26

8. Guerraoui, R., Huc, F., Kermarrec, A.: Highly dynamic distributed computing
with Byzantine failures. In: Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium
on Principles of Distributed Computing, PODC 2013, 22–24 July 2013, Montreal,
QC, Canada, pp. 176–183. ACM (2013)

9. Ichimura, A., Shigeno, M.: A new parameter for a broadcast algorithm with locally
bounded Byzantine faults. Inf. Process. Lett. 110(12–13), 514–517 (2010)

10. Koo, C.Y.: Broadcast in radio networks tolerating Byzantine adversarial behavior.
In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of
Distributed Computing, pp. 275–282. ACM (2004)

11. Litsas, C., Pagourtzis, A., Sakavalas, D.: A graph parameter that matches the
resilience of the certified propagation algorithm. In: Cichoń, J., Gȩbala, M.,
Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 269–280. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39247-4 23

12. Maurer, A., Tixeuil, S.: Byzantine broadcast with fixed disjoint paths. J. Parallel
Distrib. Comput. 74(11), 3153–3160 (2014)

13. Maurer, A., Tixeuil, S.: Containing Byzantine failures with control zones. IEEE
Trans. Parallel Distrib. Syst. 26(2), 362–370 (2015)

14. Maurer, A., Tixeuil, S.: Tolerating random Byzantine failures in an unbounded
network. Parallel Process. Lett. 26(1) (2016)

15. Maurer, A., Tixeuil, S., Defago, X.: Communicating reliably in multihop dynamic
networks despite Byzantine failures. In: 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pp. 238–245. IEEE (2015)

https://doi.org/10.1007/978-3-662-48096-0_26
https://doi.org/10.1007/978-3-662-48096-0_26
https://doi.org/10.1007/978-3-642-39247-4_23


Reliable Broadcast in Dynamic Networks 185

16. Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Inf. Pro-
cess. Lett. 93(3), 109–115 (2005)

17. Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for recur-
rent dynamic systems. In: 28th IEEE International Conference on Advanced Infor-
mation Networking and Applications, AINA 2014, 13–16 May 2014, Victoria, BC,
Canada, pp. 933–939 (2014)

18. Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algo-
rithm in presence of Byzantine faults. Inf. Process. Lett. 115(4), 512–514 (2015)



Acyclic Strategy for Silent
Self-stabilization in Spanning Forests

Karine Altisen1, Stéphane Devismes1, and Anäıs Durand2(B)

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
{Karine.Altisen,Stephane.Devismes}@univ-grenoble-alpes.fr

2 IRISA, Université de Rennes, 35042 Rennes, France
Anais.Durand@inria.fr

Abstract. We formalize design patterns, commonly used in self-
stabilization, to obtain general statements regarding both correctness
and time complexity. Precisely, we study a class of algorithms devoted
to networks endowed with a sense of direction describing a spanning for-
est whose characterization is a simple (i.e., quasi-syntactic) condition.
We show that any algorithm of this class is (1) silent and self-stabilizing
under the distributed unfair daemon, and (2) has a stabilization time
polynomial in moves and asymptotically optimal in rounds. To illustrate
the versatility of our method, we review several works where our results
apply.

1 Introduction

Numerous self-stabilizing algorithms have been proposed so far to solve vari-
ous tasks. Those works also consider a large taxonomy of topologies: rings [5],
(directed) trees [9,26], planar graphs [19], arbitrary connected graphs [1], etc.
Among those topologies, the class of directed (in-)trees is of particular interest.
Indeed, such topologies often appear, at an intermediate level, in self-stabilizing
composite algorithms. Composition is a popular way to design self-stabilizing
algorithms [25] since it allows to simplify both the design and the proofs. Numer-
ous self-stabilizing algorithms [2,4,11] are actually made as a composition of
a spanning directed treelike (e.g., tree or forest) construction and some other
algorithms specifically designed for directed tree/forest topologies. Notice that,
even though not mandatory, most of these constructions additionally achieve
silence [17]: a silent algorithm converges within finite time to a configuration
from which the values of the communication registers used by the algorithm
remain fixed. Silence is a desirable property, as it usually implies more simplicity
in the design, and so allows to write simpler proofs; moreover, a silent algorithm
may utilize fewer communication operations and communication bandwidth. We
consider here the locally shared memory model with composite atomicity, where

This study has been partially supported by the ANR projects DESCARTES (ANR-
16-CE40-0023) and ESTATE (ANR-16-CE25-0009), and by the Franco-German
DFG-ANR project 40300781 DISCMAT.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 186–202, 2018.
https://doi.org/10.1007/978-3-030-03232-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_13&domain=pdf


Acyclic Strategy for Silent Self-stabilization in Spanning Forests 187

executions proceed in atomic steps and the asynchrony is captured by the notion
of daemon. The most general daemon is the distributed unfair daemon. Hence,
solutions stabilizing under such an assumption are highly desirable, because they
work under any other daemon assumption. The daemon assumption and time
complexity are closely related. The stabilization time (the main time complexity
measure to compare self-stabilizing algorithms) is usually evaluated in terms of
rounds, which capture the execution time according to the speed of the slow-
est processes. But, another crucial issue is the number of local state updates,
called moves. Indeed, the stabilization time in moves captures the amount of
computations an algorithm needs to recover a correct behavior. Now, this com-
plexity can be bounded only if the algorithm works under an unfair daemon. If
an algorithm requires a stronger daemon to stabilize, e.g., a weakly fair daemon,
then it is possible to construct executions whose convergence is arbitrarily long
in terms of atomic steps (and so in moves), meaning that, in such executions,
there are processes whose moves do not make the system progress towards the
convergence. In other words, these latter processes waste computation power
and so energy. Such a situation should be therefore prevented, making solutions
working under the unfair daemon more desirable. There are many self-stabilizing
algorithms proven under the distributed unfair daemon, e.g., [1,12,20]. However,
analyses of the stabilization time in moves is rather unusual and this may be an
important issue. Indeed, recently, several self-stabilizing algorithms which work
under a distributed unfair daemon have been shown to have an exponential
stabilization time in moves in the worst case, e.g., the silent leader election algo-
rithms from [12] (see [1]), the Breadth-First Search (BFS) algorithm of Huang
and Chen [21] (see [16]).

Contribution. We formalize design patterns, commonly used in self-
stabilization, to obtain general statements regarding both correctness and time
complexity. Precisely, we study a class of algorithms for networks endowed with
a sense of direction describing a spanning forest (e.g., a directed tree, or a net-
work equipped with a spanning tree) whose characterization is a simple (i.e.,
quasi-syntactic) condition. We show that any algorithm of this class is (1) silent
and self-stabilizing under the distributed unfair daemon, and (2) has a stabiliza-
tion time which is polynomial in moves and asymptotically optimal in rounds.
Our condition mainly uses the concept of acyclic strategy, which is based on the
notions of top-down and bottom-up actions. Our first goal has been to formally
define these two paradigms. We have combined this formalization together with
a notion of acyclic causality between actions and a last criteria called correct-
alone (n.b., only this criteria is not syntactic) to obtain the notion of acyclic
strategy. We show that any algorithm following an acyclic strategy reaches a
terminal configuration in a polynomial number of moves, assuming a distributed
unfair daemon. Hence, if its terminal configurations satisfy the specification, the
algorithm is both silent and self-stabilizing. Unfortunately, we show that this
condition is not sufficient to obtain an asymptotically optimal stabilization time
in rounds. So, we enforce the acyclic strategy with the property of local mutual



188 K. Altisen et al.

exclusivity to have an asymptotically optimal round complexity. We also propose
a simple method to make any algorithm, that follows an acyclic strategy, locally
mutually exclusive. This method has no overhead in moves. Finally, to show the
versatility of our approach, we review works where our results apply.

Related Work. General schemes and efficiency are usually understood as
orthogonal issues. For example, the general scheme proposed in [23] transforms
almost any algorithm working on an asynchronous message-passing identified
system of arbitrary topology into its corresponding self-stabilizing version. Such
a universal transformer is, by essence, inefficient in space and time complexities:
its purpose is only to demonstrate the feasibility of the transformation. How-
ever, few works [3,13,18] target both general self-stabilizing algorithm patterns
and efficiency in rounds. In [13,18], authors propose a method to design silent
self-stabilizing algorithms for a class of fix-point problems. Their solution works
in non-bidirectional networks using bounded memory per process. In [18], they
consider the locally shared memory model with composite atomicity assuming
a distributed unfair daemon, while in [13], they bring their approach to asyn-
chronous message-passing systems. In both papers, they establish a stabilization
time in O(D) rounds, where D is the network diameter, that holds for the syn-
chronous case only. Moreover, move complexity is not considered. The rest of
the related work only concerns the locally shared memory model with composite
atomicity assuming a distributed unfair daemon. In [3], labeling schemes [24] are
used to show that every static task has a silent self-stabilizing algorithm which
converges within a linear number of rounds in an arbitrary identified network,
however no move complexity is given. To our knowledge, until now, only two
works [10,15] conciliate general schemes for stabilization and efficiency in both
moves and rounds. In [10], Cournier et al. propose a general scheme for snap-
stabilizing wave, henceforth non-silent, algorithms in arbitrary connected and
rooted networks. Using their approach, one can obtain snap-stabilizing algo-
rithms that execute each wave in polynomial number of rounds and moves.
In [15], authors propose a general scheme to compute, in a linear number of
rounds, spanning directed treelike data structures on arbitrary networks. They
also show polynomial upper bounds on its stabilization time in moves holding
for several instantiations of their scheme. Our approach is then complementary
to [15].

Roadmap. In Sect. 2, we define the model. In Sect. 3, we define the acyclic
strategy and propose a toy example. In Sect. 4, we study the move complexity of
algorithms that follow an acyclic strategy. In Sect. 5, we analyze our case study
regarding our results. In Sect. 6, we consider the round complexity issue. In
Sect. 7, we review several existing works where our method applies. We conclude
in Sect. 8.



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 189

2 Preliminaries

A network is made of a set of n interconnected processes. Communications are
bidirectional. Hence, the topology of the network is a simple undirected graph
G = (V,E), where V is a set of processes and E is a set of edges that represents
communication links, i.e., {p, q} ∈ E means that p and q can directly exchange
information. In this latter case, p and q are said to be neighbors. For any process
p, we denote by p.Γ the set of its neighbors. We also note Δ the degree of G.
A distributed algorithm A is a collection of n = |V | local algorithms, each one
operating on a single process: A = {A(p) : p ∈ V } where each process p is
equipped with a local algorithm A(p) = (V arp, Actionsp): V arp is the finite set
of variables of p, and Actionsp is the finite set of actions. Notice that A may not
be uniform. We identify each variable involved in Algorithm A by the notation
p.x ∈ V arp, where x is the name of the variable and p the process that holds it.
Each process p runs its local algorithm A(p) by atomically executing actions. If
executed, an action of p consists of reading all variables of p and its neighbors,
and then writing into a part of the writable variables of p. For any process p,
each action in Actionsp is written as follows: L(p) :: G(p) → S(p). L(p) is a
label used to identify the action in the discussion. The guard G(p) is a Boolean
predicate involving variables of p and its neighbors. The statement S(p) is a
sequence of assignments on writable variables of p. A variable q.x is said to be
G-read by L(p) if q.x is involved in predicate G(p) (in this case, q is either p or
one of its neighbors). Let G-Read(L(p)) be the set of variables that are G-read
by L(p). A variable p.x is said to be written by L(p) if p.x appears as the left
operand in an assignment of S(p). Let Write(L(p)) be the set of variables written
by L(p). An action can be executed by a process p only if it is enabled, i.e., its
guard evaluates to true. By extension, a process is enabled when at least one of
its actions is enabled. The state of a process p is a vector of valuations of its
variables. A configuration of an algorithm A is a vector made of a state of each
process in V . For any configuration γ, we denote by γ(p) (resp. γ(p).x) the state
of process p (resp. the value of the variable x of process p) in γ.

The asynchrony of the system is modeled by the daemon. Assume that the
current configuration of the system is γ. If the set of enabled processes in γ
is empty, then γ is said to be terminal. Otherwise, a step of A is performed
as follows: the daemon selects a non-empty subset S of enabled processes in γ,
and every process p in S atomically executes the statement of one of its actions
enabled in γ, leading the system to a new configuration γ′. The step (of A) from
γ to γ′ is noted γ �→ γ′: �→ is the binary relation over configurations defining all
possible steps of A in G. An execution of A is a maximal sequence γ0γ1 . . . γi . . . of
configurations such that γi−1 �→ γi for all i > 0. The term “maximal” means that
the execution is either infinite, or ends at a terminal configuration. We define a
daemon D as a predicate over executions. An execution e is then said to be an
execution under the daemon D if e satisfies D. Here, we assume that the daemon
is distributed and unfair. “Distributed” means that, unless the configuration is
terminal, the daemon selects at least one enabled process (maybe more) at each



190 K. Altisen et al.

step. “Unfair” means that there is no fairness constraint, i.e., the daemon might
never select a process unless it is the only enabled one.

We measure the time complexity using two notions: rounds and moves. A
process moves in γi �→ γi+1 when it executes an action in γi �→ γi+1. The
definition of round uses the concept of neutralization: a process v is neutralized
during a step γi �→ γi+1, if v is enabled in γi but not in configuration γi+1, and it
is not activated in the step γi �→ γi+1. The first round of an execution e = γ0γ1 . . .
is its minimal prefix e′ such that every process that is enabled in γ0 either
executes an action or is neutralized during a step of e′. If e′ is finite, then the
second round of e is the first round of the suffix γtγt+1... of e starting from the
last configuration γt of e′, and so forth.

Let A be a distributed algorithm for a network G, SP a predicate over the
configurations of A, and D a daemon. A is silent and self-stabilizing for SP in G
under D if the following two conditions hold: (1) every execution of A under D
is finite, and (2) every terminal configuration of A satisfies SP . In this case,
every terminal (resp. non-terminal) configuration is said to be legitimate w.r.t.
SP (resp. illegitimate w.r.t. SP ). The stabilization time in rounds (resp. moves)
of a silent self-stabilizing algorithm is the maximum number of rounds (resp.
moves) over every execution possible under the considered daemon to reach a
terminal (legitimate) configuration.

3 Algorithm with Acyclic Strategy

Let A be a distributed algorithm running on some network G = (V,E).

Variable Names. We assume that every process is endowed with the same set
of variables and we denote by Names the set of names of those variables, namely:
Names = {x : p ∈ V ∧ p.x ∈ V arp}. We also assume that for every name x ∈
Names, for all processes p and q, variables p.x and q.x have the same definition
domain. The set of names is partitioned into two subsets: ConstNames, the set
of constant names, and V arNames = Names\ConstNames, the set of writable
variable names. A name x is in V arNames as soon as there exists a process p
such that p.x ∈ V arp and p.x is written by an action of its local algorithm A(p).
For every c ∈ ConstNames and every process p ∈ V , p.c is never written by
any action and it has a pre-defined constant value (which may differ from one
process to another, e.g., Γ , the name of the neighborhood).

We assume that A is well-formed, i.e., V arNames is partitioned into k
sets V ar1, . . . , V ark such that ∀p ∈ V , A(p) consists of exactly k actions
A1(p), . . . , Ak(p) where Write(Ai(p)) = {p.v : v ∈ V ari}, for all i ∈ {1, . . . , k}.
Let Ai = {Ai(p) : p ∈ V }, for all i ∈ {1, . . . , k}. Every Ai is called a family (of
actions). By definition, A1, . . . , Ak is a partition over all actions of A, henceforth
called a families’ partition.

Remark 1. Since A is assumed to be well-formed, there is exactly one action
of A(p) where p.v is written, for every process p and every writable variable p.v
(of p).



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 191

Spanning Forest. We assume that every process is endowed with constants
that define a spanning forest over the graph G: we assume the constant names
par and chldrn such that for every process p ∈ V , p.par and p.chldrn are preset
as follows.

– p.par ∈ p.Γ ∪ {⊥}: p.par is either a neighbor of p (its parent in the forest),
or ⊥. In this latter case, p is called a (tree) root. Hence, the graph made of
vertices V and edges {(p, p.par) : p ∈ V ∧ p.par 	= ⊥} is assumed to be a
spanning forest of G.

– p.chldrn ⊆ p.Γ : p.chldrn contains the neighbors of p which are the children
of p in the forest, i.e., for every p, q ∈ V , p.par = q ⇐⇒ p ∈ q.chldrn. If
p.chldrn = ∅, p is called a leaf.

Notice that p.Γ \({p.par}∪p.chldrn) may not be empty. The set of p’s ancestors,
Anc(p), is recursively defined as follows: Anc(p) = {p} if p is a root, Anc(p) =
{p} ∪ Anc(p.par) otherwise. Similarly, the set of p’s descendants, Desc(p),
can be recursively defined as follows: Desc(p) = {p} if p is a leaf, Desc(p) =
{p} ∪

⋃
q∈p.chldrn Desc(q) otherwise.

Acyclic Strategy. Let A1, . . . , Ak be the families’ partition of A. Ai, with
i ∈ {1, . . . , k}, is said to be correct-alone if for every process p and every step
γ �→ γ′ such that Ai(p) is executed in γ �→ γ′, if no variable in G-Read(Ai(p)) \
Write(Ai(p)) is modified in γ �→ γ′, then Ai(p) is disabled in γ′. Notice that if
a variable in Write(Ai(p)) is modified in γ �→ γ′, then it is necessarily modified
by Ai(p), by Remark 1.

Let ≺A be a binary relation over the families of actions of A such that for
i, j ∈ {1, . . . , k}, Aj ≺A Ai if and only if i 	= j and there exist two processes p and
q such that q∈p.Γ∪{p} and Write(Aj(p)) ∩ G-Read(Ai(q)) 	= ∅. We conveniently
represent the relation ≺A by a directed graph GC called Graph of actions’
Causality and defined as follows: GC = ({A1, . . . , Ak}, {(Aj , Ai), Aj ≺A Ai}).

Intuitively, a family of actions Ai is top-down if activations of its correspond-
ing actions are only propagated down in the forest, i.e., when some process q
executes action Ai(q), Ai(q) can only activate Ai at some of its children p, if any.
In this case, Ai(q) writes to some variables G-read by Ai(p), these latter are usu-
ally G-read to be compared to variables written by Ai(p) itself. In other words,
a variable G-read by Ai(p) can be written by Ai(q) only if q = p or q = p.par.
Formally, a family of actions Ai is top-down if for every process p and every
q.v ∈ G-Read(Ai(p)), we have q.v ∈ Write(Ai(q)) ⇒ q ∈ {p, p.par}. Bottom-up
families are defined similarly: a family Ai is bottom-up if for every process p and
every q.v ∈ G-Read(Ai(p)), we have q.v ∈ Write(Ai(q)) ⇒ q ∈ p.chldrn ∪ {p}.

A distributed algorithm A follows an acyclic strategy if it is well-formed,
its graph of actions’ causality GC is (directed) acyclic, and for every Ai in its
families’ partition, Ai is correct-alone and either bottom-up or top-down.

Toy Example. We now propose a simple example of an algorithm, called T E ,
that follows an acyclic strategy. T E assumes a constant integer input p.in ∈ N



192 K. Altisen et al.

at each process. T E computes the sum of all inputs and then spreads this result
everywhere in the network. T E assumes that the network T = (V,E) is a tree
with a sense of direction (given by par and chldrn) which orientates T as an
in-tree rooted at process r. Apart from those constant variables, every process
p haconsecutive executionss two variables: p.sub ∈ N (which is used to compute
the sum of input values in the subtree of p) and p.res ∈ N (which stabilizes to
the result of the computation). T E consists of two families of actions S and R.
S computes variables sub and is defined as follows. For every process p,

S(p) :: p.sub 	= (
∑

q∈p.chldrn

q.sub) + p.in → p.sub ← (
∑

q∈p.chldrn

q.sub) + p.in

R computes variables res and is defined as follows.

R(r) :: r.res 	= r.sub → r.res ← r.sub

For every process p 	= r,

R(p) :: p.res 	= max(p.par.res, p.sub) → p.res ← max(p.par.res, p.sub)

S is bottom-up and correct-alone, while R is top-down and correct-alone.
Moreover, the graph of actions’ causality is simply S −→ R. So, T E follows an
acyclic strategy.

4 Move Complexity of Algorithms with Acyclic Strategy

We now exhibit a polynomial upper bound on the move complexity of any
algorithm that follows an acyclic strategy. To that goal, we consider a dis-
tributed algorithm A which follows an acyclic strategy and runs on the network
G = (V,E). We use the same notation as in Sect. 3, e.g., we let A1, . . . , Ak be
the families’ partition of A.

For a process p and a family of actions Ai, i ∈ {1, . . . , k}, we define the
impacting zone of p and Ai, denoted Z(p,Ai), as follows: Z(p,Ai) is the set of
p’s ancestors if Ai is top-down, Z(p,Ai) is the set of p’s descendants otherwise
(i.e., Ai is bottom-up). Roughly speaking, a process q belongs to Z(p,Ai) if the
execution of Ai(q) may cause an execution of Ai(p) in the future.

Remark 2. By definition, we have 1 ≤ |Z(p,Ai)| ≤ n. Moreover, if Ai is top-
down, then we have 1 ≤ |Z(p,Ai)| ≤ H + 1 ≤ n, where H is the height of G,
i.e., the maximum among the heights trees of the forest.

We also define the quantity M(Ai, p) as the level1 of p in G if Ai is top-down,
the height of p in G otherwise (i.e., Ai is bottom-up).

Remark 3. By definition, we have 0 ≤ M(Ai, p) ≤ H, where H is the height
of G.
1 The level of p in G is the distance from p to the root of its tree in G (0 if p is the
root itself).



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 193

We define Others(Ai, p) = {q ∈ p.Γ : ∃Aj , i 	= j ∧ Write(Aj(q)) ∩
G-Read(Ai(p)) 	= ∅} to be the set of neighbors q of p that have actions other
than Ai(q) which write variables that are G-read by Ai(p). Let

maxO(Ai) = max({|Others(Ai, p)| : p ∈ V } ∪ {maxO(Aj) : Aj ≺A Ai)})

Remark 4. By definition, we have maxO(Ai) ≤ Δ. Moreover, if ∀p ∈ V , ∀i ∈
{1, ..., k}, Others(Ai, p) is empty, then ∀j ∈ {1, ..., k}, maxO(Aj) = 0.

Lemma 1. Let Ai be a family of actions and p be a process. For every execution

e of the algorithm A on G, #m(e,Ai, p) ≤
(

n ·
(
1+d ·

(
1+maxO(Ai)

))
)H(Ai)

·
|Z(p,Ai)|, where #m(e,Ai, p) is the number of times p executes Ai(p) in e, d is
the in-degree of GC, and H(Ai) is the height of Ai in GC.2

Proof. Let e = γ0...γx... be any execution of A on G. Let K(Ai, p) = M(Ai, p)+
(H + 1) · H(Ai). We proceed by induction on K(Ai, p).

Base Case: Assume K(Ai, p) = 0 for some family Ai and some process p. By
definition, H ≥ 0, H(Ai) ≥ 0 and M(Ai, p) ≥ 0. Hence, K(Ai, p) = 0 implies that
H(Ai) = 0 and M(Ai, p) = 0. Since M(Ai, p) = 0, Z(p,Ai) = {p}. Ai is top-down
or bottom-up so, for every q.v ∈ G-Read(Ai(p)), q.v ∈ Write(Ai(q)) ⇒ q = p.
Moreover, since H(Ai) = 0, ∀j 	= i, Aj 	≺A Ai. So, for every j 	= i and every
q ∈ p.Γ ∪{p}, Write(Aj(p))∩G-Read(Ai(q)) = ∅. Hence, no action except Ai(p)
can modify a variable in G-Read(Ai(p)). Thus, #m(e,Ai, p) ≤ 1 since Ai is
correct-alone.

Induction Hypothesis: Let K ≥ 0. Assume that for every family Aj and every
process q such that K(Aj , q) ≤ K, we have

#m(e,Aj , q) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Aj)

))
)H(Aj)

· |Z(q,Aj)|

Induction Step: Assume that for some family Ai and some process p, K(Ai, p) =
K + 1. If #m(e,Ai, p) equals 0 or 1, then the result trivially holds. Assume now
that #m(e,Ai, p) > 1 and consider two consecutive executions of Ai(p) in e, i.e.,
there exist x, y such that 0 ≤ x < y, Ai(p) is executed in both γx �→ γx+1 and
γy �→ γy+1, but not in steps γz �→ γz+1 with z ∈ {x + 1, . . . , y − 1}. Then, since
Ai is correct-alone, at least one variable in G-Read(Ai(p)) has to be modified
by an action other than Ai(p) in a step γz �→ γz+1 with z ∈ {x, . . . , y − 1}
so that Ai(p) becomes enabled again. Namely, there are j ∈ {1, . . . , k} and
q ∈ V such that (a) j 	= i or q 	= p, Aj(q) is executed in a step γz �→ γz+1,
and Write(Aj(q)) ∩ G-Read(Ai(p)) 	= ∅. Note also that, by definition, (b) q ∈
p.Γ ∪{p}. Finally, by definitions of top-down and bottom-up, (a), and (b), Aj(q)
satisfies: (1) j 	= i ∧ q = p, (2) j = i ∧ q ∈ p.Γ ∩ Z(p,Ai), or (3) j 	= i ∧ q ∈ p.Γ .
In other words, at least one of the three following cases occurs:
2 The height of Ai in GC is 0 if the in-degree of Ai in GC is 0. Otherwise, it is equal
to one plus the maximum of the heights of the Ai’s predecessors w.r.t. ≺A.



194 K. Altisen et al.

(1) p executes Aj(p) in step γz �→ γz+1 with j 	= i and Write(Aj(p)) ∩
G-Read(Ai(p)) 	= ∅. Consequently, Aj ≺A Ai and, so, H(Aj) < H(Ai).
Moreover, M(Aj , p) − M(Ai, p) ≤ H and H(Aj) < H(Ai) imply K(Aj , p) <
K(Ai, p) = K + 1. Hence, by induction hypothesis, we have

#m(e,Aj , p) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Aj)

))
)H(Aj)

· |Z(p,Aj)|.
(2) There is q ∈ p.Γ ∩ Z(p,Ai) such that q executes Ai(q) in step γz �→ γz+1

and Write(Ai(q)) ∩ G-Read(Ai(p)) 	= ∅. Then, M(Ai, q) < M(Ai, p). Since
M(Ai, q) < M(Ai, p), K(Ai, q) < K(Ai, p) = K + 1 and, by induction
hypothesis, we have

#m(e,Ai, q) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Ai)

))
)H(Ai)

· |Z(q,Ai)|.
(3) A neighbor q of p executes an action Aj(q) in step γz �→ γz+1, with j 	= i

and Write(Aj(q)) ∩ G-Read(Ai(p)) 	= ∅. Consequently, Aj ≺A Ai and, so,
H(Aj) < H(Ai). Moreover, M(Aj , q) − M(Ai, p) ≤ H and H(Aj) < H(Ai)
imply K(Aj , q) < K(Ai, p) = K + 1. Hence, by induction hypothesis, we
have

#m(e,Aj , q) ≤
(

n ·
(
1 + d ·

(
1 + maxO(Aj)

))
)H(Aj)

· |Z(q,Aj)|.

(Notice that Cases 1 and 3 can only occur when H(Ai) > 0.) We now bound
the number of times each of the three above cases occur in the execution e.

Case 1: By definition, there exist at most d predecessors Aj of Ai in GC (i.e.,
such that Aj ≺A Ai). For each of them, we have H(Aj) < H(Ai), |Z(p,Aj)| ≤ n
(Remark 2) and maxO(Aj) ≤ maxO(Ai). Hence, overall, Case 1 appears at most
m1 =

∑
{Aj : Aj≺AAi} #m(e,Aj , p) times and

m1 ≤
∑

{Aj : Aj≺AAi}

(

n ·
(
1 + d ·

(
1 + maxO(Aj)

))
)H(Aj)

· |Z(p,Aj)|

≤ d · nH(Ai) ·
(
1 + d ·

(
1 + maxO(Ai)

))H(Ai)−1

Case 2: By definition, Z(p,Ai) = {p} �
⊎

q∈p.Γ∩Z(p,Ai)
Z(q,Ai) Hence, overall,

this case appears at most m2 =
∑

q∈p.Γ∩Z(p,Ai)
#m(e,Ai, q) times and

m2 ≤
∑

q∈p.Γ∩Z(p,Ai)

(

n ·
(
1 + d ·

(
1 + maxO(Ai)

))
)H(Ai)

· |Z(q,Ai)|

≤ nH(Ai) ·
(
1 + d ·

(
1 + maxO(Ai)

))H(Ai) ·
(
|Z(p,Ai)| − 1

)

Case 3: q ∈ Others(Ai, p) since i 	= j and q ∈ p.Γ . Then, for every Aj ≺A Ai, we
have H(Aj) < H(Ai), maxO(Aj) ≤ maxO(Ai), and Z(q,Aj) ≤ n (Remark 2).
By definition, there are at most d families Aj such that Aj ≺A Ai. Finally,



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 195

|Others(Ai, p)| ≤ maxO(Ai), by definition. Hence, overall, this case appears at
most m3 =

∑
{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)} #m(e,Aj , q) times and

m3 ≤
∑

{Aj : Aj≺AAi}

∑

{q∈Others(Ai,p)}

(
n · (

1 + d · (
1 +maxO(Aj)

)))H(Aj)

· |Z(q,Aj)|

≤ d · maxO(Ai) · nH(Ai) · (
1 + d · (

1 +maxO(Ai)
))H(Ai)−1

Hence, overall, we have

#m(e,Ai, p) ≤ 1 + m1 + m2 + m3

≤ nH(Ai) ·
(
1 + d ·

(
1 + maxO(Ai)

))H(Ai) · |Z(p,Ai)|

��
Since maxO(Ai) ≤ Δ (Remark 4) and |Z(p,Ai)| ≤ n (Remark 2), we can

deduce the following theorem from Lemma 1 and the definition of silent self-
stabilization.

Theorem 5. If A follows an acyclic strategy and every terminal configuration
of A satisfies SP , then (1) A is silent and self-stabilizing for SP in G under the
distributed unfair daemon, and (2) its stabilization time is at most

(
1 + d · (1 +

Δ)
)H ·k ·nH+2 moves, where k is the number of families of A, d is the in-degree

of GC, and H the height of GC.

5 Analysis of T E
We now analyze T E using our results. The aim is to show that: (1) correctness
and move complexity of T E can be easily deduced from our general results, (2)
our upper bound on stabilization time in moves is tight for this example, and
(3) our definition of acyclic strategy does not preclude the design of solutions
(like T E) that are inefficient in terms of rounds. We will see how to circumvent
this latter negative result in Sect. 6.

First, we already saw that T E follows an acyclic strategy and that the graph
of actions’ causality is simply S −→ R. Then, by induction on the tree T , we can
show that every terminal configuration of T E is legitimate. Hence, by Theorem 5,
we can conclude that T E is silent and self-stabilizing for computing the sum of
the inputs assuming a distributed unfair daemon. Moreover, its stabilization
time is at most 2 · (2+Δ) ·n3 moves. Now, using Lemma 1, the move complexity
of T E can be further refined. Let e be any execution and H be the height of T .
First, note that maxO(S) = maxO(R) = 0 by Remark 4. Since S is bottom-up,
|Z(p, S)| ≤ n, for every process p. Moreover, the height of S is 0 in the graph of
actions’ causality. Hence, by Lemma1, we have #m(e, S, p) ≤ n, for all processes
p. Thus, e contains at most n2 moves of S. Similarly, since R is top-down,
|Z(p,R)| ≤ H+1, for every process p. Moreover, the height of R is 1 in the graph
of actions’ causality. Hence, by Lemma 1, we have #m(e,R, p) ≤ 2 · n · (H + 1),
for all processes p. Thus, e contains at most 2 · n2 · (H + 1) moves of R. Overall,
the stabilization time of T E is actually at most n2(3 + 2H) moves.



196 K. Altisen et al.

Lower Bound in Moves. We now show that the stabilization time of T E
is Ω(H · n2) moves, meaning that the previous upper bound (obtained by
Lemma 1) is asymptotically reachable. To that goal, we consider a directed
line of n processes, with n ≥ 4, noted p1, . . . , pn: p1 is the root and for every
i ∈ {2, . . . , n}, there is a link between pi−1 and pi, moreover, pi.par = pi−1

(note that H = n). We build a possible execution of T E running on this line
that contains Ω(H ·n2) moves. We assume a central unfair daemon: at each step
exactly one process executes an action. In this execution, we fix that pi.in = 1,
for every i ∈ {1, ..., n}. We consider two classes of configurations: Configurations
X2i+1(with 3 ≤ 2i + 1 ≤ n) and Configurations Y2i+2 (with 4 ≤ 2i + 2 ≤ n),
see Fig. 1. The initial configuration of the execution is X3. Then, we proceed as
follows: the system converges from configuration X2i+1 to configuration Y2i+2

in Ω(i2) moves using Schedule 1 and then from Y2i+2 to X2i+3 in Ω(i) moves
using Schedule 2, back and forth, until reaching a terminal configuration (Xn if
n is odd, Yn otherwise).

ConfigurationX2i+1, 3 ≤ 2i+ 1 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
in 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 2i . . . 3 2 1 0 2i 0 2i + 2 0 . . .
res 2i . . . 2i 2i 2i 0 0 0 0 0 . . .

Configuration Y2i+2, 4 ≤ 2i+ 2 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
in 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 4i + 1 . . . 2i + 4 2i + 3 2i + 2 2i + 1 2i 0 2i + 2 0 . . .
res 4i + 1 . . . 4i + 1 4i + 1 4i + 1 4i + 1 0 0 0 0 . . .

Fig. 1. Configurations X2i+1 and Y2i+2

Hence, following this scheduling of actions, the execution that starts in con-
figuration X3 converges to Xn (resp. Yn) if n is odd (resp. even) and contains
Ω(n3) moves, precisely, Ω(H · n2) since the network is a line (H = n − 1).

Remark that in this execution, for every process p, when R(p) is activated,
S(p) is disabled: this means that if the algorithm is modified so that S(p) has
local priority over R(p) for every process p (like in the method proposed in
Sect. 6), the proposed execution is still possible keeping a move complexity in
Ω(H · n2) even for such a prioritized algorithm.

Schedule 1. From X2i+1 to Y2i+2

1: for j = 2i + 1 down to 1 do
2: pj executes S(pj)
3: for k = j to 2i + 1 do
4: pk executes R(pk)

Schedule 2. From Y2i+2 to X2i+3

1: for j = 2i + 2 down to 1 do
2: pj executes S(pj)
3: for j = 1 to 2i + 1 do
4: pj executes R(pj)



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 197

Lower Bound in Rounds. We now show that T E has a stabilization time in
Ω(n) rounds in any tree of height H = 1, i.e., a star network. This negative
result is due to the fact that families R and S are not locally mutually exclusive.
In the next section, we will propose a transformation to obtain a stabilization
time in O(H) rounds, so O(1) rounds in the case of a star network, without
affecting the move complexity.

We now construct a possible execution that terminates in n + 2 rounds in a
star network of n processes (n ≥ 2): p1 is the root of the tree and p2, . . . , pn are
the leaves (namely links are {{p1, pi}, i = 2, . . . , n}). We note Ci, i ∈ {1, . . . , n},
the configuration satisfying the following three conditions:

(1) ∀i ∈ {1, . . . , n}, pi.in = 1;
(2) p1.sub = i, ∀j ∈ {2, . . . , i}, pj .sub = 1, and ∀j ∈ {i + 1, . . . , n}, pj .sub = 0;
(3) ∀i ∈ {1, . . . , n}, pi.res = i.

Schedule 3. From Ci to Ci+1

1: pi+1 executes S(pi+1)
2: p1 executes S(p1)
3: p1 executes R(p1)
4: for j = 2 to n do
5: pj executes R(pj)

In every configuration Ci, processes p1, . . . ,
pi are disabled and processes pi+1, . . . , pn are
enabled for S. We now build a possible execu-
tion that starts from C1 and successively con-
verges to configurations C2, . . . , Cn (Cn is a
terminal configuration). To converge from Ci to
Ci+1, i ∈ {1, . . . , n − 1}, the daemon applies Schedule 3. The convergence from
C1 to Cn−1 last n − 2 rounds since for i ∈ {1, . . . , n − 2}, the convergence from
Ci to Ci+1 lasts exactly one round. Indeed, each process executes at least one
action between Ci and Ci+1 and process pn is enabled in configuration Ci and
remains continuously enabled until being activated as the last process to execute
in the round. The convergence from Cn−1 to Cn lasts 4 rounds: in Cn−1, only pn

is enabled to execute S(pn) hence the round terminates in one step where only
S(pn) is executed. Similarly, p1 then sequentially executes S(p1) and R(p1) in
two rounds. Finally, p2, . . . , pn execute R in one round and then the system is
in the terminal configuration Cn. Hence the execution lasts n + 2 rounds.

6 Round Complexity of Algorithms with Acyclic Strategy

We now propose an extra condition that is sufficient for any algorithm following
an acyclic strategy to stabilize in O(H) rounds. We then propose a simple method
to add this property to any algorithm that follows an acyclic strategy, without
affecting the move complexity. Throughout this section, we consider a distributed
well-formed algorithm A designed for a network G endowed with a spanning
forest. Let A1, . . . , Ak be the families’ partition of A.

A Condition for a Stabilization Time in O(H) Rounds. We say that
families Ai and Aj are locally mutually exclusive if for every process p, there is
no configuration γ where both Ai(p) and Aj(p) are enabled. By extension, we
say A is locally mutually exclusive if ∀i, j ∈ {1, . . . , k}, i 	= j implies that Ai and
Aj are locally mutually exclusive. Below, note that H < k and, in usual cases,
the number of families k is a constant.



198 K. Altisen et al.

Theorem 6. If A follows an acyclic strategy and is locally mutually exclusive,
then every execution of A reaches a terminal configuration within at most (H +
1) · (H + 1) rounds, where H is the height of the graph of actions’ causality of A
and H is the height of the spanning forest.

Proof Outline. Let Ai be a family of actions of A and p be a process. We note
R(Ai, p) = H(Ai) · (H + 1) + M(Ai, p) + 1. We first show, by induction, that
for every family Ai and every process p, after R(Ai, p) rounds, Ai(p) is disabled
forever. Then, since for every family Ai and every process p, H(Ai) ≤ H and
M(Ai, p) ≤ H, we have R(Ai, p) ≤ (H + 1) · (H + 1), and the theorem holds. ��

A Transformer. We know that there exist algorithms that follow an acyclic
strategy, are not locally mutually exclusive, and stabilize in Ω(n) rounds (see
Sect. 5). We now formalize a method, based on priorities over actions, to trans-
form such algorithms into locally mutually exclusive ones. This ensures a com-
plexity in O(H) rounds, without degrading the move complexity.

In the following, for every process p and every family Ai, we identify the
guard and the statement of Action Ai(p) by Gi(p) and Si(p), respectively. Let
�A be any strict total order on families of A compatible with ≺A, i.e., �A is a
binary relation on families of A that satisfies:

Strict Order: �A is irreflexive and transitive;

Total: for every two families Ai, Aj , we have either Ai �A Aj , Aj �A Ai, or i = j;
and

Compatibility: for every two families Ai, Aj , if Ai ≺A Aj , then Ai �A Aj .

Let T(A) be the following algorithm:

(1) T(A) and A have the same set of variables.
(2) Every process p ∈ V holds k actions (recall that k is the number of families
of A): for every i ∈ {1, . . . , k}, AT

i (p) :: GT
i (p) → ST

i (p)

where GT
i (p) =

( ∧
Aj�AAi

¬Gj(p)
)

∧ Gi(p) and ST
i (p) = Si(p).

Gi(p) (resp. the set {Gj(p) : Aj �A Ai}) is called the positive part (resp.
negative part) of GT

i (p). By definition, ≺A is irreflexive and the graph of actions’
causality induced by ≺A is acyclic. So, there always exists a strict total order
compatible with ≺A, i.e., the above transformation is always possible for any
algorithm A which follows an acyclic strategy. Moreover, by construction, we
have the two following remarks:

Remark 7. (1) T(A) is well-formed, (2) AT
1, ..., A

T
k is the families’ partition of

T(A), where AT
i = {AT

i (p) : p ∈ V }, for every i ∈ {1, ..., k}, and (3) T(A) is
locally mutually exclusive.

Remark 8. For every i, j ∈ {1, . . . , k} such that i 	= j, and every process p,
the positive part of GT

j(p) belongs to the negative part in GT
i (p) if and only if

Aj �A Ai.

Lemma 2. For every i, j ∈ {1, ..., k}, if AT
j ≺T(A) AT

i , then Aj �A Ai.



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 199

Proof. Let AT
i and AT

j be two families such that AT
j ≺T(A) AT

i . Then, i 	= j
and there exist two processes p and q such that q ∈ p.Γ ∪ {p} and
Write(AT

j(p)) ∩ G-Read(AT
i (q)) 	= ∅. Then, Write(AT

j(p)) = Write(Aj(p)), and
either Write(Aj(p)) ∩ G-Read(Ai(q)) 	= ∅, or Write(Aj(p)) ∩ G-Read(A�(q)) 	= ∅
where G�(q) belongs to the negative part of GT

i (q). In the former case, we have
Aj ≺A Ai, which implies that Aj �A Ai (�A is compatible with ≺A). In the latter
case, Aj ≺A A� (by definition) and A� �A Ai (by Remark 8). Since, Aj ≺A A�

implies Aj �A A� (�A is compatible with ≺A), by transitivity we have Aj �A Ai.
Hence, for every i, j ∈ {1, . . . , k}, AT

j ≺T(A) AT
i implies Aj �A Ai, and we are

done. ��

Lemma 3. T(A) follows an acyclic strategy.

Proof. Let AT
i be a family of T(A). The lemma is proven by the following three

claims.
(1) AT

i is correct-alone. Indeed, as Ai is correct-alone and for every process p,
ST

i (p) = Si(p) and ¬Gi(p) ⇒ ¬GT
i (p), we have that AT

i is also correct-alone.
(2) AT

i is either bottom-up or top-down. Since A follows an acyclic strategy, Ai

is either bottom-up or top-down. Assume Ai is bottom-up. By construction,
for every process q, ST

i (q) = Si(q) so Write(AT
i (q)) = Write(Ai(q)). Let q.v ∈

G-Read(AT
i (p)).

– Assume q.v ∈ G-Read(Ai(p)). Then q.v ∈ Write(Ai(q)) ⇒ q ∈ p.chldrn ∪ {p}
(since Ai is bottom-up), i.e., q.v ∈ Write(AT

i (q)) ⇒ q ∈ p.chldrn ∪ {p}.
– Assume that q.v /∈ G-Read(Ai(p)). Then q.v ∈ G-Read(Aj(p)) such that

Gj(p) belongs to the negative part of GT
i (p), i.e., Aj�AAi (Remark 8). Assume,

by the contradiction, that q.v ∈ Write(AT
i (q)). Then q.v ∈ Write(Ai(q)), and

since p ∈ q.Γ ∪ {q} (indeed, q.v ∈ G-Read(Aj(p))), we have Ai ≺A Aj .
Now, as �A is compatible with ≺A, we have Ai �A Aj . Hence, Aj �A Ai

and Ai �A Aj , a contradiction. Thus, q.v /∈ Write(AT
i (q)) which implies that

q.v ∈ Write(AT
i (q)) ⇒ q ∈ p.chldrn ∪ {p} holds in this case.

Hence, AT
i is bottom-up. By a similar reasoning, if Ai is top-down, AT

i is top-down
too.
(3) The graph of actions’ causality of T(A) is acyclic. Indeed, by Lemma 2, for
every i, j ∈ {1, . . . , k}, AT

j ≺T(A) AT
i ⇒ Aj �A Ai. Now, �A is a strict total order.

So, the graph of actions’ causality of T(A) is acyclic. ��

Lemma 4. Every execution of T(A) is an execution of A.

Proof. A and T(A) have the same set of configurations; every step of T(A) is a
step of A; and a configuration γ is terminal w.r.t. T(A) iff γ is terminal w.r.t.
A. ��

Theorem 9. If A follows an acyclic strategy, and is silent and self-stabilizing
for SP in G under the distributed unfair daemon, then

(1) T(A) is silent and self-stabilizing for SP in G under the distributed unfair
daemon,



200 K. Altisen et al.

(2) its stabilization time is at most (H + 1) · (H + 1) rounds, and
(3) its stabilization time in moves is less than or equal to the one of A.

where H is the height of the graph of actions’ causality of A and H is the height
of the spanning forest.

Proof. By Remark 7, Lemmas 3 and 4, and Theorems 5 and 6. ��

Using the above theorem, we can apply the transformer on our toy example:
T(T E) stabilizes in at most 2(H + 1) rounds and Θ(H · n2) moves in the worst
case.

7 Related Work and Applications

There are many works [6–9,14,22,26] where we can apply our generic results.
These works propose silent self-stabilizing algorithms for directed trees or net-
work where a directed spanning tree is available. These algorithms are, or can
be easily translated into, well-formed algorithms that follow an acyclic strat-
egy. Hence, their correctness and time complexities (in moves and rounds) are
directly deduced from our results. Below, we only present a few of them.

Turau and Köhler [26] proposes three algorithms for directed trees. Each
algorithm is given with its proof of correctness and round complexity, however
move complexity is not considered. These three algorithms can be trivially trans-
lated in our model, and our results allow to obtain the same round complexities,
and additionally provide move complexities. Among those three algorithms, the
third one is the most interesting since it uses 5 families of actions, while the
two first use 1 and 2 families respectively. So, we only detail this latter. The
algorithm computes a minimum connected distance-k dominating set using:

A1(p) :: p.L �= L(p) → p.L ← L(p)
A2(p) :: p.level �= level(p) → p.level ← level(p)
A3(p) :: p.cds �= cds′(p) → p.cds ← cds′(p)
A4(p) :: p.cds ∧ p.distl �= distl(p) → p.distl ← distl(p)
A5(p) :: p.minc �= minc(p) → p.minc ← minc(p)

We do not explain here the role of the variables nor their computation using
macros, please refer to the original paper [26]. But from their definition in [26], we
can observe that: (1) L(p) depends on q.L for q ∈ p.chldrn; (2) level(p) depends
on p.par.level; (3) cds′(p) that depend on p.L and q.cds for q ∈ p.chldrn; (4)
distl(p) depends on q.L and q.cds for q ∈ p.chldrn, and p.par.distl; finally (5)
minc(p) depends on p.level, q.cds and q.minc for q ∈ p.chldrn. So, A1, A3, A5

are bottom-up and correct-alone and A2, A4 are top-down and correct-alone.
The graph of actions’ causality is acyclic since A1 ≺ A3, A1 ≺ A4, A2 ≺ A5,
A3 ≺ A4, and A3 ≺ A5; and its height is H = 2. Thus, as in [26], we have a
round complexity in O(H). Moreover, by Theorem5, the move complexity is in
O(Δ2.n4), where Δ is the degree of the tree.

The silent algorithm given in [22] finds articulation points in a network
endowed with a breadth-first spanning tree, assuming a central unfair daemon.



Acyclic Strategy for Silent Self-stabilization in Spanning Forests 201

The algorithm computes for each node p the variable p.e which contains every
non-tree edges incident on p and some non-tree edges incident on descendants
of p once a terminal configuration is reached. Precisely, a non-tree edge {p, q} is
propagated up in the tree starting from p and q until the first common ances-
tor of p and q. Based on p.e, the node p can decide whether or not it is an
articulation point. The algorithm can be translated as a single family of actions
which is correct-alone and bottom-up. So, it follows that this algorithm is silent
and self-stabilizing even assuming a distributed unfair daemon. Moreover, its
stabilization time is in O(n2) moves and O(H) rounds.

The algorithm in [14] computes cut-nodes and bridges on connected graph
endowed with a depth-first spanning tree. It is silent and self-stabilizing under
a distributed unfair distributed daemon and converges within O(n2) moves and
O(H) rounds. Indeed, the algorithm contains a single family of actions which is
correct-alone and bottom-up.

8 Conclusion

We have presented a general scheme to prove and analyze silent self-stabilizing
algorithms executing on networks endowed with a sense of direction describing
a spanning forest. Our results allow to easily (i.e. quasi-syntactically) deduce
correctness and upper bounds on both move and round complexities of such
algorithms. We have identified a number of algorithms [6–9,14,22,26] where our
method applies. In several of those works, the assumption about the existence of a
directed spanning tree has to be considered as an intermediate assumption, since
this structure has to be built by an underlying algorithm. Now, several silent self-
stabilizing spanning tree constructions are efficient in both rounds and moves,
e.g., [15]. Thus, both algorithms, i.e., the one that builds the tree and the one
that computes on this tree, have to be carefully composed to obtain a general
composite algorithm where the stabilization time is kept both asymptotically
optimal in rounds and polynomial in moves.

References

1. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader
election in polynomial steps. Inf. Comput. 254, 330–366 (2017)

2. Arora, A., Gouda, M., Herman, T.: Composite routing protocols. In: SPDP 1990,
pp. 70–78 (1990)

3. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS,
vol. 8756, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11764-5 2

4. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-
stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16023-3 7

https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-642-16023-3_7


202 K. Altisen et al.

5. Blin, L., Tixeuil, S.: Compact deterministic self-stabilizing leader election on a ring:
the exponential advantage of being talkative. Dist. Comp. 31(2), 139–166 (2018)

6. Chaudhuri, P.: An O(n2) self-stabilizing algorithm for computing bridge-connected
components. Computing 62(1), 55–67 (1999)

7. Chaudhuri, P.: A note on self-stabilizing articulation point detection. J. Syst. Arch.
45(14), 1249–1252 (1999)

8. Chaudhuri, P., Thompson, H.: Self-stabilizing tree ranking. Int. J. Comput. Math.
82(5), 529–539 (2005)

9. Chaudhuri, P., Thompson, H.: Improved self-stabilizing algorithms for l(2, 1)-
labeling tree networks. Math. Comput. Sci. 5(1), 27–39 (2011)

10. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of funda-
mental protocols. TAAS 4(1), 6:1–6:27 (2009)

11. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competi-
tive self-stabilizing k-clustering. TCS 626, 110–133 (2016)

12. Datta, A.K., Larmore, L.L., Vemula, P.: An O(N)-time self-stabilizing leader elec-
tion algorithm. JPDC 71(11), 1532–1544 (2011)

13. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited.
JACIC 3(10), 498–514 (2006)

14. Devismes, S.: A silent self-stabilizing algorithm for finding cut-nodes and bridges.
Parallel Process. Lett. 15(1–2), 183–198 (2005)

15. Devismes, S., Ilcinkas, D., Johnen, C.: Silent self-stabilizing scheme for spanning-
tree-like constructions. Technical report, HAL (2018)

16. Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited.
JPDC 97, 11–23 (2016)

17. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. Acta Inf. 36(6), 447–462 (1999)

18. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Dist. Comp. 14(3),
147–162 (2001)

19. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs.
Dist. Comp. 7(1), 55–59 (1993)

20. Christian, G., Nicolas, H., David, I., Colette, J.: Disconnected components detec-
tion and rooted shortest-path tree maintenance in networks. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 120–134. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11764-5 9

21. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-
first trees. IPL 41(2), 109–117 (1992)

22. Karaata, M.H.: A self-stabilizing algorithm for finding articulation points. Int. J.
Found. Comput. Sci. 10(1), 33–46 (1999)

23. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dist.
Comp. 7(1), 17–26 (1993)

24. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Dist. Comp. 22(4),
215–233 (2010)

25. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2001)

26. Turau, V., Köhler, S.: A distributed algorithm for minimum distance-k domination
in trees. J. Graph Algorithms Appl. 19(1), 223–242 (2015)

https://doi.org/10.1007/978-3-319-11764-5_9
https://doi.org/10.1007/978-3-319-11764-5_9


On Fast Pattern Formation
by Autonomous Robots

Ramachandran Vaidyanathan1, Gokarna Sharma2(B), and Jerry L. Trahan1

1 Louisiana State University, Baton Rouge, LA 70803, USA
{vaidy,jtrahan}@lsu.edu

2 Kent State University, Kent, OH 44242, USA
sharma@cs.kent.edu

Abstract. We consider the fundamental problem of arranging a set of
n autonomous robots (points) on a plane according to a given pattern.
Each robot operates in a, largely oblivious, look-compute-move step. In
this paper, we present a framework for the pattern formation problem.
Leader election is key to this framework. For a given leader election time
of TLE (that could be deterministic or randomized), we show that the
pattern formation problem can be solved in O(TLE ) time on the semi-
synchronous model using robots that either are transparent (i.e., the
classical oblivious robots model where complete visibility is guaranteed
at all times) or have lights with a constant number of colors (i.e., the
robots with lights model where robots are not transparent but the colors
of the lights are persistent between steps). We also prove that, for some
cases, the O(TLE ) time is optimal for pattern formation on the semi-
synchronous model. These are the first sublinear-time results on pattern
formation by autonomous robots in the look-compute-move framework.
Furthermore, our results on the semi-synchronous model indicate that
transparency and lights compensate for each other in the pattern forma-
tion problem. The proposed method also runs in O(TLE +log n) time on
the asynchronous model of robots with lights.

1 Introduction

The classical model of distributed computing by mobile robots abstracts each
robot as a point in the plane [6]. The robots are autonomous (no external con-
trol), anonymous (no unique identifiers), indistinguishable (no external identi-
fiers), and disoriented (no agreement on coordinate systems and units of dis-
tance). They execute the same algorithm and proceed in Look-Compute-Move
(LCM) cycles: When a robot becomes active, it first gets a snapshot of its sur-
roundings (Look), then computes a destination based on the snapshot (Compute),
and finally moves to the destination (Move). Moreover, the robots are oblivious,
i.e., a robot has no memory of its past LCM cycles [6]. Further, robots are silent
because they do not communicate directly, and only vision and mobility enable
them to coordinate their actions.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 203–220, 2018.
https://doi.org/10.1007/978-3-030-03232-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_14&domain=pdf


204 R. Vaidyanathan et al.

Another model that incorporates direct communication is the robots with
lights model [4,6,9], where each robot has an externally visible light that can
assume colors from a constant sized set; robots explicitly communicate with each
other using these colors. The colors are persistent; i.e., the color is not erased
at the end of a cycle. Except lights, the robots are oblivious as in the classical
model.

Pattern Formation: We study the fundamental problem of arranging a set of
n autonomous robots on a plane according to a pattern given by a set of n points
(the Pattern Formation problem) [2,5,7,8,14–17]. The points are given in a
global coordinate system that is not necessarily the same as the local coordinate
system of any robot. The pattern can be arbitrary, as long as the points are
distinct. We say a configuration matches the pattern if rotation, translation, and
scaling of the configuration points can produce the pattern points. An algorithm
solves Pattern Formation if given any initial configuration of n robots located
at distinct points on a plane, they reach a configuration that matches the given
pattern and remain stationary thereafter.

We study the Pattern Formation problem in both the classical oblivious
robots model and the robots with lights model. To the best of our knowledge, our
study is the first for Pattern Formation in the robots with lights model. This
problem has been studied extensively in the literature in the classical oblivious
robot model, e.g., [2,5,7,8,14–17], in fully synchronous, semi-synchronous, and
asynchronous models. Although runtime is a crucial parameter, these previous
results provide no runtime analysis (except for a proof of finite time termina-
tion). Runtime is in fact largely unexplored in the distributed robotics literature.
It seems that all previous algorithms for Pattern Formation need linear O(n)
runtime. The goal of this paper is to develop a fast runtime framework for Pat-
tern Formation on both the classical oblivious robots model and the robots
with lights model. This is the continuation of our recent research on designing
algorithms with guaranteed time bounds for fundamental robot coordination
problems [10–13]. We believe that the techniques developed for optimizing run-
time may provide insights on the difficulty of and approaches to faster robot
coordination.

We consider the classical oblivious robots model of [6] and the robots with
lights model of [4,9]. Both models are the same except for the following two
differences:

– Robots in the robots with lights model are equipped with a persistent light
that can assume a constant number of colors.

– Robots are transparent in the classical model, i.e., a robot sees all other robots
in the system at all times and hence, for example, the swarm size n is known
to robots. Robots obstruct visibility in the robots with lights model, i.e., the
endpoint robots among three collinear robots do not see each other and here
robots do not know n.



On Fast Pattern Formation by Autonomous Robots 205

Contributions: In this paper, we have the following three contributions:

1. For both the classical and lights models of robots, the time needed to solve
Pattern Formation is Ω (TLE ) on the semi-synchronous model, where TLE

is the time needed to solve a form of leader election (Sect. 7).
2. For both the classical and lights models of robots, Pattern Formation can

be solved in O (TLE ) time on the semi-synchronous model (Sects. 4 and 6),
which is optimal (under certain conditions).

3. For the lights model of robots, Pattern Formation can be solved in
O (TLE + log n) time on the asynchronous model (Sect. 5).

4. For the Pattern Formation problem, the ability to see all robots (unob-
structed visibility) can be traded-off with the ability to broadcast light (within
obstructed visibility), with no time penalty on the semi-synchronous or fully
synchronous model.

To the best of our knowledge, these are the first results with provable sub-
linear runtime bounds for Pattern Formation. Our results on the semi-
synchronous model are tight for the lights model, and conditionally optimal for
the classical model. They indicate that, for the semi-synchronous model, trans-
parency (in the classical model with no lights) and lights (in the lights model
with obstructed visibility) can trade-off with each other for Pattern Forma-
tion. For the asynchronous classical model, it is open to provide similar runtime
bounds. One prominent property of our algorithms is that they are collision-free.
Our algorithms for the lights model have four phases:

– Phase 0 - Complete Visibility, which brings any initial configuration of robots
to a mutually visible configuration in which each robot sees all others,

– Phase 1 - Forming an Oriented Circle, which positions robots on a circle with
three of the robots designated as special to impart an orientation to the circle,

– Phase 2 - Repositioning on an Oriented Circle, which relocates the robots
that are already on the oriented circle to specific positions, and

– Phase 3 - Positioning on a Given Pattern, which moves the robots on the
specific positions on an oriented circle to points on the given pattern.

We employ our previous O(1) time, O(1) color technique [12] to execute the
Phase 0 on the asynchronous model. Phase 3 also runs in constant time. The
remaining two phases use a Leader Election algorithm to select “special
robots.” They introduce an O(TLE) time, and O(log n) additional time on the
asynchronous model (O(TLE) time suffices on the semi-synchronous model).
A key component of Phase 2 is a beacon-directed curve positioning procedure
[12] that recursively puts robots on the specific positions on the oriented circle.
Our algorithm for the classical model has Phases 1–3, as all robots are visible
by the nature of the model.



206 R. Vaidyanathan et al.

2 Preliminaries

Robots with Lights: We consider a distributed setting of n robots Q =
{i : 0 ≤ i < n}. Each robot is a (dimensionless) point that can move in an
infinite 2-dimensional real space R

2. We use a point to refer to a robot as well
as its position. A robot i can see, and be visible to, another robot j if and only
if (iff) there is no third robot k in the line segment joining i, j (i.e., obstructed
visibility). Each robot has a light that can assume one color at a time from a
constant number of different colors. The moves of the robots are rigid – a robot
in motion cannot be stopped (by an adversary) before it reaches its destination
point. We assume that two robots cannot head to the same destination point
and their paths cannot cross; this would constitute a collision.

Look-Compute-Move: At any time a robot i ∈ Q could be active (participat-
ing in an LCM cycle) or inactive. When a robot i becomes active, it performs
the “Look-Compute-Move” cycle as follows.

Look: For each robot j that is visible to it, i can observe the position of j on the
plane and the color of the light of j. Robot i can also know its own color and
position. Each robot observes position on its own frame of reference, i.e., two
different robots observing the position of the same point may produce different
coordinates. However a robot observes the positions of points accurately within
its own reference frame.

Compute: In any LCM cycle, i may perform an arbitrary computation using
only the colors and positions observed during the “look” portion of that cycle.
This includes determination of a (possibly) new position and color for i for the
start of the next LCM cycle. Robot i maintains this new color from that LCM
cycle to the next LCM cycle.

Move: At the end of the LCM cycle, i changes its light to the new color and
moves to its new position.

Classical Oblivious Robots: The difference compared to the robots with
lights (presented above) is that robots in Q have no lights in the classical model.
Therefore, the color part can be discarded while performing an LCM cycle.
Furthermore, it is assumed that a robot i can see, and be visible to, every other
robot j of Q (i.e., transparency or unobstructed visibility).

Robot Activation Models and Synchronization: In the fully synchronous
model (FSYNC), every robot is active in every LCM cycle and all LCM cycles
begin and end at the same time. In the semi-synchronous model (SSYNC) too
all LCM cycles begin and end at the same time. However, not all robots may
be active at a given LCM cycle. At least one robot is active in each LCM cycle,



On Fast Pattern Formation by Autonomous Robots 207

and over an infinite number of LCM cycles, every robot is active infinitely often.
In the asynchronous model (ASYNC), there is no common notion of time and
no assumption is made on the number and frequency of LCM cycles in which a
robot can be active. The only guarantee is that every robot is active infinitely
often. Complying with the ASYNC setting, we assume that a robot performs
its Look phase at an instant of time. We also assume that a robot moves at some
(not necessarily constant) non-zero speed in a straight line until it reaches its
destination.

Measuring Runtime: For the FSYNC model, we measure time in rounds,
where one round is one LCM cycle. As a robot in the SSYNC and ASYNC
models could stay inactive for an indeterminate amount of time, we use the
notion of an epoch to measure runtime [3]. Let t0 denote the starting time of the
computation. Epoch i is time period from ti−1 to ti where ti is the earliest time
after ti−1 when all robots have executed a complete LCM cycle at least once.
In the FSYNC model, an epoch is one round (one LCM cycle). We will use the
term “time” generically to mean rounds for the FSYNC model and epochs for
the SSYNC and ASYNC models. Note that our time bounds for the SSYNC
and ASYNC models hold regardless of the activation schedule. Moreover, the
bounds for the SSYNC model apply directly to the FSYNC model as well.

Complete Visibility: Given a set of n robots with lights (and obstructed
visibility) at arbitrary positions on a plane, the Complete Visibility problem
is to position them so that no three robots are collinear.

Theorem 1 [12]. Complete Visibility can be solved in O(1) time on a set
of robots with lights operating in the ASYNC model.

Leader Election: The Leader Election problem is as follows: Given a set
of n robots, select exactly one of the robots as leader such that the leader robot
knows that it is the leader and non-leader robots know that they are not the
leader [1]. In the context of this paper, Leader Election is used in various
forms, In general, we will use TLE to denote leader election time. Several solutions
are possible. For this paper, the following results (based on a slotted Aloha
algorithm) provide a bound on TLE ; for brevity we omit proofs.

Theorem 2. For any σ > 0, Leader Election can be solved for the ASYNC
robots with lights in O(σ log n) time with probability at least 1 − Θ (n−σ).

Theorem 3. For any σ > 0, Leader Election can be solved for the classical
SSYNC robots in O(σ log n) time with probability at least 1 − Θ (n−σ).

Remark: In Theorems 2 and 3 if σ ≥ 1 is a constant, then Leader Election
can be solved in O(log n) time with high probability (whp). On the other hand
if σ log n is a constant, then Leader Election can be solved in O(1) time with
a constant probability of success (which, in this case, translates to O(1) average
time).



208 R. Vaidyanathan et al.

3 A Pattern Formation Framework

We will call a pattern {(�i, θi) : 0 ≤ i < n}, expressed in polar coordinates,
to be in standard form iff it includes (0, 0) and (1, 0) as pattern points and the

distance di,j =
√

r2i + r2j − 2rirj cos (θi − θj) between any pair of points (�i, θi)
and (�j , θj) is at least 1. Clearly given the pattern, one could select a pair of points
with minimum distance between them and transform the coordinate system to
place these points at (0, 0) and (1, 0). From this point on, we will assume the
given pattern to be in standard form.

i0

Fig. 1. Left: An initial configuration of n = 15 robots; Center: a configuration of
complete visibility; Right: An oriented circle for the example with n = 15 points. The
polar reference and orientation robots are colored blue, red and green, respectively. It
should be noted that robots are points on a real plane and are placed on distinct points
on the circle. The polar robot has been left at the center for clarity. (Color figure online)

We now present a framework to solve Pattern Formation. The framework
has three phases (four for robots with lights). We assume that n ≥ 6 robots are
available.

As we proceed through these phases, we will use the initial (arbitrary) config-
uration of robots as shown in Fig. 1 as a running example. Though these figures
depict robots with lights, the underlying ideas also translate to the classical
model.

Phase 0 (Complete Visibility – for Robots with Lights): Position robots
such that each robot has unobstructed visibility of all other robots.

Phase 1 (Forming an Oriented Circle): Position all robots on a circle
except three robots designated as “special robots” and assigned distinct colors
or positions to indicate their status. The first of these is the polar robot that
is placed at the center of the circle. The next one, the reference robot, marks a
reference point on the circle. On a polar coordinate system with the center of
the circle as the pole (origin), the position of the reference robot has an angular
coordinate of 0. This robot can be on or within the circle (Fig. 1 shows it on the



On Fast Pattern Formation by Autonomous Robots 209

circle). The third special robot is the orientation robot. It is located on or in the
circle such that the line connecting it to the reference robot does not traverse
the center of the circle. The orientation robot defines the direction in which
the angular coordinate increases; specifically, we will assume that the angular
coordinate of the orientation robot is strictly smaller than 180◦. Figure 1 shows
the oriented circle for our example. The polar robot is finally also moved to the
circumference of the circle. At this point, each robot i on the circle can also
determine the angle θi that it makes with the center of the circle. In other words
for a circle of radius �, the polar coordinates of robot i on the circle are (�, θi).
Since each robot on the circle has a distinct position, θi �= θj , for distinct i, j.

