
Risk-based Software Quality
and Security Engineering

in Data-intensive Environments
(Invited Keynote)

Michael Felderer1,2(B)

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Blekinge Institute of Technology, Karlskrona, Sweden

Abstract. The concept of risk as a measure for the potential of gaining
or losing something of value has successfully been applied in software
quality engineering for years, e.g., for risk-based test case prioritization,
and in security engineering, e.g., for security requirements elicitation.
In practice, both, in software quality engineering and in security engi-
neering, risks are typically assessed manually, which tends to be sub-
jective, non-deterministic, error-prone and time-consuming. This often
leads to the situation that risks are not explicitly assessed at all and
further prevents that the high potential of assessed risks to support deci-
sions is exploited. However, in modern data-intensive environments, e.g.,
open online environments, continuous software development or IoT, the
online, system or development environments continuously deliver data,
which provides the possibility to now automatically assess and utilize
software and security risks. In this paper we first discuss the concept of
risk in software quality and security engineering. Then, we provide two
current examples from software quality engineering and security engi-
neering, where data-driven risk assessment is a key success factor, i.e.,
risk-based continuous software quality engineering in continuous software
development and risk-based security data extraction and processing in
the open online web.

Keywords: Risk assessment · Software quality engineering
Security engineering · Data engineering

1 Introduction

The concept of risk as a measure for the potential of gaining or losing something
of value has successfully been applied in software quality and security engineering
to support critical decisions.

In software quality engineering, the concept of risk has for instance been
applied in risk-based testing, which consider risks of the software product as
the guiding factor to steer all phases of a test process, i.e., test planning,
c© Springer Nature Switzerland AG 2018
T. K. Dang et al. (Eds.): FDSE 2018, LNCS 11251, pp. 12–17, 2018.
https://doi.org/10.1007/978-3-030-03192-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03192-3_2&domain=pdf


Risk-based Software Quality and Security Engineering 13

design, implementation, execution, and evaluation [1–3]. Risk-based testing is
a pragmatic, in companies of all sizes widely used approach [4,5] which uses the
straightforward idea to focus test activities on those scenarios that trigger the
most critical situations of a software system [6]. In general, a risk is an event
that may possibly occur and, if it occurs, it has (typically negative) consequences.
Therefore, risks are determined by the two factors probability and impact. For
testing purposes, the factor probability describes the likelihood that the nega-
tive event, e.g., a software failure, occurs and impact characterizes the cost if the
failure it occurs in operation. Assessing the risk exposure of a software feature or
component requires estimating both factors. Impact can in that context usually
be derived from the business value associated to the feature defined in the soft-
ware requirements specification. Probability is influenced by the implementation
characteristics of the feature or component as well as the usage context in which
the software system is applied.

In security engineering, the concept of risk in particular and risk manage-
ment in general receives even more attention than in software quality engineering.
Risks are often used as a guiding factor to define security measures throughout
the software development lifecycle. For instance, Potter and McGraw [7] con-
sider the process steps creating security misuse cases, listing normative security
requirements, performing architectural risk analysis, building risk-based secu-
rity test plans, wielding static analysis tools, performing security tests, perform-
ing penetration testing in the final environment, and cleaning up after security
breaches. In security engineering, risk is determined by the probability that a
threat will exploit a vulnerability and the impact of the resulting adverse con-
sequence, or loss [8]. A threat is a cyber-based act, occurrence, or event that
exploits one or more vulnerabilities and leads to an adverse consequence or loss.
A vulnerability is a weakness in an information system, system security proce-
dures, internal controls, or implementation that a threat could exploit to produce
an adverse consequence or loss.

