
Comparative Study on Different
Approaches in Optimizing Threshold

for Music Auto-Tagging

Khanh Nguyen Cao Minh(B), Thinh Dang An, Vu Tran Quang,
and Van Hoai Tran

Ho Chi Minh City University of Technology, VNU-HCM,
Ho Chi Minh City, Vietnam

nguyencaominhkhanh@gmail.com

Abstract. In multi-label classification applied to music auto-tagging,
the classification threshold is simply set to a constant value (called static
threshold), which is usually unsuitable for the classification on imbal-
anced datasets. There are many approaches to solve this problem. Some
find an appropriate threshold for the whole dataset, while the others find
one for each tag or for each individual musical instance. In this paper,
we present a method for finding an appropriate classification threshold
for each individual track using multiple techniques. The ranking model
used to experiment with the thresholding model is built based on fully
convolutional neural network structure. The performance of the classi-
fier including the thresholding strategy is evaluated against the classifier
using static threshold on various evaluation metrics. The results show
that the proposed method helps to improve the classification quality of
classifier to testing instances.

Keywords: Multi-label classification · Music tagging
Thresholding strategy

1 Introduction

Tagging is a process of assigning a label (or tag) or multiple labels to a certain
object. In digital era, tagging is primarily utilized to tag digital contents. This
process is mainly executed by human, based on their inherent knowledge. Music
tagging is similar to general tagging, instead it assigns more specific tags in music
to audio clips, tracks, or albums. These tags can be genres, instrumentation,
rhythmic structure, and so on. Also, the quality of music tagging depends mostly
on music knowledge of listeners, or by the intention of composers.

A rising question is “Can music tagging be performed automatically?”. An
experienced listener can listen to audios and annotate accurately tags to those
very quickly. So, it is possible to build a classifier to predict music tags by using
audio signal. In this process, the classifier automatically assigns a tag to an

c© Springer Nature Switzerland AG 2018
T. K. Dang et al. (Eds.): FDSE 2018, LNCS 11251, pp. 237–250, 2018.
https://doi.org/10.1007/978-3-030-03192-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03192-3_18&domain=pdf


238 K. Nguyen Cao Minh et al.

instance, based on its own characteristics. Music auto-tagging brings us a lot of
benefits. For example, it can provide some useful information to listeners, such as
genres, instrumentation, rhythmic structure. Moreover, based on characteristics
of a listener’s favorite tracks, music auto-tagging can help commercial products
like Spotify, iTunes to recommend relevant tracks to him, which improves user
experience.

To build a classifier, it is necessary to extract features from audio. However,
feature extraction process is hard to be conducted because hand-crafted fea-
tures must be aggregated, so determining which features are good and suitable
for tagging is difficult. To overcome this problem, using deep learning is a possi-
ble approach. Deep learning has recently become widely used in audio analysis
research. The advantage of deep learning is to learn the hierarchical representa-
tions of the data. Besides, deep learning scale much better with more data than
traditional algorithms. Convolutional neural networks (CNN) [7] represents fea-
tures in different levels of hierarchy, so the model itself can learn from low-level
feature to high-level feature. Especially, many hybrid models are built based on
CNN such as convolutional recurrent neural network, fully convolutional net-
work (FCN). FCN is built on CNN but replaces the last layer by a convolutional
layer instead of a fully connected one. Therefore, FCN maximizes the advan-
tage of convolutional networks. It not only reduces the number of parameters by
sharing weights but also aggregates features. Nevertheless, the biggest problem
of deep learning is about the availability of labeled datasets. Recently, many
large-scale music datasets are released, such as Million Song Dataset (MSD) [1],
MagnaTagATune (MTAT) [6], Free Music Archive (FMA) [4]. These datasets
are used in many studies because of their quality. Another challenge is the noise
in the datasets.