The radius � of the oriented circle will also be used as the unit distance for
subsequent steps. To comport with a conventional depiction of a polar coordi-
nate system, we will redraw the figure so that the reference robot, which is at
the (1, 0) point, is placed to the right of the origin and the angle increases in
counterclockwise direction (see Fig. 2).

i2

i3
i8i11

i12

i14

j0

i1

j1

j14

j8j2
j9

j3

j4

j10

j11

j5

j12

j6

j13

j7

i0

i8i11

i1

j1

j13

j7

j14

i2

j8
j2

i3

j12
j6j5

j11

j4

j10 j0

i14

i13
i12

j3

j9

i0

Fig. 2. On the left is Fig. 1(right) redrawn in standard ori-
entation. Small solid circles represent robot positions after
they have formed an oriented circle. Slightly larger unfilled
circles represent the target positions. The polar robot has
been moved off-center to the circumference and its ulti-
mate position at the center is shown. For clarity, the figure
on the right slightly repositions the points of the figure on
the left, as only the relative positions are important for the
illustration. Robot paths are shown curved only for clarity.

Phase 2 (Reposition-
ing on an Oriented
Circle): Given a set
of robots initially posi-
tioned on an oriented
circle, this phase repo-
sitions them on the cir-
cle. More specifically,
the robots determine a
set of destinations on
the circle, called target
points (as dictated by
a common algorithm).
These target points are
such that robots can
move radially outward
from these points to the
pattern points. Each
robot then moves to
one of these destina-
tions, without collision.
The special robots do not move in this phase. Figure 2(right) illustrates the
movement of robots for our example.

Phase 3 (Positioning on Given Pattern): Given a set of robots positioned
at target points on an oriented circle, this phase moves the robots to pattern
points. At this phase the polar robot moves to the origin and the reference robot
remains at point (1, 0).



210 R. Vaidyanathan et al.

Every pattern point (xi, yi) can be expressed in polar coordinates (�i, θi). For
an oriented circle of radius 1, the previous phase positions robot i at target point
(1, θi). In the current phase, robot i moves along the radius of the oriented circle
from distance 1 to distance ri. Further, the scale is fixed so that the shortest
distance of any point in the pattern to the origin is 1. Thus, each ri ≥ 1 and
there is no robot inside the oriented circle while the non-special robots move.
The special robots move last as explained later.

This approach has assumed that all robots to have different angle coordinates
θi. We will briefly address the case where θi is not distinct later.

4 Pattern Formation on SSYNC Robots with Lights

We first make some observations that will enable us to express our algorithms
tersely. If an algorithm has a constant number of steps (or phases), then one
can enforce explicit synchronization between steps by using a different (but con-
stant sized) set of colors for each step. Although the number of colors used can
be reduced by reusing them across steps, the focus here is on the main ideas
underlying our approach.

In this section we describe an algorithm for the SSYNC model with lights.

Phase 0 (Complete Visibility): Starting from an arbitrary position robots
arrange themselves in a position of complete visibility in O(1) time and with a
O(1) number of colors. Beyond this point, the robots will maintain the visibility
needed for the algorithm.

Phase 1 (Forming an Oriented Circle): First pick a leader (Theorem 2),
say robot i0, and color it center. This robot will (ultimately) be the center
of the oriented circle. Let d be the distance of the closest robot to i0 (other
than i0 itself). Then d will be the radius of the oriented circle. Now each robot,
except the center i0, moves towards i0 (if needed) to place itself on the circle and
assumes a color on circle. We will call robots with color on circle as “circle
robots.”

To orient the circle, use Leader Election (Theorem 2) to select two other
leaders. The first (reference robot) is any one of the robots on the circumference
of the circle. The second leader (orientation robot) could be any robot except one
that is diametrically opposite to the first leader. (Assuming n > 3 guarantees the
existence of such a robot; if n = 3, then an orientation is not needed.) Further, as
the last step, the polar robot moves to the circumference of the oriented circle.
The point selected by the polar robot to move to on the circumference must
not be occupied by any robot currently, or be the destination of any robot in
Phase 3. (The polar robot can determine all destinations of Phase 3 from the
input information.)

At this point, every robot is on the circumference of a circle (a position
of complete visibility) and because n ≥ 3, every robot can determine the center



On Fast Pattern Formation by Autonomous Robots 211

(and radius) of this circle. Thus even though the polar robot is not at the center,
the circle is still oriented.

Lemma 4. For any σ > 0, given a set of robots in a position of complete visibil-
ity, they can form an oriented circle in O(TLE) = O(σ log n) time with probability
1 − Θ(n−σ).

Phase 2 (Repositioning Robots on Oriented Circle): At the start of
this phase, all robots are positioned on the circumference of an oriented circle.
The target points to which robots need to be repositioned are derived from the
pattern points in the input/program. (The overview of Phase 3 (Sect. 3) explains
how to compute target points on the circle.) All robots except the reference and
the polar robots are now repositioned on the circle. Recall also that the reference
robot is already at its final position at (1, 0) and that the polar robot (ultimately)
needs to move to the pole (origin). The orientation robot will be the last to
relocate in this phase and the polar robot will remain on the circumference,
moving to the pole in the next phase. Consequently, when all robots are on the
circle, they will have the special robots, and hence the oriented circle, in their
view.

Let m = n − 3. This phase essentially solves the following “Circle Reposi-
tioning” problem. Given a set of m (non-special) robots on an oriented circle,
the task is to relocate these points to a set of target points on the circle. We
will initially leave the special robots out of the discussion, with the understand-
ing that they will be available for use of the remaining m non-special robots to
relocate themselves. In Sect. 5 we give solutions to the above problem that run
on the ASYNC model.

Coming back to the Circle Repositioning problem on the SSYNC model, we
have an oriented circle (with three special robots) and m non-special robots that
are to be relocated to m possibly new target positions on the circle. Assume that
all of the m robots move to a new position; otherwise we can ignore those robots
that are already at a destination position and reduce the value of m. Thus we
have a set of 2m distinct points, m of which are sources and m are destinations. In
the following, sources and destinations are analogous to left and right parentheses
and the solution to the problem corresponds to a parenthesis matching. (It can
be shown that if sources and destinations are paired by parenthesis matching,
then paths will not cross within the circle (for brevity we omit a proof).)

The first task of this phase is to determine a source, starting from which
and proceeding along the circle (as dictated by its orientation) one gets a proper
parenthesis matching between the sources and destinations. For the example
of Fig. 2(right), the orientation is counterclockwise. Here a proper parenthesis
matching can start from robot i3, but not from i2 (as we encounter more desti-
nations than sources at some point on our way). Since all source and destination
positions are visible to all m robots, those that are eligible to start the paren-
thesis sequence flag themselves in constant time. Next, exactly one of them is
selected as the starting point using Leader Election; this robot is colored
appropriately.



212 R. Vaidyanathan et al.

Each source (robot) i has a unique destination ji in this parenthesis sequence.
A key point is that removal of a source destination pair, say i′, ji′ , from the
parenthesis sequence does not change the mapping of another robot i to ji.

Consider any source i that wakes at the start of a round. In the SSYNC
model, it does not see any robots in the interior of the circle. Every robot it
sees has either moved to a destination (this is the same as the source-destination
pair not participating in the parenthesis matching) or is waiting to move at the
current or future round. From our earlier observation, source i correctly identifies
its destination ji and moves to it, based only on what it sees at the current round
(regardless of which robot has already moved in a previous round).

Lemma 5. For any σ > 0, the Circle Repositioning problem on n robots can be
solved in O(TLE) = O(σ log n) time with probability 1 − Θ(n−σ) on the SSYNC
robots with lights model.

Phase 3 (Positioning Robots on a Pattern): The reference robot is in
its final position (1, 0) on the oriented circle and the polar robot is at some
position on the circumference of the oriented circle. Every other robot i, including
the orientation robot (that is placed at (1, θi) at some distinct angle θi on the
circumference of the unit oriented circle) is in a position of complete visibility
before its move. Since ri ≥ 1 (no robot moves into the unit circle), complete
visibility is ensured for robots that are still on the unit oriented circle until the
polar robot moves to the pole.

First each non-special robot i moves independently to its final position (�i, θi).
For this it only needs the special robots and this step runs in one epoch.

Now that all non-special robots have been moved to the correct positions on
the pattern, we turn to the three special robots. Of these, the reference robot is
already in its final position. We first move the polar robot to the center of the
circle. This is simple as the positions of the reference robot, orientation robot,
and polar robot on the circle fully define the circle and its center.

Since the reference robot is not placed diametrically opposite to the orien-
tation robot, and the polar robot is at the center of the circle, both the polar
and reference robots are visible to the orientation robot. Along with its own
position, the orientation robot can fully determine the oriented circle and move
to its destination. At this point all robots are at their final destinations.

For brevity, we omit some details here, including the offset procedure (in
Appendix) by which robots with the same angular coordinate for pattern points
spread themselves in an arc of the oriented circle to be able to reach their pattern
points without collision.

Theorem 6. For any σ > 0, Pattern Formation can be solved on the
SSYNC robots with lights model with n robots in O(TLE) = O(σ log n) time
with probability 1 − Θ(n−σ).



On Fast Pattern Formation by Autonomous Robots 213

5 Pattern Formation on ASYNC Robots with Lights

A robot in transit in the ASYNC model can assume a different (set of) color(s)
to indicate that it is in transit. This will only involve replacing a step by two
steps, one to change color to a transit color and move and the other to change
color to a destination color.

On the SSYNC model, all active robots wake and look at the same time, so
they do not see robots in motion. In the ASYNC model, a waking robot can
see a robot in motion that blocks its view of a circle robot; recall that robots in
motion are so colored. Coping with the positions of robots in motion is a major
challenge in moving from SSYNC to ASYNC.

For SSYNC circle formation (Phase 1), since the all robots that have moved
from the initial complete visibility position are now circle robots, at least one
circle robot is visible to every waking robot. Thus, all robots move to the circle
within one epoch.

For ASYNC circle formation, consider any epoch starting with m ≥ 1 circle
robots, and one (i0) at the center, and the remaining n − 1 − m at distinct
angles from i0. Since every robot moves radially towards the center, a moving
robot cannot block the view of the center from any robot. Consider a waking
robot i that is unable to see any circle robot. As argued for the SSYNC case
each blocking robot must be in motion and will became a circle robot at the
next epoch. If all m circle robots are blocked from a single waking robot (at a
single instant of time) then there must be at least m robots in motion and the
next epoch has at least 2m circle robots. Since the number of circle robots at
least doubles at each epoch, O(log n) epochs suffice to move all robots to the
circle.

We provide an overview of the ASYNC algorithm for Circle Repositioning
(Phase 2). Phases 0, 1, and 3 are easily executed extending the respective phases
in Sect. 4. We denote the oriented circle by OC. We assume that the polar robot
is on OC.

The algorithm works for Phase 2 in stages as follows. Stages 1 is executed
only one time in the beginning of Phase 2 and Stages 2–4 are executed repeatedly
until all robots are positioned on their target points on OC. The reference robot
is already on its target point and hence it does not move. We also do not move
polar and orientation robots. They will be moved to their target points later.
Figure 3 illustrates the stages with 15 robots on the circle initially (including the
polar robot).

– Stage 1: This stage picks a set X of robots (we fix size 4 and denote as
|X | = 4; in fact any constant ≥ 3 should be sufficient) on OC and places
them on their target points on OC. We do not move the reference robot,
and we include this robot to be a robot in X . Note that we still have m
robots to move to the target points; if some robots are already on their target
points, they pick appropriate colors and remain stationary. The stage is done
sequentially for each of the |X | arcs and robots in X are positioned in such
a way that in the arc of OC between two consecutive robots of X , there



214 R. Vaidyanathan et al.

are exactly m′ = m−|X|−1
|X | target points for the robots on OC to move to

(discounting the reference robot). The boundary cases of m′ not being an
integer can be handled with a simple modification. Let ij be a straight line
connecting any two consecutive robots i, j of X and arc(ij) be an arc of OC
between i, j. The robots on arc(ij) are then repositioned on ij. If less than
m′ robots are on arc(ij), the robots on the other |X | − 1 arcs will move to
arc(ij) to make sure that there are m′ robots.

– Stage 2: All robots on OC that are not on their target points are now posi-
tioned on |X | straight lines connecting the consecutive robots of X . This
stage forms an arc arcin(ij), bent inward rather than outward like arc(ij),
that passes through the endpoints i, j of ij and places all the robots on ij to
the positions on arcin(ij). The relocation is done in such a way that, at the
end of this stage, each robot on arcin(ij) sees all other robots on arcin(ij)
including i, j and the remaining robots of X . The robots in X , except i, j,
may not be visible after the relocation. However, we ask robots on arcin(.)
to nudge a bit on the arc itself that they are on if they are collinear with any
two robots of X .

– Stage 3: Let k be a robot in the middle among the robots on arcin(ij).
Since each robot on arcin(ij) sees all other robots on arcin(ij), k can easily
compute whether it is a middle robot or not. Robot k moves to its target
point on arc(ij) and the other robots of arcin(ij) do not move at this stage.
After k is positioned on arc(ij), arc(ij) is divided into two arcs arc(ik) and
arc(kj). Represent the straight line connecting i with k by ik and the line
connecting k with j by kj.

– Stage 4: Let Xleft and Xright be the robots on arcin(ij) such that the robots
between i and k (before it moved to arc(ij)) are in Xleft and the remaining
robots of arcin(ij) are in Xright. The goal in this stage is to move the robots
in Xleft to position them on ik and in Xright to position them on kj. The
robots on ik and kj then execute Stages 2–4 one after another. This process
repeats until all robots on OC are positioned on the target points on OC.

To achieve our objectives, synchronize through colors the execution in each
stage and between subsequent stages. We show that O(1) colors suffice. Each
stage runs in O(1) time for each iteration. Stages 2–4 execute at most O(log n)
times during Phase 2. Combining all these results, we have O(log n) time for
Phase 2 in the ASYNC model.

Lemma 7. The Circle Repositioning problem on n robots can be solved in
O(log n) time on the ASYNC model.

Combining the results of Lemma 7 with Theorem 2 (leader election in the
ASYNC model), we obtain the following theorem for ASYNC robots with
lights.

Theorem 8. For any σ > 0, Pattern Formation can be solved on the
ASYNC robots with lights model with n robots in O(TLE + log n) time with
probability 1 − Θ(n−σ).



On Fast Pattern Formation by Autonomous Robots 215

Fig. 3. An illustration of the stages of the asynchronous algorithm for Phase 2. Given
n robots on an oriented circle (left), Stage 1 moves them appropriately to the lines
connecting a constant number of selected robots. Stage 2 then forms an arc each on
those lines and moves all robots on those lines to their arcs. Stage 3 then moves a
middle robot on each arc to its target point on the oriented circle. Stage 4 then moves
the remaining robots of those arcs to two straight lines formed due to the move of the
middle robot on the oriented circle in Stage 3. Stages 2–4 execute repeatedly until all
robots on the circle are relocated to their target points.

6 Pattern Formation on SSYNC Classical Robots

Here we consider robots without lights, but with unobstructed visibility (every
robot is visible to every other robot, including itself, regardless of the robot
positions on the plane). We describe pattern formation on the SSYNC classical
robots model, focusing mostly on the differences from the robots with lights
model. We will use positional information to indicate robot states (rather than
lights), without having to moderate this positioning to account for visibility.

Additionally we will use two constants 0 < α < β < 1 and a non-zero angle
φ that serve, among other things, to separate configurations at different steps.
The values of α, β, φ can be determined at compile time, given the destination
points.

Lemma 9. Consider a pattern P = {(�i, θi) : 0 ≤ i < n} in standard form.
Let Q = {(1, φi) : 0 ≤ i < m} be a set of m ≤ n2 points on a unit circle
centered at (0, 0). Consider a configuration C in which the polar robot, r0, the
reference robot, r1, and the orientation robot, r2, are placed at points (0, 0), (α, 0)
and (β, φ), respectively, and all other robots are placed on n − 3 of the points of
P ∪ Q. Then the constants α, β, φ can be selected (at compile time) so that in
configuration C, robots r0, r1, r2 can be uniquely identified. �

We now outline the algorithm for the classical robot model, focusing in the
differences from the model with lights (Sect. 4). For brevity (and clarity), we will
also omit some details that could entail adding additional condition-action pairs
in fairly simple ways.

Because visibility is not a concern, Phase 0 is not needed and we begin with
Phase 1.

Phase 1 (Forming an Oriented Circle): This phase is performed in four
sub-phases, Phase 1.1–1.4.



216 R. Vaidyanathan et al.

Phase 1.1 (Polar Robot Selection): The goal is to select the robot to be
at the origin of a coordinate system that we are defining.
Condition 1.1: Always (the first step has to work with an arbitrary input con-
figuration). Because oblivious, this condition means that no other condition is
satisfied.
Action 1.1: Find a leader from among all the robots (using Leader Election) and
move this leader robot far enough away from the rest so that its angle of view1

is less than 60◦ (this is needed in Phase 2).
The above leader is the polar robot.

Phase 1.2 (Circle Formation): Here, all robots, except the polar robot,
arrange themselves in a circle C. The polar robot will be at the center of this
circle.
Condition 1.2: There is only one robot r0 (with the largest global distance), the
angle of view of r0 is less than 60◦, and not all robots other than r0 are on a
circle centered at r0.
Action 1.2: Let d be the distance of the furthest robot from r0. Move each
robot along the line connecting it to r0 to a distance d from r0. Robots that are
collinear with r0 use an offset procedure (omitted due to space constraints).

Clearly, this algorithm runs in O(1) time on the FSYNC model. However
it also runs on the SSYNC model as discussed below. Recall that the angle of
view of the polar robot, r0, is < 60◦. This ensures that as robots ri �= r0 move
to circle C, the distance between them will not exceed their distance from r0.
Therefore, robots that have already moved to the circle will wait until the end
of the epoch when all robots (other than r0) have moved to the circle.

At this point the polar robot r0 is at the center of a circle C and all other
robots are on the circumference of the circle. From here, robots treat the radius
of the circle as distance 1.

Phase 1.3 (Reference Robot Determination): We will designate one robot
r1 as the reference robot that will be ultimately located at point (1, 0).
Condition 1.3: All robots, except one, are on the circumference of a circle, C.
The last robot is at the center of this circle.
Action 1.3: Use Leader Election to pick one robot ry on the circumference and
move it inward radially to a distance β (for constant 0 < β < 1 consistent with
Lemma 9).

Phase 1.4 (Orientation Robot Determination): We designate another
robot rz, whose position relative to ry will indicate which way the angle increases.
This step proceeds exactly as the previous one except in relocating the orienta-
tion robot.
1 The angle of view [12] of a robot in a given configuration is the smallest angle

subtended at the robot’s position within which all robots are included. For example,
if all robots are in a straight line, the angle of view is 0◦ for the robots at the ends
and 180◦ for all others.



On Fast Pattern Formation by Autonomous Robots 217

Condition 1.4: All robots, except two, are on the circumference of a circle, C.
One of the remaining robots is at the center of this circle and the last robot is
at distance β from the center.
Action 1.4: Use Leader Election to pick one robot ry on the circumference of C
and move it inward to point (α, φ).

Phase 2 (Repositioning on Oriented Circle): Except for moving the special
robots (polar, reference and orientation robots) out of the way, this phase is
identical to that of robots with lights. The portions requiring lights to indicate
a leader can be effected by moving the leader marginally out of the circle so as
not to obstruct movement of robots within the circle.
Condition 2.1: The special robots are within the circle and the remaining robots
are on circle, but not all at the correct angles.
Action 2.1: Move the polar, reference and orientation robots from (0, 0), (β, 0)
and (α, φ) radially to points (γ0, φ0), (γ1, 0) and (γ2, φ), respectively, where 1 <
γ0 < γ1 < γ2 and points (γ0, φ0), (γ1, 0) and (γ2, φ) are not in the pattern.

The points (γ0, φ0), (γ1, 0) and (γ2, φ) can be computed with the knowledge
of n, the pattern to be formed and the current configuration. At this point, the
inside of the circle is free for robot relocation. This subphase runs in constant
time.
Condition 2.2: Three special robots are outside the circle at non-pattern points
and there is at least one non-relocated non-special robot on the circle.
Action 2.2: Relocate robots as indicated earlier.

We now get the special robots back inside the unit circle.
Condition 2.3: Three robots are outside a (unit) circle at non-pattern points
(γ0, φ0), (γ1, 0) and (γ2, φ), with 1 < γ0 < γ1 < γ2 and the remaining robots are
placed at the correct angles (to within offset points) on the circle.
Action 2.3: Move the robot at (γ0, φ0) to the center of the circle. Move the robot
at (γ0, φ0) to (β, 0) and the robot at (γ2, φ) to (α, 0).

Phase 3 (Positioning on Given Pattern): Again this phase is as in the
lights case. It is here that we use Lemma 9 to ensure that all robots can identify
the special robots as they move to their final positions across multiple SSYNC
rounds. We omit additional details.

Theorem 10. For any σ > 0, Pattern Formation can be solved on the clas-
sical SSYNC robots model with n robots in O(TLE) = O(σ log n) time with
probability 1 − Θ(n−σ).



218 R. Vaidyanathan et al.

7 Lower Bound, Time-Optimality and Trade-Offs

Consider a set of n robots (under some robot model M). For any integer 1 ≤
k ≤ n, the k-Ranking problem selects a set of k robots and assigns a unique
rank from 1 to k to each of the selected robots. Each robot knows its rank (or
lack of one if it is not selected). Robots start at arbitrary positions. Because a
lower bound is sought, we make the k-Ranking as easy as possible and place
no requirements on the final robot configuration. It should be noted that the
1-Ranking is a version of Leader Election.

Theorem 11. Pattern Formation on any autonomous robot model M(n)
with n robots requires Ω(Tk(n)) time, where Tk(n) is the time to solve k-
Ranking on M(n).

We now place this lower bound in the context of the algorithms in Sects. 4
and 6. Clearly Leader Election is no easier to solve than k-Ranking. Cast
in terms of leader election time, the algorithms of Theorems 6 and 10 run in
O(TLE) time, where O(TLE) is the time to solve leader election on the given
model. This application of Leader Election in our algorithm differs from 1-
Ranking, as defined, in two ways: (a) robots are expected to maintain certain
positional configurations at the end of leader election, and (b) the leader may
have to be selected from a subset of robots.

For the robots with lights model, performing Leader Election on a subset
of robots is straightforward using a dedicated (palette of) color(s). Similarly,
saving the robot ranks, while rearranging the robots into any desired positions
is also a matter of increasing the number of colors used by a constant factor.
Therefore, we have:

Theorem 12. For any M ∈ {FSYNC, SSYNC} robots with lights model,
given a time-optimal algorithm for Leader Election on M, Pattern For-
mation can be solved time-optimally on M. �

For the classical model, such a broad assurance is not possible without
specifics of the leader election algorithm.

Theorem 13. For any M ∈ {FSYNC, SSYNC} classical robots, if slotted-
Aloha-based leader election algorithms are time-optimal on M, then Pattern
Formation can be solved time-optimally on M. �

We close this section with an observation about two (seemingly unrelated)
abilities of autonomous robots in the SSYNC model: unobstructed visibility and
the availability of lights. Lights allow robots to store and broadcast a constant
number of states. In a similar, but less flexible way, unobstructed visibility allows
robots to use relative positions to broadcast state information. Our results seem
to bear this out since Theorems 6 and 10 show that for the Pattern Formation
problem and to within optimality of Leader Election, unobstructed visibility
and lights compensate for each other.



On Fast Pattern Formation by Autonomous Robots 219

8 Concluding Remarks

We have presented the first, to our knowledge, sublinear-time algorithmic frame-
work for Pattern Formation in the classical model as well as the lights model.
Our algorithms for both the models run in O(TLE) time on the SSYNC model,
where TLE is the time for leader election on the given model. For the lights
model, this time is optimal as we also show that Ω(TLE) time is necessary; for
the classical model this time is conditionally optimal. We further show that Pat-
tern Formation can be solved for robots with lights on the ASYNC model
in O(TLE + log n) time. All these algorithms are collision-free.

Can other algorithms trade the state information of robots with lights for the
position information available due to transparency in the classical robots model?
Can the O(TLE + log n) time be achieved on the ASYNC model for classical
oblivious robots? How far is the O(TLE + log n) ASYNC upper bound from the
lower bound? Are algorithms tolerating faults possible? Will these approaches
work for fat robots?

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. Wiley, Hoboken (2004)

2. Bramas, Q., Tixeuil, S.: Probabilistic asynchronous arbitrary pattern formation
(short paper). In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 88–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 7

3. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms
for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22012-8 52

4. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609(P1), 171–184 (2016)

5. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern for-
mation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 26

6. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafael (2012)

7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)

8. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

9. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.
org/10.1007/11603771 1

10. Poudel, P., Sharma, G.: Universally optimal gathering under limited visibility. In:
Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 323–340. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 23

https://doi.org/10.1007/978-3-319-49259-9_7
https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/978-3-319-69084-1_23


220 R. Vaidyanathan et al.

11. Sharma, G., Busch, C., Mukhopadhyay, S.: Brief announcement: complete visibility
for oblivious robots in linear time. In: SPAA, pp. 325–327 (2017)

12. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility
for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017.
LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69084-1 18

13. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Logarithmic-time
complete visibility for asynchronous robots with lights. In: IPDPS, pp. 513–522
(2017)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

15. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

16. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-
9 17

17. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asyn-
chronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol.
8784, pp. 137–151. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45174-8 10

https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-662-45174-8_10
https://doi.org/10.1007/978-3-662-45174-8_10


Load Balanced Distributed Directories

Shishir Rai1, Gokarna Sharma1(B), Costas Busch2, and Maurice Herlihy3

1 Kent State University, Kent, OH 44242, USA
srai@kent.edu, sharma@cs.kent.edu

2 Louisiana State University, Baton Rouge, LA 70803, USA
busch@csc.lsu.edu

3 Brown University, Providence, RI 02912, USA
mph@cs.brown.edu

Abstract. We present LB-Spiral, a novel distributed directory proto-
col for shared objects, suitable for large-scale distributed shared mem-
ory systems. Each shared object has an owner node that can modify its
value. The ownership may change by moving the object from one node
to another in response to move requests. The value of an object can
be read by other nodes with lookup requests. The distinctive feature of
LB-Spiral is that it balances the processing load on nodes in addition
to minimizing the communication cost in general network topologies.
In contrast, the existing distributed directory protocols for general net-
work topologies only minimize the communication cost. In particular,
LB-Spiral achieves poly-log approximation for both load and commu-
nication cost in general networks with respect to the problem parameters.

1 Introduction

Distributed directories are data structures that enable access to shared objects
in a network. They support three basic operations: (i) publish, allowing a shared
object to be inserted in the directory so that other nodes can find it; (ii) lookup,
providing a read-only copy of the object to the requesting node; and (iii) move,
allowing the requesting node to write the object locally after getting it.

Distributed directories are suitable for distributed systems where shared
objects are moved to those nodes that need them [14]. Tasks operate on local
shared objects and if remote shared objects are required, a task must communi-
cate through the directory to the remote nodes. In the distributed setting cache-
coherence for the shared objects ensures that writing to an object automatically
locates and invalidates other cached copies of that object. A distributed directory
protocol (DDPs) [7] is a distributed directory implementation which realizes a
coherence mechanism. Any DDP guarantees each lookup and move operation to
the shared object in a distributed directory is individually atomic.

DDPs have a long history of research. They have widely been used in dis-
tributed shared memory implementations in multi-cache systems [1,6,7]. DDPs
have also been used to implement fundamental problems in distributed sys-
tems, including distributed queues [8], mobile object tracking [4], and distributed

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 221–238, 2018.
https://doi.org/10.1007/978-3-030-03232-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_15&domain=pdf


222 S. Rai et al.

mutual exclusion [20]. Very recently, DDPs have been studied for implementing
transactional memory [13,27] in large-scale distributed systems [3,14,23,25,30].

In the literature, the performance of a DDP has been typically evaluated
with respect to the communication cost, the total distance traversed by all the
messages in the network. The ratio of the actual communication cost to the
optimal cost provides an approximation ratio known as stretch. Existing DDPs
such as Arrow [8], Relay [30], Combine [3], Ballistic [14], and Spiral [23]
focus only on minimizing the stretch, while several other proposed DDPs [1,6,7]
do not have stretch analysis.

Processing load can also significantly affect the DDP performance. Load is
measured as the worst node utilization, namely, the maximum number of times
that operations for objects use a node in the distributed directory. Load mini-
mization is very important because it allows to evenly utilize available network
resources (processing power, energy, etc.), avoiding the chance to create bot-
tlenecks due to some “hotspot” resources. Here, we present a novel DDP for
general network topologies which simultaneously balances the load (minimizes
maximum load) and minimizes the communication cost (minimizes stretch). The
only previously known DDP that controls simultaneously the load and stretch is
MultiBend [25], which however is only suitable for the restricted case of mesh
(grid) topologies.

Problem Statement. We describe the problem with respect to a single shared
object, since for each object we can apply the same DDP solution. Consider a
network and a set E = {r0, r1, . . . , r�} of operations to the shared object (� does
not need to be known). The initial operation r0 is to publish the shared object
in the directory while the remaining, r1, r2, . . . r�, are move operations for the
object. The objective is to design a DDP that arranges the operations ri, i > 0,
in a total order (or a “distributed queue”) [8]. Each operation ri, i > 0, has
a source node si, denoting the previous owner node, and a destination node ti
that issues ri which will become the new object owner. The destination node of
an operation ri1 is the source node of another operation ri2 in the total order,
where the total order is a permutation of the requests in E that preserves the
real time ordering. For every request ri, the directory provides a path pi from
si to ti along which the object is transferred. Ideally, the collection of the paths
minimize the load and the stretch. Formally,

– Load balancing: Minimize the maximum node processing load PL = maxv |{i :
v ∈ pi}|. The processing load PL can be compared to the optimal processing
load PL∗ that is attainable by any DDP to provide an approximation ratio.

– Stretch: Minimize total communication cost A(E) =
∑�

i=1 |pi|, where |pi| is
the total length of the path pi. A(E) can be compared to the optimal cost
A∗(E) from the optimal algorithm OPT that has complete knowledge about
E to provide a request ordering with minimal stretch A(E)/A∗(E). We are
interested to minimize maxE A(E)/A∗(E).



Load Balanced Distributed Directories 223

Contributions. Let G be a network and Z a distributed directory on it. Pre-
viously known DDPs, such as Arrow [8] and Relay [30], run on top of a
spanning tree, while Ballistic [14] and Combine [3] run on top of an overlay
tree, and further, Spiral [23] and MultiBend [25] use a hierarchy of clusters
built on top of G. Therefore, a node participates on the directory Z if it is one
of the nodes on the spanning tree, overlay tree, or a leader node of a cluster.
It is easy to see that the processing load of a node in all the aforementioned
DDPs is O(�) in the worst-case, with the exception of MultiBend [25] which
minimizes simultaneously both stretch and processing load but only on mesh
network topologies.

We present LB-Spiral, a new DDP for shared objects, that is suitable for
general networks, and is load balanced and at the same time maintains low
stretch. LB-Spiral is based on a hierarchy of clusters Z, which builds upon our
previous DDP, Spiral [23]. Spiral minimizes only the stretch, while LB-Spiral
minimizes both the stretch and the processing load of participating nodes in Z.
We prove the following result.

Theorem 1. LB-Spiral guarantees O(log3 n · log D) amortized stretch and
O(log n · log D) approximation of the processing load on any node in any general
network G and arbitrary execution, where n is the number of nodes and D is the
diameter of G.

Theorem 1 states that the processing load approximation is independent of
the number of operations �. This is in sharp contrast to the existing DDPs in
general networks where processing load of a node is linearly dependent on �. At
the same time, the stretch approximation is also independent of �. To our knowl-
edge, this is the first DDP which achieves this simultaneous dual performance
characteristic.

The stretch of LB-Spiral is optimal within a poly-log factor compared to
the Ω(log n/ log log n) lower bound of Alon et al. [2] for the sequential exe-
cution scenario of move operations. The universal TSP lower bounds, such as
Ω(

√
log n/ log log n) by Jia et al. [15] for Euclidean metrics, Ω( 6

√
log n/ log log n)

by Hajiaghayi et al. [12] for n × n grid, and Ω(log n) by Gorodezky et al. [10]
for Ramanujan graphs, apply to the communication cost of concurrent execution
scenarios of move operations.

LB-Spiral provides also guarantees for lookup operations. For any individ-
ual lookup operation, it guarantees O(log5 n) stretch, which is in contrast to
the move stretch that is obtained combining the costs of a set of move oper-
ations. This lookup stretch guarantee is particularly useful for read-dominated
workloads. In the analysis, we do not consider the processing load for lookup
operations as they do not update the directory Z. However, if needed, for bal-
ancing processing load for lookup accesses we can use the same techniques as for
move operations. The publish cost in LB-Spiral is proportional to the diameter
of the network and it is a fixed initial cost which is only considered once and
compensated by the costs of the move operations issued thereafter.

For special network topologies that satisfy bounded doubling dimension prop-
erties [14,26] we obtain improved theoretical bounds, where we can show that



224 S. Rai et al.

u

u1

u2

u3

v2

v1

v

levels
3

2

1

0
object

leaf

parent

root

u

u1

u2

u3

v2

v1

v
object

u

u1

u2

u3

v2

v1

v
object

(a) (b) (c)

u

u1

u2

u3

v2

v1

v
object

u

u1

u2

u3

v2

v1

v
object

u

u1

u2

u3

v2

v1

v
object(d) (e) (f)

Fig. 1. An illustration of LB-Spiral for a move request issued by node u. Only leader
nodes at respective clusters are shown. a: the creator node v issues a publish operation
forming the initial downward directory path (based on the spiral path from v); b:
node u issues a move request which follows a spiral path from u to the root, adjusting
the pointers in subsequent levels to point towards u; c: the move request finds the
downward directory path; d: the move request starts its down phase, deleting the old
pointers of the directory path; e: the move request reaches previous owner node v; f:
the object is moved from v to u making u the new owner node.

LB-Spiral has both amortized move stretch and processing load of O(log D)
in arbitrary executions. Furthermore, the stretch for a lookup operation is
only O(1).

Techniques. The idea in LB-Spiral is to use an overlay structure based on a
hierarchy of clusters Z as in Spiral [23], but in a novel way so that processing
load is minimized as well. There are h + 1 = O(log D) levels such that cluster
diameters increase exponentially with respect to the level. In each cluster, one
node is chosen to act as a leader which is used to communicate with different
level clusters. The leader is changed appropriately while serving a request to
balance the processing load. Each node participates at all levels of the hierarchy.
At the bottom level 0 each cluster consists of an individual node in G which
is by default a leader. At the top level h there is a single cluster for the whole
graph G with a special leader node called root. At any intermediate level a node
may belong to several clusters of that level. Only the bottom level nodes can
issue publish, lookup, or move requests.

Figure 1 depicts how LB-Spiral works for a move operation. LB-Spiral
maintains at all times a directory path which is directed from the root to the
bottom-level node that owns the shared object. The directory path is initialized
by the first publish operation. After that, the directory path is updated when-
ever the object moves (changes ownership) from one node to another. To access
the object, each bottom level node uses a spiral path to find and intersect the



Load Balanced Distributed Directories 225

directory path. The spiral path visits upward the leader nodes in all the clus-
ters that the node belongs to. (The spiral path in G grows outwards from the
origin as the level increases which gives the perception of a spiral formation.)
It is guaranteed that a spiral path and the directory path intersect at some
level. Once they meet, a move operation force the directory path to divert at
the intersection point toward the new owner node (the origin of the spiral path).
A lookup operation is served similar to move without modifying the existing
directory path.

For balancing the processing load, a node that initiates a move operation will
become the leader of all the clusters it visits in the hierarchy until it intersects
the directory path. Each affected cluster requires to inform children and parent
clusters, in lower and higher levels, respectively, about the change on the leader
node in the cluster and also transferring the directory path information from
old the old leader to the new leader, which we call update overhead. To bound
the update overhead (which can be as much as O(n) in the worst-case), the
hierarchical clustering in the original Spiral protocol is modified appropriately
so that in LB-Spiral a binary tree of clusters is formed between two subsequent
levels of the hierarchy Z. This helps to control the number of cluster leaders that
need to be updated about the change on the cluster leader at any level. The new
ideas on load balancing together with the approach of Spiral for stretch makes
LB-Spiral to satisfy Theorem 1.

Related Work. As mentioned earlier, the closest related works to ours are the
previously known DDPs such as Arrow [8], Relay [30], Combine [3], Ballis-
tic [14], Spiral [23], MultiBend [25], and other directory algorithms [1,6,7].
Although these DDPs use some kind of overlay structure, their constructions,
except MultiBend, are useful to minimize just the stretch. Although Multi-
Bend simultaneously controls congestion and stretch, it is only tailored for mesh
topologies.

Minimizing processing load is along the lines of research on distributed hash
table protocols (DHTs) [19,22,28,31], where the load is minimized only for the
nodes of G that participate as DHT protocol nodes. However, DHTs are different
since they store key-value pairs by statically assigning keys (or objects) to nodes,
whereas in DDPs objects are mobile.

The concept of LB-Spiral (also of Ballistic [14] and Spiral [23]) is similar
to the approaches to locate nearest neighbors, tracking mobile users, compact
routing, and related problems (e.g., [4,16–18,29]). However, these approaches
provide efficient techniques only to locate copies and when the objects move
autonomously (without being requested). The DDPs provide mechanisms that
can make moving, looking up, and republishing of objects efficient and also
avoid race conditions that might occur while synchronizing concurrent requests
in distributed shared memory systems [14,23].

Finally, our study of minimizing processing load is different from existing
studies where local memory overhead is considered for minimization in addition
to stretch [18]. The memory overhead is minimized by distributing the storage



226 S. Rai et al.

of objects from the leader node to the other nodes in the cluster and later search
them through embedding a De Bruijn graph in each cluster. It was shown [18]
that the memory overhead can be just polylog(n) times the optimal. However, in
these techniques, the worst processing load of a node (i.e., leader) is still linearly
dependent on the total number of operations.

Paper Organization. We describe the network model in Sect. 2. We describe
the hierarchical clustering we use for LB-Spiral in Sect. 3. We then detail LB-
Spiral algorithm in Sect. 4 and analyze it in Sect. 5. We omit some proofs and
the pseudocode of the algorithm from this paper due to space constraints.

2 Network Model

We represent a distributed network as a weighted graph G = (V,E,w), with
nodes (network machines) V , where |V | = n, edges (interconnection links
between machines) E ⊆ V × V , and edge weight function w : E → R

+. We
assume that w(u, u) = 0 for any u ∈ V . A path p in G is a sequence of nodes, with
respective sequence of edges connecting the nodes, such that |p| =

∑
e∈p w(e).

For convenience, we will treat paths as walks which may consist of a single node
or nodes may be repeated. A sub-path of p is any any subsequence of consecu-
tive nodes in p; we may also refer to a sub-path as a fragment of p. We assume
that G is connected, i.e., there is a path in G between any pair of nodes. Let
dist(u, v) denote the shortest path length (distance) between nodes u and v. The
k-neighborhood of a node v is the set of nodes which are within distance at most
k from v (including v). The diameter D is the maximum shortest path distance
over all pairs of nodes in G.

We assume that G represents a network in which nodes do not crash, it
implements FIFO communication between nodes (i.e. no overtaking of messages
occurs), and messages are not lost. The previous DDPs [8,14,23,23,30] (except
Combine [3]) have the FIFO assumption. We also assume that, upon receiving
a message, a node is able to perform a local computation and send a message
in a single atomic step. LB-Spiral can be extended to accommodate non-FIFO
communication and tolerate unreliable communication links (i.e., message losses)
by adapting techniques used in Combine [3].

3 Hierarchical Clustering

We describe a hierarchy of clusters built on top of G to run our load balanced
DDP LB-Spiral which we present in Sect. 4. We will then define spiral and
directory paths that will be useful in LB-Spiral. Some of these definitions are
adapted from [23].



Load Balanced Distributed Directories 227

Labeled Cover Hierarchy. A node cluster is any set of nodes X ⊆ V . The
diameter of a cluster X is the maximum distance between any of its nodes, i.e.,
diam(X) = maxu,v∈X dist(u, v), where distances are w.r.t. G. A cover is any
set of clusters Z = {X1,X2, . . . , Xk} such that each node in u ∈ V belongs to
at least one cluster in Z. Let Z(u) denote the set of clusters that u belongs
to in Z. The diameter of cover Z is the maximum diameter of its clusters:
diam(Z) = maxX∈Z diam(X). We say that Z has locality γ if for a node u there
is some cluster X ∈ Z such that it contains the γ-neighborhood of u. A χ-
labeling of Z, for some positive integer χ, is an assignment of integer labels to its
clusters, λ(Xi) ∈ {1, 2, . . . , χ}. A χ-labeling is valid if for each node u ∈ V every
cluster that contains u has a different label, that is, if Xi,Xj ∈ Z(u), i �= j, then
λ(Xi) �= λ(Xj). Labels are used to avoid races.

Definition 1 (labeled cover). Z is a (σ, χ, γ)-labeled cover if Z is a cover with
locality γ, diam(Z) ≤ σγ, and accepts a valid χ-labeling.

Definition 2 (labeled cover hierarchy). Z = {Z0, Z1, . . . , Zh} is a (σ, χ)-
labeled cover hierarchy for G when each Zi, 1 ≤ i ≤ h, is a (σ, χ, γi)-labeled
cover with locality γi = 2i−1, where Z0 = V (each node in V is a cluster) and
h = �log D�+1. We say that Zi ∈ Z is the level i cover, and any cluster X ∈ Zi

is a level i cluster.

We presented in [23] a (O(log n), O(log n))-labeled cover hierarchy Z. The
structure was based on well-known ideas for clustering the graph to approximate
graph distance metrics by distributions over tree metrics [5,9]. Specifically, we
borrowed the clustering technique used by Gupta, Hajiaghayi, and Räcke [11].
The labeled cover hierarchy Z in [23] is computed in polynomial time and has
the following properties.

1. At level 0 each node in V belongs to exactly one cluster consisting of only
itself.

2. Cover Zh (highest level) consists of one cluster that contains all nodes V .
3. In any level i, 1 ≤ i ≤ h − 1, of Z each node u ∈ V belongs to exactly

χ = O(log n) clusters that is, |Zi(u)| = χ. (Some clusters could be identical.)
4. Each cluster at level i, 0 ≤ i < h, is completely contained by a cluster at level

i+1. (Due to the laminar decomposition property of the technique by Gupta
et al. [11].)

In LB-Spiral we need to bound the number of clusters at level i − 1 that
are completely contained inside each cluster at level i. Otherwise, we may not be
able to bound the processing load of a node due to high overhead coming from
informing leader nodes of the parent and child clusters of the current cluster
on the hierarchy in the load balancing process. Let CLi be a cluster at level i
in Z. The (O(log n), O(log n))-labeled cover hierarchy Z given in [23] does not
bound the number of clusters at level i − 1 completely contained inside CLi.
Therefore, we modify Z as follows (see Fig. 2). Let CLi be a cluster and let
W = {CL1

i−1, CL2
i−1, . . . , CLw

i−1} be the level i − 1 clusters so that each cluster



228 S. Rai et al.

CL1

CL2

CL3

CL4

CLw

CLw-1

CL5

CL34

CLw-1wCL1234

CL12

CLi

CL1 CL2 CL3

CL12

CLwCL4 CLw-1

CL1234

CLi

CLw-1wCL34

Fig. 2. An illustration of a binary tree embedded between a cluster CLi at level i and
the clusters at level i− 1 that are completely contained inside CLi.

CLj
i−1, 1 ≤ j ≤ w, is completely contained inside CLi. We organize the clusters

in W in a “dummy” binary tree T of clusters as follows. CLi acts as the root
cluster of T . Each cluster in CLj

i−1 ∈ W acts as a leaf cluster of T , i.e., there will
be w leaf clusters in T . In every level l ≥ 1 of T merge two children clusters at
level l − 1 to obtain the parent cluster at level l. According to this construction,
if there are Δ clusters at any level l of T , then at level l + 1 of T , there will
be at most �Δ/2� clusters. Figure 2 illustrates the binary tree T construction
of clusters at level i − 1 of Z that are completely contained inside a cluster at
level i.

Lemma 1. If there are w clusters at level i−1 of Z completely contained inside
a cluster CLi at level i, then a binary tree T is embedded between levels i − 1
and i with root of T being the cluster CLi such that T has O(log w) levels.

Spiral Paths. Let Z = {Z0, Z1, . . . , Zh} be a (σ, χ)-labeled cover hierarchy.
The spiral path p(u) for each node u ∈ V is built by visiting designated leader
nodes in all the clusters that u belongs to starting from level 0 up to h in Z.
Within each level, the clusters are visited according to the order of their labels.
Between the levels, the clusters are visited based on the clusters in the binary
tree, starting from leaf level going to the root (this requirement was not there
for spiral paths used in [23]).

Let Xi,j(u) ∈ Zi(u) denote the cluster at level i, 1 ≤ i ≤ h − 1, that u
belongs to and has label j. We will refer to level i, label j, as the sub-level (i, j).
Note that level i consists of χ sub-levels (i, 1), (i, 2), . . . , (i, χ), for 1 ≤ i ≤ h − 1.
Levels 0 and h are special cases which consist of a single sub-level each which for
convenience we denote as (0, χ) and (h, 1), respectively. We can order the sub-
levels lexicographically so that (i, j) < (i′, j′) if i < i′, or i = i′ and j < j′. We
define the function next(i, j) (resp. prev(i, j)) to return the sub-level immediately
higher (resp. lower) than (i, j).

This ordering can be extended also to the clusters that are organized in
a binary tree T (Lemma 1) between two subsequent levels i and i + 1. Let
Xi,χ(u) ∈ Zi(u) be a cluster at level i that u belongs to and has label χ and let
Xi+1,1(u) ∈ Zi(u) be a cluster at level i + 1 that u belongs to and has label 1.
We assign levels to the clusters in the respective binary tree T in a path from



Load Balanced Distributed Directories 229

Xi,χ(u) (a leaf of T ) to Xi+1,1(u) (the root of T ) from (i, χ+1) to (i, χ+ δ − 1),
where δ ≤ �log n� is the maximum height of T . Therefore, there will be χ+ δ −1
sub-levels in a level i, summing the sub-levels of level i and the new levels of the
tree T . We can normalize all such binary trees in the hierarchy Z to have the
same height δ by repeating the root cluster if necessary.

In every cluster X we choose a designated leader node �(X) which is cho-
sen arbitrary initially and changed later appropriately to balance the processing
load. Denote the leader of cluster Xi,j(u) as �i,j(u) = �(Xi,j(u)). Since Zh con-
sists of a single sub-level it has a unique leader which we denote �h,1(u) = r.
Trivially, every node u ∈ V is a leader of its own cluster at level 0, �0,χ(u) = u.
For any pair of nodes u, v ∈ V , let s(u, v) denote a shortest path from u to v.
For any set of nodes u1, u2, . . . , uk ∈ V , let s(u1, u2, . . . , uk) denote the concate-
nation of shortest paths s(u1, u2), s(u2, u3), . . . , s(uk−1, uk). The spiral path
p(u) is formed by taking the concatenation of the shortest paths that connect
the ascending sequence of leaders starting from node u (sub-level (0, χ)) up to
node r (sub-level (h, 1)).

Definition 3 (spiral path). The spiral path of node u is:

p(u)=s(u, �1,1(u), . . . , �1,χ(u)
︸ ︷︷ ︸

level 1

, �1,χ+1(u), . . . , �1,χ+δ−1(u)
︸ ︷︷ ︸

between level 1 and 2

, �2,1(u), . . . , �2,χ(u)
︸ ︷︷ ︸

level 2

, . . . ,

�h−1,1(u), . . . , �h−1,χ(u)
︸ ︷︷ ︸

level h−1

, �h−1,χ+1(u), . . . , �h,χ+δ−1(u)
︸ ︷︷ ︸

between level h−1 and h

, r).

We say that two paths intersect if they have a common node. We also say
that two spiral paths intersect at level i if they visit the same leader at level i.

Lemma 2 ([23]). For any two nodes u, v ∈ V , their spiral paths p(u) and p(v)
intersect at level min{h, �log(dist(u, v))� + 1}.

In the analysis of LB-Spiral, the directory path is obtained from fragments
of spiral paths obtained from move operations. Such a fragmented path is actu-
ally a concatenation of shortest paths connecting leaders at successive sub-levels
whose clusters share a common node. We will refer to such kind of path as
canonical.

Definition 4 (canonical path). A canonical path q up to sub-level (k, ι) ≤
(h, 1) is:

q = s(x0,χ, x1,1, . . . , x1,χ
︸ ︷︷ ︸

level 1

, x1,χ+1, . . . , x1,χ+δ−1
︸ ︷︷ ︸

between level 1 and 2

, x2,1, . . . , x2,χ
︸ ︷︷ ︸

level 2

,

x2,χ+1, . . . , x2,χ+δ−1
︸ ︷︷ ︸

between level 2 and 3

, . . . , xk,1, . . . , xk,ι
︸ ︷︷ ︸

level k

),

such that for any two consecutive nodes xi,j and xnext(i,j), where (0, χ) ≤ (i, j) <
(k, ι), there is a node y ∈ V with xi,j = �i,j(y) and xnext(i,j) = �next(i,j)(y).



230 S. Rai et al.

We will refer to x0,χ and xk,ι as the bottom and top nodes of q, respectively.
The bottom node is always at level 0. A canonical path can be either partial
when the top node is below level h (the root level), or full when the top node is
the root r. A spiral path p(u) is a full canonical path, and any prefix of it is a
partial canonical path.

Lemma 3. For any canonical path q up to level k (and any sub-level (k, ι)) in
Z, length(q) ≤ c32k+2 log3 n, for some constant c3.

4 LB-Spiral Algorithm

We now present LB-Spiral (the pseudocode is omitted), which is a load bal-
anced DDP. We describe LB-Spiral for one shared object as it is typical in the
DDP literature; multiple objects can be supported replicating the hierarchy for
each object.

Overview of LB-Spiral. Consider some shared object ξ. LB-Spiral guaran-
tees that at any time only one node holds the shared object ξ which is the owner
of the object. The owner is the only node that can modify (i.e., write) the object;
the other nodes can only access the object for read.

LB-Spiral is implemented on the (O(log n), O(log n))-labeled cover hierar-
chy Z discussed in Sect. 3. Only the bottom level nodes of Z can issue requests
(publish, lookup, and move) for ξ, while nodes in higher levels of Z are used to
propagate the requests in G. The basic objective of LB-Spiral is to maintain a
directory path in Z which is directed from the root node r to the bottom-level
node that is the current owner of ξ. The directory path is updated whenever
ξ moves from one node to another. Initially, the directory path is formed from
the spiral path p(v) of the object creator node v. As soon as the object ξ is
created, v publishes ξ by visiting the leaders in its spiral path p(v) towards the
root r, making each parent leader node pointing to its child leader (Fig. 1(a)).
These leader downward pointers correspond to path segments between consecu-
tive leaders and the concatenation of these path segments from the root r down
to v form the initial directory path.

A move request from a node u of G for the object ξ at the owner node v of G
is served by following upwards leader ancestors in its spiral path p(u) (up phase),
setting downward links towards v until p(u) intersects at x the directory path
to the owner node v (Fig. 1(b) and (c), where x = u3). Then the move request
follows a downward trajectory (down phase) deleting the links of the directory
path while descending towards the owner node v (Fig. 1(d) and (e)); the directory
path now points to the requesting node u. As soon as the move request reaches
the owner node v, the object is forwarded from the previous owner node along
some (shortest) path in the graph G (Fig. 1(f)). This process has resulted to a
canonical directory path that consists of two spiral path fragments, a fragment
of v’s spiral path p(v) between r and the intersection point x, and a fragment of
u’s spiral path p(u) between x and u. Subsequent move operations may further



Load Balanced Distributed Directories 231

fragment the directory path into multiple spiral path segments, but at all times
a canonical directory path is maintained.

A lookup operation is served similar to a move operation but without modify-
ing (adding or removing pointers) the directory path. A lookup operation fetches
a copy of the shared ξ object from the current owner v to u. If a move operation
later invalidates ξ from v, then the local copy of ξ at u is also invalidated.

The processing load is balanced by changing the leader of the clusters that
the move request visits while it is in its up phase. Specifically, the originating
node of the move request is selected as a leader in all the clusters it visits in its
up phase. For the down phase, this is done only for lookup requests. Since the
source node of a lookup request may not be in the clusters of the directory path
in the down phase of a lookup request, we choose a node uniformly in random
among the nodes in the cluster to act as a leader.

Concurrent lookup and move requests may be served through partial down-
ward paths instead of the directory path. These requests are queued while the
new directory path is being formed. For example, consider the scenario where
a lookup operation is issued by a node w concurrently with the move opera-
tion of v. Suppose also that the lookup and move requests intersect in their up
phase paths before their requests reach the directory path to u. Then the lookup
request will descend down to v through a partial downward path while the move
request ascends to x. The lookup will request the read-only copy of the object ξ
from v. However, v may not have the copy of ξ yet. In this case, w’s request is
queued in v and it will be served when v receives ξ.

In the scenario where w’s operation was a move, then two partial downward
paths would coexist at the same time with the directory path until the up phases
of u and v intersect. After that again two partial paths can coexist until the down
phase of w reaches v and before the up phase of v reaches x. The result is that
the move request from w will be queued after v. Similarly, multiple concurrent
move operations temporarily lead to the formation of multiple partial downward
paths to the origins of the requests. The move operations get queued in the
origin nodes forming a distributed queue of move operations. Eventually, every
move operation will be served by passing the object from the current owner at
the head of the queue to the next node in the queue.

Balancing the Processing Load in LB-Spiral. The description of LB-
Spiral so far does not consider balancing the processing load of the nodes in
G, i.e., the technique discussed above only minimizes the communication cost.
We use the following technique to balance the processing load on the nodes of
G. We describe separately below how we use the balancing technique to serve
publish, lookup, and move requests.

Publish: The publish(ξ) operation issued by the creator node v sets v as a
leader in all the clusters in its spiral path p(v) while going to the root cluster
(including the root cluster) in Z. In each cluster in the spiral path p(v), the
downward pointers point from leader v in sub-level (i, j) cluster to leader v in
sub-level prev(i, j) cluster.



232 S. Rai et al.

Z

Z

Z

Z

Z

Z

W

W

W

CLi+1

CLi

CLi-1

p'

p''

p'

p''

Fig. 3. An illustration of how a leader is selected in each cluster to balance the pro-
cessing load. A move request from node w makes w the leader in each cluster it visits
in its up phase and transfers the information from the old leader z to w.

Move: The move(ξ) operation issued by a node u is served as follows. The node
u sets itself as the leader in all the clusters in its spiral path p(u) in its up phase
until p(u) intersects the directory path pointing to the owner v. In other words,
the downward pointers point toward u in all the levels. Figure 3 illustrates these
ideas. The down phase needs no change.

Lookup: The lookup(ξ) operation needs no leader change as it does not add or
remove information in the directory Z. However, if balancing is needed, then a
lookup issued by a node u can set u as the leader in all the clusters similar as
of move(ξ) in the up phase. In the down phase, it can pick a node uniformly
at random in each cluster it visits in its down phase. Our analysis in Sect. 5
focuses on proving the processing load of the nodes of G considering only the
move operations.

The use of leader selection procedure incurs extra cost to the actual cost of
the move and lookup operations. This is because this procedure requires message
exchanges between the old leader and the new leader within a cluster, and also
with the parent and child clusters of the old leader to inform them about the
new leader. We argue that the pointer update cost is low in comparison to the
cost of serving the requests because only the information in the nearby region
needs to be updated due to the new leader. This step facilitates to control the
processing load, since the processing load on a leader node is always proportional
to the number of requests that visit that leader.

A leader selection approach we use in the spiral path plays major role in
controlling processing load because it minimizes the overutilization of a node in
serving the requests. Through our approach, a node in a cluster becomes a leader
of that cluster if and only if the request (move, lookup, or publish) is issued by
that node.

Moreover, we observe that at any time a request needs to lock at most
three nodes, at levels prev(i, j), (i, j), and next(i, j), along the spiral path (or a



Load Balanced Distributed Directories 233

directory path for the lookup operation). In concurrent situations this might be
a problem. This is because we need to lock more than one node (at most three
nodes) in the spiral (or directory) path to do the leader change, otherwise direc-
tory information necessary for generating a new path may get lost. Therefore, in
the concurrent execution of move requests, we need to make sure that the nodes
that are affected by the leader change should be kept locked until a new path
is between subsequent clusters. We can use the notion of a conflict graph for
each level such that neighbors in the conflict graph cannot perform the leader
change at the same time (that is, the leader change process is sequentialized
in a cluster). But the non-neighbors can be in the critical section at any time.
This sequentialization process does not hamper the stretch and processing load
bounds (Sect. 5).

Bounding the lookup Cost in LB-Spiral. A lookup request from any node
w ∈ G for the object ξ at the owner node v ∈ G may not find the directory
path to v at level log�(dist(w, v))� + 1 leader node X of Z where their spiral
paths p(w) and p(v) intersect. This is because, after several move operations, the
directory path may become highly fragmented and hence the directory path does
not pass through the leader node X where p(w) and p(v) intersect. The notion
of a special-parent node helps to avoid this situation and guarantees efficient
lookups, such that whenever a downward link is formed at a node z the special
parent of z is also informed about z holding a downward pointer. The pointer
information is stored in (removed from) a special-parent node in the up (down)
phase of a move operation.

Definition 5 (special-parent [23]). A special-parent node of y, denoted as
sparent(i,j)(y), at sub-level (i, j) in the spiral path p(u) is the leader node of one
of the cluster X(u) ∈ Zη at level η, where η = i + 4 + 2 log log n + log c3, i.e.,
sparent(i,j)(y) is some ancestor leader node of y at level η in the spiral path p(u).

Every leader node in any cluster of Z knows its special parent and has a
special downward pointer, slink (except the root node which has no special
parent). We maintain a list of slink pointers if one node is the special parent for
the leaders of several clusters which, according to our construction, can happen.
These special downward pointers are set (removed) when move operations are
in the up (down) phase.

5 Analysis of LB-Spiral

We give both the stretch and processing load analysis of LB-Spiral for sequen-
tial, concurrent (one-shot), and dynamic executions. However, the correctness
proof of LB-Spiral is omitted as it can be easily proven by extending the cor-
rectness proofs of DDPs Ballistic [14], Combine [3], Spiral [23], and Multi-
Bend [25].



234 S. Rai et al.

Performance in Sequential Executions. In a sequential execution scenario
the next request is initiated only after the current request completes. We first
provide performance bounds for the communication costs of publish, lookup and
move operations, and then we give the approximation of processing load of any
node of G.

Theorem 2 (publish cost). The publish operation in LB-Spiral has com-
munication cost O(D · log3 n).

Theorem 3 (lookup stretch). The lookup stretch in LB-Spiral is O(log5 n)
in sequential executions.

We now give an amortized stretch analysis of LB-Spiral for move operations
in sequential executions. As move requests are non-overlapping in sequential
executions, the system attains quiescent configuration after a move request is
served and until a next move request is issued. Define a sequential execution of
a set E of � + 1 requests E = {r0, r1, . . . , r�} for the object ξ, where r0 is the
initial publish request and the rest are the subsequent move requests (we do not
include lookups in E since they do not add or remove links in the directory Z,
and hence do not impact the performance of other move or lookup operations).

Similar as in [23], for the amortized stretch analysis define a two-dimensional
array B of size (k + 1) × (� + 1), where k + 1 and � + 1 are the number of
rows and columns of B, respectively. The (k + 1) rows of B can be denoted
as {row0, row1, . . . , rowk}, and the � + 1 columns of B can be denoted as
{col0, col1, . . . , col�}. Each location [i, j] of the array B is initially ⊥. We fix
that [0, 0] be the lower left corner element and [k, �] be the upper right corner
element in B. The levels visited by each request ri in the hierarchy Z while
searching for the object ξ are registered in the rows of column coli. The maxi-
mum level reached by ri before it finds the downward pointer in Z is called the
peak level for ri. We have that h = k. The peak level reached by r0 (the publish
request) is always h, the maximum level in Z. Notice that r0 is registered in all
the locations of col0 from 0 to k.

Our goal is to bound the stretch maxE A(E)/A∗(E), where A(E) denotes the
total communication cost of serving requests in E using LB-Spiral and A∗(E)
denotes the optimal cost for serving requests in E through an optimal offline
algorithm. We prove the following theorem for stretch maxE A(E)/A∗(E) using
array B.

Theorem 4 (move stretch). The move stretch in LB-Spiral is O(log3 n ·
log D) in sequential executions.

We now analyze the processing load of a node in LB-Spiral in sequential
executions. We relate the processing load PL(x) of a node x ∈ G in LB-Spiral
to the optimal load PL∗(x) of that node to provide the approximation ratio.
We prove the following theorem for processing load of any node of G for the
sequential execution of move operations; we omit the lookup operations while
computing processing load as they do not add or remove pointer information on
the directory hierarchy Z.



Load Balanced Distributed Directories 235

Theorem 5 (processing load). The processing load approximation in LB-
Spiral is O(log n · log D) for any node of G.

Performance in One-Shot Executions. The performance analysis of LB-
Spiral given in Sect. 5 does not apply to concurrent executions because the
adversary is not allowed to gain by ordering the requests in a smarter way, i.e.,
the orderings provided by both LB-Spiral and OPT are the same. Concurrent
executions can change the order of the requests in execution and hence affect
the overall performance of LB-Spiral. In one-shot executions, all requests come
concurrently (at the same time) in the system. We study the following one-
shot instance of concurrent execution. At time t as soon as a publish operation
finished execution, R ⊆ V nodes issue a move request each concurrently and no
further requests occur. We divide the time into periods and rounds such that
a level i round has i non-overlapping aligned periods, and we assume that all
requests proceed in rounds. When two or more move requests reach to level i
one is forwarded towards level i + 1 and others are “deflected” down following
the directory path set by the previously upward forwarded move request in
the hierarchy Z. Defining total and optimal cost for one-shot execution similar
to sequential execution, the optimal cost for any level i of the hierarchy Z is
given by the Steiner tree [21] of the move requests that reach that level. The
total cost analysis is similar as of sequential execution, and also the analysis for
approximation on processing load, and lookup and publish bounds. Therefore,
we summarize the bounds in the theorem below.

Theorem 6. The move stretch in LB-Spiral is O(log3 n · log D) in concurrent
(one-shot) executions. It achieves O(log n · log D) approximation on processing
load on any node of G. Moreover, the publish operation has O(D · log3 n) cost
and any lookup operation in LB-Spiral has O(log5 n) stretch.

Performance in Dynamic Executions. The performance of LB-Spiral can
also be analyzed for requests that are initiated in arbitrary moments of time
(i.e., dynamic executions). This analysis can capture the execution scenarios
where requests are neither completely sequential as considered in Sect. 5 nor
completely concurrent as considered in Sect. 5. The idea here is to use the analysis
framework presented in [24]. The analysis framework of [24] captures both the
time and the distance restrictions in ordering the dynamic requests in DDPs
through a notion of time windows. All the nodes proceed in time windows; in a
window, each node might initiate new requests and each node can exchange a
message with each of its neighbors in the hierarchy Z at the end of the window.
Considering a synchronous execution where time is divided into windows of
appropriate duration for each level, an upper bound can be obtained. Given an
optimal ordering of the requests, the lower bound can be obtained by considering
the communication cost provided by a Hamiltonian path that visits each request
node exactly once according to their order.



236 S. Rai et al.

In this setting, the idea is to perform the analysis level by level. The time
window notion combined with a Hamiltonian path allows us to analyze the com-
petitive ratio for the requests that reach some level. After combining the com-
petitive ratio of all the levels, we obtain the overall competitive ratio. Therefore,
we summarize below the guarantees of LB-Spiral in dynamic executions.

Theorem 7. The move stretch in LB-Spiral is O(log3 n · log D) in dynamic
executions. The processing load on any node of G is O(log n · log D). More-
over, the publish operation has O(D · log3 n) cost and any lookup operation has
O(log5 n) stretch.

Proof of Theorem 1. Theorems 2, 3, 4, 5, 6, and 7 collectively prove Theorem 1
for LB-Spiral in arbitrary executions. ��

Improved Results for Constant Doubling Dimension Graphs. If the
metric on the underlying graph G has a constant doubling dimension (see [14,
26]), we can improve both stretch and processing load for LB-Spiral. The idea
is to use the hierarchy of clusters suitable for doubling graphs. It was shown in
[11,15] that (O(1), O(1))-partition scheme is possible for small doubling graphs.
We can obtain (O(1), O(1))-labeled cover hierarchy extending the technique of
[11,15] using our labeled cover hierarchy construction given in Sect. 3. The spiral
and directory paths can be defined similarly and the operations of LB-Spiral
can also be executed analogously to Sect. 4. Therefore, adapting the analysis of
Sect. 5 to the small doubling graph G, we obtain:

Theorem 8. If the underlying topology G is a small doubling graph, the move
stretch in LB-Spiral is O(log D) in arbitrary executions. It achieves O(log D)
approximation on processing load on any node of G. Moreover, the publish oper-
ation has O(D) cost and any lookup operation in LB-Spiral has O(1) stretch.

