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Abstract. Database outsourcing has been popular according to the development
of cloud computing. Databases need to be encrypted before being outsourced to
the cloud so that they can be protected from adversaries. However, the existing
kNN classification scheme over encrypted databases in the cloud suffers from
high computation overhead. So we proposed a secure and efficient kNN classifi‐
cation algorithm using encrypted index search and Yao’s garbled circuit over
encrypted databases. Our algorithm not only preserves data privacy, query
privacy, and data access pattern. We show that our algorithm achieves about 17x
better performance on classification time than the existing scheme, while
preserving high security level.
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1 Introduction

Research on preserving data privacy in outsourced databases has been spotlighted with
the development of a cloud computing. Since a data owner (DO) outsources his/her
databases and allows a cloud to manage them, the DO can reduce the cost of data
management by using the cloud’s resources. However, because the data are private assets
of the DO and may include sensitive information, they should be protected against
adversaries including a cloud server. Therefore, the databases should be encrypted
before being outsourced to the cloud. A vital challenge in the cloud computing is to
protect both data privacy and query privacy. Meanwhile, during query processing, the
cloud can derive sensitive information from the actual data items and users by observing
data access patterns even if the data and the query are encrypted [1].

Meanwhile, a classification has been widely adopted in various fields such as
marketing and scientific applications. Among various classification methods, a kNN
classification algorithm is used in various fields because it does not require a time
consuming learning process while guaranteeing good performance with moderate k [2].
When a query is given, a kNN classification first retrieves the kNN results for the query.
Then, it determines the majority class label (or category) among the labels of kNN
results. However, since the intermediate kNN results and the resulting class label are
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closely related to the query, the queries should be more cautiously dealt to preserve the
privacy of the users.

However, to the best of our knowledge, a kNN classification scheme proposed by
Samanthula [3] is the only work that performs classification over the encrypted data in
the cloud. The scheme preserves data privacy, query privacy, and intermediate results
throughout the query processing. The scheme also hides data access pattern from the
cloud. To achieve this, they adopt SkNNm [4] scheme among various secure kNN
schemes [4–7] when retrieving k relevant records to a query. However, the scheme
suffers from high computation overhead because it considers all the encrypted data
during the query processing.

To solve the problem, in this paper, we propose a secure and efficient kNN classifi‐
cation algorithm over encrypted databases. Our algorithm can preserve data privacy,
query privacy, the resulting class labels, and data access patterns from the cloud. To
enhance the performance of our algorithm, we adopt the encrypted index scheme
proposed in our previous work [7]. For this, we also propose efficient and secure proto‐
cols based on the Yao’s garbled circuit [8] and a data packing technique.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 presents our overall system architecture and various secure protocols.
Section 4 proposes our kNN classification algorithm over encrypted databases.
Section 5 presents the performance analysis. Finally, Sect. 6 concludes this paper with
some future research directions.

2 Background and Related Work

2.1 Background

Paillier Crypto System. The Paillier cryptosystem [9] is an additive homomorphic and
probabilistic asymmetric encryption scheme for public key cryptography. The public
encryption key pk is given by (N, g), where N is a product of two large prime numbers
p and q, and g is in Z∗

N2. Here, Z∗
N2 denotes an integer domain ranging from 0 to N2. The

secret decryption key sk is given by (p, q). Let E() and D() denote the encryption and
decryption functions, respectively. The Paillier crypto system provides the following
properties. (i) Homomorphic addition: The product of two ciphertexts E

(
m1

)
 and E

(
m2

)
results in the encryption of the sum of their plaintexts m1 and m2. (ii) Homomorphic
multiplication: The bth power of ciphertext E

(
m1

)
 results in the encryption of the product

of b and m1. (iii) Semantic security: Encrypting the same plaintexts using the same
encryption key does not result in the identical ciphertexts. Therefore, an adversary
cannot infer any information about the plaintexts.

Yao’s Garbled Circuit. Yao’s garbled circuits [8] allows two parties holding inputs x
and y, respectively, to evaluate a function f(x, y) without leaking any information about
the inputs beyond what is implied by the function output. One party generates an
encrypted version of a circuit to compute f. The other party obliviously evaluates the
output of the circuit without learning any intermediate values. Therefore, the Yao’s
garbled circuit provides high security level. Another benefit of using the Yao’s garbled
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circuit is that it can provide high efficiency if a function can be realized with a reasonably
small circuit.

Adversarial Models. There are two main types of adversarial models, semi-honest and
malicious [10, 11]. In this paper, we assume that clouds act as insider adversaries with
high capability. In the semi-honest adversarial model, the clouds honestly follow the
protocol specification, but try to use the intermediate data in malicious way to learn
forbidden information. In the malicious adversarial model, the clouds can arbitrarily
deviate from the protocol specification. Protocols against malicious adversaries are too
inefficient to be used in practice while protocols under the semi-honest adversaries are
acceptable in practice. Therefore, by following the work done in [4, 10], we also consider
the semi-honest adversarial model in this paper.

2.2 Secure kNN Classification Schemes

To the best of our knowledge, Samanthula proposed a kNN classification scheme
(PPkNN) [3], which is the only work that performs classification over the encrypted
data. The scheme performs SkNNm [4] scheme to retrieve k relevant records to a query
and determines the class label of the query. The scheme can preserve both data privacy
and query privacy while hiding data access pattern. However, the scheme suffers from
the high computation overhead because it directly adopts the SkNNm scheme.

3 System Architecture and Secure Protocols

In this section, we explain our overall system architecture and present generic secure
protocols used for our kNN classification algorithm.

