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Abstract. How to form effective coalitions is an important issue in
multi-agent systems. Coalition Structure Generation (CSG) involves par-
titioning a set of agents into coalitions so that the social surplus (i.e. the
sum of the rewards obtained by each coalition) is maximized. In many
cases, one is interested in computing a partition of the set of agents which
maximizes the social surplus, but is robust as well, which means that it
is not required to recompute new coalitions if some agents break down.
In this paper, the focus is laid on the Robust Coalition Structure Gener-
ation (RCSG) problem. A formal framework is defined and some decision
and optimization problems for RCSG are pointed out. The computational
complexity of RCSG is then identified. An algorithm for RCSG (called
AmorCSG) is presented and evaluated on a number of benchmarks.
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1 Introduction

Coalition Structure Generation (CSG) [14,20] is a key issue for a number of appli-
cations related to multi-agent cooperation, e.g., waste-water treatment system
[5], distributed vehicle routing [20] and multi-sensor networks [3]. CSG involves
partitioning a set of agents into coalitions so that the sum of the values of all
coalitions is maximized. In CSG, it is well-known that finding an optimal coalition
structure which maximizes the social surplus is NP-hard. Indeed, the decision
problem associated with CSG is equivalent to the complete set partition problem
[23] which is NP-complete.

Robustness (i.e., it is not required to recompute new coalitions of CSG even
if some agents break down) is an expected property of CSG. In this paper, the
focus is laid on the Robust Coalition Structure Generation (RCSG) problem. A
formal framework for the RCSG problem is presented and some decision and opti-
mization problems for RCSG are pointed out. A coalition structure is viewed as
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k-robust (for a given non-negative integer k) if removing any subset of k agents
from it leads the remaining coalitions to still be beneficial. The RCSG decision
problem consists in determining whether there exists a u-beneficial and k-robust
coalition structure, for a given reward threshold u and robustness threshold k.
We identify the computational complexity of the RCSG decision problem. While
the standard CSG problem is NP-complete, we show that the RCSG decision
problem is inherently harder unless the polynomial hierarchy collapses (RCSG is
Σp

2 -complete). One of the optimization counterparts of this problem consists in
fixing the robustness threshold k and finding one of the most beneficial coali-
tion structures meeting the robustness requirement. Dually, one can also fix the
reward threshold u and optimize the robustness of a u-beneficial coalition struc-
ture. Lastly, one can consider the bi-objective optimization problem where the
aim is to optimize both the reward and the robustness of a coalition structure.

As an application domain, we believe that the vehicle routing problem [18]
is promising area, which can be formalized as CSG, where geographically dis-
persed dispatch centers of several companies cooperate. When we consider both
the effectiveness and robustness of the drivers’ groups, this problem amounts
to a robust CSG problem. Another application area is about the multi-sensor
networks [3], which can be also formalized as CSG. Consider several sensors in
an airport or in a shopping center where some sensors collaborate and observe a
certain area for the security reason. Then, forming effective and robust groups
of sensors, amounts to solving a RCSG problem.

Related to our work is the team formation problem (TF) [11,22]. Compared
to the TF problem, CSG is similar to the complete set partition problem [23], while
TF is equivalent to the set cover problem [7]. The robustness issue has recently
been considered in TF [13]. Our approach of robustness in CSG is similar to the
one developed in this work. However, this paper focuses on the robustness issue
for CSG. Also, the significant difference between RCSG and robust TF lies in the
complexity of each of the corresponding decision problems: RCSG is shown here
to be Σp

2 -complete, whereas robust TF is “only” NP-complete. To the best of
our knowledge, the robustness issue for CSG have been left unaddressed so far
in the literature.

2 Coalition Structure Generation

Let us start with some preliminary definitions. Let A = {a1, a2, . . . , an} be a
finite set of agents. A coalition from A, denoted as C, is a non-empty subset
of A. A coalition structure on A, denoted as CS, is a partition on A, i.e., a
jointly exhaustive set of pairwise disjoint coalitions from A. Formally, a coalition
structure CS (on A) is a set of coalitions {C1, . . . , Cm} such that for each i, j ∈
{1, 2, . . . ,m} such that i �= j, we have that Ci ∩ Cj = ∅ and

⋃
Ci∈CS Ci = A.

Definition 1 (CSG problem description). A coalition structure generation
problem description is defined by a pair CSG = 〈A, v〉 where A = {a1, a2, . . . , an}
is a set of agents and v : 2A → N is a function called a characteristic function.
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The value of a coalition C, denoted as v(C), is given by the characteristic
function v. The value of a coalition structure CS, denoted as V (CS), is the
sum of the values of each coalition, i.e., V (CS) =

∑
Ci∈CS v(Ci). A coalition

structure is said to be optimal, denoted as CS∗, if CS∗ satisfies the followings:
∀CS, V (CS) ≤ V (CS∗).

Example 1 (CSG). Let us consider the following scenario. The olympic games
will be held in Tokyo and it requires some interpreters in different stadiums,
e.g., athletics stadium, swimming stadium and basketball stadium etc. A ser-
vice company dispatching interpreters with three employees (Ana, Becky and
Carol) has received the requests of the simultaneous interpretation and send
them employees to different stadiums: request 1 requires Ana, and the company
gets $20 for it; request 2 pays $30 and needs Becky’s language skill; request
3 needs Carol and pays $10; request 4 pays $80 and needs Ana and Becky;
request 5 pays $90 and needs Ana and Carol; request 6 needs Becky and Carol
and pays $70; request 7 requires all employees and pays $110. Assume that you
are the manager of this service company and want to assign the employees to
job(s) so that the sum of the rewards is maximized. Then, this problem can
be represented as a CSG: let CSG = 〈A, v〉 be a CSG problem description with
A = {Ana,Becky, Carol}, and the function v is characterized as follows:

v({Ana}) = $20, v({Becky}) = $30, v({Carol}) = $10,
v({Ana,Becky}) = $80, v({Ana,Carol}) = $90, v({Becky,Carol}) = $70,

v({Ana,Becky, Carol}) = $110.

