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Abstract. Deontic Defeasible Logic (DDL) is a simple and computa-
tionally efficient approach for the representation of normative reasoning.
Traditionally defeasible logics are defined proof theoretically based on the
proof conditions for the logic. In this paper we present an argumentation
system that corresponds to a variant of DDL. The resulting machinery
is able to grasp in a natural way intuitions behind deontic reasoning
with conditional norms featuring obligations, prohibitions, and (strong
or weak) permissions.
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1 Introduction

Computational models of argument address defeasible claims raised on the basis
of partial, uncertain and possibly conflicting pieces of information. Argumenta-
tion is pervasive in artificial intelligence, with many application domains [2].

Normative systems, and in particular legal systems, constitute a rich test
bed and a major application domain for formal models of argument [13]. There,
models of argument have applications ranging from case-based reasoning [14] to
strategic studies in legal interactions [16,17].

When representing and reasoning upon norms, deontic concepts such as obli-
gation, prohibition and permission play a crucial role; and there exist some stud-
ies of deontic reasoning with formal models of argument, and a few argument-
based models focus on (conditional) norms, deontic operators and their interplay
[3,4].

Besides these undertakings in deontic argumentation, many deontic for-
malisms have been previously designed [6]. Amongst formalisms with practical
applications, DDL has been perhaps the most developed to represent and rea-
son upon norms [8–10]. Moreover and interestingly, Defeasible Logic (DL) has
possible interpretations in terms of arguments [7,12,15], but its deontic variants
have received little or no consideration to construct argument-based frameworks
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for deontic reasoning. In this paper, we consider constructs from DDL to build
a deontic argumentation system.

Contribution. Following the approach in DDL, we offer a rich formalism able
to express relevant aspects of deontic reasoning, such as contrary-to-duty obliga-
tions and preferences about permissions. The deontic argumentation framework
is described in the remainder of the paper.

2 Deontic Argumentation System

This section presents the deontic argumentation system. We first specify its lan-
guage, then arguments are constructed. Eventually, the justification and rejection
of arguments are defined.

2.1 Language

The following definitions provide the building blocks of our formalism:

– literals and modalities ;
– preference operators for obligations and permissions.
– constitutive and deontic rules.

The attention is restricted to a simple propositional language with atomic
negation and supplemented with a set of deontic operators {O,P} where O indi-
cates an obligation, and P a permission.

Definition 1. A literal is a plain literal iff it is an atomic proposition p or
the negation of an atomic proposition, i.e., ¬p. A literal is a deontic literal iff
it has either the form Ol or Pl or ¬Ol or ¬Pl where l is a plain literal. A literal
is either a plain literal or a deontic literal.

Notation 1. Given a set of literals L, the set of plain literals in L is denoted
as LitL and the set of modal literals as ModLitL. However, in the remainder,
the set of literals may be left implicit, and we may omit the subscript L.

We introduce two preference operators, ⊗ for obligations and � for permis-
sions. These operators are used to build chains of preferences, called ⊗- and
�-expressions. Intuitively, an ⊗-expression such as l1 ⊗ l2 ⊗ . . . ⊗ ln indicates
that the obligation that l1 is preferred to the one that l2, which is preferred to
l3 etc.

Definition 2. Let � ∈ {⊗,�}. An �-expression is defined as follows:

1. every literal l ∈ Lit is an �-expression;
2. if A is an �-expression and c1, . . . , ck ∈ Lit, then A � c1 � · · · � ck is an

�-expression;
3. nothing else is an �-expression.
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Notation 2. Given a set of literals L, the set of �-expressions defined by L is
denoted Pref�,L or simply Pref� if L is left implicit.

Definition 3. Let Lbl be a set of arbitrary labels. A set of rules Rul is a well-
formed set of rules over a set of literals L iff:

Rul ⊆ (RulOd ∪ RulOd ∪ Rulcd) ∪ (RulOdft ∪ Rulcdft)

such that

RulOd = {r : a1, . . . , an ⇒O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Pref⊗}
RulPd = {r : a1, . . . , an ⇒P b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Pref�}
Rulcd = {r : a1, . . . , an ⇒c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}
RulOdft = {r : a1, . . . , an �O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Lit}
Rulcdft = {r : a1, . . . , an �c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}.
Rules with an arrow ⇒ are defeasible rules, while rules with an arrow � are
so-called defeaters which are essentially used to specify exceptions to defeasible
rules. A defeasible rule can be used to support its consequent, whereas a defeater
does not support its consequent.

