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Abstract. IPPC tree provides incremental properties and high performance for
mining frequent itemsets through shared-memory parallel algorithm IFIN*,
However, in the case of datasets comprising a large number of distinguishing
items but just a small percentage of frequent items, IPPC tree becomes to lose its
advantage in running time and memory for the tree construction. With a moti-
vation of reducing the execution time for the tree building, in this paper, we
propose an improved version for IPPC tree, called IPPCY, to increase the per-
formance of the tree construction. We conducted extensive experiments on both
synthetic and real datasets to evaluate IPPC* tree against IPPC tree. Besides, the
IFIN™ with the new tree is also compared to the well-known algorithm FP-
Growth and the other two state-of-the-art ones, FIN and PrePost*. The experi-
mental results show that the construction time of IPPC* tree is improved
remarkably compared to that of IPPC tree; and IFIN* is the most efficient
algorithm, especially in the case of mining at different support thresholds within
the same running session.
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1 Introduction and Related Works

Frequent itemsets mining can be briefly described as follows. Given a dataset of n
transactions D = {Ty,T»,...,T,}, the dataset contains a set of m distinct items
I={i,iz,..,in}, T;CI. A k-itemset, IS, is a set of k items (1 <k <m). Each itemset
IS possesses an attribute, support, which is the number of transactions containing IS.
The problem is featured by a support threshold ¢ which is the percent of transactions in
the whole dataset D. An itemset IS is called frequent itemset iff IS.support > & x n. The
problem is to discover all frequent itemsets existing in D.

This problem was started up by Agrawal & Srikant with algorithm Apriori [1]. This
algorithm generates candidate (k + 1)-itemsets from frequent k-itemsets at the (k + 1)™
pass and then scans dataset to check whether a candidate (k + 1)-itemsets is a frequent
one. Many previous works were inspired by this algorithm. Algorithm Partition [7]
aims at reducing I/O cost by dividing a dataset into non-overlapping and memory-
fitting partitions which are sequentially scanned in two phases. In the first phase, local
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candidate itemsets are generated for each partition, and then they are checked in the
second one. DCP [8] enhances Apriori by incorporating two dataset pruning techniques
introduced in DHP [9] and using direct counting method for storing candidate itemsets
and counting their support. In general, Apriori-like methods suffer from two draw-
backs: a deluge of generated candidate itemsets and/or I/O overhead caused by
repeatedly scanning dataset.

Two other approaches, which are more efficient than Apriori-like methods, are also
proposed to solve the problem: (1) frequent pattern growth adopting divide-and-
conquer with FP tree structure and FP-Growth [2], and (2) vertical data format strategy
in Eclat [10]. FP-Growth and algorithms based on it such as [11, 12] are efficient
solutions since unlike Apriori, they avoid many times of scanning dataset and
generation-and-test. However, they become less efficient when datasets are sparse.
While algorithms based on FP-Growth and Apriori use a horizontal data format; Eclat
and some other algorithms [7, 13, 14] apply vertical data format, in which each item is
associated with a set of transaction identifiers, Tids, containing the item. This approach
avoids scanning dataset repeatedly, but a huge memory overhead is expensed for sets of
Tids when dataset becomes large and/or dense. Recently, two remarkably efficient
algorithms are introduced: FIN [3] with POC tree and PrePost™ [4] with PPC tree.
These two structures are prefix trees and similar to FP tree, but the two mining algo-
rithms use additional data structures, called Nodeset and N-list respectively, to sig-
nificantly improve mining speed.

Discovering frequent itemsets in a large dataset is an important problem in data
mining. In Big Data era, this mining model, as well as other ones, has been being
challenged by very large volume and high velocity of datasets which are fast accu-
mulated over time. As a solution in our previous work [15] to deal with this problem,
we proposed a tree structure, named IPPC (Incremental Pre-Post-Order Coding), which
supports incremental tree construction; and an algorithm for incrementally mining
frequent itemsets, IFIN (Incremental Frequent Itemsets Nodesets). For one our next
work [16], we introduced a shared-memory parallel version of IFIN, named IFIN*, to
enhance performance by exhausting as much as possible the computational power of
commodity processors which are equipped with many physical computational units.