References

1. Agarwal, A., et al.: The MIT alewife machine: a large-scale distributed-memory
multiprocessor. In: Dubois, M., Thakkar, S. (eds.) Workshop on Scalable Shared
Memory Multiprocessors, pp. 239–261. Springer, Boston (1991). https://doi.org/
10.1007/978-1-4615-3604-8 13

2. Alon, N., Kalai, G., Ricklin, M., Stockmeyer, L.J.: Lower bounds on the competitive
ratio for mobile user tracking and distributed job scheduling. Theor. Comput. Sci.
130(1), 175–201 (1994)

3. Attiya, H., Gramoli, V., Milani, A.: Directory protocols for distributed trans-
actional memory. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory.
Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 367–391.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14720-8 17

4. Awerbuch, B., Peleg, D.: Concurrent online tracking of mobile users. SIGCOMM
Comput. Commun. Rev. 21(4), 221–233 (1991)

5. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: FOCS, pp. 184–193 (1996)

https://doi.org/10.1007/978-1-4615-3604-8_13
https://doi.org/10.1007/978-1-4615-3604-8_13
https://doi.org/10.1007/978-3-319-14720-8_17


Load Balanced Distributed Directories 237

6. Censier, L.M., Feautrier, P.: A new solution to coherence problems in multicache
systems. IEEE Trans. Comput. 27(12), 1112–1118 (1978)

7. Chaiken, D., Fields, C., Kurihara, K., Agarwal, A.: Directory-based cache coher-
ence in large-scale multiprocessors. Computer 23(6), 49–58 (1990)

8. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Kutten,
S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056478

9. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC, pp. 448–455 (2003)

10. Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G.: Improved lower bounds
for the universal and a priori TSP. In: Serna, M., Shaltiel, R., Jansen, K., Rolim,
J. (eds.) RANDOM 2010, APPROX 2010. LNCS, vol. 6302, pp. 178–191. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3 14

11. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: SODA, pp.
970–979 (2006)

12. Hajiaghayi, M.T., Kleinberg, R., Leighton, T.: Improved lower and upper bounds
for universal TSP in planar metrics. In: SODA, pp. 649–658 (2006)

13. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

14. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distrib. Comput. 20(3), 195–208 (2007)

15. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approxima-
tions for TSP, steiner tree, and set cover. In: STOC, pp. 386–395 (2005)

16. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: SODA, pp. 798–807 (2004)

17. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: SPAA, pp. 311–320 (1997)

18. Rajaraman, R., Richa, A.W., Vöcking, B., Vuppuluri, G.: A data tracking scheme
for general networks. In: SPAA, pp. 247–254 (2001)

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001)

20. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst. 7(1), 61–77 (1989)

21. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In:
SODA, pp. 770–779 (2000)

22. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

23. Sharma, G., Busch, C.: Distributed transactional memory for general networks.
Distrib. Comput. 27(5), 329–362 (2014)

24. Sharma, G., Busch, C.: An analysis framework for distributed hierarchical direc-
tories. Algorithmica 71(2), 377–408 (2015)

25. Sharma, G., Busch, C.: A load balanced directory for distributed shared memory
objects. J. Parallel Distrib. Comput. 78, 6–24 (2015)

26. Sharma, G., Busch, C.: Optimal nearest neighbor queries in sensor networks. Theor.
Comput. Sci. 608, 146–165 (2015)

27. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

https://doi.org/10.1007/BFb0056478
https://doi.org/10.1007/978-3-642-15369-3_14
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18


238 S. Rai et al.

28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

29. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
STOC, pp. 281–290 (2004)

30. Zhang, B., Ravindran, B.: Brief announcement: Relay: a cache-coherence protocol
for distributed transactional memory. In: Abdelzaher, T., Raynal, M., Santoro, N.
(eds.) OPODIS 2009. LNCS, vol. 5923, pp. 48–53. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10877-8 6

31. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas
Commun. 22(1), 41–53 (2006)

https://doi.org/10.1007/978-3-642-10877-8_6


Relays: A New Approach for the Finite
Departure Problem in Overlay Networks

Christian Scheideler and Alexander Setzer(B)

Paderborn University, Paderborn, Germany
{scheideler,alexander.setzer}@upb.de
https://cs.uni-paderborn.de/en/ti/

Abstract. A fundamental problem for overlay networks is to safely
exclude leaving nodes, i.e., the nodes requesting to leave the overlay
network are excluded from it without affecting its connectivity. To rigor-
ously study self-stabilizing solutions to this problem, the Finite Depar-
ture Problem (FDP) has been proposed [9]. In the FDP we are given a
network of processes in an arbitrary state, and the goal is to eventually
arrive at (and stay in) a state in which all leaving processes irrevocably
decided to leave the system while for all weakly-connected components in
the initial overlay network, all staying processes in that component will
still form a weakly connected component. In the standard interconnec-
tion model, the FDP is known to be unsolvable by local control protocols,
so oracles have been investigated that allow the problem to be solved [9].
To avoid the use of oracles, we introduce a new interconnection model
based on relays. Despite the relay model appearing to be rather restric-
tive, we show that it is universal, i.e., it is possible to transform any
weakly-connected topology into any other weakly-connected topology,
which is important for being a useful interconnection model for over-
lay networks. Apart from this, our model allows processes to grant and
revoke access rights, which is why we believe it to be of interest beyond
the scope of this paper. We show how to implement the relay layer in a
self-stabilizing way and identify properties protocols need to satisfy so
that the relay layer can recover while serving protocol requests.

1 Introduction

Once distributed systems become large enough, membership changes in these
systems are not an exception but the norm. This particularly holds for peer-to-
peer systems but is also true for large server-based systems as servers may need
to be taken offline for some maintenance or new servers need to be included in
the system to improve or maintain the service quality. So protocols need to be
in place to allow members of a distributed system to join and leave it without
disrupting its functionality. The most basic requirement for maintaining the

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 239–253, 2018.
https://doi.org/10.1007/978-3-030-03232-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_16&domain=pdf


240 C. Scheideler and A. Setzer

functionality of a system is that it stays weakly connected. While this is easy
to guarantee when new members join a system, it is not so easy to guarantee
when members leave the system, in particular, if multiple members want to leave
the system at the same time. In the literature on peer-to-peer systems, many
proposals for leave protocols have already been made (see, e.g., [2,8,11,15,17,
18]). However, most of these solutions cannot give any guarantees if the system
is not in some well-defined state. Distributed systems can easily be pushed into
a non-well-defined state if there are network partitions or faulty members, so it
would be desirable to have leave protocols that do not need any assumptions on
the system state.

In order to rigorously study the problem of guaranteeing weak connectivity
for any situation in which a collection of members (henceforth also simply called
processes) wants to leave the system, Foreback et al. [9] introduced the Finite
Departure Problem (FDP). In the FDP the leaving processes have to irrevocably
decide in finite time when it is safe to leave the network, i.e., their departure does
not cause the network to get disconnected. Foreback et al. showed that there is
no self-stabilizing local-control protocol for the FDP. At the heart of the proof
are two serious problems: The standard assumption used in overlay networks
research that a process may freely pass knowledge about its neighbors to any
one of its neighbors has the effect that a process v cannot locally decide whether
v is critical for the connectivity of the network or not, simply because it does
not have any control on and thereby potentially incomplete knowledge about its
incoming connections (i.e., the set of processes knowing its address). Also, when
assuming asynchronous communication, where message may have arbitrary finite
delays, a process v may not know whether messages carrying critical connectivity
information are still on their way to v. This caused Foreback et al. to introduce
the NIDEC oracle, which gives a process v the power to determine whether its
address is still known somewhere in the system (NID is a short form of “no ID”)
and whether there are still messages on their way to v (EC is a short form of
“empty channel”).

Is it possible to avoid the use of oracles by using a different link layer model?
We show that this is indeed the case. In fact, we need two layers: a self-stabilizing
link layer and, on top of that, a self-stabilizing relay layer, which is our main
innovation. On top of the relay layer, a self-stabilizing local-control protocol can
then be designed to solve the FDP problem without the use of an oracle. While
the link layer ensures that a process is aware of the messages that are still in tran-
sit along its outgoing connections, the relay layer gives the processes the power
to rigorously control who is allowed to send messages to it. Despite appearing to
be rather restrictive, we show that the relay concept is universal in a sense that
one can get from any weakly connected topology to any other weakly connected
topology while staying weakly connected throughout the transformation process.
Because the relay layer now allows the rigorous study of access control problems
in overlay networks, which opens up new directions like rigorous studies on the
DoS-resistance of overlay networks (given that messages can only be sent via
relay connections), we expect it to be of interest beyond this paper.



Relays: A New Approach for the FDP in Overlay Networks 241

1.1 System Model

We consider a distributed system consisting of a set of processes that are inter-
connected to each other (with more details on the type of interconnections once
we introduce relays in the next section). The processes are controlled by a local-
control protocol that specifies the variables and actions that are available in each
process. We assume that there is a reliable link layer that transmits messages
from processes to other processes based on an ID of the target process contained
in the message. More specifically, each process specifies a set of variables, called
buffers containing messages to be sent to other processes and the ID of the
respective target process is stored along with the buffer or inside the message.
We assume that the link layer may take an arbitrary but finite amount of time to
process a message that was put into one of these variables, but messages never
get lost. We assume the link layer makes sure that every transmitted message
will eventually be removed from the buffer it was taken from after it has been
processed by the receiver. There are no resources available beyond the processes
and the link layer as specified above (such as shared storage or a gateway), so
the processes entirely rely on themselves and the link layer in order to handle
certain tasks. This implies that there is no way for two disconnected components
of processes to connect to each other.

There are two types of actions that a protocol can execute. The first type has
the form of a standard procedure 〈label〉(〈parameters〉) → 〈commands〉, where
label is the unique name of that action, parameters specifies the parameter list of
the action, and commands specifies the commands to be executed when calling
that action. Such actions can be called locally (which causes their immediate
execution) or remotely. In fact, we assume that every message must be of the
form 〈label〉(〈parameters〉), where label specifies the action to be called in the
receiving process and parameters contains the parameters to be passed to that
action call. All other messages are ignored by the processes. The second type
has the form 〈label〉 : 〈guard〉 → 〈commands〉, where label and commands are
defined as above and guard is a predicate over local variables. We call an action
whose guard is simply true a timeout action.

The system state is an assignment of values to every variable of each process
(including its buffers). An action in some process v is enabled in some system
state if its guard evaluates to true, or if there is a message requesting to call it
that was transmitted to the process by the link layer and has not been processed
yet.

A computation is an infinite fair sequence of system states such that for each
state Si, the next state Si+1 is obtained by executing an action that is enabled
in Si. This disallows the overlap of action executions, i.e., action executions are
atomic. We assume weakly fair action execution, meaning that if an action is
enabled in all but finitely many states of a computation, then this action is
executed infinitely often. Note that a timeout action of a process is executed
infinitely often. Besides this, we place no bounds on process execution speeds,
and no restrictions on the execution order of enabled actions, i.e., we allow fully
asynchronous computations and non-FIFO message delivery.



242 C. Scheideler and A. Setzer

1.2 Problem Statement

A protocol is self-stabilizing with respect to a set of legitimate states if it satisfies
the following two properties:

Convergence: starting from an arbitrary system state, the protocol is guaran-
teed to eventually arrive at a legitimate state.

Closure: starting from a legitimate state the protocol remains in legitimate
states thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regard-
less of their nature. Moreover, a self-stabilizing protocol does not have to be ini-
tialized as it eventually starts to behave correctly regardless of its initial state. A
formal definition of the FDP can be found in [9] (which is also briefly recapped
in the full version of this paper [19]).

1.3 Related Work

The idea of self-stabilization in distributed computing was introduced in a clas-
sical paper by Dijkstra in 1974 [4], in which he investigated the problem of
self-stabilization in a token ring. In the past 10 years, several self-stabilizing
local-control protocols have been proposed for various overlay networks (e.g.,
[1,3,7,12,13,16]), but none of them has considered the leaving of nodes as an
individual problem until the work of Foreback et al. [9]. In that work, two prob-
lems are considered: the Finite Departure Problem (FDP) and the Finite Sleep
Problem (FSP). The authors show that there is no self-stabilizing local-control
protocol for the FDP, so oracles are investigated that allow the FDP to be solved.
In the FSP, the leaving processes do not have to make an irrevocable decision
when to leave the network. They just fall asleep whenever they think it is safe to
do so, but they will be woken up again as long as there are still messages in their
channel. So the goal of the FSP is just to ensure that eventually a state is reached
where all leaving nodes are permanently asleep. Foreback et al. show that for
the FSP problem, a self-stabilizing local-control protocol does exist. While their
protocol only works together with a self-stabilizing protocol for arranging nodes
in a sorted list, more universal protocols for the FSP were presented in [14].
Another extension of the results in [9] was presented in [10]. In that paper, the
authors study churn in general (including join and leave requests) and consider
the case that neither the number of churn requests in total, nor the number of
concurrent churn requests can be bounded by a constant. They prove that a
solution to this problem is possible if and only if not every request needs to be
satisfied.

Aside from these results, there has been research on self-stabilizing link layers
[5,6] which even guarantee FIFO-delivery, thus giving stronger guarantees than
required for the relay layer. More related work concerning relays is discussed in
the full version [19].



Relays: A New Approach for the FDP in Overlay Networks 243

1.4 Our Contributions

We present a novel approach for interconnecting processes which is based on
so-called relays. For this we introduce a novel relay layer that acts between the
application and the link layer and show that depending on the way an application
uses this layer, this relay layer can self-stabilize to a legal state in which a
transfer of messages is guaranteed. After that, we show that our relay approach
is universal in a sense that one can get from any weakly connected network to
any other weakly connected network while maintaining weak connectivity in the
transformation process. In the full version [19] we show that existing solutions
for the FDP can be transformed for our relay layer such that they solve the FDP
without the use of an oracle (assuming a reliable link layer instead). Our relay
concept also has some interesting connections to the access control domain as
we point out in the full version [19].

2 The Relay Layer

We assume that all connections between processes happen through relays which
are managed by a so-called relay layer. Each process v is assumed to interact
with its own, separate relay layer RL(v) (so that it is clear which relay is owned
by which process), and RL(v) is required to reside at the same machine as v so
that interactions between v and RL(v) are local. Whenever a message needs to be
sent to v, it has to go through RL(v). Each RL(v) has a globally unique address,
or short RID, that depends on the address of its machine, so that messages can
be sent to it from any other relay layer that knows its RID. Furthermore, every
relay layer RL(v) has a local buffer RL(v).Buf that is used for the internal
communication between relay layers: Every RL(v).Buf is expected to consist of
pairs (targetRID,message) in which targetRID is the RID of the relay layer
message is sent to by the link layer. Here message must be an internal message
(any other type of message will be ignored). The relay layer of the entire system
is the set of relay layers over all of its processes.

2.1 Relays

A relay is basically a socket that is non-transferably owned by exactly one process
v, and that can have both incoming connections from other relays as well as an
outgoing connection to some relay. More precisely, RL(v) maintains the following
variables for each relay r:

– r.ID: globally-unique identifier of relay r (containing the RID of its relay
layer so that messages can be sent to r when knowing its ID)

– r.state: is either alive or dead
– r.out: stores a (Key, ID) pair where Key is a set keys, and ID is the ID of the

target of the outgoing connection (if ID = ⊥ then r is a sink, i.e., messages
are forwarded to the process owning it)



244 C. Scheideler and A. Setzer

– r.level ∈ N0: stores the distance of r (in hops) to the sink relay reached via
its outgoing connection (there is always a unique such one, see below)

– r.sinkRID: stores the RID of the sink of r, i.e., the RID of the relay layer of
the process that will receive messages sent via r

– r.In: set of triples of the form (key,RID,⊥) or (key,⊥, r′) for some relay r′,
where key is a globally unique key (depending on the RID of r’s relay layer),
RID specifies the address of the relay layer that can send messages to r via
key, and r′ is a relay via which key was supposed to be forwarded; depending
on the form, key is a confirmed or unconfirmed key

– r.Buf : stores all messages that the link layer should send to the relay layer
with RID r.out.ID if r.out.ID �= ⊥ or to v if r.out.ID = ⊥

Note that we assume all buffers (i.e., RL(v).Buf and r.Buf for every relay
r) to be insert-only, i.e., only the link-layer can remove a message from them.
Furthermore, we assume all IDs in the system to be valid, i.e., for every ID in
the system the corresponding RID belongs to an existing process (it would be
possible to lift this assumption by introducing another oracle or by giving more
power to the underlying link layer, but this is beyond the scope of this paper).

The relay connections can be represented by a so-called relay graph.

Definition 1. Given any system state S, the relay graph G = (V,E) of S is a
directed graph that is defined as follows: V = R ∪ P , where R is the set of relays
and P is the set of active processes. E = EP ∪ ECh where EP is the set of all
explicit edges and ECh is the set of implicit edges. EP contains an edge (v, w)
whenever

1. v ∈ P and w ∈ R and w is owned by process v,
2. v ∈ R and w ∈ R and relay v has an outgoing connection to relay w (i.e.,

v.out.ID = w.ID), or
3. v ∈ R and w ∈ P , and relay v is a sink relay of process w (i.e., v.out.ID = ⊥).

ECh contains an edge (v, w) whenever v ∈ R,w ∈ R and a reference to w is
contained in the parameter list of a message in v.Buf . Thus, while explicit edges
can be used to send messages, implicit edges cannot be used to send messages
yet.

Observe that the third requirement on a legitimate state implies that every
relay graph is cycle-free.

2.2 Relay Layer Primitives

Whenever a process holds a reference to a relay r, which we denote by r̂, we
assume that it is a “dark” reference, i.e., the variables of the relay cannot be
accessed by the process. However, the reference can be used by the processes
to call a number of primitives offered by the relay layer (in the following, we
assume that all relays mentioned below are owned by the calling process, i.e.,
they are or have been created for it by its relay layer—relays not owned by the
calling process will be ignored):



Relays: A New Approach for the FDP in Overlay Networks 245

1. new Relay: returns a reference to a new sink relay r with a globally unique
identifier r.ID, r.state = alive, r.In = {}, r.out = ({},⊥), and r.level = 0.

2. delete r̂: prepares the relay referenced by r̂ for deletion, in a sense that the
relay layer sets r.In = {} and r.state = dead. This has the effect that r will
not accept any further messages, but r still continues to deliver the messages
in r.Buf . r is deleted by the relay layer once r.Buf is empty and all relay
relay keys sent via r have been confirmed or deleted.

3. merge(R): if for all relays r ∈ R, r.state = alive, r.out.ID is equal to
some common ID, r.level is equal to some common �, r.sinkRID is equal to
some common sinkRID and r.In = {}, the relay layer creates a new relay
r′ with new r′.ID, r′.state = alive, and r′.out = (Key, ID) with Key =⋃

r∈R r.out.Key, r′.level = �, r′.sinkRID = sinkRID, r′.In = {}, and
r′.Buf =

⋃
r∈R r.Buf . Also, all relays in R are deleted. A reference to r′ is

returned back to the process. (If one of the conditions above is not satisfied,
merge does nothing.)

4. getRelays: returns (references to) the current set of all relays owned by v
that are still alive.

5. incoming(r̂): returns |r.In|
6. direct(r̂): returns true iff r.level ≤ 1
7. is-sink(r̂): returns true iff r.level = 0
8. dead(r̂): returns true iff r does not exist anymore or r.state = dead
9. same-target(r̂1, r̂2): returns true iff r1.out.ID = r2.out.ID

10. send(r̂, action(parameters)): if r is still alive, adds a message of the form
((key, r.ID, r.out.ID), action(parameters′)) to r.Buf for some arbitrary
key key ∈ r.out.Key (where parameters′ is an adapted form of parameters
explained below), where (key, r.ID, r.out.ID) is called the header of the
message.

Figure 1 gives examples of the uses of these primitives.
If a process v executes stop, v becomes inactive, and RL(v) immediately

deletes all sink relays and from then on periodically deletes all relays r with
r.In = ∅ and r.Buf = ∅. RL(v) continues to exist until all relays have been
deleted, after which it shuts down. We hightlight that protocols can prevent
relay layers from existing forever by making sure that all indirect relay connec-
tions (i.e., relay connections where none of the endpoints is a sink) are closed
eventually as we will prove.

Note that the fact that merge can be used to merge relays is the reason for
why the variable r.out.Key of a relay r has to be a set instead of a single value
only: The merge could occur in an illegitimate state at which one of the merged
relays may store a correct key while another one does not. At this point it is not
clear which one to choose.

For convenience, in the following we will use RL(r) to denote the relay layer
that owns a relay r,RID(ID) to denote the RID contained in ID,RID(u) to
denote the RID of RL(u) and RID(r) to denote the RID of RL(r).



246 C. Scheideler and A. Setzer

u
0 f
q

v
1 tr

w
1 t
p

Initial situation. u owns relay q, v owns
relay r and w owns relay p. By defini-
tion, r and p are direct relays, whereas
q is not.

u
0 f
q

v
1 tr

0 ts

w
1 t
p

Situation after v has executed new Re-
lay, v has an additional (sink) relay s.
By definition, s is a direct relay.

u
0 f
q

v
1 tr

1 ts

w
1 t
p

0 ts
′

Situation after v has executed
send(r̂, action(ŝ)) for some action
action, RL(w) (w is the so-called sink
of r) has created a new relay s′ with
an outgoing connection to s.

u
0 f
q

v
1 tr

0 ts

w
1 t
p

0 ts
′

Situation after w has executed delete
ŝ′, s′ is marked as dead, s.In has been
updated (as s no longer has an incoming
connection), and the connection from
s′ to s has been removed.

Fig. 1. Example with three processes u, v, and w. The characters inside a relay r
denote (from left to right), |r.In|, the ID of r, and whether r is a direct relay. The
arrows indicate outgoing connections of relays.

2.3 Message Processing and Action Handling

All messages that can be sent by a process v are required to be remote method
invocations of the form action(parameters) (otherwise, they will be ignored by
RL(v)). More precisely, a process v calls send(r̂, action(parameters)) to ask
RL(v) to send out a message via r. For simplicity, we assume parameters to
consist of a sequence of objects, some of which are relay references, and all other
objects do not contain any relay reference at all. We assume that each action
has a fixed number of parameters and specifies which of its parameters are relay
references. The pseudocodes of the actions described in this section can be found
in the full version [19].

When send(r̂, action(parameters)) is called for an alive relay r, there are
two possibilities: If r is a sink, i.e., r.out.ID = ⊥, then action(parameters) is
put into r.Buf such that the process owning r will receive action(parameters).
Otherwise, RL(r) for every relay reference ŝ contained in parameters creates a
new globally unique key key, inserts (key,⊥, r) into s.In and replaces ŝ by the
quadruple (key, s.ID, s.level + 1, s.sinkRID). We refer to these quadruples by
the term relay parameter, the first entry of which is called its key, the second
is called its id, the third is called its level, and the fourth its sinkRID. Further-
more we assume that there is a part of each generated key that depends on
the generating process and can be used to check whether a key key was gen-
erated by a process u, in which case we say key belongs to u. Let the list of
parameters resulting from the replacements be parameters′. Then, RL(r) puts



Relays: A New Approach for the FDP in Overlay Networks 247

a transmit(((key, r.ID, r.out.ID), action(parameters′))) message into r.Buf
where key is an arbitrary element from r.out.Key.

We assume that the link layer for every relay r eventually processes every
message in r.Buf without changing its contents. The link layer makes sure that
every message m′ ∈ r.Buf for a relay r is either processed by the process v
owning r, in case that outID = ⊥, or successfully delivered to the process whose
relay layer has the RID contained in r.out.ID. After the link layer has processed
a message m′ in r.Buf for a relay r, it removes m from r.Buf .

Definition 2 (Valid message header). A message m of the form
((key, inID, outID), action(parameters)) is said to have a valid header for relay
r if r.ID = outID, and either (key,RID,⊥) ∈ r.In with RID = RID(inID),
or (key,⊥, r′) ∈ r.In and r′.sinkRID = RID(inID).

When a message m = ((key, inID, outID), action(parameters)) is received
by a process w,RL(w) acts according to the Pseudocode given in Listing 1.1.
We assume that probe(controlKeys, keySequence) is a dedicated action type
used for the relay layers only, in which controlKeys is a set and keySequence is
a sequence of keys.

Listing 1.1. Pseudocode executed by RL(w) when a message m is received by w

1 transmit(m = ((key, inID, outID), action(parameters))) →
2 i f the r e i s a r e l ay r′ such that r′.ID = outID and r′.state = alive
3 and m has a va l i d header f o r r′ then
4 i f (key,⊥, r′′) ∈ r′.In f o r some r e l ay r′′ owned by t h i s p roce s s

5 and r′′.sinkRID = RID(inID) then
6 // f i r s t message r e c e i v ed v ia t h i s connect ion , a c t i v a t e i t

7 r.In := r.In \ {(key,⊥, r′′)}
8 r.In := r.In ∪ {(key,RID,⊥)}
9 i f r′.out.ID = ⊥ then // r ’ i s a s ink r e l ay

10 i f action(parameters) = probe(controlKeys, keySequence) then
11 f o r every key′ ∈ controlKeys do

12 i f the r e i s no r e l ay r′′ such that key′ ∈ r′′.out.Key then

13 l e t (key1, . . . , keyk) = keySequence

14 i f the r e i s an RID such that (keyk, RID,⊥) ∈ r′.In then
15 RL.Buf := RL.Buf ∪ {(RID, probefail(key′, (key1, . . . , keyk))}
16 e l s e i f a l l i d s o f r e l a y parameters o f m belong to the
17 same RID senderRID then

18 // ( otherwise , the message i s obv ious ly corrupted )

19 r′.Buf := r′.Buf ∪ {action(parameters)}
20 f o r each r e l ay param (key′, ID′, level′, sRID′) in parameters do

21 i f � ∃ r e l a y r′′ with key′ ∈ r′′.out.Key in RL(w) then
22 c r e a t e a new r e l ay s with :

23 s.ID := newID , where newID i s a new , g l o b a l l y

24 unique ID conta in ing the RID o f RL(w)

25 s.state := alive ,

26 s.out := ({key′}, ID′) ,
27 s.level := level′ , and

28 s.sinkRID := sRID′ , and

29 s.In := {} , and
30 s.Buf := {((key′, s.ID, ID′), probe({}, key′))}
31 r ep l a c e (key′, ID′, level′, sRID′) in parameters by ŝ



248 C. Scheideler and A. Setzer

32 e l s e
33 r ep l a c e (key′, ID′, level′, sRID′) in parameters by ⊥
34 e l s e // m needs to be forwarded
35 r′.Buf := r′.Buf ∪ {transmit(m)}
36 r ep l a c e key by an a rb i t r a r y key′ ∈ r′.out.Key

37 r ep l a c e inID by r′.ID
38 r ep l a c e outID by r′.out.ID
39 i f action(parameters) = probe(controlKeys, keySequence) then

40 append key′ to keySequence
41 f o r every key′′ ∈ controlKeys do

42 i f the r e i s a message m′ ∈ r′.Buf that conta in s a r e l ay
43 parameter with key key′′ then

44 remove key′′ from controlKeys

45 e l s e i f ∃ a r e l ay r′ s . t . r′.ID = outID and r′.state = alive then
46 // m does not have a va l i d header f o r r′
47 RL.Buf := RL.Buf ∪ {(RID(inID),not authorized(m))}
48 e l s e i f outID conta in s the RID o f RL(w)

49 // the re i s no r e l ay r′ s . t . r′.ID = outID and r′.state = alive

50 RL.Buf := RL.Buf ∪ {(RID(inID),out-relay-closed(outID))}

Recall that when a process v calls send(r̂,m), and m contains references to
relays, RL(v) replaces these references by relay parameters containing the nec-
essary information to establish a connection to these relays. Additionally RL(v)
inserts (key,⊥, r) to r′.In for every relay r′ that was contained in this message.
These will be replaced by (key,RID,⊥) after the message has been received by
a process. To prevent (key,⊥, r) entries in .In sets for which no corresponding
messages in the system exist (which would prevent .In from becoming empty
after all other relays have been closed), a probing is done via the probe() mes-
sages to check whether such a message m with a relay parameter with key key
exists: On the path from r to the sink relay, it is checked whether m is contained
in the buffer of the next relay on the path. If this is not the case and the sink
does not have a relay with that key, a probefail() message will be sent in return
to inform r′ about this. Note that the probefail() message type contains two
parameters: the key that was not found and the sequence of keys that were used
to get from the initiator of the probe() message to the sink. The latter is used
to find the way back to the initiator via the same path (in reverse order) that
the probe() message took. Details of this are described in the full version [19].

When a not authorized(m) control message is received and there is a non-
sink relay r such that m could have been sent by this, the relay layer removes
the key contained in m from r.out.Key. If there is still at least one key left
in r.out.Key, the message is resent with another key. Otherwise, all elements
(key,⊥, r) are removed from r′.In for every relay r′, and r is deleted.

The Timeout action mainly detects and corrects all values that are obviously
corrupted and contradict to the definition of a legal state that will be given later.
In addition, for each relay r it serves the following purposes: First, it periodically
sends a ping(r.ID, r.level, r.sinkRID, key) message to every relay layer whose
RID is contained as the second parameter of a triple (key,RID,⊥) in r.In. This
is to give connected relays r′ with r′.out.ID = ID and key ∈ r′.out.Key the
opportunity to correct their level or sinkRID information and also to determine



Relays: A New Approach for the FDP in Overlay Networks 249

if there are relays in r.In that do not exist. Second, it detects and fully removes
deleted relays r that do not need to be kept any more (e.g. because all of their
messages have been transmitted) and it also shuts down the relay layer if the
process is dead and all relays of it have been deleted. In case r is not a sink, it
additionally sends out an in-relay-closed(r.out.Key,RID(r), r.out.ID) mes-
sage as to inform the relay layer of the relay with ID r.out.ID that r has been
closed. Third, its sends out the aforementioned probe() messages.

When a relay layer receives a ping(ID, level, sinkRID, key) message it
checks whether there is a corresponding relay r with r.out.ID = ID and
key ∈ r.out.Key. If there is no such relay, it responds to the relay layer owning
the relay with id ID with an in-relay-closed() message indicating that there
is no such relay with such a key. Otherwise, if r.level ≥ level + 1, it updates
r.level to level and r.sinkRID to sinkRID. If r.level < level + 1, it deletes r
(in this case correcting the value would be dangerous as this would allow for
cycles in the relay graph). The in-relay-closed(Keys, senderRID, ID) basi-
cally removes every entry (key,RID,⊥) from all .In sets such that key ∈ Keys.

When delete r̂ is called, RL(r) sets r.state to dead and sends an
out-relay-closed(r.ID) message to every relay layer whose RID is the sec-
ond parameter of a triple in r.In. Afterwards, it empties r.In so that no message
can be received via r from that point in time. Note that a relay r is not closed
immediately during the execution of delete r̂. This is to allow all messages still
in r.Buf to be delivered first. Once this has happened, the relay will be removed
completely upon the execution of Timeout.

When a relay layer receives an out-relay-closed(ID) message and owns
a relay r with r.out.ID = ID, it removes all triples (key,⊥, r) from r′.In for
every relay r′ owned by it, empties r.out.Key, sets r.out.ID to ⊥, and calls
delete afterwards.

2.4 Properties of the Relay Layer

In order to define legal states for the relay layer, we introduce the following
notion of a valid relay :

Definition 3 (Valid Relay). A relay r is valid iff

1. r.state = alive, and
2. r.ID is globally unique, and
3. r.out stores a pair (Key, ID) such that Key is a set, and
4. r.In only consists of triples (key,RID,⊥) with RID �= ⊥ or (key,⊥, r′′) for

a valid relay r′′ owned by RL(r), and
5. every key key used as a first parameter of a triple in r.In is locally unique

(i.e., it does not appear in any other triple in r.In or r′′.In for any relay
r′′ �= r) and belongs to RID(r), and

6. there is no ping(r.ID, level, snkRID, key) message in the system s.t.
level �= r.level or snkRID �= r.sinkRID or (key,⊥, r′′) ∈ r.In for a relay
r′′, and



250 C. Scheideler and A. Setzer

7. there is no out-relay-closed(r.ID) message in the system, and
8. for each (key,RID,⊥) ∈ r.In there is no not authorized(((key, inID,)

r.ID, level), action(parameters)) message in the system for any level and any
inID such that RID(inID)=RID, and for each (key,⊥, r′′) ∈ r.In there is
no not authorized(((key, inID, r.ID, level), action(parameters))) mes-
sage in the system for any level and any inID such that RID(inID) =
r′′.sinkRID, and

9. for every (key,⊥, r′′) ∈ r.In, there is no probefail(key, (key1, . . . )) mes-
sage in the system such that key1 ∈ r′′.out.Key, and, let (r1 = r′′, r2, . . . , rk)
be the sequence of relays such that ri+1.ID = ri.out.ID for all 1 ≤ i < k
and rk.out.ID = ⊥, then either for a relay r′ owned by the process with
RID r′′.sinkRID such that r′.out.ID = r, key ∈ r′.out.Key, r′.level =
r.level + 1, there is a probe({}, key) message with a valid header in tran-
sit to r and there is no probe(controlKeys, (key1, . . . )) message such that
key ∈ controlKeys and key1 ∈ r′′.out.Key in r′′′.Buf for any relay r′′′ /∈
{r1, . . . , rk−1}, or there is a message m with a valid header for rj+1 in rj .Buf
for some 1 ≤ j < k containing a relay parameter with key key, and there is
no probe(controlKeys, (key1, . . . )) message such that key ∈ controlKeys
and key1 ∈ r′′.out.Key in r′′′.Buf for any relay r′′′ /∈ {r1, . . . , rj}, and
either

10. r is a sink, i.e., r.out = ({},⊥), r.level = 0, and r.sinkRID = RID(r), or
11. (a) r.out.ID �= ⊥, and

(b) there is a valid relay r′ with r′.ID = r.out.ID, and
(c) r.level = r′.level + 1, and r.sinkRID = r′.sinkRID, and
(d) there is a key ∈ r.out.Key such that (key,RID,⊥) ∈ r′.In and RID =

RID(r), or (key,⊥, r′′) ∈ r′.In for a relay r′′ and r′′.sinkRID =
RID(r) and ((key, r.ID, r.out.ID),probe({}, key)) ∈ r.Buf , and

(e) for every key ∈ r.out.Key, there is no relay r′′′ �= r owned by the same
process such that key ∈ r′′′.out.Key

(f) there is no in-relay-closed(Keys,RID(r), r.out.ID) message in tran-
sit to RL(r′) such that key ∈ r.out.Key for a key ∈ Keys

Using this definition, we can define a valid relay graph as follows:

Definition 4 (Valid relay graph). A valid relay graph of a system state S
is the subgraph of the relay graph G = (R ∪ P,EP ∪ ECh) of S such that every
r ∈ R is valid and every (v, w) ∈ ECh is due to a valid relay parameter.

Note that every valid relay graph is cycle-free due to Property 11(c) of a valid
relay. We say a state S is legal if the relay graph of S equals its valid relay graph.
Furthermore, we say an application is deliberate if it does not delete a relay r′ if
r′.In �= ∅ (note that this includes that it does not call stop as long as there are
sink relays with incoming connections). Given the above definitions, we obtain
the following results whose proofs can be found in the full version [19]:

Theorem 1. If the application is deliberate, every message sent via a valid relay
r will be received by the process u with RID(u) = r.sinkRID.



Relays: A New Approach for the FDP in Overlay Networks 251

Thus the process u is also called the sink process of r. Observe that in the
valid relay graph, every relay r is connected via a directed path to some process
v, which is the sink process of r.

Theorem 2. If the application is deliberate, for every computation that starts
in a legal state every state is legal.

Theorem 3. If the application is deliberate, and does not send the reference of
an indirect relay (i.e., a relay r such that direct(r) = false) and does not send
any reference via a relay that is not valid, every computation will reach a legal
state.

Corollary 1. If the application does not issue any commands, starting from any
initial state S the system will reach a state S′ such S′ and every subsequent state
are legal.

Note that this resembles the classical definition of self-stabilization in which
it is assumed that starting from the initial state no change occurs to the system
other than by the self-stabilizing protocol.

Since the relay layer of a process that issues stop is not always shutdown
immediately, the following is important as well:

Theorem 4. If the application does not keep an indirect relay for an infinite
time, all relay layers of inactive processes will eventually be shut down.

3 Universality of the Relay Approach

We introduce three rules for the manipulation of edges of a relay graph and show
that they are universal, i.e., using them it is possible to get from any arbitrary
weakly connected valid relay graph to any other weakly connected valid relay
graph involving the same set of processes. For simplicity, in this section any relay
graphs we consider are assumed to be valid relay graphs. The rules we present
are an adaptation of known rules introduced by Koutsopoulos et al. [14] (more
on this can be found in the full version [19]) to our relay model. In that work, the
authors proved these rules to be universal in the common model, which we will
rely on in our proofs. For convenience, in the following, for a relay r, we denote
the process that stores the sink relay of r as the sink process of r. Furthermore,
we say a process u has a relay r to another process v if v is the sink process of
r, and u stores r̂ in one of its variables or there is a message in transit to u that
will cause such a reference to be created upon receipt. Additionally, a relay r
is called a direct relay if and only if direct(r) evaluates to true. Otherwise, r is
called indirect. The set IFR of relay rules consists of the following rules:

Relay Introduction Assume a process u has a relay r to a process v and
another relay s to a process w. Then u may send ŝ to v (via r).

Relay Fusion Assume a process u has two relays r and r′ with
same-target(r̂, r̂′). Then u may merge the two relays.



252 C. Scheideler and A. Setzer

Relay Reversal Assume a process u has two relays r and s such that r �= s
and incoming(r) = 0. Then u may send ŝ via r and subsequently delete r.

Examples of these rules are presented in the full version [19]. The following
is easy to show:

Theorem 5. IFR preserves weak connectivity, i.e., if any of the rules is applied
to a weakly connected relay graph G, then the resulting graph G′ is also weakly
connected.

The idea of the proof is as follows: Relay Introduction does not delete any
relay, thus its application cannot harm the connectivity of the relay graph. Relay
Fusion only merges redundant relays. Last, Relay Reversal preserves weak con-
nectivity because although u deletes a connection to the sink process of r, the
message sent causes an edge from r to s (and thus there is an undirected path
from u to the sink process of r).

The universality of the three relay rules is given by the following theorem,
whose proof is deferred the full version [19] due to space constraints:

Theorem 6. The rules in IFR are universal in a sense that one can get from
any weakly connected relay graph G = (V,E) to any other weakly connected relay
graph G′ = (V,E′), where w.l.o.g. E and E′ consist solely of explicit edges.

Recall that we dealt with valid relay graphs in this section. Luckily, by Theo-
rem 3 one can show: For every protocol that uses only the primitives in IFR for
the manipulation of edges in the relay graph and only uses references of direct
relays in introductions, the underlying relay layer will self-stabilize, i.e., it will
reach a state S such the relay graph of S is equal to the valid relay graph of S
and starting from any such state for every subsequent state S′ the relay graph
of S′ will be equal to the valid relay graph of S′.

References

1. Aspnes, J., Wu, Y.: O(logn)-time overlay network construction from graphs with
out-degree 1. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 286–300. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77096-1 21

2. Augustine, J., Pandurangan, G., Robinson, P., Roche, S.T., Upfal, E.: Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks. In:
Proceedings of the 56th IEEE Annual Symposium on Foundations of Computer
Science (FOCS 2015), pp. 350–369 (2015). https://doi.org/10.1109/FOCS.2015.29

3. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over
non-FIFO channels with optimal fault-resilience. Inf. Process. Lett. 111(18), 912–
920 (2011). https://doi.org/10.1016/j.ipl.2011.06.010

https://doi.org/10.1007/978-3-540-77096-1_21
https://doi.org/10.1007/978-3-540-77096-1_21
https://doi.org/10.1109/FOCS.2015.29
https://doi.org/10.1016/j.ipl.2011.06.010


Relays: A New Approach for the FDP in Overlay Networks 253

6. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-
end communication in (bounded capacity, omitting, duplicating and non-FIFO)
dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol.
7596, pp. 133–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33536-5 14

7. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distrib.
Comput. 20(5), 375–388 (2008)

8. Drees, M., Gmyr, R., Scheideler, C.: Churn- and DoS-resistant overlay networks
based on network reconfiguration. In: Proc. of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA 2016), pp. 417–427 (2016). https://
doi.org/10.1145/2935764.2935783

9. Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.:
On stabilizing departures in overlay networks. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 48–62. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11764-5 4

10. Foreback, D., Nesterenko, M., Tixeuil, S.: Infinite unlimited churn (short paper).
In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 148–153.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 12

11. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. Distrib. Comput. 25(4), 261–278 (2012)

12. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: Skip+: a self-
stabilizing skip graph. J. ACM 61(6), 36:1–36:26 (2014). https://doi.org/10.1145/
2629695

13. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional
topological self-stabilization: a distributed algorithm for delaunay graphs. Theor.
Comput. Sci. 457, 137–148 (2012)

14. Koutsopoulos, A., Scheideler, C., Strothmann, T.: Towards a universal approach for
the finite departure problem in overlay networks. In: Pelc, A., Schwarzmann, A.A.
(eds.) SSS 2015. LNCS, vol. 9212, pp. 201–216. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21741-3 14

15. Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-
to-peer systems. Distrib. Comput. 22(4), 249–267 (2010)

16. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic
message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013). https://doi.
org/10.1016/j.tcs.2012.08.029

17. Pandurangan, G., Robinson, P., Trehan, A.: DEX: self-healing expanders. In:
Proceedings of the 28th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2014), pp. 702–711 (2014). https://doi.org/10.1109/IPDPS.
2014.78

18. Saia, J., Trehan, A.: Picking up the pieces: self-healing in reconfigurable networks.
In: Proceedings of the 22nd IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS 2008), pp. 1–12 (2008)

19. Scheideler, C., Setzer, A.: Relays: a new approach for the finite departure problem
in overlay networks (full version). CoRR (2018). http://arxiv.org/abs/1809.05013

https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1145/2935764.2935783
https://doi.org/10.1145/2935764.2935783
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1007/978-3-319-49259-9_12
https://doi.org/10.1145/2629695
https://doi.org/10.1145/2629695
https://doi.org/10.1007/978-3-319-21741-3_14
https://doi.org/10.1007/978-3-319-21741-3_14
https://doi.org/10.1016/j.tcs.2012.08.029
https://doi.org/10.1016/j.tcs.2012.08.029
https://doi.org/10.1109/IPDPS.2014.78
https://doi.org/10.1109/IPDPS.2014.78
http://arxiv.org/abs/1809.05013


Clairvoyant State Machine Replications

Rida Bazzi1(B) and Maurice Herlihy2

1 Arizona State University, Tempe, AZ, USA
bazzi@asu.edu

2 Brown University, Providence, RI, USA
mph@cs.brown.edu

Abstract. We propose a new protocol for the generalized consensus
problem in asynchronous systems subject to Byzantine server failures.
The protocol solves the consensus problem in a setting in which infor-
mation about conflict between transactions is available (such information
can be in the form of transaction read and write sets). The use of non-
skipping timestamps permits servers to commit transactions as soon as
they know that no conflicting transaction can be ordered earlier. Unlike
most prior proposals (for generalized or classical consensus), which use
a leader to order transactions, this protocol is leaderless, and relies on
non-skipping timestamps for transaction ordering. Being leaderless, the
protocol does not need to pause for leader elections. For n servers of
which f may be faulty, this protocol requires n > 4f .

1 Introduction

A distributed ledger is a distributed data structure, replicated across multiple
nodes, where transactions from clients are published in an agreed-upon total
order. Today, Bitcoin [25] is perhaps the best-known distributed ledger protocol.

There are two kinds of distributed ledgers. In permissionless ledgers, such as
Bitcoin, any node can participate in the common protocol by proposing transac-
tions, and helping to order them. In permissioned implementations, by contrast,
a node must be authorized before it can participate. Permissionless ledgers make
sense for cryptocurrencies which seek to ensure that nobody can control who can
participate. Permissioned ledgers make sense for structured marketplaces, such
as financial exchanges, where parties do not necessarily trust one another, but
where openness and anonymity are not goals. State machine replication [32] is
the most common way to implement permissioned ledgers.

In state machine replication, a total order is agreed upon for all transac-
tions and every server replica executes the transactions in the same order. If
two successive transactions commute, the two transactions can be executed in
different orders by different servers. To determine if two transactions commute,
we can check if the state variables accessed for reading or writing (read and
write sets) by one transaction are written to by the other transactions and vice-
versa. Existing state machine replication protocols are limited in their ability
to exploit transaction commutativity. Protocols that exploit general transaction
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 254–268, 2018.
https://doi.org/10.1007/978-3-030-03232-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_17&domain=pdf


Clairvoyant State Machine Replications 255

commutativity solve what is called the generalized consensus problem in which a
dependency structure is assumed on the transactions [18,28]. Published work on
generalized consensus, [18,28,29,33] with few exceptions, is limited to systems
with servers subject to crash failures. Pires et al. [30] propose a leader-based
generalized state machine replication algorithm and Abd-El-Malek et al. [1] pro-
pose a client-driven quorum-based protocol called Q/U that is very efficient
under low contention, but that requires n > 5f and can suffer from livelock due
to contention even in synchronous periods.

The contribution of this paper is a novel permissioned ledger algorithm, which
we call Byblos. Byblos has three properties of interest.

– Generalized. Byblos exploits semantic knowledge about client requests to
reduce transaction latency. Client transactions include statically-declared
read and write sets. The technical key to effectively exploiting semantic knowl-
edge is a novel use of non-skipping timestamp [5] to bound the set of in-flight
transactions that might end up ordered before a particular transaction. If
an otherwise-complete transaction does not conflict with any of its potential
predecessors, that transaction can be committed without further delay. For
loads with few conflicts, solution for generalized consensus can be much more
efficient than solutions for traditional consensus [18].

– Leaderless. Byblos is leaderless. With some exceptions [1,9,21], prior repli-
cated state machine algorithms use a leader to order client requests. Leader-
based algorithms typically have two kinds of phases: a relatively simple normal
phase where the leaders send and receive messages to the others, and a com-
plicated reconciliation phase [11,16,20,34] used to detect and replace faulty
leaders. Leader election comes at a cost: client requests are typically blocked
during leader election even in periods of synchrony. Such delays are especially
problematic if valuable periods of synchrony are spent electing leaders instead
of making progress. (Other leaderless protocols, such as EPaxos [23], make
similar observations.)
In Byblos, transactions are guaranteed to terminate in periods of synchrony.
Technically, Byblos does not need a leader because it is centered around a
leaderless non-skipping timestamp algorithm.

– Simple. Byblos is simple to explain and understand. While simplicity is sub-
jective, readers who are familiar with other protocols for Byzantine fault
tolerance will note that the full protocol is described in this paper.

In Byblos, transactions are ordered by timestamp, with ties broken canon-
ically. For a given timestamp value t, Byblos can determine an upper bound
on the set of in-flight pending transactions that might have assigned timestamp
t. This ability to bound the set of potentially conflicting pending transactions
makes Byblos clairvoyant. If a transaction T with timestamp t is the next one
to be executed by a replica among those transactions with timestamp t, and T
does not conflict with any of the pending transactions, then T can be executed
without waiting for the status of the pending transactions to be resolved. Byblos
guarantees progress using an “off-the-shelf” underlying asynchronous Byzantine



256 R. Bazzi and M. Herlihy

agreement algorithm, preferably early deciding [7,35], to CANCEL or COMMIT
pending transactions1.

Byblos tolerates f < n/4 faulty servers, assuming the underlying consensus
algorithm does the same. If there are no conflicts between pending transactions
and transactions waiting for execution, Byblos can make progress even in periods
of complete asynchrony. This does not contradict the FLP impossibility [15].

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the problem and the system model. Section 4 gives
a detailed description of Byblos and Sect. 5 states the theorems for correctness.
Section 6 describes how the protocol can be optimized to eliminate the exchange
of whole pending sets and Sect. 7 describes how Byzantine clients can be toler-
ated. Section 8 discusses the performance.

2 Related Work

Leader-based distributed ledgers such as Paxos [17] and Raft [27] do not exploit
knowledge of read-write sets to reduce latency and increase throughput. Dis-
tributed ledgers that do exploit such information include Generalized Paxos [18],
Egalitarian Paxos [23], Hyperledger Fabric [10], NEO [26], and Bitcoin itself [25].

There is a large body of literature on state machine replication, most of which
is leader-based. Clement et al. [12] observe that many Byzantine fault-tolerant
(BFT) protocols can perform poorly in the presence of Byzantine failures. They
define the notion of a fragile optimization, where a single misbehaving party can
knock the system off an optimized path. They also define gracious (synchronous,
non-faulty) and uncivil (synchronous, limited Byzantine faults) executions. They
argue that while most BFT protocols are optimized for gracious executions, it is
also important that protocols perform well in uncivil executions. They propose
Aardvark, a BFT protocol designed to perform well under uncivil executions.
Aardvark uses a leader, with regularly-scheduled view changes. The protocol
includes safeguards against censorship by the leader. Amir et al. [2] introduce
bounded delay as a performance goal for BFT protocols. They introduced Prime,
a BFT protocol that uses a leader that is monitored by other servers to provide
bounded delay in the presence of limited Byzantine failures.

Paxos [17] and Raft [27] are perhaps the best-known non-Byzantine repli-
cation protocols. Other Paxos-related non-Byzantine protocols include Men-
cius [19] and EPaxos [23]. These protocols, with the exception of EPaxos [23], use
some form of leader (or leaders) and view changes. Milosevic et al. [22] proposed
a BFT-Mencius which also uses performance monitoring and view changes to
limit the effects of slow servers. Byblos does not use view changes or performance
monitoring and hence allows unbounded variance below the timeout threshold.

Existing protocols that perform relatively well under uncivil executions, per-
form less well in civil executions, compared to protocols optimized only for civil
executions. Byblos is different. Its latency, measured in the number of message
1 Asynchronous consensus algorithms are those that guarantee safety at all times, and

progress under eventual synchrony.



Clairvoyant State Machine Replications 257

round trips, is comparable to protocols optimized for civil execution. In the
absence of slow or faulty clients, its latency in uncivil executions is also compa-
rable to that of protocol optimized for civil executions. On the down side, Byblos
uses signatures, whereas some protocols use faster message authentication codes.

Many BFT protocols that do not exploit commutativity. BFT protocols that
do not use leaders or view changes include HoneyBadgerBFT [21]. Unlike most
BFT protocols, HoneyBadgerBFT does not assume eventual (or partial) syn-
chrony, but relies on a randomized atomic broadcast protocol with a crypto-
graphic shared coin. HoneyBadgerBFT ensures censorship resistance through a
cryptographic subprotocol. Unlike Byblos, HoneyBadgerBFT does not exploit
transaction semantics. The RBFT BFT protocol [4] uses multiple leaders, who
track one another, and provide censorship resistance. It is designed for systems
in which clients can have multiple parallel pending requests. Aublin et al. [3]
describe a family of protocols, some of which have low (2-message) latency in
synchronous executions.

As noted, the protocols discussed, with the exception of EPaxos [23] which
only tolerates crash failures, do not solve the generalized consensus problem [18,
28]. Abd-El-Malek et al. [1] propose a client-driven quorum-based protocol called
Q/U that is very efficient under low contention, but that requires n > 5f and can
suffer from livelock due to contention even in synchronous periods. The algorithm
is leaderless and uses exponential backoff in the presence of contention. Other
work that aims at improving Q/U reverts to using a leader [13]. Recently Pires
et al. [30] proposed a leader-based Byzantine version of generalized Paxos.

In general, faulty clients in Byblos can force servers to revert to an “off-the-
shelf” binary Byzantine consensus protocol to resolve the outcome of “stuck”
transactions. Triggering the agreement protocol might incur a timeout which can
be significantly larger than typical communication delay even for fast protocols
(for example, Ben-Or et al. [8] or Mostefaoui et al. [24]). It might seem that
Byblos replaces one source of delay (faulty leader) with another (faulty clients),
but this replacement allows us to exploit transaction semantics which can be a
significant improvement in some settings. In systems in which faulty servers can
delay the processing of transactions (which is almost all systems), everyone is
delayed. (These issues are discussed in Sect. 8.)

3 Problem and System Model

A ledger (Fig. 1) can be thought of as an automaton consisting of a set of states
(for example, clients’ account balances), a set of deterministic state transitions
called transactions (for example, deposits, withdrawals, and transfers), and a
log recording the sequence of transactions. The state is needed to efficiently
compute transactions’ return values (for example, your account is overdrawn).
The log provides an audit trail: one can reconstruct any prior state of the ledger,
and trace who was responsible for each transaction.

Our solution encompasses the following components. There are n servers that
maintain the ledger’s long-lived state via a set of replicated tamper-proof logs.



258 R. Bazzi and M. Herlihy

Fig. 1. Ledger abstraction

Up to f of n = 4f + 1 servers may be Byzantine (capable of departing from
the protocol). The rest of the servers are honest. The logs of honest servers are
only modified by appending new transactions. The servers satisfy the following
safety property: for any pair of honest servers, one server’s log is a prefix of the
other’s. It follows that honest servers execute all transactions in the same order.

There is a potentially unbounded number of clients who originate transac-
tions. It is the servers’ job to accept transactions from clients, order them, and
publish this order. We assume that the clients are not Byzantine; in Sect. 7 we
explain how to handle Byzantine clients.

Communication is handled by an underlying message-diffusion system.
Clients broadcast messages, which are eventually delivered to all honest servers.
All messages are signed, and cannot be forged. Servers communicate with one
another though the same diffusion infrastructure.

The ledger state is a key-value store. Each client transaction declares a read
set, the set of keys it might possibly read, and a write set, the set of keys it
might possibly write. Any transaction that violates its declaration is rejected.
(Systems such as Generalized Paxos [18], Egalitarian Paxos [23], and NEO [26]
all make use of similar conflict declarations.)

4 Byblos Description

In Byblos, transactions are assigned integer timestamps, which partially deter-
mine the order in which they are applied. If two transactions do not overlap
in time, the later one will be assigned the later timestamp, but overlapping
transactions may be assigned the same timestamp. The timestamps assigned to
transactions are non-skipping [5]. This means that if a timestamp t is assigned
to a transaction, then every timestamp whose value is less than t must have been
previously assigned to some other transaction.

The non-skipping timestamp protocol [5] at the heart of the algorithm is
simple. A client broadcasts a timestamp request to the servers, and collects
at least n − f timestamps in response. The client selects the (f + 1)st latest
timestamp, which is guaranteed to be less than or equal to the latest timestamp
assigned to any transaction. The client increments that timestamp by one, and
later broadcasts it to the servers. It can be shown [5] that this way of choosing
timestamps ensures that no timestamp values are skipped.



Clairvoyant State Machine Replications 259

The properties of non-skipping timestamps suggest a simple way for servers
to execute transactions in a deterministic order in the absence of client failures.
For each timestamp value t, starting with 0, execute all transactions whose
timestamp is t in a deterministic order. Once all transactions with timestamp
t are executed, transactions with timestamp t + 1 can be executed and so on.
This seems too simple (even in the absence of client failures) and indeed it is.
The catch is that servers will need to be able to determine when all transactions
with a given timestamp value have been received.

To determine when all transactions with timestamp t have been received,
Byblos calculates for each transaction T a set of pending transactions: transac-
tions that were detected to be concurrent with T . The set of pending transactions
contains transactions, but not their assigned timestamps, because those times-
tamps might not be determined at the time a transaction is added to a pending
set. The crucial property is the following: if a transaction T has timestamp t,
then its set of pending transactions is guaranteed to contain all transactions
whose assigned timestamp will be t. However, it may also include transactions
whose assigned timestamp will be larger than t. With the set of pending trans-
action, in the absence of client failures, servers can execute all transactions in a
deterministic order as follows. If there are no pending transactions that conflict
either with T or with any transaction with the same timestamp ordered before
T , then T can be executed. Eventually, T will be executed when the timestamps
of all conflicting transactions in T ’s pending set become known.

The description so far assumes no client failures. If clients can fail, some
transactions in the pending set might never complete and the servers will be
stuck, unable to determine when all potentially conflicting transactions with
timestamp t have been received. We resolve this situation by executing a binary
consensus algorithm, over the values COMMIT and CANCEL, to resolve the fates
of orphaned transactions. Each client tries to commit its own transaction using
the consensus algorithm, and servers try to cancel pending set transactions that
are slow to arrive (with their timestamp). We can use any ”off-the-shelf” consen-
sus algorithm guaranteed to terminate if the system is eventually synchronous,
including known algorithms that terminate in one round if the system is well-
behaved [35]. Transaction execution proceeds as follows. Once all conflicting
transactions in the pending set of some transaction with timestamp t are either
cancelled or committed, the set of transactions with timestamp t is also known.
The execution can then proceed as outlined above for all transactions that have
not been cancelled.

The protocol guarantees safety at all times and liveness under eventual syn-
chrony [11]. The rest of this section describes the client and server code in details.

4.1 Client Code

The client code (Fig. 2) proceeds in three stages. In the first stage (Lines 6–
12), the client sends a Propose message to all servers, and collects at least n− f
ProposeAck responses. The client calculates t̂ which is equal to 1 plus the (f+1)st

largest amongst the timestamps it received and assigns it to its transaction. It



260 R. Bazzi and M. Herlihy

Fig. 2. Client code

is important to note that this particular way of choosing timestamps is what
guarantees timestamps to be non-skipping. In the second stage (Line 15–20), the
client broadcasts a Confirm message with t̂, waits for at least n − f responses,
each containing a set txn of transactions that have been proposed at a server,
and calculates the set pending, which is the union of these sets. The set pending is
guaranteed to contain every transactions whose timestamp is less than or equal
to t̂. We implicitly assume that the client verifies responses for well-formedness,
and for authenticity by checking signatures. In the third stage (Line 23–30), the
client broadcasts a Resolve message with the set pending, and waits to receive
f + 1 identical ResolveAck responses to determine the transaction’s outcome.
A ResolveAck message has three fields: (1) the transaction, (2) a code, either
COMMIT or CANCEL, and (3) a result. If the return code is COMMIT, the
call was successful, and the result is returned, otherwise a failure indication is
returned.



Clairvoyant State Machine Replications 261

Fig. 3. Server state with initializations

4.2 Server Code

Server State. The server state (Fig. 3) is composed of the following fields.

– state is the ledger state. A transaction is applied to state when it commits.
– clock is an integer counter that tracks the latest timestamp assigned to a

transaction. We assume this counter does not overflow.
Since timestamps are non-skipping, a 128-bit counter should be more than
sufficient in practice.

– proposed is set of transactions that have been proposed. When a transaction
is added to proposed, its timestamp might not be known.

– pending is a map from timestamps to sets of transactions. For timestamp t,
pending[t ] is the set of transactions that might be assigned timestamp t.

– confirmed is a map from timestamps to sets of transactions. For timestamp
t, confirmed[t ] is the set of known transactions that will either commit with
timestamp t or will be cancelled.

– committed is set of transactions known to have committed.
– cancelled is the set of transactions known to be cancelled.
– log is the sequence of committed transactions.
– timer is an array of timers used to timeout pending transactions.
– time is a local clock at the server to measure real time for timeouts. The local

clocks of servers are independent and need not be synchronized.

Server Actions. The server continually receives messages (Fig. 4). When it
receives a message from client c, it does the following. For Propose(T) (Lines 2–
4), it adds T to proposed, and returns the current clock value to the client.

For Confirm(T,t̂) (Line 6–12), the server advances clock to the maximum
of t̂ and its current value, and adds the transaction to the set of confirmed
transactions. The server also launches a consensus protocol with the other servers
to try to to COMMIT T. Then, it returns the current proposed set to the client.

For Resolve(T,t̂, txns) (Lines 14–29), the server adds the set of concurrent
transactions, txns, to the pending set. If this is a Resolve for a new transaction,



262 R. Bazzi and M. Herlihy

Fig. 4. Server code

the server propagates the resolve message in case other servers do not hear
directly from the client. At this point, at least 2f +1 servers must have initiated
a consensus protocol to commit T (a client does not send a resolve message
until it has received n − f confirm messages). The only remaining point that
can obstruct T’s execution are pending transactions. So, the server sets a timer
to give pending transaction the chance to arrive without being timed out. If
the timer expires and a transaction in the pending set is not confirmed, the
transaction is considered obstructing and an attempt is made to CANCEL it.
In practice the delay can be increased dynamically to guarantee that eventually
it reaches a value that works for periods of synchrony [20].

We assume that the consensus protocol executed by a server adds T to the
set committed if the server decides to COMMIT and adds T to the set cancelled
if it decides to CANCEL the transaction. We also assume that the first message
sent by the consensus protocol is a StartResolution (T,code) message which lets



Clairvoyant State Machine Replications 263

Fig. 5. Applying resolved transactions

a server that has not heard directly from a client join the consensus for a given
transaction (Lines 20–23).

Finally, a server attempts to apply transactions (Fig. 5). For every timestamp
t, we have three groups of transactions: (1) those that have been committed, (2)
those that have been cancelled, and (3) those that are pending. For a pend-
ing transaction we assign it to the timestamp t for which it first appeared in a
pending set. Note that it is possible that pending transactions might appear in
groups with different timestamps at different honest servers, but if they become
committed, they will have the same timestamp at all honest servers, and if they
are cancelled, they will be cancelled by all honest servers. Servers order all trans-
actions according to their timestamp and for a given timestamp, the transaction
(in all three groups) are ordered by taking a hash of the transaction request.
The OrderBefore() predicate is used to determine the order of transactions at a
given time. A transaction that is confirmed is ordered before another confirmed
transaction if it has a smaller timestamp or the same timestamp but T < T ′ in
the canonical order (Line 3). A transaction that is confirmed with timestamp t is
ordered before another pending transaction whose first appearance in a pending
set is for timestamp t′ if t < t′ or t = t′ but T < T ′ in the canonical order (Lines
4–5). A transaction that is cancelled is ordered before any other transaction
because such transactions do not conflict with other transactions (Lines 6–7). A
transaction T that is pending is ordered before another confirmed transaction
T ′ if the first timestamp for which T is pending is the same as the timestamp for
T ′, the two transactions conflict and either T appears before T ′ in the canonical
order or the timestamp of T is smaller than that of T ′.



264 R. Bazzi and M. Herlihy

5 Correctness

Safety and progress are established by the following lemmas and theorems. Proofs
are omitted for lack of space.

Lemma 1 (Same order for applied transaction). If two honest servers
apply two non-cancelled transactions T1 and T2 to the log, they apply them in
the same order.

Lemma 2 (Agreement on committed transaction). If an honest server
decides to commit or cancel a transaction, then every honest server eventually
makes the same decision.

Theorem 1 (Linearizability). The implementation is linearizable.

Theorem 2 (Progress in periods of synchrony). In periods of synchrony,
all transactions of correct clients are applied.

6 Eliminating Pending Sets

For ease of exposition, the protocol as presented so far requires clients and servers
to exchange proposed and pending sets that can grow without bounds. We explain
how the protocol can be modified to eliminate the exchange of these sets.

At a given correct server, the pending set of a confirmed transaction T with
timestamp t̂ is the set of all previously proposed transactions received by the
time the server receives the Confirm message for T. This is the txns set that the
client receives from the server then propagates as part of the pending set.

Instead of sending pending sets to clients, every server sends to every other
server confirmed transactions (with their timestamps) and proposed transactions
that it receives in the order in which they are received together with the clock
value at the time they are received. This is done once for every proposed and
confirmed transaction. The pending set for T can be given by the formula

pendingT =
⋃

s:s∈S∧|S|≥n−f

previous(s,T)

where previous(s,T) is the set of proposed transactions received before receiving
the Confirm message for T. In the original protocol, the client itself collects
n−f previous , which are simply the proposed sets. In the modified protocol, the
servers can only be guaranteed to receive n− 2f previous sets because f correct
servers might not have heard from the client and another f faulty servers might
deny having received the Confirm message for T. This can be easily fixed by
requiring every server to treat a Confirm message forwarded by another server as
a Confirm received from the client (if it has not previously received it). This way,
we guarantee that every server can calculate a pending set for every timestamp.



Clairvoyant State Machine Replications 265

7 Byzantine Clients

The solution as presented assumes clients fail by crashing. Also, it assumes that
some implicit checks are done by clients. For instance, it is possible for a Byzan-
tine server to send some fake pending transactions. We assume that the server
provides proof that all transactions in a pending set were indeed received by the
server. Conversely, when the client send a pending set to the servers, it can be
required to provide proof in the form of signatures that every transaction in the
set was indeed received by a server. Similarly, the client should provide proof at
the calculated hash is justified based on the individual timestamp received from
servers. Avoiding replay attacks is straightforward by having the servers sign
a cryptographic hash of the messages they send to the clients. These messages
include the transaction identifiers.

8 Performance

To evaluate the performance of our solution, we adopt the definitions of gracious
and uncivil executions from Clement et al. [12].

Definition 1 (Gracious execution [12]). An execution is gracious if and only
if (a) the execution is synchronous with some implementation-dependent short
bound on message delay and (b) all clients and servers behave correctly.

Definition 2 (Uncivil execution [12]). An execution is uncivil if and only
if (a) the execution is synchronous with some implementation-dependent short
bound on message delay, (b) up to f servers and an arbitrary number of clients
are Byzantine, and (c) all remaining clients and servers are correct.

8.1 Performance in Gracious Executions

In gracious execution, and in the absence of contention, the protocol requires
3 round-trip message delay from the time a client makes a request to the time
it gets the result. It takes one round-trip delay to receive the first response
and calculate the timestamp t̂. It takes 1/2 round-trip delay for the servers to
receive t̂. At that time correct servers initiate a consensus protocol to commit the
transaction and another one round-trip delay is needed to decide to COMMIT
the transaction (this is possible because all correct servers will be proposing
the same COMMIT value). The client replies to the confirm message after two
round-trip delays and gets a response to its resolve message after 3 round-trip
delays (there is no need to wait for the result of the consensus which will arrive
at the same time as the resolve message).

In the presence of contention, the processing can be delayed by conflicting
transactions that have the same timestamp. The latest a transaction started after
T can get the same timestamp as T is just short of 1.5 round-trip delay from the
time T started (we assume that previous transactions that are not concurrent



266 R. Bazzi and M. Herlihy

with T have already been cleared). In fact, a transaction that starts 1.5 round-
trip delay after T cannot reach the servers before the time T’s timestamp is
propagated and will get a later timestamp (we are assuming that the Propose
message for the contending transaction will propagate instantaneously in the
worst case). So, in the presence of contention, a response might not arrive before
4.5 round-trip delays.

We expect that a closer integration of the solution with a particular consensus
protocol will further reduce the delay by another one half of a round-trip which
would make it more competitive in terms of latency (PBFT [11] achieves 2 round-
trip delay with a number of optimizations including speculative execution, but
PBFT does not perform well in uncivil executions).

8.2 Performance in Uncivil Executions

In uncivil executions, the delay depends on the level of contention. If a trans-
action is initiated and is not overlapping with any other conflicting transaction,
its delay will be the same as in gracious executions.