3.1 System Architecture

We provide the system architecture of our scheme, which is designed by adopting that
of our previous work [7]. Our previous work has a disadvantage that comparison oper‐
ations cause high overhead by using encrypted binary arrays [7]. To solve this problem,
we propose an efficient query processing algorithm that performs comparison operations
through yao’s garbled circuits [8]. Figure 1 shows the overall system architecture and
Table 1 summarizes common notations used in this paper. The system consists of four
components: data owner (DO), authorized user (AU), and two clouds (CA and CB). The
DO stores the original database (T) consisting of n records. A record ti(1 ≤ i ≤ n)

consists of (m + 1) attributes and ti,j denotes the jth attribute value of ti. A class label of
ti is stored in (m + 1)th attribute, i.e., ti,m+1. We do not consider (m + 1)th attribute when
making an index using T. Therefore, the DO indexes on T by using a kd-tree, based on
ti,j(1 ≤ i ≤ n and 1 ≤ j ≤ m). The reason why we utilize a kd-tree (k-dimensional tree)
as a space-partitioning data structure is that it not only can evenly partition data into
each node, but also is useful for organizing points in a k-dimensional space [14]. When
we visit the tree in a hierarchical manner, access patterns can be disclosed. Consequently,
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we only consider the leaf nodes of the kd-tree and all of the leaf nodes are retrieved once
during the query processing step. Let h denote the level of the kd-tree and F be a fan-
out which is the maximum number of data to be stored in each node. The total number
of leaf nodes is 2 h−1. Henceforth, a node refers to a leaf node. The region information
of each node is represented as both the lower bound lbz,j and the upper bound
ubz,j

(
1 ≤ z ≤ 2h−1, 1 ≤ j ≤ m

)
. Each node stores the identifiers (id) of data located in the

node region. Although we consider the kd-tree in this paper, another index structure
whose nodes store region information can be applied to our scheme.

Fig. 1. The overall system architecture

Table 1. Common notations

Notations Description
E(), D() Encryption function and decryption function
ti, ti,j ith record and jth attribute value of ith record
t′
i ith extracted record during the index search
q, qj a query of a user and jth attribute value of a query q
nodez zth node of the kd-tree
nodez.ts,j jth attribute of sth record stored in zth node of the kd-tree
lbz,j, ubz,j jth attribute value of lower/upper bound of zth kd-tree node
r Random integers

To preserve data privacy, the DO encrypts T attribute-wise by using the public key
(pk) of the Paillier cryptosystem [9] before outsourcing the database. Thus, the DO
generates E(ti,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The DO also encrypts the region information
of all kd-tree nodes to support efficient query processing. Specifically, E(lbz,j) and E(ubz,j)

are generated with 1 ≤ z ≤ 2h−1 and 1 ≤ j ≤ m by encrypting lb and ub of each node
attribute-wise. Assuming that CA and CB are non-colluding and semi-honest (or honest-
but-curious) clouds, they correctly execute the assigned protocols, but an adversary may
try to obtain additional information from the intermediate data while executing the
assigned protocol. This assumption is not new and has been considered in earlier work
[4, 10]. Specifically, because most cloud services are provided by renowned IT compa‐
nies, collusion between them that would blemish their reputations is improbable [4].
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To process kNN classification algorithm over the encrypted database, we utilize a
secure multiparty computation (SMC) between CA and CB. To do this, the DO outsources
both the encrypted database and its encrypted index to a cloud with pk, CA in this case,
but it sends sk to a different cloud, CB in this case. In addition, the DO outsources the
list of encrypted class labels denoted by E

(
labeli

)
 for 1 ≤ i ≤ w to CA. The encrypted

index includes the region information of each node in cipher-text and the ids of data
located in the node in plaintext. The DO also sends pk to AUs to allow them to encrypt
a query. At query time, an AU encrypts a query attribute-wise. The encrypted query is
denoted by E(qj) for 1 ≤ j ≤ m. CA processes the query with the help of CB and sends the
query result to the AU.

As an example, assume that an AU has eight data instances as depicted in Fig. 2.
Each data ti is depicted with its class label (e.g., 3 in case of t6). The data are partitioned
into four nodes (e.g., node1– node4) for a kd-tree. The DO encrypts each data instance
and the region of each node attribute-wise. For example, t6 is encrypted as
E
(
t6
)
= {E(8), E(5), E(3)} because the values of x-axis and y-axis are 8 and 5, respec‐

tively, and the class label of t6 is 3. Meanwhile, the node1 is encrypted as
{{E(0), E(0)}, {E(5), E(5)}, {1, 2}} because the lb and ub of node1 are {0, 0} and {5, 5},
respectively, and the node1 stores both t1 and t2.

Fig. 2. An example in two-dimensional space

3.2 Secure Protocols

Our kNN classification algorithm is constructed using several secure protocols. In this
section, all of the protocols except the SBN are performed with the SMC technique
between CA and CB. The SBN can be solely executed by CA. Due to space limitations,
we briefly introduce five secure protocols found in the literature [3, 4, 7, 10]. (i) SM
(Secure Multiplication) [4] computes the encryption of a × b, i.e., E(a × b), when two
encrypted data E(a) and E(b) are given as inputs. (ii) SBN (Secure Bit-Not) [7] performs
a bit-not operation when an encrypted bit E(a) is given as an input. (iii) CMP-S [10]
returns 1 if u < v, 0 otherwise, when −r1 and −r2 are given from CA as well as u + r1 and
v + r2 are given from CB. (iv) SMSn (Secure Minimum Selection) [10] returns the
minimum value among the inputs by performing the CMP-S for n − 1 times when E(di)
for 1 ≤ i ≤ n are given as inputs. (v) SF (Secure Frequency) [3] returns E

(
f
(
labelj

))
,

the number of occurrence of each E
(
labelj

)
 in E(ci), when both E(cj) for 1 ≤ i ≤ k and

E
(
labelj

)
 for 1 ≤ j ≤ w are given as inputs.
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Meanwhile, we propose new secure protocols, i.e., ESSED, GSCMP, and GSPE.
Contrary to the existing protocols, the proposed protocols do not take the encrypted
binary representation of the data, like E(0) or E(1), as inputs. Therefore, our protocols
can provide a low computation cost. Next, we propose our new secure protocols.