Through experiments, algorithm IFIN* has demonstrated its superior performance
compared to the well-known algorithm FP-Growth [2], and other two state-of-the-art
ones FIN [3] and PrePost* [4]. However, in case of datasets comprising a large number
of distinct items but just a small percentage of frequent items for a certain support
threshold, we investigates that IPPC tree becomes to lose its advantage in running time
and memory for its construction compared to other trees such as FP, POC, and PPC of
algorithms FP-Growth, FIN, and PrePost™. The reason is that these trees use just
frequent items for their tree structures while the IPPC tree uses all items in datasets for



Higher Performance IPPC* Tree for Parallel Incremental Frequent Itemsets Mining 129

its structure to be compensated with the abilities of incremental tree construction and
mining. Table 1 reports the detail of construction time of the trees on a synthetic
dataset and a real one, named Kosarak, at support threshold € = 0.1% and 0.2%
respectively. Note that, the construction of IPPC tree does not depend on the support
thresholds.

Table 1. Tree construction time on datasets.

Tree construction time (Synthetic dataset of 1200k
transactions, ¢ = 0.1%)

200k | 400k | 600k |800k | 1000k | 1200k
IPPC tree 21s|3s 32s |41s |[43s |5.1s
FP tree 34s|57s |87s |[10s |129s|16.2s
POC/PPC trees |2.5s|45s |6.7s |[9.7s [1195s|14.7 s
Tree construction time (Kosarak dataset of 990002
transactions, ¢ = 0.2%)
200k | 400k | 600k | 800k | 1000k
IPPC tree 725104 s|11.4s|1395s|14.7 s
FP tree 33s/62s |92s 1268|153 s
POC/PPC trees | 2.1 s[3.7s |51s [6.6s |75s

The synthetic dataset at € = 0.1% includes 843 frequent items, 90% of all 932
items. In this case, the construction time of IPPC tree is superior to that of the other
trees, approximate a ratio 1:3 to the time of POC/PPC trees at full size of 1200k
transactions. In contrast, for Kosarak dataset at € = 0.2%, there are just 568 frequent
items, 1.37% in the total of 41270 items. IPPC tree becomes to lose its advantage since
extra computational overhead for a very large proportion of infrequent items, and its
construction time is twice the time of POC/PPC trees at the full size of Kosarak dataset.
Hence, the aim of this paper is to reduce the running time of the IPPC tree construction.
Through experiments on these two datasets, the IPPC" tree, the new version of IPPC
tree, achieves a remarkable improvement of the tree building performance compared to
IPPC tree and contributes better running time for the mining algorithm IFIN* as well.
Besides, the IFIN™ with the new tree is also compared with the well-known algorithm
FP-Growth and the other two state-of-the-art ones, FIN and PrePost*. The experimental
results show that IFIN™ is the most efficient algorithm, especially in the cases of mining
at different support thresholds within the same running session.
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Table 2. Example transaction dataset

ID | Items in transactions
1 |b,e,d f c

2 |d,c,b, g f,h

3 |f, a,c

4 |a,b,d f,c, h

5 |b,d, ¢

The rest of the paper is organized as follows. Section 2 will mention some essential
concepts of IPPC tree structure and then introduce the improved solution. Section 3
presents experiments; and finally, conclusions are given in Sect. 4.

2 Improved Solution

In this section, we propose a solution to reduce the construction time for the IPPC tree.
More detail about the IPPC tree can be found in [16]. For convenience in reference and
concise content, just the fundamental concepts and pseudo code of IPPC tree are
presented; and based on that the IPPC* tree will be introduced.

2.1 IPPC Tree

IPPC tree is a compact and information-lossless structure of the whole items of all
transactions in a given dataset. Its construction needs only one data scanning and does
not require a given support threshold. Local order of items in a path of nodes from the
root to a leaf is flexible and can be changed to improve compression. Each node in the
tree is identified by a pair of codes: pre-order and post-order. With these character-
istics, a built IPPC tree from a dataset D can be mined at different support thresholds
and reused to build up a new IPPC tree corresponding to a new dataset D' = D + AD.

