
A Security Model for IoT Networks

Alban Gabillon1(&) and Emmanuel Bruno2

1 Université de la Polynésie Française, BP 6570, 98702 Punaauia, Faa’a,
French Polynesia

alban.gabillon@upf.pf
2 Université de Toulon, CNRS, LIS, UMR 7020, 83957 La Garde, France

emmanuel.bruno@univ-tln.fr

Abstract. The MQTT (Message Queuing Telemetry Transport) protocol is
becoming the main protocol for the Internet of Things (IoT). In this paper, we
define a highly expressive ABAC (Attribute-Based Access Control) security
model for the MQTT protocol. Our model allows us to regulate not only pub-
lications and subscriptions but also distribution of messages to subscribers. We
can express various types of contextual security rules, (temporal security rules,
content-based security rules, rules based on the frequency of events etc.).
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1 Introduction

The MQTT (Message Queuing Telemetry Transport) protocol is becoming the main
protocol behind pub-sub networks for the Internet of Things, that is, in networks
implementing the publication-subscription paradigm. The MQTT protocol is an ISO
standard (ISO/IEC PRF 20922) [2] and the 3.1 version became an OASIS specification
in 2013 [3]. Basically, the MQTT protocol works as follows: publishers post messages
to logical channels called topics; subscribers receive messages published to the topics
to which they subscribed; the MQTT broker routes messages from publishers to
subscribers.

The MQTT protocol supports very few security features. It includes a MQTT client
identification mechanism and supports the basic login/password authentication scheme.
Consequently, there have been several papers aiming at defining security solutions for
the MQTT protocol or more generally for the pub-sub pattern. These papers address
various issues like how to implement a security policy regulating publications and
subscriptions [4–6], how to distribute the evaluation and the enforcement of the security
policy at the edge of the IoT network [7, 8], how to distribute and synchronize the
security policy between different pub-sub architectures [9] or how to protect the con-
fidentiality of the messages from the broker or the pub-sub architecture itself [10, 11].
Although these issues are all very important, we noticed that none of these papers fully
addressed the definition of a security model allowing to express security policies for
regulating IoT messages. Some of the papers [5, 6] mention that they are using the
ABAC (Attribute-Based Access Control) model [12] for expressing the security policy
controlling publications and subscriptions. However, they do not go much into details
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and do not elaborate on the expressive power of the security policy. In this paper, we
define a highly expressive ABAC model for regulating IoT messages in a MQTT
network. We believe that the definition of such a security model (which does not
contradict the solutions proposed by the aforementioned papers) has been missing in the
literature related to security solutions for pub-sub architectures. Our model allows us to
regulate not only publications or subscriptions but also distribution of messages by the
broker to subscribers. Our model supports positive and negative authorizations and
allows us to express various types of context-based policies, including policies based on
the frequency of events. This paper is an extension of a short paper we previously
published [1]. In [1], we could only draft our model. In this paper we give a complete
definition, including the administration model. We also provide an extensive review of
the literature on security models for IoT networks.

The remainder of this paper is organized as follows: In Sect. 2, we define our
model. In Sect. 3, we present our security administration model. In Sect. 4, we sketch
our secure MQTT broker prototype based on our model. In Sect. 5, we review related
works before the conclusion in Sect. 6.

2 ABAC Model

Some papers [4, 5] mention that they are using the ABAC (Attribute-Based Access
Control) model [11] for expressing the security policy controlling publications and
subscriptions in a pub-sub network. However, these papers do not go much into details
and do not elaborate on the expressive power of the security policy. Moreover, none of
these papers address the security administration issue. Our aim in this paper is to define
a security model which can be seen as a profile of the ABAC model for pub-sub
networks based on MQTT. We first identify some requirements specific to IoT security
policies. Then we make some assumptions on the IoT network and on some security
aspects that we shall not cover. Finally, we devise our model starting from the
requirements we identified.

2.1 Requirements

• Our model should offer the possibility to regulate not only publications and sub-
scriptions but also distribution of messages by the broker to subscribers. Controlling
distribution of messages is essential to regulate the various flows of messages
coming from the broker. Solely controlling subscriptions is too coarse grained to
achieve that task.

