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Abstract. F.P. conditionalization (frequentist partial conditionaliza-
tion) allows for combining partial knowledge in arbitrary many dimen-
sions and without any restrictions on events such as independence or
partitioning. In this talk, we provide a primer to F.P. conditionalization
and its most important results. As an example, we proof that Jeffrey
conditionalization is an instance of F.P. conditionalization for the spe-
cial case that events form a partition. Also, we discuss the logics and the
data science perspective on the matter.
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1 A Primer on F.P. Conditionalization

In [1] we have introduced F.P.conditionalization (frequentist partial condition-
alization), which allows for conditionalization on partially known events. An
F.P. conditionalization P(A | B1 ≡ b1, . . . , Bm ≡ bm) is the probability of an
event A that is conditional on a list of event-probability specifications B1 ≡ b1
through Bm ≡ bm. A specification pair B ≡ b12 stands for the assumption that
the probability of B has somehow changed from a previously given, a priori
probability P(B) into a new, a posteriori probability b. Consequently, we expect
that P(B | B ≡ b) = b as well as P(A | B ≡P(B)) = P(A). Similarly, we expect
that classical conditional probability becomes a special case of F.P. conditional-
ization, i.e., that P(A|B1 · · · Bm) equals P(A |B1 ≡ 100%, . . . , Bm ≡ 100%) and,
similarly, P(A|B1 · · · Bm) equals P(A | B1 ≡ 0%, . . . , Bm ≡ 0%).

But what is the value of P(A|B1≡b1, . . . , Bm ≡bm) in general? We have given
a formal, frequentist semantics to it. We think of conditionalization as taking
1 Alternative notations for B ≡ b such as P(B)� b or P(B) := b might be considered

more intuitive. We have chosen the concrete notation B ≡ b for the sake of brevity
and readability.

2 We also use PB1≡b1,...,Bm≡bm(A) as notation for P(A | B1 ≡b1,..., Bm ≡bm).
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place in chains of repeated experiments, so-called probability testbeds, of suffi-
cient lengths. As a first step, we introduce the notion of F.P. conditionalization
bounded by n which is denoted by Pn(A | B1 ≡ b1, . . . , Bm ≡ bm). We consider
repeated experiments of such lengths n, in which statements of the form Bi ≡ bi

make sense frequentistically, i.e., the probability bi can be interpreted as the
frequency of Bi and can potentially be observed. Then we reduce the notion of
partial conditionalization to the notion of classical conditional probability, i.e.,
classical conditional expected value to be more precise. We consider the expected
value of the frequency of A, i.e., the average occurrence of A, conditional on the
event that the frequencies of events Bi adhere to the new probabilities bi. Now,
we can speak of the bis as frequencies. Next, we define (general/unbounded)
F.P. conditionalization by bounded F.P. conditionalization in the limit.

Definition 1 (Bounded F.P. Conditionalization). Given an i.i.d.sequence
(independent and identically distributed sequence) of multivariate characteristic
random variables (〈A,B1,..., Bm〉(j))j∈N, a list of rational numbers b1,..., bm and
a bound n ∈ N such that 0� bi �1 and nbi ∈N for all bi in b1,..., bm. We define
the probability of A conditional on B1 ≡ b1 through Bm ≡ bm bounded by n,
which is denoted by Pn(A | B1≡b1,..., Bm ≡bm), as follows:

Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) = E(An | B1
n =b1, . . . , Bm

n =bm) (1)

Definition 2 (F.P. Conditionalization). Given an i.i.d.sequence of multi-
variate characteristic random variables (〈A,B1,..., Bm〉(j))j∈N and a list of ratio-
nal numbers b = b1,..., bm such that 0 � bi � 1 for all bi in b and lcd(b) denotes
the smallest n ∈ N such that nbi ∈ N for all bi in b = b1,..., bm.3 We define
the probability of A conditional on B1 ≡ b1 through Bm ≡ bm, denoted by
P(A | B1≡b1,..., Bm ≡bm), as follows:

P(A | B1≡b1, . . . , Bm ≡bm) = lim
k→∞

P k·lcd(b)(A | B1≡b1, . . . , Bm ≡bm) (2)

As a first result, we observe that bounded F.P. conditionalization can be
expressed more compact, without conditional expectation, merely in terms of
conditional probability, i.e., we have that the following holds for any bounded
F.P. conditionalization:

Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) = P(A | B1
n =b1, . . . , Bm

n =bm) (3)

In most proofs and argumentations we use the more convenient form in
Eq. (3) instead of the more intuitive form in Definition 1.