To demonstrate the concept of IPPC tree building process, the Fig. 1 records
transaction by transaction in Table 2 inserted into an empty IPPC tree. Initially, the tree
has only the root node, and transaction 1(b, e, d, f, c¢) is inserted as it is in Fig. 1(a). The
Fig. 1(b) is of the tree after transaction 2 (d, c, b, g, f, h) is added. The item b in
transaction 2 is merged with node b in the tree. Although transaction 2 does not contain
item e, but its common items d, f, and ¢ can be merged with the corresponding nodes.
Item d is found common, so it is merged with node d after node d is swapped' with
node e to guarantee the Property 2. Similarly, items f and ¢ are merged with node f and

! Swapping two nodes is simply exchanging one’s item name to that of the other.
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c respectively; and the remaining items g and & are inserted as a child branch of node
c. In Fig. 1(c), transaction 3 (f; a, c) is processed. Common item fis found that can be
merged with node f, so node fis swapped with node b. Item c is also a common one,
but it is not able to be merged with node ¢ as node d does not satisfy the Descendant
Swapping condition with node c. Then the items a and ¢ are added as a branch from
node f. When transaction 4 (a, b, d, f, ¢, h) is added in Fig. 1(d), common items f, d, b,
and ¢ are merged straightforwardly with corresponding nodes f, d, b, and c. The
remaining items a and / are then inserted into the subtree having root node c. The item
h is found common with node /4 in the second branch. Node % and item #, therefore, are
merged together after node & is swapped with node g. The last item a is then inserted as
a new child branch from node 4. Insertion of transaction 5 (b, d, c) is depicted in Fig. 1
(e). All items in transaction 5 are common, but they cannot be merged with nodes b, d,
and c as node f does not guarantee the Child Swapping condition. Thus, transaction 5 is
added as a new child branch of the root node.

73 F4
|
[@2] [al] [a3][al] e[ a3] [al] [a1]13.12)
|
[62] [c1] [83][el] @6 63| [l | [ a1 J4.1D)
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Fig. 1. An illustration for constructing an IPPC tree on example transaction dataset

After the dataset has been processed, each node in the IPPC tree is assigned a pair
of sequent numbers (pre-order, post-order) by scanning the tree with pre-order and
post-order traversals through procedure AssignPrePostOrder. For an example, node
(4, 6) is identified by pre-order = 4 and post-order = 6, and it registers item b with
support = 3.
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Algorithm 1: BuildIPPCTree

Input: Dataset D, root node R

Output: An IPPC tree with root R, item list £

For Each transaction T € D
Update items and their supports in L from items in T;
InsertTransaction (T, R);

End For

AssignPrePostOrder (R) ;

g w N -

Procedure InsertTransaction (Transaction T, Node R)

1 subNode € R; notMerged;

2 While (T # Q)

3 notMerged € true;

4. For Each child node N of subNode

5 If(N.item-name € T)

6 notMerged & false; N.support++;

7 subNode € N; T €« (T \ N.item-name); break;
8

. End If
9. End For
10. If (notMerged) break;

11. End While

12. If(T =@) Return;

13. For Each child node N of subNode

14. If (MergeDescendants (T, N)) Return;

15. End For

16. Insert T as a new branch from subNode (added nodes are ini-
tialized at 1 for their supports);

Function MergeDescendants (Transaction T, Node N)

1. subNode € N; mrgNode €« N; merged &« false;

2. While(subNode satisfies the Child Swapping condition)

3. descendant € subNode.child;

4. If (descendant.item-name € T)

5. T €& (T \descendant.item—-name); merged €& true;

6. Exchange item names of mrgNode and descendant;

7. mrgNode. support++; mrgNode €& mrgNode.child;

8. End If

9. subNode € descendant;

10. End While

11. If(merged) Insert T as a new branch from mrgNode.parent
(added nodes are initialized at 1 for their supports);

12. Return merged;

Procedure AssignPrePostOrder (Node R)
// PreOrder and PostOrder are initialized at 1.
1. R.pre-order & PreOrder; PreOrder++;
For Each child node N of R Do AssignPrePostCode (N) ;
3. R.post-order €& PostOrder; PostOrder++;

\S]
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2.2 IPPC* Tree

The IPPC tree comprises the whole items of all transactions of a given dataset,
regardless of the support threshold. Therefore, in case of a dataset possessing a large
number of distinct items, the number of child nodes of every single node in the tree
becomes larger. The more distinguishing items, the bigger the number of child nodes of
the tree nodes will be. Before an item in a transaction is merged with a tree node or
inserted into the tree as a new node, a sequence search for a child node (of the current
parent node) having the same item name as the item will be done. Consequently, these
factors have caused more computational overhead to insert a new transaction into the
current IPPC tree.