• Our model should allow for various types of dynamic and contextual authorization
rules i.e. authorization rules whose outcome (permit ort deny) depend on some
contextual conditions applying to the nodes, the messages (including the content of
the messages) or the environment. In particular, authorization rules based on the
frequency of events should be supported since controlling the rate at which a node
may send or receive messages is important in many IoT applications.
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2.2 Assumptions

• For the sake of simplicity, we assume a pub-sub architecture with only one MQTT
broker. Since we focus on the expressive power of the security policy, we do not
investigate issues like distributing and synchronizing the security policy between
different bridged brokers or evaluating the security policy at the edge of the network
[7–9].

• We assume the broker to be trusted i.e. we do not investigate solutions to protect the
confidentiality of the messages from the broker [10, 11].

• We do not investigate authentication techniques. We believe that standard
authentication techniques can be used to authenticate both nodes and attributes.

• Finally, we assume TLS/SSL is used at the transport layer between all nodes of the
IoT network. Most existing MQTT servers support the use of TLS/SSL.

2.3 Language

We use first-order logic with equality to define our model, i.e. we define a logical
language allowing us to represent nodes, attributes, events (like publications, sub-
scriptions, messages distribution) and authorization rules. Note, however, that the
reader who is not familiar with logic should be able to understand the main principles
of our model since we translate in plain English each logical formula.

Although, we define our own logical language, we wish to make it clear that this
paper is not about a new logic-based policy language. To specify our model, we could
use XACML [13] (but it would be unreadable by a human), or an existing logical
language like SecPAL [14]. However, we prefer defining our own language so that we
can restrict ourselves to Horn clauses which can easily be read by a human and for
which there exists efficient resolution methods.

Constants
Constants of our language are string expressions. They are node identifiers such as
sensor1, user1 etc. or the special string broker referring to the MQTT broker.

Topics are defined by path expressions (written as strings) such as
temperatures/sensor1. Several topics can be referenced by using wildcards # and +. For
examples, temperatures/# addresses any topic having temperature as path root and
home/+/temperatures addresses topics such as home/room1/temperature,
home/room2/temperature etc. See [3] for more details about the use of wildcards in
MQTT topics.

Note that, to lighten the notations, we omit the quotation marks for the strings.

Variables
Variables are written in capitalized letters like in Prolog. Our language includes the
anonymous variable _ which means anything. If variable S contains a string value, then
we assume this value can be referred to in a path expression. For example, if S contains
the string sensor1 then temperatures/S represents the topic temperatures/sensor1.

In this paper, to distinguish variables from constants, we constrain ourselves to
consider only constants written as strings of lowercase characters.
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Predicates
Authorizations can be derived from a set of facts and from a set of logical rules . Set
keeps track of registered nodes and events (publications, subscriptions and distri-

butions) whereas set records the nodes hierarchy.
Set includes instances from the following node predicates:
Registering a node creates an instance of one of these node predicates (Table 1).

Set includes the following rules:

node Nð Þ  broker Nð Þ ð1Þ

node Nð Þ  sensor Nð Þ ð2Þ

node Nð Þ  client Nð Þ ð3Þ

These three rules can be used to derivate that the broker or a sensor or a client is
also a node. These rules define a roles hierarchy that could be expanded according to
the needs of the application.

Set also includes instances from the following event predicates:
Publishing a message creates an instance of the hasPublished/3 predicate. Sub-

scribing to a topic creates an instance of the hasSubscribed/3 predicate. Delivering a
message creates an instance of the hasDelivered/3 predicate. As we shall see in
Sect. 2.3, recording these events allows us in particular to express security rules
controlling the frequency of publishing/delivering messages.