In single-label classification, the label that has the best score can be chosen
to be the output, while in multi-label classification, many labels can be chosen
to form the result. Area under the curve (AUC) value is often used as a reli-
able metric to reflect how well a multi-label classifier performs. Recently, many
researches only focus on AUC to evaluate the performance of classifiers because
of the accuracy paradox. However, if AUC is used as the only evaluation metric,
some limitation still remains. Specifically, high value in AUC does not assure
high value in accuracy. Currently, most of classification models use a same static
threshold for all testing instances and all labels. AUC is not affected by this
threshold, but accuracy is. Some tracks are hard to be classified to specific tags
(labels) because the scores of all tags are not higher than the static threshold,
though there is at least one score higher than the others. Therefore, the classifier
predicts that those tracks do not belong to any tag. This leads to a significant
decline in value of accuracy.

The first approach to think of is based on scores in validation set to configure a
static threshold for all track instances. For example, it can be done by performing
a brute-force search for the best of threshold t under a given criterion. t will
then be applied to the scores produced for verification set to evaluate the overall
performance of the classifier. However, this approach has two problems. First, the



Comparative Study on Different Thresholding Approaches 239

score distribution on validation set does not represent the counter part in testing
data. For example, although the score distribution on validation set (Fig. 1a) and
that on verification set (Fig. 1b) show many similarities, there are still differences
between them in detail. Second, all scores of a specific track can be lower than the
static threshold, which results in no label belonging to this track, although one
of its scores is much higher than the others. So, assigning a constant threshold
to all instances is not appropriate.

There are researches that propose algorithms to generate a reasonable thresh-
old for each instance instead of using a static one. RCUT [8] generates a threshold
to guarantee that a fixed proportion of tags is predicted as positive, which is not
common with music tagging problems where a number of tags assigned to each
instance are not constant. Beside RCUT, MCUT [8] is a wonderful method to
produce the threshold, it splits positive predictions and negative ones in a posi-
tion where two scores have the largest distance. In general, it plays an impor-
tant role to choose an appropriate threshold based on the characteristics of each
instance. There are various metrics to assess this threshold. Among them, Fβ

[9] is the most suitable, with β is used to adjust weight between precision and
recall.

The basic idea of above researches is to separate the classifier into two indi-
vidual parts, the ranking model and the thresholding model. For each musical
instance, the ranking model generates scores of all tags whereas the threshold-
ing model generates an appropriate threshold value. The overall result of the
classifier recommends tags whose scores are higher or equal to the generated
threshold. However, the approaches mentioned above do not perform well in
practice. There are two main reasons for this. First, they are hard-coded (for
RCUT it is the fixed proportion of tags that are predicted as positive). Second,
they do not utilize the features of each instance. To deal with these limitations,
we propose a method to implement a thresholding model which can learn from
labeled instances and then generates a good threshold for testing ones based on
their characteristics.

The rest of the paper is organized as follows. Section 2 mentions researches
working on determining an appropriate threshold value, their pros and cons.
Section 3 describes our proposed method in details while Sect. 4 presents datasets
used in this study, the structure of experimented models, the optimization and
the evaluation metrics as well as experiment results. Finally, Sect. 5 summarizes
the achievement of the research.

2 Related Work

Currently, all of the work uses ranker’s score, which is output of the ranking
model, as input to the threshold generator. Some algorithms require training
or optimizing on training set before deployment. The training set may be the
validation set of ranker, or can be created by cross validation when training
ranker on its training set. That training set has the same label set as ranker’s
dataset but its instance set is ranker’s scores.



240 K. Nguyen Cao Minh et al.

(a) On validation set

(b) On verification set

Fig. 1. Mean and standard deviation of score by genre. Yellow color shows the set of
instances having that genre, while blue shows set of instances that do not. (Color figure
online)



Comparative Study on Different Thresholding Approaches 241

The study [8] provides basic method for threshold selection. SCut finds
threshold to minimize specific loss function, TCut finds threshold to guarantee
the ratio of positive prediction on training set. TCut and SCut are label-level
thresholding algorithms while RCut, MCut are instance-level thresholding ones.
RCut returns the threshold that lets classifier predict k labels for each individ-
ual instance. For MCut, label scores are sorted first, resulting threshold is the
average value of two consecutive scores, whose gap is maximum.