The optimal coalition structure is CS∗ = {{Becky}, {Ana,Carol}}, and the
obtained value by CS∗ is V (CS∗) = v({Becky}) + v({Ana,Carol}) = $30 +
$90 = $120.

An expected property for coalition structures is to ensure a given level of
efficiency. Formally, this (quite standard) property can be stated as follows:

Definition 2 (Beneficialness). Let CSG = 〈A, v〉 be a CSG problem descrip-
tion. Given a coalition structure CS and a non-negative integer u, CS is said to
be u-beneficial if the value of CS is larger than u: V (CS) ≥ u.

Let us stress an important remark as to the representation of the character-
istic function v in a CSG. In our running example about the service company
dispatching interpreters, v is defined “implicitly”, i.e., it is viewed as an ora-
cle. One possible generalization of our example above to an arbitrary number
n of agents would be to associate with every coalition C a number depending
on the size of C only; in such a case, the corresponding characteristic function
v can be represented with a size in O(n). A number of representation settings
for characteristic functions have been pointed out in the literature, and some
of them have been adapted to CSG and studied from the computational com-
plexity viewpoint [12]. Among the representation frameworks which have been
developed are marginal contribution nets (MC-nets) [6] and synergy coalition
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groups (SCGs) [2]. Contrastingly, some early work [19,20] assume that v is pro-
vided “fully extensionally” as an input of a CSG problem description, i.e., v is
given as a table with 2n − 1 entries, associating with every coalition a number.
Providing such an extensional representation of v makes the size of an input CSG
to be exponential in the number of agents and may be an unrealistic assump-
tion for relatively large problems. Yet there exist many real world applications
involving only a dozen of agents (e.g. because of the limited resources), for which
an extensional representation of v is feasible [3,9,18]. Thus, cooperative games
can be used to analyze cost allocation problems, where the players are willing to
form coalitions in order to get extra monetary savings as an effect of cooperation.
For instance, in [5] the authors address the problem where nearby municipalities
must take the decision on whether to cooperate in order to implement a Waste-
water Treatment System (WTS). These types of problem can be represented
formally as a CSG and it involves a few agents in essence, so that (i) considering
a few number of agents for experimentations, and (ii) assuming an extensional
representation of the characteristic function, can sometimes be considered as
reasonable.

So both choices of representation for v (i.e., “implicit” vs.“extensional”) have
been considered in the literature. It turns out that for a number of implicit
representations of v (including MC-nets and SCG, see [12]), the complexity of
computing a beneficial coalition structure (cf. Definition 2) is NP-hard:

Definition 3 (DP-CSG)

– Input: A coalition structure generation problem description CSG = 〈A, v〉,
and a non-negative integer u,

– Question: Does there exist a coalition structure CS such that CS is
u-beneficial?

As mentioned above, the complexity of DP-CSG is NP-complete in general:

Theorem 1 ([19]). If the characteristic function v is computable in polynomial
time, then DP-CSG is NP-complete.

In the next section, we will show that computing a “robust” coalition struc-
ture is an intrinsically harder problem than the traditional CSG problem.

3 Robust Coalition Structure Generation

In this section, a formal framework for Robust Coalition Structure Generation
(RCSG) is defined. Furthermore, both the decision and optimization problems for
RCSG are considered. Also, the computational complexity of RCSG is identified.

Let A = {a1, . . . , an} be a set of agents and A′ ⊆ A. The restriction on A′

of a coalition C from A is defined as the set C ∩ A′. We extend this notion of
restriction on coalition structures as follows. The restriction on A′ of a coalition
structure CS = {C1, . . . , Cm} on A is defined as the coalition structure CS′ =
{C ′

1, . . . , C
′
m} \ {∅} on A′, where for each i ∈ {1, . . . ,m}, C ′

i is the restriction
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on A′ of Ci. Consider the same coalition structure generation problem in our
example of the service company dispatching interpreters. Let us consider the
coalition structure CS = {{Ana,Becky}, {Carol}} and A′ = {Ana,Carol}.
Then, the restriction on A′ of CS is the coalition structure {{Ana}, {Carol}}.
Robustness can now be defined in formal terms as follows:

Definition 4 (Robust Coalition Structure). Let CSG = 〈A, v〉 be a CSG
problem description. For a given coalition structure CS on A and non-negative
integers u and k, CS is said to be (u, k)-robust if for every A′ ⊆ A, such that
|A′| ≥ n − k, the restriction on A′ of CS is u-beneficial.

That is to say, a coalition structure is (u, k)-robust if whenever k agents are
removed from it, the “remaining” coalition structure is u-beneficial. Obviously
enough, robustness generalizes the usual notion of beneficialness in CSG. Indeed,
we trivially have that for any non-negative integer u, a CSG is u-beneficial if
and only if it is (u, 0)-robust.