In the presence of contention, a transaction can be delayed further. As in the
gracious execution case, we consider the latest time a transaction can be added to
the pending set of transaction T. As in the case of gracious executions, the time is
1.5 round-trip delay after T is initiated. If the client of the contending transaction
fails, the full timeout would need to be incurred and a consensus protocol would
need to be executed. So, the delay in this case would be the timeout value δ
plus the consensus time. The client will get a response by 0.5 round-trip delay
after the consensus has ended (because the other message exchanges of the client
overlap with the timeout time).

8.3 Other Performance Considerations

It is important to note that the delays are not additive. If we have transactions
with different timestamps and for each timestamp there is a pending transaction
that is slow, no transaction incurs more than one timeout plus consensus delay
because the timers are started in a pipelined fashion. This ensures that Byblos
average throughput under client delays is minimally affected by slow clients.
Also, recall that this delay is only incurred by conflicting transactions whereas
in systems in which faulty servers are the source of the delay, all transactions
are affected by server delays.

Another potential performance improvement that we did not consider is
transaction batching [11]. In our solution, servers communicate information
about individual transactions. On the positive side, in Byblos, in the presence
of contention, more transactions will get the same timestamp and the delay
incurred for that timestamp is one for all transactions. This should improve
throughput.

As described, Byblos uses public-key signatures [14,31], which can add sig-
nificant overhead. Replacing signatures with message authentication codes [6]
is a subject for future work. Finally, the message complexity of our solution is



Clairvoyant State Machine Replications 267

rather high: O(n2) messages per transaction. Such high message complexity is
not unusual for protocols that aim to achieve bounded delay ([2,4,12,22] for
example).

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable Byzantine fault-tolerant services. ACM SIGOPS Oper. Syst. Rev. 39(5),
59–74 (2005)

2. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine replication under attack.
IEEE Trans. Dependable Secur. Comput. 8(4), 564–577 (2011)

3. Aublin, P.L., Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700
BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015)

4. Aublin, P.L., Mokhtar, S.B., Quéma, V.: RBFT: redundant Byzantine fault tol-
erance. In: Proceedings of the 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 297–306 (2013)

5. Bazzi, R.A., Ding, Y.: Non-skipping timestamps for Byzantine data storage sys-
tems. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 405–419. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30186-8 29

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

7. Ben-Or, M.: Another advantage of free choice (extended abstract): completely
asynchronous agreement protocols. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)

8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 183–192. ACM, New York
(1994)

9. Borran, F., Schiper, A.: A leader-free Byzantine consensus algorithm. In: Kant, K.,
Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935,
pp. 67–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11322-
2 11

10. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (2016)

11. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

12. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine
fault tolerant systems tolerate Byzantine faults. In: Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, pp. 153–168 (2009)

13. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a
hybrid quorum protocol for byzantine fault tolerance. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, pp. 177–190 (2006)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review, vol. 41,
pp. 45–58. ACM (2007)

https://doi.org/10.1007/978-3-540-30186-8_29
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-642-11322-2_11
https://doi.org/10.1007/978-3-642-11322-2_11


268 R. Bazzi and M. Herlihy

17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

18. Lamport, L.: Generalized consensus and paxos. Technical report, Microsoft, March
2005

19. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state
machines for WANs. In: Proceedings of the 8th OSDI Conference, pp. 369–384
(2008)

20. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Secur.
Comput. 3(3), 202–215 (2006)

21. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: ACM CCS, pp. 31–42 (2016)

22. Milosevic, Z., Biely, M., Schiper, A.: Bounded delay in Byzantine-tolerant state
machine replication. In: 2013 IEEE 32nd International Symposium on Reliable
Distributed Systems, pp. 61–70, September 2013

23. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in Egalitarian
parliaments. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 358–372. ACM, New York (2013)

24. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine
consensus with t < n/3, O(n2) messages and O(1) expected time. In: 2014 Pro-
ceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
pp. 2–9. ACM (2014)

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
26. NEO: Neo contract whitepaper. http://docs.neo.org/en-us/basic/neocontract.

html. Accessed 6 May 2018
27. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.

In: Proceedings of the USENIX Annual Technical Conference, pp. 305–320 (2014)
28. Pedone, F., Schiper, A.: Handling message semantics with generic broadcast pro-

tocols. Distrib. Comput. 15(2), 97–107 (2002)
29. Peluso, S., Turcu, A., Palmieri, R., Losa, G., Ravindran, B.: Making fast consensus

generally faster. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 156–167. IEEE (2016)

30. Pires, M., Ravi, S., Rodrigues, R.: Generalized paxos made Byzantine (and less
complex). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 203–
218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 14

31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

32. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

33. Sutra, P., Shapiro, M.: Fast genuine generalized consensus. In: 2011 30th IEEE
Symposium on Reliable Distributed Systems (SRDS), pp. 255–264. IEEE (2011)

34. Van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Comput.
Surv. (CSUR) 47(3), 42 (2015)

35. Zielinski, P.: Optimistically terminating consensus: all asynchronous consensus pro-
tocols in one framework. In: 2006 The Fifth International Symposium on Parallel
and Distributed Computing, ISPDC 2006, pp. 24–33. IEEE (2006)

http://docs.neo.org/en-us/basic/neocontract.html
http://docs.neo.org/en-us/basic/neocontract.html
https://doi.org/10.1007/978-3-319-69084-1_14


Set Agreement and Renaming
in the Presence of Contention-Related

Crash Failures

Anäıs Durand1(B), Michel Raynal1,2, and Gadi Taubenfeld3

1 IRISA, Université de Rennes, 35042 Rennes, France
anais.durand@inria.fr

2 Department of Computing, Polytechnic University, Kowloon, Hong Kong
3 The Interdisciplinary Center, 46150 Herzliya, Israel

Abstract. A new notion of process failure explicitly related to con-
tention has recently been introduced by one of the authors (NETYS
2018). More precisely, given a predefined contention threshold λ, this
notion considers the executions in which process crashes are restricted
to occur only when process contention is smaller than or equal to λ.
If crashes occur after contention bypassed λ, there are no correctness
guarantees (e.g., termination is not guaranteed). It was shown that,
when λ = n − 1, consensus can be solved in an n-process asynchronous
read/write system despite the crash of one process, thereby circumvent-
ing the well-known FLP impossibility result. Furthermore, it was shown
that when λ = n − k and k ≥ 2, k-set agreement can be solved despite
the crash of 2k − 2 processes.

This paper considers two types of process crash failures: “λ-
constrained” crash failures (as previously defined), and classical crash
failures (that we call “any time” failures). It presents two algorithms
suited to these types of failures. The first algorithm solves k-set agree-
ment, where k = m + f , in the presence of t = 2m + f − 1 crash failures,
2m of them being (n−k)-constrained failures, and (f −1) being any time
failures. The second algorithm solves (n + f)-renaming in the presence
of t = m + f crash failures, m of them being (n − t − 1)-constrained
failures, and f being any time failures. It follows that the differentiation
between λ-constrained crash failures and any time crash failures enlarges
the space of executions in which the impossibility of k-set agreement and
renaming in the presence of asynchrony and process crashes can be cir-
cumvented. In addition to its behavioral properties, both algorithms have
a noteworthy first class property, namely, their simplicity.

Keywords: Agreement algorithm · Asynchronous system
Atomic register · Concurrency · Contention · �-mutual exclusion
Participating process · Process crash failure · Read/write register
Renaming · k-set agreement

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 269–283, 2018.
https://doi.org/10.1007/978-3-030-03232-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_18&domain=pdf


270 A. Durand et al.

1 Definitions and Motivation

1.1 Processes, Failures, Communication

The system is composed of n asynchronous sequential processes, denoted
p1, . . . , pn, which communicate by reading and writing atomic registers. The
model parameter t denotes the maximal number of processes that may crash
during a run. A process crash is a premature definitive halting. A process that
crashes is called faulty, otherwise it is correct.

It is assumed that all correct processes participate, i.e., execute their
local algorithm. (Let us notice that this assumption is a classical –very often
left implicit– assumption encountered in message-passing distributed algo-
rithms [17].)

Let us call contention the current number of processes that started executing.
The model parameter λ denotes a predefined contention threshold. So, an exe-
cution can be divided into two parts: a prefix in which the contention is ≤λ and
a suffix in which contention is >λ. Hence, we consider a failure model in which
there are two types of crashes: the ones that can occur only when contention is
≤λ that we call “λ-constrained”, and the ones that can appear at “any time”;
λ-constrained crashes were introduced in [20] under the name “weak failures”.

1.2 Motivation for Considering λ-Constrained Failures

As discussed in [20], the new type of λ-constrained failures enables us to design
algorithms that can tolerate several traditional “any time” failures plus several
additional λ-constrained failures (i.e., weak failures). More precisely, assume that
a problem can be solved in the presence of t traditional failures, but cannot be
solved in the presence of t + 1 such failures. Yet, the problem might be solvable
in the presence of t1 ≤ t “any time” failures plus t2 λ-constrained failures, where
t1 + t2 > t.

Adding the ability to tolerate λ-constrained failures to algorithms that are
already designed to circumvent various impossibility results, such as the Paxos
algorithm [14] and indulgent algorithms in general [11,12], would make such
algorithms even more robust against possible failures. An indulgent algorithm
never violates its safety property, and eventually satisfies its liveness property
when the synchrony assumptions it relies on are satisfied. An indulgent algorithm
which in addition (to being indulgent) tolerates λ-constrained failures may, in
many cases, satisfy its liveness property even before the synchrony assumptions
it relies on are satisfied.

When facing a failure related impossibility result, such as the impossibility
of consensus in the presence of a single faulty process [10], one is often tempted
to use a solution which guarantees no resiliency at all. We point out that there
is a middle ground: tolerating λ-constrained (weak) failures enables to tolerate
failures some of the time. Also, traditional t-resilient algorithms tolerate failures
only some of the time (i.e., as long as the number of failures is at most t). After
all, something is better than nothing.



Set Agreement in the Presence of Contention-Related Crash Failures 271

The type of λ-constrained failures which are assumed to occur only before a
specific predefined threshold on the level of contention is reached, is in particular
useful in systems in which contention is usually low. Another possible type of
weak failures, also defined in [20], in which failures are assumed to occur only
after a specific predefined threshold on the level of contention is reached, may
correspond to a situation where, when there is high contention, processes are
slowed down and as a result give up and abort.

Finally, the new failure model establishes a link between contention and fail-
ures, which enables us to better understand various known impossibility results,
like the impossibility result for consensus [10] and its generalizations [6,13,18].

1.3 High Level Objects

To make the presentation of the proposed algorithms easier, the basic read/write
system is enriched with two types of objects, namely �-mutual exclusion and
snapshot. Both can be built on top of a crash-prone asynchronous read/write
system.

Deadlock-Free �-Mutual Exclusion. Such an object, which provides the processes
with the operations acquire() and release(), allows up to � of them to simultane-
ously execute their critical section. It is defined by the following properties.

– Mutual exclusion. No more than � processes can simultaneously be in their
critical section.

– Deadlock-freedom. If less than � processes crash, and processes are invoking
the operation acquire(), at least one of them will terminate its invocation.

It is shown in [2,9,19] that �-mutual exclusion can be built on top of an asyn-
chronous crash-prone read/write system. In the one-shot version, a process
invokes acquire() and release() at most once.

Snapshot. A snapshot object provides two operations denoted write() and
snapshot() [1,3]. Such an object can be seen as an array of single-writer multi-
reader atomic register SN [1..n] such that:

(a) when pi invokes write(v), it writes v into SN [i]; and
(b) when pi invokes snapshot(), it obtains the value of the array SN [1..n] as if

it read simultaneously and instantaneously all its entries.

Said another way, the operations write() and snapshot() are atomic. Snapshot
objects can be implemented on top of asynchronous crash-prone read/write sys-
tems [1,3,16].

2 k-Set Agreement and M -Renaming

2.1 k-Set Agreement

A k-set agreement (k-SA) object is a one-shot object introduced by Chaud-
huri [8] to study the relation linking the number of failures and the agreement



272 A. Durand et al.

degree attainable in a set of crash-prone asynchronous processes. Such an object
provides a single operation denoted propose(), which allows the invoking process
to propose a value and obtain a result (called decided value). Assuming each
correct process proposes a value, each process must decide on a value such that
the following properties are satisfied.

– Validity. A decided value is a proposed value.
– Agreement. At most k different values are decided.
– Termination. Every correct process decides a value.

When k = 1, k-set agreement boils down to consensus, whose impossibility
in the presence of asynchrony and a single process crashed was proved in [10]
for message-passing systems, and in [15] for read/write systems. It was later
shown in [6,13,18] that it is impossible to solve k-set agreement in crash-prone
asynchronous read/write systems where t ≥ k. Hence, as the k-set agreement
read/write-based algorithm presented in [20] works despite up to t = 2k − 2
λ-constrained failures (where λ = n − k), the introduction of contention-related
failures in [20], is a noteworthy advance in fault-tolerance, which enlarges the
space of executions in which k-set agreement can be solved.

2.2 M-Renaming

The renaming object was introduced in the context of message-passing sys-
tem [4]. An introductory survey to renaming in crash-prone asynchronous
read/write systems is presented in [7].

An M -renaming object allows n processes with initially distinct names from
a large name space to acquire distinct new names from a smaller name space
{1, . . . , M}, where M is a predefined value known by the processes. A one-shot
renaming object allows each process to acquire a distinct new name just once.
A long-lived renaming object allows processes to repeatedly acquire distinct
names and release them. In this paper, we consider only one-shot renaming
objects.

A process pi accesses an M -renaming object R using the operation
R.rename(idi), where idi is its original name, which returns a new name. A pro-
cess pi knows neither its index i, nor the original names of the other processes.
The properties defining such an object are the following.

– Validity. A new name belongs to the set {1, . . . , M}.
– Agreement. No two processes obtain the same new name.
– Termination. If a process invokes R.rename(id) and does not crash, it returns

from its invocation.

In the classical n-process model (i.e., a model where only any time crash
failures are considered), it is known that with t any time failures, there is a tight
(n + t) bound on the size of new name space for renaming for infinitely many
values of n. We will show how this result can be circumvented. The interested
reader will find renaming algorithms in textbooks such as [5,16,19].



Set Agreement in the Presence of Contention-Related Crash Failures 273

3 The Results of the Paper at a Glance

As announced in the abstract, this paper is on k-set agreement and M -renaming
in an asynchronous read/write model in which there are two kinds of process
crashes:

– the “usual” ones, which are allowed to occur at any time, called “any time”
failures in the following;

– the ones (introduced in [20]) that are restricted to occur only while the con-
tention has not bypassed a predefined threshold λ, called “λ-constrained”
failures in the following.

As announced in the Introduction, let us recall that all the algorithms presented
in the paper assume that all correct processes participate.

3.1 Results Concerning k-Set Agreement

The paper presents a general k-set agreement algorithm that, in addition to the
model and problem parameters n, t, k, and λ = n−k, considers two more integers
m ≥ 0 and f ≥ 1, such that m + f = k and t = 2m + f − 1 (or, equivalently,
t = 2k − f − 1). The fault-tolerance properties of this algorithm are summarized
in Table 1.

Table 1. k-set agreement: tolerates crash failures with λ = n − k and k = m + f

The k-set agreement algorithm: fault-tolerance properties

Total # of failures tolerated t = 2m + f − 1

“λ-constrained” crash failures 2m

“Any time” crash failures f − 1

More generally, the parameters m and f , where k = m + f , can be seen as
parameters allowing the user to tune the type of crash failures that are dominant
in the considered application context. At one extreme, the pair of values 〈m, f〉 =
〈0, k〉 maximizes the number of any time failures, and allows up to any time k−1
crash failures. At the other extreme, the pair 〈m, f〉 = 〈k − 1, 1〉 maximizes the
number of λ-constrained failures: it allows up to 2k − 2 λ-constrained failures
and no any time failure.

Since t = 2m + f − 1 we can say that, intuitively, one any time failure
“equals” two (n − k)-constrained failures. That is, it is possible to trade one
strong (any time) failure for two weak (λ-constrained) failures and vice versa, as
demonstrated in Table 2.



274 A. Durand et al.

Table 2. k-set agreement: tradeoffs “λ-constrained/any time” crash failures, with λ =
n − k

The k-set agreement algorithm: tradeoffs

Total # of failures m = 0 m = �k/2� m = k − 1

t = 2m + f − 1 f = k f = �k/2� f = 1

2m “λ-constrained” crash failures 0 k 2k − 2

f − 1 “any time” crash failures k − 1 �k/2� − 1 0

Interestingly, the particular instantiation 〈m, f〉 = 〈k − 1, 1〉 boils down to a
specific case of the algorithm described in [20]1.

Additionally, as it will become clear in its description, Algorithm1 presented
in Sect. 4 sheds new light on a relation linking k-set agreement and �-mutual
exclusion.

3.2 Results Concerning M-Renaming

Considering a new name space of size M = n + f , the paper presents a general
M -renaming algorithm that, in addition to the model and problem parameters n,
t, and λ = n− t−1, as previously, considers two integers m ≥ 0 and f ≥ 0, such
that t = m+ f . The fault-tolerance properties of this algorithm are summarized
in Table 3.

Table 3. M -renaming: tolerated crash failures, with λ = n − t − 1

The (n + f)-renaming algorithm: fault-tolerance properties

Total # of failures tolerated t = m + f

“λ-constrained” crash failures m

“Any time” crash failures f

Similarly to the case of k-set agreement, the parameters m and f , where
t = m + f , allows the user to tune the type of crash failures and (here) the size
of the name space that are dominant in the considered application context. At
one extreme, the pair of values 〈m, f〉 = 〈0, t〉 maximizes the number of any time
failures (which is good) but also maximizes the size of the name space (which
is bad). At the other extreme, the pair 〈m, f〉 = 〈t, 0〉 maximizes the number of
λ-constrained failures and minimizes the size of the name space (which is good).
This is demonstrated in Table 4.
1 It is proved in [20] that for every two positive integers � and k, there is a k-set

agreement algorithm for n processes, using registers, that can tolerate � + k − 2 λ-
constrained crash failures, where λ = n − �. So, for the special case where � = k, the
algorithm can be tolerated 2k − 2 (n − k)–constrained failures.



Set Agreement in the Presence of Contention-Related Crash Failures 275

Table 4. M -renaming: tradeoffs “λ-constrained/any time” crash failures, with λ =
n − t − 1

The (n + f)-renaming algorithm: tradeoffs

Total # of failures m = 0 m = �k/2� m = t

t = m + f f = t f = �k/2� f = 0

m “λ-constrained” crash failures 0 �k/2� t

f “any time” crash failures t �k/2� 0

The size of name space n + t n + �k/2� n

4 k-Set Agreement: Algorithm (k ≥ 2)

This section presents a k-set agreement algorithm that allows to circumvent
the known impossibility result for solving k-set agreement in crash-prone asyn-
chronous read/write systems where t ≥ k [6,13,18]. The algorithm considers the
contention-related failure model, and assumes all correct processes participate.
It is characterized by the following theorem.

Theorem 1. For any n ≥ 1, n − 1 ≥ t ≥ 0, m ≥ 0 and f ≥ 1 such
that t = 2m + f − 1 and k = m + f , it is possible to solve k-set agree-
ment for n processes in the presence of at most t crash failures, 2m of them being
λ-constrained failures where λ = n − k, and f − 1 of them being any time failures.

In the algorithm described below, it is assumed that the identity of a process pi
is its index i.

Shared Objects. The processes cooperate through the following objects.

– PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate
participation.

– DEC : atomic register initialized to ⊥ (a value which cannot be proposed). It
will contain values (one at a time) that can be decided.

– MUTEX [1]: one-shot deadlock-free f -mutex object.
– MUTEX [2]: one-shot deadlock-free m-mutex object.

For the special case where m = 0 and f = k, in the proposed algorithm no
process will ever try to access the MUTEX [2] object. Thus, there is no need to
define the notion of a 0-mutex object.

Local Variables. Each process pi manages the following local variables: parti is
used to locally store a copy of the snapshot object PART ; counti is a local
counter; and groupi a binary variable whose value belongs to {1, 2}.

Behavior of a Process pi. Algorithm 1 describes the behavior of a process pi.
When it invokes propose(ini) (where ini is the value it proposes), pi first indicates
it is participating (line 1). Then it invokes the snapshot object until at least n−t
processes are participating (lines 2–4). When this occurs, pi enters group 1 or



276 A. Durand et al.

operation propose(ini) is

(1) PART .write(up);

(2) repeat parti ← PART .snapshot();

(3) counti ← |{x such that parti[x] = up}|;
(4) until counti ≥ n − t end repeat;

(5) if counti ≤ n − k then groupi ← 2 else groupi ← 1 end if;

(6) launch in parallel the threads T1 and T2.

% Both threads and the operation terminate when pi invokes return() (line 7 or 12).

thread T1 is

(7) loop forever if DEC �= ⊥ then return(DEC ) end if end loop.

thread T2 is

(8) if groupi = 1 ∨ m > 0 then

(9) MUTEX [groupi].acquire();

(10) if DEC = ⊥ then DEC ← ini end if;

(11) MUTEX [groupi].release();

(12) return(DEC ).

(13) end if;

Algorithm 1: k-SA despite up to 2m “(n−k)-constrained” and f −1 “any time”
failures

group 2 according to the value of its counter counti (line 5), and launches in
parallel two threads T1 and T2 (line 6).

In the thread T1, pi loop forever until DEC contains a proposed value. When
this happens pi decides it (line 7). The execution of return() at line 7 or 12
terminates the invocation of propose().

The thread T2 is the core of the algorithm. Process pi tries to enter the critical
section controlled by either the f -mutex or the m-mutex object MUTEX [groupi]
(line 9). If it succeeds and DEC has still its initial default value, pi assigns it the
value ini it proposed (line 10). Finally, pi releases the critical section (line 11),
and decides (line 12). Let us remind that, as far as MUTEX [1] (respectively,
MUTEX [2]) is concerned, up to f (respectively, m) processes can simultaneously
execute line 10.

Remark. The reader can check that the line 8 (together with line 13) and line 11
can be suppressed without compromising the correctness of the algorithm. This
is a side-effect of task T1. For clarity, we nevertheless keep these lines.

5 k-Set Agreement: Proof

Lemma 1. At most n − k processes have a counter less or equal to n − k when
leaving the repeat loop (lines 2–4).

Proof. Assume by contradiction that more than n − k processes have their
counter less or equal to n − k when leaving the repeat loop (2–4). P being this



Set Agreement in the Presence of Contention-Related Crash Failures 277

set of processes, we have |P | ≥ n−k+1. Moreover, let pi be the last process of P
that invokes PART .snapshot() (line 1). It follows from the atomicity of the write()
and snapshot() operations on the object PART that counti ≥ |P | ≥ n − k + 1,
a contradiction. ��
Lemma 2. In the presence of at most t = 2m+f −1 crash failures, 2m of them
being (n − k)-constrained, if processes participate in MUTEX [1], at most f − 1
of them can fail.

Proof. If a process pi participates in MUTEX [1] it follows from line 5 that
counti > n − k when it exited the repeat loop (lines 2–4). Thus, the contention
was at least n−k+1 when pi exited the loop and, due to the definition of “(n−k)-
constrained crash failures”, there is no more such failures. As t = 2m + f − 1, it
follows that, if processes participate in MUTEX [1], at most f − 1 of them can
fail. ��
Theorem 2 (Termination). In the presence of at most t = 2m + f − 1 crash
failures, 2m of them being (n − k)-constrained, every correct process eventually
terminates.

Proof. Since there is at most t processes that may fail and participation is
required, at least n − t processes set their participating flag to up in the snap-
shot object PART (line 1). Thus, no correct process remains stuck forever in the
repeat loop (lines 2–4).

First, assume m = 0. By Lemma 1, at most n − k processes have a counter
less or equal to n − k when they exit the repeat loop (lines 2–4). Thus, at
most n − k processes belong to group 2. If m = 0, there is n − t = n − f + 1
correct processes and, since k = f , n − f + 1 > n − k. So, among the processes
participating in MUTEX [1], at least one of them is correct and at most f − 1
of them crash before returning from MUTEX [1].release() (line 11). Due to the
deadlock-freedom property of the one-shot f -mutex object MUTEX [1], at least
one correct process eventually enters its critical section and, if DEC has not
already been written, writes its input into DEC . It then follows from task T1
that, if it does not terminate at line 11, every other correct process will decide
and terminate.

Now, assume m > 0. There are two cases.

– If at least y ≥ f processes participate in MUTEX [1], it follows from Lemma 2
that at most f − 1 of them crash before returning from MUTEX [1].release()
(line 11), and consequently all other processes participating in MUTEX [1]
are correct. As y > f −1 and f > 0, there is at least one such correct process,
say px. Due to the deadlock-freedom property of the one-shot f -mutex object
MUTEX [1], px eventually enters its critical section and, if DEC has not
already been written, writes its input into DEC .

– Otherwise, less than f processes participate in MUTEX [1]. There are two
sub-cases.



278 A. Durand et al.

• If a correct process pi participates in MUTEX [1], it follows from this
sub-case assumption and the deadlock-freedom property of the one-shot
f -mutex object MUTEX [1], that pi eventually enters its critical section
and, if DEC = ⊥, writes its input inx into this atomic register.

• Otherwise, no correct process participates in MUTEX [1]. By Lemma 1,
at most n − k processes have a counter less or equal to n − k when they
exit the repeat loop (lines 2–4). So at most n − k processes participate
in MUTEX [2]. Since no correct process participates in MUTEX [1], all
correct processes (they are at least n−t) participate in MUTEX [2]. Thus,
at most (n−k)− (n− t) = t−k = 2m+f −1− (m+f) = m−1 processes
that participate in MUTEX [2] fail. Hence, due to the deadlock-freedom
property of the one-shot m-mutex object MUTEX [2], at least one correct
process enters its critical section and, if DEC = ⊥, writes its input into
DEC .

In both cases, every other correct process will decide and terminate. ��
Theorem 3 (Agreement and validity). At most k different values are
decided, and each of them is the input of some process.

Proof. If a process decides (line 7 or line 12), it decides on the current value of
DEC , which –due to the predicates of line 7 or line 10– has previously been set
–at line 10– to the value proposed by a process. Due to the predicate and the
assignment of DEC at line 10, and the fact that MUTEX [1] is a f -mutex object,
it follows that at most f processes assign a value to DEC in the critical section
controlled by MUTEX [1]. Due to a similar argument, at most m processes assign
a value to DEC in the critical section controlled by MUTEX [2]. Thus, at most
m + f = k different values can be written into DEC , and each of them is a
proposed value. ��
As its proof involves neither the timing nor the number of failures, Theorem3
gives rise to the following property (called indulgence [11,12]).

Corollary 1. Whatever the time occurrence and the number of crash failures,
the k-set agreement and validity properties are never violated.

6 M -Renaming: Algorithm

This section presents a renaming algorithm that allows to circumvent the (n+ t)
tight bound on the size of name space for renaming for infinitely many values of
n. This algorithm considers the contention-related failure model, and assumes
all correct processes participate. It is characterized by the following theorem.

Theorem 4. For any n ≥ 1, n−1 ≥ t ≥ 0, m ≥ 0 and f ≥ 0 such that t = m+f ,
it possible to solve (n + f)-renaming for n processes in the presence of at most t
crash failures, m of them being λ-constrained failures where λ = n − t − 1, and
f of them being any time failures.



Set Agreement in the Presence of Contention-Related Crash Failures 279

operation rename(idi) is
(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n − t end repeat;
(5) new namei ← RENAMINGf .rename(idi);
(6) return(new namei).

Algorithm 2: (n + f)-renaming despite up to m “(n − t − 1)-constrained” and f
“any time” failures, where t = m + f

Shared Objects. The processes cooperate through the following objects.

– PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate
participation.

– RENAMINGf : (n + f)-renaming object which can tolerate up to f any time
crash failures for a model where participation is not required. The fact that
participation is not required means that a process that does not participate
is not consider faulty. The object is not assumed to tolerate any additional
λ-constrained failures. An example of such an algorithm is described in [5]
(pages 359–360).

Local Variables. Each process pi manages the following local variables: parti
is used to locally store a copy of the snapshot object PART ; counti is a local
counter; idi and new namei are used to store the original and new names, respec-
tively.

Behavior of a Process pi. Algorithm 2 describes the behavior of a process pi.
Every process pi keeps on taking snapshots until it notices that n − t processes
(including itself) are participating. Then, the process invokes a rename operation
of a RENAMINGf object, stores the value of its new name in new namei, and
returns this value.

7 M -Renaming: Proof

Lemma 3. In the presence of at most t = m+f crash failures, m of them being
(n − t − 1)-constrained, if processes participate in RENAMINGf , at most f of
them can fail.

Proof. If a process pi participates in RENAMINGf it follows from line 4 that
the predicate counti ≥ n − t is satisfied when it exited the repeat loop (lines 2–
4). Thus, the contention was at least n − t when pi exited the loop and, due to
the definition of “(n − t − 1)-constrained crash failures”, there is no more such
failures. As t = m + f , it follows that, if processes participate in RENAMINGf ,
at most f of them can fail. ��



280 A. Durand et al.

Theorem 5. (Termination). In the presence of at most t = m + f crash
failures, m of them being (n− t−1)-constrained, every correct process eventually
terminates.

Proof. Since there is at most t processes that may fail and participation is
required, at least n − t processes set their participating flag to up in the snap-
shot object PART (line 1). Thus, no correct process remains stuck forever in the
repeat loop (lines 2–4).

By Lemma 3, if processes participate in RENAMINGf , at most f of them
can fail. Since, by definition, (1) RENAMINGf can tolerate f any time failures,
and (2) in RENAMINGf participation is not required, it follows that every
operation invoked by a correct processes on RENAMINGf must return a value.
Thus, every correct process eventually terminates. ��
Theorem 6. (Agreement and validity). In the presence of at most t = m+f
crash failures, m of them being (n−t−1)-constrained, (1) no two processes decide
on the same new name, and (2) the new names are in the range [1..n + f ].

Proof. By Lemma 3, at most f processes can fail while executing RENAMINGf .
Since, RENAMINGf is an (n + f)-renaming object which can tolerate up to f
crash failures for a model where participation is not required, any correct process
that participates in RENAMINGf must acquire a unique new name in the range
[1..n + f ]. ��

8 From M-Renaming to One-Shot Concurrent Objects

Let us consider any one-shot concurrent object OB , which provides a single
operation op(), and tolerate up to x any time crash failures in a model where
participation is not required.

This section presents an algorithm that transforms OB in an object OB ′

where, assuming all processes participate (i.e., invoke op()), allows to withstand
additional λ-constrained crash failures. As in the previous sections, the transfor-
mation considers the parameters n, t, λ = n−t−1, m ≥ 0, and 0 ≤ f ≤ x−1. The
fault-tolerance properties of the resulting object OB ′ are summarized in Table 5
(where, let us remind, x is the number of any time crash failures tolerated by
the underlying object OB ′).

Table 5. Crash failures tolerated by OB ′, where λ = n − t − 1

Total # of failures tolerated t = m + f

“λ-constrained” crash failures m

“Any time” crash failures f ≤ x − 1

As before, the parameters m and f are parameters that allow the user to
tune the type of crash failures that are dominant in the considered application



Set Agreement in the Presence of Contention-Related Crash Failures 281

context. At one extreme, the pair of values 〈m, f〉 = 〈t−x+1, x−1〉 maximizes the
number of any time failures, and allows up to x−1 any time crash failures. At the
other extreme, the pair 〈m, f〉 = 〈t, 0〉 maximizes the number of λ-constrained
failures: it allows up to t λ-constrained failures and no any time failure. This is
described in Table 6.

Table 6. Tradeoffs “λ-constrained/any time” crash failures (λ = n − t − 1)

Total # of failures t = m + f

m “λ-constrained” crash failures t − x + 1 t − ⌊
x
2

⌋
t

f “any time” crash failures x − 1
⌊
x
2

⌋
0

Algorithm 3 transforms of OB into OB ′. It is the same as Algorithm 2, which
implements an M -renaming object coping with both λ-constrained failures and
any time failures. The meaning of the underlying shared objects and local vari-
ables are the same as in Algorithm 2. In addition, resi contains the result of
the underlying invocation OB .op(in) (line 5), where in is the input parameter
of op(). The proof, which is the same as the one given in Sect. 7, is left to the
reader.

operation op(in) is % applied to OB ′

(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n − t end repeat;
(5) resi ← OB .op(in);
(6) return(resi).

Algorithm 3: Transformation of the operation op of a one-shot object tolerating
up to m “(n − t − 1)-constrained” failures and f “any time” failures, where
t = m + f

9 Conclusion

This paper addressed a process crash failure model in which some number of
processes may crash only when process contention has not bypassed a prede-
fined threshold λ, while another number of processes may crash at any time. It
has been shown that this failure model allows impossibility results to be circum-
vented. To this end, the paper has presented algorithms building k-set agreement
and renaming objects in such a model. So, it extends the set of possible execu-
tions in which k-set agreement and renaming can be solved despite asynchrony



282 A. Durand et al.

and process crashes. The proposed algorithms allow their users to tune them to
specific failure-prone environments. This can be done by appropriately defining
the pair of integers 〈m, f〉. As an example, considering k-set agreement, these
parameters control the number of crashes allowed to occur before the contention
threshold λ = n − k is bypassed, namely 2m = 2(k − f), and the number of
failures which can occur at any time, namely, f − 1. That is, it is possible to
trade one strong “any time” failure for two weak “(n − k)-constrained” failures,
and vice versa.

Finally, some issues remain challenging on the open problem side. More
specifically, on the complexity/computability side of k-set agreement, it would
be interesting to find out whether the upper bound we have proved on the num-
ber of failures t = 2m + f − 1 (where 2m failures are (n − k)-constrained and
f − 1 failures are any time failures) is tight for k ≥ 2. On the algorithm design
side, as there is an algorithm (and a tight bound) for 1-agreement (see [20]), it
would be interesting to find a more general algorithm, i.e., an algorithm which
works for k ≥ 1 (and not only for k ≥ 2).

Acknowledgments. We thank Armando Castañeda for helpful discussions on the
renaming problem. This work has been partially supported by the Franco-German
DFG-ANR Project 40300781 DISCMAT (devoted to connections between mathemat-
ics and distributed computing), and the French ANR project ANR-16-CE40-0023-03
DESCARTES (devoted to layered and modular structures in distributed computing).

Last but not least, the authors also thank the referees for their constructive com-
ments.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Afek, Y., Dolev, D., Gafni, E., Merritt, M., Shavit, S.: A bounded first-in, first-
enabled solution to the �-exclusion problem. ACM Trans. Program. Lang. Syst.
16(3), 939–953 (1994)

3. Anderson, J.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

5. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn, p. 414. Wiley-Interscience, Hoboken (2004). ISBN 0-
471-45324-2

6. Borowsky, E., Gafni, E.: Generalized FLP impossibility results for t-resilient asyn-
chronous computations. In: Proceedings of 25th ACM Symposium on Theory of
Computing (STOC 1993), pp. 91–100. ACM Press (1993)

7. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: an introduction. Comput. Sci. Rev. 5, 229–251 (2011)

8. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)



Set Agreement in the Presence of Contention-Related Crash Failures 283

9. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource allocation with
immunity to limited process failure (Preliminary Report). In: Proceedings of 20th
IEEE Symposium on Foundations Of Computer Science (FOCS 1979), pp. 234–
254. IEEE Press (1979)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

11. Guerraoui, R.: Indulgent algorithms. In: Proceedings of 19th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC 2000), pp. 289–297. ACM
Press (2000)

12. Guerraoui, R., Raynal, M.: The information structure of indulgent consensus. IEEE
Trans. Comput. 53(4), 453–466 (2004)

13. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

14. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

15. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

16. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations,
p. 515. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9.
ISBN 978-3-642-32026-2

17. Raynal, M.: Fault-tolerant message-passing distributed systems: an algorithmic
approach, p. 550. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
94141-7. ISBN 978-3-319-94140-0

18. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

19. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, p. 423.
Pearson Education/Prentice Hall, Upper Saddle River (2006). ISBN 0-131-97259-6

20. Taubenfeld, G.: Weak failures: definition, algorithms, and impossibility results.
In: Proceedings of 6th International Conference on Networked Systems (NETYS
2018). LNCS, p. 15. Springer, Heidelberg (2018)

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-319-94141-7


An Innovative Approach to Achieve
Compositionality Efficiently Using

Multi-version Object Based Transactional
Systems

Chirag Juyal1, Sandeep Kulkarni2, Sweta Kumari1, Sathya Peri1,
and Archit Somani1(B)

1 Department of Computer Science and Engineering,
IIT Hyderabad, Kandi, Telangana, India

{cs17mtech11014,cs15resch01004,sathya p,cs15resch01001}@iith.ac.in
2 Department of Computer Science, Michigan State University,

East Lansing, MI, USA
sandeep@cse.msu.edu

Abstract. The rise of multi-core systems has necessitated the need for
concurrent programming. However, developing correct, efficient concur-
rent programs is notoriously difficult. Software Transactional Memory
Systems (STMs) are a convenient programming interface for a program-
mer to access shared memory without worrying about concurrency issues.
Another advantage of STMs is that they facilitate compositionality of
concurrent programs with great ease. Different concurrent operations
that need to be composed to form a single atomic unit is achieved by
encapsulating them in a single transaction.

Most of the STMs proposed in the literature are based on read/write
primitive operations on memory buffers. We denote them as Read-Write
STMs or RWSTMs. On the other hand, there have been some STMs that
have been proposed (transactional boosting and its variants) that work
on higher level operations such as hash-table insert, delete, lookup, etc.
We call them Object STMs or OSTMs.

It was observed in databases that storing multiple versions in
RWSTMs provides greater concurrency. In this paper, we combine both
these ideas for harnessing greater concurrency in STMs - multiple ver-
sions with objects semantics. We propose the notion of Multi-version
Object STMs or MVOSTMs. Specifically, we introduce and implement
MVOSTM for the hash-table object, denoted as HTMVOSTM and list
object, list-MVOSTM. These objects export insert, delete and lookup
methods within the transactional framework. We also show that both

A poster version of this work received best poster award in NETYS-2018. An
initial version of this work was accepted as work in progress in AADDA workshop,
ICDCN − 2018.
This research work is partially supported by NSF XPS 1533802 and IMPRINT India
project 6918F.
Author sequence follows the lexical order of last names.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 284–300, 2018.
https://doi.org/10.1007/978-3-030-03232-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_19&domain=pdf


Multi-version Object Based Transactional Systems 285

these MVOSTM s satisfy opacity and ensure that transaction with lookup
only methods do not abort if unbounded versions are used.

Experimental results show that list-MVOSTM outperform almost two
to twenty fold speedup than existing state-of-the-art list based STMs
(Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-OSTM). Sim-
ilarly, HT-MVOSTM shows a significant performance gain of almost
two to nineteen times over the existing state-of-the-art hash-table based
STMs (ESTM, RWSTMs, HT-MVTO, and HT-OSTM).

1 Introduction

The rise of multi-core systems has necessitated the need for concurrent program-
ming. However, developing correct concurrent programs without compromising
on efficiency is a big challenge. Software Transactional Memory Systems (STMs)
are a convenient programming interface for a programmer to access shared mem-
ory without worrying about concurrency issues. Another advantage of STMs is
that they facilitate compositionality of concurrent programs with great ease. Dif-
ferent concurrent operations that need to be composed to form a single atomic
unit is achieved by encapsulating them in a single transaction. Next, we discuss
different types of STMs considered in the literature and identify the need to
develop multi-version object STMs proposed in this paper.

Read-Write STMs: Most of the STMs proposed in the literature (such as
NOrec [1], ESTM [2]) are based on read/write operations on transaction objects
or t-objects. We denote them as Read Write STMs or RWSTMs. These STMs
typically export following methods: (1) t begin: begins a transaction, (2) t read
(or r): reads from a t-object, (3) t write (or w): writes to a t-object, (4) tryC :
validates and tries to commit the transaction by writing values to the shared
memory. If validation is successful, then it returns commit. Otherwise, it returns
abort.

Fig. 1. Advantages of OSTMs over RWSTMs

Object STMs: Some STMs have been proposed that work on higher level
operations such as hash-table. We call them Object STMs or OSTMs. It has



286 C. Juyal et al.

been shown that OSTM s provide greater concurrency. The concept of Boosting
by Herlihy et al. [3], the optimistic variant by Hassan et al. [4] and more recently
HT-OSTM system by Peri et al. [5] are some examples that demonstrate the
performance benefits achieved by OSTM s.

Benefit of OTM s overRWTM s: We now illustrate the advantage of OSTM s
by considering a hash-table based STM system. We assume that the operations
of the hash-table are insert (or ins), lookup (or lu) and delete (or del). Each
hash-table consists of B buckets with the elements in each bucket arranged
in the form of a linked-list. Figure 1(a) represents a hash-table with the first
bucket containing keys 〈k2, k5, k7〉. Figure 1(b) shows the execution by two
transaction T1 and T2 represented in the form of a tree. T1 performs lookup
operations on keys k2 and k7 while T2 performs a delete on k5. The delete on
key k5 generates read on the keys k2, k5 and writes the keys k2, k5 assuming that
delete is performed similar to delete operation in lazy-list [6]. The lookup on
k2 generates read on k2 while the lookup on k7 generates read on k2, k7. Note
that in this execution k5 has already been deleted by the time lookup on k7 is
performed.

In this execution, we denote the read-write operations (leaves) as layer-0 and
lu, del methods as layer-1. Consider the history (execution) at layer-0 (while
ignoring higher-level operations), denoted as H0. It can be verified this history is
not opaque [7]. This is because between the two reads of k2 by T1, T2 writes to k2.
It can be seen that if history H0 is input to a RWSTM s one of the transactions
between T1 or T2 would be aborted to ensure opacity [7]. The Fig. 1(c) shows
the presence of a cycle in the conflict graph of H0.

Now, consider the history H1 at layer-1 consists of lu, and del methods,
while ignoring the read/write operations since they do not overlap (referred to
as pruning in [8, Chap. 6]). These methods work on distinct keys (k2, k5, and
k7). They do not overlap and are not conflicting. So, they can be re-ordered in
either way. Thus, H1 is opaque [7] with equivalent serial history T1T2 (or T2T1)
and the corresponding conflict graph shown in Fig. 1(d). Hence, a hash-table
based OSTM system does not have to abort either of T1 or T2. This shows that
OSTM s can reduce the number of aborts and provide greater concurrency.

Multi-version Object STMs: Having seen the advantage achieved by OSTM s
(which was exploited in some works such as [3–5]), in this paper we propose and
evaluate Multi-version Object STMs or MVOSTMs. Our work is motivated by
the observation that in databases and RWSTM s by storing multiple versions for
each t-object, greater concurrency can be obtained [9]. Specifically, maintaining
multiple versions can ensure that more read operations succeed because the
reading operation will have an appropriate version to read. Our goal is to evaluate
the benefit of MVOSTM s over both multi-version RWSTM s as well as single
version OSTM s.

Potential Benefit of MVOSTM s over OSTM s and Multi-version
RWSTM s: We now illustrate the advantage of MVOSTM s as compared to
single-version OSTM s (SV-OSTM s) using hash-table object having the same



Multi-version Object Based Transactional Systems 287

Fig. 2. Advantages of multi-version over single version OSTM

operations as discussed above: ins, lu, del. Figure 2(a) represents a history H
with two concurrent transactions T1 and T2 operating on a hash-table ht. T1

first tries to perform a lu on key k2. But due to the absence of key k2 in ht,
it obtains a value of null. Then T2 invokes ins method on the same key k2
and inserts the value v2 in ht. Then T2 deletes the key k1 from ht and returns
v0 implying that some other transaction had previously inserted v0 into k1. The
second method of T1 is lu on the key k1. With this execution, any SV-OSTM sys-
tem has to return abort for T1’s lu operation to ensure correctness, i.e., opacity.
Otherwise, if T1 would have obtained a return value v0 for k1, then the history
would not be opaque anymore. This is reflected by a cycle in the corresponding
conflict graph between T1 and T2, as shown in Fig. 2(c). Thus to ensure opacity,
SV-OSTM system has to return abort for T1’s lookup on k1.

In an MVOSTM based on hash-table, denoted as HT-MVOSTM, whenever
a transaction inserts or deletes a key k, a new version is created. Consider the
above example with a HT-MVOSTM , as shown in Fig. 2(b). Even after T2 deletes
k1, the previous value of v0 is still retained. Thus, when T1 invokes lu on k1 after
the delete on k1 by T2, HT-MVOSTM return v0 (as previous value). With this,
the resulting history is opaque with equivalent serial history being T1T2. The
corresponding conflict graph is shown in Fig. 2(d) does not have a cycle.

Thus, MVOSTM reduces the number of aborts and achieve greater concur-
rency than SV-OSTM s while ensuring the compositionality. We believe that the
benefit of MVOSTM over multi-version RWSTM is similar to SV-OSTM over
single-version RWSTM as explained above.

MVOSTM is a generic concept which can be applied to any data structure.
In this paper, we have considered the list and hash-table based MVOSTM s,
list-MVOSTM and HT-MVOSTM respectively. Experimental results of list-
MVOSTM outperform almost two to twenty fold speedup than existing state-of-
the-art STMs used to implement a list: Trans-list [10], Boosting-list [3], NOrec-
list [1] and SV-OSTM [5] under high contention. Similarly, HT-MVOSTM shows
significant performance gain almost two to nineteen times better than existing
state-of-the-art STMs used to implement a hash-table: ESTM [2], NOrec [1] and
SV-OSTM [5]. To the best of our knowledge, this is the first work to explore the
idea of using multiple versions in OSTM s to achieve greater concurrency.

HT-MVOSTM and list-MVOSTM use an unbounded number of versions for
each key. To address this issue, we develop two variants for both hash-table
and list data structures (or DS): (1) A garbage collection method in MVOSTM



288 C. Juyal et al.

to delete the unwanted versions of a key, denoted as MVOSTM-GC . Garbage
collection gave a performance gain of 15% over MVOSTM without garbage col-
lection in the best case. Thus, the overhead of garbage collection is less than the
performance improvement due to improved memory usage. (2) Placing a limit
of K on the number versions in MVOSTM , resulting in KOSTM . This gave a
performance gain of 22% over MVOSTM without garbage collection in the best
case.

Contributions of the Paper:

– We propose a new notion of multi-version objects based STM system,
MVOSTM . Specifically develop it for list and hash-table objects, list-
MVOSTM and HT-MVOSTM respectively.

– We show list-MVOSTM and HT-MVOSTM satisfy opacity [7], standard
correctness-criterion for STMs.

– Our experiments show that both list-MVOSTM and HT-MVOSTM provides
greater concurrency and reduces the number of aborts as compared to SV-
OSTM s, single-version RWSTM s and, multi-version RWSTM s. We achieve
this by maintaining multiple versions corresponding to each key.

– For efficient space utilization in MVOSTM with unbounded versions we
develop Garbage Collection for MVOSTM (i.e. MVOSTM-GC ) and bounded
version MVOSTM (i.e. KOSTM ).

2 Building System Model

The basic model we consider is adapted from Peri et al. [5]. We assume that
our system consists of a finite set of P processors, accessed by a finite number
of n threads that run in a completely asynchronous manner and communicate
using shared objects. The threads communicate with each other by invoking
higher-level methods on the shared objects and getting corresponding responses.
Consequently, we make no assumption about the relative speeds of the threads.
We also assume that none of these processors and threads fail or crash abruptly.

Events and Methods: We assume that the threads execute atomic events
and the events by different threads are (1) read/write on shared/local memory
objects, (2) method invocations (or inv) event and responses (or rsp) event on
higher level shared-memory objects.

Within a transaction, a process can invoke layer-1 methods (or operations)
on a hash-table t-object. A hash-table(ht) consists of multiple key-value pairs
of the form 〈k, v〉. The keys and values are respectively from sets K and V .
The methods that a thread can invoke are: (1) t begini: begins a transaction and
returns a unique id to the invoking thread. (2) t inserti(ht, k, v): transaction Ti

inserts a value v onto key k in ht. (3) t deletei(ht, k, v): transaction Ti deletes
the key k from the hash-table ht and returns the current value v for Ti. If key k
does not exist, it returns null. (4) t lookupi(ht, k, v): returns the current value v
for key k in ht for Ti. Similar to t delete, if the key k does not exist then t lookup



Multi-version Object Based Transactional Systems 289

returns null. (5) tryCi: which tries to commit all the operations of Ti and (6)
tryAi: aborts Ti. We assume that each method consists of an inv and rsp event.

We denote t insert and t delete as update methods (or upd method) since
both of these change the underlying data structure. We denote t delete and
t lookup as return-value methods (or rv method) as these operations return val-
ues from ht. A method may return ok if successful or A (abort) if it sees an
inconsistent state of ht.

Transactions: Following the notations used in database multi-level transactions
[8], we model a transaction as a two-level tree. The layer-0 consist of read/write
events and layer-1 of the tree consists of methods invoked by a transaction.

Having informally explained a transaction, we formally define a transaction T
as the tuple 〈evts(T ), <T 〉. Here evts(T ) are all the read/write events at layer-0
of the transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt
and Ti.lastEvt. Given any other read/write event rw in Ti, we assume that
Ti.firstEvt <Ti

rw <Ti
Ti.lastEvt. All the methods of Ti are denoted as

methods(Ti).

Histories: A history is a sequence of events belonging to different transac-
tions. The collection of events is denoted as evts(H). Similar to a transaction,
we denote a history H as tuple 〈evts(H), <H〉 where all the events are totally
ordered by <H . The set of methods that are in H is denoted by methods(H).
A method m is incomplete if inv(m) is in evts(H) but not its corresponding
response event. Otherwise, m is complete in H.

Coming to transactions in H, the set of transactions in H are denoted as
txns(H). The set of committed (resp., aborted) transactions in H is denoted
by committed(H) (resp., aborted(H)). The set of live transactions in H are
those which are neither committed nor aborted. On the other hand, the set of
terminated transactions are those which have either committed or aborted.

We denote two histories H1,H2 as equivalent if their events are the same, i.e.,
evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the
methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes
a method only after it receives a response of the previous method invoked by it
(2) Ti does not invoke any other method after it received an A response or after
tryC(ok) method. We only consider well-formed histories for OSTM.

A method mij (jth method of a transaction Ti) in a history H is said to be
isolated or atomic if for any other event epqr (rth event of method mpq) belonging
to some other method mpq of transaction Tp either epqr occurs before inv(mij)
or after rsp(mij).

Sequential Histories: A history H is said to be sequential (term used in [11,
12]) if all the methods in it are complete and isolated. From now onwards, most
of our discussion would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each
method as a whole without referring to its inv and rsp events. For a sequential
history H, we construct the completion of H, denoted H, by inserting tryAk(A )



290 C. Juyal et al.

immediately after the last method of every transaction Tk ∈ live(H). Since all
the methods in a sequential history are complete, this definition only has to take
care of completed transactions.

Real-Time Order and Serial Histories: Given a history H, <H orders all
the events in H. For two complete methods mij ,mpq in methods(H), we denote
mij ≺MR

H mpq if rsp(mij) <H inv(mpq). Here MR stands for method real-time
order. It must be noted that all the methods of the same transaction are ordered.
Similarly, for two transactions Ti, Tp in term(H), we denote (Ti ≺TR

H Tp) if
(Ti.lastEvt <H Tp.firstEvt). Here TR stands for transactional real-time order.

We define a history H as serial [13] or t-sequential [12] if all the trans-
actions in H have terminated and can be totally ordered w.r.t ≺TR, i.e. all
the transactions execute one after the other without any interleaving. Intu-
itively, a history H is serial if all its transactions can be isolated. Formally,
〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈ term(H)) ∧ (∀Ti, Tp ∈ txns(H) :
(Ti ≺TR

H Tp) ∨ (Tp ≺TR
H Ti))〉. Since all the methods within a transaction are

ordered, a serial history is also sequential.

Legal Histories: A rv method mij on key k is legal if it returns the value
updated the latest committed transaction that updated key k. A history H is
said to be legal, if all the rv methods of H are legal. More details on legality are
explained in the accompanying technical report [14].

Opacity: It is a correctness-criteria for STMs [7]. A sequential history H is said
to be opaque if there exists a serial history S such that: (1) S is equivalent to
H, i.e., evts(H) = evts(S) (2) S is legal and (3) S respects the transactional
real-time order of H, i.e., ≺TR

H ⊆≺TR
S .

3 HT-MVOSTM Design and Data Structure

HT-MVOSTM is a hash-table based MVOSTM that explores the idea of using
multiple versions in OSTM s for hash-table object to achieve greater concurrency.
The design of HT-MVOSTM is similar to HT-OSTM [5] consisting of B buckets.
All the keys of the hash-table in the range K are statically allocated to one of
these buckets.

Each bucket consists of linked-list of nodes along with two sentinel nodes head
and tail with values −∞ and +∞ respectively. The structure of each node is as
〈key, lock, marked, vl, nnext〉. The key is a unique value from the set of all
keys K . All the nodes are stored in increasing order in each bucket as shown in
Fig. 3(a), similar to any linked-list based concurrent set implementation [6,15].
In the rest of the document, we use the terms key and node interchangeably. To
perform any operation on a key, the corresponding lock is acquired. marked is
a boolean field which represents whether the key is deleted or not. The deletion
is performed in a lazy manner similar to the concurrent linked-lists structure
[6]. If the marked field is true then key corresponding to the node has been
logically deleted; otherwise, it is present. The vl field of the node points to the
version list (shown in Fig. 3(b)) which stores multiple versions corresponding



Multi-version Object Based Transactional Systems 291

to the key. The last field of the node is nnext which stores the address of the
next node. It can be seen that the list of keys in a bucket is as an extension of
lazy-list [6]. Given a node n in the linked-list of bucket B, we denote its fields as
n.key(k.key), n.lock(k.lock), n.marked(k.marked), n.vl(k.vl), n.nnext(k.nnext).

Fig. 3. HT-MVOSTM design

The structure of each version in the vl of a key k is 〈ts, val, rvl, vnext〉
as shown in Fig. 3(b). The field ts denotes the unique timestamp of the version.
In our algorithm, every transaction is assigned a unique timestamp when it
begins which is also its id. Thus ts of this version is the timestamp of the
transaction that created it. All the versions in the vl of k are sorted by ts. Since
the timestamps are unique, we denote a version, ver of a node n with key k
having ts j as n.vl[j].ver or k.vl[j].ver. The corresponding fields in the version
as k.vl[j].ts, k.vl[j].val, k.vl[j].rvl, k.vl[j].vnext.

The field val contains the value updated by an update transaction. If this
version is created by an insert method t inserti(ht, k, v) by transaction Ti, then
val will be v. On the other hand, if the method is t deletei(ht, k) with the return
value v, then val will be null. In this case, as per the algorithm, the node of key
k will also be marked. HT-MVOSTM algorithm does not immediately physically
remove deleted keys from the hash-table. The need for this is explained below.
Thus a rv method (t delete or t lookup) on key k can return null when it does
not find the key or encounters a null value for k.

The rvl field stands for return value list which is a list of all the transactions
that executed rv method on this version, i.e., those transactions which returned
val. The field vnext points to the next available version of that key.

Number of versions in vl (the length of the list) as per HT-MVOSTM can
be bounded or unbounded. It can be bounded by having a limit on the number
of versions such as K. Whenever a new version ver is created and is about to be
added to vl, the length of vl is checked. If the length becomes greater than K,
the version with lowest ts (i.e., the oldest) is replaced with the new version ver
and thus maintaining the length back to K. If the length is unbounded, then we
need a garbage collection scheme to delete unwanted versions for efficiency.

Marked Nodes: HT-MVOSTM stores keys even after they have been deleted
(nodes which have marked field as true). This is because some other concurrent



292 C. Juyal et al.

transactions could read from a different version of this key and not the null value
inserted by the deleting transaction. Consider for instance the transaction T1

performing t lookup(ht, k) as shown in Fig. 2(b). Due to the presence of previous
version v0, HT-MVOSTM could return this earlier version v0 for t lookup(ht, k)
method. Whereas, it is not possible for HT-OSTM to return the version v0
because k has been removed from the system after the delete by T2. In that
case, T1 would have to be aborted. Thus as explained in Sect. 1, storing multiple
versions increases the concurrency.

To store deleted keys along with live keys (or unmarked node) in a lazy-list
will increase the traversal time to access unmarked nodes. Consider the Fig. 4, in
which there are four keys 〈k5, k8, k9, k12〉 present in the list. Here 〈k5, k8, k9〉 are
marked (or deleted) nodes while k12 is unmarked. Now, consider an access the
key k12 as by HT-MVOSTM as a part of one of its methods. Then HT-MVOSTM
would have to unnecessarily traverse the marked nodes to reach key k12.

Fig. 4. Searching k12 over lazy-list
(Color figure online)

Fig. 5. Searching k12 over lazyrb-list
(Color figure online)

This motivated us to modify the lazy-list structure of nodes in each bucket
to form a skip list based on red and blue links. We denote it as red-blue lazy-list
or lazyrb-list. This idea was earlier explored by Peri et al. in developing OSTM s
[5]. lazyrb-list consists of nodes with two links, red link (or RL) and blue link
(or BL). The node which are not marked (or not deleted) are accessible from the
head via BL. While all the nodes including the marked ones can be accessed from
the head via RL. With this modification, let us consider the above example of
accessing unmarked key k12. It can be seen that k12 can be accessed much more
quickly through BL as shown in Fig. 5. Using the idea of lazyrb-list, we have
modified the structure of each node as 〈key, lock,marked, vl, RL,BL〉. Further,
for a bucket B, we denote its linked-list as B.lazyrb-list.

4 Working of HT-MVOSTM

As explained in Sect. 2, HT-MVOSTM exports t begin, t insert, t delete, t lookup,
tryC methods. t delete, t lookup are rv methods while t insert, t delete are
upd methods. We treat t delete as both rv method as well as upd method. The
rv methods return the current value of the key. The upd methods, update to
the keys are first noted down in local log, txLog. Then in the tryC method
after validations of these updates are transferred to the shared memory. We now
explain the working of rv method and upd method. Additional details including
pseudocode is in the accompanying technical report [14].



Multi-version Object Based Transactional Systems 293

t begin(): A thread invokes a new transaction Ti using this method. This method
returns a unique id to the invoking thread by incrementing an atomic counter.
This unique id is also the timestamp of the transaction Ti. For convenience,
we use the notation that i is the timestamp (or id) of the transaction Ti. The
transaction Ti local log txLogi is initialized in this method.

rv methods - t deletei(ht, k, v) and t lookupi(ht, k, v): Both these methods
return the current value of key k. Algorithm 1 gives the high-level overview of
these methods. First, the algorithm checks to see if the given key is already in
the local log, txLog of Ti (Line 2). If the key is already there then the current
rv method is not the first method on k and is a subsequent method of Ti on k.
So, we can return the value of k from the txLogi.

If the key is not present in the txLogi, then HT-MVOSTM searches into
shared memory. Specifically, it searches the bucket to which k belongs to. Every
key in the range K is statically allocated to one of the B buckets. So the
algorithms search for k in the corresponding bucket, say Bk to identify the
appropriate location, i.e., identify the correct predecessor or pred and current
or curr keys in the lazyrb-list of Bk without acquiring any locks similar to the
search in lazy-list [6]. Since each key has two links, RL and BL, the algorithm
identifies four node references: two pred and two curr according to red and
blue links. They are stored in the form of an array with preds[0] and currs[1]
corresponding to blue links; preds[1] and currs[0] corresponding to red links.
If both preds[1] and currs[0] nodes are unmarked then the pred, curr nodes of
both red and blue links will be the same, i.e., preds[0] = preds[1] and currs[0] =
currs[1]. Thus depending on the marking of pred, curr nodes, a total of two,
three or four different nodes will be identified. Here, the search ensures that
preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key.

Next, the re-entrant locks on all the pred, curr keys are acquired in increasing
order to avoid the deadlock. Then all the pred and curr keys are validated by
rv Validation() in Line 7 as follows: (1) If pred and curr nodes of blue links
are not marked, i.e., (¬preds[0].marked) && (¬currs[1].marked). (2) If the
next links of both blue and red pred nodes point to the correct curr nodes:
(preds[0].BL = currs[1]) && (preds[1].RL = currs[0]).

If any of these checks fail, then the algorithm retries to find the correct pred
and curr keys. It can be seen that the validation check is similar to the validation
in concurrent lazy-list [6].

Next, we check if k is in Bk.lazyrb-list. If k is not in Bk, then we create a
new node for k as: 〈key = k, lock = false,marked = false, vl = v, nnext = φ〉
and insert it into Bk.lazyrb-list such that it is accessible only via RL since this
node is marked (Line 14). This node will have a single version v as: 〈ts = 0, val =
null, rvl = i, vnext = φ〉. Here invoking transaction Ti is creating a version with
timestamp 0 to ensure that rv methods of other transactions will never abort.
As we have explained in Fig. 2(b) of Sect. 1, even after T2 deletes k1, the previous
value of v0 is still retained. Thus, when T1 invokes lu on k1 after the delete on k1
by T2, HT-MVOSTM will return v0 (as previous value). Hence, each rv methods
will find a version to read while maintaining the infinite version corresponding



294 C. Juyal et al.

to each key k. In rvl, Ti adds the timestamp as i in it and vnext is initialized
to empty value. Since val is null and the n, this version and the node is not
technically inserted into Bk.lazyrb-list.

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both.
Let n be the node of k in Bk.lazyrb-list. We then find the version of n, verj

which has the timestamp j such that j has the largest timestamp smaller than i
(timestamp of Ti). Add i to verj ’s rvl (Line 22). Then release the locks, update
the local log txLogi in Line 24 and return the value stored in verj .val in Line 26).

Algorithm 1. rv method: Could be either t deletei(ht, k, v) or t lookupi(ht, k, v)
on key k that maps to bucket Bk.
1: procedure rv methodi(ht, k, v)
2: if (k ∈ txLogi) then
3: Update the local log and return val.
4: else
5: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and RL in bucket

Bk.
6: Acquire the locks on preds[] and currs[] in increasing order.
7: if (!rv V alidation(preds[], currs[])) then
8: Release the locks and goto Line 5.
9: end if

10: if (k /∈ Bk.lazyrb-list) then
11: Create a new node n with key k as: 〈 key = k, lock = false, marked = false, vl = v,

nnext = φ〉.
12: /* The vl consists of a single element v with ts as i */
13: Create the version v as: 〈ts = 0, val = null, rvl = i, vnext = φ〉.
14: Insert n into Bk.lazyrb-list such that it is accessible only via RLs. /* n is marked */
15: Release the locks; update the txLogi with k.
16: return null.
17: end if
18: Identify the version verj with ts = j such that j is the largest timestamp smaller than i.
19: if (verj == null) then
20: goto Line 11.
21: end if
22: Add i into the rvl of verj .
23: retV al = verj .val.
24: Release the locks; update the txLogi with k and retV al.
25: end if
26: return retV al.
27: end procedure

upd methods - t insert and t delete: Both the methods create a version cor-
responding to the key k. The actual effect of t insert and t delete in shared
memory will take place in tryC. Algorithm 2 represents the high-level overview
of tryC.

Initially, to avoid deadlocks, algorithm sorts all the keys in increasing
order which are present in the local log, txLogi. In tryC, txLogi consists of
upd methods (t insert or t delete) only. For all the upd methods (opni) it
searches the key k in the shared memory corresponding to the bucket Bk. It iden-
tifies the appropriate location (pred and curr) of key k using BL and RL (Line
25) in the lazyrb-list of Bk without acquiring any locks similar to rv method
explained above.



Multi-version Object Based Transactional Systems 295

Next, it acquires the re-entrant locks on all the pred and curr keys in increas-
ing order. After that, all the pred and curr keys are validated by tryC Validation
in Line 27 as follows: (1) It does the rv Validation() as explained above in the
rv method. (2) If key k exists in the Bk.lazyrb-list and let n as a node of k. Then
algorithm identifies the version of n, verj which has the timestamp j such that j
has the largest timestamp smaller than i (timestamp of Ti). If any higher times-
tamp k of Tk than timestamp i of Ti exist in verj .rvl then algorithm returns
Abort in Line 28.

If all the above steps are true then each upd methods exist in txLogi will take
the effect in the shared memory after doing the intraTransValidation() in Line
33. If two upd methods of the same transaction have at least one common shared
node among its recorded pred and curr keys, then the previous upd method effect
may overwrite if the current upd method of pred and curr keys are not updated
according to the updates done by the previous upd method. Thus to solve this
we have intraTransValidation() that modifies the pred and curr keys of current
operation based on the previous operation in Line 33.

Algorithm 2. tryC(Ti): Validate the upd methods of the transaction and then
commit
28: procedure tryC(Ti)
29: /*Operation name (opn) which could be either t insert or t delete */
30: /*Sort the keys of txLogi in increasing order.*/
31: for all (opni ∈ txLogi) do
32: if ((opni == t insert) || (opni == t delete)) then
33: Search in lazyrb-list to identify the preds[] and currs[] for k of opni using BL and

RL in bucket Bk.
34: Acquire the locks on preds[] and currs[] in increasing order.
35: if (!tryC V alidation()) then
36: return Abort.
37: end if
38: end if
39: end for
40: for all (opni ∈ txLogi) do
41: intraTransV alidation() modifies the preds[] and currs[] of current operation which

would have been updated by the previous operation of the same transaction.
42: if ((opni == t insert) && (k /∈ Bk.lazyrb-list)) then
43: Create new node n with k as: 〈 key = k, lock = false, marked = false, vl = v, nnext

= φ 〉.
44: Create two versions v as: 〈 ts=i, val=v, rvl=φ, vnext=φ 〉.
45: Insert node n into Bk.lazyrb-list such that it is accessible via RL as well as BL /*

lock sets true */.
46: else if (opni == t insert) then
47: Add the version v as: 〈 ts = i, val = v, rvl = φ, vnext = φ 〉 into Bk.lazyrb-list such

that it is accessible via RL as well as BL.
48: end if
49: if (opni == t delete) then
50: Add the version i as: 〈 ts=i, val=null, rvl=φ, vnext=φ 〉 into Bk.lazyrb-list such

that it is accessible only via RL.
51: end if
52: Update the preds[] and currs[] of opni in txLogi.
53: end for
54: Release the locks; return Commit.
55: end procedure

Next, we check if upd method is t insert and k is in Bk.lazyrb-list. If k is
not in Bk, then create a new node n for k as: 〈key = k, lock = false,marked =



296 C. Juyal et al.

false, vl = v, nnext = φ〉. This node will have a single version v as: 〈ts = i, val =
v, rvl = φ, vnext = φ〉. Here i is the timestamp of the transaction Ti invoking
this method; rvl and vnext are initialized to empty values. We set the val as v
and insert n into Bk.lazyrb-list such that it is accessible via RL as well as BL
and set the lock field to be true (Line 37). If k is in Bk.lazyrb-list then, k is the
same as currs[0] or currs[1] or both. Let n be the node of k in Bk.lazyrb-list.
Then, we create the version v as: 〈ts = i, val = v, rvl = φ, vnext = φ〉 and insert
the version into Bk.lazyrb-list such that it is accessible via RL as well as BL
(Line 39).