As we said previously, topics are path expressions possibly written with wildcards.
Therefore, set also includes instances from the following topic predicate (Table 3):

Table 1. Node predicates

Predicate Meaning

node Nð Þ N is an IoT node
broker Nð Þ N is the broker
sensor Nð Þ N is a sensor
client Nð Þ N is a client

Table 2. Event predicates

Predicate Meaning

hasPublished N; T ;Dð Þ At time D, node N has published a message in topic T
hasSubscribed N; T ;Dð Þ At time D, node N has subscribed to topic T
hasDelivered T;N;Dð Þ At time D, the broker has delivered a message from topic T to

node N
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For example, fact addresses temperature=�; temperature=sensor1ð Þ belongs to .
For the sake of simplicity, we do not give the logical rules allowing us to derive
instances of the addresses/2 predicate.

Functions
Functions of our language represent attributes. They are either,

• Functions applying to messages or
• Functions for evaluating temporal conditions or any other contextual conditions.

Lists of functions in Tables 4 and 5 are not exhaustive and can be extended
depending on the needs.

2.4 Security Policy

Actions
We define the three compound terms to represent the following three actions:
Variables represent action parameters. Note that there is no QoS parameter for the
deliver operation. This is because the QoS used by the broker to deliver a message to

Table 4. Message attribute functions

Function Purpose

length Mð Þ Returns the length of the message M
retained Mð Þ Returns true if the message M is retained, false else
value Mð Þ Returns the content of the message M
encoding Mð Þ Returns the character encoding of the message M
ciphered Mð Þ Returns true if the message M is encrypteda, false else
aEncrypting a message means encrypting the payload of the MQTT
packet transporting the message. This should not be confused with
encrypting the whole communication between nodes at the transport
layer by means of TLS/SSL.

Table 5. Contextual functions

Function Purpose

timeðÞ Returns the current time
dateðÞ Returns the current date
latencyðÞ Returns the network’s latency
bandwidthðÞ Returns the network’s bandwidth

Table 3. Matching predicate

Predicate Meaning

addresses T ; T 0ð Þ Topic T addresses topic T’
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node N is the QoS chosen by node N when it subscribed to topic T. This means that if,
in our security policy, we need to restrict the QoS used by the broker to deliver
messages, then it should be done during the subscription step.

Contextual Authorization Rules
We consider positive authorizations and negative authorizations represented by the two
following predicates (Table 7):

Variable A contains any of the three compound terms of Table 6. Note that if A is a
deliver action then we assume that N cannot be different from broker.

The security policy regulates publish, subscribe and deliver operations. It consists
of a set of authorization rules. Any authorization rule is an instance of one of the
following rule templates:

allow N;Að Þ  conditions ð4Þ

deny N;Að Þ  conditions ð5Þ

Symbol conditions stands for a possibly empty conjunction of contextual condi-
tions on nodes, topics, QoS, messages and the environment. Here are a few examples of
authorization rules:

deny sensor1; publish ; alarms=sensor1;ð Þð Þ
 timeðÞ[ 8 ^ timeðÞ\20

ð6Þ

Rule 6 denies sensor1 to publish messages (whichever the QoS is), in topic
alarms/sensor1 during day time.

allow N; subscribe alarms=#;ð Þð Þ
 guest Nð Þ ð7Þ

Table 6. Actions

Term Action

publish M; T ;Qð Þ Publishing message M in topic T at QoS Q
subscribe T ;Qð Þ Subscribing to topic T at QoS Q
deliver M; T ;Nð Þ Delivering message M from topic T to node N

Table 7. Authorizations

Predicate Meaning

allow N;Að Þ Node N is allowed to perform action A
deny N;Að Þ Node N is denied to perform action A

44 A. Gabillon and E. Bruno



Rule 7 allows guest nodes to subscribe to the alarms hierarchy of topics. Here we
assume guest/1 is a role predicate expanding the hierarchy defined in Sect. 2.2.

Regarding the delivering operation, we should first note that the normal MQTT
behavior is to deliver messages from topic T to the nodes which subscribed to topic T.