Notation 3. The set of antecedents of a rule r is denoted A(r),
and C(r) denotes its consequent. Other abbreviations are, for example,
RulO = RulOd ∪ RulOdft, and Rul [b] to denote the set of rules whose consequent
is b, and Ruld[b] the set of defeasible rules whose consequent is b.

Consequents of rules can be incompatible, and such incompatibilities are
captured though complementary literals.

Notation 4. The complementary of a literal q is denoted by ∼q; if q is a positive
literal p, then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p.

Definition 4. Let l ∈ Lit ∪ ModLit denote a literal. A set of literals is a set of
complementary literals of l, denoted Compl(l), iff:

– if l = p ∈ Lit then Compl(l) = {∼l};
– Compl(Ol) = {¬Ol,O∼l,¬Pl,P∼l}, Compl(¬Ol) = {Ol,¬Pl},

Compl(Pl) = {O∼l,¬Pl}, Compl(¬Pl) = {¬O∼l,Pl,¬P∼l}.
As usual, we can define a superiority relation between rules to determine

their relative strength in case of conflict. As shown in [1], we can disregard the
superiority relation in the discussion, since modular transformations exist that
empty this relation while maintaining the same conclusions in the language [8].
This result holds both for ambiguity blocking and ambiguity propagating DL
[7]. It also applies to deontic extensions of DL (including the one with ⊗ and �
operators), by means of the notion of inferiorly defeated rules [11].

2.2 Arguments and Attacks

Defining the notion of argument in the current context is not obvious. The com-
plexity mainly resides in the richness of the language (especially the presence
of the operators ⊗ and �) and in the constructive nature of the introduction
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of modalities. The derivation of a modal literal such as Ob depends on the con-
structive provability of b using rules such as a1, . . . , an ⇒O b, and the derivation
of ¬Ob depends on showing that there is no proof for Ob. We propose thus the
following definition of arguments.

Definition 5. An argument A for a conclusion p generated from a set of
rules Rul is a (possibly infinite) tree where

1. the root node is labelled by literal p;
2. any node is labelled by either a literal h ∈ Lit ∪ ModLit or no literals;

and such that:

1. if the node labelled by h has children h1, . . . , hn (n > 0), then all arcs
connecting h1, . . . hn to h are labelled by exactly one rule r ∈ Rul with
A(r) = {b1, . . . , bn} such that h1 = b1, . . . , hn = bn, and either
(a) if r ∈ RulOd and C(r) = c1 ⊗ · · · ⊗ cm then h = Ock (1 ≤ k ≤ m);
(b) if r ∈ RulPd and C(r) = c1 � · · · � cm then h = Pck (1 ≤ k ≤ m);
(c) if r ∈ Rulcd then h = C(r);
(d) if r ∈ RulOdft then h = p = ¬OC(r) is the root of the argument;
(e) if r ∈ Rulcdft then h = p = C(r) is the root of the argument;

2. if the node labelled by h has no children (i.e. h is a leaf node), then either
(a) h is labelled by no literals;
(b) h = ¬�l (� ∈ Mod);
(c) h = Pl.