ESSED Protocol. ESSED (Enhanced Secure Squared Euclidean Distance) computes
E(|X–Y|2) when two encrypted vectors E(X) and E(Y) are given as inputs, where X and
Y consist of m attributes. To enhance the efficiency, we pack λ number of σ-bit data
instances to generate a packed value. The overall procedure of ESSED is as follows.
First, CA generates random numbers rj for 1 ≤ j ≤ m and packs them by computing

R =
m∑

j=1
rj × 2𝜎(m−j). Then, CA generates E(R) by encrypting R. Second, CA calculates

E
(
xj−yj

)
 attribute-wise and packs them by computing E(v) =

m∏
j−1

E
(
xj − yj

)2𝜎(m−j)

. Then,
CA computes E(v) = E(v) × E(R) and sends E(v) to CB. Third, assuming that wj denotes
xj − yj + rj(1 ≤ j ≤ m), CB acquires v =

[
w1|…|wm

]
 by decrypting E(v). CB obtains wj

for 1 ≤ j ≤ m by unpacking v through v × 2−σ(m−j). Here, each instance of wj represents
the randomized distance of two input vectors for each attribute. CB also calculates wj

2

attribute-wise and stores their sum into d. CB encrypts d and sends E(d) to CA. Finally,
CA obtains E

(|X−Y|2) by eliminating randomized values using the following Eq. (1).

E
(|X−Y|2) = E(d) ×

∏m

j=1

(
E
(
xj − yj

)−2rj
× E(r2

j
)−1

)
(1)

Our ESSED achieves better performance than the existing distance computation
protocol, DPSSED [10], in two aspects. First, our ESSED requires only one encryption
operation on the CB side while DPSSED needs m times. Second, our ESSED calculates
the randomized distance in plaintext on the CB side while DPSSED computes the sum
of the squared Euclidean distances among all attributes over ciphertext on the CA side.
Therefore, the number of computations on encrypted data in our ESSED can be reduced
greatly.

GSCMP Protocol. When E(u) and E(v) are given as inputs, GSCMP (Garbled Circuit
based Secure Compare) protocol returns 1 if u ≤ v, 0 otherwise. The main difference
between GSCMP and CMP-S is that GSCMP receives encrypted data as inputs while
CMP-S receives the randomized plaintext. The overall procedure of the GSCMP is as
follows. First, CA generates two random numbers ru and rv, and encrypts them. CA
computes E

(
m1

)
= E(u)2 × E

(
ru

)
 and E

(
m2

)
= E(v)2 × E(1) × E

(
rv

)
. Second, CA

randomly selects one functionality between F0:u > v and F1:v > u. The selected func‐
tionality is oblivious to CB. Then, CA sends data to CB, depending on the selected func‐
tionality. If F0:u > v is chosen, CA sends <E

(
m2

)
, E

(
m1

)
> to CB. If F1:u < v is chosen,

CA sends <E
(
m1

)
, E

(
m2

)
> to CB. Third, CB obtains <m2,m1> by decrypting

<E
(
m2

)
, E

(
m1

)
> if F0:u > v is chosen. If F1:u < v is chosen, CB obtains <m1,m2> by

decrypting <E
(
m1

)
, E

(
m2

)
>. Fourth, CA generates a garbled circuit consisting of two

ADD circuits and one CMP circuit. Here, ADD circuit takes two integers u and v as
input, and outputs u + v while CMP circuit takes two integers u and v as input, and
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outputs 1 if u < v, 0 otherwise. If F0:u > v is selected, CA puts −rv and −ru into the 1st

and 2nd ADD gates, respectively. If F1:u < v is selected, CA puts −ru and −rv into the
1st and 2nd ADD gates. Fifth, if F0:u > v is selected, CB puts m2 and m1 into the 1st and
2nd ADD gates, respectively. If F1:u < v is selected, CB puts m1 and m2 into the 1st and
2nd ADD gates. Sixth, the 1st ADD gate adds two input values and puts the output result1
into CMP gate. Similarly, the 2nd ADD gate puts the output result2 into CMP gate.
Seventh, CMP gate outputs α = 1 if result1 < result2 is true, α = 0 otherwise. The output
of the CMP is returned to the CB. Then, CB encrypts α and sends E(𝛼) to CA. Finally,
only when the selected functionality is F0:u > v, CA computes E(𝛼) = SBN(E(𝛼)) and
returns the final E(𝛼). If E(𝛼) is E(1), u is less than v.

GSPE Protocol. GSPE (Garbled circuit based Secure Point Enclosure) protocol returns
E(1) when p is inside a range or on a boundary of the range, E(0) otherwise. GSPE takes
an encrypted point E(p) and an encrypted range E(range) as inputs. Here, the range
consists of the E(lbj) and the E(ubj) for 1 ≤ j ≤ m. If E

(
pj

)
≤ E

(
range.ubj

)
 and

E
(
pj

)
≥ E

(
range.lbj

)
, the p is inside a range. The overall procedure of the GSPE is as

follows. First, CA generates two random numbers raj and rbj for 1 ≤ j ≤ 2m. CA obtains
packed values RA and RB by packing raj and rbj, respectively, using the following
Eq. (2) for 1 ≤ j ≤ 2m.