To improve the performance of the transaction insertion, we replace the sequence
search with the binary search based on the item name. The replacement requires
maintaining the item name based order of child nodes of every single node in IPPC
tree. The for-loop (InsertTransaction procedure, from lines 4 to 9) is changed from
sequence traversal on lists of child nodes to sequence traversal on items of transactions.
Since the cardinalities of child node lists are very much larger than the numbers of
items in transactions, this changing obviously improves the performance. The more
difference between the two kinds of cardinality, the more performance is enhanced.
However, the changing does not guarantee the items with higher support are accu-
mulated into the IPPC tree before other items with lower support. This drives the
reduction of compression for higher-support items; and therefore, the nodesets [15, 16]
of these items become longer that may decrease the performance in mining process of
algorithm IFIN*. To avoid this issue, the major items (refer the definition below) in
transactions are extracted and sorted in the descending order of their supports and then
combined, as the first part, with the remaining items of the transactions.

Definition (Major Items): Major items are items which their supports are greater than
or equal to a given threshold, called major threshold «. As usual, « is greater than the
support thresholds e.

Based on the above concepts, the pseudocode in Subsect. 2.2 is redesigned for the
IPPC" tree construction as follows.
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Algorithm 2: BuildIPPC'Tree

Input: Dataset D, root node R, major item list MI, threshold a
Output: An IPPC* tree with root R, item list £, MI

1.

Isy

0 J o U1

If(MI = @) Sample on dataset D to achieve major item list

MI based on the major threshold a;

For Each transaction T € D
Update items and their supports in L from items in T;
Based on MI, major items in T are extracted and sorted in
descending order of their supports, then combined as the
first part with the rest of T;
InsertTransaction (7T, R);

End For

Update MI based on the item list L;

AssignPrePostOrder (R) ;

Procedure InsertTransaction (Transaction T, Node R)

O 0 J o U W -

parentNode € R;

While ( (mergedNode = Merge (T, parentNode)) # null)
parentNode = mergedNode;

End While

If(T = @) Return;

For Each child node N of parentNode
If (MergeDescendants (7, N)) Return;

End For

Insert T as a new branch from parentNode (added nodes are

initialized at 1 for their supports);

Function Merge (Transaction T, Node N)

1.
2.
3.

= O 0 ~Jo U

mergedNode € null;
For Each item name I of T
mergedNode € binary search for the child node in child
list of N which its item name equals I;
If (mergedNode # null)
mergedNode. support++;

T &€ (T\ I);
Return mergedNode;
End If
End For

Return null;
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Function MergeDescendants (Transaction T, Node N)

1. subNode € N; mrgNode & N; merged €« false;

2. While (subNode satisfies the Child Swapping condition)

3. descendant € subNode.child;

4. If (descendant.item-name € T)

5. T & (T \descendant.item-name); merged €& true;

6. Exchange item names of mrgNode and descendant;

7. mrgNode. support++; mrgNode €& mrgNode.child;

8. End If

9. subNode € descendant;

10. End While

11. If(merged)

12. Correct the position of node N in the child node list of
its parent node;

13. Insert T as a new branch from mrgNode.parent (added nodes
are initialized at 1 for their supports);

14. End If

15. Return merged;

The IPPC* tree construction needs a major item list to preprocess transactions (line
4 of BuildIPPC*Tree) before the transactions are inserted into the tree. The IPPC* tree
construction is not aware of the major item list of the initial dataset. Therefore, it can be
achieved by sampling (or even a full scan) on the dataset. The major item list MI of a
dataset D is used as acknowledge to incrementally build up the tree (corresponding to
dataset D) with a new additional dataset A D, and then MI is updated based on the item
list £ of the dataset D + AD. The procedure AssignPrePostOrder is the same as the
one in Subsect. 2.1.

To insert a transaction into the tree, the function Merge is executed first to find and
merged the first items of the transaction with the tree nodes, the binary search is
employed in this process. If there are still items in the transaction, the function
MergeDescendants is done to merge these items with descendant nodes. When at least
a merger between an item and a descendant node happens in the function
MergeDescendants, this means the item name of node N is changed that may cause to
lose the right order of child node list of N’s parent node. Therefore, an order correction
is done at line 12. Finally, the remaining items in the transaction (if possible) is inserted
as a new branch into the tree at lines 13 and 9 in function MergeDescendants and
procedure InsertTransaction respectively.