Example 1 (continued). Let us consider the service company dispatching inter-
preters with three employees. The manager of this company planed to assign
Becky to the request 2 and Ana and Carol to the request 5 so that he/she
gets the maximal rewards. However, what’s happen if one of them cannot work
on the day because of the illness or other unexpected matters. For instance, let
u = $70 and k = 1, that is, the manager wants to have at least $70 even
if such an event would occur. In this example, the optimal coalition struc-
ture planed in advance is CS∗ = {{Becky}, {Ana,Carol}}. To check whether
CS∗ is (70, 1)-robust, we check for each removed agent from CS∗ whether the
remaining coalition structure is 70-beneficial. We have that: V (CS∗ \ {Ana}) =
v({Becky}) + v({Carol}) = $40, V (CS∗ \ {Becky}) = v({Ana,Carol}) = $90,
V (CS∗ \ {Carol}) = v({Ana}) + v({Becky}) = $50. When we remove Ana
from CS∗, the remaining coalition structure is not 70-beneficial. Intuitively, this
comes from the fact that it is not “safe” to form the coalition {Ana,Carol}
to get a reward of $90, since the absence of Ana from this coalition would
leave Carol alone, getting a reward of $10. Thus, CS∗ is not (70, 1)-robust.
However, CS = {{Ana,Becky, Carol}} is (70, 1)-robust, since all remaining
coalition structures are 70-beneficial after we remove each agent from CS, i.e.,
V (CS \ {Ana}) = $70, V (CS \ {Becky}) = $90, and V (CS \ {Carol}) = $80.

In the following, we assume that the characteristic function v of CSG = 〈A, v〉
satisfies the property of monotonicity, i.e., for all coalitions C, C ′, if C ⊆ C ′ then
v(C) ≤ v(C ′). This property requires that adding an agent to a given coalition is
harmless, or stated otherwise, removing an agent from a coalition does not result
in an increase of its value. This assumption is very natural when considering the
robustness issue, as we are interested in dealing with the “damages” caused to
a coalition structure when removing a number of agents from it.1 Nonetheless,
1 Note that the property of monotonicity differs from the super-additivity which

requires that for all coalitions C, C′, it holds v(C) + v(C′) ≤ v(C ∪ C′) and is
stronger than monotonicity.
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this assumption does not affect the following complexity results, that is, it does
not make the RCSG problem computationally easier.

Definition 5 (DP-RCSG)

– Input: A CSG problem description CSG = 〈A, v〉, with v computable in
polynomial time, and two non-negative integers u and k,

– Question: Does there exist a coalition structure CS such that CS is (u, k)-
robust?

In the general case, computing a robust coalition structure is a harder prob-
lem than computing a beneficial one (unless the polynomial hierarchy collapses):

Proposition 1. DP-RCSG is Σp
2 -complete. Σp

2 -hardness holds even if the char-
acteristic function satisfies monotonicity.

Proof. Let us first prove that RCSG is in Σp
2 . Let CSG = 〈A, v〉 be a CSG

problem description such that A = {a1, . . . , an}, and u and k be two non-negative
integers. Consider the following non-deterministic polynomial algorithm with
NP oracle:

1. Guess a set CS = {C1, . . . , Cm} of coalitions from A;
2. Check that CS is a coalition structure on A;
3. Check using an NP oracle that there does not exist a set of agents A′ ⊆ A

such that |A′| = n − k and such that the restriction of CS on A′ is not
u-beneficial.

This algorithm decides RCSG, showing that RCSG is in Σp
2 .

We prove that Σp
2 -hardness holds for RCSG by consider a reduction in polyno-

mial time to the complementary problem of RCSG from the following Πp
2 -hard

problem, that is, the validity problem for 3-CNF quantified boolean formulas
(QBFs) of the form ∀X∃Y.α where X = {x1, . . . , xn} and Y = {y1, . . . , yn}
are two disjoint sets of propositional atoms and α is 3-CNF propositional for-
mula such that V ar(α) = X ∪ Y . Consider such a QBF ∀X∃Y.α, and let us
associate with it an RCSG problem description 〈A, v〉, where A is the set of
agents A = {a1, ā1, b1, b̄1, . . . , an, ān, bn, b̄n}, and v is a characteristic function
v : 2A �→ N given as follows. Let us first define:

– the mapping x associating any literal over X with a pair of agents from A,
defined for every (possibly negated) literal xi as x(xi) = {ai, āi} if xi is a
positive literal, otherwise x(xi) = {bi, b̄i};

– the mapping y associating any literal over Y with a pair of agents from A,
defined for every (possibly negated) literal yi as y(yi) = {ai, bi} if yi is a
positive literal, otherwise y(yi) = {āi, b̄i}.

Additionally, we assume that α is viewed as a set of clauses written as (li, lj , lk),
where li, lj , lk are literals from X ∪ Y , and such that the literals li, lj , lk are
ordered in such a way that if li ∈ Y (resp. lj ∈ Y ) then lj , lk ∈ Y (resp.
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lk ∈ Y ). Then a clause (li, lj , lk) ∈ α can be of the form (xi, xj , yk), (xi, yj , yk)
or (yi, yj , yk), since the presence of clauses of the form (xi, xj , xk) make the QBF
trivially not valid.

Then given the QBF ∀X∃Y.α, the characteristic function v is defined as
follows. Consider the function p associating any literal pq from X ∪Y with a pair
of agents from A, defined as p(pq) = x(xl) if pq = xl, otherwise p(pq) = y(ym)
when pq = ym. For each coalition C ⊆ A, we set:

(i) v(C) = 2n + 1 if there exists i ∈ {1, . . . , n} such that {ai, āi} ⊆ C or
{bi, b̄i} ⊆ C;

(ii) v(C) = n+1 if there exists a clause (pi, pj , pk) from α such that p(pq)∩C �=
∅, for any q ∈ {i, j, k};

(iii) v(C) = 1 in the remaining cases.