RA =
∑2m

j=1
raj × 2𝜎(2m−j), RB =

∑2m

j=1
rbj × 2𝜎(2m−j) (2)

Here, σ means the bit length to represent a data. Then, CA generates E(RA) and E(RB)
by encrypting RA and RB. Second, CA computes E(𝜇j) = E

(
pj

)2 and
E(𝜔j) = E

(
range.lbj

)2 for 1 ≤ j ≤ m. CA also computes E(𝛿j) = E
(
pj

)2
× E(1) and

E(𝜌j) = E
(
range.ubj

)2
× E(1) for 1 ≤ j ≤ m. Third, CA randomly selects one function‐

ality between F0:u > v and F1:v > u. Then, CA performs data packing by using the E(𝜇j)

and E(𝜌j), depending on the selected functionality.

– If F0: u > v is selected, compute

E(RA) = E(RA) × E(𝜌j)
2𝜎(2m−j) , E(RB) = E(RB) × E(𝜇j)

2𝜎(2m−j)

– If F1: v > u is selected, compute

E(RA) = E(RA) × E(𝜇j)
2𝜎(2m−j) , E(RB) = E(RB) × E(𝜌j)

2𝜎(2m−j)

In addition, CA performs data packing by using the E(𝜔j) and E(𝛿j), depending on
the selected functionality. Then, CA sends packed values E(RA) and E(RB) to CB.

– If F0: u > v is selected, compute

E(RA) = E(RA) × E(𝛿j)
2𝜎(2m−j) , E(RB) = E(RB) × E(𝜔j)

2𝜎(2m−j)

– If F1: v > u is selected, compute

A Secure and Efficient kNN Classification Algorithm Using Encrypted Index Search 27



E(RA) = E(RA) × E(𝜔j)
2𝜎(2m−j) , E(RB) = E(RB) × E(𝛿j)

2𝜎(2m−j)

Fourth, CB obtains RA and RB by decrypting E(RA) and E(RB). CB computes raj + uj

←  RA × 2−𝜎(2m−j) and rbj + vj← RB × 2−𝜎(2m−j) for 1 ≤ j ≤ 2m. Here, uj (or vj) is one of
the 𝜇j, ρj, ωj, and δj. Fifth, CA generates CMP-S circuit and puts −raj and −rbj into CMP-
S while CB puts raj + uj and rbj + vj into CMP-S for 1 ≤ j ≤ 2m. Once four inputs (i.e.,
−raj,−rbj, raj + uj and rbj + vj) are given to CMP-S, the output 𝛼′

j
 is returned to CB. Then,

CB encrypts α′ and sends E(α′) to CA. Sixth, CA performs E
(
𝛼′

j

)
= SBN

(
E
(
𝛼′

j

))
 for

1 ≤ j ≤ 2m only when the selected functionality is F0:u > v. Then, CA computes
E(𝛼) = SM

(
E(𝛼), E

(
𝛼′

j

))
 where the initial value of E(α) is E(1). Only when all of the

E
(
𝛼′

j

)
 for 1 ≤ j ≤ 2m are E(1), the value of E(α) remains E(1). Finally, GSPE outputs

the final E(α). The p is inside the range if the final E(α) is E(1).

SXSn Protocol. SXSn (Secure Maximum Selection) returns the maximum value among
the inputs when E(di) for 1 ≤ i ≤ n are given as inputs. SXSn can be realized by
converting the logic of SMSn in opposite way. Therefore, we omit the detailed procedure
of SXSn due to the space limitation.

4 KNN Classification Algorithm

In this section, we present our kNN classification algorithm (SkNNCG) which uses the
Yao’s garbled circuit. Our algorithm consists of four steps; encrypted kd-tree search
step, kNN retrieval step, result verification step, and majority class selection step.

4.1 Step 1: Encrypted kd-Tree Search Step

In the encrypted kd-tree search phase, the CA securely extracts all of the data from a
node containing a query point while hiding the data access patterns. To obtain high
efficiency, we redesign the index search scheme proposed in our previous work [7].
Specifically, our algorithm does not require operations related to the encrypted binary
representation which causes high computation overhead. In addition, we utilize our
newly proposed secure protocols based on Yao’s garbled circuit.
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Algorithm 1: Encrypted kd-tree search 

Input : E(q), E(node)
Output : E(cand)   // all the data inside nodes related to a query
CA : 01: for 1 ≤ z ≤ numnode   //  numnode = 2h-1 (h : level of the kd-

tree) 
02: E(αz)  GSPE(E(q), E(nodez)) 
03: E(αʹ) π(E(α));  send E(αʹ) to CB

CB : 04: αʹ D(E(αʹ));    c the number of ʹ1ʹ in αʹ
05: create c number of Group
06: for each NG
07: assign a node with αʹ=1 and numnode/c–1 nodes with αʹ=0
08: NGʹ shuffle the ids of nodes
09: send NGʹ to CA

CA : 10: cnt  0 
11: NG* permute node ids using π-1 for each NGʹ
12: for each NG*

13: for 1 ≤ s ≤ F

14: for 1 ≤ i ≤ num (# nodes in the selected NG*) 

15:          z = id of ith node of NG*
16: E(tʹi,j) SM(nodez.ts,j, E(αz)) for 1≤j≤m+1

17: for 1 ≤ j ≤ m+1
18: E(candcnt,j)
19: cnt cnt+1 
20: return E(cand) 

The procedure of the encrypted kd-tree search step is shown in Algorithm 1. First,
CA securely finds nodes which include a query by executing E

(
𝛼z

)
 ←

GSPE
(
E(q), E

(
nodez

))
 for 1 ≤ z ≤ numnode where numnode means the total number of

kd-tree leaf nodes (lines 1–2). Note that the nodes with E
(
𝛼z

)
= E(1) are related to the

query, but both CA and CB cannot know whether or not the value of each E
(
𝛼z

)
 is E(1),

because the Paillier encryption provides semantic security. Then, we partially perform
the index search algorithm in [7]. Specifically, CA generates E(𝛼′) by permuting E(α)
using a random permutation function π and then sends E(𝛼′) to CB (line 3). For example,
the output of GSPE is E(𝛼) = {E(1), E(0), E(0), E(0)} in Fig. 2 because the q is given
inside the node1. Assuming that π permutes data in reverse way, CA sends the
E(𝛼′) = {E(0), E(0), E(0), E(1)} to CB.