This can be expressed by the following default policy rule:

allow broker; deliver ; T ;Nð Þð Þ
 hasSubscribed N; T ;ð Þ ð8Þ

Rule 8 allows the broker to deliver any messages from topic T to the nodes which
subscribed to topic T. However, this default policy can be overridden in some specific
cases (see Sect. 2.4 for conflicts resolution between rules):

deny broker; deliver M; alarms=#;Nð Þð Þ
 guest Nð Þ ^ value Mð Þ ¼0 failure0 ð9Þ

Rule 9 overrides rule 8 and denies the broker to deliver failure messages from the
alarms hierarchy of topics to guest nodes. Rule 9 is an example of a content-based
authorization rule.

In rules 7 and 9, there is a path expression referring to the set of topics alarms/#.
Therefore, we need to include in set some rules to derive instances of predicates
allow/2 and deny/2 addressing any subset of a set of topics expressed by means of
wildcards:

allow=deny N; publish M; T 0;Qð Þð Þ
 allow=deny N; publish M; T ;Qð Þð Þ ^ addresses T ; T 0ð Þ ð10Þ

Rule 10 says that if publication is allowed/denied for a set of topics T then pub-
lication is also allowed/denied for each subset T’ of T. We could write similar rules for
the subscribe/3 and deliver/3 predicates.

For example, since addresses(alarms/#,alarms/sensor1) is true, then allow(sub-
scribe(user1,alarms/sensor1,1)) can be derived from allow(subscribe(user1,
alarms/#,1)).

Controlling the Frequency of Events
Our experience has shown us that in some applications being able to control the
frequency of publications, subscriptions and messages distribution is important. Con-
sider for example an online trading broker. An online trading broker is a pub-sub
service where clients may send trade orders and receive various tips and hints related to
the stock market. Assume that the online broker sells standard accounts and premium
accounts. Premium account holders receive more hints and tips per day than standard
account holders. Moreover, premium account holders can send more trading orders per
day than standard account holders. In such a scenario, we would need to express
authorization rules controlling the frequency of publications (e.g. trade orders) and the
frequency of messages (e.g. hints and tips) delivered by the broker. Another obvious
use of having authorization rules based on the frequency of publications would be to
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mitigate the effects of compromised sensors involved in DDOS attacks against the pub-
sub architecture.

To define authorization rules allowing us to express conditions on the frequency of
events, we define the following high-order predicate (Table 8):

Frequencies are always evaluated at the time the policy is evaluated. This explains
why instances of the freq/3 predicates represent instant frequencies.

Variable E refers to any formula instance of the three event predicates
hasPublished/3, hasSubscribed/3 and hasDelivered/3 defined in Sect. 2.2, with the last
variable referring to the timestamp of the event always equal to the anonymous variable _.

Here are two examples of frequencies:

freq hasPublished sensor1; alarms=sensor1;ð Þ; 5; 24ð Þ ð11Þ

Formula 11 says that the instant frequency of publications made by sensor1 in topic
alarms/sensor1 is 5 in the last 24 h.

freq hasPublished ; alarms=#;ð Þ; 152; 24ð Þ ð12Þ

Formula 12 says that the instant frequency of publications (made by all sensors) in
topics hierarchy alarms/# is 152 in the last 24 h.

Note that, by defining the high-order predicate freq/3, we are no longer in strict
first-order logic. However, computing instances of the freq/3 predicate can easily be
done by using some aggregate predicate which would be implemented in many
inference engines. For example, the rule below is the SWI Prolog [15] definition of the
freq/3 predicate for the hasPublished/3 predicate. It uses the Prolog built-in
aggregate_all/3 predicate:

freq hasPublished N; T;ð Þ;F; IÞð Þ
 aggregate all count; hasPublished N; T ;Dð Þ ^ ðtimeðÞ � DÞ\IÞð Þ;Fð Þ ð13Þ

Basically, Prolog rule 13 counts the number of instances of the hasPublished/3
predicate referring to node N and topic T with a timestamp not older than I hours.