In general, an F.P. conditionalization P(A | B1≡b1, . . . , Bm ≡bm) is different
from all of its finite approximations of the form Pn(A | B1 ≡ b1, . . . , Bm ≡ bm).
In some interesting special cases, we have that the F.P. conditionalizations are
equal to all of their finite approximations; i.e., it is the case if the condition
events B1 ≡ b1 through Bm ≡ bm are independent or if the condition events
form a partition.
3 lcd(b) is the least common denominator of b = b1,..., bm.
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The case in which the condition events form a partition is particularly inter-
esting. This is so, because this case makes Jeffrey conditionalization [2–4], value-
wise, an instance of F.P. conditionalization as we will discuss further in Sect. 2.
In case the conditions events B1 ≡ b1 through Bm ≡ bm form a partition, we
have that the value of P(A | B1 ≡ b1, . . . , Bm ≡ bm) is a weighted sum of condi-
tional probabilities bi ·P(A|Bi), compare with Eq. (5). This is somehow neat and
intuitive. Take the simple case of an F.P. conditionalization P(A|B ≡ b) over a
single event B. Such an F.P. conditionalization can be represented differently as
an F.P. conditionalization over two partioning events B1 = B and B2 = B, i.e.,
P(A | B≡b , B≡1 − b). Therefore we have that

P(A|B≡b) = b · P(A|B) + (1 − b) · P(A|B) (4)

Equation 4 is highly intuitive: it feels natural that the direct conditional probabil-
ity P (A|B) should be somehow (proportionally) lowered by the new probability b
of event B, similarly, we should not forget that the event B can also appear, i.e.,
with probability 1 − b and should also influence the final value – symmetrically.
So, the b-weighted average of P (A|B) and P (A|B) as expressed by Eq. (4) seems
to be an educated guess. Fortunately, we do not need such an appeal to intuition.
In our framework, Eqs. (4) and (5) can be proven correct, as a consequence of
probability theory.

Theorem 3 (F.P. Conditionalization over Partitions). Given an
F.P. conditionalization P(A | B1 ≡ b1, . . . , Bm ≡ bm) such that the events
B1, . . . , Bm form a partition, and, furthermore, the frequencies b1, . . . , bm sum
up to one, we have the following:

P(A | B1 ≡ b1, . . . , Bm ≡ bm) =
∑

1 � i � m
P(Bi) �= 0

bi · P(A | Bi) (5)

Proof. See [1].

Table 1 summarizes interesting properties of F.P. conditionalization. Proofs
of all properties are provided in [1]. Property (a) is a basic fact that we men-
tioned earlier; i.e., an updated event actually has the probability value that it
is updated to. Properties (b) and (c) deal with condition events that form a
partition and we have treated them with Theorem 3. Properties (d) and (e) pro-
vide programs for probabilities of frequency specifications of the general form
P(∩i∈IB

n
i =ki). Having programs for such probabilities is sufficient to compute

any F.P. conditionalization. The equation in (d) is called one-step decomposi-
tion in [1] and can be read immediately as a recursive programme specification;
compare also with the primer on inductive definitions in [5]. Equation (e) pro-
vides a combinatorial solution for P(∩i∈IB

n
i =ki). Equation (e) generalizes the

known solution for bivariate Bernoulli distributions [6–8] to the general case
of multivariate Bernoulli distributions. Property (f) is called conditional seg-
mentation in [1]. Conditional segmentation shows how F.P. conditionalization
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Table 1. Properties of F.P. conditionalization. Values of various F.P. conditionaliza-
tions PB (A) = P(A|B1 ≡ b1,..., Bm ≡ bm) with frequency specifications of the form
B = B1 ≡ b1,..., Bm ≡ bm and condition indices I = {1, . . . , m}; probability values (d)
and (e) of frequency specifications of the form P(∩i∈IBn

i =ki). Proofs of all properties
are provided in [1].