Subsequently, we check if upd method is t delete and k is in Bk.lazyrb-list.
Let n be the node of k in Bk.lazyrb-list. Then create the version v as: 〈ts =
i, val = null, rvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such
that it is accessible only via RL (Line 42).

Finally, at Line 44 it updates the pred and curr of opni in local log, txLogi.
At Line 46 releases the locks on all the pred and curr in increasing order of keys
to avoid deadlocks and return Commit.
Now, we have the following properties about HT-MVOSTM .

Theorem 1. Any history generated by HT-MVOSTM is opaque.

Theorem 2. HT-MVOSTM with unbounded versions ensures that rv methods
do not return abort.

Theorem 2 gives us a nice property a transaction with t lookup only methods
will not abort.

5 Experimental Evaluation

In this section, we present our experimental results. We have two main goals
in this section: (1) evaluating the benefit of multi-version object STMs over the
single-version object STMs, and (2) evaluating the benefit of multi-version object
STMs over multi-version read-write STMs. We use the HT-MVOSTM described
in Sect. 4 as well as the corresponding list-MVOSTM which implements the list
object. We also consider extensions of these multi-version object STMs to reduce
the memory usage. Specifically, we consider a variant that implements garbage
collection with unbounded versions and another variant where the number of
versions never exceeds a given threshold K.

Experimental System: The Experimental system is a large-scale 2-socket
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 14 cores per socket and
two hyper-threads (HTs) per core, for a total of 56 threads. Each core has a pri-
vate 32 KB L1 cache and 256 KB L2 cache (which is shared among HTs on that
core). All cores on a socket share a 35 MB L3 cache. The machine has 32 GB of
RAM and runs Ubuntu 16.04.2 LTS. All code was compiled with the GNU C++
compiler (G++) 5.4.0 with the build target x86 64-Linux-gnu and compilation
option -std=c++1x -O3.



Multi-version Object Based Transactional Systems 297

STM Implementations: We have taken the implementation of NOrec-list [1],
Boosting-list [3], Trans-list [10], ESTM [2], and RWSTM directly from the TLDS
framework1. And the implementation of OSTM and MVTO published by Sathya
Peri, one of the author of this paper. We implemented our algorithms in C++.
Each STM algorithm first creates N-threads, each thread, in turn, spawns a
transaction. Each transaction exports the following methods as follows: t begin,
t insert, t lookup, t delete and tryC.

Methodology:2 We have considered two types of workloads: (W1) Li - Lookup
intensive (90% lookup, 8% insert and 2% delete) and (W2) Ui - Update inten-
sive(10% lookup, 45% insert and 45% delete). The experiments are conducted by
varying number of threads from 2 to 64 in power of 2, with 1000 keys randomly
chosen. We assume that the hash-table of HT-MVOSTM has five buckets and
each of the bucket (or list in case of list-MVOSTM ) can have a maximum size
of 1000 keys. Each transaction, in turn, executes 10 operations which include
t lookup, t delete and t insert operations. We take an average over 10 results as
the final result for each experiment.

Results: Figure 6 shows HT-MVOSTM outperforms all the other algorithms
(HT-MVTO, RWSTM, ESTM, HT-OSTM) by a factor of 2.6, 3.1, 3.8, 3.5 for
workload type W1 and by a factor of 10, 19, 6, 2 for workload type W2 respec-
tively. As shown in Fig. 6, List based MVOSTM (list-MVOSTM ) performs even
better compared with the existing state-of-the-art STMs (list-MVTO, NOrec-
list, Boosting-list, Trans-list, list-OSTM) by a factor of 12, 24, 22, 20, 2.2 for
workload type W1 and by a factor of 169, 35, 24, 28, 2 for workload type W2
respectively. As shown in Fig. 7 for both types of workloads, HT-MVOSTM and
list-MVOSTM have the least number of aborts.

1 2 4 8 16 32 64

0.000

0.002

0.004

0.006

0.008

0.010

1 2 4 8 16 32 64

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4 8 16 32 64

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 4 8 16 32 64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e(
se

c.
)

# of threads

HT-KOSTM(Li)
HT-MVOSTM-GC(Li)
HT-MVOSTM(Li)
HT-OSTM(Li)
ESTM(Li)
RWSTM(Li)
HT-MVTO(Li)
HT-KSTM(Li)

# of threads

HT-KOSTM(Ui)
HT-MVOSTM-GC(Ui)
HT-MVOSTM(Ui)
HT-OSTM(Ui)
ESTM(Ui)
RWSTM(Ui)
HT-MVTO(Ui)
HT-KSTM(Ui)

# of threads

list-KOSTM(Li)
list-MVOSTM-GC(Li)
list-MVOSTM(Li)
list-OSTM(Li)
Trans-list(Li)
Boosting-list(Li)
NOrec-list(Li)
list-MVTO(Li)
list-KSTM(Li)

# of threads

list-KOSTM(Ui)
list-MVOSTM-GC(Ui)
list-MVOSTM(Ui)
list-OSTM(Ui)
Trans-list(Ui)
Boosting-list(Ui)
NOrec-list(Ui)
list-MVTO(Ui)
list-KSTM(Ui)

Fig. 6. Performance of HT-MVOSTM and list-MVOSTM

1 https://ucf-cs.github.io/tlds/.
2 Code is available here: https://github.com/PDCRL/MVOSTM.

https://ucf-cs.github.io/tlds/
https://github.com/PDCRL/MVOSTM


298 C. Juyal et al.

1 2 4 8 16 32 64

0

20

40

60

80

100

1 2 4 8 16 32 64

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64

0

1000

2000

3000

4000

5000

1 2 4 8 16 32 64
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

# 
of

 a
bo

rts

# of threads

HT-KOSTM(Li)
HT-MVOSTM-GC(Li)
HT-MVOSTM(Li)
HT-OSTM(Li)
ESTM(Li)
RWSTM(Li)
MVTO(Li)
HT-KSTM(Li)

# of threads

list-KOSTM(Li)
list-MVOSTM-GC(Li)
list-MVOSTM(Li)
list-OSTM(Li)
Trans-list(Li)
Boosting-list(Li)
NOrec-list(Li)
list-MVTO(Li)
list-KSTM(Li)

# of threads

list-KOSTM(Ui)
list-MVOSTM-GC(Ui)
list-MVOSTM(Ui)
list-OSTM(Ui)
Trans-list(Ui)
Boosting-list(Ui)
NOrec-list(Ui)
list-MVTO(Ui)
list-KSTM(Ui)

# of threads

HT-KOSTM(Ui)
HT-MVOSTM-GC(Ui)
HT-MVOSTM(Ui)
HT-OSTM(Ui)
ESTM(Ui)
RWSTM(Ui)
MVTO(Ui)
HT-KSTM(Ui)

Fig. 7. Aborts of HT-MVOSTM and list-MVOSTM

MVOSTM-GC and KOSTM: For efficient memory utilization, we develop
two variations of MVOSTM . The first, MVOSTM-GC , uses unbounded versions
but performs garbage collection. This is achieved by deleting non-latest
versions whose timestamp is less than the timestamp of the least live
transaction. MVOSTM-GC gave a performance gain of 15% over MVOSTM
without garbage collection in the best case. The second, KOSTM , keeps at most
K versions by deleting the oldest version when (K + 1)th version is created
by a current transaction. As KOSTM has limited number of versions while
MVOSTM-GC can have infinite versions, the memory consumed by KOSTM is
21% less than MVOSTM . (Implementation details for both are in the technical
report [14].)

We have integrated these variations in both hash-table based (HT-MVOSTM-
GC and HT-KOSTM ) and linked-list based MVOSTMs (list-MVOSTM-GC and
list-KOSTM ), we observed that these two variations increase the performance,
concurrency and reduces the number of aborts as compared to MVOSTM.

Experiments show that these variations outperform the corresponding
MVOSTMs. Between these two variations, KOSTM perform better than
MVOSTM-GC as shown in Figs. 6 and 7. HT-KOSTM helps to achieve a perfor-
mance speedup of 1.22 and 1.15 for workload type W1 and speedup of 1.15 and
1.08 for workload type W2 as compared to HT-MVOSTM and HT-MVOSTM-
GC respectively. Whereas list-KOSTM (with four versions) gives a speedup of
1.1, 1.07 for workload type W1 and speedup of 1.25, 1.13 for workload type W2
over the list-MVOSTM and list-MVOSTM-GC respectively.

6 Conclusion and Future Work

Multi-core systems have become very common nowadays. Concurrent program-
ming using multiple threads has become necessary to utilize all the cores present
in the system effectively. But concurrent programming is usually challenging due
to synchronization issues between the threads.



Multi-version Object Based Transactional Systems 299

In the past few years, several STMs have been proposed which address these
synchronization issues and provide greater concurrency. STMs hide the synchro-
nization and communication difficulties among the multiple threads from the
programmer while ensuring correctness and hence making programming easy.
Another advantage of STMs is that they facilitate compositionality of concur-
rent programs with great ease. Different concurrent operations that need to be
composed to form a single atomic unit is achieved by encapsulating them in a
single transaction.

In literature, most of the STMs are RWSTM s which export read and
write operations. To improve the performance, a few researchers have proposed
OSTM s [3–5] which export higher level objects operation such as hash-table
insert, delete etc. By leveraging the semantics of these higher level operations,
these STMs provide greater concurrency. On the other hand, it has been observed
in STMs and databases that by storing multiple versions for each t-object in case
of RWSTM s provides greater concurrency [9,16].

This paper presents the notion of multi-version object STMs and compares
their effectiveness with single version object STMs and multi-version read-write
STMs. We find that multi-version object STM provides a significant benefit
over both of these for different types of workloads. Specifically, we have eval-
uated the effectiveness of MVOSTM for the list and hash-table data structure
as list-MVOSTM and HT-MVOSTM . Experimental results of list-MVOSTM
provide almost two to twenty fold speedup over existing state-of-the-art list
based STMs (Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-OSTM).
Similarly, HT-MVOSTM shows a significant performance gain of almost two
to nineteen times better than existing state-of-the-art hash-table based STMs
(ESTM, RWSTMs, HT-MVTO, and HT-OSTM).

HT-MVOSTM and list-MVOSTM and use unbounded number of versions for
each key. To limit the number of versions, we develop two variants for both hash-
table and list data-structures: (1) A garbage collection method in MVOSTM to
delete the unwanted versions of a key, denoted as MVOSTM-GC . (2) Placing
a limit of k on the number versions in MVOSTM , resulting in KOSTM . Both
these variants gave a performance gain of over 15% over MVOSTM .

Acknowledgments. We are thankful to the anonymous reviewers for carefully read-
ing the paper and providing us valuable suggestions.

References

1. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP,
pp. 67–78. ACM (2010)

2. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. J. Parallel Distrib.
Comput. 100(C), 103–127 (2017)

3. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2008,
Salt Lake City, UT, USA, 20–23 February 2008, pp. 207–216 (2008)



300 C. Juyal et al.

4. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
PPoPP, pp. 387–388 (2014)

5. Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using
Transactional Memory. In: NETYS 2018 (2018)

6. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. Parallel Process. Lett. 17(4), 411–424
(2007)

7. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP, pp. 175–184. ACM (2008)

8. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, Lon-
don (2002)

9. Kumar, P., Peri, S., Vidyasankar, K.: A timestamp based multi-version STM algo-
rithm. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 212–226. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-45249-9 14

10. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: SPAA 2016, pp. 325–336. ACM, New York (2016)

11. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional
memory. Theor. Comput. Sci. 688, 103–116 (2017)

12. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp.
112–127. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-
2 9

13. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

14. Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach
for achieving composability in concurrent systems using multi-version object based
STMs. CoRR abs/1712.09803 (2017)

15. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

16. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC, pp. 16–25 (2010)

https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-25873-2_9
https://doi.org/10.1007/978-3-642-25873-2_9
https://doi.org/10.1007/3-540-45414-4_21


Ring Exploration with Myopic
Luminous Robots

Fukuhito Ooshita1(B) and Sébastien Tixeuil2

1 Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara, Japan

f-oosita@is.naist.jp
2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

Sebastien.Tixeuil@lip6.fr

Abstract. We investigate exploration algorithms for autonomous
mobile robots evolving in uniform ring-shaped networks. Different from
the usual Look-Compute-Move (LCM) model, we consider two charac-
teristics: myopia and luminosity. Myopia means each robot has a limited
visibility. We consider the weakest assumption for myopia: each robot
can only observe its neighboring nodes. Luminosity means each robot
maintains a non-volatile visible light. We consider the weakest assump-
tion for luminosity: each robot can use only two colors for its light. The
main interest of this paper is to clarify the impact of luminosity on explo-
ration with myopic robots.

As a main contribution, we prove that (1) two and three robots are
necessary and sufficient to achieve perpetual and terminating explo-
ration, respectively, in the fully synchronous model, and (2) three and
four robots are necessary and sufficient to achieve perpetual and ter-
minating exploration, respectively, in the semi-synchronous and asyn-
chronous models. These results clarify the power of lights for myopic
robots since, without lights, five robots are necessary and sufficient to
achieve terminating exploration in the fully synchronous model, and no
terminating exploration algorithm exists in the semi-synchronous and
asynchronous models.

We also show that, in the fully synchronous model (resp., the semi-
synchronous and asynchronous models), the proposed perpetual explo-
ration algorithm is universal, that is, the algorithm solves perpetual
exploration from any solvable initial configuration with two (resp., three)
robots and two colors. On the other hand, we show that, in the fully syn-
chronous model (resp., the semi-synchronous and asynchronous models),
no universal algorithm exists for terminating exploration, that is, no
algorithm may solve terminating exploration from any solvable initial
configuration with three (resp., four) robots and two colors.

Keywords: Autonomous mobile robots · Deterministic exploration
Discrete environments · Limited visibility · Visible light

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 301–316, 2018.
https://doi.org/10.1007/978-3-030-03232-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_20&domain=pdf


302 F. Ooshita and S. Tixeuil

1 Introduction

1.1 Background and Motivation

Studies about cooperation of autonomous mobile robots have attracted a lot
of attention recently in the field of Distributed Computing. The main goal of
those works is to characterize the minimum capabilities of robots that permit to
achieve a given task. Since the pioneering work of Suzuki and Yamashita [25],
many results have been published in their Look-Compute-Move (LCM) model.
In the LCM model, each robot repeats executing cycles of look, compute, and
move phases. At the beginning of each cycle, the robot observes positions of
other robots (look phase). According to its observation, the robot computes
whether it moves somewhere or stays idle (compute phase). If the robot decides
to move, it moves to the target position by the end of the cycle (move phase).
To consider minimum capabilities, most studies assume that robots are identical
(i.e., robots execute the same algorithm and cannot be distinguished), oblivious
(i.e., robots have no memory of their past actions), and silent (i.e., robots can-
not communicate with other robots explicitly). Indeed, communication among
robots is done only in an implicit way by observing positions of other robots and
moving to a new position. Previous works considered problem solvability of LCM
robots in continuous environments (a.k.a. two- or three-dimensional Euclidean
space) [17,18,25], while others considered discrete environments (a.k.a. graph
networks) [4,6,16,22,23].

In this paper, we focus on robots evolving in graph networks. The most
fundamental tasks in graph networks are gathering and exploration. The goal
of gathering is to make all robots meet at a non-predetermined single node.
Gathering has been studied for rings [4,6,22,23], grids and trees [5]. Two types
of exploration tasks have been well studied: perpetual exploration requires robots
to visit nodes so that every node is visited infinitely many times by a robot, and
terminating exploration requires robots to terminate after every node is visited
by a robot at least once. For example, perpetual exploration has been studied
for rings [1] and grids [2], and terminating exploration has been studied for
rings [14,16], trees [15], grids [12], tori [13], and arbitrary networks [3].

All aforementioned works in graph networks make the assumption that each
robot observes all other robots in the networks. That is, each robot has a sensor
that can obtain a global snapshot. However, this powerful ability somewhat
contradicts the principle of very weak mobile entities. For this reason, recent
studies consider the more realistic case of myopic robots [8,10,19,20]. A myopic
robot has limited visibility, i.e., it can see nodes (and robots on them) only within
a certain fixed distance φ. Datta et al. studied terminating exploration of rings
for φ = 1 [8] and φ = 2, 3 [9]. Guilbault and Pelc studied gathering in bipartite
graphs with φ = 1 [19], and infinite lines with φ > 1 [20]. Not surprisingly, in the
weakest setting, i.e., φ = 1, robots can only achieve few tasks. It is shown [8] that,
when φ = 1 holds, five robots are necessary and sufficient to achieve terminating
exploration in the fully synchronous (FSYNC) model. On the other hand, no
terminating exploration algorithm exists in the semi-synchronous (SSYNC) and



Ring Exploration with Myopic Luminous Robots 303

Table 1. Ring exploration with myopic robots.

Reference Exploration Synchrony φ #colors #robots

Necessary Sufficient

[8] Terminating FSYNC 1 1 5 5

[8] Terminating SSYNC & ASYNC 1 1 Impossible

[10] Terminating SSYNC & ASYNC 2 1 5 7

[10] Terminating SSYNC & ASYNC 3 1 5 5

This paper Perpetual FSYNC 1 2 2 2

This paper Terminating FSYNC 1 2 3 3

This paper Perpetual SSYNC & ASYNC 1 2 3 3

This paper Terminating SSYNC & ASYNC 1 2 4 4

asynchronous (ASYNC) models. Also, gathering [19] is possible when φ = 1 only
if robots initially form a star.

Since most results for myopic robots with φ = 1 are negative, a natural
question is which additional assumptions can improve task solvability. In this
paper, we focus on a non-volatile visible light [7] as an additional assumption.
A robot endowed with such a light is called a luminous robot. Each luminous
robot is equipped with a light device that can emit a constant number of colors
to other robots, a single color at a time. The light color is non-volatile, so it can
be used as a constant-space memory. For non-myopic luminous robots, the power
of lights is well understood [7,11,21]. For example, if each robot has a five colors
light, the difference between the asynchronous model and the semi-synchronous
model disappears [7]. However, to the best of our knowledge, the impact of lights
on myopic robots has not been studied yet.

1.2 Our Contributions

We focus on ring exploration and the impact of lights on myopic robots with
φ = 1. We consider the weakest assumption for lights: each robot can use only
two colors for its light. Table 1 summarizes our contributions and related works.
Note that robots with no light are equivalent to robots with a single color light.

As a main contribution, we prove that (i) two and three robots are necessary
and sufficient to achieve perpetual and terminating exploration, respectively, in
the fully synchronous model, and (ii) three and four robots are necessary and
sufficient to achieve perpetual and terminating exploration, respectively, in the
semi-synchronous and asynchronous models. These results clarify the power of
lights for myopic robots since, without lights, five robots are necessary and suf-
ficient to achieve terminating exploration in the fully synchronous model, and
no terminating exploration algorithm exists in the semi-synchronous and asyn-
chronous models. Interestingly, even if robots can observe nodes up to distance
three (i.e., φ = 3), five robots are required to achieve terminating exploration



304 F. Ooshita and S. Tixeuil

without light. This means that there exist some tasks that myopic luminous
robots with small visibility can achieve, but that non-luminous robots with larger
visibility cannot.

Similarly to previous works for myopic robots, all algorithms proposed in
this paper assume some specific initial configurations because most configura-
tions are not solvable. For example, when myopic robots are deployed so that
no robot can observe other robots, they cannot achieve exploration. However,
our perpetual exploration algorithms achieve the best possible property, that
is, they are universal. This means that, in the fully synchronous model (resp.,
the semi-synchronous and asynchronous models), the proposed algorithm solves
perpetual exploration from any solvable initial configuration with two (resp.,
three) robots and two colors. As for terminating exploration, we show that no
universal algorithm exists. That is, in the fully synchronous model (resp., the
semi-synchronous and asynchronous models), no algorithm may solve terminat-
ing exploration from any solvable initial configuration with three (resp., four)
robots and two colors. Due to space limitation, all proofs are provided in the
companion technical report [24].

2 Preliminaries

2.1 System Model

The system consists of n nodes and k mobile robots. The nodes v0, v1, . . . , vn−1

form an undirected and unoriented ring-shaped graph, where a link exists
between vi and vi+1, for i < n, and between vn−1 and v0. For simplicity we
consider mathematical operations on node indices as operations modulo n. Nei-
ther nodes nor links have identifiers or labels, and consequently robots cannot
distinguish nodes and links. Robots do not know n, the size of the ring. Robots
occupy some nodes of the ring. The distance between two nodes is the number
of links in a shortest path between the nodes. The distance between two robots
a and b is the distance between two nodes occupied by a and b. Two robots a
and b are neighbors if the distance between a and b is one. A set S of robots
is connected if the induced subgraph of nodes occupied by the robots in S is
connected; otherwise, S is disconnected.

Robots we consider have the following characteristics and capabilities. Robots
are identical, that is, robots execute the same deterministic algorithm and cannot
be distinguished based on their appearance (in particular, they do not have
unique identifiers). Robots are luminous, that is, each robot has a light (or state)
that is visible to itself and other robots. A robot can choose the color of its light
from a discrete set Col. When the set Col is finite, we denote by κ the number
of available colors (i.e., κ = |Col|). Robots have no other persistent memory and
cannot remember the history of past actions. Robots cannot communicate with
other robots explicitly, however they can communicate implicitly by observing
positions and colors of other robots (for collecting information), and by changing
their color and moving (for sending information). Each robot r can observe
positions and colors of robots within a fixed distance φ (φ > 0) from its current



Ring Exploration with Myopic Luminous Robots 305

position. Since robots are identical, they share the same φ. If φ = ∞, robots can
observe all other robots in the ring. If φ = 1, robots are myopic, that is, they
can only observe robots that are located at neighboring nodes.

Each robot executes an algorithm by repeating three-phases cycles: Look,
Compute, and Move (L-C-M). During the Look phase, the robot observes posi-
tions and colors of robots within distance φ. During the Compute phase, the
robot computes its next color and movement according to the observation in the
Look phase. The robot may change its color at the end of the Compute phase.
If the robot decides to move, it moves to a neighboring node during the Move
phase. To model asynchrony of executions, we introduce the notion of sched-
uler that decides when each robot executes phases. When the scheduler makes
robot r execute some phase, we say the scheduler activates the phase of r or
simply activates r. We consider three types of synchronicity: the FSYNC (full-
synchronous) model, the SSYNC (semi-synchronous) model, and the ASYNC
(asynchronous) model. In the FSYNC model, the scheduler executes full cycles
of all robots synchronously and concurrently. In the SSYNC model, the sched-
uler selects a non-empty subset of robots and executes full cycles of the selected
robots synchronously and concurrently. In the ASYNC model, the scheduler exe-
cutes cycles of robots asynchronously. Note that in the ASYNC model, a robot
r can move based on an outdated view observed previously by r. Throughout
the paper we assume that the scheduler is fair, that is, each robot is activated
infinitely often. We consider the scheduler as an adversary. That is, we assume
that the scheduler is omniscient (it knows robot positions, colors, algorithms,
etc.), and tries to activate robots in such a way that they fail executing the task.

In the sequel, Mi(t) denotes the multiset of colors of robots located in node vi

at instant t. If vi is not occupied by any robot at t, then Mi(t) = ∅ holds, and vi

is free at instant t. Then, vi is a tower at instant t if |Mi(t)| ≥ 2. A configuration
C(t) of the system at instant t is defined as C(t) = (M0(t),M1(t), . . . , Mn−1(t)).
If t is clear from the context, we simply write C = (M0,M1, . . . ,Mn−1). If
there exists an index x such that Mx+i = Mx−i holds for any i, or if Mx+i =
Mx−(i+1) holds for any i (i.e., there exists at least one axis of symmetry in the
configuration), configuration C is called symmetric.

When a robot observes its environment, it gets a view up to distance φ.
Consider a robot r on node vi; then, r obtains two views: the forward view
and the backward view. The forward and backward views of r are defined
as Vf = (cr,Mi−φ, . . . ,Mi−1,Mi,Mi+1, . . . ,Mi+φ), and Vb = (cr,Mi+φ, . . . ,
Mi+1,Mi,Mi−1, . . . ,Mi−φ), respectively, where cr denotes r’s color. Since we
assume unoriented rings (where robots may not share the same notion of left
and right), each robot cannot distinguish its forward view from its backward
view. If the forward view and the backward view of r are identical, then r’s view
is symmetric. In this case, r cannot distinguish between the two directions when
it moves, and the scheduler decides which direction r moves to. If r observes no
other robot in its view, r is isolated.



306 F. Ooshita and S. Tixeuil

2.2 Algorithm, Execution, Problem, and Exploration Problem

An algorithm is described as a set of rules. Each rule is represented in the follow-
ing manner <Label>:<Guard>::<Action>. The guard <Guard> is a possible
view obtained by a robot. If a forward or backward view of robot r matches a
guard in an algorithm, we say r is enabled. We also say the corresponding rule
<Label> is enabled. If a robot is enabled, the robot may change its color and
move based on the corresponding action <Action> during the Compute and
Move phases.

For an infinite sequence of configurations E = C0, C1, . . . , Ct, . . ., we say E is
an execution from initial configuration C0 if, for any instant t, Ct+1 is obtained
from Ct after some robots execute phases. We say Ci is the i-th configuration of
execution E.

A problem P is defined as a set of executions: An execution E solves P if
E ∈ P holds. An algorithm A solves problem P from initial configuration C0 if
any execution from C0 solves P. We simply say an algorithm A solves problem
P if there exists an initial configuration C0 such that A solves P from C0. For
configuration C and problem P, C is solvable for P if there exists an algorithm
(specific to C) that solves P from initial configuration C. Let Cs(P) be a set of
all configurations solvable for P. We say algorithm A is universal with respect
to problem P if A solves P from any initial configuration in Cs(P). That is, a
universal algorithm solves P from any solvable initial configuration.

In this paper, we consider the perpetual exploration problem and terminating
exploration problem in case of φ = 1.

Definition 1 (Perpetual exploration problem). Perpetual exploration is
defined as a set of executions E such that every node is infinitely many times
visited by some robot in E.

Definition 2 (Terminating exploration problem). Terminating explo-
ration is defined as a set of executions E such that 1) every node is visited
by at least one robot in E and 2) there exists a suffix of E such that no robots
are enabled.

2.3 Descriptions

Let C = (M0, . . . ,Mn−1) be a configuration. We say C ′ = (M ′
0, . . . ,M

′
n′−1) is

a sub-configuration of C if there exists x such that Mx+i = M ′
i holds for any i

(0 ≤ i ≤ n′ − 1). In this case, we say n′ is the length of sub-configuration C ′.
We sometimes describe a sub-configuration C ′ = (M ′

0, . . . ,M
′
n′−1) by listing all

colors in M ′
i as the i-th column. That is, when M ′

i = {ci
1, . . . , c

i
|M ′

i |} holds for
each i (0 ≤ i ≤ n′ − 1), we describe C ′ as follows:

c01
c02
...

c0|M ′
0|

c11
c12
...

c1|M ′
1|

· · ·

cn′−1
1

cn′−1
2
...

cn′−1
|M ′

n′−1
|



Ring Exploration with Myopic Luminous Robots 307

When M ′
i = ∅ holds, we write ∅ as the i-th column. If h free nodes exist succes-

sively, we sometimes write ∅h instead of writing h columns with ∅. For simplicity,
when C ′ is a sub-configuration of C and all robots appear in C ′, we use C ′ instead
of C to represent configuration C. We also use this description to represent views
of robots.

Throughout the paper, we consider the case of φ = 1. We describe a rule in
an algorithm in the following manner:

Rrule :

c−1,1

c−1,2

...
c−1,m−1

c0,1

c0,2

...
(c0,m0)

c1,1

c1,2

...
c1,m1

:: cnew,Movement

Notation Rrule is a label of the rule. The middle part represents a guard. This
represents a view V = (c0,m0 ,M−1,M0,M1), where Mi = {ci,1, . . . , ci,mi

} holds
for i ∈ {−1, 0, 1}. Intuitively, each column represents colors of robots on a single
node and a color within parentheses represents its current color. If a forward or
backward view of robot r is equal to V , r is enabled. In this case, r executes an
action represented by cnew,Movement . Notation cnew represents a new color of
the robot, and Movement represents the movement. Notation Movement can be
⊥, ←, →, or ← ∨ →: (1) ⊥ implies a robot does not move, (2) ← (resp., →)
implies a robot moves toward the node such that a set of robot colors is M−1

(resp., M1), and (3) ← ∨ → implies a robot moves toward one of two directions
(the scheduler decides the direction). When the view V described in a guard is
symmetric, Movement should be either ⊥ or ← ∨ →. As an example, consider
the following rule.

Rex : ∅
G

(W)G:: G,→

Robot r is enabled by Rex if (1) the color of r is W, (2) the current node
is occupied by two robots with colors G and W, (3) one neighboring node is
occupied by no robot, and (4) another neighboring node is occupied by a robot
with color G. If r is enabled by Rex, r changes its color to G and moves toward
the node occupied by a robot with color G.

3 Full-Synchronous Robots

3.1 Perpetual Exploration

In this subsection, we provide a universal perpetual exploration algorithm for
two robots with two colors in the FSYNC model. Note that, since one robot
cannot achieve perpetual exploration clearly because the direction of its move-
ment is decided by the scheduler, two robots are necessary to achieve perpetual
exploration. A set of colors is Col = {G,W}. The algorithm is given in Algo-
rithm1. In the initial configuration, two robots with colors G and W stay at a



308 F. Ooshita and S. Tixeuil

Algorithm 1. Fully-Synchronous Perpetual Exploration for k = 2
Initial configurations

W
G

, GW and WG

Rules
0GW : ∅ (G)W :: G, ← 0WG : ∅ (W)G :: W, →

0T0 : ∅
W
(G) ∅ :: G, ← ∨ →

single node or neighboring nodes. If the two robots stay at a single node (i.e.,
they form a tower), the robot with color G moves. When the two robots stay at
neighboring nodes, the robot with color G moves in a direction away from the
other robot, and the robot with color W moves toward the other robot. This
implies two robots move in the same direction. Since they move synchronously,
the views of the two robots are not changed. Hence, the two robots continue to
move and achieve perpetual exploration. Clearly we have the following theorem.

Theorem 1. In case of φ = 1 and k = 2, Algorithm1 solves perpetual explo-

ration from initial configurations
W
G

, GW and WG for n ≥ 2 in the FSYNC

model.

In addition, we can prove that other initial configurations are unsolvable.
Hence, we have the following theorem.

Theorem 2. In case of φ = 1, k = 2, and Col = {G,W}, Algorithm1 is uni-
versal with respect to perpetual exploration for n ≥ 6 in the FSYNC model.

3.2 Terminating Exploration

In this subsection, we consider the terminating exploration problem in the
SSYNC model. First, we prove that no algorithm solves terminating exploration
for k = 2.

Theorem 3. In case of φ = 1 and k = 2, no algorithm solves terminating
exploration in the FSYNC model. This holds even if robots can use an infinite
number of colors.

Next, we give a terminating exploration algorithm for three robots with two
colors in case of n ≥ 3. A set of colors is Col = {G,W}. The algorithm is given
in Algorithm 2.

Executions of Algorithm 2 for n ≥ 5 are given in Fig. 1. We consider three
robots r1, r2, and r3. In the figure, Wi (resp., Gi) represents robot ri with color
W (resp., G). Arrows represent that indicated robots are enabled. At configu-
ration WWW, r1 and r3 are enabled by rule 0WW (Fig. 1(a)) and change their
colors to G. At configuration GWG (Fig. 1(b)), robots r1 and r2 (i.e., a pair of



Ring Exploration with Myopic Luminous Robots 309

Algorithm 2. Fully-Synchronous Terminating Exploration for k = 3
Initial configurations

WWW, GWW, WWG, and GWG
Rules

0GW : ∅ (G)W :: G, ← 0WG : ∅ (W)G :: W, →
0WW : ∅ (W)W :: G, ⊥ GWW : G (W)W :: W, ←
GWG : G (W)G :: W, ← ∨ →

robots GW) and r3 (i.e., another robot G) move to the opposite directions by
rules 0GW and GWG. Note that, since the view of r2 is symmetric at configura-
tion GWG, the scheduler decides the direction of r2. This implies that the next
configuration is GW∅∅G (Fig. 1(c)) or G∅∅WG. However, since the two configu-
rations are symmetric to each other, robots move in the same manner after the
configuration. At configuration GWW (Fig. 1(d)), robots r1 and r2 move to the
opposite direction of r3 by rules 0GW and GWW, and then the configuration
becomes one in Fig. 1(e). Note that, since configuration WWG is symmetric to
GWW, robots move in the same manner from configuration WWG. After config-
urations in Fig. 1(c)(e), robots r1 and r2 continue to move to the same direction
by rules 0GW and 0WG as explorers and r3 remains to stay as a marker. After
explorers r1 and r2 explore the ring, they reach marker r3 (Fig. 1(f)). After robot
r2 moves, they terminate at a configuration in Fig. 1(g).

Fig. 1. Executions of Algorithm 2

We can easily verify that Algorithm2 works for n = 3 or n = 4. Hence we
have the following theorem.

Theorem 4. In case of φ = 1 and k = 3, Algorithm2 solves terminating explo-
ration from initial configurations WWW, GWW, WWG, and GWG for n ≥ 3 in
the FSYNC model.

Note that we can construct another algorithm by swapping the roles of colors
G and W in Algorithm 2. Clearly this algorithm solves terminating exploration



310 F. Ooshita and S. Tixeuil

Algorithm 3. Asynchronous Perpetual Exploration for k = 3
Initial configurations

WWG, WGG, GWW, GGW,
W

G
W

,
G
WW

,
G
W
G

, and
W
G G

.

Rules
0GW : ∅ (G)W :: G, → 0WG : ∅ (W)G :: W, →

0TW : ∅
G

(W)W
:: G, → 0TG : ∅

W
(G)G

:: W, ←

from configurations such that colors G and W are swapped from solvable con-
figurations for Algorithm2. This implies configurations GGG, WGG, GGW, and
WGW are also solvable. Hence, we have the following lemma.

Lemma 1. If k = 3 holds and a set of colors is {G,W}, configurations WWW,
WWG, WGW, WGG, GWW, GWG, GGW, and GGG are solvable for terminating
exploration in the FSYNC model.

We can prove that there exists no universal algorithm with respect to termi-
nating exploration for three robots with two colors. This validates the assump-
tion that Algorithm 2 starts from some designated initial configuration.

Theorem 5. In case of φ = 1, k = 3, and κ = 2, no universal algorithm exists
with respect to terminating exploration in the FSYNC model.

4 Semi-synchronous and Asynchronous Robots

4.1 Perpetual Exploration

In this subsection, we consider the perpetual exploration problem in the SSYNC
or ASYNC model. First, we prove that two robots are not sufficient to achieve
perpetual exploration in the SSYNC model. Clearly this impossibility result
holds in the ASYNC model.

Theorem 6. In case of φ = 1 and k = 2, no algorithm can solve perpetual
exploration in the SSYNC model. This holds even if robots can use an infinite
number of colors.

Next, we give a universal perpetual exploration algorithm for three robots
with two colors in the SSYNC and ASYNC models. We give a perpetual explo-
ration algorithm by three robots with two colors in the ASYNC model, and we
prove the algorithm is universal in the SSYNC and ASYNC models. A set of
colors is Col = {G,W}. The algorithm is given in Algorithm3.

Executions of Algorithm 3 for n ≥ 4 are given in Fig. 2. Let us consider
configuration WWG, and assume that r1, r2, and r3 compose the configuration
in this order (Fig. 2(a)). Here only r3 is enabled with rule 0GW, and r3 moves



Ring Exploration with Myopic Luminous Robots 311

toward r2. In a configuration in Fig. 2(b), only r2 is enabled with rule 0TW. If
r2 is activated, r2 changes its color to G and moves toward r1 (Fig. 2(c)). Note
that, in the ASYNC model, after r2 changes its color, some robots may observe
the intermediate configuration before r2 moves toward r1. However, since no
rule matches the intermediate configuration, robots do not move based on the
configuration. After r2 moves from Fig. 2(c) by rule 0TG, the sub-configuration
becomes WWG (Fig. 2(e)) but the robots change their positions from Fig. 2(a)
to (e). Similarly, robots repeat the behavior from Fig. 2(a) to (e), and they
achieve perpetual exploration. From configuration WGG in Fig. 2(d), r1 moves
by rule 0WG and becomes a configuration in Fig. 2(c). After that, they move
similarly to the case from a configuration in Fig. 2(a). These executions include
configurations

WWG,WGG,
W

G
W

, and
W
G G

,

and consequently from these configurations robots can achieve perpetual explo-
ration. Since remaining configurations

GWW,GGW,
G
WW

, and
G
W
G

are symmetric to the above configurations, robots can also achieve perpetual
exploration from the configurations. Therefore, we have the following theorem.

Fig. 2. Executions of Algorithm 3

Theorem 7. In case of φ = 1 and k = 3, Algorithm3 solves perpetual explo-
ration from initial configurations

WWG,WGG,GWW,GGW,
W

G
W

,
G
WW

,
G
W
G

, and
W
G G

for n ≥ 3 in the ASYNC model.

We can also show that other initial configurations are unsolvable for n ≥
9 in the SSYNC model. This implies Algorithm3 is universal with respect to
perpetual exploration for n ≥ 9 in the SSYNC and ASYNC models.

Theorem 8. In case of φ = 1, k = 3, and Col = {G,W}, Algorithm3 is uni-
versal with respect to perpetual exploration for n ≥ 9 in the SSYNC and ASYNC
models.



312 F. Ooshita and S. Tixeuil

Algorithm 4. Asynchronous Terminating Exploration for k = 4
Initial configurations

WWGG, WWWG, WWGW, GGWW, GWWW, WGWW.
Rules

0GW : ∅ (G)W :: G, → GGW : G (G)W :: G, →

0TW : ∅
G

(W)W
:: G, → GTW :

G
G

(W)W
:: G, →

0TG : ∅
W
(G)G

:: W, ← 0WG : ∅ (W)G :: W, →

4.2 Terminating Exploration

In this subsection, we consider the terminating exploration problem in the
SSYNC and ASYNC model. First, we prove that three robots are not sufficient to
achieve terminating exploration in the SSYNC model. Clearly this impossibility
result holds in the ASYNC model.

Theorem 9. In case of φ = 1 and k = 3, no algorithm solves terminating
exploration in the SSYNC model. This holds even if robots can use an infinite
number of colors.

Next, we give a terminating exploration algorithm for four robots with two
colors in case of n ≥ 4. A set of colors is Col = {G,W}. The algorithm is given
in Algorithm 4. Note that rules 0GW, 0TW, 0TG are identical to Algorithm 3.
Hence, once three robots construct sub-configurations

Cpe =
{
WWG,

W
G
W

,
W
G G

}
,

they explore the ring as explorers similarly to Algorithm 3.
Executions of Algorithm 4 for n ≥ 5 are given in Fig. 3. At configuration

WWGG (Fig. 3(a)) only r3 can move by rule GGW, and the configuration becomes
one in Fig. 3(b) after it moves. Since r1, r2, and r3 form a sub-configuration
in Cpe, they explore the ring as explorers. On the other hand, r4 remains to
stay as a marker. Hence, three explorer robots eventually join marker r4 from
the opposite direction (Fig. 3(c)). By considering all possible executions after
a configuration in Fig. 3(c), we can observe that robots eventually terminate
and thus Algorithm4 solves terminating exploration from initial configuration
WWGG (See the details in the full version [24]).

We consider other initial configurations WWWG and WWGW in Fig. 4. From
initial configuration WWWG (Fig. 4(a)), robots eventually form configuration
WWGG (Fig. 4(e)) and thus they can solve terminating exploration. From initial
configuration WWGW (Fig. 4(f)), robots form a configuration in Fig. 4(g) and
the configuration is the same as in Fig. 4(b). Hence, they can solve terminating
exploration.



Ring Exploration with Myopic Luminous Robots 313

Fig. 3. An execution from WWGG of Algorithm 4

Fig. 4. Executions from WWWG and WWGW of Algorithm 4

Since configurations GGWW, GWWW, and WGWW are symmetric to WWGG,
WWWG, and WWGW, respectively, we have the following theorem.

Theorem 10. In case of φ = 1 and k = 4, Algorithm4 solves terminating explo-
ration from initial configurations WWGG, WWWG, WWGW, GGWW, GWWW,
and WGWW for n ≥ 5 in the ASYNC model.

Note that we can construct another algorithm by swapping the roles of colors
G and W in Algorithm 4. Clearly this algorithm solves terminating exploration
from configurations such that colors G and W are swapped from solvable con-
figurations for Algorithm4. This implies configurations GGGW, GGWG, WGGG,
and GWGG are also solvable. Hence, we have the following lemma.

Lemma 2. If k = 4 holds and a set of colors is {G,W}, configurations WWGG,
WWWG, WWGW, GGWW, GWWW, WGWW, GGGW, GGWG, WGGG, and
GWGG are solvable for terminating exploration in the ASYNC model.

We also prove that there exists no universal algorithm with respect to termi-
nating exploration for four robots with two colors. This validates the assumption
that Algorithm 4 starts from some designated initial configuration.

Theorem 11. In case of φ = 1, k = 4, and κ = 2, no universal algorithm exists
with respect to terminating exploration in the SSYNC and ASYNC models.

5 Conclusions

In this paper, we investigated the possibility of exploration algorithms for myopic
luminous robots evolving in uniform ring-shaped networks. Considering weakest



314 F. Ooshita and S. Tixeuil

possible assumptions for myopia and luminosity, we proved that: (i) two and
three robots are necessary and sufficient to achieve perpetual and terminating
exploration, respectively, in the fully synchronous model, and (ii) three and four
robots are necessary and sufficient to achieve perpetual and terminating explo-
ration, respectively, in the semi-synchronous and asynchronous models. These
tight results characterize the power of lights for myopic robots since, without
lights, five robots are necessary and sufficient to achieve terminating exploration
in the fully synchronous model, and no terminating exploration algorithm exists
in the semi-synchronous and asynchronous models. We also showed that our
perpetual exploration algorithms are universal, and that no universal algorithm
exists for terminating exploration.

This paper leaves many open issues with respect to problem solvability for
myopic luminous robots. In case of non-myopic luminous robots, the difference
between the semi-synchronous model and the asynchronous model disappears.
Does this difference still hold for myopic luminous robots? If visibility φ is large,
robots may be able to use distance to neighboring robots to store informa-
tion instead of lights. Now, is there some relation between tasks achieved by
myopic luminous robots with a large number of colors, and tasks achieved by
non-luminous robots with large visibility? Is there a tradeoff between the visi-
bility distance and the number of colors? It is also interesting to consider other
tasks and topologies with myopic luminous robots.

Acknowledgements. This work was partially supported by a mobility scholarship
of the author at Sorbonne University in the frame of the Erasmus Mundus Action 2
Project TEAM Technologies for Information and Communication Technologies, funded
by the European Commission. This publication reflects the view only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein. This work was supported by Japan Science and
Technology Agency (JST) SICORP and JSPS KAKENHI Grant Number 18K11167.

References

1. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9 29

2. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive
perpetual grid exploration without sense of direction. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2 18

3. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–
219. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7 20

4. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-25873-2_18
https://doi.org/10.1007/978-3-642-16926-7_20


Ring Exploration with Myopic Luminous Robots 315

5. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016)

6. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

8. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious
agents with local vision. In: IEEE 33rd International Conference on Distributed
Computing Systems, pp. 347–356 (2013)

9. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious
robots with vision limited to 2 or 3. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
363–366. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0 31

10. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Enabling ring exploration with
myopic oblivious robots. In: 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, pp. 490–499 (2015)

11. D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power of
anonymous mobile robots. In: 36th IEEE International Conference on Distributed
Computing Systems, pp. 293–302 (2016)

12. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5 7

13. Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by
oblivious robots. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS,
vol. 9466, pp. 183–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26850-7 13

14. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013)

15. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14–
15), 1583–1598 (2010)

16. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

17. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

18. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

19. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

20. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with restricted
vision in an infinite line. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-
Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 296–310.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0 21

21. Heriban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: 19th
International Conference on Distributed Computing and Networking, pp. 3:1–3:10
(2018)

https://doi.org/10.1007/978-3-319-03089-0_31
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-03089-0_21


316 F. Ooshita and S. Tixeuil

22. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36),
3235–3246 (2010)

23. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

24. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. CoRR
abs/1805.03965 (2018). https://arxiv.org/abs/1805.03965

25. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

https://arxiv.org/abs/1805.03965


Uniform Circle Formation for Swarms
of Opaque Robots with Lights

Caterina Feletti1, Carlo Mereghetti2(B) , and Beatrice Palano1

1 Dipartimento di Informatica, Università degli Studi di Milano,
via Celoria 18, 20133 Milan, Italy

caterina.feletti@studenti.unimi.it, palano@di.unimi.it
2 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano,

via Celoria 16, 20133 Milan, Italy
carlo.mereghetti@unimi.it

Abstract. The Uniform Circle Formation problem requires a swarm
of mobile agents, arbitrarily positioned onto the plane, to move on the
vertices of a regular polygon. Each agent, customarily called robot, acts
through a sequence of look-compute-move cycles. The robots do not store
past actions/system snapshots. They are anonymous and cannot be dis-
tinguished by their appearance and do not have a common coordinate
system (origin and axis) and chirality. The system is fully synchronous
in that all robots have a common clock/notion of time regulating cycles.
From the literature, the Uniform Circle Formation problem is recently
known to be solvable in a system where robots are punctiform or fat, but
in both cases transparent : no robot obstructs the visibility of any other
robot. Here, we solve the Uniform Circle Formation problem within a
more realistic opaque robot system, i.e., robots may have obstructed visi-
bility due to collinearities. Yet, our robots are assumed to be punctiform
and luminous, i.e., equipped with a persistent light assuming different
colors. This latter peculiarity represents the only way robots have to
communicate. Our proposed algorithm uses a constant number of look-
compute-move cycles as well as a constant number of colors.

Keywords: Autonomous mobile robots · Opaque robots
Uniform circle formation

1 Introduction

A well consolidated trend in the literature on distributed computing investi-
gates models and algorithms for agent-based computing systems, having great
relevance in several real-world applications. In these systems, a swarm of mobile
computing entities, called robots, have to cooperate to solve a given problem by
operating under several assumptions on robot capabilities and on the particular
scenario. Of great importance are models where robots are autonomous, i.e. they
act without a central control, and operate through a sequence of look-compute-
move cycles in which each robot: (i) takes the snapshot of the system (look),
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 317–332, 2018.
https://doi.org/10.1007/978-3-030-03232-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_21&domain=pdf
http://orcid.org/0000-0002-7778-7257
http://orcid.org/0000-0003-3948-4658


318 C. Feletti et al.

(ii) executes a deterministic algorithm (compute), and (iii) travels to the com-
puted destination, if any (move) [9,10,15].

Several modeling assumptions are considered, that can affect the computa-
tional power of the robots. E.g., robots may have distinct identifiers (yielding
the ability of distinguish one robot from another) or, on the contrary, they may
be anonymous. They may have a finite but persistent memory which is preserved
from one look-compute-move cycle to the next. If no such memory exists, robots
are said to be oblivious. A “compromise” between memory and obliviousness is
represented by luminous robots, featuring a persistent light assuming different
colors as a means of communication as well. Another step towards realistic mod-
els is to work with no point-like (punctiform model) but fat robots, where all
robots are supposed to be solid discs on a plane with a certain radius. Moreover,
they can be transparent, enabling a complete visibility of the system, or opaque.
Yet, depending on the nature of the problem, robots can move either on the
Euclidean plane, or on a graph which can either be known in advanced or not.

Concerning robot activation policy, three models are proposed in the litera-
ture: fully synchronous, where all robots execute their cycle synchronously, semi
synchronous, where a subset of robots execute their cycle synchronously whereas
the others remain idle, and asynchronous, where each robot acts asynchronously.

Several research efforts focus on very basic classes of geometric pattern for-
mation problems to be solved within such distributed environments [21,22,24].
Robots might be required to meet in a certain specific location. This prob-
lem is known as Gathering. E.g., in [17], asynchronous robots move on the
plane and have limited visibility. In [3], few fat asynchronous robots move on
the plane. In [2], synchronous fat robots with limited visibility move on the
plane. In [6], synchronous and asynchronous robots move on a ring and have to
cope with malicious agents which can occupy positions. In the Uniform Circle
Formation (UCF) problem, we ask robots to move to vertices of a regular polygon,
the number of vertices—which can be known or not in advance—being exactly
the number of robots in the system. In [8], an algorithm is proposed which
asymptotically converges to a regular polygon. In [12], a semi-synchronous solu-
tion is given, starting from particular robot configurations. In [7], the authors
solve UCF for asynchronous fat transparent robots. In [16], the problem is finally
solved for the asynchronous case, with punctiform and transparent robots.

So far, we have mainly considered swarms of transparent robots. Nevertheless,
several issues arise whenever opaque robots come into play. In this realm, the
first natural problem to be tackled is Complete Visibility, where robots are
required to displace on the plane so that each robot is visible to all others. Since
obstructed visibility turns out to be a serious problem in robot systems, solutions
in the literature are proposed for luminous robots, i.e., robots with persistent
lights assuming different colors. The computational power of lights on swarms
of robots is deeply investigated, e.g., in the seminal papers [4,5,13] for robots
moving on the plane, and in [9,10] for robots on graphs. In [20], a O(log N) time
algorithm is presented, solving Complete Visibility by using O(1) colors in
an asynchronous setting. For the semi-synchronous case, the problem is solved



Uniform Circle Formation for Opaque Robots with Lights 319

in [19] with a constant amount of time and colors. Finally, in [18] a O(1) time
and O(1) colors algorithm is designed for the asynchronous setting. Recently, in
[1] a fault-tolerant algorithm for Complete Visibility is exhibited.

1.1 Motivation and Contribution of the Paper

In this paper, we focus on the UCF problem which, as above recalled, consists of
displacing robots on the vertices of a regular polygon. Such a problem received
much attention from the literature for both theoretical and applicative reasons.
From a practical point of view, a regular layout may preset several advantages for
a distributed system. E.g., for a network of mobile agents, it may be convenient
to regularly displace to facilitate communications, visibility and computations.
Every agent is equidistant from its neighbors and it has the same view of the
system: this guarantees a fair communication, where there are no evident dif-
ferences in the energy spent in sending messages. Furthermore, this uniform
pattern allows to implement distributed algorithms which guarantee a fair load
balancing among the agents.

Our solution to UCF is based on [16]. However, we stress that a key point
in their model is that each robot in the look phase can see the whole system.
Precisely, robots are punctiform and transparent, i.e., no robot obstructs the
visibility of any other robot. Such full visibility feature might not turn to be
realistic, as above pointed out. Thus, obstructed visibility could represent a con-
straint making the model more interesting and realistic but, on the other hand,
more difficult to manage. In this opaque model, if three robots are collinear,
the middle robot obstructs the vision of the other two. Therefore, whenever a
collinearity occurs, some robots may have a wrong perception of the real global
number of agents in the system. Clearly, this pitfall turns out to be a severe
limitation for solving our problem.

Here, we propose a solution to UCF in the opaque model [18,19], where we
allow robots to communicate with a light able to assume different colors. Such
a well studied functionality turns out to be a natural minimal enhancement for
robots to solve several tasks (see, e.g., [4,5,9,10,13]). In particular, we exhibit
and analyze an algorithm that solves the UCF problem in the fully synchronous
setting with a constant number of cycles, and with a constant numbers of colors.

A Quick Outline of Our Algorithm for UCF. Our algorithms strategy
presents a pre-computation phase where first complete visibility is reached by
[19]. Next, robots move on their smallest enclosing circle (SEC) [23]. At this
point, the original phase of the algorithm starts, where some reference points
(pivot and angle robots) are fixed on the SEC, enabling the computation of the
final destinations of the other robots. Such destinations are then reached by first
moving robots within the SEC on some special chords. Finally, internal robots
get back radially to the SEC, ending up in the regular polygon vertices. Along
the whole process, deadlocks and collinearities are tackled and solved. Due to
lack of space, some explaining material and proofs have been omitted.



320 C. Feletti et al.

2 Preliminaries: The Computational Model
and the Problem

We give a quick overview of the distributed system we shall be dealing with,
referring the reader to, e.g., [5,15] for a detailed exposition. Finally, we formally
state the UCF problem.

Consider a finite set (swarm) of punctiform computational agents, called
robots, which form a distributed system located in the plane R

2. These robots
are: (i) anonymous and indistinguishable: they do not share any own identi-
fier, (ii) autonomous: there does not exist a central coordinator, (iii) homoge-
neous: they execute the same deterministic algorithm, (iv) oblivious: they do
not remember any data about previous actions, (v) mobile: they can freely move
on the plane, provided they never collide, (vi) rigid: they cannot be stopped
before reaching the computed destination (i.e., no adversary can stop robot
movement). The robots are equipped with sensory capabilities to determine the
positions of other robots. Moreover, they are able to compute in finite time and
infinite precision any algebraic function of points in the plane. In addiction, we
assume the following limitations on robots: (i) they do not know how many they
are, (ii) they are disoriented: no agreement among the individual coordinate
systems, nor on unit distance and chirality (roughly speaking, clockwise direc-
tion), (iii) they are not transparent : collinearity causes obstructed visibility, this
opacity feature being in sharp contrast with the transparent model in, e.g., [16].

Indeed these latter three inabilities introduce complications in algorithms
design. E.g., due to opacity (iii) and lack of knowledge of robots number (i),
each robot may not be able to know whether or not some robots are hidden at
any given time. Nevertheless, this lack of the knowledge of robots number makes
the system easily scalable. Yet, the disorientation (ii) might result in robot
collisions. To deal with these adversities, we equip robots with a light displaying
a certain number of different colors they can communicate through (see, e.g.,
[4,5,9,10,13]). We emphasize that such a light is the only mean robots have to
exchange information.

Let us formally describe how our robot swarms work. Let R be the finite set
of all robots in the swarm, |R| being unknown by each robot. Let Colors be the
finite set of colors the light of each robot can assume to communicate. At any
instant t, a robot r ∈ R sits in a position post(r) ∈ R

2, and its light shines with
a color lightt(r) ∈ Colors. For any r, s ∈ R, we say that r sees s (formally, r�s)
if and only if either r = s or there exists no third robot on the line segment
joining r and s. Let V ist(r) = {s ∈ R | r � s} be the set of all the robots visible
by r at time t. It is clear that r has a complete visibility of the whole system R
at time t whenever V ist(r) = R. If r�s, then r senses only the position and the
light of s and no other information on s. For any r ∈ R, we call configuration
of r at instant t the pair φt

r = (post(r), lightt(r)). We call snapshot of r at time t
the set snapshottr = {φt

s | s ∈ V ist(r)}.
Each robot r operates in look-compute-move cycles. Every cycle is executed

in a single and atomic instant of time, and consists of these steps:



Uniform Circle Formation for Opaque Robots with Lights 321

– Look: r obtains the instantaneous snapshot snapshottr according to its coor-
dinate system.

– Compute: r runs a deterministic algorithm A which, by having snapshottr
as input, computes the destination point of r and the (possibly) new color
for the light of r. Formally, A(snapshottr) = φt+1

r .
– Move: r sets its new color and moves straight toward the destination point

above computed without being stopped (rigidity assumption).

In the fully synchronous model, all robots are activated at every round occurring
at each time t. Since cycles are executed atomically, all robots terminate their
cycle by the next round. Let Ct = {φt

r | r ∈ R} be the system configuration at
time t. We say that a system configuration is valid if there is no collision, i.e. for
all distinct r, s ∈ R, we have post(r) �= post(s). We stress that our model does not
allow the trajectories of robots to cross in the move phase arising from Ct. Let C0

be the initial configuration, where all robots in R are located in distinct positions
on the plane, with lights off. Let C be the set of all the valid configurations. We
define the relation � ⊆ C2 such that C ′ � C ′′ if and only if the configuration C ′′

is reachable from C ′ by executing a look-compute-move cycle. A computation
on R is a sequence of valid configurations C0, . . . ,Ct,Ct+1, . . . such that: (i) C0

is an initial configuration, (ii) Ct � Ct+1 for every t ≥ 0. We say that the
computation reaches a terminal configuration Ctend whenever Ctend = Ctend+1.

We are now ready to present the UCF problem we are to solve on fully syn-
chronous swarms of opaque robots with lights. Let a fully synchronous swarm
of n robots be in any given initial valid configuration C0. The UCF problem asks
the swarm to move from C0 to a valid terminal configuration in which robots
form a regular n-gon.

3 A Preliminary Step of Our Algorithm and Terminology

Clearly, in order to settle to vertices of a regular n-gon, any robot needs to
know n. This may be achieved by first solving the Complete Visibility prob-
lem in our model. This problem asks all robots from any given initial system
configuration to reach a terminal configuration where each robot is visible to all
others. At this point, n can be clearly computed at a glance. Note however that n
cannot be stored by the robots, and hence it will be somehow readily fixed in the
topology of the swarm. A possible solution to the Complete Visibility prob-
lem moves robots to the vertices of their convex hull. To this aim, the algorithm
in [19] fits our model, solving the Complete Visibility problem within a con-
stant number of rounds and colors (i.e., not depending on the number of robots).

Next, each robot takes its snapshot (look), computes the smallest enclosing
circle (SEC) e.g. by Welzl’s algorithm [23] (compute), and eventually moves
radially on the SEC (move). Clearly, such movements cannot collide, since each
trajectory is radial to the same center. It might be the case that two robots
(and, of course, no more than two) sit on the same radial trajectory. However,
by computing distances from the two possible final destinations, they can easily
choose to move in opposite directions and reach the two diametrically opposed



322 C. Feletti et al.

locations. At the end of this preliminary phase, all robots lay on the SEC upon
which the final regular n-gon will be formed. We stress that this SEC will not
change along the whole algorithm execution, as the reader will be able to verify.

Let us now introduce some terminology useful in our algorithm design. Con-
sider a set of n robots lying on their SEC, so they share mutual visibility. Call O
the center of the SEC. Let p, q be two distinct robots on the SEC. They delimit
two arcs

�
pq (clockwise, counterclockwise). We say that p and q are adjacent if

there is at least one of the two arcs
�
pq where no other robot lies. We call base

angle the angle α = 2π
n . Indeed, if the robots form a regular n-gon, each pair p, q

of adjacent robots forms a base angle with the center of the SEC (i.e., ̂pOq = α).
Given p, q, r three distinct robots on the SEC, such that ̂pOq = α = ̂qOr,

we call (p, q, r) (or (r, q, p)) a regular triple. The middle robot q is said to be the
pivot. Given a SEC, we define an equivalence relation among regular triples. We
say that (p1, p2, p3) and (p4, p5, p6) are concordant if p̂iOpj = kα for some k ≥ 0
and every i, j ∈ {1, . . . , 6}. As we will explain later, our strategy to collocate the
robots on the vertices of a regular n-gon (inscribed in the SEC) starts by selecting
particular regular triples. We will refer to them as main regular triples which
will turn out to be concordant. The main regular triples will not move for the
whole computation, while the other robots will move to form the regular n-gon.

Fig. 1. The main diameter d and safe diameters d′ and d′′ for the regular triple (p, q, r).
The black points are robots and b is the closest to the main diameter robot. The gray
point ν is one of the two closest to the main diameter vertices of the regular polygon.

Given a regular triple (p, q, r), its main diameter is the SEC diameter d
parallel to the chord pr. Let b be one of the nearest robots to d and let �(b, d)
be the distance from b to d. Moreover, let ν be a closest but not belonging to d
vertex of the regular polygon that has to be formed. Let consider two cases:

– No robot on the main diameter, i.e., �(b, d) > 0: Let d′ and d′′ be the
two opposite chords parallel to d at distance min{�(b, d), �(ν, d)} from d. We
call d′ and d′′ safe diameters of (p, q, r). (See Fig. 1 below.)

– One or two robots on the main diameter, i.e., �(b, d) = 0: Let, e.g.,
e and e′ be the robots on the endpoints of the main diameter, and let c be one
of the robots nearest to d but not laying on d. We make e and e′ go straight to
the points on the SEC whose distance from d is min{�(c,d),�(ν,d)}

2 ; the direction
of such movement can be arbitrarily chosen. Let d′ and d′′ be the two opposite



Uniform Circle Formation for Opaque Robots with Lights 323

chords parallel to d at distance min �(c,d),�(ν,d)
2 from d and passing through e

and e′. As above, we call d′ and d′′ safe diameters of (p, q, r).

Given four robots p, q, r, t such that both (p, q, r) and (q, r, t) are regular triples,
we call (p, q, r, t) a regular 4-tuple, whose pivots are q and r. In this case, we
call main diameter of (p, q, r, t) the diameter d parallel to the chord pt. The safe
diameters for the 4-tuple (p, q, r, t) are defined as above.

Let us consider two adjacent main regular triples (p1, p2, p3) and (p4, p5, p6)
(no other triple lies on the SEC between them), and the shortest arc

�
p2p5.

Similarly to safe diameters setting above explained, we may define a chord c
laying between the shortest arc

�
p2p5 and the chord p2p5, parallel to this latter

chord, and such that no robot or regular polygon vertex are on the SEC between c
and p2p5. We call c safe chord of (p1, p2, p3) and (p4, p5, p6). (See Fig. 2 below.)

Fig. 2. The safe chord c for the two adjacent main regular triples (p1, p2, p3) and
(p4, p5, p6). The region between c and the chord p2p5 does not contain robots or vertices
of the regular polygon.

4 The Algorithm

We are now ready to outline our algorithm for solving the UCF problem on a fully
synchronous swarm of opaque robots with lights. As stated at the beginning of
Sect. 3, in a first phase all robots gain complete visibility of the swarm, and then
move onto their SEC maintaining the knowledge of the exact number n of robots
in the system. Let CH be the swarm configuration at this point; without loss of
generality, we assume robots lights having the same color. Clearly, all robots are
again vertices of a convex hull. The resulting dynamic of the algorithm depends
on the type of this convex hull, in particular on its degree of symmetry.

First of all, a special case occurs whenever the convex hull is perfect [11].
In this case, all robots lie on the edges of the associated regular n-gon (called
supporting polygon, SP), two robots per edge. The goal of our algorithm for this
particular configuration is to slide robots along the edges of the SP, until they
reach the vertices of the SP. Notice that, given a perfect convex hull, the SP is
unique and computable in a single round: each robot takes its snapshot (look),
checks whether the system configuration forms a perfect convex hull and com-
putes the SP (compute), eventually slides along the edge until it reaches the
correct vertex (move). Notice that two robots on the same edge head in oppo-
site directions, and therefore no collisions occur. We remark that a biangular



324 C. Feletti et al.

configuration1 is a special case of perfect convex hull. Also in [16], the perfect
convex hull and the biangular configurations are dealt with as a special case at
the beginning of their algorithm.

Summary of the Algorithm. Except for the perfect convex hull case, as above
quoted, our distributed algorithm aims at finding the main regular triples in the
configuration CH as follows:

– Selects unambiguously some robots to be the pivots of the future main regular
triples.

– Makes some robots move to form the main regular triples with the selected
pivots. Indeed, these movement are not necessary if the main regular triples
are already set. Once the main regular triples are formed, these robots will
not move anymore.

– Makes the other robots compute their destination point (on the basis of the
main regular triples) and move to form the regular polygon.

Our algorithm will be dealing with the following issues:

– Robots are oblivious. Once they make a move, they should be able to recover
and recompute some essential information which will be necessary in the next
cycles. In our algorithm, we encode such information by robots positions and
colors.

– Obstructed visibility can cause deadlocks in particular configurations. To
avoid them, we make use of safe diameters and chords above explained.

– In the fully syncronous model, an algorithm is efficient if it can fully exploit
parallelism. Roughly speaking, if it makes the most of the robots move simul-
taneously during the same cycle, hence leading to quick executions. Our algo-
rithm has to avoid situations yielding strictly sequential dynamics.

Let us now show cycle by cycle how our algorithm is implemented.

4.1 Cycle 1: Pivots Selection and Angle Setting

Starting from CH , we select the main regular triples/4-tuples which will be
the reference points for the movements of the other robots. In particular, we
select the pivots and their adjacent robots which will form a base angle with the
respective pivot. Once a main regular triple/4-tuple has been selected, it does not
move anymore. As observed above, the dynamic of the algorithm depends on the
degree of symmetry of CH . We can distinguish between three cases: asymmetry,
symmetry with exactly one axis, and rotational symmetry.

1 A set of n ≥ 2 robots forms a biangular configuration if robots lie on a circle C
centered in O, and two non zero angles α, β exist such that for every pair r and p of
robots consecutive on C, we have ̂rOp ∈ {α, β} and α and β alternate clockwise [11].



Uniform Circle Formation for Opaque Robots with Lights 325

Asymmetry. Consider the general case of asymmetry, where no symmetry axis
can be found in CH . In such a configuration, each robot r performs these phases:

– Look-Compute: The robot r unambiguously set the pivot robot p. Fur-
thermore, r computes the positions a1 and a2 of the vertices which will be
adjacent to the pivot p in the regular polygon.