The following rules are examples of authorization rules regulating the frequency of
publications and messages distribution:

allow sensor1; publish ; alarms=sensor1;ð Þð Þ
 freq hasPublished sensor1; alarms=sensor1;ð Þ;F; 24ð Þ ^ F\5

ð14Þ

Table 8. Frequency predicate

Predicate Meaning

freq E;F; Ið Þ F is the instant frequency of repeating event E per unit of time I
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Rule 14 allows sensor1 to publish messages in topic alarms/sensor1 as long as it
does not post more than 5 alert messages per 24 h.

deny broker; deliver ; alarms=sensor1;Nð Þð Þ  guest Nð Þ
^freq hasDelivered alarms=sensor1;N;ð Þ;F; 24ð Þ ^ F[ 1

ð15Þ

Rule 15 denies the broker to deliver to guest nodes more than one alert message per
24 h from topic alarms/sensor1.

2.5 Conflict Resolution Policy

Since our authorization model allows for positive and negative authorizations, conflicts
between rules may arise. For example, consider the following two rules:

deny N; subscribe ;ð Þð Þ  sensor Nð Þ ð16Þ

allow N; subscribe N=#;ð Þð Þ  sensor Nð Þ ð17Þ

Rule 16 says that subscriptions are forbidden for sensors while rule 17 says that
sensors can subscribe (at any QoS) to topic for which the path root corresponds to their
identifier. Clearly these two rules conflict whenever a sensor subscribes to a topic for
which the path root corresponds to the sensor identifier.

There are many possible solutions to solve conflicts between authorization rules.
The XACML standard [13] enumerates several combining algorithms to solve conflicts
between rules (deny overrides, permit overrides, first applicable overrides, permit
unless deny, deny unless permit etc.). We can use any of these algorithms depending on
our needs. Regarding the small example above, the permit overrides algorithm would
allow a node subscribing to a topic for which the path root corresponds to the node
identifier.

3 Security Administration Model

3.1 Principles

Definition of a security model must include the definition of a model for administering
the security policy. To introduce our model, let us first consider the scheme depicted in
Fig. 1.

Sensors (S1 and S2) sends messages to Analytics through topic A. Monitor sends
commands to sensors through topic B. Monitor owns sensors S1 and S2 and created
topics A and B. This scenario suggests us that Monitor could be the administrator
defining the security policy regulating messages going through channels A and B. Of
course, this is not the only possible scenario. The IoT network could be more cen-
tralized; topics A and B could also be shared by other applications and sensors etc.
Nevertheless, decentralizing the security administration should be possible even if the
network contains only one broker. Moreover, to give flexibility, delegation of rights
should also be supported.
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In our model, security administration is topic-based. We state that there is at least
one security administrator for each topic. A security administrator for a given topic T is
responsible for defining the security policy regulating publications/subscriptions to
topic T and distribution of messages from topic T. There is also one Root Administrator
(RA) who can administrate the security policy for all topics.

More precisely, the RA can perform the following tasks:

• Administrate (i.e. define the security policy for) all or some topics.
• Grant to a node the admin privilege on a given topic (with possibly the right to

transfer this right).
• Revoke from a user the admin privilege on a topic.

Each administrator node which is admin for a given topic T can define the security
policy for that topic T. If it has also been granted the right to transfer this right, then it
may also grant to another node the right to administrate topic T. We believe this
administration scheme is flexible enough to support various cases of application.

In the following sections we show how we extend our logical language to define
our administration policy.

3.2 Constants

We define the following constant to represent the RA: root

3.3 Function

We define the following function which returns the topic addressed by an authorization
rule R (instance of either template 4 or template 5) (Table 9).

Topic A

Topic B

Publish

Subscribe

S1

S2

Analytics

Monitor

Broker

Fig. 1. IoT network
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Recall that action A is represented by one of the compound term publish/3,
subscribe/2 or deliver/3 defined in Table 6.

3.4 Predicate

We extend set with instances of the following event rights delegation predicate
(Table 10):

Granting an admin right creates a new instance of this predicate. Revoking the right
deletes the corresponding instance of this predicate. The grant option is similar to the
grant option of the SQL grant statement [16].

3.5 Security Administration Policy

Let TA be an administrator node of topic T. Admin TA can add and delete authorization
rules addressing topic T in the security policy . If admin TA holds the grant option on
topic T, then it can also grant and revoke the admin rights on topic T to some others
nodes.