Third, CB obtains α′ by decrypting E(𝛼′) and counts the number of α′ = 1 and stores
it into c. Here, c means the number of nodes that the query is related to (line 4). Fourth,
CB creates c number of node groups. Assuming that NG denotes a node group, CB assigns
to each NG both a node with 𝛼′ = 1 and numnode∕c − 1 nodes with 𝛼′ = 0. Then, CB
obtains NG′ by randomly shuffling the ids of nodes in each NG and sends NG′ to CA
(lines 5–9). For example, CB can obtain 𝛼′ = {0, 0, 0, 1} which contains one at the fourth
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position. Because one node group is required, CB assigns all nodes to one node group
and randomly shuffles the ids of the nodes, i.e., NG′

1 = {2, 1, 3, 4}.
Fifth, CA obtains NG* by permuting the ids of nodes using π−1 in each NG′ (line 11).

Six, CA gets access to one datum in a node for each NG* and executes
E
(

t′
i,j

)
= SM

(
E
(
nodez.ts,j

)
, E

(
𝛼z

))
 for 1 ≤ s ≤ F and 1 ≤ j ≤ m + 1 where E

(
𝛼z

)
 is the

result of GSPE corresponding to nodez (line 12–16). As a result, SM results in
E
(
nodez.ts,j

)
 only for the data inside the nodes related to the query because their E

(
𝛼z

)
values are E(1); otherwise SM results in E(0). If a node has the less number of data than
F, it performs SM by using E(max), instead of using E

(
nodez.ts,j

)
. Here, E(max) is the

largest value in the domain. When CA accesses one datum from every node in a NG*, CA

performs E
(
candcnt,j

)
 ← 

num∏
i=1

E(t′
i,j) where num means the total number of nodes in the

selected NG* (line 17–18). As a result, a datum in the nodes related to the query is
securely extracted without revealing the data access patterns because the searched nodes
are not revealed. By repeating these steps, all of the data in the nodes are safely stored
into the E

(
candcnt,j

)
 for 1 ≤ i ≤ cnt and 1 ≤ j ≤ m + 1 where cnt means the total number

of data extracted during the index search. For example, CA obtains NG∗
1 = {3, 4, 2, 1}

by permuting the NG′
1 = {2, 1, 3, 4} using π−1. CA gains access to E(t5) in node3, E(t7)

in node4, E(t3) in node2, and E(t1) in node1. The results of SM using E(t5), E(t7), and
E(t3) are E(0) for all attributes because E(αz) for the corresponding nodes are E(0). The
results are stored into E

(
t′1

)
, E

(
t′2

)
and E

(
t′3

)
, respectively. However, the results of SM

using E(t1) become {E(2), E(1), E(1)} because the values of x-axis and y-axis are 2 and
1, respectively, and the class label of t1 is 1. The results are stored into E

(
t′4

)
. Thus, the

final attribute-wise homomorphic addition of E(ti
′) for 1 ≤ i ≤ 4 are {E(2), E(1), E(1)}.

Accordingly, one datum E(t1) in node1 is securely extracted. By repeating this, the
encrypted kd-tree search step can extract all of the data in node1 (e.g., E(t1) and E(t2))
and finally stores them into E(cand).

4.2 Step 2: kNN Retrieval Step

In the kNN retrieval phase, we retrieve the k closest data from the query by partially
utilizing the SkNNm scheme [4]. However, we only consider E

(
candi

)
 for 1 ≤ i ≤ cnt,

which are extracted in the index search phase, whereas the SkNNm considers all the
encrypted data. In addition, we utilize our efficient protocols which require relatively
low computation costs, instead of using the existing expensive protocols. The procedure
of the kNN retrieval step is shown in Algorithm 2.
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Algorithm 2: kNN retrieval

Input : E(q), E(cand), k
Output : E(tʹ) // candidate kNN result
CA : 01: for 1 ≤ i ≤ cnt

02: E(di) ← ESSED(E(q), E(candi))
03: for 1 ≤ s ≤ k
04: E(dmin) ← SMSn(E(d1), …, E(dcnt))
05: for 1 ≤ i ≤ cnt

06: E(τi) ← E(dmin)×E(di)N-1; E(τʹi) ← . 