– Move: If r is the pivot, then it does not move and sets its color as pivot.
If r is the nearest adjacent robot to a1 or a2, it will form the main regular
triple with p as pivot: r reaches this point (without collision) and sets its color
as angle. Indeed, if two robots share the same distance from a1 (or a2), the
algorithm chooses the robot which is nearer to p. Otherwise, r does nothing.

Symmetry with Exactly One Axis2. Consider now the case where exactly
one axis of symmetry l exists in CH . There are three cases:

Odd n. Consider the case where l passes through a robot, which will be the
pivot p, and splits the opposite edge. The axis divides the convex hull into two
symmetric halves, each with n−1

2 robots (except p). In such a configuration, each
robot r performs:

– Look-Compute: r computes the axis of symmetry l and the positions
a1 and a2 of the vertices which will be adjacent to the pivot p in the reg-
ular polygon.

– Move: If r belongs to l, it sets its color as pivot. If r is the nearest adjacent
robot to a1 or a2, it sets its color as angle and moves to its nearest destination
point a1 or a2. Indeed, if two robots share the same distance from a1 (or a2),
the algorithm chooses the adjacent robot which is nearer to p. Otherwise, r
does nothing.

Even n, two pivots. Consider the case where l passes through two opposite
robots, which will be the two pivots p and p′. The axis divides the convex hull
into two symmetric halves, each with n−2

2 robots (except the two pivots). In
such a configuration, each robot r performs:

– Look-Compute: r computes the axis of symmetry l and the positions a1, a2

and a′
1, a′

2 of the vertices which will be adjacent to the pivots p and p′,
respectively, in the regular polygon.

– Move: If r belongs to l, it sets its color as pivot. If r is the nearest adjacent
robot to a1, a2, a′

1 or a′
2, it sets its color as angle and moves to its nearest

destination point a1, a2, a′
1 or a′

2. As before, if there are two robots sharing
the same distance from their destination point, the algorithm chooses one
robot unambiguously (e.g., by considering distances from l). Otherwise, r
does nothing.

2 Two or more symmetry axes imply a rotational symmetry, which is considered in
the next case.



326 C. Feletti et al.

Even n, no pivot. Let the case of l splitting two opposite edges. The axis
divides the convex hull into two symmetric halves, each of them with n

2 robots.
No robot lies on l. In such a configuration, each robot r performs:

– Look-Compute: r computes the axis of symmetry l and the positions
a0, . . . , a3, a′

0, . . . , a
′
3 of the vertices which will be the nearest to l in the

regular configuration. In particular, a1a2 and a′
1a

′
2 will be the two opposite

edges splitted by l.
– Move: If r is the nearest robot to one of the computed positions, it sets

its color as pivot if the nearest destination is a1, a2 or a′
1, a

′
2, or as angle if

the nearest destination is a0, a3 or a′
0, a

′
3, and moves to such destination. As

before, if two robots share the same distance from their destination point, the
algorithm chooses one robot unambiguously. Otherwise, r does nothing.

Rotational Symmetry. Consider now the case of rotational symmetry. Let
r0, . . . , rn−1 be the sequence of robots consecutive on the SEC, ordered according
to the minimum lexicographical angle-string3. If such string can be divided into
k identical substrings up to rotation, the convex hull on the SEC can be divided
into k identical sectors, each being the 2π

k -rotation of the previous one. Let
Pi = {rj | j ≡ i mod k} be the class of symmetry which contains k robots
sharing the same positions in the k different sectors. We can unambiguously
choose a class of symmetry P (called main class of symmetry). The robots in
P will be the pivots. We now show how to set k main regular triples in this
k-angular configuration. Each robot r acts as follows:

– Look-Compute: r computes the main class of symmetry P = {p1, . . . , pk}
and the positions {aj0 , aj1 | j ∈ {1, . . . , k}} of the vertices which will be the
nearest to elements in P in the regular polygon.

– Move: If r belongs to P , it sets its color as pivot. If r is the nearest robot to
some ai0 or ai1 , it sets its color as angle and moves to its nearest destination
point ai0 or ai1 . If two robots share the same distance from their destination,
we can unambiguously choose one robot as before. Otherwise, r does nothing.

4.2 Cycle 2: Preparing Safe Diameters Setting

Now that all the main regular triples or 4-tuples have been set, a cycle begins
where we prepare for safe diameters setting possibly locating robots on the end-
points of the main diameter whenever such endpoints are vertices of the regular
polygon to be formed. Clearly, if robots verify that the configuration already
forms a regular polygon, the algorithm stops at this cycle. Let C be the config-
uration resulting at the end of the previous cycle. If C is a rotational symmetry,
this cycle is skipped. Otherwise, C presents one or two main regular triples, or

3 Given a sequence r0, . . . , rn−1 of robots consecutive on the SEC, let αi = ̂riOri+1 be
the angle insisting on the edge riri+1. The corresponding angle-string is α0 · · · αn−1.



Uniform Circle Formation for Opaque Robots with Lights 327

two main regular 4-tuples. So, as shown in Sect. 3, we can define the main diam-
eter and the safe diameters. The main diameter d is unique and computable by
each robot.

Then, we have two cases: (i) the endpoints of d are taken by robots, but the
endpoints are not vertices of the regular polygon to be formed, or (ii) no robot
lays on the endpoints of d, but the endpoints are vertices of the regular polygon.
In both cases, we require robots to move. Thus, a robot r in this cycle performs:

– Look-Compute: If C is a rotational symmetry, the cycle is skipped. Other-
wise, r computes the main diameter d.
If r realizes to be in case (i), it spots the nearest robot to d, say q, which
does not belong to d. Clearly, if there are more robots which share the same
minimal distance from r, there is always an unambiguous way to choose one
of them. Then, r computes its destination point on the SEC toward q at dis-
tance one half of the distance between d and q.
If r realizes to be in case (ii) and to be the robot that must move to an
endpoint, it spots unambiguously the endpoint to reach, avoiding collisions.

– Move: If r is in case (i) or (ii), it moves to the destination above computed.
Otherwise, r does nothing.

4.3 Cycle 3: Fair Distribution on the Two Half-Disks

The aim of this cycle is to fairly distribute robots on the SEC. In case of rota-
tional symmetry configurations, such a property is directly guaranteed by the
nature of this kind of symmetry, and hence this cycle can be skipped. Instead,
consider the cases where just one or two regular triples (or 4-tuples) have been
selected, and consider their safe diameters d′ and d′′. Such diameters define a
safe area (containing the main diameter), and they are the bases of two half-
disks (which contain the pivots and the other robots). If there are n robots on
the SEC, this cycle distributes robots as follows: if n is even, each half-disk will
contain n

2 robots, otherwise the half-disk with the pivot will contain �n
2 	 robots,

while the other will keep the 
n
2 � remaining robots. Such a fair distribution guar-

antees that in the following cycles, robot trajectories will not intersect and/or
collide, since each half-disk is independent from the other, and all trajectories
within an half-disk will be collision free.

Let us show how to reach this fair distribution from a configuration C, where
safe diameters and half-disks are settled. We distinguish between two cases:

– If n is even, we want n
2 robots to be in each half-disk. Let H+ be the half-

disk which contains n
2 + k robots and H− the half-disk which contains the

other n
2 −k robots. Our strategy suitably chooses k robots in H+ which have

to migrate in H− in such a way to avoid collisions among them and with the
robots already in H−.

– If n is odd, one robot is the unique pivot of the configuration, which will not
move anymore. For the remaining n − 1 (even) robots, we act as above.



328 C. Feletti et al.

Choice of the k Migrating Robots. If k is even, our algorithm singles out
from H+ the k

2 robots nearest to the main diameter d starting from one end
of d and the k

2 robots nearest to d starting from the opposite end. Otherwise,
if k is odd, our algorithm spots k − 1 (even) robots in H+ as before. The k-th
migrating robot can be unambiguously chosen among the remaining robots.

Migration. Our strategy is to migrate the selected robots on the arc of H−,
traveling perpendicularly to the main diameter d. This movement can be exe-
cuted if and only if no robot lies in the destination points. Let m1, . . . ,mk be
the migrating robots in H+, and Q = {q1, . . . , qn

2 −k} be the set of the positions
of robots in H−. Given a migrating robot mi, we call ti its projection onto the
arc of H−, and let T = {t1, . . . , tk} be the set of such projections. If ti is not
taken by any robot in Q, then mi reaches ti by a straight trajectory. Otherwise,
mi computes the point u ∈ Q ∪ T \ {ti} nearest to ti. Let

�
tiu be the length of

the shortest arc joining u with ti, and let t′i be the point on the SEC satisfying
�

tit
′
i=

�
tiu
4 . Then, mi travels straight towards t′i without colliding with any robot.

Analyzing in detail the cycle, every robot r performs:

– Look-Compute: If the configuration is a rotational symmetry the cycle is
skipped. Otherwise, if r is pivot or angle, it does nothing, else r computes the
main diameter d and checks whether it is a migrant robot. If this is the case,
it computes its destination point on H− as seen above.

– Move: r reaches its destination point on H−.

4.4 Cycle 4: Rappelling down on the Safe Diameters or Safe Chords

Summing up, this cycle starts from a configuration where: (i) all the robots lie
on the SEC, so they know how many robots are involved in the regular polygon
formation, (ii) there are m ≥ 1 robots with color pivot (or 2m in case of main
regular 4-tuples), (iii) there are at most 2m robots with color angle, (iv) there
are m main regular triples colored as angle-pivot-angle, (v) all the other robots
have no light on, (vi) all robots are equally distributed on m sectors, (vii) every
robot on the SEC sees at least a main regular triple colored angle-pivot-angle.
From now on, the m main regular triples will not move anymore, whereas the
robots which are not yet in the right position will move within the SEC. Let us
distinguish the following cases.

One or Two Main Regular Triples, or Two Main Regular 4-Tuples.
Let us consider the case with only one main regular triple, or two main regular
triples/4-tuples. Let d be their main diameter, which is unique as previously
observed. Let d′ and d′′ be their safe diameters equidistant from d. In this cycle,
every robot r performs (see Fig. 3 below):

– Look-Compute: If r is pivot or angle, it does nothing. Otherwise, r com-
putes: the safe diameters d′ and d′′, its destination point t on the SEC, the
point t⊥, which is the projection of t on the safe diameter nearest to r.



Uniform Circle Formation for Opaque Robots with Lights 329

– Move: r sets its color as internal and travels to t⊥.

Three or More Main Regular Triples. Let us consider the case of k ≥ 3
main regular triples. It is easy to see that this kind of configuration is a rotational
symmetry. In this cycle, every robot r performs:

– Look-Compute: If r is pivot or angle, it does nothing. Otherwise, r com-
putes: the nearest safe chord c (see Sect. 3), its destination point t on the
SEC, the point t⊥, which is the projection of t on c.

– Move: r sets its color as internal and travels to t⊥.

Fig. 3. Computing and collision free traveling towards the projections onto the safe
diameter of robots final destinations.

4.5 Cycle 5: Reaching the SEC

At the end of the previous cycle, every robot which is not pivot or angle colored
lies on a safe diameter or on a safe chord. Our strategy was to move the robots to
a position which “contains” some information about its final destination point
on the SEC. In this cycle, every robot r performs:

– Look-Compute: If r is pivot or angle, it does nothing. Otherwise, r is within
the SEC on a safe chord or a safe diameter, and sees: (i) at least three robots
on the SEC (pivot or angle colored) from which r can re-compute the SEC,
or (ii) at least a pair of robots pivot-angle which defines the base angle. So,
r computes: the original SEC upon which it has to travel to, the segment s
(safe chord or safe diameter) where it currently lies on, its destination arc H,
the projection point t of r on H.

– Move: r sets its color as sec and travels to t.

There may exist a different dynamic of this Cycle 5 in case of asymmetry (where
only one pivot exists). In fact, some robots on the farthest from the pivot safe
diameter may not see the main triple because of robots laying on the other safe
diameter. So, this cycle must be repeated at most twice, one per safe diameter.



330 C. Feletti et al.

5 Conclusions and Future Work

In this paper, we design an algorithm solving the Uniform Circle Formation
(UCF) problem, i.e., the problem of displacing on the plane a swarm of mobile
robots such that each robot stands at the vertex of a regular polygon. Our
robots autonomously operate through a sequence of look-compute-move cycles.
They are anonymous, oblivious, and without any agreement on individual coor-
dinate systems, unit distance and chirality. UCF has been recently solved in [16],
for asynchronous systems of punctiform and transparent robots, i.e., no robot
obstructs the visibility of any other robot. In contrast with such a transparency
assumption, we considered a more realistic model where robots are punctiform
and opaque, i.e., robots may have obstructed visibility due to collinearities. In
addition, our robots feature the well-studied possibility of having persistent lights
assuming different colors, as a means of communication as well.

Our proposed algorithm solves UCF for fully synchronous swarm of opaque
robots with lights, by using a constant number of look-compute-move cycles as
well as a constant number of colors. Moreover, the algorithm can fully exploit
parallelism: roughly speaking, it makes the most of the robots move simulta-
neously during the same cycle, hence leading to quick executions. By suitable
modifications to the algorithm here described, we were able to solve UCF for the
semi synchronous setting, and the extension to the asynchronous case could be
easily attained. Details may be found in [14].

Several directions for future researches may be explored. E.g., the constant
number of colors in our solution is obtained by summing the constant number
of colors needed to solve Complete Visibility [19] in the preliminary phase,
plus the constant number of colors required by the rest of our own approach.
A more careful integration between this two phases would certainly lead to lower
the number of colors. Indeed, it would be interesting to establish the minimal
number of colors needed to solve UCF in our setting. Moreover, it would be
interesting to perform the same investigation on the number of colors and on
the execution time for solving UCF on the semi synchronous and asynchronous
settings. A starting point could be our algorithms in [14] which, as a preliminary
phase, use the solution of Complete Visibility in the semi synchronous and
asynchronous models [18,19]. More generally, concerning the actual relevance of
using lights for solving UCF, one may easily notice that a solution without light
would imply a solution without light for Complete Visibility as well. To the
best of our knowledge, this latter skill is still to be considered.

Another line of research could be the study and analysis of solutions of UCF
for other models of robot swarms. For instance, it might be worth investigating
the realistic case of fat opaque robots. A solution exists, for fat transparent
robots [7]. Maybe, a first attempt could be performed by combining results and
technique in [7] with the approach we presented in this paper.

Acknowledgements. The authors wish to thank the anonymous referees for valuable
comments and remarks which helped improving the paper.



Uniform Circle Formation for Opaque Robots with Lights 331

References

1. Aljohani, A., Sharma, G.: Complete visibility for mobile robots with lights toler-
ating faults. Int. J. Netw. Comput. 8, 32–52 (2018)

2. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility
and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol.
7269, pp. 30–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29353-5 4

3. Czyzowicz, J., G ↪asieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410, 481–499 (2009)

4. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: ICDCS 2012, pp.
506–515. IEEE (2012)

5. Das, D., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

6. Das, D., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots
in a ring with mobile faults. Theor. Comput. Sci. (2018). https://doi.org/10.1016/
j.tcs.2018.05.002

7. Datta, S., Dutta, A., Gan Chaudhuri, S., Mukhopadhyaya, K.: Circle formation by
asynchronous transparent fat robots. In: Hota, C., Srimani, P.K. (eds.) ICDCIT
2013. LNCS, vol. 7753, pp. 195–207. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36071-8 15

8. Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: POMC 2002, pp. 97–104. ACM (2002)

9. D’Emidio, M., Frigioni, D., Navarra, A.: Synchronous robots vs asynchronous
lights-enhanced robots on graphs. Electron. Notes Theor. Comput. Sci. 322, 169–
180 (2016)

10. D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power
of anonymous mobile robots. In: ICDCS 2016, pp. 293–302. IEEE (2016)

11. Dieudonné, Y., Petit, F.: Swing words to make circle formation quiescent. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 166–179.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8 14

12. Dieudonné, Y., Petit, F.: Squaring the circle with weak mobile robots. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 354–
365. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 33

13. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots
with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11764-5 11

14. Feletti, C.: Regular polygon formation for swarms of robots. MSc thesis, Dipar-
timento di Informatica, Università degli Studi di Milano (2018). https://www.
researchgate.net/profile/Caterina Feletti/contributions

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

16. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30, 413–457 (2017)

17. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

https://doi.org/10.1007/978-3-642-29353-5_4
https://doi.org/10.1007/978-3-642-29353-5_4
https://doi.org/10.1016/j.tcs.2018.05.002
https://doi.org/10.1016/j.tcs.2018.05.002
https://doi.org/10.1007/978-3-642-36071-8_15
https://doi.org/10.1007/978-3-642-36071-8_15
https://doi.org/10.1007/978-3-540-72951-8_14
https://doi.org/10.1007/978-3-540-92182-0_33
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1007/978-3-319-11764-5_11
https://www.researchgate.net/profile/Caterina_Feletti/contributions
https://www.researchgate.net/profile/Caterina_Feletti/contributions


332 C. Feletti et al.

18. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility
for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017.
LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69084-1 18

19. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility
for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016.
LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49259-9 26

20. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log N)-time
complete visibility for asynchronous robots with lights. In: IPDPS 2017, pp. 513–
522. IEEE (2017)

21. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)

22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

23. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

24. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/BFb0038202


Arbitrary Pattern Formation
with Four Robots

Quentin Bramas1(B) and Sébastien Tixeuil2(B)

1 ICUBE, University of Strasbourg, CNRS, Strasbourg, France
bramas@unistra.fr

2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

Sebastien.Tixeuil@lip6.fr

Abstract. The pattern formation problem by autonomous mobile
robots has been extensively studied and is at the core of oblivious mobile
robots literature. However remaining cases involving few robots are still
open. In this paper we propose a new geometric invariant that exists in
any configuration with four robots. We then use this invariant to solve
the pattern formation problem with four robots, with or without the
common chirality assumption.

1 Introduction

We consider a set of mobile robots that move freely in a continuous 2-
dimensional Euclidian space. Each robot repeats asynchronously Look-Compute-
Move (LCM) cycles [7]. First, it Looks at its surroundings to obtain a snapshot
containing the locations of all robots as points in the plane, with respect to
its ego-centered coordinate system. Based on this visual information, the robot
Computes a destination, and then Moves towards its destination. The robots are
identical, anonymous and oblivious i.e., the computed destination in each cycle
depends only on the snapshot obtained in the current cycle (and not on the past
history of execution). The snapshots obtained by the robots are not consistently
oriented in any manner.

In this particularly weak model, it is interesting to characterize which addi-
tional assumptions are needed for the robots to cooperatively perform a given
task. In this paper, we consider the pattern formation problem [7] in the most
general asynchronous (ASYNC) model [4]. The robots start in an arbitrary ini-
tial configuration where no two robots occupy the same position, and are given
the pattern to be formed as a set of coordinates in their own local coordinate
system. An algorithm solves the pattern formation problem if within finite time
the robots form the input pattern and remain stationary thereafter.

Related Work. The pattern formation problem has been extensively studied
in the deterministic setting in the semi-synchronous model [7], and the set of
deterministically formable patterns is well characterized [5]. An algorithm that
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 333–348, 2018.
https://doi.org/10.1007/978-3-030-03232-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_22&domain=pdf
http://orcid.org/0000-0003-0612-5616


334 Q. Bramas and S. Tixeuil

solves all possible instances of the problem has been presented in the ASYNC
model without a common coordinate system [4], but assuming robots share a
common chirality (a proved necessary assumption) and that the number n of
robots is greater than 4.

When the pattern to form is a regular n-gon, the problem has been solved
without any additional assumptions when n �= 4 [3]. Recently, a complex algo-
rithm that uses several classes of configurations to form the square with 4 robots
has been presented [6]. Finally, an algorithm that works with any number of
robots with or without chirality that can form any pattern has been presented
recently [2] but it assumes that the initial configuration is asymmetric.

Overall, the deterministic arbitrary pattern formation problem for four robots
with arbitrary initial configuration remains open, with or without chirality.

Contribution. We consider the arbitrary pattern formation problem with four
robots in the ASYNC model, with or without chirality.

We first define a new geometric invariant that exists in any quadrilateral,
which we call H-segment. Geometric inveriants are very useful when creating
algorithms for autonomous asynchronous mobile robots, as they enable persistent
information over several execution cycles, and do not depend on what the other
robots are doing (as long as their movements satisfy the geometric invariant).
We believe this new invariant could be extended to configurations involving more
robots, and thus be of independent interest.

Then, we present our algorithm that forms any target pattern from any solv-
able initial configuration (some patterns remain impossible to form due to sym-
metricity). Our algorithm works with or without the common chirality assump-
tion (if robots do not share a common chirality, the set of solvable patterns is
of course reduced). We use the H-segment invariant when the initial configu-
ration is a quadrilateral. Our algorithm is defined using a set of phases, where
each phase is associated with a geometric invariant. This way of describing an
algorithm is inspired by the work of Cicerone et al. [2], but our use of geometric
invariant can be viewed as an extension of their methodology to allow several
robots to move together.

2 The Model

We consider a set of n = 4 robots on the two-dimensional Euclidean plane. The
robots are anonymous and all execute the same algorithm.

Each time a robot is activated it starts a Look/Compute/Move cycle. After
the look phase, a robot obtains a configuration P representing the positions of
the robots in its local coordinate system. After an arbitrary delay, the robot
computes a path to a destination. Then, it moves toward the destination fol-
lowing the previously computed path. The duration of the move phase, and the
delay between two phases, are chosen by an adversary and can be arbitrary long.
The adversary decides when robots are activated assuming a fair scheduling i.e.,
in any configuration, all robots are activated within finite time. The adversary



Arbitrary Pattern Formation with Four Robots 335

also controls the robots movement along their target path and can stop a robot
before reaching its destination, but not before traveling at least a distance δ > 0
(δ being unknown to the robots).

We say two set of points A and B are similar, denoted A ≈ B, if B can
be obtained from A by translation, scaling, rotation, and, if the robots are not
chiral, symmetry. A configuration P is a set of positions of robots at a given
time. Each robot that looks at this configuration may see different (but similar)
set of points.

An execution of an algorithm is an infinite sequence P (0), P (1), . . . of con-
figurations. A robot is static when it is not in the moving phase or if the robot
has reached its destination. A configuration is static if all robots are static (note
that this information is not known by the robots).

An algorithm ψ forms a pattern F if, for any execution P (0), P (1), . . ., there
exists a time t such that P (t′) ≈ F for all t′ ≥ t. In the sequel, F denotes the
pattern to form.

Symmetricity. The symmetricity of two dimensional robots configurations has
been defined many times, usually by counting the number of rotations leaving
the configuration invariant. This definition is well-suited when robots agree on a
common chirality, but without chirality the configuration may also have an axis
of symmetry. Recently the symmetricity of three-dimensional configurations has
been defined formally in an elegant and general way [8–10]. We present here a
short definition and how to apply it for two-dimensional configurations without
chirality. For the complete definition, see the work of Yamauchi et al. [10]. We
call a set of robots chiral if they all share the same chirality.

Given a configuration C, one can augment it by assigning an arbitrary coor-
dinate system to each robot. We assume here that those arbitrary coordinate
systems have the same chirality if the robots are chiral. A symmetry group of a
configuration is a point group (a group of geometric symmetries) acting on the
configuration augmented with arbitrary coordinate systems. The symmetricity
of a configuration is the set of its symmetry groups. We can represent the sym-
metricity of a configuration just by giving the maximal symmetry groups of this
configuration as it is clear that all the subgroups of a symmetry group of a
configuration are also symmetry groups of this configuration.

In the two dimensional plane, there are only two kinds of symmetry
groups, Cyclic groups of order k (Ck) and Dihedral groups of order 2k (Dk).
For instance, the symmetricity of the square is {C4,D2}, or more precisely
{C1, C2, C4,D1,D2}. When a configuration C has a symmetricity {Ca,Db}, we
denote by ρ(C) = a the rotational symmetricity, and Φ(C) = 2b the axial sym-
metricity (we write Φ(C) = 1 if C has a symmetricity {Cρ(C)}). If the robots
have the same chirality, then Φ(C) is always 1.

It is well known [10] that forming a pattern F from an initial configuration C
is possible only if ρ(C) divides ρ(F ) and Φ(C) divides Φ(C) i.e., if the symmetri-
ciy of C is a subset of the symmetricity of F , even if robots are fully synchronous
and have memory.



336 Q. Bramas and S. Tixeuil

Also, when robots are chiral, an algorithm exists in the two-dimensional plan
for all solvable instances [5]. When robots are not chiral, there are some algo-
rithms that solve partially this problem, for instance when C has symmetricity
{C1} [2]. In this paper, we present an algorithm that works for all solvable
instances, for configurations of four robots, with or without chirality.

4-robots Configurations. Four points form either a line, a triangle (if one
point is strictly inside the triangle formed by the three others) or a quadrilateral.
When four points form a quadrilateral, there is a unique way, up to rotation and
mirroring, to order those points.

A quadrilateral is orthodiagonal when its two diagonals cross with right
angles. A kite is an orthodiagonal quadrilateral such that one diagonal is the
line bisector of the other. If the latter is longer than, or has the same length as,
the former one, the kite is said to be a long kite. Table 1 presents the symmetricity
of some 4-robots configurations.

Table 1. Symmetricity of several 4-robots configurations

Configuration C ρ(C) Φ(C)

Square 4 4

Rectangle 2 4

Non-rectangle parallelogram 2 1

Rhombus 2 1

Isosceles trapezoid 1 2

Asymmetric quadrilateral 1 1

4 aligned robots (with central symmetry) 2 2

Triangle with a robot inside 1 1

3 The H-segment of a Quadrilateral

First we define the H-coordinates of a quadrilateral. Then, we define the H-
segments of a quadrilateral and in which case one can be uniquely elected. Finally
we present the properties of this H-segment and how it remains invariant.

3.1 The Construction of an H-segment

For simplicity we denote by {p1, p2}
⊕{p3, p4} a partition in two sets {p1, p2}

and {p3, p4} of a quadrilateral (p1, p2, p3, p4). The other possible partition is
{p2, p3}

⊕{p1, p4}. The notation ∠(a, b, c) denote then oriented angle at point b
from a to c. The orientation is always clockwise if robots are chiral, or arbitrary
otherwise (but it is always the same for a given robot). In particular, one can
choose to orient the angles in the same way as the indexes of the quadrilateral.
See Fig. 1 for an illustration of the following definition.



Arbitrary Pattern Formation with Four Robots 337

Definition 1 (The H-segment of a partition of four points). Let
{p1, p2}

⊕{p3, p4} be a partition of a quadrilateral (p1, p2, p3, p4). The H-
segment, if it exists, is the unique segment [b1, b2] such that (i) among
∠(p1, b1, b2) and ∠(b2, b1, p2), one equals 5π

8 and the other is congruent mod-
ulo π and (ii) the same is true with ∠(p3, b2, b1) and ∠(b1, b2, p4).

Let c be the interesection of the two diagonals of the quadrilateral, then
we show by construction that the H-segment is well-defined and exists if
∠(p1, c, p2) < 3π/4. Let C1,2 be the circle pasing through p1 and p2 such that its
center A verifies ∠(p2, A, p1) = π

2 . In particular, A and c are on different sides of
the line (p1, p2). Also, p1 and p2 divides C1,2 into a long arc LC and a short arc
SC that have the property that any point P on SC verifies ∠(p1, P, p2) = 3π

4 .
Let h1,2 be the intersection of the segment bisector of [p1, p2] with the longest

arc of C1,2. We construct C3,4 and h3,4 in the same way with p3 and p4. Let
b1, resp. b2, be the intersection of the line [h1,2, h3,4] with C1,2 (other than
h1,2), resp. with C3,4 (other than h3,4). One can prove that b2 is outside C1,2 if
∠(p1, c, p2) < 3π

4 . Indeed, by continuity we have that, if b2 is inside C1,2, then
the center c is inside C1,2 ∩C3,4 and thus verifies ∠(p1, c, p2) = ∠(p3, c, p4) ≥ 3π

4 .
By construction we have ∠(p1, h1,2, p2) = π

4 and it can be shown that we have
either ∠(p1, b1, b2) = ∠(b2, b1, p2) = 5π

8 , ∠(p1, b1, b2) = ∠(b2, b1, p2) − π = 5π
8 , or

∠(p1, b1, b2) − π = ∠(b2, b1, p2) = 5π
8 depending on whether b1 is in the shortest

or the longest arc of C1,2 delimited by p1 and p2. The same is true for p3 and p4
on the other side of the segment. b1 are b2 are unique as any such points should
be located on C1,2 and C3,4 and the line passing through them should also pass
through h1,2 and h3,4. See Fig. 1 for an illustration.

The construction is unique and depends only on the choice of the partition
(and not on the way the indexes are chosen or on the orientation, as soon as the
quadrilateral is convex). The fact that ∠(p1, c, p2) < 3π

4 is a sufficient condition
for the existence of a H-segment means that for any quadrilateral, there is at
least one partition that have an H-segment. Indeed, among the two angles formed
by the diagonals of a quadrilateral, at least one is smaller than, or equals to, π

2
(and thus to 3π

4 ).
The following property is a direct consequence of the construction of the

H-segment. Here (p1, p2, p3, p4) is a quadrilateral.

Proposition 1. Let [b1, b2] be the H-segment of a partition {p1, p2}
⊕{p3, p4}

and let p′
1 be a point in the line (p1, b1). If (p′

1, p2, p3, p4) is still a convex quadri-
lateral, then [b1, b2] is also the H-segment of the partition {p′

1, p2}
⊕{p3, p4}.

The previous property means that a H-segment is invariant by movement of a
point toward one extremity of it (and even beyond it) as soon as the quadrilateral
remains convex. A direct consequence is that if four robots agree on a partition,
then they can move while keeping this H-segment invariant, to remember their
previous destination for instance. Moreover, the length of the segment can be
used as a unit distance that remains invariant.



338 Q. Bramas and S. Tixeuil

H-segment
b1

b2

h1,2

h3,4

r1
r2

r3
r4

Fig. 1. Construction of the H-segment

r1(1)

r2(0.5)

r4(3)

r3(−0.5)

Fig. 2. 4 robots on their H-axis asso-
ciated with an H-segment. The H-
coordinates of the four robots is the
tuple (−0.5, 3, 0.5, 1)

3.2 The H-coordinates of Four Points

In a quadrilateral, given a H-segment and using the same notation as for its
construction, the line (p1, b1) forms an axis where the zero is at b1, the unit
distance is the length of the H-segment, and the axis is directed so that a point
p with positive coordinate satisfies ∠(p, b1, b2) > π. This axis is called the H-axis
of p1, and the coordinate of p1 in its H-axis is called its H-coordinate. Let ci be
the H-coordinate of pi, for i ∈ {1, . . . , 4}. See Fig. 2 for an illustration.

The H-coordinates associated to an H-segment {p1, p2}
⊕{p3, p4} is the

smallest tuple (using the lexicographical order) among all the possible order-
ing of its coordinates, that respect the ordering of the vertices of the quadri-
lateral. In more details, H-segment is the smallest tuple between (c1, c2, c3, c4)
and (c3, c4, c1, c2) if the robots are chiral, and the smallest tuple between
(c1, c2, c3, c4), (c3, c4, c1, c2), (c2, c1, c4, c3), and (c4, c3, c2, c1) otherwise.

Definition 2. The H-coordinates of a quadrilateral are the H-coordinates asso-
ciated with the longuest H-segment. If both H-segments have the same length,
they are the smallest H-coordinates between the two.

Theorem 1. Two quadrilaterals are similar if and only if they have the same
H-coordinates.

Proof. Let Q and Q′ be two similar quadrilaterals, and T be the transformation
such that Q′ = T (Q). Since the construction of the H-segment does not depend
on the coordinates system, the image of a longuest H-segment of Q by T is a
longuest H-segment of Q′. The H-axes of Q are also transformed by T to the



Arbitrary Pattern Formation with Four Robots 339

H-axes of Q′. The length are multiplied by a constant number, but since the
length of the longuest H-segment is used as a reference for the computation of
the H-coordinates, the H-coordinates remain the same. For the converse, suppose
that two quadrilaterals Q and Q′ have the same H-coordinates, then let T be a
transformation that transforms the H-segment associated to the H-coordinates
of Q to the H-segment associated to the H-coordinates of Q′ (one can choose an
arbitrary H-segment if both H-segments are associate to the H-coordinates), and
that associates the H-axis of the point with smallest (resp., the second, third, and
fourth smallest) H-coordinate in Q to the H-axis of the point with the smallest
(resp., second, third, and fourth smallest) H-coordinate in Q′. Then, since the
transformation maintains angles and distance ratios, we have T (Q) = Q′.

3.3 The H-segment of a Non-orthodiagonal Quadrilateral

An easy way for all the robots to agree on a single H-segment is to only consider
the longest one. One can prove the following property that indicates when we
can discriminate the two H-segment using their distances.

Proposition 2. The diagonals of a quadrilateral are perpendicular if and only
if the two H-segments of the configuration have the same length.

A quadrilateral that is not orthodiagonal is said to be a H-quadrilateral. The
elected H-segment of a H-quadrilateral is the unique longest H-segment.

The following two properties are fundamental for the correctness of our algo-
rithm, as they indicate that the elected H-segment of a H-quadrilateral is invari-
ant by movements that either decrease a H-coordinate or that increase it assum-
ing that the H-coordinates remains smaller than the H-coordinates of an existing
quadrilateral.

Proposition 3. Let C be a configuration, and s be one of its longuest H-
segment. Let C ′ be the configuration after a robot moves on its H-axis in the
direction that decreases its H-coordinate. Either s is the elected H-segment of
C ′, or C ′ is not a quadrilateral.

Proof. When a robot decreases its H-coordinate associated to a H-segment, the
other H-segment gets shorter. Thus, after the robot’s movement, s become the
longuest H-segment, or remains the longuest if it was already the longuest in C.

Corollary 1. Let Q and Q′ be two quadrilaterals. Let d = (d1, d2, d3, d4) be
the H-coordinates of Q associated with an H-segment that is not necessarily the
elected one, and d′ = (d′

1, d
′
2, d

′
3, d

′
4) the H-segment of Q′. If ∀i, di ≤ d′

i, then d
is associated with the elected H-segment of Q.

Proof. Q can be obtained from Q′ by decreasing its H-coordinates and by Propo-
sition 3, the elected H-segement remains the same.



340 Q. Bramas and S. Tixeuil

3.4 The ε-square of a Segment

For a given ε, the ε-square of a segment [a, b] is the square of size ε×ab centered
at the middle of [a, b] and that has two sides parallel to the (a, b) line.

A configuration of four robots is in a ε-square configuration if two robots are
inside the ε-square of the segment formed by the two other robots.

Given two points p1 and p2, let ξ > 0. For any two points p′
1 and p′

2 such that
the H-segment of the partition {p1, p

′
1} ∪ {p2, p

′
2} is of length ξ × p1p2, the sum

of the H-coordinates of p1 and p2 is a constant that does not depends on the
choice of p′

1 and p′
2. Indeed, for any segment [a, b] of length ξ × p1p2 such that

∠(b, a, p1) = ∠(a, b, p2) = 5π/8 we can use the law of cosines to compute the
lengths d(p1, a) and d(b, p2) and show that it does not depend on the position
of a and b. Moreover, for any set of four points having a H-segment of length l,
the distance between two points is at least cos (2π/3) × l.

Combining those two claims, we have the following theorem.

Theorem 2. For any real number d > 0, there exists ε > 0 small enough so
that, if two robots robots are inside or on the ε-square of the two others, then all
their H-coordinates are strictly greater than d.

Indeed, the fact that two robots are close to one another means that the
H-segment is also small compared to the distance between the two other robots.
The latter means that the H-coordinates of those two robots are large.

In the remaining of the paper, ε is defined as in the previous theorem, using d
as the maximum value among the H-coordinates of the pattern to form F (when
F is a quadrilateral). This means that, if the H-coordinates of the configuration
are smaller than the maximum H-coordinate of F , then the configuration is not
an ε-square configuration.

4 4-Robot Pattern Formation Algorithm

In this section, we present our pattern formation algorithm. We first give
an overview and then present in detail each move, followed by the proof of
correctness.

4.1 Algorithm Overview

The algorithm is divided in several phases. Each phase corresponds a set of
configurations and is associated with a geometric invariant that is used to ensure
the robots have a persistent view of the configuration between two execution
of their Look-Move-Compute cycles. The main phase of the algorithm is the
one that is executed when the four robots form a quadrilateral. In this case
we use the H-segment invariant to allow multiple robots to move simultaneously
(which is necessary when the configuration is symmetric) while having persistent
destination throughout the execution.

Then, there are two special phases. One if the configuration and the pattern
are both long kites, and one if the configuration and the pattern are both lines.



Arbitrary Pattern Formation with Four Robots 341

In this case, the configuration remains a long kite, resp. a line, throughout the
execution.

If the initial configuration is a long kite or a line, and the pattern to form
is neither of that, then an ε-square configuration is formed to transition safely
towards a quadrilateral so that the first phase can be executed.

Finally, when the pattern to form is a triangle, with a robot strictly inside
it, then the goal is first to form a configuration whose convex hull is a triangle
similar to the pattern. Then the robot in the middle can easily move towards
the only remaining empty point of the pattern.

4.2 Algorithm Details

The algorithm consists of a set of phases. Each phase is a tuple containing a
set of configurations, a geometric invariant, and a move. The move must pre-
serve the geometric invariant, and when the robots reach a configuration from
another phase, the robots must be static. This way of defining an algorithm for
asynchronous robots is inspired by the work of Cicerone et al. [2], that helps
decomposing the phases of an algorithm while ensuring that different phases are
composable.

In the sequel a robot r also denotes its position in the plan.

Phases Definition. There are four main phases depending whether the con-
figuration is (i) a triangle with angles a, b and π − a − b (Ta,b), (ii) a line (L),
(iii) a long kite (K), or (iv) another quadrilateral (H). Additionaly, there is a
fifth phase used as a transition when the initial configuration is in L∪K and the
target pattern F is in H ∪ T . In some phase, we define two possible moves but
only one applies at a time depending on the pattern. Usually, there is a move
if the pattern can be reached directly, and another move if the goal is to reach
another phase.

F : This phase corresponds to the success of the algorithm. If the configuration
is similar to the pattern, then, no move is executed.

Ta,b : Configurations: r1 is inside the triangle formed by the 3 others. For
simplicity, we consider that if F ∈ Ta,b, then the configuration where three
robots form a triangle with angles a, b and 2π − a − b and the fourth robots
is one an edge is also considered in Ta,b (this is not the case for any other
parameter a and b).
Invariant: The triangle convex hull.
Moves: If F ∈ Ta,b, move mT→F to reach F .
Otherwise (in particular if F ∈ Ta′,b′ with (a, b) �= (a′, b′)), move mT→H to
reach H

L : Configurations: r1 and r2 are the two farthest robots and r3 and r4 are
on [r1, r2].
Invariant: Line [r1, r2]
Moves: If F ∈ L, move mL→F to reach F .
Otherwise, move mL→ε-LB to reach ε − LB



342 Q. Bramas and S. Tixeuil

K : Configurations: r1 and r2 are the two farthest robots, and r3 and r4 are
on the line bisector of [r1, r2].
Invariant: Line [r1, r2]
Moves: If F ∈ K, move mK→F to reach F .
Otherwise, move mK→ε-LB to reach ε − LB

ε − LB : Configurations: r1 and r2 are the two farthest robots, and r3 and r4
are inside the ε-square, or on its boundary, except when the two robots are
on two vertices of the ε-square.
Invariant: Line [r1, r2]
Moves: Move mε-LB→H to reach H

H : Configurations: the 4 robots are not in any previous configurations.
Invariant: The H-segment
Moves: If F ∈ H ∪ K ∪ L, move mH→F to reach F .
Otherwise, move mH→T to reach Ta,b (if F ∈ Ta,b)

Moves Definition. We now describe the corresponding moves:

– move mT→F : The convex hull is a triangle that is similar to the convex hull of
the pattern. By mapping the pattern to the current configuration so that both
triangle coincide, we obtain the location of the fourth point of the pattern.
The robot inside the triangle moves towards this point. If there are several
such mappings (due to symmetry), and thus several possible destinations, we
arbitrarily choose one of the closest.

– move mT→H : The robot inside the triangle formed by the three other robots
moves towards one of the closest point on an edge of the triangle.

– move mL→F : The robots r1 and r2 are on the segment formed by the two
farthest robots [r3, r4] with d(r1, r3) < d(r2, r3) (i.e., robots are on the line
in this order: r3, r1, r2, and r4). Similarly, in the pattern, two points f1 and
f2 are located on the segment formed by the two other points f3 and f4
with d(f1, f3) < d(f2, f3). Let d1 = d(r1, r3), d2 = d(r2, r4), d′

1 = d(f1, f3),
d′
2 = d(f2, f4).

If the pattern has a center of symmetry, then d′
1 = d′

2 and we command r1
to move at distance d′

1 from r3, and r2 to move at distance d′
1 from r4. If the

other robot is in the trajectory, then we command to move half way through.

Otherwise, the pattern nor the configuration has a center of symmetry, and
we can chose the indexes so that d1 < d2 and d′

1 < d′
2. Then, we command

r1 to move at distance d′
1 from r3, except if r2 is in its trajectory. Also, if

d′
2 > d1, we command r2 to move at distance d′

2 from r4.
– move mL→ε-LB : The robots r1 and r2 are on the segment formed by the two

farthest robots [r3, r4].
Case 1: If the symmetricity of the pattern F contains C2 and D1, then the
destinations of r1 and r2 are the two points at distance ε from the middle M
of [r3, r4] (on the different side of the segment). If both robots are on the same
side of M , the robot closest to M first moves to its destination. If one robot



Arbitrary Pattern Formation with Four Robots 343

is at distance less than ε to M , then it first moves towards its destination.
Otherwise both robots can move towards their destination at the same time.
Case 2: If the symmetricity of the pattern F does not contain C2 nor D1,
then the configuration has symmetricity {C1} (i.e., no symmetry) and we
can order the robots according to their distance to the extremities like in the
previous move. Let d1 and d2 (d1 < d2) be defined as in the previous move.
The destination of r1 (resp., r2), is the point at distance ε (resp., ε/2) from
the middle M on the segment [r3,M ] (resp., on the segment [M, r4]). If r2
already reached its destination, then r1 moves towards its destination. If one
robot is on the wrong side of M (it must be r2), then it moves towards its
destination and the other robot does not move. If one robot is at distance
less than ε from the middle M (it must be r2), then it moves towards its
destination, and the other robot does not move. Ohterwise, r2 moves towards
its destination while r1 does not move.

– move mK→F : The robots r1 and r2 are on the line bisector of the segment
formed by the two farthest robots [r3, r4]. Let r1 be at distance d1 from the
center and r2 at distance d2. If d1 = d2, the configuration as a rotational
symmetry C2, so has the target pattern. Thus, both robots move at distance
d′ from the center, where d′/2 is the distance of the shortest diagonal of
pattern F .
Otherwise we assume that d1 < d2, and that in the pattern F , the two
extremities of the shortest diagonal are at distance d′

1 and d′
2 (with d′

1 < d′
2)

from the center. The destination of r1 (resp., r2) is the point at distance d′
1

(resp., d′
2) from the center. If d1 > d′

1, then r1 moves towards its destination,
and r2 does not move. If d2 < d′

2, then r2 moves towards its destination, and
r1 does not move. Otherwise both robots move towards their destination at
the same time.

– move mK→ε-LB : The robots r1 and r2 are on the line bisector of the segment
formed by the two farthest robots [r3, r4]. Let r1 be at distance d1 from the
center, and r2 be at distance d2. If the symmetricity of the target pattern F
contains C2, then the destinations of r1 and r2 are the two points on the line
bisector of [r2, r4] at distance ε from the center (each robot and its destination
are on the same half plane delimited by [r3, r4]). Both robots move towards
their destination at the same time.
Otherwise, the configuration has no symmetry and we can assume d1 < d2.
The destination of r1 is the point on the line bisector of [r2, r4] at distance ε/2
from the center, and the destination of r2 is the point at distance ε from the
center (each robot and its destination are on the same half plane delimited
by [r3, r4]). If d1 < ε, then r1 moves towards its destination, and r2 does not
move. If d1 > ε/2, only r1 moves towards its destination. Otherwise r1 and
r2 move towards their destination at the same time.

– move mε-LB→H : r1 and r2 are in the ε-square of the segment [r3, r4]. Let M
be the middle of [r3, r4], and let V be the set containing the 4 vertices of the
ε-square.
If r1 is located at a point of V , then it does not move, and r2 moves to the
point in V , symmetric to r1 by symmetry of axis [r3, r4]. Else, if d(M, r1) >



344 Q. Bramas and S. Tixeuil

d(M, r2), then r1 moves towards the closest point in V , and r2 does not move.
Else, if r2 is closer to the segment [r3, r4] than r1, then r1 moves towards one
of the closest point of V , and r2 does not move. Otherwise, r1 and r2 are
symmetric with respect to M , to the segment [r3, r4] or to its line bisector.
For all those cases, both robots move towards one of the closest point in V .

– move mH→F : Let d = (d1, d2, d3, d4) be the H-coordinates of C, and d′ =
(d′

1, d
′
2, d

′
3, d

′
4) be the H-coordinates of F .

If the pattern is a rectangle i.e., all H-coordinates are equal to a number c,
then we command each robot to move towards the point of coordinates c (a
robot whose movement decreases its H-coordinate moves first).
If the pattern has no symmetry, its H-coordinates can be ordered min-
first, resp. max-first, if there is an ordering (d′

1, d
′
2, d

′
3, d

′
4) such that d′

1 is
strictly smaller, resp. strictly greater, than the other coordinates (strictly
smaller, resp. greater, than d′

3 if the robots are chiral). We order the H-
coordinates of the configuration in the same way as the pattern, and we
denote (d1, d2, d3, d4). If it is not possible (for instance (1, 2, 2, 2) cannot be
ordered max-first), then a unique robot can be selected to move slightly to
increase or decrease its H-coordinates so that the H-coordinates of the con-
figuration are ordered in the same way as the pattern. With those ordered
H-coordinates, each robot ri moves towards the point of coordinate d′

i, while
ensuring not to reach the coordinate of r1, so that the H-coordinate of the
configuration remains ordered in the same way during the whole phase. Also,
the first robots commanded to move are the ones whose movement decrease
their H-coordinate. Then, the other robots can move.
If the pattern is symmetric, we do not reorder the H-coordinates, but if there
exists an ordering (max-first, or min-first) for the configuration, then the
robots’ movements ensure that this ordereding is preserved (by not moving
to the same H-coordinate as r1.). If there exists no special ordering, then
the configuration is also symmetric (with the same symmetry as the pat-
tern), and can be partitioned into two groups of two robots. The robots in
a group have the same coordinates and are assigned a destination with the
same coordinates.

– move mH→T : Same as mH→F , but instead of forming F , the robots form F ′

whose convex hull is a triangle similar to the convex hull of F , and where
the fourth robot is in the middle of one of the smallest edge (the first one in
the clockwise order if there are many and the robots are chiral, or any if the
triangle is equilateral).

Theorem 3. Our algorithm forms any pattern F from any initial configuration
I, if the symmetricity of I is a subset of the symmetricity of F .

Proof. If the pattern and the initial configuration are both long kites, resp. lines,
then phase K, resp. L, is executed to form the pattern.

If the pattern to form is not a long kite nor a line and the initial configu-
ration is a long kite or a line, then phase K or L is executed to form a ε-LB
configuration. When phase ε-LB is executed, a quadrilateral (not ε-square) is
formed.



Arbitrary Pattern Formation with Four Robots 345

If the pattern to form is a triangle and the initial configuration is non-similar
triangle, then phase Ta,b is executed to form a quadrilateral.

When the configuration is a quadrilateral (not ε-square), and the pattern to
form is a not a triangle, then phase H is executed to form the pattern.

When the configuration is a quadrilateral (not ε-square), and the pattern to
form is a triangle, then a quadrilateral with a convex hull similar to the pattern
is formed.

If the pattern to form is a triangle and the initial configuration is a similar
triangle, then phase Ta,b is executed to form the pattern.

4.3 Proof of Correctness

To prove the correctness of our algorithm, we prove for each phase that the geo-
metric invariant remains invariant, and when the configuration of another phase
is reached all the robots are static. Moreover, we prove that for all the phases,
the symmetricity of the configuration remains a subset of the symmetricity of
the pattern, i.e., we do not create a symmetry that render the problem unsolv-
able. By proving so, we can assume inductively while executing a phase that the
initial configuration is static and that the problem is solvable.

– move mT→F : The convex hull is a triangle that is similar to the convex hull of
the pattern. One can match the pattern to the current configuration so that
the robots forming the triangle are located at a point in F . The only robot
inside the triangle moves to the last empty destination. If there are several
possible ways to match the pattern (and thus several possible destinations
for the robot inside the triangle), then moving to any of them will results in
the pattern being formed. By choosing one of the closest one, we ensure that,
after the robot is stopped during its movement and activated again, the same
destination is chosen again so that it is reached in finite time.
Invariant: During the whole movement, the convex hull is invariant as only
the robot inside it is moving toward a point that is also inside it.
Symmetry: There is no new symmetry as the convex hull is a triangle.
When the robot reaches its destination, the configuration is similar to F , and
no robot is moving.

– move mT→H : The robot inside the triangle convex hull moves toward the
closest point on its edge.
Invariant: Only the robot inside the convex hull moves, so the convex hull
does not change during the movement.
Symmetry: There is no new symmetry as the convex hull is a triangle.
When the moving robot reaches its destination, the configuration is in H and
no robots is moving.

– move mL→F : r1 and r2 are located on the line [r3, r4].
Invariant: The robots r1 and r2 are moving on [r3, r4], so [r3, r4] remains
invariant.
Symmetry: If the pattern has symmetry, then we are allowed to create new
symmetry. We just need to avoid creating a point of multiplicity, which we



346 Q. Bramas and S. Tixeuil

do by commanding the robots not to move at the same location as another
robot. One can observe that there is no deadlock since their destinations are
ordered on the segment in the same way as they are ordered.
If the pattern is asymetric, then d(r1, r3) < d(r2, r4) is true during the whole
phase. Indeed, r2 moves only if d′

2 > d1. In this case, since d′
2 > d′

1, then
d′
2 > d(r1, r3) remains true as soon as r2 starts moving and until the end of

the phase. When r1 moves, either d1 > d′
1, in this case d(r1, r3) decreases and

thus remains smaller than d2, or d1 < d′
1 but then we have d1 < d′

2, r2 can
move and one can make the same observation as above.
When each robot reaches its destination, the pattern is formed, and no robot
is moving.

– move mL→ε-LB : r1 and r2 are located on the line [r3, r4].
Invariant: The robots r1 and r2 are moving on [r3, r4], so [r3, r4] remains
invariant.
Symmetry: As in the previous move, symmetry might be created when the
pattern itself contains symmetry. The proof is similar to the previous move.
The only difference here is that we make sure that while robots are moving,
the configuration remains in L, and does not ends up prematurely in ε-LB.
To do so, we make sure that a robot that is at distance less than ε to the
middle (there can be only one such robot, otherwise the inital configuration
is already in ε-LB) moves first towards its destination before the other robot
starts moving.
At the end, when each robot has reached its destination, both robots are
static and either both are at distance ε from the middle, or one is at distance
ε and the other at distance ε/2.

– move mK→F :
Invariant: The robots r1 and r2 are moving on the line bisector of [r3, r4],
ensuring d(r1, r2) < d(r3, r4) so that [r3, r4] remains invariant (the distance
can be equal when the pattern is formed and it is a square).
Symmetry: If the pattern is not symmetric, then we have to ensure that
during the whole execution, the inequality d1 < d2 remains. If d1 > d′

1, then
r1 moves towards the center and thus the inequality is preserved. If d2 < d′

2,
then r2 moves away from the center, and thus the inequality is preserved.
Otherwise, r1 moves away from the center but stops at distance d′

1 < d′
2 ≤ d2,

thus the inequality is preserved.
– move mK→ε-LB :
Invariant: The robots r1 and r2 are moving on the line bisector of [r3, r4],
ensuring r1r2 < r3r4 so that [r3, r4] remains invariant.
Symmetry: As before, we create symmetry only if the pattern is symmetric.
Additionaly, if there is a robot at distance less than ε from the center, we
command it to move first to ensure that we do not create configuration in
ε-LB while robots are moving.

– move mε-LB→H :
Invariant: The two farthest robots do not move so [r3, r4] remains invariant.
Symmetry: If the symmetricity of the configuration does not contain C2

(no center of symmetry), resp. does not contain D1 (no axis of symmetry



Arbitrary Pattern Formation with Four Robots 347

other than [r3, r4]), then the two robots are assigned vertices that are not
symmetric with respect to the midde of [r3, r4], resp. with respect to the
line bisector of [r3, r4]. Indeed, in the first three cases of the move, only one
robot is moving at a time and at the end of the phase, the two robots are
symmetric with respect to [r3, r4] i.e., the configuration is asymetric. The
last case of the move correspond either to the case where the two robots
are symmetric with respect to [r3, r4], then the obtained configuration is the
same as before, or where there is a symmetry that might be preserved in the
obtained configuration. In each case, the vertice selected by the robots are
not the same because otherwise that would contradict with their symmetry.

– move mH→F : First, one can observe that if the quadrilateral is orthodiagonal,
then an unique H-segment is elected when the first robot move. If there is no
way to move a single robot, the there is axis of symmetry, and in this case
symmetric robots select the H-segment so that they are in the same part of
the associated partition.

One can also observe that if the quadrilateral is not orthodiagonal, then
it is always possible to increase slightly the H-coordinate of a robot without
creating an orthodiagonal quadrilateral, because the set of such H-coordinates
is open. This is used when the pattern has a special order (max-first of min-
first), and the H-coordinates of the current configuration cannot be ordered.
If the quadrilateral is orthodiagonal, then the fact that the H-coordinates of
the configuration do not have a special order implies that it is symmetric,
and so the H-coordinates of the pattern do not have a special order neither.
Finally, due to Theorem 2, no ε-square configuration can be created.
Invariant: The robots move on their H-lines while ensuring that the convex
hull remains a quadrilateral. The elected H-segment remains the same because
first, the robots decrease their H-coordinates (Proposition 3), and then, their
H-coordinates are smaller than the H-coordinates of F (Corollary 1).
Symmetry: No unwanted symmetry is created because if the pattern asy-
metric, one of the robots has an H-coordinate that is greater or smaller than
the other robots (or than the antidiagonal robot if robots are chiral).
When each robot has reached its destination, the target pattern and the
current configuration have the same H-coordinates, i.e., the pattern is formed
(Theorem 1).

– move mH→T : This move has the same properties as the previous one, but
when each robot has reached its destination, the configuration is in Ta,b (such
that F ∈ Ta,b).

5 Conclusion

We presented an algorithm to deterministically form arbitrary patterns with four
robots in the most general execution model: ASYNC. This study complements
existing protocols that assume more than four robots, and closes a long lasting
open case.



348 Q. Bramas and S. Tixeuil

An interesting question left for future work is to characterize the added bene-
fits of randomization. It is known that when n > 4, a probabilistic approach can
form any arbitrary pattern (even those with multiplicity points) [1]. However,
the case of four probabilistic robots remains open.

References

1. Bramas, Q., Tixeuil, S.: Brief announcement: probabilistic asynchronous arbitrary
pattern formation. In: Giakkoupis, G. (ed.) Proceedings of the 2016 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–
28 July 2016, pp. 443–445. ACM (2016). https://doi.org/10.1145/2933057.2933074

2. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distrib. Comput. 1–42 (2018). https://rd.
springer.com/article/10.1007%2Fs00446-018-0325-7#citeas

3. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30, 1–45 (2014)

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008). https://doi.org/10.1016/j.tcs.2008.07.026

5. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015).
https://doi.org/10.1137/140958682

6. Mamino, M., Viglietta, G.: Square formation by asynchronous oblivious robots.
arXiv preprint arXiv:1605.06093 (2016)

7. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/
10.1137/S009753979628292X

8. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots without chirality. In: Aspnes, J., Bessani, A., Felber, P.,
Leitão, J. (eds.) 21st International Conference on Principles of Distributed Sys-
tems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017. LIPIcs, vol. 95, pp.
13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://
doi.org/10.4230/LIPIcs.OPODIS.2017.13

9. Uehara, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by semi-
synchronous robots in the three dimensional euclidean space. In: Bonakdarpour,
B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 383–398. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49259-9 30

10. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional euclidean space. J. ACM 64(3),
16:1–16:43 (2017). https://doi.org/10.1145/3060272

https://doi.org/10.1145/2933057.2933074
https://springerd.bibliotecabuap.elogim.com/article/10.1007%2Fs00446-018-0325-7#citeas
https://springerd.bibliotecabuap.elogim.com/article/10.1007%2Fs00446-018-0325-7#citeas
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1137/140958682
http://arxiv.org/abs/1605.06093
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.4230/LIPIcs.OPODIS.2017.13
https://doi.org/10.4230/LIPIcs.OPODIS.2017.13
https://doi.org/10.1007/978-3-319-49259-9_30
https://doi.org/10.1145/3060272


Gracefully Degrading Gathering
in Dynamic Rings

Marjorie Bournat(B), Swan Dubois, and Franck Petit

Sorbonne Université, CNRS, Inria, LIP6, 75005 Paris, France
{marjorie.bournat,swan.dubois,franck.petit}@lip6.fr

Abstract. Gracefully degrading algorithms [Biely et al., TCS 2018]
are designed to circumvent impossibility results in dynamic systems by
adapting themselves to the dynamics. Indeed, such an algorithm solves
a given problem under some dynamics and, moreover, guarantees that a
weaker (but related) problem is solved under a higher dynamics under
which the original problem is impossible to solve. The underlying intu-
ition is to solve the problem whenever possible but to provide some kind
of quality of service if the dynamics become (unpredictably) higher.

In this paper, we apply for the first time this approach to robot net-
works. We focus on the fundamental problem of gathering a squad of
autonomous robots on an unknown location of a dynamic ring. In this
goal, we introduce a set of weaker variants of this problem. Motivated
by a set of impossibility results related to the dynamics of the ring, we
propose a gracefully degrading gathering algorithm.

Keywords: Gracefully degrading algorithm · Dynamic ring
Gathering

1 Introduction

The classical approach in distributed computing consists in, first, fixing a set of
assumptions that captures the properties of the studied system (atomicity, syn-
chrony, faults, communication modalities, etc.) and, then, focusing on the impact
of these assumptions in terms of calculability and/or of complexity on a given
problem. When coming to dynamic systems, it is natural to adopt the same app-
roach. Many recent works focus on defining pertinent assumptions for capturing
the dynamics of those systems [8,13,19]. When these assumptions become very
weak, that is, when the system becomes highly dynamic, a somewhat frustrat-
ing but not very surprising conclusion emerge: many fundamental distributed
problems are impossible at least, in their classical form [2,6,7].

To circumvent such impossibility results, Biely et al. recently introduced the
gracefully degrading approach [2]. This approach relies on the definition of weaker

Work partly funded by Project ESTATE (Ref. ANR-16-CE25-0009-03), supported
by French state funds managed by the ANR (Agence Nationale de la Recherche).

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 349–364, 2018.
https://doi.org/10.1007/978-3-030-03232-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_23&domain=pdf


350 M. Bournat et al.

but related variants of the considered problem. A gracefully degrading algorithm
guarantees that it will solve simultaneously the original problem under some
assumption of dynamics and each of its variants under some other (hopefully
weaker) assumptions. As an example, Biely et al. provide a consensus algorithm
that gracefully degrades to k-set agreement when the dynamics of the system
increase. The underlying idea is to solve the problem in its strongest variant
when connectivity conditions are sufficient but also to provide (at the opposite
of a classical algorithm) some minimal quality of service described by the weaker
variants of the problem when those conditions degrade.

Note that, although being applied to dynamic systems by Biely et al. for
the first time, this natural idea is not a new one. Indeed, indulgent algorithms
[1,14] provide similar graceful degradation of the problem to satisfy with respect
to synchrony (not with respect to dynamics). Speculation [9,12] is a related,
but somewhat orthogonal, concept. A speculative algorithm solves the problem
under some assumptions and moreover provides stronger properties (typically
better complexities) whenever conditions are better.

The goal of this paper is to apply graceful degradation to robot networks
where a cohort of autonomous robots have to coordinate their actions in order
to solve a global task. We focus on gathering in a dynamic ring. In this problem,
starting from any initial position, robots must meet on an arbitrary location in
a bounded time (that may depend on any parameter about the robots or the
ring). Note that we can classically split this specification into a liveness property
(all robots terminate in bounded time) and a safety property (all robots that
terminate do so on the same node).

Related Works. Several models of dynamic graphs have been defined recently
[8,15,19]. In this paper, we adopt the evolving graph model [19] in which a
dynamic graph is simply a sequence of static graphs on a fixed set of nodes:
each graph of this sequence contains the edges of the dynamic graph present
at a given time. We also consider the hierarchy of dynamics assumptions intro-
duced by Casteigts et al. [8]. The idea behind this hierarchy is to gather all
dynamic graphs that share some temporal connectivity properties within classes.
This allows us to compare the strength of these temporal connectivity properties
based on the inclusion of classes between them. We are interested in the follow-
ing classes: COT (connected-over-time graphs) where edges may appear and
disappear without any recurrence nor periodicity assumption but guaranteeing
that each node is infinitely often reachable from any other node; RE (recurrent-
edge graphs) where any edge that appears at least once does so recurrently;
BRE (bounded-recurrent-edge graphs) where any edge that appears at least once
does so recurrently in a bounded time; AC (always-connected graphs) where the
graph is connected at each instant; and ST (static graphs) where any edge that
appears at least once is always present. Note that ST ⊂ BRE ⊂ RE ⊂ COT
and ST ⊂ AC ⊂ COT by definition.

In robot networks, the gathering problem was extensively studied in the
context of static graphs, e.g., [10,11,18]. The main motivation of this vein of
research is to characterize the initial positions of the robots allowing gathering in



Gracefully Degrading Gathering in Dynamic Rings 351

Table 1. Summary of our results. The symbol — means that a stronger variant of the
problem is already proved solvable under the dynamics assumption.

G GE GW GEW

COT Impossible (Cor. 2 & 3) Impossible (Cor. 1) Impossible (Cor. 3) Possible (Th. 2)
AC Impossible (Cor. 2) Impossible (Th. 1) Possible (Th. 3) —
RE Impossible (Cor. 3) Possible (Th. 4) Impossible (Cor. 3) —
BRE Possible (Th. 5) — — —
ST Possible (Cor. 4) — — —

each studied topology in function of the assumptions on the robots as identifiers,
communication, vision range, memory, etc. On the other hand, few algorithms
have been designed for robots evolving in dynamic graphs. The majority of them
deals with the problem of exploration [3,4,16] (robots must visit each node of the
graph at least once or infinitely often depending on the variant of the problem).
In the most related work to ours [17], Di Luna et al. study the gathering problem
in dynamic rings. They first note the impossibility of the problem in the AC class
and consequently propose a weaker variant of the problem, the near-gathering:
all robots must gather in finite time on two adjacent nodes. They characterize
the impact of chirality (ability to agree on a common orientation) and cross-
detection (ability to detect whenever a robot cross the same edge in the opposite
direction) on the solvability of the problem. All their algorithms are designed for
the AC class and are not gracefully degrading.

Contributions. By contrast with the work of Di Luna et al. [17], we keep
unchanged the safety of the classical gathering problem (all robots that terminate
do so on the same node) and, to circumvent impossibility results, we weaken only
its liveness: at most one robot may not terminate or (not exclusively) all robots
that terminate do so eventually (and not in a bounded time as in the classical
specification). This choice is motivated by the approach of indulgent algorithms
[1,14]: the safety captures the “essence” of the problem and should be preserved
even in degraded variants of the problem. Namely, we obtain the four following
variants of the gathering problem: G (gathering) all robots terminate on the
same node in bounded time; GE (eventual gathering) all robots terminate on
the same node in finite time; GW (weak gathering) all robots but (at most) one
terminate on the same node in bounded time; and GEW (eventual weak gathering)
all robots but (at most) one terminate on the same node in finite time.

We present then a set of impossibility results, summarized in Table 1, for
these specifications for different classes of dynamic rings. Motivated by these
impossibility results, our main contribution is a gracefully degrading gathering
algorithm. For each class of dynamic rings we consider, our algorithm solves
the strongest possible of our variants of the gathering problem (see Table 1).
This challenging property is obtained without any knowledge or detection of the
dynamics by the robots that always execute the same algorithm. Our algorithm
needs that robots have distincts identifiers, chirality, strong multiplicity detection



352 M. Bournat et al.

(i.e. ability to count the number of colocated robots), memory (of size sublinear
in the size of the ring and identifiers), and communication capacities but deals
with (fully) anonymous ring. These assumptions (whose necessity is left as an
open question here) are incomparable with those of Di Luna et al. [17] that
assume anonymous but home-based robots (i.e. non fully anonymous rings). This
algorithm brings two novelties with respect to the state-of-the-art: (i) it is the
first gracefully degrading algorithm dedicated to robot networks; and (ii) it is
the first algorithm solving (a weak variant of) the gathering problem in the class
COT (the largest class guaranteeing an exploitable recurrent property).

Roadmap. The organization of the paper follows. Section 2 presents formally
the model we consider. Section 3 sums up impossibility results while Sect. 4
presents our gracefully degrading algorithm. Section 5 concludes the paper.