Constraint F.P. Conditionalization

(a) bi belongs to B PB (Bi) = bi

(b) m = 1, B = (B ≡ b) PB (A) = b · P(A|B) + (1 − b) · P(A|B)

(c) B1,..., Bm form a partition PB (A) =
∑m

i=1 bi · P(A | Bi)

(d) For arbitrary bound n P(∩
i∈I

Bn
i =ki) =

∑

I′ ⊆ I

∀i∈I′ . ki �=0
∀i �∈I′ . ki �=n

P(∩
i∈I′Bi,∩

i�∈I′Bi)·P(∩
i∈I′B

n−1
i = ki−1,∩

i�∈I′B
n−1
i = ki)

(e) For arbitrary bound n P( ∩
i∈I

B n
i =ki) =

∑

ρ : P(I)→N0

∀i∈I . ki =
∑{ρ(I′) | I′ ⊆ I ∧ Bi ∈ I′}

n =
∑{ρ(I′) | I′ ⊆ I}

(

n!∏

I′⊆I

ρ(I′)!×
∏

I′⊆I

P(∩
i∈I′Bi, ∩

i�∈I′Bi)
ρ(I′)

)

(f) – PB (A) =
∑

(
ζi ∈ {Bi, Bi}

)
i∈I

P( ∩
i∈I

ζi) �= 0

P(A| ∩
i∈I

ζi) · P( ∩
i∈I

ζi| ∩
i∈I

Bi ≡bi)

(g) B1,..., Bm are independent PB (B1,..., Bk) = b1b2 · · · bk

(h) B1,..., Bm are independent PB (B1,..., Bm) = PB (B1) · · ·PB (Bm)

(i) B1,..., Bm are independent PB (A) =
∑

I′ ⊆ I
P( ∩

i∈I′Bi, ∩
i�∈I′Bi) �= 0

(
P(A| ∩

i∈I′Bi, ∩
i�∈I′Bi)·

∏

i∈I′
bi · ∏

i�∈I′
(1−bi)

)

(j) A is independent of B1,..., Bm PB (A) = P(A)

(k)
B1 ≡100%,..., Bi ≡100%

Bi+1 ≡0%,..., Bm ≡0%
PB (A) = P(A|B1,..., Bi, Bi+1,..., Bm)

(l)

B1,..., Bm form a partition or

B1,..., Bm are independent

B1≡P(B1),..., Bm ≡P(Bm)

PB (A) = P(A)

(m) B1,..., Bm form a partition PB (ABi) = bi · P(A|Bi)

(n) B1,..., Bm form a partition PB (A|Bi) = P(A|Bi)

(o) B1,..., Bm are independent PB (A,B1,..., Bm) = b1 · · · bm · P(A|B1,..., Bm)

(p) – PB (A|B1,..., Bm) = P(A|B1,..., Bm)

generalizes Jeffrey conditionalization by dropping the partitioning constraint on
events. Conditional segmentation is also often useful as helper Lemma. Proper-
ties (g) and (h) are important; they reveal how F.P. conditionalization behaves
in case of independent condition events. Property (i) deals with the case that a
target event is independent of the condition events. Property (k) has been men-
tioned earlier; it is about how F.P. conditionalization meets classical conditional
probability. Property (l) generalizes the basic fact that P(A | B ≡ P(B)) = P(A)
to lists of condition events. Properties (m) through (p) all deal with cases, in
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which condition events also appear, in some way, in the target event. Properties
(m) through (p) are highly relevant in the discussion of Jeffrey’s probability kine-
matics and other Bayesian frameworks with possible-world semantics. Actually,
property (n) is an F.P. version of what we call Jeffrey’s postulate.

Table 2. Properties of F.P. conditional expectations. Values of various F.P. expecta-
tions EPB (ν | A), with frequency specifications B = B1 ≡b1, . . . , Bm ≡bm and condition
indices I ={1, . . . , m}. Proofs of all properties are provided in [1].