Actions
We define four compound terms to represent the four following actions (Table 11):

Table 9. Topic function

Function Purpose

topic Rð Þ Returns the topic appearing in the action parameter A of rule R

Table 10. Rights delegation predicate

Predicate Meaning

hasGranted N; T;N 0;Gð Þ Node N has granted the admin privilege on topic T to node N’
with or without the grant option (depending on the value of the
Boolean variable G)

Table 11. Security administration actions

Term Action
Adding rule R in policy P
Deleting rule R from policy P
Granting the admin privilege on topic T to node N with or 
without (depending on the value of G) the grant option
Revoking the admin privilege on topic T from node N
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Note that the grant option cannot be granted nor revoked separately. The same
principle applies in the SQL delegation scheme.

Security Administration Rules
The security administration policy is mandatory and consists of the five following
administration rules:

hasGranted root;#; root; trueð Þ ð18Þ

Rule 18 says that the RA has granted to himself the admin option on the whole
topics hierarchy with the admin option.

allow N; ruleAdd Rð Þð Þ
 hasGranted ; T ;N;ð Þ ^ addresses T ; T 0ð Þ ^ topic Rð Þ ¼ T 0 ð19Þ

Rule 19 says that if node N was granted the admin privilege on topic T, then it can
add authorization rules referring to topic T (or to a subset of topics T if T represents a
set of topics).

allow N; ruleDel Rð Þð Þ
 hasGranted ; T ;N;ð Þ ^ addresses T ; T 0ð Þ ^ topic Rð Þ ¼ T 0 ð20Þ

Rule 20 says that if node N was granted the admin privilege on topic T, then it can
delete authorization rules referring to topic T (or to a subset of topics T if T represents a
set of topics).

allow N; grant T 0; ;ð Þð Þ
 hasGranted ; T;N; trueð Þ ^ addresses T ; T 0ð Þ ð21Þ

Rule 21 says that if node N was granted the admin privilege on topic T with the
grant option then it can grant the admin option on topic T (or on a subset of topics T if
T represents a set of topics).

allow N; revoke T 0;N 0ð Þð Þ
 hasGranted N; T;N 0;ð Þ ð22Þ

Rule 22 says that if node N has granted to node N’ the admin privilege on topic
T then it can revoke this privilege from node N’. In other words, only the node which
transferred a privilege can revoke it. Moreover, as we said previously revoking an
admin privilege deletes the corresponding instance of the hasGranted/4 predicate.
Since the grantee N’ might also have transferred this right to some other nodes,
revocation would also delete all the instances of hasGranted/4 corresponding to the
delegation chain originating from N’. This mechanism is usually referred to as cascade
revocation.
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Finally, let us mention the following two points:

• The combining algorithm enforced in is obviously deny unless permit [13], i.e.
the default policy is deny. This default policy is overridden by rules 18 to 22.

• If T represents a set of topics, then it is not possible to revoke the admin privilege
for a subset of T. One would have to revoke the admin privilege for the set T and
then grant again the admin privilege on a subset of T.

4 Prototype

4.1 Architecture

This paper is more about the model than the implementation. Nevertheless, we have
implemented a proof-of-concept prototype depicted in Fig. 2. Our prototype is built
according to the XACML architecture [13]. We use the EMQ1 MQTT broker written in
Erlang/OTP for which we have developed the MQTTsec plugin acting as a Policy
Enforcement Point (PEP). The Policy Information Point (PIP) contains OWL2
ontologies representing nodes, topics and events. The Policy Administration Point
(PAP) contains a set of SWRL [17] rules representing the security policy. The
MQTTsec manager, written as a Java Web Application, acts as a Policy Decision Point
(PDP).

First, the PEP intercepts an event (publication, subscription or distribution of a
message). It then submits the event to the PDP. The PDP loads the security policy from
the PAP and queries the PIP to retrieve the necessary attribute values. Then it runs an
OWL2 [18] inference engine which applies the conflict resolution policy and eventu-
ally issues a decision (allow/deny). Whether the request is authorized or not, it is
always recorded in the PIP as a new instance of the event class of our ontology model.
If the request has been authorized then the corresponding instance is tagged as allowed,
denied otherwise. It should be noted that instances of the event predicates defined in
Table 2 correspond to the allowed events recorded in the PIP. In our prototype, we also
keep track of the denied requests for traceability purpose.