The interpretation of item (d) is as follows. First of all, notice that we have to
do with a case where a defeater is considered. A defeater for O with head p does
not positively prove anything, but it can attack any obligation rule a1, . . . an ⇒O

¬p supporting ¬p (i.e., proving O¬p). Conceptually, this means that the defeater
can be a reason for stating that p is not obligatory, i.e., that ¬Op is the case.
Notice, also, that such a defeater—as any defeater here, and as done in standard
argumentation semantics for DL [7]—can only label arcs leading to a root. In the
modal case, this makes the interaction among arguments simple, as the concept
of derivation for a negative modal literal depends on the relation between the
argument considered and other arguments attacking the former one. Hence—as
we will see—that ¬Op is justified depends on the absence of successful arguments
whose conclusion is O¬p.
Remark 1. Item (b) of the last condition where the modality � is a permission P
captures the case where the conclusion l as strong permission—i.e. a permission
derived from a rule with ⇒P—is defeated (as we will see later). If the modality
� is an obligation O, then it captures the case where a weak permission is put
forward. Similarly, the last item (c) of condition (2) captures the case where a
weak permission is assumed. In both cases, such a weak permission is not directly
expressed in a specific deontic rule and cannot be constructively reflected in the
tree-structure. In this sense, such nodes can only be leaf nodes.
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Example 1. Suppose we have the following rule set:

{r1 : ⇒O c1 ⊗ c2, r2 : Oc1,¬Op ⇒P q}.

Then, we can build an argument as in Fig. 1. �

Pq

Oc1

r1

r2

¬Op

r2

Fig. 1. An argument.

We may employ some auxiliary terminology.

– A supportive argument is a finite argument in which no defeaters are used.
– An argument is positive iff no defeater is used in it.
– A constitutive argument is an argument where all rules are constitutive rules.
– Any literal/modal literal labelling any node of an argument A is a conclusion

of A.

Definition 6. Let A denote any argument with height j ≥ 1 for any literal p.1

The top subargument of A, denoted At, is the top subargument of A with height
1. Let us use R(At) to denote the rule associated with the arcs arriving at the
root of At.

On the basis of arguments, we provide the core notion of the approach
—argument agglomeration set— which gathers all arguments that are strictly
needed to accept an argument. Such agglomeration set caters for two cases:

– when nodes are labelled by rule conclusions, in case of ⊗- or �-expressions in
the head of rules such as a ⊗ b and p � q, the fact that Ob or Pq label nodes
means that a and O¬p have been concluded;

– when leaf nodes are labelled modal literals such as ¬Op we fall in the case
discussed in Remark 1; even here, conditions external to the single argument
at stake must be checked, which is required to verify that such an argument
is justified.

Definition 7. Let A ∈ Args be an argument such that for every node h of A
labelled by a modal literal ¬Ol, ¬Pl, Ol or Pl, the arcs leading to h are labelled
by

1 As usual, the height of an argument is the number of edges on the longest path
between the root and a leaf node.
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– (for literals such as Ol) r : b1, . . . , bn ⇒ c1⊗· · ·⊗cm and l = ck (1 ≤ k ≤ m),
and

– (for literals such as Pl) r : b1, . . . , bn ⇒ d1�· · ·�dm and l = dk (1 ≤ k ≤ m).

An argument agglomeration set Aggl(A) ⊆ Args w.r.t. A is a smallest set
of arguments such that A ∈ Aggl(A) and:

– for each (leaf) node labelled ¬Ol or ¬Pl,
• there is an argument B ∈ Aggl(A) whose conclusion is p ∈ Compl(Ol);
• Aggl(B) ⊆ Aggl(A);

– for each node labelled cj (1 ≤ j < k),
• there is an argument C ∈ Aggl(A) whose conclusion is ¬cj ∈ Compl(cj);
• Aggl(C) ⊆ Aggl(A);

– for each node labelled dj (1 ≤ j < k),
• there is an argument D ∈ Aggl(A) whose conclusion is q ∈ Compl(Pdj);
• Aggl(D) ⊆ Aggl(A).

Remark 2. The agglomeration set of any argument A gathers all arguments that
are strictly needed to accept the construction of A. Thus, the agglomeration set
of A can be viewed as a single argument where special arcs connect nodes in A
labelled by modal literals obtained by rules supporting �-expressions.

Example 2. Suppose the following rules:

{ r1 : ⇒c ¬c1, r3 : ⇒O c1 ⊗ c2,
r2 : �O ¬p, r4 : Oc2,¬Op ⇒P d1 � d2 }.

Then, we can build the following arguments2:

A : ⇒ Oc2,¬Op ⇒ Pd1, B : ⇒ ¬c1, C : �O ¬p
which agglomerate as illustrated in Fig. 2.