We often refer to these conditions as (i), (ii) and (iii) in the rest of the proof.
First, one can easily check that v satisfies (monotonicity). Indeed, one can

see that for any coalition C ⊆ A, if C satisfies condition (i) (resp., condition (ii),
(iii), (iv)), then any coalition C ′ such that C ⊆ C ′ also satisfies condition (i)
(resp., condition (ii), (iii), (iv)). Hence, for all coalitions C,C ′ ⊆ A, if C ⊆ C ′

then v(C) ≤ v(C ′). Therefore, v satisfies (monotonicity).

We intend now to prove that the QBF ∀X∃Y.α is valid if and only if there
does not exist any coalition structure which is (2n+1, 2n)-robust, i.e., if and only
if for every coalition structure CS on A, there exists a set A′ ⊆ A, |A′| = 2n, such
that the restriction on A′ of CS is not (2n+1)-beneficial. This would show that
the complementary problem of RCSG is Πp

2 -hard, thus that RCSG is Σp
2 -hard.

(If part) We show the contraposite of the claim. Assume that the QBF ∀X∃Y.α is
not valid, i.e., ∃X∀Y.¬α is satisfiable, and let us prove that there exists a coalition
structure which is (2n+1, 2n)-robust. So let ωX be an interpretation over X such
that for any interpretation ωY over Y , one the clauses of α is not satisfied by
ωX ∪ ωY . Define the coalition structure CSr as CSr = {Cr, C

1
r , . . . , Cn

r }, where:

– Cr ={ai, āi | i ∈ {1, . . . , n}, ωX(xi)=0} ∪ {bi, b̄i | i ∈ {1, . . . , n}, ωX(xi) = 1};
– for each i ∈ {1, . . . , n}, Ci

r = {ai, āi, bi, b̄i} \ Cr.

Let us show that CS is (2n, 2n + 1)-robust, i.e., for any set A′ ⊆ A such
that |A′| = 2n, the restriction on A′ of CS is (2n+1)-beneficial. From condition
(i), we know that for any coalition C, if there exists i ∈ {1, . . . , n} such that
{ai, āi} ⊆ C or {bi, b̄i} ⊆ C, then v(C) = 2n + 1, so that for any coalition
structure CS containing such a coalition C we would get that v(CS) ≥ 2n + 1.
Yet by construction of our coalition structure CSr = {Cr, C

1
r , . . . , Cn

r }, for every
i ∈ {1, . . . , n} we have that {ai, āi} ⊆ C for some coalition C ∈ CSr and
{bi, b̄i} ⊆ C for some coalition C ∈ CSr. And we have 4n elements in A, thus
for any set A′ ⊆ A such that |A′| = 2n, in the case where {ai, āi} ⊆ A′ or
{bi, b̄i} ⊆ A′ for some i ∈ {1, . . . , n}, we get that v(C ∩ A′) = 2n + 1 for some
coalition C ∈ CSr (cf. condition (i)), i.e., the restriction CS′

r on A′ of CSr

satisfies v(CS′
r) ≥ 2n + 1, and thus CS′

r is (2n + 1)-beneficial, which makes
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CSr (2n, 2n + 1)-robust, that was to be shown. So consider the remaining cases
and assume that A′ is formed of exactly one element among {ai, āi} and exactly
one element among {bi, b̄i}, for each i ∈ {1, . . . , n}. So now, for any coalition
Ci

r ∈ CSr (i ∈ {1, . . . , n}), it can be checked by definition of Ci
r that Ci

r ∩ A′

contains exactly one element from A. This means that none of the conditions
(i), (ii), (iii) are satisfied by C ∩ A′, and thus v(C ∩ A′) = 1 (cf. condition
(iv)). To sum up, we have that v(Ci

r ∩ A′) = 1 for each coalition Ci
r ∈ CSr

(i ∈ {1, . . . , n}), and we need to prove that the restriction CS′
r of CSr on

A′ satisfies v(CS′
r) ≥ 2n + 1; yet v(CS′

r) =
∑

C∈CSr
v(C ∩ A′), so v(CS′

r) =
∑

Ci
r∈CSr,i∈{1,...,n} v(Ci

r ∩ A′) + v(Cr ∩ A′) = n + v(Cr ∩ A′). Then we need to
prove that v(Cr ∩A′) ≥ (2n+1)−n, i.e., we must prove that v(Cr ∩A′) ≥ n+1.
Let us show that v(Cr ∩A′) = n+1. This is enough to show that Cr ∩A′ satisfies
condition (ii) or (iii). Let us associate with Cr and A′ the interpretation ωY over
Y defined as follows, for each i ∈ {1, . . . , n}:

– in the case where {ai, āi} ⊆ Cr, then: ωY (yi) = 0 if ai ∈ A′, otherwise
ωY (yi) = 1 (i.e., if āi ∈ A′);

– in the remaining case (i.e., {bi, b̄i} ⊆ Cr) then: ωY (yi) = 0 if bi ∈ A′, otherwise
ωY (yi) = 1 (i.e., if b̄i ∈ A′);

We know that there is at least one clause c from α which is not satisfied by
ωX ∪ ωY . Such a clause c is of the form (xi, yj , yk) or (yi, yj , yk), but in any
of the two cases we have that none of the literals of the clause is satisfied by
ωX ∪ ωY . It can be a literal from X (denoted xi below) or from Y (denoted yi
below). Let us denote l this literal, we fall into one of the two following cases:

– l is a literal xi. If xi is a positive literal, then ωX(xi) = 0. Yet we know
by definition of the coalition Cr ∈ CSr that {ai, āi} ⊆ Cr, and we already
know that A′ contains exactly one element from {ai, āi}, thus we get that
{ai, āi} ∩ (Cr ∩ A′) �= ∅. If xi is a negative literal, then ωX(xi) = 1. By a
similar reasoning, we get that {bi, b̄i} ∩ (Cr ∩ A′) �= ∅. Stated otherwise, we
get that x(xi) ∩ (Cr ∩ A′) �= ∅.