Constraint F.P. Expectation

(A) B1, . . . , Bm form a partition EPB (ν | Bi) = E(ν | Bi)

(B) m = 1, B = (B ≡ b) EPB (ν | A) = b·P(A|B)E(ν|AB)+(1−b)·P(A|B1)E(ν|AB1)

b·P(A|B)+(1−b)·P(A|B)

(C) B1,..., Bm form a partition EPB (ν | A) =
∑m

i=1 bi·P(A|Bi)·E(ν | ABi)∑m
i=1 bi·P(A|Bi)

(M) B1,..., Bm form a partition EPB (ν | ABi) = E(ν | ABi)

(N) B1,..., Bm form a partition EPB (|Bi)(ν|A) = E(ν | ABi)

(O) B1,..., Bm are independent EPB (ν|AB1 ··· Bm) = E(ν | AB1 · · · Bm)

(P) B1,..., Bm are independent EPB ( |B1···Bm)(ν|A) = E(ν | AB1 · · · Bm)

With Table 2 we step from F.P. conditionalization to F.P. conditional
expected values, that we also call F.P. conditional expectations or just F.P.
expectations for short. Given frequency specifications B =B1 ≡k1,..., Bm ≡km,
we say that EPB

(ν |A) is an F.P. expectation. Here, the event A plays the role
of the target event; whereas we consider the random variable ν as rather fixed.
This way, each property in Table 1 has a corresponding property in terms of F.P.
expectations. Table 2 shows some of them4. We do not need an own definition
for F.P. expectations. We have that PB is a probability function, so that the cor-
responding expected values and conditional expected values5 are defined and
we have that

EPB
(ν : Ω −→ D |A) =

∑

d∈D

d · PB (ν =d,A)
/
PB (A) (6)

In Ramsey’s subjectivism [9–11] and Jeffrey’s logic of decision [4,12] the
notion of desirability is a crucial concept. Here, the desirability desA of an
event A is the conditional expected value of an implicitly given utility ν under
the condition A, which also explains why F.P. expectations are an important
concept.

2 The Logics Perspective

In his logic of decision [13], also called probability kinematics [13,14], Richard
C. Jeffrey establishes Jeffrey conditionalization. Probabilities are interpreted as
4 Rows with same letters in Tables 1 and 2 correspond to each other.
5 The notation EP makes explicit that E belongs to the probability space (Ω, Σ,P).
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degrees of believe and the semantics of a probability update is explained directly
in terms of a possible world semantics. Jeffrey denotes a priori probability values
as prob(A) and a posteriori probability values as PROB(A) and maintains the
list of updated events B1,..., Bm in the context of probability statements6. It is
assumed that in both the worlds, i.e., the a priori and the a posteriori world,
the laws of probability hold. The probability functions PROB and prob are
related by a postulate. The postulate deals exclusively with situations, in which
the updated events B1,..., Bm form a partition. Then, it states that conditional
probabilities with respect to one of the updated events are preserved, i.e., we
can assume that PROB(A|Bi) = prob(A|Bi) holds for all events A and all
events Bi from B1,..., Bm – just as longs as B1,..., Bm form a partition. Persi
Diaconis and Sandy Zabell call this postulate the J-condition [15,16]. Richard
Bradley talks about conservative belief changes [17,18]. We call this postulate
the probability kinematics postulate, or also just Jeffrey’s postulate for short.
We say that Jeffrey’s postulate is a bridging statement, as it bridges between the
a priori world and the a posteriori world. Next, Jeffrey exploits this postulate to
derive Jeffrey conditionalization, also called Jeffrey’s rule, compare with Eq. (5).
It is crucial to understand, that the F.P. equivalent of Jeffrey’s postulate, i.e.,
PB (A|Bi) = P(A|Bi)7 does not need to be postulated in the F.P. framework,
but is a property that simply holds; i.e., it can be proven from the underlying
frequentist semantics.