Some works research on label-based thresholding [5,10]. For each class, look
for the threshold that optimize specific label-level classification metric. [5] pro-
vides method for mapping from threshold optimized in training set to verification
set, but this method will not work on different instances. In general, all of the
optimization methods above tend to be overfit on training set.

Machine learning is the statistical method that work well on testing data
by optimizing on training set. For each instance, the proposed method generates
instance-level threshold that optimize specific instance-level classification metric,
this method involves using k-nearest neighbors (KNN) [2].

In this paper, besides machine learning technique (in particular, KNN), we
propose another instance-based approach to determine threshold that uses deep
learning and transfer learning. Moreover, our model is optimized using various
metrics Subsect. 4.2. Finally, we experiment our method on two popular large-
scale music dataset MSD and MTAT, then compare it with machine learning
one and classifier using static threshold.

3 Different Approaches in Determining Instance-Based
Threshold

As mentioned above, the ranking model f takes its input as a waveform x of a
track. Its output is a score vector s ∈ [0, 1]q of that track. However, the main
purpose is to classify tags, which means the expected output is a binary vector
p ∈ {0, 1}q. Each element of p indicates the predicted classification of a certain
tag. If pi = 0, that track does not belong to tag i, and vice versa for pi = 1. So,
it is necessary to have a thresholding model l whose output is a threshold value
t. If the score si of a certain tag i is higher than t, pi = 1. And if not, pi = 0.

To implement l, we propose an instance-based thresholding model. This
means, instead of estimating a static threshold for all instances or all labels, the
instance-based method will generate threshold value for each particular instance
x. The value is used to decide the classification result p. Our proposed method
to implement the instance-based thresholding model is described as follows.

3.1 Splitting the Dataset

Note that, the proposed classifier consists of two individual parts - the rank-
ing model and the thresholding model. They both need to be trained, so it is
necessary to split the dataset appropriately for our usage. Given the dataset is
D = {(x, y)} = DTr ∪ DV a ∪ DV e, with x ∈ R

d is waveform of track instance



242 K. Nguyen Cao Minh et al.

and y ∈ [0, 1]q is the corresponding score vector of all tags. Because y is the true
label of x, so each of its element is standardized to 0 or 1, which guarantees that
the track belongs or does not belong to a certain tag. Since the ranker is trained
on the training set DTr = {(xTr, yTr)}, it is not used to train the thresholding
model. Neither is the verification set DV e = {(xV e, yV e)} because it is used to
evaluate the performance of both model. Validation set DV a = {(xV a, yV a)} is
the last resort. DV a is used to generate Dt = DTr

t ∪ DV a
t , which are used to

train and validate the thresholding model, respectively. Generating method of
Dt will be described later.

3.2 Building and Training the Ranking Model

The ranking model f is built and trained on the training set DTr, detailed block
diagram of the model is shown in Fig. 2.

The ranking model is a convolutional neural network which is designed based
on [3] (Fig. 2). Its input is the waveform which is then transformed to a spectro-
gram. The spectrogram has a fixed size 96×1366×1 corresponding to frequency,
time and channel dimension, respectively. It goes through batch normalization
layer along the frequency axis. Then, the output of this layer is put through five
convolutional blocks. Each block consists of a 2-D convolutional layer to extract
features, a batch normalization layer along the channel axis to stabilize the value
domain, followed by a ReLU activation layer, a dropout layer with ratio 0.2 to
prevent overfit and a max pooling layer at last to aggregate features and reduce
feature map size. The output of these blocks are vectorized and connected to a
sigmoid dense layer whose number of neurons is equal to the number of tags.
The loss function is binary cross entropy.

Fig. 2. Block diagram of the ranking model [3]: Audio of a track is first preprocessed to
create its corresponding mel-spectrogram. This image is the input of the ranking model
whose first layer is the batch normalization layer along the frequency axis, followed by
five convolutional blocks. The last layer is a sigmoid dense layer.