4.2 Proof Graphs

We should also mention that the inference engine can show the logical reasoning that
led to the decision producing a proof graph of the decision. This feature can be very
useful for debugging security policies, auditing, or devising new conflict resolution
algorithms. Basically, it works as follows:

• Policy rules and captured events (publication, subscription or message distribution)
are represented in the OWL language.

• The inference engine computes a list of possible authorization values and shows the
derivation steps for each value.

1 http://emqtt.io/.

A Security Model for IoT Networks 51

http://emqtt.io/


• If the list is empty, then the default policy is applied
• If there are conflicting values in the list (at least one permit and one deny) then the

conflict solver computes the final decision according to the predefined conflict
resolution algorithm and shows the derivation steps.

• Whether rejected or accepted, the event is timestamped and added to the PIP.

5 Related Works

As we already said, to our knowledge, there is no paper directly addressing the defi-
nition of a security policy model for IoT messages. Nevertheless, in this section we
review security works related to pub-sub architectures and MQTT protocol.

In [4], the authors define the secKit tool integrated in the IOT network simulator
developed as part of the FP7 iCore project [19]. This tool is used to define security
policies protecting the data exchanged between the different components (virtual
objects, composite virtual objects) which abstract the IoT network. secKit is based on a
collection of models for modeling objects, data, time, roles, activities, interactions, risk,
contexts, trust management and so on. It was implemented as a Mosquitto plugin [20].
Authorizations rules can be positive or negative and include obligations. Authorization
rules are Event Condition Action (ECA) rules [21]. This formalism makes it possible to
express contextual and dynamic authorizations but requires the implementation of an
event manager capable of intercepting all events. Many aspects related to this tool are
not clearly defined. Authors claim that the tool supports many features, but they do not
elaborate on the features (expressive power, risks, trust management, obligations,
conflicts resolution etc.). Therefore, it is very difficult to have a clear view of the model
supported by secKit. Note also that the tool secKit seems to be abandoned. The source
code of an alpha version can be downloaded from gitHub (https://github.com/iot-icore/
iCore-security-toolkit) but has not been modified for 3 years.

2  rest/
websocket1

MQTT Broker
+

MQTTsec plugin

MQTTSec 
Manager
(Java WebApp)

Policies written 
in SWRL

Knowledge base 
(OWL ontologies)

4

PEP PDP

PAP PIP

Fig. 2. MQTTsec broker prototype
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In [5], the authors describe a NOS (NetwOrked Smart object) middleware, located
between the objects and the MQTT client. NOS intercepts the messages intended to be
published, normalizes them (i.e. extracts metadata) and according to a security policy
implementing the ABAC model decides whether to grant the publication of the mes-
sage. If the message is authorized, it is encrypted by means of a temporary key
corresponding to the subject (topic) where the message is to be published. Once
encrypted the message is published by the MQTT client. Customers wishing to sub-
scribe to a topic, contact the NOS which according to the security policy will issue
them or not the key to decipher the messages of the subject. This approach frees the
MQTT broker from the evaluation and enforcement of the authorization policy. It
requires, however, to set up a key management mechanism and offers a rather coarse
level of granularity since the object of protection is not the message but the subject
(thus including all the messages published in the subject). NOS has been implemented
using the node.js platform and the objects transmit their messages via the http protocol.
Currently NOS is not available for download. In [9], the same authors improve their
architecture by proposing a solution to distribute and synchronize the security policies
hosted by the NOS of several IoT networks. Their synchronization protocol uses the
MQTT protocol.