The overall risk management comprises the core activities risk identification,
risk analysis, risk treatment, and risk monitoring [9]. In the risk identification
phase, risk items are identified. In the risk analysis phase, the likelihood and
impact of risk items and, hence, the risk exposure is estimated. Based on the
risk exposure values, the risk items may be prioritized and assigned to risk levels
defining a risk classification. In the risk treatment phase the actions for obtaining
a satisfactory situation are determined and implemented. In the risk monitoring
phase the risks are tracked over time and their status is reported. In addition, the
effect of the implemented actions is determined. The activities risk identification
and risk analysis are often collectively referred to as risk assessment while the
activities risk treatment and risk monitoring are referred to as risk control.

Several methods to assess software or security risks are available (e.g.,
RisCal [10] for software risks and the Security Engineering Risk Analysis (SERA)
Framework [8] for security risks). In practice, both, in software quality engineer-
ing and in security engineering, risks are typically assessed manually, which tends
to be subjective, non-deterministic, error-prone and time-consuming.



14 M. Felderer

However, in modern data-intensive environment like open online environ-
ments, continuous software development or IoT, the online, system or develop-
ment environments continuously deliver data, which provides the possibility to
automatically assess and utilize software and security risks. In the following two
sections, we sketch two examples from software quality engineering and security
engineering, where data-driven risk assessment plays a key role, i.e., risk-based
continuous software quality engineering and risk-based security data extraction
and processing.

2 Risk-Based Continuous Software Quality Engineering

In the data-intensive environment of modern continuous software development
based on cloud technologies, system testing and release management merge and
have to be performed continuously ranging from automated system testing (for
critical system software potentially based on model-based testing), over manual
acceptance testing to live online experimentation at runtime. There is unex-
ploited potential to improve system testing, on the one hand by intelligent
automation and on the other hand by complementing it with live experimen-
tation. Live experimentation at runtime [11] allows to deploy faster and thus
gaining the competitive advantage of giving customers earlier access to new
functionality, to reach a larger population than possible with acceptance test-
ing and to check functional as well as non-functional behavior. However, live
experimentation can only be implemented for uncritical software components to
avoid that critical defects or hazards occur during runtime. Therefore, a suit-
able software structure and software risk assessment based on automated data
analytics (leading to risk analytics) is required to avoid the issue of live experi-
mentation for critical software components prior to sufficient system testing. The
three continuous software quality improvement aspects of risk analytics, intel-
ligent test automation and live experimentation are shown together with their
characteristics in Fig. 1.

The first aspect is automated software risk analytics. It processes structured,
semi-structured and unstructured software product data (e.g., data from source
code, test specifications, defects, design models, or requirements specifications),
organizational data (e.g., data about the teams developing specific services),
process data (e.g., data from the version control system, issue tracking data, or
deployment and runtime data), and business data (e.g., data about the business
value, market potential or cost of specific software services), which allows to
automatically determine probability and impact for risk assessment. The risk
information is then applied to perform intelligent test automation to support
decisions on what to automate (test-case design, test data generation and test
execution of specific components, scenarios or services) and when to automate
(in which sequence and iteration) as second aspect. Finally, as a third aspect, if
the risk level is moderate, even live experimentation can be performed to test
functional and non-functional system properties.



Risk-based Software Quality and Security Engineering 15

Risk Analytics

Intelligent Test 
Automation

Live 
Experimentation

Manual Autonomous

Process

Runtime

Product

Point of SE and Data Engineering Integration

Automation Level of SE and Data Engineering Integration

Continuous
Quality 

Improvement
Aspects

Fig. 1. Risk-based continuous software quality engineering

3 Risk-Based Security Data Extraction and Processing

The proposed approach to risk-based security data extraction and processing
in the data-intensive environment of the open online web consists of two major
components, i.e., a Security Data Collection and Analysis Component as well
as a Security Knowledge Generation Component. The approach was originally
presented in [12] and we refer to it here. Figure 2 shows the approach.