Comparative Study on Different Thresholding Approaches 243

3.3 Generating the Dataset for the Thresholding Model

The dataset Dt is used to train and validate the thresholding model. Label set of
Dt is formed by using Algorithm 1 called gm. The purpose of this algorithm is to
generate an appropriate threshold that optimizes a certain instance-based metric.
For each instance xV a in DV a, the trained ranker fTr from step 2 will predict its
corresponding score vector sV a. Given ssorted is the descending-sorted version
of sV a, sequentially use each score e in ssorted as the classification threshold.
Consequently, the chosen label yt for the dataset of the thresholding model lm
that optimizes metric m is the mean of two values. The first is the score ssorted

im

that makes the predicted classification pV a achieve highest m(pV a, yV a). The
second is ssorted

im+1 . In general, the above algorithm gm needs two parameters,
instance x and its true label y, to generate the threshold yt = gm(x, y). When
deployed, lm is not provided with the true label ŷ of testing instance x̂, so it
needs to learn how to predict the best threshold ŷt that optimizes metric m
for x̂.

3.4 Designing the Thresholding Model

Building the thresholding model, training and validating it on DTr
t and DV a

t ,
respectively. The thresholding generating problem is a regression one, so it is
necessary to design a regressor r. The paper proposes five approaches to solve
it. All of these are described as follows.

1. KNN: The regressor uses k-nearest neighbors regression with k =
√

|XTr
t |,

|XTr
t | is the number of instances in DTr

t . For each instance in verification
data, r will calculate its similarity to the training instances by certain dis-
tance metric (e.g. Euclidean distance). The mean of threshold values of k
closest instances is set as the threshold of verification instance, with k is the
parameter of KNN. Its dataset consists of pairs (xt, yt), with xt is the score
vector sV a = f(xV a) of instance xV a ∈ DV a and yt = gm(xV a, yV a). So, the
dataset for the regressor r is {(sV a, yt)}.

2. KNNS: Similar to KNN, but includes sorting the input score vector in descen-
dant. Because Algorithm 1 sorts scores to generate labels for the dataset, it
is expected that adding the sorting step will help the model determine the
threshold better.

3. MLP: Deep learning regressor is built based on multi-layer perceptron struc-
ture. The used structure consists of two fully-connected layers, each has 50
neurons. The loss function is the mean square error (MSE) between the pre-
dicted threshold t and the true label yt. r is trained and validated on the
same dataset as KNN and KNNS. For each instance in test set, r will predict
the corresponding threshold value.

4. MLPS: Similar to MLP with the sorting step added.
5. TL: This approach uses transfer learning technique. While the instance set

of above approaches is the score vector sV a of xV a ∈ DV a, the instance set
of TL is the learned features of the track extracted from the ranker that was



244 K. Nguyen Cao Minh et al.

trained on MSD dataset (fMSD) [3]. So, for this approach only, the dataset
for the regressor is {(fMSD(xV a), yt)}. The classification algorithm used for
TL is k-nearest neighbors regression.

6. T0.5: The thresholding model that always generates a threshold value 0.5 for
all music instances is also experimented as a baseline to compare with the
five mentioned approaches.

Figure 3 visualizes how the data is used in five proposed approaches.

(a) Methods (a) - (d) (b) Method (e)

Fig. 3. Data usage in two training method classes of thresholding models l. Figure 3a
describes methods 1–4. Figure 3a describes method 5. Horizontal arrows show data used
in training while vertical arrows show data in verification. In all five approaches, the
ranker f is trained on DTr, and MSDTr specifically in approach TL. For the regressor
r, approaches 1–4 use the dataset containing pairs of score vector as instance and
threshold value as label. Approach TL uses the dataset containing pairs of extracted
feature from fMSD as instance and threshold value as label.

4 Experiment

4.1 Dataset

To train and evaluate performance of the proposed method, we use three datasets
Million Song Dataset (MSD) [1], MagnaTagATune (MTAT) [6] and Free Music
Archive (FMA) [4]. These datasets appear to be well suited for training Deep
learning ranking model because of their large collection of tracks and tags.

While it is very easy to download both data and metadata of MTAT and FMA
dataset, MSD forces researchers to download audio clips from online services. But
thanks to Mr. Keunwoo Choi1, we managed to get almost all data of MSD. We
really appreciate his enthusiastic help.