– l is a literal yi. If yi is a positive literal, then ωY (yi) = 0. Yet we know by
definition of ωY that we are in the case where ({ai, āi} ⊆ Cr and ai ∈ A′) or
({bi, b̄i} ⊆ Cr and bi ∈ A′). Thus Cr ∩ A′ = {ai} or Cr ∩ A′ = {bi}. Hence,
{ai, bi}∩(Cr∩A′) �= ∅. If xi is a negative literal, then ωY (yi) = 1. Yet similarly
by definition of ωY we are in the case where ({ai, āi} ⊆ Cr and āi ∈ A′) or
({bi, b̄i} ⊆ Cr and b̄i ∈ A′). Thus Cr ∩ A′ = {āi} or Cr ∩ A′ = {b̄i}. Hence,
{āi, b̄i} ∩ (Cr ∩ A′) �= ∅. Stated otherwise, we get that y(yi) ∩ (Cr ∩ A′) �= ∅.

From these two points, we can claim for the clause c which is not satisfied
by ωX ∪ ωY that: if c is of the form (xi, yj , yk), then x(xi) ∩ (Cr ∩ A′) �= ∅,
y(yj)∩ (Cr ∩A′) �= ∅ and y(yk)∩ (Cr ∩A′) �= ∅; and if c is of the form (yi, yj , yk),
then y(yi) ∩ (Cr ∩ A′) �= ∅, y(yj) ∩ (Cr ∩ A′) �= ∅ and y(yk) ∩ (Cr ∩ A′) �= ∅. By
definition of the characteristic function v (cf. conditions (ii) and (iii)), we get
that v(Cr ∩ A′) = n + 1, that was left to be shown and concludes this part of
the proof.
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(Only if part) We show the contraposite of the claim. Assume that there exists
a coalition structure which is (2n+1, 2n)-robust, and let us prove that the QBF
∀X∃Y.α is not valid, i.e., ∃X∀Y.¬α is satisfiable.

Let us introduce a preliminary notion. For a given q ∈ {0, . . . , n}, we say
that a coalition structure CS is q-normal if CS = {A} when q = 0, and if
CS = {C,C1, . . . , Cq} when q ∈ {1, . . . , n} such that:

– for all i ∈ {1, . . . , q}, Ci = {ai, āi} or Ci = {bi, b̄i};
– C = A \ ⋃{Ci | Ci ∈ CS, i ∈ {1, . . . , q}}.

For instance, when n = 4, the coalition structure CS = {C,C1, C2, C3}
defined such that C1 = {a1, ā1}, C2 = {b2, b̄2}, C3 = {b3, b̄3} and C =
{b1, b̄1, a2, ā2, a3, ā3, a4, ā4, b4, b̄4} is 3-normal.

What we first intend to prove is that there exists a coalition structure which
is n-normal and (2n + 1, 2n)-robust. Beforehand, we want to show that for each
q ∈ {1, . . . , n}, there exists a coalition structure CS which is q-normal and such
that for any A′ ⊆ A, |A′| = 2n, there exists a coalition C ′ ∈ CS↓A′ which satisfies
condition (i), (ii) or (iii), where CS↓A′ denotes the restriction of CS on A′ (for
short, we say that CS is (i)-(ii)-(iii)-consistent in the following). So to recap,
we want to show that for each q ∈ {1, . . . , n}, there exists a coalition structure
CS which is q-normal and (i)-(ii)-(iii)-consistent. We prove it by recursion on q:

– Base case (q = 0): since the only 0-normal coalition structure is defined as
CS0 = {A}, it is enough to show that CS0 is (ii)-(iii)-consistent, i.e., that for
every set A′ ⊆ A such that |A′| = 2n, A∩A′ satisfies condition (ii) or (iii). Yet
we know that there exists a coalition structure which is (2n + 1, 2n)-robust,
so let CSr be such a coalition structure. So for every set A′ ⊆ A such that
|A′| = 2n, the restriction of CSr on A′ is (2n + 1)-beneficial. Let A′ ⊆ A,
|A′| = 2n, such that for each i ∈ {1, . . . , n}, A′ contains exactly one element
among {ai, āi} and exactly one element among {bi, b̄i}. We can see then that
no coalition from CSr↓A′ satisfies condition (i). Let us prove there exists a
coalition from CSr↓A′ satisfying condition (ii) or (iii). Toward a contradiction,
assume that there is no such coalition. Then for every coalition C ∈ CSr↓A′ ,
v(C) = 1 (cf. condition (iv)). Yet there are 2n elements in A′, which means
that v(CSr↓A′) ≤ 2n (we get that v(CSr↓A′) = 2n in the case where each
coalition from CSr↓A′ is a singleton set). And yet CSr is (2n + 1, 2n)-robust,
so CSr↓A′ is (2n + 1)-beneficial, which leads to a contradiction. Hence, there
exists a coalition from CSr↓A′ satisfying condition (ii) or (iii); let C ′ be such
a coalition. We know that C ′ is a coalition from CSr↓A′ , so C ′ ⊆ A′. But we
also have C ′ ⊆ A, thus C ′ ⊆ A ∩ A′. Hence, since C ′ satisfies condition (ii)
or (iii), it is easy to see that A ∩ A′ satisfies condition (ii) or (iii) as well.
Therefore, CS0 is (i)-(ii)-(iii)-consistent.