In [6], the authors propose a solution to implement the ABAC model in a federation
of IoT platforms. Their solution decouples the authorization process of the authenti-
cation process. An application first connects to an authorization manager to obtain a set
of tokens. Each token represents an attribute of the application. Once in possession of
its tokens the application that needs to access a resource turns to an authorization
manager who will accept or reject access to the requested resource based on the tokens
presented. If the application wants to access a resource belonging to a foreign IoT
platform, then it must present its tokens to the authentication manager of the foreign
platform to obtain foreign tokens. These foreign tokens are computed by means of a
tokens conversion function (little information is given on this function in the article).
Once in possession of the foreign tokens, the application can then turn to the foreign
authorization manager who will accept or reject access. The authors suggest to
implement the tokens either in the form of google macaroons [22] or in the form of
JWT [23] tokens (Json Web Tokens).

In [24], the authors implement the RBAC model in a pub-sub network. They
consider the privilege of logging in, the privileges of adding a topic and deleting it, and
the privileges of publishing and subscribing. They define a solution to disseminate
security policy [25] in a network of partially trusted brokers so that access control
decisions are taken and enforced at the earliest. Their solution is implemented in the
Hermès broker [26] using the http protocol.

In [27], the authors propose to adapt the OAuth protocol [28] to the case of an IoT
network where resources are discovered and exposed according to the IETF standard
[29]. The data (resources) produced by the sensors of the low power IoT network are
transmitted to the gateway between the low power network and the IP network. This
schema ignores the MQTT protocol, resources being logged and exposed at the
gateway level. Within this gateway, an authorization server is installed. According to
the OAuth protocol, a third-party application that wants to access a resource exposed
by the gateway, (i) requests access delegation from the owner of the resource by asking
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him to authenticate, (ii) obtains an access token to the resource provided by the
authorization server and (iii) presents the access token to the authorization server to
access the resource. The authors do not mention any case study that could benefit from
such a security architecture.

There is a general trend in the world of IoT which consists, for scaling purposes, of
moving the processing and controls at the edge of the IoT network towards the objects
themselves [30]. Thus, there are several approaches [7, 8] for moving security-related
services and processes to end-of-network gateways or servers. In [7], the authors even
use the concept of sticky policy [31] which implies that data owners encapsulate the
policy protecting the data with the data itself.

There are several articles that deal with security issues in pub-sub networks,
without specifically considering the MQTT protocol. In [10], the authors attempt to
identify the security problems specific to this type of network. They are particularly
interested in protecting the confidentiality of messages and subscriptions in case the
pub-sub infrastructure is not trusted. They suggest some lines of research such as the
use of numerical calculation on encrypted data [32, 33]. In order to protect the content
of the messages and subscription schemes of the brokers, the authors in [11] propose a
technique based on the encryption preserving the asymmetric scalar product [34].

In [35], the authors propose a model that implements the reliable distribution
service, that is, the messages received by a client do not depend on the connection
location, the network latency, or the possible points of network failure. These messages
depend only on the customer’s subscription filter and her access rights, which are
uniformly enforced throughout the pub-sub network.

6 Conclusion

In this paper, we have defined a model to express security policies for a pub-sub
architecture consisting of a single MQTT broker. The most important contributions of
our paper are the followings:

• Our model allows us to regulate not only publications and subscriptions but also
distribution of messages. To our knowledge, this feature has not been addressed in
any other paper related to IoT security.

• Our model is an interpretation of the ABAC model for the pub-sub architecture with
some unique features like the possibility to control the frequency of events.

• We have developed a prototype based on OWL2 and SWRL showing the feasibility
of our approach.

Regarding future works, we are planning to investigate the following issues:

• We will extend our model to the case of a pub-sub architecture consisting of several
bridged brokers. In such a scenario, we might need to apply the solution presented
in [9] to synchronize the security policy at every node of the pub-sub architecture.

• We will also consider an IoT network consisting of a TCP/IP network hosting the
pub-sub architecture coupled with a Low Power Wide Area Network (LPWAN)
hosting the sensors. In such a scenario, we might also need to implement solutions
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proposed by others [7, 8] to move, for scaling purposes, the security controls at the
various gateways between the TCP/IP network and the LPWAN network.

• We are also planning to include the possibility to declare obligations in the security
policy.

• Finally, we will update and improve our prototype to turn it into a scalable secure
broker engine
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