Pd1

Oc2

r3

¬c1
r1

r4

¬Op

¬Op

r2

r4

Fig. 2. An argument agglomeration set, where the dotted arc represent the relation
between arguments in the agglomeration.

2 Arrows indicate the type of rule used.



490 G. Governatori et al.

Eventually, arguments supporting complementary literals attack each other.

Definition 8. An argument A attacks an argument B iff

1. there exists a node of B labelled by m, and
2. there exists a node of A labelled by l ∈ Compl(m).

A set of arguments S attacks an argument B iff there is an argument A in S
that attacks B.

2.3 Justified and Rejected Arguments

The justification of arguments has been thoroughly studied in the literature, and
multiple semantics have been proposed. As we are dealing with DL, we resort to
the argumentation semantics for variants of DL as presented in [7].

The usual definition of accepted arguments is slightly adapted to embrace
argument agglomeration sets.

Definition 9. An argument A is an accepted argument w.r.t a set of argu-
ments S iff A is finite, and every argument attacking any argument in any
Aggl(A) is attacked by S.

From accepted arguments, and similarly as [5], we can define justified argu-
ments using a ‘characteristic function’.

Definition 10. Let Args be a set of arguments. The deontic justification
characteristic function of Args is a function Ji : pow(Args) → pow(Args)
such that:

– J0 = ∅, and
– Ji+1 = {A ∈ Args | A is accepted w.r.t. Ji}.
Definition 11. Let Args be a set of arguments. The set of justified argu-
ments of Args is JArgs =

⋃∞
i=1 Ji.

Definition 12. Let Args be a set of arguments. A literal is a justified literal
if it is a conclusion of a supportive argument in JArgs.

Once justified arguments and literals are established, rejected arguments and
literals can be determined. We first define rejected arguments with respect to a
generic set of arguments which is then instantiated as a set of justified arguments.

Definition 13. An argument A is a rejected argument by a set of arguments
S iff either

1. a proper subargument B of A is in S, or
2. B is attacked by a finite argument.



A Deontic Argumentation Framework 491

Definition 14. Let T be a set of arguments. The deontic rejection charac-
teristic function of Args is a function Ri(T ) : pow(Args) → pow(Args) such
that

– R0(T ) = ∅, and
– Ri+1(T ) = {A ∈ Args | A is rejected by Ri(T ) and T}.
Definition 15. The set of rejected arguments w.r.t. T is RArgs =⋃∞

i=1 Ri(T ). An argument is rejected if it is rejected w.r.t. JArgs.

From justified and rejected arguments with respect to justified arguments,
we define rejected literals.

Definition 16. A literal l is a rejected literal by T iff there is no supportive
argument for l in Args − RArgs(T ). A literal l is rejected if it is rejected by
JArgs.

In reference to the above definition, we can note that the set of justified argu-
ments JArgs is included in Args −RArgs(JArgs). Furthermore, some arguments
in Args −RArgs(T ) may be neither justified nor rejected. Consequently, a literal
may be neither justified nor rejected. In this case, we may say that the status of
the literal is undetermined.

Example 3. Let us suppose two arguments A and B attacking each other. Argu-
ment A supports literal a, while argument B supports literal ¬a. The set of
justified arguments is empty, and thus the set of rejected arguments is empty.
Consequently, literals a and ¬a are neither justified nor rejected. Their status is
undetermined. �

3 Conclusion

A deontic rule-based argumentation framework has been devised to capture nor-
mative knowledge and reasoning upon it. To do so, we have been inspired by
works in DDL and extended the argumentation machinery developed in [7].

The main source of difficulties resided in the introduction of modal and
deontic-preference operators. In particular, the introduction of modalities
required to significantly modify the concept of argument and the basic system
of [7]. Indeed, the derivation of a modal literal such as Ob depends on the con-
structive provability of b using rules such as a1, . . . , an ⇒O b, and the derivation
of ¬Ob requires that there is no proof for Ob. We have thus devised argument
agglomeration sets which, to the best of our knowledge, have no counterparts in
the argumentation literature.
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