After the tree construction has completed, a mining process with the algorithm
IFIN + [16] on the built tree will be executed.

3 Experiments

All experiments were conducted on a 1.86 GHz Intel Core (MT) i3-4030U processor,
and 4 GB memory computer with Window 8.1 operating system. To evaluate algo-
rithms, we used the Market-Basket Synthetic Data Generator [5] based on the IBM
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Quest to generate a synthetic dataset, and a real dataset named Kosarak [6], online news
portal click-stream data. The properties of the datasets are shown in Table 3.

Table 3. The datasets’ properties

No. of Max Average No. of total | No. of frequent items at
transactions | length | length distinct thresholds
items
0.001 |0.002 |0.006
Synthetic 1200000 32 10 932 843 774 525
dataset
Kosarak 990002 2498 8.1 41270 1260 568 116

All the algorithms were implemented in Java. Experimental values of running time
and used memory are the average values from three corresponding individual ones. In
our previous works [15, 16], to guarantee available memory of 2 GB used for Java
Heap, we set value “-Xmx2G” for _JAVA_OPTIONS, a Windows environment
variable. However, we realize that this causes the Java garbage collector to run many
times of full memory collection; and consequently, the total running time includes a
significant percentage, approximate 45%, for the garbage collection. To avoid this in
the current work, we set the value “-Xms2G -Xmx2G” for _JAVA_OPTIONS instead,
and result in the running time for garbage collection is reduced to 6% which reflects
more exactly the algorithms’ performance.

For emulating scenarios of incremental mining, the synthetic dataset was divided
into six equal parts, 200 thousand transactions for each one, and so on for Kosarak
dataset with five parts in which the last one contains just 190002 transactions. The
experiments start mining on the first part and then part by part from the second one is
accumulated and mined. IFIN* can perform following three scenarios:

e S1 (Incremental in Different Sessions): An IPPC/IPPC™ tree corresponding with a
dataset had been constructed, mined and stored in a running session. In the fol-
lowing sessions, the old tree is loaded and then built up with a new additional
dataset.

e S2 (Incremental in the Same Session): An IPPC/IPPC™ tree corresponding with a
dataset has been constructed and mined, and then it is built up with a new additional
dataset in the same session.

e S3 (Just Loading Tree): A stored IPPC/IPPC* tree in a previous session is loaded
and mined in the following sessions.

Each execution scenario can be performed with different support thresholds in the
same running session. The processor in our computer possesses two physical computa-
tional units, and we found that the performance achieved its best with two threads in
parallel version IFIN*, We set the major threshold o = 0.02 for the construction of [IPPC*
tree. The experiments will be presented in three parts: comparisons between the two trees
IPPC and IPPC* with the inclusion of IFIN¥, and algorithm IFIN* with the IPPC™ tree
against algorithms FP-Growth, FIN, and PrePost™ on each of the two datasets.
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3.1 Comparisons Between IPPC and IPPC" Trees

In this subsection, we present comparisons between two versions of the algorithm
IFIN* mining on IPPC and IPPC" trees with the synthetic and Kosarak datasets, based
on the running time of the four partial processing phases.

Table 4 reports the running time in seconds of the execution phases of the two
version of IFIN* on the synthetic dataset in data accumulation steps from 200k to
1200k transactions. As shown in Table 3, the number of distinct items in this dataset is
small that the efficiency improvement of the tree construction with binary search is not
enough to compensate the computational overhead of extracting and sorting the major
items in each transaction. This causes the tree construction time to increase, but the
amounts are not considerable, 0.3 s in average. Almost there are no performance
differences in the second phase, the Frequent 2-itemset Generation. The extracting and
sorting the major items in each transaction causes appearances of these items to tend to
be lesser and nearer to the root node, that makes the lengths of nodesets [15, 16] of
major items reduce. This explains why the running time is decreased in the third and
the fourth phases, 0.7 s and 0.2 s in average respectively. Consequently, the total
efficiency is improved, around 1 s for steps of data accumulation from 600k to 1200k
transactions.