The Security Data Collection and Analysis Component is responsible for the
data extraction from various data sources, quality assessment of data and data
merging in order to provide the data in a processable form. It considers extraction
from several online sources including vulnerability knowledge bases like Common
Vulnerabilities and Exposures (CVE) [13] or the Malware Information Sharing
Platform (MISP) [14], social media like Twitter as well as security forums or
websites. Once the data is extracted and available, it must be formatted, the
quality assessed and then merged. Because of the type of information being
handled and the fact that there are different data fields to deal with, this is
a highly complex task. In order to overcome differences, a general format is
proposed, which includes information such as name, type, year, target platform,
description and reference. It is the basis to automatically assess security risks.

The Security Knowledge Generation Component processes the extracted
security information in order to provide it for different roles and various purposes,
for instance as knowledge to stakeholders in the agile development process or to
generate attack models. For instance, a developer can be provided with a secu-
rity dashboard showing security risks or concrete guidelines on how code can be
secured or security properties can be tested. As for the product owner, they can



16 M. Felderer

Fig. 2. Risk-based security data extraction and processing approach [12]

receive guidelines on security requirements and risk management. Finally, when
developing a safety critical system, a developer who is responsible for the system
architecture can be provided with generated attack models annotated with risk
information that can be integrated with available system models to perform a
combined safety-security analysis [15] or model-based security testing [16].

4 Conclusion

This paper sketched to approaches to automated risk assessment in data-
intensive environments, i.e., risk-based continuous software quality engineering
in continuous software development as well as risk-based security data extraction
and processing in the open online web.

References

1. Gerrard, P., Thompson, N.: Risk-Based E-business Testing. Artech House Publish-
ers, Norwood (2002)

2. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Softw. Qual. J. 22(3), 543–575 (2014)

3. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16(5), 559–568 (2014)

4. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
Int. J. Softw. Tools Technol. Transf. 16(5), 609–625 (2014)

5. Felderer, M., Ramler, R.: Risk orientation in software testing processes of small
and medium enterprises: an exploratory and comparative study. Softw. Qual. J.
24(3), 519–548 (2016)



Risk-based Software Quality and Security Engineering 17

6. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based
testing using risk-annotated requirements models. In: ICSEA 2012, pp. 636–642
(2012)

7. Potter, B., McGraw, G.: Software security testing. IEEE Secur. Priv. 2(5), 81–85
(2004)

8. Alberts, C., Woody, C., Dorofee, A.: Introduction to the security engineering risk
analysis (SERA) framework. Technical report, Carnegie Mellon University Software
Engineering Institute, Pittsburgh, Pennsylvania (2014)

9. ISO: ISO 31000 - Risk Management (2018). http://www.iso.org/iso/home/
standards/iso31000.htm

10. Haisjackl, C., Felderer, M., Breu, R.: Riscal-a risk estimation tool for software engi-
neering purposes. In: 2013 39th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 292–299. IEEE (2013)

11. Auer, F., Felderer, M.: Current state of research on continuous experimentation: a
systematic mapping study. In: EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA 2018). IEEE (2018)

12. Felderer, M., Pekaric, I.: Research challenges in empowering agile teams with secu-
rity knowledge based on public and private information sources (2017)

13. MITRE: Common vulnerabilities and exposures. https://cve.mitre.org/
14. Andre, D.: Malware information sharing platform. http://www.misp-project.org/
15. Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.:

Integrated safety and security risk assessment methods: a survey of key characteris-
tics and applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen,
S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 50–62. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71368-7 5

16. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based security
testing: a taxonomy and systematic classification. Softw. Test. Verif. Reliab. 26(2),
119–148 (2016)

http://www.iso.org/iso/home/standards/iso31000.htm
http://www.iso.org/iso/home/standards/iso31000.htm
https://cve.mitre.org/
http://www.misp-project.org/
https://doi.org/10.1007/978-3-319-71368-7_5

	Risk-based Software Quality and Security Engineering in Data-intensive Environments
	1 Introduction
	2 Risk-Based Continuous Software Quality Engineering
	3 Risk-Based Security Data Extraction and Processing
	4 Conclusion
	References