For MSD, we split the dataset into training/validation/test set based on
convention proposed in2. Specifically, only track instances that have tags in
1 https://keunwoochoi.wordpress.com/.
2 https://github.com/keunwoochoi/MSD split for tagging.

https://keunwoochoi.wordpress.com/
https://github.com/keunwoochoi/MSD_split_for_tagging


Comparative Study on Different Thresholding Approaches 245

Input: An instance x
A label vector y that associates with x
A ranking model f that was trained on training set DTr and can
generate score s = f(x) as a vector for instance x
An instance-based metric m, assumption of m is that greater is better

Output: A threshold yt that optimizes metric m
s ← f(x);

ssorted ← sort descending(s);
Initialize M as empty list to save metric result m(y, p);

for i ← 1 to size(ssorted) do

e = ssortedi ;
// Compute bit vector p indicate the prediction after applying

threshold e to score vector s
p ← unit(s, e);
M.append(m(y, p));

end
// Find index of maximum metric result

im ← index max(M);

yt = average(ssortedim , ssortedim+1 );
return yt;

Algorithm 1. Generate labels for the dataset used to train and evaluate the
thresholding model.

50 most popular tags are kept. After this process, training set consists of 201680
instances, validation set 12605 instances and verification set 25904 instances.

For MTAT, this dataset has a problem of synonymous tags, so it
needs to be preprocessed based on3. Then, MTAT is split into train-
ing/validation/verification set with ratio 12/1/3. Similar to MSD, only track
instances that have tags in 50 most popular tags are kept.

For FMA, it has three versions - large, medium and small. Based on its small
version which consists of 8 genres, 8000 track instances, 1000 per genre, we gen-
erate a new version called FMAS2 that includes some children of these 8 genres.
The reason behind this is to support the multi-label classification problem. Con-
sequently, FMAS2 consists of 22 genres and 8000 track instances. Then, it is
splited into training/validation/verification set with ratio 8:1:1.

4.2 Optimization and Evaluation Measures

The proposed method develops multiple thresholding models, each optimizes
a certain instance-based metric. In particular, these metrics are Accuracy,
Precision, Recall and Fβ . They are defined as follows:

– Accuracyinst = TP
TP+FP+FN ,

– Precisioninst = TP
TP+FP ,

3 https://github.com/keunwoochoi/magnatagatune-list.

https://github.com/keunwoochoi/magnatagatune-list


246 K. Nguyen Cao Minh et al.

– Recallinst = TP
TP+FN ,

– F β
inst = (1+β2)PrecisioninstRecallinst

β2Precisioninst+Recallinst
= (1+β2)TP

(1+β2)TP+β2FN+FP ,

with TP , FP , TN and FN are True Positive, False Positive, True Negative
and False Negative, respectively. β is a parameter used to adjust the weight
between Precision and Recall. In our experiment, we use β = 0.5, 1, 2.

For evaluation, above metrics are used but calculated by two ways, instance-
based and label-based. Additionally, SubsetAccuracy is also calculated. More-
over, they are averaged to evaluate the performance of the thresholding model
on the whole testing set. Given the number of instances in testing set is D and
the number of labels is q, their formulas need to redefined as below:

– Accuracyinst = 1
D

∑D
i=1

TPi

TPi+FPi+FNi
,

– Precisioninst = 1
D

∑D
i=1

TPi

TPi+FPi
,

– Recallinst = 1
D

∑D
i=1

TPi

TPi+FNi
,

– F β
inst = 1

D

∑D
i=1

(1+β2)TPi

(1+β2)TPi+β2FNi+FPi
,

– Accuracylabel = 1
q

∑q
j=1

TPj+TNj

TPj+FPj+TNj+FNj
,

– Precisionlabel = 1
q

∑q
j=1

TPj

TPj+FPj
,

– Recalllabel = 1
q

∑q
j=1

TPj

TPj+FNj
,

– F β
label = 1

q

∑q
j=1

(1+β2)TPj

(1+β2)TPj+β2FNj+FPj
,

– subset acc = 1
D

∑D
i=1(pi = yi).