Table 4. Running time of IFIN" mining on the IPPC/IPPC* trees with the synthetic dataset

Running time in tree construction phase (in S1 Scenario)

200k | 400k | 600k | 800k | 1000k | 1200k
IPPC tree 21s|3s |32s |41s [43s [5.1s
IPPC”" tree 28s(32s|35s [42s |45s |55
Running time in frequent 2-itemset generation phase (¢ = 0.001)

200k | 400k | 600k | 800k | 1000k | 1200k
IFIN* (IPPC tree) [0.4s/0.5s5|[08s [09s |Is 1.4s
IFIN* (IPPC* tree) [0.3s/0.5s|0.8s [09s |Is 14s
Running time in nodeset generation phase (¢ = 0.001)

200k | 400k | 600k | 800k | 1000k | 1200k
IFIN* (IPPC tree) |1.4s|245s|37s (43s |65 6.3 s
IFIN* (IPPC* tree) | 1.1 s{2s [28s [3.8s [48s |[54s
Running time in discover frequent k-itemsets phase (¢ = 0.001)

200k | 400k | 600k | 800k | 1000k | 1200k
IFIN* (IPPC tree) |1.6s/23s|3.1s |46s |5.0s |6.1s
IFIN* (JIPPC* tree) | 1.5s[23s(29s |45 47s |58s
Total running time (in S3 Scenario, ¢ = 0.001)

200k | 400k | 600k | 800k | 1000k | 1200k
IFIN* (IPPC tree) |5.7s|85s | 11.6s|14.8s|17s |20s
IFIN* (IPPC* tree) 6 s |84 s|10.7s|13.8s|15.8s /19 s
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Table 5 presents the running time of the four processing phases for the two version
of IFIN™ on Kosarak dataset in data accumulation steps from 200k to 990002 trans-
actions. The Kosarak dataset includes a large number of distinct items as reported in
Table 3. Therefore, the IPPC* construction performance based on the binary search is
improved significantly, much far the computational overhead for extracting and sorting
the major items in each transaction. As a result, the tree construction time is reduced
considerably from 29% to 41% in the sequence of data accumulation steps. While the
running time in the second phase increases, the running time in the third and the fourth
ones reduce. In general, the performance of the last three phases between the two
versions is not much difference, except the accumulation step of 1000k transactions.
For the total effect, the running time is reduced approximately 25% for all steps of data
accumulation of Kosarak dataset.

Table 5. Running time of IFIN* mining on the IPPC/IPPC™ trees with Kosarak dataset

Running time in tree construction phase (in S1 Scenario)
200k | 400k | 600k |800k | 1000k

IPPC tree 72510455 11451395147 s
IPPC* tree 51s(68s |72s [83s |87s
Running time in frequent 2-itemset generation phase

(¢ = 0.002)

200k | 400k | 600k |800k | 1000k
IFIN* (IPPC tree) 0.6s|1.1s |[1.7s [23s |25s
IFIN* (IPPC* tree) [0.6 s |14s |25 26s [32s
Running time in nodeset generation phase (¢ = 0.002)
200k | 400k | 600k |800k | 1000k
IFIN* (IPPC tree) [0.2s]03s [0.5s [06s |0.8s
IFIN* (IPPC”" tree) |0.2s|0.3s [04s [05s [0.7s
Running time in discover frequent k-itemsets phase
(e = 0.002)
200k | 400k | 600k |800k | 1000k
IFIN* IPPC tree) |1s |2.4s |34s |48s [6.7s
IFIN* IPPC* tree) |1s |22s [33s |45s |54s
Total running time (in S3 Scenario, ¢ = 0.002)
200k | 400k | 600k |800k | 1000k
IFIN* (IPPC tree) (9.2s|14.7s|17.4s|22.15/253 s
IFIN* (IPPC* tree) | 7.1s|11s |1325s[16.55s|18.6s

In an overview of experiments on both datasets, the performance of IFIN* using
IPPC™ tree is improved compared to that of the version using IPPC tree. The larger the
number of distinguishing items and transactions in a dataset; the more the running time
is saved for the tree construction beside the minor efficient improvement in the mining
process.
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3.2 Comparisons with Other Algorithms on the Synthetic Dataset