2 Model

Dynamic Graphs. We consider the model of evolving graphs [19]. Time is
discretized and mapped to N. An evolving graph G is an ordered sequence
{G0, G1, . . .} of subgraphs of a given static graph G = (V,E) such that, for
any i ≥ 0, we call Gi = (V,Ei) the snapshot of G at time i. Note that V is
static and |V | is denoted by n. We say that the edges of Ei are present in G
at time i. G is the footprint of G. The underlying graph of G, denoted by UG ,
is the static graph gathering all edges that are present at least once in G (i.e.
UG = (V,EG) with EG =

⋃∞
i=0 Ei). An eventual missing edge is an edge of E

such that there exists a time after which this edge is never present in G. A recur-
rent edge is an edge of E that is not eventually missing. The eventual underlying
graph of G, denoted Uω

G , is the static graph gathering all recurrent edges of G
(i.e. Uω

G = (V,Eω
G ) where Eω

G is the set of recurrent edges of G). We only consider
graphs whose footprints are anonymous and unoriented rings of size n ≥ 4. The
class COT (connected-over-time) contains all evolving graphs such that their
eventual underlying graph is connected (note that there is at most one even-
tual missing edge in any ring of class COT ). The class RE (recurrent-edges)
gathers all evolving graphs whose footprint contains only recurrent edges. The
class BRE (bounded-recurrent-edges) includes all evolving graphs in which there
exists a δ ∈ N such that each edge of the footprint appears at least once every δ
units of time. The class AC (always-connected) collects all evolving graphs where
the graph Gi is connected for any i ∈ N. The class ST (static) encompasses all
evolving graphs where the graph Gi is the footprint for any i ∈ N.

Robots. We consider systems of R ≥ 4 autonomous mobile entities called robots
moving in a discrete and dynamic environment modeled by an evolving graph
G = {(V,E0), (V,E1) . . .}, V being a set of nodes representing the set of locations
where robots may be, Ei being the set of bidirectional edges through which robots
may move from a location to another one at time i. Each robot knows n and R.
Each robot r possesses a distinct (positive) integer identifier idr strictly greater
than 0. Initially, a robot only knows the value of its own identifier. Robots have
a persistent memory so they can store local variables.



Gracefully Degrading Gathering in Dynamic Rings 353

Each robot r is endowed with strong local multiplicity detection, meaning
that it is able to count the exact number of robots that are co-located with it
at any time t. When this number equals 1, the robot r is isolated at time t. By
opposition, we define a tower T as a couple (S, θ), where S is a set of robots
with |S| > 1 and θ = [ts, te] is an interval of N, such that all the robots of S
are located at a same node at each instant of time t in θ and S or θ is maximal
for this property. We say that the robots of S form the tower at time ts and
that they are involved in the tower between time ts and te. Robots are able to
communicate (by direct reading) the values of their variables to each others only
when they are involved in the same tower.

Finally, all the robots have the same chirality, i.e. each robot is able to locally
label the two ports of its current node with left and right consistently over the
ring and time and all the robots agree on this labeling. Each robot r has a
variable dirr that stores the direction it currently considers (right, left or ⊥).

Algorithms and Execution. The state of a robot at time t corresponds to
the values of its local variables at time t. The configuration γt of the system at
time t gathers the snapshot at time t of the evolving graph, the positions (i.e.
the nodes where the robots are currently located) and the state of each robot at
time t. The view of a robot r at time t is composed of the state of r at time t,
the state of all robots involved in the same tower as r at time t if any, and of the
following local functions: ExistsEdge(dir, round), with dir ∈ {right, left} and
round ∈ {current, previous} which indicates if there exists an adjacent edge
to the location of r at time t and t − 1 respectively in the direction dir in Gt

and in Gt−1 respectively; NodeMate() which gives the set of all the robots co-
located with r (r is not included in this set); NodeMateIds() which gives the
set of all the identifiers of the robots co-located with r (excluded the one of r);
and HasMoved() which indicates if r has moved between time t − 1 and t (see
below).

The algorithm of a robot is written in the form of an ordered set of guarded
rules (label)::guard −→ action where label is the name of the rule, guard is a
predicate on the view of the robot, and action is a sequence of instructions mod-
ifying its state. Robots are uniform in the sense they share the same algorithm.
Whenever a robot has at least one rule whose guard is true at time t, we say that
this robot is enabled at time t. The local algorithm also specifies the initial value
of each variable of the robot but cannot restrict its arbitrary initial position.

Given an evolving graph G = {G0, G1, . . .} and an initial configuration γ0,
the execution σ in G starting from γ0 of an algorithm is the maximal sequence
(γ0, γ1)(γ1, γ2)(γ2, γ3) . . . where, for any i ≥ 0, the configuration γi+1 is the result
of the execution of a synchronous round by all robots from γi that is composed of
three atomic and synchronous phases: Look, Compute, Move. During the Look
phase, each robot captures its view at time i. During the Compute phase, each
enabled robot executes the action associated to the first rule of the algorithm
whose guard is true in its view. In the case the direction dirr of a robot r is in
{right, left}, the Move phase consists of moving r in the direction it considers
if there exists an adjacent edge in that direction to its current node, otherwise



354 M. Bournat et al.

(i.e. the adjacent edge is missing) r is stuck and hence remains on its current
node. In the case where its direction is ⊥, the robot remains on its current node.

3 Impossibility Results

This section presents a set of impossibility results (refer to Table 1) showing
that some variants of the gathering problem cannot be solved depending on
the dynamics of the ring in which the robots evolve and hence motivating our
gracefully degrading approach. First, we recall a result from Di Luna et al.. Note
that differences between the considered models do not interfere with the proof.

Theorem 1 ([17]). There exists no deterministic algorithm that satisfies GE in
rings of AC with size 4 or more for 4 robots or more.

Note that Di Luna et al. provide only informal arguments for this impossibil-
ity result while we provide in the companion report [5] its full formal proof. It is
possible to derive some other impossibility results from Theorem 1. Indeed, the
inclusion AC ⊂ COT allows us to state that GE is also impossible under COT .

Corollary 1. There exists no deterministic algorithm that satisfies GE in rings
of COT with size 4 or more for 4 robots or more.

From the very definitions of G and GE , it is straightforward to see that the
impossibility of GE under a given class implies the one of G under the same
class.

Corollary 2. There exists no deterministic algorithm that satisfies G in rings
of COT or AC with size 4 or more for 4 robots or more.

Finally, impossibility results for bounded variants of the gathering problem
(i.e. the impossibility of G under RE and of GW under COT and RE) are
obtained as follows. The definition of COT and RE does not exclude the ability
for all edges of the graph to be missing initially and for any arbitrary long time,
hence preventing the gathering of robots for any arbitrary long time if they are
initially scattered. This observation is sufficient to prove a contradiction with
the existence of an algorithm solving G or GW in these classes.

Corollary 3. There exists no deterministic algorithm that satisfies G or GW in
rings of COT or RE with size 4 or more for 4 robots or more.

4 Gracefully Degrading Gathering

This section presents GDG, our gracefully degrading gathering algorithm, that
aims to solve different variants of the gathering under various dynamics (refer to
Table 1). In the following, we informally describe our algorithm clarifying which
variant of gathering is satisfied within which class of evolving graphs. Next, we
present formally the algorithm and sketch its correctness proof.



Gracefully Degrading Gathering in Dynamic Rings 355

Overwiew. Our algorithm has to overcome various difficulties. First, robots are
evolving in an environment in which no node can be distinguished. So, the trivial
algorithm in which the robots meet on a particular node is impossible. Moreover,
since the footprint of the graph is a ring, (at most) one of the n edges may be an
eventual missing edge. This is typically the case of classes COT and AC. In that
case, no robot is able to distinguish an eventual missing edge from a missing
edge that will appear later in the execution. In particular, a robot stuck by a
missing edge does not know whether it can wait for the missing edge to appear
again or not. Finally, despite the fact that no robot is aware of which class of
dynamic graphs robots are evolving in, the algorithm is required to meet at least
the specification of the gathering according to the class of dynamic graphs in
which it is executed or a better specification than this one.

The overall scheme of the algorithm consists in first detecting rmin, the robot
having the minimum identifier so that the R robots eventually gather on its node
(i.e., satisfying specification GE). Of course, depending on the particular evolving
graph in which our algorithm is executed, GE may not achieved. In class COT
and the “worst” possible evolving graph, one can expect specification GEW only,
i.e., at least R − 1 robots gathered.

The algorithm proceeds in four successive phases: M (for “am I the Min?”),
K (for “min wait to be Known”), W (for “Walk”), and T (for “wait Termination”).
Actually, again depending on the class of graphs and the evolving graph in which
our algorithm is executed, we will see that the four phases are not necessarily
all executed since the execution can be stopped prematurely, especially in case
where GE (or G) is achieved. By contrast, they can also never be completed in
some strong classes of dynamic graphs where the connectivity assumptions are
weak (namely AC or COT ), solving GEW (or GW ) only.

Phase M. This phase leads each robot to know whether it possesses the minimum
identifier. Initially every robot r considers the right direction. Then r moves to
the right until it moves 4 ∗ n ∗ idr steps on the right (where idr is the identifier
of r, and n is the size of the ring) or until it meets R − 2 other robots such
that its identifier is not the smaller one among these robots or until it meets a
robot that knows the identifier of rmin. The first robot that succeeds to move
4 ∗n ∗ idr steps in the right direction is necessarily rmin. Depending on the class
of graph, one eventual missing edge may exist, preventing rmin to move on the
right direction during 4 ∗ n ∗ idrmin

steps.
However, in the case where there is an eventual missing edge at least R − 1

robots succeed to be located on a same node. They are located either on the
extremity of the eventual missing edge or on the extremity of a missing edge
that is not eventually missing. The robot rmin is not necessarily located with
these R − 1 robots gathered. Note that the weak form of gathering (GEW )
could be solved in that case. However, the R − 1 robots gathered cannot stop
their execution. Indeed, our algorithm aims at gathering the robots on the node
occupied by rmin. However, rmin may not be part of the R − 1 robots that
gathered. Further, it is possible for R − 1 robots to gather (without rmin) even
when rmin succeeds in moving 4 ∗ n ∗ idrmin

steps to the right (i.e. even when



356 M. Bournat et al.

rmin stops to move because it completed Phase M). In that case, if the R − 1
robots that gathered stop their execution, GE cannot be solved in RE , BRE and
ST rings, as GDG should do. Note that, it is also possible for rmin to be part of
the R − 1 robots that gathered.

Recall that robots can communicate when they are both located in the same
node. So, the R − 1 robots may be aware of the identifier of the robot with the
minimum identifier among them. Since it can or cannot be the actual rmin, let
us call this robot potentialMin. Then, driven by potentialMin, a search phase
starts during which the R−1 robots try to visit all the nodes of the ring infinitely
often in both directions by subtle round trips. Doing so, rmin eventually knows
that it possesses the actual minimum identifier.

Phase K. The goal of the second phase consists in spreading the identifier of
rmin among the other robots. The basic idea is that during this phase, rmin

stops moving and waits until R − 3 other robots join it on its node so that
its identifier is known by at least R − 3 other robots. The obvious question
arises:“Why waiting for R − 3 extra robots only?”. A basic idea to gather could
be that once rmin is aware that it possesses the minimum identifier, it can just
stop to move and just wait for the other robots to eventually reach its location,
just by moving toward the right direction. Actually, depending on the particular
evolving graph considered one missing edge e may eventually appear, preventing
robots from reaching rmin by moving toward the same direction only. That is
why the gathering of the R− 2 robots is eventually achieved by the same search
phase as in Phase M (since the search phase permits to at least 3 robots to explore
infinitely often the nodes of the ring until reaching a given node). However, by
doing this, it is possible to have 2 robots stuck on each extremity of e. Further,
these two robots cannot change the directions they consider since a robot is not
able to distinguish an eventual missing edge from a missing edge that will appear
again later. This is why during Phase K, rmin stops to move until R − 3 other
robots join it to form a tower of R − 2 robots. In this way these R − 2 robots
start the third phase simultaneously.

Phase W. The third phase is a walk made by the tower of R − 2 robots. The
R−2 robots are split into two distinct groups, Head and Tail. Head is the unique
robot with the maximum identifier of the tower. Tail, composed of R− 3 robots,
is made of the other robots of the tower, led by rmin. Both move alternatively in
the right direction during n steps such that between two movements of a given
group the two groups are again located on a same node. This movement permits
to prevent the two robots that do not belong to any of these two groups to be
both stuck on different extremities of an eventual missing edge (if any) once this
walk is finished. Since there exists at most one eventual missing edge, we are
sure that if the robots that have executed the walk stop moving forever, then at
least one robot can join them during the next and last phase.

As noted, it can exist an eventual missing edge, therefore, Head and Tail may
not complete Phase W. Indeed, one of the two situations below may occur: (i)
Head and Tail together form a tower of R − 2 robots but an eventual missing
edge on their right prevents them to complete Phase W; (ii) Head and Tail are



Gracefully Degrading Gathering in Dynamic Rings 357

Algorithm 1. Predicates used in GDG
MinDiscovery() ≡ [stater = potentialMin∧∃r′ ∈ NodeMate(), (stater′ = righter∧

idr < idr′)]∨ [∃r′ ∈ NodeMate(), idMinr′ = idr]∨ [∃r′ ∈ NodeMate(), (stater′ ∈
{dumbSearcher, potentialMin} ∧ idr < idPotentialMinr′)] ∨ [rightStepsr =
4 ∗ idr ∗ n]

GE() ≡ |NodeMate()| = R − 1
GEW() ≡ |NodeMate()| = R − 2 ∧ ∃r′ ∈ {r} ∪ NodeMate(),

stater′ ∈ {minWaitingWalker,minTailWalker}
HeadWalkerWithoutWalkerMate() ≡ stater = headWalker ∧

ExistsEdge(left, previous) ∧ ¬HasMoved() ∧ NodeMateIds() 	= walkerMater
LeftWalker() ≡ stater = leftWalker
HeadOrTailWalkerEndDiscovery() ≡

stater ∈ {headWalker, tailWalker,minTailWalker} ∧ walkStepsr = n
HeadOrTailWalker() ≡ stater ∈ {headWalker, tailWalker,minTailWalker}
AllButTwoWaitingWalker() ≡ |NodeMate()| = R − 3 ∧ ∀r′ ∈ {r} ∪NodeMate(),

stater′ ∈ {waitingWalker,minWaitingWalker}
WaitingWalker() ≡ stater ∈ {waitingWalker,minWaitingWalker}
PotentialMinOrSearcherWithMinWaiting(r’) ≡ stater ∈ {potentialMin,

dumbSearcher, awareSearcher} ∧ stater′ = minWaitingWalker
RighterWithMinWaiting(r’) ≡ stater = righter ∧ stater′ = minWaitingWalker
NotWalkerWithHeadWalker(r’) ≡ stater ∈ {righter, potentialMin,

dumbSearcher, awareSearcher} ∧ stater′ = headWalker
NotWalkerWithTailWalker(r’) ≡ stater ∈ {righter, potentialMin, dumbSearcher,

awareSearcher} ∧ stater′ = minTailWalker
PotentialMinWithAwareSearcher(r’) ≡

stater = potentialMin ∧ stater′ = awareSearcher
AllButOneRighter() ≡

|NodeMate()| = R − 2 ∧ ∀r′ ∈ {r} ∪ NodeMate(), stater′ = righter
RighterWithSearcher(r’) ≡

stater = righter ∧ stater′ ∈ {dumbSearcher, awareSearcher}
PotentialMinOrRighter() ≡ stater ∈ {potentialMin, righter}
DumbSearcherMinRevelation() ≡ stater = dumbSearcher ∧

∃r′ ∈ NodeMate(), (stater′ = righter ∧ idr′ > idPotentialMinr)
DumbSearcherWithAwareSearcher(r’) ≡

stater = dumbSearcher ∧ stater′ = awareSearcher
Searcher() ≡ stater ∈ {dumbSearcher, awareSearcher}

located on neighboring node and the edge between them is an eventual missing
edge that prevents Head and Tail to continue to move alternatively.

Call u the node where Tail is stuck on an eventual missing edge. In the two
situations described even if Phase W is not complete by both Head and Tail,
either GE or GEW is solved. Indeed, in the first situation, necessarily at least
one robot r succeeds to join u (either r considers the good direction to reach u or
it meets a robot on the other extremity of the eventual missing edge that makes
it change its direction, and hence makes it consider the good direction to reach
u). In the second situation, necessarily at least two robots r and r′ succeed to
join u. This is done either because r and r′ consider the good direction to reach



358 M. Bournat et al.

Algorithm 2. Functions used in GDG
Function StopMoving()

dirr := ⊥
Function MoveLeft()

dirr := left

Function BecomeLeftWalker()

(stater, dirr) := (leftWalker,⊥)

Function Walk()

dirr :=

⎧
⎨

⎩

⊥ if (idr = idHeadWalkerr ∧ walkerMater 	= NodeMateIds())∨
(idr 	= idHeadWalkerr ∧ idHeadWalkerr ∈ NodeMateIds())

right otherwise

walkStepsr := walkStepsr + 1 if dirr = right ∧ ExistsEdge(right, current)

Function InitiateWalk()

idHeadWalkerr := max({idr} ∪ NodeMateIds())
walkerMater := NodeMateIds()

stater :=

⎧
⎨

⎩

headWalker if idr = idHeadWalkerr
minTailWalker if stater = minWaitingWalker
tailWalker otherwise

Function BecomeWaitingWalker(r’)

(stater, idPotentialMinr, idMinr, dirr) := (waitingWalker, idr′ , idr′ ,⊥)

Function BecomeMinWaitingWalker()

(stater, idPotentialMinr, idMinr, dirr) := (minWaitingWalker, idr, idr,⊥)

Function BecomeAwareSearcher(r’)

(stater, dirr) := (awareSearcher, right)

(idPotentialMinr, idMinr) :=

⎧
⎪⎪⎨

⎪⎪⎩

(idPotentialMinr′ , idPotentialMinr′)
if stater′ = dumbSearcher

(idMinr′ , idMinr′)
otherwise

Function BecomeTailWalker(r’)

(stater, idPotentialMinr, idMinr) := (tailWalker, idPotentialMinr′ , idMinr′)
(idHeadWalkerr, walkerMater, walkStepsr) :=

(idHeadWalkerr′ , walkerMater′ , walkStepsr′)

Function MoveRight()

dirr := right
rightStepsr := rightStepsr + 1 if ExistsEdge(dir, current)

Function InitiateSearch()

idPotentialMinr := min({idr} ∪ NodeMateIds())

stater :=

{
potentialMin if idr = idPotentialMinr

dumbSearcher otherwise
rightStepsr := rightStepsr+1 if stater = potentialMin ∧ ExistsEdge(dir, current)

Function Search()

dirr :=

⎧
⎨

⎩

left if |NodeMate()| ≥ 1 ∧ idr = max({idr} ∪ NodeMateIds())
right if |NodeMate()| ≥ 1 ∧ idr 	= max({idr} ∪ NodeMateIds())
dirr otherwise



Gracefully Degrading Gathering in Dynamic Rings 359

Algorithm 3. GDG
Rules for Termination

Term1 :: GE() −→ terminate
Term2 :: GEW () −→ terminate

Rules for Phase T

T1 :: LeftWalker() −→ MoveLeft()
T2 :: HeadWalkerWithoutWalkerMate() −→ BecomeLeftWalker()
T3 :: HeadOrTailWalkerEndDiscovery() −→ StopMoving()

Rules for Phase W

W1 :: HeadOrTailWalker() −→ Walk()

Rules for Phase K

K1 :: AllButTwoWaitingWalker() −→ InitiateWalk()
K2 :: WaitingWalker() −→ StopMoving()
K3 :: ∃r′ ∈ NodeMate(), PotentialMinOrSearcherWithMinWaiting(r′)

−→ BecomeWaitingWalker(r’)
K4 :: ∃r′ ∈ NodeMate(), RighterWithMinWaiting(r′) ∧

ExistsEdge(right, current) −→ BecomeAwareSearcher(r’)

Rules for Phase M

M1 :: PotentialMinOrRighter() ∧ MinDiscovery()
−→ BecomeMinWaitingWalker(r)

M2 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′) ∧
ExistsEdge(right, current) −→ BecomeAwareSearcher(r’)

M3 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′)
−→ BecomeAwareSearcher(r’); StopMoving()

M4 :: ∃r′ ∈ NodeMate(), NotWalkerWithTailWalker(r′)
−→ BecomeTailWalker(r’); Walk()

M5 :: ∃r′ ∈ NodeMate(), PotentialMinWithAwareSearcher(r′)
−→ BecomeAwareSearcher(r’); Search()

M6 :: AllButOneRighter() −→ InitiateSearch()
M7 :: ∃r′ ∈ NodeMate(), RighterWithSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M8 :: PotentialMinOrRighter() −→ MoveRight()
M9 :: DumbSearcherMinRevelation() −→ BecomeAwareSearcher(r); Search()
M10 :: ∃r′ ∈ NodeMate(), DumbSearcherWithAwareSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M11 :: Searcher() −→ Search()

u or because they reach the node where Head is located without Tail making
them change their direction, and hence making them consider the good direction
to reach u.

Once a tower of R−1 robots including rmin is formed, GEW is solved. Then,
the latter robot tries to reach the tower to eventually solve GE in favorable cases.

Phase T. The last phase starts once the robots of Head have completed Phase W.
If it exists a time at which the robots of Tail complete Phase W, then Head and



360 M. Bournat et al.

Tail form a tower of R−2 robots and stop moving. As explained in the previous
phase, Phase W ensures that at least one extra robot eventually joins the node
where Head and Tail are located to form a tower of R − 1 robots. Once a tower
of R − 1 robots including rmin is formed, GEW is solved. Then, the latter robot
tries to reach the tower to eventually solve GE in favorable cases. In the case the
robots of Tail never complete the phase W, then this implies that Head and Tail
are located on neighboring node and that the edge between them is an eventual
missing edge. As described in Phase W either GEW or GE is solved.

Algorithm. Before presenting formally our algorithm, we first describe the set
of variables of each robot. We recall that each robot r knows R, n and idr as
constants. In addition to the variable dirr (initialized to right), each robot r pos-
sesses seven variables described below. Variable stater allows the robot r to know
which phase of the algorithm it is performing and (partially) indicates which
movement the robot has to execute. The possible values for this variable are
righter, dumbSearcher, awareSearcher, potentialMin, waitingWalker, min-
WaitingWalker, headWalker, tailWalker, minTailWalker and leftWalker.
Initially, stater is equal to righter. Initialized with 0, rightStepsr counts the
number of steps done by r in the right direction when stater ∈ {righter, po-
tentialMin}. The next variable is idPotentialMinr. Initially equals to −1, id-
PotentialMinr contains the identifier of the robot that possibly possesses the
minimum identifier (a positive integer) of the system. This variable is especially
set when R− 1 righter are located on a same node. In this case, the variable id-
PotentialMinr of each robot r that is involved in the tower of R−1 robots is set
to the value of the minimum identifier possessed by these robots. The variable
idMinr indicates the identifier of the robot that possesses the actual minimum
identifier among all the robots of the system. This variable is initially set to −1.
Let walkerMater be the set of all the identifiers of the R−2 robots that initiate
the Phase W. Initially this variable is set to ∅. The counter walkStepsr, initially
0, maintains the number of steps done in the right direction while r performs
the Phase W. Finally, the variable idHeadWalkerr contains the identifier of the
robot that plays the part of Head during the Phase W. Moreover, we assume the
existence of a specific instruction: terminate. By executing this instruction, a
robot stops executing the cycle Look-Compute-Move forever. To ease the writing
of our algorithm, we define a set of predicates (presented in Algorithm 1) and
functions (presented in Algorithm 2), that are used in our gracefully degrading
algorithm GDG. Recall that, during the Compute phase, only the first rule whose
guard is true in the view of an enabled robot is executed.

Sketch of Proof. Due to the lack of space, in this section we only sketch the
correctness proof of Algorithm GDG. The interested reader may find the complete
proofs in the companion report [5]. More precisely, we present which instance
of the gathering our algorithm solves depending on the dynamics of the ring in
which it is executed. In the following, we consider in the order the classes COT ,
AC, RE , BRE and ST . For ease of reading, we abuse the various values of the
variable state to qualify the robots. For instance, if the current value of variable
state of a robot is righter, then we say that the robot is a righter robot.



Gracefully Degrading Gathering in Dynamic Rings 361

Theorem 2. Algorithm GDG solves GEW in COT .

Proof Outline. As the safety of GEW directly follows from Rules Term1 and
Term2, we only focus on its liveness in the following. The proof is done by
analyzing successively each phase of GDG.

In Phase M, rmin is supposed to be able, in finite time, to know that it
possesses the minimum identifier among all the robots of the system. In our
algorithm, a robot is aware that it possesses the minimum identifier when it
is either a minWaitingWalker or a minTailWalker robot. Let us call min a
robot such that its variable state is equal to one of these two values. To prove
the correctness of this phase, we prove first that only rmin can become min and
then that rmin effectively becomes min in finite time.

First note that, by the rules of GDG, if a robot is located on the same node
as a min, it stops to be in Phase M and hence cannot be min. By the rules of
GDG, a robot is necessarily a minWaitingWalker before becoming a minTail-
Walker. Moreover, only a righter or a potentialMin can become a minWaiting-
Walker (Rule M1). Therefore, if a robot becomes min, then necessarily it consid-
ers the right direction from the beginning of the execution until it becomes min
(Rule M8). While executing the other phases of GDG, a min can only consider
either the ⊥ or the right direction (refer to Rules K2, K1, W1, and T3). Besides,
in the case a min robot r succeeds to execute all the phases of GDG, it can only
move from 4 ∗ idr ∗ n + n steps in the right direction (refer to Rules M1, K2,
K1, W1, and T3). Moreover, because of the dynamism of the ring, two robots
r′ and r′′ such that both stater′ and stater′′ belong to {righter, potentialMin},
can have their variables rightSteps such that |rightStepsr′ − rightStepsr′′ | ≤ n.
Besides, it takes one round for a robot to update its variable state to min. Hence,
since a righter or a potentialMin can be located with a robot r just the round
before r becomes min, this righter or potentialMin can move again in the right
direction during at most n steps without meeting the min. Hence, since for all
r 
= rmin, idrmin

< idr, we have 4 ∗ idrmin
∗ n + n + n + n < 4 ∗ idr ∗ n. This

implies that a robot r (with r 
= rmin) cannot become min thanks to the con-
dition rightStepsr = 4 ∗ idr ∗ n of the predicate MinDiscovery() of Rule M1.
Finally, the other conditions of the predicate MinDiscovery() of Rule M1 can-
not be satisfied by another robot than rmin. Indeed, by the rules of GDG, a
potentialMin (resp. a dumbSearcher) is a robot that is aware of the identifiers
of R − 1 robots (Rule M6), and that possesses the minimum identifier among
these R−1 robots (resp. and that keeps in its variable idPotentialMin the value
of the smallest identifier among these R − 1 robots). Therefore, the first (resp.
the third) condition of the predicate MinDiscovery() of Rule M1 is true only for
rmin. Finally, when there is no min in the execution, an awareSearcher (robot
whose variable idMin is different from −1) is a robot that is aware of all the
identifiers of all the robots of the system (Rules M5, M7, M9, and M10) and
that keeps in its variable idMin the value of the minimum identifier among these
robots. Thus, the second condition of the predicate MinDiscovery() of Rule M1

is true only for rmin.



362 M. Bournat et al.

Then, we prove that rmin becomes min in finite time. First, note that as long
as there is no min in the execution, rmin is either a righter or a potentialMin.
In the case where rmin succeeds to move in the right direction during 4∗idrmin

∗n
steps, it becomes min (Rule M1). If rmin does not succeed to do so, then there
exists an eventual missing edge, and necessarily R − 1 righter succeed to be
located on the same node. From this time, they are potentialMin and dumb-
Searcher in the execution. It is also possible to have awareSearcher (Rules M5,
M7, M9, and M10). As long as there is no min, dumbSearcher and awareSear-
cher execute the function Search at each time (Rules M9, M10, and M11), and
the potentialMin executes either Rule M8 or function Search (Rule M5). By
definition of Search and of Rule M8, one robot succeeds to reach the node
where rmin is stuck and to inform it that it has to become min.

Phase K is achieved when there are R − 3 waitingWalker robots located
on the same node as rmin, while rmin is a minWaitingWalker. By the rules of
GDG, as long as this phase is not achieved, there are only righter, potentialMin,
dumbSearcher, awareSearcher, waitingWalker, and minWaitingWalker. By
Rules K3 and K2, all the waitingWalker and minWaitingWalker are located
on a same node and do not move. By analyzing the movements of the other kind
of robots, we prove that it exists a time t at which this phase is achieved and
that there is at most one righter in the execution from time t.

Similarly, Phase W and Phase T are proved by analyzing the movements of
the robots. At the time when the Phase K is achieved, we can prove that the two
robots r1 and r2 that are not on the same node as the min are such that stater1 ∈
{righter,potentialMin,awareSearcher,dumbSearcher} and stater2 ∈ {awareSear-
cher,dumbSearcher}. Moreover, once the Phase K is achieved, all the waiting-
Walker and minWaitingWalker execute Rule K1. While executing this rule
the robot with the maximum identifier among these robots becomes headWalker,
the minWaitingWalker becomes minTailWalker and the other robots become
tailWalker. Analyzing all the possible movements of these kind of robots we
succeed to prove that whatever the position of an eventual missing edge, in
finite time, either Rule Term1 or Rule Term2 is executed. Hence, either R
robots terminate their execution (Rule Term1) or R − 1 robots terminate their
execution (Rule Term2) in finite time. ��

Once Theorem 2 proved, classes inclusions and a careful analysis of the robot
movements allow us to deduce the following set of results.

Theorem 3. GDG solves GW in AC in O(idrmin
∗ n2 + R ∗ n) rounds.

Theorem 4. GDG solves GE in RE.
Theorem 5. GDG solves G in BRE in O(n ∗ δ ∗ (idrmin

+ R)) rounds.

Corollary 4. GDG solves G in ST in O(n ∗ (idrmin
+ R)) rounds.

5 Conclusion

In this paper, we apply for the first time the gracefully degrading approach to
robot networks. This approach consists in circumventing impossibility results



Gracefully Degrading Gathering in Dynamic Rings 363

in highly dynamic systems by providing algorithms that adapt themselves to
the dynamics of the graph: they solve the problem under weak dynamics and
only guarantee that some weaker but related problems are satisfied whenever
the dynamics increases and makes the original problem impossible to solve.

Focusing on the classical problem of gathering a squad of autonomous robots,
we introduce a set of weaker variants of this problem that preserves its safety
(in the spirit of the indulgent approach that shares the same underlying idea).
Motivated by a set of impossibility results, we propose a gracefully degrading
gathering algorithm. We highlight that it is the first gracefully degrading algo-
rithm dedicated to robot networks and the first algorithm focusing on the gath-
ering in COT , the class of dynamic graphs that exhibits the weakest recurrent
connectivity.

A natural open question arises on the optimality of the graceful degrada-
tion we propose. Indeed, we prove that our algorithm provides for each class of
dynamic graphs the best specification among the ones we proposed. We do not
claim that another algorithm could not be able to satisfy stronger variants of
the original gathering specification. Aside gathering in robot networks, defining
a general form of degradation optimality seems to be a challenging future work.

References

1. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Generating fast indulgent
algorithms. TCS 51(4), 404–424 (2012)

2. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. TCS 726, 41–77
(2018)

3. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 54–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 5

4. Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly
dynamic rings. In: ICDCS, pp. 794–804 (2017)

5. Bournat, M., Dubois, S., Petit, F.: Gracefully degrading gathering in dynamic rings.
Technical report, arXiv:1805.05137 (2018)

6. Braud-Santoni, N., Dubois, S., Kaaouachi, M.-H., Petit, F.: The next 700 impossi-
bility results in time-varying graphs. IJNC 6(1), 27–41 (2016)

7. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. IJFCS 26(4), 499–522 (2015)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

9. Dubois, S., Guerraoui, R.: Introducing speculation in self-stabilization: an applica-
tion to mutual exclusion. In: PODC, pp. 290–298 (2013)

10. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

11. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 744–753. Springer,
Heidelberg (2006). https://doi.org/10.1007/11940128 74

https://doi.org/10.1007/978-3-319-49259-9_5
http://arxiv.org/abs/1805.05137
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/11940128_74


364 M. Bournat et al.

12. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. TOCS 27(4), 7:1–7:39 (2009)

13. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: STOC, pp. 513–522 (2010)

14. Lamport, L.: The part-time parliament. TOCS 16(2), 133–169 (1998)
15. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-

eling of interactions over time. Technical report, arXiv:1710.04073 (2017)
16. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic

rings. In: ICDCS, pp. 570–579 (2016)
17. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:

Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS,
vol. 10641, pp. 339–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72050-0 20

18. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. DC 30(2), 75–86 (2017)

19. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost jour-
neys in dynamic networks. IJFCS 14(02), 267–285 (2003)

http://arxiv.org/abs/1710.04073
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-319-72050-0_20


Concurrent Lock-Free Unbounded
Priority Queue with Mutable Priorities

Ivan Walulya1(B), Bapi Chatterjee2, Ajoy K. Datta3, Rashmi Niyolia3,
and Philippas Tsigas1

1 Department of CS&E, Chalmers University of Technology, Gothenburg, Sweden
{ivanw,tsigas}@chalmers.se

2 IBM Research Lab, New Delhi, India
bhaskerchatterjee@gmail.com

3 Department of CS, University of Nevada Las Vegas, Las Vegas, USA
Ajoy.Datta@unlv.edu, rashmi.niyolia@gmail.com

Abstract. The priority queue with DeleteMin and Insert opera-
tions is a classical interface for ordering items associated with priorities.
Some important algorithms, such as Dijkstra’s single-source-shortest-
path, Adaptive Huffman Trees, etc. also require changing the priorities
of items in the runtime. Existing lock-free priority queues do not directly
support the dynamic mutation of the priorities. This paper presents
the first concurrent lock-free unbounded binary heap that implements
a priority queue with mutable priorities. The operations are provably
linearizable. We also designed an optimized version of the algorithm by
combining the concurrent operations that substantially improves the per-
formance. For experimental evaluation, we implemented the algorithm in
both C/C++ and Java. A number of micro-benchmarks show that our
algorithm performs well in comparison to existing implementations.

Keywords: Heap · Lock-free · Linearizability · Concurrent heap
Priority-queue · Elimination

1 Introduction

A priority queue orders a set of items by a numerical cost – often called priority
– associated with each item. In its most general form, a priority queue abstract
data type (ADT) is defined by two operations – Insert and DeleteMin. An
Insert (k, elem) inserts an item elem with priority k and a DeleteMin ()
removes an item with the highest priority from the set of objects. Priority queues
are widely used at operating system kernels as well as in user-space. Some well-
known applications are discrete event simulations [10], graph search [20], oper-
ating systems schedulers [13], SAT solvers [5] and many others. Several of them,
such as Dijkstra’s single-source-shortest-path (SSSP) algorithm [7], Adaptive
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 365–380, 2018.
https://doi.org/10.1007/978-3-030-03232-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_24&domain=pdf


366 I. Walulya et al.

Huffman Trees [25], etc. require updating the priorities after inserting the items.
In today’s application settings, the underlying datasets grow immensely at run-
time necessitating the employed data structure to be adaptable to size variations.

At the same time, the proliferation of multi-core systems have essentially
mainstreamed the concurrent data structures. Concurrent data structure designs
are evaluated on consistency (correctness) and progress guarantees in addition
to scalability with increasing number of processing threads. The most common
consistency framework used in concurrent settings is linearizability [16], which
relates a concurrent execution on an object to its sequential specification. Lin-
earizability requires that an operation appears to take effect instantaneously at
a single linearization point between the operation’s invocation and its response.

Consistency may be trivially achieved using mutual exclusion locks that seri-
alize the access to the entire data structure, also called coarse-grained locking.
However, it severely limits the concurrent operations. Even if the number of
locks increase, i.e. fine-grained locking, they are still vulnerable to pitfalls such as
deadlock, priority inversion and convoying. An alternative approach is lock-free
implementation. In a lock-free concurrent data structure, at least one non-faulty
processing thread is guaranteed to complete its operation in a finite number of
steps. Effectively, lock-free data structures foster both scalability and progress
guarantee. A stronger progress guarantee is wait-freedom, which ensures that all
the non-faulty processes finish their operations in a finite number of steps. How-
ever, most often wait-freedom results in poor performance. Another approach to
implement consistent concurrent data structure is using software transactional
memory (STM) [22]. However, the performance of such implementations largely
depends on the design of the STM. Unsurprisingly, using STM to design con-
current data structures has often resulted in unacceptable performance [8].

Thus, an efficient and scalable unbounded concurrent lock-free data structure
implementing a mutable priority queue, i.e. one which offers updating priorities
of items dynamically, is highly sought-after in a large number of applications.

Based on the employed data structure, a priority queue implementation can
be categorized primarily as: (a) heap1-based, and (b) skip-list-based.

The previous attempts on heap-based concurrent priority queues have largely
been blocking (lock-based) or impractical non-blocking designs. Hunt et al. [17]
presented a fine-grained lock-based heap, which locks each node separately and
operations release and re-acquire locks after each step in bubble-up to prevent
deadlocks with concurrent bubble-down operations. Tamir et al. [24] extended
the work of [17] by including operations, called ChangeKey, to update the pri-
ority of items. The focus of their work is on the ChangeKey operations, which
they show that improves the overall performance of Dijkstra’s SSSP algorithm.

The first attempt to implement a non-blocking concurrent heap was by Her-
lihy [15]. However, this wait-free algorithm required copying the entire heap
making the implementation inherently sequential and of little practical interest.
Barnes [3] proposed a wait-free algorithm to address the drawbacks of Herlihy.
His definition of the wait-free property is different from the generally accepted

1 In this work, by a heap we mean a binary heap.



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 367

definition. Additionally, no implementation of this algorithm exits. Israeli et al.
presented a wait-free algorithm for heap-based priority queues [18] which utilizes
atomic primitives2 that are not implemented in existing hardware platforms.

Dragicive et al. [8] designed a lock-free heap that uses STM for concurrency
control. Their design offered poor performance due to the overhead of the STM.
We point out that all the previously available concurrent heaps are bounded to
a fixed size allocated at the initialization. There are available works on skip-
list-based concurrent priority queues – Shavit et al. [21], Tsigas et al. [23], etc.
Alistarh et al. [1] proposed an approximate DeleteMin operation in skip-lists.
However, the skip-list-based implementations face difficulty to implement the
algorithms that require mutable priorities at the runtime: observably, the overall
performance of the algorithm degrades [24].

We present CoMPiQ - a Concurrent lock-free unbounded heap-based
Mutable Priority Queue. The Table 1 summarily contrasts our contributions
with the relevant existing works.

Table 1. Concurrent priority queues

Paper Data Struc-
ture

Progress
Guarantee

Mutable
Priority

UnboundedPractical Im-
plementation

Herlihy [15] Heap Wait-free No No No
Hunt et al. [17] Heap Lock-based No No Scales poorly
Shavit et al. [21] Skip-list Lock-free No Yes Yes
Tsigas et al. [23] Skip-list Lock-free No Yes Yes
Dragicive et al. [8] Heap Lock-free No No Scales poorly
Tamir et al. [24] Heap Lock-based Yes No Yes
CoMPiQ Heap Lock-free Yes Yes Yes

In the paper, first we present the system model and the sequential specifica-
tion of the heap data structure (Sect. 2). Then, we describe the lock-free design
of the heap in detail (Sect. 3). We present the proof of linearizability and lock-
freedom of the concurrent operations (Sect. 4). We implemented the algorithm
in both C/C++ and Java. We describe the micro-benchmarks that we used to
evaluate the algorithm, wherein we also discuss the performance with respect
to the design optimizations. Our experiments demonstrate that the presented
algorithm performs well in comparison to the existing counterparts (Sect. 5).

2 Preliminaries

We consider an asynchronous shared memory system with a finite set of n
processing threads p1, ..., pn where n may exceed the number of physical pro-
cessors. In addition to the atomic read and write instructions, the system
supports Compare-And-Swap (CAS) atomic read-modify-write instructions. The

2 SC2 which validates and writes to two disjoint memory locations atomically.



368 I. Walulya et al.

CAS(address, old, new) instruction checks if the current value at a memory loca-
tion (address) is equivalent to the given value old, and only if true, changes
the value of address to the new value (new) and returns TRUE; otherwise the
memory location remains unchanged and the instruction returns FALSE.

The ADT mutable priority queue is defined by the following operations:

– Insert(k, elem): An Insert(k, elem) inserts an item elem with priority k
to the heap. We assume that k belongs to a totally ordered set. Insert is
typically a void procedure, however, we return a cross-reference to the insert
item instance which can be used in the ChangeKey procedure3. In case
there is an item elem′ available in the heap with the same priority k, the
item elem gets inserted and the two items elem and elem′ can have arbitrary
order by their indexes. Thus, the heap allows items with duplicate priority.

– DeleteMin(): A DeleteMin removes an item with highest priority from
the heap and returns that item itself. DeleteMin returns a special item
EMPTY making no changes in the heap, if there are no items in the heap.

– ChangeKey (it, k2): A ChangeKey (it, k2) changes the heap so that an
item elem referenced by the iterator it, if existing in the heap, is placed at
the priority k2. It returns EMPTY if the item referenced by it was deleted from
the priority queue.

In our work, a heap data structure implements a mutable priority queue. A
heap is implemented by way of a resizable array. Thus, it contains items that
allow for random access using a non-negative index. The array is considered
virtually divided in levels. In the array, the root of the heap occupies the index 1
and is considered to be at the level 0. The left and the right children of the item
at the index i are at the indexes 2i and 2i+ 1, respectively. We have considered
a minheap, which means that the heap maintains the following heap property.

Heap Property: An item elem1 with priority k1 has higher priority than the
item elem2 with priority k2, if k1≤k2. Thus, a parent always has a smaller
priority compared to its children and the root has the highest priority. Moreover,
no item exists at level l unless the level l − 1 is completely full.

To demonstrate the correctness of our concurrent heap design we verify the
safety and liveness properties. The safety property that we use is linearizability
[16], whereas, the liveness is proved as lock-freedom [14].

Lock-free Implementations utilizing CAS are prone to the ABA problem [19]:
a thread P reads a value A from a shared memory location, a concurrent thread
P̂ changes the value to B and then P̂ or another thread changes it back A; when
P executes a CAS instruction on the location, it succeeds erroneously as if the
location has not been changed since last read by P . Several memory management
solutions have been proposed to address the ABA problem [11,19]. For ease of
exposition, we assume the availability of a non-blocking memory management
and garbage collection.
3 In our implementation, the Insert operations never returns a null or fails to make

any change due to the reason of finding the heap full. The heap is never full as long
as we have sufficient system memory available.



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 369

3 Algorithm

Our heap implementation utilizes the lock-free dynamic resizable arrays [6] as the
underlying container, which offers both unbounded storage and lock-free progress
guarantees. The ADT operations consist of a series of steps, such as modifying
the size and then appending an item to the heap, or swapping the item at the
root with the item at the bottom, or for that matter swapping any two items
in case of a ChangeKey, followed by restoring the heap property. Each step
comprises of at least one atomic primitive execution over a shared memory word.
The procedures HeapifyUp and HeapifyDown restore the heap property.

In order to achieve lock-free synchronization on concurrent access, we apply
the cooperative technique described by Barnes [2]. The main idea is to detach
operations from the executing threads. A thread that wishes to execute an oper-
ation on a slot of the array, creates a description of the work that it needs to
perform, and writes the descriptor on the slot: we call it marking the slot. The
operation can be completed by any thread that encounters the descriptor, which
comes handy to ensure lock-freedom if the thread that initiated the operation is
delayed or crashes.

Please note that marking is not locking a slot. It can be thought as shutting
the door of a slot after putting down the description of all that is to be done
inside. Thus any concurrent thread instead of busy waiting at the door actually
carries the description with itself and tries to finish the work initiated by another
thread in case that thread could not finish in time.

In our design, we maintain a global descriptor which encapsulates the cur-
rent size of the heap and allows atomic modification of the size value and the
associated heap slots with a sequence of CAS instructions. Additionally, we use
descriptor objects at the slots during HeapifyUp and HeapifyDown calls. The
threads calling HeapifyUp or HeapifyDown synchronize by way of executing
CAS at these descriptors.

Fig. 1. Type definitions for the heap structure, descriptors and initialization.

Data types and heap initialization are given in Fig. 1. The Heap structure
holds pointers to the data storage arrays and a descriptor object, Fig. 1a - line 1
to 4. A descriptor object, Fig. 1b, maintains information about the state includ-
ing the current size of the heap. Therefore, we initialize the heap with a dummy



370 I. Walulya et al.

descriptor object with size 1, Fig. 1a - line 6. To store auxiliary data with the
priorities, our design maintains the heap as an array of pointers to item nodes.
Each slot in the heap has a pointer elem to an Elem and a pointer info to
an Info object which records the state of the slot: stable or transient due to an
update, Fig. 1c. An Info descriptor stores enough information, such that a thread
encountering a slot in a transient state can help advance the operation.

3.1 Lock-Free ADT Operations

The mutable priority queue operations in the lock-free heap are shown by flow-
charts in Figs. 2 and 4. The main procedures called by these operations are shown
in Figs. 3, 5 and 6. The pseudo-codes of each of the operations, their subroutines,
and detail descriptions thereof are presented in the extended version of the paper
[26]. For ease of exposition, the flow-chart based presentation of the algorithm
is recursive. However, our implementation is fully non recursive as presented in
the pseudo-code in the [26].

Fig. 2. Insert and DeleteMin operations in CoMPiQ.

The Insert and DeleteMin operations, Fig. 2(i) and (ii), start with an
attempt to modify the size of the heap, this is achieved by registering the oper-
ation by way of executing a CAS to write its descriptor at the heap’s global
descriptor. That initiates the preliminary phase of the operation. The regis-
tered operation is considered pending until it is ready to call the procedures for



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 371

Fig. 3. CompleteWrite procedure.

Fig. 4. ChangeKey operation in CoMPiQ.

restoring the heap property. The threads that encounter this operation, can help
complete the preliminary phase.

The steps to complete the preliminary phase are taken in the procedure Com-
pleteWrite, see Fig. 3. CompleteWrite first fixes the bottom of the heap
and then depending upon the type of restoration required: HPUP or HPDOWN,
release the root or bottom. This procedure helps in scaling the method because
it releases one end of the heap as soon as the preliminary phase is completed. In
case of DeleteMin operation calling CompleteWrite, it returns the priority
of the bottom-most item in the heap.

A ChangeKey operation, Fig. 4, starts with checking the size of the heap
at the global descriptor to verify if the item with the priority that it desires to
change exists in the heap. Thereafter, it attempts to register itself by marking
the slot of the item, and calls HeapifyUp or HeapifyDown as needed. If
the marking fails, it helps the operation that would have marked the slot and
thereafter reattempts marking.

In the Fig. 5, the procedures HeapifyUp and HeapifyDown are shown.
They take two inputs: the index of the source slot where it starts and the priority
of the destination. HeapifyUp keeps on exchanging the item with its parent up
the heap until the destination priority is set at the slot such that heap property is
restored. On the other hand, HeapifyDown traverses down the heap to do the
same. To exchange the item of the current node with that of either the parent or
a child, a CAS is used to first put a descriptor over there and thereafter exchange
is done atomically. If CAS fails then Help is called to first help the obstructing
operation and then reattempt. The helping procedure ensures lock-freedom.

The Help call is all about synchronization between concurrent HeapifyUp
and HeapifyDown procedures. At a conflict, HeapifyDown is given priority.
HeapifyUp allows the HeapifyDown to gain ownership of a child slot. This



372 I. Walulya et al.

Fig. 5. HeapifyUp and HeapifyDown procedures.

is done by marking the slot with a so called flat descriptor that stores the old
information as well. This information is carried by the descriptor at the heap
slots, thereby other concurrent operations help accordingly. A HeapifyDown
after completing its own task, restores the information of HeapifyUp if that
existed at the slot previously.

Please note that, we compare the items at the slots according to their priori-
ties. Moreover, the higher the value of a priority, the lower is the priority as per
the min-heap property.

3.2 Design Optimizations

We add two optimizations: (1) “bit-reversal” to ensure that the consecutive
Insert operations traverse different subtrees up the heap to restore heap prop-
erty [17]. (2) Elimination of Insert by handing the items off to the concurrent
DeleteMin operations, instead of having the DeleteMin uproot an item out
of position from the end of the heap. An eliminated Insert operation can return
immediately without even attempting to register itself. Below a brief description
of the elimination technique is given.

Elimination Optimization: We observe that the DeleteMin operation lifts
an item from the bottom slot in the heap and heapifesDown the heap, while
as the Insert operation appends an item to the end of the heap and heapifies
Up the heap. Therefore, we can optimize by allowing the Insert to hand-off its
item to a concurrent DeleteMin. Thus, the DeleteMin takes an item from



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 373

a pending Insert instead of dislodging one from the end of the heap. Once
an Insert operation successfully hands-off its item, it returns without calling
HeapifyUp.

We utilize elimination arrays as suggested by Hendlar et. al [12], with each
Insert operation having a dedicated slot in the array. The DeleteMin oper-
ation traverses the array sequentially until it finds a pending Insert or gets to
the end of the array. If the DeleteMin operation fails to eliminate a pend-
ing Insert, it proceeds with displacing the last item in the heap, otherwise it
continues with the item taken from the pending Insert as described below.

After eliminating a pending Insert operation (lifting its item from the elim-
ination array), the DeleteMin compares the lifted item to the item at the root
of the heap. If the lifted item has a higher priority, the DeleteMin returns
the lifted item without having to call HeapifyDown. Otherwise, it proceeds to
place the lifted item and returns the item previously at the root.

4 Correctness Proof

To prove linearizability, we define the linearization point of each ADT opera-
tion. We order the operations, which have definitely returned, according to their
linearization points, thus obtaining a sequential history of execution. Thereby,
it is shown that the concurrent history of execution of a finite number of ADT
operations is equivalent to a sequential history. By induction, any concurrent
execution is thus shown to be equivalent to a definite sequential history. Addi-
tionally, we need to show that each of the ADT operations necessarily brings
the heap in a state that satisfies the heap property before its completion.

Proving lock-freedom requires that infinitely often some non-faulty processing
thread will complete its operation in a finite number of steps regardless of the
failed or delayed threads. To prove lock-freedom, we shall show that no operation
op busy-waits (by holding locks, for example) when obstructed by a concurrent
operation op′ and goes to help op′ to finish its operation. It may well be that
op is repeatedly obstructed by concurrent operations opi, i ∈ {1, 2, . . .} never
letting it complete its own operation, however, by virtue of the same protocol
it is proved that at least one non-faulty thread completes its operation in finite
number of steps. Under the constraints of space, we sketch the two proofs here.

Theorem 1. The ADT operations implemented by CoMPiQ are linearizable.

Proof. The linearization points of the ADT operations are the following:

1. Insert: An Insert(k, elem) operation begins with checking the global
descriptor gd of the heap. If it finds that there is a pending concurrent oper-
ation, it goes to first help that by calling a CompleteWrite(gd). Thus, an
Insert starts taking steps for itself only after the successful CAS that registers
it. After that, Insert calls CompleteWrite to write its descriptor, and on
completion, a HeapifyUp is called. The HeapifyUP finally makes the item
elem part of the heap with the successful CAS. Thus for an Insert operation



374 I. Walulya et al.

that successfully performs this CAS step, its linearization point is there. In
case it gets helped by a concurrent operation the successful CAS that finally
makes the item elem part of the heap is the linearization point. However, in
either case the CAS of linearization point is performed before the completion
of Insert. For detail, see [26]. Clearly, the linearization point of an Insert
operation is between its invoke and return.

2. DeleteMin: Depending on the return, there can be following cases:
(a) DeleteMin returns EMPTY: The linearization point is at the atomic read

step where the DeleteMin reads that the heap-size is 1 i.e. it contains
a the dummy descriptor object.

(b) DeleteMin returns an item elem: In this case, where it registers itself
by a successful CAS at gd, it is guaranteed that it will itself complete if not
obstructed, or will get helped by a concurrent operation. Also, once the
descriptor od is written, a concurrent Insert or DeleteMin operation
treats the root of the binary heap as deleted. Thus, the return of the
concurrent operation treats the DeleteMin that successfully put the
descriptor as if it had already returned. Therefore, the linearization point
of a DeleteMin in this case is at the step where it registers itself.

Thus, the linearization point of a DeleteMin is between invoke and return.

Fig. 6. Help procedure in CoMPiQ.



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 375

3. ChangeKey: Similar to an Insert, a ChangeKey terminates after its item
is relocated from one slot to another by way of calling a HeapifyUp or a
HeapifyDown. The CAS where the item will be visible to every operation
with its modified priority is the linearization point of a ChangeKey opera-
tion. When a ChangeKey returns without making any changes in the heap,
its linearization point is at the atomic read step where it reads the size of
the heap.

Furthermore, it can be observably determined that no operation returns
before the heap property is restored by calling either a HeapifyUp or a
HeapifyDown procedure. Any write on a shared memory word in the algo-
rithm happens by way of only a CAS. A dummy descriptor at the root ensures
that no null pointer is dereferenced. Clearly, the heap invariant is maintained
across the linearization points of the ADT operations. ��
Theorem 2. The ADT operations implemented by CoMPiQ are lock-free.

Proof. We can observe in the algorithm that a concurrent write at any shared
word happens only using a CAS. Further, if op1 and op2 are any two concurrent
operations, at no point after the failure of a CAS, op1 or op2 repeats the same
CAS step without helping the other operation. This methodology ensures that at
least one of the processes do finish its operation in a finite number of steps. ��

5 Evaluation

In this section, we present an evaluation of our lock-free heap using micro-
benchmarks and a parallelized implementation of Dijkstra’s SSSP algorithm
described in [24]. For the micro-benchmark, we compare the heap-based con-
current priority queue implementations described below:

1. CoMPiQ: Our implementation of a lock-free heap as described in Sect. 3
with elimination optimization.

2. LB-Heap: A fine grained locking implementation by Hunt et. al. [17].
Releases locks and re-aquires them on each iteration of the heapifyup opera-
tion to prevent deadlocks with concurrent heapifydown operation.

3. Champ: Modification of LB-Heap to remove redundant unlock and lock oper-
ations. Deadlocks are prevented using tryLock() in the heapifyup and only
releasing already acquired locks if a subsequent tryLock() fails. We received
Java code from the authors, reimplemented it in C/C++ and included the
exponential back-off and bit-reversal scheme [17] to reduce contention.

4. STL-Heap: The C++ STL std::priority queue<T> made thread-safe with
a single global lock (coarse-grained locking). We experimented with multiple
lock synchronization primitives, however the mutex was the best performing.

Methodology: We performed our evaluations on a dual-socket server with a
3.4 GHz Intel E5-2687W-v2 having 16 physcores (32 hardware threads by hyper-
threading), 16 GB of RAM, running Ubuntu 13.04 Linux. All the algorithms in



376 I. Walulya et al.

Fig. 7. Throughput Insert/DeleteMin operations executed uniformly and randomly
independent on the heap implementations as we vary the number of threads and
parallel-work (pw) in CPU cycles. K represents the initial number of items in the heap.

the micro-benchmark were implemented in C/C++, compiled with gcc version
4.9.2, -O3 and run as part of the ASCYLIB library [4]. Additionally, we pin soft-
ware threads onto hardware cores so as to leverage CPU affinity within sockets.
We utilize SSMEM [4] with epoch-based garbage collection [9].

We measured throughput as Million operations per second (Mops/s), while
varying the number of threads, initial heap size and contention (parallel-work:
work performed by threads outside accessing the heap). We do not expect the
concurrent heap to be repeatedly accessed by threads without work in between
so we simulate this work by varying parallel-work(pw), thus giving a more real-
istic evaluation than just stress testing. The lower the parallel-work, the more
contention experienced by threads accessing the heap. We varied the number of
items in the heap before starting the measurements with (k ∈ {210, 217, 220}).
Operations on the heap are randomly chosen with a distribution of 50% Insert
and 50% DeleteMin operations. Priorities for inserted items where selected uni-
formly at random from the range of all 64-bit integers. Each experiment run for
5 seconds, we present the average over 6 runs for each parameter configuration.

Throughput: Figure 7 presents measured throughput in Million operations per
second (Mops/s) as we vary the contention in parallel-work (pw) in CPU cycles
and the number of threads. We present three sets of graphs for three initial sizes
of the heap (k ∈ {210, 217, 220}), this is to show the effect of heap size on the
execution time of the operations.



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 377

The figure shows that with small initial size 210 (row 1, Fig. 7), at low thread
contention, the single lock implementation STL-Heap outperforms other imple-
mentations. This attributed to the low overheads incurred by STL-Heap using
mutual exclusion, and high overheads on both the multi-lock LB-Heap, Champ
and lock-free CoMPiQ. Similar observation about the single-lock implementation
was made in previous works [17,23].

Champ optimizes on the heapifyup operation of LB-Heap by removing redun-
dant unlock and re-lock operations in uncontended cases, however, in case
of contention, failure to acquire a lock, results in releasing locks held, and an
attempt to reacquire them. On modern architectures with private caches, a pro-
cess that releases a lock has a much higher probability of reacquiring the lock if
it attempts to acquire the lock immediately. Thus, an implementation of Champ
was showing similar performance figures as LB-Heap. We modified the imple-
mentation by adding exponential back-off between releasing a lock, and attempts
to re-acquire the same lock. This is the major reason for the performance differ-
ences between Champ and LB-Heap.

As we increase the number of threads, contention for the lock increases and
performance deteriorates. We observe that the lock-free algorithm with elimina-
tion(CoMPiQ), scales up as we increase the thread count. Elimination increases
the concurrency exploited by the operations as an Insert completes without
contending for the global descriptor or creating contention within the heap
with HeapifyUp operations. All implementations degrade in performance as we
deploy more than 16 threads due to communication overheads across sockets. We
still observe that CoMPiQ offers better throughput on multi-socket executions.

As we increase the initial size of the heap (height of the heap), “bit-reversal”
allows for more concurrency, and thus reducing the impact of synchronization
overhead on the performance. In this regard, we see that for heap size 220 the per-
formance of the single-lock implementation drops significantly relative to other
implementations with increasing thread count. The CoMPiQ performs best with
increased opportunities for concurrency and reduced contention on the heap.

Increasing parallel work (pw ∈ {1, 10, 100, 1000}) affects the lock-based
implementations more than the lock-free implementations because the concur-
rency overheads no longer dominate performance, but concurrency. Thus, CoM-
PiQ still outperforms other implementations.

Discussion: Key observations are that – the heap is an inherently sequential
data structure and even the most efficient implementation is still outperformed
significantly by a single thread executing on a sequential heap for low levels of
parallel-work. However, as the parallel work increases, the benefit of increas-
ing concurrency becomes more significant. Additionally, bit-reversal offers more
opportunities for disjoint-access allowing better exploitation of concurrency on
larger size heaps to offset synchronization overheads. This is less significant in
smaller heaps as successive Insert operations conflict on the paths to the root.
The root and the size variable create a severe bottleneck in both blocking and
non-blocking implementations, as all operations have to modify the size vari-
able, while all DeleteMin operations modify the size and also block the root for



378 I. Walulya et al.

Fig. 8. Runtimes for parallel Dijkstra’s SSSP for different random graphs

exclusive access. CoMPiQ uses elimination to reduce on the contention at the
bottleneck, thus resulting in better performance.

Parallel SSSP: One important application of priority queues that utilizes the
changeKey operation is the Dijkstra’s SSSP algorithm. To evaluate the perfor-
mance of CoMPiQ, we implemented CoMPiQ as part of the benchmark suite
received from [24] which included a parallel implementation Dijkstra’s algorithm
and Champ which is the only other implementation that supports changeKey
operation. The parallel Dijkstra’s SSSP algorithm availed in the benchmark relies
heavily on locks to ensure correctness, with this in mind, we plugged in our imple-
mentation without modifying the parallel SSP algorithm for fair comparison. A
more optimistic parallel implementation of Dijkstra’s SSSP algorithm is left as
future work. In the benchmark, running time is measured over several input
graphs and number of execution threads. Each input graph is generated with
10,000 vertices, with edges occurring independently randomly with some proba-
bility p and a random weight in the range [1–100]. The parallel Dijkstra’s SSSP
algorithm and the evaluated priority queues are implemented in Java.

Figure 8 shows that the CoMPiQ performs comparably with Champ. This
implies that overheads incurred to ensure lock-freedom do not degrade perfor-
mance of CoMPiQ when used in parallel applications. Note that node locks
are used in this parallelization, thus, as pointed out earlier, we anticipate sig-
nificant performance improvements with a more optimistic parallelization, that
uses atomics to update node weights. We only considered implementations that



Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities 379

support the changeKey operation. Please refer to [24] for an evaluation involving
skiplist-based priority queues that do not support changeKey.

6 Conclusion

In this paper, we presented a novel algorithm for an array-based unbounded
concurrent lock-free heap. The heap implements a priority queue interface with
the additional facility of changing the priority of an item in the runtime. Our
work contributes to many important applications, which use the priority queue
ADT and need to modify the priority of the items dynamically, in a definitive
way. Our micro-benchmark based experiments demonstrated that our algorithm
performs well in comparison to similar existing algorithms that use locks.

With array-based implementations, it is trivial to represent a d-ary heap,
however, implementation of a concurrent multi-way heap creates new challenges.
The multi-way heaps lower the traversal cost by reducing the height of the tree,
but increase the synchronization overhead as an operation attempts to determine
the priorities of all the d-children. The techniques introduced in this article may
be useful in implementing non-blocking versions of the heap-ordered d-ary heaps.

References

1. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: a scalable relaxed
priority queue. In: ACM SIGPLAN Notices, vol. 50, pp. 11–20. ACM (2015)

2. Barnes, G.: A method for implementing lock-free shared-data structures. In: 5th
SPAA, pp. 261–270 (1993)

3. Barnes, G.: Wait-free Algoritzms for Heaps. Department of Computer Science and
Engineering, University of Washington (1994)

4. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: The secret
to scaling concurrent search data structures. In: 20th ASPLOS, pp. 631–644 (2015)

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Lock-free dynamically resizable arrays.
In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 142–156.
Springer, Heidelberg (2006). https://doi.org/10.1007/11945529 11

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

8. Dragicevic, K., Bauer, D.: Optimization techniques for concurrent STM-based
implementations: a concurrent binary heap as a case study. In: 23rd IPDPS, pp.
1–8 (2009)

9. Fraser, K.: Practical lock-freedom. Ph.D. thesis, University of Cambridge (2004)
10. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33(10), 30–53

(1990)
11. Gidenstam, A., Papatriantafilou, M., Sundell, H., Tsigas, P.: Efficient and reliable

lock-free memory reclamation based on reference counting. IEEE Trans. Parallel
Distrib. Syst. 20(8), 1173–1187 (2009)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11945529_11


380 I. Walulya et al.

12. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
16th SPAA, SPAA 2004, pp. 206–215 (2004)

13. Henry, G.J.: The unix system: the fair share scheduler. AT&T Bell Lab. Tech. J.
63(8), 1845–1857 (1984)

14. Herlihy, M.: Wait-free synchronization. ACM TOPLAS 13(1), 124–149 (1991)
15. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM

Trans. Program. Lang. Syst. 15(5), 745–770 (1993)
16. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM TOPLAS 12(3), 463–492 (1990)
17. Hunt, G.C., Michael, M.M., Parthasarathy, S., Scott, M.L.: An efficient algorithm

for concurrent priority queue heaps. Inf. Process. Lett. 60(3), 151–157 (1996)
18. Israeli, A., Rappoport, L.: Efficient wait-free implementation of a concurrent pri-

ority queue. In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 1–17. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57271-6 23

19. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

20. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs
Tech. J. 36(6), 1389–1401 (1957)

21. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: 14th IPDPS,
pp. 263–268. IEEE (2000)

22. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

23. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

24. Tamir, O., Morrison, A., Rinetzky, N.: A heap-based concurrent priority queue
with mutable priorities for faster parallel algorithms. In: 19th OPODIS (2016)

25. Vitter, J.S.: Design and analysis of dynamic huffman codes. J. ACM (JACM)
34(4), 825–845 (1987)

26. Walulya, I., Chatterjee, B., Datta, A.K., Niyoliya, R., Tsigas, P.: Concurrent lock-
free unbounded priority queue with mutable priorities. Technical report, 2018:06,
ISNN 1652–926X, Department of Computer Science and Engineering, Chalmers
University of Technology (2018)

https://doi.org/10.1007/3-540-57271-6_23


Brief Announcement: Deterministic
Leader Election in Self-organizing Particle

Systems

Rida A. Bazzi(B) and Joseph L. Briones

Arizona State University, Tempe, AZ, USA
bazzi@asu.edu

Abstract. We consider the leader election problem in the geometric
Amoebot model in which nodes have no unique identifiers and only share
a common local sense of direction. Unlike other works, we consider the
deterministic leader election problem for general connected systems. We
propose a new deterministic leader election protocol that always succeeds
in finding 1, 2, 3, or 6 leaders. We show that if the protocol does not elect
a unique leader, deterministic leader election impossible for the system.

1 Introduction

Leader election is a fundamental problem that has been studied in both shared
memory and message passing system models. It is a prototypical symmetry
breaking problem [7]. The goal of leader election is to identify a unique member
of the system as the leader. In anonymous systems, the requirement is for one
unique member to self-identify as a leader and for other members to agree that
a leader has been self-identified.

In this paper, we are interested in leader election in self-organizing particle
systems, specifically the well studied Amoebot Model [3]. In this model, particles
occupy cells in a hexagonal grid. They have finite memory, can communicate with
adjacent particles, and can expand into unoccupied adjacent cells. The system of
particles is assumed to be initially connected because there is no way to achieve
coordination between different connected components without additional system
assumptions [6]. Electing a leader can facilitate solving problems such as shape-
formation [8], object coating [5] and system compression [1].