07: E(β) ← π(τʹ); send E(β) to CB

CB : 08: for 1 ≤ i ≤ cnt

09: if D(βi)=0 then E(Ui) ← E(1); else E(Ui) ← E(0)
10:  send E(U) to CA

CA : 11: E(V) ← π-1(U) 
12: for 1 ≤ i ≤ cnt

13: E(Vʹi,j)←SM(E(Vi),E(candi,j)) for 1≤j≤m+1 
14: E(tʹs,j) = for 1 ≤ j ≤ m+1 
15: if s < k
16: E(di)←SM(E(Vi), E(max))×SM(SBN(E(Vi)), E(di))

17: return E( tʹ) 

First, using our proposed ESSED, CA securely calculates the squared Euclidean
distances E

(
di

)
 between a query and E

(
candi

)
 for 1 ≤ i ≤ cnt (lines 1–2). Then, instead

of using the inefficient SMINn, CA performs SMSn to find the minimum value E
(
dmin

)
among E

(
di

)
 for 1 ≤ i ≤ cnt. Second, CA calculates E

(
𝜏i

)
= E

(
dmin

)
× E

(
di

)N−1, i.e., the
difference between the E

(
dmin

)
 and E

(
di

)
, for 1 ≤ i ≤ cnt. Then, CA computes

E
(
𝜏 ′

i

)
= E

(
𝜏i

)ri (lines 3–6). Note that only the E
(
𝜏 ′

i

)
 corresponding to the E

(
dmin

)
 has a

value of E(0). CA obtains E(𝛽) by shuffling E(𝜏 ′) using a random permutation function
π and then sends E(𝛽) to the CB (line 7). For example, because E(cand) =

{
E
(
t1
)
, E

(
t2
)}

is given from the index search phase, E
(
d1
)
= E(4) and E

(
d2
)
= E(5). By performing

SMSn, E
(
dmin

)
 is set as E(4). Then, E(𝜏 ′) is computed as {E(0), E(−r)}. The E

(
𝜏 ′

i

)
 with

E(0) corresponds to the E
(
dmin

)
, i.e., E(t1). Assuming that π permutes data in reverse

way, CA sends the E(𝛽) = {E(−r), E(0)} to CB. Third, after decrypting E(𝛽), CB sets
E
(
Ui

)
= E(1) if E

(
𝛽i

)
= 0, and sets E

(
Ui

)
= E(0) otherwise. After CB sends E(U) to

CA, CA obtains E(V) by permuting E(U) using π−1 (line 8–11). Then, CA performs SM
protocol by using E(Vi) and E

(
candi,j

)
 to obtain E

(
V ′

i,j

)
. By computing

E
(

t′
s,j

)
=

cnt∏
i=1

E(V ′
i,j) for 1 ≤ j ≤ m + 1, CA can securely extract the datum corresponding

to the E
(
dmin

)
 (line 12–14). For example, CB sends E(U) = {E(0), E(1)} because the

𝛽2 = 1. Then, CA obtains E(V) = {E(1), E(0)} by permuting E(U) using π−1. For the x-
attribute, CA performs SM(E

(
cand1,1

)
, E

(
V1
)
) = E(2) and SM(E

(
cand2,1

)
,

E
(
V2
)
) = E(0). By adding the two values, the x-attribute value of E

(
t1
)
, i.e., E(2), is
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securely calculated. Similarly, we can compute E(1), the y-attribute value of E
(
t1
)
.

Therefore, we can store E
(
t1
)
= {E(2), E(1)} into E

(
t′1

)
 without revealing data access

patterns. Finally, to prevent the selected result from being selected in later phase, CA
securely updates the distance of the selected result as E(max) by performing
E
(
di

)
= SM

(
E
(
Vi

)
, E(max)

)
× SM

(
SBN

(
E
(
Vi

))
, E

(
di

))
 (line 15-16). This procedure

is repeated for k rounds to find the kNN result. For example, in the first round, E
(
t1
)
 with

distance E(4) is securely selected as the 1NN result and E
(
t2
)
 with E(d2) = E(5) is

selected in the second round as the 2NN result.

4.3 Step 3: Result Verification Step

The result of the step 2 may not be accurate because they are retrieved over the partial
data being extracted in the step 1. Therefore, the result verification is essential to confirm
the correctness of the current query result. Specifically, assuming that distk denotes the
squared Euclidean distance between the kth closest result, i.e., E

(
t′
k

)
, and the query, the

neighboring nodes located within distk in the kd-tree need to be searched. For this reason,
we use the concept of shortest point (sp) defined in [7]. The sp is a point in a given node
whose distance is closest to a given point p as compared with the other points in the
node. To find an sp in each node, we use the following properties. (i) If both the lower
bound (lb) and the upper bound (ub) of the node are lesser than p, the ub is the sp. (ii)
If both the lb and the ub of the region are greater than p, the lb is the sp. (iii) If p is
between the lb and the ub of the region, p is the sp. To enhance the efficiency of the
result verification algorithm in the previous work [7], we use our newly proposed proto‐
cols instead of using the existing expensive protocols.
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Algorithm 3: Result verification

Input : E(q), E(node), E(tʹ), k
Output : E(c)
CA : 01: E(distk) = ESSED(E(q), E(tʹk))

02: for 1 ≤ z ≤ numnode

03: for 1 ≤ j ≤ m 
04:       E(ψ1) ← GSCMP(E(qj), E(nodez.lbj)) 
05: E(ψ2) ← GSCMP(E(qj), E(nodez.ubj))
06: E(ψ3) ← E(ψ1) × E(ψ2) × SM(E(ψ1), E(ψ2))N-2 // bit-xor
07:  E(temp) ← SM(E(ψ1), E(nodez.lbj))
08: E(temp) ← E(temp)×SM(SBN(E(ψ1)), E(nodez.ubj))

09: E(temp) ← SM(E(temp), SBN(E(ψ3)))
10: E(spz,j) ← E(temp) × SM(E(ψ3), E(qj))

11: E(spdistz) ← ESSED(E(q), E(spz))
12: E(spdistz) = SM(E(αz), E(max)) × SM(SBN(E(αz)), E(spdistz))
13: E(αz) ← GSCMP(E(spdistz), E(distk))
14: E(tʹʹ) perform 4~20 lines of Algorithm 1 
15: E(tʹ) append the E(tʹʹ) to E(tʹ)
16: E(result) perform Algorithm 2
17: for 1 ≤ i ≤ k
18: E(ci) E(resulti,m+1) 
19: return E(c) 