– Recursion step: let CSq = {C,C1, . . . , Cq} be a q-normal coalition structure
for some q ∈ {0, . . . , n−1} (CS0 = {A}), and assume that CSq is (i)-(ii)-(iii)-
consistent. Let us prove that there exists a coalition structure CSq+1 which
is (q + 1)-normal and (i)-(ii)-(iii)-consistent. Let us associate with CSq =
{C,C1, . . . , Cq} the coalition structure CSq+1

a = {Ca, C
1, . . . , Cq, Cq+1

a }
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where Ca = C \ {aq+1, ¯aq+1} and Cq+1
a = {aq+1, ¯aq+1}; similarly, we

associate with CSq = {C,C1, . . . , Cq} the coalition structure CSq+1
b =

{Cb, C
1, . . . , Cq, Cq+1

b } where Cb = C \{bq+1, ¯bq+1} and Cq+1
b = {bq+1, ¯bq+1}.

It is easy to verify that CSq+1
a and CSq+1

b are well-defined coalitions struc-
tures, and that both of them are (q+1)-normal. So this is enough to show that
one of these coalitions is (i)-(ii)-(iii)-consistent. Since CSq is either (i)-(ii)-
(iii)-consistent, for any A′ ⊆ A, |A′| = 2n, there exists a coalition C ′ ∈ CSq

↓A′

which satisfies condition (i), (ii) or (iii). So let A′ ⊆ A, |A′| = 2n, and let
C ′ ∈ CSq

↓A′ , we know that C ′ satisfies condition (i), (ii) or (iii). Yet by con-
struction of CSq+1

a and CSq+1
b it is easy to see that if C ′ satisfies condition

(i) (resp. condition (ii)), then both CSq+1
a↓A′ and CSq+1

b↓A′ contain a coalition
which satisfies condition (i) (resp. condition (ii)). So assume that C ′ does
not satisfy condition (i) nor (ii), so that C ′ satisfies condition (iii). But then,
it is easy to verify that one of the two following cases holds: (1) for every
A′′ ⊆ A, |A′′| = 2n, CSq+1

a↓A′′ contains a coalition which satisfies condition
(iii), or (2) for every A′′ ⊆ A, |A′′| = 2n, CSq+1

b↓A′′ contains a coalition which
satisfies condition (iii). Overall, we have shown that either CSq+1

a or CSq+1
b

is (i)-(ii)-(iii)-consistent.

We have now proved that there exists a coalition structure CS = {C,C1, . . . , Cn}
which is n-normal and such that for any A′ ⊆ A, |A′| = 2n, there exists a
coalition C ′ ∈ CS↓A′ which satisfies condition (i), (ii) or (iii). Let us show that
such a coalition structure CS is (2n, 2n + 1)-robust. Let A′ ⊆ A, |A| = 2n and
let us show that CS↓A′ is (2n + 1)-beneficial. Let C ′ ∈ CS↓A′ . Assume first that
C ′ satisfies condition (i), then one can see that v(C ′) = 2n + 1 and thus CS↓A′

is (2n + 1)-beneficial. So assume that C ′ does not satisfy condition (i), i.e., C ′

satisfies condition (ii) or (iii). Note that in this case (because C ′ does not satisfy
condition (i)), we know that A′ contains exactly one element from {ai, āi} and
exactly one element from {bi, b̄i}, for each i ∈ {1, . . . , n}. Then for each coalition
Ci ∈ CS, i ∈ {1, . . . , n}, we get that Ci ∩ A′ is a singleton set and Ci satisfies
none of the conditions (ii) and (iii), and thus v(Ci ∩A′) = 1 (condition (iv)). We
have that v(CS↓A′) = v(C ∩A′)+v(C1∩A′)+ · · ·+v(Cn∩A′) = v(C ∩A′)+n =
v(C ′) + n = (n + 1) + n = 2n + 1. Hence, CS↓A′ is (2n + 1)-beneficial.

We have proved that there exists a coalition structure which is n-normal and
(2n, 2n + 1)-robust, denote it CSr = {Cr, C

1
r , . . . , Cn

r }. Now, it remains to show
that the QBF ∃X∀Y.¬α is valid. Let us associate with CSr the interpretation
ωX over X defined for each i ∈ {1, . . . , n} as ωX(xi) = 0 if Ci

r = {bi, b̄i},
otherwise ωX(xi) = 1 (in the remaining case where Ci = {ai, āi}). Now, let ωY

be any interpretation over Y . It remains to show that ωX ∪ ωY does not satisfy
α, i.e., there exists a clause from α which is not satisfied by ωX ∪ ωY . With ωY

we associate the set A′ ⊆ A characterized as follows: for each i ∈ {1, . . . , n},
{ai, bi} ⊆ A′ and {āi, b̄i} ∩ A′ = ∅ if ωY (yi) = 0, otherwise {āi, b̄i} ⊆ A′ and
{ai, bi} ∩ A′ = ∅. Note that for each i ∈ {1, . . . , n}, A′ contains exactly one
element among {ai, āi} and exactly one element among {bi, b̄i}. This means that
for each i ∈ {1, . . . , n}, Ci

r ∩ A′ is a singleton set and thus v(Ci
r ∩ A′) = 1
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(condition (iv)). So v(CSr↓A′) = v(Cr ∩ A′) + v(C1
r ∩ A′) + · · · + v(Cn

r ∩ A′) =
v(Cr ∩ A′) + n. Yet CSr is (2n, 2n + 1)-robust, so that v(CSr↓A′) ≥ 2n + 1, and
thus v(Cr ∩ A′) ≥ n + 1, which means that Cr ∩ A′ satisfies condition (i), (ii)
or (iii). But by construction of A′, one can see that Cr ∩ A′ does not satisfy
condition (i), so it satisfies condition (ii). We will show that the clause that
enables condition (ii) to be satisfied, is not satisfied by ωX ∪ ωY . Let pq be a
literal from a clause from condition (ii):

– Assume first that pq = xl for some l ∈ {1, . . . , n}.
• If xl is a positive literal, then we know that p(pq) = x(xl) = {al, āl}. Since

{al, āl} ∩ Cr ∩ A′ �= ∅, it follows that Cl
r = {bl, b̄l}. But then ωX(xl) = 0.