In this subsection, we benchmark the running time and the peak consumed memory of
IFIN* using IPPC* tree against that of the three algorithms FP-Growth, FIN, and
PrePost* on the synthetic dataset. In that, the algorithm IFIN™ experiments with all its
possible execution scenarios S1, S2, and S3 as referred.
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Figures 2 and 3 sequentially demonstrate the running time and the peak memory of
the algorithms in steps of data accumulation at the support threshold ¢ = 0.1%. For all
algorithms, both running time and peak memory increase linearly when the dataset is
accumulated. While FP-Growth is the slowest algorithm, it uses memory more efficient
than FIN and PrePost™. Algorithm PrePost™ consumes the most memory, but it runs
faster than FP-Growth and FIN. Algorithm IFIN™ is the most efficient for the running
time. For data accumulation steps up to 600k transactions, IFIN* uses memory more
efficient than FP-Growth; and for remaining steps, FP-Growth takes this advantage, but
not considerable. The slopes of the running time lines of IFIN™ are the same and lower
than that of the three remaining algorithms. Hence, follow the data accumulation steps,
the execution time of IFIN™ becomes more dominant, lesser than a haft, compared to
the remaining algorithms’. Among the three execution scenarios of IFIN™, the running
time of S2 and S3 is almost the same and better than S1’s but not much difference.

Beside the high performance of mining phases in algorithm IFIN*, one more reason
can be found out in Table 6 which reports the construction time of the four trees. Note
that the IPPC* tree construction does not depend on support threshold, but the other



140 V. Q. P. Huynh and J. Kiing

three trees. The POC, PPC trees of algorithms FIN and PrePost* are almost the same,
so their running time of the tree building is nearly equal. The IPPC™ tree construction of
IFIN™ achieves the best performance, much better than the three algorithms’. Especially
in scenario S3, the time ratios are approximately 1:7 and 1:6 compared to FP tree and
PPC tree respectively. At the same dataset size, building tree in S3 is faster than that in
S1, approximate 2.6 s in average; since the execution scenario S1 must build up the
loaded tree with a new additional dataset of 200k transactions. This also reveals that
constructing an IPPC" tree by loading its stored data is much efficient than building the
same tree from the same dataset.

Table 6. The tree construction time of the algorithms for the synthetic dataset

200k | 400k | 600k | 800k | 1000k | 1200k
IPPC* tree (Scenario S1) 2.8 3.2 |[3.5 42 | 4.5 5.5
IPPC" tree (Scenario S3) 0.5 0.7 [1.2 1.6 | 2.1 2.2
FP tree (¢ = 0.001) 34 |57 (87 |10 129 |16.2
POC/PPC (¢ = 0.001) 2.5 |45 |6.7 9.7 1119 |14.7
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In Figs. 4 and 5, the running time and peak used memory are visualized for the
algorithms mining on the synthetic dataset of 1.2 million transactions with different
support thresholds ¢. Start at ¢ = 0.6%, IFIN™ can perform one of two scenarios S1 or
S3 that their two running time values are shown in Fig. 4. For other ¢ values, IFIN™ just
run its mining tasks since the built tree is completely reused. Furthermore, only a
portion of its mining is performed. Consequently, with following values of ¢ < 0.6%,
the running time of IFIN* takes an overwhelming dominance against that of the three
algorithms. The memory used by IFIN* increases slowly follow the steps of support
thresholds, and approximates the memory used by FP-Growth for threshold values
from 0.4 to 0.1. The algorithm FP-Growth uses memory more efficient than the two
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algorithms FIN and PrePost™. However, its running time is considerably longer than
that of FIN and PrePost™. Algorithm PrePost* run faster than FIN and FP-Growth, but it
uses the most memory.

3.3 Comparisons with Other Algorithms on Kosarak Dataset

Similar to the previous subsection, this one presents the running time and the used
memory of the four algorithms for Kosarak dataset.
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Figures 6 and 7 respectively visualize the algorithms’ running time and peak used
memory in data accumulation steps at the support threshold ¢ = 0.2%. Like experi-
ments on the synthetic dataset, for all algorithms, the running time and used memory
increase linearly when the dataset is accumulated. Among the three algorithms FP-
Growth, FIN and PrePost", the orders in the memory efficiency and the performance
are similar to that in case of the synthetic dataset. FP-Growth still is the slowest
algorithm, but it uses memory more efficient than PrePost* and FIN. While PrePost*
runs remarkably faster than FP-Growth and FIN, it becomes to consume more memory
than FP-Growth and FIN follow the data accumulation steps.