The procedure of the result verification step is shown in Algorithm 3. First, CA
computes E

(
distk

)
= ESSED

(
E(q), E

(
t′
k

))
 to calculate the squared Euclidean distance

between the query and the kth closest result among E(t′), i.e., the output of the kNN
retrieval step (line 1). Second, CA performs GSCMP by using E(qj) and E(nodez.lbj) for
1 ≤ z ≤ numnode and 1 ≤ j ≤ m and then stores the result in E

(
𝜓1

)
. CA also performs

GSCMP by using E(qj) and E
(
nodez.ubj

)
 for 1 ≤ z ≤ numnode and 1 ≤ j ≤ m and then

stores the result into E
(
𝜓2

)
. In addition, CA calculates E

(
𝜓3

)
 by executing

E
(
𝜓1

)
× E

(
𝜓2

)
× SM(E

(
𝜓1

)
, E

(
𝜓2

)
)N−2 to obtain the result of bit-xor operation

between E
(
𝜓1

)
 and E

(
𝜓2

)
 (lines 3–6). Note that “−2” is equivalent to “N − 2” under

ZN. Third, CA securely obtains the shortest point of each node, i.e., E
(
spz,j

)
, by executing

SM
(
E
(
𝜓3

)
, E

(
qj

))
× SM

(
SBN

(
E
(
𝜓3

))
, f
(
E
(
lbz,j

)
, E

(
ubz,j

)))
 for 1 ≤ z ≤ numnode and

1 ≤ j ≤ m, where f
(
E
(
lbj

)
, E

(
ubj

))
 means

SM
(
E
(
𝜓1

)
, E

(
lbz,j

))
× SM

(
SBN

(
E
(
𝜓1

))
, E

(
ubz,j

))
 (lines 7–10). For example,

assuming that the required k is 2, E(dist2) = E(5) because E(t2) is the current 2NN.
Meanwhile, in Fig. 2, the shortest point of node3 (i.e., sp3) to the E(q) is computed as
follows. Because the x-value of the q is less than the x-values of both lb and ub of
node3, the x-value of E(sp3) is calculated by E(sp3,1) = E(0) × E(4) + E(1) × (E(1) × E(5)
+ E(0) × E(10)) = E(5). Similarly, the y-value of E(sp3) is computed as E(sp3,2) = E(1).

Fourth, CA calculates E
(
spdistz

)
, the squared Euclidean distances between the query

and E(spz) for 1 ≤ z ≤ numnode by using ESSED. In addition, CA securely updates the
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E(spdistz) of the retrieved nodes into E(max) by computing
E
(
spdistz

)
= SM

(
E
(
𝛼z

)
, E(max)

)
× SM

(
SBN

(
E
(
𝛼z

))
, E

(
spdistz

))
 (lines 11–12).

Here, E(αz) is the output of GSPE computed in index search step. Then, CA performs
E
(
𝛼z

)
= GSCMP

(
E
(
spdistz

)
, E

(
distk

))
 (line 13). The nodes with E

(
αz

)
= E(1) need to

be retrieved for query result verification. For example, the initial value of E(spdist) is
(E(0), E(16), E(1), E(26)) for each node in Fig. 2, and E(spdist) is updated as (E(max),
E(16), E(1), E(26)). Therefore, the result of GSCMP becomes E(α) = (E(0), E(0), E(1),
E(0)) because E(distk) = E(5). Fifth, CA securely extracts the data stored in the nodes
with E(α) = E(1) by performing the 4–20 lines of the Algorithm 1 and appends them to
E(t′). Then, CA executes the kNN retrieval step (Algorithm 2) based on E(t′) to obtain
the E(resulti) for 1 ≤ i ≤ k (lines 14–16). Finally, CA stores E(resulti,m+1) into E(ci) for 1
≤ i ≤ k to extract the class labels of the kNN results (line 18–19). For example, the final
result becomes E(result) = {E(t1), E(t5)}. Because the class labels of both E(t1) and
E(t5) are 1 in Fig. 2, the final E(c) becomes (E(1), E(1)).

4.4 Step 4: Majority Class Selection Step

We securely determine the majority class label among the output of the result verification
step, i.e., E(label). The procedure of the result verification step is shown in Algorithm
4. First, CA performs SF using E(labelj) for 1 ≤ j ≤ w and E(ci) for 1 ≤ i ≤ k to obtain
E(f(labelj)). Then, CA finds the maximum value, i.e., E(fmax), among E(f(labelj)) for
1 ≤ j ≤ w by using SXSn (line 1–2). Second, CA securely obtains the class label
E(output) corresponding to the E(fmax) by using the logic similar to 5–10 lines of Algo‐
rithm 2. Due to the space limitation, we briefly describe this procedure. CA calculates
E
(
𝜏i

)
= E

(
fmax

)
× E(f

(
labelj

)
)N−1 for 1 ≤ i ≤ w. Then, CA computes E

(
𝜏 ′

i

)
= E(𝜏i)

ri and
obtains E(β) by shuffling E(τ′) by using π and then sends E(β) to the CB (line 3–5). After
decrypting E(β), CB sets E(Ui) = E(1) if E(βi) = 0, and sets E(Ui) = E(0) otherwise. After
CB sends E(U) to CA, CA obtains E(V) by permuting E(U) using π−1 (line 6–9). Then, CA
performs E(output) =