We have seen that F.P. conditionalization creates a clear link from the Kol-
mogorov system of probability to one of the important Bayesian frameworks,
i.e., Jeffrey’s logic of decision. When it comes to Bayesianism, there is no such
single, closed apparatus as with frequentism [19–23]. Instead, there is a great
variety of important approaches and methodologies, with different flavors in
objectives and explications [24–26]. We have de Finetti [27,28] with his Dutch
book argument and Ramsey [9,11] with his representation theorem [10]. Think
of Jaynes [29], who starts from improving statistical reasoning with his applica-
tion of maximal entropy [30], and from there transcends into an agent-oriented
explanation of probability theory [31]. Also, think of Pearl [32], who eventually
transcends probabilistic reasoning by systematically incorporating causality into
his considerations [33,34]. Bayesian approaches have in common that they rely,
at least in crucial parts, on notions other than frequencies to explain probabili-
ties, among the most typical are degrees of belief, degrees of preference, degrees
of plausibility, degrees of validity or degrees of confirmation.

3 The Data Science Perspective

The data science perspective is the F.P. perspective per se. Current data sci-
ence has a clear statistical foundation; in practice, we see that data science is
6 Please note, that the notational differences between between Jeffrey conditionaliza-

tion and F.P. conditionalization are a minor issue and must not be confused with
semantical differences – see [1] for a thorough discussion.

7 With B = B1 ≡PROB(B1),..., Bm ≡PROB(Bm).
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boosted by statistical packages and tools, ranging from SPSS, SAS over R to
Phyton/Anaconda. In practice, the more interactive, multivariate data analytics
(as represented by business intelligence tools such as Cognos or Tableau) is still
equally important in data science initiatives. Again, the findings of F.P. condi-
tionalization are fully in line with the foundations of multivariate data analytics.

An important dual problem to partial conditionalization is about determining
the most likely probability distribution with known marginals for a complete
set of observations. This problem is treated by Deming and Stephan in [35]
and Ireland and Kullback in [36]. Given two partitions of events B1,..., Bs and
C1,..., Ct, numbers of observations nij for all possible BiCj in a sample of size
n and marginals pi� for each Bi in and p�j for each Cj , it is the intention to
find a probability distribution P that adheres to the specified marginals, i.e.,
such that P(Bi) = pi� for all Bi and P(Cj) = p�j for all Cj , and furthermore
maximizes the probability of the specified joint observation, i.e., that maximizes
the following multinomial distribution8:

Mn,P(B1C1),...,P(B1Ct) ,...,P(BsC1),...,P(BsCt)(n11,..., n1t, . . . , ns1,..., nst)

Note that the collection of s × t events BsBt form a partition. The observed
values nij are said to be organized in a two-dimensional s × t contingency table.
The restriction to two-dimensional contingency tables is without loss of gener-
ality, i.e., the results of [35] and [36] can be generalized to multi-dimensional
tables. In comparisons with partial conditionalizations, we treat two events B
and C as a 2×2 contingency table with partitions B1 = B, B2 = B, C1 = C
and C2=C. Now, [35] approaches the optimization by least-square9 adjustment,
i.e., by considering the probability function P that minimizes χ2, whereas [36]
approaches the optimization by considering the probability function P that min-
imizes the Kullback-Leibler number I(P,P′)10 with P′(BiCj) = nij/n; compare
also with [37,38]. Both [35,39] and [36] use iterative procedures that generates
BAN (best approximatively normal) estimators for convergent computations of
the considered minima; compare also with [40,41].

4 Conclusion

Statistics is the language of science; however, the semantics of probabilistic rea-
soning is still a matter of discourse. F.P. conditionalization provides a frequen-
tist semantics for conditionalization on partially known events. It generalizes
Jeffrey conditionalization from partitions to arbitrary collections of events. Fur-
thermore, the postulate of Jeffrey’s probability kinematics, which is rooted in
Ramsey’s subjectivism, turns out to be a consequence in our frequentist seman-
tics. F.P. conditionalization is a straightforward, fundamental concept that fits
our intuition. Furthermore, it creates a clear link from the Kolmogorov system
of probability to one of the important Bayesian frameworks.
8 Mn,p1,...,pm(k1, . . . , km) = (n!/(k1! · · · km!)) · pk1

1 · · · pkm
m .

9 χ2 =
∑s

i=1

∑t
j=1(nij − n · P(BiCj))

2/nij .
10 I(P,P′) =

∑s
i=1

∑t
j=1 P(BiCj) · ln(P(BiCj)/P

′(BiCj))).
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