• If xl is a negative literal, we analogously conclude that ωX(xl) = 1.
In both cases ωX does not satisfy the clause when pq = xl for some l ∈
{1, . . . , n}.

– So assume now the remaining case holds, i.e., that pq = ym for some m ∈
{1, . . . , n}.

• If ym is a positive literal, then p(pq) = y(ym) = {am, bm}. Since
{am, bm} ∩ Cr ∩ A′ �= ∅, we can conclude that {am, bm} ⊆ A′ and thus
ωY (ym) = 0.

• If ym is a negative literal, we analogously conclude that ωY (ym) = 1.
In both cases ωY does not satisfy the clause when pq = ym for some m ∈
{1, . . . , n}.

We have just shown that the QBF ∃X∀Y.¬α is valid, which concludes this part
of the proof.

We have shown that the QBF ∀X∃Y.α is valid if and only if there does not
exist a coalition structure CS which is (2n + 1, 2n)-robust, which means that
the complementary problem RCSG is Πp

2 -hard. Therefore, RCSG is Σp
2 -hard. ��

Beyond the decision problem of RCSG, the following optimization problem
could be considered: one sets a robustness threshold k and intend to optimize
the beneficialness of the coalition structure; or one sets a beneficialness thresh-
old u and intend to optimize the robustness of the coalition structure. We can
also view the RCSG problem as a bi-objective constraint optimization problem,
and be interested in computing Pareto optimal (i.e., non-dominated) coalition
structures.

4 The AmorCSG Algorithm

We now describe AmorCSG, our complete algorithm to compute the coalition
structure of maximum beneficialness. The algorithm is based on the integer-
partitioning (IP) approach [10,17]. We briefly describe the IP-approach and refer
to the original works [10,17] for more details. It starts by decomposing the search
space into disjoint parts (integer partitions) and applies branch-and-bound to
each subspace. Every integer partition of n (the number of agents) defines a
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subspace by associating the integers in the partition to the number of agents in
each coalition (e.g. 1 + 3 is a subspace with two coalitions with one and three
agents). Note that the integer partitions generated by n are non-overlapping.
The main advantage of the decomposition is that effective upper bounds can be
calculated for partial solutions from a particular partition, which is an essential
for pruning the search space in the branch-and-bound algorithm. Our algorithm
follows the same structure as the IP algorithm, with the addition of the following
important components: calculation of the robustness for coalitions and coalition
structures, robust upper bounds, and our pruning technique for branch-and-
bound. These are described in detail below. The pseudo-code of AmorCSG is
given in Algorithm 1 and 2.

Algorithm 1. Branch-And-Bound Subspace Search
input: CSG, I = [I0, .., Im−1], k
output: CS in subspace I with the highest r(CS, k)

1 begin

2 CSbest ←− ∅; LBbest ←− −∞; depth ←− 0
3 CS ←− [C0, C1, .., Cm−1]
4 Ci ←− ∅, ∀i
5 while depth ≥ 0 do
6 if depth = m then
7 depth ←− depth − 1

8 if r(CS, k) > LBbest then

9 LBbest ←− r(CS, k)

10 CSbest ←− CS

11 else
12 Cdepth ←− select next coalition not explored

// if no new Cdepth possible, backtrack
13 if Cdepth = ∅ then
14 depth ←− depth − 1
15 continue

16 if r(CS, k) +
∑

depth<j<m UB(Ij) > LBbest then

17 depth ←− depth + 1

18 return CSbest

We considered extending other state-of-the-art CSG algorithms for RCSG
namely ODP [10], ODP-IP [10], and inclusion-exclusion DP [1]. However, these
approaches are not applicable to RCSG, as they are based on dynamic pro-
gramming and the Bellman property does not hold for RCSG. Our method uses
dynamic programming during its execution but the core part of the algorithm
is branch-and-bound.

Definition 6. (Robustness of a Coalition (Structure)). Let CSG = 〈A, v〉
be a CSG problem description. For a given coalition structure CS on A and non-
negative integer k, the k-robustness of CS, denoted r(CS, k), is the maximal
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Algorithm 2. AmorCSG Algorithm Outline
input: CSG = 〈A, v〉, k
output: CS∗ = argmaxCS(r(CS, k))

1 begin
2 IP ←− generate integer partitions of |A|
3 UBrob ←− computeRobustUpperBounds(IP ) // Eq. 6

4 LBbest ←− −∞; CS∗ ←− ∅
5 do
6 foreach I ∈ IP do

7 if UBrob(I) ≤ LBbest then
8 IP ←− IP \ {I}
9 if IP = ∅ then

10 break

11 Inext ←− argmax{UBrob(I) : I ∈ IP}
12 (val, CS) ←− searchSubspace(CSG, I, k) // Algorithm 1

13 if val ≥ LBbest then

14 LBbest ←− val
15 CS∗ ←− CS

16 while IP �= ∅
17 return CS∗

value u such that CS is (u, k)-robust. Similarly, the k-robustness of a coalition
C, denoted r(C, k), is the maximal value u if the coalition structure {{C}} is
(u, k)-robust.