Shown in Fig. 6, the execution time of IFIN" is approximate that of PrePost™ and
FIN algorithms in the first two data accumulation steps; but for the following ones,
IFIN* becomes to run faster than the others. In Fig. 7, IFIN* uses memory as good as
the others at the dataset of 200k transactions. However, its consumed memory increases
faster than the other algorithms’ and is the most for larger sizes, approximate the
PrePost™’s memory at full size of Kosarak dataset in execution scenarios S1.
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Table 7. Tree construction time of the algorithms for Kosarak dataset

200k | 400k | 600k | 800k | 1000k
IPPC" tree (Scenario S1) |5.1s|6.8s|72s/83s |87s
IPPC" tree (Scenario S3)|0.5s/0.7s|1.3s|1.5s (225
FP tree (¢ = 0.002) 33s/62s/92s 1265|153 s
POC/PPC (¢ = 0.002) 21s[37s|51s|66s |75s

As we knew that the IPPC* tree of IFIN™ is a compact structure of all items in a
dataset, but the trees of the other three algorithms depend on the support threshold and
contain only frequent items in a dataset. Looking into Table 3 for the reason of the
memory used by IFIN, the synthetic dataset comprises a considerable percentage of
frequent items, [90%—-56%] for the support threshold ¢ € [0.001-0.006]; but just a very
small quantity, [1.38%—0.28%] for ¢ € [0.002-0.006], is for frequent items in Kosarak
dataset. Therefore, in the case of Kosarak dataset, the used memory to maintain the
IPPC" tree of IFIN* is much larger than that of the trees of FP-Growth, FIN and
PrePost™; while the affection of this disadvantage to IFIN™ is not considerable in the
synthetic dataset case.

Beside the memory, the computational overhead to construct the IPPC* tree is also
affected. Table 7 reports the running time for building the trees of algorithms on
Kosarak dataset. The tree constructions of FIN and PrePost” on this dataset are very
efficient and take only 7.5 s for the full size of Kosarak dataset. The gap in tree
construction time between IPPC" tree (S1 scenario) and the tree of FIN/PrePost™ is
gradually reduced follow data accumulation steps. The tree construction in S3, just by
loading the built tree, takes the least time and once again asserts its very high
performance.

Figures 8 and 9 depict the running time and the peak memory of the algorithms
mining on the full Kosarak dataset with different support thresholds e. Start at
¢ = 0.6%, IFIN" can perform one of two scenarios S1 or S3 that their two running time
values are shown in Fig. 8. For other ¢ values, IFIN™ just runs some portions of its
mining tasks and reuses completely the built tree. Therefore, the same results as the
corresponding experiments on the synthetic dataset in Fig. 4, the running time of IFIN™
takes an overwhelming advantage against that of the three remaining algorithms. IFIN™
consumes the most memory since it needs more memory to maintain IPPC* tree. FP-
Growth uses memory less efficient than the two algorithms FIN and PrePost* for
& > 0.3%. However, its consumed memory becomes lesser than other algorithms’ for
£< 0.3%. FP-Growth’s running time is considerably longer than that of FIN and
PrePost™. Algorithm PrePost” runs faster than FIN, but this dominance of PrePost™ is
not significant.
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4 Conclusions

In this paper, we proposed an improved version of the IPPC tree, called IPPCY, to
enhance the performance of the tree construction. Beside the minor improvement in
mining performance, the experiments show that with a datasets comprising a small
number of distinct items, the tree construction performance of the two versions are
approximate to each other; but in case of a dataset with a large number of distin-
guishing items, the tree construction performance of IPPC* tree is improved remark-
ably compared to that of IPPC tree. This contributes to significantly reducing the
disadvantage in the tree construction phase of algorithm IFIN* compared to other
algorithms such as FIN, PrePost™ in cases of datasets with a huge number of distinct
items but just a small percentage of frequent items.

Experiments also demonstrated that IFIN™ is superior in performance compared to
the three remaining algorithms, especially in mining circumstances when its incre-
mental characters take effect. This provides IFIN* an efficient way to deal with the
high-velocity property of Big Data and the data mining practices which often try with
different threshold values.

In case of a dataset including a huge number of distinct items but just a small
percentage of frequent items, IFIN* algorithm needs more memory than the other
algorithms to retain its tree structure of all items in the dataset. However, when mining
with small enough support thresholds, the gap in memory overhead between IFIN™ and
the other algorithms will be reduced; and when a dataset is more and more accumu-
lated, all algorithms must face with the problem of memory scalability besides the
running time. Therefore, as a potential approach, a distributed parallelization solution
for IFIN™ will be proposed to better confront with these problems of Big Data.
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