4.3 Experiment Result

To evaluate the performance of the thresholding model, we use the evalua-
tion metrics mentioned in Subsect. 4.2. Table 1 shows the overall performance
of five proposed approaches when trained and verified on MSD, MTAT, FMAS2
datasets. The experimented thresholding models lF 1

inst
focus on optimizing F 1

inst

and the evaluated metric is F 1
label. All five approaches give equivalent result and

much better than that of T0.5. KNN, KNNS, MLP and MLPS show the best
result, though KNNS and MLPS need more computational cost because of the
sorting step. Moreover, the bigger the dataset is, the more slowly KNN and
KNNS execute. The computational cost of transfer learning approach is much
higher than that of k-nearest neighbor ones as the size of its optimal input fea-
ture vector is 64, whereas the score vector has fewer elements. In conclusion,
multi-layer perceptron without sorting step approach is an appropriate choice
to deploy. The rest of this section focuses on analyzing the MLP thresholding
model lF 1

inst
.

Looking at Fig. 4, the thresholding model that optimizes Recallinst always
generates threshold value 0, which is as expected. With this value, recall met-
rics are always equal to 1. So, this model is useless. We just experiment it to
verify that our proposed method work well. However, the other five models
generate meaningful threshold values. The standard deviation is about 0.15.



Comparative Study on Different Thresholding Approaches 247

Table 1. F 1
label of classifiers using proposed thresholding strategies on datasets MSD,

MTAT, FMAS2. All thresholding models optimize F 1
inst metric. The gray cell indicates

that approach TL is not experimented on MSD dataset.

Classifier MSD dataset MTAT dataset FMAS2 dataset

T0.5 0.0426 0.2450 0.1385
KNN 0.1977 0.3424 0.2446
MLP 0.1912 0.3340 0.2337
KNNS 0.1948 0.3371 0.2341
MLPS 0.1914 0.3422 0.2480
TL 0.3401 0.2529

Fig. 4. Mean and standard deviation of the generated threshold from each thresholding
model lm. There are six models optimizing different instance-level measures m. They
generate threshold value yt for each instance.

The threshold values lie between 0.15 and 0.3. Referring back to Fig. 1, the
score mean of instances that are predicted to have a tag is around 0.3, whereas
the score mean of instances that are not is around 0.07. So, it is reasonable
that the generated threshold is valued from 0.15 to 0.3. The thresholding mod-
els that prioritize recall generate lower threshold values for the same reason
as lRecallinst

. lPrecisioninst
generates highest threshold, followed by lF 0.5

inst
, lF 1

inst
,

lF 2
inst

, lRecallinst
.

It is obvious that F 1
label improves when using MLP model that optimizes

F 1
inst compared to T0.5 (Fig. 6). However, for each tag, not every F 1

label improves



248 K. Nguyen Cao Minh et al.

(a) F1 (b) Precision

(c) Recall

Fig. 5. Value of F1, precision, recall on verification set of FMAS2 by genre. The classi-
fier is evaluated using the MLP thresholding model lF1

inst
that optimizes F 1

inst. Orange

columns show parents of tags that are demonstrated by right blue columns. (Color
figure online)

(Fig. 5a). Specifically, only F 1
label of rock reduces significantly; balkan, hip-hop,

instrumental and soundtrack show the same value as their corresponding base-
line, the other 16 tags improve substantially compared to the baseline. F 1

label is
the harmonic mean of Precisionlabel and Recalllabel. Based on Fig. 5c, all recall
values are increased, so the model has precision values reduced (Fig. 5b). Since
lF 1

inst
generates average threshold value less than 0.5 (Fig. 4), the classifier pro-

duces more positive predictions, which leads to the increase in recall. However,
the number of false positives increasing in some tags results in the reduction in
their corresponding precision.

Figure 6 visualizes results of many metrics on verification set of FMAS2 when
using five models optimizing Precisionlabel, F 1

inst, F 2
inst, F 0.5

inst and Accuracyinst.