Robustness Values for Each Coalition. For every coalition C we calculate
r(C, k′) for each k′ ∈ [1,min(k, |C|)] as a preprocessing step, which represents
the lowest beneficial value obtainable after removing k′ agents from C. We com-
pute r(C, k′) using a dynamic programming:

r(C, 0) = v(C), (1)
r(C, k′)= min

C′⊂C
|C′|=|C|−1

(r(C ′, k′ − 1)), ∀k′ ∈ [1,min(k, |C|)].

Robustness Values for a Particular Coalition Structure. For a given
coalition structure CS we compute its robust value as r(CS, k) = V (CS) −
e(CS, k), where e(CS, k) is defined as the optimal value of the following multi-
dimensional knapsack problem:

e(CS, k) = max
∑

C∈CS

∑

j∈[1,|C|]
r(C, j) ∗ x(C,j) (2)

∑

C∈CS

∑

j∈[1,|C|]
j ∗ x(C,j) ≤ k (3)
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∑

j∈[1,|C|]
x(C,j) ≤ 1 ∀C ∈ CS (4)

x(C,j) ∈ {0, 1} ∀C ∈ CS, j ∈ [1, |C|] (5)

The value e(CS, k) denotes the maximum penalty that can be achieved by
removing k agents. The variables x(C,j) indicates if j agents are selected for
removal from coalition C.

Robust Upper Bounds. For a given subspace generated by the partition
I = [I0, I1, . . . , Im−1] we compute the upper bound as:

UBrob(I) = max∑
j yj≤k

yj∈N0

(
∑

j∈[0,m)

(UB(max(0, Ij − yj)))) (6)

In other words, we calculate maximum upper bound of all subspaces that
can be generated by removing at most k agents from the subspace I. The upper
bound of a partition I, UB(I), is computed as in the integer-partition approach
[10,17].

Branch-And-Bound Pruning. The partial solution CS can be pruned if it
cannot be extended to a solution with a higher beneficial value than the best
solution found so far (denoted LBbest). This is determined based on the upper
bounds of the unassigned coalitions and LBbest:

r(CS, k) +
∑

j∈[d+1,m)

(UB(Ii)) ≤ LBbest (7)

The solution CS can be pruned from the search if the above equation holds.
Note that the (partial) solution CS has its first d coalitions assigned at search
tree depth d.

4.1 Incremental Computation of R(CS, K)

The robust value r(CS, k) is computed in each iteration incrementally using
dynamic programming. Let c be the coalition that is added to the partial solution
CS, we then have:

r(CS ∪ c, k) = min{r(CS, k − i) + r(c, i)|i ∈ [0, k]} (8)
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Fig. 1. Average runtime (five benchmarks for each n, the number of agents) on a
variety of distributions with different values for k. Number of timeouts with a limit of
1 h shown in brackets.
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5 Experimental Evaluation

We implemented AmorCSG and the integer-partition approach for CSG [10,17] in
C++. The experiments were run on an Intel i7-7700HQ CPU @ 2.80 GHz with
32 GB of RAM. We experimented with instances based on several probability
distributions for the characteristic function v used in the literature:

– Uniform: v(C) = Uniform(0, |C|) [8].
– Normal: v(C) = Normal(μ = 10 ∗ |C|, σ2 = 0.1) [16].
– NDCS: v(C) = Normal(μ = |C|, σ2 =

√|C|) [17].
– Modified uniform: v(C) = Uniform(0, 10 ∗ |C|) + a, where a =

Uniform(0, 50) with probability 0.2 and a = 0 otherwise [21].
– Modified normal: v(C) = Normal(10∗ |C|, 0.01)+a, where a is as above [15].
– Beta: v(C) = |C| ∗ Beta(α = β = 0.5) [10].

The benchmarks were adjusted to ensure monotonicity. We compared the
runtime for different values of n (number of agents) and k ∈ [0, 3] (robustness
parameter). Note that RCSG with k = 0 degenerates to CSG. The results are
summarized in Fig. 1, averaged over five instances for each n.

The distribution used plays an important role in the execution time, more so
than for standard CSG (k = 0). The main reason is that bounds on robustness
cannot be approximated as accurately in general and this is further amplified for
certain distributions. Furthermore, the strength of the robust bounds weakens
with the increase in k. Hence, the algorithm must explicitly explore a large part
of the search space, leading to higher run times when compared to CSG. In
return, guarantees on robustness are provided.

6 Conclusion

In this paper, the robustness issue for CSG has been investigated. The contribu-
tions of this paper are as follows: A notion of robustness in the CSG framework
has been formalized and shown useful. Furthermore, the corresponding decision
and (bi-objective) optimization problems for RCSG have been studied and the
computational complexity has been identified. Finally. a complete algorithm has
been presented for solving a RCSG problem.

This work paves the way for a number of perspectives. Our complete algo-
rithm (AmorCSG) can solve RCSG problem instances such as waste-water treat-
ment system. For addressing large-scale RCSG instances, we plan to develop
approximate algorithms. Another perspective will consist in considering the
robustness issue in a probabilistic setting. In the framework presented in this
paper, the robustness of a coalition structure is evaluated from the “worst-case”
viewpoint. Another approach would be to consider each agent as “reliable” to
a certain extent, e.g., by associating with each agent ai a value α(ai) ∈ [0, 1]
standing for the probability that the agent may remain in its coalition at the
next step. Obviously enough, this probabilistic setting departs from the one we
proposed here. Lastly, we plan to extend our framework to a dynamic setting in
which the set of agents A may change w.r.t. time, with the objective to apply it
to a distributed robot team reconfiguration problem [4].
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