∏w

j=1 SM(E(Vj), E(labelj)) for 1 ≤ j ≤ w to obtain the majority
class label (line 10–12). For example, E(output) is E(1) because the class label ‘1’ has
the maximum occurrence among E(f(label)) = (E(2), E(0), E(0)). Third, CA returns the
decrypted result to AU in cooperation with CB to reduce the computation overhead at
the AU side. To do this, CA computes E(output) × E(r) by generating a random value r,
and then sends the result of E(output + r) to CB and r to AU (lines 14). CB decrypts the
data sent from CA and sends the decrypted value (e.g., output + r) to AU (lines 15).
Finally, AU computes the actual class label by computing (output + r) − r in plaintext
(lines 16–17).
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Algorithm 4: Majority class selection

Input : E(label), E(c) 
Output : output
CA : 01:  E(f(label))  SF(E(label),  E(c)) 

02: E(fmax) SXSn(E(f(lable1)), …, E(f(lablew)))
03: for 1 ≤ j ≤ w

04: E(τj) ← E(fmax)×E(f(label))N-1; E(τʹj)

05: E(β) ← π(τʹ); send E(β) to CB

CB : 06: for 1 ≤ j ≤ w

07: if D(βj)=0 then E(Uj) ← E(1);   else E(Uj) ← E(0)
08:  send E(U) to CA

CA : 09: E(V) ← π-1(U) 
10: for 1 ≤ j ≤ k

11: E(Vʹj)←SM(E(Vj), E(labelj))
12: E(output
14:   send E(output) × E(r)  to CB;    send r to AU

CB : 15:   decrypt E(output+r);   send  output+r to AU
AU: 16: output =  (output + r) – r

17: return output

5 Performance Analysis

In this section, we compare our SkNNCG (secure kNN classification algorithm using the
Yao’s garbled circuit) with PPkNN [3] that is the only existing work to perform classi‐
fication over encrypted databases in the cloud. To measure the performance gains of
using our newly proposed protocols, we also compare our scheme with SkNNCI (secure
kNN classification algorithm with secure index) that performs classification based on
the existing expensive secure protocols, instead of using our newly proposed protocols.
Therefore, we can see that the performance gap between SkNNCI and PPkNN comes
from the use of secure index search scheme. We implemented three schemes by using
C++ and evaluate their performances in terms of classification time under different
parameters settings. The parameters used for our performance analysis are shown in
Table 2. We used the Paillier cryptosystem to encrypt a database for all of the schemes.
Our experiments were performed on a Linux machine running Ubuntu 14.04.2 with an
Intel Xeon E3-1220v3 4-Core 3.10 GHz and 32 GB RAM. We conducted performance
analysis by using the real Chess dataset because it is considered as an appropriate dataset
for classification [15]. It consists of 28,056 records with six attributes and their class
labels.

A Secure and Efficient kNN Classification Algorithm Using Encrypted Index Search 35



Table 2. Experimental parameters

Parameters Values Default value
Total number of data (n) 4k, 8k, 12k, 16k, 20k, 24k, 28k 28k (28,056)
Level of kd-tree (h) 5, 6, 7, 8, 9 7
Required k (k) 5, 10, 15, 20 10
Encryption key size (K) 512 512

In Fig. 3, we measure the performance of SkNNCI and our SkNNCG by varying the
level of kd-tree because PPkNN does not use the secure index. The classification times
of both schemes are decreased as h changes from 5 to 7 while the classification time
increase as h changes from 7 to 9. This is because as h increases, the total number of
leaf nodes grows, thus requiring more GSPE and SPE [7] executions for SkNNCG and
SkNNCI, respectively. Whereas, as h increases, the number of data in the node decreases,
thus requiring less computation cost for distance calculation. However, our SkNNCG
outperforms SkNNCI because our scheme uses both efficient secure protocols based on
the Yao’s garbled circuit and the data packing technique.

Fig. 3. Performance of varying h

Figure 4(a) shows the performance of three schemes by varying the n. As the n
becomes larger, the query processing time of PPkNN linearly increases because it
considers all of the data. Although the overall query processing times of SkNNCI and
SkNNCG are increased as the n increases, they are less affected by n than PPkNN.
Overall, our SkNNCG shows 17.1 and 4.7 times better performance than PPkNN and
SkNNCI, respectively. Due to the index-based data filtering, both SkNNCG and
SkNNCI shows better performance than PPkNN. However, our SkNNCG outperforms

(a) Performance of varying n k(b)  Performance of varying 

Fig. 4. Classification time for varying n
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SkNNCI because our algorithm can reduce the computation cost by using the Yao’s
garbled circuit and the data packing technique.

Figure 4(b) shows the performance of three schemes by varying the k. As the k
becomes larger, the query processing times of three schemes increase because the larger
k requires more executions of expensive protocols, e.g., SMSn in case of our SkNNCG
and SMINn in case of both PPkNN and SkNNCI, to retrieve the more kNN results.
Overall, our SkNNG shows 17.7 and 4.2 times better performance than PPkNN and
SkNNCI, respectively, due to the same reasons described for Fig. 3.

6 Conclusion

Databases need to be encrypted before being outsourced to the cloud, due to its privacy
issues. However, the existing kNN classification scheme over encrypted databases in
the cloud has a problem that it suffers from high computation overhead. Therefore, in
this paper we proposed a new secure and efficient kNN classification algorithm over
encrypted databases. Our algorithm not only preserves data privacy and query privacy,
but also conceals resulting class labels and data access pattern. In addition, our algorithm
can support efficient kNN classification by using an encrypted index search scheme, the
Yao’s garbled circuit and a data packing technique. We showed from our performance
analysis that the proposed algorithm showed about 17 times better performance on
classification time than the existing PPkNN scheme, while preserving high security
level.

As a future work, we plan to expand our algorithm to the distributed cloud computing
environment. We also plan to study on data clustering and association rule mining over
encrypted database for cloud computing.
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