Comparative Study on Different Thresholding Approaches 249

All these five perform significantly better than the baseline. Specifically, all eval-
uation results are increased except for Precisionlabel, Accuracylabel, subset acc.
The reason why Accuracylabel and subset acc decrease is because all optimiza-
tion metrics do not care about true negative, while these two have true nega-
tive in their formulas. Additionally, optimizing instance-level metrics also help
to increase result of label-level metrics. However, label-level metrics show less
improvement than instance-level ones. Precision is an exception. For baseline
T0.5, Precisionlabel is higher than Precisioninst. While for the thresholding
models, Precisionlabel is much lower than Precisioninst, even lower than base-
line’s Precisionlabel.

Fig. 6. Performance evaluation of the classifier with five different thresholding models.
Horizontal axis consists of evaluation metrics whereas vertical axis shows performance
value of each metric.

5 Conclusion

From Sect. 4, it is obvious that the classifier combined with a thresholding model
achieves better performance than that using a static threshold. Through experi-
ment, it is an appropriate choice to use multi-layer perceptron structure without
sorting step to deploy a thresholding model in real projects. The improvement
in the performance of the classifier gained from experiment is also significant.
However, there is some aspect to consider that can help the improvement even
better. A recommendation to further enhance the performance of the threshold-
ing models is described as follows. Beside determining the target threshold based
on only each individual instance, it is possible to put label-based thresholding



250 K. Nguyen Cao Minh et al.

method together with instance-based one. Consequently, for each instance, the
thresholding model generates a vector, each value in that vector demonstrates
the threshold for a label in label set. With this approach, instances are indepen-
dent of each other, as well as labels.

Acknowledgements. The authors would like to thank Faculty of Computer Science
and Engineering, HCMC University of Technology for providing computing facilities to
this study. The experiments presented in this paper are tested on the High Performance
Computing Lab (HPC Lab) of the faculty.

References

1. Bertin-Mahieux, T., et al.: The million song dataset. In: Proceedings of the 12th
International Conference on Music Information Retrieval (ISMIR 2011) (2011)

2. Chen, B., Gu, W., Hu, J.: An improved multi-label classification method and its
application to functional genomics. Int. J. Comput. Biol. Drug Des. (IJCBDD)
3(2), 133–145 (2010)

3. Choi, K., et al.: Transfer learning for music classification and regression tasks.
CoRR abs/1703.09179 (2017). arXiv:1703.09179

4. Defferrard, M., et al.: FMA: a dataset for music analysis. In: 18th International
Society for Music Information Retrieval Conference (2017). https://arxiv.org/abs/
1612.01840

5. Fan, R.-E., Lin, C.-J.: A Study on Threshold Selection for Multi-label Classifica-
tion. Department of Computer Science, National Taiwan University (2005)

6. Law, E., et al.: Evaluation of algorithms using games: the case of music tagging.
In: Proceedings of the 10th International Society for Music Information Retrieval
Conference, ISMIR 2009, pp. 387–392 (2009). ISBN 9780981353708. English (US)

7. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-
based learning. Shape, Contour and Grouping in Computer Vision. LNCS, vol.
1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
46805-6 19

8. Al-Otaibi, R., Flach, P., Kull, M.: Multi-label classification: a comparative study
on threshold selection methods (2014)

9. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014). https://doi.org/10.1109/TKDE.2013.
39. ISSN: 1041-4347

10. Zou, Q.: Finding the best classification threshold in imbalanced classification. Big
Data Res. 5, 2–8 (2016)

http://arxiv.org/abs/1703.09179
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39

	Comparative Study on Different Approaches in Optimizing Threshold for Music Auto-Tagging
	1 Introduction
	2 Related Work
	3 Different Approaches in Determining Instance-Based Threshold
	3.1 Splitting the Dataset
	3.2 Building and Training the Ranking Model
	3.3 Generating the Dataset for the Thresholding Model
	3.4 Designing the Thresholding Model

	4 Experiment
	4.1 Dataset
	4.2 Optimization and Evaluation Measures
	4.3 Experiment Result

	5 Conclusion
	References