Leader election in the Amoebot model has been studied in the general case
without restrictions on the connectedness of the system [2,4], but those solutions
are probabilistic. The only deterministic solution for leader election is that of Di
Luna et al. [8] who use deterministic leader election to solve the deterministic
shape formation problem. While technically involved, their solution assumes that
the particle system is simply connected which means that the unoccupied cells
form a connected component. Their solution takes advantage of the fact that
the shape has no holes. It starts with an initial erosion phase in which particles
on the corners of the system eliminate themselves as candidate leaders. This
c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 381–386, 2018.
https://doi.org/10.1007/978-3-030-03232-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_25&domain=pdf


382 R. A. Bazzi and J. L. Briones

phase ends with a unique leader or 2 or 3 candidate leaders. If there are 2
or 3 candidate leaders left, they form trees containing other particles in the
system and compare these trees to each other to break the symmetry. If the
trees are identical, it follows that the particle system has symmetry that makes
deterministic leader election impossible. The approach of Di Luna et al. does not
work in a system with holes because erosion does not work in the general case.
The work of Di Luna et al. assumes no shared local sense of direction (chirality),
but, once candidate leaders have been identified, achieves a common chirality
using particle movement to beak symmetry.

The main contribution of this paper is a solution to the deterministic leader
election problem in general connected systems. To overcome the limitation of the
earlier work, we come up with a novel approach to determine a small number of
leaders (1, 2, 3, or 6) on the unique outer boundary of the system. After the can-
didate leaders are determined, the solution proceeds as in [8]. Candidate leaders
grow trees that are then compared to break symmetry. If breaking symmetry is
not possible, then, like [8] we establish constructively that deterministic leader
election is not possible. Unlike [8] in which candidate leaders are adjacent, in
our setting, coordinating candidate leaders requires more care.

2 System Model

We consider the geometric Amoebot model [3] in which anonymous particles
with finite memory occupy cells within a hexagonal lattice. Particles have the
same chirality. Particles can occupy one cell (contracted) or two cells (expanded)
and no cell can be occupied by more than one particle. Since our leader election
algorithm does not involve any expansion, each particle has six ports ordered
clockwise from port 0 through port 5, one port on each of the adjacent cells. The
ports are used to communicate with other particles in adjoining cells and to sense
if an adjacent cell is occupied by another particle or is empty. A communication
edge between two particles consists of a pair of corresponding ports. For example,
between cells A and B in Fig. 1, port 3 of A and port 4 of B form a communication
edge between A and B. Two adjacent particles know the port numbers that
form the edge between them. Particles communicate by writing to their local
memory and reading the local memory of adjacent particles. This allows for a
simple message passing between particles. We assume the particle system to be
connected.

In the solution, we introduce six virtual nodes for each cell, one node per
port. These nodes are represented in Fig. 1 by black dots at the vertices of the
cells occupied by the particle. Port i is on the edge between node i − 1 mod 6
and node i. Nodes execute steps when they are activated by the scheduler which
we assume to be completely asynchronous.



Deterministic Leader Election in Self-organizing Particle Systems 383

3 Leader Election

The algorithm has two main phases. In the first phase, a small number of candi-
date leaders are selected on the outer boundary of the system and in the second
phase further reduction of this number is attempted. If the algorithm does not
elect a unique leader in the second phase, the system must have symmetry that
prevents deterministic leader election.

Fig. 1. Particle system surrounded by unoccupied cells

In the first phase, the algorithm starts by running separate instances of a
boundary leader election algorithm on all the boundaries of the system (a node
is on a boundary if it is adjacent to an empty cell). An instance of a boundary
leader election algorithm is designed to work correctly if the participants in the
election consist of all nodes of a boundary. On the inner boundaries, if any,
it is guaranteed that no leader is elected. On the unique outer boundary, 1,
2, 3, or 6 candidate leaders are selected. Each leader also has what we call a
stretch, a sequence of contiguous nodes, associated with it. If there is a unique
leader, the algorithm terminates, but if there are multiple leaders, this means
that the outer boundary has symmetry that prevents the deterministic election
of a unique leader. This initial phase is the more involved phase and is done in a
sequence of phases that are not strictly synchronized. Having a small number of
leaders that can communicate around the outer boundary allows us to use the
tree comparison approach of [8] in the second phase.

If at the end of the first phase there are multiple candidate leaders, each
particle with a leader node tries to recruit as many particles as it can to form
a tree with the particle itself as the root of the tree. This is the same as the
approach of [8]. After all particles in the systems have joined a tree, each root
compares its tree to the tree of the root to its right on the outer border according
to an order relation. Every candidate leader then shares the results of these
comparisons will all other candidate leaders on the boundary. If the results of
all these comparison are equality, then there is symmetry in the system and
deterministic leader election is not possible. If the result of one of the comparisons



384 R. A. Bazzi and J. L. Briones

Fig. 2. Vertex labeling
and initialization of
stretches.

Fig. 3. Intermediate
step with two stretches
remaining.

Fig. 4. Final config-
uration. Termination
detected.

Algorithm 1. Stretch Expansion
1: function AttemptExpansion()
2: � s and s′ are two adjacent stretches. s′ is to the right of s.
3: if s.count > s′.count ∧ (s.count + s′.count ≤ 6 ∧ s.count > 0) then
4: Merge(s, s′)
5: else if s.count = s′.count = 1, 2, 3, or 6 then
6: if s ≡ s′ then � if s and s′ are lexicographically equal
7: DetectTermination() � initiate termination detection
8: else if s > s′ then � if s is lexicographically greater than s′

9: Merge(s, s′)

is inequality, then one or more candidate leaders are eliminated and the process
is repeated with the remaining roots. This is repeated a constant number of times
until either there is one unique remaining leader or there are multiple leaders
who are all tied in the tree comparison. If there is a unique leader, we are done,
otherwise, there is symmetry that prevents deterministic leader election. In what
follows, we describe some of the details of the first phase.

The first phases starts by having each particle sense its surrounding to deter-
mine if one or more cells around it are unoccupied. A particle can be on more
than one border, but each node can be on at most one border. When a particle
has identified itself as part of the outer border and its successors and predeces-
sors have been initialized, the particle labels its nodes with a unary label which
is +1 for border nodes that belong to only one particle and −1 for border nodes
that are shared between adjacent particles. This is illustrated in Fig. 2.

After labeling each node on the outer border, stretches attempt to expand
to eliminate possible leaders. The leftmost node in a stretch is considered the
leader (or head) of the stretch. The rightmost node in a stretch is called the
tail of a stretch. Within a stretch, each node has a predecessor pointer and a
successor pointer. The leader of the stretch maintains a counter which is equal
to the sum of the unary labels of the nodes in the stretch. The counter value
never exceeds the value 6. Initially, all nodes on the outer border are considered
independent stretches, of size 1, with a respective counter equal to their unary
label. All nodes are initialized to be both the head and tail of their stretch.
Figures 3 and 4 illustrate stretches.



Deterministic Leader Election in Self-organizing Particle Systems 385

Algorithm 2. Termination Detection
1: function DetectTermination(s)
2: terminate ← true
3: for i ← 1, k/s.count do � k = 6/s.count
4: s′ ← s
5: for j ← 1, i − 1 do
6: s′ ← s′.left � Rotate to the stretch left of s’
7: terminate ← (terminate ∧ (s′.count ≡ s.count))

8: s′ ← s′.left
9: terminate ← (terminate ∧ (s′.count = s.count))∧ s′ ≡ s

10: return terminate

Stretches can expand by merging with adjacent stretches. When two stretches
merge, the leader of the stretch on the left (s in Algorithm 1) becomes the leader
of the resulting stretch and its new count is the sum of its old count and the
count of the stretch being merged into. A merge is allowed only if the sum of the
two counts is less than or equal to 6. We avoid deadlocks by placing an order
relationship based on the count and lexicographic comparison between stretches.
We require that the stretch s on the left has a positive count and either its count
is larger than that of the stretch s′ on the right (s′) or the two counts are equal,
but the sequence of unary labels of s is lexicographically larger than that of s′.

Finally, to detect termination, a stretch attempts to establish that the whole
border on which it resides is covered with k identical stretches that have the
same positive count (k = 1, 2, 3, or 6).

References

1. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm for
compression in self-organizing particle systems. In: Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, pp. 279–288. ACM (2016)

2. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Fernández Anta, A.,
Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS,
vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72751-6 10

3. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: amoebot-a new model for programmable matter. In: Pro-
ceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, pp. 220–222. ACM (2014)

4. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An
algorithmic framework for shape formation problems in self-organizing particle sys-
tems. In: Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, p. 21. ACM (2015)

5. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theor. Comput. Sci. 671, 56–68 (2017)

https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10


386 R. A. Bazzi and J. L. Briones

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–
447 (2008)

7. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput. 88(1),
60–87 (1990)

8. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape for-
mation by programmable particles. In: 21st International Conference on Principles
of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017, pp.
31:1–31:16 (2017)



Brief Announcement: Time Efficient
Self-stabilizing Stable Marriage

Joffroy Beauquier1, Thibault Bernard2, Janna Burman1,
Shay Kutten3, and Marie Laveau1(B)

1 LRI, Université Paris-Sud, CNRS, Université Paris-Saclay,
Bat 650, Rue Noetzlin, 91190 Gif-sur-Yvette, Orsay, France

laveau@lri.fr
2 LI-PaRAD, Université de Versailles, Université Paris-Saclay, Versailles, France

3 Technion - Israel Institute of Technology, Haifa, Israel

Abstract. “Stable marriage” refers to a particular matching with con-
straints having a wide variety of applications in different domains (two-
sided markets, Cloud computing, college admissions, etc.). Most of
the studies on this problem performed up to now were for central-
ized and synchronous settings assuming initialization. We consider a
distributed and asynchronous context, without initialization (i.e., in a
self-stabilizing manner, tolerating any transient fault) and with some
confidentiality requirements. The single already known self-stabilizing
solution in Laveau et al. (SSS’ 2017), based on Ackerman et al.’s algo-
rithm (SICOMP’ 2011), stabilizes in O(n4) moves (activation of a single
node). We improve on this previous result considerably by presenting
a solution with O(n2) steps, relying on the idea of Gale and Shapley’s
algorithm (AMM 1962), which takes also O(n2) moves, but in a central-
ized synchronous context. Moreover it is not self-sabilizing solution and
a corruption cannot be repaired locally, as noticed by Knuth (1976).

1 Introduction

We are interested in a matching problem on complete bipartite graphs which was
originally called stable marriage by Gale and Shapley [9]. The aim is to match
nodes of two different sets without blocking pairs (see the definition later). Gale
and Shapley proposed the first algorithm [9] (GSA) that is centralized and pro-
ceeds in synchronous rounds, alternating proposals (by women) and acceptances
(by men). Intuitively speaking the algorithm avoids blocking pairs by gradually
improving the quality of the matchings (“better match” dynamics). As noticed
by Knuth in [11], GSA requires an initial configuration in which no node is
matched, meaning that it is not self-stabilizing [7]. A self-stabilizing solution
was proposed in [12]. It is distributed, correct in an asynchronous context and

The full version of the paper is available in [6].
This work was supported in part by grants from Digiteo France and by the Israeli
ministry of Science and Technology.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 387–392, 2018.
https://doi.org/10.1007/978-3-030-03232-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_26&domain=pdf


388 J. Beauquier et al.

guarantees confidentiality of the preferences. Its complexity is O(n4) moves, in
contrast to that of GSA, O(n2), although with different assumptions.

The solution proposed here improves the complexity of [12] under the same
assumptions (distributed, self-stabilizing, asynchronous, confidential), providing
a complexity of O(n2) moves. The new algorithm is based on a different app-
roach than that of [12]. While the solution in [12] of O(n4) moves is inspired by
a two-phase algorithm due to Ackerman et al. [1], the proposed solution relies on
GSA. Making GSA self-stabilizing without augmenting its complexity is chal-
lenging, because GSA is inherently not self-stabilizing [11]. As we wanted to
keep the “better match” dynamics of GSA because it ensures a good complex-
ity, we are naturally led to detect locally the blocking pairs and to repair them
globally, since no local repair is possible. More technically, the solution follows
a scheme proposed in [2], and formalized in [5] for the asynchronous model. It
relies on two modules. First, a detection module checks locally and perpetually
the correctness of the configuration. If a problem is detected, the module trig-
gers a reset reinitializing the system. We use a self-stabilizing reset (e.g., [3,4])
having particular properties defined in [5]. It is propagated on a spanning tree
of height 2 that is constructed over the given bipartite graph (this construction
requires no assumptions). This first module stabilizes in O(n2) moves. Then, a
second module builds a stable marriage from the reinitialized system such that
neither a blocking pair is created during the process, nor the reset is triggered
again. For this latter module, we develop an algorithm, Async-GSA, solving an
asynchronous stable marriage.

Regarding the optimally of the solution, it has been proven in [10] that the
communication complexity [13] of the stable marriage problem is Ω(n2) bits.
This result implies an Ω(n2/ log(n)) bound in moves in our model (assuming
constant size communication registers). Thus, the algorithm proposed here can
be considered as near optimal. Nevertheless, we believe that a more careful
analysis can provide a better Ω(n2) lower bound for the model here.

Preliminaries. We consider a distributed system represented by a complete bipar-
tite graph Kn,n (one set of women and one of men). Each node u has a unique
identifier and a different priority for each node v in the other set (denoted
priority(u, v)), between 1 (the most preferred) and n.

The goal is (1) to match (marry) the women and the men together such that
everyone is matched and (2) that there is no pair (w,m) of a woman and a man
that are not matched to each other, but by their priorities they prefer each other
over their current matches. When there are no such pairs, called blocking pairs,
the set of marriages is said stable.

We adopt the link-register communication model (cf. [8]). Each process is
associated with a set of atomic registers, each of a size of O(1) bits. A process
can write in its registers and can read any register of a neighbor. The state of
a node is the vector of the values of its internal variables and its registers. A
configuration is the vector of the states of all nodes. A distributed algorithm
is described by a finite set of guarded rules per node. In a configuration, the
distributed unfair scheduler selects a non-empty subset of nodes with enabled



Time-Optimal Self-stabilizing Stable Marriage 389

rules (having their guards to true). Then, per such node, it chooses one of such
enabled rules (according to predefined priorities) and atomically executes the
corresponding actions. An execution of the actions of one rule (of a particular
node) is called a move.

A distributed algorithm solves the stable marriage problem in a self-
stabilizing way if it solves it for any possible initial configuration. Even if the vari-
ables of all nodes have been corrupted once, i.e., by transient failures (producing
an arbitrary configuration), the algorithm reaches a terminal configuration (not
changing any more in the execution), in which there is a stable marriage. The
time complexity of an algorithm is evaluated in terms of the maximum number
of moves until a terminal configuration, starting from an arbitrary one.

2 Self-stabilizing Stable Marriage in O(n2) Moves

It was proven in [5] that if an initialized solution satisfies some specific proper-
ties, it can be transformed into a self-stabilizing one. For the transformation to
be correct, the non self-stabilizing algorithm has to be locally checkable [2] sat-
isfying Definition 1 below (adapted to our case). Then, nodes can locally detect
if a configuration is incorrect. Correct configurations are those reached by an
execution of the given non-self-stabilizing algorithm starting from a correct con-
figuration, Cinit in our case. Once an incorrect configuration is locally detected,
a global reset is launched, setting each variable to a predefined value (defined
by Cinit). Then the algorithm behaves as if it has been started from a correct
configuration and reaches a terminal configuration with a stable marriage.

Thus, the issue is to design a locally checkable solution. We design such
an algorithm Async-GSA. It is described below shortly. Then, we prove that it
is locally checkable (according to Definition 1), by constructing the predicate
(named LPm,w) that will be checked locally and periodically by each man m, in
the final self-stabilizing solution.

In Async-GSA each woman makes proposals to men in the order of her pref-
erence list starting (in Cinit) from the most preferred neighbor (these actions are
implemented by a guarded rule Propose). Men reply by accepting or refusing
each proposal (using rules Accept or Refuse, resp.). If a man receives sev-
eral proposals, he accepts the most preferred one and refuses the others. If he
is already married but receives a better proposal, he accepts the proposal and
cancels (still by Refuse) the previous marriage. If a man accepts a proposal,
the proposing woman accepts as well (using Confirm rule). Otherwise, if he
refuses (or cancels), she shifts to the next element in her preference list (rule
Refusal Management) and thus makes a new proposal (rule Propose again).
The complete formal description and proof of Async-GSA is given in [6].

Theorem 1. From Cinit, after at most O(n2) moves, a terminal configuration
with a stable marriage is reached.

In Definition 1 below, LPm,w is a predicate on the internal variables and registers
of m and also on the registers of w (that can be read by m) in a solution Alg.
Also, Π is a global predicate on configurations.



390 J. Beauquier et al.

Definition 1 ([2], [5]). [Local Checkability adapted to our model] A solution
Alg to a problem is locally checkable for Π iff the following conditions hold.

1. There exists a set L of local predicates LPm,w, for each man m and each
woman w, such that Π =

∧

∀(m,w)∈E

LPm,w.

2. There exists a configuration of Alg satisfying Π.
3. Each LPm,w is such that if C is a configuration satisfying LPm,w then the next

configuration C’ in the execution also satisfies LPm,w.

The local predicate LPm,w that we construct for proving the local checkability
of Async-GSA is of the following form. LPm,w ≡ (P0

m,w ∨ PPropose
m,w ∨ PRefuse

m,w ∨
PAccept
m,w ∨ PConfirm

m,w ∨ PR M
m,w ) ∧ ¬ PBP

m,w

P0
m,w is a predicate satisfied by local states of nodes in Asynch-GSA in a

configuration where no proposal/refusal/acceptance has been made on (w,m)
and in all configurations reached from it as long as no rule has been applied on
(m,w). Notice that Cinit satisfies P 0

m,w, thus satisfying point 2 of Definition 1.
Each of the five next predicates is related to one of the rules of the solution.
Indeed, PPropose

m,w is the predicate satisfied in a local state in a configuration
where a proposal has been made by woman w. Proposals are made in a con-
figuration satisfying P0

m,w using rule Propose. In the same manner, PRefuse
m,w ,

PAccept
m,w , PConfirm

m,w and PR M
m,w describe local states that can be reached after a

particular rule of the algorithm. The last predicate is for detecting a blocking
pair. A complete description of these predicates is in the full paper. Roughly,
LPm,w is designed to check whether the edge (m,w) is a blocking pair. For that,
w communicates to m whether it prefers m to its current spouse. With this
information, m is able to detect a blocking pair but also an inconsistency in the
variables. Notice that the exchange of information between w and m is limited
and respects the privacy: preference lists are not communicated.

Theorem 2. Let Π =
∧

∀(m,w)∈E

LPm,w. Async-GSA is locally checkable for Π.

Composition and Analysis. Let us now speak of the composite algorithm, includ-
ing the three modules- the reset, Async-GSA and the checking. First, using identi-
fiers and the structural properties of the bipartite graph, a rooted spanning tree
of depth 2 (used by the reset) can be easily constructed, stabilizing in O(n2)
moves (see details in [6]). Then, in the worst case, an execution is divided in
three parts: an initial part in which a reset (propagated on a tree) is enabled (its
rules) but not triggered, a second part during which a reset is performed and
a third part, which corresponds to an execution with the correct initialization
(of Async-GSA). We discuss upper bounds for each of these parts. Assume that
the rules of a node are activated according to the following priorities: first the
spanning tree construction, second the rules involved in the reset, then the rules
of local checking and at the end, the rules of Async-GSA.

For the last part, Theorem 1 gives the O(n2) moves upper bound. Now, con-
sider the first part. There are some incoherent nodes or nodes involved in a



Time-Optimal Self-stabilizing Stable Marriage 391

blocking pair in the starting configuration. The other nodes simply execute rules
of Async-GSA. The longest execution segment of this part is obtained when the
unfair scheduler chooses to ignore the incorrect nodes (from executing the rules
of the inconsistency detection). This may take at most O(n2) moves, until no
woman could make a new proposition, as the end of her preference list is reached.
Then, an incorrect node is activated, triggering a reset. The task of building a
partial stable marriage takes O(n2), still from Theorem 1.

For the reset part, we adopt the algorithm from [3]. This algorithm proceeds
in “waves” (of broadcast and convergecast) propagated over a tree and coordi-
nated by the root. Such a reset can be decomposed into three subparts: (a) a
reset request launched towards the root, (b) a “freezing” wave from the root to
the leaves, initializing the Async-GSA variables (following by a feedback to the
root), and then c) an “unfreezing” wave from the root to all the nodes, launch-
ing the Async-GSA. Since the waves are diffused on the tree, each wave takes
O(n) moves. Furthermore, the reset has a delay of O(n) moves before being
operational since reset variables can be incoherent. Finally, even if each node
launches a reset simultaneously, that takes less than n × O(n) = O(n2) moves.
After a reset has been accomplished, variables are set to their initial values and
Async-GSA can start. This justifies the overall complexity of O(n2) moves.

References

1. Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoor-
dinated two-sided matching markets. SIAM J. Comput. 40, 92–106 (2011)

2. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol.
486, pp. 15–28. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-
7 2

3. Arora, A., Gouda, M.: Distributed reset. IEEE Trans. Comp. 43, 1026–1038 (1994)
4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking

and correction. In: Proceedings of 32nd Annual Symposium of Foundations of
Computer Science (1991)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by
local checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994.
LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0020443

6. Beauquier, J., Bernard, T., Burman, J., Kutten, S., Laveau, M.: Time efficient
self-stabilizing stable marriage. Technical report (2018). https://hal.inria.fr/hal-
01266028

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. CACM 17,
643–644 (1974)

8. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)

9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly (1962)

10. Gonczarowski, Y.A., Nisan, N., Ostrovsky, R., Rosenbaum, W.: A stable marriage
requires communication. In: SODA 2015 (2015)

https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443
https://hal.inria.fr/hal-01266028
https://hal.inria.fr/hal-01266028


392 J. Beauquier et al.

11. Knuth, D.E.: Mariages stables et leurs relations avec d’autres problemes combina-
toires. Les Presses de l’Université de Montréal (1976)

12. Laveau, M., Manoussakis, G., Beauquier, J., Bernard, T., Burman, J., Cohen, J.,
Pilard, L.: Self-stabilizing distributed stable marriage. In: Spirakis, P., Tsigas, P.
(eds.) SSS 2017. LNCS, vol. 10616, pp. 46–61. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69084-1 4

13. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC 1979. ACM (1979)

https://doi.org/10.1007/978-3-319-69084-1_4
https://doi.org/10.1007/978-3-319-69084-1_4


Brief Announcement: Feasibility of Weak
Gathering in Connected-over-Time

Dynamic Rings

Fukuhito Ooshita1(B) and Ajoy K. Datta2

1 Graduate School of Science and Technology,
Nara Institute of Science and Technology,

Takayama 8916-5, Ikoma, Nara 630-0192, Japan
f-oosita@is.naist.jp

2 Department of Computer Science, University of Nevada, Las Vegas, USA

1 Introduction

Background and Motivation. The gathering problem is a fundamental problem
for cooperation of mobile agents (or simply, agents). The problem requires mul-
tiple mobile agents initially located at different nodes to eventually meet at a
single node. The problem is called the rendezvous problem for the case of two
agents. Mobile agents may be software programs that can autonomously move
in a distributed system, or robots that can move in a real world. By solving the
gathering problem, agents can share information previously collected by each
mobile agent, or divide and assign tasks to agents.

The gathering and rendezvous problems have been extensively studied with
various assumptions [5]. However, most works assume the network is static. That
is, the network topology does not change during execution of the algorithm. On
the other hand, frequent topology changes are not anomaly in some networks
such as a mobile ad-hoc network and a transportation network. For this reason,
dynamic networks, where the network topology may change over time, have
received a lot of attention recently [3].

A few gathering algorithms have been proposed for dynamic networks. Di
Luna et al. [4] studied 1-interval-connected (dynamic) rings, in which at most
one edge is missing at each time unit. They prove that it is impossible to make all
agents meet at a single node, and so they provide algorithms to achieve a weak
gathering such that all agents meet at a single node or gather at two neighboring
nodes. As a less-restricted model, Bournat et al. [1] have studied a connected-
over-time (dynamic) ring recently. The only constraint of connected-over-time
rings is that any node is infinitely often reachable from any other node. Different
from [4], Bournat et al. provide a gathering algorithm such that all agents but at
most one agents meet at a single node. In this paper, we follow the definition of
weak gathering in [4] and study the feasibility of weak gathering in connected-
over-time rings.

This work was supported by Japan Science and Technology Agency (JST) SICORP
and JSPS KAKENHI Grant Number 18K11167.

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 393–397, 2018.
https://doi.org/10.1007/978-3-030-03232-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_27&domain=pdf


394 F. Ooshita and A. K. Datta

Our Contributions. In this paper, we study the gathering problem in connected-
over-time rings with n nodes, and clarify conditions to realize a gathering algo-
rithm. We consider k synchronous agents and assume that they have unique
identifiers and know neither n nor k. We aim to achieve a weak gathering in [4]
such that all agents meet at a single node or gather at two neighboring nodes.

First, we prove that there exists no gathering algorithm (1) when agents
cannot leave information at nodes, (2) when agents and nodes have arbitrary
initial states, or (3) when all agents should terminate. The third impossibility
contrasts with an algorithm for 1-interval-connected rings [4], which realizes
termination on the assumption that agents have no identifiers and leave marks
at their starting nodes. From these impossibility results, we should consider
stronger conditions to develop a gathering algorithm.

Second, we propose a gathering algorithm such that (1) agents can use white-
boards, (2) agents and nodes have designated initial states (with arbitrary ini-
tial positions), and (3) agents may not terminate. From the above impossibility
results, the assumptions of our algorithm are weakest. Our algorithm guarantees
that, if every edge appears infinitely often, agents meet at a single node and
terminate. Otherwise (i.e., if one edge disappears forever), agents may gather at
two end nodes of a missing edge and continue to move toward the missing edge.

2 Preliminaries

In this paper, we extend the model in [4] to connected-over-time rings [1], which
is based on evolving graphs introduced in [2]. An evolving graph G is a sequence
of graphs G = G0, G1, . . . such that, for any i ≥ 0, Gi = (V,Ei) is a subgraph
of a given graph G = (V,E). Graph Gi represents the topology at time i, i.e.,
edge e is present at time i if and only if e ∈ Ei holds. The underlying graph of G,
denoted by UG , is a graph composed of all edges that are present at least once in
G, i.e., UG = (V,EG) where EG = ∪∞

i=0Ei. Edge e is eventually missing if there
exists i′ such that e /∈ Ei holds for any i ≥ i′. An eventual underlying graph of G,
denoted by Ue

G , is a graph composed of all edges that are not eventually missing.
An evolving graph G is a connected-over-time ring if and only if its underlying
graph UG is a ring and its eventual underlying graph Ue

G is connected. This
means each node is infinitely often reachable from any other node. Note that, in
connected-over-time rings, at most one edge is eventually missing.

We assume that agents start their actions from arbitrary nodes (multiple
agents may stay at a single node initially). Each agent a is assigned a unique
identifier, denoted by a.id. Agents know neither the number of nodes n nor the
number of agents k. Agents execute synchronous rounds, each of which consists
of Look, Compute, and Move phases. Consider an agent a at node v. During
the Look phase, a obtains the snapshot of local states. That is, a obtains states
of v and all agents at v. Agent a does not obtain whether edges incident to v
are present in Gi or not. During the Compute phase, a executes the algorithm
based on the snapshot obtained in the Look phase. If a decides to move, it tries
to move during the Move phase. If the link from v to the destination appears in
this round, a succeeds to move. Otherwise, a remains to stay at v.



Brief Announcement: Feasibility of Weak Gathering 395

In this paper, we say agents achieve a (weak) gathering if both of the following
conditions hold: (1) all agents gather at a single node or at two neighboring
nodes, and (2) no agent changes its position after that.

3 Impossibility Results

In this section, we give three impossibility results. We show the following theo-
rems on the assumption that all agents agree on the direction of the ring. That
is, these theorems hold even if agents have a sense of direction.

Theorem 1. If agents cannot leave any information at nodes, no algorithm with
designated initial states solves gathering without termination.

Theorem 2. Even if agents can use whiteboards at nodes, no algorithm with
arbitrary initial states solves gathering without termination. This holds even if
agents know n and k.

Theorem 3. Even if agents can use whiteboards at nodes, no algorithm with
designated initial states solves gathering with termination. This holds even if
agents know n and k.

Proof (Sketch). For contradiction, assume that there exists such an algorithm
A. If the adversary continues to remove an edge between two agents a1 and a2,
these two agents cannot meet and hence terminate at two neighboring nodes v1
and v2. We define v0, v3, and v4 as nodes such that v0, v1, v2, v3, and v4 are five
successive nodes.

Let r1 (resp., r2) be the last round during which some agents join v1 (resp.,
v2). Without loss of generality, we assume r1 ≤ r2. After the r2-th round, all
agents eventually terminate without moving to other nodes. This implies that
agents in v1 will eventually terminate as long as no other agent visits v1.

On the other hand, we can show that the adversary removes (v1, v2) in the
r2-th round. This implies that some agent a3 stays at v3 in the (r2 −1)-th round
and moves to v2 during the r2-th round.

Now we change the behavior of the adversary so that the adversary removes
edges (v2, v3) and (v3, v4) additionally after the r2-th round. This implies that
a3 cannot join v2 in the r2-th round. In this case, a3 remains to stay at v3, while
agents in v1 will eventually terminate. After agents in v1 terminate, the adversary
removes only an edge through which a3 decides to move. Since agents continue
to stay at v1 and v3, A cannot achieve a gathering. This is a contradiction. ��

4 A Gathering Algorithm

In this section, we propose an algorithm to complement the impossibility results
presented in the previous section. The algorithm solves gathering without ter-
mination on the assumption that agents can use whiteboards at nodes and they
start from designated initial configurations.



396 F. Ooshita and A. K. Datta

Fig. 1. The basic behaviors of the algorithm.

States of Agents. The algorithm works based on leader election. In the algorithm,
ai has variable ai.state ∈ {leader, sub-leader, follower}. We say agent ai is
a leader, a sub-leader, or a follower depending on ai.state. Each leader or sub-
leader agent ai maintains the leader ID in variable ai.leader. If ai is a leader,
ai.leader = ai.id holds. If ai is a sub-leader, ai.leader = aj .id �= ai.id holds for
some agent aj . In this case, we say ai is a sub-leader of aj .

When two leader or sub-leader agents ai and aj meet, they compare leader
IDs ai.leader and aj .leader. When the leader IDs are different, agents execute
a leader election. Without loss of generality, we assume ai.leader < aj .leader
holds. In this case, aj becomes a follower of ai. That is, aj sets aj .state =
follower and aj .follow = ai.id, where variable aj .follow stores the ID of the
agent that aj follows. After aj becomes a follower of ai, aj just moves together
with ai. Note that, since aj can observe the states of all agents at the current
node, aj can observe the decision of ai and move together. If ai terminates, aj

also terminates. If ai becomes a follower of some agent a�, aj also becomes a
follower of a�.

Behaviors of Leaders and Sub-leaders. In the following, we explain the behaviors
of leaders and sub-leaders. To simplify the explanation, we assume that two
agents never cross via an edge in the opposite directions at the same time. This
assumption can be removed but due to limitation of space we omit the details.

Initially, all agents are leaders, that is, ai.state = leader and ai.leader =
ai.id hold for any agent ai. Each leader tries to traverse a ring and during the
movement, it writes its leader ID to whiteboards. That is, each leader ai sets
v.leader = ai.leader for every visited node v, where v.leader is a variable on the
whiteboard of node v. Figure 1(a) shows a configuration after a few rounds. The
number near node v represents the value of v.leader.

If leader ai finds a smaller leader ID at node v (i.e., v.leader < ai.leader
holds), ai becomes a sub-leader and records the leader ID (see the agent with ID
4 in Fig. 1(b)). That is, ai sets ai.state = sub-leader and ai.leader = v.leader.
After that, ai moves in the opposite direction. Similar to the leaders, sub-leader
ai writes its leader ID to whiteboards during the movement.



Brief Announcement: Feasibility of Weak Gathering 397

If multiple leaders or sub-leaders with different leader IDs meet, they execute
leader election as described before (see agents with IDs 1 and 2 in Fig. 1(b)). As a
result, the agent with the minimum leader ID remains as a leader or a sub-leader
and other agents become followers of the remaining leader or sub-leader.

Consider the case that a sub-leader and a leader with the same leader ID meet
(consider configurations after Fig. 1(c)). This happens only when the leader ID
is the minimum among all agents. In addition, all other agents have become
followers of the leader or the sub-leader. This implies that all agents stay at
the same node in this case. Hence, the leader and the sub-leader terminate with
their followers and achieve the gathering.

If all agents meet the agent amin with the minimum ID before they visit
some node v with v.leader = amin.id, there exists no sub-leader of amin. In this
case, amin traverses the ring without meeting a sub-leader of amin. That is, amin

visits node v with v.leader = amin.id. In this case, since all other agents have
become followers of amin, amin terminates with its followers and achieves the
gathering.

From these behaviors, all agents keep moving before they terminate by
achieving the gathering. This implies that, if there exists an eventually miss-
ing edge and agents do not meet at a single node, all agents stay at two end
nodes of the eventually missing edge and try to move toward the edge. Hence,
they have achieved the (weak) gathering.

References

1. Bournat, M., Dubois, S., Petit, F.: Gracefully degrading gathering in dynamic rings.
In: Proceedings of 20th International Symposium on Stabilization, Safety, and Secu-
rity of Distributed Systems (2018)

2. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

4. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS,
vol. 10641, pp. 339–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72050-0 20

5. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59, 331–347 (2012)

https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-319-72050-0_20


Brief Announcement: Optimal
Self-stabilizing Mobile Byzantine-Tolerant

Regular Register with Bounded
Timestamps

Silvia Bonomi1(B), Antonella Del Pozzo1,2, Maria Potop-Butucaru2,
and Sébastien Tixeuil2

1 Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy
{bonomi,delpozzo}@diag.uniroma1.it

2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
75005 Paris, France

{maria.potop-butucaru,sebastien.tixeuil}@lip6.fr

Abstract. This paper investigates on the implementation of a self-
stabilizing regular register emulated by n servers that is tolerant to
both mobile Byzantine agents, and transient failures in a round-free
synchronous model. Differently from existing Mobile Byzantine tolerant
register implementation, this paper considers a more powerful adversary
where (i) the message delay (i.e., δ) and the period of mobile Byzantine
agents movement (i.e., Δ) are completely decoupled and (ii) servers are
not aware of their state i.e., they do not know if they have been corrupted
or not by a mobile Byzantine agent.

We claim the existence of an optimal protocol that tolerates (i) any
number of transient failures, and (ii) up to f Mobile Byzantine agents.

1 Introduction

Byzantine fault tolerance is a fundamental building block in distributed systems
as Byzantine failures include all possible faults, attacks, virus infections and
arbitrary behaviors that can occur in practice (even unforeseen ones). Such bad
behaviors have been typically abstracted by assuming an upper bound f on the
number of Byzantine failures in the system. However, such assumption has two
main limitations: (i) it is not suited for long lasting executions and (ii) it does
not consider the fact that compromised processes/servers may be restored as
infections may be blocked and confined or rejuvenation mechanisms can be put
in place [22] making the set of faulty processes changing along time.

Mobile Byzantine Failure (MBF) models have been recently introduced to
integrate those concerns. Failures are represented by Byzantine agents that are
managed by an omniscient adversary that “moves” them from a host process
to another and when an agent is in some process it is able to corrupt it in an
unforeseen manner. Models investigated so far in the context of Mobile Byzantine

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 398–403, 2018.
https://doi.org/10.1007/978-3-030-03232-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_28&domain=pdf


Brief Announcement: Optimal Self-stabilizing Mobile 399

Failures consider mostly round-based computations, and can be classified, accord-
ing to Byzantine mobility constraints, in (i) constrained mobility [11] where
agents may only move from one host to another when protocol messages are
sent (similarly to how viruses would propagate), and (ii) unconstrained mobil-
ity [2,4,14,18–20] where agents may move independently of protocol messages.

A first step toward decoupling algorithm rounds from Mobile Byzantine
movement is due to Bonomi et al. [8]. In their solution to the regular register
implementation, Mobile Byzantine movements are synchronised, but the period
of movement is independent to that of algorithm rounds.

Concerning self-stabilization [12,13], it is a versatile technique to recover
from any number of Byzantine participants, provided that their malicious actions
only spread a finite amount of time. In more details, starting from an arbitrary
global state (that may have been caused by Byzantine participants), a self-
stabilizing protocol ensures that problem specification is satisfied again in finite
time, without external intervention.

Register Emulation. Traditional solutions to build a Byzantine tolerant
storage service (a.k.a. register emulation) can be divided into two categories:
replicated state machines [21], and Byzantine quorum systems [3,15–17]. Both
approaches are based on the idea that the current state of the storage is repli-
cated among processes, and the main difference lies in the number of replicas
that are simultaneously involved in the state maintenance protocol. Recently,
several works investigated the emulation of self-stabilizing or pseudo-stabilizing
Byzantine tolerant SWMR or MWMR registers [1,6,9]. All these works do not
consider the complex case of Mobile Byzantine Failures.

To the best of our knowledge, the problem of tolerating both arbitrary tran-
sient failures and Mobile Byzantine Failures has been considered recently only in
round-based synchronous systems [5]. The authors propose optimal unbounded
self-stabilizing atomic register implementations for round-based synchronous sys-
tems under the four Mobile Byzantine models described in [2,4,14,20].

Our Contribution. The main contribution of this paper is proving the exis-
tence of a protocol Preg emulating a regular register in a distributed system
where both arbitrary transient failures and Mobile Byzantine Failures can occur.

2 System Model

We consider a distributed system composed of an arbitrary large set of client
processes C and a set of n server processes S = {s1, s2 . . . sn}. Each process in the
distributed system is identified by a unique identifier. Servers run a distributed
protocol emulating a shared memory abstraction and such protocol is totally
transparent to clients.



400 S. Bonomi et al.

Communication Model and Time Assumption. Processes communicate
through message passing. In particular, we assume that: (i) each client ci ∈ C
can communicate with every server through a broadcast() primitive, (ii) each
server can communicate with every other server through a broadcast() primitive,
and (iii) each server can communicate with a particular client through a send()
unicast primitive. We assume that communications are authenticated and reli-
able. We assume that if a process sends a message m at time t then it is delivered
by time t+δ. Moreover, we assume that δ is known to every process. Any process
is provided with a physical clock, i.e., non corruptible.

Failure Model. An arbitrary number of clients may crash while servers are
affected by Mobile Byzantine Failures i.e., failures are represented by Byzantine
agents that are controlled by a powerful external adversary “moving” them from
a server to another. We assume that, at any time t, at most f mobile Byzantine
agents are in system. In this work we consider the Δ-synchronized and Cured
Unaware Model, i.e. (ΔS,CUM) MBF model, introduced in [8] that is suited
for round-free computations1.

As in the case of round-based MBF models [2,4,11,14,20], we assume that
any process has access to a tamper-proof memory storing the correct protocol
code.

Let us stress that during the system life time at any time t, at most f servers
can be controlled by Byzantine agents, but all servers may be affected by a
Byzantine agent.

Processes may also suffer from transient failures, i.e., local variables of any
process (clients and servers) can be arbitrarily modified [13]. It is nevertheless
assumed that transient failures are quiescent, i.e., there exists a time τno tr

(which is unknown to the processes) after which no new transient failures hap-
pens.

3 Self-stabilizing Regular Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients,
through two operations, namely read() and write(). The Self-Stabilizing Single-
Writer/Multi-Reader (SWMR) register is specified as follow:

– ss − Termination: Any operation invoked on the register by a non-crashed
process eventually terminates.

– ss − Validity: There exists a time tstab such that each read() operation invoked
at time t > tstab returns the last value written before its invocation, or a value
written by a write() operation concurrent with it.

1 The (ΔS, CUM) model abstracts distributed systems subjected to proactive rejuve-
nation [22] where processes have no self-diagnosis capability.



Brief Announcement: Optimal Self-stabilizing Mobile 401

4 Optimal Self-stabilizing MBFT Regular Register

This Section provides the main claim of the paper and its informal proof.

Theorem 1. Let n be the number of servers emulating the register and let f be
the number of Byzantine agents in the (ΔS,CUM) round-free Mobile Byzantine
Failure model. Let δ be the upper bound on the communication latencies in the
synchronous system.

If (i) n ≥ 6f + 1 for Δ = 2δ and (ii) n ≥ 8f + 1 for Δ = δ, then there
exists an optimal protocol Preg implementing a Self-Stabilizing SWMR Regular
Register in the (ΔS,CUM) round-free Mobile Byzantine Failure model.

Due to the lack of space, the protocol Preg proving the claim is detailed in
the complete version of this work [7].

The basic ingredients of protocol Preg to solve issues coming from the
(ΔS,CUM) model and from transient failures are the following:

– Concerning the (ΔS,CUM) assumption, the protocol needs to handle pro-
cesses that have been affected by a Byzantine agent and are not aware
about that. This is done by implementing a mechanism that keep separated
“trusted” values from untrusted ones whenever processes need to collect infor-
mation from the others (e.g., during a read() operation). Trusted values are
basically values acquired directly from clients or acknowledged by “enough”
processes while untrusted ones are those stored locally that can be compro-
mised. This requires to keep track of the last three written values and to use
multiple data structures managed trough time-windows.

– Concerning the management of transient failures, Preg is able to stabilise by
using bounded timestamps from the Z13 domain.

Finally, Preg is optimal as it matches lower bounds proved in [10].

5 Concluding Remarks

This paper investigated on the existence of a self-stabilizing regular register emu-
lation in a distributed system where both transient failures and Mobile Byzan-
tine Failures can occur, and where messages and Byzantine agent movements
are decoupled.

An interesting future research direction is to study upper and lower bounds
for (i) memory, and (ii) convergence time complexity of self-stabilizing register
emulations tolerating Mobile Byzantine Failures.

Acknowledgements. This work was performed within Project ESTATE (Ref. ANR-
16-CE25-0009-03), supported by French state funds managed by the ANR (Agence
Nationale de la Recherche). This work has been also partially supported by the INOCS
Sapienza Ateneo 2017 Project (protocol number RM11715C816CE4CB).



402 S. Bonomi et al.

References

1. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prac-
tically stabilizing SWMR atomic memory in message-passing systems. J. Comput.
Syst. Sci. 81, 692–701 (2015)

2. Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved Byzantine agreement algo-
rithm for synchronous systems with mobile faults. Int. J. Comput. Appl. 43(22),
1–7 (2012)

3. Bazzi, R.A.: Synchronous Byzantine quorum systems. Distrib. Comput. 13(1), 45–
52 (2000)

4. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile
Byzantine agreement. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 76–90.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8 6

5. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M.: Optimal self-stabilizing syn-
chronous mobile Byzantine-tolerant atomic register. Theor. Comput. Sci. 709,
64–79 (2018)

6. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based
storage in Byzantine asynchronous message-passing systems. In: Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC 2015) (2015)

7. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Self-stabilizing mobile
Byzantine-tolerant regular register with bounded timestamp. Research report.
http://arxiv.org/abs/1609.02694

8. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Optimal mobile Byzan-
tine fault tolerant distributed storage. In: Proceedings of the ACM International
Conference on Principles of Distributed Computing (ACM PODC 2016), Chicago,
USA. ACM Press, July 2016

9. Bonomi, S., Potop-Butucaru, M., Tixeuil, S.: Byzantine tolerant storage. In: Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Systems (IEEE IPDPS 2015) (2015)

10. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Optimal storage under
unsynchronized mobile Byzantine faults. In: 36th IEEE Symposium on Reliable
Distributed Systems, SRDS 2017, Hong Kong, 26–29 September 2017

11. Buhrman, H., Garay, J.A., Hoepman, J.-H.: Optimal resiliency against mobile
faults. In: Proceedings of the 25th International Symposium on Fault-Tolerant
Computing (FTCS 1995), pp. 83–88 (1995)

12. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. CACM
17(11), 643–644 (1974)

13. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
14. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile

faults. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020438

15. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Comput. 11(4), 203–
213 (1998)

16. Martin, J.-P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36108-1 21

17. Martin, J.-P., Alvisi, L., Dahlin, M.: Small Byzantine quorum systems. In: 2002
Proceedings of International Conference on Dependable Systems and Networks.
DSN 2002, pp. 374–383. IEEE (2002)

https://doi.org/10.1007/978-3-662-45174-8_6
http://arxiv.org/abs/1609.02694
https://doi.org/10.1007/BFb0020438
https://doi.org/10.1007/3-540-36108-1_21


Brief Announcement: Optimal Self-stabilizing Mobile 403

18. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1991), pp. 51–59 (1991)

19. Reischuk, R.: A new solution for the Byzantine generals problem. Inf. Control
64(1–3), 23–42 (1985)

20. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile Byzantine agreement
on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS
2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03850-6 17

21. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

22. Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., Verissimo, P.: Highly available
intrusion-tolerant services with proactive-reactive recovery. IEEE Trans. Parallel
Distrib. Syst. 4, 452–465 (2009)

https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1007/978-3-319-03850-6_17


Brief Announcement Continuous vs.
Discrete Asynchronous Moves:

A Certified Approach for Mobile Robots

Thibaut Balabonski1, Pierre Courtieu2, Robin Pelle1, Lionel Rieg3,
Sébastien Tixeuil4,5, and Xavier Urbain6(B)

1 LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-Saclay, Paris, France
2 CÉDRIC – Conservatoire National des Arts et Métiers, Paris, France

3 Yale University, New Haven, CT, USA
4 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,

75005 Paris, France
5 Institut Universitaire de France, Paris, France

6 Université Claude Bernard Lyon-1, LIRIS CNRS UMR 5205, Université de Lyon,
Lyon, France

Xavier.Urbain@lri.fr

Networks of mobile robots captured the attention of the distributed computing
community, as they promise new application (rescue, exploration, surveillance) in
potentially harmful environments. Originally introduced in 1999 by Suzuki and
Yamashita [27], the model has been refined since by many authors while growing
in popularity (see [20] for a comprehensive textbook). From a theoretical point
of view, the interest lies in characterising, for each of these various refinements,
the exact conditions under which a particular task can be solved or not.

In the model we consider, all robots are anonymous and operate using the
same embedded program through repeated Look-Compute-Move cycles. In each
cycle, a robot first “looks” at its environment and obtains a snapshot containing
some information about the locations of all robots, expressed in the robot’s
own self-centred coordinate system, whose scale and orientation might not be
consistent with the other robot’s coordinate systems. Then the robot “computes”
a destination, still in its own coordinate system, based only on the snapshot it
just obtained. Finally the robot “moves” towards the computed destination.

The general model is agnostic to the shape of the space where the robots
operate, which can be the real line, a two dimensional Euclidean space, a discrete
space (a.k.a. a graph), or even another space with a more intricate topology. To
date, two independent lines of research focused on (i) continuous Euclidean
spaces, and (ii) graphs, studying different sets of problems and using distinct
algorithmic techniques.

1 Continuous vs. Discrete Spaces

The core problem to solve in the context of mobile robot networks that operate in
bidimensional continuous spaces is pattern formation, where robots starting from

c© Springer Nature Switzerland AG 2018
T. Izumi and P. Kuznetsov (Eds.): SSS 2018, LNCS 11201, pp. 404–408, 2018.
https://doi.org/10.1007/978-3-030-03232-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03232-6_29&domain=pdf


Brief Announcement Continuous vs. Discrete Asynchronous Moves 405

distinct initial positions have to form a given geometric pattern. Arbitrary pat-
terns can be formed when robots have memory [27] or common knowledge [21],
otherwise only a subset of patterns can be achieved. Forming a point as the
target pattern is known as gathering [27], where robots have to meet at a single
point in space in finite time, not known beforehand. The problem is generally
impossible to solve [25] unless the setting is fully synchronous [3] or robots are
endowed with multiplicity detection [10]. Recently, researchers considered tridi-
mensional Euclidean spaces [28], where robots must solve plane formation, that
is, land on a common plane (not determined beforehand) in finite time. In the
context of robots operating on graphs, typical problems are terminating explo-
ration [16,19], where robots must explore all nodes of a given graph and then
stop moving forever, exclusive perpetual exploration [7,14], where robots must
explore all nodes of a graph forever without ever colliding, exclusive search-
ing [6,13], where robots must capture an intruder in the graph without collid-
ing, and gathering [8,14,22,23], where robots must meet at a given node in finite
time.

Although some of the studied problems overlap (e.g. gathering), the algo-
rithmic techniques that enable solving problems are substantially different. On
the one hand, robots operating in continuous spaces may typically use fractional
distance moves to another robot, or non-straight moves in order to make the
algorithm progress, two options that are not possible in the discrete model. On
the other hand, in the asynchronous continuous setting, a robot may be seen
by another robot as it is moving, hence at some arbitrary position between its
source and destination point within a cycle, something that is impossible to
observe in the discrete setting. Indeed, all aforementioned works for robots on
graph consider that their moves are atomic, even in the ASYNC setting, which
may seem unrealistic to a practitioner.

2 Related Works

Designing and proving mobile robot protocols is notoriously difficult. Formal
methods encompass a long-lasting path of research that is meant to overcome
errors of human origin. Unsurprisingly, this mechanised approach to protocol
correctness was successively used in the context of mobile robots.

In the discrete setting, model-checking proved useful to find bugs (usually
in the ASYNC setting) in existing literature [5,17,18] and formally check the
correctness of published algorithms [5,15]. Automatic program synthesis [9,24]
can be used to obtain automatically algorithms that are “correct-by-design”.
However, those approaches are limited to small instances with few robots. Gen-
eralising to an arbitrary number of robots with similar approaches is doubtful as
Sangnier et al. [26] proved that safety and reachability problems become unde-
cidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space, to
the best of our knowledge the only formal framework available is the Pactole



406 T. Balabonski et al.

framework.1 Pactole enabled the use of higher-order logic to certify impossi-
bility results [1,4,11] as well as certifying the correctness of algorithms [3,12],
possibly for an arbitrary number of robots (hence in a scalable manner). Pactole
was recently extended by Balabonski et al. [4] to handle discrete spaces as well
as continuous spaces, thanks to its modular design. However, to this paper,
Pactole only allowed one to express specifications and proofs with the FSYNC
and SSYNC models.

3 Our Contribution

In this brief announcement, we explore the possibility of establishing a first
bridge between the continuous movements and observation vs. discrete move-
ments and observation in the context of autonomous mobile robots. Our position
is that the continuous model reflects well the physicality of robots operating in
some environment, while the discrete model reflects well the digital nature of
autonomous robots, whose sensors and computing capabilities are inherently
finite. For this purpose, we consider that robots make continuous, non atomic
moves, but only sense in a discrete manner the position of robots. Our approach
is certified using the Coq proof assistant and the Pactole framework.

In more details, our full paper [2] first extends the Pactole framework to
handle the ASYNC model, preserving its modularity by keeping the operating
space and the robots algorithm both abstract. This permits to retain the same
formal framework for both continuous and discrete spaces, and the possibility
for mobile robots to be faulty (even possibly malicious a.k.a. Byzantine). Then,
as an application of the new framework, we formally prove in the full paper [2]
the equivalence between atomic moves in a discrete space (the classical model for
robots operating on graphs) and non-atomic moves in a continuous unidimen-
sional space when robot vision sensors are discrete (that is, robots are only able
to see another robot on a node when they perform the Look phase, but robots
can move anywhere between two adjacent nodes), irrespective of the problem
being solved. Our effort consolidates the integration between the model, the
problem specification, and its proof that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at http://
pactole.lri.fr.

References

1. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossi-
bility results for Byzantine-tolerant mobile robots. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03089-0 13

2. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous
vs. discrete asynchronous moves: a certified approach for mobile robots. Research
report, Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
Paris, France (2018)

1 http://pactole.lri.fr.

http://pactole.lri.fr
http://pactole.lri.fr
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-03089-0_13
http://pactole.lri.fr


Brief Announcement Continuous vs. Discrete Asynchronous Moves 407

3. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit,
F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49259-9 2

4. Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for cer-
tified impossibility results with mobile robots on graphs. In: Proceedings of Inter-
national Conference on Distributed Computing and Networking, Varanasi, India,
January 2018

5. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016)

6. Blin, L., Burman, J., Nisse, N.: Exclusive graph searching. Algorithmica 77(3),
942–969 (2017)

7. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9 29

8. Bonnet, F., Potop-Butucaru, M., Tixeuil, S.: Asynchronous gathering in rings with
4 robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds.) ADHOC-NOW 2016.
LNCS, vol. 9724, pp. 311–324. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40509-4 22

9. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE Interna-
tional Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, 6–9 October 2014, Nara, Japan, pp. 50–59. IEEE (2014)

10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

11. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115, 447–452 (2015)

12. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

13. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

14. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

15. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5 7

16. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013)

17. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1 12

https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-57708-1_12


408 T. Balabonski et al.

18. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Asp-
nes, J., Felber, P. (eds.) Principles of Distributed Systems - 21th International Con-
ference (OPODIS 2017), Leibniz International Proceedings in Informatics (LIPIcs),
Lisbon, Portugal. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, December
2017

19. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

20. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafael (2012)

21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)

22. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2 14

23. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 48

24. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile
robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11764-5 17

25. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

26. Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verifi-
cation of algorithms for oblivious robots on a ring. In: Formal Methods in Computer
Aided Design, Vienna, Austria (2017)

27. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

28. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3),
16:1–16:43 (2017)

https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-32589-2_48
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-11764-5_17


Author Index

Altisen, Karine 186

Balabonski, Thibaut 404
Baldoni, Roberto 139
Bazzi, Rida A. 381
Bazzi, Rida 254
Beauquier, Joffroy 387
Bernard, Thibault 387
Bonomi, Silvia 139, 170, 398
Bournat, Marjorie 349
Bramas, Quentin 333
Briones, Joseph L. 381
Bultel, Xavier 111
Burman, Janna 387
Busch, Costas 221

Chatterjee, Bapi 365
Cohen, Johanne 80
Courtieu, Pierre 404

Datta, Ajoy K. 365, 393
Del Pozzo, Antonella 398
Devismes, Stéphane 186
Doi, Keisuke 96
Dolev, Shlomi 139
Dreier, Jannik 111
Dubois, Swan 349
Dumas, Jean-Guillaume 111
Durand, Anaïs 186, 269

Farina, Giovanni 170
Feldmann, Michael 16
Feletti, Caterina 317

Gąsieniec, Leszek 126
Götte, Thorsten 50

Herlihy, Maurice 221, 254

Juyal, Chirag 284

Kijima, Shuji 96, 126
Knollmann, Till 1
Kolb, Christina 16
Kulkarni, Sandeep 284
Kumari, Sweta 284
Kunne, Stephan 80
Kutten, Shay 387

Lafourcade, Pascal 111
Laveau, Marie 387

Mereghetti, Carlo 317
Michail, Othon 154
Min, Jie 126
Miyahara, Daiki 111
Mizuki, Takaaki 111

Nagao, Atsuki 111
Niyolia, Rashmi 365

Ooshita, Fukuhito 301, 393

Palano, Beatrice 317
Pelle, Robin 404
Peri, Sathya 284
Petit, Franck 349
Pilard, Laurence 80
Potop-Butucaru, Maria 398
Poudel, Pavan 32

Rai, Shishir 221
Raynal, Michel 139, 269
Rieg, Lionel 404

Sasaki, Tatsuya 111
Scheideler, Christian 1, 16, 50, 239
Setzer, Alexander 50, 239
Shaer, Amitay 139
Sharma, Gokarna 32, 203, 221
Shinagawa, Kazumasa 111
Somani, Archit 284



Sone, Hideaki 111
Spirakis, Paul G. 154

Taubenfeld, Gadi 269
Theofilatos, Michail 154
Tixeuil, Sébastien 170, 301, 333, 398, 404
Trahan, Jerry L. 203
Tsigas, Philippas 365
Turau, Volker 65

Urbain, Xavier 404

Vaidyanathan, Ramachandran 203

Walulya, Ivan 365

Yamashita, Masafumi 96
Yamauchi, Yukiko 96

410 Author Index


	Preface
	Organization
	Contents
	A Self-stabilizing Hashed Patricia Trie
	1 Introduction
	1.1 Model
	1.2 Related Work
	1.3 Our Contribution

	2 Hashed Patricia Trie
	3 The SHPT Protocol
	3.1 Properties of the DHT
	3.2 Correcting Edge Information
	3.3 Maintaining Connections
	3.4 Removal/Creation of Nodes
	3.5 Distribution of References to Keys

	4 Protocol Analysis
	4.1 Correctness
	4.2 Overhead

	References

	Self-stabilizing Overlays for High-Dimensional Monotonic Searchability
	1 Introduction
	1.1 Model
	1.2 Problem Statement
	1.3 Our Contribution
	1.4 Related Work

	2 Topology and Legitimate State
	3 Protocol Description
	3.1 List Edges
	3.2 Quad Edges
	3.3 Routing

	4 Analysis
	4.1 Quadtree
	4.2 Geographic Monotonic Searchability

	5 Conclusion and Future Work
	References

	An Adaptive Logging Framework for Persistent Memories
	1 Introduction
	2 Model
	3 Adaptive Logging Framework
	4 Experimental Evaluation
	5 Concluding Remarks
	References

	On Underlay-Aware Self-Stabilizing Overlay Networks
	1 Introduction
	1.1 Model and Definitions
	1.2 Our Contribution

	2 Related Work
	3 Preliminaries
	4 Protocol
	5 Analysis
	6 Conclusion and Outlook
	References

	A O(logn) Distributed Algorithm to Construct Routing Structures for Pub/Sub Systems
	1 Introduction
	1.1 State of the Art
	1.2 Computational Model and Assumptions

	2 Informal Description of Algorithm AFiber
	2.1 Relationship to Routing Scheme PSVR

	3 Formal Description of Algorithm AFiber
	3.1 Phase 0
	3.2 Phase 1
	3.3 Middle Phases
	3.4 The Final Phase

	4 Analysis of Algorithm AFiber for Random Graphs
	4.1 Phase 1
	4.2 Middle Phases
	4.3 The Final Phase

	5 Extensions
	6 Conclusion
	References

	Self-stabilization and Byzantine Tolerance for Maximal Matching
	1 Introduction and State of the Arts
	2 Model
	3 Maximal Matchings
	3.1 Problem Specification
	3.2 From legitimacy to weakly-legitimacy

	4 2-Spec under the Distributed Daemon
	5 1-Spec Under the Central Daemon
	6 About 1-Spec and the Distributed Daemon
	References

	Exploration of Finite 2D Square Grid by a Metamorphic Robotic System
	1 Introduction
	2 Preliminary
	3 Exploration with Global Compass
	4 Exploration Without Global Compass
	5 Conclusion and Future Work
	References

	Physical Zero-Knowledge Proof for Makaro
	1 Introduction
	2 Rules of Makaro
	3 Zero-Knowledge Proof for Makaro
	3.1 Notations
	3.2 Rearrangement Protocol
	3.3 Our Construction

	4 Security Proofs for Our Construction
	5 Conclusion
	References

	Searching with Increasing Speeds
	1 Introduction
	1.1 The Model and the Search Problem
	1.2 Our Contribution

	2 Search on the Line
	2.1 Variant (1) - with Full Knowledge
	2.2 Variant (2) - with Local Knowledge

	3 Search on 2d Plane
	3.1 Variant (1) - with Global Knowledge
	3.2 Variant (2) - with Local Knowledge

	4 Conclusion
	References

	BEE'S STRATEGY AGAINST BYZANTINES Replacing Byzantine Participants
	1 Introduction
	2 System Settings
	3 Byzantine Detection and Replacement
	4 Byzantine Free Fast Termination
	5 Using Byzantine Agreement Objects
	5.1 Global Hypervisor
	5.2 Local Hypervisor

	6 Conclusion
	References

	Simple and Fast Approximate Counting and Leader Election in Populations
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 The Model
	3 Fast Counting with a Unique Leader
	3.1 Abstract Description and Protocol
	3.2 Analysis

	4 Leader Election with Approximate Knowledge of n
	4.1 Abstract Description
	4.2 The Protocol
	4.3 Analysis
	4.4 Dropping the Assumption of Knowing logn

	5 Experiments
	6 Open Problems
	References

	Reliable Broadcast in Dynamic Networks with Locally Bounded Byzantine Failures
	1 Introduction
	2 System Model & Problem Statement
	3 The Certified Propagation Algorithm (CPA)
	4 The Certified Propagation Algorithm on Dynamic Networks
	4.1 CPA Safety in Dynamic Networks
	4.2 CPA Liveness in Dynamic Networks

	5 On the Detection of DCPA Liveness
	5.1 Detecting DCPA Liveness on Generic TVGs
	5.2 Detecting DCPA Liveness on Restricted TVGs

	6 Conclusion
	References

	Acyclic Strategy for Silent Self-stabilization in Spanning Forests
	1 Introduction
	2 Preliminaries
	3 Algorithm with Acyclic Strategy
	4 Move Complexity of Algorithms with Acyclic Strategy
	5 Analysis of TE
	6 Round Complexity of Algorithms with Acyclic Strategy
	7 Related Work and Applications
	8 Conclusion
	References

	On Fast Pattern Formation by Autonomous Robots
	1 Introduction
	2 Preliminaries
	3 A Pattern Formation Framework
	4 Pattern Formation on SSYNC Robots with Lights
	5 Pattern Formation on ASYNC Robots with Lights
	6 Pattern Formation on SSYNC Classical Robots
	7 Lower Bound, Time-Optimality and Trade-Offs
	8 Concluding Remarks
	References

	Load Balanced Distributed Directories
	1 Introduction
	2 Network Model
	3 Hierarchical Clustering
	4 LB-Spiral Algorithm
	5 Analysis of LB-Spiral
	References

	Relays: A New Approach for the Finite Departure Problem in Overlay Networks
	1 Introduction
	1.1 System Model
	1.2 Problem Statement
	1.3 Related Work
	1.4 Our Contributions

	2 The Relay Layer
	2.1 Relays
	2.2 Relay Layer Primitives
	2.3 Message Processing and Action Handling
	2.4 Properties of the Relay Layer

	3 Universality of the Relay Approach
	References

	Clairvoyant State Machine Replications
	1 Introduction
	2 Related Work
	3 Problem and System Model
	4 Byblos Description
	4.1 Client Code
	4.2 Server Code

	5 Correctness
	6 Eliminating Pending Sets
	7 Byzantine Clients
	8 Performance
	8.1 Performance in Gracious Executions
	8.2 Performance in Uncivil Executions
	8.3 Other Performance Considerations

	References

	Set Agreement and Renaming in the Presence of Contention-Related Crash Failures
	1 Definitions and Motivation
	1.1 Processes, Failures, Communication
	1.2 Motivation for Considering -Constrained Failures
	1.3 High Level Objects

	2 k-Set Agreement and M-Renaming
	2.1 k-Set Agreement
	2.2 M-Renaming

	3 The Results of the Paper at a Glance
	3.1 Results Concerning k-Set Agreement
	3.2 Results Concerning M-Renaming

	4 k-Set Agreement: Algorithm (k2)
	5 k-Set Agreement: Proof
	6 M-Renaming: Algorithm
	7 M-Renaming: Proof
	8 From M-Renaming to One-Shot Concurrent Objects
	9 Conclusion
	References

	An Innovative Approach to Achieve Compositionality Efficiently Using Multi-version Object Based Transactional Systems
	1 Introduction
	2 Building System Model
	3 HT-MVOSTM Design and Data Structure
	4 Working of HT-MVOSTM
	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Ring Exploration with Myopic Luminous Robots
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions

	2 Preliminaries
	2.1 System Model
	2.2 Algorithm, Execution, Problem, and Exploration Problem
	2.3 Descriptions

	3 Full-Synchronous Robots
	3.1 Perpetual Exploration
	3.2 Terminating Exploration

	4 Semi-synchronous and Asynchronous Robots
	4.1 Perpetual Exploration
	4.2 Terminating Exploration

	5 Conclusions
	References

	Uniform Circle Formation for Swarms of Opaque Robots with Lights
	1 Introduction
	1.1 Motivation and Contribution of the Paper

	2 Preliminaries: The Computational Model and the Problem
	3 A Preliminary Step of Our Algorithm and Terminology
	4 The Algorithm
	4.1 Cycle 1: Pivots Selection and Angle Setting
	4.2 Cycle 2: Preparing Safe Diameters Setting
	4.3 Cycle 3: Fair Distribution on the Two Half-Disks
	4.4 Cycle 4: Rappelling down on the Safe Diameters or Safe Chords
	4.5 Cycle 5: Reaching the SEC

	5 Conclusions and Future Work
	References

	Arbitrary Pattern Formation with Four Robots
	1 Introduction
	2 The Model
	3 The H-segment of a Quadrilateral
	3.1 The Construction of an H-segment
	3.2 The H-coordinates of Four Points
	3.3 The H-segment of a Non-orthodiagonal Quadrilateral
	3.4 The -square of a Segment

	4 4-Robot Pattern Formation Algorithm
	4.1 Algorithm Overview
	4.2 Algorithm Details
	4.3 Proof of Correctness

	5 Conclusion
	References

	Gracefully Degrading Gathering in Dynamic Rings
	1 Introduction
	2 Model
	3 Impossibility Results
	4 Gracefully Degrading Gathering
	5 Conclusion
	References

	Concurrent Lock-Free Unbounded Priority Queue with Mutable Priorities
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Lock-Free ADT Operations
	3.2 Design Optimizations

	4 Correctness Proof
	5 Evaluation
	6 Conclusion
	References

	Brief Announcement: Deterministic Leader Election in Self-organizing Particle Systems
	1 Introduction
	2 System Model
	3 Leader Election
	References

	Brief Announcement: Time Efficient Self-stabilizing Stable Marriage
	1 Introduction
	2 Self-stabilizing Stable Marriage in O(n2) Moves
	References

	Brief Announcement: Feasibility of Weak Gathering in Connected-over-Time Dynamic Rings
	1 Introduction
	2 Preliminaries
	3 Impossibility Results
	4 A Gathering Algorithm
	References

	Brief Announcement: Optimal Self-stabilizing Mobile Byzantine-Tolerant Regular Register with Bounded Timestamps
	1 Introduction
	2 System Model 
	3 Self-stabilizing Regular Register Specification
	4 Optimal Self-stabilizing MBFT Regular Register
	5 Concluding Remarks
	References

	Brief Announcement Continuous vs. Discrete Asynchronous Moves: A Certified Approach for Mobile Robots
	1 Continuous vs. Discrete Spaces
	2 Related Works
	3 Our Contribution
	References

	Author Index



